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Abstract 

Structural integrity and reliability of sealing materials for planar type solid oxide fuel cells 

(pSOFCs) is key to attaining the required functionality and subsequent commercialisation of 

such fuel cells. In this thesis a number of different series of alumino-borosilicate glasses 

containing alkaline earth modifiers, as well as ZnO and La2O3 are studied as potential sealant 

materials. The glass ceramics derived from these glasses were also studied. Vickers hardness 

indentation was used to assess the hardness and indentation fracture toughness of these glasses 

and acoustic measurements were used to determine their moduli.  The results reveal a decrease in 

mechanical properties with modifier additions in all the series except for increasing La2O3 in 

xSi(20-x)La(Sr) with little variation of mechanical properties in the case of xB(15-x)Zn (10BaO-

(15-x)ZnO-15La2O3-5Al2O3-(10+x)B2O3-45SiO2 (X=  2.5, 5, 7.5, 10)) and xSi(20-x)Zn (10BaO-

(20-x)ZnO-15La2O3-5Al2O3-10B2O3-(40+x)SiO2 (X=2.5,5,7.5) mol%) hardness. Electrical 

conductivity of sealing glasses must be lower than 10
-4

 S cm
-1 

and or > 10
4
Ω cm. Hence the 

electrical properties the electrical properties of these glasses were measured using impedance 

spectroscopy and the results indicated that all of the glass and glass ceramic samples studied are 

electrically resistive and show promise for use as sealing materials. Another important parameter 

is the thermal properties where the TEC of the sealing glass must be compatible with the other 

components because differences in TEC of sealing glasses and adjoining SOFC parts result in 

mismatch and induce thermal stresses during thermal cycling and this may generate cracks 

through which gas leakages occur. The TEC of xBa(10-x)Al series (10+x)BaO-5ZnO-20SrO-

(10-x)Al2O3-20B2O3-35SiO2 (X= 0, 2, 3, 4, 5) and some of xBa(40-x)Si samples (15+x)BaO-

5ZnO-15La2O3-5Al2O3-20B2O3-(40+x)SiO2 (X=2.5,5,7.5, 10) have fall within the requirement 

for sealing glasses. Apart from the TEC the Tg is also a determining factor as to the suitability or 

otherwise of a sealing glass to be a promising candidate due to the following reasons: (i) thermal 

stresses develop below the Tg where the glass is brittle therefore the Tg should be as low as 

possible; (ii) due to high temperature material degradation research efforts are on to reduce the 

operating temperatures of SOFCs to enhance materials service life and the opportunity for 

variety of materials selection to construct the SOFCs components. Heat treating series xB(15-

x)Zn, xSi(20-x)Zn and xBa(40-x)Si lead to the formation of lanthanum borosilicate single phase. 

The evolution of these phase lead to not only increased in conductivity as mentioned above but 

also in the hardness as they are higher in the glass ceramics. However the TEC of the glass 
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ceramics compared with the parent glasses were slightly lower and its reported in this study that 

this is a good sign of thermal stability as the TEC did not exhibit the possibility of continues 

increase. 
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1. Introduction 

Solid oxide fuel cells (SOFCs) are devices which convert chemical energy into electrical energy 

through chemical reactions with higher efficiency than conventional thermal energy conversion 

systems (Zhao and Malzbender 2013, Malzbender, Zhao et al. 2014). SOFCs have a self-

reformation ability (see section 2.3.2 for more details) coupled with fuel flexibility (Ghosh, 

Kundu et al. 2008, Wang, Wang et al. 2009), such as the use of hydrocarbon and municipal 

waste (Mahato, Banerjee et al. 2015) and are environmentally friendly  (Laorodphan, Namwong 

et al. 2009) and are therefore an option to help achieve CO2 reduction targets (Ohara, Mukai et 

al. 2001). SOFCs operate at high temperatures (600-1000 
o
C) (Laorodphan, Namwong et al. 

2009, Chang, Lin et al. 2010, Chang, Lin et al. 2011), in an oxidizing, reducing and humid 

environment (Wang, Lu et al. 2007). The required minimum service life for mobile and 

stationary applications are 5000 h and 50000 h respectively (Coillot, Méar et al. 2012). Recent 

reports indicates that more than 75000 h service can be exceeded for stationary applications 

(Rodríguez-López, Wei et al. 2017). There are two popular designs named according to the cell 

stacking arrangement; planar or tubular (Reis and Brow 2006, Laorodphan, Namwong et al. 

2009, Chang, Lin et al. 2010, Chang, Lin et al. 2011, Zhao and Malzbender 2013, Malzbender, 

Zhao et al. 2014). Planar SOFCs are preferred over tubular ones due to a simpler manufacturing 

process and higher current outputs as planar SOFCs have a shorter current path (Reis and Brow 

2006, Wang, Lu et al. 2007).  The problem with the design of planar SOFCs is that it requires 

hermetic sealing to function (Chang, Lin et al. 2010, Chang, Lin et al. 2011) and the hermetic 

sealing of the electrodes, electrolytes and metallic interconnects remains a key challenge for 

pSOFCs (Sun, Xiao et al. 2010). Critical sealing positions in a pSOFCs are the inlets and outlets 

of both anode and cathode to prevent the fuel and oxidants mixing (Wang, Wang et al. 2009, 

Sasmal, Garai et al. 2014). To generate high voltages cells are stacked in series (Larsen and 

James 1998); a single cell consists of a dense electrolyte, porous anode and cathode made of 

nickel zirconia cermet and doped lanthanum manganite perovskite (Kaur, Pandey et al. 2014) as 

shown in fig (1-1). The commercialization of pSOFCs depends on the reliability of the sealants 

(Zhao and Malzbender 2013, Malzbender, Zhao et al. 2014), which must meet a set of 

requirements such as gas tightness, high temperature stability, chemical stability and 

compatibility, mechanical integrity, electrical insulation and thermal expansion tailored to match 

that of other components of the SOFCs (Hsiu-Tao Chang 2009, Wang, Wang et al. 2009). Glass 
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and glass-ceramics are the most commonly used sealing materials because glass based sealants 

are cheaper and much better than metallic sealants in terms of resistance to dual atmospheres and 

can be tailored compositionally to meet most of the sealing requirements with glass based 

sealants also having the advantage of better wetting to sealing interfaces (Zhao, Malzbender et al. 

2011, Zhao and Malzbender 2013, Malzbender, Zhao et al. 2014). Seals used in the SOFCs are 

produced by tape casting or screen printing and can also be applied in form of a paste containing 

dispersed powder (Zhao and Malzbender 2013, Malzbender, Zhao et al. 2014).  

           Two important criteria for the selection of a sealant are the glass transition temperature 

(Tg) which must be below the operating temperatures of the SOFCs (Chang, Lin et al. 2009, 

Zhao and Malzbender 2013, Malzbender, Zhao et al. 2014), and the thermal expansion 

coefficient (TEC) which must closely match the TEC of other cell components to avoid thermal 

stresses due to mismatch (Chang, Lin et al. 2009). The Tg must not be higher than the operating 

temperature of the fuel cells as this will subject the other components of the fuel cells to thermal 

degradation or burnout of substances during sealing and because the glass will not soften below 

its Tg it is susceptible to cracking as a result of TEC mismatch which is more pronounced below 

the Tg  (Fergus 2005, Kaur, Pandey et al. 2014). Other relevant thermal properties include the 

glass viscosity during sealing of about 10
6
 PaS to avoid wicking and the softening temperature Ts 

(Lessing 2007). The softening point is viscosity dependent and depicts the flow characteristics of 

the glass (Fergus 2005). The viscosity at Tg and Ts are 10
11.3

 and 10
9
 Pa S respectively and to 

provide effective hermetic sealing at the operating temperature the viscosity of sealing glasses 

must be > 10
9
 Pa S (Mahapatra and Lu 2010). A brief highlight will be presented here about the 

types of different sealants their advantages and drawbacks as follows. Majority of the glass and 

glass ceramic compositions are alkali or alkaline earth containing aluminosilicates, borosilicates, 

borate and phosphate based glasses (Larsen, Poulsen et al. 1999, Tulyaganov, Reddy et al. 2013). 

Compositions based on alkali silicates are not suitable due to reaction of the alkalis with the 

SOFC components as they form volatile species (oxides) and also some stable hydroxides and 

carbonates leading to chromium poisoning (Fergus 2005, Ghosh, Sharma et al. 2008). A lot of 

researchers have focused on aluminosilicate glasses with high barium between 30-35mol% with 

the well-known consequences of deleterious BaCrO4 formation especially with the chromium 

containing metallic interconnect and this phase have high TEC compared with other SOFC 

components and hence leading to seal separation(Yang, Stevenson et al. 2003). Glass 
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compositions with boron as the sole network former is prone to weight loss of about 20% in 

humid environment of the fuel cell and equally reacts with SOFC parts in both oxidizing and 

reducing conditions (Tulyaganov, Reddy et al. 2013).  P2O5 based glasses also are not suitable 

for use as sealing glasses due their volatility at the fuel cell operating conditions(Larsen, Poulsen 

et al. 1999). There are a lot of studies on different glass and glass-ceramic systems for SOFCs 

applications, out of which silica and boron containing alkaline earth systems are identified as the 

most preferred and the reasons why they are promising are discussed in chapter 2 and in sections 

2.7 for more details 

 

 

 

Figure 1-1 Schematic cell arrangement of SOFCs adopted from Mahapatra and Lu (2010) 

 

In this thesis, after this Introduction chapter, a Literature Review chapter is presented in which 

thermal, mechanical and electrical properties of sealing glasses are examined in terms of the 

provided structure-property information from the literature. The experimental procedures chapter 

details sample preparation and measurement techniques use to assess thermal, mechanical 
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electrical properties such as differential thermal analysis (DTA), Vicker‟s hardness, indentation 

fracture toughness and elastic moduli as well as impedance spectroscopy. 

           The Results chapter presents the results obtained for six different glass series (xB(15-

x)Zn, xSi(20-x)Zn, xBa(40-x)Si, xBa(10-x)Al, xSi(20-x)La(Ba) and xSi(20-x)La(Sr)) that were 

produced in these experimental works; for detailed compositions see experimental procedure 

under item 3. All of these samples were characterised for structural properties and the 

mechanical properties of the glasses except xSi(20-x)La(Ba) glasses were obtained. And then 

follows the electrical properties of xB(15-x)Zn and xBa(40-x)Si samples as both glass and glass 

ceramics, xSi(20-x)Zn as glass-ceramics and xBa(10-x)Al as glasses. 

          The experimental findings of all the different glass series were assessed in detail, and any 

possible links between different properties are explored along with other literature data in the 

Results and Discussion chapter. Finally, Conclusions and Recommendations for Future Works 

are presented and appendixes of the raw data attached at the end of the thesis with comparisons 

to other data in the literature where necessary. 

The objectives of the work described in this thesis are; 

 Characterisation of the thermal properties of the samples relevant to SOFCs sealing 

applications typically the (Tg and TEC). 

 Measurement of the electrical and other physical properties and how they relate to 

SOFCs applications. 

 Assessment of the mechanical properties of produced glasses to gain insight into 

structural integrity especially at room temperature where the glass and glass ceramics are 

most brittle since stresses are only relieved at the operating temperatures above Tg.
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2. Literature review 

This chapter will present the required background to understand SOFCs and parameters such as 

the types of fuel cells and materials used for the construction of SOFCs, including the different 

components including the sealants which are the main focus of this study and the principle of 

operations and different designs for SOFCs. The available sealing technologies and the effect of 

compositions on key sealant properties mainly thermal, mechanical and electrical properties 

relevant to sealing glasses are also considered. 

2.1 Fuel cells. 

Present day fuel cells are derived from the work of Sir William Groves in 1839, although his cell 

setup did nothing more than to deflect a galvanometer it served as a starting point for the 

development of fuel cells (Yeager 1961). The most advanced fuel cell is the hydrogen-oxygen 

type (Yeager 1961, Garland, Papageorgopoulos et al. 2012). And up to date hydrogen is the most 

preferred fuel gas for the SOFCs due to its high efficiency compared to conventional fuel to 

power converters (Zhu and Deevi 2003, Haseli 2018). In a broader perspective fuel is considered 

to be any anodic reactant in a battery. Originally the term fuel cells was used for an 

electrochemical cell that used low-cost fuels but in recent times electrochemical cells that 

consumes high cost fuels have been included in the definition of fuel cell (Yeager 1961). A 

common feature of fuel cells is that they never store large amounts of the electrode reactants but 

rather the reactants are fed continuously into the system as they are consumed; therefore only a 

small quantity of reactant is present within the cell at a given time. Most fuel cells use pure 

oxygen or air as oxidizing agents, others oxidizers such as halogen gases are not usually used 

due to high cost and compared to oxygen they are not easy to handle (Yeager 1961).  

Fuel cells can be likened to flash light battery cells with the difference that in battery cells the 

fuel and the oxidant are stored within the cell, while for fuel cells fuel is stored outside the setup 

and supplied to it when required and so fuel cells can simply be referred to as continuous feed 

primary batteries (Friauf 1961). The efficiencies of the different types of fuel cells are given in 

table 2.1 with SOFCs and Protonic ceramic fuel cells have efficiencies of between 45-60% at the 

operating temperature. 
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Types of fuel 

cell 

electrolyte Operating T Fuel Oxidant Efficiency 

Alkaline 

(AFC) 

Potassium 

hydroxide 

(KOH) 

50-200
o
C Pure 

hydrogen or 

hydrazine 

O2/Air 50-55% 

Direct 

methanol 

(DMFC) 

Polymer 60-200
o
C Liquid 

methanol 

O2/Air 40-55% 

Phosphoric 

acid (PAFC) 

Phosphoric 

acid 

160-210
o
C Hydrogen 

from 

hydrocarbons 

and alcohol 

O2/Air 40-50% 

Sulfuric acid 

(SAFC) 

Sulfuric acid 80-90
o
C Alcohol or 

impure  

hydrogen 

O2/Air 40-50% 

Proton 

exchange 

membrane 

(PEMFC) 

Polymer, 

proton 

exchange 

membrane 

50-80
o
C Less pure 

hydrogen 

from 

hydrogen or 

methanol 

O2/Air 40-50% 

Molten 

carbonate 

(MCFC) 

Molten salt 

such as 

nitrate, 

sulphate, 

carbonates 

630-650
o
C Hydrogen, 

carbon 

monoxide, 

natural gas, 

propane, 

marine diesel 

CO2/O2/Air 50-60% 

Solid Oxide 

(SOFC) 

Stabilized 

zirconia 

ceramic and 

doped 

perovskite 

600-1000
o
C Natural gas or 

propane 

O2/Air 45-60% 
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Protonic 

ceramic 

(PCFC) 

Thin 

membrane of 

barium 

cerium oxide 

600-700
o
C hydrocarbons O2/Air 45-60% 

Table 2.1: Summary of fuel cells and their properties (Stambouli and Traversa 2002) 

  

2.2 Types of fuel cells. 

Classifications of fuel cells are generally based on the type of electrolyte used as the medium for 

ionic conduction within the cell as summarised in table 2.1 above. The first five in the table are 

associated with low to medium operating temperature between 50-210
o
C and have relatively low 

efficiency 40-50% in terms of electrical generations especially when run on methanol or 

hydrocarbon and efficiency can reach 50% with pure hydrogen as the fuel. The remaining three 

types on the list table 2.1 operate at high temperatures between 600-1000
o
C and can utilize 

methane directly in the fuel cell and exhibit efficiency of 45-60% when natural gas is used as 

fuel and the ability for heat recovery. Out of the list of fuel cells proton exchange membrane fuel 

cell and solid oxide fuel cell have received growing interest from researchers as they are suitable 

for cars and mass transportation and in the case of SOFC for domestic applications  (Stambouli 

and Traversa 2002, Mahato, Banerjee et al. 2015). 

 Based on their electrolyte type and the temperature of operation the following types of fuel cells 

will be briefly discussed and advantages or drawbacks will be highlighted.  

i) Proton exchange membrane fuel cell (PEMFC) 

ii) Alkaline fuel cells (AFC) 

iii) Molten Carbonate fuel cell (MCFC) 

iv) Solid oxide fuel cell (SOFC).  

2.2.1 Proton exchange membrane fuel cell (PEMFC) 

Proton exchange membrane fuel cells (PEMFCs) have a high power density and run at low 

temperatures (50-80
o
C) with a very quick start-up and shutdown. However, their use is restricted 

to research and demonstrations due to poor reliability and cost issues which have hindered 

commercialization (Wang, Chen et al. 2011). In PEMFCs the electrolyte is a solid polymer that 
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allows proton transfer. These ionic polymers only have the ability to transfer proton in the moist 

state and not  in the dry conditions, and their ionic conductivity increases with increasing water 

content; their gel-like polymeric structures carry fixed positive and negative charges 

(Peighambardoust, Rowshanzamir et al. 2010). Protons migrate from the anode to the cathode 

via the dense proton exchange membrane and the catalytic oxidation of hydrogen produces the 

protons (Bose, Kuila et al. 2011). 

2.2.2 Alkaline Fuel Cells (AFC) 

AFCs are seen as an alternative to PEMFCs because they are cost effective as they need no 

expensive electrolytes or noble metal catalyst (Schulze and Gülzow 2004). AFCs operate on the 

basis of alkaline water electrolysis and are low temperature devices with high electrical 

efficiency. The major problem with AFCs is the intolerance of the alkaline electrolyte to CO2 

(Kohnke 2011). AFCs have high electrical efficiency and are easy to handle with good suitability 

for alternating loads (Gülzow 2004). The advantage of AFCs compared to polymer electrolyte 

fuel cells is that liquid fuels such as ammonia can be used (Gülzow 2004). 

2.2.3 Molten Carbonate Fuel Cells (MCFC). 

Molten carbonate is used as the electrolyte for this system and operates above 600 
o
C (Antolini 

2011, Nguyen, Song et al. 2012).  MCFCs have become more attractive for power generation 

due to their resistance to some fuel impurities and the ability to utilize the fuel impurity gases 

such as CO2 and CO as a source of fuel particularly from a hot flue source (Nguyen, Song et al. 

2012). The electrolyte is contained in a beta-alumina ceramic matrix. The other components 

MCFCs are a porous anode as the fuel electrode and a porous cathode as the oxidant electrode. 

The cell is operated at an atmospheric pressure between, 1-10N m
2
.  And the fuels used are H2 

and CO while the oxidants are O2 and CO2 (Antolini 2011). 

2.2.4 Solid Oxide Fuel Cells (SOFCs) 

Solid oxide fuel cells as explained in chapter one are electrochemical devices which convert the 

chemical energy stored in gaseous fuels such as CO or CH4 directly into electrical energy, 

together with some heat generation by electrochemical combination of fuels with an oxidant 

from air. For optimal operation of SOFCs several materials‟ requirements must be met which 

include (i) acceptable electrical properties such as high oxygen-ionic conduction and low 
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electronic conduction in the electrolyte and mixed type conductivity for the electrodes (anode 

and cathode) (ii) chemical and structural stability during operation under oxidizing and reducing 

atmosphere (iii) low reactivity and inter diffusion of elements between components (iv) and TEC 

compatibility between components working together (Knauth and Tuller 2002). For the 

stationary applications a number of small size 1-25kW cells have been constructed and test run 

for few thousand hours by several organisations, however such runs have not been a complete 

success basically due to lack of robust glass seals (Singhal 2002). 

2.2.4.1 Advantages of fuel cells  

The use of fuel cells in power generation has some advantages over the conventional power 

generation systems. Fuel cells have the advantages of direct conversion of chemical energy into 

electrical energy and unlike conventional power generation systems intermediate combustion 

losses are avoided. Fuel cells thus have the potential for increased electrical efficiency. Noise 

pollution is minimal because of lack of moving parts in the fuel cells set up and low emissions of 

pollutants. They have the potential to be used in a range of applications since their efficiency is 

size independent. The major areas of applications to date are both mobile and stationary 

(domestic and industrial in which heat and electrical energies are required) (Minh 1993, Singhal 

2002). 

2.2.4.2 Advantages and challenges of SOFCs compared with other fuel cells 

  The different types of fuel cells presented in table 2.1 and section 2.2 and from the table the 

different fuel cells can be subdivided into low and high temperature fuel cells. Among all the 

different types of fuel cells SOFCs are most preferred due their cost effectiveness, fuel flexibility 

and high energy conversion efficiency coupled with heat recovery and combined power 

generation. SOFCs are used for residential and auxiliary power units and also in industrial 

energy supplies (Mahapatra and Lu 2010, Huang, Xie et al. 2012). Other specific advantages of 

SOFCs includes modular construction and lower emission of pollutants, the use of solid ceramic 

materials and the non-inclusion of liquids as electrolytes prevents corrosion and electrolyte 

management problems. The use of high operating temperatures (>600
o
C) enhance rapid reaction 

kinetics, enables reformation of hydrocarbon fuel (internal reforming) within the fuel cells rather 

than requiring an expensive external reformer (Singhal 2002). SOFCs generates high quality 

byproducts in form of heat for co-generation, thus these advantages suggest that SOFCs can be 
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simple and more efficient compared to other technologies. In addition SOFC being completely 

solid gives room for thin layer fabrication of its ceramic components and can be configured into 

desired shapes not possible in fuel cells that have liquid electrolytes (Minh 1993).  

     Despite the advantages enumerated above SOFCs have some drawbacks which need to be 

solved in order to get the full potential of the system.  The most commonly used electrolyte in 

conventional SOFC is the yttria stabilized zirconia (YSZ) whose ion conduction efficiency is 

only achieved at very high temperatures   800
o
C; this very high temperature also impedes 

commercialisation of the SOFCs with particular concern about materials degradation and cost. 

Reducing the operating temperature offers the advantages of selecting wider range of cheaper 

materials for SOFCs construction (Huang, Xie et al. 2012). Another critical area that also hinders 

the commercialisation of pSOFCs has to do with lack of robust sealant, although a substantial 

working time   75000 h has been successfully surpassed, the issue of long term reliability and 

stability of the SOFCs materials and components still needs to be addressed (Rodríguez-López, 

Wei et al. 2017). To address the issue of hermetic sealing different sealing materials including 

metals have previously been used. Among all the sealing materials the choice of glass and glass 

ceramics as a sealants standout to be most favourable of sealing materials for pSOFCs. However 

the brittle nature of glass and glass ceramics makes such seals susceptible to cracking as a result 

of stresses induced during thermal cycling. Studies using finite element indicates the presence of 

a high stress level of 43MPa under operating conditions which is enough to initiate cracks over 

time leading to a loss of gas tightness and stack performance efficiency (Rodríguez-López, Wei 

et al. 2017). 
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Figure 2-1: Schematic operation activities in a SOFCs unit 

 

Fig 2-1 presents a schematic of the operation of a SOFC. The operating temperature for SOFCs 

depends on how high a temperature is required to achieve high ionic conduction in the 

electrolyte; for the most common electrolyte, YSZ, the operating temperature should be higher 

than 973K (McIntosh and Gorte 2004, Sun and Stimming 2007). SOFCs are also classified 

according to their operating temperature as low 500-700
o
C, intermediate 700-900

o
C and high 

temperature 900-1000
o
C (Timurkutluk, Timurkutluk et al. 2016).  

       During the operation of the SOFCs oxygen molecules in the cathode get reduced to anions 

by electrons flowing from the external circuit. 

O2 (g) +4e
- 
→ 2O

2-
 

The oxygen anion migrates to the anode via oxygen vacancies in the electrolyte due to 

differences in potential and concentration and oxidise the fuel according to 

H2+O
2- 

→ H2O + 2e
-
 

Electrons released as a result of the reaction above moves through the external connection to the 

cathode to complete the circuit. The anode catalyses the oxidation reaction and remains ionically 

and electronically conductive (McIntosh and Gorte 2004, Sun and Stimming 2007). 

Equation 2-1 

Equation 2-2 
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SOFCs (see fig 2-2) have two basic stack designs – planar and tubular stacks with the former 

preferred over the later due to a simpler manufacturing process and a higher power density per 

volume. The challenge for planar SOFCs is that they require high temperature sealing to function 

while this is not requirement for tubular designs (Fergus 2005, Reis and Brow 2006, Wang, Lu et 

al. 2007). The state of the art design is a planar anode supported SOFC used for intermediate 

temperature and this design replaces high cost ceramic interconnects with low cost metallic ones 

(Ghosh, Kundu et al. 2008, Ghosh, Sharma et al. 2010, Luo, Lin et al. 2015). To date neither 

planar nor tubular designs have met the requirement for mobile applications because such 

applications require short start-up times and high performance in a limited space. Despite the 

high power density attainable in planar SOFCs they  are not structurally able to withstand the 

high heating/cooling rates required in mobile applications and while the tubular design is 

thermally stable due to its circular symmetry it has a low power (Timurkutluk, Timurkutluk et al. 

2016). Table (2.2) gives a summary of the advantages and disadvantages for both planar and 

tubular SOFCs designs. 

 

Figure 2-2:SOFCs designs tubular top and planar bottom adopted from ref. (Timurkutluk, 

Timurkutluk et al. 2016) 
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Property Tubular Planar 

Power density Low (0.20-0.25W/cm
2
) High (2W/cm

2
) 

Volumetric power density Low High 

High temperature sealing Easy Difficult 

Start-up and shut-down time Fast Slow 

Interconnector fabrication Difficult Expensive 

Fabrication cost High Low 

Thermal cycle stability High Low 

Table 2.2: Advantages and disadvantages of tubular and planar SOFC designs (Timurkutluk, 

Timurkutluk et al. 2016) 

2.2.4.3 Tubular design. 

The tubular shaped design has been developed by Siemens Westinghouse Power Corporation 

(SWPC) with a length of 1.8 m, a wall thickness about 2 mm, and an outside diameter >20 mm. 

The design operates at 900-1000 
o
C due to its high ohmic resistance; such temperatures are 

necessary in order to obtain an approximate power density of 200 mV/cm
2
. Flat tubes and ribs 

are incorporated into the design to reduce the ohmic resistance (Singhal 2000). 

2.2.4.4 Planar design 

The planar design comes in different configurations, these include: the electrolyte supported, 

anode or cathode supported and interconnect supported as presented in Fig 2-3. The advantages 

or otherwise of these configurations are presented in table 2.3. Electrode supported cells have 

higher performance because the electrode supports a very thin electrolyte with low ohmic 

resistance. Under this category the anode supported type is the most common, however, a nickel 

based anode under goes what is called redox cycling where reduction of NiO→Ni and the 

oxidation of Ni→NiO occurs and this causes a volumetric change leading to cell damage over 

time. Electrolyte supported SOFCs are mechanically robust compared to electrode supported 

ones as thus they are less susceptible to failure. The interconnect-supported like the electrolyte 

supported is strong mechanically but its problem is that it limits the flow field in the design as 

cell support comes in as a requirement (Timurkutluk, Timurkutluk et al. 2016). 
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Figure 2-3: Types of cell configurations for Planar SOFCs adopted from ref. (Minh 2004) 
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Cell configuration Advantages Disadvantages 

a) Self-supporting   

Electrolyte-supported Relatively strong structural 

support from dense 

electrolyte, less susceptible to 

failure due to anode 

reoxidation (Ni/YSZ anode) 

and cathode reduction (LSM 

cathode) 

Higher resistance due to low 

electrolyte conductivity, 

High temperature is required 

to overcome electrolyte ohmic 

losses. 

Anode-supported Highly conductive anode 

Lower operating temperature 

as thin electrolyte is used 

Potential anode reoxidation, 

Mass transport limitation due 

to thick anodes 

Cathode-supported No oxidation issues but 

potential cathode reduction 

Lower operating temperature 

as thin electrolyte is used 

Lower conductivity 

Mass transport limitation due 

to thick cathodes 

b) External -supporting   

Interconnect-supported Thin cell components for 

lower operating temperature 

Stronger structures from 

metallic interconnects 

Interconnect oxidation 

Flow field design limitation 

due to cell support 

requirement 

Porous substrate Thin cell components for 

lower operating temperature 

Potential for use of non-cell 

material for support to 

improve properties 

Increase complexity due to 

addition of new materials 

Potential electrical shorts with 

porous metallic substrate due 

to uneven surface 

Table 2.3: Merits and Demerits of cell configurations (Minh 2004) 
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         As noted depending on which part of the components is supporting the cell, there are 

electrolyte and the electrode supported concepts for the planar design (McIntosh and Gorte 2004, 

Blum, Meulenberg et al. 2005), see Fig 2-3 and table (2.3). The electrolyte type is usually 

supported on yttria stabilized zirconia (YSZ) with thickness 100-200mm and an area of 10 x 10 

cm
2
 or more in some cases. The operating temperature is as high as 850-1000 

o
C as a result of 

high resistance because the electrolyte is thicker than other components. On the other hand to 

reduce the electrolyte resistance its thickness is decreased and that of anode increased to support 

it. The anode which is made of composite YSZ, gadolinium doped ceria (GDC), or samarium 

doped ceria (SDC)  with nickel oxide is chosen to support the thin electrolyte due to better 

electrical conductivity of its materials (Blum, Meulenberg et al. 2005).  

2.3 Materials used in SOFCs 

Selection of materials for the various components of a cell stack depend on their ability to 

withstand both oxidizing and reducing conditions (Singh 2007). Table 2.4 summarises the 

components of SOFCs and the factors affecting materials used. 

2.3.1 Electrolyte 

Several ceramic materials such as rare earth doped ceria and rare earth doped bismuth oxide are 

used as electrolytes but the most common is yttria stabilized zirconia (YSZ). The basic 

requirement of an electrolyte is to have good ionic conductivity to reduce cell impedance and 

secondly to avoid current leakage having little or no electronic conduction is important. 

Electrolytes in an SOFC operate on the principle of oxygen ion (O
2-

) conductivity and the choice 

is based on availability and cost. Oxygen ions (O
2-

) migrate from the cathode to the anode side 

through the electrolyte and react with the fuel. YSZ exhibits only ionic conduction; due to 

vacancies in its crystal structure O
2-

 ions travel from cathode to the anode side (Singhal 2000, 

Stambouli and Traversa 2002). Ceria is most compatible with cathode materials and has the 

highest conductivity but is less stable in low oxygen partial pressures. Strontium/magnesium 

doped lanthanum gallate (LSGM) has better conductivity compared to YSZ but is less 

compatible with the anode materials and is less easily prepared than YSZ (Fergus 2006). Hence 

YSZ is most widely used. 
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2.3.2 Anode 

The anode must be stable in the reducing condition of the fuel and be electronically conductive; a 

high porosity in the anode of 20-40% enables the passage of reactants and product gases.  Non-

oxidizing metals are used as anode materials. The oxidation of the fuel takes place as follows 

O
2-

(s) +H2 (g) ↔H2O (g) +2e
-
 

For SOFCs the anode is a composite made from one of these electrolyte materials YSZ, 

gadolinium doped ceria (GDC), or samarium doped ceria (SDC) in a powdered mixture with 

nickel oxide (Singhal 2000, Stambouli and Traversa 2002). NiO and YSZ are stable even at high 

temperatures, so they do not form solid solution but can be sintered to form a composite and can 

then be reduced to form a porous nickel-yttria stabilized zirconia cermet (Ni-YSZ) upon 

exposure to fuel gases. The function of the YSZ is to give structural support; the thermal 

expansion matches closely with that of YSZ electrolyte and helps in ionic conductivity of the 

anode (Zhu and Deevi 2003, Sun and Stimming 2007). In case hydrogen is not used directly as 

fuel for SOFCs fuel reformation which involves conversion of for example methane into 

hydrogen is required and that occurs in the (Ni-YSZ) anode via internal steam reforming as in 

equation 2-4 or through catalytic partial oxidation (Zhu and Deevi 2003) in equation 2-5 below. 

CH4+H2O   CO+3H2 

2CH4+O2 2CO+4H2  

The steam reformation reaction in equation 2-4 is associated with the gas shift reaction in 

equation 2-6   

CO+H2O   CO2+H2 

The above reactions also help reduce the problem of carbon deposition on the nickel particles of 

the anode which is known to deteriorate cell performance (Zhu and Deevi 2003). 

2.3.3 Cathode 

A number of factors are considered for the selection of cathode materials due to high operating 

temperature for SOFCs. Noble metals such as platinum, palladium, or silver can be used but they 

are excluded by high cost and lack of long term durability caused by volatilization of silver 

Equation 2-3 

Equation 2-4 

Equation 2-5 

Equation 2-6 
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(Minh 1993). The cathode operates in an oxidizing condition at 1000
o
C and takes part in an 

oxygen reduction process. 

 

 
O2 (g) +2

e-
 ↔O

2-
(s) 

Requirements for a cathode include chemical stability coupled with electronic conductivity. 

Again the cathode must have some porosity to allow for the transport of product gases and 

reactants. A range of perovskite type structured materials containing lanthanum strontium ferrite, 

and lanthanum strontium cobaltite ferrite are used as cathode materials. (Singhal 2000, 

Stambouli and Traversa 2002). 

2.3.4 Interconnects 

The interconnectors provide electric contact to the cathode and protect it from the reducing 

condition of the fuel on the anode side. Due to this dual function the requirements on the 

interconnectors are the most severe compared to other cell components. These conditions include 

stability in dual atmospheres during cell operation; closely matched TECs to both those of the 

electrolyte and air electrode, low permeability for oxygen and serving as electrical contact the 

conductivity of the interconnector must be close to 100% electronic. Doped lanthanum chromite 

satisfies these conditions and is therefore used as an interconnect material (Singhal 2000). 

 

 

 

 

 

 

 

 

 

Equation 2-7 
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SOFCs 

components 

Materials used Choice factor Ref 

Electrolyte Yttria stabilized zirconia (YSZ) Availability and cost (Singhal 2000, Stambouli 

and Traversa 2002, 

Mahato, Banerjee et al. 

2015) 

 Cerium oxide doped with 

samarium (SDC) 

 (Singhal 2000, Stambouli 

and Traversa 2002, 

Mahato, Banerjee et al. 

2015) 

 Cerium oxide doped with 

gadolinium (GDC) 

 (Singhal 2000, Stambouli 

and Traversa 2002, 

Medvedev, Lyagaeva et 

al. 2016) 

 Bismuth yttrium oxide (BYO)  (Singhal 2000, Stambouli 

and Traversa 2002) 

Anode Composite YSZ, GDC or SDC 

with nickel oxide 

 (Singhal 2000, Stambouli 

and Traversa 2002) 

 NiO/YSZ Suits YSZ electrolyte (Singhal 2000, Stambouli 

and Traversa 2002) 

Cathode Perovskite lanthanum strontium 

manganite LaSrMnO3 (LSM) 

 (Singhal 2000, Stambouli 

and Traversa 2002, 

Medvedev, Lyagaeva et 

al. 2016) 

 Lanthanum calcium manganite 

LaCaMnO3 (LCM) 

TEC match with YSZ 

and good performance 

above 800 
o
 C 

(Singhal 2000, Stambouli 

and Traversa 2002) 

Interconnect Doped lanthanum chromite Severe requirements (Singhal 2000) 

Sealing 

materials 

Glasses, glass ceramics TEC match, gas 

tightness 

 

Table 2.4: Materials used in SOFCs and their reasons for selection  
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2.3.5 Sealing of SOFCs 

Sealing is required especially for the electrolyte-electrode assembly, which is a very thin 10-15 

µm, delicate, and brittle part of the SOFCs. The primary function of the seal is to physically 

separate and provide electrical insulation in the SOFCs stack. Many sealing concepts have been 

demonstrated by researchers (Chou, Stevenson et al. 2002). For example ferritic stainless steel 

with aluminium (FeCrAlY alloy) interconnects have been sealed to YSZ electrolyte by brazing. 

The use of Si-C-N polymer and development of mica and mica based compressive sealants has 

also been reported by (Chou, Stevenson et al. 2002, Singh 2012). Singh has developed a glass 

with the ability to self-heal cracks at the SOFC operating temperature. A composite glass/YSZ 

and alumina fibre where the fibre provides stress relief on the electrolyte-electrode geometry by 

being compliant has also been reported (Singh 2007, Singh 2012). There are three commonly 

used sealing technologies for SOFCs: i) rigidly bonded seals, ii) compressive seals and iii) 

compliant seals with each category having its specific advantages and limitations. 

2.3.5.1 Rigidly bonded seals 

Glass and glass ceramics dominate this type of bonding; as it is desirable to have the sealant‟s 

coefficient of thermal expansion match those of other components. This type of joint is brittle 

and non-deformable so they are susceptible to fracture. Sealants made from glass and glass-

ceramics exhibit stability in both oxidizing and reducing atmospheres in SOFCs, in addition to 

other desirable properties like wettability with YSZ electrolyte, and the interconnect materials, 

they also provide good electrical insulation (Weil 2006). Some examples of glass systems used 

are alkaline earth silicates and borosilicates; the advantages of these seals over the other 

categories are their ability to flow above the glass transition temperature, easy manufacture and 

lower cost of their materials compared to noble metal seals or mica based seals. Their drawbacks 

include thermal and chemical instabilities and poor resistance to dynamic forces (Mahapatra and 

Lu 2010). The two most important criteria for sealing glasses are Tg and TEC, with the TEC 

ranging between (9-13)×10
-6

 C
–1

 for the sealing glasses used in fuel cells (Laorodphan, 

Namwong et al. 2009). 

2.3.5.2 Compressive seals 

Compressive seals are used as an alternative to glass and glass-ceramic seals. Because they are 

not rigidly bonded to the cell stack components they provide a free expansion and contraction 
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during thermal cycling. These non-bonding seals are made of silicate materials with a sheet or 

plate like–structure which act as a gasket and under high compressive loads hermetic sealing is 

attained. A typical example in this type of seal is the mica seal; mica belongs to the phyllosilicate 

minerals consisting of silicate tetrahedrons. Their chemical composition is represented by KT2-

3(X, Si)4O10(O, F, OH)2, where K stands for potassium, T can either be lithium, titanium or 

magnesium etc., and X is mostly aluminum but sometimes it may be boron or beryllium. Mica 

seals are known for their high quality (Q) factor, resistivity and capacitance stability and are 

extensively used for sealing electronic devices (Simner and Stevenson 2001, Chou, Stevenson et 

al. 2002). 

2.3.5.3 Compliant bonded seals 

TEC mismatch is not considered a major problem in these types of seals because they are 

compliant and deform plastically up to the operation temperature. Insulating materials must be 

used to prevent electrical shunting at the interface between the sealant and the other SOFCs parts 

because they are metal based sealing materials. Problems associated with compliant seals include 

cell bowing and irregularities in gas distribution. Noble metals are the material of choice for 

these seals due to their stability against corrosion. Some of their drawbacks are delamination due 

to poor wetting and TEC mismatch between oxide layers and interconnects (Weil 2006, 

Mahapatra and Lu 2010). 

2.3.5.4 Composite seals 

            Glass and glass-ceramics form rigid seals and although they have shown the advantage of 

flexibility in properties through compositional modifications, they are inherently brittle and 

because of metastability uncontrolled crystallization may eventually occur, which causes seal 

damage. On the other hand brazed seals show good performance in the short term but during 

long term operations in dual atmospheres they tend to be chemically instable. A compressive 

mica seal has good thermal and electrical insulation properties, but its constituents cause 

electrode poisoning during operations and an unacceptable leakage rate is associated especially 

with the mica papers available in the market. Because of the above problems identified with the 

different sealing techniques, they cannot single handedly meet all the requirements for sealing, 

hence there is the need to examine an alternative composite seal by using filler additives such as, 

Al2O3, or ZrO2 (Zhang, Yan et al. 2013) and MgO (Nielsen, Solvang et al. 2007) with a view to 
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solving stack sealing problems by improving geometric integrity of the seal through controlling 

viscous flow (Zhang, Yan et al. 2013). The additive fillers increase reliability and thermal 

stability of the glass matrix by acting as reinforcement phase (Ye, Yan et al. 2012). 

2. 4 Glass and glass-ceramic seals  

2.4.1 Wetting and glass to metal seals 

Glass to metal sealing is a traditional fusion technique in which glass is melted over the surface 

of the metals to be joined. The molten glass flows and wets the metal surface and reacts to form 

an interfacial layer that bonds them together (Donald 1993, Lei, Wang et al. 2012). In an ideal 

situation the glass will spread and wet all metal surfaces because its surface energy is low 

compared to that of the base metals. On the other hand spreading and wetting will be prevented if 

the interaction depends on van der Waal forces or intermolecular attraction forces which usually 

are lower strength and cannot overcome cohesive forces (Woldemar Anatol 1964). 

Glass adhesion to solid surfaces tends to be stronger when chemical forces are involved. 

Unshielded atoms on the solid surface react with the glass and form compounds at the 

metal/glass boundary, and a transition layer will be formed if these compounds diffuse into the 

interface and adhere to the bulk materials (Leslie 1964). 

            High temperatures are required to achieve chemical bonding. During the process of 

bonding one of the phases changes to liquid at the sealing temperature through fusion or reaction 

to establish intimate contact with each other. Therefore, both wetting and spreading are 

important factors that determine sealing and are usually demonstrated or described by the sessile 

drop method. 
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Figure 2-4: Contact angle θ (a) non-wetting (b) wetting adapted from ref (Donald 1993) 

The formation of acute angles in a sessile drop experiment indicates wetting can occur and 

obtuse angle indicates non-wetting. Wetting usually occurs where the surface free energy of solid 

substrate becomes lowered by the liquid in contact. On the other hand if the surface free energy 

is increased after contact with the liquid then the situation is a non-wetting one. However, an 

interface still forms when the free energy of the system is decreased. Usually the solid substrate 

determines the shape of the sessile drop. A driving force of the form γsv-γsl acts on the sessile 

drop periphery when γsv is lowered by the liquid as can be seen in the Young-Dupre equation. 

γsv = γsl +γlvcosθ 

The conditions for obtaining acute contact angle are γsv> γlv, or γsv>γsl> γlv and for obtuse angles 

the condition is reversed as γsv<γlv, or γsv<γsl<γlv. Where γlv, γsv and γsl are the surface free 

energies of liquid/vapour, solid/vapour and solid/liquid interfaces and the use of surface free 

energy gives a better understanding in terms of thermodynamic relationship. 

         Dirty surfaces prevent good contact between sealing parts and favours non-wetting 

conditions. The barrier as a result of metastability in most systems can be overcome by high 

temperature activation to achieve wettability. Wettability also depends on whether the solid 

substrate is active or passive, i.e whether the substrate dissolves or not during sealing. For an 

active substrate which takes part in the wetting process the Young-Dupre equation can be 

transformed to include the contribution of free energy of reaction 
   

     
. This contribution is 

always practically larger than surface energy of liquid/vapour thus spreading occurs. 

Equation 2-8 
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   -(   +
   

     
) ≥    cosθ 

The spreading or liquid flow on wetting surface is expressed in equation below. 

Ws=γsv+γlv-γsl 

If the spreading on the wetting surface (Ws) is positive then there will be spreading as the 

driving force for wetting is larger than γlv. For a negative Ws the driving force is small, although 

an acute angle is formed but there will be no spreading (Pask 1991). 

2.4.2 Bonding of glass to metal seals and coatings 

It has been suggested that bonding between enamel and the metal surface is as a result of a 

mechanical process because a rough surface appears on the interface between the joined parts 

even though they were previously smooth before joining. The mechanism can be described in 

two ways. First as mechanical process in which formation of dendrites are involved and secondly 

as a chemical one in which some sort of electrolytic corrosion is involved in the bonding process 

(Donald 1993, Donald 2000). For example the oxides formed on the surface of a Kovar alloy 

substrate firstly dissolves in the molten glass in a chemical reaction process between the oxides 

and the SiO2 in the glass: 

2Fe3O4+3SiO2 = 3Fe2SiO4+O2 

2FeO+SiO2 = Fe2SiO4 

Depending on the wetting time the oxide may or may not completely dissolve into the glass. This 

process can be referred to as chemical bonding since Fe diffuses into the glass and joins the 

substrate via the oxide to the glass. However, as the wetting time is extended the oxide dissolves 

itself in the glass and reacts with SiO2 and then the glass now has direct contact with the surface 

and penetrates the intergranular oxides forming mechanical bonding with pinning effect between 

the glass and the substrate. Therefore in this case both chemical and mechanical bonding coexist 

in the wetting process (Luo and Shen 2009). 

Most metals have oxides films on their surfaces which leave some traces when they rub a 

glass surface. While mercury wets glass only in the absence of oxygen other metals such as tin, 

indium and gallium adhere to glass through oxide deposits. The oxide layers prevent the 

Equation 2-9 

Equation 2-10 

Equation 2-11 

Equation 2-12 
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formation of gas bubbles at the glass/metal interface, and provide indirect contact between the 

interfaces. Hydrogen, carbon dioxide and pure nitrogen atmospheres all have effects on wetting 

between the molten glass and the metal substrate depending on the surface conditions, with both 

nitrogen and CO2 enhancing wetting on an oxidised surface. There is a high affinity for oxidized 

surfaces by the molten glass because the solubility of the oxide films at the interface between 

glass and metals contributes significantly to adhesion.  

 

There are number of factors influencing the aging and lifetime behavior of glass or glass-

ceramic to metal seals. Interfacial reaction can cause residual stresses to build up leading to seal 

degradation as the interfacial reactions may forms undesirable product with different TECs 

compared to the bulk materials leading to cracks or separation. Undesirable reaction products are 

formed between Fe and Cr containing metallic alloys and nucleating agents such as phosphorus 

that may be present in some glass and glass-ceramics; they react to form iron or chromium 

phosphide which forms a coarse microstructure and act as stress concentration points degrading 

seal performance. The presence of water in the glass composition may lead to the formation of 

bubbles due to the presence of hydrogen as in the reaction between water and diffusing Cr 

species (Donald, Metcalfe et al. 2008). 

Cr +
 

 
 H2O→

 

 
Cr2O3+

 

 
H2↑  

Water can also react with Al, Ti, and Nb. These undesirable reactions can be controlled by using 

transition metal oxides such as nickel oxide that will react with Cr to form Cr2O3 instead of 

hydrogen as in equation 2-13 above. 

2Cr +3NiO→Cr2O3+3Ni 

which results in the formation of fine microstructure with Ni precipitates. If CuO is added a thin 

oxide layer is formed with no precipitates. 

2Cr+6CuO→3Cu2O+Cr2O3 

Thickening of an interfacial reaction product layer can be a critical problem if the layer continues 

to increase during the operation life of the cell (Donald, Metcalfe et al. 2008).  

Equation 2-13 

Equation 2-14 

Equation 2-15 
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        Similar reactions can occur in glass based seals. For example the interface between barium 

calcium aluminosilicate glass-ceramics (BCAS) of composition 21.44SiO2-6.66B2O3-5.35Al2O3-

56.1BaO-7.19CaO was found to contain BaCrO4 products leading to physical separation of the 

glass seal from stainless steel (Yang, Xia et al. 2013). The mechanism of BaCrO4 formation is 

that chromia layer on the stainless steel dissolves into the glass-ceramic and forms a solid 

solution in the presence of chromite vapour which proceeds to form barium chromate and water 

as follows: 

2Cr2O3(s) +4BaO(s) +3O2 (g) = 4BaCrO4(s) 

Cr2O3 (OH)2(g) +BaO(s) = BaCrO4(s)+H2O(g) 

2.5 Glass formation 

According to Shelby a glass is an amorphous solid completely lacking in long range order and 

exhibiting a glass transformation region. By this definition any material formed by melting, 

vapour deposition, sol-gel and neutron irradiation of crystalline materials can be generally called 

glass (Shelby 2005). Glass formers form the backbone of the glass structure and can make glass 

with normal laboratory techniques eg SiO2, B2O3, GeO2 P2O5, P2O3 etc.  The modifiers do not 

form glass under ordinary conditions but are added into glass to modify their properties while 

intermediates can act as either network formers and modifiers and they include Al2O3, BeO, 

ZnO, TiO2 etc (Sun 1947).  

        There exist similarities between glasses and their crystalline states in properties such as 

density, mechanical and thermal properties (Varshneya, 2006). However, unlike crystals, glasses 

are referred to as undercooled liquids because they do not have a definite and sharp melting point 

(Warren 1934).  All glasses exhibit two main identical properties namely a lack of long range 

ordering in their structures) and a clearly visible glass transition range or Tg (Shelby 2005). As a 

result of this short range ordering and the non-existence of constraints to formation of periodicity 

in atomic arrangements as opposed to crystalline materials leads to a degree of inexactness in the 

orientation and location of next nearest neighbours within the glass (Salmon 2002). 

Glasses as known are produced through different routes however; the most common both in 

laboratory and industrial scales is the melting and quenching. A basic question that needs 

clarification is to find out what criteria leads to glass formation for any given materials. the 

Equation 2-16 

Equation 2-17 
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answer to this inquiry comes from two theories of glass formation (i) structural and (ii) kinetic 

theories (Varshneya 2006). 

2.5.1 The structural theory of glass formation 

The first and simplest modern theory of glass formation was based on the proposal by 

Goldschmidt (1926) referred to as the radius ratio criterion. He suggested a general formulation 

(RnOm) that forms glasses easily when the ratio of their ionic radius of cation R and oxygen ion 

falls between 0.2 and 0.4. His argument here is that in this range tetrahedrally coordinated 

cations surrounded by four oxygens are obtained and form glasses during cooling; however, this 

argument is empirical and could not explain why merely four-fold coordinated cations are 

adequate to form glass (Shelby 2005). Approximately a decade later Zachariasen published a 

paper stating a number of rules which favours the ability of various cations to form glass 

(Zachariasen, 1932). Zachariesen‟s proposal became one of the most widely accepted and 

reported in the attempt to explain the structural theory of glass formation so far. The X-ray 

diffraction study of Warren and his students (1934) was in support of Zachariesen‟s model. 

However, Zachariesen‟s theory can only explain the required conditions of glass formation of 

pure glass formers rather than modified glass networks.  

         Zachariasen gave conditions for oxide glass formation as (i) the sample must contain a 

large amount of cations and are surrounded by oxygens in tetrahedral or trigonal arrangements. 

(ii) the tetrahedra and trigonal units are corner sharing (iii) and some oxygens link only two 

cations and not make additional bonds as reported by (Sun 1947). Also according to Sun oxides 

with high values of single bond strength have greater tendency for glass formation. Based on the 

single bond strength the oxides are classified into network formers (119-81kcal/mol; 497-334 kJ 

/mol), intermediates (73-60 kcal/mol; 305-251 kJ/mol), and network modifiers (60-10kcal/mol; 

251-42 kJ/mol) (Sun 1947, Dimitrov and Komatsu 2012) and also according to electronegativity 

of the cations, where electronegativity is the power of an atom to attract a bonding pair of 

electrons (Matsunaga, Rogers et al. 2003).  In the former case Sun argued that high bond strength 

hinders structural reorganisation of the melt thus preventing crystallisation during cooling. While 

in the later situation network formers which are semi-covalent and predominantly acidic such as 

SiO2, B2O3 and Al2O3 have high electronegativities between (2 to 3.5), and ionic and basic 

oxides such as Na2O, BaO and MgO have very low electronegativities (1 to 1.2) and are 
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classified as modifiers. The basic and ionic oxides such as ZnO have intermediate 

electronegativity values and are classified as intermediates (Reddy, Nazeer Ahammed et al. 

2001, Dimitrov and Komatsu 2012). Despite the wide acceptance of the Zachariasen-Warren 

rules there are criticisms of some of these rules governing glass formations. One of such critics is 

from Lebedev and his co-workers who queried what the word random means. Lebedev and co-

workers believed that some degree of ordering is expected because of the chemical bonding and 

that the glass structure is not as random as thought by Zachariasen as evidence of short range 

ordering similar to their crystal structure exist. Therefore the subsequent discovery of glassy 

metals, heavy metal fluoride and semiconducting chalcogenide whose structure is oxygen free 

and thus suggests an overhaul of the so called „randomly packed‟ structure (Varshneya 2006). 

2.5.2 Kinetic theory of glass formation 

It is possible to avoid crystallisation in most liquids through fast cooling and form glass even in 

liquids that would crystallise in a normal cooling process. So the important question is not 

simply what materials forms glass but rather at what cooling rate a given substance turns into 

glassy state. To this effect it is established that almost all liquids (water and molten metals 

included) can form glasses if subjected to sufficiently high cooling rates to below their freezing 

points (Varshneya 2006). The initiation of nuclei and subsequent growth of the crystals leads to 

crystallisation whereas avoiding these processes through fast cooling rates leads to glass 

formation (Varshneya 2006). This processes are temperature dependent and it is worthy of note 

that crystallization does not occur above the liquidus temperature. Viscosity also plays an 

important role in the glass formation ability of a given melt for example in the case of oxide 

glass formers they are characterised by large viscosity at melting points and a rapidly rising 

viscosity with decreasing temperature during the cooling process (Uhlmann 1972). 

2.6 Glass structure  

In this thesis multi-component alumino-borosilicate glasses which contain (Si, B, and Al) as 

network formers are investigated. Since these glasses are silicate based with the incorporation of 

boron oxide and alumina, it is important to discuss the simple silicate structure after which the 

structural changes in glasses that contains all the network formers and modifiers will be 

presented.  
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2.6.1 Structure of silicate glasses  

The silicate glass structure in its simplest form contains the SiO2 as the network former. 

Modifiers are commonly alkali oxides such as Na2O and alkaline earth oxides (CaO or BaO). 

The silicon forms SiO4 tetrahedra with four oxygens covalently bonded to the central Si. These 

tetrahedra connect to each other by bridging oxygens (BOs) to form a network (Si-O-Si). 

(Varshneya 2006). The introduction of alkali or alkaline earth modifier cation into a silicate melt 

results in breaking one Si-O-Si bond per unit charge of the modifier cation creating a NBO ion at 

the SiO4 tetrahedra and the silica remains four coordinated (see fig 2-5) (Shelby 2005, Varshneya 

2006). Increasing the modifier content decreases the 3D network towards a sheet structure which 

breaks further to form rings and chains of SiO4 interconnections (Wu and Stebbins 2009). 

Assuming a divalent modifier such as Ba
2+

 is added into the glass the depolymerisation may 

occur as follows 

Si-O-Si + (Ba
2+

-----O
2-

) →Si-O
-
 -----Ba

2+
-----

-
O-Si 

The electrostatic interactions between the modifier and NBOs are weaker than the bond between 

Si-O with a bridging atom (Wu and Stebbins 2009). In fig (2-6) and table 2.5 a description of the    

silicate connectivity with oxygen is presented and the nomenclature Q
n
 is used to report the 

degree of connectivity with oxygens. The small subscript n refers to the number of oxygens 

between 0-4. A silica tetrahedron with n = 0 is completely isolated and depolymerised and 

highest degree of connectivity is attained at n = 4. 

 

Figure 2-5: depolymerisation of silicate glass backbone by a modifier (Na2O) 

Equation 2-18 
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Figure 2-6: Typical Q
n
 species (a) completely isolated Q

0
; (b) Q

2
 linked to 2 Q

1
 terminal 

tetrahedra units, (c) Q
3
 linked with Q

1
 terminals and (d) Q

4
 linked to other tetrahedral 

units. (Black and blue atoms are bridging and non-bridging oxygens). Adopted and 

modified from (Edén 2011) 

 

   

 

Q
n
 Silicate group nomenclature 

Q
4
 SiO2 tectosilicate 

Q
3
 Si(O)3O

-
 phyllosilicate 

Q
2
 Si(O)2(O

-
)2 metasilicate 

Q
1
 Si(O)(O

-
)3 disilicate 

Q
0
 Si(O

-
)4 orthosilicate 

Table 2.5: Q
n
 silicate groups and their nomenclature (Eden 2012)  

2.6.2 Structure of borosilicate glasses 

Boron oxide is a network former and can form a B2O3 glassy network. When additional elements 

and oxides are introduced into boron oxide then the structural rearrangement in the glass depends 

on factors such as melting temperature or pressure and the interaction of the different 

components in a given composition (Hubert and Faber 2014). Unlike silica tetrahedral structure 

which depolymerises with modifier, the initial addition of modifier into boric–oxide glass leads 

to the conversion of trigonal boron to tetrahedral boron which accommodates the added oxide. 

Few or no non-bridging oxygens (NBOs) are formed. As the amount of alkali/alkaline earth is 

increased the tetrahedral boron begins to convert back to asymmetric BO3 (Wu and Stebbins 

2009, Zhang, Yue et al. 2013). The BO4 units participate in forming different cyclic units such as 

di, tri, tetra or pentaborate units. Each of the BO4 units is connected with two other such units 
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and single oxygen from each unit connects with a metal ion and forms extended chains of BO4 

tetrahedron. As the amount of modifier increases the conversion of BO4 back to BO3 in form of 

pyro or ortho borate groups (Pascuta and Culea 2011). In a modifier free borate and silicate glass 

the structural units exist without mixing and as soon as a modifier is added then there will be 

overlap or mixing into each other and in this case boron may exist either in trigonal units such as 

in boroxol, pyroborate and metaborate or in tetrahedral form such as in diborate, triborate and 

pentaborate depending on the compositions. In borosilicates it is believed that the silicate and 

borate structures are mixed together (Hubert and Faber 2014). The effect of alumina addition on 

the borate and borosilicate is to decrease the amount of four fold coordinated boron as the 

formation of AlO4 first is more favourable (Konijnendijk and Stevels 1976). 

According to Varshneya (Varshneya 2006) modifier cations associated with a SiO4 tetrahedron 

and create NBO or take part in the conversion of BO3 trigonal to the BO4 tetrahedra so that here 

the modifier behaves as a charge compensator to the negatively charge [BO4]
-
 units. (An 

example is given as one mole of Na2O compensates for one mole of B2O3, although according to 

Manara it is not always the case that exactly one Na
+
 compensates the charge of one BO4 units, 

other species may take part (Manara, Grandjean et al. 2009). The network modifiers 

preferentially convert BO3 to BO4 at low modifier to B2O3 ratio R ( where R<~0.5) but after 

reaching a critical point the modifiers then associate with SiO4 and BO4 units and create NBOs 

(Manara, Grandjean et al. 2009). Alkali oxide prefers to associate with boron forming BO4
- 
until 

a critical composition is reached. The maximum fraction of BO4
-
 is reported to be higher in alkali 

borosilicate compared to alkali borate and increases with silica content (Gohar, Doweidar et al. 

1990). Gohar et al also reported an observation that NBOs increase with addition of alkalis at 

constant silica and varying B2O3 and NBOs also increase with fixed alkali and increasing silica 

indicating that the alkalis maintained modifier role and depolymerised the silica network. It is 

assumed that at a value of R>0.4 the formation of BO4
-
 occurs at the same time with the 

depolymerisation of the silica network. In CaO-Al2O3-B2O3 there is a competition for CaO by 

Al2O3 and B2O3 to form AlO4 and BO4 units (Doweidar, Moustafa et al. 2001) and AlO4 is 

preferably formed before BO4 due to higher single bond strength of the Al-O in AlO4   compared 

to B-O bonds in BO4 as reported by (Lu, Ni et al. 2006). As explained by Osaka et al that in 

alkaline earth aluminoborate the alumina is assumed to be in one of the following units or 

structure i) AlO4 in tricluster unit or (AlB3O7) and this occurs when the amount of modifier is 
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less than that of alumina content. ii) charge compensated AlO4
-
 and iii) AlO6 in six coordination 

(Osaka, Oda et al. 1986). On the other hand triclusters of the form (BO3)2O(SiO3) are also 

reported for borosilicate glasses due the unavailability of transforming to coordination state 

higher than four or as a result of shortage of oxygen needed to form BO4 could not be supplied 

by the modifier such as BaO. This sort of triclusters are seen when there is high amount of NBOs 

and so small percentage of oxygen may form triclusters with 3 network former neighbours 

(Zhao, Kroeker et al. 2000). Increase in alumina decreases the concentration of boron in BO4 

units and increases the number of BO3 units (Doweidar, Moustafa et al. 2001). 

2.6.3 Structure of alumino-silicate glasses 

The structure of aluminosilicate glasses consist mainly of SiO2 and Al2O3 tetrahedra where the 

silica is a network former and the alumina is an intermediate whose role changes between that of 

network former and network modifier depending on its amount in the glass compared to alkali 

and alkaline earth content. When the alumina content [Al2O3]   [MO+M2O] the Al
3+

 forms 

AlO4
-
 tetrahedra. Generally aluminium ions are in four fold coordination in peralkaline 

compositions (Al/MO<1) and join the silicon–oxygen glass structure and on the other hand 

where the composition is peraluminous (Al/MO>1) aluminium forms a small amount of five-fold 

coordinated aluminium with negligible six fold coordinated aluminium also being present 

(Xiang, Du et al. 2013). Fivefold coordinated Al is present in compositions containing alkali and 

or divalent modifiers respectively (Wu and Stebbins 2009) and the amount of higher coordinated 

aluminium increases with increase in the peraluminous ratio where all the M
+
 and M

2+
 ions play 

charge compensation roles. The formation of five-fold coordinated alumina is also favoured by 

higher cation field strength modifiers in aluminosilicate glasses. Cation field strength is a 

measure of how cations attract anions (defined as the ratio of the formal charge to the square of 

the mean first shell cation-oxygen bond distance or simply the ratio of charge divided by the 

radius). However, if the concentration of the modifier with high cation field strength is high this  

favours NBO formation (Ha and Garofalini 2017). Al
3+

 ions are usually found in the interstices 

of the network structure and surrounded by equivalent numbers of BOs and NBOs (Varshneya 

2006). The AlO4
-
 and SiO2 tetrahedra join together to form a network containing Al-O-Si, Al-O-

Al and Si-O-Si bonds. Modifiers are required in the vicinity of the AlO4
-
 tetrahedra to charge 

compensate the negative charge in order to stabilize the network.  
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2.6.4 Modified rules for cation coordination and accepting NBOs in multi-

oxide glasses 

Category A rules capture the preferred coordination number for each cations Si
4+

, 
[3]

B
3+

 and Al
3+

 

and category B rules summarised the tendencies of NBOs being found at different polyhedra. 

Rule A1. Si
4+

 is always in tetrahedral coordination except when prepared under excess pressure, 

and then SiO5 and SiO6 polyhedra can be formed. 

Rule A2. Al
3+

 is predominantly in tetrahedral coordination in aluminosilicate glasses if there are 

sufficient modifiers to charge balance all the AlO4 units. However, even if all the AlO4 can be 

charged balanced, AlO5 and AlO6 may be formed in the presence of high field strength modifiers 

eg trivalent ions. This complication of alumina co-existing in 4, 5 and 6 coordination applies for 

(Al, B) or (Al, P) based glasses, unless Si is present and is the dominant network former in these 

glasses. 

Rule A3. B
3+

 may be present as 
[3]

B
3+

 or 
[4]

B
3+

 coordination in the glasses. 

Rule B1. AlO4
-
 and BO4

- 
carry a single negative charge that requires balancing by a modifier 

cation. 

Rule B2. AlO4 and BO4 occupy the most polymerised sites in the network and avoid NBOs, if 

both Al and B are present in the same glass; Al has the strongest ability to avoid NBO ions. 

Rule B3. Si
4+

 exhibits the lowest preference for simple (ordered) BO/NBO distribution (Edén, 

Sundberg et al. 2011, Eden 2012). 

 

The formation of NBOs and BO4 in alkali and alkaline earth alumino borosilicates 

proceeds according to the reaction Si(Q3) +
[3]

B
3+

 = Si(Q4)+
 [4]

B
3+

   where Q
3
 and Q

4
 are the BOs 

and in the reaction the equilibrium shifts to the right in the order of the cation field strength of 

the modifiers Mg
2+

>Ca
2+

>Sr
2+

>Ba
2+

Li
+
>Na

+
>K

+
>Rb

+
>Cs

+
 (Hubert and Faber 2014). For 

example it was reported for K, Na, Ba, Sr, Ca, and Mg alumino borosilicates for a given Al/B 

ratio that increases in NBOs and decreases in  
[4]

B
3+

  were caused by smaller and higher charged 

cations. Similarly Wu et al. reported the higher field strength of Ca
2+

 compared to Na
+
 decreased 

the amount of BO4 and increased NBOs in aluminoborosilicate glass (Wu and Stebbins 2009).  
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2.6.5 The roles of the oxides used in sealing glasses. 

A focus of sealing glass research has been to reduce the operating temperature of SOFCs to the 

so-called intermediate value of 700-800 
o
C which will reduce the thermal degradation of the 

materials used for the construction of SOFCs. It is generally considered that a Tg between 600-

750 
o
C is desirable for sealing glasses working around 800

o
C (Nonnet, Khedim et al. 2012). The 

selection of sealing glass compositions to address such challenges is based on the role each oxide 

is expected to play to arrive at the required properties for sealing applications as summarised in 

table 2.6 and discussed in detail below. 

Oxides Function  

SiO2 Network former (Goel, Tulyaganov et al. 2009) 

B2O3 Network former, reduces Tg, Ts, viscosity and 

improves wettability 

(Goel, Tulyaganov et al. 2009) 

(Schwickert, Sievering et al. 2002) 

Al2O3 Controls crystallization (Goel, Tulyaganov et al. 2009) 

(Schwickert, Sievering et al. 2002) 

BaO Reduces Tg, Ts and raises TEC (Goel, Tulyaganov et al. 2009, 

Mahapatra and Lu 2010) 

SrO Crystallization stimulant and modify Tg, Ts and 

TEC 

(Goel, Tulyaganov et al. 2009, 

Mahapatra and Lu 2010) 

La2O3 Viscosity modifier and long term TEC stabilizer (Goel, Tulyaganov et al. 2009) 

(Schwickert, Sievering et al. 2002) 

ZnO Reduces Tg, Ts and sealing temperature, improves 

flux and reducing agent 

(Reis and Brow 2006) 

(Schwickert, Sievering et al. 2002) 

Table 2.6: Summary of the oxide functions in glass 

 

2.6.5.1 Effect of Silica 

Silica is the main network former in many glasses including many sealing glasses. Silica based 

compositions are reported in the literature as having the potential to be used as a sealants due to 

their better thermomechanical properties (Larsen and James 1998) which means their ability to 

withstand both thermal and mechanical strain generated during SOFC operation. The thermal 

strain develops due to TEC mismatch between the glass sealant and other SOFC components and 
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temperature gradient while the mechanical strain largely dependent on Young‟s modulus, shear 

modulus and Poisson‟s ratio of the seal glass and adjacent SOFC components (Mahapatra and Lu 

2010). Silica is an insulator with a very low electrical conductivity arising from its tetrahedrally 

connected structure (Varshneya 2006). To date silica based sealing compositions are preferred to 

phosphate or high B2O3 glasses due to volatility and high temperature stability with low 

mechanical strength of the latter group of glasses (Wang, Lu et al. 2007), and also the softening 

point depends on the silica content in a given compositions considering its network forming 

behaviour and high melting temperature (Wang, Wang et al. 2009). 

2.6.5.2 Effect of B2O3 

Boron in sealing glasses leads to decreases in viscosity, gives better wettability on the steel 

surface by delaying crystallization (Borhan, Gromada et al. 2016). When large amounts of B2O3 

substitute silica there will be a decrease in thermal properties because B-O bonds are less 

stronger than Si-O ones (Coillot, Méar et al. 2012),  and so  addition of B2O3 also decreases the 

crystallization tendency. Thermal properties such as TEC are reported to be dependent on 

B2O3/SiO2 ratio in the composition (Sohn, Choi et al. 2004, Tulyaganov, Reddy et al. 2013).  

However the dependence of TEC on the B2O3/SiO2 ratio is not always straightforward as the 

effect of B2O3 is affected by the presence of other oxides in a multi-component oxide glasses or 

compositions. A decrease in Tg, Ts and TEC with B2O3 addition has been observed for barium 

containing diopside glass. Volatilization under humid conditions is a common problem for 

glasses with high B2O3 content as volatile species are formed under these conditions (Zhang, 

Fahrenholtz et al. 2008). Boron also stabilizes the amorphous structure as it increases the 

activation energy for crystallization (Fergus 2005) and it also increases the activation energy for 

electrical conductivity (Tulyaganov, Reddy et al. 2013). 

2.6.5.3 Effect of ZnO 

ZnO is classified as intermediate oxide (Smedskjaer, Youngman et al. 2013) and has been widely 

considered for use in sealing glasses. A decrease in Tg and Ts has been reported for several invert 

glasses designed for SOFCs with ZnO and or B2O3 additions, leading to a decrease in the sealing 

temperature. Increase in ZnO also caused a decrease in TEC in these compositions (Reis and 

Brow 2006). ZnO is better compared to MgO and CaO in terms of enhancing sintering and 

crystallization process in pyroxene based glasses (Tulyaganov, Reddy et al. 2013). This enables 
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the formation of sintered and mechanically strong glass-ceramics. It has also been reported that 

ZnO behaves in a similar way to B2O3 with regards to thermal properties such as viscosity and 

TEC. Up to 10mol% ZnO decreases Tg by 50
o
C and decreases viscosity but slightly increases 

TEC in many alkaline earth aluminosilicate compositions. The decrease in the Tg and viscosity 

value and the slight increase in TEC indicates that here ZnO weakens the glass structure and is 

acting as a modifier. However the role of ZnO may change from a network modifier creating 

NBOs to a network former if present at levels greater than 8mol% (Tulyaganov, Reddy et al. 

2013).  

        For a pyroxene based glass composition the activation energy for crystallization decreases 

with ZnO additions while the activation energy of conductivity both increases and decreases as 

reported by (Tulyaganov, Reddy et al. 2013). According to Cetinkaya et al, (Cetinkaya Colak, 

Akyuz et al. 2016) addition of ZnO in borate glasses may increase or decrease the activation 

energy for electrical conductivity (Ea) depending on the role of the ZnO. When zinc oxide acts as 

a network former NBOs are created and the glass structure expands and then the alkali metal 

moves easily leading to a decrease in activation energy. However, there is also reported increase 

in Ea when zinc oxide behaves as a network former by joining the glass network; in this case 

NBO density is lower and the structure is tighter (Borhan, Gromada et al. 2016).  

Zinc oxide has better stability than B2O3 in wet hydrogen atmosphere (Goel, Tulyaganov 

et al. 2008, Tulyaganov, Reddy et al. 2013). Chemical durability and mechanical properties are 

enhanced with ZnO addition in silicates and borosilicates while in phosphate glasses lower 

softening points are observed. Zinc oxide also act as a nucleating agent in alkali silicate and 

aluminosilicate glasses when present in low amounts (Smedskjaer, Youngman et al. 2013). ZnO 

additions have been reported to decrease sealing temperature because ZnO decreases the Tg and 

Ts while maintaining good TEC match (Sasmal, Garai et al. 2014).  

2.6.5.4 Effect of BaO 

Barium oxide has also been extensively considered for sealing glasses as it increases TEC 

(Arora, Singh et al. 2011), when added to many compositions including diopside glass. Barium 

also causes a decrease in molar volume of the glass structure. BaO is also reported to increase 

polymerisation although depolymerisation follows after reaching critical BaO content in 

clinopyroxene glasses (Tulyaganov, Reddy et al. 2013). Although  barium is claimed to form 
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some tetrahedral coordination by Tulyaganov et al, this is not very liable as the coordination of 

barium and strontium in typical silicate glasses is approximately 7 (Rai and Mountjoy 2014). 

However something very close to the suggestion by Tulyaganov is the report that strontium 

forms 4.4 to 5 coordination in borosilicate glasses although their actual data fit indicates 5.68 as 

coordination number for Sr-O (Méar, Yot et al. 2007). BaO additions are also known to decrease 

Tg (Ghosh, Kundu et al. 2008). However, it has been argued that Tg and Ts are controlled by 

SiO2/B2O3 ratio and not BaO content (Sohn, Choi et al. 2002). The activation energy for 

electrical conductivity may increase or decrease with BaO depending on the composition (Goel, 

Tulyaganov et al. 2007), and the lower field strength of BaO leads to a decrease in the activation 

energy for crystallization (Goel, Tulyaganov et al. 2009, Tulyaganov, Reddy et al. 2013). 

2.6.5.5 Effect of La2O3 

La2O3 has been reported to control or stabilize viscosity and TEC in silicate glasses and glass-

ceramics and has been deliberately added to modify or change the thermal characteristics of 

glasses and glass-ceramics (Sohn, Choi et al. 2002, Goel, Tulyaganov et al. 2008, Tulyaganov, 

Reddy et al. 2013). La2O3 controls crystallization of borosilicate glass and enhances the bulk 

mechanical properties (Ghosh, Sharma et al. 2010). Additions of 1.3-2.6 mol% La2O3 to diopside 

glasses lead to reductions in Tg, Ts, TEC and the activation energy for crystallization while there 

was little variation in the activation energy for electrical conductivity (Tulyaganov, Reddy et al. 

2013). 

2.7 Previously studied sealing glasses 

Glass and glass ceramics have been the focus of many researchers as they can be tailored to 

optimize their properties such as TEC and Tg by compositional modification (Tulyaganov, 

Reddy et al. 2013). In order to find optimal glass based sealant for fuel cells the three primary 

glass network formers SiO2, B2O3, and P2O5 have been individually considered as potential 

sealants for SOFCs (Ghosh, Das Sharma et al. 2008). However all did go well with phosphate 

based glasses due to poor thermal stability at high operating temperature and therefore volatilize 

and react with the anode material Ni-YSZ which leads to the formation of nickel phosphide and 

zirconium-oxyphosphate respectively (Larsen and James 1998). Boron is also affected by the 

high temperature humidified environment and volatilize forming gaseous substances such as 

B2(OH)2 or B2(OH)3 (Zhang, Fahrenholtz et al. 2008). So silica based sealant have proven to be 
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the best for use as sealants in SOFCs however the major problem with these glasses and glass 

ceramics are their alkali content which compromised their insulation capacity as reported by 

(Larsen and James 1998, Ghosh, Sharma et al. 2008) and also cause chromium volatility with 

subsequent poisoning of the fuel cell cathode (Fergus 2005, Lessing 2007). As the search 

continues alkaline earth containing silicate glasses have also been investigated (Ley, Krumpelt 

et al. 1996, Mahapatra, Lu et al. 2008) notably these systems BaO/SrO-Al2O3-SiO2, BaO/SrO-

CaO-Al2O3-SiO2 (Tulyaganov, Reddy et al. 2013) however alkaline earth alumino-borosilicate 

glass and glass ceramic is the most preferred as these group of glasses satisfy the thermal 

properties requirement for SOFCs (Fergus 2005, Ghosh, Sharma et al. 2008) and also have 

better electrical insulation than alkali containing glasses (Mahapatra and Lu 2010). Especially 

the following glasses and glass ceramic systems form the list of most favoured compositions 

BaO/SrO-CaO/MgO-Al2O3-SiO2-B2O3 based glasses (Tulyaganov, Reddy et al. 2013). 

        In this paragraph some more specific alumino-borosilicate based glass and glass ceramic 

compositions investigated for SOFCs in the literature will be presented and discussed based on 

the advantages or otherwise of these compositions as observed by the respective authors. Ley 

and Krumpelt investigated this 24.56SrO-20.13La2O3-6.92Al2O3-40.29B2O3-8.11SiO2 glass 

ceramic and reported that it has a TEC that is compatible with SOFCs components in the range 

8-13 ×10
-6

K
-1

 but boron volatility over time is a problem as it contains up to 40 mol% B2O3 

(Ley, Krumpelt et al. 1996). Lahl (Lahl, Singh et al. 2000) investigated the crystallization 

kinetics of 45AO-5Al2O3-45SiO2-5B2O3 (A=Ba, Ca, Mg) with minor additives such as TiO2, 

ZrO2, CrO3 and NiO as a sealant for pSOFCs and reported phase separation as the amount of 

alumina increased from 5 to 10mol% and also the formation of the detrimental phase cordierite 

(Mg2Al4Si5O18) which has a very low thermal expansion coefficient compared to the SOFCs 

components. Dieter and Dahlmann also studied the thermal stability and crystallization 

behaviour of magnesium containing glass-ceramics with composition (2-15)MgO-(<2)Al2O3-

(45-60)BaO-(25-40)SiO2-(5-15)B2O3(wt.%) and demonstrated the stability of the main 

crystalline phase barium silicate Ba2Si3O8 after 1000 h heat treatment (Gödeke and Dahlmann 

2011). Different series of glasses in the system barium aluminosilicate 18.2SiO2-12.5B2O3-

8.8Al2O3-46.5BaO-14La2O3 (wt.%) have been tested for properties such as Tg, TEC, 

dilatometric softening temperature Td, crystallization process and electrical resistivity by Ghosh 

et al 2008 and Sun et al 2010. In addition the two authors reported a good bonding of the sealant 
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with YSZ electrolyte and metallic interconnects. The TEC of this sealant matched that of the 

electrolyte but there was mismatch of less than 10% with the Crofer 22APU metal interconnect 

(Ghosh, Kundu et al. 2008) where Crofer 22APU refers to ferritic stainless steel alloy (Park, 

Shin et al. 2018).  Sun et al. (Sun, Xiao et al. 2010) investigated the effect of alumina on 

33.3SiO2-16.7B2O3-10Al2O3-40BaO glass and observed an increase in sealing and 

crystallization temperatures with alumina swapped for B2O3. A strontium silicate  system 

40SiO2-51SrO-9ZnO-xM where M is a minor additives 2-4wt% of oxides  such as B2O3, Al2O3, 

V2O5, Cr2O3 has been reported to meet the desired TEC (9-11×10
-6

 K
-1

) and high softening 

temperature Ts relevant for SOFC applications (Tiwari, Dixit et al. 2011).  

         The interfacial bonding behaviour between glasses in the system 40SiO2-20B2O3-30AO-

10La2O3 (A=Sr, Ba) and the interconnect Crofer 22APU have been studied for chemical 

compatibility at 850
o
C up to 750 h, and the sealant has not shown any sign of delamination and 

had good a TEC match with Crofer 22APU (Kaur, Pandey et al. 2012). The adhesion and 

sealing properties of a B2O3 free system 47SiO2-9Al2O3-26SrO-5La2O3-6ZnO-7TiO2 joined to 

gadolinium doped ceria electrolyte and stainless steel SUS430 was evaluated for intermediate 

temperature SOFC applications. It was found that there was good adhesion between the 

sandwiched seal, electrolyte and the stainless steel after 200 h of heat treatment at 700 
o
C and 

there was good thermal stability and a very low leak rate of 0.0007-0.003 standard cubic 

centimetres per centimetres (sccm/cm at 0.5psi) (Wang, Hsu et al. 2012). The crystallization 

process in alkaline earth silicate system 42.2SiO2-1.9B2O3-2.94Al2O3-19.23CaO-18.5SrO-

13.23ZnO-2TiO2 has also been studied using DTA and hot stage microscopy and the results 

indicates that smaller particle sizes <20µm crystallize fast to produce porous seals while larger 

particles >45µm crystallize slowly (Reis, Pascual et al. 2010). Other studies on the 

crystallization kinetics of 40SiO2-20B2O3-30MgO/SrO-10A2O3 (A=Y, La, Al) were carried out 

at 800
o
C for times up to 10 h within which some of the samples crystallized to form celsian. The 

MgO containing glass had a high crystallization temperature than the SrO glass and this may be 

associated with the higher field strength of Mg
2+

 compared to Sr
2+

 cations.  The TECs of these 

glasses are far less than those required for SOFC applications (Kumar, Arora et al. 2008). Table 

2.7 details some additional compositions used for SOFCs in the literature. Although glass 

compositions with greater amounts of modifiers than total network formers are not 

recommended by some authors notably Mahapatra et al (Mahapatra and Lu 2010), invert glasses 
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and glass ceramics with low total sums of network formers (less than 45mol%) are reported for 

SOFC sealing. According Reis et al the invert glasses crystallised to form thermal stable phases 

with thermal expansion coefficients compatible with that of YSZ electrolyte and the glass 

ceramic also bonds strongly chromium containing steel alloy at temperature below 900
o
C. Invert 

glass are glasses in which modifiers break the network structure and create NBOs and so the 

molecular level structures is inverted and therefore have no continuous network glass forming 

tetrahedral units (Reis and Brow 2006). 

Systems Ref 

56.1BaO-7.17CaO-5.39Al2O3-6.66B2O3-21.4SiO2 (Kaur, Pandey et al. 2012) 

50BaO-7.8CaO-4.8A2O3-28.1SiO2 with B2O3, La2O3, ZnO additives (Ghosh, Das Sharma et al. 

2008) 

30MgO/CaO-10La2O3-20B2O3-40SiO2 (Kaur, Pandey et al. 2012) 

10SrO-15La2O3-15Al2O3-30B2O3-30SiO2 (Ojha, Rath et al. 2011) 

30SrO-15La2O3-15Al2O3-10B2O3-30SiO2 (Ojha, Chongdar et al. 

2011) 

40SiO2-30BaO-20ZnO-7.5B2O3-2.5Al2O3 (Arora, Singh et al. 2011) 

(0-40)BaO-(0-15)La2O3-(0-15)B2O3-(0-10)Al2O3-(0-40)SiO2 (Hsiu-Tao Chang 2009) 

(30-35)SiO2-(3-8) B2O3-(3-8)Al2O3-(30-35)SrO-(15-20)CaO-3A2O3 

(A= La, Y) 

(Abdoli, Alizadeh et al. 

2014) 

42.2SiO2-1.9B2O3-2.94Al2O3-19.23CaO-18.5SrO-13.23ZnO-2TiO2 (Reis, Pascual et al. 2010) 

47SiO2-9Al2O3-26SrO-5La2O3-6ZnO-7TiO2 (Wang, Hsu et al. 2012) 

18.2SiO2-12.5B2O3-8.8Al2O3-46.5BaO-14La2O3  (Ghosh, Das Sharma et al. 

2008) 

(2-15)MgO-(<2)Al2O3-(45-60)BaO-(25-40)SiO2-(5-15)B2O3 (Gödeke and Dahlmann 

2011) 

45AO-5Al2O3-45SiO2-5B2O3 (A=Ba, Ca, Mg) (Lahl, Singh et al. 2000) 

24.56SrO-20.13La2O3-6.92Al2O3-40.29B2O3-8.11SiO2 (Ley, Krumpelt et al. 1996) 

Table 2.7: Additional compositions used as sealants for SOFCs see section 2.7 and 2.7.2 for 

more details 
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 2.7.1 Thermal stability requirements of sealing glasses 

According to Kangguo et al two methods are usually followed to study the crystallization 

kinetics of glasses they are i) isothermal in which the glass sample is heated up to higher than its 

Tg and then kept at that temperature for some time and the glass crystallises at the fixed 

temperature and ii) non-isothermal is where the samples are heated at a fixed heating rate. 

Activation energy for crystallization can be determined from both isothermal and non-isothermal 

methods and it is an important kinetic parameter (Cheng 2001). The thermal stability of glasses 

is a measure of their ability to resist crystallization under the influence of the thermal energy. 

Generally the thermal stability is glass structure dependent and so if the thermal stability is low it 

means the glass structure favours crystallization. Again according to Kangguo et al a thermal 

stability criterion for glasses has been proposed as follows kf1(T) = vexp[-E/RT×(Tp-Tf)/Tf] 

(Cheng 1999) where Tf is inflection point temperature and Tp is the maximum peak temperature 

on the DTA curves. This criterion not only considers activation energy E and frequency factor v 

but also includes the thermodynamic aspects (Tp-Tf)/Tf. The thermal stability of the glass series 

in this study have been determined simply by examining the difference between the 

crystallization peak point and that of onset glass transition temperature Tg to estimate the effect 

of the various substitutions in the glasses on its thermal stability as proposed by (Ghosh, Sharma 

et al. 2010, Ojha, Rath et al. 2015) to be Tc-Tg the wider the difference between Tc and Tg the 

better the glass stability in terms of crystallization resistance. The heating rate is an important 

parameter to be taken into consideration in determining the thermal stability especially for 

sealing glasses. In the process of sealing lower heating rates enable removal of entrapped gasses 

so that insoluble gases like water vapour and air gradually escape from the joint when the glass 

viscosity is sufficiently low during long heat treatment ensuring a fine microstructure and 

hermeticity. On the other hand higher heating rates avoid concurrent crystallization. Hence the 

heating rate plays an important role in determining the microstructure and properties of the 

sealant where sintering with concurrent crystallization takes place (Smeacetto, Salvo et al. 2008). 

The heating rate recommended by SOFC manufacturers should be <5 C/min to avoid thermal 

shock. However higher heating rates can be used to study their effects on the densification and 

crystallization of the glass. The advantage of increasing the heating rate is to delay crystallization 

and give room for complete densification because Tc shifts to a higher value. This is good for 
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sealing but the concern on the other hand is that as the Tg and Ts are shifted it leads to delay in 

obtaining the decrease in viscosity when the temperature is raised and this will affect satisfactory 

spreading of the glass during sealing. Therefore, the choice of an optimal heating rate is a 

compromise between delayed crystallization caused by increased heating rate and delayed 

decrease in viscosity drop caused by decreasing heating rate. For example an optimum value of 

Tc is obtained by higher heating rate of say (eg.10 
o
C/min) and optimum viscosity is obtained by 

lowest heating rate (1
o
C/min) so taking the suggestion of Khedim et al, as an example, an 

optimum choice of heating rate might be 3
 o

C/min because it produce the suitable glass sample 

morphology at a 900 
o
C sealing temperature (Khedim, Nonnet et al. 2012).  

2.7.2 Mechanical properties of sealing glasses 

Glasses are known to be brittle in nature and thus may fracture readily when subjected to thermal 

or mechanical stresses. For this reason the fracture toughness and thermal shock resistance are 

considered important properties because they can be useful in estimating the resistance of the 

glass to these stresses. The thermal shock resistance and fracture toughness of a glass are directly 

related to the Young‟s modulus of the glass (and other properties) which depends on its chemical 

composition (Inaba, Fujino et al. 1999). Crack initiation and propagation at the glass seal and 

other component interface happens as the thermomechanical stress exceeds either the tensile 

strength of the seal glass or the interfacial bonding strength. It is required  that the seal 

withstands pressures between 14-35kPa induced by gas flow coupled with vibration and thermal 

cycling of more than 100 for stationary applications and 1000 for mobile applications 

(Mahapatra and Lu 2010) Understanding the mechanical properties at both room temperature 

(Malzbender and Zhao 2012, Zhao and Malzbender 2013) and at the (high) operating 

temperatures are therefore necessary (Malzbender and Zhao 2012, Zhao and Malzbender 2013).  

The mechanical behaviour of sealing glasses have been studied by a few groups recently. 

For example, Zhao and Malzbender (Zhao and Malzbender 2013, Malzbender, Zhao et al. 2014) 

have carried out studies on fully and partially crystallized 36.7BaO-15.8CaO-46.8SiO2 (BCS) 

compositions and reported an improvement in mechanical properties with crystallization and 

sintering. Similar compositions of the form (0-40)BaO-(0-15)La2O3-(0-15)B2O3-(0-10)Al2O3-(0-

40)SiO2 (BCAS) have been investigated at intermediate temperatures of 700 -750
o
C using four 

point bending and the fracture strength data were analysed using Weibull statistics (Chang, Lin 
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et al. 2009). In that study the extent of crystallization and the types of phases formed after 

sintering and aging were found to influence properties such as flexural strength compared to the 

cast bulk sample; for example the flexural strength and stiffness were improved below Tg due to 

formation of a barium lanthanum silicate phase (Ba3La6(SiO4)6). However above Tg both flexural 

strength and Young‟s modulus of the sintered glass ceramics were lower compared to the non-

aged glass because stress relaxation was provided by the residual glass (Chang, Lin et al. 2009, 

Hsiu-Tao Chang 2009, Chang, Lin et al. 2010). Milhans and co-workers found that creep 

properties of BCAS glass-ceramics depended on crystalline volume fraction, the higher the 

percentage of crystalline phase the more creep resistant the glass-ceramic was (Milhans, Khaleel 

et al. 2010, Milhans, Li et al. 2011). However, the mechanical and creep properties of the BCAS 

sealants are not stable over long thermal cycles as they tend to crack.  

        Reinforcement of BaO–CaO–SiO2 ternary system with addition of small amounts of Al2O3, 

B2O3, V2O5, ZnO  to make a composite glass-ceramic with 0-30mol% alumina and YSZ 

improved the mechanical properties compared to the composition without reinforcement (Liu, 

Sun et al. 2008, Zhao, Malzbender et al. 2011). The composite contained particles and short 

fibres which deflected cracks and prevented propagation in the matrix, which in turn improved 

fracture toughness. The use of the fillers tends to enhance the long term stability of TEC 

especially at elevated temperatures (Choi and Bansal 2008, Zhao, Malzbender et al. 2011). After 

crystallization, micro-voids do develop in the glass and aging is known to change the mechanical 

properties of the amorphous phases by smearing the boundary joining them to crystalline phases. 

The difference in TEC between the crystalline and amorphous phase induces micro-voids which 

can degrade the Young‟s modulus of the sealant especially at room temperature. Although the 

presence of micro-cracks and micro-voids was found to degrade the Young‟s modulus of a glass-

ceramic sealant composition 22.1SiO2-7.3B2O3-5.4Al2O3-56.4BaO-8.8CaO at room temperature, 

reheating back to operation temperature caused self-healing of the cracks by residual glass and 

this potentially restore the mechanical properties to their undamaged level with the rise in 

temperature.  

Apart from BCS and BCAS systems, the indentation fracture toughness behaviour of 

borosilicates with composition (30-35)SiO2-(3-8) B2O3-(3-8)Al2O3-(30-35)SrO-(15-20)CaO-

3A2O3 (A= La, Y) in mol%, has been studied by (Abdoli, Alizadeh et al. 2014). The lanthanum 

containing sealant was found to have a hardness and elastic modulus than the yttria one. (Abdoli, 
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Alizadeh et al. 2014). In another study the temperature dependence of Young‟s modulus and the 

effects of seal porosity on mechanical properties were reported for an alkali barium silicate 

composition. There was a linear decrease of Young‟s modulus as temperature goes from room 

temperature to about 400
o
C and porosity and the glass was judged to be unsuitable for sealing 

applications (Trejo, Lara-Curzio et al. 2012). 

More general relationships between the mechanical properties of glasses and composition 

are discussed in section 2.8 below. 

2.7.3 Electrical properties of sealing glasses 

The electrical conductivity of glasses is dependent on chemical composition and the spatial 

arrangement in the glass structure (Eldin and El Alaily 1998). A modifier free glass has low 

conductivity. For example vitreous silica according to Kingery et al, SiO2 glass generally has a 

resistivity > 10
14

 Ω cm at above 200
o
C (Kingery 1961).With a small addition of sodium of 

0.04ppm and at 300
o
C vitreous silica  has a resistivity of about 10

13
 Ω cm, with further  addition 

of 20 ppm Na leads to  a  further decrease in resistance to about 5  l0
9
 Ω cm and this reflects the 

sensitivity of impurities on the electrical properties (Eldin and El Alaily 1998). At room 

temperature borosilicate glasses are insulating and non-conductive with a specific resistance of 

10
11

 to 10
13

 Ω cm (Lima, Monteiro et al. 2012). The conductivity of pure borosilicate (SiO2-

B2O3) is negligible but it does increase with the addition of modifiers such as Na2O, or Li2O and 

by increasing the concentration of alkali oxide to 50mol% the conductivity increased to as high 

as 3×10
-3

 S/cm (a resistivity of 333.33Ω cm) measured between 300 to 900 K in air as reported 

for nuclear waste glasses by Maji et al. (Maji, Jena et al. 2016).   

          Alkali ions in glasses are the current carriers and compared to divalent oxides they are 

more mobile and therefore the conduction characteristic depends on the amount and type of the 

alkali ions. The mobility of the alkali depends on its size, bonding between the ion and O
2-

 and 

the strength of the network. For example, Na containing glasses tend to have higher 

conductivities than K or Li containing glasses because Na
+
 has a smaller ionic size than K

+
 and a 

lower electrostatic field strength than Li
+
 (Wang, Hu et al. 2008). In general, the electrical 

conductivity of glasses is caused by the displacement of the modifiers cations by the influence of 
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the applied electrical field; the conductivity is dependent on the amount of charge carriers and 

their mobility as given by 

σ = nqµ 

where n is the concentration of charge carriers, µ is the mobility of the carriers and q is the 

electrical charge of the carriers (Braunger, Escanhoela et al. 2012). Although electrical 

conductivity is directly dependent on the amount of charge carriers and their mobility, the 

mobility does not depend only on the valence and size but also on the compactness of the glass 

which changes with the amount of charge carriers. As it cannot easily be related to simple 

proportionality between the concentration of the charge carriers and the conductivity because the 

conductivity increases more sharply than the concentration. This is because apart from 

compactness of the glass structure which is very much affected by the modifier concentrations 

the conductivity is also very sensitive to impurities and especially to the presence of sodium ions, 

as mentioned above. On the other hand, the rapid increase in conductivity slows down after 

reaching 50mol% sodium oxide as this is associated with the changes in the glass structure such 

as in the size of the interatomic distances as reported by (Braunger, Escanhoela et al. 2012).  

Sealing glasses for SOFCs must be electrically resistive with a resistivity of >10
4 

Ω cm at 

the operating temperature of 800
o
C (Lara, Pascual et al. 2006). The effect of network formers 

and modifiers on resistivity is better established than that of intermediate and additives as their 

behaviour varies with compositional changes. The effect of combined or mixed ions on 

resistivity is that both increases and decreases in resistivity have been observed. Increases in the 

ionic radii and valence of the modifier ions increases resistivity, and the electrical resistivity of 

alkaline earth containing sealing glasses for SOFCs are reported to be >10
4 

Ω cm (Mahapatra and 

Lu 2010). Phase evolution during crystallization of glass may cause increases in conductivity 

compared to the parent glass (Ravagnani, Keding et al. 2003, Lara, Pascual et al. 2006, 

Mahapatra and Lu 2010). If the phase formed contains alkali ions the conductivity decreases 

after crystallization; however, on the other hand if the residual glass contains more alkali ions 

then the conductivity increases after crystallization (Shelby 2005). 

           Densification reduces the void spaces available in the glasses and therefore hinders the 

mobility of alkali ions within the glass ceramics by steric constraints (Gomaa, Abo-Mosallam et 

Equation 2-19 
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al. 2009), and as reported by Ingram et al, densification in crystalline samples increases the 

activation energy for electrical conductivity as a result of blockage of the preferred pathway for 

the moving species (Ingram 1989). The polarizability of the oxides in the glasses also plays an 

important role in the electrical properties. The network formers SiO2 and B2O3 have small elastic 

shifts or responses to the electric field due to strengthened cross-links in the glass structure 

resulting in their small polarizability  (Borhan, Gromada et al. 2016). The network former cation 

B
3+

 has a very low polarisability of 0.002 Å
3
 (Yue, Yu et al. 2009) compared that of Si

4+
 

(0.0165Å
3
) (Duffy 2002) but with a very large unit field strength and this will affect strongly the 

electron charge density of the nearby oxide ions. So increases in B2O3 results in low oxide ion 

polarisability (Yue, Yu et al. 2009). Alumina has intermediate single bond strength and relatively 

higher polarisability of 0.054Å compared with both Si
4+

 and B
3+

 (Dimitrov and Komatsu 2012). 

In contrast, Ba
2+

 cations with small field strength possess very high polarisability (1.55Å
3
) so 

aluminoborosilicate glasses with high boron or silica contents are expected to have low oxide 

polarisabilities (Duffy 2002). 

Cation jumps into interstices and holes within the glass network have been used to 

explain the electrical conductivity of glasses. A number of interdependent factors are assumed to 

control the probability of cations jumping; these include the number and the charge of the mobile 

ions, the separation between the centres of interstices, the number of the interstices and the 

frequency of the mobile vibrations within the network spaces (Eldin and El Alaily 1998). The 

conductivity can be described as ionic or electronic depending on whether ionic charges or 

electrons contribute to the conduction process (Mahapatra and Lu 2010). According to Shelby 

most oxide glasses such as silicate, borates, germinates and most phosphates exhibit ionic 

conduction while chalcogenide and some phosphates are electronic conductors (Shelby 2005). 

Oxide glasses with large amounts of low mobility metal ions such as Ba
2+

  or transition metals 

such as Zn
2+

 show electronic type conduction and can be classified as highly resistive 

semiconductors (Moridi, Nouruzi et al. 1991). Further classification suggests that in alkaline and 

alkaline earth glasses ionic charges control the conductivity while electrons and holes dominates 

the process in transition metal containing glasses. However, the electrical resistivity of sealing 

glasses are affected by both types of conduction mechanisms (Mahapatra and Lu 2010).  
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Alkaline earths in borosilicate glasses are believed to be the charge carriers but it is not 

clear whether the mechanism of ionic movement is through a vacancy or interstitial process 

(Ghosh, Sharma et al. 2010); Anderson Stuart theory suggests a vacancy mechanism where 

cationic movement is primarily by jumping into nearby equivalent space, while the Elliot model 

can be interpreted as an interstitial mechanism because the jumping process itself must have been 

triggered by flow and arrival of other  cations. Lara et al pointed out that in a homogeneous glass 

structure, an interstitial mechanism would be favoured because additional cations are not 

restricted to trigger ionic movement in all different directions. However, if the glass structure 

contains silica tetrahedral rings which form layers or alternate with other structures this may 

favour a vacancy conduction mechanism (Lara, Pascual et al. 2006).  

In sodium borosilicates or sodium boro-aluminosilicate glasses, the migration of Na
+
 

cations is by a point defect mechanism in which the diffusivity of alkali causes electrical 

conduction. The mode of conduction below Tg is considered to be a collective jump mechanism 

by some researchers (Schober and Laird 1991), while others invoke a defect mechanism based 

on local density variations in these amorphous materials. The concept of a single ionic jump 

mechanism is well established in the literature for silicate-based oxide glasses (Souquet, Lévy et 

al. 1994).  

           The diffusion mechanism (Neyret, Lenoir et al. 2015) which was originally proposed for 

ionic crystals, says that cation displacement comes from migration of interstitial cation pairs. In 

silicate glasses, monovalent cations associate themselves with NBOs and this is referred to as the 

normal position. When given enough thermal activation the cation is forced to jump from its 

normal position to an interstitial site and this creates a vacancy by leaving the previous position it 

occupied. Normal sites are usually close together in oxide glasses whose alkali content is in 

excess of 10 at%. The departing or displaced cation does share NBOs with other cations. This 

means that two cations, one occupying a normal position and the other in a defect position or 

site, are sharing the same NBO and they form interstitial cation pairs similar to Frenkel defects in 

ionic crystals. Thermal activation is required and below Tg the mechanism of conduction is the 

single jump type (Neyret, Lenoir et al. 2015) whereas above Tg the conduction mechanism is the 

cooperative free volume type (Grandjean, Malki et al. 2007).  
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The frequency dependence of conductivity at high frequency of the glass-ceramics is 

generally related to hopping of charge carriers between different localised states as reported by 

Borhan et al. for barium aluminosilicate glass-ceramics with CaO, CoO, and B2O3 additives. 

This suggests an increase in hopping rate with frequency (Borhan, Gromada et al. 2016). 

Capacitance decreases with increasing frequency because at low frequency the permanent 

dipoles can align themselves along the field and contribute to the total polarisability of the 

dielectric. At higher frequencies, the change in electric field is very rapid and hence the dipoles 

cannot align themselves and therefore have negligible contribution to polarisability and hence the 

dielectric permitivity decreases with increasing frequency (Yue, Yu et al. 2009). It is important 

to consider atom to atom distances or average site spacings and polaron radii when discussing 

the mechanism(s)  of conduction related to polaron hopping (an interaction between electrons 

and atoms). As reported by Moridi et al, (Moridi, Nouruzi et al. 1991), the electrical conductivity 

mechanism in barium borosilicate is due to small polaron hopping. A polaron is a quasi-particle 

studied in both ordered and disordered solids to understand electron-atom interactions in solid 

materials. So a small polaron is an electron that sits in a potential well due to ionic displacement 

it created and then is confined to a volume equal to a unit cell or less. It requires thermal energy 

in addition to electric field to move as hopping is required for conduction to take place. 

Conductivity in this process is low and increases with temperature. So the electrical conductivity 

can be discussed in relation to polaron and site separation which is the mean distance between 

similar atoms. This mechanism of electrical conduction is best described by the thermally 

activated polaron hopping theory. This theory states that electrons together with lattice 

deformation hop between transition metal ions from a lower to a higher oxidation state. In other 

words experimental data can be discussed by using Mott‟s and Holstein‟s theory which suggest 

that charge carriers move as hopping of  polarons in the glass and glass ceramic between two 

metal ions (Kupracz, Lenarciak et al. 2017). The average site spacing R is given by (Moridi, 

Nouruzi et al. 1991). 

R=(1/N)
1/3

 

where N is the concentrations of ions given by 

N=
    

      
 

Equation 2-20 

Equation 2-21 
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and ρ is density, M is the weight percent of oxide eg BaO in glass and NA is Avogadro‟s number 

and Aw is the atomic weight of oxide under consideration eg BaO.  The polaron radius (rp) given 

by  

  =
 

 
 

 

  
     

 

The decrease in resistivity of the glass as temperature increases has been cited as 

evidence for the presence of an ionic conduction mechanism in the glass. If the amount of 

network modifiers is higher then significant expansion of the glass structure occurs because of 

the presence of the larger ions, thus these ions can migrate more freely and have lower activation 

energy for conduction (Eldin and El Alaily 1998). Below Tg the electrical resistivity follows 

Arrhenius behaviour (Mahapatra and Lu 2010). 

ρ =
 

 
 exp (

 

  
) 

Here E, λ, T, and k represent activation energy for ionic conductivity, pre-exponential factor, 

temperature and the Boltzmann constant, respectively. On the other hand, above Tg the decrease 

in electrical resistivity follows the Vogel-Tammann-Fulcher equation (Mahapatra and Lu 2010). 

ρ = 
 

 
 exp (

 

    
) 

where λ, B, and T1 are specific constants. In electrical conductivity where VFT law applies, a 

sort of cooperative transport mechanism is reported to exist resulting in enhanced conductivity 

above Tg possibly due to network rearrangement enabling easier diffusion of the mobile species 

(Grandjean, Malki et al. 2007). 

2.7.4 Dielectric constant of sealing glasses 

The dielectric constant of a material provides information on electrostatic properties such as 

capacitance and energy storage capabilities. The complex dielectric constant consists of real and 

imaginary parts ɛ=ɛ‟ + iɛ”, where ɛ‟ is the real and ɛ” is the imaginary part. The ratio of the 

imaginary part divided by the real part gives the loss tangent (Liu, Zhao et al. 2008).  

Loss tangent tan δ =ɛ”/ɛ‟ 

Equation 2-23 

Equation 2-24 

Equation 2-22  

Equation 2-25 
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The loss tangent is related to the ratio of the energy dissipated per radian in a given materials (ɛ”) 

to the energy stored (ɛ‟) at the peak of polarization by the electric field (Darwish and Gomaa 

2006). Dielectric loss is the phase difference due to energy loss within the sample at a given 

frequency, and the contribution to the dielectric loss is mainly associated with thermally 

activated relaxation of freely rotating dipoles where the thermal energy is the only type of 

relaxation and as temperature increases it is due to electrical conduction as a result of hopping 

motion of ions  (Pal, Agarwal et al. 2009). The dielectric loss can be categorised into intrinsic 

and extrinsic loss. The intrinsic loss is crystal structure dependent and is a result of crystal lattice 

interactions with an applied external electric field, while extrinsic loss is related to 

microstructural features of the material such as defects, porosity, impurities and microcracks 

(Chovanec, Galusek et al. 2012). 

The following primary processes are the cause of energy losses from dielectric materials: 

ion migration loss, ion vibration and deformation loss and electronic polarization losses. Among 

these losses, ion migration losses which includes dc conductivity loss, ion jump and dipole 

relaxation losses is the major factor affecting the use of ceramic materials because this type of 

loss increases at lower frequencies and also with increasing temperatures (Wang, Hu et al. 2008). 

The total polarization in a given sample is the sum of all the different contributions to 

polarization (Morsi, Ibrahim et al. 2016). Modifiers have a role in dielectric losses of glasses, the 

dielectric loss increases with the diffusivity in the glass structure.  For example, the order for 

alkali elements is Li>Na>K.  Mg
2+

 ions have higher dielectric loss due to their high mobility 

compared to Ca
2+

 ions and Zn
2+

 ions due its polarizable nature (Wang, Hu et al. 2008). Since the 

electrical resistivity for alkaline earth increases in the order Ba
2+

>Sr
2+

>Ca
2+

 >Mg
2+

 it means the 

dielectric loss will be highest for Mg
2+

 and lowest for Ba
2+ 

ions (Mahapatra and Lu 2010). 

The dielectric constant is a result of the combined effect of the contributions to 

polarizability from electronic, ionic and dipole orientations. The dielectric constant increases as 

the total polarization rate increases. The contributions from electronic and ionic components (αe 

and αi) only are considered or taken into account at high frequencies. These contributions are 

dependent on ion radius and atomic weight. Hence, larger ionic radii give rise to a greater 

electronic contribution αe and larger atomic weight favours low ionic contributions αi. For 
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example K
+
 and Na

+
 containing glasses 62SiO2-25B2O3-1.2Al2O3-5.4CaO-6.4A2O (A=Na or K) 

have similar dielectric constants because they have similar total polarizabilities.  The K
+
 is larger 

in size and has larger αe than Na
+
 while Na

+
 has a lower weight and so has larger αi compared to 

K
+
.  The atomic weight of divalent ions contributes to dielectric constant. For example, Ca

2+
 

compared to Mg
2+

 has higher atomic weight and therefore contributes smaller αi hence a smaller 

dielectric constant. In the case of Zn
2+

 which has a larger atomic weight meaning lower ionic 

contributions, however, due to electron polarization of its 18 electron structure it has high αe and 

so its dielectric contribution is similar to Mg
2+

 despite the difference in weight as reported in 

(Wang, Hu et al. 2008). Decreases in dielectric constant with increasing boron oxide content 

have been observed by Yue et al, as a result of the reduction in the number of polarons per unit 

volume (Yue, Yu et al. 2009). In addition, boron-rich glasses also exhibit a high tangent loss at 

higher frequency if for example the additions of boron against silica lead to oxygen bridges of 

the Si
4+

 ions being broken and therefore weakening the glass structure. Consequently, glass 

resistivity also decreases with boron swapped (on molar basis) for silica this is expected because 

addition of boron does not add mobile ions to the glass which can help move electric current 

(Borhan, Gromada et al. 2016).  

The dielectric constant can be used to represent the ease with which electric dipoles are 

formed so a structure which is more loosely bound and with more irregular polyhedra is expected 

to have higher dielectric constant (Mccauley 2000). The frequency dependence of dielectric 

parameters is referred to as dispersion of the dielectric (Yue, Yu et al. 2009). Large amounts of 

alkali in glass decrease the dielectric constant likely due to alkali–alkali distance reduction as the 

concentration of the mobile ions increases and this enhances their interactions. This increased 

interaction of the mobile ions may lead to decreased interactions of the dipoles, hence a 

reduction in dielectric constant (Darwish and Gomaa 2006). 

 

In a polycrystalline glass-ceramic, space charges may arise from the grain boundary 

conductivities of the different phases leading to a high dielectric constant at low frequency while 

at high frequency the dielectric constant is dominated by grains with a low dielectric constant. 

Decreasing dielectric and tan delta with frequency is a normal behaviour of dielectric materials 

with mobile charge carriers (ions and/or electrons) especially at room temperature. The decrease 

in the dielectric constant is as a result of the fact that the polarization does not occur 
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instantaneously with the electric field as charges have inertia. In other words, the decrease in 

dielectric constant is due to a delay in response to the applied alternating electric field. Most 

dielectric ceramics have high conductivities at higher temperatures (Prasad and Basu 2013). 

Conductivity increases with frequency due to hopping of charge carriers between localized 

states. In summary, the conductivity is increased with availability of charge particles while space 

charge formation increases the dielectric constant (Borhan, Gromada et al. 2016). The 

accumulation of this space charge at broken bonds or chains  is the cause of increase in dielectric 

constant observed at lower frequencies (Darwish and Gomaa 2006) 

2.8 Mechanical property structure relationships for glasses 

In general the Young‟s modulus is proportional to the number of chemical bonds per unit volume 

and average bonding strength in the glass structure, while the hardness is related to elastic 

strength and to the complex behaviour of resisting mechanical deformation on the surface of the 

glasses (Hirao, Yoshimoto et al. 1991). Densification of glasses cause increases in Young‟s 

modulus and hardness due to elimination of free voids and increase in the number of bonds per 

unit volume of the glass structure.  

           There is a linear relationship between E and hardness as can be seen from equation (2-26) 

as reported by Yamane et al, (Yamane and Mackenzie 1974). 

Hv=0.051 
 

               
  

     

where α and 
gC  are mean single bond strength with respect to Si-O and packing density of the 

glass. Both E and hardness depend on bond strength and how closed packed atoms or ions are in 

the glasses, although hardness may involve some form of plastic deformation during indentation.  

Generally, both parameters are composition dependent for example boron in 4 fold coordination 

has stronger B-O bonds than in 3 fold coordination and therefore increases both E and hardness 

of the glass (Yoshida, Tanaka et al. 2001). 

According to fracture mechanics the fracture toughness and Youngs modulus are related 

by 

KIc= 
2Eγf

1-v2
     Equation 2-27 

Equation 2-26 
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where the quantities E,   , and v represent Youngs modulus, surface energy of new created 

surfaces and Poisson‟s ratio respectively. The surface energy    can be related to E by  

   (
 

  
) (

 

 
)
 

 

   is the average interatomic distance between atoms and r is a measure for the range of 

interatomic forces. From equations 2-27 and 2-28 above the following is derived 

               

From the above relationship fracture toughness is proportional to Young‟s modulus and the 

proportionality constant is dependent on the separation between atoms, interatomic bond 

strength, and Poisson‟s ratio.  The similarity in character of the glass network bonding gives a 

linear relationship between KIc and E (Hirao, Yoshimoto et al. 1991).   

          However, discrepancies do ocurr where E increase and fracture toughness decrease. Such 

discrepancies can be explained based on the fact that fracture toughness is not associated only 

with energy required to break or fracture bonds but also with energy dissipating process such as 

plastic deformation, crack branching and blunting occuring at the crack tip.  For example borate 

glasses are known to exhibit large inelastic dissipation energies, the magnitude of which depends 

on the modifier content. Another way to explain difference between E and KIc is to consider the 

ease of plastic deformation. Fracture toughness increases for large plastic deformation.  

(Yoshida, Tanaka et al. 2001). A clear correlation between E and KIc in borosilicate glasses to a 

larger extent than aluminosilicate glasses have been observed by Eagan et al (Eagan and 

Swearekgen 1978).  

In trying to understand the elastic properties of silicate glasses qualitative bond strength 

related arguments has been proposed. For example Charles suggested that the weak bond 

between modifiers and NBOs decreases the rigidity of silicate glasses (DeGuire and Brown 

1984). On the other hand Dietzel proposed that the interatomic bond strength increases elastic 

modulus and this was later supported by Loewenstein who proved that high field strength cations 

like Li
+
, Be

2+
, Mg

2+
 lead to increase in Young‟s modulus of silicate glasses (DeGuire and Brown 

1984). In the case of multi-oxide glasses the dependence of elastic moduli on composition is only 

partially consistent in relation to the simple bond strength prediction looking at equation 2-26 

Equation 2-28 

Equation 2-29 
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packing density also matters. For example from Charles reasoning most alkalis should decrease 

the Young‟s modulus when added to silica, whereas from Dietzel‟s point of view the elastic 

moduli should increase with modifier field strength. However, the modulus increases with Li2O 

despite the fact the Li-O bond is electrostatically weaker compared with the shorter Si-O bond 

(DeGuire and Brown 1984). Mallinder and Proctor explain that if only compositional changes 

and not applied stress bring oxygens close together, then E should increase because moduli 

increases as modifier field strength increases. They also added that Li2O decreases the volume 

(Vo) per gram atom of oxygen in alkali silicate and that Vo is inversely related to the Young‟s 

modulus. Thus adding large modifier such as BaO increases the volume and decreases Young‟s 

modulus of the glasses (DeGuire and Brown 1984).  

The Poisson‟s ratio of a material gives a measure of the resistance of the material to 

volume change as well as to shape change (Greaves, Greer et al. 2011). Poisson‟s ratio is small 

for shear resistant but compressible materials such as cellular solids and can reach 0.5 for 

incompressible bodies such as rubber.  

Glasses fall in between these two and have values from 0.1 to 0.4 and specifically for 

oxide glasses mainly in the 0.16 - 0.3 with highly polymerised silica rich glass having the lowest 

value of v and the highest for glass networks consisting of chains and cluster units (Rouxel and Ji 

2008). Changes in Poisson‟s ratio as well as fractal bond connectivity suggest changes in the 

network dimensionality of the glass (Abd El-Moneim, Youssof et al. 2006, Rouxel 2007). Open 

structures based on corner sharing tetrahedra of amorphous silica and germania are highly 

polymerised and this results in strong resistance to transverse contraction and hence they exhibit 

low v of 0.15 and 0.19 respectively and the KIc of tetrahedrally coordinated v-SiO2 is 0.7 MN m
-

3/2
 (Sehgal and Ito 1999). B2O3 glass with corner sharing triangular BO3 units is characterised by 

Poisson‟s ratio of 0.26, an increase in v suggest smaller extent of densification (Rouxel and Ji 

2008). However, the brittleness defined as ratio of H/KIc  and fracture toughness  of v-B2O3 with 

values of 1.20 µm
-1/2

 and 1.44 MN m
-3/2

 reported by Sehgal and Ito (Sehgal and Ito 1999). These 

improved properties may be due to the  planar trigonal and boroxol group like structures of B2O3 

providing plastic flow through sliding due to slip of the boroxol ring as the energy required for 

plastic deformation is decreased with boroxol rings (Hirao, Matsuoka et al. 1989).  
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         The intrinsic strength of glasses has been estimated based on the assumption that the 

fracture of glass is controlled by the Si-O bond strength. The calculated force to break this bond 

in fused silica was 18 GPa.  The strength of bulk glasses in practical applications is 100-1000 

times lower than its theoretical strength due to presence of surface flaws which induces stresses 

in the glasses (Eagan and Swearekgen 1978). The strength of oxide glasses is better estimated by 

E/10 which suggests that oxide glasses can have strengths up to 7000 MPa. However, in practice 

this value rarely exceeds 100 MPa (Donald 1989). The strength of multi-component glasses 

consisting of network formers and modifiers maybe related to the elastic modulus, the silicon-

oxygen bond density and the bond strength (Eagan and Swearekgen 1978). 

Another factor limiting the use of oxide glass especially for structure bearing applications 

is the phenomenon of static fatigue which is a situation in which depending on the environment a 

material fails from small pre-existing defects  due to continuosly  applied stress far less than that 

required for fracture. Crack propagation becomes catastrophic in this condition as soon as the 

crack size reaches a critical size. The mechanical strenth of oxide glasses therefore is controlled 

by the environment and time (Adams and McMillan 1977, Donald 1989). Water present in the 

environment is the common corrosive medium attacking oxide glasses (Michalske and Freiman 

1983, Donald 1989). 

Recent work by both Sellappan et al. (Sellappan, Rouxel et al. 2013) and Tiegel et al 

(Tiegel, Hosseinabadi et al. 2015) have shed more light on the  mechanical response of glasses 

under sharp contact loading. The resistance to contact contact damage has been classified by the 

value of the Poissons ratio as resilient glass 0.15<v<0.20, semi-resilient 0.20<v<0.25 and easily 

damaged glasses 0.25<v<0.30 respectively (Sellappan, Rouxel et al. 2013, Tiegel, Hosseinabadi 

et al. 2015). Resilient is a general name describing less brittle glass capable of absorbing sharp 

contact loads and resist cracking. The semi-resilient glasses resist cracking by absorbing loads up 

to 0.3N and they show characteristic 3 to 4 corner cracking at loading higher than 0.3 N and 

easily damaged glasses are the very brittle ones with larger poisons ratio (Sellappan, Rouxel et 

al. 2013). Connelly et al reported an inverse correlation between KIc and E, however, from 

equation 2-29 a linear correlation would be expected (Connelly, Hand et al. 2011). However, as 

the composition varies the values of the fracture toughness and Young‟s modulus may also 

change just like the mixed alkali silicate glasses which exhibit some of the largest indentation 
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fracture toughness values but have relatively low Young‟s moduli  (Sellappan, Rouxel et al. 

2013). 

Finally thermo-mechanical stresses are generated during SOFCs operation and are estimated 

based on three parameters as in the following equation. 

σ=ΔE×α×ΔT 

where ΔE, α, ΔT are change in Young‟s modulus, TEC and temperature.

Equation 2-30 
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3 Experimental procedures 

3.1 Glass melting 

Here sample preparations including compositional batch formulation, glass melting and 

mechanical processing such as (cutting, grinding and polishing) and subsequent annealing are 

presented. Followed by characterisation techniques involved also discussed. 6 series of 

compositions were produced (see table 3.1) for initial molar batched amounts and compared with 

x-ray fluorescence (XRF) data in table 3.3. In each case batches were designed to produce 300 g 

of glass. SiO2, B2O3, Al(OH)3, La2O3, BaCO3, ZnO, and SrCO3 were used as raw materials; 

sources and purities given in table 3.2. The batched powders were manually mixed thoroughly 

using a spatula until a fine uniform mixture was obtained. The well mixed batch was transferred 

to a zirconia stabilized platinum crucible and heated to 1200
o
C-1450 ºC depending on the series 

in an electric furnace for up to 5 hours. After allowing one hour achieving a batch free melt a Pt 

stirrer was inserted into the melt, and the melt was stirred for the remaining 4 hours of melting to 

achieve homogenization. Finally the molten glass was cast into a pre-heated stainless steel mould 

to avoid thermal shock. After a short cooling time to enable sufficient solidification so that the 

glass could maintain its shape the mould was removed and the hot glass was transferred to an 

annealing furnace, where it was held at the annealing temperature, ±50
o
C of the Tg for each glass 

series for one hour and then cooled to room temperature at a rate of 1°C/min. The glass code as 

presented in table 3.1 represents the two oxides swapped for each other for each series for 

example xB(15-x)Zn refers to boron swapped for zinc oxide however to explain a particular 

series within itself xB(15-x)Zn will be simplified to 10BZn15, 12.5BZn12.5, 15BZn10, 

17.5BZn7.5 and 20BZn5 mol% etc and therefore to refer to the whole series they stand as xB(15-

x)Zn, xSi(20-x)Zn etc. in the case of LaSi series Ba and Sr in brackets indicates the only 

difference between two in terms of oxides one contains barium and the other strontium oxide and 

remaining oxides are the same not exactly in quantity but in type. 

 

 

 



58 
 

Glass Code Compositions in mol%                                                  Melting 

(
o
C) 

Annealing  

(
o
C) 

xB(15-x)Zn 10BaO-(15-x)ZnO-15La2O3-5Al2O3-(10+x)B2O3-

45SiO2 (X= 2.5, 5, 7.5, 10) 

1350 650 

xSi(20-x)Zn  10BaO-(20-x)ZnO-15La2O3-5Al2O3-10B2O3-

(40+x)SiO2  (X= 2.5, 5, 7.5) 

1350 650 

xBa(40-x)Si (15+x)BaO-5ZnO-15La2O3-5Al2O3-20B2O3-

(40+x)SiO2  (X= 2.5, 5, 7.5, 10) 

1330 650 

xBa(10-x)Al (10+x)BaO-5ZnO-20SrO-(10-x)Al2O3-20B2O3-

35SiO2   (X= 2, 3, 4, 5) 

1250 600 

xSi(20-x)La(Ba) 10BaO-15ZnO-(20-x)La2O3-5Al2O3-10B2O3-

(40+x)SiO2   (X=  5, 10, 15) 

1450 650 

xSi(20-x)La(Sr) 15SrO-10ZnO-(20-x)La2O3-10Al2O3-15B2O3-

(30+x)SiO2    (X=  5, 7.5, 10, 12.5, 15) 

1430 650 

Table 3.1: Nominal molar compositions for all series 

 

Oxides Raw chemicals Purity Supplier 

SiO2 Silica, SiO2 99.8% Glassworks services, Ltd Doncaster, UK 

B2O3 Boric acid, H3BO3 99.5% Sigma-Aldrich, UK 

Al2O3 Aluminium hydroxide, Al(OH)3 99.5% Fisher chemical, UK 

BaO BaCO3 99% Fisher chemical, UK 

SrO Strontium carbonate, SrCO3 99% Fisher chemical, UK 

ZnO Zinc oxide, ZnO 99.8% Fisher chemical, UK 

Table 3.2: Raw materials used for glass batching 

  

3.2 Density measurement 

The density of powdered glass samples was measured using an AccuPyc II 1340 pycnometer gas 

displacement system. The system uses helium (99.995% pure) as its medium to measure volume 

of the glass powder by measuring the pressure change of the helium in a calibrated volume. If the 
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weight of the sample is known then the density is automatically worked out by the system. The 

measurement is done in two steps: 

1) Purging helium into the chamber to clean the sample and the chamber of air and moisture and 

this is done by selecting 25 cycles of cell filling and expulsion using the helium gas. 

2) The sample volume is measured by filling the sample cell with the gas medium to the 

required filling pressure. The final pressure (Pf) at equilibrium was recorded as the gas expands 

in the expansion cell. The volume of the sample was determined using: 

Vs= Vsc - 
      

           
 

where Vs is the volume of sample and Vsc is the volume of sample cell and Vex c is the volume of 

expansion cells all in cm
3
. The Pr and Pf are the run fill pressure and final pressures 

respectively. The Accupyc 1340 was accurate to approximately 0.03% of the reading plus 

0.03% of nominal full-scale cell chamber volume. 

3.3 XRD analysis 

Powder X-ray diffraction (XRD) was used to verify if the samples were amorphous or contained 

some crystalline phases. Both crystalline and glass samples were crushed to fine particles less 

than 150µm in size and room temperature measurement was carried out using a Siemens D5000 

XRD machine with Cu Kα (λ=1.54056Å) radiation. The radiation source was operated at 40 kV 

and 40 mA.  The samples were scanned from 15-70 
o
 2θ with a step size of 0.04 at a scan rate of 

4.8 s per step.  

The principle of operation for X-ray diffraction (see fig 3-1) is based on Bragg‟s law which 

states 

2dsinθ = nλ 

where n in the equation stands for the order of diffraction and d is the distance between parallel 

planes of atoms. The interplanar spacings d in the crystal structure of the sample give rise to a 

characteristic diffraction angle for any given wavelength of X-rays.  No two crystal structures 

have the same diffraction pattern hence XRDs provide specific information about the crystal 

structure and so that each crystalline phase can be identified. 

Equation 3-1 

Equation 3-2 
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Figure 3 -1: Schematic diagram of X-ray diffraction in crystals 

Sharp peaks appear on the XRD pattern of crystalline samples while for amorphous glass broad 

peaks are seen which can be correlated to silica and borate units. These peaks appear broad 

because of the disordered nature of atoms in the amorphous material such as glass. 

Superimposed crystalline peaks in the glass hump are a common feature of XRD pattern of glass 

composite materials. The XRD patterns of the crystalline phases were analyzed using the 

database ICDD PDF4+ software. Fig 3-1 is a schematic diagram of X-ray diffraction in crystals. 
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3.4 X-ray fluorescence (XRF) 

 

Figure 3-2: Schematic drawing of XRF functional structure 

Generally all x-rays consist of two components an x-ray source and a detector and sometimes a 

filter inserted between the primary x-ray and sample to modify the x-ray. A stable atom consists 

of nucleus and electrons orbiting it, the electrons are on different levels and shells according to 

their energy levels. When a high energy from the primary source hit the sample it disturbs it 

stability and knocks out inner k-shell lower energy electron and creates a vacancy. Immediately 

after an electron from higher energy level for example L-shell drops to the K-shell and replace it 

and releases energy in doing so which is referred to as secondary x-ray. The energy released as 

secondary x-ray is characteristics of that particular element. XRF can be used for both qualitative 

and quantitative information. So the collected secondary x-ray by the detector is processed into a 

spectrum and the peak energy identifies the elements while the intensity gives the concentration 

of the element. To measure the elemental composition of the borosilicate glass samples in this 

study a bulk rectangular samples approximately 10×10×6 mm were used. After mounting the 

sample in a sample cup and then placed in the sample trays in the XRF machine and note the 

sample position. Click on measure tab and then analyse and thereafter open the sample changer 

sub-routine. Delete any existing program using the red “X” tool and then click on sample 

position and then add measurement and verify the position and make sure the position “type” is 

set to Routine. Then next set priority to normal and make sure the tab with cup is ticked and now 
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click add and then return to overview screen and click on your sample position followed by the 

measure button. After running for 20 minutes the elements are displayed in weight percent and 

then converted to oxide without normalization using the software on the system and from that 

boron was estimated by difference due to difficulty in measuring it as it‟s a light element.  
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Glass code SiO2 B2O3 Al2O3 La2O3 BaO ZnO  

10BZn15 46.16(45) 9.29(10) 5.08(5) 14.56(15) 9.68(10) 15.22(15)  

12.5BZn12.5 47.33(45) 12.22(12.5) 4.96(5) 15.47(15) 9.29(10) 12.73(12.5)  

15BZn10 47.18(45) 15.83(15) 5.09(5) 14.75(15) 8.98(10) 8.17(10)  

17.5BZn7.5 47.95(45) 17.52(17.5) 4.77(5) 14.31(15) 8.57(10) 6.87(7.5)  

20BZn5 47.97(45) 15.83(20) 5.11(5) 16.04(15) 9.86(10) 5.19(5)  

        

Glass code SiO2 B2O3 Al2O3 La2O3 BaO ZnO  

40SiZn20 41.54(40) 9.01(10) 5.03(5) 14.19(15) 10.86(10) 19.37(20)  

42.5SiZn17.5 44.87(42.5) 8.44(10) 5.01(5) 14.28(15) 10.17(10) 17.23(17.5)  

45SiZn15 46.16(45) 9.29(10) 5.08(5) 14.57(15) 9.68(10) 15.22(15)  

47.5SiZn12.5 47.95(47.5) 9.52(10) 4.77(5) 14.31(15) 9.57(10) 13.88(12.5)  

        

Glass code SiO2 B2O3 Al2O3 La2O3 BaO ZnO  

15BaSi40 45.07(40) 16.92(20) 5.34(5) 13.97(15) 14.13(15) 4.57(5)  

17.5BaSi37.5 39.58(37.5) 19.05(20) 6(5) 13.63(15) 17.21(17.5) 4.53(5)  

20BaSi35 36.88(35) 20.7(20) 4.23 (5) 13.62(15) 19.45(20) 5.06(5)  

22.5BaSi32.5 32.93(32.5) 19.4(20) 4.51(5) 14.35(15) 22.68(22.5) 5.03(5)  

25BaSi30 31.25(30) 19.85(20) 5.09(5) 13.15(15) 24.15(25) 5.51(5)  

        

Glass code SiO2 B2O3 Al2O3 SrO BaO ZnO  

10BaAl10 35.09(35) 19.29(20) 9.44(10) 22.6(20) 9.36(10) 4.22(5)  

12BaAl8 35.87(35) 17.33(20) 8.91(8) 19.18(20) 13.24(12) 5.47(5)  

13BaAl7 35.82(35) 18.11(20) 8.37(7) 19.42(20) 14.17(13) 4.11(5)  

14BaAl6 35.55(35) 17.79(20) 6.17(6) 20.75(20) 15.35(14) 4.45(5)  

15BaAl5 34.55(35) 18.43(20) 4.81(5) 20.77(20) 16.22(15) 5.22(5)  

Glass code SiO2 B2O3 Al2O3 La2O3 SrO ZnO  

35Si15La(Sr) 35.89(35) 15.09(15) 9.23(10) 15.08(15) 15.37(15) 9.34(10)  

40Si10La(Sr) 41.43(40) 14.98(15) 9.68(10) 10.07(10) 15.07(15) 8.77(10)  

42.5Si7.5La(Sr) 42.77(42.5) 14.55(15) 10.01(10) 8.33(7.5) 15.44(15) 8.9(10)  

45Si5La(Sr) 46.61(45) 13.88(15) 10.21(10) 4.91(5) 15.21(15) 9.18(10)  

40Si20La(Sr) 39.67(40) 14.55(15) 7.94(5) 19.28(20) 8.89(10) 9.67(10)  

40Si15La(Sr) 40.76(40) 13.2(15) 7.02(5) 16.02(15) 13.24(15) 9.76(10)  

Table 3.3: Bracketed figures represent initial molar batched quantities in mol% and unbracketed 

numbers are XRF analysed data which is semi quantitative and serve as a guide to compositional 

error  
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3.5 Thermal analysis 

In order to study the thermal properties of the prepared samples a differential thermal analyser 

(Perkin Elmer TG/DT thermal analyser) was used. Properties such as Tg and Tc were determined. 

Small amounts of glass powder approximately 40mg±0.2µg in a platinum crucible were heated 

from room temperature to 1000 
o
C (±0.5 

o
C) at a heating rate of 10 

o
C /min in air alongside 

alumina as an inert reference subjected to similar heating profile. The onset point of the first 

endothermic curve/relaxation peak was used to estimate the value of Tg. Crystallization 

temperature (Tc) is indicated by an exothermic peak.  Glass powder samples ground to the same 

size as used for the XRD were used for the DTA. Fig 3-2 an example of a DTA graph for one of 

the samples in this study. 

 

 

Figure 3-3: DTA graph showing an estimate of Tg (onset) and Tc (crystallization peak maximum) 

The thermal expansion coefficients (TEC) were measured using thermo mechanical analyser  

TMA for all of the glass samples. The samples were sliced into rectangular shapes of size 

approximately 10×6×6 mm and heated from RT to 650
o
C at 1

o
C/min. Samples were re-measured 

after crystallization of the samples at 800
o
C for 50 h to assess the effects of any induced crystal 

phases on the TEC.  
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3.6 FT-IR spectroscopy 

Information about the bonding of the glasses was obtained using Fourier transform infrared 

spectroscopy (Perkin Elmer Frontier FTIR).  

           Infrared spectroscopy measures the absorption of infrared radiation by the chemical bonds 

in molecules of substances. The radiation absorbed by the chemical bonds in the molecules 

corresponds to the difference in energy of the bonds and are unique for every chemical bond in a 

molecule. Therefore, this FTIR gives structural information about a given material.  

One of the key components of FTIR spectroscopy is the Michelson interferometer. The 

incoming light is split inside an interferometer; one beam goes to the internal fixed mirror and 

the other goes to the moving mirror. The split beams recombine after reflection inside the 

interferometer and undergo both constructive and destructive interference giving the 

interferogram which contains the spectral information. The intensity pattern is proportional to 

cos
2
 (2πd/λ) where d is the path difference between the mirrors caused by motion of the movable 

mirror and λ is the wavelength. Assuming the velocity of the moving mirror is constant c, then 

the path difference will be d=2ct where t denotes time. After detection and storage of the data a 

Fourier transform is applied to the data to produce the conventional spectrum. 

FTIR is complementary to Raman spectroscopy (see below) because the different 

vibration modes in the molecules could be Raman-active, IR-active or active for both. In addition 

both techniques are often used due to the advantage of simple analysis procedure. However there 

exist some differences in the two techniques (Rehman 2013) as in table 3.3 
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 Infrared  Raman  

Physical effect  Absorption. Dipole moment 

changes in molecules can be 

analysed eg strong (ionic 

bonds like O-H, N-H, C=O). 

Scattering. (observing the 

emissions of scattered light) 

and changes in the 

polarization of molecules eg 

strong (covalent bonds like 

C=C, C-S) etc. 

Sample preparation Involves sample preparations  Little or samples preparations  

Materials or samples  Mainly organic compounds. Different types of samples in 

both dry and wet. 

Resolution  1-20 µm (beam splitter 

dependent. 

0.05 - 8µm (laser dependent) 

Frequency range 4000-400 cm
-1

 in the mid IR 

and 30000 – 50 cm
-1

 at far and 

near IR.  

4000-50 cm
-1

 

problems Presence of water has strong 

signal effect. 

Fluorescence is an issue as 

some glasses have high 

fluorescence. 

 Table 3.4: Comparison between FTIR and Raman spectroscopy (Rehman 2013) 
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Figure 3-4: Michelson interferometer used in an IR spectroscometer 

Approximately 2 mg of each sample and 200 mg of KBr was mixed using agate mortar 

and pressed into pellets of 13 mm diameter using a hydraulic press (Specac
®
). Spectra in the 

range 400-4000cm
-1

 were immediately measured. Prior to measurement background scanning 

was undertaken. Both transmittance and absorbance data were collected after which peaks were 

assigned different bonds using data in the literature. There absorption bands on the FTIR spectra 

were assigned as follows. Generally, the presence of diffuse bands indicates the disorder in the 

silicate network because of wide distribution of Q
n 

units occurring in the silicate systems (Goel, 

Tulyaganov et al. 2010, Kumar, Rupali et al. 2011). Bands in the region 800-1200 cm
-1

 are 

related to stretching vibration of the SiO4 unit with different bridging oxygens. Si-O-Si and Si-O-

Al linkage bending vibrations and vibrations of bridging oxygen among trigonal boron atoms 

occurs in the regions 400-600 cm
-1

. While the Al-O and La-O bonds with the Al and La ions in 

four fold coordination exhibit stretching vibrations at 600-800 cm
-1

 (Aronne, Esposito et al. 

1997, Goel, Tulyaganov et al. 2010, Kumar, Rupali et al. 2011). The band at wavenumbers 

around 1370-1440 cm
-1

 is related to B-O stretching vibrations of BO3 units whereas BO4 

tetrahedron stretching vibration gives a band at 1000 cm
-1 

(Kumar, Pandey et al. 2010, Kumar, 

Rupali et al. 2011).  
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Wavenumber cm
-1

 Type of bond  

400-500 ZnO4 tetrahedral bending vibration units  (in 

zinc borate glasses) 

(Cetinkaya Colak, Akyuz et al. 

2016) 

400-600 Si-O-Si linkages bending vibration (Środa and Paluszkiewicz 2007, 

Kumar, Pandey et al. 2010, 

Kaur, Pandey et al. 2012) 

460 462 SiO4 bending vibration (Środa and Paluszkiewicz 2007, 

Kumar, Pandey et al. 2010, 

Kaur, Pandey et al. 2012, Cui, 

Hao et al. 2015) 

460 460 is BO4
-
 group vibration (Gohar, Doweidar et al. 1990) 

470 Si-O-Si and O-Si-O bending modes involving 

bridging Oxygens (Q
4
) 

(Kumar, Pandey et al. 2010, 

Kaur, Pandey et al. 2012) 

471 Si-O-Si asymmetric bending (Sun, Xiao et al. 2010) 

490 Zn-O peak difficult to observe due to severe 

vibronic structure between 400-500 and also 

due to poor resolutions 

(Wang, Li et al. 2009) 

496 Si-O-Si bending modes in SiO4 units (Sasmal, Garai et al. 2014) 

558 and 612 O-Si-O symmetric stretching vibration of 

SiO4 units 

(Sasmal, Garai et al. 2014) 

643 Vibration from pure La-O in LaO4 tetrahedral (Sasmal, Garai et al. 2014) 

650-800 La
3+

 or Al
3+

 ions stretching vibration in four 

fold coordination or bending vibration of 

bridging oxygen between BO3 atoms 

(Kaur, Pandey et al. 2012, 

Sasmal, Garai et al. 2014) 

(Kumar, Pandey et al. 2010) 

700-711 B-O or B-O-B bending vibration modes of 

BO3 units 

(Sasmal, Garai et al. 2014, Cui, 

Hao et al. 2015, Cetinkaya 

Colak, Akyuz et al. 2016) 

724 Bending of B-O-B in BO3 and also belongs to 

AlO4 group 

(Sun, Xiao et al. 2010) 

775 and 801 Six membered borate and boroxol rings with 

2 or 1 BO4 units observed when B2O3 is more 

(Cui, Hao et al. 2015) 
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than 5mol% 

841 Stretching vibration of B-O of BO4 units (Sasmal, Garai et al. 2014) 

923 
-
O-Si-O

-
 stretching vibration with two NBOs (Sasmal, Garai et al. 2014) 

988 Si-O-Si asymmetric stretching (Cui, Hao et al. 2015) 

800 and 1200 B-O stretching in BO4 units in (Zinc borates) (Cetinkaya Colak, Akyuz et al. 

2016) 

800-1300 Broad band indicates stretching vibration of 

SiO4 

(Kumar, Pandey et al. 2010, 

Kaur, Pandey et al. 2012) 

850-1100 Two band 925 and 1012 overlapped assigned 

to stretching to BO4 and the later to combine 

stretching of Si-O-Si and B-O-B network 

tetrahedral  units 

(Sun, Xiao et al. 2010) 

939 B-O link of BO4 group (Darwish and Gomaa 2006) 

990-1200 Overlapping contribution from silicate and 

borate groups 

(Darwish and Gomaa 2006) 

1000 BO4 tetrahedron not observed due to overlap 

with SiO4 stretching in this region. (formation 

of SiO4 with NBO ions) 

(Gohar, Doweidar et al. 1990, 

Kumar, Pandey et al. 2010, 

Kaur, Pandey et al. 2012) 

1011-1030 Antisymmetric overlapping of BO4 and Si-O-

Si 

(Cui, Hao et al. 2015) 

1087 Anti-symmetric stretching vibration of Si-O-

Si of SiO4 unit 

(Sasmal, Garai et al. 2014) 

1220 The shoulder is stretching of boroxol ring (Sun, Xiao et al. 2010) 

1200, 1265, 1385 B-O vibrations related to tri BO3 and 

Tetraborate BO4 groups 

(Sasmal, Garai et al. 2014) 

1240 and 1355 Vibrations from borate structure consisting of 

BO3 units only such as Meta, Ortho, and 

Pyroborate 

(Doweidar, Moustafa et al. 2001) 

1265 bond stretching of B-O linked with B-O-B 

units  

(Gohar, Doweidar et al. 1990) 

1200-1600 B-O stretching vibration of BO3 (Darwish and Gomaa 2006, 
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Cetinkaya Colak, Akyuz et al. 

2016) 

1402 Stretching of B-O of BO3 characteristics for 

BO3  group 

(Sun, Xiao et al. 2010) 

1403-1426 Anti-asymmetric stretching of BO3 (Cui, Hao et al. 2015) 

1300-1500 B-O stretching vibration in BO3 (boroxol 

ring) 

(Gohar, Doweidar et al. 1990, 

Środa and Paluszkiewicz 2007, 

Kumar, Pandey et al. 2010, 

Kaur, Pandey et al. 2012) 

1600-1640 Weak band of H2O molecular vibration (Kumar, Pandey et al. 2010, 

Kaur, Pandey et al. 2012, 

Sasmal, Garai et al. 2014) 

3500 O-H stretching (Gohar, Doweidar et al. 1990) 

Table 3.5: Summary of FTIR assignments  

3.7 Raman spectroscopy 

The structure of the produced glasses was also characterized by Raman spectroscopy using a 

Renishaw inVia Raman Microscope). This machine equipped with CCD detector has a spectral 

resolution of 2 cm
-1

 and exposure time of 10 s. Glass samples were ground into powder <63µm 

and scanned by a green laser (514.5 nm, 20 mW) from 50 to 2000 cm
-1

.   

In Raman spectroscopy when a laser beam strikes vibrating molecules, it can excite the 

atoms or the molecules and shift them to different states. The difference in energy between the 

original state and the new state of the molecules or atoms produces a shift in the subsequent 

emitted photon. The excitation moves the molecules to a higher or lower frequency compared to 

the original state; the former is called Stokes Raman scattering and the latter anti-Stokes Raman 

scattering. These Raman shifts can be used to distinguish the structures of compositions and 

molecules. The use of Raman spectroscopy helps to determine the local environment, structure 

and the dynamics for a glassy material. Raman and IR spectroscopies are complementary to each 

other. The difference between them is that IR spectra arise from changes in dipole moment while 

Raman spectra come from changes in polarizability. Raman spectroscopy has the benefit of 

determining some transitions that cannot be seen in an IR spectrum. In IR spectra the 
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characteristics of a given sample are determined using absorbance or transmittance spectra. In 

Raman spectra the y-axis is usually arbitrary and not in absorbance or transmission units as 

found in IR because it simply represents the amount of scattered photons received by the detector 

at a given frequency. For example, the peak heights in Raman spectra are not dependent on 

sample thickness but rather on the power of the incident laser so if the power is varied the 

intensity of the Raman spectrum also varies. Fig 3-4 is a schematic sketch of the Raman 

spectroscopy. 

 

Figure 3-5: Schematic diagram of Raman spectroscopy showing Rayleigh, Stokes and anti-

Stokes scattering 

 

The Raman spectra for amorphous materials contain broad bands due to the variation of local 

environment in a glass. If the sample is crystalline the Raman shift is well-defined and sharp 

peaks are seen in the spectrum. Characteristic peaks were assigned to specific bonds. 

Raman peaks are commonly classified into three broad regions, 400-800cm
-1

, 800-

1200cm
-1

 and 1300-1600cm
-1

. In the first two broad bands both SiO2 and B2O3 structures exist 

while the last band contains B2O3 structures only. Below 400cm
-1

 is a mixed and complex 

vibration of silicate network and modifier cations (Mahapatra, Lu et al. 2009) and the Zn-O 

vibration of the ZnO4 unit is found in this region (Yadav and Singh 2015).  
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The deconvolutions of the Raman data were performed with wire 3.4 software and 

Gaussian fitting using the solver routine in Excel in the region 800-1200cm
-1

 which is the region 

for the Si-O stretching vibrations. Before fitting the curves to the spectra the data is corrected for 

temperature and frequency dependent scattering intensities using the Long (1977) correction 

method (Mysen, Finger et al. 1982). First the background were subtracted by selecting the 

multiple spline curve option in the wire 3.4 software and the multiplied by Long correction factor 

(Long 1977) and finally the corrected spectra is normalized.  After which the deconvoluted 

spectra were fitted with Gaussian bands. 

          The Raman assignments used in the current work are based on the literature values 

presented in table 3.6. The additions of modifiers into the glass structure cause some changes to 

the Raman spectra even though the modifiers are not Raman sensitive but they have notable 

effect on the Si-O, B-O and Al-O bonds. The effects of the modifiers can be observed in both the 

shift in frequency position of the Raman band and the increase or decrease of the peak intensity. 

Wave number cm
-1

 symbol Compound name 

800-850 Q
0
 Isolated SiO4 (Colomban 2003) or orthosilicate (Mahapatra, Lu et 

al. 2009) 

900-950 Q
1
 Pyrosilicate  or metasilicate (Mahapatra, Lu et al. 2009) Si2O7 

groups(Colomban 2003) 

1050-1100 Q
2
 Silicate chain(Colomban 2003) or disilicate(Mahapatra, Lu et al. 

2009) 

1100 Q
3
 Sheet like region(Colomban 2003) 

1150-1250 Q
4
 SiO2 and tectosilicate(Colomban 2003) 

Table 3.6: Identified Q
n
 species (Colomban 2003, Mahapatra, Lu et al. 2009) 
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Wave   number  

cm
-1

 

Type of bond  

220 Zn-O bending vibration of the ZnO4 unit (Yadav and Singh 2015) 

250 ZnO4 units bending modes (Yadav and Singh 2015) 

300-850 Si-O-Si mixed stretching and bending 

vibrations 

(Mahapatra, Lu et al. 2009, 

Manara, Grandjean et al. 2009) 

500 Si-O-Si  bending vibration or BO4 tetrahedra 

characteristics 

(Brow, Tallant et al. 1996, 

Manara, Grandjean et al. 2009) 

550-850 Ring breathing modes of borates, metaborates 

and borosilicate rings. 

(Manara, Grandjean et al. 2009) 

614 Danburite (Manara, Grandjean et al. 2009) 

630 Breathing mode of borosilicate rings (Manara, Grandjean et al. 2009) 

635 3 coordinated boron (Brow, Tallant et al. 1996) 

670 Tetraborate group signature (Manara, Grandjean et al. 2009) 

755 Rings and chains metaborates (Brow, Tallant et al. 1996) 

750-780 Ring structures containing BO4 units e.g. di, tri, 

and Tetraborate 

(Brow, Tallant et al. 1996) 

770-808 4 and 3 coordinated boron in Diborate and 

boroxol rings 

(Manara, Grandjean et al. 2009, 

Kaur, Pandey et al. 2012) 

796-800 Si-O-Si symmetric stretching or vibration of 

ring structures 

(Kaur, Pandey et al. 2012) 

840 and 1230 Pyroborates (Brow, Tallant et al. 1996) 

850 Orthosilicate  with O BOs (McMillan 1984, Mahapatra, Lu et 

al. 2009, Yadav and Singh 2015) 

900-920 stretching of Si-O with 3 NBOs Q1 

(Pyrosilicate) 

(McMillan 1984, Mahapatra, Lu et 

al. 2009, Manara, Grandjean et al. 

2009, Yadav and Singh 2015) 

930 Orthoborates (Brow, Tallant et al. 1996) 

950-980 stretching of Si-O with 2 NBOs Q
2
 

(metasilicate) 

(McMillan 1984, Mahapatra, Lu et 

al. 2009, Manara, Grandjean et al. 

2009, Yadav and Singh 2015) 
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1000-1050 Stretching mode of Si-O
o
  BO (Manara, Grandjean et al. 2009) 

1060-1070 Asymmetric stretching of Si-O-Si (Kaur, Pandey et al. 2012) 

1090 Diborate (Brow, Tallant et al. 1996) 

1050-1100 stretching of Si-O with 1 NBO Q
3
 (disilicate) (McMillan 1984, Mahapatra, Lu et 

al. 2009, Manara, Grandjean et al. 

2009, Yadav and Singh 2015) 

1120-1190 Fully polymerized Q
4
 (Manara, Grandjean et al. 2009) 

1200 Symmetric stretching of 
[3]

B
3+

 units in lithium 

lead borate glasses 

(Yadav and Singh 2015) 

1216-1260 Pyro-borate groups in borate glasses (Yadav and Singh 2015) 

1300-1600 B-O 
-
  (O 

–
 denotes NBOs) with chain and ring 

metaborates 

(Mahapatra, Lu et al. 2009) 

1200 Symmetric stretching of 
[3]

B
3+

 units in lithium 

lead borate glasses 

(Yadav and Singh 2015) 

1200 B-O stretching of pyroborate (Kaky, Lakshminarayana et al. 

2017) 

1216-1260 Pyro-borate groups in borate glasses (Yadav and Singh 2015) 

1200-1300 B-O bonds stretching vibration of pyroborate (Kaky, Lakshminarayana et al. 

2017) 

1250-1500 B-O chain stretching of metaborate group (Manara, Grandjean et al. 2009, 

Kaur, Pandey et al. 2012) 

1300-1600 B-O bonds stretching vibration of BO3 units (Kaky, Lakshminarayana et al. 

2017) 

1410 BO3 units bonding BO4 units (Manara, Grandjean et al. 2009) 

1480 BO3 unit bonding BO3 units (Brow, Tallant et al. 1996, 

Manara, Grandjean et al. 2009) 

1320 Loose BO3 units (Manara, Grandjean et al. 2009, 

Santha, Shamsudeen et al. 2011) 

1515 BO3 units in boroxol rings (Gohar, Doweidar et al. 1990, 

Manara, Grandjean et al. 2009) 

1510-1570 B-O stretching mode involving one NBO of (Yadav and Singh 2015) 
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[BO3] triangular and molecular oxygen 

1385-1397 Stretching vibration of B-O
-
 bond in BO4 units 

from different borate groups 

(Yadav and Singh 2015) 

Table 3.7: Assignment of Raman peaks  

3.8 Indentation measurements 

To carry out mechanical testing glass samples were cut into 20×20×10 mm sections using a 

Secotom cutting machine with water-cooled diamond blade. The broad faces of the samples were 

then successively ground and polished using SiC 400/600/800/1200 grits under running water 

and 6/3/1µm diamond pastes. Cleaning and drying of the samples follows immediately before 

annealing at Tg to remove residual stresses developed during cutting, grinding and polishing. 

After annealing a Durascan micro/macro Vickers hardness tester with extended load range up to 

10 kg was used to measure the indentation hardness from the indent size and indentation fracture 

toughness was calculated from the crack length measured.  

To measure the hardness using Vickers indentation, the polished surfaces were indented with the 

standard load of 9.81 N for 15 seconds.  The number of indentations made on each composition 

was between13 and 15. Fig 3-5 is an example of indentation image taken by Durascan during 

Vickers hardness test. Vicker‟s hardness can be calculated using 











2
8555.1

d

P
H v  

where P is indentation load  and d is average diagonal length of the indents.  

 

Equation 3-3 
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Figure 3-6: Photograph of a Vicker‟s hardness indent where d1 and d2 are the diagonals of the 

indent 

 

The indentation fracture toughnesses of five out of the six series of the glasses were measured 

immediately after making the indent for 5 indentation loads namely 0.3, 0.5,1, 2.5 and 5 kg. In 

each case the length of the median-radial cracks (2c) originating from the corners of the indents 

was measured (see figure 3-5). The indentation fracture toughness was then calculated using 

    
       

     

where P is the applied load in (N) and c is half crack length and 0.0824 was proposed by Evans 

and Charles (1976). Ponton and Rawling (1989) reported that more consistent indentation 

fracture toughness values can be obtained by using this constant 0.0824.  

Brittleness was then calculated using: 

B=
  

   
 

 

An estimate of  surface energy was calculated from the measured fracture toughness and the 

modulus using: 

Equation 3-4 

Equation 3-5 
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3.9 Acoustic measurement of elastic moduli 

Elastic moduli of the glasses samples were measured using the ultrasonic pulse echo technique.  

Both the longitudinal (
LV ) and the transverse ( TV ) ultrasonic wave velocities were measured 

using an Olympus Epoch 6000. 20 MHz longitudinal and 5 MHz transverse transducers were 

used. To facilitate proper contact of the transducer onto the surface of the samples and to aid 

transmission of sound waves glycerol and a coupling gel were used. 

          The ultrasonic pulse-echo technique is commonly used to determine elastic moduli of 

materials. The ultrasonic vibration travels in solid media in the form of a wave, and in order to 

transmit sound waves the material is required to be an elastic medium. This is a non-destructive 

testing method which conventionally uses longitudinal and transverse waves. The ultrasonic 

equipment sends high frequency waves through transducers into the test samples, and then the 

time of flight (t) is determined (Olympus technical notes, 2006). 

The wave velocity (v) for the test sample was calculated as follows. 

t

l
V

2
  

where l  stands for the thickness of sample. The shear modulus, G, was obtained using 

2

TVG   

where  is density, and TV  is longitudinal velocity. The Young‟s modulus, E, was obtained 

using 

 
 22

22
2 43

TL

TL
T

VV

VV
VE




   

Poisson‟s ratio ( v ) and the bulk modulus (K) were also calculated from the longitudinal and 

transverse wave velocities to reduce the cumulative error. 

Equation 3-6 

Equation 3-7 

Equation 3-8 

Equation 3-9 
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3.10 Impedance spectroscopy 

The electrical properties of the glass and glass-ceramic samples were obtained from ac 

impedance spectroscopy using an Agilent E4980A impedance analyser (Agilent Technologies 

Inc., CA). For each sample the impedance was measured in the 20 to 10
6 

Hz frequency range 

with an applied voltage of 100 mV using the impedance analyser. Before heating the samples 

inside the horizontal tube furnace gold paste was fired at 800
o
C for 2 h on the two opposite 

surfaces to form electrodes. Room temperature measurements followed by high temperature ones 

from 500 to 25
o
C below the Tg with a 20

o
C interval, to ensure thermal stabilization after each 

reading, were taken. All the measurements were made in air. All impedance data were 

normalized by the geometric factor (thickness/surface area) of each sample. At temperatures 

below 100
o
C a high impedance is observed beyond equipment limit while very close to Tg 

additional contributions to the conductivity due to, for example, viscous motion of the glass 

structure were observed. Both the parent glasses and glass ceramics obtained by isothermal heat 

treatment were measured for electrical conductivity. Since the sample preparation involves gold 

electrode firing at 800
o
C for 2h it is most likely that the parent glass is no longer amorphous as 

glasses are known to be metastable some element of crystallization would be expected. And 

therefore electrical conductivity of the parent glasses may have been influenced by the heating 

process however this does not have any effect on the applications intended because the glass 

would undergo constant isothermal heating during operation for thousands of hours. In addition 

the impedance measurement of the parent glasses in appendix 1 (b) indicated single component 

electrical data as both the Z” and M” have peaks positions corresponding to similar frequency.  

       Data taken from impedance spectroscopy are analysed using the following complex 

formalism; impedance Z*, electric modulus M*, admittance Y*, and permittivity ɛ* as taken 

from (Jiadong, Ming et al. 2014). 

M* = jωC0 Z* 

Equation 3-10 

Equation 3-11 

Equation 3-12 

Equation 3-13 
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ɛ* = (M*)
-1

 

Y* = (Z*)
-1

 

Y* = jωC0ɛ* 

Where ω = 2πf is angular frequency of measurement and C0 is the capacitance of vacuum space. 

From Arrhenius law the activation energy for electrical conductivity is obtained from the slope 

of the straight line see fig 5-1 (a) and (b). The Arrhenius law is given as follows 

   = A exp [
   

  
] 

 

 

Equation 3-14 

Equation 3-15 

Equation 3-16 
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4. Results 1: Physical, thermal and structural analysis 

4.1. Physical, thermal and structural analysis for xBa(40-x)Si series 

In the xBa(40-x)Si series an increase in density and an increase then decrease then increase in 

molar volume was observed with BaO additions (see fig 4-1), due to the higher molecular weight 

of barium 153.3g/mol and high ionic radius of Ba
2+

 (1.49Å) which expands the glass structure  

and decreases the glass compactness (Wang, Wang et al. 2009, Kaur, Pandey et al. 2012, 

Bootjomchai, Laopaiboon et al. 2014). The observed unusual behaviour where both density and 

molar volume increase in the same direction have been previously reported for RO-Al2O3-B2O3 

(RO = Mg>Ca>Sr) containing glasses (Abd El-Moneim, Youssof et al. 2006). The molar volume 

of xBa(40-x)Si increased and then decreased at a BaO/SiO2 ratio of 0.57 and then increased 

again. This type of anomalous drop in molar volume have been reported by Bourgel et al, and is 

associated with the tendency of the network to densify its structure in barium borosilicate glasses 

at  25<X<48 mol% of BaO (Bourgel, Malki et al. 2009). 

  

 

Figure 4-1: Density and molar volume versus Ba/Si ratio in xBa(40-x)Si glasses. For detailed 

compositions please see table 3.1 
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         The XRD traces of xBa(40-x)Si glass and glass-ceramic samples are presented in fig 4-2 

(a) and (b), The absence of sharp peaks in the glass samples suggest that there are no crystalline 

phases, and the broad hump at low angles around 28
o
 indicates amorphous nature and as well as 

long range structural disorder in these glasses. In order to understand the crystallization kinetics 

and thermal stability of xBa(40-x)Si glasses were isothermally heat treated at 800
o
C for 50 h 

after which the crystalline samples were evaluated to identify the phases in the samples with 

respect to temperature and heating duration. The XRD of the crystalline samples in fig 4-2 (b) 

reveals the formation of lanthanum silicate boron oxide (La3 (Si2O4)2 BO2) PDF no (04-010-

1343). The intensities of the dominant peaks around 30
o
 seem to decrease with increasing BaO 

and the peak heights are smallest for 25mol% BaO because decreasing silica removes one major 

constituent of the phase.  As reported by  (Trégouët, Caurant et al. 2017) 7 out of 10 phases in 

the SiO2-B2O3-La2O3 ternary contains silica as part of the phases formed; the three phases 

observed in this study all contained silica. The lanthanum borosilicate single phase shown in fig 

4-2 (b) is also reported by Shvanskii et al and claimed that it was the first La-borosilicate to be 

synthesized and its structure solved see (Shvanskii, Leonyuk et al. 2000). Lanthanum and 

neodymium are reported to be able to form single crystal phase in soda lime borosilicate glasses 

and the amount of the phase is heat treatment dependent (Nicoleau, Angeli et al. 2016). The 

effect of crystallization as shown by the TEC curve of the glasses in fig 4-2 (c) indicates that the 

TEC up to the onset of the Tg is decreased after crystallization possibly due to the differences 

between the residual glass and the parent glass as well as the crystalline phase itself.  

 

 



82 
 

  

 

 

Figure 4-2:(a) XRD patterns of xBa(40-x)Si glass; (b) XRD patterns of xBa(40-x)Si samples 

crystallised at 800 
o
C for xBa(40-x)Si with increasing Ba/Si ratio (c) representative examples of 

the TEC for glass and glass obtained from TMA for 25BaSi30 exhibiting the differences in TEC 

and Tg positions in the two samples 

 

The influence of BaO incorporation on thermal properties of xBa(40-x)Si samples is shown in 

fig 4-3 (a) and (b). There seems to be a typical change of the DTA curves as BaO is added to the 

glasses. The glasses are stable up to temperatures above Tg before the emergence of 

crystallization peaks during the measurement. There is a decrease in Tg of about 18 
o
C from 662 

to 644
 o

C as BaO  was increased at the expense of SiO2 in these glasses, a similar behaviour to 

this is reported by (Mishra, Mishra et al. 2009). Tg decreases with BaO addition because it 

(a) (b)  

(c) 



83 
 

creates NBOs in the glass as mentioned by (Ghosh, Sharma et al. 2010). The decrease in Tg may 

suggest that the energy needed for structural relaxation of the glass network is also reduced. 

There are two crystallization peak temperatures in these glasses which may be an indication of 

phase separation as reported by Lahl et al, (Lahl, Singh et al. 2000), or the presence of two 

different crystalline phases in the glass see (Staff, Fernie et al. 2016).  

           An example expansion trace for both the glass and glass-ceramic is given in fig 4-2(c) 

where the residual glass in the glass-ceramic shows a slight decrease in the Tg position compared 

to the base glass. The thermal expansion (TEC) of barium containing glasses xBa(40-x)Si fig 4-

3(b) increases linearly with BaO content similar to what has been reported by (Laorodphan, 

Namwong et al. 2009). This is  because of the high ionic radius of barium (Kaur, Pandey et al. 

2014) and due to lower cation field strengths which create NBOs in the network (Hubert and 

Faber 2014) and make the glass structure looser (Zhang, Yue et al. 2013). There is not much 

difference between the TEC of the glass (blue line) and glass-ceramics (red line) of xBa(40-x)Si 

samples except for the samples with a) a BaO/SiO2 ratio around 0.7 where the TEC for the glass 

ceramic is much higher and b) a BaO/SiO2 ratio around 0.83 where it is slightly higher than that 

of the glass samples. The decrease in Tg and increase in TEC with BaO addition suggest that 

BaO take network modifier positions and has dominant effect on the network rigidity. The Tg in 

fig 4-3(c) shows a continues decrease with increasing BaO which is known to depolymerise the 

silica network. According to Mahapatra et el the Tg and Ts of sealing glasses increased with 

increasing field strength of the modifier therefore unlike the BaO the addition of SrO, CaO and 

Mg could increase the Tg and Ts  (Mahapatra and Lu 2010). 
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Figure 4-3: DTA curves, (b) TEC of glass (blue line) and glass ceramic (red line) (c) Tg of 

xBa(40-x)Si glass and glass ceramics versus BaO/SiO2 ratio. 

 

 

 

        The systematic variations in the Raman and FTIR spectra of xBa(40-x)Si glasses with 

increasing BaO are presented in fig 4-4(a) and (b). There are about seven visible regions in the 

Raman spectra and five in the FTIR spectra. All the bands broad and small have been labeled and 

assigned to different vibrations obtained from the literature as outlined in tables (3.4) and (3.6). 

The intermediate region 800-1200cm
-1

 from both techniques reveals the depolymerising effect of 

(a) 

(b) (c) 
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increasing BaO on the SiOSi stretching vibrations with the peaks being shifted to lower 

wavenumbers and a shoulder appearing around 870 cm
-1

 assigned to Q
0
 in the Raman spectra. 

This behaviour has been reported for both BaO and CaO substitution (see (Yadav and Singh 

2015)) and a decrease in the peak intensity of this region can be seen more clearly in the FTIR 

spectra. For the Raman spectra the top end of the peaks becomes sharper and increase in 

intensity as it shifts to lower positions which suggest that BO4 increases with addition of BaO as 

reported by (Kaur, Singh et al. 2012). Peaks assigned to the B-O stretching motion in BO3 and 

BO4 are located between 1250 to 1600cm
-1

 (see tables 3.4 and 3.6 for details), can be seen in 

both Raman and FTIR and these peaks shifted to lower wavenumbers in the Raman spectra with 

increase in intensity of the 1200cm
-1

 peak assigned to stretching vibration of BO4 according to 

Cetinkaya et al in zinc borate glasses (Cetinkaya Colak, Akyuz et al. 2016) and corresponding 

decrease of the 1400cm
-1 

peak assigned to stretching of B-O of BO3 characteristics for BO3  

group as BaO increases.  

          The FTIR peaks intensities follow the same pattern as the Raman ones but the peaks in 

FTIR moved to slightly higher wavenumbers. The reduction in intensity of the 1400 cm
-1

 peak 

indicates depolymerisation which means that  BO3 in the borate groups  and NBOs in the glass 

structure are reducing according to (Kaur, Singh et al. 2012).
 
The peaks  between 600 and 800 

cm
-1

 splits into two weak bands in the Raman spectra only; the first weak band is at 648-624 cm
-1

 

and increased in intensity and shifted to lower wavenumbers with increasing BaO may be 

associated with obstructed bending vibration of ring type metaborates groups or the breathing 

mode of danburite-like rings  (Yadav and Singh 2015).  The other weak band 709 -717 cm
-1

 has 

been identified in FTIR spectra as symmetric stretches in Si-O-(Si, Al) in aluminosilicates (Środa 

and Paluszkiewicz 2008) and can also be assigned to B-O or B-O-B bending vibration modes of 

BO3 units in borosilicate glasses (Sasmal, Garai et al. 2014). This band has moved to higher 

wavenumbers with increasing BaO but the decrease in intensity suggests that the BO3 group is 

decreasing with possible conversion into the danburite like structure [B2Si2O8]
2-

 since the peak 

intensity around 624 cm
-1

 has increased (Parkinson, Holland et al. 2008). As also explained by 

Manara this band around 630 cm
-1

 could be the breathing mode of danburite like ring structure 

including  two tetrahedra of both  SiO4 and  BO4 and charged balanced by Na2O instead of CaO 

(Manara, Grandjean et al. 2009). Medium range order structures such as danburite have been 

reported for borosilicate glasses using Raman spectroscopy (Parkinson, Holland et al. 2008). The 
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peak between 400 and 600 cm
-1

 is also seen in both Raman and FTIR with a decrease in intensity 

and disappearance in the Raman spectra with increasing BaO while in the FTIR it slightly shifts 

to higher wavenumbers; similar behaviour has been reported by (Kaur, Singh et al. 2012). In 

general a decrease in intensity and width of these bands is associated with decrease in the bond 

angles of the SiOSi linkages which determines the frequency of this bending vibration (Kline, 

Tangstad et al. 2015, Hehlen, Neuville et al. 2017). The lowest wavenumber peak around 250 

cm
-1

 in the Raman spectra may be assigned to the bending mode of ZnO4, however; according to 

Cetinkaya et al, the 400 to 550 cm
-1

 band in FTIR has also been assigned to the ZnO4 tetrahedra 

in  borate glasses (Cetinkaya Colak, Akyuz et al. 2016) which suggests that the presence of ZnO4 

unit is indicated by the data from both techniques. 

 
 

Figure 4-4: (a) Raman and (b) FTIR spectra for xBa(40-x)Si glasses 

The deconvolution method described in section 3.6 was applied to the mid frequency 

region 800 to 1200 cm
-1

 which covers the Si-O stretching vibrations and the high frequency 

region between 1250 and 1500 cm
-1

 which is due to the presence of BOn structural units. 

Deconvolution of the Si-O stretching regions reveals the presence of four Gaussian bands (Q
n
 

species) and three Gaussian bands for boron species. Fig 4-5(a) and (b) gives a representative of 

the deconvoluted Raman spectra for the silicate and borate groups where the  silicate units are 

represented by the Q
n
 notations and the borate units by loose 

[3]
B

3+
, 

[3]
B

3+
 in boroxol ring 

structure , and 
[4]

B
3+

. The deconvoluted spectra for all other series are presented in appendix 6 

and 7 while appendix 4 and 5 gives the values of the estimated area% of both the silicate and 

borate units. Fig 4-6(a) shows how the Q
n
 species (as determined from the peak area) changes 

with BaO addition see appendix 4 and 5 for all series. It can be seen that as BaO is added to the 

(a) (b) 
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xBa(40-x)Si series glasses Q
0
 and Q

1
 increased and Q

2
 and Q

3
 decreased. In fig 4-6(b) shows 

that the BO4 increased which agrees with the literature (Zhang, Yue et al. 2013) and a reduction 

in the percentage of both loose BO3 and BO3 in boroxol rings can be observed.  The Si-O 

stretching peaks shifts to lower positions from 963 to 940 cm
-1

 and 955 to 929 cm
-1

 in FTIR and 

Raman respectively. The plot of the variation of the ratio (Q
4
+Q

3
)/(Q

1
+Q

2
), which can provide 

some insight into the polymerization, also shifts to lower position with BaO addition (see fig 4-

6(c) and (d)) indicating increasing depolymerisation of the SiOSi network. 

 

 

Figure 4-5: Deconvolution of (a) the silica unit (800-1200 cm
-1

) and (b) borate group (1250-1600 

cm
-1

) 

 

 

(a) 

(b) 
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Figure 4-6: Area% of (a) Q
n
 species and, (b) Boron species. (c) Raman and FTIR peak shift 

(RPS,FPS) of Si-O stretching unit and (d) polymerisation index for xBa(40-x)Si glasses. 

4.2 Physical, thermal and structural analysis of xBa(10-x)Al glasses. 

In this series BaO was swapped on molar basis with alumina which means the ratio of the cations 

is 1:2 however alumina is expected to be in AlO4 coordination since there is enough modifier in 

this glass to charge balance all the alumina and the excess goes to depolymerise silica and 

convert some BO3 to BO4 units.  The effect of increasing BaO on the molar volume is different 

to that seen in xBa(40-x)Si glasses in that the molar volume of xBa(10-x)Al glasses decreased 

and the density increased as Ba/Al ratio increased (see fig 4-7 (a)). Thus in the xBa(10-x)Al case 

the change in molar volume mirrors the change in density in the expected fashion (compare fig 

4.1 and 4.7(a)).  

          The XRD plot (fig 4-7(b)) is similar to that for xBa(40-x)Si (fig 4-2) in terms of peak 

position.  There is a very small shift in the silica peak position and there is a clearly visible shift 

to the right of the borate peak position. This could suggest that both silicate and borate structures 

(a) (b) 

(c) (d) 
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of the xBa(10-x)Al glasses are slightly distorted by the BaO addition. The Tg in xBa(10-x)Al 

decreases 44 
o
C in a non-monotonic fashion from 627

o
C to 583

o
C with increasing BaO and 

reducing alumina. There is only one clearly visible crystallization peak in these glasses (see fig 

4-8(a)).  As the amount of  alumina is not more than 10mol% in these glass it will  plays a 

network former role hence the increase in Tg towards the higher alumina ratio as reported by 

(Arora, Singh et al. 2011) and the reduction in TEC (Lin, Cheng et al. 2012). Tg and TEC exhibit 

an increase and decrease in going from 10BaAl10 to 15BaAl5 mol% (see fig 4-8(b)) and 

12BaAl8 exhibits two endothermic peaks suggesting two Tg in this glass which could reflect the 

presence of liquid-liquid phase separation as reported in (Häßler and Rüssel 2017). The TEC 

reaches a maximum for this particular glass sample, 12BaAl8, possibly due to the differences in 

the thermal expansion of the two phases. 
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Figure 4-7: (a) molar volume and (b) XRD patterns for xBa(10-x)Al glasses. 

. 

 

 

 

 

Figure 4-8: (a) DTA curves, (b) TEC and Tg of xBa(10-x)Al glasses 

 

Fig 4-9 (a) and (b) show the Raman and FTIR spectra of xBa(10-x)Al glasses; the Raman spectra 

show 6 absorption bands without the band around 200 cm
-1

 and the FTIR spectra 5 bands (see 

tables 3.4 and 3.6 for the different peaks assignment). As the amount of BaO increases and 

alumina decreases depolymerisation of the glass is indicated by both Raman and FTIR spectra as 

(a) (b) 

(a) (b) 
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the peak at 800-1200 cm
-1

 has moved to lower wavenumbers. The FTIR intensity of the sample 

12BaAl8, which has two Tgs, is lower than that of other samples due to phase separation.  The 

intensity of the borate peak around 1200 cm
-1

 in 12BaAl8 is very low. The peak around 1200cm
-

1
 assigned to stretching vibration of BO4 according to Cetinkaya et al slightly increases and the 

BO3 units bonding BO4 units around 1430cm
-1

 according to Manara et al or the anti-asymmetric 

stretching of BO3 units according to (Cui, Hao et al. 2015) also increases as BaO is increased. 

However these peaks appeared at slightly different positions to the other series as can be 

observed. The peak around 1200cm
-1

 slightly appeared at lower wavenumber and the peak 

around 1430cm
-1

 at a higher wavenumber and this could possibly be due to differences in Si-O-

Si bond angle shift among the different glass series as reported by (Kline, Tangstad et al. 2015). 

Due to high amount of alumina in these glasses a lot of modifier is consumed in charge 

balancing AlO
4-

 and the rest is shared between silica depolymerisation and conversion of BO3 to 

BO4 units hence the reason for the increase in the borate units at 774, 1200 and 1430cm
-1

 with 

BaO addition. This would suggest that swapping BaO with silica in xBa(40-x)Si has greater 

depolymerisation effect on the borate network compared to exchanging for alumina in xBa(10-

x)Al. The peak around 774 cm
-1

 broadens in width and shifts to lower wavenumbers 737cm
-1

 

indicating that the B-O-B bending in BO3 unit is increasing and the six membered boroxol ring 

with 2 or 1 BO4 usually observed if boron content is > 5mol% also the band around 1400 cm
-1

 

unit increases see report by  (Cui, Hao et al. 2015, Cetinkaya Colak, Akyuz et al. 2016). There is 

also a shift in the peak around 703-637 cm
-1

 to lower wavenumbers. Unlike in xBa(40-x)Si series 

this peak assigned to danburite did not show an increase in the 703 cm
-1

 peak.  

         The peak at 517 cm
-1

 decreases in intensity and moves to slightly lower positions posibly 

due to an increase in bond angles. Furthermore, in the deconvoluted silicate unit the area% of Q
2
 

and Q
3
 in fig 4-10(a) is higher than those of Q

1
 and Q

0
 indicating that the silica network is less 

depolymerised in the xBa(10-x)Al series glasses compared to xBa(40-x)Si series ones. 

Meanwhile the deconvoluted borate peak in fig 4-10 (b) indicates an increase in the area% of 

BO4 and slight increase in the BO3 in boroxol rings around the ratio 1.85 and then a decrease. 

Meanwhile the loose BO3 is behaving in opposite way to the BO3 in boroxol rings and shows a 

minimum at the same ratio of Ba/Al 1.85 and show maximum at 2.33 and decreases afterwards. 

See appendix 4 and 5 for all the area% of both silicate and borate units for all series. The Si-O 

stretching peak positions in Fig 4-10 (c) decreased with increasing BaO with a small increase at 
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13BaAl7 mol% after which they continue to decrease. The degree of polymerisation (see Fig 4-

10 (d)) shows that there is a slight decrease at initial BaO addition and a significant drop 

afterwards in the polymerisation degree at 1.85 ratio where at the same ratio also a decrease in 

loose BO3 and increase in boroxol ring was observed see  fig 4-10(b) above. The polymerisation 

degree first decreases and then increases with BaO additions. 

  

 

Figure 4-9: (a) Raman and (b) FTIR spectra for xBa(10-x)Al glasses. 

 

(a) (b) 
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Figure 4-10: Area% of (a) Si Q
n
 species and, (b) boron species (c) Raman and FTIR peak shift 

(RPS, FPS) of Si-O stretching unit and (d) polymerisation index for xBa(10-x)Al glasses. 

 

4. 3 Physical, thermal and structural analysis of xB(15-x)Zn glasses. 

In xB(15-x)Zn glasses there is a steady increase in density and decrease in molar volume as the 

ratio of ZnO/B2O3 increases (Fig 4-11). This is because the molecular weight of ZnO is greater 

than that of boron oxide and the reduction in molar volume is due to ZnO occupying interstitial 

free spaces within the glass structure. 

XRD of xB(15-x)Zn samples (fig 4-12(a)) shows that 5xB(15-x)Zn crystallised on 

pouring to form single phase lanthanum disilicate (La2 (Si2O7)) PDF card number (01-082-0729) 

while the other samples remained as glasses. The addition of boron oxide modifies the short 

range order (SRO) of the glass to give two strong amorphous intensities with fairly constant 

broadening of these humps and slightly shifted to lower 2θ angles. however, silica do show 

(a) (b) 

(c) (d) 
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strong XRD peak at 2 theta angle 20-30
o
 while in borate glasses shows maxima around 30

o
 and 

due to short range in atomic ordering the humps appeared broad unlike crystalline samples where 

the hump turns narrower. As reported by Lopes et al, two broad peaks in alkali borosilicate 

around 28
o
 and 43

o
 2 theta is a characteristics of borate glasses with high amount of alkaline 

earth and B2O3 summed up to 90mol% (Lopes, Soares et al. 2014). As shown in (fig 4-12(b)) the 

heat treatment of xB(15-x)Zn at 800
o
C for 50 h leads to the formation of single phase lanthanum 

silicate boron oxide (La3 (Si2O4)2 BO2) (PDF no 04-010-1343). The peak at around 30
o
 remained 

dominant with no shoulder but the one at 28
o
 has a shoulder which increases with boron addition. 

 

Figure 4-11: Density and molar volume change versus ZnO/B2O3 ratio of xB(15-x)Zn 
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Figure 4-12: XRD pattern of xB(15-x)Zn (a) Glass and single phase crystalline during pouring 

(b) single phase crystalline at 800
o
C for 50hr for xB(15-x)Zn glasses. 

The DTA curves of xB(15-x)Zn samples (fig 4-13(a)) have similar features to those of BaS i 

exhibiting Tg and two crystallization peaks Tc1 and Tc2 with the second peak dominant over the 

first peak. Tg decreased slightly of 7
o
C across these glasses as boron oxide increased and zinc 

oxide decreased. Both boron oxide and zinc oxide have been reported as reducing Tg and Ts and 

consequently leading to a reduction in sealing temperature for fuel cells as reported by (Reis and 

Brow 2006, Zhang and Zou 2012).  The TEC of xB(15-x)Zn is reported for temperature between 

300-600
o
C in both glasses (blue line) and glass-ceramics (red line) (fig4-13(b)). The addition of 

ZnO increased the TEC from 8.3×10
-6 o

C
-1

 at 5mol% ZnO to 8.8×10
-6 o

C
-1

 at 15mol% ZnO 

however there was a slight decrease to 7.9×10
-6 o

C
-1

 at 7.5mol% ZnO. After crystallization the 

TEC decreased slightly compared with the parent glass, except for when ZnO/B2O3 =1 where 

TEC reached a maximum. The slight decrease in TEC of these glasses after heat treatment 

indicates that they should have long term thermal stability when used as a sealant for SOFCs as 

reported by (Puig, Ansart et al. 2016). In fig 4-13(c) the Tg increased as the amount of ZnO is 

increased and the amount of B2O3 is reduced.  

(a) (b) 
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Figure 4-13: (a) DTA curves, (b) TEC of glass (blue line) and glass ceramic (red line) (c) Tg of 

xB(15-x)Zn glass and glass ceramics. 

 

As with the xBa(10-x)Al series the Raman and FTIR spectra of the xB(15-x)Zn series glasses 

(fig 4-14 (a) and (b)) have 6 and 5 absorption bands in the Raman and FTIR spectra respectively  

(see table 3.4 and 3.6 for details of the general assignment of the peaks).  The mid frequency 

range 800-1200 cm
-1

 suggests increasing polymerisation of the glass with increasing B2O3 as the 

peak positions move to higher wavenumbers in both Raman and FTIR. This indicates that the 

addition of boron oxide and reduction of zinc oxide seems to enhanced the polymerisation of the 

silica network as seen with soda lime borosilicate (Angeli, Boscarino et al. 2001). This is also 

further supported by the work of Wu et al, who found that a higher boron oxide content in 

sodium calcium borosilicate decreased the amount of NBOs (Wu and Stebbins 2009) which may 

(a) 

(b) (c) 
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suggest enhanced structural rigidity. Looking at the higher wavenumbers the borate peaks in both 

techniques show an increased intensity in the region around 1400 cm
-1

 indicating an increase in 

the stretching vibration BO3 units bonding BO4 units. The shift to higher wavenumbers indicates 

that boron oxide additions enhance the formation of the BO3 groups. The peak around 1220 cm
-1

 

shows a slight decrease in intensity and in the FTIR spectra moves to higher wavenumbers which 

is an indication of a decrease in the boroxol rings and hence a corresponding increase in 

connectivity.     

           The band at 450-550 cm
-1

, which did not vary in intensity, has shifted to lower 

frequencies with increasing boron oxide additions, indicating that it is easier for bending 

vibrations of the Si-O-Si linkages to occur as observed by (Hao, Zan et al. 2012) and suggested 

increase in NBO as the possible cause; the shift to lower wavenumbers  can also be associated 

with an increase in Si-O-Si bond angles as reported by (Kline, Tangstad et al. 2015). The band 

around 700 cm
-1

 also shifts to lower wavenumbers and again did not change its intensity similar 

to the one observed by (Hao, Zan et al. 2012) indicating that the lower wavenumber bending 

vibration of the B-O-B linkages in BO3 units is fairly constant across the compositions studied. 

The only additional band in the Raman spectra is the 233-260 cm
-1

 band which is assigned to Zn-

O bending vibrations in ZnO4 tetrahedra; this band shifts to higher wavenumbers with increasing 

boron oxide content. Fig 4-15 (a) shows that the fraction of the Q
0
 and Q

3
 increased and Q

1
 

slightly drops at a ZnO/B2O3 ratio of 0.45 after which it remains fairly constant and there is 

indication of a decreasing trend for the Q
2
. There is little variation of the BO4 units at the lower 

ZnO/B2O3 ratios but above a ZnO/B2O3 ratio of 0.65 the number decreases. See appendix 4 and 5 

for all the area% of both silicate and borate units for all series. Fig 4-15(c) shows that the Si-O 

stretching peak position decreases with ZnO and fig 4-15(d) that the polymerisation degree in 

xB(15-x)Zn glasses initially increases as ZnO increases  from 5 to 7.5mol% and then steadily 

decreases with increasing ZnO contents. This supports the earlier explanation that boron oxide 

additions enhanced the structure while ZnO slightly depolymerises the network. An initial 

increase in connectivity is not surprising as ZnO can act as network former or a network 

modifier. 
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Figure 4-14: (a) Raman (b) FTIR spectra for xB(15-x)Zn glasses
 

  

 

 

 

(a) (b) 
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Figure 4-15: Fraction of (a) Q
n
 species and, (b) boron species, (c) Raman and FTIR peak shift 

(RPS, FPS) of Si-O stretching unit and (d) polymerisation index for xB(15-x)Zn glasses. 

4. 4 Physical, thermal and structural analysis of xSi(20-x)Zn glasses 

The effect of ZnO being swapped with SiO2 on molar volume and density is presented in fig 4-

16. Increasing the amount of ZnO against SiO2 lead to an increase in density and a slight 

increasing trend in molar volume up to a ZnO/SiO2 ratio of 0.4 and then a significant decrease 

afterwards. The behaviour of molar volume is not the same as in xB(15-x)Zn series when ZnO 

was swapped with B2O3 (fig4-11). This may be that ZnO in xB(15-x)Zn zinc may have joined 

the network according to (Smedskjaer, Youngman et al. 2013), while addition of ZnO increasing 

molar volume  in xSi(20-x)Zn may suggest zinc oxide is mainly a modifier and increased inter 

atomic distance and create more NBOs and decreased glass compactness similar  to reports by 

(Mohd Sabri Mohd, Mohd Hafiz Mohd et al. 2012). Although there is a drop in molar volume of 

xSi(20-x)Zn at the highest amount of ZnO 20mol% as can be seen in fig 4-16 possibly ZnO may 

have rejoin the network. Structurally Tg is seen to increase in xB(15-x)Zn fig 4-13 (c) and 

decrease in xSi(20-x)Zn fig 4-18 (c) as ZnO increases which further may support that the role of 

ZnO in the two series are not exactly the same. XRD indicates that xSi(20-x)Zn samples are 

(a) (b) 

(c) (d) 
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amorphous due to the absence of sharp peaks (fig4-17(a)). However just like in xB(15-x)Zn and 

xBa(40-x)Si after isothermal heat treatment at 800
o
C for 50 h the formation of lanthanum silicate 

boron oxide (La3 (Si2O4)2 BO2) (PDF no 04-010-1343) occurred. 

 The DTA curves of xSi(20-x)Zn in fig 4-18(a) show that there is an increase of 18
o
C from 

666 to 684
o
C in Tg as silica increases and ZnO reduces. Fig 4-18(b) shows that the TEC 

decreases slightly at the first ZnO addition at 0.34 ratios of the ZnO/SiO2 and subsequently 

increased with increasing ZnO in both the xSi(20-x)Zn glasses and glass-ceramics. The TEC of 

the glass ceramics (red data) are slightly lower than the parent glasses (blue data) which indicates 

good thermal stability as explained in section 4.3 for xB(15-x)Zn. Fig 4-18(c) also shows that the 

Tg steadily decreased as the amount of ZnO increased which suggests network depolymerisation. 

 

 

Figure 4-16: Density and molar volume versus ZnO/SiO2 ratio of xSi(20-x)Zn glasses 
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Figure 4-17: XRD patterns of xSi(20-x)Zn (a) glasses and (b) glass ceramics 

 

 

 

 

 

 

 

 

(a) (b) 
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Figure 4-18: (a) DTA curves, (b) TEC of glass (blue data) and glass ceramic (red data) (c) Tg of 

xSi(20-x)Zn glasses and glass ceramics. 

. 

The Raman and FTIR spectra of xSi(20-x)Zn (fig 4-19(a) and (b)) are similar to those of xB(15-

x)Zn in (fig 4-14). There are visible structural changes in the mid frequency range due to 

increasing boron oxide in xB(15-x)Zn and silica in xSi(20-x)Zn glass series respectively which 

leads to increasing polymerisation of the silicate network as indicated by a shift to higher 

wavenumbers of the Si-O stretching unit and the gradual disappearance of the shoulder around 

870 cm
-1

 assigned to Q
0
 and subsequent shift of the Q

1
 peak to higher wavenumbers. There is a 

slight increase in intensity and shift to higher wavenumbers in both peaks around 1200 and 1400 

cm
-1

. For the explanation of the other peaks see section 4.3. 

(a) 

(a) 
(b) 
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           Deconvolution of the silica and borate peaks in xSi(20-x)Zn further supports the structural 

depolymerisation trend with increasing ZnO. As can be seen in fig 4-20 (a) there is a clearly 

visible decrease in the amount of Q
3
 and Q

2
 while Q

0
 and Q

1
 steadily increase. The amount of Q

2
 

is considerably higher than the amount of the other Q
n
 species. In fig 4-20(b) the amount of BO4 

is seen to be higher than the amount of loose BO3 which decreases while the amount of BO3 in 

boroxol ring increases. Depolymerisation is evidenced in both the deconvolution of the silicate 

and the borate units as ZnO/SiO2 ratio increased. See appendix 4 and 5 for all the area% of both 

silicate and borate units for all series. The Si-O stretching peak position shift in fig 4-20(c) 

decreases in both Raman and FTIR data and the degree of polymerisation in fig 4-20(d) also 

steadily decreases again indicating that ZnO plays a modifying role and depolymerises the glass 

structure. 

  

Figure 4-19: (a) Raman and (b) FTIR Spectra of xSi(20-x)Zn glasses. 

 

. 

 

 

 

(a) (b) 
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Figure 4-20: Fraction of (a) Q
n
 species and, (b) boron species, (c) Raman and FTIR peak shift of 

Si-O stretching unit and (d) polymerisation index of xSi(20-x)Zn glasses 

4.5 Physical, thermal and structural analysis of xSi(20-x)La(Ba) and xSi(20-

x)La(Sr)  glasses 

  

Figure 4-21: (a) Density and (b) molar volume of xSi(20-x)La(Ba) blue line and  xSi(20-x)La(Sr) 

red line glasses versus La2O3/SiO2 ratio. 

 

(a) (b) 

(c) (d) 

(a) (b) 
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in these two series swapping silica with lanthanum on molar basis introduces higher La2O3 into 

the glass than removing silica therefore the effect of the high lanthanum on physical properties 

will be discussed below. In fig 4-21 (a) and (b) shows that both the density and molar volume of 

xSi(20-x)La(Ba) and xSi(20-x)La(Sr) glasses   increase with increasing La2O3/SiO2. This is due 

to high molecular weight of lanthanum oxide (325.81gmol
-1

) compared to that of silica (60.08 

gmol
-1

). According to (Smiljanic, Grujic et al. 2016) with increasing La2O3 in La2O3-SrO-B2O3 

glass there is an increase in oxygen content leading to increase in molar volume. The slightly 

higher density of xSi(20-x)La(Ba) compared with xSi(20-x)La(Sr) in fig 4-21(a) may be due the 

presence of Ba which is heavier than Sr; the opposite behaviour can be seen in the molar volume 

because Ba is larger than Sr so it occupies more space in the glass structure see fig 4-21(b). As 

noted in section 4.1 usually molar volume and density change inversely, however with these 

glasses both molar volume and density increased as the amount of lanthanum oxide increased. 

This sort of behaviour on lanthanum oxide addition has been reported by (Ojha, Rath et al. 2011) 

and was also observed for xBa(40-x)Si glasses discussed earlier (see section 4.1.1). An increase 

in molar volume indicates expansion of the glass network due to substitution of silica by 

lanthanum oxide. NMR studies show that increasing lanthanum causes an increased disorder in 

the borosilicate structure resulting  in wider spacing and bond angle distribution due to the larger 

ionic radius of lanthanum (Ojha, Rath et al. 2015). 

             xSi(20-x)La(Ba) with a silica content of 55mol% phase separated into glass and 

contained un-dissolved quartz SiO2 PDF: no (01-085-1054) (see fig 4-22(a)). Other xSi(20-

x)La(Ba) and xSi(20-x)La(Sr) samples shown in fig 4-22(a) and (b) were amorphous. In both 

series the XRD peak positions move to slightly higher 2θ angles with increasing SiO2. Swapping 

silica with lanthanum on molar basis adds more lanthanum oxide into the glass than silica and 

therefore the crystallization of samples containing 20mol% lanthanum in 20LaSi40(Ba) and 

20LaSi30(Sr) mol%  on pouring to form apatite type lanthanum silicates (La9.33Si6O26) PDF 00-

049-0443 (see fig 4-23) is not surprising as the ratio of lanthanum to silica is approximately 1:1 

which according to (Hosseini, Shvareva et al. 2013) leads to the formation of apatite type 

lanthanum silicate structure. On a general note as reported by (Nicoleau, Angeli et al. 2016)  due 

to their low solubility in the glass matrix some elements such as the lanthanides can lead to  the 

formation of crystalline phases in borosilicates during cooling. As noted above ten crystalline 

phases containing La2O3 exist in the  SiO2-B2O3-La2O3 ternary system: four of these are 
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(LaBSiO5, La3Si2BO10, La9.66Si5BO26, and La10Si4B2O26), three are B2O3-La2O3 binary phases 

(La3BO6, LaBO3, and LaB3O6) and another three are SiO2-La2O3 binary phases (La2SiO5, 

La9.33Si6O26, and La2Si2O7)  (Trégouët, Caurant et al. 2017). Out these ten different phases only 

three have been observed in this study. Two of the phases formed are based on the SiO2-La2O3 

binary and one on the SiO2-B2O3-La2O3 ternary, however no phase from the B2O3-La2O3 binary 

has been observed. The significance of these phases is that in the glass-ceramics heat treated at 

800
o
C a stable lanthanum borosilicate phase is formed which suggests that boron volatility may 

be mitigated and this could help avoid cathode poisoning which is a common problem in which 

boron in the sealing glass attacks the lanthanum in the cathode leading to formation of LaBO3 

and in addition glass-ceramic with this phase has a slightly lower TEC which is also a good sign 

of thermal stability. 

The Raman spectra of these samples is presented in fig 4-23(b); similar  structures have 

also been reported by (Kharlamova, Pavlova et al. 2011) for many apatite type structures. The 

sharp peak in the Raman spectra in fig 4-23(b) near 850 cm
-1

 is attributed to Q
0
 silicate 

tetrahedra as reported by (Kidari, Dussossoy et al. 2012).  The strong band in the region 800-

1050cm
-1

 is characteristic of Si-O vibrations in a regular isolated tetrahedron (Kharlamova, 

Pavlova et al. 2011). The Raman peaks 384, 518, 850 and 916 are assigned to apatite type 

lanthanum silicate (Rodríguez-Reyna, Fuentes et al. 2006). In fig 4-23 (c) the Raman spectra are 

similar for the thermally treated samples indicating the formation of lanthanum silicate boron 

oxide (La3 (Si2O4)2 BO2) (PDF no 04-010-1343), as seen by XRD (see fig 4-2 (b), 4-12 (b) and 

4-17(b)). 

           In general the IR spectra of apatite type silicates are typical of orthosilicate structures with 

some isolated SiO4 tetrahedral units. The DTA curves of glasses series xSi(20-x)La(Ba)  and 

xSi(20-x)La(Sr) (fig 4-24) indicates that Tg increases with lanthanum oxide addition. A similar 

trend has been reported by (Ganvir and Gedam 2017). The DTA curve for both xSi(20-

x)La(Ba)4 and xSi(20-x)La(Sr)4 samples reflects the phase separation in the two samples as can 

be seen in the XRD in fig 4-22(a). 
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Figure 4-22: XRD patterns of un-dissolved quartz SiO2 PDF: no (01-085-1054)  for crystalline 

part of xSi(20-x)La(Ba)4 with other amorphous samples  (a) and (b) Amorphous xSi(20-x)La(Sr) 

series with increasing La/Si ratio 

 

 

 

 

 

 

 

(a) (b) 
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Figure 4-23: XRD patterns of apatite type lanthanum silicates (La9.33Si6O26) PDF 00-049-0443 

and (b) Raman spectra of the same phase for 20LaSi40(Ba) and 20LaSi30(Sr) mol% with La/Si 

ratio 1:2 and 1:1.5 respectively. (c) Raman spectra of thermally treated xBa(40-x)Si, xB(15-x)Zn 

and xSi(20-x)Zn glasses showing the presence of lanthanum silicate boron oxide (La3 (Si2O4)2 

BO2) 

 

 

(a) (b) 

(c) 
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Figure 4-24: DTA curves (a) xSi(20-x)La(Ba) and (b) xSi(20-x)La(Sr) 
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Figure 4-25: Raman (b) FTIR spectra of xSi(20-x)La(Ba) glasses; (c) Raman and (d) FTIR 

spectra of xSi(20-x)La(Sr) glasses 

 

The Raman and FTIR spectra of xSi(20-x)La(Ba) glasses are shown in fig 4-25 (a) and (b). As 

the amount of SiO2 increases and that of lanthanum oxide decreases both spectra indicate 

increased polymerisation with the SiOSi band shifting to higher wavenumbers and its intensity 

remaining fairly constant. The width of this peak slightly increased from xSi(20-x)La(Ba)2 to 

xSi(20-x)La(Ba)4. The intensities of the Raman peak around 1200 cm
-1 

decrease while Raman 

peak at 1380 cm
-1

 increases in intensity in the Raman spectra and the FTIR peak splits into two 

peaks at 1386 and 1451 cm
-1

 and these peaks shifted to higher position wavenumbers with 

increasing SiO2. The latter feature indicates polymerisation of the borate unit as it forms BO3 

units around 1386 cm
-1 

as reported by (Ardelean and Toderaş 2006) and 1451 cm
-1

 assigned to 

charged trigonal  BO2O
-
 linked to tetrahedral BO4 see (El Hayek, Ferey et al.). The peaks at 450 
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and 700 cm
–1

 both shifted to lower wavenumbers and their intensities remained unchanged, 

except for the lower wavenumber around 450-500cm
-1

 of xSi(20-x)La(Ba)4 which increased in 

intensity and a slight decrease in width of the band 459 cm
–1

 in the FTIR spectra. The shift to 

lower wavenumber may be due to increase in bond angles of Si-O-Si as stated earlier and fairly 

constant intensity suggest that the bending vibrations of the  B-O-B linkages to BO3 units around 

700 cm
-1

 do not change much while the SiOSi bending around 500cm
-1

 slightly increased. 

          The Raman and FTIR spectra of xSi(20-x)La(Sr) glasses (fig 4-25(c) and (d) respectively) 

have similar features to the spectra of xSi(20-x)La(Ba) glasses and hence the above discussion 

applies to xSi(20-x)La(Sr).  However, the notable difference is that the higher wavenumber FTIR 

peak at around 1400 cm
-1

 in xSi(20-x)La(Sr) did not split into two which is unlike the case of 

xSi(20-x)La(Ba).  

  

 

Figure 4-26: Thermal stability plotted against (a) total divalent modifiers/total network formers 

and (b) total trivalent modifiers/ total network formers for all glass series. 

 

 

Fig 4-26 shows that an increase in the ratio of the sum of modifiers BaO and ZnO to the sum of 

network forming oxides leads to a small decrease in thermal stability of xB(15-x)Zn, xSi(20-

x)Zn, xBa(40-x)Si and xBa(10-x)Al samples indicating that addition of these oxides have no 

much effect on the thermal stability  in these glasses except that there is a wide gap between the 

thermal stability of xBa(10-x)Al series and the other 3 series xB(15-x)Zn, xSi(20-x)Zn and 

xBa(40-x)Si this is possibly due to using different crystallization peak positions as Tc1 is 

considered for xBa(10-x)Al series because it has only one clearly visible Tc peak and Tc2 for the 

(a) 
(b) 
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other series and in addition  the highest amount of modifier in xBa(10-x)Al between 30 to 

35mol% (SrO+BaO) and lower silica content of fixed 35mol% and fairly high boron content of 

fixed 20% may also contribute to the lower thermal stability obtained from the differences 

between the Tc-Tg. However, increasing the ratio of the sum of the modifiers to the sum of 

network formers in xBa(40-x)Si suggests a slight increase in thermal stability until the 25mol% 

BaO sample where a notable decrease in thermal stability is seen. On the other hand increases in 

the amount of La
3+

 in xSi(20-x)La(Ba) and xSi(20-x)La(Sr) glasses lead to decrease in thermal 

stability and this is a sign that these glasses would favour easy crystallization as reported (Ojha, 

Rath et al. 2015). 

  

 

 

Figure 4-27: Fraction of Q
n
 species (a) xSi(20-x)La(Ba), (b) xSi(20-x)La(Sr) and (c) 

polymerisation index for both xSi(20-x)La(Ba) blue line and xSi(20-x)La(Sr) glasses in red line 

(a) (b) 

(c) 
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Figure 4-28: Area% of boron species (a) xSi(20-x)La(Ba) and (b) xSi(20-x)La(Sr) glasses. 

 

Fig 4-27 (a) and (b) shows that as the amount of La2O3 increased in both series, a steady 

decrease in the area% of Q
2
 and Q

3
 while Q

1
 and Q

0
 increased. Although the amount of silica is 

higher in xSi(20-x)La(Ba), looking at the plots the amount of Q
1
 and Q

0
 increases in a monotonic 

fashion in the xSi(20-x)La(Sr) glasses compared to xSi(20-x)La(Ba) glasses where a drastic 

increase is seen after a La2O3/SiO2 ratio of 0.2. The behaviour of the degree of polymerisation 

(fig 4-27 (c)) also exhibits a monotonic decrease for xSi(20-x)La(Sr) glasses but little change for 

the xSi(20-x)La(Ba) glasses until  a La2O3/SiO2 ratio of 0.2. Fig 4-28(a) and (b) indicate that 

increasing the amount of La2O3 leads to a decrease in BO4 fraction with the fraction of BO4 in 

xSi(20-x)La(Sr) being higher than that in xSi(20-x)La(Ba) probably due higher field strength of 

SrO as compared to BaO (Zhang, Yue et al. 2013). Another clear difference is in the increase in 

loose BO3 and the decrease in the BO3 in boroxol rings for xSi(20-x)La(Ba) with increasing 

La2O3 ; the opposite is observed for the xSi(20-x)La(Sr) series. 

4. 6 Summary and conclusion of results 

1. Most of the as made samples are amorphous as indicated by the XRD patterns which 

have 2 clearly visible humps belonging to the silicate and the borate units. 

2. The XRD and Raman of the isothermally heated series xBa(40-x)Si, xB(15-x)Zn, and 

xSi(20-x)Zn indicate the formation of lanthanum boron silicate phase. 

3. Although 10 separate crystalline phases are known in the B2O3-La2O3, SiO2-La2O3 

binary and SiO2-B2O3-La2O3 ternary systems only 3 were observed in this study. 

(a) (b) 
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4. All glass series studied exhibit decreasing Tg and Tc with modifier addition except for 

additions of lanthanum oxide in xSi(20-x)La(Ba) and xSi(20-x)La(Sr) which increased 

Tg. For a sealing glass the lowest possible Tg is preferred over a high Tg because thermal 

stresses develop below Tg. 

5. The Tgs of the xBa(40-x)Si and xBa(10-x)Al series fall between 580 to 662
o
C which 

suggests they could be used for intermediate temperature SOFC applications. 

6. The TECs of 20BaSi35, 22.5BaSi32.5, and 25BaSi30 mol% glass and glass-ceramic 

samples and all xBa(10-x)Al glasses meet the optimal values required for sealing 

glasses. A slight decrease in TEC after heat treatment is a sign of long term thermal 

stability as the TEC of the glass ceramics exhibit slightly lower values compared to their 

parent glasses. The highest TEC is observed in 12BaAl8 possibly due to liquid in liquid 

phase separation, as that sample has two Tgs. 

7. The TECs for all of the xB(15-x)Zn, xSi(20-x)Zn, xBa(40-x)Si, xBa(10-x)Al, and 

xSi(20-x)La(Sr) glass and glass-ceramic samples measured between RT-300 
o
C are not 

appropriate for sealing to SOFCs but they are compatible for use in sealing to Ti-6Al-4V 

used in electrical feed through connectors. 

8. Thermal stability as assessed by Tc-Tg decreases with modifier content and overall the 

xBa(10-x)Al series has the lowest thermal stability possibly because of different Tc peak 

positions were used and or due the presence of high modifier >30mol% across the series. 

The other glasses studied all have similar thermal stabilities. 

9. The formation of thermally stable phase containing boron after heat treatment is a sign 

of improved thermal stability and this could mitigate boron volatility and also the 

formation of phase without barium and strontium is advantageous, if at all it will remain 

the same phase after sealing to SOFCs components. 
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5 Results II: Electrical properties  

This section discusses the electrical properties of the glasses and glass ceramics produced in this 

study. xBa(40-x)Si in which BaO swapped for SiO2 and xB(15-x)Zn where B2O3 swapped for 

ZnO are considered in both glass and glass-ceramic forms; while in xBa(10-x)Al BaO was 

swapped for Al2O3 and is in the glass form only and xSi(20-x)Zn series in which SiO2 swapped 

for ZnO in glass-ceramic form only. In the case of xBa(10-x)Al it was difficult to obtain their 

crystalline counterparts because they adhered to the ceramic surface in the furnace when heat 

treated at 800
o
C for 50 h. Meanwhile in the case of xSi(20-x)Zn the samples crystallised readily 

and therefore it was not possible to fire the gold electrodes for electrical measurements onto the 

glasses without crystallization and so for this series electrical conductivity was measured only 

for crystalline samples. The electrical properties will be looked at differently series by series and 

after that a generic presentation will follow. 
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5.1 Electrical properties of xBa(40-x)Si glasses and glass ceramics 

 
 

 

 

 

Figure5-1: Variation of conductivity with temperature and composition for (a) xBa(40-x)Si 

glasses (b) xBa(40-x)Si glass ceramics and (c) variation of activation energy for electrical 

conductivity (Ea) versus BaO/SiO2 for xBa(40-x)Si glasses blue line  and glass ceramic red line 

 

In fig 5-1 (a) and (b) an increase in conductivity with temperature and BaO addition can be 

observed for xBa(40-x)Si samples, and particularly more clearly in the glass-ceramic form fig 5-

1(b). In figure 5-1 the presence of one slope running through an entire set of measurements is 

evidence for a single conduction mechanism in these glasses (Pal, Agarwal et al. 2009). The 

activation energies for electrical conduction in fig 5-1(c) exhibit different behaviour in glass and 

glass-ceramic forms. In glass, Ea decreases with increasing BaO and decreasing SiO2 content 

which is expected as silica goes down and being depolymerised by the BaO addition, more free 

spaces are created for charge carries to move or hop under thermal activation. On the other hand, 

Ea of the xBa(40-x)Si glass ceramic suggests an increase with increasing BaO/SiO2 ratio until it 

reached a maximum value of 272 kJ/mol at a ratio of 0.7 after which it decreased. Such an 

increase in Ea of the crystalline samples may be due to obstruction of ion free movement in the 

glass ceramic due to the presence of phase boundaries, and also due to densification which 

(a) (b) 

(c) 
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reduces the void spaces available in the glasses and therefore hinders the mobility of alkali ions 

within the glass ceramics by steric constraints (Ingram 1989, Gomaa, Abo-Mosallam et al. 

2009).  

 

The drop in Ea of 25BaSi30 mol% may not be unconnected with the smaller extent of 

crystallization compared to other samples in the series, see the XRD in fig 4-2 (b). According to 

Anderson and Stuart, the Ea required for ionic conduction is dependent on two terms (i) the 

binding energy of the cationic charger carriers and (ii) the structural network strain energy. A 

fraction of the charge carriers with the aid of thermal activation can overcome potential barriers 

and jump to neighbouring sites and as the thermal energy increases the probability of the charge 

carriers to overcome the potential barriers increases (Braunger, Escanhoela et al. 2012). In line 

with this statement by Braunger et al, conductivity also increases with temperature as in fig 5-1 

(a) and (b).  
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Figure 5-2: Frequency dependence of the dielectric constant of (a) xBa(40-x)Si glasses (b) 

xBa(40-x)Si glass ceramics and frequency dependence of the tangent loss of (c) xBa(40-x)Si 

glasses (d) xBa(40-x)Si glass ceramics. Measurement conditions 600±3
o
C and between1 kHz to 

1MHz. (Lines are guide to the eye). 

 

         The addition of BaO to xBa(40-x)Si glasses tends to lead to an increase in dielectric 

constant in both glasses (fig 5-2(a)) and glass-ceramics (fig 5-2(b)) within the series and there is 

(a) (b) 

(c) 
(d) 
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a decreasing trend in dielectric constant with increasing frequency. Decrease in dielectric 

constant and dielectric loss as frequency increases is associated with dielectric relaxation because 

the speed of dipole rotation at higher frequency cannot match the shift in the applied AC and so 

their rotation lags behind those of the applied field. Therefore, the dielectric constant decreases 

and approaches a nearly constant value as reported by (Li, Ra et al. 2009). 

             The tangent loss for the xBa(40-x)Si series ((fig 5-2(c) and (d)) also for the same reason 

mentioned above decreased and maintained a constant value as frequency increased. So the 

dielectric loss is high at 1 kHz in both glasses and glass-ceramics and decreases at higher 

frequencies; from 100 kHz to 1 MHz the tangent loss is between 0 and 5 for both xBa(40-x)Si 

glass and glass-ceramics.   

 

 

 

 

Figure 5-3: Conductivity (a) and dielectric constant (b) of xBa(40-x)Si glass and glass-ceramics 

versus total divalent modifier/total network formers. (c) Conductivity versus average Q
n
/N of 

xBa(40-x)Si series. Measurement conditions 600±3
o
C and between 1 kHz to 1MHz 

(a) (b) 

(c) 
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Since the applications of these sealing glasses will be at temperatures above their Tg the 

conductivity and dielectric constants as a function of composition were measured at temperatures 

around 600
o
C. The comparison between the conductivity of the glass and glass-ceramics of 

xBa(40-x)Si in fig 5-3(a) indicates that the glass ceramics are more conductive than their parent 

glasses. This is because the crystalline phase in these samples is more conductive than the 

residual glasses. There are two possibilities to consider as explained by Shelby; (i) if any given 

crystalline   grains or phases in a glass composition contains alkali earth ions then there will be 

decrease in the conductivity because the alkali ions will be immobolised or (ii) if the residual 

glass contains more alkali ions then conductivity of the residual glass increases. However, this 

suggestion by Shelby is not applicable to this study because the impedance measurements 

suggest that the grains are more conductive than the grain boundaries which are the residual 

glass in the glass-ceramics (see Appendix 1a). In fig 5-3(b) the comparison between the 

dielectric constants of glass and glass ceramics within a series for xBa(40-x)Si also shows that 

the dielectric constant increases with increasing total divalent modifier/total network formers in 

both glasses and glass-ceramics and that the dielectric constants are generally higher for the 

glass-ceramics compared to the parent glasses. The increase in dielectric constant as BaO is 

added is due to the fact that the polarizability of Ba
2+

 ion is higher than that of Si
4+

 ion in 

xBa(40-x)Si series as reported in section (2.7.3). The effect of the increase in polymerisation on 

the electrical conductivity in fig 5-3(c) indicates that conductivity steadily decreases as the glass 

connectivity increases; the average Q
n
/N where Q

n
 is the average of all the Q species and N is 

that of boron in 3 and 4 coordinations was calculated from the deconvolution of the Raman 

spectra of the parent glasses and the data from the glass ceramics were included in the plot to see 

the general effect of the increase in polymerisation on the electrical conduction. This clearly 

indicates that as the glass rigidity increases the available pathways for conduction are decreased 

reducing the conductivity in both glass and glass ceramics of the xBa(40-x)Si series.   
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5.2 Electrical properties of xBa(10-x)Al glasses  

 

  

 

 

Figure 5-4: Variation of conductivity with temperature and compositions for xBa(10-x)Al 

glasses (b) activation energies (Ea) for conductivity for xBa(10-x)Al glasses as a function of 

increasing BaO/Al2O3 ratio 

 

            In fig 5-4(a) it is shown that the conductivity of xBa(10-x)Al glasses like that of xBa(40-

x)Si glasses increases with temperature and increasing BaO content. The activation energy for 

conductivity (fig 5-4(b)) decreases with BaO addition just as explained above for the xBa(40-

x)Si glass in section 5.1. However, between a BaO/Al2O3 ratio of 1.5 and 2.5 there is a small 

increase in Ea from 256 to 272kJ/ mol. This small rise in Ea can be correlated to a corresponding 

increase in Tg of that sample (see fig 4-8(b)) which suggests an increase in network connectivity 

as the cause for the slight increase in activation energy. 

 

 

 

(a) 
(b) 
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Figure 5-5: Frequency dependence for xBa(10-x)Al glasses of (a) the dielectric constant (b) 

tangent loss. Measurement conditions 600±3
o
C and between 1 kHz to 1MHz. 

In fig 5-5 (a) and (b) the dielectric constant and tangent loss exhibit similar behaviour to xBa(40-

x)Si glass and glass ceramic and therefore the frequency dependence can be explained in the 

same way and is associated with the dielectric relaxation and the increase within the series of 

xBa(10-x)Al due to polarizability of BaO which is high than that of Al2O3. The frequency 

dependent decrease in dielectric constant of xBa(10-x)Al series (fig 5-5(a)) shows there is a large 

decrease between 1 kHz and 10 kHz for xBa(10-x)Al1 and xBa(10-x)Al2; however, such a drop 

is not seen in xBa(10-x)Al3 and xBa(10-x)Al4 but rather a gentle initial increase in dielectric 

constant is observed as the frequency increased and then decreased afterwards. As space charge 

accumulation is known to exist at lower frequency and the fact that xBa(10-x)Al is measured in 

glass form may suggest low accumulation in some of the samples possibly due to more 

homogeneity.  The slight initial increase is similar to xBa(40-x)Si in fig 5-2(a). Fig 5-5(b) shows 

that the tangent loss for xBa(10-x)Al1 to xBa(10-x)Al3 also varies between 0 and 5 with 

increasing frequency.  However, there is a single data point that exhibits higher tangent loss at 1 

kHz in xBa(10-x)Al4 glass possibly due to accumulation of space charge at the electrode 

interface.  

(a) 
(b) 
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Figure 5-6: (a) Conductivity and (b) dielectric constant of xBa(10-x)Al glasses versus total 

divalent modifiers/total network formers. (c) Conductivity versus average Q
n
/N for xBa(10-x)Al 

glasses. Measurement conditions 600±3
o
C and between 1 kHz to 1MHz 

The electrical conductivity and the dielectric constant of xBa(10-x)Al as a function of 

composition (fig 5-6(a) and (b)) shows there is an increasing trend as BaO is added against 

alumina.  Although very little initial increase in conductivity is observed between 10BaAl10 and 

12BaAl8 mol%; however, above a total divalent/total network former ratio of 0.3 the 

conductivity rapidly increases. Structural evidence from the Raman polymerisation index of 

these glasses (fig 4-10(d)) reveals there is very little change in polymerisation between samples 

10BaAl10 and 12BaAl8 hence the reason for their similar conductivity. The dielectric constant in 

fig 5-6 (b) exhibited a clearly increasing trend with an increasing ratio of total divalent 

modifiers/total network formers ratio; however, the initial increase is not very large just as seen 

with the conductivity. In fig 5-6(c) the conductivity plotted against average total sum of Q 

species divided by that of borate species N given by Q
n
/N exhibits a maximum at a ratio of 0.61 

(a) (b) 

(c) 
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for 15BaAl5 mol%. As already stated above, it is shown in fig 4-10(d) that samples 10BaAl10 

and 12BaAl8 mol% have similar polymerisation indices and therefore have similar 

conductivities which overlap in fig 5-6 (c) at a ratio of 0.624. 

5.3 Electrical properties of xB(15-x)Zn glasses and glass ceramics 

 

  

 

 

 

Fig 5-7 Variation of conductivity with temperature and compositions for (a) xB(15-x)Zn glasses 

(b) xB(15-x)Zn glass-ceramics. Activation energies (Ea) for conductivity for (c) xB(15-x)Zn 

glasses and (d) xB(15-x)Zn glass-ceramics as a function of increasing ZnO/B2O3 ratio. 

 

Fig 5-7(a) and (b) shows that the electrical conductivity of both xB(15-x)Zn glasses and glass-

ceramics increases as a function of increasing temperature and show a decrease with increasing 

boron oxide content against ZnO. This is because boron oxide is a network former which leads to 

increased polymerisation of the glass structure as can be seen in the FTIR and Raman results 

(section 4.1.3) and so decreases the mobility of the ZnO charge balancing modifiers.                                                                                                                                                                                                                                                                                                                                               

In fig 5-7 (a) the conductivity of 20xB(15-x)Zn is lower than 17.5xB(15-x)Zn because of the 

(a) 
(b) 

(c) 
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increase in polymerisation index of that sample (also see fig 5-9(a)). The increasing trend in 

activation energy as ZnO is added in this series suggests the difficulty in electrical conduction in 

these very resistive glasses see fig 5-7(c). The behaviour of the activation energy (Ea) is similar 

both xB(15-x)Zn glasses and glass-ceramics, although in general the Ea values of the glass 

ceramics are lower than the parent glass, presumably due to increased conductivity of the 

lanthanum borosilicate crystalline single phase.  As mentioned previously for xBa(40-x)Si glass-

ceramics, the increasing trend in Ea for crystalline samples is caused by obstructions to 

conduction pathways caused by densification and presence of phase boundaries in the glass-

ceramic and this implies higher energy is required to move charge carriers in the glass ceramics. 

However, the increase of Ea in xB(15-x)Zn glass with increasing ZnO may suggest the 

incorporation of ZnO into the glass structure as ZnO could be in a network former role thereby 

raising the energy needed for conduction. 
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 Figure 5-7: Frequency dependence of the dielectric constant of xB(15-x)Zn (a) glasses and (b) 

glass-ceramics. Frequency dependence of the tangent loss of xB(15-x)Zn (c) glasses and (d) 

glass-ceramics. Measurement conditions 600±3
o
C and between 1 kHz to 1MHz 

Fig 5-8(a) and (b) shows that the dielectric constant and fig 5-8(c) and (d) the tangent loss of 

both xB(15-x)Zn glasses and glass-ceramics decreases with increasing frequency in the same 

way as previous sections. The frequency dependent behaviour of both the dielectric constant and 

tangent loss is the same irrespective of the compositional differences. This indicates that the 

combined effect of polarization as frequency increased is similar in all series. The compositional 

effect within the series can also be observed as the amount of boron oxide is increased against 

ZnO across the xB(15-x)Zn series. The dielectric constant is also seen to decrease due to the low 

polarizability of boron oxide compared to zinc oxide. Just as in xBa(40-x)Si, the crystalline 

xB(15-x)Zn samples have higher dielectric constants than the parent glasses. Fig 5-8(c) and (d) 

shows the tangent loss of xB(15-x)Zn samples decreases with increasing frequency. Apart from 

the frequency dependence, the tangent loss in xB(15-x)Zn samples did not show any particular 

compositional dependence. A similar lack of compositional dependence has also been observed 

(a) (b) 

(c) (d) 
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by Kupracz et el, for manganese borosilicate glasses (Kupracz, Lenarciak et al. 2017). The 

tangent loss across the series for both glasses and glass-ceramics shows variation between 0 and 

5 with the exception of a single data point at 1 kHz for both 17.5 xB(15-x)Zn glass and 15xB(15-

x)Zn glass-ceramics which are particularly higher. As discussed earlier this could be due to 

electrode polarization or some sort of in homogeneities in the samples. 

 

 

 

 

Figure 5-8: (a) Conductivity and (b) dielectric constant of xB(15-x)Zn glasses and glass-ceramics 

versus total divalent modifier/total network formers. (c) Conductivity versus average Q
n
/N for 

xB(15-x)Zn series. Measurement conditions 600±3
o
C and between 1 kHz to 1MHz. 

Fig 5-9(a) and (b) indicates that both the conductivity and dielectric constant of xB(15-x)Zn 

glass-ceramics are higher than those of the corresponding parent glasses and both increased with 

increasing amounts of ZnO. The drop in conductivity at a total divalent oxide/ sum of network 

formers ratio of 0.25 may be connected with the increase in polymerisation index of that sample 

as can be seen in fig 4-15(d). Fig 5-9(c) shows there is a decrease in conductivity with increasing 

connectivity as shown by increasing average Q
n
/N ratio. However, after reaching a 20mol% 

boron oxide content in 20xB(15-x)Zn the Q
n
/N ratio drastically reduced to the position 0.571 

(a) (b) 

(c) 
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probably due to the effect of the boron anomaly. The results from the calculation of the 

polymerisation index indicates that the 20xB(15-x)Zn sample has the lowest value which 

suggests that 20xB(15-x)Zn has undergone a boron anomaly and also has the lowest conductivity 

because as it has the highest boron oxide content and smallest amount of ZnO which are more 

mobile compared to boron.   

5.4 Electrical properties of xSi(20-x)Zn glass ceramics  

  

  

Figure 5-9: (a) Variation of conductivity with temperature and composition of xSi(20-x)Zn glass 

ceramics; (b) variation of activation energies (Ea) as a function of increasing ZnO and frequency 

dependence of (c)  dielectric constant and (d) tangent loss . Measurement conditions 600±3
o
C 

and between 1 kHz to 1MHz. 

 

Fig 5-10(a) shows that the conductivity of xSi(20-x)Zn glass ceramics, just like that of xB(15-

x)Zn glass ceramics increased with increasing temperature and ZnO content. The conductivities 

of 42.5SiZn17.5 and 45SiZn15 mol% (fig 5-10(a)) are not very different and likewise their 

activation energies for conductivity are similar (fig 5-10(b)). However, the Ea for conductivity 

(a) (b) 

(c) (d) 
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for xSi(20-x)Zn glass-ceramics behaved differently to that of xB(15-x)Zn glass-ceramics as it 

shows a decreasing trend with increasing modifier ZnO against silica across the series (see fig 5-

10(b)). This can be interpreted with respect to an increase in polymerisation as boron oxide 

replaces zinc oxide in the xB(15-x)Zn series as can be seen in fig 4-14(a), which may suggest 

that ZnO charge balanced boron oxide while in xSi(20-x)Zn the ZnO acts as a modifier.  Fig 5-

10(c) shows the dielectric constant and (d) tangent loss also exhibit similar decreasing trends to 

all the series with increasing frequency. Just like in xB(15-x)Zn, the higher polarizability of Zn
2+

 

compared to Si
4+

 in xSi(20-x)Zn led to an increase in dielectric constant. The decrease in tangent 

loss is not very different within the series especially for frequencies above 1 kHz.  

 

  

 

 

Figure 5-10: (a) Conductivity and (b) dielectric constant of xSi(20-x)Zn glass ceramics versus 

total divalent modifier/total network formers. (c) Conductivity versus average Q
n
/N of xSi(20-

x)Zn series. Measurement conditions 600±3
o
C and between 1 KHz to 1MHz 

. 

(a) 
(b) 

(c) 
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         Fig 5-11(a) and (b) shows the conductivity and dielectric constant of xSi(20-x)Zn increases 

as the amount of total divalent modifier oxides/total network modifiers increases in the glass-

ceramics. There is a small drop in conductivity and a very significant drop in dielectric constant 

at a ratio 0.47 of the total divalent oxide/total network formers. The drop at this point particularly 

in dielectric constant is also shown by the xBa(40-x)Si series in both glass and glass ceramics. 

However, there is no clear structural evidence to support this behaviour and their conductivities 

did not follow the same pattern. Besides the dielectric constant values are also different for the 

two data sets as 22.5xBa(40-x)Si has a dielectric constant of 41 whereas it is 20 for xSi(20-

x)Zn2. 

5.5 General temperature and frequency dependent behaviour of glass and 

glass ceramics 

        Looking at fig 5-12 (a) and (b) the electrical conductivities in glass and glass ceramic in this 

study represented by 25BaSi30 mol% show similar temperature and frequency dependence 

behaviour with the frequency dependence of the glass ceramics being more pronounced with less 

noise. This behaviour is similar in all glass and glass-ceramic samples measured in this study.  

The increase in conductivity with temperature is due to the increase in thermal energy available 

to move conducting particles (Pal, Agarwal et al. 2009, Braunger, Escanhoela et al. 2012). The 

conductivity associated with the plateau increases and covers wider frequency as temperature 

increases, see fig 5-12(a) and (b). According to Pal et al, this is because mobile ions gain more 

thermal energy and cross the conduction barrier(s) more easily (Pal, Agarwal et al. 2009).  

 

The absence of a low frequency turn down in the conductivity data after the plateau 

regions shown in fig 5-12(a) and (b) leads to the conclusion that the impedance measurements 

show no evidence for any ionic conduction mechanisms in these glasses and glass-ceramics and 

that the predominant conduction mechanism must be electronic. Similarly in fig 5-12 (c) and (d) 

the dielectric constant of the glasses and glass-ceramics also increases with temperature and 

exhibit frequency dependency in both glass and glass-ceramics with the glass ceramic dielectric 

constant more rapidly decreasing with frequency compared with that of the parent glass. 

Generally dielectric constant and loss factor increase with temperature due to increased dipolar 

rotation and molecular mobility as the network structure becomes relaxed with increase in 
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temperature (Li, Ra et al. 2009). The decrease in both dielectric constant and dielectric loss is a 

combined effect of multi component polarization which includes space charge, dipolar, ionic and 

electronic contributions. The first,  space charge polarization is due to blockage of mobile 

charges and occurs at frequency around or below 10
3
Hz. Dipolar is the second type of 

polarization which has to do with the orientation of molecules by the applied field and occurs in 

the frequency range of 10
10

Hz and followed by ionic polarization which is a displacement of 

cations relative to anions at 10
13

Hz and the last contribution is the electronic polarization which 

is a small displacement of electrons relative to atomic nucleus occurs in all materials at higher 

frequency of about 10
16 

Hz . So the total polarization of the dielectric measurement comes from 

the sum of these four contributions to polarization  as reported in (Morsi, Ibrahim et al. 2016).  

From Figure 5-12 (c), the flat plateau in permittivity above ~ 10
5
 Hz indicates the 

contribution of ionic and electronic polarizability to the permittivity value of ~ 20 that is 

associated with the glass matrix. Due to the more conducting nature of the glass ceramics this 

plateau is not observed in the corresponding permittivity plots, fig 5-12 (d) as it has moved to 

much higher frequencies. Instead, the plots are dominated (with decreasing frequency) by thin 

layer (possibly grain boundaries) and space charge effects that give rise to a plateau value of ~ 

100 and a low frequency incline, respectively. The negative values of tan delta below 10kHz for 

most temperatures indicates the presence of inductive effect at low frequency and this may be 

related to an electrode effect rather than the high conductivity.    
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Figure 5-11: The temperature and frequency dependence of electrical conductivity of 25BaSi30 

mol% (a) glass and (b) glass-ceramic. Dielectric constant (c) glass (d) glass-ceramic, Tangent 

loss (e) glass and (f) glass-ceramic. 

 

(a) (b) 

(c)  (d) 

(e) (f) 
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Figure 5-12: (a) Activation energy and (b) conductivity of xBa(40-x)Si, xBa(10-x)Al glasses, 

and (c) Activation energy of xB(15-x)Zn and (d) conductivity of xB(15-x)Zn glasses all versus 

site separation (atom –atom distance) 

 

        According to Moridi et al, the electrical conduction mechanism in barium borosilicate is due 

to small polaron hopping (Moridi, Nouruzi et al. 1991). Although most of the studies report that 

polaron hopping is mainly associated with transition metals whose oxidation states change from 

low to high (see, for example Kupracz et al). All the glasses in this study contain ZnO however; 

it is not known to change its oxidation state and therefore is expected to remain as Zn
2+

. The 

presence of low mobility of cations such as Zn and Ba in oxide glasses leads to electronic 

conduction where electrons move from one site to another by a thermally activated hopping 

mechanism (Moridi, Nouruzi et al. 1991). These low mobility ions tend to distort the 

surrounding lattice. Because of this lattice displacement the electrons form a bound state with the 

potential well giving rise to polaron behaviour. It can be seen in fig 5-13(a) the conduction 

activation energy for the xBa(40-x)Si and xBa(10-x)Al glass series increased with increasing 

distance between similar atoms (modifiers) which means higher energy is required by the charge 

(a) (b) 

(c) (d)  
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carriers (polarons) to hop between two sites. On the other hand, the conductivity is highly 

dependent on the mean distance between two atoms and it decreases as the atom to atom site 

separation increases (fig 5-13(b)). However for the xB(15-x)Zn series in fig 5-13(c) the 

activation energy fluctuates with increasing site separation but the conductivity decreases with 

increasing site separation similar to the xBa(40-x)Si and xBa(10-x)Al series. 

           In fig 5-14 the calculated polaron radius is smaller than the site separation (see equation 

(2-17 and 2-19)) between modifier cations but it is large enough to influence nearby sites, which 

can be evidence to support conductivity being a result of small polaron hopping (Kupracz, 

Lenarciak et al. 2017). The polaron radius must be larger than the radius of the atom upon which 

electron is localized and must also be less than the site separation of the ions. There is steady 

decrease in the values of both the atomic site separation and polaron radius with increasing 

amounts of modifier atoms in the glasses. The small polaron radii indicate that polarons are 

basically localised. A localised state refers to a small polaron whose distortion cloud does not 

overlap. In contrast, an extended state  refers to a large polaron radius (Kupracz, Szreder et al. 

2014). When in a localised state, polarons are trapped in a site and can only move to 

neighbouring sites through thermally activated hopping process(es) as reported by (Schirmer, 

Imlau et al. 2009). 
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Figure 5-13: Decreases in site separation and polaron radii versus total large size oxides for (a) 

xBa(40-x)Si glasses (b) xBa(10-x)Al glasses, and (c) xB(15-x)Zn glasses. 

5.6 Discussions of results  

The electrical conductivity in the BaSi series where BaO was swapped for silica (fig 5-1(a) and 

(b)) increased in both glass and glass-ceramics with BaO addition. This indicates that BaO in 

these glasses is acting in a modifer role which is supported by both the Raman and FTIR spectra 

and by deconvolution of the Raman spectra see fig 4-4 (a) and (b).The increase in conductivity 

with BaO addition is due to high polarisability of Ba
2+ 

compared with Si
4+

 (see section 2.7.3). 

(a) 

(b) 

(c) 
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The decrease in Ea for conductivity in BaSi glass fig 5-1(c) indicates that as BaO is added it 

reduced the energy needed for electrical conduction. However, on the other hand the increase in 

Ea for BaSi glass-ceramics (fig 5-1(d)) with increasing BaO content suggests that after 

crystallization blockage of the preferred pathway for conduction has occurred hence increased 

the energy required to move charge carriers in the glass-ceramic structure, where the impedance 

measurements suggest the presence of different phases or hetrogeneities with different 

conductivities (see appendix 1a).  

This information can be obtained from the combined impedance and electric modulus 

spectroscopic plots (Z”(f) and M”(f)) which represent grain boundary resistivity (Z‟‟) and the 

more conductive grains (M‟‟) in the glass ceramics.  This data suggests that the grains are more 

conductive than the grain boundaries and the occurence of Z”(f) and M”(f) Debye-like peak 

maxima at different frequencies in appendix 1a indicates that they belong to different 

electroactive regions as reported by (Jiadong, Ming et al. 2014). Although conductivity increased 

due to the presence of  crystalline samples fig 5-1(b) the activation energies in fig 5-1(d)  are 

generally lower than those of the parent glasses except at BaO/SiO2 ratios of 0.57 and 0.69. In 

particular, the drop in Ea for Ba25 Si30 mol%  glass ceramic is as a result of high residual glass 

as this particular sample did not crystallise well compared to the other samples in the same series 

(see XRD in fig 4-2 (b)).  

The dielectric constants of BaSi glasses and glass-ceramics decrease with increasing 

frequency due to the contribution of multi-component polarization such as electronic, ionic, 

dipolar or orientation and space charge effects (Pal, Agarwal et al. 2009, Morsi, Ibrahim et al. 

2016) see also section 5.5 above for more details. The decrease in the dielectric constant is as a 

result of the fact that the polarization does not occur instantaneously with the electric field as the 

charges have inertia (Prasad and Basu 2013). Furthermore, the decrease in dielectric constant and 

tangent loss with increasing frequency is observed in these samples and then continue to 

decrease to a constant value at high frequencies. This variation according to Maxwell-Wagner 

model is because hopping between different metal ions cannot aligned with alternating field due 

to the existence of inhomogeneities, defects and secondary phases (Borhan, Gromada et al. 

2016). 

 At lower frequency the accumulation of space charge at broken bonds or chains is the 

cause of increase in dielectric constant as reported by (Darwish and Gomaa 2006). Other factors 
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contributing to the dielectric constants of the glass-ceramics include combined effects of intrinsic 

and extrinsic factors such as porosity, compositional homogeneity, lattice vibration modes and 

grain size. The domominance of any these factors is dependent on composition and sintering 

temperature of the glass-ceramics (Borhan, Gromada et al. 2016). 

As both dielectric constant and tangent loss are converging towards an almost constant 

point it is difficult to see compositional dependence of these two parameters (see fig 5-2(c) and 

(d)). However in fig 5-3(a) and (b) an increasing trend in both conductivity and dielectric 

constant can be observed within the series as BaO is increased, due to the fact that the 

polarizability of Ba
2+

 ions is higher than that of Si
4+

 ions. On the other hand, the ratio of 

Av(Q
n
)/Av(N), which gives a measure of the degree of polymerization, shows a decreasing trend 

for the conductivity as the glass structure connectivity increases. This can be explained on the 

basis that an increase in the glass structural connectivity slows down the movement of charge 

carriers. However conductivity does not depend only on structural connectivity but also on 

factors such as the nature and the concentration of charge carries (Braunger, Escanhoela et al. 

2012) also explained in section (2.7.3) 

In the second series BaAl where BaO was swapped for alumina the conductivity (fig 5-

4(a)) and Ea (fig 5-4(b)) followed a similar trend to that for BaSi glasses (fig 5-1(a) and (c)) and 

therefore the above explanation for the behaviour of BaSi samples applies to BaAl samples. 

However, it is worth mentioning here that an increase in conductivity, dielectric constant and 

tangent loss is because the polarizability of Ba
2+

 is higher than Al
3+

 in BaAl series as reported in 

section 2.7.3. Since  alumina additions are reported to have decreased dielectric constant because 

they decreases the amount of NBOs in glass which have high polarity (Lim, Kim et al. 2006); 

however, the alumina content is decreased and so it can be said that the effect of increasing BaO 

is the main reason for the rise in the dielectric constant of the BaAl series. It is possible that the 

higher activation energy is as a results of lattice/matrix effects (associated with ion movement) 

while the increased conductivities is due the electronic conduction as reported by (Morsi, 

Ibrahim et al. 2016). There is no evidence from the impedance measurements to prove ionic 

conduction is the dominant conduction mechanism, however, localized ion movements maybe 

possible and ionic conduction may be a minor contribution to the overall conductivity. In 

addition, the higher activation energy of BaAl series compared with BaSi may suggest the 

possibility of the mixed alkali effect in BaAl series although the conductivity increased as BaO 
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increased; however, the conductivity is less than that of BaSi which has smaller total modifier 

content. In all BaAl samples a fixed 20mol% of SrO is present whereas BaO was varied between 

10 to 15 mol%. Despite the fact that the BaAl series has the highest amount of modifiers 

(BaO+SrO) these glasses have lower conductivities compared to glasses in other series except 

for BaAl5 mol%  where the conductivity is high and  showed a maximum at 35mol% SrO+BaO; 

this may suggest the presence of mixed alkali effects as can be seen in fig 5-6 (a).  The dielectric 

constant fig 5-6 (b) as expected also exhibited a similar increasing trend as that of the electrical 

conductivity increased with total divalent oxide/total network formers increased. The reason for 

the increase in dielectric constant is similar to that given in the BaSi section above. The one 

difference is in the behaviour of BaAl series with increasing polymerisation as represented by the 

average Q
n
/N. The BaAl series shows an initial increase in conductivity until a maximum point 

and then a decrease with further increases in the polymerisation index. 

The BZn series (fig 5-7) and SiZn series (fig 5-8) look similar as ZnO is the only oxide 

that varied in both series. Although SiZn was only measured in glass-ceramic form the 

conductivity behaviour is similar to that for BZn glass which increases with increasing ZnO due 

to the high polarizability of Zn
2+

 compared to Si
4+

 and B
3+

. Comparing the Ea of BZn glass and 

glass-ceramics reveals a slightly increasing trend as the ZnO content increases (fig 5-7(c)). This 

behaviour for Ea is different to that for SiZn which shows a decreasing trend as ZnO increased. 

This may not be unconnected with the fact that ZnO may be a network former in BZn and a 

modifier in the SiZn series. In addition, the behaviour of the dielectric constant and tangent loss 

as zinc oxide increased in BZn and SiZn in glass and glass-ceramics are similar to those seen 

with increasing BaO in BaSi and BaAl as both Zn
2+

 and Ba
2+

 have high polarizability compared 

to what they replaced (Si
4+

,B
3+

 and Al
3+

 in the respective glass compositions). Generally, 

conductivities and dielectric constants for BZn in fig 5-9 (a) and (b) plotted against composition 

show that the parent glass has a lower value compared to the corresponding glass-ceramic and in 

all cases the conductivities and dielectric increase with an increasing amount of divalent 

modifiers. This behaviour is the same for SiZn glass ceramics in fig 5-11(a) and (b) except that 

in SiZn there is a clearly visible drop in dielectric constant at the ratio 0.47 of the divalent/sum of 

network formers. There is also a similarity between BZn and SiZn as their conductivities all 

decreased with an increase in the averaged Q
n
/N see fig 5-9(c) and 5-11 (c) for comparison. 

Regardless of the compositional differences between the series considered in this study, the value 
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of the electrical resistivity in both glasses and glass ceramics are all above the threshold given in 

the literature as a requirement for sealing glasses; see table 7.1 and 7.2 for the values of electrical 

conductivities and activation energy for conduction. 

 

 Electrical 

conductivity σ/ S cm
-

1 
 at (600

o
C)±3

o
C 

In Ω cm 

 at (600
o
C)±3

o
C 

SOFC s 

requirements  

Ref 

samples 

(mol%) 

glass Glass 

ceramic 

glass Glass ceramic 

 

 

 

 

10xB(15-

x)Zn15 

 

 

 

 

 

 

2.24×10
-7

 

 

 

 

 

 

 

 

3.31×10
-7

 

 

 

 

 

 

 

 

4.46×10
6
 

 

 

 

 

 

 

 

3.03×10
6
 

 

Should be  

>10
4
 Ω cm 

(Lara, Pascual et al. 

2006),(Mahapatra 

and Lu 

2010),(Ghosh, 

Sharma et al. 

2010), (Chen, Zou 

et al. 

2013),(Reddy, 

Tulyaganov et al. 

2014, Qi, Lihua et 

al. 

2015),(Tulyaganov, 

Reddy et al. 2013), 

(Chen, Zou et al. 

2013) 

12.5xB(15-

x)Zn12.5 

7.57×10
-8

 

 

1.82×10
-7

 

 

1.32×10
7
 

 

5.49×10
6
 

 

15xB(15-

x)Zn10 

noisy 1.66×10
-7

 

 

noisy 6.02×10
6
 

 

17.5xB(15-

x)Zn7.5 

2.75×10
-8

 

 

1.07×10
-7

 

 

3.64×10
7
 

 

9.37×10
6
 

 

20xB(15-

x)Zn5 

5.33×10
-8

 

 

1.72×10
-8

 

 

1.87×10
7
 

 

5.82×10
7
 

 

40xSi(20-

x)Zn20 

No glass 

measured 

4.17×10
-7

 

 

No glass 

measured 

2.40×10
6
 

 

42.5xSi(20-

x)Zn17.5 

1.82×10
-7

 

 

5.49×10
6
 

 

45xSi(20-

x)Zn15 

1.48×10
-7

 

 

6.76×10
6
 

 

47.5xSi(20-

x)Zn12.5 

5.17×10
-8

 

 

1.94×10
7
 

 

15BaSi40 noisy 1.16×10
-7

 

 

noisy 8.64×10
6
 

 

17.5BaSi37.5 noisy 2.37×10
-7

 

 

noisy 4.21×10
6
 

 

20BaSi35 1.98×10
-7

 

 

4.78×10
-7

 

 

5.04×10
6
 

 

2.09×10
6
 

 

22.5BaSi32.5 2.64×10
-7

 

 

1.20×10
-6

 

 

3.79×10
6
 

 

8.32×10
5
 

 

25BaSi30 2.89×10
-7

 

 

2.03×10
-6

 

 

3.46×10
6
 

 

4.93×10
5
 

 

 

10BaAl10 1.19×10
-8

 

 

No glass 

ceramic 

measured 

8.39×10
7
 

 

 

12BaAl8 1.21×10
-8

 8.26×10
7
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13BaAl7   

14BaAl6 4.60×10
-8

 

 

2.17×10
7
 

 

   

15BaAl5 4.64×10
-7

 

 

2.16×10
6
 

 

 

Table 7.1: Electrical conductivity/resistivity of glasses and glass ceramics in this study and the 

requirement for SOFC application from the literature 
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Activation energy for electrical conduction (kJmol
-1

), error ±3 

samples(mol %) glass glass ceramic 

10BZn15 272 240 

12.5BZn12.5 224 160 

15BZn10  160 

17.5BZn7.5 272 176 

20BZn5 256 128 

40SiZn20  144 

42.5SiZn17.5  176 

45SiZn15  176 

47.5SiZn12.5  224 

15BaSi40  144 

17.5BaSi37.5  224 

20BaSi35 240 256 

22.5BaSi32.5 224 272 

25BaSi30 224 192 

10BaAl10 336  

12BaAl8 256  

13BaAl7   

14BaAl6 272  

15BaAl5 192  

Table 7.2: Activation energy for electrical conduction for glasses and glass ceramics produced in 

this study  
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Samples 

types 

Electrical conductivity σ/ S cm
-1 

  Activation 

energy (Ea) 

kJ mol
-1

 

refs 

Glass 

ceramic(GC) 

Maximum 4 ×10
-7

 144-218 (Goel, 

Tulyaganov 

et al. 2010) 

GC 5.6 - 6.3 ×10
-9

 137-149kJ 

mol
-1

 

(Lara, 

Pascual et al. 

2006) 

GC 2.2×10
-7 

-4.5×10
-8

 NA (Ghosh, 

Sharma et al. 

2010) 

GC  1.6×10
-7 

-6.9×10
-9

 NA (Chen, Zou 

et al. 2013) 

GC 2.15×10
-7

-7.55×10
-8

 NA (Liu, Huang 

et al. 2016) 

glass 9.8×10
-8

 NA (Liu, Huang 

et al. 2016) 

GC 2.0×10
-8

-8.5×10
-7

 NA (Zhang, 

Yang et al. 

2015) 

GC 2.2 – 4.66×10
-7

 176-195 (Kupracz, 

Szreder et al. 

2014) 

GC >10
-6

 169-183 (Reddy, 

Tulyaganov 

et al. 2014) 

Table 7.3: Electrical properties values for other glasses and glass ceramics in the literature 
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5.7 Summary and Conclusions  

1. The results of the impedance spectroscopy confirms the excellent insulating properties of 

all samples tested at around 600
o
C despite an increase in conductivity caused by the 

alkaline earth additions in all the glass samples and higher conductivity of the crystalline 

phases in glass-ceramics. Therefore, these glasses meet the electrical insulation 

requirements for use as sealant in SOFCs. 

2. The electrical conductivity, dielectric constant and tangent loss all exhibit frequency and 

temperature dependences either in glasses or glass-ceramics. There is an increase in all 

these parameters with temperature and in the case of frequency the dielectric constant and 

tangent loss are higher at lower frequency and decreased with increasing frequency; this 

is different to conductivity which varies linearly at low to intermediate frequencies and 

then increases with frequency at higher values. 

3. Conductivity decreases with increasing connectivity given by the  average ratio of Q
n
/N 

of the Q species and borate species, where N is the sum of N3 and N4 for all samples in 

the parent glasses and a similar pattern was observed for the glass-ceramics. 

4. Conductivity and dielectric constant also increased with increasing amounts of doubly 

charged modifiers. 

5. Conductivity and dielectric constants are higher in the glass-ceramics compared to the 

parent glasses suggesting that the lanthanum borosilicate crystalline single phase is more 

conductive than the residual glass, see Appendix 1a for the impedance plot. 

6. The activation energy for electrical conductivity generally shows a decreasing trend in 

BZn, BaSi and BaAl in their  glass forms; however, in the glass-ceramics Ea of BZn and 

BaSi  increased. Ea for the SiZn glass-ceramics follows a similar trend to the  glass 

samples of BZn, BaSi and BaAl. 

7. Incorporation of modifiers leads to a  decrease in the size of both site separation and 

polaron radii in the BZn, BaSi and BaAl glass series. 

8. The increase in the atom–atom site separation correlates with an increase in Ea and a 

decrease in conductivity of BaSi and BaAl series.  

9. Conductivity was discussed in terms of a hopping mechanism similar to small polaronic 

hopping in oxide glasses having transition metals and low mobility ions such as Ba
2+

 . 
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10. The impedance results reveal  the possibility of electrode polarisation arising from space 

charge accumulation between electrode and glass samples leading to higher dielectric 

condtant  values at low frequency.  
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6  Results III: Mechanical properties  

6.1 Mechanical properties of xBa(40-x)Si glasses 

  

  

 

 

 

Figure 6-1: Hardness of glass blue line and glass ceramic red line (a) Indentation fracture 

toughness (b) Young‟s modulus (d) Brittleness and (e) Poisson‟s ratio of xBa(40-x)Si versus 

BaO/total network formers 

. 

The addition of BaO in to xBa(40-x)Si leads to a decrease in hardness and Young‟s modulus (fig 

6-1(a) and (c)) while  indentation fracture toughness (fig 6-1(b)) exhibits an initial increase and 

then decreased at a ratio of BaO/total network formers of ~ 0.3 in these glasses. The hardness is 

(a) (b) 

(c) (d) 

(e) 
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slightly higher for the glass ceramics after crystallization  compared with the parent glasses. The 

reason for the decrease in hardness and modulus is because BaO, which has a low field strength 

is less attracted to the network anions and thus is less well bonded into the glass. BaO containing 

glasses were reported by Hand and Tadjiev to have lower hardness (Hand and Tadjiev 2010). 

There is no structural evidence to support the initial rise in indentation fracture toughmess seen 

in fig 6-1(b) as the polymerisation index (fig 4-6(d)) indicates decreases with BaO additions. 

This would suggest that the behaviour of the indentation fracture toughness is dependent on other 

factors including energy dissipation process such as plastic deformation, crack branching and 

blunting occuring at the crack tip and not associated only with energy required to fracture bonds 

as explain by Yoshida et al, for Vickers indentation of sodium borosilicate glasses (Yoshida, 

Tanaka et al. 2001). A similar effect on mechanical properties of lanthanum borosilicate glass by 

all the alkaline earths modifiers depending on their field strength was given in the order (Mg
2+

 > 

Ca
2+

> Sr
2+

>Ba
2+

 ) was reported by (Kaur, Pandey et al. 2012) and found Mg
2+

 with the highest 

field strength improves mechanical properties and that Ba
2+

 having the lowest field strength just 

like in this study has decreasing effect with the lowest hardness and fracture toughness in the 

glasses reported. 

      Brittleness in xBa(40-x)Si fig 6-1 (d) exhibits a similar trend to the molar volume fig 4-1with 

similar drop at the same compositional ratio 0.33, where brittleness decreased by 1µm
-1/2

 and 

then increases linearly with increasing BaO. See appendix 3 for plot of brittlenes versus molar 

volume of xBa(40-x)Si exhibiting linear correlation an indication that brittleness scales with 

molar volume in this series. Brittleness although less often reported is a good parameter to 

estimate the susceptibility of a material to external mechanical loads; lower brittleness tends to 

correspond to higher fracture toughness as B = H/KIc. Poisson‟s ratio in fig 6-1(e) increases 

roughly linearly with BaO addition in xBa(40-x)Si glass which can be explained on the basis of 

structural depolymerisation induced by the BaO which acts as a modifier (see figs 4-6(d) and 4-

10(d)) on the degree of polymerisation calculated using the Manara method. Poisson‟s ratio 

exhibits inverse correlations with the indentation fracture toughness in xBa(40-x)Si series as 

presented in fig 6-8 
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6.2 Mechanical properties of xBa(10-x)Al glasses 

  

  

 

 

Figure 6-2: Hardness (a) Indentation fracture toughness (b) Young‟s modulus (d) Brittleness and 

(e) Poisson‟s ratio of xBa(10-x)Al versus BaO/total network formers 

The effect of BaO addition in xBa(10-x)Al is similar to xBa(40-x)Si and therefore a decreasing 

trend is seen in hardness (fig 6-2(a)) and unlike xBa(40-x)Si the indentation fracture toughness in 

xBa(10-x)Al (fig 6-2(b)) exhibit a linear decrease without the initial increase shown by xBa(40-

x)Si.  However the behaviour of the Young‟s modulus fig 6-2(c) is different to that of H and KIc 

as initial increase was observed until 0.2 ratio of the BaO/sum of network formers and thereafter 

(a) 
(b) 

(c) (d) 

(e) 
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decreased. The brittleness of xBa(10-x)Al series initially increased with BaO additions but after 

a BaO/total network formers of 0.2 the brittleness became constant with further BaO additions. 

The Poisson‟s ratio of xBa(10-x)Al series behaves similar to xBa(40-x)Si and therefore shows an 

increasing trend as BaO increased and the ratio of BaO/total network formers decreased. 

Comparing the Poisson‟s ratio with the indentation fracture toughness suggests an inverse 

correlation just like that seen in the xBa(40-x)Si series see fig 6-8 for a plot of brittleness versus 

Poisson‟s ratio. 
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6.3 Mechanical properties of xB(15-x)Zn glasses 

  

  

 

 

 

Figure 6-3: Hardness of glass blue line and glass ceramic red line (a) Indentation fracture 

toughness (b) Young‟s modulus (d) Brittleness and (e) Poisson‟s ratio of xB(15-x)Zn glasses 

versus ZnO/total network formers 

The effect of swapping ZnO with boron in xB(15-x)Zn has little effect on hardness within the 

measurement error (fig 6-3(a)) where the  hardness shows a  decreasing trend with ZnO addition. 

However in the glass ceramic the hardness exhibit increasing trend this behaviour is opposite to 

(a) 
(b) 

(c) (d) 

(e) 
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the parent glass which exhibit a slightly decreasing trend. The indentation fracture toughness fig 

6-3 (b) also tends to decrease with increasing ZnO content. There is a small but notable increase 

in Young‟s modulus in the xB(15-x)Zn series with ZnO additions, this increase in E in xB(15-

x)Zn might be associated with boron anomaly since ZnO was swapped for boron oxide in this 

series;  changing from BO3 trigonal units to more rigid BO4
-
 tetrahedra is reported to increase E 

values by. 

        The brittleness of xB(15-x)Zn (fig 6-3(d)) and the Poisson‟s ratio increase slightly with 

ZnO additions. This may suggest that ZnO is acting as a modifier (see sections 4.1.3 and 4.1.4) 

disrupting the silicate network and hence v increases. It can be seen that in fig 6-3 (d) there is an 

increasing trend in  brittleness with ZnO addition.  
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6.4 Mechanical properties of xSi(20-x)Zn glasses 

  

  

 

 

 

Figure 6-4: Hardness of glass and glass ceramic (a) Indentation fracture toughness (b) Young‟s 

modulus (d) Brittleness and (e) Poisson‟s ratio of xSi(20-x)Zn versus ZnO/total network formers 

The effect of swapping ZnO with silica in xSi(20-x)Zn has littlre effect on hardness fig 6-4 (a), 

Young‟s modulus fig 6-4(c) and Poisson‟s ratio fig 6-4 (e) within the measurement error. This 

may suggest that these parameters did not show any compositional dependence as they all appear 

to be on a straight line as ZnO content is increased. But looking at fig 6-4 (a) shows an increased 

hardness in the glass ceramic over the parent glasses. It is worthy of note that the Poisson‟s ratio  

show inverse correlations with  KIc as can be seen in fig 6-4(b), (d) and (e). also see fig 6-8 (a) 

for plot of KIc versus brittleness. 

(a) (b) 

(c) (d) 

(e) 
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6.5 Mechanical properties of xSi(20-x)La(Sr) glasses 

  

 
 

  

 

 

Figure 6-5: Hardness (a) Indentation fracture toughness (b) Young‟s modulus (d) Brittleness and 

(e) Poisson‟s ratio of xSi(20-x)La(Sr) versus La2O3/total network formers. 

Swapping silica and lanthanum in this series on molar basis introduces higher La2O3 into the 

glass than removing silica therefore the effect of the high lanthanum on mechanical properties 

will be discussed below. The replacement of silica by lanthanum oxide in xSi(20-x)La(Sr) fig 6-

5 indicates some zig zag format however the H fig 6-5 (a) shows an increasing trend with La2O3 

while the indentation fracture toughness fig 6-5 (b) mirrors the H and a clearly linear  correlation 

(a) 
(b) 

(c) 
(d) 

(e) 
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can be seen between H and KIc see fig 6-6 (b) for plot of H versus KIc. The hardness data 

decreases and then increases with increasing lanthanum content. This sort of behaviour where the 

hardness increases and decreases at certain lanthanum contents has been reported by (Sasmal, 

Garai et al. 2014) for lanthanum containing barium free borosilicate glass. Lanthanum is reported 

to enhance mechanical properties as it is known to increase the rigidity of the glass network 

(Ghosh, Sharma et al. 2010) due to its high field strength (Sasmal, Garai et al. 2014). The 

Young‟s modulus in fig 6-5(c) generally depicts  an increasing trend as La2O3 increases 

obviously due to the reasons just mentioned above. In general rare earth oxides such as La2O3 

tend to depolymerise the silicate network and may also increase the hardness of the glass due to 

their high field strength as reported by Angeli et al,  (Angeli, Charpentier et al. 2013), this is 

because the rare earth could act as an intermediate performing a modifier role depolymerising the 

network and also could resemble a network former role just like SiO2 and B2O3 by stabilization 

of the anionic species due to high field strength of La2O3, although La2O3 is not a network former 

but generally structural rigidity increased with increasing La2O3 due to its high field strength and 

thus ensuring mechanical integrity of the glasses.  

         The brittleness and the Poisson‟s ratio fig 6-5 (d) and (e) indicates similar pattern as can be 

seen as both decrease and increase together. On a general note H, E and KIc all increase as the 

amount of La2O3 increases while v and brittleness exhibit a decreasing trend with La2O3 addition. 

6.6 Generalised correlations between mechanical properties of glasses 

Although the indentation fracture toughness (IFT) method is not completely reliable  as it does 

not give reliable KIc values and in addition crack iniatiation and subsequent propagation in (IFT) 

is not the same with the sequence of cracks as in the case of the standardised methods such as 

cheveron notch used for KIc measurement (Quinn and Bradt 2007) however it is less time 

consuming than conventional fracture toughness testing. Thus it can be used as a quick estimate 

for the fracture toughness values of oxide glasses but there is a need to compare data obtained 

from IFT with the standard chevron notch technique to test its reliability. Considering the 

Griffith-Irwin (equation 2-27) fracture toughness is a function of the Young‟s modulus and 

fracture surface energy of glasses. Looking at fig 6-6(a), the fracture toughness of all the glasses 

in this study generally increase with increasing Young‟s moduli. this study is compared with 

others from the literature fig 6-6(b) and suggest that E and KIc exhibit linear dependence except 
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for data from Malzbender 2011 which depicts vertical relationship. However, it could be 

concluded that the correlation could be generalised for oxide glasses.  

 

  

  

  

 

Figure 6-6: Indentation fracture toughness versus Young‟s modulus (a) this study (b) this study 

compared with literature; Indentation fracture toughness versus hardness (c) this study and (d) 

this study compared with literature; Hardness versus Young‟s modulus (e) this study and (f) this 

study compared with literature. 

(a) (b) 

(c) 
(d) 

(e) 
(f) 
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6.7 Indentation fracture toughness and hardness 

The plot in fig 6-6(c) of indentation fracture toughness versus hardness in this study reveals 

different correlations for different glass series. In both xBa(40-x)Si and xBa(10-x)Al glasses a 

roughly linear relationship between hardness and fracture toughness is evident. For xB(15-x)Zn 

and xSi(20-x)Zn hardness does not vary much but there is a greater variation in fracture 

toughness so that the data points lie in a roughly vertical line.  For xSi(20-x)La(Sr) there is no 

simple relationship between toughness and hardness. Although hardness and indentation fracture 

toughness are estimated using the size of indent a and the length of radial cracks c (Mohajerani 

and Zwanziger 2012), there is no one simple  correlation as compositions vary especially 

considering the fact that KIc is not always composition dependent. The resistance of glass to 

cracking during indentation is controlled by 3 processes which include plastic or shear flow, 

densification and elastic deformation (Tiegel, Hosseinabadi et al. 2015). And as also reported by 

(Kato, Yamazaki et al. 2010) no clear correlation between crack resistance (defined as the load 

required to initiate radial cracks) and hardness although they suggested a relationship between 

crack resistance and densification  that samples which  exhibit larger densification around the 

indent have better crack resistance. In the same way the comparison of this study with others 

from the literature see fig 6-6 (d) also depicts scattered relationship between KIc and H. 

6.8 Young’s modulus and hardness 

Larger radii, lower field strength cations are less strongly attracted to the surrounding structural 

silicate units, and therefore addition of this type of cation decreases stiffness and hardness of 

silicate glasses and so the R-O bond strength in alkaline earth containing glasses determine the 

hardness in such glasses. On the other hand the increase in hardness with alkalis (M
+
) is due to 

strengthening of the Si-O bonds with increasing radii of the alkali ions which is as a result of the 

weakening of the M-O bonds. Moreover, as noted by  (Smedskjaer, Jensen et al. 2010) that the 

correlation between NBO/T and hardness cannot be generalised to all silicate systems as seen in 

basaltic glass where both increase and decrease in hardness with NBO/T occur. 

In terms of linear correlation between the hardness and Young‟s modulus of the glasses in this 

study it is found that the ordering trend suggest that an increase in both H and E follows the 

order xSi(20-x)La(Sr)>xSi(20-x)Zn>xB(15-x)Zn>xBa(40-x)Si>xBa(10-x)Al (see fig 6-6(e)). 

According to equation (2-26) the hardness of glass is dependent on 3 variables, the average bond 
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strength α, E and Cg; the variation in the Cg value is small so it has little net effect. However, 

modifier oxides with large single bond strengths increase hardness and Young‟s modulus in the 

order La-O>Zn-O>Ba-O>Sr-O (Dimitrov and Komatsu 2012) as can be seen in fig 6-1(e) above. 

The Young‟s moduli of all the glasses are higher than or comparable to most normal borosilicate 

glasses with 60 to 85GPa (Vullo and Davis 2004, Ghosh, Sharma et al. 2010) and the hardnesses 

are also higher than and comparable to many sealing glasses in the literature (Rodríguez-López, 

Wei et al. 2017). A comaprison between this study and others from the literature also indicated a 

linear correlations between H and E which would suggest that this behaviour could be 

generalised for oxide glasses. 

 

 

 

 

Figure 6-7: (a) Brittleness versus density and (b) brittleness versus Poisson‟s ratio. 

. 

(a) 

(b) 
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6.9 Brittleness and density 

Although there are only limited variations in the brittleness (6.2 -7.7µm-
1/2

) for the glasses in this 

study probably due to similarity in the compositions, a brittleness versus density plot is shown in 

fig 6-7 (a) together with the Sehgal and Ito data for comparison; Sehgal and Ito 1999 observed a 

linear increase of brittleness with density for so called normal glasses which do not exhibit 

densification under indentation (line A-E in fig 6-7 (a)). So-called anomalous glasses which 

densify under indentation, exhibit a different trend (line BC). It was reported by (Connelly, Hand 

et al. 2011) that some nuclear waste glass data falls around the general trend reported by Sehgal 

and Ito while higher density glasses do not fall on the trend line identified by Sehgal and Ito and 

so they suggested that the Sehgal and Ito plot cannot simply be generalised. In the same way in 

this study although brittleness tended to increase with increasing density in general the data not 

fall along the Sehgal and Ito line.  

          A closer look at the data indicates that glass with densities greater than 3gcm
-3

 data lie 

along line G-H (this study) and I (Connelly et al 2011), shows deviation from the Sehgal and Ito 

graph probably reflecting the fact that significant increases in density are often achieved through 

the addition of relatively large and lower field strength species, which would be expected to 

result in weaker bonds that would tend to reduce brittleness. This study also observed that the 

densest sample with 25mol% BaO is not the most brittle sample just as was observed by 

(Connelly, Hand et al. 2011). 

6.10 Relationships between fracture toughness, hardness, brittleness and Poisson’s 

ratio 

The Poisson‟s ratio of glass is reported to be an important parameter in determination of the 

mechanical properties of oxide glasses. Brittleness of oxide and non-oxide glasses is mostly 

affected by variation in the Poisson‟s ratio. Glass network rigidity and packing density controls 

the Poisson‟s ratio as reported by  (Rouxel 2007). 

xB(15-x)Zn, xSi(20-x)Zn, xBa(40-x)Si and xBa(10-x)Al (fig 6-8(a)) and xSi(20-x)La(Sr) (fig 6-

8(c))  all exhibit a decrease in fracture toughness as the Poisson‟s ratio increases; this type of 

inverse correlation has been reported by (Barlet, Delaye et al. 2015) for sodium borosilicate 

glasses. It is well known that the addition of modifiers into the glass structure leads to 



158 
 

depolymerisation by creating NBOs which decrease the fracture toughness and increase the 

Poisson‟s ratio. This is further supported by Tiegel, et al who indicate that indentation fracture 

toughness tends to scale with network connectivity i.e glasses with a higher silica content which 

have lower Poisson‟s ratios (Tiegel, Hosseinabadi et al. 2015). It should be noted that the ability 

to densify under indenter and to resist cracking is a feature of so-called resilient glasses (Rouxel, 

Sellappan et al. 2014). Isochoric shear flow is the deformation mechanism feature for semi-

resilient glasses with increase in packing density. In general hardness and Poisson‟s ratio fig 6-8 

(b) are inversely related for all but one series of glasses in this study although different glass 

series follow different trend lines. A decrease in hardness with Poisson‟s ratio has been reported 

by  (Barlet, Delaye et al. 2015) they suggested that when v is low the glass structure becomes 

more connected and hence hardness becomes high. However, for xSi(20-x)La(Sr) glasses fig 6-8 

(d) a different behaviour is apparently observed although the variation in Poisson‟s ratio is quite 

small. The behaviour of the xSi(20-x)La(Sr) glass series may be due to the addition of the 

lanthanum oxide which increases the hardness and the Poisson‟s ratio because La2O3 is reported 

to increase glass rigidity. The v of the glasses in this study is high (0.28-0.32) and falls within a 

similar range to bulk metallic glasses  (Lewandowski, Wang et al. 2005). 

Increases in the amount of NBOs and depolymerisation of the silicate network by modifier 

additions lead to increase in brittleness and Poisson‟s ratio of all the glasses in this study see fig 

6-1 to 6-4 (d) and (e) except for xSi(20-x)La(Sr) fig 6-5 (d) and (e) where addition of La2O3 

seems to decrease brittleness and Poisson‟s ratio; similar behaviour can be found in  (Pönitzsch, 

Nofz et al. 2016).  

           The Poisson‟s ratio of 0.28 to 0.32 and the fractal bond connectivity gives some insight on 

the dimensionality of the glasses. Fractal bond connectivity supply information about elastic 

behaviour of glasses in relation to their network structures (Saunders, Metcalfe et al. 1996). And 

the value of the dimensionality (d) ranging between 1.6 to 2 implies they are 2D structures 

similar to pure B2O3 with d equals to 1.85 as reported by (Abd El-Moneim, Youssof et al. 2006).  

It is worthy of note that the Poisson‟s ratio varies in a very narrow range this can be associated 

with the insensitivity of Poisson‟s ratio to compositional changes; and can also be related to the 

near constancy of ratio shear and longitudinal moduli (S/L) in these glasses. It has been reported 

for alkaline earth aluminoborate glasses that a near constancy of the S/L ratio is as a result of 
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increase in B4 units with addition of alkaline earth modifier which affects both longitudinal and 

transverse strain in the same way  (Abd El-Moneim, Youssof et al. 2006). 

 

 

 
 

 

 

 

Figure 6-8: Indentation fracture toughness of (a) and hardness (b) of xB(15-x)Zn, xSi(20-x)Zn, 

xBa(40-x)Si, xBa(10-x)Al glasses and for xSi(20-x)La(Sr) in (c)  and (d) versus Poisson‟s ratio. 

Plotting Poisson‟s ratio versus packing density for the glasses studied here fig 6-9 (a) shows that 

they lie near but not on the empirical sigmoidal curve proposed by Rouxel, although there was 

notable spread in the original data used by Rouxel. The atomic packing density increases in the 

following order xBa(10-x)Al<xSi(20-x)La(Sr)<(xB(15-x)Zn,xSi(20-x)Zn)<xBa(40-x)Si. The 

relatively high Poisson‟s ratio of the glasses in this study implies that most of the bonds are ionic 

compared with for example SiO2 which is predominantly covalent (Hwa and Chao 2005). 

Increase in Poissons ratio is indicative of the fact that the cross-link density is decreased by the 

(a) (b) 

(c) (d) 
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increasing number of NBOs with increasing modifier content (Bootjomchai, Laopaiboon et al. 

2014). Poissons ratio decreases as the E/G ratio decreases with respect to increase in cross-link 

density (Higazy and Bridge 1985) However the near constancy of the E/G values in this study 

suggest why the Poisson‟s ratio exhibit very little variations across the different series 

 

 

 

 

Figure 6-9: (a) Poisson‟s ratio versus atomic packing density, (b) E/H versus Poisson‟s ratio, 

showing the cracking mode for different oxide glasses; 

As shown in fig 6-9 (b) the data in this study falls in the region identified by Sellapan et al, 

where lateral and radial cracking zone under indentation is observed as in this study (see region 

labelled 3) and the whole plot shows the limits of different micro cracking regimes as a function 

of v against E/H ratio. The values of E/H and v in this study lie between 14-16 and 0.28-0.31 and 

this relationship can establish some logical reasons regarding the compositional control of 

cracking behaviour in oxide glasses. In the diagram fig 6-9 (b) resilient glasses with lower v are 

on the left hand side of the plot i.e vCM-MR edge, (where CM and MR is cone median and median 

(a) 

(b) 
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radial) cracking. For semi resilient glasses with v between 0.2 to 0.25 the cracking pattern is the 

median and radial type while in the case of easily damaged glasses v > 0.25 lateral and radial 

cracking dominates and aur data in this study falls under this category. In fact according to 

Rouxel higher values of E/H and v indicates large stress development and leads to lower 

resistance to formation of radial median cracks (Rouxel 2015).   

6.11 Correlations between mechanical properties and glass network structures 

 

  

 

 

 

Figure 6-10: (a) Poisson‟s ratio (b) brittleness of xB(15-x)Zn, xSi(20-x)Zn xBa(40-x)Si and 

xBa(10-x)Al (c) and (d) for xSi(20-x)La(Sr) versus the ratio of Q
n
/N species. 

Figs 6-10(a) and (b) show that both the Poisson‟s ratio and brittleness of xB(15-x)Zn, xSi(20-

x)Zn, xBa(40-x)Si and xBa(10-x)Al glasses all decreased with increasing polymerisation as 

shown by the ratio of the average Q
n 

to N value where Q
n
 refers to averaged sum of the silicate 

species and N is the averaged sum of 
[3]

B
3+

 and 
[4]

B
3+

 in the glass. The exception, as ever is the 

xSi(20-x)La(Sr) series. In fig 6-11 (a), (b) and (c) both the indentation fracture toughness and 

(a) 
(b) 

(c) (d) 
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hardness indicates an increasing trend with increasing average Q
n
/N; again the data for the H of 

xSi(20-x)La(Sr) does not exhibit a clear trend. E values of xBa(40-x)Si and xBa(10-x)Al seems 

to increase with the increasing average Q
n
/N while xB(15-x)Zn and xSi(20-x)Zn have faily 

constant E (see fig 6-11 (e)). However the E in xSi(20-x)La(Sr) decreased with increasing 

average Q
n
/N in fig 6-11(f) 
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Figure 6-11: Indentation fracture toughness (a) hardness (b) of xB(15-x)Zn, xSi(20-x)Zn, 

xBa(10-x)Al and xBa(40-x)Si and for xSi(20-x)La(Sr) (c) KIc  (d) hardness. (e) E of xB(15-x)Zn, 

xSi(20-x)Zn, xBa(10-x)Al and xBa(40-x)Si (f) E of xSi(20-x)La(Sr) versus averaged Q
n
/N 

species 

A correlation between E and H and Tg fig 6-12 (a) and (b) indicates as expected that  E  and H 

tend to scale with Tg reflecting the fact that all these properties tend to scale with structural 

rigidity of the glasses. Hardness and indentation fracture toughness (Fig 6-12(c) and (d)) both 

decrease with increasing density of xB(15-x)Zn, xSi(20-x)Zn, xBa(40-x)Si and xBa(10-x)Al 

(a) (b) 

(c) (d) 

(e)  (f) 
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glasses in this study. This may be connected with the effect of the modifiers in these glasses 

which will tend to occupy void space while reducing connectivity. As shown in fig 6-12 (e) and 

(f) slight increasing  trends in hardness and density however indentation fracture toughness 

exhibit a more clear increase with density for xSi(20-x)La(Sr) glasses. The increase in fracture 

toughness, hardness and density is due to higher molecular weight of La2O3 and coupled with 

high field strength. 
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Figure 6-12: (a) E and (b) H versus Tg  (c) hardness and (d) indentation fracture toughness 

versus density for xB(15-x)Zn, xSi(20-x)Zn, xBa(40-x)Si and xBa(10-x)Al glasses. (e) H and (f) 

indentation fracture toughness versus density for xSi(20-x)La(Sr) glasses. 

(a) (b) 

(c) (d)  

(e) (f) 
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6.12 Summary and Conclusions  

Although the mechanical properties of sealing glasses are not given a particular target sealing 

glasses must be able to maintain sufficient mechanical strength to ensure adhesion and gas 

tightness during sealing and  operation at high temperatures (Liu, Lin et al. 2015). 

1) The values of  E, H and indentation fracture toughness in this study are comparable to those 

reported in the literature. 

2)  La2O3 increases H and E and KIc whereas the  doubly charged modifiers decreased the 

mechanical properties. 

3)  The values of  Poisson‟s ratio and brittleness increase with alkaline earth additions a sign of 

depolymerisation within the glass structures however La2O3 does the opposite due to high 

field strength. 

4)  Indentation fracture toughness exhibit inverse correlation with v in all the series.  

5)  Hardness and fracture toughness correlate positively with Young‟s modulus and each other  

for all the glass series studied.  

6)  H and indentation fracture toughness also inversely correlate with increases in density in 

xB(15-x)Zn, xSi(20-x)Zn, xBa(40-x)Si and xBa(10-x)Al glasses. While a slightly linear 

trend in xSi(20-x)La(Sr) 

7)  Brittleness and density plot did not fall on the Sehgal and Ito plot of the so called normal and 

anormalous glasses confirming the lack of generality of this plot. 

8)  The v and brittleness of xB(15-x)Zn, xSi(20-x)Zn, xBa(40-x)Si and xBa(10-x)Al inversely 

correlates with increasing average Q
n
/N ratio, however brittleness and v exhibit linear 

correlation see fig 6-7 (b) and 6-9(a) and (b). 

9)  Indentation fracture toughness of xBa(10-x)Al, xBa(40-x)Si, xB(15-x)Zn and xSi(20-

x)La(Sr) increased with the increasing average Q
n
/N while xSi(20-x)Zn series exhibit 

scatter. The H of xBa(40-x)Si and xBa(10-x)Al equally increased with the increasing 

average Q
n
/N while H of xSi(20-x)Zn xB(15-x)Zn is fairly constant and the H of xSi(20-

x)La(Sr) is scattered across the series.  E values of xBa(40-x)Si and xBa(10-x)Al seems to 

increase with the increasing average Q
n
/N while xB(15-x)Zn and xSi(20-x)Zn have faily 

constant E and in the case of xSi(20-x)La(Sr) E depicts a decreasing trend with the 

increasing average Q
n
/N ratio  
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10) Increasing boron oxide from 10 to 20mol% against zinc oxide in xB(15-x)Zn lead to  highest 

indentation fracture toughness, in this series  and surprisingly the KIc values are higher than 

those glasses containing a fixed 20mol% boron oxide such as xBa(40-x)Si and xBa(10-x)Al. 

Boron oxide is known to increase the fracture toughness of borosilicate glasses but the effect 

is most clearly seen when boron oxide is swapped with other oxides more than being fixed 

in the composition. 

11) The E moduli of all the glasses are higher than or comparable to most normal borosilicate 

glasses with 60 to 85GPa (Ghosh, Sharma et al. 2010(Vullo and Davis 2004)) and the 

hardness are higher than or comparable to many sealing glasses in the literature (Rodríguez-

López, Wei et al. 2017).  See table 7.1 for comparison. 
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7. Discussion 

The glasses and glass-ceramics in this study were investigated to understand the effects of 

composition on their physical, thermal, electrical and mechanical properties and the potential of 

using these glasses as SOFC sealing materials. Having considered the different series separately 

the following discussion compares the series in more detail. 

7.1 xBa(40-x)Si, xBa(10-x)Al, xB(15-x)Zn, xSi(20-x)Zn, and xSi(20-x)La(Sr) glass 

and glass-ceramics 

In the xBa(40-x)Si and xBa(10-x)Al series additions of BaO led to depolymerisation of the 

silicate part of the glass network but increased polymerisation of the borate part of the glass 

network (conversion of BO3 to BO4) as indicated by both FTIR and Raman (see figs 4-4, 4-6, 4-9 

and 4-10). However, although additions of ZnO to the xB(15-x)Zn and xSi(20-x)Zn series led to 

depolymerisation of the silicate network (see figs 4-14 and 4-19), in this case BO3 to BO4 

conversion did not occur. The differences between the effects of ZnO and BaO on the borate unit 

can probably be related to the amphoteric nature of Zn
2+

 and thus the role of ZnO is different 

from that of the alkaline earths despite having similar charges and a similar size to Mg
2+

 in 

particular according to reports by (Smedskjaer, Youngman et al. 2013). As BaO is added some 

additional free oxygen is equally added to the glass structure which help converts BO3 to BO4 

(Lu, Ni et al. 2006) unlike ZnO which may end up in ZnO4 tetrahedra competing for charge 

balance with BO4 and AlO4 and thus reducing the effective modifier concentration (Smedskjaer, 

Youngman et al. 2013).  

Density increased in all of these series as BaO and ZnO were increased. Meanwhile molar 

volume increased with increasing BaO in xBa(40-x)Si but decreased in xBa(10-x)Al (see figs 4-

1 and 4-7) while the molar volume decreased with increasing ZnO in xB(15-x)Zn but increased 

in xSi(20-x)Zn (see figs 4-11and 4-16). Increase in both molar volume and density with BaO 

have been previously reported by (Abd El-Moneim, Youssof et al. 2006). ZnO is reported to 

increase molar volume as seen in the case of xSi(20-x)Zn (see reports by (Mohd Sabri Mohd, 

Mohd Hafiz Mohd et al. 2012). BaO is more effective than ZnO in increasing the molar volume 

because molar volume increases as the ionic radius of the divalent modifier increases (not atomic 

weight) eg in the order Mg
2+

 >Zn
2+

>Ca
2+

>Sr
2+

> Ba
2+

. This is due to tighter binding between 
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oxygen and smaller cations (Smedskjaer, Youngman et al. 2013). In addition molar volume of 

glasses is also atomic packing density dependent as the ionic radii of the modifier increases 

molar volume increases and therefore packing density defined as the ratio of the minimum 

fraction of volume occupied by ions and the effective volume of the glass inversely decreases 

(Rouxel 2006). A different behaviour is observed in the xBa(40-x)Si series as the molar volume 

both increases and decreases which is not seen in the other series. The molar volume minimum is 

associated with structural densification and occurred at 22.5mol% BaO which is slightly less 

than the range 25<X<48mol% in which the molar volume minimum was observed for barium 

borosilicate  by (Bourgel, Malki et al. 2009). 

            As BaO is increased a decrease in Tg was observed in both xBa(40-x)Si and xBa(10-x)Al 

series while their TEC increased, the depolymerisation of the silicate sub-network seems to have 

the dominant effect on these properties. On the other hand the effect of ZnO addition on the Tg 

and TEC of xB(15-x)Zn and xSi(20-x)Zn are different because both Tg and TEC increased as 

ZnO replaced B2O3 in the xB(15-x)Zn series  (fig 4-13) however in xSi(20-x)Zn in (fig 4-18) the 

Tg decreased and the TEC increased as ZnO replaced SiO2. The differing effects of ZnO addition 

on Tg in xB(15-x)Zn and xSi(20-x)Zn can be explained in relation to the different network 

formers in xB(15-x)Zn and xSi(20-x)Zn. Therefore as silica has a high Tg so decreasing silica 

and increasing zinc oxide means a decrease in Tg and of course the opposite is true in the case of 

decreasing boron oxide and increasing zinc oxide where Tg increased. This also indicates the 

dominant role the network formers play in the thermal properties. Since the parent glasses are 

metastable and eventually would crystallise the samples in xBa(40-x)Si, xB(15-x)Zn and xSi(20-

x)Zn were heat treated and although the TEC values were lower than those of the parent glasses 

they all increased as BaO and ZnO increased in all the series measured. The slight reduction in 

TEC after crystallization is a good sign of thermal stability. 

         Furthermore the effect of both BaO and ZnO on electrical conductivity is similar as an 

increase in conductivity with increasing BaO and ZnO is seen in both glass and glass ceramics of 

all the measured samples. The increase in conductivity is associated with increased mobility of 

charge carriers in the residual glass due to network disruption (Chen, Zou et al. 2013). In 

addition the glass ceramics appeared to be more conductive than their parent glasses as indicated 

by the impedance measurement which shows that the grains are more conductive than the 
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residual glass, which is found in the grain boundaries in this case (see appendix 1a). Another 

common feature for all the series is that conductivity and dielectric constant increase with 

increasing temperature and frequency. The conductivity increases at higher frequencies and the 

dielectric constant decreases to almost a constant value at higher frequencies. The decrease in 

dielectric constants in both glasses and glass ceramics is due to the contribution of multi-

component polarization such as electronic, ionic, dipolar or orientation and space charge effects 

as reported by (Morsi, Ibrahim et al. 2016).  On the other hand the activation energies for 

conduction increase in both glass and glass ceramic xB(15-x)Zn samples (figs 5-7) while in 

xSi(20-x)Zn the Ea decreased. This suggests that the depolymerisation of the network as ZnO is 

added is not very severe in xB(15-x)Zn compared with xSi(20-x)Zn (fig 5-10). There is a 

similarity between the Ea of xBa(40-x)Si and xBa(10-x)Al glasses as the Ea decreased with BaO 

addition however in the glass ceramic form the Ea of xBa(40-x)Si increased and this is an 

indication of conduction pathway blockages by the crystalline phases (see figs 5-1 and 5-4).          

             As the glass structure was depolymerised by BaO and ZnO additions decreases in H 

were observed for xBa(40-x)Si, xBa(10-x)Al, and xB(15-x)Zn, while the H of xSi(20-x)Zn was 

fairly constant with only a 0.1GPa decrease in the middle data points. In the case xSi(20-

x)La(Sr) an increasing trend in H was observed as La2O3 increased against SiO2 due to high field 

strength of La2O3 (see figs 6-1, 6-2, 6-3, 6-4 and 6-5). In series xBa(40-x)Si, xB(15-x)Zn and 

xSi(20-x)Zn the hardness increased to a limited extent after crystallization. Across the xBa(40-

x)Si series the increase was 0.1 to 0.3 GPa while across the xSi(20-x)Zn series it was 0.5 to 0.6 

GPa while for the xB(15-x)Zn it was 0.1 to 0.5 GPa. Despite the increase in H of the xB(15-x)Zn 

crystalline samples they exhibit the opposite trend to the parent glass as their H increased as ZnO 

increased while that of the parent glass exhibit a decreasing trend. This behaviour is not seen in 

xBa(40-x)Si and xSi(20-x)Zn series as they both show the same trend in the hardness in both the 

parent glass and crystalline glasses. BaO is always reported to decrease H however ZnO behaves 

differently in different compositions. For example (Doweidar, Zeid et al. 1991) reported an 

increase in H with increasing ZnO for ternary zinc borophosphate glasses while a decrease in H 

was observed in binary zinc borates by (Bobkova and Khot'ko 2005). The indentation fracture 

toughness in xBa(40-x)Si and xSi(20-x)Zn initially exhibit a slight increase, while that of 

xBa(10-x)Al and xB(15-x)Zn series showed a decrease, with increasing BaO and ZnO and 

reducing network formers. However despite the increases in depolymerisation due to La2O3 
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replacing SiO2 in the xSi(20-x)La(Sr) this series exhibits an overall increasing trend in KIc (see 

figs 6-1, 6-2, 6-3, 6-4 and 6-5). A clearly decreasing trend in E is seen in xBa(40-x)Si alone with 

increasing BaO while the E increases as ZnO and La2O3 increase in xB(15-x)Zn, and xSi(20-

x)La(Sr) glasses. However the E of xBa(10-x)Al samples exhibits an initial increase with 

increasing BaO followed by a decrease as expected of BaO additions as E is linearly proportional 

to field strength and bond strength of the oxides in the glass so increasing BaO with lower field 

strength decreases the E of the glass (Ghosh, Sharma et al. 2010). While the E of xSi(20-x)Zn is 

fairly constant with ZnO additions (see figs 6-1, 6-2, 6-3, 6-4 and 6-5). Brittleness generally 

increased with BaO additions in the xBa(40-x)Si, xBa(10-x)Al series and with additions of ZnO 

to the xB(15-x)Zn and xSi(20-x)Zn series while La2O3 additions to the xSi(20-x)La(Sr) series 

exhibit decreasing trend. The Poisson‟s ratio increased with BaO additions in both xBa(40-x)Si 

and xBa(10-x)Al series and with ZnO in both xB(15-x)Zn and xSi(20-x)Zn series but however 

with La2O3 additions to the xSi(20-x)La(Sr) series v tends to decrease. This is understandable 

because as the structure depolymerises and become more open v tends to increase. As can be 

seen the v values for all the series have an inverse correlation with KIc (compare figs 6-1, 6-2, 6-

3, 6-4 and 6-5) with the plot of v against KIc in fig 6-7).  

             From the perspective of TEC (measured between 300-600
o
C) the TEC of both glass and 

glass ceramics samples of 20BaSi35, 22.5BaSi32.5, 25BaSi30 mol%  and glass samples of 

xBa(10-x)Al series meet the TEC requirement for SOFCs applications. These materials could be 

sealed to at least 3 components of the fuel cells namely the yttria stabilized zirconia (YSZ) with a 

TEC of 10-11×10
-6

 K
-1

, the lanthanum strontium manganite (LSM) cathode with a TEC of 10.5-

11×10
-6

 K
-1

 and the metallic interconnector Crofer 22APU with a TEC of 12×10
-6

 K
-1

. The 

nickel yttria stabilized zirconia (Ni-YSZ) cermet anode has a TEC of 14×10
-6

K
-1

 and so samples 

12BaAl8 and 15BaAl5 mol% with TECs of 14.37 and 13.39×10
-6

K
-1

 could be compatible. It is 

worth noting here that the high TEC of sample 12BaAl8 is due to phase separation in that sample 

as it shows two Tgs.  However the TECs between RT-300 
o
C of all the samples xB(15-x)Zn, 

xSi(20-x)Zn, xBa(40-x)Si, xBa(10-x)Al, and xSi(20-x)La(Sr) (as glass and glass ceramics) are 

not appropriate for sealing to SOFCs but they are compatible for use in sealing to the Ti-6Al-4V 

alloy used in electrical feed-through connectors in which the sealing glass-ceramics provides 

electrical insulation for the conducting metal pins and protection for the internal electronics from 

the outside environment. The TEC of the Ti-6Al-4V is 9.4x10
-6

K
-1

 between 298 -723K and the 
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TEC of the glass-ceramic is 5.7-9.7x10-6K
-1

 between 303-693K. Kovar which is iron-nickel-

cobalt material used as the pin has TEC of 5.2x10
-6

K between 298 and 723K. Therefore, a glass-

ceramic with a TEC of 6.9×10
-6

K is optimal to form a compressive sealing with Kovar and Ti-

6Al-4V (Staff, Fernie et al. 2016). The measurement of the TEC was limited by the fact that the 

TMA machine does not allow measurement beyond 650
o
C and the TEC also increases with 

temperature as can be seen by comparing the TECs of all the samples between RT-300 and 300-

600
o
C and the averaged TEC from RT-600

o
C. However this suggest that increasing the upper 

limit of measuring temperature (beyond 600
o
C) could have increased the number of potential 

candidate sealing glasses in this study and so could be compatible with SOFCs operating above 

650
o
C. See appendix 2 for the comparison between the TEC of this study and the requirement 

bench mark value of the TEC for SOFCs applications. 

             In addition to the TEC and as far as the electrical insulation of the sealing glasses for 

SOFCs are concerned the electrical conductivity in this study for both glass and glass ceramics 

xBa(40-x)Si and xB(15-x)Zn samples, glass xBa(10-x)Al samples and glass ceramic xSi(20-

x)Zn samples measured at 600
o
C indicates that all these samples meet the electrical insulation 

requirements for use as sealant in SOFCs. See table 7.1 for comparison between the conductivity 

data in this study and the bench mark value given as a requirement for sealing glasses in the 

literature.  

             With regards to the mechanical properties although there is no any specified value for 

the mechanical properties of sealing glasses, coupled with the fact that this study only measured 

the mechanical properties at room temperature, robustness of the sealing glasses is crucial where 

the glass is brittle.  Structural integrity is a requirement from room temperature during start up 

and through the thermal cycling back to shut down.  The mechanical properties such as hardness, 

indentation fracture toughness and Young‟s modulus are higher than most normal borosilicate 

glasses and are also comparable to some sealing glasses reported in the literature thus indicating 

that the obtained values are within an acceptable range (see table 7.1) below  for comparison 

between mechanical properties of this study and some data from the literature. 
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Comparison of mechanical properties 

This sudy Normal 

borosilicate 

Other sealing glasses 

 glass glass 

ceramic 

 glass glass 

ceramic 

 

Glass code Hv(GPa) Refs 

xB(15-x)Zn 5.7 -5.9 5.8-6.2 3.9-5.4 3.6-9.1 4.9 -8.5 (Yoshida, Tanaka 

et al. 2001, 

Ghosh, Sharma et 

al. 2010, 

Sellappan, Rouxel 

et al. 

2013),(Rodríguez

-López, Wei et al. 

2017), 

(Malzbender and 

Zhao 2012), 

(Abdoli, Alizadeh 

et al. 2014), 

(Kothiyal, 

Goswami et al. 

2012), (Heydari, 

Maghsoudipour et 

al. 2012),(Vullo 

and Davis 2004). 

xSi(20-x)Zn 5.7-5.8 6.2-6.4 

xBa(40-x)Si 5.2-5.7 5.3-6.2 

xBa(10-x)Al 4.4-5.4 no 

xSi(20-x)La(Sr) 5.8-6.7 no 

E(GPa) 

xB(15-x)Zn 87.6-91.6 60-85 61-100 72-108 

xSi(20-x)Zn 90.6-91.6 

xBa(40-x)Si 81.2-87.3 

xBa(10-x)Al 70.2-82.1 

xSi(20-x)La(Sr) 88.9-110 

KIc(MNm
-3/2

) 

xB(15-x)Zn 0.8-0.88 0.46-9.4 0.54-0.9 0.21-1.5 

xSi(20-x)Zn 0.77-0.82 

xBa(40-x)Si 0.69-0.80 

xBa(10-x)Al 0.67-0.87 

xSi(20-x)La(Sr) 0.76-0.88 

Table 7.4: Comparison of mechanical properties in this study and the literature 
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8. Conclusions and recommendation for future work 

One of the challenges which hinders the commercialisation of pSOFCs is the need for long term 

stable sealants under the operation conditions which include thermal cycle during start up and 

shut down of the fuel cells in a dual atmosphere environment. Based on the reliability 

requirements of pSOFCs which includes the robustness of the sealants, the effect of 

compositions on the  mechanical, thermal and electrical  properties of different series of glasses  

have been investigated. It was found that 

1) The conductivity of all the samples tested are far above the threshold of 10
4
 S cm

-1
 fixed for 

sealing glasses in both glass and glass ceramics see table 7.1  

2) The Ea for conduction between 500 to 600
o
C is high for all tested samples, with  the glasses 

having between 128 to 336kJmol
-1

  and xBa(10-x)Al glasses having the highest value and 128 

to 256 kJmol
-1

 in the glass ceramics would suggest  that all the series tested have met 

insulation requirements to be used as sealant. Since higher Ea is an indication that more 

energy is needed to move charge carriers. The slight drop in Ea of the glass ceramics are due 

to increased conductivity of the crystalline phases see table 7.2 for the Ea of glass and glass 

ceramic in this study  

3) Based on the thermal properties measurement the Tg of xB(15-x)Zn, xSi(20-x)Zn, four 

samples of xBa(40-x)Si except 25BaSi30 and xSi(20-x)La(Sr) are between 650-750
o
C which 

suggests that these glasses could be used for intermediate temperature  pSOFCs applications. 

However  xBa(10-x)Al series and sample 25BaSi30 could only be used for lower temperature 

applications because their Tg is below 650
o
C.  

4) The TEC between 300 and 600C for the whole of  xBa(10-x)Al series  and 20BaSi35, 

22.5BaSi32.5 and 25BaSi30 mol%  samples and averaged TEC from RT- 600
o
C for 

22.5BaSi32.5 and 25BaSi30 mol%  and all xBa(10-x)Al series except 10xBa(10-x)Al10 are 

optimal to be used for sealing to pSOFCs because they falls within the desirable value for 

SOFCs with an 8YSZ electrolyte, LSM cathode and ferritic stainless steel interconnectors. 

Series xB(15-x)Zn  glass do not meet this requirement as their TEC falls between 7.9 to 8.8× 

10
-6o

C
-1

 though 8.8 is very close to the lower end of the requirement of 9. And  xSi(20-x)Zn 

has met the lower end requirement as 3 samples have 9 to 9.2× 10
-6o

C
-1

. However the TECs 

for all the xB(15-x)Zn, xSi(20-x)Zn, xBa(40-x)Si, xBa(10-x)Al, and xSi(20-x)La(Sr) glass 

and glass-ceramics measured between RT-300
o
C are not appropriate for sealing to SOFCs but 
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are compatible to be used in sealing Ti-6Al-4V used in electrical feed through connectors see 

appendix 2 for the TEC of this study and requirement bench bank for SOFCs applications 

given in the literature. 

5) The formation of lanthanum borosilicate based phases in these  glasses xB(15-x)Zn, xSi(20-

x)Zn, and xBa(40-x)Si  after crystallisation could be anvantageous with regards to interfacial 

and thermal stability as cathode poisoning which a situation where boron in the glass seal 

attacks lanthanum in the LSM cathode could be avoided.  

6) considering the properties listed in 1 to 4 above xBa(10-x)Al glasses would be prefered 

potential candidate for sealing glasses due to the advantage of their lowest Tg and have 

intermediate Young‟s moduli between 70-82 GPa this is because thermal stresses develop 

below Tg and therefore the lower the Tg the better for sealing applications. Secondly thermal 

stresses that developed during operations is also E dependent as can be seen in  equation 2-

30.which indicates that higher E could leads to higher thermal stress so the moderate E is 

preferred. And in trying to heat treat xBa(10-x)Al series it was found that after 50hr that the 

glass sealed itself to the ceramic floor of the furnace this is an indicator that xBa(10-x)Al 

series could be sealed to SOFCs component at temperature lower than other samples, which is 

also additional advantage. However unlike  xB(15-x)Zn, xSi(20-x)Zn and xBa(40-x)Si that 

contained La2O3 xBa(10-x)Al series has no La2O3 and therefore will not form lanthanum 

borosilicate phase see item 5 above. 

7) Generally mechanical properties such as H, E and KIc are enhance by La2O3 addition 

compared to divalent oxides. 

8) Some of the glasses in this study (xB(15-x)Zn, xSi(20-x)Zn, xBa(40-x)Si) have high Poisson‟s 

ratios 0.3 < v < 0.33. with the upper limit close to that of  metallic glasses xBa(10-x)Al and 

xSi(20-x)La(Sr) glasses have Poisson‟s ratios of 0.29 < v < 0.3 
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8.1 Recommendations for future work 

1)  Although sealing glasses are required to be insulating the interactions with other components 

could lead to degradation of their insulation capacity hence the need to study the interfacial 

behaviour of the SOFCs components eg the glass/electrolyte and glass/interconnects needs 

to be studied. 

2)  As suggested by Qi et al 2016, due to chemical compatibility and TEC mismatch issues, it is 

vital to develop different sealant compositions to match the different parts of the SOFCs 

system. For example the TEC of the electrolytes (YSZ, GDC, LSGM) lies between 9.5 to 

12×10
-6

K
-1

 while for the cathode the values 12 to 14×10
-6

K
-1

, for anode it is 10 to 14×10
-6

K
-

1
 and for the interconnectors it is 11 to 15×10

-6
K

-1
  (Qi, Porotnikova et al. 2016). No single 

composition could be compatible with all TECs of the different parts but rather two 

compositions in combination could be. 

3)  Although it is suggested in item 5 of the conclusions above that the formation of lanthanum 

borosilicate phase could mitigate cathode poisoning, to confirm this assertion there is the 

need to sinter mix powders of glasses in this study especially samples 20BaSi35, 

22.5BaSi32.5, 25BaSi30 mol% and all of xBa(10-x)Al series that have met all the 

requirement for sealing and commercial powder of the lanthanum containing cathode to see 

if LaBO3 will be formed or not. 

4) There is the need to test the seals that met all the requirements for use as sealing glasses for 

SOFC in real applications to ascertain their reliability over prolonged periods. And 

additionally determine the wetting angle which determines the ability of the glass seals to 

wet and flow prior to sealing using hot stage microscopy.   
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Appendix 1 

Evidence from impedance measurement supporting increase in electrical conductivity of the 

grains more than residual glass (grain boundaries) 
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Appendix 2 

TEC comparison between TEC of this study and SOFCs requirement  

 TEC glass/
o
C TEC glass ceramic/

o
C SOFCs  TEC requirements and  

Refs 

samples mol% RT-

300 

300-

600 

RT-

600 

RT-300 300-

600 

RT-

600 

9-13 ×10
-

6o
C  ±1

o
C 

(Mahapatra and Lu 2010) 

,(Wang, Ou et al. 2016), 

(Fergus 2005, Ghosh, Sharma 

et al. 2008), (Ley, Krumpelt et 

al. 1996, Lessing 2007). 

(Tulyaganov, Reddy et al. 

2013). (Kerstan and Rüssel 

2011), (Gödeke and Dahlmann 

2011), (Chou, Stevenson et al. 

2007) 

10BZn15  

 

6.6 

 

 

8.8 

 

 

7.9 

 

 

6.8 

 

 

7.5 

 

 

7.2 

12.5BZn12.5  

6.6 

 

8.3 

 

7.6 

 

6.5 

 

8.5 

 

7.6 

15xBZn10  

6.5 

 

8.2 

 

7.5 

 

6.2 

 

7.5 

 

6.9 

17.5BZn7.7  

6.6 

 

7.9 

 

7.4 

 

5.6 

 

7.2 

 

6.5 

20BZn5  

6.5 

 

8.3 

 

7.5 

 

6.2 

 

7.2 

 

6.7 

40SiZn20 7.1 9.2 8.5 6.9 8.4 7.3 

42.5SiZn17.5 7.2 9.1 8.3 7 8.2 7.0 

45SiZn15 7.8 8.8 8.0 7.5 7.5 6.7 

47.5SiZn12.5 6.6 9 7.5 6.3 8.2 6.9 

15BaSi40 6.8 8.9 8.0 6.6 8.9 7.6 

17.5BaSi37.5 7.3 8.7 8.1 6.8 8.8 7.7 

20BaSi35 7.2 9.8 8.6 7.2 9.8 8.6 

22.5BaSi32.5 8.0 10.4 9.7 7.6 11.5 9.7 

25BaSi30 9.2 10.8 10.

5 

8.9 11.2 9.7 

10BaAl10 6.9 10.3 8.8 No 

glass 

ceramic 

  

12BaAl8 7.8 14.4 11.

5 

 

13BaAl7 7.2 12.2 9.6 

14BaAl6 7.5 11.4 9.7 

15BaAl5 8.2 13.4 10.

3 

35Si15La (Sr) 7.0 9.1 8.3  

40Si10La (Sr) 6.1 8.6 7.9  
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45Si5La (Sr) 5.8 7.1 7.5    
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Appendix 3 

Linear correlation between brittleness versus molar volume 
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Appendix 4 

Area% of Q
n
 species obtained from deconvolution of Raman spectra of the silicate units for all 

series  

glass code Q0 Q1 Q2 Q3 

10BZn15 18 21.9 42.2 17.8 

12.5BZn12.5 15.9 21.8 44.7 17.6 

15BZn10 13 22.5 45.8 18.7 

17.5BZn7.5 12.6 21 48.6 17.8 

20BZn5 5.4 35.3 46.2 13.2 

     

40SiZn20 24.4 28.2 36.3 11.4 

42.5SiZn17.5 20.4 23.4 41.1 15 

45SiZn15 18 21.9 42.2 17.8 

47.5SiZn12.5 16.4 21.4 44.2 18.1 

     

     

15BaSi40 12.4 22.3 44 21.3 

17.5BaSi37.5 13.9 24 43.2 18.9 

20BaSi35 16.4 27 43.1 13.5 

22.5BaSi32.5 17.3 28.9 39.7 14 

25BaSi30 18.9 29.9 39.1 12.1 

     

10BaAl10 9.9 15.5 48.1 26.4 

12BaAl8 6.7 19 49.7 24.7 

13BaAl7 9.1 19.7 46.8 24.4 

14BaAl6 9 20.8 46.1 24 

15BaAl5 8.6 18.9 44.1 28.4 

     

40Si20La(Ba) CRYST    

45Si15La(Ba) 22 21.3 43 14.2 

50Si10La(Ba) 12.1 18.5 47.9 21.5 

55Si5La(Ba) 11.2 18.5 47.4 22.9 

     

30Si20La(Sr) cryst    

35Si15La(Sr) 19.8 26 41.4 12.8 

40Si10La(Sr) 11.7 21.6 48.2 18.5 
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45Si5La(Sr) 10.6 17.8 50.5 21.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



197 
 

Appendix 5 

Area% of 
[3]

B
3+

 and 
[4]

B
3+ 

obtained from the deconvolution of Raman spectra using Manara 

method where N4 is BO4 and N3(1) and N3(2) are loose BO3 and BO3 respectively  

glass code N3(1) N4 N3(2) 

10BZn15 34.7 42.3 23 

12.5BZn12.5 27.6 45.1 27.3 

15BZn10 31.1 50.3 18.5 

17.5BZn7.5 31 51.5 17.5 

20BZn5 25 51 24 

    

40SiZn20 19.6 42.6 37.7 

42.5SiZn17.5 27.9 43.8 28.3 

45SiZn15 32.4 49.2 18.5 

47.5SiZn12.5 32.9 50.1 16.9 

    

    

15BaSi40 28.7 49.7 21.6 

17.5BaSi37.5 34.3 52 13.7 

20BaSi35 27 50.2 21.2 

22.5BaSi32.5 31.1 55 13.9 

25BaSi30 25.5 60.2 14.2 

    

10BaAl10 28.7 49.7 21.6 

12BaAl8 23.5 51.7 24.8 

13BaAl7 8.1 52.8 39 

14BaAl6 34.3 53.9 11.8 

15BaAl5 31.2 58.3 10.5 

    

40Si20La(Ba)   

45Si15La(Ba) 39 52.2 9 

50Si10La(Ba) 3 68.7 28.3 

55Si5La(Ba) 8.5 82.3 9.2 

    

30Si20La(Sr)    
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35Si15La(Sr) 41 41 19 

40Si10La(Sr) 36.3 56.2 7.6 

45Si5La(Sr) 27 55 18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 6 

Deconvoluted Raman spectra for the silicate units of all series  



199 
 

 

 

 

 

 

Qo 

Q1 

Q2 

Q3 

15Ba Si40 

17.5Ba Si37.5 

20Ba Si35 



200 
 

 

 

 

 

 

 

 

 

 

 

22.5Ba Si32.5 

25Ba Si30 



201 
 

 

 

 

 

 

10Ba Al10 

12Ba Al8 

13Ba Al7 

14Ba Al6 

Q0 
Q1 

Q2 

Q3 



202 
 

 

 

 

 

 

 

10B Zn15 

12.5B Zn12.5 

15B Zn10 

Q0 
Q1 

Q2 

Q3 



203 
 

 

 

 

 

 

 

 

 

 

 

 

 

17.5B Zn7.5 

20B Zn5 



204 
 

 

 

 

 

 

40Si Zn20 

42.5Si Zn17.5 

45Si Zn15 

47.5Si Zn12.5 

Q0 
Q1 

Q2 
Q3 



205 
 

 

 

 

 

 

35Si15La (Sr) 

 40Si 10La(Sr) 

45Si5La (Sr) 

Q0 

Q1 
Q2 

Q3 



206 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

40Si15La (Sr) 

15La Si40 (Sr) 



207 
 

Appendix 7 

Raman spectra of Borate units for all series 
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