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Abstract 
 

Biological invasions are a major facet of anthropogenic global change, with severe negative 

environmental and socioecological impacts. Effective and efficient management of biological 

invasions requires a mechanistic understanding of the factors driving invasion success and impact. 

I investigate three factors likely to have broad relevance in explaining success and impact of alien 

invaders: resource use, behaviour and propagule pressure.  

 

Alien decapod and amphipod crustaceans may have different patterns of trophic resource use to 

native analogues. Through quantification of functional responses and food ‘choice’, I highlight 

an exceptionally large predatory impact of alien Eriocheir sinensis on invertebrate prey, relative 

to both native and alien crayfish. Through similar methods, I suggest the larger size of alien 

Dikerogammarus villosus relative to native Gammarus pulex could facilitate higher predatory 

impacts on fish eggs and larvae.  

 

I quantify personality traits (boldness, exploration, activity, sociability and voracity) of invasive 

and native decapod crustaceans in the laboratory. Invasive E. sinensis and Pacifastacus 

leniusculus were bolder than European Austropotamobius pallipes. Boldness may a common trait 

of successful, high-impact invaders. I provide the first evidence of personality (consistent within-

individual behaviours) in these decapods, but find no evidence that it drives dispersal in signal 

crayfish. Comparisons of core and invasion-front populations of P. leniusculus suggest its spread 

is driven by density rather than behaviour.  

 

Using experimental invasions of ciliate protists into laboratory microcosms, I provide quantitative 

data to show how propagule pressure – the number of introduced organisms and introduction 

events – can increase invasion success (rate and population density) and invader impact.  

 

In general, resource use, behaviour and propagule pressure all have potential to predict the 

identity, impact and dynamics of successful invaders and thus inform management strategies. 

Having measured metabolism alongside these other factors, I propose that metabolic rate could 

provide another readily-measurable, general predictor of invasion success and impact.  
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Chapter 1 
 

Introduction: the problem of biological invasions  
 

 

“They [biological invasions] are so frequent nowadays in every continent and island, and even 

in the oceans, that we need to understand what is causing them and try to arrive at some general 

viewpoint about the whole business.” 

Charles S. Elton (1958) 

 

 
1.1. Outline 

Alien species are one of the leading threats to global biodiversity and ecosystem function (Sala et 

al. 2000; Millennium Ecosystem Assessment 2005). Biological invasions are the process by 

which alien species are introduced, established and thrive outside their native range. Effective 

prediction of invasions and management of alien species relies on a mechanistic understanding of 

the processes that facilitate successful invasions and the factors that contribute to large impacts 

of invaders. This thesis investigates some key mechanisms related to invasion success and impact, 

using invasive Crustacea and representative protists as model systems. I aim to provide specific 

information about success and impact in these systems, whilst providing case studies to inform 

more general understanding and potential tools for assessing invasion success and impact. 

  

This Chapter sets this work in context. First, I introduce the concept of biological invasions and 

outline why they are of research interest: invasions can have negative impacts, but also offer 

insights into ecological patterns and processes. Second, I explain options for management of 

biological invasions and how these could be improved by a mechanistic understanding. I then 

outline existing mechanistic hypotheses for invasion success and impact, and identify three foci 

for this thesis: propagule pressure, behavioural traits and resource use. I briefly introduce the 

study systems I use to investigate these mechanisms, and finally expand on the aim and structure 

of the thesis.  

 

1.2. The Anthropocene and biological invasions 

Human activity is having strong, pervasive and inter-related effects on the Earth’s environment 

(Vitousek et al. 1997). Current rapid climate change is associated with anthropogenic emissions 

of CO2 and other greenhouse gases (IPCC 2014). The Earth’s oceans contain over five trillion 

floating plastic particles, with large debris causing a physical hazard for marine life and small 



2 

 

particles acting as a carrier for toxic chemicals into the food web (Eriksen et al. 2014). As humans 

move themselves and cargo around the world, at an ever increasing rate and on an expanding 

diversity of routes, an increasing number and diversity of species are being introduced beyond 

their native range where they can have serious negative impacts (Hulme 2009). Extinction rates 

are so much greater than background that we are arguably experiencing a sixth mass extinction 

(Dirzo and Raven 2003; Barnosky et al. 2011). The combined effect of human activities on the 

environment is so great that the current geological epoch may be appropriately referred to as the 

Anthropocene (Crutzen and Stoermer 2000).  

 

Biological invasions are one major facet of human-induced environmental change. Biological 

invasions are a process, involving the human-mediated transportation of organisms beyond their 

native range (wherein they are termed aliens), and the progression of these organisms through 

various stages towards being invasive (Fig. 1.1; Richardson et al. 2011). Over the last 60 years, 

increasing rates and diversifying routes of transport around the globe have led to a sharp increase 

in the number of alien introductions, and these are likely to continue into the foreseeable future 

(Vitousek et al. 1997; Hulme 2009; Rabitsch et al. 2016). Biological invasions are of interest 

because of the negative consequences they may have, but also as large-scale experiments in 

community ecology (section 1.2.2). 

 

1.2.1 Terminology and the invasion process 

There is much debate over terminology surrounding biological invasions, so the terminology and 

concepts used in this thesis are outlined in Fig. 1.1. An alien species (or more correctly, alien 

population of a species; Colautti and MacIsaac 2004) is one which has been transported by 

humans to an area in which it is not native (i.e. beyond its natural biogeographical limit). Some 

aliens are moved intentionally by their human chauffeurs (e.g. species utilised for agriculture, 

aquaculture, recreational or aesthetic purposes) whilst others travel incognito (e.g. hitchhikers in 

ballast water, in luggage, on recreational equipment or on transported produce).  

 

Whilst some aliens may remain in captivity or cultivation (e.g. pets, crops, zoo animals), others 

are subsequently introduced into the wild, wherein they are either casual or established: the latter 

form self-sustaining populations whilst the former do not. Depending on the species/population 

and nature of the recipient environment, somewhere between 5 and 50% of introduced aliens 

successfully establish in the novel range (Williamson and Fitter 1996; Jeschke and Strayer 2005).  

 

Ironically, the term invasive is one of the most misunderstood in invasion ecology. One definition 

of an invasive species is an alien that has spread over a large area in the wild, especially one that 
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forms multiple self-sustaining populations (Richardson et al. 2000; Blackburn et al. 2011). Again, 

a minority of species make the transition from established to invasive: probably somewhere 

between 5 and 50% (Williamson and Fitter 1996; Jeschke and Strayer 2005). Following this 

definition, a successful invasive species has crossed all barriers in the invasion process, having 

been introduced and then spreading beyond the area of first introduction (Fig. 1.1). Alternatively, 

invader success can be defined at any preliminary stage of the invasion process e.g. establishment 

success refers to an alien population successfully crossing the survival and reproduction barriers 

(Fig. 1.1), but not necessarily spreading. Different mechanisms might contribute to success at 

each stage, so it is often helpful to consider stage-by-stage success (as I do in Chapters 5 and 6).  
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Figure 1.1 The invasion process, modified from Blackburn et al. (2011). Populations (blue circles) progress 

from stage to stage (green) by crossing barriers (brown). Terminology for populations at each stage is given 

in red. White arrows describe transitions of populations across barriers; note that these can occur in both 

directions (the status of a population can change over time), or that multiple barriers can be crossed at once 

(e.g. deliberately introduced populations cross the Geography and Captivity barriers in one go). Success 

can be considered as the crossing of any single barrier, but overall invasion success requires the crossing 

of all barriers to become invasive; failure to become invasive can therefore occur at any stage of the 

invasion process. Black arrows indicate impacts of alien populations. An invader at any stage can have 

impact, but impact is likely to increase in magnitude through the invasion process. 
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Other definitions consider population size to contribute to invasiveness. Thus, an alien species 

may be considered invasive if it locally abundant (in the wild) but not widespread (Colautti and 

MacIsaac 2004) or only if it is both locally abundant and widespread (Valéry et al. 2008). This is 

more than just a semantic issue, as different processes are likely to drive abundance  and range 

(Colautti and MacIsaac 2004; Speek et al. 2011) and impact depends separately on both 

abundance and range (Parker et al. 1999). Here, I use ‘invasive’ to refer to spread only, but in 

recognition that abundance can be an important additional level of invasion success and modulator 

of impact, I include it in descriptions of invaders where appropriate and explicitly measure 

population size of protist invaders in Chapter 6. 

 

Further confusion over the term ‘invasive’ arises because in a policy context, invasive species are 

defined by negative impacts (black arrows, Fig. 1.1). For example, the European Union defines 

an invasive alien species as one, “whose introduction or spread has been found to threaten or 

adversely impact upon biodiversity and related ecosystem services” (EU 2014). Impact is not 

necessarily contingent on invasiveness (in the biological sense): it can occur at any stage of the 

invasion process, and there are examples of invaders that have not spread but have a strong local 

impact (e.g. Amur clam Potamocorbula amurensis in San Francisco Bay; Ricciardi et al. 2013). 

Equally, invasiveness does not always predict impact. Ricciardi and Cohen (2007) found no 

association between impact on native taxa and establishment success or spread rate in vertebrate 

taxa. As a specific example, the Eurasian aster Tragopogon dubius is a widespread invasive 

species in North America but occurs at low densities so has minimal ecological impact. Its 

windborne seeds facilitate wide dispersal, but are palatable to rodents limiting local abundance 

(Pearson et al. 2012). However, there is likely to be much overlap between biologically invasive 

species and policy-defined invasive species. Impact can be considered as a combination of per 

capita effect (E), abundance (A) and range (R) (Parker et al. 1999) such that widespread invasive 

species (large R) – especially those that are also numerically dominant (high A) – will tend to 

have large impacts. Accordingly, Richardson et al. (2000) estimated that the majority (between 

50 and 80%) of biologically invasive plant species have negative impacts. 

 

Finally, I note that native species could also be considered invasive, in either the biological sense 

(widespread) or in a policy context (having a negative impact/being pests). This illustrates the 

point that the concept of alien species is biogeographical, whilst being invasive is an ecological 

or social concept (Valéry et al. 2009). Invasiveness is typically dependent on novelty – and that 

can stem from a change IN the environment in the case of native invasive (e.g. following land use 

change or in response to climate change) or a change OF environment, as in the case of alien 

species (Valéry et al. 2008). However, the focus of invasion ecology – and this thesis – is on alien 

invaders, because aliens are more likely to become biologically invasive or have negative impacts 
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(Simberloff et al. 2012; Hassan and Ricciardi 2014). In Section 1.4, I outline possible mechanistic 

explanations for the success and impact of alien species. 

 

This thesis considers the question, “Why are invaders invasive?” from both the biological and 

policy perspectives. That is, I investigate both the success and impact of alien invaders. An 

invader is an organism, population or species at some point on the invasion process: it is the entity 

performing an invasion (Fig. 1.1). Taking ‘invasive’ in the biological sense, I investigate factors 

that allow invaders to enter and progress through various stages of the invasion process. In some 

cases (Chapter 4) I consider overall invasion success (transition through the entire invasion 

process to become fully invasive). Elsewhere, I define specific stages at which success is 

measured e.g. transport success and the influence of behaviour (section 1.4.2), spread of signal 

crayfish (Chapter 5) and establishment of protists (Chapter 6). Taking the policy definition of 

‘invasive’, I investigate mechanisms that might explain (and allow us to predict) why some 

invaders have larger impacts than others (Chapters 2 and 3).  

  

To clarify, herein I use the term ‘invasive’ in the biological context, referring to aliens that have 

spread from their original site of introduction (as in Fig. 1.1). An ‘invader’ is an entity undergoing 

an invasion. Invaders may or may not be fully invasive or damaging. To refer to species with 

impact, I use the terms ‘high-impact’ or ‘damaging’, rather than using the term invasive.  

 

1.2.2 Why are biological invasions important? 

Biological invasions are of great practical and scientific interest (Parker et al. 1999; Mack et al. 

2000). With respect to the former, many biological invasions are associated with strong impacts 

which can be detrimental to humans. This applied aspect of invasive species research forms the 

primary focus of this thesis. Regardless of impact, invasions are of scientific interest as semi-

natural experiments in species translocation and colonisation; this is a further, underlying theme 

of this thesis. 

 

Impacts are defined as net changes relative to a non-invaded or pre-invasion situation. The 

projection of human values onto impacts leads to their perception as positive or negative (Pyšek 

et al. 2012). Some alien species can have positive impacts: wheat Triticum spp. and cattle Bos 

taurus provide food, plantation forests provide timber products and recreational opportunities, 

and zebra mussel Dreissena polymorpha filter feeding can improve water quality (Pimentel et al. 

2001; McLaughlan and Aldridge 2013). However, a subset of aliens can be problematic. The 

proportion of aliens that have negative impacts is difficult to quantify – not all species have been 

assessed and not all impacts recorded, and it will vary between alien species and invaded 
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environments – but it is likely to be a minority (Simberloff 2011). Williamson and Fitter (1996) 

estimated that between 5 and 20% of established alien species have negative economic impacts. 

Of the freshwater aliens established in Europe or North America, Hassan and Ricciardi (2014) 

classify 5.8% and 9.1% respectively as pests (having negative socioeconomic impacts). Finally, 

severe negative impacts are caused by an even smaller subset of species: only 30% of alien bird 

species with known impacts on native taxa have a more than a minor impact (Evans et al. 2016). 

Although impacts can occur at any stage of the invasion process, their severity is likely to increase 

through the process as the abundance and/or range of the invader increases (Fig. 1.1). 

 

This thesis is concerned with the ecological impacts of alien species. Alien species can have 

ecological impacts across all levels of biological organisation, from genes to ecosystems (Parker 

et al. 1999). Aliens can hybridise with native species, or induce rapid evolution (Mooney and 

Cleland 2001), are one of the major causes of vertebrate and plant extinctions (Bellard et al. 2016) 

and can negatively affect ecosystem structure, function and service provision (Charles and Dukes 

2007; Pejchar and Mooney 2009; Piscart et al. 2011; Hänfling et al. 2011). Biological invasions 

are recognised as one of the leading threats to native biodiversity and ecosystem function 

worldwide (Sala et al. 2000; Millennium Ecosystem Assessment 2005). The success of a non-

random subset of aliens is leading to the biotic homogenisation, whereby genetic, taxonomic and 

functional diversity is being eroded at a global scale (Rosenzweig 2001; Olden et al. 2004; 

Capinha et al. 2015). Alien species now constitute a substantial proportion of many floras and 

faunas: of the British vascular flora, 21% (442/2065 species) are aliens (Vitousek et al. 1996) as 

are 29% (31/107 species) of British freshwater macrofauna (Keller, zu Ermgassen and Aldridge 

2009). 

 

Alien invaders can also have substantial socioeconomic impacts, which may or may not be related 

to ecological impacts. Social impacts of invaders include health problems such as the introduction 

of mosquito disease vectors to the Galapagos Islands (Bataille et al. 2009), and impacts on cultural 

heritage like the loss of local festivals centred on the native European crayfish Austropotamobius 

pallipes (Lodge et al. 2012). Economic costs associated with alien species arise from management 

(e.g. control, eradication and research) or impact (e.g. increased pest or predator activity, 

reduction in ecosystem service provision, higher prices) and can be substantial (Charles and 

Dukes 2007; Williams et al. 2010). Alien species are estimated to cost Great Britain £1.7bn per 

annum (Williams et al. 2010)  – equivalent to an extra annual ‘tax’ of £26 per capita. Globally, 

the cost of alien species is in the region of US$1.4 trillion, or 5% of the global economy (Pimentel 

et al. 2001). 
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All biological invasions, regardless of impact, offer semi-natural experiments in species 

translocation and colonisation that can inform general ecological and evolutionary understanding 

(Shea and Chesson 2002; Sax et al. 2007; Catford et al. 2009). For example, successful 

establishment of alien populations provides strong evidence that biological communities are not 

saturated, suggesting local competition is of limited importance (relative to regional processes 

such as speciation and dispersal) in determining species richness at a site (Sax et al. 2007). 

Further, genetic change in invading populations indicates that evolution can be extremely rapid 

in natural situations (Mooney and Cleland 2001), whilst the spread of invaders provides useful 

data to refine models of dispersal (Hastings et al. 2005). 

 

1.3 Management of biological invasions 

The severe negative impacts of some alien species necessitates management, but to be efficient 

and effective this must be carefully planned. The identification of species, sites, pathways and 

vectors to manage will be aided by a mechanistic understanding of success and impact. 

Understanding the mechanisms driving success through the invasion process can also inform the 

timing and design of management actions.   

 

1.3.1 Management through the invasion process  

Management of biological invasions involves averting or slowing invasion or reducing the 

impacts of invaders at some stage of the invasion process. Management options vary along the 

invasion process (Fig. 1.1; Sakai et al. 2001; EU 2014; Dunn and Hatcher 2015). Earlier 

interventions are likely to be more successful and, for damaging invaders, cost effective: 

prevention is better than cure (Bax et al. 2001; Caffrey et al. 2014). Unsurprisingly, much existing 

legislation on biological invasions has a strong focus on minimising the number and diversity of 

aliens transported and introduced to a novel range (Reaser et al. 2007; DEFRA 2015). 

Introductions can be prevented by good biosecurity such as import/export regulations, quarantines 

at international borders or mid-ocean ballast water exchange to expose coastal/estuarine 

hitchhikers to lethal high salinities. Having been ratified by a sufficient number of states in 

September 2016, the International Maritime Organisation’s Ballast Water Management Treaty 

will come into force in September 2017 (IMO 2016). Introductions through escape from captivity 

or cultivation can be prevented by secure housing (e.g. for animals in zoos, or fish in aquaculture), 

education of the pet-buying or gardening public to discourage release and/or legislative control, 

such as the UK Wildlife and Countryside Act 1981 (Simberloff et al. 2005).  

 

Post-introduction, management options for single alien populations shift to containment and 

eradication. Containment involves restricting the range of the alien population through good 
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biosecurity by users of the contaminated environment. Public users of contaminated environments 

for recreation can be an important vector for invaders (Anderson et al. 2015), so biosecurity 

campaigns targeted towards the public (e.g. Check Clean Dry; GB NNSS 2016a) are an important 

aspect of containment. Containment may also involve the eradication of satellite populations in 

the novel range to prevent spread, by mechanical or chemical means or with biological control 

agents. Ideally, the original alien population will also be eradicated. These eradications are more 

likely to be successful and are more cost effective if done soon after the alien population is 

established, so surveillance, early detection and rapid response to introductions are commonly 

employed. For example, in Great Britain the Non-Native Species Secretariat (NNSS) has a 

dynamic list of ‘Alert’ species (GB NNSS 2016b) – including (as of September 2016) the killer 

and demon shrimp Dikerogammarus villosus and D. haemobaphes, and the Asian hornet Vespa 

velutina – for which it encourages reports of sightings by the public and has rapid response 

protocols to eradicate incipient satellite (shrimp) or pioneer (hornet) populations.  

 

Eradication of fully invasive species, especially when they are also abundant, is difficult. Extreme 

biological, physical or chemical control methods (e.g. biocide treatment, flaming, dewatering, 

manual removal) have varying levels of success, can require large investments of time and money, 

and can have negative side effects (Aldridge et al. 2015). An alternative strategy is mitigation of 

impact e.g. creation of refuges for species threatened by an invasion. For white-clawed crayfish 

threatened by signal crayfish invasions in Great Britain, Ark Sites are being established in isolated 

lotic stretches and lentic bodies, beyond the reach of the invading crayfish (Peay 2009). 

 

1.3.2 What to manage: risk assessment 

Resources for management are limited. We cannot, for example, assign every potential invader 

as an Alert species or continuously monitor every potential site which may be invaded.  Therefore, 

we must focus management efforts where the risk of impact is greatest to give the maximum 

return on investment into management. In this vein, the 2014 European Union Regulation on 

invasive alien species explicitly states that, “management measures should be proportional to the 

impact on the environment” (EU 2014). 

  

Such prioritisation relies on risk assessment, in which risk is a product of the likelihood of an 

event and severity of the consequences (NRC 2002). In the context of biological invasions, risk 

assessment is concerned with the likelihood of an invader crossing invasion barriers (Fig. 1.1) 

and the severity of its impact. In addition to scientific evidence, value judgements will come into 

play when assessing the severity of impact (Pyšek et al. 2012; Kumschick et al. 2012). Risk 

assessments can be applied to vectors (mode of introduction), pathways (source of introduced 
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organisms), sites (recipient locations) or species. Risk assessments may be conducted for 

potentially damaging invaders, prior to their introduction, to identify targets for preventative 

management, or can be conducted following introduction to allocate resources for containment or 

eradication (Parker et al. 1999; Andersen et al. 2004; Kumschick et al. 2012). 

 

The risk posed by individual species can be assessed using scoring systems based on their 

characteristics and/or history of invasion success and impact. As an early example, the Australian 

Weed Risk Assessment (Pheloung et al. 1999) evaluates plant species for importation based on 

49 questions regarding their attributes and impacts. High-scoring plants (with ‘high’ being 

defined against a training set of known weeds and non-weeds) are deemed too great a risk to 

import.  More recently, Roy et al. (2014) used expert opinion to score likely success and impact 

of potential invaders to Great Britain, identifying species that might be the focus of heightened 

surveillance efforts to prevent introduction. In addition, scoring systems can be used to rank the 

impacts of established invaders to prioritise their management (Nentwig et al. 2009; Kumschick 

et al. 2012; Blackburn et al. 2014). Laverty et al. (2015b) applied the Generic Impact Scoring 

System to aquatic macroinvertebrates, identifying species likely to have a high impact in the field 

(Eriocheir sinensis, Dreissena polymorpha and Pacifastacus leniusculus) as well as knowledge 

gaps for 12 species with no known impact. Data in Chapters 2-5 could contribute to such risk 

assessments for specific taxa, as well as informing criteria used in generalised risk assessments.  

  

Vectors, pathways and sites are often considered together in risk assessments based on 

socioeconomic and environmental factors. For example, Chan et al. (2013) focussed on the ballast 

water vector and used environmental data to identify certain ports (e.g. Churchill, Manitoba) and 

pathways (from coastal domestic sources) associated with the greatest risk of invasion – based on 

environmental similarity between recipient and donor regions, and the number of alien individuals 

likely to be introduced (propagule pressure). The identity of species transported also feeds into 

pathway risk assessments such as that of Chan et al. (2013): pathways that transport high impact 

invaders are higher priorities for management. Meanwhile, Gallardo and Aldridge (2013) 

identified areas of the British Isles most at risk of invasion by high-impact aquatic plants and 

animals based on a combination of climatic, geological and land-use variables with 

socioeconomic variables such as distance to ports and the Human Influence Index. Thus, they 

implicitly considered the interaction between pathways and sites (environmental suitability) and 

exposure to relevant vectors for the focal species. 

 

Clearly, all of these risk assessments rely on some existing knowledge of the factors leading to 

invasion success or impact. However, this tends to be correlative rather than mechanistic (e.g. 

climate matching, history of success or impact in the focal species or close relative) or even 
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shaped by expert judgement (e.g. horizon scanning exercises). Our ability to prioritise alien 

species for management would be improved by more detailed information for specific species, 

and a better mechanistic understanding of invasion success and impact that would allow 

prediction and generalisation (see Section 1.4).  

 

1.3.3 How to manage: designing effective strategies  

Management strategies for alien species can be informed by explicit experimentation: trying 

different strategies and seeing what works (Peay et al. 2006; Aldridge et al. 2015). However, an 

understanding of the mechanisms underlying invasion and impact can inform management 

techniques and strategies a priori (Suarez et al. 1999; Byers et al. 2002).  

 

A mechanistic understanding of invasions can be used to reduce the success of alien species. For 

example, models based on demographic parameters can be interrogated to identify the “Achilles 

heel” of a particular alien species: the life stage that makes the greatest contribution to population 

persistence. In this manner, Sebert-Cuvillier et al. (2007) identified eradication of the juvenile 

bank of invasive American black cherry Prunus serotina as the most effective method of control. 

Similarly, Houghton et al. (2015) used demographic models to identify the optimal timing and 

combination of control strategies to limit signal crayfish populations. Knowing the mechanistic 

relationship between propagule pressure and success – for example whether the number of 

individuals introduced per event or number of events is most important, and whether there are 

any threshold effects – is important for determining how to manage pathways and vectors for 

alien introductions (Hulme et al. 2008). 

 

Alternatively, mechanisms can be manipulated to mitigate impact. For example, if predation is 

demonstrated to be the main mechanistic driver of impact, then changing the behaviour of 

predators or their victims could offer a mitigation strategy – even if predator numbers can’t be 

controlled within economic or biological reason (Sutherland 1998). Equally, if naiveté of native 

prey is the mechanism underlying impact (Cox and Lima 2006), then a potential management 

strategy would be to subsidise the survival of the native species for long enough to allow the 

evolution of appropriate responses. Simply, this could involve provision of additional refugia 

(Schlaepfer et al. 2005).  

 

1.4. Mechanisms underlying invasion success and impact 

In his seminal work on biological invasions, Charles Elton noted that, “we need to understand 

what is causing [biological invasions] and try to arrive at some general viewpoint about the whole 

business” (Elton 1958). A mechanistic understanding of the proximate factors leading to invasion 
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success and impact would allow sound predictions (Dick et al. 2014). Predictions, models or tools 

based on a deep mechanistic understanding are robust across contexts, and less sensitive to 

stochasticity and nonlinearity when extrapolating beyond observed conditions (Bolker 2008; 

Kearney and Porter 2009). Thus, a mechanistic understanding facilitates predictions for new and 

emerging invaders with no invasion history, and for extrapolating existing invasions into a rapidly 

changing future world (Kueffer et al. 2013).  

 

Many mechanistic explanations have been proposed for the success of biological invaders and 

their ecological impact. Catford et al. (2009) and Ricciardi et al. (2013) provide overviews of 

these mechanistic hypotheses, which are summarised and synthesised in Table 1.1. This table 

highlights that similar mechanisms are likely to contribute to both success and impact. The 

mechanisms describe how abundance (A), range (R) or per capita effect (E) of an alien species 

may be increased. Invasion success is defined and favoured by these factors (cf. Fig. 1.1), just as 

an increase in these factors is associated with a larger impact (Parker et al. 1999). However, the 

success and impact of alien species are not necessarily correlated and may be driven by different 

mechanisms (Ricciardi and Cohen 2007; Speek et al. 2011; Pyšek et al. 2012).  

  

Overlap between the mechanistic hypotheses in Table 1.1 is reflected by grouping into general 

themes: introduction effort, species traits, distinctiveness of the invader, new associations formed 

in the invaded range, and abiotic characteristics of the invaded range. Specific hypotheses vary 

the details within these themes. The hypotheses can also be categorised by four fundamental 

drivers of success and impact (or their interactions): (P) propagule pressure (the number of 

individuals introduced), (BI) the biology of the invading organism, (BC) the biology of the 

recipient community and (A) the abiotic conditions recipient environment (Ricciardi 2003; Hayes 

and Barry 2007; Catford et al. 2009; Ricciardi et al. 2011; Pyšek et al. 2012). These drivers are 

important because the success and impact of any particular invasion depends on all four being 

accommodating, if not favourable (Catford et al. 2009). A neat analogy of this concept is the lock-

key model of Heger and Trepl (2003), whereby invasion success depends on how well the 

invading organism (BI) fits into the recipient environment (BC and A). Similarly, Reaser et al. 

(2007) liken propagule pressure (P) to straws that can break a camel’s back, but the number of 

straws that will do so depends on the length and weight of each straw (BI) and the age, health and 

other cargo of the camel (BC and A). These four drivers thus provide a general framework for 

understanding biological invasions.  

 

 

 

 

Table 1.1 Overview of mechanistic hypotheses that may explain invasion success and impact, adapted from 

Catford et al. (2009) and Ricciardi et al. (2013). Hypotheses are grouped into Themes based on similarities 

in proposed mechanisms. B – mechanism can involve behavioural interactions; R – mechanism can involve 

resource use. 
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m
p

et
it

io
n

 i
s 

m
in

im
al

 a
n

d
 i

m
p

ac
t 

is
 u

n
p

re
ce

d
en

te
d
; 

o
r 

p
re

se
n

t 
ch

al
le

n
g
es

 t
o
 

w
h

ic
h

 
th

e 
n

at
iv

e 
co

m
m

u
n

it
y
 

is
 

n
o

t 

ad
ap

te
d

, 
g
iv

in
g
 t

h
e 

al
ie

n
 a

n
 a

d
v
an

ta
g
e 

in
 

ec
o

lo
g
ic

al
 i

n
te

ra
ct

io
n

s.
  

L
im

it
in

g
 s

im
il

ar
it

y
/ 

E
m

p
ty

 n
ic

h
e 

In
v
ad

er
s 

ar
e 

n
o

t 
si

m
il

ar
 

to
 

sp
ec

ie
s 

in
 

th
e 

n
o

v
el

 

co
m

m
u

n
it

y
, 

so
 f

il
l 

an
 e

m
p

ty
 n

ic
h

e.
 

D
ar

w
in

 (
1

8
5

9
);

 

M
ac

A
rt

h
u

r 
an

d
 

L
ev

in
s 

(1
9
6

7
);

 

V
it

o
u

se
k
 (

1
9
9

0
);

 

C
le

la
n

d
 (

2
0

1
1

) 


 

 

 
 

N
o

v
el

 w
ea

p
o

n
s 

In
v
ad

er
 h

as
 n

o
v
el

 b
eh

av
io

u
ra

l,
 c

h
em

ic
al

 o
r 

p
h

y
si

ca
l 

w
ea

p
o

n
s 

to
 

w
h

ic
h

 
re

si
d

en
t 

sp
ec

ie
s 

ca
n

n
o

t 
re

sp
o
n

d
 

ap
p

ro
p

ri
at

el
y

 

C
al

la
w

ay
 a

n
d

 

R
id

en
o
u

r 
(2

0
0

4
) 


 

 

 
 

 
E

v
o

lu
ti

o
n

ar
y
 n

ai
v
et

é
 

R
es

id
en

t 
sp

ec
ie

s 
h

av
e 

n
o

t 
ev

o
lv

ed
 w

it
h

 t
h

e 
in

v
ad

er
, 
so

 

la
ck

 a
p

p
ro

p
ri

at
e 

re
sp

o
n

se
s 

to
 t

h
e 

al
ie

n
 a

rc
h

et
y
p

e.
 

D
ia

m
o

n
d

 a
n
d

 C
as

e 

(1
9
8

6
);

 C
o

x
 a

n
d
 L

im
a 

(2
0
0

6
) 


 

 

 
 

 
P

h
y
lo

g
en

et
ic

 

d
is

ti
n

ct
iv

en
es

s 

P
h

y
lo

g
en

et
ic

 
d

is
ti

n
ct

iv
en

es
s 

is
 

a 
p

ro
x
y
 

fo
r 

tr
ai

t 

d
is

ti
n

ct
iv

en
es

s.
 

N
o

v
el

 
ta

x
a 

to
 

a 
co

m
m

u
n

it
y
 

h
av

e 

g
re

at
er

 s
u

cc
es

s 
an

d
 i

m
p

ac
t.

 

R
ic

ci
ar

d
i 

an
d

 

A
tk

in
so

n
 (

2
0
0

4
) 
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T
h

e
m

e
 

K
ey

 

d
ri

v
er

(s
)1

 

L
in

k
 t

o
 s

u
c
ce

ss
 a

n
d

 i
m

p
a

ct
2
 

S
p

ec
if

ic
 h

y
p

o
th

es
is

 
E

x
p

la
n

a
ti

o
n

 o
f 

h
y

p
o
th

es
is

 
K

ey
 R

ef
er

en
ce

s 
B
 

R
 

N
ew

 

as
so

ci
at

io
n

s 

B
I 
*
 P

  

B
I 
*
 B

C
 

C
h

an
g
es

 i
n
 s

p
ec

ie
s 

in
te

ra
ct

io
n

s 
in

 t
h

e 
n

ew
 

en
v
ir

o
n

m
en

t.
 I

n
v
ad

er
 b

en
ef

it
s 

(a
b

u
n

d
an

ce
 

an
d

 
v
ir

il
it

y
) 

fr
o

m
 

in
cr

ea
se

d
 

p
o

si
ti

v
e 

in
te

ra
ct

io
n

s,
 

re
d
u

ce
d

 
n

eg
at

iv
e 

in
te

ra
ct

io
n

s,
 o

r 
in

cr
ea

se
d

 n
eg

at
iv

e 
ef

fe
ct

s 

o
n

 r
es

id
en

t 
sp

ec
ie

s.
  

E
n

em
y
 r

el
ea

se
 

E
n

em
ie

s 
fr

o
m

 i
n

v
ad

er
's

 n
at

iv
e 

ra
n

g
e 

ar
e 

n
o

t 
p

re
se

n
t 

in
 

n
o

v
el

 r
an

g
e.

 P
re

d
at

o
rs

 a
n

d
 p

ar
as

it
es

 a
re

 n
o

t 
sa

m
p

le
d

 

an
d

 i
n

tr
o
d

u
ce

d
 w

it
h

 t
h

e 
in

v
ad

er
. 

K
ea

n
e 

an
d

 C
ra

w
le

y
 

(2
0
0

2
);

 C
o

la
u

tt
i 

et
 a

l.
 

(2
0
0

4
) 


 

 

 
 

E
n

em
y
 r

ed
u

ct
io

n
 

S
im

il
ar

 
to

 
en

em
y
 

re
le

as
e,

 
b

u
t 

w
it

h
 

a 
re

d
u

ct
io

n
 

o
f 

en
em

ie
s 

ra
th

er
 t

h
an

 c
o

m
p

le
te

 l
o

ss
. 

C
o

la
u

tt
i 

et
 a

l.
 (

2
0
0

4
) 


 

 

 
 

E
n

em
y
 o

f 
m

y
 e

n
em

y
 

In
v
ad

er
 
ac

cu
m

u
la

te
s 

g
en

er
al

is
t 

p
at

h
o

g
en

s 
(f

ro
m

 
it

s 

n
at

iv
e 

an
d

/o
r 

n
o

v
el

 r
an

g
e)

, 
w

h
ic

h
 a

ff
ec

t 
it

s 
fi

tn
es

s 
b

u
t 

af
fe

ct
 r

es
id

en
t 

sp
ec

ie
s 

m
o

re
. 

 

C
o

la
u

tt
i 

et
 a

l.
 (

2
0
0

4
);

 

E
p

p
in

g
a 

et
 a

l.
 (

2
0

0
6

) 


 

 

 
 

E
n

em
y
 i

n
v
er

si
o

n
 

N
at

u
ra

l 
en

em
ie

s 
ar

e 
in

tr
o

d
u

ce
d

 w
it

h
 t

h
e 

in
v
ad

er
, 

b
u

t 

th
ei

r 
ef

fe
ct

 
is

 
lo

st
 

(o
r 

re
v
er

se
s)

 
in

 
th

e 
n

o
v
el

 

en
v
ir

o
n

m
en

t.
 

C
o

la
u

tt
i 

et
 a

l.
 (

2
0
0

4
) 


 

 

 
 

E
v
o

lu
ti

o
n

 o
f 

in
cr

ea
se

d
 c

o
m

p
et

it
iv

e 

ab
il

it
y
 

R
el

ea
se

 f
ro

m
 e

n
em

ie
s 

fr
ee

s 
u

p
 r

es
o

u
rc

es
 w

h
ic

h
 c

an
 b

e 

al
lo

ca
te

d
 

to
 

g
ro

w
th

 
an

d
 

re
p

ro
d

u
ct

io
n
 

(g
re

at
er

 

co
m

p
et

it
iv

e 
ab

il
it

y
) 

o
r 

ad
ap

ta
ti

o
n

 
to

 
th

e 
n
o

v
el

 

en
v
ir

o
n

m
en

t.
  
 

B
lo

ss
ey

 a
n

d
 N

o
tz

o
ld

 

(1
9
9

5
) 

 


 

 

 
 

S
p

ec
ia

li
st

-G
en

er
al

is
t 

S
u

cc
es

s 
an

d
 i
m

p
ac

t 
g
re

at
es

t 
w

h
en

 e
n

em
ie

s 
in

 t
h

e 
n

o
v
el

 

ra
n

g
e 

ar
e 

sp
ec

ia
li

st
s 

(d
o

 
n

o
t 

h
ar

m
 

in
v
ad

er
) 

b
u

t 

m
u

tu
al

is
ts

 a
re

 g
en

er
al

is
ts

 (
b

en
ef

it
 i

n
v
ad

er
).

  

C
al

la
w

ay
 e

t 
al

. 

(2
0
0

4
);

 S
ax

 e
t 

al
. 

(2
0
0

7
) 


 

 

 
 

In
v
as

io
n

al
 m

el
td

o
w

n
 

E
x
is

ti
n

g
 a

li
en

s 
b

en
ef

it
 a

 n
o

v
el

 i
n

v
ad

er
, 

p
er

h
ap

s 
b

y
 

re
st

o
ri

n
g
 b

en
ef

ic
ia

l 
in

te
ra

ct
io

n
s 

fr
o

m
 t

h
e 

n
at

iv
e 

ra
n

g
e.

 

S
im

b
er

lo
ff

 a
n

d
 H

o
ll

e 

(1
9
9

9
) 


 

 

 
 

B
io

ti
c 

in
d

ir
ec

t 
ef

fe
ct

s 
In

v
ad

er
 i

s 
in

v
o

lv
ed

 i
n
 i

n
d

ir
ec

t 
in

te
ra

ct
io

n
s 

in
 n

o
v
el

 

ra
n

g
e,

 
w

h
ic

h
 

ca
n

 
ai

d
 

it
s 

es
ta

b
li

sh
m

en
t 

o
r 

m
ed

ia
te

 

im
p

ac
t.

 

C
al

la
w

ay
 e

t 
al

. 

(2
0
0

4
);

 W
h

it
e 

et
 a

l.
 

(2
0
0

6
) 


 

 

A
b

io
ti

c 

en
v
ir

o
n

m
en

t 

A
 *

 B
I 

A
b

io
ti

c 
co

n
d

it
io

n
s 

(p
er

h
ap

s 
at

 
a 

ce
rt

ai
n
 

p
o

in
t 

in
 s

p
ac

e 
o

r 
ti

m
e)

 a
re

 f
av

o
u

ra
b

le
 f

o
r 

in
v
as

io
n

 t
o

 o
cc

u
r,

 a
n

d
 f

o
r 

th
e 

in
v
ad

er
 t

o
 

re
ac

h
 h

ig
h

 a
b

u
n

d
an

ce
. 

O
p

p
o

rt
u
n

it
y
 w

in
d

o
w

s/
 

E
n

v
ir

o
n

m
en

ta
l 

h
et

er
o

g
en

ei
ty

 

N
ic

h
e 

av
ai

la
b
il

it
y
 i
s 

d
y
n

am
ic

 i
n

 s
p
ac

e 
an

d
 t
im

e.
 A

li
en

s 

ca
n

 i
n

v
ad

e 
em

p
ty

 n
ic

h
es

 w
h

en
 a

n
d

 w
h

er
e 

th
ey

 b
ec

o
m

e 

av
ai

la
b

le
. 

Jo
h

n
st

o
n

e 
(1

9
8

6
);

 

S
h

ea
 a

n
d

 C
h

es
so

n
 

(2
0
0

2
);

 L
ev

in
e 

an
d

 

R
ee

s 
(2

0
0

4
);

 

M
el

b
o
u

rn
e 

et
 a

l.
 

(2
0
0

7
) 
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T
h

e
m

e
 

K
ey

 

d
ri

v
er

(s
)1

 

L
in

k
 t

o
 s

u
c
ce

ss
 a

n
d

 i
m

p
a

ct
2
 

S
p

ec
if

ic
 h

y
p

o
th

es
is

 
E

x
p

la
n

a
ti

o
n

 o
f 

h
y

p
o
th

es
is

 
K

ey
 R

ef
er

en
ce

s 
B
 

R
 

 
 

 
E

n
v
ir

o
n

m
en

ta
l 

m
at

ch
in

g
/ 

H
ab

it
at

 f
il

te
ri

n
g
 

A
li

en
s 

ar
e 

b
et

te
r 

ab
le

 
to

 
es

ta
b

li
sh

, 
an

d
 
h

av
e 

la
rg

e 

im
p

ac
ts

 s
o

o
n

er
, 
in

 e
n

v
ir

o
n

m
en

ts
 s

im
il

ar
 t

o
 t

h
ei

r 
n

at
iv

e 

ra
n

g
e.

 

W
ei

h
er

 a
n

d
 K

ed
d

y
 

(1
9
9

5
);

 W
il

li
am

so
n

 

(1
9
9

6
);

 K
es

tr
u
p

 a
n
d

 

R
ic

ci
ar

d
i 

(2
0
0

9
) 


 


 

 
 

 
D

is
tu

rb
an

ce
 

D
is

tu
rb

an
ce

 
in

cr
ea

se
s 

re
so

u
rc

e 
av

ai
la

b
il

it
y
, 

re
d

u
ce

s 

co
m

p
et

it
io

n
 

fr
o

m
 

re
si

d
en

ts
, 

o
r 

sh
if

ts
 

co
n

d
it

io
n

s 

to
w

ar
d

s 
th

o
se

 t
h

at
 f

av
o

u
r 

th
e 

al
ie

n
 o

v
er

 t
h

e 
n

at
iv

es
. 

S
h

er
 a

n
d
 H

y
at

t 

(1
9
9

9
);

 M
ac

D
o

u
g
al

l 

an
d

 T
u

rk
in

g
to

n
 

(2
0
0

5
) 


 


 

 
 

 
F

lu
ct

u
at

in
g
 r

es
o

u
rc

es
/ 

In
cr

ea
se

d
 r

es
o

u
rc

e 

av
ai

la
b

il
it

y
 

R
es

o
u

rc
es

 a
re

 f
u

ll
y
 u

ti
li

se
d

 u
n
d

er
 n

o
rm

al
 c

o
n

d
it

io
n

s.
 

W
h

en
 

re
so

u
rc

es
 

b
ec

o
m

e 
av

ai
la

b
le

, 
th

ey
 

ca
n

 
b

e 

ex
p

lo
it

ed
 
b

y
 
a 

n
o

v
el

 
al

ie
n
 
to

 
es

ta
b

li
sh

, 
o

r 
u

se
d
 b

y
 

es
ta

b
li

sh
ed

 a
li

en
s 

to
 b

o
o

st
 v

ig
o

u
r.

 

S
h

er
 a

n
d
 H

y
at

t 

(1
9
9

9
);

 D
av

is
 e

t 
al

. 

(2
0
0

0
) 


 


 

 
 

 
D

y
n

am
ic

 e
q

u
il

ib
ri

u
m

 
D

is
tu

rb
an

ce
 

an
d

 
p

ro
d

u
ct

iv
it

y
 

in
te

ra
ct

 
to

 
d

et
er

m
in

e 

in
v
as

io
n

 s
u

cc
es

s 
an

d
 i
m

p
ac

t.
 T

h
ey

 m
ay

 b
e 

fa
v
o

u
re

d
 i

n
 

lo
w

 
d

is
tu

rb
an

ce
-l

o
w

 
p

ro
d
u

ct
iv

it
y
 

sy
st

em
s,

 
o

r 
h

ig
h
 

d
is

tu
rb

an
ce

-h
ig

h
 p

ro
d

u
ct

iv
it

y
 s

y
st

em
s.

 

H
u

st
o

n
 (

1
9

7
9

, 
2

0
0

4
) 


 


 

 
 

 
 

 
 

 
 

1
 F

o
ll

o
w

in
g
 t

er
m

in
o

lo
g
y
 o

f 
C

at
fo

rd
 e

t 
al

. 
(2

0
0

9
).

 A
 -

 a
b

io
ti

c 
co

n
d

it
io

n
s 

in
 t

h
e 

re
ci

p
ie

n
t 

en
v
ir

o
n

m
en

t;
 B

C
 -

 b
io

ti
c 

ch
ar

ac
te

ri
st

ic
s 

o
f 

th
e 

re
ci

p
ie

n
t 

co
m

m
u

n
it

y
; 

B
I 

- 
b

io
ti

c 
ch

ar
ac

te
ri

st
ic

s 
o

f 
th

e 
al

ie
n
 

o
rg

an
is

m
; 

P
 -

 p
ro

p
ag

u
le

 p
re

ss
u

re
. 

2
 H

y
p

o
th

es
es

 e
x
p

la
in

 s
u

cc
es

s 
if

 t
h

ey
 b

en
ef

it
 t

h
e 

in
v
ad

er
 d

ir
ec

tl
y
 (

e.
g

. 
ab

u
n

d
an

ce
, 
v
ig

o
u
r,

 f
re

e 
u

p
 r

es
o
u
rc

es
) 

o
r 

h
ar

m
 r

es
id

en
t 

sp
ec

ie
s 

w
h

ic
h

 i
n

 t
u

rn
 w

o
u

ld
 b

en
ef

it
 t

h
e 

in
v
ad

er
. 
H

y
p

o
th

es
es

 m
ay

 d
ir

ec
tl

y
 

ex
p

la
in

 i
m

p
ac

t 
(e

.g
. 

E
v
o

lu
ti

o
n

ar
y
 N

ai
v
et

é)
, 

o
r 

in
d
ir

ec
tl

y
 e

x
p

la
in

 i
m

p
ac

t 
if

 i
t 

ar
is

es
 t

h
ro

u
g
h
 i

n
cr

ea
si

n
g
 a

b
u

n
d

an
ce

 o
r 

ra
n

g
e 

ab
o

v
e 

th
e 

m
in

im
u

m
 n

e
ed

ed
 f

o
r 

su
cc

es
sf

u
l 

in
v
as

io
n

. 

  N
o

te
 t

h
e 

in
v
er

se
 o

f 
th

es
e 

h
y
p

o
th

es
es

 c
an

 e
x
p

la
in

 i
n

v
as

io
n

 f
ai

lu
re

 o
r 

lo
w

 i
m

p
ac

t,
 a

n
d

 t
h

es
e 

'in
v
er

se
 h

y
p

o
th

es
es

' m
ay

 h
av

e 
th

ei
r 

o
w

n
 n

am
es

. 
F

o
r 

ex
am

p
le

: 
 

- 
L

o
w

 g
en

et
ic

 d
iv

er
si

ty
 (

fr
o

m
 l

o
w

 P
ro

p
ag

u
le

 P
re

ss
u

re
) 

ca
n

 l
ea

d
 t

o
 I

n
cr

ea
se

d
 S

u
sc

e
p

ti
b

il
it

y
 o

f 
an

 i
n

v
ad

er
 t

o
 n

o
v
el

 e
n

em
ie

s 
(C

o
la

u
tt

i 
et

 a
l.

 2
0

0
4

) 

- 
In

 t
h

e 
ab

se
n

ce
 o

f 
D

is
tu

rb
an

ce
 o

f 
E

n
v
ir

o
n

m
en

ta
l 

H
et

er
o

g
en

ei
ty

, 
B

io
ti

c 
R

es
is

ta
n

ce
 (

p
re

se
n

ce
 o

f 
n

at
u

ra
l 

en
em

ie
s 

in
 t

h
e 

n
o

v
el

 r
an

g
e)

 c
an

 i
n
h

ib
it

 i
n

v
as

io
n

 (
L

ev
in

e 
et

 a
l.

 2
0

0
4
; 

A
lp

er
t 

2
0

0
6

) 

- 
U

n
d

er
 t

h
e 

S
p

ec
ia

li
st

-G
e
n

er
a
li

st
 h

y
p

o
th

es
is

, 
sp

ec
ia

li
st

 m
u

tu
al

is
ts

 a
n

d
 g

en
er

al
is

t 
en

em
ie

s 
in

 t
h

e 
n
o

v
el

 r
an

g
e 

ca
n

 i
n

h
ib

it
 i

n
v
as

io
n

 (
C

al
la

w
ay

 e
t 

al
. 

2
0

0
4
; 

S
ax

 e
t 

al
. 
2

0
0

7
) 

- 
L

o
ss

 o
f 

as
so

ci
at

io
n

s 
th

ro
u

g
h

 t
h

e 
in

v
as

io
n

 p
ro

ce
ss

 (
cf

. 
en

em
y
 r

el
ea

se
) 

ca
n

 i
n

h
ib

it
 i

n
v
as

io
n

 i
f 

th
o

se
 a

ss
o

ci
at

io
n

s 
b

en
ef

it
te

d
 t

h
e 

in
v
ad

er
 (

M
is

se
d

 M
u

tu
a
li

sm
s;

 M
it

ch
el

l 
et

 a
l.

 2
0
0

6
; 

A
lp

er
t 

2
0
0

6
) 

 



15 

 

This being said, primary research into invasion mechanisms involves examining the specific, 

discrete hypotheses within this conceptual framework. Individual factors of interest can be varied 

whilst others are controlled or accounted for (Barney and Whitlow 2008; Catford et al. 2009). 

Although specific factors might not be able to explain all variance in invasion success, and may 

be neither necessary nor sufficient in any single invasion, we can identify factors that are generally 

associated with an increased probability of success and impact (Rejmánek and Richardson 1996; 

Heger and Trepl 2003; Pyšek et al. 2012; Gaertner et al. 2014). Knowledge of whether and how 

specific factors affect invasion success or impact can be incorporated into holistic decision-

making tools e.g. decision trees (Kolar and Lodge 2002) or models (Gallardo and Aldridge 2013).  

 

This thesis focusses on three factors contributing to invasion success and impact: propagule 

pressure, behaviour and resource use – introduced in more detail below. Behaviour and resource 

use both fall into the ‘species traits’ theme. Thus, the focal factors of this thesis are amongst the 

simplest themes likely to be applicable to most if not all invasions (Colautti et al. 2006; Catford 

et al. 2009). Further, the behavioural and resource use traits have broad relevance in that they may 

contribute to most of the specific invasion hypotheses in Table 1.1. They mediate the response of 

individuals to environmental conditions (A) as well as interaction with the novel community (BC).    

 

1.4.1 Propagule pressure 

Propagule pressure is a measure of the number of alien individuals introduced to a novel area. It 

is a combination of the number of introduction attempts (propagule number) and the number of 

individuals introduced in each attempt (propagule size) (Lockwood et al. 2005).  

 

Propagule pressure is emerging as a consistent predictor of establishment success (Kolar and 

Lodge 2001; Hayes and Barry 2007), based on numerous empirical studies (Beirne 1975; 

Grevstad 1999; Lockwood et al. 2005; Simberloff 2009; Britton and Gozlan 2013). High 

propagule pressure can increase establishment success simply by introducing a greater number of 

individuals. In fluctuating environments, a large number of propagules can replace nascent 

populations lost to environmental stochasticity (Simberloff 2009), or increase the chance that 

propagules are introduced at a time when conditions are suitable for establishment (Haccou and 

Iwasa 1996). In more stable environments, a large propagule size is important to overcome 

demographic problems of small populations, such as demographic stochasticity (random 

fluctuations in reproductive output or sex ratio) or Allee effects (reduction of individual fitness at 

small population sizes; Taylor and Hastings 2005; Skarpaas and Økland 2009), to ensure the 

nascent population persists.  
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Above the threshold for establishment, higher propagule pressures can increase the size (von 

Holle and Simberloff 2005) and growth rate (Grevstad 1999) of an invading population. Faster 

growing, larger populations are more likely to spread across the landscape to become fully 

invasive (Duncan et al. 1999; Bowler and Benton 2005). Similarly, larger, more widespread 

populations tend to have stronger impacts (Parker et al. 1999). Fast-growing alien populations, 

fuelled by high propagule pressures, can also exert a larger impact because they allow native 

species less time to adapt to the novel invader or recover from disturbance that facilitated invasion 

(Ricciardi et al. 2011). Finally, high propagule pressures may contribute to impact simply by 

sustaining an alien population where it would not otherwise establish (Gonzalez et al. 2008). In 

Chapter 6 I detail an experimental investigation of the effect of propagule size and number on 

invasion success and impact in protist microcosms. 

 

In addition to the effect of numbers alone, higher propagule pressures may be associated with a 

genetic rescue effect: an increased input of genetic material to the alien population. This may 

increase establishment success by introducing a genotype preadapted to the novel range, or may 

increase genetic variation within the population to provide the raw material for evolution and 

selection of new, successful genetic combinations. Greater genetic diversity may also contribute 

to increased abundance and range expansion, and consequently impact (Ricciardi et al. 2011). For 

example, since 1817 alien green crabs Carcinus maenas have been found on the eastern seaboard 

of North America. It is thought that in the 1980s, subsequent introductions from the native range 

in Europe to the edge of the novel range in Canada increased the genetic diversity of the crabs at 

the invasion front. As a result, C. maenas was able to expand its range (and spatial extent of its 

impact) into cooler, more northerly waters (Roman 2006). 

 

However, increased propagule pressure may not always increase invasion success or impact. In 

some cases, there may be a saturating relationship between propagule pressure and success or 

impact, such that introducing any more individuals has no further effect. Moreover, increasing 

propagule pressure could in fact decrease invasion success if it swamps the establishing alien 

population with poorly adapted genotypes from the native range (Holt et al. 2005), or increases 

the chance that parasites are also introduced from the native range (Torchin et al. 2003). 

 

Although there is strong evidence that propagule pressure increases establishment success, we 

have a poorer understanding of how it affects other aspects of the invasion process such as spread, 

and how it contributes to impact. Many studies of propagule pressure are based on introductions 

to the field and so are unavoidably confounded by other factors that affect invasion success 

(biology of the invading organism, and conditions in the invaded habitat). Further, our 

mechanistic understanding of propagule pressure is limited (Blackburn et al. 2015). For example, 
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we don’t understand the quantitative relationship between propagule pressure and success (the 

dose-response curve) (Lockwood et al. 2005), the relative importance of propagule size and 

number (Wittmann et al. 2014), and how propagule pressure might interact with invader and 

recipient-environment biology (Lockwood et al. 2005; Zayed et al. 2007; Chapple et al. 2012; 

Duncan 2016). 

 

1.4.2 Behaviour 

Behaviour – the responses, movements and actions of an animal – could be a fundamentally 

important driver of success and impact in animal invasions (Holway and Suarez 1999; Catford et 

al. 2009). First, many hypotheses for success and impact depend on interactions between an alien 

species and its environment (Table 1.1), and those interactions are mediated by behaviour e.g. 

competition, predation, mutualism, habitat choice and activity patterns. The ability to exploit an 

empty niche may depend on behaviour, behavioural traits may be novel weapons, and the nature 

and intensity of parasite acquisition (in the native or novel range) may be related to activity levels, 

space use (Boyer et al. 2010) or interactions with conspecifics (Aplin et al. 2013). Second, 

behaviour may provide a proxy measurement of other traits that could affect invasion success, 

such as fecundity and competitiveness, since all these traits may be linked in a ‘pace of life’ 

syndrome (Ricklefs and Wikelski 2002). Third, behaviour may modify other drivers of success 

and impact, for example if propagule pressure is associated with boldness or exploration 

behaviour, since these traits increase the likelihood of uptake in transport vectors (Chapple et al. 

2011; Chapple et al. 2012). Fourth, there is empirical evidence that behavioural traits can explain 

residual variation in invasion success and impact that is not explained by propagule pressure 

(Lockwood et al. 2005; Catford et al. 2009). The inclusion of behavioural traits in models 

improves predictions of establishment success (Sol et al. 2002; Suarez et al. 2005). Practically, 

small propagules might succeed where behavioural traits negate the problems of small population 

sizes. In the Argentine ant Linepithema humile, behavioural plasticity in terms of reduced 

intraspecific aggression facilitates the establishment of even small (10 worker) propagules 

(Sagata and Lester 2009).  

 

Behaviour can affect invasion success across all stages of the invasion process (Fig. 1.1) – 

although different behaviours may be favoured at different stages. Bold and exploratory species 

are most likely to proceed through the transport and introduction stages of unintentional 

introductions, as these behaviours favour uptake by transport vectors (freight, cargo and personal 

effects) and entry into the new environment. Accordingly, the delicate skink Lampropholis 

delciata, which is a successful invasive species outside of its native Australia, is more exploratory 

than the non-invasive garden skink L. guichenoti (Chapple et al. 2011). Other behaviours such as 
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flexibility in food choice, or sociality for thermoregulation, may facilitate survival during transit 

(Chapple et al. 2012). However, there is trade-off in that boldness and exploration may increase 

the chance of detection during transportation or immediately after introduction, when an alien 

population is most vulnerable to control (Section 1.3.1; Chapple et al. 2012).  

 

A different set of behavioural traits might facilitate establishment success. Aggressive species 

may be better able to outcompete incumbent natives, as in the case of the western bluebird Sialia 

mexicana replacing the incumbent mountain bluebird S. currucoides in the north west USA 

(Duckworth and Badyaev 2007). Behavioural plasticity may provide an initial solution to the 

challenges posed by a novel environment. Bird species with large brains (for a given body mass) 

and a higher frequency of foraging innovation have higher establishment success (Sol et al. 2002). 

At low propagule pressures, establishment may depend upon behaviours that mitigate Allee 

effects such as sociality, mate recognition and low dispersal tendency (Blackburn et al. 2009; 

Sinclair and Arnott 2016). 

 

Spread of an alien population can be human-mediated or ‘natural’. Where humans act as a 

dispersal vector, spread in the novel range can be thought of as a series of mini invasions from a 

beachhead (e.g. mitten crab E. sinensis transport from China to Europe and then to North 

America; Hänfling et al. 2002). In this case, bold and exploratory behaviours that favoured initial 

uptake will also favour subsequent spread. Natural dispersal is also clearly related to behaviour 

because it involves movement of individuals (Phillips and Suarez 2012). Qualitatively, species 

with behaviours that permit cheap, easy dispersal are likely to spread rapidly – this includes flight 

(in birds and insects) and passive dispersal (in pathogens and parasites) (Phillips and Suarez 

2012). However, the relationship between behaviours that vary continuously – the level of 

boldness, or aggression, for example – and dispersal may be highly context-dependent. Where 

there are functionally similar organisms to displace, high levels of aggression may be important 

for spread (Duckworth and Badyaev 2007). Where predation pressure is high, shyer species may 

disperse more rapidly while bold species ignore predators and stay put (Cote et al. 2010a; Cote et 

al. 2011). In Chapter 5, I investigate how behavioural traits might influence natural, within-

catchment dispersal of invasive signal crayfish.  

 

Behaviour may influence the impact of biological invaders. Qualitatively, negative ecological 

impacts are most commonly caused by alien species showing predatory behaviour (Sax and 

Gaines 2008), and the novel behaviours and strategies of alien predators can exaggerate their 

impact relative to native predators (Salo et al. 2007). Quantitatively, behavioural traits such as 

boldness and exploration can influence the total amount of food consumed per capita, as well as 

the pattern of resource use. For example, bold sticklebacks Gasterosteus aculeatus consume more 
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food than shyer conspecifics (Ward et al. 2004), as do exploratory largemouth bass Micropterus 

salmoides relative to less exploratory conspecifics (Nannini et al. 2012). Exploratory bass, 

however, are more selective, with mosquito prey forming a greater proportion of their diet than 

for less exploratory conspecifics (Nannini et al. 2012). In Chapter 4, I explicitly examine the 

potential functional link between behaviour and consumption in decapod Crustacea. Finally, I 

note that behaviour can affect the impact of groups of alien organisms, by generating locally high 

abundance (e.g. aggregation) or modulating per capita effects at high density. In some species, 

interference between conspecifics reduces per capita effects in groups (e.g. killer shrimp 

Dikerogammarus villosus; Médoc et al. 2015) whilst in others behavioural correlations can 

maintain per capita impacts despite high densities (e.g. signal crayfish Pacifastacus leniusculus; 

Pintor et al. 2009). These examples are important when interpreting the results of Chapters 2 and 

3 in particular. 

 

In addition to this classical view that compares average behavioural traits between species 

(Tinbergen 1963; Sol et al. 2002; Rehage and Sih 2004; Sih et al. 2012), it is now recognised that 

the behaviour of individuals within the species, and variation amongst those individuals, can have 

important ecological implications, including for invasion success and impact. This is especially 

the case where individual behaviours are consistent across situations (conditions and stimuli 

around an animal e.g. different levels of predation risk, or different times of day) and time (e.g. 

from one week to the next) – that is, the individuals have personalities. Personalities may arise as 

alternative behavioural strategies, constrained by limited plasticity within individuals (Dall et al. 

2004; Sih et al. 2004)  

 

The ecological implications of personalities stem from the fact that they create structured 

behavioural variation, which means a single species occupies multiple parts of functional space: 

a single species effectively functions as multiple species (Wolf and Weissing 2012; Sih et al. 

2012). This can increase (a) establishment success, as each behavioural type buffers fluctuations 

in the others, (b) dispersal success, as certain extreme behavioural types initiate the invasion front 

for others to follow (Cote et al. 2010b), and (c) impact, because different behavioural types utilise 

different resource bases. This broadens the impact of the invader by expanding its niche (Shea 

and Chesson 2002) but also intensifies impact, as the species can reach a greater abundance with 

less intraspecific competition (Fogarty et al. 2011; Phillips and Suarez 2012; Wolf and Weissing 

2012). As an empirical example, Koester et al. (2016) suggest that intraspecific diet variation of 

D. villosus, inferred from stable isotope analyses, could contribute to its invasion success and 

broad impact. The existence of multiple behavioural types within a population also offers a 

solution to the need for different behavioural traits at different invasion stages – as a whole, the 

population possesses all the necessary traits (Wolf and Weissing 2012; Chapple et al. 2012). 
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Although personalities have been studied in a wide range of invertebrate taxa, our knowledge of 

invertebrate personalities remains limited relative to the diversity and numerical dominance of 

invertebrate taxa (Gherardi et al. 2012; Mather and Logue 2013). We also have a limited empirical 

knowledge of how behaviour influences invasion success, founded on speculation or few case 

studies (Chapple et al. 2012) that may be inconsistent (e.g. Hudina et al. 2014). Consequently, no 

comprehensive list of behaviours that generally affect invasion success and impact has been 

compiled (Phillips and Suarez 2012), although as argued above this could prove to be a useful 

predictive tool.  

 

1.4.3 Resource use 

Resource use is emerging as another major driver of success and impact of biological invaders. 

Although habitat or space can be considered a resource whose utilisation can affect invasion 

dynamics (e.g. Beggel et al. 2016), here I focus on depletion of a trophic resource: consumption 

of a primary producer by a herbivore, consumption of prey by a predator, nutrient depletion by a 

plant or mortality of hosts in the case of pathogens. In this sense, resource use describes some of 

the most fundamental ecological interactions. Resource use is also fundamental to the majority of 

invasion hypotheses in Table 1, for instance defining whether invaders are specialists or 

generalists, the niches they can exploit, their response to disturbance and how competitive they 

are (Dick et al. 2014). Thus, resource use is likely to contribute to success and impact in many 

invasions (examples given below) – but not all (Lagrue et al. 2014; Ercoli et al. 2015a).  

 

Resource use may be intimately related to invasion success. Overall, successful invasive species 

have a higher rate of resource consumption than native analogues (Dick et al. submitted; 

McKnight et al. 2016). Species with a high rate of resource consumption are able to fuel rapid 

growth rates and early reproductive maturity, facilitating establishment and spread. High rates of 

nitrogen uptake in the invasive grass Andropogon gayanus fuel growth rates up to ten times those 

of native competitors – especially important to gain a pre-emptive advantage when recovering 

from fire damage (Rossiter-Rachor et al. 2009). In California, alien lumbricid worms 

Aporrectodea trapezoides have a stronger negative effect on food resources than native 

congeners, facilitating a greater relative growth rate when resources are abundant (Winsome et 

al. 2006). Alternatively, invaders might be efficient resource-users, allowing them to persist in 

poorer quality environments than natives (Funk and Vitousek 2007). In such environments, rapid 

resource use may actually be a disadvantage: low-resource environments cannot support the 

voracious alien A. trapezoides (Winsome et al. 2006). Successful invaders could also be flexible 

in their resource use, allowing them to establish and proliferate even in the absence of their 

preferred resource. For example, establishment of rose-ringed parakeets Psitticula krameri may 
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be facilitated by opportunistic use of bird feeders (Clergeau and Vergnes 2011), and strong inter-

population variation in niche breadth may contribute to the invasive success of D. villosus 

(Koester et al. 2016). Across bird families, dietary breadth is a significant (if weak) predictor of 

invasion success (Cassey 2002).  

 

Impact may similarly be defined by invader resource use. When a native species is the resource 

(e.g. as prey for a predator), consumption rate and impact are clearly linked. Following signal 

crayfish invasion, macroinvertebrate community composition changes and taxa such as 

Hirudinea, Gastropoda, Trichoptera and Ephemeroptera decline, and direct predation is likely a 

causal factor (Mathers et al. 2016). Clearly, when the affected native species are commercially 

exploited or are an important food resource, this ecological impact translates into a socioeconomic 

one (e.g. decline in tilapiine fishery in the African Great Lakes following Nile perch Lates 

niloticus; Ogutu-Ohwayo 1990).  

 

Alternatively, invaders can have an impact if they consume the same resource as native species 

i.e. there is competition. Rapid consumption of a shared resource by a strongly competitive 

invader (with a low R*; Tilman 1982) could negatively impact native competitors. For example, 

high rates of resource use by alien A. trapezoides may lead to competitive exclusion of native A. 

marmoratus, as resources are driven to levels lower than those which support A. marmoratus 

growth (Winsome et al. 2006). Similarly, invasive zebra mussels Dreissena polymorpha consume 

phyto- and microzooplankton at a greater rate than native bivalves in the Hudson River, and this 

reduced food density has negative effects on populations of competing macrozooplankton and 

unionid bivalves (Strayer et al. 1999). Such indirect effects of invader consumption are likely to 

cascade even further, affecting the structure and function of entire ecosystems.  

 

Impact may also depend on the qualitative patterns of resource use (Ehrlich 1986; Shea and 

Chesson 2002). A broad diet in an invader means multiple species will be directly impacted. This 

could reduce the impact on any one food species (the food species share the burden of predation), 

or intensify impacts as the population of the predator is sustained when any single food source is 

depleted or unavailable. The ecosystem impact of an invader could also be defined by its dietary 

pattern. Crayfish predation on invertebrate detritivores can reduce leaf litter decomposition rates 

in a trophic cascade, but when crayfish also directly consume leaf material this cascade is reduced 

to a “trickle” (Jackson et al. 2014). 

 

In addition to its likely generality in explaining invasion success and impact, resource use has 

great potential as a predictive tool for invasions because it is quick and easy to measure. It can 

give reliable results even when context-dependencies are ignored, or can be adapted to explicitly 
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include context dependencies (e.g. environmental conditions or resource species). Resource 

consumption is best quantified as a functional response (FR) – the relationship between 

availability of a resource and consumption of that resource (Holling 1959) – because this avoids 

errors associated with choosing a single starting resource density (Dick et al. 2014). There is 

growing support for the use of FRs to understand and predict invasive species’ impacts 

(Haddaway et al. 2012; Dick et al. 2013; Dodd et al. 2014; Paterson et al. 2014). In Chapters 2 

and 3, I use the FR methodology to predict the impacts of invasive Crustacea, whilst using existing 

knowledge of impact to assess the efficacy of FRs as predictive tools. These Chapters also provide 

case studies of whether invaders do consume more resources than natives.  

   

1.5 Study systems 

In this section, I outline the study systems used in this thesis: decapod Crustacea, amphipod 

Crustacea, and protists. The Crustacea were chosen to allow comparison of important invasive 

(widespread and abundant) alien species to resident analogues, and thus answer questions of 

applied significance. Protists were used in Chapter 6 to investigate propagule pressure: a major 

driver of invasions that could not be assessed using relatively large Crustacea with long lifespans.  

 

1.5.1 Freshwater Crustacea 

Despite covering just 1% of the Earth’s surface, fresh water ecosystems are incredibly important. 

They contain approximately 10% of all known species (Strayer and Dudgeon 2010) and provide 

numerous ecosystem services (Aylward et al. 2005). However, they are also amongst the 

ecosystems most threatened by human activity (WWF 2014). Along with land use- and climate 

change, biological invasions are one of the leading threats to freshwater biodiversity (Sala et al. 

2000). The incidence of invasions in fresh waters is particularly high. Intense human activity 

around fresh waters facilitates high propagule pressure and the introduction of many different 

species; unique vectors such as ballast water facilitate indiscriminate and massive transport of 

propagules; and the connectedness of waterways facilitates efficient dispersal between habitats 

and basins (Sala et al. 2000). In addition, the impact of aliens in fresh waters is probably strong 

relative to the marine or terrestrial realms since resident biota are more isolated and thus 

evolutionarily naïve to novel invader archetypes (Cox and Lima 2006). However, our knowledge 

of the impacts of fresh water invaders is limited owing to research bias towards terrestrial biomes 

(Lowry et al. 2013). 

 

Amongst invaders of fresh waters, crustaceans – and especially decapods – are some of the most 

important in terms of distribution and impact (Karatayev et al. 2009; Strayer 2010). In Great 

Britain,  crustaceans constitute approximately 18% of the established alien freshwater species, or 
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24% of animals (Keller et al. 2009). Moreover, the range (and therefore impact) of invasive 

aquatic invertebrates is likely to increase further as the climate changes in the next 100 years 

(Bellard et al. 2013). A mechanistic understanding of success and impact of invasive Crustacea 

is thus particularly important, but severely lacking. Here, I focus on three species of invasive 

freshwater Crustacea that are abundant, widespread and amongst the most damaging in Europe 

(Laverty et al. 2015b) and the world (Lowe et al. 2004) – although their impacts remain to be 

fully quantified and understood. 

 

1.5.1.1 Signal Crayfish Pacifastacus leniusculus (Dana, 1852) 

 

 

 

 

 

 

 

The signal crayfish Pacifastacus leniusculus is an astacid crayfish native to western North 

America. It was introduced deliberately to Sweden in 1959 and 1960 to boost crayfish stocks 

following decline of the native Astacus astacus, and from there has spread across Europe through 

a combination of intentional stocking, unintentional transport and autogenic spread (Souty-

Grosset et al. 2006). It is now the most widely distributed alien crayfish in Europe, being 

established in 29 countries (Kouba et al. 2014), and has also been introduced to Japan (Souty-

Grosset et al. 2006). It has been proposed that the autogenic spread of signal crayfish is driven by 

periodic dispersal of individuals from high-density populations (Peay and Rogers 1999; Hudina 

et al. 2014). In Chapter 5 I further investigate the behavioural mechanisms that might drive this 

spread.  

 

The success and impact of signal crayfish in Europe has been facilitated by a favourable 

combination of propagule pressure, environmental characteristics and the biology of the crayfish 

(Section 1.4), with introduction effort and climate similarity to the native range being especially 

strong predictors of signal crayfish distribution (Capinha et al. 2013). Intense and widespread 

introductions in Sweden and Great Britain, owing to the commercial value of signal crayfish as a 

food product, likely contributed to the success of crayfish in these countries (Henttonen and Huner 

1999). Other biological characteristics of the invading crayfish have helped it to overcome any 

biotic resistance and outcompete natives: diet and habitat flexibility, high fecundity, aggression, 

mate recognition ability and ability to reach high densities (Holdich et al. 2014; Tricarico and 

Figure 1.2 Adult signal crayfish Pacifastacus 

leniusculus. Carapace length approximately 

80mm. Image credit: Trevor Renals, published 

under a Creative Commons license 

https://creativecommons.org/licenses/by-sa/2.0/. 
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Aquiloni 2016). The signal crayfish is also a vector for the crayfish plague fungus, Aphanomyces 

astaci, which has little pathogenic effect on signal crayfish, but is lethal to European crayfish such 

as Astacus astacus and Austropotamobius pallipes. Spillover of A. astaci to European crayfish 

contributes to rapid replacement by P. leniusculus (Dunn et al. 2008; Holdich et al. 2014).  

 

Once established, signal crayfish are difficult to eradicate. The highest success rates are associated 

with extreme management such as biocide treatment or infilling of lentic systems (Peay et al. 

2006). Population control, containment and mitigation of impact can be achieved with high 

intensity trapping (Moorhouse and Macdonald 2011; Moorhouse et al. 2014). Other eradication 

and mitigation options include male sterilisation, pheromone control, electrocution, emerging 

biological control agents (bacteria, viruses and fungi; Stebbing et al. 2012). Given the difficulty 

and expense of managing established crayfish populations, the prevention of new introductions 

through legislative control and biosecurity is highly desirable.  

 

The ecological impacts of invasive P. leniusculus are complex. Crayfish are opportunistic 

omnivores, so P. leniusculus likely has impacts across multiple trophic levels through direct 

consumption, competition and trophic cascades. Native fish and crayfish may suffer due to 

competition with P. leniusculus for food (Wood et al. 2016) and shelter (Griffiths et al. 2004; 

Dunn et al. 2008). Direct consumption of macroinvertebrate prey can reduce abundance, biomass 

and alpha diversity, with soft-bodied or slow-moving prey (e.g. chironomids, Hirudinea and 

Gastropoda) being particularly vulnerable (Stenroth and Nyström 2003; McCarthy et al. 2006; 

Crawford et al. 2006; Hayes 2012; Mathers et al. 2016). Predation, in combination with 

competition and spillover of disease (A. astaci), has contributed to the replacement of native 

European crayfish by P. leniusculus, with potential changes in ecosystem function and service 

provision. However, the economic impact of native species loss may be minimal if the invader 

yields its own commercial fishery (Lodge et al. 2012). Changes in macroinvertebrate populations 

can have indirect effects: typically positive effects on primary production (Lodge et al. 1994) and 

negative effects on leaf litter breakdown, although crayfish detritivory can somewhat mitigate the 

latter effect (Jackson et al. 2014).  

 

P. leniusculus also alters the physical ecosystem. Burrowing activity can reduce the integrity of 

river banks, inducing collapse (Holdich and Pöckl 2007). Movement and digging by crayfish 

alters the shape and structure of stream beds, and increases sediment transport and turbidity 

(Johnson et al. 2011; Rice et al. 2014). Increased sediment load, in combination with consumption 

and non-consumptive shredding, can reduce macrophyte density: a direct impact on flora with 

indirect impacts on animals that depend on plants for shelter (Twardochleb et al. 2013). 
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We do not fully understand the ecological impacts of signal crayfish. Context dependencies yield 

idiosyncratic results in field and mesocosm studies, and few studies directly compare the impact 

of native and alien crayfish. Changes in invertebrate communities could just reflect the addition 

of a large decapod predator, and it could be that signal crayfish are effectively a functional 

substitute for the native crayfish they replace (Ercoli et al. 2015a; James et al. 2015). In Chapter 

2, I use FR and switching experiments to quantitatively compare predation by P. leniusculus on 

a range of macroinvertebrates (amphipods, chironomids and gastropods) to predation by 

European Austropotamobius pallipes. 

 

 
1.5.1.2 Chinese mitten crab Eriocheir sinensis H. Milne Edwards, 1853 

 

 

 

 

 

 

 

 

 

The mitten crab Eriocheir sinensis is native to the eastern and northern coasts of China, but has 

been introduced to western Asia, the USA and Europe. The principal established populations are 

in western Europe and on the west coast of the USA, in San Francisco Bay (Dittel and Epifanio 

2009). The likely vector of introduction is ballast water, which may contain adults or juveniles, 

but since the crab is a Chinese delicacy deliberate introductions are also a possibility (Cohen and 

Carlton 1997). E. sinensis is catadramous: it migrates upstream in fresh waters as it matures, but 

returns to the sea to breed (Dittel and Epifanio 2009). Although this has interesting ramifications 

for impact (multiple ecosystems may be affected, and migrations represent transport of a large 

amount of biomass between systems), in this thesis I focus on the fresh water stages in comparison 

with fresh water crayfish.  

 

High propagule pressure likely contributes to successful invasion and impact of mitten crabs. E. 

sinensis has a marine larval stage, which provides access to ballast water as a vector. In this way, 

large numbers of propagules can be transported over large distances. Abiotic conditions in the 

novel range are a crucial determinant of success and restrict the range of mitten crabs. Introduced 

crabs require access to water of high enough salinity for reproduction, which probably prevents 

Figure 1.3 Sub-adult Chinese mitten crab 

Eriocheir sinensis. Carapace width approximately 

30mm. In juveniles of this size, the ‘fur’ on the 

chelae that gives the crabs their common name is 

poorly developed. Image credit: Christian Fischer, 

published under a Creative Commons license 

https://creativecommons.org/licenses/by-sa/3.0/.  
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establishment in the Baltic Sea and the Mississippi Basin, despite records of introduced 

individuals (Rudnick et al. 2000; Ojaveer et al. 2007). Similarly, short estuary flushing times and 

cool sea waters (below the threshold for larval survival) limit the distribution of E. sinensis in the 

Pacific Northwest of North America (Hanson and Sytsma 2007). Traits of E. sinensis that could 

contribute to its success include high fecundity (multiple broods in each reproductive season of 

up to 1 million eggs; Panning 1939); its ontogenetic upstream migration which limits intraspecific 

competition; its competitive dominance (Gilbey et al. 2008); and its flexible, omnivorous diet 

(Rosewarne et al. 2016). Interestingly, the closely related E. japonica is not recognised as 

successful invader so could provide a comparator for clarifying invader traits (Dittel and Epifanio 

2009) although that is beyond the scope of this thesis.  

 

Research into control of mitten crabs is limited. Fyke nets are the most effective method for 

trapping crabs and controlling an established population, with possible economic benefits as the 

catch can be sold (Clark 2011). A combination of legislation – both international (IMO 2016) and 

local – and public education will minimise the risk of new introductions.  

 

The ecological impacts of E. sinensis are less well understood than those of P. leniusculus. E. 

sinensis is also an opportunistic omnivore, so its impacts are probably similar to those of P. 

leniusculus. Gut content analyses, stable isotope analyses and mesocosm experiments indicate E. 

sinensis will consume plants,  detritus and animals – especially slow-moving or soft-bodied ones 

– and this consumption can lead to changes in populations and community structure (Yu and Jiang 

2005; Rudnick and Resh 2005; Czerniejewski et al. 2010; Rosewarne et al. 2016). However, E. 

sinensis also appears better able to handle more active prey such as amphipods (Mills et al. 2016) 

which is reflected in field diets (Rosewarne et al. 2016).  

 

Competition is another mechanism by which mitten crabs can negatively impact resident taxa. E. 

sinensis is a better competitor for space than native British Carcinus maenas (Gilbey et al. 2008) 

and may outcompete introduced signal crayfish for shelter (Rudnick et al. 2000). Other impacts 

of E. sinensis include destabilisation of river banks through burrowing activity (a particular 

problem on Chiswick Eyot, London; pers. obs.; Clark 2011), and clogging of infrastructure (e.g. 

fishing nets, fish collection facilities, power station cooling water intakes), especially during mass 

breeding migrations (Panning 1939; Veldhuizen and Stanish 1999).  

 

In Chapter 2, I use laboratory experiments to provide a mechanistic understanding of the predatory 

impacts of E. sinensis on a range of macroinvertebrate taxa. Predation by E. sinensis is compared 

to predation by native and invasive crayfish: functionally similar species that may exist together 
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(or replace each other through competition or predation) in fresh waters. Behavioural influences 

on success and impact of E. sinensis are explored in Chapter 4. 

 

1.5.1.3 Killer shrimp Dikerogammarus villosus (Sowinsky, 1894) 

 

 

 

 

 

 

 

 

 

 

Dikerogammarus villosus is an amphipod crustacean native to the Ponto-Caspian region of south-

eastern Europe. It has spread north-westerly through Europe through the network of rivers and 

canals that now forms a continuous channel through the continent (Bij de Vaate et al. 2002; 

Rewicz et al. 2014). D. villosus crossed the English Channel and was detected in Grafham Water, 

Cambridgeshire, in 2009 (MacNeil et al. 2010). Spread through Europe has likely been facilitated 

by accidental transport on commercial or recreational equipment, and may be assisted by natural 

vectors such as birds. Further, accidental intercontinental transport (e.g. to the American Great 

Lakes) is now highly likely (Pagnucco et al. 2014). 

 

 

Behavioural traits are likely to be a key driver of the success and impact of D. villosus. Arguably, 

D. villosus possesses a suite of traits that make it the “perfect invader” (Rewicz et al. 2014): fast 

growth, early sexual maturity, a long breeding season and flexible feeding behaviour. 

Furthermore, D. villosus shows low levels of activity and low exploratory tendencies (Truhlar and 

Aldridge 2014) as well as an ability to remain attached to substrates and survive out of water for 

up to 15 days (Fielding 2011; Bacela-Spychalska et al. 2013a): behaviours that contribute to 

effective passive transport on human vectors (e.g. boat hulls, recreational equipment). 

Consequently, successful D. villosus invasions tend to occur in waters at transport or recreational 

hubs – where propagule pressure is highest (Bacela-Spychalska et al. 2013a). D. villosus may also 

benefit from release from the negative fitness effects of natural enemies following invasion 

bottlenecks (Arundell et al. 2015), or from co-invasion with other species from its native Ponto-

Caspian range (Devin et al. 2003; Beggel et al. 2016). 

 

Figure 1.4 Killer shrimp Dikerogammarus villosus. 

Body length approximately 20mm. The tail cones 

are characteristic of this genus. Image credit: 

NOAA, published under a Creative Commons 

license https://creativecommons.org/licenses/by-

sa/2.0/. 
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Again, the best management strategy for D. villosus invasions is prevention. A range of chemical 

treatments and hot (45oC) water have been shown to be effective in killing D. villosus in quick 

biosecurity procedures (Stebbing et al. 2011). Knowledge of physical, chemical and biological 

eradication methods is limited but research is ongoing (Stebbing et al. 2012a; Aldridge et al. 

2015). 

 

D. villosus has been nicknamed the ‘killer shrimp’ in accord with its tendency to rapidly consume 

a wide range of macroinvertebrate taxa in the laboratory (Dick et al. 2002; Platvoet et al. 2009; 

Dodd et al. 2014) and evidence from stable isotope analyses in the field (van Riel et al. 2006). 

Dominance of D. villosus in invaded ecosystems, at the expense of native amphipods, could 

strongly affect ecosystem functioning. In particular, leaf litter processing may be reduced up to 

11-fold (Piscart et al. 2011; MacNeil et al. 2011; Boeker and Geist 2015) – although this 

relationship is context-dependent and may be reversed in extreme water temperatures (Truhlar et 

al. 2014). 

 

Predatory behaviour is likely to contribute to the strong impacts of D. villosus on 

macroinvertebrate abundance and biomass in the field, especially isopods, tubificids and resident 

amphipods (Dick and Platvoet 2000; Dick et al. 2002; Kley and Maier 2003; Josens et al. 2005; 

Gergs and Rothhaupt 2015). There is potential for D. villosus to cause analogous declines in fish 

populations of conservation or commercial concern, but this is poorly quantified. In Chapter 3, I 

compare predation of fish eggs and larvae by D. villosus to predation by an amphipod native to 

Great Britain, Gammarus pulex (L. 1758). Maximum predatory impact is quantified using FRs, 

and electivity experiments are used to assess predation in the presence of alternative foods. 

 

1.5.1.4 Analogues 

The success and impact of alien species can be understood through comparisons with native or 

resident analogues, with the precise question answered depending upon the choice of analogue 

(van Kleunen et al. 2010; Dick et al. 2014). As an analogue for the invasive decapods, I used the 

white-clawed crayfish Austropotamobius pallipes (Lereboullet, 1858). A. pallipes is native to 

mainland Europe and is considered native to Great Britain following the IUCN threshold of 

presence in the wild before 1500. However, it is not clear whether populations of A. pallipes in 

Great Britain are a result of natural migration or historical anthropogenic introduction circa 1500 

CE (Holdich et al. 2009). In any case, it is important to compare the impact of alien decapods to 

the incumbent to understand how communities and ecosystems might change following invasion. 

Meanwhile, traits conferring invasion success can be inferred through comparisons between 
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successful invaders and a rare and declining resident species (van Kleunen et al. 2010): A. pallipes 

is listed as Endangered on the IUCN Red List (Füreder et al. 2010). 

 

In contrast, the native analogue for alien amphipods in Britain is Gammarus pulex (L. 1758). G. 

pulex is widespread and common in British fresh waters, and is a successful invader elsewhere, 

displacing native amphipod populations in Ireland (Kelly et al. 2006). Thus, comparisons between 

G. pulex and invasive amphipods in Britain would reveal traits that make the novel invaders so 

dominantly invasive, but cannot necessarily reveal general determinants of invasion success at a 

global scale (van Kleunen et al. 2010). Equally, assessments of relative impact are made with 

Great Britain as the focus. 

 

1.5.2 Ciliated protists 

In order to investigate the role of propagule pressure in invasion success and impact – an 

important factor that could not be ignored – I used a distinct study system. Manipulation of protist 

populations in the laboratory allows (a) controlled experimentation, as opposed to correlative 

investigations of propagule pressure where invasion success is confounded with multiple other 

variables (Cassey et al. 2004); (b) observation of invasion dynamics over long time scales from 

the perspective of the organisms involved i.e. tens to hundreds of generations; and (c) replication 

of identical systems to identify patterns without the context-dependencies associated with 

invasions in the field (Warren et al. 2006). Results from laboratory microcosm experiments may 

not generalise to other systems, but the advantages they offer make them a useful complement to 

other approaches (e.g. field experiments and observations) and on other organisms (metazoan 

animals and multicellular plants) (Warren et al. 2006). However, understanding the dynamics of 

microbial invasions themselves is useful, given the likely prevalence of microbial invasions and 

their negative impacts (Gillis and Chalifour 2010; Litchman 2010; Acosta et al. 2015). 

Understanding such invasions has wide-ranging implications from disease control to biocontrol, 

biofertilisation and probiotic use (Hatcher et al. 2012; Mallon et al. 2015).   

 

In Chapter 6 I use two species of ciliated protist, Blepharisma japonicum Suzuki 1954 and 

Colpidium striatum (Stokes), as reciprocal invaders to quantify the influence of propagule 

pressure on invasion success and impact. These species are not known to be damaging invasive 

species in the wild, but rather serve as exemplar organisms introduced to a novel community.  

 

Both B. japonicum (Blepharisma) and C. striatum (Colpidium) will feed upon bacteria, but 

phenotypic plasticity in Blepharisma allows it to obtain larger sizes and prey upon smaller 

protists, such as Colpidium or conspecifics, in suitable conditions (Giese 1938). Thus, although 
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the two species can coexist in a stable community (Warren et al. 2003), this coexistence depends 

on nutrient enrichment (Diehl and Feissel 2000; Diehl and Feissel 2001). At low enrichment 

levels, Colpidium outcompetes Blepharisma but at high enrichment levels there are spare 

resources, unused by Colpidium, which allow Blepharisma to establish and then prey upon and 

exclude Colpidium. Meanwhile, at intermediate enrichment levels and moderate propagule 

pressures (c. 30 cells), establishment success of each protist in a population of the other is 

variable: Colpidium exhibits rapid positive growth when invading Blepharisma, whilst 

Blepharisma variously grows or declines when introduced to populations of Colpidium, and does 

so slowly (Law et al. 2000). Together, these characteristics provide a good system to investigate 

the role of propagule pressure in invasion success, which should lead to variable outcomes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Simple food web in microcosm experiments (Chapter 6) (a) Blepharisma japonicum, a large 

omnivorous ciliate. Approximate length 500μm. (b) Colpidium sp, a small bactivorous ciliate. Approximate 

length 80μm. Arrows show flow of nutrients. Both protists consume bacteria, whilst Blepharisma acts as 

an intraguild predator by preying upon Colpidium. Large morphs of Blepharisma can also be cannibalistic. 
 

Image credits: Blepharisma Frank Fox, published under a Creative Commons license 

https://creativecommons.org/licenses/by-sa/3.0/de/deed.en; Colpidium Proyecto Agua, published under a 

Creative Commons license with some rights reserved https://creativecommons.org/licenses/by-nc-sa/2.0/. 

 

 

1.6. Research aims and thesis plan 

In this thesis, I investigate in detail three major factors that can affect invasion success and impact 

as outlined above – propagule pressure, behaviour and resource use. These factors could provide 

a conceptual basis for tools to understand and predict invasions. Figure 1.6 gives an overview of 

the thesis Chapters and how they relate to the major factors. I focus on success and impact in 
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study systems of applied interest. Understanding the success and impact of specific alien taxa is 

important in itself, for instance in informing management (Kumschick and Richardson 2013). 

Even if an invader cannot be managed, it is important to understand how it is changing its 

recipient, novel ecosystem. In addition, it is anticipated that this thesis also provides case studies 

for an understanding of the invasion process in general. Amongst much context-dependency, there 

may be common factors driving success or impact across invasion scenarios (Kolar and Lodge 

2001; Hayes and Barry 2007). Identifying these factors, and understanding any common 

relationships with invasions, would allow their use to make generalised predictions and risk 

assessments when information for specific taxa is not available (Kumschick and Richardson 2013; 

Thomsen et al. 2014). 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.6 Overview of thesis chapters (white boxes) in the context of three major factors (green boxes) 

that may contribute to invasion success and impact. Large upwards arrows reflect the focal questions of 

this thesis, with implications for management of alien species: do these factors influence invasion success 

and impact, and if so, how? Small reverse arrows indicate that invasion and impact can feed back and 

influence driving factors e.g. an abundant invader will offer greater propagule pressure for new 

introductions. Arrows between factors indicate that they can influence each other e.g. propagule pressure 

may depend on behaviour (active and exploratory species more likely to be entrained in transport vectors), 

whilst the size of an initial propagule may affect behaviour of individuals within that propagule.  
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In Chapters 2 and 3, I compare resource consumption between alien invaders and native species. 

I apply tools (functional responses, electivity experiments and switching experiments) to 

understand the relative impacts of these species, and compare my results to known impacts to 

contribute to the development of these tools. Functional responses (FRs) are emerging as a reliable 

tool to make quantitative assessments of invader impacts (Dick et al. 2014), but require further 

verification with empirical data. Diet breadth, as measured in electivity and switching 

experiments, can also affect the impact of consumers (Ehrlich 1986; Shea and Chesson 2002). In 

Chapter 2, I compare the predatory impacts of native European A. pallipes and the aliens P. 

leniusculus and E. sinensis on three different macroinvertebrate prey (amphipod, chironomid and 

gastropod). In Chapter 3, I compare the predatory impacts and diet composition of alien D. 

villosus and native G. pulex, with fish eggs and larvae as the focal prey. In Chapter 2, I also 

measure metabolic rates as a potential underlying mechanistic explanation, and predictive tool, 

for differences in resource consumption. 

 

In Chapters 4 and 5, I quantify more general behaviours of successful, damaging invasive species. 

Behavioural traits may help to explain success and impact, whilst behavioural assays could 

provide simple tools to rapidly assess invasion and impact risk. In Chapter 4, I compare 

behavioural traits (boldness, activity and exploration) in the declining European crayfish A. 

pallipes and the successful invaders P. leniusculus and E. sinensis, to explore associations 

between behaviour and success/impact across species. In Chapter 5, I focus on the invasive signal 

crayfish and examine if and how behavioural traits might drive dispersal dynamics and contribute 

to spread. I compare the behaviour of crayfish from established populations and those on the 

invasion front in three rivers. In this Chapter, I also quantify correlations between behaviour and 

metabolism – which, in Chapter 7, I combine with similar data from Chapter 2 to suggest a general 

metabolic explanation for invasions. In both Chapters 4 and 5, I quantify consistency of individual 

behaviour (personality), which is poorly understood in invertebrates (Mather and Logue 2013) 

but can have important implications for invasion success and impact (Wolf and Weissing 2012).  

 

Chapter 6 switches focus, manipulating propagule pressure in protist invasions into laboratory 

microcosms. This experimental approach allows close examination of the mechanisms that relate 

propagule pressure to invasion success and invader impact, which are poorly understood 

(Lockwood et al. 2005; Blackburn et al. 2015). Specifically, I consider a wide range of propagule 

pressures, their interaction with nutrient enrichment and robustness of patterns across different 

invader-resident combinations.  
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Chapter 2 
 

Predatory impacts of freshwater decapod Crustacea: 

predicted by functional responses and explained by 

differences in metabolic rate 
 

 

Abstract 

With an ever increasing number of alien species around the globe, there is a pressing need to 

understand and predict the impacts of invaders. Here, I compare the predatory impacts of three 

freshwater decapod crustaceans: invasive alien mitten crabs Eriocheir sinensis, invasive alien 

signal crayfish Pacifastacus leniusculus and the analogous European Austropotamobius pallipes. 

I quantify predatory functional responses (the relationship between prey density and consumption 

by predators) on three macroinvertebrate prey of differing morphologies and physical defence, 

and examine the potential of each predator to switch between prey items as their relative 

availability changes. I also measure oxygen consumption as a proxy for metabolic rates, which 

could provide a mechanistic explanation for differences in predation. 

 

The overall pattern of FRs was consistent across prey species. E. sinensis had the highest attack 

rate (a) and maximum feeding rate (1/hT), and these parameters were higher for P. leniusculus 

than A. pallipes. The magnitude and significance of these differences was variable, however. E. 

sinensis had an exceptionally high FR on soft-bodied prey (up to 3.0 times that of the crayfish), 

but a similar FR to the crayfish on hard-shelled gastropod prey. The maximum feeding rate of P. 

leniusculus was only significantly greater than that of A. pallipes on chironomid larvae prey. The 

direction and size of these differences are concordant with impact predictions based on other 

methodologies. Further, they may be related to differences in activity: E. sinensis had a greater 

mass-corrected routine metabolic rate than P. leniusculus, which in turn consumed more oxygen 

than A. pallipes. Standard metabolic rate did not differ between the decapods. There was no 

evidence for switching by any of the decapod species, although this may have been difficult to 

detect given the strong null electivity of all predators towards D. villosus.  

 

My data suggest E. sinensis could have a very strong predatory impact, even relative to the other 

invader P. leniusculus. Impacts of P. leniusculus may be driven by body size or abundance more 

than per capita effects. Relative FR magnitude is dependent on prey type and matches existing 

knowledge of invader impacts, supporting the use of FRs for quantitative, prey-specific impact 

predictions.  
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2.1 Introduction 

As a consequence of globalisation and the breakdown of biogeographic barriers, alien species are 

prevalent in the modern world. Alien species have been transported by humans to biogeographical 

regions beyond their native range. A subset of aliens have negative economic and ecological 

impacts, including being one of the major drivers of biodiversity loss and affecting ecosystem 

service provision (Sala et al. 2000; Pejchar and Mooney 2009). Strategic management of  

ecologically damaging alien species is written into international (e.g. SCBD 1992; EU 2014) and 

national (e.g. DEFRA 2015) policy, but informed management decisions must be based on 

evidence of impact. All else being equal, limited management resources should be directed 

towards the most damaging, or potentially most damaging, invaders (Ricciardi 2003; Lodge et al. 

2012; Kumschick et al. 2012; Kumschick and Richardson 2013).  

 

Resource use is a key driver of success and impact in alien species, such that comparisons of 

resource use can further understanding and prediction of success and impact (Catford et al. 2009; 

Dick et al. 2014). Resource consumption by predators should be a particular focus: predators can 

have strong impacts on prey populations (Salo et al. 2010), especially when the predator is an 

alien and can exploit naivety of native prey (Cox and Lima 2006; Salo et al. 2007). Thus, 

deleterious ecological impacts of alien species are often driven by predation (Davis 2003; Sax 

and Gaines 2008). As well as affecting prey populations directly, alien predators can have indirect 

impacts on community structure and ecosystem functioning (Paine 1966; Balčiūnas and Lawler 

1995; Baum and Worm 2009; Jackson et al. 2014). 

 

Specifically, the impact of an alien predator can be determined by the magnitude of predation on 

any particular prey type and the range of resources used (Grosholz 2005; Salo et al. 2007; Dick 

et al. 2013). Predatory interactions can be described by a functional response (FR) – the 

relationship between prey density and predation rate (Solomon 1949) – with both the height and 

shape of the FR curve being important. High FR curves reflect high rates of resource consumption 

and therefore high per capita impacts of a particular predator on a particular prey species (Dick 

et al. 2013; MacNeil et al. 2013b; Alexander et al. 2014; Dodd et al. 2014; Rosewarne et al. 2016). 

Asymptotically-declining Type II FRs are likely to be associated with the most severe impacts on 

prey because predation pressure remains high even at low prey densities (Murdoch and Oaten 

1975; Juliano 2001). In contrast, sigmoid Type III FR curves are associated with a reduction in 

predation pressure as a prey type becomes rare. That is, rare prey are attacked disproportionately 

less often than would be expected based on their relative abundance, leading to a low density 

refuge from predation (Murdoch 1969). This switching behaviour stabilises predator-prey 

dynamics, maintaining populations of prey at moderate densities. In the context of invasions, 
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switching may spread predatory impact across multiple prey species and temper the impact on 

any single prey species.  

 

Fresh waters are particularly susceptible to alien introductions (Richter et al. 1997; Sala et al. 

2000), and the impacts of alien predators in fresh water are especially strong (Cox and Lima 

2006). Decapod crustaceans are amongst the most widely-distributed and high-impact invaders 

of fresh waters (Karatayev et al. 2009; Strayer 2010) and, as flexible omnivores, impart impacts 

through predatory behaviour. Globally, two of the most successful and damaging alien decapods 

are the signal crayfish Pacifastacus leniusculus and the Chinese mitten crab Eriocheir sinensis. 

Both species are biologically invasive, having spread across a large area outside their native range 

and reaching high densities, and both are thought to have serious ecological or economic impacts 

(Lowe et al. 2004). P. leniusculus is native to North America, but has been introduced and become 

an pest across much of Europe (Souty-Grosset et al. 2006). Following transport from its native 

range in the north-western Pacific, E. sinensis has been recorded in multiple sites around the 

world, with key established populations on the west coast of the USA and in Europe (Gollasch 

1999; Dittel and Epifanio 2009). 

 

The white-clawed crayfish Austropotamobius pallipes is native to Europe and has long been the 

only decapod crustacean in the fresh waters of Great Britain (Holdich et al. 2009). The distribution 

of A. pallipes in Britain has reduced substantially in association with the spread of P. leniusculus 

since 1976 (Imhoff et al. 2011). More recent advancement of E. sinensis populations has created 

zones of overlap with P. leniusculus (Rosewarne et al. 2016), and sympatry between E. sinensis 

and A. pallipes is also possible (Clark et al. 1998). It is important to understand the relative 

ecological impacts of these species to inform risk assessments and management decisions, or 

simply to understand how communities might change as the invaders replace or coexist with an 

incumbent decapod – whether that is A. pallipes or one of the other invaders. Invasion by P. 

leniusculus can change community structure, through a combination of competition, disease 

transmission and resource consumption (Crawford et al. 2006; Dunn et al. 2008; Twardochleb et 

al. 2013; Ercoli et al. 2015b; Mathers et al. 2016). Evidence from mesocosms and field 

manipulations suggests E. sinensis may cause similar declines in macroinvertebrate populations 

through predation (Yu and Jiang 2005; Rudnick and Resh 2005; Rosewarne et al. 2016). However, 

our knowledge of these predatory impacts and their underlying mechanisms remains incomplete, 

especially for E. sinensis (Veldhuizen and Stanish 1999; Rosewarne et al. 2016).  

 

Here, I aim to assess the relative predatory impacts of native and alien decapod crustaceans: A. 

pallipes, P. leniusculus and E. sinensis. First, I compare laboratory-derived functional responses 

between the three predator species on three prey types of differing morphology and behaviour (an 
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amphipod crustacean, chironomid larvae and a gastropod mollusc). Predatory impacts may vary 

among prey species (Moustahfid et al. 2010; Dodd et al. 2014) such that assessing functional 

responses across a variety of prey species is important (Dick et al. 2014). Second, I examine the 

tendency of the predators to switch between the similar-sized gastropod and amphipod when 

presented at varying relative densities. I hypothesise that the alien species will have higher FR 

curves than A. pallipes based on current evidence of impact, and will show a greater tendency to 

switch between prey since diet flexibility may be a common trait of successful invasive species 

(Moyle and Light 1996). Third, I investigate possible mechanistic explanations for differences in 

resource consumption by comparing metabolic rates (derived from oxygen consumption rates) 

between the three decapod species. Metabolic rates and food consumption should be positively 

associated: high MRs should necessitate and/or facilitate high consumption rates (Careau et al. 

2008; Biro and Stamps 2010). 

 

2.2 Methods 

2.2.1 Experimental animals and husbandry 

Decapods were collected from established populations between 2013 and 2015. A. pallipes were 

collected from Adel Beck, Leeds, West Yorkshire (lat 53°52'N, long 1°35'W) under license from 

Natural England (#20131266 and #20144477). P. leniusculus were collected from Fenay Beck, 

Huddersfield, West Yorkshire (lat 53°39'N, long 1°44'W). E. sinensis were collected under 

agreement with the Port of London Authority from the River Thames, Chiswick, London (lat 

51°29'N, long 0°15'W). All animals were collected by hand by searching refugia. The three 

experiments (FR, switching and oxygen consumption) were run at different times on different 

batches of animals (but all three species were tested simultaneously within each experiment).  

 

Decapods were kept in a controlled environment room in the University of Leeds, at 14 ± 0.2oC 

and 12:12h light:dark cycle. Stock tanks were communal by species, contained aerated aged tap 

water and excess PVC piping (10 cm length, 5 cm diameter,) as shelter. Stock tanks were 

maintained on a diet of Hikari® Crab CuisineTM pellets and dried leaf litter (abscised Acer 

pseudoplatanus L. leaves) ad libitum. Animals were held for at least two weeks in the laboratory 

before use in experiments in order to monitor their moulting status, allow for acclimation to 

laboratory conditions and reduce the influence of any wild environmental cues (e.g. tidal cycles 

for E. sinensis; Gilbey et al. 2008). 

 

Decapods used in experiments were sub- or young-adults (Brewis and Bowler 1982; Rudnick et 

al. 2003; Haddaway et al. 2012). Across all experiments, mean ± SE masses of decapods were: 

A. pallipes 10.6 ± 0.4 g; P. leniusculus 10.5 ± 0.3 g and E. sinensis 12.7 ± 0.4 g. Mean ± SE 
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maximum carapace dimensions (cmax; carapace length for crayfish and width for crabs) of 

decapods were: A. pallipes 32.3 ± 0.4 mm; P. leniusculus 32.7 ± 0.3 mm and E. sinensis 31.0 ± 

0.3 mm. Both mass and body dimensions can affect predatory impact (Nilsson and Brönmark 

2000; Rall et al. 2012). Therefore, I used E. sinensis that were slightly heavier and had a shorter 

cmax than the crayfish to account for different body plans of crabs and crayfish. In this way, 

within each experiment decapods were matched by ‘body size’ (Table 2.1): the first principal 

component from a principal component analysis on body mass and cmax of all individual 

decapods used in experiments, which explained 88.6% of the variance in these parameters. 

Rarefaction of data sets to match body mass within experiments yielded similar results (see 

Appendices 2.2 and 2.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Animals of both sexes were used in experiments. I do not anticipate that the mixture of sexes 

influenced my results given that behaviour, including feeding, is frequently reported to be similar 

for both sexes (Chapter 4; Briffa et al. 2008; Brodin and Drotz 2014; Webster et al. 2015); sample 

sizes were too small to make meaningful comparisons between sexes in the present study. 

Decapods were monitored before and after experiments: no decapods moulted within a week of 

use in any experiment. All decapods used were in good condition (all limbs intact, no injuries to 

body) and free of visible parasites (Souty-Grosset et al. 2006). 

 

For feeding experiments, three different prey species were used, chosen to represent differing 

motility and physical defence. Dikerogammarus villosus were collected from Grafham Water, 

Cambridgeshire (lat 52°17'N, long 0°19'W). Bithynia tentaculata were sourced from laboratory 

stocks, originating from various ponds and canals around Leeds. Chironomid larvae were sourced 

Table 2.1 Statistical comparisons of body size of decapod species used in 

each experiment. Body size derived from PCA of mass and maximum 

carapace dimension (cmax). For FR experiments, each usage of an animal 

contributes its body size to the data set (so size data are weighted for the 

number of times a predator was used).  
 

Experiment Kruskal Wallis χ2 df p 

FR (Amphipod prey) 1.135 2 0.567 

FR (Chironomid larva prey) 1.400 2 0.497 

FR (Gastropod prey) 0.796 2 0.672 

  

Experiment ANOVA F df p 

Switching 0.078 2,92 0.925 

Metabolism 0.122 2,27 0.885 
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from a pet retailer in Leeds. The decapod predators used in this experiment are known to consume 

prey in these orders (Hymanson et al. 1999; Rosewarne et al. 2013; Rosewarne et al. 2016), and 

preliminary observations confirmed consumption of these specific taxa. Because prey size can 

affect functional responses (Streams 1994), prey items were size-matched by eye. Throughout the 

experiment, subsamples of prey items were selected and measured to check consistency in size 

(Table 2.2).  

 

2.2.2 Functional response experiments 

2.2.2.1 Experimental design 

Crayfish and crabs were isolated in individual plastic tanks (23 cm length, 15 cm width, 8 cm 

depth) with translucent white lids and sides covered in black plastic to minimise visual 

disturbance. Each tank received a constant flow of air through an air stone, and contained one 

black PVC shelter (10 cm length, 5 cm diameter). Isolated animals were fed a standardised diet 

(four Hikari® Crab CuisineTM pellets every other day) for at least one week before trials began. 

Each animal was fed 48 hours before a trial began and then starved (by changing the water) 24 

hours before a trial began.  

 

One hour before each trail began, separate experimental tanks were set up containing three litres 

of aged tap water, approximately 150 glass stones (1 cm diameter) and a designated number of 

prey animals (Table 2.2). Prey densities were concentrated at the lower end of the range to allow 

better identification of FR shape, but were extended far enough such that all FR curves 

approached an asymptote. The stones provided habitat structure: a more realistic scenario in 

which to assess predatory behaviour, and a factor that can alter the shape of functional responses 

(Alexander et al. 2012). The one hour acclimation period, without a predator, allowed prey to 

settle and find refuge. 

 

 

  

Table 2.2 Sizes and densities of prey supplied to predators in functional response experiments. Mean 

lengths and masses estimated from a random sample of 30 prey items across replicate runs. E. sinensis 

and P. leniusculus were also supplied with chironomid larvae at densities of 140, 300 and 800.  
 

Prey Type Length 

(mm) ± SE 

Wet mass 

(mg) ± SE 

Densities (prey.tank−1) 

Amphipod 16.34 ± 2.98 46.84 ± 8.55 2, 5, 8, 12, 16, 25, 40, 80, 130, 180, 230, 280 

Chironomid larva 8.72 ± 0.22 2.77 ± 0.17 2, 5, 8, 12, 16, 25, 40, 80, 220, 400, 600, 1200 

Gastropod 9.44 ± 0.10 52.77 ± 1.56 2, 4, 8, 12, 16, 25, 40, 80, 150, 250 
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Experiments were run in the same controlled environment room as the stock tanks at 14 ± 0.2oC 

and with a 12:12h light:dark cycle. Trials were initiated by transferring decapods from their home 

tanks to their respective experimental tanks. Predators were left to consume prey for 24 hours, 

after which the tank was destructively sampled and remaining prey enumerated. I distinguished 

live prey, dead but complete prey, and identifiable parts of prey. Consumption was calculated as 

the number of prey supplied minus all remaining flesh (whole and damaged prey). Killing was 

defined as prey that had been wholly or partially consumed, as opposed to dead but undamaged 

prey assumed to reflect background mortality. Controls, to check prey survival, were three 

replicate tanks (per prey type per density, excluding 1200 chironomids) without a predator. 

 

Predators were re-used up to eight times at different prey densities (Haddaway et al. 2012; 

Rosewarne et al. 2016) until each prey density/predator combination was replicated five (B. 

tentaculata prey) or six times (chironomid and D. villosus prey). Re-use was a constraint enforced 

by the use of A. pallipes, because the use of fresh individuals of this Endangered species for every 

trial would have been irresponsible and legally impossible. Uneaten and uninjured prey items 

were also re-used. Between uses, prey were returned to communal tanks and predators were fed 

a standard food ration (four Crab CuisineTM pellets) and rested for 48 hours. Across replicate trials 

for any individual, the order of presentation of prey densities was randomised. Within each 

experimental block (carried out over two consecutive days), all predator species – prey density 

combinations were tested once. Together, randomised order of presentation but blocking 

replicates by time controlled for any potential changes in predator or prey behaviour over time 

and with experience.  

 

For logistical reasons and because of seasonal prey availability, each prey item was tested over a 

one to two month period at different times of year (D. villosus Nov-Dec, chironomids Jan-Feb; 

B. tentaculata Jun-Jul). However, because I permitted experimental animals to acclimate to 

constant laboratory conditions, I believe that seasonal influences on the results are minimal. 

Moreover, the primary comparisons made are between predator species on each prey item, rather 

than between prey items. To reduce bias in allocating prey (e.g. size of prey chosen), prey items 

were counted out blind (the experimenter was unaware of the predator species that would receive 

those prey items).  

 

2.2.2.2 Statistical methods 

I conducted all FR analyses using number of prey consumed (based on total amount of flesh eaten, 

including complete and approximate partial consumption) and number of prey killed (all deaths 

caused by predation i.e. excluding undamaged prey assumed to represent background mortality) 
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as response variables. Consumption is the response variable of interest when comparing predator 

physiology, but when considering impact on prey populations, killing is the relevant response 

variable. Where partial consumption of prey is common, killing and consumption can be 

decoupled (Dick et al. 2002). 

 

For each predator-prey combination, FR type was determined with a proportional consumption 

curve, describing the relationship between prey density and the proportion of prey consumed and 

defined by a GLM with linear and quadratic terms. Due to overdispersion, these models were fit 

with a quasibinomial error distribution. Significantly negative linear (first order) terms are 

suggestive of Type II FRs, whilst significantly positive quadratic (second order) terms indicate 

Type III FRs (Trexler et al. 1988; Juliano 2001). Where significance of terms gave ambiguous 

results (i.e. negative but non-significant first order terms), Type I and Type II fits to the data were 

compared using Akaike’s Information Criterion (AIC), lower values of which indicate a better fit 

of the model to the data (Paterson et al. 2014).  

 

Since FRs were Type II, I modelled the curves by maximum likelihood estimation, using Rogers’ 

random predator equation (Equation 2.1, Rogers 1972) within the R package frair (Pritchard 

2016). 

 

𝑁𝑒 = 𝑁𝑂(1 − 𝑒𝑎(𝑁𝑒ℎ − T))       [2.1] 

 

where Ne is the number of prey consumed or killed, N0 is the initial density of prey, a is the attack 

constant, h is the handling time and T is the total time available for predation (24 hours). This 

model is appropriate for Type II FRs when prey are not replaced and thus deplete over the course 

of an experiment (Juliano 2001). To make Rogers’ random predator equation solvable, frair 

employs a modified version of Equation 2.1 with the Lambert W function (Equation 2.2).  

 

𝑁𝑒 = 𝑁𝑂 − lambert𝑊 (
𝑎ℎ𝑁0𝑒−𝑎(T − 𝑁0ℎ)

𝑎ℎ
)            [2.2] 

 

To visualise variability around the fitted curves, 95% BCa confidence intervals were drawn from 

bootstrap populations generated from the original data (frair::frair_boot; n = 1999). 

 

Parameter estimates for a and h, the two essential parameters of the Rogers random predator 

equation, were obtained from fitted FR curves for each predator-prey combination and then 

compared using indicator variables (frair::frair_compare; Paterson et al. 2014; Pritchard 2016). 

An implicit function containing the indicator variables is generated (Equation 2.3). 
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0 =  𝑁𝑂 − 𝑁𝑂
{ [a+𝐷𝑎(𝑗)]  {ℎ+ 𝐷ℎ(𝑗)]  (𝑁𝑒) − 𝑇}} − 𝑁𝑒         [2.3] 

 

where j is an indicator variable, given a value of 0 for one base species and 1 for the comparator 

species. The parameters Da and Dh estimate the differences between the species for the a and h 

parameters respectively. Thus, each parameter is significantly different between populations if 

the corresponding D value is significantly different from 0 (Juliano 2001). Because multiple 

pairwise comparisons were made, significance was considered after Holm-Bonferroni correction 

of p values (Holm 1979). 

 

2.2.3 Potential for switching 

2.2.3.1 Experimental design 

The potential for predators to switch between alternative prey items depending on their density 

was investigated by presenting predators with D. villosus and B. tentaculata at a range of relative 

abundances. These prey items were chosen because individual prey items are roughly similar in 

size (Table 2.2) and will not prey upon each other.  

 

Switching experiments followed the same protocol as FR experiments (isolation and feeding, 

settlement of prey items in tanks with habitat structure, same temperature and light regime), 

except that two prey types were presented simultaneously at a fixed starting density. 280 

individual prey were added to tanks at a ratio of 0.15:0.85, 0.35:0.65, 0.50:0.50, 0.65:0.35 or 

0.85:0.15 (n = 5 at each density for A. pallipes, n = 6 for P. leniusculus and n = 8 for E. sinensis). 

The extreme values (0.15:0.85) were chosen to ensure some individuals of both prey species 

remained in tanks at the end of every trial. As a further difference to the FR experiments, three 

and two days before use in the experiment, each animal was allowed to feed on 10 D. villosus and 

10 B. tentaculata. Only individuals that consumed each prey type were used in switching 

experiments, such that all individuals had recent experience feeding on both prey types and were 

actively feeding – and individuals were only used once. As for FR experiments, following a 

feeding period of 24h tanks were destructively sampled, remaining prey enumerated, and 

consumption and killing calculated. Five controls, with no decapod predator, were run at the 

intermediate density (140 D. villosus and 140 B. tentaculata) to check prey survival.  

 

2.2.3.2 Statistical methods 

First, total consumption of prey items (number of individuals) was compared between decapod 

species, using a quasipoisson GLM and post-hoc Tukey contrasts with Holm-Bonferroni 

adjustment of p values (multcomp::glht; Hothorn et al. 2016). 
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Switching is defined as a change in electivity towards prey types as their relative densities change 

(Murdoch 1969). That is, as relative prey densities change they are consumed more (or less) than 

would be expected based on consumption when they are equally common. 

 

To test for switching by each predator species, I used χ2 tests (with Yates’ continuity correction; 

R function prop.test) to compare the observed population proportion of D. villosus in the diet 

(PDv) at each relative prey density to the expected proportion, obtained from Equation 2.4 

(Murdoch 1969). If the proportion of D. villosus in the diet is lower than expected when D. villosus 

is rare, but higher than expected when D. villosus is common, then switching will have occurred. 

 

 𝑃𝐷𝑣 =  
𝑐𝐹𝐷𝑣

1− 𝐹𝐷𝑣+ 𝑐𝐹𝐷𝑣
  [2.4] 

 

where FDv is the proportion of D. villosus in the food available, and c is electivity towards D. 

villosus (Equation 2.5). 

 

𝑐 =  
𝑁𝐷𝑣

𝑁𝐵𝑡
    [2.5] 

 

where N is the number of prey consumed (with subscripts Dv and Bt referring to D. villosus and 

B. tentaculata respectively) when prey items are equally available. A. pallipes did not consume 

any B. tentaculata in this situation, so a value of NBt = 1 was used to allow calculation of c. I 

describe c as electivity rather than preference, as it does not necessarily depend on a behavioural 

‘choice’ by the predator (Murdoch 1969; Underwood et al. 2004). 

 

Equation 2.4 assumes that absolute and relative prey densities do not change over time. This is a 

reasonable assumption for my data. The high prey densities ensured that in 84% of trials ≤ 20% 

of the prey were consumed (and in 99% of trials < 30% of prey were consumed), and wide spacing 

of relative prey densities meant that final relative densities never became more extreme than 

adjacent starting densities. Note that c is estimated from sample data, so there is variation around 

this estimate that is not incorporated into the χ2 tests. This increases the Type I error rate of the χ2 

tests. However, given limited significance in the results this does not affect my conclusions.  

 

Analyses were also carried out using prey killed as the response variable. These yielded identical 

results to analyses based on prey consumption, and are not presented in detail in the main text 

(see Appendix 2.3 for more details). 
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2.2.4 Metabolic rates 

2.2.4.1 Experimental design 

As a potential mechanistic explanation for differences in prey consumption, I estimated aerobic 

metabolic rates (MR) from rates of oxygen consumption (ṀO2). Metabolism and foraging are 

theoretically linked by the common currency of energy: metabolic rate is the rate of energy 

conversion within an organism, whilst foraging provides fuel for this process (Biro and Stamps 

2010). I measured both standard metabolic rate (SMR; energy consumption under minimal 

functional activity i.e. associated with the idling cost of the individual’s metabolism) and routine 

metabolic rate (RMR; energy consumption incorporating SMR and all other spontaneous activity; 

Cech and Brauner 2011) because these test subtly different hypotheses. High foraging rates may 

be necessitated by a high SMR and/or needed to fuel activity that contributes to RMR.   

 

Oxygen consumption (ṀO2) of individual animals was measured in a custom made, intermittent-

flow respirometer (Fig. 2.1), set up following Quetin (1983) and Svendsen et al. (2015). The 

respirometer chamber was a 505 ml PVC food storage container, which could be clipped shut to 

maintain an airtight seal. The chamber contained a magnetic stir bar to ensure mixing of water 

during measurements (Rodgers et al. 2016), a hard plastic mesh to suspend the crayfish above the 

stir bar and a PVC shelter (6 cm length, 4.5 cm diameter,) to minimise stress. An optical dissolved 

oxygen (DO) probe (YSI ProODO, YSI Incorporated, OH) was inserted into the chamber through 

a rubber seal, with extensions of the plastic mesh separating this from the crayfish to prevent 

damage to the sensor cap. One piece of inflow silicone tubing (3 mm internal diameter) connected 

the chamber to a flush pump (Sacem BIP 4w) via an air trap, whilst another length of tubing 

provided an outflow. The chamber and attachments were submerged in a water bath, which was 

constantly aerated and contained a combined filter/ultraviolet light (All Pond Solutions, 

Middlesex, UK) which ensured water in the bath was continually homogenised and minimised 

microbial growth. The entire setup was housed in an incubator with identical temperature (14.0 ± 

0.3oC) and photoperiod (12:12h) as the controlled environment room. Housing in a separate 

incubator completely removed subjects from any visual or acoustic disturbance during 

measurement of oxygen consumption. 

 

Prior to measurement, hard-shelled (intermoult) animals were isolated for one week and fed in a 

set schedule, including a 48h starvation period prior to measurement to empty the gut and 

minimise the influence of digestive processes on metabolic rate. An individual animal was 

transferred to the respirometer chamber at 8pm, ensuring the animal remained under water to 

avoid introduction of any air bubbles. This gave the animal a five hour acclimation period in the 

respirometer, during which the flush pump was on continually to provide fresh oxygenated water.  
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Figure 2.1 Respirometry apparatus. as – air stone; at – air trap; c – computer for logging data; do – optical 

dissolved oxygen probe; fp – flush pump; r – respirometer, containing crayfish and shelter above a plastic 

mesh; sb – magnetic stir bar; sp – magnetic stir plate; t – electronic timers to control flush pump and stir 

plate; w – webcam. Double blue lines – 3 mm diameter silicone tubing; solid black lines – electronic cables; 

solid blue line – water level in holding tank. Filter/ultraviolet steriliser also present in holding tank and in 

continual operation (but not shown on diagram for simplicity). 

 

 

After this acclimation period, measurements of oxygen consumption were taken automatically for 

20 minutes (crabs) or 30 minutes (crayfish) within 50 minute cycles. Mitten crabs were allocated 

a shorter measurement phase than crayfish because pilot measurements suggested oxygen 

consumption by the crabs could be much higher than the crayfish so they were allocated a shorter 

measurement phase than the crayfish. These measurement phase durations ensured oxygen 

pressures in the respirometer never dropped below 80% but R2 values would remain high (≥ 0.88) 

even when oxygen consumption was low.  

 

At the start of a cycle, the magnetic stir bar was switched on (by an electronic timer). After a 2 

minute wait phase, the flush pump was switched off (by electronic timer) and the measurement 

phase began, during which time the respirometer was effectively a closed system (Svendsen et al. 

2016). During the measurement phase, animals were also recorded by webcam (Logitech Pro 

9000 and Webcam XP 5 software). After the 20 or 30 minute measurement phase, the stir bar was 

switched off and flush pump switched back on to replenish the respirometer with oxygenated 

water. This flush phase lasted 28 minutes for crabs and 18 for crayfish such that overall cycle 

duration remained the same, but always allowed [DO] to return to equilibrium. Throughout the 

cycles, temperature- and pressure-compensated [DO] (mg O2 L−1) and temperature (oC) were 

continually logged every 20 seconds via YSI’s Data Manager Software. Nine cycles were 

completed for each animal in each of the dark and light phases.  
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Due to equipment limitations, only one individual could be measured per day (n A. pallipes = 8, 

n P. leniusculus = 12 and n E. sinensis = 10). The order in which individuals of each species were 

tested was randomised to remove any confounding temporal effects. Animals were monitored for 

two weeks after measurement of ṀO2: no animals moulted or died during this period.  

 

2.2.4.2 Statistical methods 

For each animal, ṀO2 curves for each measurement period were split by eye into linear sections, 

and a least-squares regression line (with R2 ≥ 0.88) fit to each section in Microsoft Excel. ṀO2 

for each section was calculated according to Equation 2.6, suitable for closed-system 

respirometers (Myles-Gonzalez et al. 2015; Svendsen et al. 2016): 

 

�̇�𝑂2 = 𝑚 × (𝑉𝑡 − 𝑉𝑐) × 3600     [2.6] 

 

where ṀO2 is the weighted average oxygen consumption (mg O2 h−1), m is the gradient of the 

linear decline in oxygen concentration (mg O2 L−1 s−1), Vt is the total volume of the respirometer 

chamber (0.505 L) and Vc is the volume of each individual crayfish (determined by displacement 

immediately after ṀO2 measurement). ṀO2 was uncorrected for background respiration, as 

controls (respirometer without decapod present) indicated this was negligible.  

 

The lowest recorded ṀO2, across all sections, was taken as an estimate of SMR. Webcam 

recordings were used to verify that this coincided with a period of minimal activity. For one mitten 

crab, no SMR was recorded as the animal was always active during measurement. Two mitten 

crabs showed negligible ṀO2 over a 2-3 minute section. These measurements were not considered 

as estimates of SMR, but outliers reflecting anaerobic respiration (e.g. Chabot et al. 2016), and 

were therefore excluded from analyses.  

 

RMR was estimated as a weighted average of ṀO2, values for all measured sections, separately 

for the light and dark phases (Equation 2.7):    

 

𝑅𝑀𝑅 =   ∑ �̇�𝑂2 (𝑠)
 ×  

𝑡𝑠

𝑇

𝑛
𝑠=1     [2.7] 

 

where ṀO2 (s) is the oxygen consumption rate for section s, ts is the duration of section s, and T is 

the total duration of all sections. In this way, RMR incorporates periods of activity as well as 

periods of rest. 
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Metabolism and oxygen consumption rate are strongly mass-dependent (Cech and Brauner 2011). 

Animals used for ṀO2 measurements that were matched by overall body size (Table 2.1) differed 

significantly in mass (mean ± SE masses A. pallipes 12.1 ± 1.0 g, P. leniusculus 11.6 ± 0.4 g, E. 

sinensis 14.3 ± 0.4 g; ANOVA for difference in mass between species F2,27 = 5.85, p = 0.008). To 

account for these differences in mass, MR data were adjusted to a mass of 13 g (close to the mean 

for all species) using Equation 2.8 (adapted from Cech and Brauner 2011): 

 

𝑀𝑅(13g) = 𝑀𝑅 × (
13

𝑚𝑎𝑠𝑠
) 𝑏      [2.8] 

 

where mass is the mass of the individual animal (g) and b is the scaling exponent for MR against 

mass. Ideally, b would be species- and rate-specific (i.e. idiosyncratic to SMR and RMR for each 

species) but such data do not exist. Instead, I take b = 0.71 as the best estimate based on the field 

metabolic rate of Orconectes rusticus crayfish (McFeeters et al. 2011).  

 

Mass-corrected MRs (equation 2.8) were compared between species using ANOVA and post-hoc 

Tukey contrasts with Holm-Bonferroni adjustment of p values (multcomp::glht). Within species, 

diurnal and nocturnal MRs were compared using paired t tests.  

 

2.3 Results  

2.3.1 Functional responses 

Prey survivorship in the presence of decapods was significantly lower than survivorship in control 

treatments (Dikerogammarus 97.1% control vs. 75.9% experimental, chironomids 94.5% vs. 

37.5%, Bithynia 97.4% vs. 83.6%; χ2 tests for these overall proportions and for each decapod 

species separately all p < 0.001). Thus, I infer that the decapods were acting as predators (not just 

scavenging dead prey) in the experimental arenas. Further, predation was directly observed in 

separate tanks. Although vertical migration to evade decapod predation is a defensive behavioural 

strategy in some gastropods (Haddaway et al. 2014), B. tentaculata remained underwater and 

predominantly among the benthic habitat structure in the present experiments.   

 

Using consumption of prey as the response variable, the functional responses for all predator-prey 

combinations were best described by a Type II curve, levelling off to an asymptote. In most 

binomial GLMs of proportional deaths against prey density, the second order term was 

significantly negative (Table 2.3). Where this was not the case, lower AIC values for Type II fits 

compared to Type I fits indicated that the former were more appropriate. 
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Across all prey items, E. sinensis had a significantly greater attack rate than both crayfish species 

(z tests, p ≤ 0.012 for all comparisons): at least 2.2 times that of A. pallipes on all prey types, and 

between 1.2 (on chironomids) and 4.1 (on Bithynia) times that of P. leniusculus (Table 2.4). In 

addition, the attack rate of P. leniusculus was at least 1.7 times greater than that of A. pallipes on 

all prey items, and always significantly greater (z tests, p ≤ 0.007 for all comparisons). Higher 

attack coefficients are manifested as higher FR curves (greater predation rates) at low prey 

densities (Fig. 2.2).  

 

E. sinensis tended to have a high maximum feeding rate (1/hT; Table 2.4) on all prey items, by 

virtue of its short handling time. The maximum feeding rate of E. sinensis was significantly higher 

than the maximum feeding rate of both crayfish species when D. villosus or chironomid larvae 

were prey: at least 2.9 times higher on D. villosus and at least 1.9 times higher on chironomid 

larvae (z tests, p < 0.001 for all comparisons; Table 2.5). With B. tentaculata as prey, E. sinensis 

had a higher FR than A. pallipes (but not significantly so; z = 1.49, p = 0.136) but a similar 

maximum feeding rate to P. leniusculus (z = −0.02, p = 0.984). Considering the two crayfish 

species, P. leniusculus tended to have a higher maximum feeding rate than A. pallipes on all prey 

items (1.03 times higher on D. villosus, 1.1 times higher on chironomid larvae and 1.3 times 

higher on B. tentaculata), but only significantly so on chironomid larvae (z = 6.39, p < 0.001).  

 

 

 

 

 

Table 2.4 Estimates of functional response parameters for decapod predators consuming each of three 

macroinvertebrate prey species, extracted from Rogers’ random predator equation fitted to data in the frair 

package (Pritchard 2016).  a – attack coefficient; h – handling time (days.prey item−1); 1/hT – maximum 

feeding rate (prey.day−1), where T = time in days; SE – standard error. Diff – within each prey item and 

for each parameter, different letters in this column indicate significantly different parameters (after Holm-

Bonferroni correction for multiple comparisons). 
 

Prey Decapod a SE Diff h SE 1/hT  Diff 

Amphipod A. pallipes 0.721 0.082 a 0.042 0.003 23.9 a 

 P. leniusculus 1.905 0.195 b 0.041 0.002 24.5 a 

 E. sinensis 2.529 0.154 c 0.014 < 0.001 71.7 b 

         

Chironomid A. pallipes 2.444 0.088 A 3.298 x 10−3 6.332 x 10−5 303.2 A 

 P. leniusculus 4.382 0.130 B 2.888 x 10−3 3.610 x 10−5 346.3 B 

 E. sinensis 5.456 < 0.001 C 1.546 x 10−3 1.284 x 10−5 647.0 C 

         

Gastropod A. pallipes 0.298 0.043 α 0.057 0.007 17.6 α 

 P. leniusculus 0.494 0.058 β 0.045 0.004 22.1 α  

 E. sinensis 2.006 0.227 γ 0.045 0.003 22.1 α 
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E. sinensis  

 
P. leniusculus 

 
A. pallipes 

 

 

Figure 2.2 Functional response curves of A. pallipes (green), P. leniusculus (blue) and E. 

sinensis (orange) on (a) D. villosus (b) Chironomid larvae (c) B. tentaculata. Curves were 

fitted in frair using Rogers’ random predator equation. Shaded areas show 95% 

bootstrapped BCa confidence intervals for each curve.  
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Table 2.5 Comparison of functional response parameter estimates for decapod predator consumption of 

macroinvertebrate prey, based on analysis using indicator variables in the frair package (Pritchard 2016). 

Raw p values are presented; significant differences (α = 0.05) after Holm-Bonferroni correction within 

each prey group are indicated in bold. a – attack coefficient; h – handling time (days.prey item−1); D – 

difference; SE – standard error.  
 

Prey Base Group Comparison  
Estimate  

(Da or Dh)  
SE z p 

Amphipod A. pallipes P. leniusculus a 1.184 0.211 5.600 < 0.001 

   h < 0.001 0.003 −0.317 0.751 

 P. leniusculus E. sinensis a 0.625 0.248 2.517 0.012 

   h −0.027 0.002 −15.061 < 0.001 

 A. pallipes E. sinensis a 1.808 0.174 10.402 < 0.001 

   h −0.028 0.003 −10.730  < 0.001 

        

Chironomid A. pallipes P. leniusculus a 1.938 0.037 53.070 < 0.001 

   h < 0.001 < 0.001 −6.393 < 0.001 

 P. leniusculus E. sinensis a 1.076 0.039 27.454 < 0.001 

   h −0.001 < 0.001 −39.922 < 0.001 

 A. pallipes E. sinensis a 3.187 0.036 87.429 < 0.001 

   h −0.002 < 0.001 −28.601 < 0.001 

        

Gastropod A. pallipes P. leniusculus a 0.196 0.072 2.703 0.007 

   h 0.012 0.008 −1.380 0.167 

 P. leniusculus E. sinensis a 1.514 0.235 6.446 < 0.001 

   h < 0.001 0.005 0.021 0.984 

 A. pallipes E. sinensis a 1.710 0.232 7.382 < 0.001 

   h −0.011 0.008 −1.489 0.136 

Table 2.6 Comparison of attack rates (a) and maximum feeding rates (1/hT) for decapod predation on 

macroinvertebrates, using prey consumed or prey killed as the response variable.  
 

Prey 

  
Decapod  Attack rate a  Maximum feeding rate 1/hT 

 Prey  

consumed 

Prey  

killed 

killed/ 

consumed 

 Prey  

consumed 

Prey  

killed 

killed/ 

consumed  

Amphipod A. pallipes  0.721 0.735 1.02  23.9 25.0 1.05 

 P. leniusculus  1.905 1.878 0.99  24.5 25.2 1.03 

 E. sinensis  2.529 2.487 0.98  71.7 77.1 1.08 

          

Chironomid A. pallipes  2.444 2.457 1.01  303.2 304.8 1.01 

 P. leniusculus  4.382 4.373 1.00  346.3 347.3 1.00 

 E. sinensis  5.456 5.450 1.00  647.0 648.3 1.00 

          

Gastropod A. pallipes  0.298 0.292 0.98  17.6 18.5 1.05 

 P. leniusculus  0.494 0.482 0.98  22.1 23.5 1.06 

 E. sinensis  2.006 1.972 0.98  22.1 23.5 1.06 



51 

 

The death of prey that are not subsequently consumed will also have implications for prey 

populations in the wild. Analyses generating FR curves using all prey killed were not both 

qualitatively and quantitatively similar to the analyses presented (see Appendix 2.1 for full 

analyses): all curves were Type II, significant differences between attack rates and handling times 

were as for Table 2.4 and attack rates were within 2% of those based on consumption (Table 2.6). 

Maximum killing rates were always greater than maximum consumption rates (Table 2.6), 

indicating some partial consumption of prey. Partial consumption was more frequent on 

amphipod and gastropod prey (maximum killing rates up to 1.08 times maximum consumption 

rates) than on chironomid larvae (maximum killing rates no more than 1.01 times maximum 

consumption rates (Table 2.6). 

 

2.3.2 Switching 

Mortality in controls, containing 140 of each prey animal, was low (D. villosus 3.2% and B. 

tentaculata 0.3%), indicating that inter- and intra-specific predation by prey animals was minimal. 

As for FR experiments, I therefore assume decapods were acting as predators rather than 

scavengers.  

 

In the switching experiments, E. sinensis consumed significantly more food in total (across all 

relative densities mean ± SE individuals consumed = 50.3 ± 3.2) than P. leniusculus (18.1 ± 1.7) 

and A. pallipes (18.6 ± 1.1) (Tukey adjusted p < 0.001 for both). The crayfish species did not 

differ in the number of prey items they consumed overall (Tukey adjusted p = 0.883). 

 

 
 

 

 

 

 

 

Figure 2.3 Proportion of D. villosus in the diet of decapod predators at varying relative densities of D. 

villosus to B. tentaculata. At all relative densities, total prey density was fixed at 280.tank−1. Note that the 

y axes begin at 0.6. Points are population proportions with 95% binomial confidence intervals. Curves are 

expected proportions in the absence of preference, based on consumption when prey types are equally 

available. Asterisk indicates significant deviation from null hypothesis (binomial tests; without correction 

for multiple testing). 
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All decapods showed strong electivity towards D. villosus when both prey types were equally 

common: D. villosus formed a significantly greater proportion of the diet than would be expected 

under random feeding (A. pallipes c = 96.0; P. leniusculus c = 26.3; E. sinensis c = 15.7; binomial 

tests of null PDv = 0.5, p < 0.001 for all three predator species). When electivity ≠ 0, the null 

hypothesis for switching (Equation 2.4) yields a non-linear curve on a plot of PDv against relative 

prey density (Fig. 2.3). Observed PDv only differed from expected PDv for E. sinensis at a relative 

density of 0.35 (χ2 = 5.64, df = 1, p = 0.018). Thus, there was no consistent deviation of observed 

PDv from expected PDv (Fig. 2.3), indicating an absence of switching in any decapod predator: 

electivity towards D. villosus was maintained at all relative prey densities.  

 

2.3.3 Metabolic rates 

There was no difference in mass-adjusted SMR between the three decapod species (Fig. 2.4a; 

ANOVA F2,26 = 0.02, p = 0.980). Mean ± SE SMRs for 13g animals were A. pallipes 0.35 ± 0.05 

mg O2 hr−1, P. leniusculus 0.34 ± 0.03 mg O2 hr−1, E. sinensis 0.34 ± 0.04 mg O2 hr−1. 

 

The RMR of the alien species was significantly higher at night than during the day (E. sinensis 

paired t = 3.10, df = 9, p = 0.013; P. leniusculus t = 4.85, df = 11, p < 0.001, whilst the RMR of 

A. pallipes was marginally higher during the day than at night (t = −2.01, df = 7, p = 0.084). 

 

In contrast to SMR, mass-adjusted RMR did differ between species, both during the day (ANOVA 

F2,27 = 8.52, p = 0.001) and at night (ANOVA F2,27 = 18.79, p < 0.001). During the day, E. sinensis 

had a higher RMR than both crayfish species (Fig. 2.4b; 1.8 times higher than A. pallipes, Tukey 

 

 
 

 
 

 

 

 
 

 

 

 

Figure 2.4 Mass-adjusted (to 13 g) oxygen consumption rates of decapod crustaceans, as proxies for 

metabolic rates. (a) Standard metabolic rate (SMR): the lowest recorded ṀO2 associated with minimal 

activity (b) diurnal routine metabolic rate (RMR): a weighted average of all ṀO2 measurements during the 

light phase and (c) nocturnal RMR: a weighted average of all ṀO2 measurements during the dark phase. 

Letters indicate significant differences based on Tukey contrasts with Holm-Bonferroni correction of p 

values. Bars show means ± 2 SE. P. len. – Pacifastacus leniusculus.  
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adjusted p = 0.009; and 1.9 times higher than P. leniusculus, Tukey adjusted p = 0.002), whilst 

RMR did not differ between the crayfish (Tukey adjusted p = 0.689). However, at night the RMR 

of E. sinensis was not significantly higher than that of P. leniusculus (Fig. 2.4c; Tukey adjusted 

p = 0.158), but both invaders had a higher RMR than A. pallipes (Tukey adjusted p < 0.001 for 

both comparisons). 

 

2.4 Discussion 

This Chapter highlights an exceptionally high predatory capacity of alien E. sinensis, especially 

on softer-bodied prey. Alien P. leniusculus had attack rates and maximum feeding rates that were 

consistently higher than those of A. pallipes across all prey types. Further, my data suggest the 

impact of the alien predators on any single prey type may not be tempered by more flexible diet 

choices. Higher predation rates of the invaders are associated with higher RMRs (but not SMRs), 

suggesting differences in predation could be explained by differences in activity levels.  

 

My FR curves indicate that E. sinensis is a voracious predator with the potential to have strong 

impacts on prey populations in invaded rivers. Attack rates and maximum feeding rates of E. 

sinensis are higher than, or as high as, those of signal crayfish across a range of macroinvertebrate 

prey of differing motility and physical defence, in accord with previous FRs derived with G. pulex 

as prey (Rosewarne et al. 2016). My data reveal the magnitude of these differences may be higher 

than previously reported, with maximum feeding rates of E. sinensis as much as 2.9 times those 

of an equally-sized alien crayfish, and attack rates as much as 4.1 times those of alien crayfish.  

 

Meanwhile, maximum feeding rates on gastropod prey were similar between crayfish and crabs. 

Crayfish are particularly adept at consuming gastropods with their large crushing chelae, and 

accordingly gastropod populations are amongst the most strongly affected by crayfish (Lodge et 

al. 1994; McCarthy et al. 2006; Twardochleb et al. 2013). Meanwhile, E. sinensis is relatively 

poor at handling gastropods – especially those with thick shells like B. tentaculata – with shorter, 

narrower chelae than crayfish for a given body size (pers. obs.; Bertness and Cunningham 1981; 

Mills et al. 2016). Thus, the low maximum feeding rates of E. sinensis on B. tentaculata are likely 

to be limited by physical handling time (extracting flesh from snail shells) rather than digestion 

time or motivation to feed (Jeschke et al. 2002; Mills et al. 2016), and implies that crabs feeding 

on gastropods were not satiated at the end of experiments. 

 

The wider implications of predation on macroinvertebrates by E. sinensis are complex. Trophic 

cascades (e.g. reduction in processing of leaf litter) could flow from this predation, but they could 

be mitigated by crab omnivory (Jackson et al. 2014). Impacts also depend on the balance between 
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direct biotic interactions (this Chapter) and habitat-mediated effects such as sediment 

resuspension (Harvey et al. 2011; Gallardo et al. 2016). Intense predation by E. sinensis could 

provide biotic resistance, especially to Ponto-Caspian amphipods such as D. villosus and D. 

haemobaphes (Twardochleb et al. 2012; MacNeil et al. 2013b), but the high biomass of these 

invaders could equally facilitate crab invasion (invasional meltdown; Simberloff and von Holle 

1999). 

 

Considering the crayfish species, my FR data suggest the per capita impact of the invader P. 

leniusculus consistently exceeds that of A. pallipes on a range of prey types, although the 

magnitude of this difference is relatively small. Again, this is in accord with studies using just G. 

pulex as prey (Haddaway et al. 2012; Rosewarne et al. 2016). Attack rates of P. leniusculus were 

significantly higher than A. pallipes on all prey items reflecting a steeper initial rise of the FR 

curve – even with the constraints on the curves at low densities imposed by my non-replacement 

design (Dick et al. 2014). High attack rates are associated with higher predation pressures at low 

prey densities, at which prey populations will be most vulnerable to additional mortality 

(Murdoch and Oaten 1975; Juliano 2001). P. leniusculus also had a higher FR curve (maximum 

feeding rate) than A. pallipes on all prey items, although this difference was not significant on 

amphipod prey and only marginally so on B. tentaculata. High inter-individual variability 

associated with variation in body size would have reduced my power to detect significant 

differences. The magnitude of difference in maximum feeding rates was relatively small (up to 

1.3 times higher in P. leniusculus), although the largest difference was on Bithynia, corroborating 

observations that P. leniusculus is particularly adept amongst crayfish at handling thick-shelled 

snails (Olden et al. 2009). Overall, the higher FRs associated with a damaging invader relative to 

a native analogue are concordant with the general pattern emerging from FR studies in invasion 

biology (Dick et al. 2014), although my data caution that these differences may not always be 

large or significant. 

 

Interestingly, the magnitudes of FR differences corroborate relative impact predicted by other 

methods. The FR of E. sinensis was especially high on D. villosus as prey, and alien E. sinensis 

consume amphipods more readily in the field (based on stable isotope analysis) and in laboratory 

choice trials, and have a greater impact on mesocosm populations of amphipods, compared to P. 

leniusculus (Czerniejewski et al. 2010; Rosewarne et al. 2016). E. sinensis also possesses 

behavioural and morphological traits that assist in the capture of motile prey (Mills et al. 2016). 

In contrast, mobile taxa such as amphipods are amongst the least affected by crayfish predation 

in experimental manipulations (Twardochleb et al. 2013) and in the field (Mathers et al. 2016). 

E. sinensis also consumed chironomid larvae at a greater rate than the crayfish, matching the high 

prevalence of these – and other similar vermiform prey, for which I assume chironomid larvae 
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are an approximate proxy – in mitten crab diets (Rudnick and Resh 2005; Czerniejewski et al. 

2010).  

 

Switching – a disproportionate change in the contributions of prey items to predator diets as the 

relative abundance of prey varies – was not observed in any of the predator species. The 

proportion of D. villosus and B. tentaculata in predator diets matched null expectations, assuming 

no switching. This implies that in the field, predation pressure on a single prey type could be 

maintained even when it becomes rare, potentially leading to local prey extinction (Murdoch and 

Oaten 1975). Interestingly, E. sinensis showed a tendency towards negative prey switching i.e. 

higher than expected proportional consumption of D. villosus when it is the less abundant prey. 

This was more obvious for smaller crabs (when crabs and crayfish were matched by mass rather 

than body size; Appendix 2.4), explained by the larger increase in gastropod than amphipod 

handling time in smaller crabs (Appendix 2.1). Negative switching would increase predation 

pressure on amphipods even when rare – matching observations of a large contribution of 

amphipods to E. sinensis diet in the field (Rosewarne et al. 2016). I note that the absence of 

switching in the present study may be related to the very strong null electivity towards D. villosus 

(c ≥ 15.7). Experiments with prey items that are more similar in defence and handling time may 

reveal different patterns. Generally, diet flexibility or generalism may be trait associated with 

successful invasive species (Moyle and Light 1996; Cassey 2002). Previous feeding experiments 

suggest P. leniusculus and E. sinensis consume a wider range of prey types than A. pallipes 

(Haddaway et al. 2012; Rosewarne et al. 2016) and the latter is more hesitant to feed on novel 

prey (Gherardi et al. 2001).  

 

Metabolic rates were measured as a potential mechanistic explanation for differences in feeding 

rates. Mass-adjusted SMR did not differ between the decapod species, suggesting a similar-sized 

metabolic engine with a similar idling cost in all species (Biro and Stamps 2010). Thus, intrinsic 

differences in metabolic machinery make little contribution to differences in feeding rates. Note 

E. sinensis were slightly heavier than the crayfish when matched by overall body size, meaning 

the SMR of E. sinensis would be slightly higher than that of the crayfish on average, owing to 

allometric scaling of MR with body size (Brown et al. 2004). However, the difference in mass 

was small (crabs around 1.2 times heavier than crayfish, thus with an MR approximately 1.20.71 

times greater) relative to the difference in feeding rate (at least 1.9 times on amphipods and 

chironomids), leaving much of the difference in feeding rate unexplained. Further, when decapods 

were matched by body mass, large differences in feeding rates remained (Appendix 2.2). 

 

In contrast with SMR, there were large differences in RMR between the decapod species. E. 

sinensis had a greater mass-adjusted RMR than the crayfish species, and P. leniusculus had a 
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greater RMR than A. pallipes at night. Inspection of webcam recordings indicated that periods of 

high RMR were associated with activity in the respirometer. Further, the higher RMR of E. 

sinensis and P. leniusculus at night is consistent with their known nocturnal activity (Styrishave 

et al. 2007; Gilbey et al. 2008). The interspecific differences in activity and RMR match the rank 

order of differences in feeding rate and make biological sense (Careau et al. 2008; Rall et al. 

2012). Together, the RMR and FR data indicate a positive association between the supporting 

traits of activity, RMR and feeding rate across species. These traits are likely linked through 

feedbacks: a species that is more active and operates at a high RMR both needs (in order to fuel 

the metabolic engine) and is able (via increased encounter rates with prey) to feed at a higher rate. 

In turn, this higher feeding rate fuels the higher RMR. 

 

FRs are an emerging methodology for impact assessment (Dick et al. 2014). My data support the 

use of FRs as a simple, cost-effective tool for rapid assessment of invader impacts, and provide 

guidance on how they may be used. At one level, comparative FRs on a single prey type can be 

used to rapidly score impact potential given that similar conclusions regarding relative FR shape 

and height are drawn for all prey types. At another level, because my FRs were sensitive to prey 

type in accord with predictions from other methodologies, my data support the use of FRs to make 

specific predictions about magnitude of impact on different prey groups. Analogously, Dick et al. 

(2013) found the relative heights of lab-derived FRs to predict field impacts in the invasive shrimp 

Hemimysis anomala, and Dodd et al. (2014) found that FR heights and shapes corroborated 

known field impacts of D. villosus on macroinvertebrate prey. Additionally, given that successful 

invasive and alien species tend to have higher resource consumption rates than native analogues 

(McKnight et al. 2016), I encourage the use of FRs to predict invasion success as well as impact 

(e.g. Xu et al. 2016).  

 

However, I acknowledge limitations in the FR approach (Dick et al. 2014). Extrapolation to 

success and impact in the field must be done with caution given (a) the simplicity of the 

experimental system (b) only predators of a single size were used and (c) predators were tested in 

isolation rather than in groups. In natural scenarios, total consumption is likely to be reduced as 

the decapods will allocate more of their time budget to other activities such as predator avoidance 

and interactions with conspecifics. More complex natural habitats can increase predator-free 

space, altering the height and shape of FRs (Barrios-O’Neill et al. 2015). When a greater diversity 

of food types is available, consumption of any single prey type is likely to decrease, with patterns 

of consumption depending on the habitat, activity and relative densities of prey. Finally, different 

sized individuals might have different impacts in the field, both in terms of amount and pattern of 

per capita resource consumption (Chapter 3). Still, my FRs allow a fair comparison to be made 
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between species to estimate relative impacts: for a given, representative size class, what is the 

maximum potential impact on prey? 

 

In natural situations, predators will occur in groups. Local impacts are likely to be positively 

related to predator population densities, in addition to per capita effects measured by FRs (Parkyn 

et al. 1997; Parker et al. 1999; Ricciardi 2003). Alien P. leniusculus can reach much higher 

densities than A. pallipes in similar systems: summer surveys in riffles with cobble/pebble 

substrate yielded P. leniusculus densities of 14.m−2 (Guan 2000), compared to A. pallipes densities 

of around 4.m−2 (Demers et al. 2003). Alien E. sinensis can also reach high population densities 

relative to native decapods (Rudnick et al. 2003; Gherardi et al. 2011). These differences in 

density could augment the differences in per capita feeding rate identified in this Chapter. 

However, the increase will not necessarily be additive. Interactions between conspecifics 

(‘multiple predator effects’) can reduce per capita effects at high density (Soluk 1993; Médoc et 

al. 2015). In P. leniusculus, per capita consumption of chironomid larvae and zebra mussels is 

reduced at high conspecific densities – although behavioural correlations between aggression and 

foraging activity can maintain per capita feeding rates on gastropods (Pintor et al. 2009; zu 

Ermgassen and Aldridge 2010). Measurement of population rather than individual impacts would 

address the problems of density, interference and body size that are not incorporated in individual 

FRs (Barney et al. 2013), although this adds complexity to a predictive tool whose simplicity and 

rapidity is a virtue. Moreover, the balance of evidence suggests predictions based on individual 

FRs generally reflect field impacts and so are robust to these complexities (Dick et al. in press). 

 

Quantitative evidence of alien species’ impacts is important for making robust decisions about 

their management (Kumschick et al. 2012). My data provide such evidence for two important 

(widespread and abundant) decapod crustacean invaders in Great Britain. E. sinensis and P. 

leniusculus had consistently high predatory impacts on a range of macroinvertebrate prey relative 

to the impact of A. pallipes, associated with differences in routine metabolic rate. The difference 

in per capita impact between the crayfish species is relatively small, suggesting impacts of P. 

leniusculus may be driven more by differences in abundance or body size. The per capita impact 

of E. sinensis is exceptionally high on soft-bodied prey, highlighting predation as a mechanism 

by which mitten crabs could cause large impacts.  

 

 

 

 

 



58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 

 

Chapter 3 
 

Predation of fish eggs and larvae by invasive alien and 

native amphipods: size matters 
  

 

Abstract 

Alien predators can have dramatic impacts on invaded communities. Extreme declines in 

macroinvertebrate populations often follow killer shrimp (Dikerogammarus villosus) invasions. 

There are concerns over similar impacts on fish through predation of eggs and larvae, but these 

remain poorly quantified.  

 

I compare the predatory impact of invasive alien and native amphipods (D. villosus and 

Gammarus pulex respectively) on fish eggs and larvae (ghost carp Cyprinus carpio and brown 

trout Salmo trutta) in the laboratory. I use size-matched amphipods, as well as larger D. villosus 

reflecting natural sizes. I quantify functional responses, and electivity amongst eggs or larvae and 

alternative food items (invertebrate, plant and decaying leaf).  

 

D. villosus, especially large individuals, were more likely than G. pulex to kill trout larvae. 

However, the magnitude of predation was low (seldom more than one larva killed over 48 hours). 

Trout eggs were very rarely killed. In contrast, carp eggs and larvae were readily killed and 

consumed by all amphipod groups. Large D. villosus had maximum feeding rates 1.6 to 2.0 times 

higher than the smaller amphipods, whose functional responses did not differ. In electivity 

experiments with carp eggs, large D. villosus consumed the most eggs and the most food in total. 

However, in experiments with larvae, consumption did not differ between amphipod groups.   

 

Overall, my data suggest D. villosus will have a greater predatory impact on fish populations than 

G. pulex, primarily due to its larger size. Higher invader abundance could amplify this difference. 

The additional predatory pressure could reduce recruitment into fish populations.  

 

3.1 Introduction 

Alien species continue to have negative impacts on populations, communities and ecosystems 

across the globe (Strayer 2010; Simberloff et al. 2013; Gallardo et al. 2016). One important 

mechanism behind these impacts is predation (Ross 1991; Davis 2003; Sax and Gaines 2008; 

Blackburn et al. 2014). Predation is a fundamental ecological interaction with the capacity to 

shape and structure natural communities (Thorp 1986; Case and Bolger 1991; Wellborn et al. 
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1996; Jackson et al. 2001). Owing to factors such naivety in prey populations (Case and Bolger 

1991; Cox and Lima 2006), release from natural enemies (Roy et al. 2011) or intrinsic behavioural 

characteristics (Weis 2010), damaging alien predators frequently consume prey more rapidly than 

analogous native species and thus have stronger effects on resident prey populations (Dick et al. 

2014; Dick et al. submitted). 

 

Invasions by alien species are one of the primary threats to freshwater biodiversity, reflecting the 

globally extensive but locally intensive use of fresh waters by humans (Richter et al. 1997; Sala 

2000; Light and Marchetti 2007). Moreover, introduced predators in freshwaters have particularly 

severe impacts relative to those in terrestrial or marine systems (Sala et al. 2000; Cox and Lima 

2006). For example, fish populations – many of great commercial or biological importance – 

frequently decline following invasion as a result of predation. All life stages are vulnerable, from 

adults (e.g. Lawrie 1970; Ogutu-Ohwayo 1990; Ruzycki et al. 2003) to young fish (e.g. Garman 

and Nielsen 1982; Lemly 1985) to eggs and larvae (e.g. Meffe 1985; Ruzycki et al. 2003).  

 

Predation is probably the biggest single cause of fish egg and larval mortality (Bailey and Houde 

1989; Houde 2002). Consequently, it can have particularly strong effects on populations, greatly 

influencing recruitment of even the most fecund fish (Köster and Möllmann 2000; Bajer et al. 

2012). For example, in experimental ponds, egg predation by Orconectes virilis decreased or 

completely prevented recruitment of pumpkinseed (Lepomis gibbosus) and bluegill (L. 

macrochirus) sunfish respectively (Dorn and Mittelbach 2004). Meanwhile, in the Upper 

Mississippi River Basin, egg predation by L. macrochirus drastically reduces carp recruitment, 

providing local biotic resistance to invasion by carp where the predator is present (Bajer et al. 

2012). Vulnerability to predation is conferred by the aggregated distribution and limited mobility 

of fish eggs and larvae (Hassell 1978; McGurk 1986). Moreover, their small size makes them 

accessible to a wide range of predators, including macroinvertebrates such as Trichoptera, 

Plecoptera and Crustacea (Zuromska 1967 cited in Paling 1968; Fox 1978; Mills 1981; Brown 

and Diamond 1984).  

 

The amphipod crustacean Dikerogammarus villosus is a potentially devastating, invasive alien 

predator of fish eggs and larvae. D. villosus is native to the Ponto-Caspian region, but has spread 

north-west through the river and canal network of Europe to form multiple self-sustaining 

populations, and can reach locally high densities (Bij de Vaate et al. 2002; Gallardo et al. 2012; 

Rewicz et al. 2014). D. villosus also threatens to invade elsewhere (e.g. the American Great Lakes; 

Pagnucco et al. 2014). Evidence implicates D. villosus as a voracious predator, earning it the 

‘killer shrimp’ title, special attention as an ‘alert’ species in Great Britain, and a listing as one of 

the 100 worst invaders in Europe (www.europe-aliens.org). 
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Invasion by D. villosus frequently coincides with the decline or extinction of resident benthic 

macroinvertebrates such as isopods, tubificids and amphipods (Dick and Platvoet 2000; Dick et 

al. 2002; Kley and Maier 2003; Josens et al. 2005; Boets et al. 2010; MacNeil et al. 2013a; Dodd 

et al. 2014; Gergs and Rothhaupt 2015). Thus, once established D. villosus typically dominates 

the macroinvertebrate community in both number and biomass (Josens et al. 2005; van Riel et al. 

2006). Trophic links and ecosystem functions can also be transformed by the invader (Dick et al. 

2002; Piscart et al. 2011; MacNeil et al. 2011; Boeker and Geist 2015). Predation by D. villosus 

may be an important mechanism behind these changes. In the laboratory, D. villosus will consume 

a wide range of animal prey, including aquatic bugs, leeches, isopods, juvenile crayfish, 

chironomid larvae, odonate larvae, ephemeropteran larvae and even other amphipods (Dick and 

Platvoet 2000; Platvoet et al. 2009; Boets et al. 2010; MacNeil et al. 2013a). Stable isotope and 

fatty acid analyses suggest predatory tendencies tend to be retained in the field (van Riel et al. 

2006; Maazouzi et al. 2007; but see Hellmann et al. 2015).  

 

D. villosus will also prey upon fish eggs and larvae, raising concerns about its potential to cause 

analogous declines in fish populations. D. villosus will kill and eat Cottus perifretum eggs and 

larvae in the laboratory and has been found with damaged C. perifretum eggs in the field (Platvoet 

et al. 2009). Further, Casellato et al. (2007) showed that D. villosus will consume Coregonum 

lavaretus eggs preferentially over other animal prey. However, these experiments produce few 

quantitative data for few species of fish, and do not compare impacts with native species. 

Comprehensive and objective data on invader impacts, ideally relative to native species, are vital 

to understand how invaders might change ecosystems and as a basis for management decisions 

(Byers et al. 2002; NRC 2002; Kumschick et al. 2012; Dick et al. 2013; Dick et al. 2014). 

 

Using laboratory experiments, I compare predatory impacts of invasive D. villosus and an 

analogue native to Great Britain (although invasive elsewhere), Gammarus pulex. As prey, I used 

the early life stages of salmonid and coarse (i.e. non-salmonid) fish. I use size-matched amphipods 

to examine intrinsic differences between species as well as large D. villosus to reflect natural 

differences in amphipod size: both species identity and body size can be critical aspects of 

predator-prey interactions (Bailey and Houde 1989; Luecke et al. 1990; Miller et al. 1992; 

Woodward et al. 2005; Rall et al. 2012; Anderson et al. 2016). I quantify amphipod predation on 

fish eggs and larvae (a) as functional responses (FRs), a fundamental measure of resource use 

with the potential to predict impacts in the field (Dick et al. 2013; 2014) and (b) in the presence 

of alternative foods to examine differences in electivity, which can also influence predator 

impacts (Grosholz 2005; Dodd et al. 2014). Finally, I discuss the results of these experiments in 

the context of potential impacts on fish populations.  
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Since damaging alien species tend to consume resources at faster rates than native analogues 

(Dick et al. 2014), I predict that D. villosus will have a higher FR and consume more food in 

electivity experiments than size-matched G. pulex. I also predict larger D. villosus will consume 

more food than the smaller amphipods in both FR and electivity experiments (Woodward et al. 

2005; Maier et al. 2011; Rall et al. 2012). In electivity experiments, I predict that D. villosus will 

show a stronger tendency than G. pulex to consume fish eggs and larvae given the known 

predatory tendencies of the invader (e.g. van Riel et al. 2006).  

 

3.2 Methods 

3.2.1 Experimental organisms 

3.2.1.1 Fish eggs and larvae 

Fish were a representative salmonid (native brown trout S. trutta L. 1758) and coarse fish (non-

native ghost carp Cyprinus carpio L. 1758). These were chosen to represent two contrasting sizes 

of freshwater fish propagule (Table 3.1; Teletchea and Fontaine 2010), the two main types of 

freshwater fishery in the UK (Mawle and Peirson 2009) and the most speciose European fish 

families (Freyhof and Brooks 2011). 

 

Live trout eggs were sourced from a commercial hatchery in Grassington, UK in January and kept 

in aerated, aged and circulating tap water in incubators at 7.0 ± 0.2oC (range) and under a 9:15h 

light:dark cycle. Live carp eggs were sourced from a commercial hatchery in Nottingham, UK in 

early May and kept in aerated, aged and circulating tap water in a controlled-temperature (CT) 

room at a temperature of 13.9 ± 0.1oC (range) and under a 12:12h light:dark cycle. Temperatures 

and light regimes were chosen to match typical development conditions for each fish (Alabaster 

and Lloyd 1982). Tap water was aged (at the same temperature as the eggs) through aeration for 

24h. Egg and larval stock tanks were cleaned daily. Conditions facilitated high survival and hatch 

rates. Larvae were only kept and used when recently-hatched and relying on yolk sacs for nutrition 

(Teletchea and Fontaine 2010), thus falling outside the remit of the UK Animals (Scientific 

Procedures) Act (1986). Mean sizes of eggs and larvae (Table 3.1) were typical for salmonids and 

coarse fish (Teletchea and Fontaine 2010). 

 

3.2.1.2 Amphipods  

Amphipods were collected from established populations in 2014 and 2015. G. pulex were kick-

sampled from a stream in Golden Acre Park, Leeds (lat 53°52'N, long 1°36'W) and D. villosus 

sampled from artificial substrates in Grafham Water, Cambridgeshire (lat 52°17'N, long 0°19'W). 

Each species was transported to Leeds in insulated boxes and maintained in the laboratory on a 



63 

 

diet of stream-conditioned Acer pseudoplatanus L. leaves (which were readily consumed). 

Amphipods were kept in aerated, aged tap water under the same light and temperature regime as 

fish eggs and larvae for at least one week before use in experiments, and in single-sex tanks for 

at least 72h before use. 

 

Only male amphipods were used in experiments to avoid potential variation in predatory impact 

with breeding status in females, and control for the fact that male D. villosus may be more 

predatory than females (Dick and Platvoet 2000; Kinzler and Maier 2003). Males were identified 

by precopulatory pairing (G. pulex) or presence of genital papillae and absence of oostegites (D. 

villosus). All amphipods were free of obvious visual parasites that may affect behaviour (Dick et 

al. 2010; Bacela-Spychalska et al. 2013b). Amphipods were only used once in each experiment 

(i.e. combination of fish species, developmental stage and experimental design) but were re-used 

between experiments within fish species. Re-used amphipods always had at least 24h to recover 

in communal tanks, and all amphipods had the same level of experience with prey at the start of 

each experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Following Dodd et al. (2014) and in recognition of the larger size of D. villosus (pers. obs.; 

Pinkster 1970; Nesemann et al. 1995; Kinzler et al. 2009) amphipods were divided into three size 

groups: large G. pulex, intermediate D. villosus and large D. villosus. Amphipods were size-

matched by eye prior to experiments, keeping handling and stress to a minimum. On termination 

of experiments, amphipods were weighed (live, blotted dry) and photographed (in curved natural 

resting state), with length subsequently measured as a curved line from rostrum tip to telson tip 

in ImageJ (Rasband 1997-2016). Datasets for all experiments were rarefied using post-experiment 

body size parameters to ensure size-matching between large G. pulex and intermediate D. villosus, 

thus allowing comparison of intrinsic differences in the species’ predatory impact. Meanwhile, 

large D. villosus were significantly longer and heavier than intermediate D. villosus and large G. 

Table 3.1 Length and mass of fish eggs and larvae used in 

experiments. n = 24, except for trout eggs n = 10. Carp larvae 

were measured after killing in 70% ethanol. 
 

Fish Stage Length (mm) ± SE Mass (mg) ± SE 

Carp Egg 1.92 ± 0.01  3.81 ± 0.07 

 Larva 5.69 ± 0.07 1.32 ± 0.06 

Trout Egg 5.04 ± 0.05 70.60 ± 1.51 

 Larva 15.37 ± 0.24 65.60 ± 1.46 
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pulex in all experiments, enabling quantification of differences in predation rate associated with 

the larger size of the invader. Mean lengths and masses of amphipod groups used in each 

experiment, and statistical comparisons, are given in Appendix 3.1. Mean sizes (± SE) across all 

experiments were: large G. pulex length 16.54 ± 0.08 mm, mass 46.95 ± 0.57 mg; intermediate 

D. villosus 16.79 ± 0.11 mm, 48.81 ± 0.70 mg; and large D. villosus 22.12 ± 0.09 mm, 106.72 ± 

1.12 mg. 

 

3.2.2 Functional response experiments 

3.2.2.1 Experimental design 

Four separate experiments were run in which amphipods were presented with a single prey type 

(carp eggs or larvae, or trout eggs or larvae) in varying densities – one experiment for each prey 

type. The aim of these experiments was to quantify predator FRs, modelling the relationship 

between resource use and availability (Holling 1959; Dick et al. 2013). This methodology for 

comparing alien and native species’ impacts is becoming widely adopted and is accumulating 

supporting evidence (Haddaway et al. 2012; Dick et al. 2013; Alexander et al. 2014; Paterson et 

al. 2014; Dick et al. 2014). 

 

Individual amphipods were starved for 24h, in clear plastic arenas (87 mm diameter, 50 mm 

depth) with approximately 200 ml of aged tap water and a single glass bead (20 mm diameter, 9 

mm height) as substrate to prevent perpetual swimming. Starved amphipods were then transferred 

to experimental arenas, identical to starvation conditions but containing a known number of prey 

items (1, 2, 3, 5, 8, 10, 15, 25, 35, 50 or 80 carp eggs; 1, 2, 3, 5, 8, 12, 25 or 50 carp larvae; or 1, 

3, 5, 8, 12, 16, 25, 35 or 50 trout eggs or larvae). Egg membrane strength (Zotin 1958) and larval 

swimming ability (Fuiman 2002) change over time, but I only selected eggs that were robust on 

handling, only used larvae > 12h (carp) or > 24h (trout) old, and observed no obvious changes in 

larval swimming ability over the time course of the experiments. Furthermore, treatments 

(amphipod group x density combinations) were blocked by day within each experiment to control 

for any temporal variation in prey (and predator) condition. Within each block, arenas were 

randomly arranged in space. Controls (without an amphipod) were run at all prey densities to 

check prey survival in the absence of predators. Controls were interspersed spatially and 

temporally with experimental arenas. 

 

Arenas were placed in incubators with temperature and light regimes identical to those used to 

keep stock eggs and larvae: 13.9 ± 0.1oC (range) with 12:12h light:dark cycle for carp, and 7.0 ± 

0.2oC (range) with 9:15h light:dark cycle for trout. Temperatures were within the range at which 

both amphipod species will feed (Sutcliffe et al. 1981; van der Velde et al. 2009; Maier et al. 
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2011). Each amphipod was allowed to feed for a set period: 24h on carp eggs or larvae, or 48h on 

trout because preliminary experiments indicated that predation rates on trout were much lower.  

 

At the end of this experimental period, amphipods were removed and remaining alive, dead and 

damaged prey (body parts) enumerated. For each damaged prey item, the amount of flesh 

remaining was estimated by eye, to the nearest 10%. Consumption was calculated as the number 

of prey supplied minus all remaining flesh (whole and damaged prey). Deaths due to predation 

were defined as prey that had been wholly or partially consumed, as opposed to dead but 

undamaged prey assumed to reflect background mortality (≤ 3.2% in all experiments). The 

number of partially consumed larvae was estimated from remaining body parts, assuming that if 

body parts may have originated from a single individual (e.g. a tail and a head) then they did so. 

 

Used amphipods were isolated, fed with conditioned A. pseudoplatanus leaves and monitored for 

24h. Any individuals that moulted or died in this period were excluded from the dataset. 

Following rarefaction to ensure size-matching, data were retained for at least four replicates at all 

prey densities and at least five replicates (and up to eight) for densities of five or more.  

 

3.2.2.2 Statistical methods 

All statistical analyses were carried out in R version 3.2.1 (R Core Team 2015).  

 

For the experiments with carp eggs and larvae, predation was sufficient to construct and compare 

FR curves. Analyses were carried out using number of prey consumed (rounded to the nearest 

whole prey) or number of prey killed as response variables, but for carp prey I present only the 

former in the main text (a) to be consistent with analyses of electivity experiments and (b) because 

partial consumption was rare, so consumption was closely associated with number of prey killed 

and thus a reasonable basis for predicting population impacts. If frequent, partial consumption 

could decouple this consumption-impact relationship (Dick et al. 2002).  

 

To determine FR type, the relationship between proportional consumption of prey and prey 

density was modelled using second order logistic regression with quasibinomial error 

distributions to account for overdispersion (Crawley 2007). The sign and significance of the 

coefficients indicate FR type (Trexler et al. 1988; Juliano 2001).  

 

Then, FRs were modelled using Rogers’ random predator equation (Equation 3.1, Rogers 1972), 

appropriate because FRs were Type II and prey were not replaced over the course of the 

experiments (Juliano 2001).   



66 

 

𝑁𝑒 = 𝑁𝑂(1 − 𝑒𝑎(𝑁𝑒ℎ − T))   [3.1] 

 

where Ne is the number of prey eaten, N0 is the initial density of prey, a is the attack coefficient, 

h is the handling time and T is the total time available for predation (days). Modelling was 

performed in the R package frair (Pritchard 2016) which utilises a modified version of Equation 

3.1 with an additional Lambert W function to make the equation solvable (Equation 3.2).  

 

𝑁𝑒 = 𝑁𝑂 − lambert𝑊 (
𝑎ℎ𝑁0𝑒−𝑎(T − 𝑁0ℎ)

𝑎ℎ
)         [3.2] 

 

Curves were bootstrapped to visualise variability (n = 1999), and the parameters a and h compared 

between amphipod groups (within each prey type) and prey types (within amphipod groups) using 

indicator variables (function frair_compare; Juliano 2001; Paterson et al. 2014; see also Section 

2.2.3).  

 

Incidence of partial consumption of carp larvae (whether individual amphipods partially 

consumed any carp larvae) was analysed with respect to prey density and amphipod group using 

a generalised linear model (GLM) with binomial errors. Then, considering just amphipods that 

exhibited partial consumption, the number and proportion of partially consumed larvae were 

analysed with respect to prey density and amphipod group using GLMs, with quasipoisson and 

quasibinomial errors respectively. To identify significant explanatory variables, GLMs were 

simplified to minimum adequate models (MAMs) following Crawley (2007), discarding terms 

whose exclusion from the model did not significantly increase deviance. χ2 tests of significance 

were employed for binomial models, and F tests of significance for models involving quasi-

likelihood. 

 

In FR experiments with trout eggs, negligible levels of predation precluded statistical analysis. In 

FR experiments with trout larvae, levels of predation were too low to fit FR curves. Instead, 

incidence of predation (whether individual amphipods killed any larvae) was analysed with 

respect to prey density and amphipod group using a GLM with binomial errors, simplified as 

above (Crawley 2007). Then, amongst the amphipods that killed larvae, the magnitude of 

predation (number of larvae killed) and incidence of partial consumption were analysed with 

respect to prey density and amphipod group through simplification of quasipoisson and binomial 

GLMs respectively. Finally, the amount of flesh consumed by predators was compared between 

amphipod groups using Kruskal Wallis tests with post-hoc Dunn tests (package dunn.test; Dinno 

2016) and Holm-Bonferroni adjustment of p values (Holm 1979). 
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3.2.3 Electivity experiments 

3.2.3.1 Experimental design 

Predatory impact also depends on electivity: the relative proportions of food types in a consumer’s 

diet compared with the relative proportions available (Ivlev 1961; Underwood et al. 2004). 

Electivity is a similar concept to preference, but does not imply behavioural choices by the 

consumer that were unquantified in this study. Here, I quantified amphipod electivity in two 

experiments – one involving carp eggs with three alternative food types, and one involving carp 

larvae with three alternative food types – with particular focus on the tendency of amphipods to 

consume eggs and larvae in the presence of alternative foods.   

 

Alternative food types were selected based on likely coincidence with carp eggs and larvae, and 

on prior knowledge of consumption by gammarids (Eichenberger and Weilenmann 1982; 

MacNeil et al. 1997; Platvoet et al. 2009). Plants were fresh, live Ranunculus aquatilis L. (ordered 

online). Leaves were A. pseudoplatanus leaf discs, 1 cm diameter (leaves collected from 

Woodhouse Ridge, Leeds, lat 53°52'N, long 1°36'W, and conditioned in stream water for three 

months). Invertebrates were Asellus aquaticus (L. 1758) isopods (collected from Woodhouse 

Ridge, Leeds). 

 

Arenas were set up containing 180 ml of aged tap water, fifteen glass beads (20 mm diameter, 9 

mm height) to provide habitat structure, and four food types: 10 carp eggs or larvae, plus 3-5 leaf 

discs, 1-3 R. aquatilis sections and 2-3 live A. aquaticus. Most food types were presented in 

approximately equal masses (range 34-47 mg across all arenas but < 10% variation in mass 

between food types within each arena). However, because of their small size (Table 3.1), adding 

a similar mass of carp larvae would have made them unrealistically abundant. Larvae were also 

too fragile to weigh prior to experiments. Thus, 10 carp larvae were added to each arena, to match 

the number of eggs presented in prior experiments with eggs. Food was generally provided in 

excess (< 30% total mass was consumed and no individual food type completely was consumed, 

except for larvae in four of twelve arenas containing G. pulex).    

 

Individual amphipods (starved for 24h as for FR experiments) were transferred to experimental 

arenas and allowed to feed for 24h. Environmental conditions in incubators were the same as for 

carp stocks: 13.9 ± 0.1oC (range) with 12:12h light:dark cycle. Within each experiment, 

treatments (amphipod groups) were blocked by day, and within each block arenas were randomly 

arranged in space. Controls (arenas with four food types but no amphipod, to quantify prey 

survival and autogenic change in food masses) were interspersed spatially and temporally with 

experimental arenas.  
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At the end of the feeding period, amphipods were removed from their arena. Remaining food 

items were counted and, except for larvae, weighed to the nearest mg. For larvae, approximate 

initial and final masses were back-calculated from the mean mass of a separate sample of larvae 

(Table 3.1). Used amphipods were monitored for 24h as for FR experiments. Data for amphipods 

that died or moulted in this period were removed, leaving a final data set with 9 to 15 replicates 

for each amphipod group in each experiment. 

 

3.2.3.2 Statistical methods 

A small amount of autogenic change was observed in food choice controls (mean ± SE change in 

mass: carp eggs −0.3 ± 0.4 mg; leaf discs −1.8 ± 0.4 mg; R. aquatilis +1.7 ± 0.3 mg; A. aquaticus 

−1.9 ± 0.7 mg; carp larvae not weighed). Thus, true consumption was calculated by adjusting 

masses consumed in the presence of an amphipod by the change in mass in their absence 

(Haddaway et al. 2012).  

 

First, the mass of eggs, larvae and all food consumed in each experiment were compared between 

amphipod groups. Where residuals were normal (after log transformation where necessary), 

ANOVA and post-hoc Tukey HSD tests were used to compare means. Zeros in the G. pulex egg 

consumption data rendered parametric tests unsuitable, so egg consumption was compared using 

a Kruskal Wallis test and post-hoc Dunn tests (Dinno 2016) with step-down Holm-Bonferroni 

adjustment of p values (Holm 1979).  

 

Second, within each experiment and amphipod group, compositional analysis was used to detect 

non-random feeding and rank food items by their contribution to amphipod diet. Although 

originally proposed as a method to compare habitat usage, compositional analysis can equally be 

applied to diets (Aebischer et al. 1993; Strain et al. 2014).  

 

The diet composition of each individual amphipod was summarised as the percentage contribution 

of each food type (fish, leaf, plant or invertebrate) to total mass consumed. Availability was 

defined as the percentage mass of each food presented (analyses assuming equal availability in 

the larvae experiments generated identical rankings; Appendix 3.3). These data were analysed the 

R package adehabitatHS (Calenge 2015), which first converts the percentages into log-ratios, 

making data for each food group linearly independent and allowing the use of standard statistical 

methods (Aitchison 1986). To facilitate calculation of log-ratios, zeros were replaced with a small 

value (for my data 0.01% was appropriate, being two orders of magnitude below the smallest 

measured percentage; Aebischer et al. 1993). Then, across all individuals in each amphipod group, 

MANOVA compared food consumption to availability, testing the null hypothesis of random 
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food consumption using Wilks’ lambda (Λ). Significance was determined by randomisation (n = 

1999). Following a significant MANOVA, an electivity ranking was generated based on 

differences between consumption and availability (as log-ratios) for each pair of food types. Mean 

differences across individuals were used to rank food types in order of importance to amphipod 

diet, with significant rankings identified by randomisation (n = 1999, which generated stable 

ranking matrices). 

 

3.3 Results 

3.3.1 Functional response experiments 

3.3.1.1 Predation of carp eggs and larvae  

In experimental arenas, mortality of carp eggs (21.3%) and carp larvae (50.4%) was significantly 

greater than mortality in controls (0.0% and 3.2% respectively; Fisher’s exact tests p < 0.001 for 

both), implying that amphipods were acting as predators rather than scavengers. Amphipods were 

also directly observed to prey upon live eggs and larvae. However, there was variation in 

predation rate between individuals, including some intermediate D. villosus and large G. pulex 

that consumed nothing even when presented with prey at the highest densities. 

 

FRs of all amphipod groups on both carp eggs and larvae were Type II (logistic regression first 

order coefficients significantly negative; Fig. 3.1, Table 3.2). Large D. villosus had a significantly 

shorter handling time on both eggs and larvae than the smaller amphipods, which did not differ 

in their handling time (Tables 3.3 and 3.4). By inference, large D. villosus had a significantly 

higher maximum feeding rate (1/hT) on both carp eggs (12.3 day−1) and carp larvae (15.6 day−1) 

than the smaller amphipods (6.2 and 8.6 day−1 respectively for intermediate D. villosus, and 7.5 

and 9.4 day−1 for G. pulex). The attack coefficient on eggs or larvae did not differ between the 

three amphipod groups (Tables 3.3 and 3.4).  

 

Every amphipod group had a significantly higher attack coefficient on carp larvae than on eggs 

(Table 3.3). Handling times were also shorter on larvae than on eggs, but only significantly so for 

D. villosus (indicator variable comparisons on eggs as base and larvae as comparator: G. pulex 

difference in attack coefficient (Da) = 2.14, p = 0.023, difference in handling time (Dh) = −0.03, 

p = 0.114; intermediate D. villosus Da = 2.44, p = 0.009, Dh = −0.05, p = 0.017; large D. villosus 

Da = 2.41, p < 0.001, Dh = −0.02, p = 0.027). 
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Figure 3.1 Rogers Type II functional responses of amphipods on carp eggs (upper three panels) or carp 

larvae (lower three panels). Predators are Gammarus pulex (a,d), intermediate Dikerogammarus villosus 

(b,e) and large D. villosus (c,f). Open circles are means at each density supplied (n ≥ 4 for all prey densities 

and n ≥ 6 for prey densities of ten or above). Shaded regions are approximate 95% confidence intervals for 

functional response curves based on 1999 bootstraps. 

 
 

 

 

Table 3.3 Functional response parameter estimates for three amphipod groups on carp eggs or carp larvae 

as prey, extracted from Rogers’ random predator equation fitted to data in the frair package (Pritchard 

2016). a – attack coefficient; h – handling time (days.prey item−1); 1/hT – maximum feeding rate 

(prey.day−1), where T = time in days; SE – standard error.  Diff – within each prey item and for each 

parameter, different letters in this column indicate significantly different parameters (after Holm-

Bonferroni correction for multiple comparisons). 
 

Prey Amphipod Group a SE Diff. h SE 1/hT  Diff. 

Carp eggs G. pulex 1.269 0.232 a 0.133 0.012 7.5 a 

 Inter. D. villosus 1.419 0.343 a 0.162 0.016 6.2 a 

 Large D. villosus 1.710 0.239 a 0.081 0.006 12.3 b 

         
Carp larvae G. pulex 3.410 0.910 A 0.107 0.012 9.4 A 

 Inter. D. villosus 3.861 0.869 A 0.116 0.010 8.6 A 

 Large D. villosus 4.115 0.638 A 0.064 0.004 15.6 B 
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Table 3.4 Comparison of functional response parameter estimates for three amphipod groups on carp eggs 

or carp larvae as prey, based on analysis using indicator variables in the frair package (Pritchard 2016). 

Significant differences (α = 0.05) are indicated in bold. a – attack coefficient; h – handling time (days.prey 

item−1); D – difference; SE – standard error.  
 

Prey Base Group Comparison  
Estimate  

(Da or Dh)  
SE z p 

Carp eggs Inter. D. villosus G. pulex a −0.151 0.414 −0.365 0.715 

   h −0.028 0.020 −1.408 0.159 

 Inter. D. villosus Large D. villosus a 0.290 0.418 0.694 0.488 

   h −0.080 0.171 −4.689 < 0.001 

 Large D. villosus G. pulex a −0.441 0.333 −1.324 0.186 

   h 0.052 0.014 3.839 < 0.001 

        
Carp larvae Inter. D. villosus G. pulex a −0.451 1.258 −0.358 0.720 

   h −0.009 0.016 −0.598 0.550 

 Inter. D. villosus Large D. villosus a 0.251 1.079 0.233 0.816 

   h −0.052 0.011 −4.532 < 0.001 

 Large D. villosus G. pulex a −0.709 1.110 −0.639 0.523 

   h 0.042 0.013 3.321 < 0.001 

 

 

 

Carp eggs were always completely consumed. Partial consumption of carp larvae was exhibited 

by individuals within all amphipod groups, but was rare and low in magnitude: only 34% of 

amphipods partially consumed larvae, and amongst these the number of partially consumed larvae 

was low (mode = 1, median = 2, range 1-6). The incidence of partial consumption did not differ 

between amphipod groups (not retained in MAM) but was positively associated with prey density 

(binomial GLM n = 133, ф = 1.134, Deviance1,131 = 58.33, p < 0.001).  

 

Amongst amphipods that partially consumed larvae, the number of partially consumed larvae 

increased with prey density with marginal significance (quasipoisson GLM n = 45, ф = 0.69, 

Deviance1,43 = 2.55, p = 0.061) whilst proportional partial consumption significantly decreased 

with increasing prey density (quasibinomial GLM n = 45, ф = 0.59, Deviance1,43 = 21.62, p < 

0.001). Neither the number nor proportion of available larvae that were partially consumed 

differed between amphipod groups (not retained in MAMs). The similarity in partial consumption 

between amphipod groups, in addition to its rarity and low magnitude, means it did not decouple 

predatory consumption from killing and likely population impact: separate analyses of prey killed 

reveal identical patterns to analyses of prey consumed (Appendix 3.2). 



73 

 

3.3.1.2 Predation of trout eggs and larvae 

In experimental arenas, mortality of trout larvae was low (4.5%), but exceeded mortality in 

controls (2.2%; Fisher’s exact test p = 0.022) implying that amphipods were preying upon trout 

larvae. As further evidence of predation, live but damaged larvae were observed in some arenas 

at the end of experiments, and in separate arenas amphipods were directly observed to prey upon 

live trout larvae. 

 

Only 3 of 53 G. pulex, 12 of 52 intermediate D. villosus and 40 of 54 large D. villosus preyed 

upon trout larvae. This incidence of predation did not depend on prey density (not retained in 

MAM) but significantly differed between amphipod groups (Fig. 3.2; binomial GLM n = 159, ф 

= 1.02, Deviance2,156 = 64.03, p < 0.001). Large D. villosus were more likely to kill trout larvae 

than intermediate D. villosus (z = 4.98, p < 0.001), which in turn were more likely do so than G. 

pulex (z = 2.37, p = 0.018). Amongst the amphipods that preyed upon trout larvae, the magnitude 

of predation was low (mode and median number of larvae killed = 1, maximum = 2), although 

this did not differ between amphipod groups or depend on prey density (neither explanatory 

variable retained in MAM).  

 

Partial consumption of killed larvae was frequent, but with no evidence of differing incidence 

across amphipod groups or prey densities (neither explanatory variable retained in MAM). Of the 

larvae attacked by intermediate D. villosus, 86% were partially consumed, compared to 70% of 

larvae attacked by large D. villosus and 67% of larvae attacked by G. pulex. The high incidence 

of partial consumption decoupled killing from feeding. Thus, despite no difference between 

amphipod groups in number of prey killed, amphipod groups differed in the amount of larval flesh 

they consumed (Kruskal Wallis χ2 = 7.25, df = 2, p = 0.027). Large D. villosus consumed a greater 

amount of the larvae they killed (median 0.80 larvae, interquartile range 0.50) than intermediate 

D. villosus (median 0.25, interquartile range 0.33; Dunn test adjusted p = 0.015). Consumption 

by G. pulex was not significantly different to consumption by either size class of D. villosus, but 

this is influenced by the small sample size for G. pulex (three individuals consumed 0.2, 0.2 and 

1.0 larvae respectively). 

 

Incidence of predation on trout eggs was even lower than on trout larvae. Trout eggs were 

completely consumed by only 3 of 152 amphipods: two large D. villosus and one G. pulex. Burst 

eggs were occasionally observed in tanks at the end of experiments and some of the openings 

appeared to have been nibbled. However, I make no further analysis of this damage (a) because 

it occurred rarely, (b) a very small proportion (c. 5%) of each damaged egg was apparently 

consumed and (c) because bursting did not occur any more frequently in tanks with amphipods 
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(0.6% of eggs burst) compared to control tanks (0.9%; Fisher’s exact test p = 0.529), so initial 

bursting (and death) of the egg is unlikely to have been caused by the amphipods. 

 

 
 

 

 

 

 
 
 

Figure 3.2 Consumption and predation of trout eggs and larvae by amphipods. Trout eggs rarely died in 

the presence of amphipods (overall 0.6% of eggs burst). Damage to some eggs was observed: most eggs 

that had burst had been nibbled around the opening (a), and interior of three eggs was completely consumed 

(b). Scale bars (white) approximately 30 μm. Trout larvae were more frequently killed: (c) shows 

proportion of each amphipod group that preyed upon trout larvae in functional response experiments (n G. 

pulex = 53, n intermediate D. villosus = 52, n large D. villosus = 54). Error bars are 95% Clopper-Pearson 

confidence intervals. Letters indicate significant differences based on a binomial GLM. 

 
 

 

 

 

3.3.2 Electivity experiments 

In electivity experiments, consumption of eggs and larvae was assumed to reflect amphipod 

predation because mortality in control arenas was very low (eggs 0.8%, larvae 0.0%) and no 

partial consumption of eggs or larvae was observed in experimental arenas. Mortality of A. 

aquaticus in control arenas was also low (3.4%).   

 

In electivity experiments involving carp eggs, the amphipod groups consumed different masses 

of eggs (Fig. 3.3a; Kruskal Wallis χ2 = 15.20, df = 2, p < 0.001). D. villosus consumed a greater 

mass of eggs than size-matched G. pulex (Dunn test adjusted p = 0.020) and large D. villosus 

(c) (b) (a) 
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consumed a greater mass of eggs than intermediate D. villosus (Dunn test adjusted p = 0.035). 

This is partially explained by differences in overall consumption (Fig. 3.3b; ANOVA F2,36 = 

13.05, p < 0.001). Large D. villosus ate more food in total than intermediate D. villosus (Tukey 

HSD p = 0.004) and G. pulex (Tukey HSD p < 0.001). The size-matched amphipods did not differ 

in the amount of food consumed (Tukey HSD p = 0.157) although there was a tendency for D. 

villosus to consume more (Fig. 3.3b). 

 

Amongst considerable inter-individual variation in diet composition, each amphipod group 

overall fed non-randomly in electivity experiments involving eggs (Fig. 3.4 a-c; G. pulex Wilks’ 

Λ = 0.52, p = 0.046; intermediate D. villosus Λ = 0.26, p = 0.002; large D. villosus Λ = 0.06, p = 

0.007). Eggs made the greatest contribution to D. villosus diet (Table 3.5), reflecting the fact that 

most individuals consumed eggs (100% of large D. villosus and 93% of intermediate D. villosus) 

and eggs made up the majority of D. villosus diet, on average (58% of large and 50% of 

intermediate). Large D. villosus supplemented egg predation with herbivory (plant material was 

consumed by all individuals but in small amounts) or predation on A. aquaticus (making a large 

contribution to individual diet but for only 56% of individuals). Intermediate D. villosus 

supplemented egg predation with detritivory: leaf material was consumed by 73% of individuals 

and made up 25% of the diet on average. In contrast, leaf material was at the top of the electivity 

ranking for G. pulex, being consumed by 87% of individuals and constituting 47% of the diet on 

average. Unlike D. villosus, the native amphipods did not consume eggs significantly more or less 

than any other food item (Table 3.5). Only 54% of G. pulex individuals consumed eggs, and eggs 

constituted on average 30% of G. pulex diet.  

 

When carp larvae were presented as one of the food options, feeding by the three amphipod groups 

was remarkably similar. There was no difference in the mean mass of larvae consumed by 

predators in each group (Fig. 3.3c; ANOVA F2,32 = 2.32, p = 0.115) or in the log-transformed 

mean mass of all food consumed (Fig. 3.3d; ANOVA F2,32 = 0.45, p = 0.639).  

 

Again, each amphipod group fed non-randomly in electivity experiments with larvae as prey (Fig. 

3.4 d-f; G. pulex Λ = 0.04, p = 0.001; intermediate D. villosus Λ = 0.07, p = 0.001; large D. 

villosus Λ = 0.03, p = 0.001). Larvae made the greatest contribution to the diet of all amphipod 

groups (Table 3.5): all amphipods consumed larvae and larvae formed the greatest proportion of 

diets, especially for G. pulex (on average 78% G. pulex diet was carp larvae, compared to 60% 

for intermediate D. villosus and 66% for large D. villosus). The amphipod groups differed in the 

food they consumed to supplement larval predation. For example, large D. villosus tended to 

consume plant and invertebrate material as above, whilst G. pulex consumed leaf and plant 

material and avoided A. aquaticus (Fig. 3.4 d and f). 
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Figure 3.3 Average food consumption by each amphipod group used in electivity 

experiments involving carp eggs (a-b) or carp larvae (c-d). Panels on left (a,c) show 

consumption of the focal fish prey, whilst panels on the right (b,d) show total consumption 

of all food types combined. Masses are adjusted for autogenic change. Boxes show medians 

and interquartile range, whiskers show data range excluding outliers, circles are outliers. 

Letters above boxes indicate significant differences based on Tukey HSD or Dunn post-

hoc tests, as appropriate to each data set. n ≥ 9 for all boxes: precise samples sizes are given 

in Fig. 3.4. 
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Table 3.5 Ranking of food types by contribution to amphipod diet, based on a comparison of 

percentage consumption to percentage availability (Aebischer et al. 1993; Calenge 2015). Full 

ranking matrices are given in Appendix 3.3. Eggs or larvae were presented alongside the other 

food items in separate experiments.  
 

Experiment 

Contribution Rankings 

G. pulex 
 Intermediate 

D. villosus 

 Large  

D. villosus 

Eggs leaf a  egg a  egg a 

 egg ab  leaf ab  plant b 

 plant b  plant bc  invertebrate abc 

 invertebrate b  invertebrate c  leaf c 

         
Larvae larva a  larva a  larva a 

 leaf b  plant b  plant b 

 plant b  leaf b  invertebrate bc 

 invertebrate c  invertebrate b  leaf c 

Figure 3.4 Radar plots representing the diet compositions of amphipods in electivity experiments involving 

carp eggs (a-c) or carp larvae (d-f). For each experiment-amphipod combination, n is given in the centre 

of the respective plot. The diet of each individual amphipod is represented by a dark blue polygon, with 

each vertex representing the percentage of each of the four food types in the diet of that amphipod; note 

that some polygons overlap. Plots constructed in R package fmsb (Nakazawa 2015). 
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3.4 Discussion 

The ‘killer shrimp’ D. villosus is spreading across Europe with significant ecological impacts, 

including declines in resident macroinvertebrate populations attributed to predation by the invader 

(Dick and Platvoet 2000; Josens et al. 2005; van Riel et al. 2006; MacNeil et al. 2013a). Since D. 

villosus has been observed to feed upon fish eggs and larvae, there is concern over its potential 

impact on biologically and commercially important fish populations. One major contributor to 

impact is per capita effect (Parker et al. 1999) and my data suggest the invasive alien D. villosus 

will have a greater per capita effect than British native G. pulex on fish populations as a predator 

of eggs and larvae. However, this is more a reflection of the larger size of the invader (pers. obs.; 

Pinkster 1970; Nesemann et al. 1995) than any intrinsic interspecific difference in predation. 

Relative to the smaller amphipods, large D. villosus showed (a) a greater consumption of food 

per se (b) a greater tendency to consume animal prey, including fish eggs and larvae, and (c) 

greater ability to prey upon larger fish eggs and larvae.  

 

Large amphipods consume food (of a given size) at a greater rate than small amphipods. In FR 

experiments, maximum feeding rates of large D. villosus were 1.6 and 1.7 times greater than G. 

pulex on carp eggs and larvae respectively, and 2.0 and 1.8 times greater than intermediate D. 

villosus (Table 3.3). These differences reflect the shorter handling times of large D. villosus on 

both prey types. In experiments with trout larvae, large D. villosus also consumed a greater mass 

of the trout larvae they killed than did intermediate D. villosus. In electivity experiments with 

carp eggs, large D. villosus consumed the most eggs and the most food in total: median 4.6 times 

more food than G. pulex and 2.5 times more food than intermediate D. villosus (Fig. 3.3a-b).  

 

Anomalously, in electivity experiments with carp larvae, large D. villosus consumed a similar 

mass of food and larvae to the smaller amphipods (Fig. 3.3c-d). The low consumption of larvae 

probably reflects an interaction between predator size, prey type and substrate. The largest 

amphipods are less able to manoeuvre through interstitial spaces, but motile prey can make best 

use of these spaces to evade predation (Barrios-O’Neill et al. 2015). However, it is not clear why 

low consumption of larvae should be associated with low overall consumption i.e. why large D. 

villosus did not consume other food items in larger quantities to compensate. 

 

The generally positive association between size and resource consumption is in accord with 

previous empirical work with amphipods (Maier et al. 2011; Dodd et al. 2014) and, given the 

predator-prey body size ratios in the present experiment, more general theoretical work (Brose 

2010; Rall et al. 2012). Metabolic rate scales positively with size (Kleiber 1932). This 

fundamental physiological difference must be balanced by higher consumption rates in larger 
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amphipods, facilitated by morphological differences such as larger mouthparts and a larger gut 

volume which decrease the time needed to subdue, ingest and digest prey of a given size (Brose 

2010; Vucic-Pestic et al. 2010). The similarity of attack coefficients across all three amphipod 

groups suggests that such physiological and morphological factors, rather than behavioural ones, 

determine the higher feeding rate of large D. villosus. However, I acknowledge that the lack of 

differentiation in attack coefficients could be an artefact of the non-replacement design of my FR 

experiments (Dick et al. 2014). 

 

As well as consuming more per se, large amphipods are more predatory than smaller amphipods. 

Whilst all amphipod groups were omnivorous in electivity experiments, in accord with MacNeil 

et al. (1997) and with potential fitness benefits (Cruz-Rivera and Hay 2000), animal prey tended 

to make a greater contribution to the diet of large D. villosus. It was the only amphipod group for 

which eggs and larvae were consumed significantly more than all other food types, and for which 

invertebrates (A. aquaticus) were not rooted at the bottom of the diet-contribution rankings (Table 

3.5). Size-based dietary shifts in D. villosus are also apparent in the field, with stable isotope 

analyses indicating a tendency for large individuals to be more predatory (van Riel et al. 2006; 

Koester et al. 2016). It is likely that this predatory tendency will be directed towards fish eggs and 

larvae in the field, given the tendency of D. villosus to consume eggs over alternative prey (this 

Chapter; Casellato et al. 2007) and general electivity towards benthic prey (Dodd et al. 2014).  

 

Larger predators are also able to capture and kill larger prey than small predators (Elton 1927; 

Woodward et al. 2005; Brose 2010). By virtue of their size and associated massive mouthparts, 

large D. villosus are better equipped to kill large prey. D. villosus can therefore have a greater 

impact on fish species with large eggs and larvae, such as salmonids – which were almost 

invulnerable to G. pulex predation in my experiments (Fig. 3.2). Further, the ability to feed on 

larger prey could intensify the impact of D. villosus on any given fish species in the field, given 

that it will be able to prey upon fish larvae for a longer period: it will take larvae longer to grow 

to a size that is invulnerable to D. villosus predation.  

 

Meanwhile, size-matched D. villosus and G. pulex had similar predatory impacts. Neither could 

prey upon trout eggs, they consumed similar a similar mass of carp larvae in electivity 

experiments, and incidence and magnitude of partial consumption were comparable between the 

species. Most strikingly, FRs on both carp eggs and larvae did not differ between the size-matched 

amphipods – in terms of shape, attack coefficients, handling times or maximum feeding rates. 

Type II FRs are consistent with published amphipod FRs on invertebrate prey (Bollache et al. 

2008; Alexander et al. 2012; Dodd et al. 2014; Médoc et al. 2015). The similarity of FR 

parameters probably reflects the nature of the prey (Moustahfid et al. 2010). Carp eggs and larvae 



80 

 

are relatively soft, and predation rates of size-matched D. villosus and G. pulex tend to be similar 

on soft-bodied prey e.g. chironomid larvae (Krisp and Maier 2005; Dodd et al. 2014). Pronounced 

differences between feeding rates occur when the prey is relatively tough e.g. A. aquaticus 

(Bollache et al. 2008; Dodd et al. 2014).  

 

There were, however, two subtle differences between the size-matched amphipod species. Both 

are associated with a higher predatory impact of D. villosus, complementing its size-based impact, 

but are smaller in magnitude than differences related to size, so are likely to play a much smaller 

role in dictating impacts in the field. First, D. villosus was more likely than G. pulex to prey upon 

trout larvae, perhaps because its long gnathopods aid handling of large prey (Mayer et al. 2009) 

or its higher glycogen reserves facilitate high speed attacks to counter defensive burst swimming 

(Maazouzi et al. 2011). Secondly, G. pulex consumed fewer carp eggs than D. villosus in electivity 

experiments. G. pulex may be less able to crush or puncture egg capsules than D. villosus, and 

thus rejects eggs in favour of soft decaying leaves – but does not face this issue with softer carp 

larvae. Alternatively, the presence of habitat structure could have interfered with the detection of 

static carp eggs, but not motile larvae, by G. pulex.  

 

In my experiments, coarse fish eggs and larvae were much more vulnerable to predation by 

amphipods than salmonid eggs and larvae. Whilst carp eggs were readily consumed, trout eggs 

were almost completely invulnerable to amphipod predation and few amphipods, of any size, 

killed more than one trout larva over 48 hours (Fig. 3.2). These differences in predation could 

reflect differences in prey size, defensive mechanisms, and/or temperature. Trout eggs and larvae 

are larger than those of carp. Consequently, predator-prey body size ratios of amphipods to 

salmonid larvae are very low (e.g. 0.45 for large D. villosus and trout larvae) and at these ratios 

attack rates are low and handling times long (Luecke et al. 1990; Brose 2010; Rall et al. 2012). 

Each individual salmonid larva also presents a large mass of food to be processed, meaning they 

will take a long time to consume and fewer individual larvae will be needed to induce predator 

satiation. In addition, trout eggs and larvae are both more physically defended than their coarse 

counterparts. Trout larvae are strong burst swimmers, assisting them to evade capture (Fuiman 

2002). Trout eggs possess a thick, tough outer casing (chorion) to protect them from mechanical 

damage when buried in redds (Zotin 1958), but the chorion could also provide an important 

defensive mechanism against biological enemies such as fungal diseases (Songe et al. 2016) and 

invertebrate egg predators (this Chapter). Finally, the difference in predatory impact may also 

reflect differences in temperature. I conducted my experiments in temperatures around which 

trout (7oC) and carp (14oC) eggs develop in the field (Alabaster and Lloyd 1982). As ectotherms, 

amphipod metabolism and activity – including predation – will likely be reduced at lower 

temperatures (Sutcliffe et al. 1981; van der Velde et al. 2009; Maier et al. 2011).  
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Low per capita predation rates on trout larvae do not necessarily negate the potential for 

substantial mortality in the field. Daily predation will accumulate over the long development 

period of salmonid eggs and larvae (Teletchea and Fontaine 2010), and salmonids have a 

relatively small reproductive output (Winemiller and Rose 1992), which increases the importance 

of each individual larva to the population. Predation by D. villosus is likely to have the greatest 

effect on salmonids that lay their eggs in or around lentic environments (e.g. lake trout Salvelinus 

namaycush in North America; Claramunt et al. 2005) rather than those that breed in fast-flowing 

upland streams that are less favoured by D. villosus (Boets et al. 2010). 

 

In addition to its higher per capita effect by virtue of its large size, the impact of D. villosus in 

the field may be further magnified by its abundance (Parker et al. 1999; Ricciardi 2003). D. 

villosus reaches locally high densities (up to 10,000 m−2; van Riel et al. 2006) which may exceed 

those of other amphipods in comparable systems. In the River Meuse, for example, invading D. 

villosus accumulates to higher densities (200-500 individuals per artificial substrate) than the 

previous native-naturalised community (50-120 individuals per substrate), of which G. pulex was 

part (Josens et al. 2005). This conforms to the general pattern of damaging alien species reaching 

higher densities in aquatic systems, on average, than native analogues (Hansen at el. 2013). 

Although per capita effects may increase nonadditively with density as a result of interference 

between conspecifics (Hassell 1978; Médoc et al. 2015), increased densities will be associated 

with increased impact provided this multiple predator effect is not antagonistic. Moreover, the 

larger size of D. villosus means more individuals within the population will exceed the 

(unquantified) size threshold at which amphipods can feed on fish eggs and larvae (cf. Mills 

1981). Consequently, a greater proportion of individuals within D. villosus populations will be 

acting as predators – so differential abundance of predators will be even greater than apparent 

from a comparison of total abundance.  

 

It is possible that the high density and biomass of D. villosus could somewhat offset its negative 

effects as a predator. It has been suggested that this invasive amphipod will provide a plentiful 

food resource for fish that traverse the predatory gauntlet (Luecke et al. 1990) to reach adulthood, 

perhaps boosting survival and fecundity (Kelleher et al. 1998; Madgwick and Aldridge 2011; 

Brandner et al. 2013a; Czarnecka et al. 2014). However, the higher density of D. villosus could 

just compensate for its lower quality and profitability as prey (Arbaciauskas et al. 2010; Błońska 

et al. 2015) and so provide little additional benefit to fish populations. 

 

On balance, the high per capita effect and high density of D. villosus indicate it may have a 

stronger negative impact on fish populations, through predation of eggs and larvae, than the native 

G. pulex it is likely to replace (Dick and Platvoet 2000) – although this impact is context-
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dependent and could vary in space and time (Ricciardi 2003). Where D. villosus imposes even a 

small additive increase in mortality, recruitment into fish populations could be significantly 

reduced. In fish, small changes in the slope of the survivorship curve in the early life stages can 

coarsely control a cohort’s abundance later in life (Bagenal and Braum 1968; Houde 2002). In 

this context, both coarse fish and salmonid populations could be negatively affected by D. villosus 

invasion: in both cases, the predatory impact of D. villosus is greater than that of native G. pulex. 

Reduced recruitment could be particularly detrimental to populations of the 37% of European 

freshwater fish species that are already threatened (Freyhof and Brooks 2011). Furthermore, 

reduced recruitment to populations exploited by anglers could negatively impact this 

economically and socially valuable activity (Mawle and Peirson 2009; Brown et al. 2012). 

Although some commercial fish populations are maintained entirely by stocking of post-larval 

fish and will be unaffected by amphipod predation, populations that depend at least partly on 

natural recruitment could be suffer under the additional mortality imposed by D. villosus. Fish 

densities will be reduced or supplementary stocking, and its associated expenditure, must be 

increased to compensate.  

 

Understanding and management of alien species will be improved by the availability of 

quantitative evidence of their impacts (NRC 2002; Sutherland et al. 2004; Kumschick et al. 2012). 

My laboratory experiments contribute to this evidence for D. villosus, suggesting this invader will 

have a greater negative impact on fish populations than native G. pulex through predation on eggs 

and larvae. The higher per capita impact of D. villosus on fish is primarily due to its larger body 

size. Thus, in this system – and for predicting the impacts of alien species in general – size matters.  
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Chapter 4 
 

Behaviour and personality in invasive and endangered 

decapod Crustacea  
 

 

Abstract 

Animal behaviour plays a critical role in mediating ecological interactions. Evidence of 

personality in animals (consistent behaviour within individuals) is growing, and this can have 

significant implications for ecological and evolutionary processes. Thus, understanding variation 

in animal behaviour both within and between species is critical for understanding and managing 

populations of alien or endangered species.  

 

Here, I quantify the behaviour of three decapod crustacean species from British populations: the 

Endangered white-clawed crayfish Austropotamobius pallipes, the invasive signal crayfish 

Pacifastacus leniusculus and the invasive Chinese mitten crab Eriocheir sinensis. I ran sub-adult 

individuals through a set sequence of behavioural assays to quantify activity, exploration, 

boldness (in the presence or absence of food) and foraging voracity, with each individual being 

tested twice. I then (a) compared the average and variance in behaviour of each species in each 

assay and (b) tested for the presence of personalities within species.  

 

Interspecific comparisons of average behaviours suggests the invasive decapods were generally 

bolder than A. pallipes. E. sinensis was especially bold relative to the crayfish species, less active, 

less exploratory and more voracious. All species showed similar variance in behaviour. These 

interspecific patterns could be related to the invasion process and impact of the invasive decapods, 

and further investigation of behaviour of invasive species could aid our understanding of invader 

success and impact. 

  

Personalities were present in all three species, with consistent behaviours in at least three of the 

five behavioural assays. Foraging voracity (number of prey consumed) was particularly consistent 

across time, with Pearson correlations between the first and second tests exceeding 0.52 in all 

three species. Evidence for behavioural syndromes (correlations between personality axes) was 

less comprehensive, but my data did indicate voracity-activity syndromes in the crayfish, a 

boldness-exploration syndrome in A. pallipes, an activity-exploration syndrome and a voracity-

boldness syndrome in E. sinensis. I discuss how a consideration of personalities may aid 

management of both endangered and alien species.  
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4.1 Introduction 

The study of animal behaviour is a key part of understanding ecological dynamics (Sutherland 

1996; Sih et al. 2012). Behavioural interactions between individuals mediate the processes that 

structure populations and communities, from competition to predation, migration, disease and 

symbiosis (Begon et al. 2006; Réale et al. 2007).  

 

The ecological role of behaviour can be studied at different levels: among species, among 

populations of a species or among individuals within a population (Réale et al. 2007). 

Traditionally, ethologists have focussed on comparisons of the average behaviour of species or 

populations; linked to their ecology by natural selection (Tinbergen 1963). This traditional 

approach has value in understanding the contemporary challenge of alien species: organisms that 

have been transported by humans beyond their natural range, wherein they can have large 

ecological and socioeconomic impacts (Parker et al. 1999). Various combinations of comparisons 

– between alien, native, non-invasive and invasive species – can yield insights into the 

mechanisms driving the impact of alien species, and driving success at various stages of the 

invasion process (van Kleunen et al. 2010; Blackburn et al. 2011). For example, alien species that 

successfully establish may have a greater capacity for innovation and problem solving than those 

that fail to establish (Sol et al. 2002; Lefebvre et al. 2004), whilst aliens that successfully spread 

to become invasive may possess greater dispersal tendencies, on average, than aliens or natives 

that are not invasive (Rehage and Sih 2004). 

 

More recently, it has been recognised that individual variation in behaviour can modify ecological 

dynamics (Wolf and Weissing 2012; Sih et al. 2012). Just as individuals may vary in traits such 

as size, colour or physiology (Bolnick et al. 2011), they can vary along behavioural axes, 

including boldness, exploration, activity, sociability and aggression (Réale et al. 2007). When an 

individual’s position is relatively consistent across time or contexts (conditions and stimuli 

surrounding an animal when it exhibits a behaviour; Stamps and Groothuis 2010), that individual 

is said to have a ‘personality’ or ‘behavioural type’. Personalities have been documented in a wide 

range of taxa, from fish (Cote et al. 2010b; Byrnes and Brown 2016) to lizards (Chapple et al. 

2011), arthropods (Briffa et al. 2016) and sea anemones (Briffa and Greenaway 2011). Behaviours 

on each axis may be correlated in behavioural syndromes – such that the boldest individuals are 

also most exploratory, for example (Sih et al. 2004; Wolf and Weissing 2012).  

 

There are numerous hypothesised implications of personalities and behavioural syndromes for 

ecology and evolution (Wolf and Weissing 2012; Sih et al. 2012). For example, dispersal rates 

can depend on the mixture of personalities in a population. Dispersers can be a non-random subset 
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of the population. Association of other behavioural traits with dispersal tendency can then 

influence the ecological role and impact of this dispersing population (Cote et al. 2010a; Juette et 

al. 2014).  Further, personality variation may aid population establishment and persistence, 

essentially because mixture of behavioural types can have a buffering effect at the population 

level: stochastic fluctuations, responses to environmental change and resilience to perturbation 

average out across the various behavioural types (Bolnick et al. 2011; Wolf and Weissing 2012).  

 

Because of these intimate links to population establishment, persistence and spread, behaviour is 

being increasingly incorporated into both invasion (Chapple et al. 2012; Weis and Sol 2016) and 

conservation (Berger-Tal et al. 2011; Greggor et al. 2016) biology. For conservation biologists, 

re-establishment and persistence of threatened species is a fundamental goal. A major goal of 

invasion biology is to understand the success of introduced populations, including how they 

establish and spread, with the ultimate aim of predicting and preventing future invasions. 

Behaviour has further pervasive links with invasion biology, both before and after establishment: 

it can influence the initial stages of the invasion process like the uptake of species to transport 

vectors (Chapple et al. 2011) and determine the range and intensity of impact of alien species 

(Juette et al. 2014; Dick et al. 2014).  

 

Decapod crustaceans command attention from both invasion and conservation biologists. 

Decapod crustaceans are important components of freshwater food webs, acting as keystone 

predators and principal processors of energy and materials (Momot 1995), but some are highly 

threatened. The extinction risk faced by freshwater decapod crustaceans is on a par with that faced 

by freshwater vertebrates (Collen et al. 2014), and it is estimated that between one third and one 

half of the world’s crayfish are threatened with population decline or extinction (Taylor 2002). A 

principal threat to these native populations is introduced, alien crayfish (Taylor et al. 2007). Alien 

crayfish typically have broad ecological impacts in invaded ecosystems – causing declines of 

other macroinvertebrates, altering nutrient cycling, sediment dynamics and ecomorphology – as 

well as negative economic impacts such as reductions of fishing catches (Holdich 1999; James et 

al. 2015). More generally, Crustacea are overrepresented as alien species relative to their 

frequency as native species (Karatayev et al. 2009).  

 

The signal crayfish Pacifastacus leniusculus is a particularly successful and high-impact invasive 

species in European waters. P. leniusculus was introduced from the USA to Sweden in 1960 to 

boost commercial crayfish stocks but has become the most widespread alien crayfish in Europe 

(Souty-Grosset et al. 2006). Through its feeding behaviour P. leniusculus can cause significant 

changes to community structure (Crawford et al. 2006; Mathers et al. 2016). Populations of 

resident crayfish, such as Austropotamobius pallipes in Great Britain, are commonly extirpated 
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following P. leniusculus invasion through a combination of competition for refuges, direct 

predation of juveniles or post-moult individuals and spillover of the fungal crayfish plague 

Aphanomyces astaci (Souty-Grosset et al. 2006; Bubb et al. 2006; Dunn et al. 2008).  

 

The Chinese mitten crab Eriocheir sinensis is another decapod invader of global concern. It is a 

successful invasive species, having formed multiple established populations beyond its native 

range, notably on the west coast of the USA and in Europe (Gollasch 1999; Dittel and Epifanio 

2009). E. sinensis is also listed as one of the world’s most damaging invasive species (Lowe et 

al. 2004). E. sinensis can, like P. leniusculus, alter macroinvertebrate communities through its 

predatory behaviour (Rosewarne et al. 2016), with further problems caused by its tendency to 

burrow into river banks and aggressive interactions with both resident decapods and recreational 

water users (Veldhuizen and Stanish 1999). Given that E. sinensis and P. leniusculus can occur 

in similar habitats, and both are spreading in Great Britain, it is likely that they will meet and 

coexist with, or exclude, each other in the near future (Rosewarne et al. 2016). 

 

Here, I investigate the behaviour of these three decapod crustacean species – Endangered 

European A. pallipes, invasive P. leniusculus and invasive E. sinensis – in British populations. 

First, I compare average behaviours of the three species in an attempt to provide mechanistic 

insights into their overall invasion or colonisation success, their impacts and their interactions 

with each other and the wider community (van Kleunen et al. 2010; Blackburn et al. 2011). I 

expect the invasive alien species to be bolder, more active, more exploratory and more voracious 

than the Endangered European crayfish (Juette et al. 2014). I also expect the invaders to show 

less variance in behaviour, having been through filters associated with the invasion process (Juette 

et al. 2014). Second, I aim to identify personalities and behavioural syndromes within each 

species. If present, these could have important implications for our understanding and 

management of these species in a conservation or invasion context. More generally, this study 

contributes to our understanding of personality in invertebrates, which is currently limited 

(Gherardi et al. 2012; Mather and Logue 2013). 

 

4.2 Methods 

4.2.1 Experimental animals and holding conditions 

Animals were collected from established populations in 2013 and 2015. A. pallipes were collected 

from Adel Beck, Leeds, UK under license from Natural England (#20131266 and #20144477). 

P. leniusculus were collected from Fenay Beck, Huddersfield, UK. E. sinensis were collected 

from the River Thames at Chiswick, London, UK with permission from the Port of London 

Authority. All animals were collected by hand to avoid bias and reduced variation in personality 
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types associated with trapping (Biro and Dingemanse 2009). Unavoidably, animals were collected 

from different rivers, so it is possible that any differences in behaviour are influenced by different 

local environmental conditions.  

 

Animals were transported to Leeds in aerated cool-boxes with source water and then transferred 

to single-species communal tanks in a controlled environment room at 15 ± 1oC and with 12:12h 

light:dark cycle. Tanks contained a shallow (5 mm) layer of gravel, excess PVC tubing (10 cm 

length, 5 cm diameter) as shelter, and aged aerated tap water. Animals were fed liberally with 

Hikari® Crab CuisineTM three times weekly. Water was changed weekly.  

 

Animals were kept in the controlled environment room for an acclimation period of one to three 

weeks before being used in behavioural assays: assumed to be long enough for acclimation to 

laboratory conditions but short enough such that measured behaviour reflects natural behaviour 

as closely as possible. 

 

Decapods used in behavioural assays were healthy (with all limbs present and free from parasites 

on visual inspection; Souty-Grosset et al. 2006) and intermoult (hard-shelled; no decapods 

moulted within 1 week of data collection). Animals were size-matched across species by a 

combination of mass and maximum carapace dimension (cmax). As a carapace measurement, 

cmax was used instead of carapace length due to the contrasting body plans of crabs and crayfish; 

the former being wider than they are long whilst the latter are longer than they are wide. Further, 

E. sinensis tended to be heavier for a given cmax so I used crabs that had a slightly shorter 

carapace than the crayfish but weighed slightly more. Body mass and cmax were combined into 

a single measure of body size using PCA. The first principal component explained 96.2% of 

variation in body size and did not differ between species (ANOVA F2,77 = 1.45, p = 0.240). 

Crayfish carapace lengths ranged from 26.4 to 42.8 mm, masses 5.3 to 29.2 g. Crab carapace 

widths ranged from 25.0 to 41.9 mm, masses 6.2 to 31.2 g. Animals of both sexes were used, but 

this was accounted for in subsequent analyses and did not affect any of the measured behaviours. 

To facilitate identification, individuals were marked on the dorsal carapace with correction fluid.  

 

Animals were re-used in further experiments before euthanasia by hypothermia. Despite being a 

protected species, A. pallipes were not returned to the wild because of the risk of contamination 

through being housed in the same facilities as P. leniusculus. 
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4.2.2 Behavioural assays 

Animals were run through a set husbandry sequence, with a set order of behavioural assays 

interspersed with housing in individual ‘home’ tanks, and an identical feeding, cleaning and 

starvation schedule. Home tanks (23 cm length, 15 cm width, 8 cm depth) were constantly aerated, 

contained a PVC shelter and had their sides covered in black plastic to minimise visual 

disturbance (Pintor et al. 2008). For each animal, the entire husbandry sequence took 10 days. 

 

Behavioural assays (Table 4.1) were designed following Réale et al. (2007) and Pintor and Sih 

(2008), to test major personality axes and with stimuli salient to the subjects. In brief, the assays 

and their associated measurements were (a) exploration: rate of movement through a novel maze, 

once animal had left sheltered home section (b) activity: number of sections covered in an open 

field, where a section is covered when the whole carapace of an animal is within the section (c) 

foraging voracity: number of prey items consumed in a given time (d) boldness 1: latency to 

emerge from a shelter and feed under predation risk and (e) boldness 2: latency to emerge from a 

shelter under predation risk, without food present. Where possible (i.e. in the activity, exploration 

and boldness 2 assays), behaviours were recorded by webcam (Logitech Webcam Pro 9000 with 

Webcam XP software) to minimise disturbance to animals.  

 

Two tests for boldness were used to check that animals were indeed perceiving risk and not just 

responding to the presence of food in the first assay. The activity assay was unavoidably 

confounded with novelty because the open fields were too large (relative to available controlled-

temperature space) to allow a prolonged familiarisation period. In the foraging voracity assay, 

prey consumption was checked every hour for the first seven hours after prey addition, and then 

again after 16 hours. Analyses were performed on consumption data after seven hours, when there 

was sufficient variation within and between species (i.e. most animals had consumed some, but 

few had consumed all, of the prey available). 

  

To assess consistency of behaviour, each individual animal was run through each assay twice. 

Assays were run in the same sequence each time. The interval between the first and second runs 

of each assay was typically four days, except for the boldness 2 test for which both runs were run 

on the same day. The repeats of the open field test, maze test and boldness 2 test were run at 

different times of day (dawn and dusk for the former two, day and night for the latter), adding 

further situational variation to the temporal separation (Sih et al. 2004). Trails at dusk, dawn or 

night were run under red light.  
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Table 4.1 Overview of behavioural assays  
 

Assay Description Diagram Measurement 

A
ct

iv
it

y
 

O
p

en
 F

ie
ld

 (
O

F
) Large (72 x 50 x 20 cm) tank, divided into 

30 sections (10 x 12 cm) with permanent 

marker to measure movement, Tank filled 

with water to 8 cm depth. Subject placed in 

darkened, home zone of tank for 20 minute 

acclimation period. Following acclimation, 

barrier is removed and subject free to move 

around entire open field for 20 minutes.  
 

Run 1 at dawn (approx. 1 hour before light 

phase); Run 2 at dusk (approx. 1 hour 

before dark phase). 
 

Number of sections 

covered 

 

E
x

p
lo

ra
ti

o
n

 

M
a

ze
 (

M
Z

) Large (80 x 50 x 10 cm) tank, physically 

divided into 18 equal-sized chambers. 

Subject isolated under darkness in first 

chamber for 20 minute acclimation period. 

Following acclimation, barrier is removed 

and subject free to emerge from shelter and 

move through maze for 20 minutes. 

 

Run 1 at dusk (approx. 1 hour before dark 

phase); Run 2 at dawn (approx. 1 hour 

before light phase).  

Rate of exploration of 

chambers (number of 

sections covered/time 

in maze) 

B
o

ld
n

es
s 

1
 

w
it

h
 f

o
o

d
 (

B
1

) Animal placed in a 40 cm long drainpipe, 

with shelter glued in one end. After 48h 

familiarisation period, standard food ration 

(meat cat food and Crab CuisineTM pellets 

in permeable pouch) added 15 cm from end 

of shelter. Predator simulated as black 

plastic disc moved towards animal at 

constant speed (6 cm.s−1), then subject 

allowed to emerge at will. Trial terminated 

after 60 minutes. 

 

Always run 2 hours after onset of dark 

phase. 

 

Latency to emerge 

from shelter  

 

B
o

ld
n

es
s 

2
 

w
it

h
o

u
t 

fo
o
d

 (
B

2
) Animal picked up by sides of carapace, 

then trapped in 10 cm long home shelter 

(which it has lived with for at least 24 

hours) for 5 minutes in home tank. Shelter 

uncapped, and danger simulated by rattling 

forceps in entrance of shelter 5 times (1). 

Tank left undisturbed, giving crayfish 

chance to emerge from shelter (2). Trial 

terminated after 20 minutes. 

 

Run 1 3 hours before dark phase; Run 2 1 

hour after onset of dark phase. 

 

Latency to emerge 

from shelter 

F
o

ra
g
in

g
 V

o
ra

ci
ty

 (
F

V
) Subject placed in tank (23 x 15 x 8 cm), 

enclosed in a shelter (10 cm length, 5 cm 

diameter). Size-matched prey items added 

simultaneously. Prey and subject allowed 1 

hour to acclimate separately in tank, then 

predator allowed to emerge from shelter at 

will.  

 

Always started in light phase. Trial covered 

5 hours in light, then 3 hours in dark. 

 

Number of prey 

consumed after 7 

hours 

 



90 

 

The husbandry/assay sequence was followed in two separate years, with different groups of 

animals. In 2013 E. sinensis and P. leniusculus were tested in late August/September, whilst A. 

pallipes were tested slightly later in October/early November due to a delay in receiving the 

collection license. In 2015, all animals were tested in late June/July. Macroinvertebrate prey 

availability varied seasonally, such that in 2013 E. sinensis and P. leniusculus were presented 

with snails (Lymnaea stagnalis; 15-20 mm shell length) in the foraging voracity trials, whilst all 

other trials were run with Asellus aquaticus (6-9 mm body length). 

 

4.2.3 Statistical analyses 

All statistical analyses were performed in R version 3.2.1 (R Core Team 2015). When analysing 

voracity within species, I used data for the prey item for which sample size was largest i.e. A. 

aquaticus for A. pallipes but L. stagnalis for P. leniusculus and E. sinensis. Interspecific 

comparisons of foraging voracity were made using only the 2015 data (with A. aquaticus as prey) 

i.e. when all predator species were tested at the same time using the same prey species. 

 

First, behaviours were compared between the decapod species. Mean behaviours in each assay 

were compared between species using Gaussian linear models. The averaged metrics had similar 

distributions as the scores from each individual run, suggesting they were reasonable summary 

variables. Initially, linear models were fit containing the focal response main effect ‘species’ 

(factor) and all potential confounding main effects ‘sex’ (factor), ‘body size’ (covariate, from 

PCA) or ‘year’ (factor). These were reduced to minimum adequate models, containing species 

and any significant confounds, by backwards stepwise procedures (Crawley 2007). I assessed the 

significance of the main effects using Type II tests (drop1 with F tests), then tested for significant 

differences between species using Tukey HSD tests on the adjusted means for ‘species’. Although 

confounds were reduced experimentally (by size matching species and running a similar number 

of animals in each year), this analytical procedure accounts for any remaining variation in 

behaviour owing to sex, body size or year/season (Packard and Boardman 1999; Darlington and 

Smulders 2001).  

 

Second, within each species I tested for the presence of individual personalities: behaviours that 

are consistent within individuals across time and situations (Wolf and Weissing 2012). Raw data 

from each measurement were converted into a behavioural score that accounts for any influence 

of size, sex or year within species. Thus, behavioural scores were residuals from minimum 

adequate models, simplified from generalized linear models (GLMs) containing the main effects 

of size (cmax), sex and year (Table 4.2; Crawley 2007). Interactions were not included to avoid 

overfitting models. Model families were chosen as appropriate to each measurement; typically 
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Gaussian or negative binomial (on raw or transformed data), and occasionally quasipoisson (with 

quasi likelihood used to account for any overdispersion). Where no terms were retained in the 

minimum adequate model, implying none of the potential confounds significantly affected 

behaviour, the raw data were used as the behavioural score.  

 

To identify personality, I calculated the correlation between the behavioural score from the first 

and second run of each assay (Stamps and Groothuis 2010; Truhlar and Aldridge 2014). The 

correlation coefficient quantifies the consistency of each individual’s behaviour relative to the 

group mean. If data were, or could be transformed to, bivariate normality then I used Pearson 

correlation coefficients (r). Otherwise, I used non-parametric Kendall tau-b correlations (τ) which 

account for tied scores (Agresti 2012). I make no correction for multiple comparisons due to the 

exploratory nature of this analysis (Bender and Lange 2001), but acknowledge that some spurious 

correlations may arise by chance.   

 

Third, I tested for the presence of behavioural syndromes (correlations between different 

behavioural traits) using Pearson or Kendall correlations between the average scores of individual 

animals in each assay (Truhlar and Aldridge 2014; Mazué et al. 2015).  

 

4.3 Results 

4.3.1 Interspecific comparisons 

In all assays, the species differed in the average behaviour displayed (F tests p < 0.001). In most 

cases none of the candidate confounds significantly affected behaviour, the exceptions being 

activity which significantly differed between years (F1,76 = 6.92, p = 0.010) and foraging voracity 

which increased with body size (F1,27 = 11.07, p = 0.003). 

 

Compared to the invasive species, A. pallipes were more active in the open field (Fig. 4.1a) and 

slower to emerge from shelter in the boldness 1 assay (in the presence of food; Fig. 4.1c) (Tukey 

HSD ps < 0.006). A. pallipes were also shyer than the invaders in the boldness 2 assay (without 

food; Fig. 4.1d), although only significantly shyer than E. sinensis (p < 0.001; vs P. leniusculus p 

= 0.455). E. sinensis was significantly less active (p < 0.001), less exploratory (p < 0.001) and 

bolder (boldness 2; p < 0.001) than both crayfish species. E. sinensis was also the most voracious 

species on average, although not significantly more so than both crayfish species. Differences in 

the average behaviour of the crayfish species were apparent in the open field test where A. pallipes 

was more active than P. leniusculus (Fig. 4.1a; p < 0.001), the boldness 1 assay (with food), where 

A. pallipes spent significantly longer hiding than P. leniusculus (Fig. 4.1d; p = 0.002), and the 
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foraging voracity test where A. pallipes consumed more isopods than P. leniusculus (Fig. 4.1e; p 

< 0.001). 

 

4.3.2 Personalities 

Behavioural scores were derived as residuals from GLMs, simplified to minimum adequate 

models from models containing all candidate confounds of size (cmax), sex and year as main 

effects. In most cases, these variables did not significantly affect behaviour so behavioural scores 

were simply the raw measurements. Raw behavioural measures were occasionally influenced by 

size and year (retained in minimum adequate models; Table 4.2), but never by sex, consistent 

with other studies of decapod behaviour (Briffa et al. 2008; Brodin and Drotz 2014). Behavioural 

differences between crayfish sexes tend to arise in reproductive animals (e.g. Mathews et al. 

2009), whilst in the present study animals were non-reproductive (based on season of collection 

and visual assessment). 

 

Individual consistency in behaviour was most apparent in E. sinensis, with significant correlations 

between repeat tests for exploration, activity, emergence latency in the absence of food, and  

 

 

 

 

 

 

 

 

Figure 4.1 Comparison of behaviours between three species of decapod crustacean. Ap – Austropotamobius 

pallipes; Es – Eriocheir sinensis; Pl – Pacifastacus leniusculus. Data are raw values from each assay, 

averaged across both runs. For simplicity of plotting, confounds (year for activity, body size for voracity) 

are ignored, but these are accounted for in analyses. Boxes show medians and interquartile range, whiskers 

show data range excluding outliers, circles are outliers. Letters indicate significant differences between 

groups (based on Tukey HSD tests).  
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foraging voracity (Table 4.2) with correlation coefficients of at least 0.393. In the crayfish, both 

behaviours involving food (foraging voracity and emergence latency in the presence of food) were 

consistent across trials. P. leniusculus also showed a consistent latency to emerge from a shelter 

in the absence of food, whilst A. pallipes showed consistent activity levels over time in the open 

field (Table 4.2).  

 

I note that some of these correlations (where p > 0.006) would be rendered insignificant after 

Holm-Bonferroni correction for multiple comparisons. However, I avoid the use of multiple 

comparison correction and present these as results of an exploratory analysis. 

 

4.3.3 Behavioural syndromes 

Evidence of behavioural syndromes in all species was relatively weak: most behavioural scores 

were insignificantly correlated across assays. The strongest, significant correlations were (see also 

Table 4.3): a positive correlation between maze exploration rate and boldness in A. pallipes (faster 

explorers show a shorter latency to emerge; τ = −0.416, p = 0.016); a positive correlation between 

open field exploration rate and voracity in P. leniusculus (r = 0.564, p = 0.036); a positive 

correlation between maze exploration rate and open field activity  in E. sinensis (r = 0.566, p = 

0.014); and also in E. sinensis, a negative correlation between latency to emerge from a shelter 

after a simulated predator attack and consumption of prey – but only when food was offered as 

an incentive to emerge from the shelter (τ = −0.436, p = 0.012). Individuals that took longer to 

emerge from the shelter were less voracious predators.  

 

I note that these correlations are not strongly significant, such that correction for multiple 

comparisons (e.g. Holm-Bonferroni) would render them insignificant. However, I avoid the use 

of multiple comparison correction and present these as results of an exploratory analysis. 

 

4.4 Discussion  

I observed temporal consistency of behaviour in E. sinensis, P. leniusculus and A. pallipes, which 

is indicative of personality. Amongst variation within species, individuals showed consistent 

behaviour across time and, for the maze, open field and boldness 2 tests, situations. E. sinensis in 

fact showed consistent behaviour in four of the five assays – for exploration, activity, voracity 

and boldness – with a marginally significant correlation in the other. P. leniusculus showed 

consistent voracity and boldness, whilst A. pallipes showed consistent activity in the open field 

as well as consistent voracity and boldness in the presence of food. All significant correlation 

coefficients exceeded 0.31, and generally exceeded the typical repeatability (0.37) in animal 

behaviour studies (Bell et al. 2009). Correlation coefficients were especially strong for the 
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Table 4.3 Correlations between mean behavioural scores of individual decapods in each assay, to 

identify behavioural syndromes. For each comparison, the correlation coefficient (r or τ) is given, 

followed by the p value and n data points. Raw p values are presented, with significant values 

(uncorrected for multiple testing) highlighted in bold.  

 

A. pallipes MZ rate OF sections FV prey B1 LTE 

OF sections r = 0.318 

 

 correlation 

 0.139  p value 

  23  sample size 

FV prey consumed (isopods) r = 0.359 r = 0.279 
 

 

 0.092 0.212  

  23 28  

B1 latency to emerge (‘shyness’) r = −0.237 r = −0.217 r = −0.117 
 

 0.122 0.117 0.398 

  23 28 28 

B2 latency to emerge (‘shyness’) 

 
τ  = −0.416 τ  = 0.000 τ  = −0.196 τ  = 0.103 

0.016 1.000 0.197 0.511 

20 25 25 25 

     

P. leniusculus MZ rate OF sections FV prey B1 LTE 

OF sections r = −0.071 

 

 correlation 

 0.766  p value 

  18  sample size 

FV prey consumed (snails) r = 0.086 r = 0.564 
 

 

 0.826 0.036  

  9 14  

B1 latency to emerge (‘shyness’) r = 0.025 r = −0.025 r = 0.220 
 

 0.915 0.907 0.450 

  20 25 14 

B2 latency to emerge (‘shyness’) τ  = −0.137 τ  = 0.027 τ  = 0.214 τ  = 0.023 

 0.429 0.858 0.321 0.878 

  19 24 13 25 

     

E. sinensis MZ rate OF sections FV prey B1 LTE 

OF sections r = 0.566 

 

 correlation 

 0.014  p value 

  18  sample size 

FV prey consumed (snails) r = 0.296 r = 0.355 
 

 

 0.350 0.148  

  12 18  

B1 latency to emerge (‘shyness’) τ  = −0.153 τ  = −0.200 τ  = −0.436 
 

 0.381 0.149 0.012 

  18 27 18 

B2 latency to emerge (‘shyness’) τ  = −0.026 τ  = 0.017 τ  = −0.105 τ  = 0.213 

 0.880 0.900 0.544 0.122 

  18 27 18 27 
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voracity assay (0.528, 0.537 and 0.892; Table 4.2), suggesting feeding behaviour is particularly 

consistent within individuals.  

 

My data provide the first evidence, to my knowledge, of consistent individual behaviours in E. 

sinensis, A. pallipes and P. leniusculus. Together, my data therefore add weight to the general 

existence of personalities in a wide range of animals, including invertebrates (Mather and Logue 

2013), and that they should be taken into consideration when managing animal populations. 

Relocation or reintroduction of A. pallipes could benefit from explicit consideration of 

personality, for example ensuring a range of personality types are introduced to provide material 

for selection to act upon, rather than initiating a population with the most easily-trapped crayfish 

from source populations (Biro and Dingemanse 2009). Further, given the boldness-exploration 

syndrome in A. pallipes, these easily-trapped animals are likely to be more exploratory and 

consequently disperse (Fraser et al. 2001; Cote et al. 2010a), exacerbating Allee effects in small 

founder populations (Stephens et al. 1999). This could inhibit efforts to establish new populations 

of A. pallipes in ‘ark sites’, isolated from the threat of invading P. leniusculus (Peay 2009). 

Management of invasive species may similarly need to consider intraspecific behavioural 

variation. For example, because trapping invasive crayfish is likely to target the boldest subset of 

the population (Biro and Dingemanse 2009), a combination of eradication methods may be 

necessary to control crayfish populations.  

 

Evidence for behavioural syndromes (correlations between personality axes within individuals) 

was less compelling, with few significant correlations between traits. In A. pallipes, I detected a 

boldness-exploration syndrome that has been previously reported in other (fish) species (Cote et 

al. 2010b; Mazué et al. 2015). In P. leniusculus, activity and voracity were positively correlated 

within individuals. Active individuals spend more time foraging, have more opportunity to 

encounter prey and thus can consume more (Pintor et al. 2008; Toscano and Griffen 2014). 

Metabolism could again provide a mechanistic explanation: individuals with a larger or more 

active metabolic engine would have more energy available for foraging, but would also need to 

consume more food in order to fuel their active metabolism (Biro and Stamps 2010).  

 

In E. sinensis, exploration and activity were positively correlated, as were boldness and voracity 

(Table 4.3). I did not replicate a correlation between boldness and activity previously reported for 

invasive E. sinensis (Brodin and Drotz 2014), although the correlation between the boldness 1 

and open field scores trended in agreement (Table 4.3). The significant correlations could be 

interpreted as behavioural syndromes. Alternatively, they could suggest that each pair of assays 

measured similar behaviours (Carter et al. 2013). For example, both movement through the maze 

and across the open field could have reflected activity of the crabs more than any exploration 
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behaviour, or the novelty inherent in the open field could have made this more of a test of 

exploration than activity (Réale et al. 2007; Decker and Griffen 2012). In the boldness 1 assay, 

E. sinensis may have responded to the food more than the simulated predator stimulus, effectively 

making this a test of voracity rather than boldness.  

 

In fact, in no species were scores on the two boldness assays significantly correlated, indicating 

that they do not both measure the same aspect of decapod behaviour. Such concerns over exactly 

what behaviours are measured by each assay are of lesser importance when identifying 

personality: it is reasonable to assume that within a species, individuals responded to similar 

stimuli within each assay and there is individual consistency in that behaviour, although it may 

not be entirely clear what the behaviour is. I encourage further work to elucidate exactly what is 

being measured by laboratory behavioural assays, and caution that my behavioural labels (e.g. 

boldness) are simply one possible interpretation of the assays. 

 

Comparing the average behaviours of the non-invasive European crayfish A. pallipes and invasive 

populations of P. leniusculus and E. sinensis reveals behaviours that may be associated with 

invasion success. P. leniusculus and E. sinensis were bolder than A. pallipes, generally emerging 

from a shelter more quickly after being scared by a simulated predator (Fig. 4.1). Boldness may 

be selected at various invasion stages. Boldness may favour initial uptake of invasive species, 

whether accidental or deliberate. Bold species and individuals are more likely to enter transport 

vectors, from traps for deliberate introduction (Biro and Dingemanse 2009) to ballast water tanks 

or recreational equipment for accidental transport (Cohen and Carlton 1997; Anderson et al. 

2014). Individual and group-level boldness can also drive secondary spread of invasive species 

(Cote et al. 2010b; Cote et al. 2011). Boldness could also be related to stronger impacts  (Juette 

et al. 2014): on prey (because feeding is less inhibited by predation threat), higher-order predators 

(boldness increases exposure to predation), and/or humans (e.g. interference with bait and 

clogging of infrastructure).  

 

In addition, low levels of activity (as displayed by E. sinensis and P. leniusculus in the open field; 

Fig. 4.1) could favour successful invasion. Low activity levels may prevent detection in transport 

vectors and avoid excessive dispersal in establishing alien populations (Cote et al. 2010b; Chapple 

et al. 2012). However, I note that differences in activity between the species could reflect the 

context of the behavioural assay i.e. that activity was measured at dawn and dusk, which may not 

reflect the overall diel activity levels (Chapter 2; Barbaresi and Gherardi 2001; Styrishave et al. 

2007; Gilbey et al. 2008). Further examination of personality traits at different times of day would 

be interesting and could be important for impact predictions e.g. prey taxa that are active at the 

same time as the decapod predators could be most vulnerable. Furthermore, activity may have 
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been influenced by novelty or fear in subjects placed in large experimental arenas (Walsh and 

Cummins 1976). Indeed, when enclosed in respirometers the crayfish species were, on average, 

much less active than E. sinensis (Chapter 2), in contrast to the results from the open field assay. 

 

The differences in foraging voracity between species are also of interest, especially in that they 

are the most direct estimation of the impact of each species on prey populations. My data confirm 

previous findings of the high feeding rate of E. sinensis on macroinvertebrate prey (Chapter 2; 

Rosewarne et al. 2016). However, the relatively high feeding rate of A. pallipes was unexpected 

and in contrast to other work suggesting P. leniusculus is a more or equally voracious predator 

than A. pallipes (Chapter 2; Haddaway et al. 2012; Rosewarne et al. 2016), Further, Pintor et al. 

(2008) identified a boldness/voracity/activity syndrome across P. leniusculus populations such 

that if P. leniusculus are bolder on average (as in my experiments) I would also expect them to 

be more voracious. My unusual crayfish foraging results could be idiosyncratic to Asellus as prey, 

idiosyncratic to the season, or an artefact of the fixed prey density (30 individuals) presented to 

each predator. Quantifying functional responses across a range of prey densities would give more 

reliable results, for example revealing any crossover in consumption rates across prey densities 

(Dick et al. 2014), but was not practicable within the time constraints of the present experiment.  

 

The behavioural profile of E. sinensis suggests individual crabs may have intense local impacts. 

E. sinensis was bold and voracious but not very active and exploratory, such that individual crabs 

may interact strongly with a relatively small area of their environment. In contrast, active and 

exploratory signal crayfish will have more diffuse impacts over a wider area. Obviously, the 

impact of populations of the invaders will depend on population density and the extent of the 

population in addition the behaviour of individuals. For example, the impact of E. sinensis 

populations can be spread over a vast area as a result of its catadromous lifestyle. Juveniles 

migrate up to 1400 km upstream from estuaries as they mature, and the adults return back to 

estuaries to breed (Panning 1939). Incidentally, individuals may undergo behavioural shifts 

associated with these migrations, such that the low activity observed in the present Chapter may 

be associated with the juvenile life stage tested.  

 

My novel evidence for individual personalities in three species of decapod crustacean echoes 

growing calls for their utility in understanding, predicting and managing animal populations. 

Animal personalities can have important implications for population persistence, colonisation, 

dispersal, evolution and disease transmission (Wolf and Weissing 2012): factors that are critical 

in management of both endangered and alien species. My study also suggests that interspecific 

comparisons of behaviour, in particular boldness, could be useful for understanding the pathways, 

vectors, success and impacts of alien species.  
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Chapter 5 
 

Variation in population characteristics, but not 

behaviour or physiology, along signal crayfish invasion 

gradients in upland rivers 
 

 

Abstract 

Understanding the causes and consequences of range expansion is fundamental ecological 

problem. Range expansion is particularly important for invasive alien species: they are defined 

by their ability to spread, and understanding this spread would provide an evidence base for their 

management. A useful framework for identifying traits associated with range expansion is to 

compare established populations with those at the invasion front. 

 

Here, I compare established core populations of the invasive signal crayfish (Pacifastacus 

leniusculus) with front populations in three upland Yorkshire rivers. I conducted hand surveys to 

characterise population characteristics (density, sex ratio, injuries, body size), and used laboratory 

assays to quantify metabolic and behavioural traits (shyness-boldness, exploration, activity, 

sociability, foraging voracity).  

 

I found consistent differences between core and front population characteristics, although these 

were not significant in all rivers. Front populations had lower crayfish densities and more male-

biased sex ratios, and carapace lengths of crayfish were longer at invasion fronts. Behaviour and 

metabolism did not differ along the invasion gradient, with the exception of greater sociability of 

crayfish at the invasion front in the River Ure. My data are consistent with a social exclusion 

model for signal crayfish range expansion, whereby individuals (possibly subordinates) disperse 

on being forced out of high density established populations. 

 

Because I measured traits in numbered individuals, I also tested for the presence of personalities 

and examined correlations between behaviour and metabolism. Behavioural traits were generally 

consistent within individuals over time, but given the lack of variation along the invasion gradient 

these personalities do not seem to influence range expansion dynamics. Standard and maximum 

metabolic rates were positively correlated with exploration (significantly) and shyness 

(marginally). Aerobic scope was significantly correlated with activity and sociability.    
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5.1 Introduction 

The geographic range of many species is in a state of flux, as individuals and populations respond 

to changing environmental conditions or intrinsic growth (Parmesan et al. 1999; Holt 2003). 

Large-scale range shifts are a defining feature of alien species: species present in a geographic 

area to which they are not native, following human-mediated translocation (Blackburn et al. 

2011). Alien species can have severe negative impacts: they are one of the leading drivers of 

biodiversity loss worldwide (Sala et al. 2000), degrade ecosystem service provision (Millennium 

Ecosystem Assessment 2005) and have substantial economic costs (Scalera et al. 2012).  

 

Some alien species become biologically invasive upon their spread beyond the area of first 

introduction (Blackburn et al. 2011; Gurevitch et al. 2011). Understanding the causes, 

consequences and dynamics of this secondary spread is critical, providing a basis for prediction, 

management and intervention (Gherardi et al. 2011; Collin et al. 2013). Knowing if, where and 

how quickly alien species will become invasive (widespread) is important, because impacts are 

likely to increase in concert with range (Parker et al. 1999). The spread of alien species also 

provides a rare opportunity to study the process of dispersal over human timescales, and thus 

glean important general insights into range expansion (Kinlan and Hastings 2005).  

 

Here, I focus on local secondary spread of alien species by autogenic dispersal of individuals, as 

opposed to anthropogenic translocations (e.g. Chapple et al. 2012) and/or large-scale expansion 

of species ranges (e.g. Capinha et al. 2011). A useful framework for studying this autogenic range 

expansion is to compare traits along an invasion gradient: comparing long-established, core 

populations with younger populations on the invasion front. At one level, characterising 

populations along invasion gradients reveals how impacts change over space and time (Phillips 

and Shine 2005; Iacarella et al. 2015) and can inform targeted management strategies based on 

the age or location of invasive populations (Hudina et al. 2012). At another level, such 

comparisons can allow inference about the drivers of dispersal, and ultimately better predictions 

of the spread of alien species. Characteristics and traits associated with dispersal should become 

overrepresented at the invasion front (Tracy et al. 2012; Canestrelli et al. 2016), reflecting 

differences among phenotypes in dispersal tendency (e.g. Cote et al. 2010b) and/or adaptive or 

plastic phenotypic responses to spatiotemporal changes in environmental characteristics along the 

invasion gradient (Burton et al. 2010; Phillips et al. 2010). 

 

There are numerous examples of characteristics that are spatially sorted along invasion gradients, 

including population characteristics such as sex ratio (Stiver et al. 2007; Brandner et al. 2013b), 

morphological traits such as body size (Phillips and Shine 2005) and life history traits such as 
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reproductive investment and body condition (Lopez et al. 2012). Behavioural traits may be a 

particularly important mediators of range expansion (Estrada et al. 2016). Differences in 

aggression, sociability, shyness-boldness, activity, exploration and predatory behaviour have 

been linked to range expansion, either through comparisons along an invasion gradient or 

correlation with dispersal tendency (Cote and Clobert 2007; Chapman et al. 2011; Juette et al. 

2014; Iacarella et al. 2015; Myles-Gonzalez et al. 2015), although the relationship is not consistent 

across species and contexts (Canestrelli et al. 2016). For example, greater aggression at the 

invasion front helps western bluebirds Sialia mexicana to outcompete congeners (Duckworth and 

Badyaev 2007), whilst in Neolamprologus multifasciatus cichlids it is the less aggressive females 

that are forced to disperse (Schradin and Lamprecht 2002). Importantly, structured behavioural 

variation within populations – individual personalities – can affect the dynamics and success of 

range expansion. Intra-population variation in personality traits can affect the speed and success 

of range expansion (Fogarty et al. 2011; Elliott and Cornell 2012), which may be driven by a 

limited subset of individuals with unusually high dispersal tendencies (Fraser et al. 2001; Cote et 

al. 2010a). Finally, physiological traits may vary along invasion gradients by virtue of their 

association with behaviour (Biro and Stamps 2010; Myles-Gonzalez et al. 2015), although this 

may not be the case if behaviour buffers selective pressures on physiology (Tracy et al. 2012). 

 

The signal crayfish Pacifastacus leniusculus is a decapod crustacean, native to North America, 

but introduced for aquaculture purposes to Europe and Japan (Souty-Grosset et al. 2006) where it 

has become widespread and abundant (Kouba et al. 2014). Signal crayfish invasions are 

associated with changes in resident communities (Stenroth and Nyström 2003; Crawford et al. 

2006; Peay et al. 2009; Mathers et al. 2016) and ecosystem processes (Moore et al. 2012; Harvey 

et al. 2014). In Great Britain, P. leniusculus is replacing the resident – and now Endangered 

(Füreder et al. 2010) – white-clawed crayfish Austropotamobius pallipes. P. leniusculus provides 

an ideal system for the study of local range expansion via spatiotemporal comparisons of traits 

along invasion gradients. Whilst initial introductions and large-scale translocations are a 

consequence (both intended and unintended) of human activity, the signal crayfish readily 

expands its local range by autogenic dispersal. Owing to concern from conservation biologists, 

the pattern of autogenic dispersal is well characterised in some river systems (e.g. Imhoff et al. 

2011). Education and legislation against crayfish release in the UK (Wildlife and Countryside Act 

1981) has limited anthropogenic dispersal, meaning spread within many river systems reflects 

‘natural’ processes. Further, crayfish are amenable to behavioural (Moore 2005; Pintor et al. 

2008) and physiological (Rutledge and Pritchard 1981; Rosewarne et al. 2015) study.  

 

Field surveys and behavioural assays of adult signal crayfish in Croatian rivers indicated male-

biased dispersal, and higher densities and greater aggression in older populations (Hudina et al. 
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2012; Hudina et al. 2015). However, the role of other behavioural and physiological traits in signal 

crayfish range expansion, and the potential for personality-dependent dispersal, remains 

unexplored. There are also few comparisons of traits along aquatic invasion gradients in 

organisms other than fish (but see Truhlar and Aldridge 2014), despite the prevalence and impact 

of biological invasions in aquatic systems (Sala et al. 2000; Strayer 2010; Moorhouse and 

Macdonald 2015). 

 

Here, I make use of three reasonably well-characterised lotic invasions of signal crayfish P. 

leniusculus to compare population characteristics and traits between the established core and 

invasion front. Crayfish were collected from core and invasion front populations in three upland 

rivers in Yorkshire, UK (Bookill Gill Beck, the River Wharfe and the River Ure) and run through 

a series of behavioural and physiological assays in the laboratory. Specifically, I aim to test three 

main hypotheses (a) that population characteristics, behavioural traits and physiological traits will 

differ between core and invasion front populations (b) that the behaviour of individual crayfish 

will be consistent over time, indicative of personality (Stamps and Groothuis 2010) and (c) that 

there will be a correlation between physiology (metabolic rate) and behaviour, since they are 

linked by the common currency of energy (Biro and Stamps 2010). 

 

5.2 Methods 

5.2.1 Study sites and distribution surveys 

The River Ure, River Wharfe and Bookill Gill Beck are all lotic water bodies, originating in the 

Pennine Hills (Yorkshire Dales National Park) at altitudes of over 400 m. The Wharfe and Ure 

are both tributaries of the Yorkshire Ouse which discharges on the east coast of England, whilst 

Bookill Gill Beck is a tributary of the River Ribble which flows westwards. Although the Wharfe 

and Bookill Gill Beck previously contained white-clawed crayfish A. pallipes, these are now 

absent from the immediate vicinity of the invasion front (Peay et al. 2009; Imhoff et al. 2011). 

 

In each river, I identified a core population close to the original point of introduction: immediately 

downstream of Wildshare Plantation on Bookill Gill Beck, Grassington on the Wharfe, and West 

Tanfield on the Ure (Fig. 5.1). The population of signal crayfish in Bookill Gill Beck is thought 

to originate from a deliberate stocking of 4-12 crayfish in the upper reaches, around Wildshare 

Plantation, in 1995 (Peay et al. 2009). The Wharfe was colonised in 1990 from stocks introduced 

to adjacent fishing lakes in the previous decade. The point of entry into the main Wharfe was the 

confluence with White Beck at Kilnsey, but by 1995 signal crayfish were detected at Grassington 

(Peay and Rogers 1999). The Ure was also colonised by escapes from a stocked fishing lake, with 

crayfish first recorded at West Tanfield in 1997 (Bubb et al. 2005). 
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Figure 5.1 Location map of study sites. Inset shows rivers to scale, in the context of Great Britain. Arrow 

points to focal upper reaches of Bookill Gill Beck.  On main figure red circles (not to scale) show core and 

front populations from which crayfish were collected for behavioural and physiological assays. (A) after a 

site name indicates site was searched but crayfish were absent. Dates give year and location of first detection 

of signal crayfish in each river. Blue arrows indicate direction of flow. Projection: OSGB36 National Grid. 

 

 

 

To pinpoint the location of the invasion front, I carried out hand surveys at and beyond the 

predicted invasion front (based on survey data, published or from colleagues) between August 

and October 2015. Cobbles (65-256 mm by eye) and small boulders (< 400 mm) were turned and 

the exposed area searched for crayfish, working in an upstream direction. Underlying cobbles and 

pebbles were also removed and the area beneath searched, being counted as a separate refuge. 

Crayfish were caught if possible; crayfish that escaped, and their approximate size, were also 

recorded. Surveys were restricted to areas of low flow (glides or pools), identified by minimal 

surface disturbance. In Bookill Gill Beck, the entire width of the channel was searched. In the 

Wharfe and Ure, surveys were restricted to the margins (< 5 m from each bank) because the centre 

of the channel became too deep to survey, and the margins provide the preferred habitat of signal 

crayfish (Peay and Rogers 1999). Water depth in surveyed areas ranged from 5-50 cm. No white-

clawed crayfish were encountered in any surveys. 



104 

 

In Bookill Gill Beck, the downstream spread of signal crayfish has been relatively slow, with the 

invasion front advancing only 0.1 km.yr−1 between 2007 and 2012.  Signal crayfish were first 

recorded around the confluence of Bookill Gill Beck and Long Preston Beck in 2009, but 

remained at low density (< 0.4 crayfish.trap−1) until 2012 (S. Peay pers. comm.). Hand surveys in 

2015 found abundant signal crayfish in Long Preston Beck, immediately downstream of the 

confluence (54.0281, −2.2454; 0.21 crayfish.refuge−1). The density declined to 0.05 

crayfish.refuge−1 by Scalehaw Hill (54.0246, −2.2440) and no crayfish were found in 50 refuges 

above a weir further downstream (54.0221, −2.2432).  

 

In the River Wharfe, signal crayfish have advanced downstream at a rate of between 1.3 and 2.5 

km.yr−1 (Imhoff et al. 2011). In 2007 the leading downstream edge of the invasion in the Wharfe 

was estimated to be between Addingham and Cocking End, around 28 km from the original point 

of invasion. In 2009, a single juvenile crayfish was found 4 km further downstream in Ilkley 

(Imhoff et al. 2011). In 2015, hand surveys found signal crayfish immediately downstream of 

Ilkley (53.9311, −1.8056; 0.28 crayfish.refuge−1), but found no crayfish in 50 refuges at Burley-

in-Wharfedale (53.9120, −1.7341) or Otley (53.9105, −1.6834). 

 

The spread of signal crayfish in the River Ure was documented by surveys in 2001 and 2003 

(Bubb et al. 2005). Progression of the invasion front was slow (max 1.68 km.yr−1 downstream) 

and the crayfish were restricted to a 2 km reach around the outflow pipe from the fishing lakes 

(Bubb et al. 2005). Hand surveys in 2015 identified populations of signal crayfish at Ripon and 

Bridge Hewick at a similar density (0.16 crayfish.refuge−1), but no crayfish in 50 refuges in the 

weir pool at Westwick (54.0973, −1.4576). Additional crayfish records between West Tanfield 

and Ripon suggest that these are part of one contiguous invasion rather than two separate 

populations. Crayfish were reported at Sleningford Mill around 2000 (Peay 2001), were found to 

be abundant at Plaster Pitts Farm (54.1727, −1.5309; 0.34 crayfish.refuge−1), and have been 

recorded in electrofishing surveys as far as Nunwick (B. Morland, pers. comm. 2015).  

 

5.2.2 Animal collection and population characterisation 

Crayfish were collected from six focal populations: a core and front population in each of three 

rivers (Fig. 5.1; Fig. 5.2). In Bookill Gill Beck, the core population was at Wildshare and the front 

population just downstream of the confluence with Long Preston Beck. Herein I refer to the whole 

system as Bookill Gill Beck for simplicity. In the River Wharfe, the core population was at 

Grassington and the front population in Ilkley. In the River Ure, the core population was at West 

Tanfield and the front was a pooled sample, predominantly from Ripon but supplemented with 

individuals from Bridge Hewick (13% of total sample).  
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Core and front populations were identified through literature review and personal 

communications, and confirmed by manual surveys (Section 5.2.1). Front populations were 

sampled as far downstream from the core population as possible: signal crayfish populations did 

not exist in accessible sites further downstream (Wharfe/Ure), or were too small to provide 

reasonable sample sizes (Bookill Gill Beck). Thus although I may not have sampled right at the 

invasion front, my pairs of sites still compare long-established core populations and more 

recently-established populations, and such a comparison should bear the hallmarks of past range 

expansion dynamics (cf. Hudina et al. 2014). Downstream invasion fronts were assumed to 

reasonably reflect active dispersal because (a) at a small scale, downstream movements of signal 

crayfish are active rather than passive (Bubb et al. 2004) and (b) at a larger scale, downstream 

spread occurs gradually and a relatively constant rate (Bubb et al. 2005; Imhoff et al. 2011; S. 

Peay pers. comm.) rather than irregularly over time and space as would be expected were dispersal 

were passive, driven by e.g. drift in periods of high flow.  

 

Individual crayfish were located following the hand search protocol described above. Hand 

searching allows for a more accurate description of the population than trapping, which shows 

strong sex-, size- and behaviour-related biases (Dorn et al. 2005; Biro and Dingemanse 2009; 

Price and Welch 2009). Hand collection of signal crayfish required no special permission from 

the UK Environment Agency, although they were aware of this activity. Barring c. 5% of 

encountered crayfish that escaped, all animals were collected and transported to the laboratory in 

cool boxes. Within 48h of collection, crayfish were measured (carapace length from tip of rostrum 

to base of carapace, and total length from tip of rostrum to base of uropods straightened against a 

rule, both to nearest 0.1 mm), weighed (blotted dry, to the nearest 0.1 g), sexed (presence/absence 

of gonopods) and assessed for injuries (missing legs or chelae).  

 

5.2.3 Behavioural assays 

The most abundant size class of crayfish from each river was retained for behavioural 

experiments: carapace lengths Bookill Gill Beck 18.8-29.1 mm (median 22.0 mm), River Wharfe 

23.4-36.2 mm, (median 28.5 mm), River Ure 24.4-39.9 mm (median 33.2 mm). There was no 

difference in size between crayfish used from core and front populations, from Bookill Gill Beck 

(carapace length W25,27 = 337.0, p > 0.999) or the River Ure (carapace length t = 0.347, df = 60.6, 

p = 0.730). For the River Wharfe, crayfish used from the invasion front (Ilkley) were significantly 

longer (carapace length W18,26 = 98.0, p = 0.001) and heavier (mass W18,26 = 88.5, p < 0.001) than 

those used from the core population (Grassington). Size variation between populations and 

amongst individuals is accounted for in statistical analyses.  
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Selected crayfish were housed in communal tanks according to source population (i.e. six tanks, 

one for each population). For each river, tanks for the core and front populations contained similar 

densities and sizes of crayfish. Each tank contained aged tap water to 15 cm depth, a thin layer of 

gravel and excess PVC shelters (10 cm length, 5 cm diameter), and was continually aerated. Each 

tank was fed with Hikari® Crab CuisineTM ad libitum three times weekly, and water was changed 

once per week. Tanks were kept in a controlled environment room at 14 ± 0.2oC (range) and 

12:12h photoperiod. The photoperiod was shifted with respect to ambient to allow nocturnal 

behavioural measurements to be made during the working day: lights were off from 12 noon to 

12 midnight. 

 

Crayfish were held in the controlled environment room for at least eight days prior to behavioural 

testing, to allow acclimation to photoperiod and temperature whilst minimising potential 

behavioural changes due to laboratory conditions. Following acclimation, crayfish were run 

through a defined sequence of behavioural assays, with one assay being run per day at a set time 

(detailed in Table 5.1). Crayfish selected for behavioural assays remained in good condition (both 

chelae and all legs present, no major injuries to the body). Crayfish behaviour changes close to 

moulting (Chang 1995), so I only selected crayfish that had not moulted since collection. Selected 

crayfish were individually marked on the carapace with correction fluid. 

 

Briefly, the testing sequence consisted of (a) an isolation period of 24h, in an individual four-litre 

tank (23 cm length, 15 cm width, 8 cm depth) with a PVC shelter and aeration, and with sides 

covered in black plastic to minimise visual disturbance (b) a foraging voracity trial, in which 

crayfish were provided with 30 adult (body length 11-15 mm) Gammarus pulex (L. 1758) and the 

number of prey remaining after 8 and 22 hours was recorded (c) a maze exploration trial, where 

crayfish were free to explore series of interlinked plastic chambers (d) a boldness trial, in which 

I measured the latency of crayfish to emerge from a shelter after being scared and (e) a 

sociability/activity trial, in which I measured movement of a crayfish around a tank (number of 

times a central dividing line was crossed) and the time spent in the half of the tank with an 

enclosed conspecific. Crayfish were fed a set ration of supplementary food (four Crab CuisineTM 

pellets) following the shyness-boldness assay. 

 

 

 

 

 
 

 

 

Table 5.1 Schedule and details of behavioural assays 
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All behavioural assays were carried out under dim red light during the dark phase of the 

photoperiod, when signal crayfish are most active (Styrishave et al. 2007). Crayfish were directly 

observed, with the observer located in shadows to minimise disturbance to subjects. No obvious 

reaction to the observer was recorded. Clean, aged tap water was used for each assay and 

equipment thoroughly rinsed in tap water between use with different animals.  

 

Following completion of the testing sequence crayfish were measured and weighed, then returned 

to communal tanks and checked daily. I excluded data collected within 10 days of an individual 

moulting. My final dataset contained behavioural measurements for 159 crayfish across the six 

populations, with a minimum of 18 from any one population.  

 

A subset of individuals from each population (n = 128) was run through the testing sequence a 

second time, two to three weeks after the original assays, in order to assess individual consistency 

of behaviour over time.  

 

5.2.4 Metabolism 

5.2.4.1 Measurement  

For a subset of crayfish from the River Ure (n = 42 from core and front populations combined), 

metabolic rate (MR) was estimated from oxygen consumption in a custom-built intermittent-flow 

respirometer (Chabot et al. 2016). Details of the respirometry setup and conditions are given in 

Chapter 2 (Section 2.2.5, Fig. 2.1) – although note that in the present study, temperatures varied 

slightly between SMR and MMR measurements (14.0 ± 0.2oC range for SMR measurements; 

14.2 ± 0.2oC range for MMR measurements). 

 

Estimates of standard metabolic rate (SMR) were derived from undisturbed crayfish exhibiting 

minimal movement, whilst maximum metabolic rate (MMR) was assessed after an exhaustive 

chase. Limited access to dissolved oxygen (DO) probes meant only one crayfish could be tested 

per day, and meant that these measurements had to be taken in the spring following the 

behavioural measurements. Given consistent holding conditions over the winter, I expect relative 

– if not absolute – MRs of the crayfish to have remained stable over this period. Huuskonen et al. 

(2014) determined that P. leniusculus MRs were repeatable (r = 0.67) over a period of 

approximately three months. Crayfish from each population (core and front) were tested on 

alternate days to account for any possible short-term temporal effects.  

 

During the first eight hours of the light phase, nine respirometry cycles were run to measure 

metabolic rate of an undisturbed crayfish (Fig. 5.3). These were controlled by electronic timer 
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switches connected to the magnetic stir plate and flush pump. Each cycle was 50 minutes and 

consisted of (a) a 2 minute mixing phase, when the stir bar was first switched on (b) a 2 minute 

wait phase after the flush pump was switched off (c) a 26 minute measurement phase with the 

flush pump off and stir bar on, during which time the respirometer was effectively a closed system 

(Svendsen et al. 2016) and (d) a 20 minute flush phase, during which the flush pump was switched 

back on to replenish the respirometer with oxygenated water and the stir bar was switched off. 

The length of measurement phase and flush phase were refined during pilot experiments such that 

the former was long enough to give a decline in oxygen consumption with a reasonable R2 value 

(> 0.90; Svendsen et al. 2015) and the latter long enough to return oxygen saturation back to 

equilibrium levels. Oxygen pressures in the respirometer remained above 80% in almost all (98%) 

measurements, and remained above 70% in the rest. The DO probe operated continually 

throughout the day, logging temperature- and pressure-compensated [DO] (mg O2 L−1) and 

temperature (oC) every 20 seconds via YSI’s Data Manager Software. 

 

 
  
Figure 5.3 Oxygen concentration over time in the respirometer containing one crayfish (individual TM). 

Vertical dashed black lines delineate one complete cycle; vertical dotted red lines delineate one 

measurement phase. a – stir bar turned on, causing jump in [DO]; b – flush pump turned off, marking start 

of wait phase; c – measurement phase; d – flush pump turned on, marking start of flush phase and increase 

of [DO] to equilibrium; e – measurement phase in which crayfish was active (confirmed by webcam 

recordings); f – equilibrium [DO] whilst crayfish in separate tank undergoing exhaustive chase (peak in 

[DO] matches time when crayfish removed from respirometer allowing influx of saturated water); g – 

measurement phase for MMR.  

 

 

Following SMR measurement, the crayfish was subjected to an exhaustive chase protocol to 

facilitate measurement of maximum metabolic rate (MMR), following Rosewarne et al. (2014) 

and Stoffels et al. (2016); see Appendix 5.1 for a schematic of the chase protocol. Exhaustive 

chases are a standard method for measuring MMR, especially for animals with poor sustained 

locomotor performance such as crayfish (Norin and Clark 2016). The crayfish was gently 
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removed from the respirometer and transferred to a plastic tray (400 x 250 mm) with rounded 

corners, with water to 4 cm depth. The crayfish was then exercised by chasing from behind with 

a pencil and gently grasping the chelae from the front to induce tail flipping. When the crayfish 

stopped tail-flipping, it was turned over to check its ability to self-right. A crayfish was deemed 

to be exhausted when it failed to self-right on three consecutive occasions (each separated by 30 

seconds further exercise). At this point it was exercised for a final 30 seconds and transferred 

immediately back to the respirometer. Measurement of oxygen consumption began after a 1 

minute wait phase to allow mixing of water in the respirometer, and lasted for 5 minutes. This 

measurement should quantify the maximum rate of oxygen uptake by the crayfish. Empirically, 

this period was associated with the steepest gradient of oxygen consumption.  

 

Following measurement of MR, body mass and dimensions of each crayfish were recorded. 

Crayfish were then returned to communal tanks and checked daily. Data were removed for any 

individual that moulted within 10 days of measurement (to avoid the influence of physiological 

changes associated with moulting; Chang 1995; Huuskonen et al. 2014). Inspection of videos 

indicated three crayfish never completely settled in the respirometer during SMR measurements, 

so their data were also excluded.  

 

5.2.4.2 Calculations 

For each measurement phase, oxygen consumption was derived using Equation 5.1, applicable to 

closed-system respirometers such as ours during the measurement phase (Myles-Gonzalez et al. 

2015; Svendsen et al. 2016). 

 

�̇�𝑂2 = 𝑚 × (𝑉𝑡 − 𝑉𝑐) × 3600   [5.1] 

 

where ṀO2 is the rate of oxygen consumption (mg O2 h−1), m is the gradient of the linear decline 

in oxygen concentration during the measurement phase (mg O2 L−1 s−1), Vt is the total volume of 

the respirometer chamber (0.505 L) and Vc is the volume of each individual crayfish (determined 

by displacement immediately after MMR measurement). 

 

Values of 𝑚 were obtained by plotting oxygen concentration over time (Fig. 5.3), and fitting a 

least-squares regression line to the shallowest linear section of each measurement phase i.e. 

ignored parts of a measurement phase when a crayfish was active (most crayfish moved during at 

least one measurement phase). Data for each measurement phase were inspected graphically to 

identify the appropriate section for regression, implemented in Microsoft Excel. The section 

duration varied from 460s to the full 1600s. The R2 of fitted lines was always > 0.90. ṀO2 was 
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uncorrected for background respiration as trials with a blank respirometer suggested this was 

negligible. 

 

As an estimate for SMR, I took the single lowest ṀO2 value. This was never anomalously low: 

always > 85% of the next lowest ṀO2 measured without crayfish movement. I calculated absolute 

values for aerobic scope as MMR – SMR and, for the sake of completeness, factorial aerobic 

scope as MMR/SMR (Clark et al. 2013). 

 

5.2.5 Statistical analyses 

All statistical analyses were performed in R version 3.2.1 (R Core Team 2015). 

 

First, to compare population characteristics between core and front populations, I excluded the 

young-of-year (CL < 10 mm) that could not be reliably caught, enumerated or sexed. CPUE, 

incidence of injury and sex ratios were compared between populations (within rivers) using χ2 

tests with Yates’ correction for the single degree of freedom (R function prop.test). Sex ratios 

were also compared to equality using binomial tests (binom.test). The average size of crayfish 

caught was compared between populations using Wilcoxon rank sum tests (wilcox.test) due to the 

non-normal distribution of carapace lengths. 

 

Second, to compare behaviour and metabolism between core and front populations in each river, 

I constructed linear models. Where possible, I fit general linear models (LMs) to raw or log-

transformed data. Notably, for metabolic rate data both the response variable and mass were log 

transformed (Brown et al. 2004). If assumptions of LMs were not met after transformation, I fit 

generalised linear models (GLMs) instead: negative binomial for number of Gammarus 

remaining in Ure foraging voracity trials, and quasipoisson for activity data (dispersion 

parameters Bookill 1.79, Wharfe 2.87, Ure 2.88).  

 

In these models, a single behaviour (from the first run of an assay) or metabolism measure was 

the response variable, with explanatory variables of population (core or front; factor), sex (factor) 

and body mass (covariate). Initially, I fit full models including all explanatory variables and their 

two-way interactions. These were simplified by backwards stepwise procedures, removing 

explanatory variables (other than population) that did not contribute significant explanatory 

power to the model i.e. their removal does not cause a significant increase in deviance of the 

model (Crawley 2007). The resulting simplified models therefore included population and any 

significant confounding main effects. Significance of each variable in the simplified models was 

tested by removing that variable, using the drop 1 function with F tests or, for negative binomial 
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GLMs, χ2 tests. This function tests each variable whilst leaving all others in the model (Type II 

sum of squares). In this way, I tested the significance of each variable whilst controlling for 

relevant confounding variables (Packard and Boardman 1999; Darlington and Smulders 2001; 

Garcia-Berthou 2001). 

 

Data for some behavioural trials was censored. In the foraging voracity trial, some crayfish ate 

nothing or ate all the available prey. In the shyness-boldness and exploration trials, some crayfish 

did not leave their starting position within the time limit of the assay. In shyness-boldness trials, 

these individuals were allocated the maximum time. For maze exploration, data were missing for 

these individuals. For the shyness-boldness and foraging voracity assays, all individuals were 

included in statistical analyses because the proportion of individuals with censored data was 

typically small (< 0.15 within any population) or was accounted for using negative binomial 

GLMs. However, in the second run of the shyness-boldness assay for Bookill crayfish, the 

proportion of censored data rose to 0.30. In this case I ran analyses twice: once with and once 

without the censored data.  

 

Third, two analyses assessed consistency of behaviours over time, in crayfish that were used in 

both runs of each assay. In one of these analyses, I assessed consistency of population mean 

behaviour across time using paired t tests on the scores of each crayfish in the first and second 

runs (or Wilcoxon signed rank tests when differences were not normally distributed). In the other 

analysis, I assessed consistency of individual crayfish behaviour across trials (i.e. personality) as 

the correlation between scores on the first and second runs. Correlations were typically Pearson’s 

r where scores were normally distributed or could be transformed to normality, and otherwise 

Kendall’s tau-b (τ). I correlated residual behavioural scores from simplified linear models 

containing population, sex or mass as significant explanatory variables (Boldsen et al. 2013). A 

positive residual indicates that an individual had a higher than expected behaviour or metabolism 

than expected given its body size, sex or source population. If none of these explanatory variables 

were significant, I correlated raw behavioural scores.  

 

Fourth and finally, for crayfish from the Ure with MR measurements, correlations were calculated 

between each behaviour  (from the first run of each assay) and MR. Again, residual scores were 

used when necessary to control for confounding variables, and Pearson’s r was used for most 

correlations but Kendall’s τ was employed for non-normal data.  
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5.3 Results 

5.3.1 Core-front comparisons: population characteristics 

Catch per unit effort (CPUE; number of crayfish per refuge) was higher in all core populations 

than front populations within the same river, although only significantly in Bookill Gill Beck and 

the River Ure (Table 5.2). Assuming CPUE accurately reflects crayfish density, crayfish were 2.1 

times more abundant in the core population in the River Ure than at the invasion front, and 1.6 

times more abundant in the core population in Bookill Gill Beck than at the invasion front.  

 

Crayfish from core populations were more likely to be injured (missing ≥ 1 chela or leg) than 

crayfish from invasion fronts, although this difference was only significant in Bookill Gill Beck. 

Crayfish from the core population at Wildshare were 2.1 times more likely to be injured than 

those from the invasion front (Table 5.2). 

 

Sex ratios within each population did not differ significantly from equality (binomial tests, p > 

0.154), with the exception of Wildshare (Bookill core) where the sex ratio was significantly 

female-biased (ratio = 0.41, binomial test p = 0.042). Sex ratios tended to be more male-biased in 

front populations than core populations, but this difference was never significant (χ2 tests, Table 

5.2).  

 

On average, crayfish from front populations were larger than those from core populations. This 

difference was significant in Bookill Gill Beck and the River Ure, with the same trend in the River 

Wharfe (Table 5.2). In the Ure, the difference was driven by larger males at the invasion front 

(W48,57 = 1773, p = 0.009) whilst females were similar in size along the invasion gradient (W45,73 

= 1884, p = 0.183). In Bookill Gill Beck, however, females were larger in the front population 

(W76,42 = 956, p < 0.001) whilst males were similar in size along the gradient (W52,29 = 595, p = 

0.118). In the Wharfe, both males and females were similar sizes in core and front populations, 

although there was a trend towards larger males at the front (W35,29 = 378, p = 0.081). These 

comparisons exclude young-of-year crayfish (CL < 10 mm). These were very rare in the habitats 

searched in the Wharfe and Ure (only one was caught or seen across both rivers). Young-of-year 

were more prevalent in Bookill Gill Beck, but their inclusion would only strengthen the size 

comparison: of the total catch, a greater percentage were young-of-year in the core population 

(28%) than at the invasion front (15%). 
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5.3.2 Core-front comparisons: behaviour  

There was substantial variation between individual behaviour, but no difference between core and 

front populations in all but one case (Fig. 5.4; Table 5.3). Exceptionally, crayfish from the 

invasion front in the Ure at Ripon spent a significantly longer proportion of time with a 

conspecific (0.57) than did crayfish from the core population at West Tanfield (0.48) once the 

effect of mass was controlled for (F1,53 = 7.44, p = 0.009). However, the range of sociability was 

greater in the core population, with individuals spending between 16.3% and 79.8% of their time 

with a conspecific. There was a marginally significant difference in voracity between the core and 

front populations in Bookill Gill Beck (F1,49 = 3.21, p = 0.080), with crayfish from the core 

population tending to consume more than those from the front. 

 

Interpopulation comparisons were made after controlling for the effect of the potential confounds 

of size and sex. Behaviour rarely differed between the sexes (Table 5.3), the exceptions being in 

the Ure where females were more active (median 17 line crosses, 95% bootstrapped CI = 13, 22) 

than males (median 14, 95% CI = 9, 16) and more voracious (median 2.2 Gammarus consumed 

per gram body mass in 8h, 95% CI = 1.9, 2.4) than males (median 1.7, 95% CI 1.4, 2.1). Body 

mass was positively related to foraging voracity in all rivers, with a linear relationship across the 

crayfish sizes used. Shyness increased with body size in crayfish from the Wharfe, and larger 

crayfish from the Ure were less sociable than smaller crayfish (Table 5.3). 

 

5.3.3 Core-front comparisons: metabolism  

Metabolic rates were measured for a subset of crayfish from the River Ure.  

 

The logarithms of SMR and MMR and AAS were positively and linearly related to log body mass 

(exponents b = 0.66, 0.94 and 1.00 respectively). After correcting for differences in body mass 

using these exponents to divide MR by massb (Cech and Brauner 2011), substantial inter-

individual variation was observed (Fig. 5.5). Mass-corrected SMRs varied more than two-fold 

from 3.8 to 8.7 mg O2 kg−0.66 h−1. Mass-corrected MMRs ranged from 80.0 to 131.9 mg O2 kg−0.94 

h−1. Mass-corrected AAS varied from 87.2 to 148.4 mg O2 kg−1.00 h−1. Factorial aerobic scopes 

varied from 3.6 to 8.1.  

 

As for behaviour, metabolic rate and aerobic scope did not differ between the core and front 

populations after controlling for the influence of body mass within linear models (Table 5.4). 

However, there was a tendency for crayfish from the front population tended to higher metabolic 

rates (Fig. 5.5). 
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Table 5.3 Linear models comparing behavioural traits between core and front populations of signal 

crayfish in three Yorkshire rivers. Models include population (core or front) and any other 

significant variables retained through backwards stepwise deletion. Significance refers to removal 

of each variable from the model, assessed using F or χ2 tests as appropriate to model. For Ure 

Voracity, null deviance = 67.79, null df = 61. Bold p values are significant at α = 0.05. Dev – 

residual deviance.   
 

River Behaviour Model Variable Statistic (df) p 

Bookill log Shyness  Gaussian Population F1,50 = 0.03 0.871 

 log Exploration Gaussian Population F1,48 < 0.01 0.978 

 Activity Quasipoisson Population F1,49 = 0.17 0.682 

 Sociability Gaussian Population F1,49 = 0.04 0.837 

 Voracity Gaussian Population F1,49 = 3.21 0.080 

   Mass F1,49 = 21.82 < 0.001 

      

Wharfe log Shyness  Gaussian Population F1,41 = 0.71 0.405 

   Mass F1,41 = 8.74 0.005 

 Exploration Gaussian Population F1,41 = 0.02 0.901 

 Activity Quasipoisson Population F1,40 = 0.38 0.542 

 Sociability Gaussian Population F1,40 = 0.13 0.719 

 Voracity Gaussian Population F1,41 = 2.56 0.117 

   Mass F1,41 = 30.64 < 0.001 

      

Ure log Shyness Gaussian Population F1,55 < 0.01 0.973 

 log Exploration Gaussian Population F1,56 < 0.01 0.976 

 Activity Quasipoisson Population F1,53 = 0.54 0.465 

   Sex F1,53 = 4.18 0.046 

 Sociability Gaussian Population F1,53 = 7.44 0.009 

   Mass F1,53 = 7.07 0.010 

 Voracity Negative binomial Population Dev1,58 = 68.49 0.402 

   Sex Dev1,58 = 72.59 0.028 

   Mass Dev1,58 = 99.77 < 0.001 

 

Shyness – latency (s) to emerge from shelter after simulated attack; Exploration – rate of movement 

through maze; Activity – number of line crosses in bisected tank; Sociability – time (s) spent in half 

of tank with a conspecific over a 1200s trial; Voracity – number of Gammarus consumed after 22h 

(Bookill and Wharfe) or 8h (Ure).  
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Table 5.4 Linear models comparing metabolic traits of signal crayfish from core and front 

populations in the River Ure (metabolic rates were not measured for crayfish from Bookill 

Gill Beck or the River Wharfe). Models include population (core or front) and any other 

significant variables retained through backwards stepwise deletion. Significance derived 

from F tests, using R function drop1. Bold p values are significant at α = 0.05. 
 

River Metabolic Trait Parameter Statistic (df) p 

Ure log Standard MR Population F1,34 = 0.45 0.508 

  log Mass F1,34 = 19.22 < 0.001 

 log Max MR Population F1,34 = 1.41 0.244 

  log Mass F1,34 = 117.00 < 0.001 

 log Absolute aerobic scope Population F1,34 = 1.06 0.311 

  log Mass F1,34 = 98.48 < 0.001 

 Factorial aerobic scope Population F1,35 = 0.005 0.943 

 

 

 

 

 

 
 
Figure 5.5 Boxplots of metabolic traits of signal crayfish from core (Co) and front (Fr) populations of the 

River Ure. Boxes show medians and interquartile range, whiskers show data range excluding outliers, 

circles are outliers. Data are corrected for differences in body mass using exponents derived from the 

empirical data. 

 

 

 

 

 
5.3.4 Consistency of behaviour  

A subset of crayfish were run through behavioural assays a second time to assess individual 

consistency. The overall pattern was of consistency across time (Tables 5.5 and 5.6).  

 

Population average scores did not typically differ between runs (paired t tests or Wilcoxon signed 

rank tests; Table 5.5). However, Bookill crayfish were shyer (slower to emerge from their shelter) 

on the second run on the shyness-boldness test, driven by a higher proportion of individuals that 
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did not emerge on the second run (0.30 vs. 0.11 on the first run, Fisher exact test p = 0.038). Also, 

Ure crayfish were less voracious (consumed fewer Gammarus) on the second run of the foraging 

voracity test. There was a tendency for lower voracity on second runs in crayfish from the other 

two rivers, and marginally significant changes in exploration or activity in some rivers (Table 

5.5). 

 

Correlations between individuals’ behavioural scores (raw scores, or residuals to control for 

confounding variables as necessary) were generally strong, positive and significant, indicating 

consistency of behaviour or individual personality. Activity and foraging voracity were 

significantly repeatable across runs for crayfish from all three rivers. Shyness was significantly 

repeatable for crayfish from the Ure and Wharfe, and significantly repeatable for Bookill crayfish 

that emerged within the time limit (r = 0.44, df = 29, p = 0.012 cf. Table 5.6 which includes all 

crayfish, including those that did not emerge and were allocated a censored maximum value). The 

correlation for Bookill crayfish is more sensitive to the inclusion of crayfish that didn’t emerge 

in either trial, as this is 34% of the tested crayfish (in comparison to 17% of Ure crayfish and 11% 

of Wharfe crayfish). Exploration was significantly and strongly (r ≥ 0.59) repeatable within the 

Ure and Wharfe, although the correlation was insignificant for crayfish from Bookill Gill Beck. 

Sociability was consistently inconsistent: crayfish from none of the three rivers showed 

significantly repeatable behaviour. Strangely, in all cases the correlation trended in a negative 

direction: crayfish that were the most social on the first trial were the least social on the second 

(Table 5.5). 

 

5.3.5 Relationship between behaviour and physiology 

I tested for associations between behaviour and metabolism by examining correlations between 

behaviour and metabolism within individual crayfish (Fig. 5.6; Table 5.7). Residual SMR (rSMR) 

and residual MMR (rMMR) were significantly and positively correlated with exploration 

behaviour (r = 0.40 and 0.42 respectively), and marginally negatively correlated with shyness (r 

= – 0.36 for both). That is, crayfish with higher metabolic rates tended to explore more and emerge 

from shelters more quickly. rAAS was significantly and positively correlated with activity (τ = 

0.22) and sociability (r = 0.43). Foraging voracity was not significantly correlated with any 

metabolic trait. Note that none of these correlations remain significant following Holm-

Bonferroni correction for multiple comparisons (Holm 1979). 

 

There was an extremely strong positive correlation between rMMR and rAAS (r = 0.94, df = 35, 

p < 0.001) and a weaker positive correlation between rMMR and rSMR (r = 0.34, df = 35, p = 

0.037). rSMR and rAAS were not correlated (r = 0.01, df = 35, p = 0.953). 



121 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T
a

b
le

 5
.5

 T
em

p
o

ra
l 

co
n
si

st
e
n

c
y
 o

f 
a
v
er

ag
e 

b
eh

a
v
io

u
rs

 o
f 

si
g
n
al

 c
ra

y
fi

sh
. 

M
ed

ia
n
 r

a
w

 s
co

re
s 

fr
o

m
 e

ac
h
 r

u
n
 a

re
 g

iv
en

, 
w

it
h
 9

5
%

 p
er

ce
n
ti

le
 c

o
n

fi
d

e
n
ce

 

in
te

rv
a
ls

 d
er

iv
ed

 f
ro

m
 b

o
o

ts
tr

ap
p

in
g
 (

n
 =

 1
9

9
9

).
 T

h
e 

d
if

fe
re

n
ce

 b
et

w
ee

n
 b

eh
a
v
io

u
rs

 (
ra

w
 s

co
re

s)
 f

o
r 

re
p

ea
t 

ru
n
s 

te
st

ed
 u

si
n
g
 p

ai
re

d
 t

-t
e
st

s 
o

r 
W

il
co

x
o

n
 

si
g

n
ed

 r
an

k
 t

es
ts

. 
B

o
ld

 p
 v

al
u
es

 a
re

 s
ig

n
if

ic
an

t 
at

 α
 =

 0
.0

5
. 

S
h

yn
es

s,
 E

xp
lo

ra
ti

o
n

, 
A

ct
iv

it
y,

 S
o

ci
a

b
il

it
y 

an
d

 V
o

ra
ci

ty
 a

re
 a

s 
in

 l
eg

e
n
d

 t
o

 T
ab

le
 5

.3
. 

 R
iv

er
 

B
eh

a
v

io
u

r 
 

R
u

n
 1

 
 

R
u

n
 2

 
 

D
if

fe
r
en

ce
 

 R
u

n
 1

 v
 R

u
n

 2
 

 
 

 
M

ed
ia

n
 

C
I 

 
M

ed
ia

n
 

C
I 

 
S

ta
ti

st
ic

 
p

 

B
o

o
k
il

l 
S

h
y
n
e
ss

 
 

2
0

0
 

(1
2

6
, 
3

4
3

) 
 

3
8

6
 

(1
7

8
, 
8

5
3

) 
 

t 4
6
 =

 –
2

.4
5
 

0
.0

1
8

 

 
E

x
p

lo
ra

ti
o

n
 

 
3

.9
 

(3
.2

, 
4

.0
) 

 
3

.2
 

(2
.9

0
, 

3
.6

5
) 

 
W

4
5
,4

5
 =

 6
3

5
 

0
.0

5
2

 

 
A

ct
iv

it
y

 
 

1
6
 

(1
4

, 
1

8
) 

 
1

7
 

(1
4

, 
1

8
) 

 
W

4
7
,4

7
 =

 5
6

5
 

0
.7

9
3

 

 
S

o
ci

ab
il

it
y
 

 
6

0
9
 

(5
6

7
, 
6

4
6

) 
 

6
0

8
 

(5
6

0
, 
6

5
5

) 
 

t 4
6
 =

 0
.7

0
 

0
.4

9
0
 

 
V

o
ra

ci
ty

 (
2

2
h
) 

 
1

1
 

(6
.0

, 
1

3
.0

) 
 

7
.0

 
(5

.0
, 
9

.0
) 

 
t 4

6
 =

 1
.8

7
 

0
.0

6
8

 

 
 

 
 

 
 

 
 

 
 

 
W

h
ar

fe
 

S
h

y
n
e
ss

 
 

2
6

8
 

(2
3

1
, 
3

3
0

) 
 

2
0

5
 

(1
5

6
, 
4

6
1

) 
 

t 2
6
 =

 0
.8

4
 

0
.4

1
0

 

 
E

x
p

lo
ra

ti
o

n
 

 
4

.1
 

(3
.2

, 
4

.7
) 

 
3

.8
 

(3
.5

, 
4

.5
5

) 
 

t 2
3
 =

 –
0

.2
7
 

0
.7

9
3

 

 
A

ct
iv

it
y

 
 

1
4
 

(1
2

, 
1

7
) 

 
1

7
 

(1
3

, 
1

9
) 

 
t 2

6
 =

 –
1

.8
1
 

0
.0

8
2

 

 
S

o
ci

ab
il

it
y
 

 
6

2
0
 

(5
0

8
, 
6

7
5

) 
 

5
5

2
 

(5
0

3
, 
6

5
2

) 
 

t 2
6
 =

 –
0

.0
1
 

0
.9

9
4

 

 
V

o
ra

ci
ty

 (
2

2
h
) 

 
2

0
 

(1
3

, 
2

4
) 

 
1

5
 

(1
3

, 
1

9
.5

) 
 

t 2
6
 =

 1
.9

0
 

0
.0

6
9

 

 
 

 
 

 
 

 
 

 
 

 
U

re
 

S
h

y
n
e
ss

 
 

2
4

2
 

(2
0

2
, 
3

7
1

) 
 

2
4

6
.5

 
(1

6
4

, 
4

1
4

) 
 

t 5
3
 =

 1
.1

6
 

0
.2

5
0

 

 
E

x
p

lo
ra

ti
o

n
 

 
3

.8
 

(3
.2

, 
4

.6
5

) 
 

4
.3

 
(4

.0
, 
4

.5
) 

 
W

5
2
,5

2
 =

 4
7

2
 

0
.0

7
4

 

 
A

ct
iv

it
y

 
 

1
5
 

(1
2

.5
, 

1
8
) 

 
1

5
 

(1
4

, 
1

6
) 

 
t 5

3
 =

 –
1

.4
0
 

0
.1

6
9

 

 
S

o
ci

ab
il

it
y
 

 
6

5
7
 

(6
1

4
.5

, 
6
9

5
) 

 
5

7
5
 

(5
2

3
.0

, 
6
2

9
.5

) 
 

t 5
3
 =

 1
.5

5
 

0
.1

2
7

 

 
V

o
ra

ci
ty

 (
8

h
) 

 
2

4
.8

 
(1

9
.5

, 
2

7
.5

) 
 

1
5

.3
 

(1
3

.0
, 

2
0
.7

5
) 

 
t 5

6
 =

 5
.5

6
 

<
 0

.0
0

1
 

 



122 

 

 

 

 

 

 

 

 

Table 5.6 Temporal consistency of behaviour of individual signal crayfish. 

Correlation tested between scores on each run (residuals where appropriate; see main 

text), using Pearson’s r or Kendall’s tau-b (τ). Bold p values, uncorrected for multiple 

testing, are significant at α = 0.05. Shyness, Exploration, Activity, Sociability and 

Voracity are as in legend to Table 5.3. 
 

River Behaviour  Correlation Run 1 v Run 2 

   Statistic df p 

Bookill Shyness  τ 0.14 45 0.186 

 Exploration  r 0.15 43 0.341 

 Activity  r 0.39 45 0.007 

 Sociability  τ –0.08 45 0.425 

 Voracity (22h)  τ 0.23 45 0.025 

       
Wharfe Shyness  r 0.55 25 0.003 

 Exploration  r 0.60 22 0.002 

 Activity  r 0.62 25 < 0.001 

 Sociability  r –0.22 25 0.265 

 Voracity (22h)  r 0.53 25 0.004 

       
Ure Shyness  r 0.34 52 0.013 

 Exploration  r 0.59 50 < 0.001 

 Activity  τ 0.49 52 < 0.001 

 Sociability  r –0.23 52 0.090 

 Voracity (8h)  τ 0.57 52 < 0.001 
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Table 5.7 Correlations between behaviour and metabolism in signal crayfish from the River Ure. 

Correlations were Pearson’s r except for those involving Activity, which were Kendall’s τ. 

Voracity transformed as 1 − voracity (i.e. number of prey remaining rather than consumed) to 

conform to negative binomial distribution for derivation of residuals. Bold p values, uncorrected 

for multiple testing, are significant at α = 0.05. Italicised p values are marginally significant (< 

0.10). Shyness, Exploration, Activity, Sociability and Voracity are as in legend to Table 5.3. 
 

Behaviour df Standard MR 

(residual) 

Maximum MR 

(residual) 

Absolute AS 

(residual)  

  r or τ p r or τ p r or τ p 

Shyness 26 –0.36 0.060 –0.36 0.059 –0.25 0.206 

Exploration 26 0.40 0.037 0.42 0.026 0.31 0.104 

Activity (residual) 26 0.06 0.635 0.26 0.053 0.22 0.010 

Sociability (residual) 26 –0.28 0.146 0.29 0.128 0.43 0.022 

1 − Voracity (residual) 26 –0.14 0.468 –0.15 0.442 –0.11 0.572 

 

 

 

 
 

 

 

 

Figure 5.6 Significant correlations between behavioural and metabolic traits in signal crayfish from the 

River Ure. Where indicated in the axis labels, data are residuals from linear models containing 

significant predictors of population, sex and body mass. SMR – standard metabolic rate; MMR – 

maximum metabolic rate; AAS – absolute aerobic scope.  
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5.4 Discussion 

5.4.1 Core-front comparisons 

My primary hypothesis was concerned with comparing population characteristics, behavioural 

traits and physiological traits between core and invasion front populations. Traits associated with 

range expansion should be overrepresented towards the invasion front (Tracy et al. 2012; Juette 

et al. 2014). Whilst I found no clear association of behaviour or metabolism with invasion history, 

there were consistent differences between core and front population characteristics. Overall, these 

results suggest signal crayfish range expansion is driven by dispersal of individuals – possibly 

expulsion of subordinates – from high density populations. 

 

Crayfish densities were higher in core than front populations. This is probably a consequence of 

the range expansion process, reflecting the fact that front populations have simply had less time 

to establish, rather than any significant environmental difference between the core and front in 

the study rivers (pers. obs.). However, this difference in density in itself becomes a significant 

ecological difference that could be causally linked to the observed variation in physical traits. 

Incidence of injury tended to be higher in core populations, and injuries are typically a 

consequence of aggressive interactions which increase with crayfish density (Savolainen et al. 

2004). Meanwhile, at lower crayfish densities typical of invasion fronts, food resources are likely 

to be less fully exploited (Pintor et al. 2009; Raby et al. 2010) allowing crayfish to grow more 

rapidly and yielding the observed larger sizes.  

 

The difference in population density along the invasion gradient could also be a key driver of 

dispersal. At high population densities, competitive interactions can reduce individual fitness and 

thus increase emigration propensity (Bowler and Benton 2005). In signal crayfish specifically, 

individuals move shorter distances in lower density populations, where competition for food and 

shelter is less intense (Moorhouse and Macdonald 2011). A density-driven model of dispersal 

would explain observations of peristaltic spread of signal crayfish, whereby range expansion 

appears to occur intermittently (Peay and Rogers 1999). Populations may need time to grow to 

high density before individuals are forced to disperse. My data suggest this individual dispersal 

is effectively random with respect to individual behaviour, metabolism and sex: there was almost 

no significant spatial sorting of these traits along an invasion gradient. 

 

However, in the Croatian Rivers Mura and Drava, population density, sex ratios and aggressive 

behaviour differ along invasion gradients in a pattern that suggests dispersal from high density 

populations could be biased towards subordinate crayfish (Hudina et al. 2015). Dominant crayfish 

are better competitors for resources, such as shelter (Fero and Moore 2008) and food (Herberholz 
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et al. 2007). Where there is intense intraspecific competition as a result of high population density, 

subordinate crayfish may be forced to disperse away from the core population. Trends in my data 

are consistent with this model. First, sex ratios were more male-biased in front populations (but 

not significantly so). Male signal crayfish are subordinate to females (Peeke et al. 1995) and thus 

more likely to be expelled from a high density population. Second, crayfish from the invasion 

front on the Ure were more sociable than those from the core population. In clearwater crayfish 

Orconectes propinquus, nearest-neighbour distances between crayfish are positively related to 

dominance (Fero and Moore 2008). Thus, the fact that crayfish from Ripon (invasion front) spent 

more time close to a conspecific in the sociability assay than crayfish from Tanfield (core) could 

indicate they have a lower level of dominance.     

 

A lack of behavioural differentiation along an invasion gradient has been reported in some other 

invasive species undergoing range expansion. For example, boldness and dispersal behaviour did 

not differ between core and invasion front populations of alien African Jewelfish in Florida 

(Lopez et al. 2012). Activity and boldness of round goby did not change along an invasion 

gradient in the Laurentian Great Lakes (Groen et al. 2012). The amphipod Dikerogammarus 

villosus displayed similar activity, boldness, exploration and sociability in long- and recently-

established invasive populations in the Great Britain (Truhlar and Aldridge 2014). Although 

signal crayfish aggression differs between core and front populations in Croatian Rivers (Hudina 

et al. 2015), this could be a reflection of different selection pressures (such as population density, 

predation pressure or competition with resident heterospecific crayfish; Brown et al. 2005; Pintor 

et al. 2009; Hudina et al. 2013) rather than behaviour-dependent dispersal. Alternatively, 

behaviour may be a stronger driver of upstream dispersal (studied in Croatia) than downstream 

dispersal (studied in this Chapter): comparisons of upstream and downstream populations within 

rivers would be informative.  

 

The similarity of crayfish populations along invasion gradients in British upland rivers suggest 

management strategies will be broadly effective across the entire gradient. However, strategies 

such as trapping could be especially effective at trapping large and male crayfish at the invasion 

front (Table 5.2; Price and Welch 2009) whilst male sterilisation (Aquiloni et al. 2009) would be 

most efficient in more female-biased core populations. The impact of signal crayfish is likely to 

be higher in established core populations by virtue of the higher population density, rather than 

any difference in per capita effects related to size, behaviour or metabolism (Parker et al. 1999; 

Pintor et al. 2009; Juette et al. 2014).  
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5.4.2 Consistency of behaviour 

Generally, behaviour of individual signal crayfish was consistent over time, indicative of 

personality. Voracity, activity and shyness were significantly repeatable in all populations, whilst 

exploration was repeatable in two. Sociability – the tendency to spend time near a conspecific – 

was not repeatable in any population, with negative but non-significant correlations between 

scores on repeat tests. Sociability therefore appears to be a plastic trait in signal crayfish, which 

could therefore drive individual dispersal tendency in accord with the social dispersal model 

above, without generating spatiotemporal patterns in sociability along the invasion gradient.  

 

Personality traits such as boldness, activity, exploration and voracity can affect invasion success 

and impact and have implications for management of alien species such as P. leniusculus (Juette 

et al. 2014). More generally, the possession of personality traits – and variation between 

individuals in these traits – can have important implications for ecological and evolutionary 

dynamics, including dispersal (Fogarty et al. 2011; Wolf and Weissing 2012; Sih et al. 2012). 

However, given the absence of variation in personality traits along the invasion gradient, my data 

do not support a model of personality-dependent dispersal in signal crayfish (Cote et al. 2010a). 

Explicit measurement of individual dispersal tendencies along with personality traits within 

individual crayfish would provide a further test of this conclusion (Fraser et al. 2001; Cote et al. 

2010b). 

 

5.4.3 Relationship between behaviour and physiology 

Theoretically, metabolism and behaviour should be linked, to some extent, through the common 

currency of energy (Careau et al. 2008; Biro and Stamps 2010). Metabolism is the process of 

oxidising substrates to produce a net energy output, whilst activity and behaviour require energy 

or, in the case of foraging, acquire fuel for the metabolic engine.  

 

SMR and MMR were positively correlated with exploration (significantly) and boldness 

(marginally). The correlation between metabolism and exploration is consistent with the 

performance model of Careau et al. (2008), whereby animals with a higher MR can generate more 

energy and thus exhibit greater movement. Exploration of the environment involves active 

movement. The marginal correlations between boldness and MR could be explained by subtly 

different logic, that animals with a high MR consume energy at a greater rate and therefore must 

procure food at a greater rate. Crayfish with a high MR cannot afford to be as cautious in waiting 

for predation risk to pass. Correlations between risk-taking behaviour and MR may have been 

more apparent had animals been starved for longer: in sea bass Dicentrarchus labrax, a 

metabolism-boldness correlation was only apparent after a week of starvation (Killen et al. 2012). 
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AAS was positively correlated with activity, almost by definition given that aerobic scope is the 

capacity of an organism to increase its rate of aerobic metabolism, and therefore sets its capacity 

for active behaviour (Fry 1947). MMR (but not SMR) was also marginally correlated with 

activity, suggesting this assay was energetically demanding and induced crayfish to work towards 

the upper end of their scope for activity. AAS was positively correlated with sociability. This is 

more challenging to interpret given that sociability is inconsistent within individuals over time 

(Section 4.2). In fact, the correlation between AAS and sociability becomes significantly negative 

(r = −0.39) if second round scores from the sociability assay are used. It is possible that 

metabolism is related to sociability through dominance. Social spacing of crayfish is related to 

dominance (Fero and Moore 2008) and AAS could be related to dominance by conferring 

advantages in territory acquisition or holding (Killen et al. 2014), given the high intensity of 

crayfish agonistic contests (Berry 2008). Clarifying the links between metabolic traits, 

dominance, aggression and sociability could enhance our mechanistic understanding of both 

invasive species dispersal and signal crayfish social dynamics. Generally, links between 

behaviour and metabolic traits, especially MMR and AAS, require further quantification (Biro 

and Stamps 2010; Metcalfe et al. 2016).  

 

I anticipated that foraging voracity would be closely associated with metabolism, given that it is 

the means by which fuel for the metabolic engine is obtained (Biro and Stamps 2010). Observed 

correlations between voracity and metabolism were in support of this expectation, although not 

significant. The lack of significance could be related to ad libitum feeding in laboratory settings 

(Biro and Stamps 2010) meaning individuals had sufficient energy reserves to power their 

metabolic engine before their voracity was assayed and so the link between consumption and 

metabolism was weakened. Data censoring, whereby multiple individuals consumed all the 

available prey, could have reduced inter-individual variation in voracity and thus further limited 

my ability to detect a voracity-metabolism relationship.  

 

5.4.4 Conclusion  

Overall, I found no consistent significant differences between signal crayfish in core populations 

and those at the invasion front. Trends in my data support previous models of dispersal being 

driven by the exclusion of (subordinate) individuals from high-density established populations 

(Peay and Rogers 1999; Hudina et al. 2015). Population densities were generally higher in core 

populations, whilst sex ratios tended towards a male bias at the invasion front. My data suggest 

this dispersal may be associated with a temporary change in sociability, but is not apparently 

related to any personality or metabolic traits.  
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I provide evidence of correlations between metabolic traits (SMR, MMR and AAS) and 

behavioural traits within individuals. Further research to clarify these correlations and the 

mechanisms behind them would be valuable. 

 

Core and front populations may differ in their impact as a result of differences in density, but not 

individual behaviour. Established and front populations will be susceptible to similar management 

techniques, but there is some scope for differential application of management along invasion 

gradients based on size and sex differences.  
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Chapter 6 
 

Propagule pressure affects population size and impact, 

but not establishment success, of experimental invasions 

in protist microcosms 
 

 

Abstract 

The colonisation of new environments is an important ecological process, with applied relevance 

to conservation and invasion biology. For example, understanding the causes of successful and 

high impact invasions is important for informing management decisions. Propagule pressure (the 

total number of individuals introduced to a site) is emerging as a consistent correlate of 

establishment success in alien species, but we lack a full mechanistic understanding of the 

influence of propagule pressure on invasion success and impact. Here, I quantify the role of 

propagule pressure in experimental invasions into protist microcosms, which allow control and 

replication across temporal scales not achievable in the field.  

 

In one set of experiments, I perform reciprocal invasions of Blepharisma japonicum (an 

omnivorous, intra guild predator) and Colpidium striatum (bactivorous, intra guild prey), 

alternating which species is the resident and which is the invader and varying the propagule size 

of the invader. I perform these invasions at two levels of enrichment to examine possible 

interactions between resource availability and the propagule pressure.  

 

Propagule size has consistent positive effects on invader population density in the initial stages 

of invasions (before and at initial stable state). For Blepharisma invasions, time to establishment 

was also reduced by high propagule pressure. Establishment success was high in all microcosms, 

including those invaded by just one protist cell. Propagule pressure was also positively correlated 

with the impact of predatory Blepharisma: resident Colpidium densities were lower following 

invasion by large Blepharisma propagules. Nutrient enrichment did not affect the relationship 

between propagule pressure and invasion success, but had a significant effect on establishment 

time, and invader population density and extinction rate.  

 

In a second experiment, total propagule pressure was fixed but I varied its components (propagule 

size and number) to investigate the relative importance of these two components. I could not 

distinguish propagule size or number as a more important driver of success or impact, which could 

be explained by the stability of my microcosms and asexual reproduction of protists.  
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My results support management strategies based on limiting propagule pressure, suggesting 

reductions in propagule size can provide consistent marginal benefits in terms of both success and 

impact. However, they also highlight the potential for microbial invasions to succeed from very 

small propagules. 

 

6.1 Introduction 

Alien species are organisms that exist outside their natural range (Blackburn et al. 2011). The 

introduction of alien species around the planet is leading to biotic homogenisation at the global 

scale (McKinney and Lockwood 1999; Olden et al. 2011) and alien invaders can have  negative 

environmental and economic consequences locally (Williamson 1996; Jeschke and Strayer 2005). 

Management of alien species to prevent or mitigate these consequences is essential (Reaser et al. 

2007; Kumschick et al. 2012). Effective management strategies must be based on an 

understanding of the factors that lead to successful invasions by alien species and their impacts. 

With this knowledge, we can prioritise pathways, habitats or species for control.  

 

A multitude of hypotheses has been proposed to explain why some alien species successfully 

establish and spread in their novel range, and/or have an impact (Kolar and Lodge 2001; Barney 

and Whitlow 2008; Catford et al. 2009; Ricciardi et al. 2013). These tend to invoke characteristics 

of the invading organism or the recipient environment, or a combination of the two. An organism 

might possess certain traits that, all else being equal, predispose it to be a successful and damaging 

invader e.g. high fecundity (Baker and Stebbins 1965) or a high rate of resource consumption 

(Dick et al. 2014). Certain environments are more susceptible to invasion e.g. disturbed habitats 

with high resource availability (Davis et al. 2000) or with little biotic resistance to control invaders 

(D’Antonio et al. 2001). Invader and environmental traits may combine to facilitate invasion and 

impact, where habitat conditions in the new environment match the source (Kestrup and Ricciardi 

2009; Ricciardi et al. 2013) or where the biota in the recipient environment is naïve to an invasive 

predator archetype (Cox and Lima 2006). However, few consistent predictors of invasion success 

and impact have emerged from this pool of hypotheses (Heger and Trepl 2003; Hayes and Barry 

2007). 

 

However, propagule pressure appears to offer one consistent predictor of successful, high impact 

invasions. Fundamentally, propagule pressure is the combination of the number of introduction 

attempts (propagule number) and the number of individuals introduced in each attempt (propagule 

size) (Williamson 1996; Lockwood et al. 2005; Colautti et al. 2006; Hayes and Barry 2007; 

Ricciardi et al. 2013; Blackburn et al. 2013). A high propagule pressure can increase 

establishment success by reducing the threats posed by demographic and environmental 
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stochasticity, and/or introducing genetic variability that both mitigates the genetic problems of 

breeding in small populations and facilitates adaptation to a new environment (Simberloff 2009). 

High propagule pressure may also increase the impact of alien species by facilitating higher 

abundance or range size: two factors associated with high impact (Parker et al. 1999; Ricciardi et 

al. 2011). 

 

Whilst there is abundant evidence supporting the role of propagule pressure in driving 

establishment success (Grevstad 1999; Lockwood et al. 2005; Simberloff 2009), we have much 

less information about how propagule pressure affects other aspects of invasion success (e.g. 

population size and extinction rate; Ricciardi et al. 2013) and impact (Ricciardi et al. 2011). Even 

for the relationship between propagule pressure and establishment success, we lack a complete 

understanding of the underlying mechanisms (Blackburn et al. 2015) and it is these details that 

will facilitate design of more effective management strategies. For example, we lack 

understanding of species- and location-specific effects of propagule pressure, such as whether the 

effects of propagule pressure differ depending on the resources available in the recipient 

environment or the nature of ecological interactions with recipient species. Invasion success may 

be best explained by interactions between propagule pressure, invader traits and the recipient 

environment (Heger and Trepl 2003; Mata et al. 2013). Further, most studies consider propagule 

pressure as a composite variable despite theory suggesting propagule size and number may vary 

in their relative importance (Wittmann et al. 2014). The few studies that have broken propagule 

pressure down into size and number (Drake and Lodge 2006; Hedge et al. 2012; Britton and 

Gozlan 2013; Sinclair and Arnott 2016) have tended to release propagules into unrealistically 

“empty” environments. Finally, investigations of propagule pressure tend to be run across 

relatively short timescales relative to the generation time of the organisms involved, so we have 

little understanding of the long-term implications of propagule pressure.  

 

Here, I address these issues with experimental invasions in protist microcosms. I use the ciliated 

protists Blepharisma japonicum (herein Blepharisma) and Colpidium striatum (herein Colpidium) 

as invaders (introduced to a community) and residents (in an established community). The small 

size (< 1 mm length) and short generation time (hours to days) of these protists allows for 

sufficient replication of invasions and observation of long-term invasion dynamics (Warren et al. 

2006; Altermatt et al. 2015). As an experimental system, they also allow careful control of 

environmental conditions to test for the influence of propagule pressure in the absence of 

confounding factors – which can be a serious problem for interpreting long-term data from the 

field (Duncan 1997; Cassey et al. 2004). In addition to being a useful model system, 

understanding the dynamics of microbial invasions is important in its own right, given the likely 
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(but underreported) prevalence of microbial invasions and their negative impacts (Gillis and 

Chalifour 2010; Litchman 2010; Hatcher et al. 2012; Acosta et al. 2015).  

 

I perform two sets of experimental invasions. In the first, I vary propagule size alone and measure 

the success of the invader and its impact on the resident protist. For these experiments, I used 

reciprocal combinations of Blepharisma and Colpidium as resident and invader, and use two 

different enrichment levels (nutrient concentration) to investigate species- or environment-

specific effects of propagule pressure. My hypothesis was that larger propagule sizes would be 

associated with greater invasion success and larger impacts on the resident protist. In a second 

experiment, I investigated the relative roles of propagule size and number, varying each within a 

fixed total propagule pressure. This experiment focussed on just one invader-resident combination 

(Blepharisma invading Colpidium) and one enrichment level. For this experiment, I hypothesised 

that propagule size would be a more important factor in invasion success than propagule number: 

in the stable microcosms there is no need to compensate for environmental stochasticity with 

many separate introduction events (Wittmann et al. 2014). Although I frame my experiments in 

an invasion context, I note that they have wider applicability given that that colonisation is a 

process important across ecological spheres e.g. in community assembly (MacArthur and Wilson 

1967) and in conservation biology (Caughley 1994; Seddon 2010). 

 

6.2 Methods 

6.2.1 Protist species and culture conditions 

Founding stocks of Blepharisma and Colpidium were obtained from a commercial supplier 

(Sciento, Manchester, UK). The traits of these species are summarised in Table 6.1 and trophic 

relationships depicted in Fig. 1.5.  

 

Colpidium is a smaller, faster-growing bacterivore and is a weak competitor for bacterial 

resources (Cadotte et al. 2006; Liess and Diehl 2006). Blepharisma is larger, slower-growing 

protist with more complicated trophic dynamics. It is generally a stronger competitor for bacteria, 

but is also morphologically plastic and can increase its cell size to facilitate predation (including 

occasional cannibalism; Giese 1973). Thus, Blepharisma acts as an intra-guild predator of 

Colpidium, but the population-level outcome of this interaction can depend upon the nutrient 

content (enrichment) of the culture medium (Morin 1999; Diehl and Feissel 2001). I therefore 

selected Colpidium and Blepharisma for use in my experiments because of the potential for 

different invasion outcomes depending on invader identity and enrichment, meaning I could 

assess the generality of the effect of propagule pressure on invasion success and impact. Using an 

intra-guild predator allowed incorporation of predatory interactions: other purely predatory 
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protists could not establish a monospecific resident population (by definition) and would likely 

exhaust prey too quickly to examine long-term interactions. Intra-guild predation also occurs 

frequently in natural systems, and is of importance for structuring communities (Polis et al. 1989). 

 

 

Table 6.1 Comparative trait values for Blepharisma and Colpidium, taken from the literature. 

Values are for each genus under similar conditions, not the conditions used in the present 

experiments. Values are means ± standard errors, unless otherwise specified. r – density-

independent, intrinsic rate of increase; SD – standard deviation. 
 

Trait Blepharisma Colpidium Reference 

Size (μm) 470 ± 60 (SD) 80 ± 8 (SD) Carrara et al. (2012) 

Trophic guild Omnivore 

Intra-guild predator 

Bacterivore 

Intra-guild prey 
 

Morin (1999) 

Diehl and Feissel (2001) 

Growth rate (r, per day) 0.30 ± 0.06 3.84 ± 0.17 Fox and Morin (2001)  

Competitive ranka 11.1 3.5 Cadotte et al. (2006) 

 

a amongst 12 other protist species, where high value = high competitive ability 

 

 

 

For each protist species, monobacterial stock cultures of 100 ml were maintained in 250 ml glass 

Schott bottles, with lids on but loosened to allow airflow. These cultures were comprised of (a) 

the supernatant from autoclaved protist pellet medium (b) four autoclaved organic wheat seeds to 

provide additional, slow release carbon and nutrients (c) a single species of bacterium 

(unidentified, but forming identical colonies on nutrient agar plates), transferred dry from a 

nutrient agar plate and (d) a single protist species: Blepharisma or Colpidium. Protist pellet 

medium was made by autoclaving ground dried plant material (protist pellets; Carolina Biological 

Supply, Burlington, NC) in bottled water (Pennine Vale spring water, Morrisons, UK) at 121oC 

for 20 minutes. Enrichment of stock media was 0.84 g protist pellet.L−1 (herein abbreviated to 

g.L−1). Stock cultures were kept in a dark incubator (Blepharisma contains light-sensitive 

pigments and so grows best in the dark; Giese 1973) at a constant temperature of 20oC. To 

maintain stocks, 10% of the medium was replaced weekly and fresh stocks established every two 

months.  

 

The original protist cultures supplied by Sciento contained a mixture of bacterial species. I used 

a single bacterial species in my stocks and experiments to simplify the food web within 

microcosms and aid reproducibility (Altermatt et al. 2015). The most abundant bacterium from 

the Sciento cultures was isolated as a single food source, and I verified that this bacterium alone 

supported growth of both protist species. Stocks were initially cleaned to remove unwanted 

bacterial species by washing protists in autoclaved protist pellet medium (by serial transfer with 
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micropipettes) and inoculating 10 cleaned cells into fresh medium containing my focal bacterium. 

This process was iterated up to three times until monobacterial cultures were obtained.  

 

6.2.2 Experiment 1: propagule size manipulation 

In the first set of experiments, I used Blepharisma and Colpidium as reciprocal invaders and 

residents. That is, one experiment involved adding Colpidium at a range of propagule sizes (1, 

10, 30, 100 or 1750 cells) to established populations of Blepharisma. A second experiment 

involved adding Blepharisma at a range of propagule sizes (1, 5, 10, 30, 150) to established 

populations of Colpidium. Each of these combinations was carried out at high enrichment (1.68 

g.L−1 protist pellets with four wheat seeds per microcosm) and low enrichment (0.21 g.L−1 protist 

pellets with one wheat seed). Although I did not quantify bacterial densities at these different 

enrichment levels, previous work has shown that similar variations produce significant 

differences in bacterial concentration (Balčiūnas and Lawler 1995; Morin 1999; Diehl and Feissel 

2000). 

 

I ran five replicates of each invader-enrichment-propagule size combination (giving 100 

experimental microcosms in total). I also ran three controls to check survival of residents and 

invaders in the absence of each other, in case of extinction in experimental microcosms. These 

were three microcosms without residents at each invader-enrichment-propagule size combination, 

or three microcosms to which invaders were not added for each resident protist species (66 control 

microcosms in total).  

 

Each establishing microcosm consisted of 24 ml of medium and wheat seed(s) in 50 ml 

polypropylene centrifuge tubes (Fisher Scientific, Loughborough, UK), with lids loosely secured 

to prevent contamination but allow gas exchange. The resident population in each microcosm was 

established as per stock cultures. Autoclaved supernatant (23 ml) was transferred to the 

microcosm tube with a sterile serological pipette, and wheat seed(s) added. When cool, 1 ml of 

bacteria suspension was added (from 24h cultures of bacteria in nutrient broth, subsequently 

washed with protist medium). After 24h for bacterial growth, 1 ml of medium from stock cultures 

was added to each microcosm. Microcosms were kept in a dark incubator at 20oC and protist 

densities in 6 random microcosms were counted every three days (Blepharisma) or every day 

(Colpidium). Once densities had stabilised (18 days for Blepharisma, 6 days for Colpidium), the 

invading protist was added. 

 

On the day of invasion, all resident microcosms were pooled and realiquoted with a sterile 

serological pipette to equalise resident protist densities. Invading protists were added to each 
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microcosm by sterile micropipette (for propagule sizes of 30 or less) or by transferring a set 

volume of invader stock (for larger propagule sizes). To obtain the maximum propagule sizes, 

this volume was 1 ml. The number of protists in this volume was determined by counts 

immediately prior to invasion. For Colpidium, the propagule size of 100 was obtained by adding 

57 μl of stock to each microcosm (0.057 ml x stock density 1750 Colpidium.ml−1). To compensate 

for this addition of medium which slightly altered the enrichment level – stocks were grown at an 

enrichment level (0.84 g.L−1) intermediate to the experimental enrichments (0.21 g.L−1 and 1.68 

g.L−1) – I topped up all microcosms to a final volume of 25 ml with filtered invader stock medium 

(filtered through 1.2 μm sterile Minisart® syringe filters; Sartorius, Göttingen, Germany).  

 

Invaded microcosms were monitored for 60 days. Over the first 42 days, microcosms were 

inverted every three days and 1.25 ml of medium removed with a Nichiryo® EX pipette and sterile 

tip. Every six days, 2.5 ml of fresh medium was added. In this way, 10% of each microcosm was 

replaced every six days. Between days 42 and 60, microcosms were left undisturbed.  

 

Data were obtained by counting protist densities (both resident and invader) in the removed 

medium every three days for the first 12 days, then every six days until day 42, with a final count 

on day 60. The removed medium was added to a 1 ml Sedgwick-Rafter counting chamber, in 

which protists were killed and stained using Lugol’s Iodine (1% I w/v). To count Blepharisma I 

examined the whole 1 ml chamber. Colpidium densities were higher, so I counted approximately 

200 cells, noted the volume containing this number of cells and multiplied up to a density per ml.  

 

6.2.3 Experiment 2: propagule size and number manipulation 

In a second experiment, I fixed total propagule pressure and varied propagule size and number 

within this overall propagule pressure. I focussed on a total propagule pressure of 16 cells at low 

enrichment levels. Based on results from the first experiment, a single propagule of 16 

Blepharisma should comfortably establish. Propagule number was varied by splitting this single 

propagule over a 16 day period. Thus, treatments were (a) 16 cells introduced once, on day 1 (b) 

8 cells introduced twice, on days 1 and 8 (c) 4 cells introduced four times, on days 1, 5, 9 and 13 

(d) 2 cells introduced every other day over 16 days and (e) 1 cell introduced every day for 16 

days. Eight replicates of each size-number combination were run, with eight controls to check 

survival in the absence of resident Colpidium and three controls to check Colpidium survival 

without invasion.  

 

Following Sinclair and Arnott (2016), I performed an initial census after 8.5 days of average 

growth time (Table. 6.2). Thus, the single addition of 16 cells (treatment a) was counted after 8.5 
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days, treatment b was counted on day 13 (after 12 days of growth for the first propagule and 5 

days of growth for the second propagule; average = 8.5 days), treatment c was counted on day 

15.5 (14.5 + 10.5 + 6.5 + 2.5 days of growth for each propagule; average = 8.5 growth days), 

treatment d was counted on day 16.5 and treatment e counted on day 17.  

 

 

 

I also performed a final census after 35 actual days (Table 6.2). Based on results from the first 

experiment, this was sufficient time for treatment (e) to reach a stable state. Measurement of 

population density after a fixed time is relevant for propagule pressure-based management, for 

example in considering whether a certain management strategy will reduce the abundance of an 

invader after one year, or before some new legislation comes into force. 

 

6.2.4 Statistical methods 

All statistical analyses were performed in R version 3.2.1 (R Core Team 2015). 

 

For the experiment manipulating propagule size, four response variables for invasion success 

were considered (a) establishment success, defined as an invader being present in at least two 

consecutive samples (b) time to establishment: time until the first sample in which an invader 

population, which subsequently established, was recorded; (c) invader density at various stages 

of the growth curve identified from inspection of graphical data: prior to reaching stable state, 

and at stable state; and (d) probability of extinction. As a response variable for invasion impact, I 

considered resident density at stable state.  

 

Establishment success was high across all microcosms and was not analysed statistically. 

Extinction rate was analysed using Fisher’s exact tests. Time to establishment and protist density 

variables were analysed using linear models, with explanatory variables of enrichment 

Table 6.2 Overview of propagule additions and census times for propagule size-number manipulation 

(Experiment 2). Tmnt – treatment. Numbers indicate size of propagule (Prop) and the day on which it was 

introduced. C denotes census, initially performed after an average growth period of 8.5 days for each 

propagule.  
 

Tmnt Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 … 35 

a Prop 16       C          C 

b Prop 8       8     C      C 

c Prop 4    4    4    4  C   C 

d Prop 2  2  2  2  2  2  2  2 C  C 

e Prop 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C  C 
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(categorical, two levels) and propagule size (categorical with five levels for time response and 

continuous for density response).  

 

For time to establishment, models were Poisson GLMs followed by Tukey Kramer contrasts to 

identify significant differences between factor levels (multcomp::glht; Hothorn et al. 2016). For 

density responses, models were ANOVAs. Densities were log10(x+1) transformed (Morin 1999; 

Li and Stevens 2012). To calculate densities over defined time periods, I took the arithmetic mean 

of these log10(x+1) densities (which is equivalent to the log of the geometric mean, and thus 

accounts for temporal non-independence of density counts).  

 

I started by fitting full models with the main effects and two-way interaction, then simplified 

models by stepwise deletion of terms that did not significantly increase the explanatory power of 

the model (using ANOVA to compare nested models with F or χ2 tests of significance as 

appropriate; Crawley 2007). Significance of variables in MAMs was assessed using t statistics. 

Models were verified by inspection of residual plots. Where there was obvious non-linearity in 

the data, I tested for the significance of a squared propagule size term in the model.  

 

In order to fit linear models, I followed Law et al. (2000) and Fox (2002) by excluding outliers: 

populations that failed to establish, went extinct or had anomalously high densities at the time 

point being analysed. This was never more than one microcosm from each invader-propagule 

size-enrichment combination, so the bias induced by removing outliers should be minimal (or at 

least much less than induced by including these highly influential points in the analysis).  

 

For the experiment manipulating propagule size and number, the different size-number 

combinations were treated as a categorical explanatory variable (five levels). ANOVAs with post-

hoc Tukey Kramer contrasts were used to compare the response variables of Blepharisma and 

Colpidium density (continuous) across these categories, at two time points (a) an average of 8.5 

days after invasion by all propagules and (b) 35 actual days after initial invasion.   

 

6.3 Results 

6.3.1 Experiment 1: propagule size manipulation 

Figures 6.1 and 6.2 provide an overview of population size over time in these experiments, with 

a general pattern of growth of the invader and decline in the resident cell density. These growth 

trajectories were used to identify phases of growth and stability for further analysis: an initial 

transient state when invader populations were increasing, followed by stable state(s) when 

population densities were relatively constant. 
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Figure 6.1 Overview of Blepharisma invasions. Mean densities of protists over time, where Blepharisma 

(open symbols) is the Invader and Colpidium (filled symbols) is the Resident.  
 

Experimental invasions: red circles – 1 invader; blue squares – 30 invaders; green triangles – 150 invaders. 

For clarity, only three propagule size treatments are shown and standard error bars are omitted.  
 

Control microcosms: grey diamonds. These are invasions of Blepharisma into bacteria (only propagule size 

of 5 cells shown), or resident Colpidium without invasion. Shaded areas identified, by eye, as stable state.  

 

 

Transient state Stable state 1 
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Figure 6.2 Overview of Colpidium invasions. Mean densities of protists over time, where Colpidium (open 

symbols) is the Invader and Blepharisma (filled symbols) is the Resident.  
 

Experimental invasions: red circles – 1 invader; blue squares – 100 invaders; green triangles – 1750 

invaders. For clarity, only three propagule size treatments are shown and standard error bars are omitted.  
 

Control microcosms: grey diamonds. These are invasions of Colpidium into bacteria (only propagule size 

of 1 cell shown), or resident Blepharisma without invasion. Shaded areas identified, by eye, as stable states.  

 

Transient state 

Stable state 1 Stable state 2 
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6.3.1.1 Establishment success  

Invader establishment success was very high in all microcosms. All Colpidium invasions at all 

propagule sizes established, in both control and experimental microcosms. All Blepharisma 

invasions above the smallest propagule size successfully established. At the lowest propagule 

size, one of five Blepharisma invasions failed to establish in the low enrichment experimental 

microcosms (with Colpidium present). At both high and low enrichment, two of three control 

Blepharisma additions (microcosms with no Colpidium present) failed to establish.  

 

6.3.1.2 Time to establishment 

Colpidium invasions always established rapidly. All Colpidium populations had established by 

the first sampling occasion on day three. For Blepharisma invasions, time to establishment was 

more variable and depended upon both propagule size (Poisson GLM n = 49, χ2 = 48.67, df = 4, 

p < 0.001) and enrichment (χ2 = 9.19, df = 1, p = 0.002) but not the interaction between the two 

(full Poisson GLM n = 49, χ2 = 3.32, df = 4, p = 0.505). Larger propagules took less time to 

establish (Fig. 6.3). At high enrichment, for example, there were significant differences between 

(a) propagule sizes 1 and 10, 30 and 150 and (b) propagule size 5 and 150 (Tukey ps < 0.05). 

Establishment was also more rapid at low enrichment (Tukey z = 3.00, p = 0.003). For example, 

at low enrichment all invasions at a propagule size of 30 established within three days, but at high 

enrichment only one of five propagules of 30 Blepharisma established in three days (Fig. 6.3). 

 

 

 

 

 

 

 

Figure 6.3 Establishment times for Blepharisma invading populations of Colpidium at (a) high enrichment 

and (b) low enrichment. Points show establishment times for single microcosms, jittered along the size axis 

for clarity. Shaded regions delineate size treatments. Letters indicate significantly different establishment 

times, based on Tukey Kramer post-hoc tests.  
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6.3.1.3 Invader density 

No interactions between propagule size and enrichment were significant for any density response 

variables, so they were removed from all models. That is, the effect of propagule size was 

consistent across enrichment levels.  

 

The density of invaders prior to steady state was significantly associated with propagule size (on 

day 3 for Colpidium and over the first 12 days for Blepharisma; Tables 6.3 and 6.4; Figs. 6.4 and 

6.5). Then, at the initial stable state invader density was also dependent upon propagule size for 

both Colpidium and Blepharisma, although the effect was much weaker. For example, whilst 

every unit increase in log Blepharisma propagule size increased transient (pre stable state) density 

by 2.69 cells.ml−1 (100.431), the same increase in propagule size only increased stable-state density 

by 1.45 cells.ml−1 (100.160). Invading Colpidium settled to a second stable state between days 36 

and 60, at which cell density was no longer dependent upon propagule size (rejected from model 

t = 1.60, p = 0.116).  

 

Where propagule size was associated with invader density, there were typically marginal gains 

(i.e. every extra invader added increased population density), indicated by significant linear 

regression coefficients (Tables 6.3 and 6.4). However, these gains were diminishing for the 

transient density of Colpidium invaders. A linear model including a quadratic term was a 

significantly better fit for both enrichment levels (Fig. 6.5; ANOVA comparing models with and 

without quadratic term F1,47 = 43.32, p < 0.001). The benefit of the highest propagule size for the 

Colpidium population was less than would be expected based on the propagule size.   

 

Both resident and invader protist density was typically higher at the higher enrichment level. 

However, in one case enrichment had no effect on invader density: pre-stabilisation densities of 

Colpidium did not differ between enrichment levels (Table 6.3). Further, in one case the 

relationship between enrichment and invader density was reversed. Transient densities of 

invading Blepharisma (mean of log densities days 3-12) were 2.1 times higher at low enrichment 

compared to high enrichment (Table 6.3, Fig. 6.4).  

 

6.3.1.4 Resident density 

I also analysed the influence of propagule size and enrichment on the density of the resident protist 

at stable state. The density of resident Colpidium was significantly related to both invader 

propagule size and enrichment, with larger Blepharisma propagules being associated with lower 

Colpidium densities (Table 6.3, Fig. 6.4). Resident Colpidium densities were also lower at low 

levels of enrichment. When Colpidium was the invader, its propagule size had no effect on the 
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stable state density of resident Blepharisma (Table 6.4, Fig. 6.5). Again, densities of the resident 

protist were dependent upon enrichment levels – although for Blepharisma, the magnitude of this 

difference was much smaller at the second stable state than at the first (Fig. 6.5). 

 

 

 

 

Table 6.3 Analysis of Blepharisma invasions. Minimum adequate linear models relating density 

response variables to propagule size and enrichment explanatory variables. SE – standard error of mean. 

No interactions were significant. 
 

Protist Response Explanatory Estimate SE t p 

Blepharisma 

(invader) 

Density pre stable state 

(days 3-12) 

Propagule size 0.431 0.024 17.83 < 0.001 

  Enrichment −0.321 0.035 −9.18 < 0.001 

 Density at stable state 

(days 18-42) 

Propagule size 0.160 0.048 3.36 0.002 

  Enrichment 0.332 0.068 4.92 < 0.001 

Colpidium 

(resident) 

Density at stable state 

(days 18-42) 

Propagule size −0.157 0.053 −2.97 0.005 

  Enrichment 0.767 0.075 10.21 < 0.001 

 

 

 

 

 

Table 6.4 Analysis of Colpidium invasions. Minimum adequate linear models relating density response 

variables to propagule size and enrichment explanatory variables. SE – standard error of mean. No 

interactions were significant. For transient density of Colpidium, initial examination of model indicated 

that inclusion of a quadratic term significantly improved the fit.  
 

Protist Response Explanatory Estimate SE t p 

Colpidium 

(invader) 

Density pre stable state 

(day 3) 

Propagule size 1.135 0.093 12.14 < 0.001 

  Propagule size2  −0.177 0.269 −6.58 < 0.001 

 Density at first stable 

state (days 6-18) 

Propagule size 0.018 0.006 3.24 0.002 

  Enrichment 0.204 0.012 17.07 < 0.001 

 Density at second stable 

state (days 36-60) 

Enrichment 0.582 0.109 5.34 < 0.001 

Blepharisma 

(resident) 

Density at first stable 

state (days 6-18) 

Enrichment 1.617 0.026 62.66 < 0.001 

 Density at second stable 

state (days 36-60) 

Enrichment 0.249 0.079 3.15 0.003 
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6.3.1.5 Extinction 

Extinction is defined as the absence of protists at final census on day 60. Of the invader 

populations that established in control microcosms (containing a single species of protist), none 

went extinct.  

 

In experimental microcosms invaded by Colpidium (Table 6.5b), extinction of either resident or 

invader was rare. The only observed extinction was of resident Blepharisma in one microcosm 

invaded by 10 Colpidium.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In microcosms invaded by Blepharisma (Table 6.5a), resident Colpidium never went extinct. At 

high enrichment levels, Blepharisma was absent from most microcosms on day 60, including all 

microcosms subject to the highest propagule pressure (150 invaders). However, I lacked sufficient 

replication of microcosms to demonstrate that propagule pressure was related to extinction 

probability (Fisher’s exact test propagule size 150 vs all other propagule sizes p = 0.061). The 

odds of Blepharisma extinction in high enrichment microcosms were 16.5 times higher than in 

low enrichment microcosms (Fisher’s exact test p < 0.001). At low enrichment levels, 

Blepharisma only went extinct in two microcosms in which it established following the lowest 

propagule pressure treatment. 

Table 6.5 Extinction of invader and resident protist populations (a) in experiments 

with Blepharisma as the invader and (b) in experiments with Colpidium as the 

invader. Extinction rates are presented as a fraction of the total established 

microcosms from which protists were absent by day 60 (final census). Treatments 

including extinctions are highlighted in bold. 

 

(a) Protist Enrichment Propagule size 

1 5 10 30 150 

 Blepharisma (invader) High 3/5 3/5 3/5 1/5 5/5 

  Low 2/4 0/5 0/5 0/5 0/5 

 Colpidium (resident) High 0/5 0/5 0/5 0/5 0/5 

  Low 0/5 0/5 0/5 0/5 0/5 

        

(b) Protist Enrichment Propagule size 

1 10 30 100 1750 

 Colpidium (invader) High 0/5 0/5 0/5 0/5 0/5 

  Low 0/5 0/5 0/5 0/5 0/5 

 Blepharisma (resident) High 0/5 1/5 0/5 0/5 0/5 

  Low 0/5 0/5 0/5 0/5 0/5 
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6.3.2 Experiment 2: propagule size and number manipulation 

In a separate experiment, I investigated the relative influence of propagule size and number in 

determining invasion success and impact. I added Blepharisma to resident Colpidium in different 

propagule size-number combinations. These additions were all carried out at the lower enrichment 

level (0.21 g.L−1). 

 

After a fixed growth period (average 8.5 growth days; Fig. 6.6a), protist densities were below 

those attained at stable state. There was significant variation in invader Blepharisma densities 

between size-number treatments (ANOVA F4,35 = 2.76, p = 0.043), although this was driven by a 

difference between the propagule size 2 and 16 treatments only (Tukey p = 0.025). However, 

there was a general hump-shaped pattern with higher densities attained under the less extreme 

combinations of size and number (Fig. 6.6a). The impact of invading Blepharisma was similar 

across different size-number treatments: resident Colpidium densities did not differ between 

treatments (ANOVA F4,35 = 0.38, p = 0.825).  

 

 

 
 

 
Figure 6.6 Blepharisma invader density after (a) 8.5 growth days and (b) 35 days, at varying combinations 

of propagule number and propagule size. All invasions were into established Colpidium in low enrichment 

medium. Letters above boxes indicate significant differences based on Tukey Kramer post-hoc tests. Boxes 

show medians and interquartile ranges, whiskers the range of the data excluding outliers, and points show 

outliers.     

 

 

 

On day 35 (Fig. 6.6b), invading Blepharisma populations had reached a stable state at a similar 

level to the size-manipulation experiment (Experiment 1). Establishment success was high at all 

of the propagule size-number treatments, with no obvious difference between treatments. Only 

three of the 40 invasions into resident Colpidium failed to establish: one at each of the propagule 

Size 

Number 
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sizes 1, 8 and 16. I make no further analysis of this establishment success. Invader population 

density after 35 days also did not differ between size-number treatments, whether all microcosms 

were considered (ANOVA F4,35 = 2.00, p = 0.115) or just those that established (ANOVA F4,32 = 

1.62, p = 0.193). However, Blepharisma density in the high number treatment (size 1: number 

16) seemed to be lower than in the other treatments (Fig. 6.6b). With respect to impact, resident 

Colpidium densities did not differ significantly between treatments after 35 days (all microcosms 

ANOVA F4,35 = 1.66, p = 0.181; microcosms with established invader ANOVA F4,32 = 1.54, p = 

0.215). 

 

In sum, establishment success, invader population density and impact (resident population 

density) were similar whether small propagules were added multiple times, or a single large 

propagule was added once. 

 

6.4 Discussion 

In my experimental invasions into protist microcosms, high propagule pressure consistently 

increased invasion success, defined as time to establishment and invader population size. These 

results held irrespective of the identity and trophic guild of the invader and resident species, and 

irrespective of the enrichment level of the microcosm. The effect of propagule size was 

particularly evident in the initial stages of invasions. Coefficients describing the relationship 

between propagule size and invader density were largest before an initial stable state was reached, 

and for Colpidium invaders larger in the first than the second stable state. Similarly, larger 

propagule sizes facilitated faster establishment, with a prolonged lag-phase (time between 

introduction and establishment) only evident in the lowest propagule size Blepharisma invasions. 

Temporal resolution of my sampling was too coarse to detect a lag in Colpidium invasions. It is 

in this early stage of invasions that propagule pressure is likely to most critically affect invasion 

success, as population size (and associated demographic and genetic problems; Simberloff 2009) 

more strongly reflects the introduction of individuals than intrinsic population growth.  

 

However, my data also indicate that the effects of propagule pressure – on both the invader and 

resident – can reach beyond the initial phase of the invasion. Propagule size was positively related 

to invader density at the initial stable state for both Blepharisma and Colpidium. Further, in 

invasions of Blepharisma, high propagule pressure was associated with lower densities of resident 

Colpidium, probably mediated by the higher density of the predatory protist. Predatory 

Blepharisma morphs were observed in microcosms, although they were rare (typically < 5% of 

the Blepharisma population, if present at all). In general, impacts of invasive species increase 

with abundance (Parker et al. 1999; Ricciardi 2003). I provide empirical data that link this impact 
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to propagule pressure, via abundance. Consequently, from a purely demographic perspective, 

management action to reduce propagule pressure could contribute to reduced impacts of alien 

species, even if it does not prevent establishment (Reaser et al. 2007).  

 

At the range of propagule sizes I used, there were consistent marginal gains in most cases: every 

unit increase in propagule pressure was associated with an increase in invader population density. 

To paraphrase Lockwood et al. (2009), the more I introduced the more I got. The maximum 

propagule size I used was two (Blepharisma) or three (Colpidium) orders of magnitude below 

each species’ carrying capacity in experimental microcosms. Perhaps diminishing returns would 

be obtained from larger propagules, as evidenced by the pre-stable state densities of Colpidium, 

but this may not be ecologically relevant if most invaders are introduced as small propagules 

relative to their carrying capacity. If consistent marginal gains are common in real invasions (as 

opposed to saturation), then management to reduce propagule pressure could still be beneficial in 

reducing abundance and impact, even if it does not prevent invasion completely. 

 

Although it is commonly reported that propagule size increases establishment success (Lockwood 

et al. 2005; Simberloff 2009), I found no such relationship in my microcosms. There was no 

threshold propagule size that facilitated establishment, because the smallest propagule size (one 

cell) established in almost all microcosms. Success of small propagules in my experiments would 

have been favoured by the minimal environmental and demographic stochasticity, and the simple 

reproductive behaviour of protists (cf. Grevstad 1999; Sinclair and Arnott 2016). Conditions in 

my microcosms were stable (constant temperature and nutrients, minimal disturbance) and closely 

matched the source environment of the protists (except for slight variations in enrichment). 

Certain combinations of environmental conditions and invader biology can facilitate 

establishment from small propagules in the field (Zayed et al. 2007; Duncan 2016, but see King 

and Reed 2016). Further, establishment of very small propagules is likely when there are no Allee 

effects operating (Taylor and Hastings 2005; Drake and Lodge 2006). Both Colpidium and 

Blepharisma can reproduce asexually by binary fission (Giese 1973; Fox 2002), mitigating Allee 

effects even in a population consisting of a single cell.  

 

Intra-guild predation can confer biotic resistance against invasion, especially when propagule 

pressure is low (Polis et al. 1989; Twardochleb et al. 2012), but this likely did not apply when 

Colpidium was invading Blepharisma in my microcosms. Larger predatory morphs were not 

present in Blepharisma stock cultures, but were induced by the presence of Colpidium. Low 

densities of invading Colpidium provided a weak stimulus, thus predatory morphs of resident 

Blepharisma were only observed 24 days after Colpidium invasions. (For comparison, when 
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Blepharisma were added to high density, established Colpidium populations, predatory morphs 

appeared within three days).  

 

In a second experiment to compare the relative roles of propagule size and number on invasion 

success and impact, there were no consistent significant differences in establishment success, 

invader density or resident density between different combinations of propagule size and number. 

That is, invasion success was similar whether everything was introduced at once, or introductions 

were split over multiple smaller propagules. My microcosms were easy to invade, negating 

advantages of an increased propagule size or number (Simberloff 2009; Wittmann et al. 2014). 

Large propagules were not needed to overcome problems faced by small propagules: even the 

smallest propagules survived and reproduced (Experiment 1). The advantage of multiple small 

propagules replacing previous propagules wiped out by environmental stochasticity was also 

irrelevant in my microcosms. Further, given the homogeneity of the microcosms, there was no 

benefit to be gained from introducing multiple small propagules at different points in space. 

Invasion success of Daphnia into simple laboratory microcosms was similarly found to be more 

dependent on total propagule size (or ‘immigration rate’) than either size or number alone (Drake 

et al. 2005).  

 

Although not the focus of this Chapter, my data provide some insight into the population 

dynamics of Colpidium and Blepharisma. Colpidium and Blepharisma may exclude or facilitate 

each other, depending on enrichment levels. Comparing my control microcosms (no resident 

protist) with experimental microcosms (resident present) (Fig. 6.1), Colpidium appeared to 

facilitate Blepharisma invasion at low enrichment levels and small propagule pressures, in line 

with theory and previous experiments (Lawler and Morin 1993; Diehl and Feissel 2000; Diehl 

and Feissel 2001). Blepharisma invasions into control microcosms failed, or were very slow, at 

the smallest propagule sizes, and populations were at lower density than those in experimental 

microcosms. In experimental microcosms, Colpidium provided an additional food source for 

Blepharisma; the latter had differentiated into predatory morphs within three days of addition to 

Colpidium cultures. Facilitation could be an important mechanism explaining the success of 

invaders, especially in ‘invasional meltdown’ scenarios (Simberloff and von Holle 1999; Adams 

et al. 2003) and in the gregarious settlement of marine invertebrates (Hedge et al. 2012). Protists 

could provide a useful experimental system to test this hypothesis. I did not observe competitive 

exclusion of either protist species, despite restricting the bacterial community to decrease the 

likelihood of trophic niche differentiation (Gonzalez et al. 1990; Thurman et al. 2010) and using 

enrichment levels previously associated with exclusion (Lawler and Morin 1993; Morin 1999). 

Observed extinctions in high enrichment microcosms probably reflect an accumulation of waste 

products and/or exhaustion of nutrients by the high-density populations (Kirk 1998; Fox 2007). 
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Spatial niche differentiation could have mediated coexistence. Further investigation of 

coexistence dynamics of these protists would be interesting.  

 

In summary, my data provide evidence for a consistent relationship between overall propagule 

pressure and the success (abundance) of invading protist species, across enrichment levels and 

trophic guilds, with consistent marginal gains across a range of propagule pressures spanning two 

to three orders of magnitude. I also demonstrate a link between propagule pressure and the impact 

of a predatory invader on resident prey, likely to be mediated by the abundance of the invader. 

My data support proactive management based on reducing propagule pressure (Reaser et al. 2007) 

and suggest it may reduce (or delay) both success and impact of alien species. Equally, in 

conservation translocations or reintroductions, each marginal increase in propagule size will 

increase the chances of success.
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Chapter 7 
 

General discussion:  

towards solving the problem of biological invasions 
  

 

7.1 Thesis aim 

The aim of this thesis was to investigate some key mechanisms related to invasion success and 

impact: propagule pressure, behaviour and resource use. It was anticipated that the outcomes 

would be both an increased understanding of the specific study systems used, and of invasion 

success and impact in general. This increased understanding could support the development of 

tools for predicting the success and impact of invasive species. 

 

7.2 Species-specific lessons 

The white-clawed crayfish A. pallipes is native to Europe and has long been established in Great 

Britain (Holdich et al. 2009), but is being replaced by the invading American signal crayfish P. 

leniusculus which is now the most abundant and widely distributed freshwater decapod crustacean 

in Great Britain (NBN 2016). The Chinese mitten crab E. sinensis is also invasive on a global and 

national scale, with British populations beginning to boom (Clark et al. 1998). It is important to 

understand the success and impact of these three species, to inform management decisions or, if 

control is not possible, to understand how fresh water ecosystems might change with the identity 

of the dominant decapod crustacean. 

 

7.2.1 Mitten crabs Eriocheir sinensis 

My data highlight E. sinensis as an invasive species with an extremely high ecological impact. E. 

sinensis does rank highly on risk assessments, being given the highest score of all freshwater 

invertebrate invaders assessed by Laverty et al. (2015b) and being listed as one of the 100 worst 

invaders in the world (Lowe et al. 2004), but these are largely influenced by socioeconomic 

impact and the ecological impact of E. sinensis remains poorly understood. Through deriving 

functional responses (FRs) of E. sinensis in the laboratory (Chapter 2), I demonstrate that this 

invasive crab is a highly damaging predator of a range of macroinvertebrates. It consistently had 

a higher FR than European A. pallipes on all macroinvertebrate prey tested, and an FR at least 1.9 

times higher than that of another known damaging invader, P. leniusculus, on soft-bodied or fast-

moving prey (chironomid larvae and D. villosus). Although Rosewarne et al. (2016) had 

previously demonstrated a high FR for E. sinensis on G. pulex prey, the magnitude of this impact 
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and the consistency across prey taxa, as demonstrated in Chapter 2, is unprecedented. Data on 

metabolic rates in Chapter 2 offer a novel mechanistic explanation for this pattern: E. sinensis 

consumes prey at a rapid rate to fuel an active lifestyle and high routine metabolic rate. Data on 

activity in Chapter 4 were inconsistent with this hypothesis: E. sinensis was actually the least 

active decapod at dawn and dusk. Diurnal patterns of activity in E. sinensis require further study, 

along with seasonal and ontogenetic patterns given the migratory lifestyle of this crab. 

 

Per capita impacts of E. sinensis are likely to remain high in the field: this species is bold (Chapter 

4) so sublethal effects of threats (such as predation) are likely to only weakly affect resource 

consumption by crabs. However, if this boldness is misplaced, novel predators in the invaded 

range (perhaps large mammals and birds) could control populations and mitigate impact. 

Meanwhile, migration of individual E. sinensis at they mature (up to 1400 km upstream; Panning 

1939) will contribute to a broad geographical impact. 

 

Given the potentially large ecological impact of E. sinensis, immediate control measures to limit 

its spread are recommended. Many environmentally-suitable river catchments remain to be 

invaded by E. sinensis (Herborg et al. 2007). Ballast water regulation, which will come into force 

in September 2017, is likely to help prevent new introductions on an international scale (Cohen 

and Carlton 1997; IMO 2016). On a local scale, spread can be limited by public education and 

good biosecurity practice. Spread through larval migration along coastlines is also possible and 

would be difficult to control, but the distribution and behaviour of larvae requires further study 

(Dittel and Epifanio 2009). Local control of mitten crab populations could be achieved through 

commercial fishing, although this is controversial as it could encourage further spread through 

deliberate introductions (Clark 2011). In addition, established populations of E. sinensis may have 

ecological benefits to counter their impact: by virtue of their high predation rates, they could offer 

stronger biotic resistance than resident decapods to new invaders, such as D. villosus 

(Twardochleb et al. 2012).   

 

Further research into the impacts of E. sinensis in the field, using a combination of observation 

(Before-After-Control-Impact (BACI) studies, stable isotope analyses and gut content analyses) 

and experimental manipulation, would complement the laboratory experiments presented in this 

thesis (Kumschick et al. 2014). In 2014, I attempted a replicated Control-Impact study of E. 

sinensis in the East Anglian Fens, comparing macroinvertebrate communities in water bodies with 

and without crabs, but was unable to detect E. sinensis where it had previously been reported.  

 

High rates of resource consumption and bold behaviour of E. sinensis could contribute to its 

invasive success, allowing it to outcompete resident decapods through both pre-emptive and 
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exploitative competition. There is some dietary overlap between mitten crabs and crayfish 

(Rudnick and Resh 2005; Rosewarne et al. 2016). However, a requirement for abundant food 

resources could limit its invasive success in resource-poor habitats (cf. Blepharisma struggling to 

invade control (Colpidium-free) low enrichment microcosms in Chapter 6). 

 

7.2.2 Signal crayfish Pacifastacus leniusculus 

My data also indicate that P. leniusculus has a higher rate of resource use than A. pallipes, but 

that the magnitude of this difference is small relative to the difference between crayfish and crabs. 

This broadly agrees with findings from previous work (Haddaway et al. 2012; Rosewarne et al. 

2016) but again I extended this knowledge to a wider range of prey items and in the presence of 

habitat structure. By including habitat structure in my experiments, I demonstrate that the pattern 

of higher resource use is maintained in more realistic conditions. Furthermore, my data indicate 

that P. leniusculus is bolder than A. pallipes (Chapter 4) and is more active at night (Chapter 2), 

meaning higher predation rates in the laboratory are likely to translate into field situations. 

Predation by P. leniusculus likely contributes to its impact on macroinvertebrate populations in 

the field (Crawford et al. 2006; Mathers et al. 2016). 

 

To improve our understanding of the impact of P. leniusculus, direct comparisons of field impact 

to that of A. pallipes are necessary. Given the relatively small difference in magnitude of resource 

use, it could be that P. leniusculus is effectively a functional replacement for A. pallipes (James 

et al. 2015). However, a greater local impact of the invasive alien could be driven by a higher 

abundance (Parker et al. 1999; Dick et al. in press). Crayfish densities can be highly context-

dependent – between waterbodies, between habitat types within water bodies, between seasons 

and depending on size class considered – but in similar conditions P. leniusculus can reach 

densities (14.m−2; Guan 2000) at least three times those of A. pallipes (c. 4.m−2; Demers et al. 

2003). Studies to determine if the impact of P. leniusculus really is greater than resident A. 

pallipes are needed, and manipulation of species identity and density could tease apart the 

mechanisms.  

 

In two separate studies (Chapters 4 and 5), I provide the first evidence that P. leniusculus show 

consistent, within-individual behaviour or personality. Previous work has only demonstrated 

inter-population behavioural consistency in P. leniusculus (Pintor et al. 2008). Against a backdrop 

of intra-species variation, personality can be a key driver of range expansion dynamics (Cote and 

Clobert 2007; Cote et al. 2010b). However, I found no evidence for personality-dependent 

dispersal in signal crayfish (Chapter 5). Instead, patterns of abundance and sex ratios supported a 

model of density-dependent dispersal, whereby subordinate individuals are forced out of a 
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population when it reaches high density (Peay and Rogers 1999; Hudina et al. 2015). An 

implication for management is that trapping of signal crayfish in established populations to reduce 

their density (e.g. Moorhouse et al. 2014) could slow the dispersal of individuals and spread of 

the population, even if the core population is not eradicated. An alternative strategy of eradicating 

nascent satellite populations is likely to be a constant battle against new dispersers. 

 

I did not identify a clear role for behaviour in the success of signal crayfish invasions. Boldness 

may contribute to a competitive advantage over incumbent A. pallipes as foraging is less restricted 

in the invader. Behaviour may be more important in a group context. P. leniusculus maintains its 

high feeding rate despite conspecific interference at high density (Pintor et al. 2009). 

Alternatively, the dominance of P. leniusculus could be more simply related to (a) size 

(facilitating intraguild predation of the invader on A. pallipes; cf. Chapter 6) or (b) spillover of 

crayfish plague from the invader to the incumbent (Dunn et al. 2008).  

 

7.2.3 Killer shrimp Dikerogammarus villosus 

Predation by D. villosus has been implicated in reduced diversity and abundance of 

macroinvertebrates in invaded waters, but we have a poor understanding of the effects of D. 

villosus on vertebrate prey. Predation of fish eggs and larvae by D. villosus had been observed in 

laboratory situations (Casellato et al. 2007; Platvoet et al. 2009) but remained poorly quantified. 

Chapter 3 examined trophic resource use of invasive Dikerogammarus villosus with FR and 

electivity experiments, and fish eggs or larvae as the focal resource. I provide extensive 

quantitative data on the impact of D. villosus on both salmonid and coarse (non-salmonid) fish. 

D. villosus is likely to have a greater impact than the British native G. pulex on fish eggs and 

larvae, but this is because of its larger size rather than any intrinsic difference between the species. 

Whilst size-matched D. villosus and G. pulex had broadly similar predatory impacts, large D. 

villosus were better able to kill large salmonid larvae, and consumed more carp eggs and larvae 

than the smaller amphipods. These data, published in Biological Invasions (Taylor and Dunn 

2016), provide quantitative evidence to contribute to risk assessments for this species, which 

could assist management decisions where it has already invaded (Europe) and horizon scanning 

exercises where it threatens to invade (North America; Pagnucco et al. 2014).  

 

There is considerable uncertainty over the trophic position of D. villosus. Observations and early 

field studies suggested it was a voracious predator (Dick et al. 2002; van Riel et al. 2006; Platvoet 

et al. 2009), whilst more recent evidence points to a more omnivorous mode of feeding that may 

be highly context dependent (Hellmann et al. 2015; Koester et al. 2016). Although not the 

principal aim of Chapter 3, data from electivity experiments suggests D. villosus is omnivorous 
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but is more likely to be predatory than G. pulex, especially when large. Flexible omnivory – the 

ability to exploit a wide variety of food types – could contribute to the success of D. villosus.  A 

varied diet can provide nutritional benefits (Cruz-Rivera and Hay 2000) as well as buffering 

shortages in any single food item.  

 

7.2.4 Microbial invasions 

Finally, Chapter 6 provides insight into microbial invasions, which are probably common but 

underreported, and can lead to large impacts (Gillis and Chalifour 2010; Litchman 2010; Acosta 

et al. 2015). Although the species used are not of interest as successful or damaging invaders in 

the wild, this Chapter suggests that microbial invaders can establish from very small propagules 

(at least in stable environments), due to a capacity for rapid, asexual reproduction. In terms of 

management, this means very strict biosecurity (perhaps impossibly so) would be needed to 

prevent microbial invasions.  

 

7.3 General lessons: predictors of invasion success and impact 

7.3.1 Propagule pressure 

There is abundant evidence that propagule pressure is correlated with establishment success 

(Lockwood et al. 2005; Blackburn et al. 2015). However, much of this evidence comes from 

assumed correlates of propagule pressure (e.g. shipping traffic, length of roads, measures of 

general horticultural activity; Simberloff 2009) or analyses based on historical introduction data, 

mainly for birds (Cassey et al. 2004; Blackburn et al. 2009). There are few controlled, empirical, 

quantitative tests of the relationship between propagule pressure and invasion success, and such 

studies are necessary to inform a mechanistic understanding of the relationship. Further, relatively 

little is known about the effect of propagule pressure on aspects of invasions other than 

establishment probability – such as establishment rate, invader abundance and impact. The 

relative roles of propagule size and number on invasion success also remain poorly understood 

(Wittmann et al. 2014).  

 

Data from my experiments with protist microcosms provide evidence for some important points 

with respect to propagule pressure. First, they show that establishment success does not always 

depend on propagule pressure: very small propagules can establish. This is also seen in some field 

invasions (Zayed et al. 2007; Duncan 2016), but is likely to depend upon a favourable 

combination of invader traits and environmental conditions. For example, environmental 

stochasticity may eliminate small propagules.  
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Second, my data provide evidence that increased propagule pressure can quantitatively affect 

other aspects of invasions beyond establishment success, including reducing lag times (cf. 

Grevstad 1999) and increasing invader abundance over many generations. Consequently, impact 

may be felt sooner and more strongly. Where every unit increase is associated with an increase in 

invader growth rate or abundance, management to reduce propagule pressure will have consistent 

marginal gains – even if introductions are not prevented completely. Although this relationship 

may break down if aliens are introduced in sufficient number, most introductions are likely to be 

small relative to an environment’s carrying capacity, as in the microcosm experiments.  

 

Third, I did not determine that propagule size or number alone was a more important driver of 

abundance. Generally, the overall product of propagule size and number may be a more important 

predictor of invasion success than either alone (Wittmann et al. 2014). Overall, propagule pressure 

could be a strong quantitative predictor of invasion success and impact, beyond its simple 

correlation with establishment success. A greater mechanistic understanding of the link between 

propagule pressure and success and impact could feed into more accurate and powerful predictive 

models.  

 

Protist microcosms offer practical tools for investigating mechanistic hypotheses that would not 

be possible in field situations or with larger, longer-lived organisms (Warren et al. 2006; Altermatt 

et al. 2015). However, they require careful design (e.g. control and characterisation of the bacterial 

community) to ensure conclusions are meaningful and repeatable, and should be seen part of, not 

a replacement for, a wider toolkit – alongside field studies and mathematical modelling, for 

example (Benton et al. 2007). 

 

7.3.2 Behaviour 

Chapters 4 and 5 focussed on quantitative behavioural traits, such as boldness, exploration and 

activity, along which individuals may show consistent personalities (Réale et al. 2007). A 

combination of inter-individual variation but intra-individual consistency in such behaviours can 

have important ecological implications (Wolf and Weissing 2012) and a role for personality in 

invasion success or impact has been demonstrated in a growing list of taxa (Chapple et al. 2012; 

Juette et al. 2014). However, general patterns remain to be extracted. 

 

In providing the first demonstration of individual personalities within P. leniusculus, A. pallipes 

and E. sinensis, I extend the number of taxa known to show personalities and support the idea that 

personalities may be widespread, even in ‘simple’ invertebrate animals (Gherardi et al. 2012; 

Mather and Logue 2013). However, the mechanisms by which personality drives invasion success 
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may be highly context-dependent. Processes that drive invasion in one taxon or in one 

environment might not do so in another. For example, despite evidence of personality dependent 

dispersal in fish (Cote et al. 2010b) and lizards (Cote and Clobert 2007), I found no evidence for 

it in signal crayfish. Thus, rather than attempting to use individual personality traits as general 

predictors of invasion success and impact, individual personality could be considered as part of a 

toolbox to understand the underlying mechanisms of (and inform management of) specific 

invasions.  

  

Meanwhile, the average behaviour of species may have more use as a general predictive tool for 

invasion success and impact. In particular, my data add to evidence that suggests boldness – 

tolerance of risky situations (Réale et al. 2007) – may be a trait that is commonly associated with 

successful, high impact alien species. Monceau et al. (2014) demonstrated that the invasive wasp 

Vespa velutina is bolder on average than native V. crabro and suggested this may be associated 

with successful nest initiation in novel environments. Short and Petren (2008) found ‘A’ clones 

of the gecko Lepidodactylus lugubris to be bolder than the ‘B’ clones they displace, linked to a 

greater foraging ability in simple habitats. In mosquitofish, the mean boldness of laboratory 

populations influences individual dispersal tendency (Cote et al. 2011).  

 

Overall, the behavioural assays in Chapter 4 are best interpreted as describing increased boldness 

in invasive E. sinensis and P. leniusculus, relative to declining European A. pallipes. However, 

further verification of the validity of these assays and/or testing of boldness using alternative 

assays would aid interpretation (Carter et al. 2013). Moreover, more information on the functional 

relevance of boldness in decapod crustaceans would clarify the link to invasion success and 

impact. For example, how does boldness relate to predation risk and prey consumption? 

Comparing data from Chapters 2 and 4 suggests that species-level boldness may be related to prey 

consumption, even in in the absence of obvious risk. E. sinensis was much bolder and consumed 

much more food than the crayfish in FR trials, whilst differences in both boldness and feeding 

rate between the crayfish were much smaller in magnitude.   

 

If boldness is a consistent predictor of invasion success and impact, it could be used to screen 

potential invaders to prioritise preventative management, or even inform management strategies 

that are biased towards capturing bold species (e.g. trapping; Biro and Dingemanse 2009). 

However, like all trait-based predictors there will be some degree of context-dependency in the 

role of boldness in invasion success (Hayes and Barry 2007). In some environments or for some 

species, boldness may not be necessary for successful invasion. For example, the rapid and broad 

spread of D. villosus across Europe has probably been facilitated by passive transport on 
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recreational equipment (Bacela-Spychalska et al. 2013a), perhaps favoured by reduced boldness 

relative to native amphipods (Truhlar and Aldridge 2014). 

 

7.3.3 Resource use 

One particular aspect of behaviour that may have particular value as a predictive tool for invasion 

success and impact is resource use. This can be rapidly and easily quantified as a functional 

response, using laboratory experiments or field data (Moustahfid et al. 2010; Dick et al. 2014). 

There are a growing number of case studies demonstrating that high Type II FRs are associated 

with high impact invaders across a range of taxa and functional feeding groups (Rossiter-Rachor 

et al. 2009; Haddaway et al. 2012; Dodd et al. 2014; Laverty et al. 2015a; Rosewarne et al. 2016; 

Xu et al. 2016). Data in Chapter 2 adds to this pool of examples, with a posteriori comparisons 

to known impacts of decapod Crustacea in field and mesocosm situations suggesting the shape, 

rank order and magnitude of FRs are related to impacts on different prey taxa. The similarity of 

FRs between size-matched G. pulex and D. villosus in Chapter 3 could be a reflection of the fact 

that G. pulex is a successful invader with negative impacts outside of its native Great Britain, for 

example replacing native amphipods and altering community composition, richness and diversity 

in Irish rivers (Kelly et al. 2006). Thus, this comparison specifically investigates relative impact 

of D. villosus in Great Britain more than searching for general correlates of invasiveness and 

impact (van Kleunen et al. 2010). 

 

Further explicit verification of the link between FRs and specific field impacts (rather than general 

impact, or a posteriori comparisons) is required. For example, information on impacts of D. 

villosus on fish populations in the field, either through experimental manipulation or using long-

term monitoring data under a BACI design, could be used to test the predictions made in Chapter 

3, and by inference the validity of the FR methodology.  

 

Further lessons about using FRs as tools for predicting invasions can be learned from Chapters 2 

and 3. First, when sympatric invasive and native organisms differ greatly in size, then these 

differences in size should be incorporated into FR experiments, rather than size-matching subjects 

as is commonly done. Only by explicitly considering size differences between D. villosus and G. 

pulex was I able to make realistic quantitative comparisons of the impact of the two amphipod 

species in Chapter 3. The comparisons made amongst decapod Crustacea in Chapter 2 are still 

informative given that the size distributions of A. pallipes and P. leniusculus substantially overlap 

with each other (Chapters 2 and 4), and indeed with the developmental stage of E. sinensis that 

may compete with or replace the crayfish in fresh waters (Veldhuizen and Stanish 1999). When 

comparing animals with different body plans, the appropriate measure on which to size-match 
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requires careful consideration. Is body mass, body length, length of certain body parts or some 

combination of these measures most important? Checking the robustness of analyses to the choice 

of size matching procedure is encouraged. 

 

Second, impact predictions may benefit from combining FRs with abundance data. FRs measure 

per capita impacts, but the number of organisms exhibiting these impacts is also a crucial 

determinant of the overall impact of a population (Parker et al. 1999). Thus, although FRs may 

be similar between native and invasive alien species (A. pallipes vs. P. leniusculus, Chapter 2; 

size-matched G. pulex and D. villosus, Chapter 3), the impact of populations of these species may 

be vastly different. To this end, Dick et al. (in press) propose RIP (Relative Impact Potential) – a 

combination of individual FRs and population abundance – as a metric to compare impacts of 

alien and native species. However, this relies on robust comparative data on abundances, 

uncompromised by confounding variables, which are often lacking.  

 

Third, I encourage a reasonable degree of replication (on the order of n ≥ 6) at each prey density 

given the inherent variability in feeding data. Reasonable replication at high prey densities is 

necessary to obtain an accurate estimate of maximum feeding rates. To determine FR shapes, a 

high degree of replication at low prey densities is important. Data at low densities are crucial for 

distinguishing between Type II and Type III FRs, but are the most variable since each prey item 

consumed (or not) contributes to a large change in proportional mortality.  

 

7.4 A metabolic explanation for invasions? 

In Chapters 2 and 5, I measured metabolic rates of decapod crustaceans and compared them to 

feeding and general behaviours. Here, I argue that metabolism could be a general modulator of 

invasion success and impact, and thus a useful tool for predicting invasions.  

 

An organism’s metabolic rate is the rate at which it oxidises substrates to produce energy. Since 

energy is the common currency of life, fuelling biological processes at every level of organisation, 

metabolic rates are fundamentally important in ecology and evolution and determine the rate of 

almost all biological activities (Brown et al. 2004). Metabolic rates are strongly influenced by 

temperature and body size (Kleiber 1932; Brown et al. 2004). Thus, metabolic rates could explain 

differences in invasion success and impact based on these factors e.g. greater trophic impacts of 

large D. villosus in Chapter 3, or reduced amphipod feeding rates in cold water (Maier et al. 2011). 

 

Moreover, there is much residual variation in metabolism unaccounted for by these parameters – 

with up to 6-fold differences between similar-sized, closely related species at a given temperature   



160 

 

(Brown et al. 2004; Careau et al. 2008) – and this could prove a useful predictor of success and 

impact of similar-sized species in similar conditions. Similar arguments may apply to predicting 

success and impact of individual invading organisms (Careau et al. 2008).  

 

Metabolic rates may be involved in most, if not all, of the mechanistic hypotheses to explain 

invasion success and impact (Table 1.1 and Fig. 7.1). In particular, metabolic rates are closely 

linked to other species traits, from life history to behaviour and resource use. Theoretically, the 

allocation of limited resources amongst competing functions constrains individuals (and species) 

to possess a suite of linked traits, including metabolism, life-history traits and behaviour, 

somewhere along a fast-slow continuum (Ricklefs and Wikelski 2002; Réale et al. 2010). 

Generally, organisms with a fast pace of life may be more successful invaders (Baker and Stebbins 

1965). They may be more likely to be taken up in transport vectors (propagule bias; Colautti et 

al. 2006) in large numbers (increasing propagule pressure), and will be better able to grow to large 

population sizes quickly. Fast organisms may also have larger impacts as they require more food 

to fuel their rapid, active lifestyle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.1 Could metabolic rate provide a common, mechanistic predictor of all invasions? It may 

do so, through links with resource use, behaviour and propagule pressure (amongst other proximate 

mechanisms of invasion success) – which may be linked in a pace of life syndrome (Réale et al. 

2010). However, the sign of the relationship (whether high or low metabolic rate favours success 

and impact) is likely to be context-dependent.  
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In practice, many studies have demonstrated correlations between these pace-of-life traits. For 

example, in superb fairy-wrens Malarus cyaneus, risk taking behaviour is associated with residual 

reproductive value and survival probability in line with pace-of-life predictions (Hall et al. 2015). 

Importantly, metabolism seems to fit into pace-of-life syndromes, with correlations demonstrated 

between metabolic rate and behaviour in birds, mammals, fish and insects (Biro and Stamps 2010; 

Metcalfe et al. 2016). Interestingly, smaller mammalian species with higher mass-specific 

metabolic rates tend to produce faster (more ‘active’) sperm than larger mammalian species 

(Tourmente and Roldan 2015). In Chapter 5, metabolic traits of individual signal crayfish were 

correlated with active behaviours. In Chapter 2, differences between decapod species’ average 

routine metabolic rate (RMR) mirrored differences in prey consumption. Thus, metabolic rate 

could provide a single trait that allows placement on the fast-slow continuum and consequently 

prediction of success or impact. The advantage of using metabolism as a proxy for other species 

traits is that it is now relatively quick and easy to measure, in a wide range of taxa and by non-

invasive means – especially O2 consumption (Chapters 2 and 5; Burton et al. 2011; Norin and 

Clark 2016). 

 

As a trait, the influence of metabolic rate on invasion success and impact is likely to be context 

dependent. High metabolic rates may favour invasion of systems with abundant resources, for 

example after disturbance or where the invader occupies an unexploited niche (Table 1.1). In 

these cases, the invader can garner enough resources to fuel a high growth rate, early maturity 

and high fecundity that can confer competitive superiority over a native species (Baker and 

Stebbins 1965; performance model of Careau et al. 2008). However, where resources are less 

abundant, a low metabolic rate may favour successful invasion, as individuals have lower 

maintenance energy costs, so can survive when there is less energy available (Mueller and 

Diamond 2001) or can allocate more of the available energy to activity or growth (allocation 

model of Careau et al. 2008). Low metabolic rates may favour introduction success in accidental 

introductions, as individuals will be better able to survive long transport events with limited food 

(Anderson 1974), but in the different context of deliberate introduction this metabolic trait will 

be less important. Impact may be similarly context dependent if it is based on abundance, range 

or per capita effect (e.g. body size) (Parker et al. 1999). Still, all else being equal a high metabolic 

rate will be associated with high impact, because it necessitates (and/or facilitates) a high rate of 

resource consumption (Chapter 2).  

 

Ultimately, metabolic rate may be most useful as a predictor of invasion success and impact in 

combination with other drivers: propagule pressure and the recipient environment (Section 1.4). 

In this regard, the best predictions of invasion success and impact will explicitly incorporate 

context-dependency. For example, integrating metabolic rate measurements with sea temperature 
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data allows for powerful predictions of alien species’ distributions based on thermal habitat 

suitability: the most suitable environments have temperatures that maximise aerobic scope for 

activity (Marras et al. 2015). ‘Thermal habitat suitability’ thus explicitly characterises the match 

between an invader and the abiotic context of the invasion. 

 

7.5 Concluding remarks 

Biological invasions are, and are likely to remain, a major component of human induced 

environmental change with substantial negative impacts (Sala et al. 2000; Hulme 2009). We 

require tools to prioritise management of invasions and design effective strategies to mitigate the 

impacts of alien species. Arguably, the most reliable predictive tools will be based on a 

mechanistic understanding of invasion success and invader impact.  

 

My data support the utility of propagule pressure and resource use as general and potentially 

quantitative predictors of invasion success and impact, whilst the role of behaviour appears to be 

more complex and idiosyncratic to individual invasions. As such, effective tools for predicting 

invasion success and impact could be based on propagule pressure (e.g. analysis of trade or 

tourism patterns, or species characteristics influencing uptake probability; Colautti et al. 2006) or 

resource use (e.g. functional responses). Metabolic rate may offer another general predictor of 

invasion success and impact. 

 

Whilst these factors may be useful in predicting invasions when all else is equal (i.e. increases in 

these factors are generally associated with an increased probability of success or impact), such 

predictions will also be subject to much inter-site, inter-species, inter-population and temporal 

context dependency (Pyšek et al. 2012). Arguably, the ultimate aim of invasion ecology is a 

mechanistic understanding of these context-dependencies, which will facilitate truly powerful 

predictions (Kueffer et al. 2013). 

 

 

 

 

 

 

 

 

 



163 

 

References 
 

Acosta F, Zamor RM, Najar FZ, Roe BA & Hambright KD (2015) Dynamics of an experimental 

microbial invasion. Proclamations of the National Academy of Sciences USA, 112, 

11594–11599.  

Adams MJ. Pearl CA & Bury RB (2003) Indirect facilitation of an anuran invasion by non-native 

fishes. Ecology Letters, 6, 343–351.  

Aebischer NJ, Robertson PA & Kenward RE (1993) Compositional analysis of habitat use from 

animal radio-tracking. Ecology, 74, 1313–1325. 

Agresti A (2012) Analysis of ordinal categorical data, 2nd Edition. Wiley, New Jersey. 

Aitchison J (1986) The statistical analysis of compositional data. Chapman and Hall, London, 

UK. 

Alabaster JS & Lloyd RS (1982) Water quality criteria for freshwater fish, 2nd edition. 

Butterworths, London-Boston 

Aldridge DC, Aldridge S., Mead A, Scales H, Smith RK, Zieritz A & Sutherland WJ (2015) 

Control of freshwater invasive species: global evidence for the effects of selected 

interventions. Synopses of Conservation Evidence 116. The University of Cambridge, UK.  

Alexander M, Dick J, O’Connor N, Haddaway N, & Farnsworth K (2012) Functional responses 

of the intertidal amphipod Echinogammarus marinus: effects of prey supply, model 

selection and habitat complexity. Marine Ecology Progress Series, 468, 191–202.  

Alexander ME, Dick JTA, Weyl OLF, Robinson TB & Richardson DM (2014) Existing and 

emerging high impact invasive species are characterized by higher functional responses 

than natives. Biology Letters, 10, 20130946.  

Alpert P (2006) The advantages and disadvantages of being introduced. Biological Invasions, 8, 

1523–1534.  

Altermatt F, Giometto A, Fronhofer EA, Massie TM, Hammes F, Klecka J, Legrand D, Elvira M, 

Pennekamp F, Plebani M, Pontarp M, Schtickzelle N, Thuillier V & Petchey OL (2015) 

Big answers from small worlds: a user’s guide for protist microcosms as a model system 

in ecology and evolution. Methods in Ecology and Evolution, 6, 218–231.  

Andersen MC, Adams H, Hope B & Powell M (2004) Risk assessment for invasive species. Risk 

Analysis, 24, 787–793.  

Anderson JF (1974) Responses to starvation in the spiders Lycosa lenta Hentz and Filistata 

hibernalis (Hentz). Ecology, 55, 576–585.  

Anderson LG, Dunn AM, Rosewarne PJ & Stebbing PD (2015) Invaders in hot water: A simple 

decontamination method to prevent the accidental spread of aquatic invasive non-native 

species. Biological Invasions, 17, 2287–2297.  

Anderson LG, White PCL, Stebbing PD, Stentiford GD & Dunn AM (2014) Biosecurity and 

vector behaviour: evaluating the potential threat posed by anglers and canoeists as 

pathways for the spread of invasive non-native species and pathogens. PLoS ONE, 9, 1–

10.  

Anderson TL, Linares C, Dodson KN & Semlitsch RD (2016) Variability in functional response 

curves among larval salamanders: comparisons across species and size classes. Can J Zool 

23–30. doi: 10.1139/cjz-2015-0149 

Aplin LM, Farine DR, Morand-Ferron J, Cole EF, Cockburn A & Sheldon BC (2013) Individual 

personalities predict social behaviour in wild networks of great tits (Parus major). 

Ecology Letters, 16, 1365–1372.  



164 

 

Aquiloni L, Becciolini A, Berti R, Porciani S, Trunfio C & Gherardi F (2009) Managing invasive 

crayfish: use of X-ray sterilisation of males. Freshwater Biology, 54, 1510–1519.  

Arbaciauskas K, Rakauskas V & Virbickas T (2010) Initial and long-term consequences of 

attempts to improve fish-food resources in Lithuanian waters by introducing alien 

peracaridan species: a retrospective overview. Journal of Applied Ichthyology, 26, 28–37.  

Arundell K, Dunn A, Alexander J, Shearman R, Archer N & Ironside JE (2015) Enemy release 

and genetic founder effects in invasive killer shrimp populations of Great Britain. 

Biological Invasions, 17, 1439–1451.  

Aylward B, Bandyopadhyay J, Belausteguigotia J-C, Börkey P, Cassar A, Meadors L, Saade L, 

Siebentritt M, Stein R, Tognetti S, Tortajada C, Allan T, Bauer C, Bruch C, Guimaraes-

Pereira A, Kendall M, Kiersch B, Landry C, Rodriguez EM, Meinzen-Dick R, 

Moellendorf, S, Pagiola S, Porras I, Ratner B, Shea A, Swallow B, Thomich T, 

Voutchkov N, Constanza R, Jacobi P, & Rijsberman F (2005) Freshwater ecosystem 

services. In: Hassan R, Scholes R and Ash N (eds.) Ecosystems and human well-being: 

current state and trends The Millennium Ecosystem Assessment Series, Island Press, pp 

213–255. 

Bacela-Spychalska K, Grabowski M, Rewicz T, Konopacka A & Wattier R (2013a) The “killer 

Shrimp” Dikerogammarus villosus (Crustacea, Amphipoda) invading alpine lakes: 

overland transport by recreational boats and scuba-diving gear as potential entry vectors? 

Aquatic Conservation: Marine and Freshwater Ecosystems, 23, 606–618.  

Bacela-Spychalska K, Rigaud T & Wattier RA (2013b) A co-invasive microsporidian parasite 

that reduces the predatory behaviour of its host Dikerogammarus villosus (Crustacea, 

Amphipoda). Parasitology, 141, 254–8. 

Bagenal T & Braum E (1968) Eggs and early life history. In: Ricker WE (ed.) Methods for 

assessment of fish production in fresh waters: IBP Handbook No. 3. Blackwell, Oxford and 

Edinburgh, UK, pp 159–181. 

Bailey KM & Houde ED (1989) Predation on eggs and larvae of marine fishes and the recruitment 

problem. Advances in Maine Biology, 25, 1–83.  

Bajer PG, Chizinski CJ, Silbernagel JJ & Sorensen PW (2012) Variation in native micro-predator 

abundance explains recruitment of a mobile invasive fish, the common carp, in a naturally 

unstable environment. Biological Invasions, 14, 1919–1929. 

Baker HG & Stebbins GL (1965) The genetics of colonizing species. Academic Press, New York.  

Balčiūnas D & Lawler SP (1995) Effects of basal resources, predation, and alternative prey in 

microcosm food chains. Ecology, 76, 1327–1336.  

Barbaresi S & Gherardi F (2001) Daily activity of the white-clawed crayfish, Austropotamobius 

pallipes (Lereboullet): a comparison between field and laboratory studies. Journal of 

Natural History, 35, 1861–1871.  

Barney JN, Tekiela DR, Dollete ESJ & Tomasek BJ (2013) What is the real impact of invasive 

plant species? Frontiers in Ecology and the Environment 11, 322–329. 

Barney JN & Whitlow TH (2008) A unifying framework for biological invasions: the state factor 

model. Biological Invasions, 10, 259–272.  

Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire 

JL, Lindsey EL, Maguire KC, Mersey B & Ferrer EA (2011) Has the Earth’s sixth mass 

extinction already arrived? Nature, 471, 51–57.  

Barrios-O’Neill D, Dick JTA, Emmerson MC, Ricciardi A & MacIsaac HJ (2015) Predator-free 

space, functional responses and biological invasions. Functional Ecology, 29, 377–384.  



165 

 

Bataille A, Cunningham AA, Cedeño V, Cruz M, Eastwood G, Fonseca DM, Causton CE, Azuero 

R, Loayza J, Martinez JDC & Goodman SJ (2009) Evidence for regular ongoing 

introductions of mosquito disease vectors into the Galapagos Islands. Proceedings of the 

Royal Society B, 276, 3769–75.  

Baum JK & Worm B (2009) Cascading top-down effects of changing oceanic predator 

abundances. The Journal of Animal Ecology, 78, 699–714.  

Bax N, Carlton JT, Haedrich RL, Howarth FG, Purcell JE, Rieser A & Gray A (2001) The control 

of biological invasions in the world’s oceans. Conservation Biology, 15, 1234–1246.  

Beggel S, Brandner J, Cerwenka AF & Geist J (2016) Synergistic impacts by an invasive 

amphipod and an invasive fish explain native gammarid extinction. BMC Ecology, 16:32.  

Begon M, Townsend CR & Harper JL (2006) Ecology: from individuals to ecosystems, 4th edition. 

Wiley-Blackwell, Oxford, UK. 

Beirne BP (1975) Biological control attempts by introductions against pest insects in the field in 

Canada. The Canadian Entomologist, 107, 225–236.  

Bell AM, Hankison SJ & Laskowski KL (2009) The repeatability of behaviour: a meta-analysis. 

Animal Behaviour, 77, 771–783.  

Bellard C, Cassey P & Blackburn TM (2016) Alien species as a driver of recent extinctions. 

Biology Letters, 12, 20150623.  

Bellard C, Thuiller W, Leroy B, Genovesi P, Bakkenes M & Courchamp F (2013) Will climate 

change promote future invasions? Global Change Biology, 19, 3740–3748.  

Bender R & Lange S (2001) Adjusting for multiple testing - when and how? Journal of Clinical 

Epidemiology, 54, 343–349.  

Benton TG, Solan M, Travis JMJ & Sait SM (2007) Microcosm experiments can inform global 

ecological problems. Trends in Ecology and Evolution, 22, 516–521. 

Berger-Tal O, Polak T, Oron A, Lubin Y, Kotler BP & Saltz D (2011) Integrating animal behavior 

and conservation biology: a conceptual framework. Behavioral Ecology, 22, 236–239.  

Berry F (2008) The behavioural function of pheromones in crayfish. PhD Thesis, The University 

of Hull.  

Bertness MD & Cunningham C (1981) Crab shell-crushing predation and gastropod architectural 

defense. Journal of Experimental Marine Biology and Ecology, 50, 213–230.  

Bij de Vaate A, Jazdzewski K, Ketelaars HAM, Gollasch S & van der Velde G (2002) 

Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in 

Europe. Canadian Journal of Fisheries and Aquatic Sciences, 59, 1159–1174.  

Biro PA & Dingemanse NJ (2009) Sampling bias resulting from animal personality. Trends in 

Ecology and Evolution, 24, 66–67.  

Biro PA & Stamps JA (2010) Do consistent individual differences in metabolic rate promote 

consistent individual differences in behavior? Trends in Ecology and Evolution, 25, 653–

659.  

Blackburn TM, Cassey P & Lockwood JL (2009) The role of species traits in the establishment 

success of exotic birds. Global Change Biology, 15, 2852–2860.  

Blackburn TM, Essl F, Evans T, Hulme PE, Jeschke JM, Kühn I, Kumschick S, Marková Z, 

Mrugała A, Nentwig W, Pergl J, Pyšek P, Rabitsch W, Ricciardi A, Richardson DM, 

Sendek A, Vilà M, Wilson JRU, Winter M, Genovesi P & Bacher S (2014) A unified 

classification of alien species based on the magnitude of their environmental impacts. 

PLoS Biology, 12, e1001850.  



166 

 

Blackburn TM, Lockwood JL & Cassey P (2015) The influence of numbers on invasion success. 

Molecular Ecology, 24, 1942–1953.  

Blackburn TM, Prowse TAA, Lockwood JL & Cassey P (2013) Propagule pressure as a driver of 

establishment success in deliberately introduced exotic species: fact or artefact? 

Biological Invasions, 15, 1459-1469.  

Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU & Richardson 

DM (2011) A proposed unified framework for biological invasions. Trends in Ecology & 

Evolution, 26, 333–339.  

Błońska D, Grabowska J, Kobak J, Jermacz Ł & Bacela-Spychalska K (2015) Feeding 

preferences of an invasive Ponto-Caspian goby for native and non-native gammarid prey. 

Freshwater Biology, 60, 2187–2195. 

Blossey B & Nötzold R (1995) Evolution of increased competitive ability in invasive 

nonindigenous plants: a hypothesis. Journal of Ecology, 83, 887–889.  

Boeker C & Geist J (2015) Effects of invasive and indigenous amphipods on physico-chemical 

and microbial properties in freshwater substrates. Aquatic Ecology, 49, 467–480.  

Boets P, Lock K, Messiaen M & Goethals PLM (2010) Combining data-driven methods and lab 

studies to analyse the ecology of Dikerogammarus villosus. Ecological Informatics, 5, 133–

139.  

Boldsen MM, Norin T & Malte H (2013) Temporal repeatability of metabolic rate and the effect 

of organ mass and enzyme activity on metabolism in European eel (Anguilla anguilla). 

Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology, 

165, 22–29.  

Bolker BM (2008) Ecological models and data in R. Princeton University Press, Princeton.  

Bollache L, Dick JTA, Farnsworth KD & Montgomery WI (2008) Comparison of the functional 

responses of invasive and native amphipods. Biology Letters, 4, 166–9.  

Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Rudolf VHW, 

Schreiber SJ, Urban MC & Vasseur DA (2011) Why intraspecific trait variation matters 

in community ecology. Trends in Ecology & Evolution, 26, 183–92.  

Bowler DE & Benton TG (2005) Causes and consequences of animal dispersal strategies: relating 

individual behaviour to spatial dynamics. Biological Reviews of the Cambridge 

Philosophical Society, 80, 205–225.  

Boyer N, Réale D, Marmet J, Pisanu B & Chapuis JL (2010) Personality, space use and tick load 

in an introduced population of Siberian chipmunks Tamias sibiricus. Journal of Animal 

Ecology, 79, 538–547.  

Brandner J, Auerswald K, Cerwenka AF, Schliewen UK & Giest J (2013a) Comparative feeding 

ecology of invasive Ponto-Caspian gobies. Hydrobiologia, 703, 113–131.  

Brandner J, Cerwenka AF, Schliewen UK & Geist J (2013b) Bigger is better: characteristics of 

round gobies forming an invasion front in the Danube river. PloS ONE, 8, e73036.  

Brewis JM & Bowler K (1982) The growth of the freshwater crayfish Austropotamobius pallipes 

in Northumbria. Freshwater Biology, 12, 187–200.  

Briffa M & Greenaway J (2011) High in situ repeatability of behaviour indicates animal 

personality in the beadlet anemone Actinia equina (Cnidaria). PLoS ONE, 6, e21963.  

Briffa M, Jones N & MacNeil C (2016) Responses to threat in a freshwater invader: longitudinal 

data reveal personality, habituation and robustness to changing water temperatures in the 

“killer shrimp” Dikerogammarus villosus (Crustacea: Amphipoda). Current Zoology, 62, 

45-51.  



167 

 

Briffa M, Rundle SD & Fryer A (2008) Comparing the strength of behavioural plasticity and 

consistency across situations: animal personalities in the hermit crab Pagurus 

bernhardus. Proceedings of the Royal Society B: Biological Sciences, 275, 1305–1311.  

Britton JR & Gozlan RE (2013) How many founders for a biological invasion? Predicting 

introduction outcomes from propagule pressure. Ecology, 94, 2558–2566.  

Brodin T & Drotz MK (2014) Individual variation in dispersal associated behavioral traits of the 

invasive Chinese mitten crab (Eriocheir sinensis, H. Milne Edwards, 1854) during initial 

invasion of Lake Vänern, Sweden. Current Zoology, 60, 410–416.  

Brose U (2010) Body-mass constraints on foraging behaviour determine population and food-

web dynamics. Functional Ecology, 24, 28–34. doi: 10.1111/j.1365-2435.2009.01618.x 

Brown A, Djohari N & Stolk P (2012) Fishing for answers: the final report of the social and 

community benefits of angling project. Substance, Manchester, UK.  

Brown AF & Diamond M (1984) The consumption of rainbow trout (Salmo gairdneri 

Richardson) eggs by macroinvertebrates in the field. Freshwater Biology, 14, 211–215. 

Brown C, Jones F & Braithwaite V (2005) In situ examination of boldness–shyness traits in the 

tropical poeciliid, Brachyraphis episcopi. Animal Behaviour, 70, 1003–1009.  

Brown JH, Gillooly JF, Allen AP, Savage VM & West GB (2004) Toward a metabolic theory of 

ecology. Ecology, 85, 1771–1789.  

Bubb DH, Thom TJ & Lucas MC (2004) Movement and dispersal of the invasive signal crayfish 

Pacifastacus leniusculus in upland rivers. Freshwater Biology, 49, 357–368.  

Bubb DH, Thom TJ & Lucas MC (2005) The within-catchment invasion of the non-indigenous 

signal crayfish Pacifastacus leniusculus (Dana), in upland rivers. Bulletin Français de la 

Pêche et de la Pisciculture, 376, 665–673.  

Bubb DH, Thom TJ & Lucas MC (2006) Movement, dispersal and refuge use of co-occurring 

introduced and native crayfish. Freshwater Biology, 51, 1359–1368.  

Burton OJ, Phillips BL & Travis JMJ (2010) Trade-offs and the evolution of life-histories during 

range expansion. Ecology Letters, 13, 1210–1220.  

Burton T, Killen SS, Armstrong JD & Metcalfe NB (2011) What causes intraspecific variation in 

resting metabolic rate and what are its ecological consequences? Proceedings of the Royal 

Society B: Biological Sciences, 278, 3465–3473.  

Byers JE, Reichard S, Randall JM, Parker IM, Carey S, Lonsdale WM, Atkinson IAE, Seastedt 

TR, Williamson M, Chornesky E & Hayes D (2002) Directing research to reduce the 

impacts of nonindigenous species. Conservation Biology, 16, 630–640.  

Byrnes EE & Brown C (2016) Individual personality differences in Port Jackson sharks 

Heterodontus portusjacksoni. Journal of Fish Biology, 89, 1142-1157.  

Cadotte MW, Mai DV, Jantz S, Collins MD, Keele M & Drake JA (2006) On testing the 

competition-colonization trade-off in a multispecies assemblage. The American 

Naturalist, 168, 704–709.  

Caffrey JM, Baars J, Barbour JH, Boets P, Boon P, Davenport K, Dick JTA, Early J, Edsman L, 

Gallagher C, Gross J, Heinimaa P, Horrill C, Hudin S, Hulme PE, Hynes S & MacIsaac 

HJ (2014) Tackling invasive alien species in Europe: the top 20 issues. Management of 

Biological Invasions, 5, 1–20.  

Calenge C (2015) adehabitatHS: analysis of habitat selection by animals. R Package version 

0.3.12. http://cran.r-project.org/package=adehabitatHS. 

Callaway RM & Ridenour WM (2004) Novel weapons: invasive success and the Evolution of 

Increased Competitive Ability. Frontiers in Ecology and the Environment, 2, 436-443.  



168 

 

Callaway RM, Thelen GC, Rodriguez A & Holben WE (2004) Soil biota and exotic plant 

invasion. Nature, 427, 731–733.  

Canestrelli D, Bisconti R & Carere C (2016) Bolder takes all? The behavioral dimension of 

biogeography. Trends in Ecology and Evolution, 31, 35–43.  

Capinha C, Brotons L & Anastácio P (2013) Geographical variability in propagule pressure and 

climatic suitability explain the European distribution of two highly invasive crayfish. 

Journal of Biogeography, 40, 548–558.  

Capinha C, Essl F, Seebens H, Moser D & Pereira HM (2015) The dispersal of alien species 

redefines biogeography in the Anthropocene. Science, 348, 1248–1251.  

Capinha C, Leung B & Anastácio P (2011) Predicting worldwide invasiveness for four major 

problematic decapods: an evaluation of using different calibration sets. Ecography, 34, 

448–459.  

Careau V, Thomas D, Humphries MM & Réale D (2008) Energy metabolism and animal 

personality. Oikos, 117, 641–653.  

Carrara F, Altermatt F, Rodriguez-Iturbe I & Rinaldo A (2012) Dendritic connectivity controls 

biodiversity patterns in experimental metacommunities. Proceedings of the National 

Academy of Sciences USA, 109, 5761–5766.  

Carter AJ, Feeney WE, Marshall HH, Cowlishaw G & Heinsohn R (2013) Animal personality: 

what are behavioural ecologists measuring? Biological Reviews of the Cambridge 

Philosophical Society, 88, 465–475.  

Case TJ & Bolger DT (1991) The role of introduced species in shaping the abundance and 

distribution of island reptiles. Evolutionary Ecology, 5, 272–290. 

Casellato S, Visentin A & La Piana G (2007) The predatory impact of Dikerogammarus villosus 

on fish. In: Gherardi, F (ed.) Biological invaders in inland waters: profiles, distribution 

and threats. Springer Netherlands, Dordecht, pp 495–506.  

Cassey P (2002) Life history and ecology influences establishment success of introduced land 

birds. Biological Journal of the Linnean Society, 76, 465–480. 

Cassey P, Blackburn TM, Sol D, Duncan RP & Lockwood JL (2004) Global patterns of 

introduction effort and establishment success in birds. Proceedings of the Royal Society 

B: Biological Sciences, 271 (Suppl), S405–S408.  

Catford JA, Jansson R & Nilsson C (2009) Reducing redundancy in invasion ecology by 

integrating hypotheses into a single theoretical framework. Diversity and Distributions, 

15, 22–40.  

Caughley G (1994) Directions in conservation biology. Journal of Animal Ecology, 63, 215–244.  

Cech JJJ & Brauner CJ (2011) Techniques in whole animal respiratory physiology. In: Farell AP 

(ed.) Encyclopedia of Fish Physiology: From Genome to Environment. Elsevier Inc., pp 

846–853.  

Chabot D, Steffensen JF & Farrell AP (2016) The determination of standard metabolic rate in 

fishes. Journal of Fish Biology, 88, 81–121.  

Chan FT, Bailey SA, Wiley CJ & MacIsaac HJ (2013) Relative risk assessment for ballast-

mediated invasions at Canadian Arctic ports. Biological Invasions, 15, 295–308.  

Chang ES (1995) Physiological and biochemical changes during the molt cycle in decapod 

crustaceans: an overview. Journal of Experimental Marine Biology and Ecology, 193, 1–

14.  



169 

 

Chapman BB, Hulthén K, Blomqvist DR, Hansson LA, Nilsson J-Å, Brodersen J, Anders Nilsson 

P, Skov C & Brönmark C (2011) To boldly go: individual differences in boldness 

influence migratory tendency. Ecology Letters, 14, 871–876.  

Chapple DG, Simmonds SM & Wong BB (2011) Know when to run, know when to hide: can 

behavioral differences explain the divergent invasion success of two sympatric lizards? 

Ecology and Evolution, 1, 278–89.  

Chapple DG, Simmonds SM & Wong BBM (2012) Can behavioral and personality traits 

influence the success of unintentional species introductions? Trends in Ecology & 

Evolution, 27, 57–64.  

Charles H & Dukes JS (2007) 13 Impacts of invasive species on ecosystem services. Biological 

Invasions, 193, 217–237. 

Claramunt RM, Jonas JL, Fitzsimons JD & Marsden JE (2005) Influences of spawning habitat 

characteristics and interstitial predators on lake trout egg deposition and mortality. 

Transactions of the American Fisheries Society, 134, 1048–1057.  

Clark PF (2011) The commercial exploitation of the Chinese Mitten Crab Eriocheir sinensis in 

the River Thames, London: damned if we don’t and damned if we do. In: Galil BS, Clark 

PF & Carlton, JT (eds.) In the wrong place – alien marine crustaceans distribution 

biology and impacts. Springer Netherlands, pp 537–580.  

Clark PF, Rainbow PS, Robbins RS, Smith B, Yeomans WE, Thomas M & Dobson G (1998) The 

alien Chinese mitten crab, Eriocheir sinensis (Crustacea: Decapoda: Brachyura), in the 

Thames catchment. Journal of the Marine Biological Association of the United Kingdom, 

78, 1215–1221.  

Clark TD, Sandblom E & Jutfelt F (2013) Aerobic scope measurements of fishes in an era of 

climate change: respirometry, relevance and recommendations. The Journal of 

Experimental Biology, 216, 2771–82.  

Cleland EE (2011) Trait divergence and the ecosystem impacts of invading species. New 

Phytologist, 189, 649–652.  

Clergeau P & Vergnes A (2011) Bird feeders may sustain feral rose-ringed parakeets Psittacula 

krameri in temperate Europe. Wildlife Biology, 17, 248–252.  

Cohen AN & Carlton JT (1997) Transoceanic transport mechanisms: introduction of the Chinese 

mitten crab, Eriocheir sinensis, to California. Pacific Science, 51, 1–11.  

Colautti RI, Grigorovich IA & MacIsaac HJ (2006) Propagule pressure: a null model for 

biological invasions. Biological Invasions, 8, 1023–1037.  

Colautti RI & MacIsaac HJ (2004) A neutral terminology to define “invasive” species. Diversity 

and Distributions, 10, 135–141.  

Colautti RI, Ricciardi A, Grigorovich IA & MacIsaac HJ (2004) Is invasion success explained by 

the enemy release hypothesis? Ecology Letters, 7, 721–733.  

Collen B, Whitton F, Dyer EE, Baillie JEM, Cumberlidge N, Darwall WRT, Pollock C, Richman 

NI, Soulsby AM & Böhm M (2014) Global patterns of freshwater species diversity, threat 

and endemism. Global Ecology and Biogeography, 23, 40–51.  

Collin SB, Edwards PK, Leung B & Johnson LE (2013) Optimizing early detection of non-

indigenous species: estimating the scale of dispersal of a nascent population of the 

invasive tunicate Ciona intestinalis (L.). Marine Pollution Bulletin, 73, 64–69.  

Cote J & Clobert J (2007) Social personalities influence natal dispersal in a lizard. Proceedings 

of the Royal Society B: Biological Sciences, 274, 383–390.  



170 

 

Cote J, Clobert J, Brodin T, Fogarty S & Sih A (2010a) Personality-dependent dispersal: 

characterization, ontogeny and consequences for spatially structured populations. 

Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 4065–4076.  

Cote J, Fogarty S, Brodin T, Weinersmith K & Sih A (2011) Personality-dependent dispersal in 

the invasive mosquitofish: group composition matters. Proceedings of the Royal Society 

B: Biological Sciences, 278, 1670–1678.  

Cote J, Fogarty S, Weinersmith K, Brodin T, & Sih A (2010b) Personality traits and dispersal 

tendency in the invasive mosquitofish (Gambusia affinis). Proceedings of the Royal 

Society B: Biological Sciences, 277, 1571–1579.  

Cox JG & Lima SL (2006) Naiveté and an aquatic-terrestrial dichotomy in the effects of 

introduced predators. Trends in Ecology & Evolution, 21, 674–80.  

Crawford L, Yeomans WE & Adams CE (2006) The impact of introduced signal crayfish 

Pacifastacus leniusculus on stream invertebrate communities. Aquatic Conservation: 

Marine and Freshwater Ecosystems, 16, 611–621.  

Crawley MJ (2007) The R Book. John Wiley and Sons, Chichester, UK.  

Crawley MJ, Brown SL, Heard MS & Edwards R (1999) Invasion-resistance in experimental 

grassland communities: species richness or species identity? Ecology Letters, 2, 140–148.  

Crutzen PJ & Stoermer EF (2000) The Anthropocene. Global Change Newsletter, 41, 17–18.  

Cruz-Rivera E & Hay ME (2000) The effects of diet mixing on consumer fitness: macroalgae, 

epiphytes, and animal matter as food for marine amphipods. Oecologia, 123, 252–264.  

Czarnecka M, Pilotto F & Pusch MT (2014) Is coarse woody debris in lakes a refuge or a trap for 

benthic invertebrates exposed to fish predation? Freshwater Biology, 59, 2400–2412.  

Czerniejewski P, Rybczyk A & Wawrzyniak W (2010) Diet of the Chinese mitten crab, Eriocheir 

sinensis H. Milne Edwards, 1853, and potential effects of the crab on the aquatic 

community in the River Odra/Oder estuary (N.W. Poland). Crustaceana, 83, 195–205.  

Davis MA (2003) Biotic globalization: does competition from introduced species threaten 

biodiversity? Bioscience, 53, 481. 

D’Antonio C, Levine J, Thomsen M (2001) Ecosystem resistance to invasion and the role of 

propagule supply: a California perspective. Journal of Mediterranean Ecology, 2, 233–

245.  

Dall SRX, Houston AI & McNamara JM (2004) The behavioural ecology of personality: 

consistent individual differences from an adaptive perspective. Ecology Letters, 7, 734–

739.  

Darlington RB & Smulders TV (2001) Problems with residual analysis. Animal Behaviour, 62, 

599–602.  

Darwin C (1859) On the origin of species by means of natural selection, or the preservation of 

favoured races in the struggle for life. John Murray, London, UK. 

Davis MA (2003) Biotic globalization: does competition from introduced species threaten 

biodiversity? Bioscience, 53, 481–489. 

Davis MA, Grime JP & Thompson K (2000) Fluctuating resources in plant communities: a 

general theory of invasibility. Journal of Ecology, 88, 528–534.  

Decker RA & Griffen BD (2012) Correlating context-specific boldness and physiological 

condition of female sand fiddler crabs (Uca pugilator). Journal of Ethology, 30, 403–

412.  

DEFRA (2015) The Invasive Non-Native Species Framework Strategy for Great Britain. 

Available at: www.nonnativespecies.org/index.cfm?sectionid=55.  



171 

 

Demers A, Reynolds JD & Cioni A (2003) Habitat preference of different size classes of 

Austropotamobius pallipes in an Irish River. Bulletin Français de la Pêche et de la 

Pisciculture, 370, 127–137.  

Devin S, Piscart C, Beisel JN & Moreteau JC (2003) Ecological traits of the amphipod invader 

Dikerogammarus villosus on a mesohabitat scale. Archiv Für Hydrobiologie, 158, 43–

56.  

Diamond J & Case TJ (1986) Overview: introductions, extinctions, exterminations, and invasions. 

In: Diamond J & Case TJ (eds.) Community ecology. Harper and Row, New York, USA, 

pp 65–79.  

Dick JTA, Alexander ME, Jeschke JM, Ricciardi A, MacIsaac HJ, Robinson TB, Kumschick S, 

Weyl OLF, Dunn AM, Hatcher MJ, Paterson RA, Farnsworth KD & Richardson DM 

(2014) Advancing impact prediction and hypothesis testing in invasion ecology using a 

comparative functional response approach. Biological Invasions, 735–753.  

Dick JTA, Armstrong M, Clarke HC, Farnsworth KD, Hatcher MJ, Ennis M, Kelly A & Dunn 

AM (2010) Parasitism may enhance rather than reduce the predatory impact of an invader. 

Biology Letters, 6, 636–638.  

Dick JTA, Gallagher K, Avlijas S, Clarke HC, Lewis SE, Leung S, Minchin D, Caffrey J, 

Alexander ME, Maguire C, Harrod C, Reid N, Haddaway NR, Farnsworth KD, Penk M 

& Ricciardi A (2013) Ecological impacts of an invasive predator explained and predicted 

by comparative functional responses. Biological Invasions, 15, 837–846.  

Dick JTA & Platvoet D (2000) Invading predatory crustacean Dikerogammarus villosus 

eliminates both native and exotic species. Proceedings of the Royal Society B: Biological 

Sciences, 267, 977–83.  

Dick JTA, Platvoet D & Kelly DW (2002) Predatory impact of the freshwater invader 

Dikerogammarus villosus (Crustacea: Amphipoda). Canadian Journal of Fisheries and 

Aquatic Sciences, 59, 1078–1084.  

Diehl S & Feissel M (2000) Effects of enrichment on three-level food chains with omnivory. The 

American Naturalist, 155, 200–218.  

Diehl S & Feissel M (2001) Intraguild prey suffer from enrichment of their resources: a 

microcosm experiment with ciliates. Ecology, 82, 2977–2983.  

Dinno A (2016) dunn.test: Dunn’s test of multiple comparisons using rank sums. R Package 

version 1.3.2. http://cran.r-project.org/package=dunn.test. 

Dirzo R & Raven PH (2003) Global state of biodiversity and loss. Annual Review of Environment 

and Resources, 28, 137–167.  

Dittel AI & Epifanio CE (2009) Invasion biology of the Chinese mitten crab Eriocheir sinensis: 

a brief review. Journal of Experimental Marine Biology and Ecology, 374, 79–92.  

Dodd JA, Dick JTA, Alexander ME, MacNeil C, Dunn AM & Aldridge DC (2014) Predicting the 

ecological impacts of a new freshwater invader: functional responses and prey selectivity 

of the “killer shrimp”, Dikerogammarus villosus, compared to the native Gammarus 

pulex. Freshwater Biology, 59, 337–352.  

Dorn NJ & Mittelbach GG (2004) Effects of a native crayfish (Orconectes virilis) on the 

reproductive success and nesting behavior of sunfish (Lepomis spp.). Canadian Journal of 

Fishieries and Aquatic Science, 61, 2135–2143. 

Dorn NJ, Urgelles R & Trexler JC (2005) Evaluating active and passive sampling methods to 

quantify crayfish density in a freshwater wetland. Journal of the North American 

Benthological Society, 24, 346–356.  



172 

 

Drake JM, Baggenstos P & Lodge DM (2005) Propagule pressure and persistence in experimental 

populations. Biology Letters, 1, 480–483.  

Drake JM & Lodge DM (2006) Allee effects, propagule pressure and the probability of 

establishment: risk analysis for biological invasions. Biological Invasions, 8, 365–375.  

Duckworth RA & Badyaev AV (2007) Coupling of dispersal and aggression facilitates the rapid 

range expansion of a passerine bird. Proceedings of the National Academy of Sciences 

USA, 104, 15017–22.  

Duncan RP (1997) The role of competition and introduction effort in the success of Passeriform 

birds introduced to New Zealand. The American Naturalist, 149, 903–915.  

Duncan RP (2016) How propagule size and environmental suitability jointly determine 

establishment success: a test using dung beetle introductions. Biological Invasions, 18, 

985–996.  

Duncan RP, Blackburn TM & Veltman CJ (1999) Determinants of geographic range size: a test 

using introduced New Zealand birds. Journal of Animal Ecology, 68, 963–975.  

Duncan RP & Williams PA (2002) Ecology: Darwin’s naturalization hypothesis challenged. 

Nature, 417, 608–609.  

Dunn AM & Hatcher MJ (2015) Parasites and biological invasions: parallels, interactions, and 

control. Trends in Parasitology, 31, 189–199.  

Dunn JC, McClymont HE, Christmas M & Dunn AM (2008) Competition and parasitism in the 

native white clawed crayfish Austropotamobius pallipes and the invasive signal crayfish 

Pacifastacus leniusculus in the UK. Biological Invasions, 11, 315–324.  

Ehrlich PR (1986) Which animals will invade? In Mooney HA & Drake JA (eds.) Ecology of 

biological invasions of North America and Hawaii. Springer New York, NY, USA, pp 

79–95.  

Eichenberger E & Weilenmann HU (1982) The growth of Ranunculus fluitans Lam. in artificial 

canals. In: Symoens JJ, Hooper SS & Compère P (eds) Studies on aquatic vascular plants 

pp 324–332. Royal Botanical Society of Belgium, Brussels. 

Elliott EC & Cornell SJ (2012) Dispersal polymorphism and the speed of biological invasions. 

PloS ONE, 7, e40496.  

Elton CS (1927) Animal ecology (Reprint 2001). University of Chicago Press, Chicago, USA. 

Elton CS (1958) The ecology of invasions by animals and plants. Methuen & Co, London, UK.  

Eppinga MB, Rietkerk M, Dekker SC, de Ruiter PC & van der Putten WH (2006) Accumulation 

of local pathogens: a new hypothesis to explain exotic plant invasions. Oikos, 114, 168–

176.  

Ercoli F, Ruokonen TJ, Koistinen S, Jones RI & Hämäläinen H (2015a) Comparing the effects of 

introduced signal crayfish and native noble crayfish on the littoral invertebrate 

assemblages of boreal lakes. Freshwater Science, 60, 1688–1698.  

Ercoli F, Ruokonen TJ, Koistinen S, Jones RI & Hämäläinen H (2015b) The introduced signal 

crayfish and native noble crayfish have different effects on sublittoral macroinvertebrate 

assemblages in boreal lakes. Freshwater Biology, 60, 1688–1698.  

Eriksen M, Lebreton LCM, Carson HS, Thiel M, Moore CJ, Borerro JC, Galgani F, Ryan PG & 

Reisser J (2014) Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces 

weighing over 250,000 tons afloat at sea. PLoS ONE, 9, 1–15.  

Estrada A, Morales-Castilla I, Caplat P & Early R (2016) Usefulness of species traits in predicting 

range shifts. Trends in Ecology and Evolution, 31, 190–203.  



173 

 

EU (2014) Regulation (EU) No 1143/2014 of the European Parliament and of the Council of 22 

October 2014 on the prevention and management of the introduction and spread of 

invasive alien species. Official Journal of the European Union 04/11/2014. 

Evans T, Kumschick S & Blackburn TM (2016) Application of the Environmental Impact 

Classification for Alien Taxa (EICAT) to a global assessment of alien bird impacts. 

Diversity and Distributions, 22, 919–931.  

Fero K & Moore PA (2008) Social spacing of crayfish in natural habitats: what role does 

dominance play? Behavioral Ecology and Sociobiology, 62, 1119–1125.  

Fielding N (2011) Dikerogammarus villosus: preliminary trials on resistance to control measures. 

Freshwater Biological Association Newsletter, 54.  

Fogarty S, Cote J & Sih A (2011) Social personality polymorphism and the spread of invasive 

species: a model. The American Naturalist, 177, 273–87.  

Fox PJ (1978) Caddis larvae (Trichoptera) as predators of fish eggs. Freshwater Biology, 8, 343–

345. 

Fox JW (2002) Testing a simple rule for dominance in resource competition. The American 

Naturalist, 159, 305–19.  

Fox JW (2007) Testing the mechanisms by which source-sink dynamics alter competitive 

outcomes in a model system. The American Naturalist, 170, 396–408.  

Fox JW & Morin J (2001) Effects of intra- and interspecific interactions on species responses to 

environmental change. Journal of Animal Ecology, 70, 80–90.  

Fraser DE, Gilliam JF, Daley MJ, Le AN & Skalski GT (2001) Explaining leptokurtic movement 

distributions: intrapopulation variation in boldness and exploration. The American 

Naturalist, 158, 124–134.  

Freyhof J & Brooks E (2011) European Red List of freshwater fishes. Publications Office of the 

European Union, Luxembourg. 

Fry FEJ (1947) Effects of the environment on animal activity. Publications of the Ontario 

Fisheries Research Laboratory, 55, 1–62.  

Funk JL & Vitousek PM (2007) Resource-use efficiency and plant invasion in low-resource 

systems. Nature, 446, 1079–1081.  

Fuiman LA (2002) Special considerations of fish eggs and larvae. In: Fuiman LA & Werner RG 

(eds.) Fishery science: the unique contributions of early life stages. Blackwell, Oxford, UK, 

pp 1–32.  

Füreder L, Gherardi F, Holdich D, Reynolds J, Sibley P & Souty-Grosset C (2010) 

Austropotamobius pallipes. The IUCN Red List of Threatened Species.  

Gaertner M, Biggs R, Te Beest M, Hui C, Molofsky J & Richardson DM (2014) Invasive plants 

as drivers of regime shifts: identifying high-priority invaders that alter feedback 

relationships. Diversity and Distributions, 20, 733–744.  

Gallardo B & Aldridge DC (2013) The “dirty dozen”: socio-economic factors amplify the 

invasion potential of 12 high-risk aquatic invasive species in Great Britain and Ireland. 

Journal of Applied Ecology, 50, 757–766.  

Gallardo B, Clavero M, Sánchez MI & Vilà M (2016) Global ecological impacts of invasive 

species in aquatic ecosystems. Global Change Biology, 22, 151–163.  

Gallardo B, Errea MP & Aldridge DC (2012) Application of bioclimatic models coupled with 

network analysis for risk assessment of the killer shrimp, Dikerogammarus villosus, in Great 

Britain. Biological Invasions, 14, 1265–1278.  



174 

 

Garcia-Berthou E (2001) On the misuse of residuals in ecology: testing regression residuals vs. 

the analysis of covariance. Journal of Animal Ecology, 70, 708–711. 

Garman GC & Nielsen LA (1982) Piscivority by stocked brown trout (Salmo trutta) and its impact 

on the nongame fish community of Bottom Creek, Virginia. Canadian Journal of Fisheries 

and Aquatic Science, 39, 862–869. 

GB NNSS (2016a) Check Clean Dry. Available at: 

www.nonnativespecies.org/checkcleandry/index.cfm. 

GB NNSS (2016b) Species Alerts. Available at: www.nonnativespecies.org/alerts/index.cfm. 

Gergs R & Rothhaupt K (2015) Invasive species as driving factors for the structure of benthic 

communities in Lake Constance, Germany. Hydrobiologia, 746, 245–254.  

Gherardi F, Aquiloni L, Diéguez-Uribeondo J & Tricarico E (2011) Managing invasive crayfish: 

is there a hope? Aquatic Sciences, 73, 185–200.  

Gherardi F, Aquiloni L & Tricarico E (2012) Behavioral plasticity, behavioral syndromes and 

animal personality in crustacean decapods: an imperfect map is better than no map. 

Current Zoology, 58, 567–579.  

Gherardi F, Renai B & Corti C (2001) Crayfish predation on tadpoles: a comparison between a 

native (Austropotamobius pallipes) and an alien species (Procambarus clarkii). Bulletin 

Français de la Pêche et de la Pisciculture, 361, 659–668. 

Giese AC (1973) Blepharisma: the biology of a light-sensitive protozoan. Stanford University 

Press, Stanford, California.  

Giese AC. (1938) Cannibalism and gigantism in Blepharisma. Transactions of the American 

Microscopical Society, 57, 245–255.  

Gilbey V, Attrill MJ & Coleman RA (2008) Juvenile Chinese mitten crabs (Eriocheir sinensis) 

in the Thames estuary: distribution, movement and possible interactions with the native 

crab Carcinus maenas. Biological Invasions, 10, 67–77.  

Gillis CA & Chalifour M (2010) Changes in the macrobenthic community structure following the 

introduction of the invasive algae Didymosphenia geminata in the Matapedia River 

(Québec, Canada). Hydrobiologia, 647, 63–70.  

Gollasch S (1999) Eriocheir sinensis. In: Gollasch S, Minchin D, Rosenthal H & Voigt M (eds.) 

Exotics across the ocean. Case histories on introduced species: their general biology, 

distribution, range expansion and impact. Logos Verlag, Berlin, pp 55–61.  

Gonzalez A, Lambert A & Ricciardi A (2008) When does ecosystem engineering cause invasion 

and species replacement? Oikos, 117, 1247–1257.  

Gonzalez JM, Sherr EB & Sherr BF (1990) Size-selective grazing on bacteria by natural 

assemblages of estuarine flagellates and ciliates. Applied and Environmental 

Microbiology, 56, 583–589. 

Greggor AL, Berger-Tal O, Blumstein DT, Angeloni L, Bessa-Gomes C, Blackwell BF, Cassady 

St Clair C, Crooks K, De Silva S, Fernández-Juricic E, Goldenberg SZ, Mesnick SL, 

Owen M, Price CJ, Saltz D, Schell CJ, Suarez AV, Swaisgood RR, Winchell CS & 

Sutherland WJ (2016) Research priorities from animal behaviour for maximising 

conservation progress. Trends in Ecology & Evolution. doi: 10.1016/j.tree.2016.09.001 

Grevstad FS (1999) Experimental invasions using biological control introductions: the influence 

of release size on the chance of population establishment. Biological Invasions, 1, 313–

323.  

Griffiths SW, Collen P & Armstrong JD (2004) Competition for shelter among over-wintering 

signal crayfish and juvenile Atlantic salmon. Journal of Fish Biology, 65, 436–447.  



175 

 

Groen M, Marsh-Rollo SE, Marentette JR, Fox MG, Sopinka NM, Brownscombe JW, Balshine 

S & Reddon AR (2012) Is there a role for aggression in round goby invasion fronts? 

Behaviour, 149, 685–703.  

Grosholz ED (2005) Recent biological invasion may hasten invasional meltdown by accelerating 

historical introductions. Proceedings of the National Academy of Sciences USA, 102, 

1088–91.  

Guan R (2000) Abundance and production of the introduced signal crayfish in a British lowland 

river. Aquaculture International, 8, 59–76.  

Gurevitch J, Fox GA, Wardle GM, Inderjit & Taub D (2011) Emergent insights from the synthesis 

of conceptual frameworks for biological invasions. Ecology Letters, 14, 407–418.  

Haccou P & Iwasa Y (1996) Establishment probability in fluctuating environments: a branching 

process model. Theoretical Population Biology, 50, 254–280.  

Haddaway N, Vieille D, Mortimer R, Christmas M & Dunn A (2014) Aquatic macroinvertebrate 

responses to native and non-native predators. Knowledge and Management of Aquatic 

Ecosystems, 415, 1–12.  

Haddaway NR, Wilcox RH, Heptonstall REA, Griffiths HM, Mortimer RJG, Christmas M & 

Dunn AM (2012) Predatory functional response and prey choice identify predation 

differences between native/invasive and parasitised/unparasitised crayfish. PloS ONE, 7, 

e32229.  

Hall ML, van Asten T, Katsis AC, Dingemanse NJ, Magrath MJL & Mulder RA (2015) Animal 

personality and pace-of-life syndromes: do fast-exploring fairy-wrens die young? 

Frontiers in Ecology and Evolution, 3, 1–14. 

Hänfling B, Carvalho GR & Brandl R (2002) mt-DNA sequences and possible invasion pathways 

of the Chinese mitten crab. Marine Ecology Progress Series, 238, 307–310.  

Hänfling B, Edwards F & Gherardi F (2011) Invasive Alien Crustacea: dispersal, establishment, 

impact and control. BioControl, 56, 573–595.  

Hansen GJA, van der Zanden MJ, Blum MJ, Clayton MK, Hain EF, Hauxwell J, Izzo M, Kornis 

MS, McIntyre PB, Mikulyuk A, Nilsson E, Olden JD, Papeş M & Sharma S (2013) 

Commonly rare and rarely common: comparing population abundance of invasive and 

native aquatic species. PLoS ONE, 8, e77415.  

Hanson E & Sytsma M (2007) The potential for mitten crab Eriocheir sinensis H. Milne Edwards, 

1853 (Crustacea: Brachyura) invasion of Pacific Northwest and Alaskan Estuaries. 

Biological Invasions, 10, 603–614.  

Harvey GL, Henshaw AJ, Moorhouse TP, Clifford NJ, Holah H, Grey J & Macdonald DW (2014) 

Invasive crayfish as drivers of fine sediment dynamics in rivers: field and laboratory 

evidence. Earth Surface Processes and Landforms, 39, 259–271.  

Harvey GL, Moorhouse TP, Clifford NJ, Henshaw AJ, Johnson MF, Macdonald DW, Reid I & 

Rice SP (2011) Evaluating the role of invasive aquatic species as drivers of fine sediment-

related river management problems: the case of the signal crayfish (Pacifastacus 

leniusculus). Progress in Physical Geography, 35, 517–533.  

Hassan A & Ricciardi A (2014) Are non-native species more likely to become pests? Influence 

of biogeographic origin on the impacts of freshwater organisms. Frontiers in Ecology 

and the Environment, 12, 218–223.  

Hassell MP (1978) The dynamics of arthropod predator-prey systems. Princeton University Press, 

Princeton. 

Hastings A, Cuddington K, Davies KF, Dugaw CJ, Elmendorf S, Freestone A, Harrison S, 

Holland M, Lambrinos J, Malvadkar U, Melbourne BA, Moore K, Taylor C & Thomson 



176 

 

D (2005) The spatial spread of invasions: new developments in theory and evidence. 

Ecology Letters, 8, 91–101.  

Hatcher MJ, Dick JTA & Dunn AM (2012) Disease emergence and invasions. Functional 

Ecology, 26, 1275–1287.  

Hayes KR & Barry SC (2007) Are there any consistent predictors of invasion success? Biological 

Invasions, 10, 483–506.  

Hayes RB (2012) Consequences for lotic ecosystems of invasion by signal crayfish. PhD Thesis, 

Queen Mary University, London. 

Hedge LH, O’Connor WA & Johnston EL (2012) Manipulating the intrinsic parameters of 

propagule pressure: implications for bio-invasion. Ecosphere, 3, Article 48.  

Heger T & Trepl L (2003) Predicting biological invasions. Biological Invasions, 5, 301–309.  

Hellmann C, Worischka S, Mehler E, Becker J, Gergs R & Winkelmann C (2015) The trophic 

function of Dikerogammarus villosus (Sowinsky, 1894) in invaded rivers: a case study in 

the Elbe and Rhine. Aquatic Invasions, 10, 385–397.  

Henttonen P & Huner JV (1999) The introduction of alien species of crayfish in Europe: a 

historical introduction. In: Gherardi F & Holdich DM (eds.) Crustacean Issues 11. 

Crayfish in Europe as alien species. How to make the best of a bad situation? pp 13–22. 

AA Balkema, Rotterdam. 

Herberholz J, McCurdy C & Edwards DH (2007) Direct benefits of social dominance in juvenile 

crayfish. Biological Bulletin, 213, 21–27.  

Herborg L-M, Rudnick DA, Siliang Y, Lodge DM & MacIsaac HJ (2007) Predicting the range of 

Chinese mitten crabs in Europe. Conservation Biology, 21, 1316–23.  

Holdich DM (1999) The negative effects of established crayfish introductions. In: Gherardi F & 

Holdich DM (eds.) Crustacean Issues 11. Crayfish in Europe as alien species. How to 

make the best of a bad situation? AA Balkema, Rotterdam, pp 31–48.  

Holdich DM, James J, Jackson C & Peay S (2014) The North American signal crayfish, with 

particular reference to its success as an invasive species in Great Britain. Ethology 

Ecology & Evolution, 26, 232–262.  

Holdich DM, Palmer M & Sibley PJ (2009) The indigenous status of Austropotamobius pallipes 

(Lereboullet) in Britain. In: Brickland JM, Holdich DM & Imhoff E (eds.) Crayfish 

Conservation in the British Isles, Proceedings of conference held in Leeds, pp 1–11. 

Holdich DM & Pöckl M (2007) Invasive crustaceans in European inland waters. In: Gherardi, F 

(ed.) Biological invaders in inland waters: profiles, distribution and threats. Springer 

Netherlands, Dordecht, pp 29–75.  

von Holle B & Simberloff D (2005) Ecological resistance to biological invasion overwhelmed by 

propagule pressure. Ecology, 86, 3212–3218.  

Holling CS (1959) Some characteristics of simple types of predation and parasitism. The 

Canadian Entomologist, 91, 385–398.  

Holm S (1979) A simple sequentially rejective multiple test procedure. Scandinavian Journal of 

Statistics, 6, 65–70.  

Holt RD (2003) On the evolutionary ecology of species’ ranges. Evolutionary Ecology Research, 

5, 159–178.  

Holt RD, Barfield M & Gomulkiewicz R (2005) Theories of niche conservatism and evolution. 

In: Sax DF, Stachowicz JJ & Gaines SD (eds.) Species invasions: insights into ecology, 

evolution, and biogeography. Sinauer, Massachusetts, pp 259–290.  



177 

 

Holway D & Suarez A (1999) Animal behavior: an essential component of invasion biology. 

Trends in Ecology & Evolution, 14, 328–330.  

Hothorn T, Bretz F, Westfall P, Heiberger RM, Schuetzenmeister A & Scheibe S. (2016) 

multcomp: simultaneous inference in general parametric models. R Package version 

1.4.6. http://cran.r-project.org/package=multcomp. 

Houde ED (2002) Mortality. In: Fuiman LA & Werner RG (eds.) Fishery science: the unique 

contributions of early life stages. Blackwell, Oxford, UK, pp 64–87.  

Houghton R, Lambin X, Bean C, Tetzlaff D & Laughton R (2015) Quantifying the seasonal 

demographic impacts of different removal methods on invasive crayfish populations: if 

there is no silver bullet, what is the optimal combination of copper bullets? Oral 

Presentation at the National Crayfish Conference held in Settle, Yorkshire, 17-19 August. 

Hudina S, Hock K & Žganec K (2014) The role of aggression in range expansion and biological 

invasions. Current Zoology, 60, 401–409.  

Hudina S, Hock K, Žganec K & Lucić A (2012) Changes in population characteristics and 

structure of the signal crayfish at the edge of its invasive range in a European river. 

Annales de Limnologie - International Journal of Limnology, 48, 3–11.  

Hudina S, Žganec K & Hock K (2015) Differences in aggressive behaviour along the expanding 

range of an invasive crayfish: an important component of invasion dynamics. Biological 

Invasions, 317, 3101-3112.  

Hudina S, Žganec K, Lucić A, Trgovčic K & Maguire I (2013) Recent invasion of the karstic 

river systems in Croatia through illegal introductions of the signal crayfish. Freshwater 

Crayfish, 19, 21–27. 

Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of 

globalization. Journal of Applied Ecology, 46, 10–18.  

Hulme PE, Bacher S, Kenis M, Klotz S, Kühn I, Minchin D, Nentwig W, Olenin S, Panov V, 

Pergl J, Pyšek P, Roques A, Sol D, Solarz W & Vilá M (2008) Grasping at the routes of 

biological invasions: a framework for integrating pathways into policy. Journal of 

Applied Ecology, 45, 403–414.  

Huston MA (1979) A general hypothesis of species diversity. The American Naturalist, 113, 81–

101.  

Huston MA (2004) Management strategies for plant invasions: manipulating productivity, 

disturbance, and competition. Diversity and Distributions, 10, 167–178.  

Huuskonen H, Suhonen A, Gruber C, Vainikka A, Hirvonen H & Kortet R (2014) Metabolic rate 

in the signal crayfish (Pacifastacus leniusculus) is temporally consistent and elevated at 

molting. Marine and Freshwater Behaviour and Physiology, 47, 205–209.  

Hymanson Z, Wang J & Sasaki T (1999) Lessons from the home of the Chinese mitten crab. IEP 

Newsletter, 12, 25–31.  

Iacarella JC, Dick JTA & Ricciardi A (2015) A spatio-temporal contrast of the predatory impact 

of an invasive freshwater crustacean. Diversity and Distributions, 21, 803–812.  

Imhoff E, Mortimer R Christmas M & Dunn A (2011) Invasion progress of the signal crayfish 

(Pacifastacus leniusculus (Dana)) and displacement of the native white-clawed crayfish 

(Austropotamobius pallipes (Lereboullet)) in the River Wharfe, UK. Freshwater 

Crayfish, 18, 45–53.  

IMO (2016) Global treaty to halt invasive aquatic species to enter into force in 2017. Available 

at: www.imo.org/en/MediaCentre/PressBriefings/Pages/22-BWM-.aspx.  



178 

 

IPCC (2014) Summary for Policymakers. Climate Change 2014: Synthesis Report. Contribution 

of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental 

Panel on Climate Change. 

Ivlev VS (1961) Experimental ecology of the feeding of fishes. Yale University Press, New Haven, 

CT. 

Jackson DA, Peres-Neto PR & Olden JD (2001) What controls who is where in freshwater fish 

communities – the roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries 

and Aquatic Science, 58, 157–170.  

Jackson MC, Jones T, Milligan M, Sheath D, Taylor J, Ellis A, England J & Grey J (2014) Niche 

differentiation among invasive crayfish and their impacts on ecosystem structure and 

functioning. Freshwater Biology, 59, 1123–1135.  

James J, Slater FM, Vaughan IP, Young KA & Cable J (2015) Comparing the ecological impacts 

of native and invasive crayfish: could native species’ translocation do more harm than 

good? Oecologia, 178, 309–316.  

Jeschke JM, Kopp M & Tollrian R (2002) Predator functional responses: discriminating between 

handling and digesting prey. Ecological Monographs, 72, 95–112.  

Jeschke JM & Strayer DL (2005) Invasion success of vertebrates in Europe and North America. 

Proceedings of the National Academy of Sciences USA, 102, 7198–202.  

Johnson MF, Rice SP & Reid I (2011) Increase coarse sediment transport associated with 

disturbance of gravel river beds by signal crayfish (Pacifastacus leniusculus). Earth 

Surface Processes and Landforms, 36, 1680–1692.  

Johnstone IM (1986) Plant invasion windows: a time-based classification of invasion potential. 

Biological Reviews, 61, 369–394.  

Josens G, bij de Vaate A, Usseglio-Polatera P, Cammaerts R, Chérot F, Grisez F, Verboonen P & 

van den Bossche JP (2005) Native and exotic Amphipoda and other Peracarida in the 

River Meuse: new assemblages emerge from a fast changing fauna. Hydrobiologia, 542, 

203–220.  

Juette T, Cucherousset J & Cote J (2014) Animal personality and the ecological impacts of 

freshwater non-native species. Current Zoology, 60, 417–427.  

Juliano SA (2001) Nonlinear curve fitting: predation and functional response curves. In: Scheiner 

SM & Gurevitch J (eds.) Design and analysis of ecological experiments. Oxford 

University Press, Oxford, UK, pp 178–196.  

Karatayev AY, Burlakova LE, Padilla DK, Mastitsky SE & Olenin S (2009) Invaders are not a 

random selection of species. Biological Invasions, 11, 2009–2019.  

Keane RM & Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends 

in Ecology and Evolution, 17, 164–170.  

Kearney M & Porter W (2009) Mechanistic niche modelling: combining physiological and spatial 

data to predict species’ ranges. Ecology Letters, 12, 334–350.  

Kelleher B, Bergers PJM, van den Brink FWB, Giller PS, van der Velde G & bij de Vaate B 

(1998) Effects of exotic amphipod invasions on fish diet in the Lower Rhine. Archiv für 

Hydrobiologie, 143, 363–382. 

Keller RP, zu Ermgassen PSE & Aldridge DC (2009) Vectors and timing of freshwater invasions 

in Great Britain. Conservation Biology, 23, 1526–34.  

Kelly DW, Bailey RJ, MacNeil C, Dick JTA & McDonald RA (2006) Invasion by the amphipod 

Gammarus pulex alters community composition of native freshwater macroinvertebrates. 

Diversity and Distributions, 12, 525–534.  



179 

 

Kestrup ÅM & Ricciardi A (2009) Environmental heterogeneity limits the local dominance of an 

invasive freshwater crustacean. Biological Invasions, 11, 2095–2105.  

Killen SS, Marras S, Ryan MR, Domenici P & McKenzie DJ (2012) A relationship between 

metabolic rate and risk-taking behaviour is revealed during hypoxia in juvenile European 

sea bass. Functional Ecology, 26, 134–143.  

Killen SS, Mitchell MD, Rummer JL, Chivers DP, Ferrari MCO, Meekan MG & McCormick MI 

(2014) Aerobic scope predicts dominance during early life in a tropical damselfish. 

Functional Ecology, 28, 1367–1376.  

King AC & Reed JM (2016) Successful population establishment from small introductions 

appears to be less common than believed. PeerJ, 4, e2440.  

Kinlan BP & Hastings A (2005) Rates of population spread and geographic range expansion: 

what exotic species tell us. In: Sax DF, Stachowicz JJ & Gaines SD (eds.) Species 

invasions: insights into ecology, evolution, and biogeography. Sinauer, Massachusetts, 

pp 381-419.  

Kinzler W, Kley A, Mayer G, Waloszek D & Maier G (2009) Mutual predation between and 

cannibalism within several freshwater gammarids: Dikerogammarus villosus versus one 

native and three invasives. Aquatic Ecology, 43, 457–464.  

Kinzler W & Maier G (2003) Asymmetry in mutual predation: possible reason for the replacement 

of native gammarids by invasives. Archiv für Hydrobiologie, 157, 473–481. 

Kirk KL (1998) Enrichment can stabilize population dynamics: autotoxins and density 

dependence. Ecology, 79, 2456–2462.  

Kleiber M (1932) Body size and metabolism. Hilgardia, 6, 315–353.  

Kley A & Maier G (2003) Life history characteristics of the invasive freshwater gammarids 

Dikerogammarus villosus and Echinogammarus ischnus in the river Main and the Main-

Donau canal. Archiv für Hydrobiologie, 156, 457–470.  

van Kleunen M, Dawson W, Schlaepfer D, Jeschke JM & Fischer M (2010) Are invaders 

different? A conceptual framework of comparative approaches for assessing determinants 

of invasiveness. Ecology Letters, 13, 947–58.  

Koester M, Bayer B & Gergs R (2016) Is Dikerogammarus villosus (Crustacea, Gammaridae) a 

“killer shrimp” in the River Rhine system? Hydrobiologia, 768, 299–313.  

Köster FW & Möllmann C (2000) Trophodynamic control by clupeid predators on recruitment 

success in Baltic cod? ICES Journal of Marine Science, 57, 310–323.  

Kolar CS & Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends in 

Ecology & Evolution, 16, 199–204.  

Kolar CS & Lodge DM (2002) Ecological predictions and risk assessment for alien fishes in North 

America. Science, 298, 1233–1236.  

Kouba A, Petrusek A & Kozák P (2014) Continental-wide distribution of crayfish species in 

Europe: update and maps. Knowledge and Management of Aquatic Ecosystems, 413, 

05p1–05p31.  

Krisp H & Maier G (2005) Consumption of macroinvertebrates by invasive and native 

gammarids: a comparison. Journal of Limnology, 64, 55–59. 

Kueffer C, Pysek P & Richardson DM (2013) Integrative invasion science: model systems, multi-

site studies, focused meta-analysis and invasion syndromes. New Phytologist, 200, 615–

633.  



180 

 

Kumschick S, Bacher S, Dawson W, Heikkilä J, Sendek A, Pluess T, Robinson T & Kuehn I 

(2012) A conceptual framework for prioritization of invasive alien species for 

management according to their impact. NeoBiota, 15, 69–100.  

Kumschick S, Gaertner M, Vilá M, Essl F, Jeschke JM, Pyšek P, Ricciardi A, Bacher S, Blackburn 

TM, Dick JTA, Evans T, Hulme PE, Kuhn I, Mrugała, A, Pergl J, Rabitsch W, Richardson 

DM, Sendek A & Winter M (2014) Ecological impacts of alien species: quantification, 

scope, caveats, and recommendations. BioScience, 65, 55–63.  

Kumschick S & Richardson DM (2013) Species-based risk assessments for biological invasions: 

advances and challenges. Diversity and Distributions, 19, 1095–1105.  

Lagrue C, Podgorniak T, Lecerf A & Bollache L (2014) An invasive species may be better than 

none: invasive signal and native noble crayfish have similar community effects. 

Freshwater Biology, 59, 1982–1995.  

Laverty C, Dick JT, Alexander ME & Lucy FE (2015a) Differential ecological impacts of invader 

and native predatory freshwater amphipods under environmental change are revealed by 

comparative functional responses. Biological Invasions, 17, 1761–1770.  

Laverty C, Nentwig W, Dick JTA & Lucy FE (2015b) Alien aquatics in Europe: assessing the 

relative environmental and socio- economic impacts of invasive aquatic 

macroinvertebrates and other taxa. Management of Biological Invasions, 6, 341–350.  

Law R, Weatherby AJ & Warren PH (2000) On the invasibility of persistent protist communities. 

Oikos, 88, 319–326.  

Lawler SP & Morin PJ (1993) Food web architecture and population dynamics in laboratory 

microcosms of protists. American Naturalist, 141, 675–686.  

Lawrie AH (1970) Sea lamprey in the Great Lakes. Transactions of the American Fisheries 

Society, 99, 766–775. 

Lee CE & Gelembiuk GW (2008) Evolutionary origins of invasive populations. Evolutionary 

Applications, 1, 427–48.  

Lefebvre L, Reader SM & Sol D (2004) Brains, innovations and evolution in birds and primates. 

Brain, Behavior and Evolution, 63, 233–246.  

Lemly AD (1985) Suppression of native fish populations by green sunfish in first-order streams 

of Piedmont North Carolina. Transactions of the American Fisheries Society, 114, 705–712.  

Levine JM, Adler PB & Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant 

invasions. Ecology Letters, 7, 975–989.  

Levine JM & Rees M (2004) Effects of temporal variability on rare plant persistence in annual 

systems. American Naturalist, 164, 350–63.  

Li W & Stevens MHH (2012) Fluctuating resource availability increases invasibility in microbial 

microcosms. Oikos, 121, 435–441.  

Light T & Marchetti MP (2007) Distinguishing between invasions and habitat changes as drivers 

of diversity loss among California’s freshwater fishes. Conservation Biology, 21, 434–446.  

Liess A & Diehl S (2006) Effects of enrichment on protist abundances and bacterial composition 

in simple microbial communities. Oikos, 1, 15–26.  

Litchman E (2010) Invisible invaders: non-pathogenic invasive microbes in aquatic and terrestrial 

ecosystems. Ecology Letters, 13, 1560–72.  

Lockwood JL, Cassey P & Blackburn T (2005) The role of propagule pressure in explaining 

species invasions. Trends in Ecology & Evolution, 20, 223–8.  



181 

 

Lockwood JL, Cassey P & Blackburn TM (2009) The more you introduce the more you get: the 

role of colonization pressure and propagule pressure in invasion ecology. Diversity and 

Distributions, 15, 904–910.  

Lodge DM, Deines A, Gherardi F, Yeo DCJ, Arcella T, Baldridge AK, Barnes MA, Chadderton 

WL, Feder JL, Gantz CA, Howard GW, Jerde CL, Peters BW, Peters JA, Sargent LW, 

Turner CR, Wittmann ME, & Zeng Y (2012) Global introductions of crayfishes: 

evaluating the impact of species invasions on ecosystem services. Annual Review of 

Ecology, Evolution, and Systematics, 43, 449–472.  

Lodge DM, Kershner MW, Aloi JE & Covich AP. (1994) Effects of an omnivorous crayfish 

(Orconectes rusticus) on a freshwater littoral food web. Ecology, 75, 1265–1281.  

Lopez DP, Jungman AA & Rehage JS (2012) Nonnative African jewelfish are more fit but not 

bolder at the invasion front: a trait comparison across an Everglades range expansion. 

Biological Invasions, 14, 2159–2174.  

Lowe S, Browne M, Boudjelas S & De Poorter M (2004) 100 of the world’s worst invasive alien 

species: a selection from the Global Invasive Species Database. Published by The 

Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival 

Commission (SSC) of the World Conservation Union (IUCN), 12pp. 

Lowry E, Rollinson EJ, Laybourn AJ, Scott TE, Aiello-Lammens ME, Gray SM, Mickley J & 

Gurevitch J (2013) Biological invasions: a field synopsis, systematic review, and 

database of the literature. Ecology and Evolution, 3, 182–196.  

Luecke C, Rice JA, Crowder LB, Yeo SE & Binkswski FP (1990) Recruitment mechanisms of 

bloater in Lake Michigan: an analysis of the predatory gauntlet. Canadian Journal of 

Fisheries and Aquatic Science, 47, 524–532. 

Maazouzi C, Masson G, Izquierdo MS & Pihan J-C (2007) Fatty acid composition of the 

amphipod Dikerogammarus villosus: feeding strategies and trophic links. Comparative 

Biochemistry and Physiology - Part A: Molecular & Integrative Physiology, 147, 868–

75.  

MacArthur R & Levins R (1967) The limiting similarity, convergence, and divergence of 

coexisting species. The American Naturalist, 101, 377–385.  

MacArthur RH & Wilson EO (1967) The theory of island biogeography. Princeton University 

Press, New Jersey.  

MacDougall AS & Turkington R (2005) Are invasive species the drivers or passengers of change 

in degraded ecosystems? Ecology, 86, 42–55.  

Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M & Bazzaz FA (2000) Biotic invasions: 

causes, epidemiology, global consequences and control. Ecological Applications, 10, 

689–710.  

MacNeil C, Boets P, Lock K & Goethals PLM (2013a) Potential effects of the invasive “killer 

shrimp” (Dikerogammarus villosus) on macroinvertebrate assemblages and biomonitoring 

indices. Freshwater Biology, 58, 171–182.  

MacNeil C, Dick J, Alexander M, Dodd J & Ricciardi A (2013b) Predators vs. alien: differential 

biotic resistance to an invasive species by two resident predators. NeoBiota, 19, 1–19.  

MacNeil C, Dick JTA & Elwood RW (1997) The trophic ecology of freshwater Gammarus spp. 

(Crustacea: Amphipoda): problems and perspectives concerning the functional feeding 

group concept. Biological Reviews of the Cambridge Philosophical Society, 72, 349–364.  

MacNeil C, Dick JTA, Platvoet D & Briffa M (2011) Direct and indirect effects of species 

displacements: an invading freshwater amphipod can disrupt leaf-litter processing and 

shredder efficiency. Journal of the North American Benthological Society, 30, 38–48.  



182 

 

MacNeil C, Platvoet D, Dick JTA, Fielding N, Constable A, Hall N, Aldridge D, Renals T & 

Diamond M (2010) The Ponto-Caspian “killer shrimp”, Dikerogammarus villosus 

(Sowinsky, 1894), invades the British Isles. Aquatic Invasions, 5, 441–445.  

Madgwick G & Aldridge DC (2011) Killer shrimps in Britain: hype or horror? British Wildlife, 

22, 408–412. 

Maier G, Kley A, Schank Y, Maier M, Mayer G & Waloszek D (2011) Density and temperature 

dependent feeding rates in an established and an alien freshwater gammarid fed on 

chironomid larvae. Journal of Limnology, 70, 123–128.  

Mallon CA, van Elsas JD & Salles JF (2015) Microbial invasions: the process, patterns, and 

mechanisms. Trends in Microbiology, 23, 719–729.  

Marras S, Cucco A, Antognarelli F, Azzurro E, Milazzo M, Bariche M, Butenschon M, Kay S, 

Di Bitetto M, Quattrocchi G, Sinerchia M, Domenici P, Butenschön M, Kay S, Di Bitetto 

M, Quattrocchi G, Sinerchia M & Domenici P (2015) Predicting future thermal habitat 

suitability of competing native and invasive fish species: from metabolic scope to 

oceanographic modelling. Conservation Physiology, 3, cou059 

Mata TM, Haddad NM & Holyoak M (2013) How invader traits interact with resident 

communities and resource availability to determine invasion success. Oikos, 122, 149–

160.  

Mather JA & Logue DM (2013) The bold and the spineless: invertebrate personalities. In: Carere 

C & Maestripieri D (eds.) Animal personalities: behaviour, ecology and evolution. 

University of Chicago Press, Chicago, USA, pp 13–35.  

Mathers KL, Chadd RP, Dunbar MJ, Extence CA, Reeds J, Rice SP & Wood PJ (2016) The long-

term effects of invasive signal crayfish (Pacifastacus leniusculus) on instream 

macroinvertebrate communities. Science of the Total Environment, 556, 207–218.  

Mawle GW & Peirson G (2009) Economic evaluation of inland fisheries. Managers report from 

science project SC050026/SR2. Bristol, UK.  

Mayer G, Maier G, Maas A & Waloszek D (2009) Mouthpart morphology of Gammarus roeselii 

compared to a successful invader Dikerogammarus villosus (Amphipoda). Journal of 

Crustacean Biology, 29, 161–174. 

Mazué GPF, Dechaume-Moncharmont FX & Godin JGJ. (2015) Boldness-exploration behavioral 

syndrome: interfamily variability and repeatability of personality traits in the young of the 

convict cichlid (Amatitlania siquia). Behavioral Ecology, 26, 900–908.  

McCarthy JM, Hein CL, Olden JD & van der Zanden MJ (2006) Coupling long-term studies with 

meta-analysis to investigate impacts of non-native crayfish on zoobenthic communities. 

Freshwater Biology, 51, 224–235.  

McFeeters BJ, Xenopoulos MA, Spooner DE, Wagner ND & Frost PC (2011) Intraspecific mass-

scaling of field metabolic rates of a freshwater crayfish varies with stream land cover. 

Ecosphere, 2, Article 13.  

McGurk MD (1986) Natural mortality of marine pelagic fish eggs and larvae: role of spatial 

patchiness. Marine Ecology Progress Series, 34, 227–242.  

McKinney ML & Lockwood JL (1999) Biotic homogenization: a few winners replacing many 

losers in the next mass extinction. Trends in Ecology and Evolution, 14, 450–453.  

McKnight E, García-Berthou E, Srean P & Rius M (2016) Global meta-analysis of native and 

nonindigenous trophic traits in aquatic ecosystems. Global Change Biology, doi: 

10.1111/gcb.13524. 



183 

 

McLaughlan C & Aldridge DC (2013) Cultivation of zebra mussels (Dreissena polymorpha) 

within their invaded range to improve water quality in reservoirs. Water Research, 47, 4357–

4369.  

Médoc V, Albert H, & Spataro T (2015) Functional response comparisons among freshwater 

amphipods: ratio-dependence and higher predation for Gammarus pulex compared to the 

non-natives Dikerogammarus villosus and Echinogammarus berilloni. Biological 

Invasions, 17, 3625–3637.  

Melbourne BA, Cornell HV, Davies KF, Dugaw CJ, Elmendorf S, Freestone AL, Hall RJ, 

Harrison S, Hastings A, Holland M, Holyoak M, Lambrinos J, Moore K & Yokomizo H 

(2007) Invasion in a heterogeneous world: resistance, coexistence or hostile takeover? 

Ecology Letters, 10, 77–94.  

Metcalfe NB, van Leeuwen TE & Killen SS (2016) Does individual variation in metabolic 

phenotype predict fish behaviour and performance? Journal of Fish Biology, 88, 298–

321.  

Millennium Ecosystem Assessment (2005) Ecosystems and Human Well-Being: Biodiversity 

Synthesis. Washington D.C. 

Miller TJ, Crowder LB, Rice JA & Binkowski, FP (1992) Body size and the ontogeny of the 

functional response. Canadian Journal of Fisheries and Aquatic Science, 49, 805–812. 

Mills CA (1981) Egg population dynamics of naturally spawning dace, Leuciscus leuciscus (L.). 

Environmental Biology of Fishes, 6, 151–158. 

Mills CD, Clark PF & Morritt D (2016) Flexible prey handling, preference and a novel capture 

technique in invasive, sub-adult Chinese mitten crabs. Hydrobiologia, 773, 135–147.  

Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN, Maron JL, 

Morris WF, Parker IM, Power AG, Seabloom EW, Torchin ME & Vázquez DP (2006) 

Biotic interactions and plant invasions. Ecology Letters, 9, 726–740.  

Momot WT (1995) Redefining the role of crayfish in aquatic ecosystems. Reviews in Fisheries 

Science, 3, 33–63.  

Monceau K, Moreau J, Poidatz J, Bonnard O & Thiéry D (2014) Behavioral syndrome in a native 

and an invasive hymenoptera species. Insect Science, 541–548.  

Mooney HA & Cleland EE (2001) The evolutionary impact of invasive species. Proceedings of 

the National Academy of Sciences USA, 98, 5446-5451.  

Moore JW, Carlson SM, Twardochleb LA, Hwan JL, Fox JM & Hayes SA (2012) Trophic tangles 

through time? Opposing direct and indirect effects of an invasive omnivore on stream 

ecosystem processes. PloS ONE, 7, e50687.  

Moore PA (2005) Agonistic behavior in freshwater crayfish. In: Duffy JE & Thiel M (eds.) 

Evolutionary ecology of social and sexual systems: crustaceans as model organisms. 

Oxford University Press, Oxford, UK, pp 90–114. 

Moorhouse TP & Macdonald DW (2011) The effect of manual removal on movement distances 

in populations of signal crayfish (Pacifastacus leniusculus). Freshwater Biology, 56, 

2370–2377.  

Moorhouse TP & Macdonald DW (2015) Are invasives worse in freshwater than terrestrial 

ecosystems? WIREs Water, 2, 1–8.  

Moorhouse TP, Poole AE, Evans LC, Bradley DC & Macdonald DW (2014) Intensive removal 

of signal crayfish (Pacifastacus leniusculus) from rivers increases numbers and taxon 

richness of macroinvertebrate species. Ecology and Evolution, 4, 494–504.  

Morin P (1999) Productivity, intraguild predation, and population dynamics in experimental food 

webs. Ecology, 80, 752–760.  



184 

 

Moustahfid H, Tyrrell MC, Link JS, Nye JA, Smith BE, & Gamble RJ (2010) Functional feeding 

responses of piscivorous fishes from the northeast US continental shelf. Oecologia, 163, 

1059–67.  

Moyle PB & Light T (1996) Biological invasions of fresh water: empirical rules and assembly 

theory. Biological Conservation, 78, 149–161.  

Mueller P & Diamond J (2001) Metabolic rate and environmental productivity: well-provisioned 

animals evolved to run and idle fast. Proceedings of the National Academy of Sciences 

USA, 98, 12550–12554.  

Murdoch A & Oaten WW (1975) Predation and population stability. Advances in Ecological 

Research, 9, 1–131.  

Murdoch WW (1969) Switching in general predators: experiments on predator specificity and 

stability of prey populations. Ecological Monographs, 39, 335–354.  

Myles-Gonzalez E, Burness G, Yavno S, Rooke A & Fox MG (2015) To boldly go where no 

goby has gone before: boldness, dispersal tendency, and metabolism at the invasion front. 

Behavioral Ecology, 26, 1083–1090.  

Nakazawa M (2015) fmsb: functions for medical statistics book with some demographic data. R 

Package version 0.5.2. http://cran.r-project.org/package=fmsb. 

Nannini MA, Parkos J & Wahl DH (2012) Do behavioral syndromes affect foraging strategy and 

risk-taking in a juvenile fish predator? Transactions of the American Fisheries Society, 

141, 26–33.  

NBN (2016) National Biodiversity Network Gateway. Available at: http://data.nbn.org.uk.  

Nentwig W, Kühnel E & Bacher S (2009) A generic impact-scoring system applied to alien 

mammals in Europe. Conservation Biology, 24, 302–311.  

Nesemann H, Pockl M & Wittmann KJ (1995) Distribution of epigean Malacostraca in the middle 

and upper Danube (Hungary, Austria, Germany). Miscellanea Zoologica Hungarica, 10, 

49–68. 

Nilsson PA & Brönmark C (2000) Prey vulnerability to a gape-size limited predator: behavioural 

and morphological impacts on northern pike piscivory. Oikos, 88, 539–546.  

Norin T & Clark TD (2016) Measurement and relevance of maximum metabolic rate in fishes. 

Journal of Fish Biology, 88, 122–151.  

NRC (2002) Predicting invasions of nonindigenous plants and plant pests. National Academy 

Press, Washington D.C., USA. 

Ogutu-Ohwayo R (1990) The decline of the native fishes of lakes Victoria and Kyoga (East 

Africa) and the impact of introduced species, especially the Nile perch, Lates niloticus, 

and the Nile tilapia, Oreochromis niloticus. Environmental Biology of Fishes, 27, 81–96.  

Ojaveer H, Gollasch S, Jaanus A, Kotta J, Laine AO, Minde A, Normant M & Panov VE (2007) 

Chinese mitten crab Eriocheir sinensis in the Baltic Sea — a supply-side invader? 

Biological Invasions, 9, 409–418.  

Olden JD, Larson ER & Mims MC (2009) Home-field advantage: native signal crayfish 

(Pacifastacus leniusculus) out consume newly introduced crayfishes for invasive Chinese 

mystery snail (Bellamya chinensis). Aquatic Ecology, 43, 1073–1084.  

Olden JD, Lockwood JL & Parr CL (2011) Biological invasions and the homogenization of faunas 

and floras. In: Ladle RJ & Whittaker RJ (eds.) Conservation biogeography. John Wiley 

& Sons Ltd, pp 224–243.  

Olden JD, Poff NL, Douglas MR, Douglas ME & Fausch KD (2004) Ecological and evolutionary 

consequences of biotic homogenization. Trends in Ecology and Evolution, 19, 18–24.  



185 

 

Packard GC & Boardman TJ (1999) The use of percentages and size-specific indices to normalize 

physiological data for variation in body size: wasted time, wasted effort? Comparative 

Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 122, 37–44.  

Pagnucco KS, Maynard GA, Fera SA, Yan ND, Nalepa TF & Ricciardi A (2014) The future of 

species invasions in the Great Lakes-St. Lawrence River basin. Journal of Great Lakes 

Research, 41, 96–107.  

Paine RT (1966) Food web complexity and species diversity. The American Naturalist, 100, 65–

75.  

Paling JE (1968) Causes of mortality. In: Ricker WE (ed.) Methods for assessment of fish 

production in fresh waters: IBP Handbook No. 3. Blackwell, Oxford and Edinburgh, UK, 

pp 226–235.  

Panning A (1939) The Chinese mitten crab. Smithsonian Institution Annual Report 1938 pp 361–

375. 

Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M, Kareiva PM, Williamson MH, 

von Holle B, Moyle PB, Byers JE & Goldwasser L (1999) Impact: toward a framework 

for understanding the ecological effects of invaders. Biological Invasions, 1, 3–19.  

Parkyn SM, Rabeni CF & Collier KJ (1997) Effects of crayfish on in-stream processes and benthic 

faunas: a density manipulation experiment. New Zealand Journal of Marine and 

Freshwater Research, 31, 685–692.  

Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, 

Kullberg J, Tammaru T, Tennent WJ, Thomas JA & Warren M (1999) Poleward shifts in 

geographical ranges of butterfly species associated with regional warming. Nature, 399, 

579–583.  

Paterson RA, Dick JTA, Pritchard DW, Ennis M, Hatcher MJ & Dunn AM (2014) Predicting 

invasive species impacts: a community module functional response approach reveals 

context dependencies. Journal of Animal Ecology, 84, 453–463.  

Pearson DE, Potter T & Maron JL (2012) Biotic resistance: exclusion of native rodent consumers 

releases populations of a weak invader. Journal of Ecology, 100, 1383–1390. 

Peay S (2001) Eradication of alien crayfish populations. R&D Technical Report W1-037/TR1, 

Scott Wilson Resource Consultants.  

Peay S (2009) Selection criteria for “ark sites” for white-clawed crayfish. In: Brickland JM, 

Holdich DM & Imhoff E (eds.) Crayfish Conservation in the British Isles, Proceedings 

of conference held in Leeds, pp 63–69. 

Peay S, Guthrie N, Spees J, Nilsson E & Bradley P (2009) The impact of signal crayfish 

(Pacifastacus leniusculus) on the recruitment of salmonid fish in a headwater stream in 

Yorkshire, England. Knowledge and Management of Aquatic Ecosystems, 12, 394–408.  

Peay S, Hiley PD, Collen P & Martin I (2006) Biocide treatment of ponds in Scotland to eradicate 

signal crayfish. Bulletin Français de la Pêche et de la Pisciculture, 380, 1363–1379.  

Peay S & Rogers D (1999) The peristaltic spread of signal crayfish (Pacifastacus leniusculus) in 

the River Wharfe, Yorkshire, England. Freshwater Crayfish, 12, 665–676.  

Peeke HVS, Sippel J & Figler MH (1995) Prior residence effects in shelter defense in adult signal 

crayfish (Pacifastacus leniusculus (Dana)): results in same- and mixed-sex dyads. 

Crustaceana, 68, 873–881.  

Pejchar L & Mooney HA (2009) Invasive species, ecosystem services and human well-being. 

Trends in Ecology & Evolution, 24, 497–504.  



186 

 

Pheloung PC, Williams PA & Halloy SR (1999) A weed risk assessment model for use as a 

biosecurity tool evaluating plant introductions. Journal of Environmental Management, 

57, 239–251.  

Phillips BL, Brown GP & Shine R (2010) Life-history evolution in range-shifting populations. 

Ecology, 91, 1617–1627.  

Phillips BL & Shine R (2005) The morphology, and hence impact, of an invasive species (the 

cane toad, Bufo marinus): changes with time since colonisation. Animal Conservation, 8, 

407–413.  

Phillips BL & Suarez AV (2012) The role of behavioural variation in the invasion of new areas. 

In: Candolin U & Wong BBM (eds.) Behavioural responses to a changing world. Oxford 

University Press, Oxford, UK, pp 190–200.  

Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, Wong E, Russel L, 

Zern J, Aquino T & Tsomondo T (2001) Economic and environmental threats of alien 

plant, animal, and microbe invasions. Agriculture, Ecosystems and Environment, 84, 1–

20. 

Pinkster S (1970) Redescription of Gammarus pulex (Linnaeus, 1758) based on neotype material 

(Amphipoda). Crustaceana, 18, 177–186. 

Pintor LM & Sih A (2008) Differences in growth and foraging behavior of native and introduced 

populations of an invasive crayfish. Biological Invasions, 11, 1895–1902.  

Pintor LM, Sih A & Bauer ML (2008) Differences in aggression, activity and boldness between 

native and introduced populations of an invasive crayfish. Oikos, 117, 1629–1636.  

Pintor LM, Sih A & Kerby JL (2009) Behavioral correlations provide a mechanism for explaining 

high invader densities and increased impacts on native prey. Ecology, 90, 581–587.  

Piscart C, Mermillod-Blondin F, Maazouzi C, Merigoux S & Marmonier P (2011) Potential 

impact of invasive amphipods on leaf litter recycling in aquatic ecosystems. Biological 

Invasions, 13, 2861–2868.  

Platvoet D, van der Velde G, Dick J & Li S (2009) Flexible omnivory in Dikerogammarus villosus 

(Sowinsky, 1894) (Amphipoda) – Amphipod Pilot Species Project (AMPIS) Report 5. 

Crustaceana, 82, 703–720.  

Polis GA, Myers CA & Holt RD (1989) The ecology and evolution of intraguild predation: 

potential competitors that eat each other. Annual Review of Ecological Systematics, 20, 

297–330.  

Price JE & Welch SM (2009) Semi-quantitative methods for crayfish sampling: sex, size, and 

habitat bias. Journal of Crustacean Biology, 29, 208–216.  

Pritchard DW (2016) frair: functional response analysis in R. R Package version 0.5. http://cran.r-

project.org/package=frair.  

Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U & Vilà M (2012) A global 

assessment of invasive plant impacts on resident species, communities and ecosystems: 

the interaction of impact measures, invading species’ traits and environment. Global 

Change Biology, 18, 1725–1737.  

Quetin LB (1983) Chapter II.5: An automated, intermittent flow respirometer for monitoring 

oxygen consumption and long-term activity of pelagic crustaceans. In: Gnaiger E & 

Forstner H (eds.) Polarographic oxygen sensors: aquatic and physiological applications. 

Springer-Verlag, Berlin Heidelberg, pp 176–183.  

R Core Team (2015) R: A language and environment for statistical computing. Version 3.2.1. 

Rabitsch W, Genovesi P, Scalera R, Biała K, Josefsson M & Essl F (2016) Developing and testing 

alien species indicators for Europe. Journal for Nature Conservation, 29, 89–96.  



187 

 

Raby GD, Gutowsky LFG & Fox MG (2010) Diet composition and consumption rate in round 

goby (Neogobius melanostomus) in its expansion phase in the Trent River, Ontario. 

Environmental Biology of Fishes, 89, 143–150.  

Rall BC, Brose U, Hartvig M, Kalinkat G, Schwarzmuller F, Vucic-Pestic O & Petchey OL (2012) 

Universal temperature and body-mass scaling of feeding rates. Philosophical 

Transactions of the Royal Society B: Biological Sciences, 367, 2923–2934.  

Rasband WS (1997-2016) ImageJ. National Institutes of Health, Bethesda, Maryland, USA, 

http://imagej.nih.gov/ij/.  

Réale D, Garant D, Humphries MM, Bergeron P, Careau V & Montiglio P-O (2010) Personality 

and the emergence of the pace-of-life syndrome concept at the population level. 

Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 4051–4063. 

Réale D, Reader SM, Sol D, McDougall PT & Dingemanse NJ (2007) Integrating animal 

temperament within ecology and evolution. Biological Reviews of the Cambridge 

Philosophical Society, 82, 291–318.  

Reaser JK, Meyerson LA & von Holle B (2007) Saving camels from straws: how propagule 

pressure-based prevention policies can reduce the risk of biological invasion. Biological 

Invasions, 10, 1085–1098.  

Rehage JS & Sih A (2004) Dispersal behavior, boldness, and the link to invasiveness: a 

comparison of four Gambusia species. Biological Invasions, 6, 379–391.  

Rejmánek M & Richardson DM (1996) What attributes make some plant species more invasive? 

Ecology, 77, 1655–1661.  

Rewicz T, Grabowski M, MacNeil C & Bącela-Spychalska K (2014) The profile of a “perfect” 

invader – the case of killer shrimp, Dikerogammarus villosus. Aquatic Invasions, 9, 267–

288.  

Ricciardi A (2003) Predicting the impacts of an introduced species from its invasion history: an 

empirical approach applied to zebra mussel invasions. Freshwater Biology, 48, 972–981.  

Ricciardi A & Atkinson SK (2004) Distinctiveness magnifies the impact of biological invaders 

in aquatic ecosystems. Ecology Letters, 7, 781–784.  

Ricciardi A & Cohen J (2007) The invasiveness of an introduced species does not predict its 

impact. Biological Invasions, 9, 309–315.  

Ricciardi A, Hoopes MF, Marchetti MP & Lockwood JL (2013) Progress toward understanding 

the ecological impacts of nonnative species. Ecological Monographs, 83, 263–282.  

Ricciardi A, Jones LA, Kestrup ÅM & Ward JM (2011) Expanding the propagule pressure 

concept to understand the impact of biological invasions. In: Richardson DM (ed.) Fifty 

years of invasion ecology: the legacy of Charles Elton. Wiley-Blackwell, pp 225–235.  

Richardson DM, Pyšek P & Carlton JT (2011) A compendium of essential concepts and 

terminology in invasion ecology. In: Richardson DM (ed.) Fifty years of invasion 

ecology: the legacy of Charles Elton. Wiley-Blackwell, pp 409–420. 

Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD & West CJ (2000) 

Naturalization and invasion of alien plants: concepts and definitions. Diversity and 

Distributions, 6, 93–107. 

Rice SP, Johnson MF, Extence CA, Reeds J & Longstaff H (2014) Diel patterns of suspended 

sediment flux and the zoogeomorphic agency of invasive crayfish. Cuadernos de 

Investigación Geográfica, 40, 7–27.  

Richter BD, Braun DP, Mendelson MA & Master LL (1997) Threats to imperiled freshwater 

fauna. Conservation Biology, 11, 1081–1093.  



188 

 

Ricklefs RE & Wikelski M (2002) The physiology/life-history nexus. Trends in Ecology and 

Evolution, 17, 462–468.  

Rodgers GG, Tenzing P & Clark TD (2016) Experimental methods in aquatic respirometry: the 

importance of mixing devices and accounting for background respiration. Journal of Fish 

Biology, 88, 65–80.  

Rogers D (1972) Random search and insect population models. Journal of Animal Ecology, 41, 

369–383.  

van Riel MC, van der Velde G, Rajagopal S, Marguillier S, Dehairs F & bij de Vaate A (2006) 

Trophic relationships in the Rhine food web during invasion and after establishment of the 

Ponto-Caspian invader Dikerogammarus villosus. Hydrobiologia, 565, 39–58.  

Roman J (2006) Diluting the founder effect: cryptic invasions expand a marine invader’s range. 

Proceedings of the Royal Society B: Biological Sciences, 273, 2453–2459.  

Rosenzweig ML (2001) The four questions: what does the introduction of exotic species do to 

diversity? Evolutionary Ecology Research, 3, 361–367.  

Rosewarne PJ, Mortimer RJG & Dunn AM (2013) Size-dependent impacts of the endangered 

white-clawed crayfish (Austropotamobius pallipes) (Lereboullet) on the littoral 

community. Knowledge and Management of Aquatic Ecosystems, 49, 06p1–06p10.  

Rosewarne PJ, Mortimer RJG, Newton RJ, Grocock C, Wing CD & Dunn AM (2016) Feeding 

behaviour, predatory functional responses and trophic interactions of the invasive 

Chinese mitten crab (Eriocheir sinensis) and signal crayfish (Pacifastacus leniusculus). 

Freshwater Biology, 61, 426–443.  

Rosewarne PJ, Svendsen JC, Mortimer RJG & Dunn AM (2014) Muddied waters: suspended 

sediment impacts on gill structure and aerobic scope in an endangered native and an 

invasive freshwater crayfish. Hydrobiologia, 722, 61–74.  

Rosewarne PJ, Wilson JM & Svendsen JC (2015) Measuring maximum and standard metabolic 

rates using intermittent flow respirometry: a student laboratory investigation of aerobic 

metabolic scope and environmental hypoxia in aquatic breathers. Journal of Fish Biology, 

265–283. 

Ross ST (1991) Mechanisms structuring stream fish assemblages: are there lessons from 

introduced species? Environmental Biology of Fishes, 30, 359–368. 

Rossiter-Rachor NA, Setterfield SA, Douglas MM, Hutley LB, Cook GD & Schmidt S (2009) 

Invasive Andropogon gayanus (gamba grass) is an ecosystem transformer of nitrogen 

relations in Australian savanna. Ecological Applications, 19, 1546–1560.  

Roy HE, Handley LJL, Schönrogge K, Poland RL & Purse BV (2011) Can the enemy release 

hypothesis explain the success of invasive alien predators and parasitoids? BioControl, 56, 

451–468.  

Roy HE, Peyton J, Aldridge DC, Bantock T, Blackburn TM, Britton R, Clark P, Cook E, Dehnen-

Schmutz K, Dines T, Dobson M, Edwards F, Harrower C, Harvey MC, Minchin D, Noble 

DG, Parrott D, Pocock MJO, Preston CD, Roy S, Salisbury A, Schönrogge K, Sewell J, 

Shaw RH, Stebbing P, Stewart AJA & Walker KJ (2014) Horizon scanning for invasive 

alien species with the potential to threaten biodiversity in Great Britain. Global Change 

Biology, 20, 3859-3871. 

Rudnick D, Halat K & Resh V (2000) Distribution, ecology and potential impacts of the Chinese 

mitten crab (Eriocheir sinensis) in San Francisco Bay. Technical Completion Reports, 

University of California Water Resources Center, UC Berkeley.  

Rudnick D & Resh V (2005) Stable isotopes, mesocosms and gut content analysis demonstrate 

trophic differences in two invasive decapod Crustacea. Freshwater Biology, 50, 1323–

1336.  



189 

 

Rudnick DA, Hieb K, Grimmer KF & Resh VH (2003) Patterns and processes of biological 

invasion: the Chinese mitten crab in San Francisco Bay. Basic and Applied Ecology, 262, 

249–262.  

Rutledge PS & Pritchard AW (1981) Scope for activity in the crayfish Pacifastacus leniusculus. 

The American Journal of Physiology, 240, R87–R92.  

Ruzycki JR, Beauchamp DA & Yule DL (2003) Effects of introduced lake trout on native 

cutthroat trout in Yellowstone Lake. Ecological Applications, 13, 23–37. 

Sagata K & Lester PJ (2009) Behavioural plasticity associated with propagule size, resources, and 

the invasion success of the Argentine ant Linepithema humile. Journal of Applied 

Ecology, 46, 19–27.  

Sakai AK, Allendorf FW, Holt JS, Lodge M, Molofsky J, With KA, Cabin RJ, Cohen JE, Norman 

C, McCauley DE, Neil PO, Parker M, Thompson JN & Weller SG (2001) The population 

biology of invasive species. Annual Review of Ecological Systematics, 35, 305–332.  

Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke 

LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HM, Oesterheld M, LeRoy 

Poff N, Sykes MT, Walker BH, Walker M & Wall DH (2000) Global biodiversity 

scenarios for the year 2100. Science, 287, 1770–1774.  

Salo P, Korpimäki E, Banks PB, Nordström M & Dickman CR (2007) Alien predators are more 

dangerous than native predators to prey populations. Proceedings of the Royal Society B: 

Biological Sciences, 274, 1237–43.  

Savolainen R, Ruohonen K & Railo E (2004) Effect of stocking density on growth, survival and 

cheliped injuries of stage 2 juvenile signal crayfish Pacifastacus leniusculus Dana. 

Aquaculture, 231, 237–248.  

Sax DF & Gaines SD (2008) Species invasions and extinction: the future of native biodiversity 

on islands. Proceedings of the National Academy of Sciences USA, 105, 11490–11497.  

Sax DF, Stachowicz JJ, Brown JH, Bruno JF, Dawson MN, Gaines SD, Grosberg RK, Hastings 

A, Holt RD, Mayfield MM, O’Connor MI & Rice WR (2007) Ecological and 

evolutionary insights from species invasions. Trends in Ecology & Evolution, 22, 465–

71.  

Scalera R, Genovesi P, Essl F & Rabitsch W (2012) The impacts of invasive alien species in 

Europe. European Environment Agency Technical Report.  

SCBD (1992) Convention on Biological Diversity. Secretariat of the Convention on Biological 

Diversity. Available at: www.cbd.int. 

Schlaepfer MA, Sherman PW, Blossey B & Runge MC (2005) Introduced species as evolutionary 

traps. Ecology Letters, 8, 241–246.  

Schradin C & Lamprecht J (2002) Causes of female emigration in the group-living cichlid fish 

Neolamprologus multifasciatus. Ethology, 108, 237–248.  

Sebert-Cuvillier E, Paccaut F, Chabrerie O, Endels P, Goubet O & Decocq G (2007) Local 

population dynamics of an invasive tree species with a complex life-history cycle: a 

stochastic matrix model. Ecological Modelling, 201, 127–143.  

Seddon PJ (2010) From reintroduction to assisted colonization: moving along the conservation 

translocation spectrum. Restoration Ecology, 18, 796–802.  

Shea K & Chesson P (2002) Community ecology theory as a framework for biological invasions. 

Trends in Ecology & Evolution, 17, 170–176.  

Sher AA & Hyatt LA (1999) The disturbed resource-flux invasion matrix: a new framework for 

patterns of plant invasion. Biological Invasions, 1, 107–114.  



190 

 

Short KH & Petren K (2008) Boldness underlies foraging success of invasive Lepidodactylus 

lugubris geckos in the human landscape. Animal Behaviour, 76, 429–437.  

Sih A, Bell A & Johnson JC (2004) Behavioral syndromes: an ecological and evolutionary 

overview. Trends in Ecology & Evolution, 19, 372–378.  

Sih A, Cote J, Evans M, Fogarty S & Pruitt J (2012) Ecological implications of behavioural 

syndromes. Ecology Letters, 15, 278–89.  

Simberloff D (2009) The role of propagule pressure in biological invasions. Annual Review of 

Ecology, Evolution, and Systematics, 40, 81–102.  

Simberloff D (2011) How common are invasion-induced ecosystem impacts? Biological 

Invasions, 13, 1255–1268.  

Simberloff D & von Holle B (1999) Positive interactions of nonindigenous species: invasional 

meltdown? Biological Invasions, 1, 21–32.  

Simberloff D, Martin J-L, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, 

García-Berthou E, Pascal M, Pyšek P, Sousa R, Tabacchi E & Vilà M. (2013) Impacts of 

biological invasions: what’s what and the way forward. Trends in Ecology & Evolution, 28, 

58–66. 

Simberloff D, Parker IM & Windle PN (2005) Introduced species policy, management, and future 

research needs. Frontiers in Ecology and the Environment, 3, 12–20.  

Simberloff D, Souza L, Nunez MA, Barrios-Garcia MN & Bunn W (2012) The natives are 

restless, but not often and mostly when disturbed. Ecology, 93, 598–607.  

Sinclair JS & Arnott SE (2016) Strength in size not numbers: propagule size more important than 

number in sexually reproducing populations. Biological Invasions, 18, 497–505.  

Skarpaas O & Økland B (2009) Timber import and the risk of forest pest introductions. Journal 

of Applied Ecology, 46, 55–63.  

Sol D, Timmermans S & Lefebvre L (2002) Behavioural flexibility and invasion success in birds. 

Animal Behaviour, 63, 495–502.  

Solomon ME (1949) The natural control of animal populations. Journal of Animal Ecology, 18, 

1–35. 

Soluk DA (1993) Multiple predator effects: predicting combined functional response of stream 

fish and invertebrate predators. Ecology, 74, 219–225. 

Songe MM, Willems A, Sarowar MN, Rajan K, Evensen Ø, Drynan K, Skaar I & van West P 

(2016) A thicker chorion gives ova of Atlantic salmon (Salmo salar L.) the upper hand 

against Saprolegnia infections. Journal of Fish Diseases, 39, 879–888. 

Souty-Grosset C, Holdich DM, Noel PY, Reynolds JD & Haffner P (eds.) (2006) Atlas of crayfish 

in Europe. Muséum national d’Histoire naturelle, Paris (Patrimoines naturels 64).  

Speek T, Lotz LP, Ozinga W, Tamis WLM, Schaminée JHJ & van der Putten WH (2011) Factors 

relating to regional and local success of exotic plant species in their new range. Diversity 

and Distributions, 17, 542–551.  

Stamps J & Groothuis TGG (2010) The development of animal personality: relevance, concepts 

and perspectives. Biological Reviews of the Cambridge Philosophical Society, 85, 301–

25.  

Stebbing P, Irving S, Stentiford G & Mitchard N (2012a) A review of potential methods to control 

and eradicate the invasive gammarid, Dikerogammarus villosus from UK waters. Cefas 

Contract Report C5525.  



191 

 

Stebbing P, Longshaw M, Taylor N, Norman R, Lintott R, Pearce F & Scott A (2012b) Review of 

methods for the control of invasive crayfish in Great Britain. Cefas Contract Report 

C5471 

Stebbing P, Sebire M & Lyons B (2011) Evaluation of a number of treatments to be used as 

biosecurity measures in controlling the spread of the invasive killer shrimp 

(Dikerogammarus villosus). Final report for DEFRA: protected species and non-native 

species policy group.  

Stenroth P& Nyström P (2003) Exotic crayfish in a brown water stream: effects on juvenile trout, 

invertebrates and algae. Freshwater Biology, 48, 466–475.  

Stephens PA, Sutherland WJ & Freckleton RP (1999) What is the Allee effect? Oikos, 87, 185–

190.  

Stiver KA, Desjardins JK, Fitzpatrick JL, Neff B, Quinn JS & Balshine S (2007) Evidence for 

size and sex-specific dispersal in a cooperatively breeding cichlid fish. Molecular 

Ecology, 16, 2974–2984.  

Stoffels RJ, Richardson AJ, Vogel MT, Coates SP & Müller WJ (2016) What do metabolic rates 

tell us about thermal niches? Mechanisms driving crayfish distributions along an 

altitudinal gradient. Oecologia, 180, 45–54.  

Strain GF, Turk PJ & Anderson JT (2014) Functional equivalency of created and natural wetlands: 

diet composition of red-spotted newts (Notophthalmus viridescens viridescens). Wetlands 

Ecology and Management, 22, 659–669.  

Strayer D & Dudgeon D (2010) Freshwater biodiversity conservation: recent progress and future 

challenges. Journal of the North American Benthological Society, 29, 344–358.  

Strayer DL (2010) Alien species in fresh waters: ecological effects, interactions with other 

stressors, and prospects for the future. Freshwater Biology, 55, 152–174.  

Strayer DL, Caraco NF, Cole JJ, Findlay S & Pace ML (1999) Transformation of freshwater 

ecosystems by bivalves: a case study of zebra mussels in the Hudson River. Bioscience, 

49, 19–27.  

Streams FA (1994) Effect of prey size on attack components of the functional response by 

Notonecta undulata. Oecologia, 98, 57–63.  

Styrishave B, Bojsen BH, Witthøfft H & Andersen O (2007) Diurnal variations in physiology and 

behaviour of the noble crayfish Astacus astacus and the signal crayfish Pacifastacus 

leniusculus. Marine and Freshwater Behaviour and Physiology, 40, 63–77.  

Suarez AV, Holway DA & Ward PS (2005) The role of opportunity in the unintentional 

introduction of nonnative ants. Proceedings of the National Academy of Sciences USA, 

102, 17032–17035.  

Suarez AV, Tsutsui ND, Holway DA, & Case TJ (1999) Behavioral and genetic differentiation 

between native and introduced populations of the Argentine ant. Biological Invasions, 1, 

43–53.  

Sutcliffe DW, Carrick TR & Willoughby LG (1981) Effects of diet, body size, age and 

temperature on growth rates in the amphipod Gammarus pulex. Freshwater Biology, 11, 

183–214. 

Sutherland W (1998) The importance of behavioural studies in conservation biology. Animal 

Behaviour, 56, 801–809.  

Sutherland WJ (1996) From individual behaviour to population ecology. Oxford University 

Press, Oxford, UK. 

Sutherland WJ, Pullin AS, Dolman PM & Knight TM (2004) The need for evidence-based 

conservation. Trends in Ecology & Evolution, 19, 305–308.  



192 

 

Svendsen MBS, Bushnell PG & Steffensen JF (2016) Design and setup of an intermittent-flow 

respirometry system for aquatic organisms. Journal of Fish Biology, 88, 26-50.  

Taylor CA (2002) Taxonomy and conservation of native crayfish stocks. In: Holdich DM (ed.) 

Biology of freshwater crayfish. Blackwell, Oxford, UK, pp 236–257.  

Taylor CA, Schuster GA, Cooper JE, DiStefano RJ, Eversole AG, Hamr P, Hobbs III HH, 

Robison HW, Skelton CE & Thomas RF (2007) A reassessment of the conservation status 

of crayfishes of the United States and Canada after 10+ years of increased awareness. 

Fisheries, 32, 372–389.  

Taylor CM & Hastings A (2005) Allee effects in biological invasions. Ecology Letters, 8, 895–

908.  

Taylor NG & Dunn AM (2016) Size matters: predation of fish eggs and larvae by native and 

invasive amphipods. Biological Invasions, doi: 10.1007/s10530-016-1265-4 

Teletchea F & Fontaine P (2010) Comparison of early life-stage strategies in temperate freshwater 

fish species: trade-offs are directed towards first feeding of larvae in spring and early 

summer. Journal of Fish Biology, 77, 257–278.  

Thomsen MS, Wernberg T, Olden JD, Byers JE, Bruno JF, Silliman BR & Schiel DR (2014) 

Forty years of experiments on aquatic invasive species: are study biases limiting our 

understanding of impacts? NeoBiota, 22, 1–22.  

Thorp JH (1986) Two distinct roles for predators in freshwater assemblages. Oikos, 47, 75–82. 

Thurman J, Parry JD, Hill PJ & Laybourn-Parry J (2010) The filter-feeding ciliates Colpidium 

striatum and Tetrahymena pyriformis display selective feeding behaviours in the presence 

of mixed, equally-sized, bacterial prey. Protist, 161, 577–588.  

Tilman D (1982) Resource competition and community structure. Monographs in Population 

Biology, 17. 

Tinbergen N (1963) On aims and methods of Ethology. Zeitschrift für Tierpsychologie, 20, 410–

433.  

Torchin ME, Lafferty KD, Dobson AP, McKenzie VJ & Kuris AM (2003) Introduced species and 

their missing parasites. Nature, 421, 628–630.  

Toscano BJ & Griffen BD (2014) Trait-mediated functional responses: predator behavioural type 

mediates prey consumption. Journal of Animal Ecology, 83, 1469–1477.  

Tourmente M & Roldan ERS (2015) Mass-specific metabolic rate influences sperm performance 

through energy production in mammals. PLoS ONE, 10, e0138185. 

Tracy CR, Christian KA, Baldwin J & Phillips BL (2012) Cane toads lack physiological 

enhancements for dispersal at the invasive front in Northern Australia. Biology Open, 1, 

37–42.  

Trexler JC, McCulloch CE & Travis J (1988) How can the functional response best be 

determined? Oecologia, 76, 206–214.  

Tricarico E, Aquiloni L (2016) How behaviour has helped invasive crayfish to conquer freshwater 

ecosystems. In: Weis JS & Sol D (eds.) Biological invasions and animal behaviour. 

Cambridge University Press, Cambridge, UK, pp 291 – 308. 

Truhlar AM & Aldridge DC (2014) Differences in behavioural traits between two potentially 

invasive amphipods, Dikerogammarus villosus and Gammarus pulex. Biological 

Invasions, 17, 1569–1579.  

Truhlar AM, Dodd JA & Aldridge DC (2014) Differential leaf-litter processing by native 

(Gammarus pulex) and invasive (Dikerogammarus villosus) freshwater crustaceans under 



193 

 

environmental extremes. Aquatic Conservation: Marine and Freshwater Ecosystems, 24, 

56–65.  

Twardochleb LA, Olden JD, & Larson ER (2013) A global meta-analysis of the ecological 

impacts of nonnative crayfish. Freshwater Science, 32, 1367–1382.  

Twardochleb LA, Novak M & Moore JW (2012) Using the functional response of a consumer to 

predict biotic resistance to invasive prey. Ecological Applications, 22, 1162–71.  

Underwood AJ, Chapman MG & Crowe TP (2004) Identifying and understanding ecological 

preferences for habitat or prey. Journal of Experimental Marine Biology and Ecology, 

300, 161–187.  

Valéry L, Fritz H, Lefeuvre JC & Simberloff D (2008) In search of a real definition of the 

biological invasion phenomenon itself. Biological Invasions, 10, 1345–1351.  

Valéry L, Fritz H, Lefeuvre JC, & Simberloff D (2009) Invasive species can also be native... 

Trends in Ecology & Evolution, 24, 585.  

van der Velde G, Leuven RSEW, Platvoet D, Bacela K, Huijbregts MAJ, Hendriks HWM & 

Kruijt D (2009) Environmental and morphological factors influencing predatory behaviour 

by invasive non-indigenous gammaridean species. Biological Invasions, 11, 2043–2054.  

Veldhuizen TC & Stanish S (1999) Overview of the life history, distribution, abundance and 

impacts of the Chinese mitten crab, Eriocheir sinensis. Report: California Department of 

Water Resources. 

Vitousek PM (1990) Biological invasions and ecosystem processes: towards an integration of 

population biology and ecosystem studies. Oikos, 57, 7–13.  

Vitousek PM, D’Antonio CM, Loope LL, Rejmánek M & Westbrooks R (1997) Introduced 

species: a significant component of human-caused global change. New Zealand Journal 

of Ecology, 21, 1–16.  

Vitousek PM, D’Antonio CM, Loope LL & Westbrooks R (1996) Biological invasions as global 

environmental change. American Scientist, 84, 468–478.  

Vucic-Pestic O, Rall BC, Kalinkat G & Brose U (2010) Allometric functional response model: 

body masses constrain interaction strengths. Journal of Animal Ecology, 79, 249–256.  

Walsh RN & Cummins RA (1976) The open-field test: a critical review. Psychological Bulletin, 

83, 482–504.  

Ward AJW, Thomas P, Hart PJB & Krause J (2004) Correlates of boldness in three-spined 

sticklebacks (Gasterosteus aculeatus). Behavioral Ecology and Sociobiology, 55, 561–

568.  

Warren AH, Saltzman L, Buckholt MA & Mathews LM (2009) Agonistic interactions differ by 

sex and season in the crayfish Orconectes quinebaugensis. Journal of Crustacean 

Biology, 29, 484–490.  

Warren PH, Law R & Weatherby AJ (2003) Mapping the assembly of protist communities in 

microcosms. Ecology, 84, 1001–1011.  

Warren PH, Law R & Weatherby AJ (2006) Invasion biology as a community process: messages 

from microbial microcosms. In: Cadotte MW, McMahon SM & Fukami, T (eds.) 

Conceptual ecology and invasion biology: reciprocal approaches to nature. Springer 

Netherlands, Dordecht, pp 343–367.  

Webster JM, Clark PF & Morritt D (2015) Laboratory based feeding behaviour of the Chinese 

mitten crab, Eriocheir sinensis (Crustacea: Decapoda: Brachyura: Varunidae): fish egg 

consumption. Aquatic Invasions, 10, 313–326.  



194 

 

Weiher E & Keddy PA (1995) Assembly rules, null models, and trait dispersion: new questions 

from old patterns. Oikos, 74, 159–164.  

Weis JS (2010) The role of behavior in the success of invasive crustaceans. Marine and 

Freshwater Behaviour and Physiology, 43, 83–98.  

Weis JS & Sol D (eds.) (2016) Biological invasions and animal behaviour. Cambridge University 

Press, Cambridge, UK. 

Wellborn G, Skelly DK & Werner EE (1996) Mechanisms creating community structure across 

a freshwater habitat gradient. Annual Review of Ecological Systematics, 27, 337–363.  

White EM, Wilson JC & Clarke AR (2006) Biotic indirect effects: a neglected concept in invasion 

biology. Diversity and Distributions, 12, 443–455.  

Williams F, Eschen R, Harris A, Djeddour D, Pratt C, Shaw RS, Varia S, Thomas SE & Murphy 

ST (2010) The economic cost of invasive non-native species on Great Britain. CABI 

Report Project VM10066.  

Williamson M (1996) Biological Invasions. Chapman & Hall.  

Williamson M & Fitter A (1996) The varying success of invaders. Ecology, 77, 1661–1666.  

Winemiller KO & Rose KA (1992) Patterns of life-history diversification in North American 

fishes: implications for population regulation. Canadian Journal of Fisheries and Aquatic 

Science, 49, 2196–2218.  

Winsome T, Epstein L, Hendrix PF & Horwath WR (2006) Competitive interactions between 

native and exotic earthworm species as influenced by habitat quality in a California 

grassland. Applied Soil Ecology, 32, 38–53.  

Wittmann MJ, Metzler D, Gabriel W & Jeschke JM (2014) Decomposing propagule pressure: the 

effects of propagule size and propagule frequency on invasion success. Oikos, 123, 441–

450.  

Wolf M & Weissing FJ (2012) Animal personalities: consequences for ecology and evolution. 

Trends in Ecology & Evolution, 27, 452–461.  

Wood KA, Hayes RB, England J & Grey J (2016) Invasive crayfish impacts on native fish diet 

and growth vary with fish life stage. Aquatic Sciences, doi: 10.1007/s00027-016-0483-

2. 

Woodward G, Ebenman B, Emmerson M, Montoya JM, Olesen JM, Valido A & Warren PH 

(2005) Body size in ecological networks. Trends in Ecology & Evolution, 20, 402–409.  

WWF (2014) Living Planet Report 2014.  

Xu M, Mu X, Dick JTA, Fang M, Gu D, Luo D, Zhang J, Luo J & Hu Y (2016) Comparative 

functional responses predict the invasiveness and ecological impacts of alien herbivorous 

snails. PloS ONE, 11, e0147017.  

Yu HX & Chao J (2005) Effects of stocking Chinese mitten crab on the zoobenthos and aquatic 

vascular plant in the East Lake Reservoir, Heilongjiang, China. Acta Hydrobiologica 

Sinica, 29, 430–434.  

Zayed A, Constantin SA & Packer L (2007) Successful biological invasion despite a severe 

genetic load. PLoS ONE, 2, e868.  

Zotin AI (1958) The mechanism of hardening of the salmonid egg membrane after fertilization 

or spontaneous activation. Journal of Embyology and Experimental Morphology, 6, 546–

568. 

zu Ermgassen PSE & Aldridge DC (2010) Predation by the invasive American signal crayfish, 

Pacifastacus leniusculus Dana, on the invasive zebra mussel, Dreissena polymorpha Pallas: 

the potential for control and facilitation. Hydrobiologia, 658, 303–315.  



195 

 

Appendices to Chapter 2 
 

Appendix 2.1 Functional responses for decapods matched by body size: 

measurements and analyses using prey killed as response variable 

cf. analyses in main text using prey consumed as response variable 
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Table A2.4 Comparison of functional response parameter estimates for decapod predation (killing) of 

macroinvertebrate prey, based on analysis using indicator variables in the frair package (Pritchard 2016). 

Raw p values are presented; significant differences (α = 0.05) after Holm-Bonferroni correction within 

each prey group are indicated in bold. a – attack coefficient; h – handling time (days.prey item−1); D – 

difference; SE – standard error.  
 

Prey Base Group Comparison  
Estimate  

(Da or Dh)  
SE z p 

Amphipod A. pallipes P. leniusculus a 1.143 0.206 5.550 < 0.001 

   h < 0.001 0.003 −0.098 0.922 

 P. leniusculus E. sinensis a 0.609 0.240 2.540 0.011 

   h −0.027 0.002 −15.513 < 0.001 

 A. pallipes E. sinensis a 1.751 0.169 10.379 < 0.001 

   h −0.027 0.002 −10.995  < 0.001 

        

Chironomid A. pallipes P. leniusculus a 1.918 0.037 52.458 < 0.001 

   h < 0.001 < 0.001 −6.334 < 0.001 

 P. leniusculus E. sinensis a 1.079 0.039 27.533 < 0.001 

   h −0.001 < 0.001 −39.868 < 0.001 

 A. pallipes E. sinensis a 2.994 0.035 84.573 < 0.001 

   h −0.002 < 0.001 −28.831 < 0.001 

        

Gastropod A. pallipes P. leniusculus a 0.190 0.070 2.730 0.006 

   h 0.011 0.008 −1.428 0.153 

 P. leniusculus E. sinensis a 1.490 0.225 6.614 < 0.001 

   h < 0.001 0.005 0.027 0.979 

 A. pallipes E. sinensis a 1.679 0.222 7.561 < 0.001 

   h −0.011 0.007 −1.542 0.123 

Table A2.3 Estimates of functional response parameters for decapod predators on three macroinvertebrate 

prey species, with prey killed as the response variable, extracted from Rogers’ random predator equation 

fitted to data in the frair package (Pritchard 2016).  a – attack coefficient; h – handling time (days.prey 

item−1); 1/hT – maximum feeding rate (prey.day−1), where T = time in days; SE – standard error. Diff – 

within each prey item and for each parameter, different letters in this column indicate significantly 

different parameters (after Holm-Bonferroni correction for multiple comparisons). 
 

Prey Decapod a SE Diff h SE 1/hT  Diff 

Amphipod A. pallipes 0.735 0.082 a 0.040 0.002 25.0 a 

 P. leniusculus 1.878 0.189 b 0.040 0.002 25.2 a 

 E. sinensis 2.487 0.148 c 0.013 < 0.001 77.1 b 

         

Chironomid A. pallipes 2.457 0.088 A 3.281 x 10−3 6.285 x 10−5 304.8 A 

 P. leniusculus 4.373 0.130 B 2.879 x 10−3 3.600 x 10−5 347.3 B 

 E. sinensis 5.450 < 0.001 C 1.542 x 10−3 1.282 x 10−5 648.3 C 

         

Gastropod A. pallipes 0.292 0.042 α 0.054 0.007 18.5 α 

 P. leniusculus 0.482 0.059 β 0.042 0.004 23.5 α  

 E. sinensis 1.972 0.218 γ 0.043 0.002 23.5 α 
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Appendix 2.2 Functional responses for decapods matched by body mass: 

measurements and analyses using prey consumed as response variable 

cf. analyses in main text where decapod predators are matched by body size (a combination of 

mass and maximum carapace dimension). Data sets were rarefied to ensure matching by body 

mass, removing one replicate for each species at each density. Thus, these analyses are based on 

five replicates per predator species x prey species x density combination (compared to six 

replicates in the main text).  
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Table A2.8 Comparison of functional response parameter estimates for decapod consumption of 

macroinvertebrate prey, based on analysis using indicator variables in the frair package (Pritchard 2016). 

Raw p values are presented; significant differences (α = 0.05) after Holm-Bonferroni correction within 

each prey group are indicated in bold. a – attack coefficient; h – handling time (days.prey item−1); D – 

difference; SE – standard error.  
 

Prey Base Group Comparison  
Estimate  

(Da or Dh)  
SE z p 

Amphipod A. pallipes P. leniusculus a 1.025 0.210 4.876 < 0.001 

   h −0.002 0.003 −0.698 0.485 

 P. leniusculus E. sinensis a 0.450 0.241 1.872 0.061 

   h −0.027 0.002 −13.863 < 0.001 

 A. pallipes E. sinensis a 1.475 0.173 8.459 < 0.001 

   h −0.029 0.003 −10.141  < 0.001 

        

Chironomid A. pallipes P. leniusculus a 2.128 0.040 53.011 < 0.001 

   h < 0.001 < 0.001 −7.041 < 0.001 

 P. leniusculus E. sinensis a 0.441 0.038 11.665 < 0.001 

   h −0.001 < 0.001 −36.727 < 0.001 

 A. pallipes E. sinensis a 3.009 0.038 78.566 < 0.001 

   h −0.002 < 0.001 −25.186 < 0.001 

        

Gastropod A. pallipes P. leniusculus a 0.201 0.074 2.712 0.007 

   h 0.009 0.008 −1.041 0.298 

 P. leniusculus E. sinensis a 0.872 0.184 4.763 < 0.001 

   h  0.004 0.006 0.684 0.494 

 A. pallipes E. sinensis a 1.074 0.179 5.989 < 0.001 

   h −0.005 0.008 −0.619 0.536 

Table A2.7 Estimates of functional response parameters for decapod predators on three macroinvertebrate 

prey species, with prey consumed as the response variable, extracted from Rogers’ random predator 

equation fitted to data in the frair package (Pritchard 2016).  a – attack coefficient; h – handling time 

(days.prey item−1); 1/hT – maximum feeding rate (prey.day−1), where T = time in days; SE – standard 

error. Diff – within each prey item and for each parameter, different letters in this column indicate 

significantly different parameters (after Holm-Bonferroni correction for multiple comparisons). 
 

Prey Decapod a SE Diff h SE 1/hT  Diff 

Amphipod A. pallipes 0.725 0.090 a 0.042 0.003 23.7 a 

 P. leniusculus 1.749 0.190 b 0.040 0.002 25.1 a 

 E. sinensis 2.200 0.147 b 0.013 < 0.001 75.9 b 

         

Chironomid A. pallipes 2.409 0.095 A 3.211 x 10−3 6.898 x 10−5 311.4 A 

 P. leniusculus 4.538 0.147 B 2.725 x 10−3 3.675 x 10−5 367.0 B 

 E. sinensis 5.418 < 0.001 C 1.547 x 10−3 1.413 x 10−5 646.6 C 

         

Gastropod A. pallipes 0.298 0.043 α 0.057 0.007 17.6 α 

 P. leniusculus 0.499 0.060 β 0.048 0.004 20.9 α  

 E. sinensis 1.372 0.174 γ 0.052 0.003 19.3 α 
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Appendix 2.3 Switching analyses for decapods matched by body size:  

prey killed as response variable  

cf. analyses in main text using prey consumed as response variable 

 

 
 
Figure A2.1 Proportion of D. villosus killed by decapod predators at varying relative densities of D. villosus 

to B. tentaculata. At all relative densities, total prey density was fixed at 280.tank−1. Note that y axes begin 

at 0.6. Points are population proportions with 95% binomial confidence intervals. Curves are expected 

proportions in the absence of preference, based on killing when prey types are equally available. Asterisk 

indicates significant deviation from null hypothesis (binomial tests): χ2 = 6.69, df = 1, p = 0.010. 

 

 

 

 
Appendix 2.4 Switching analyses for decapods matched by body mass:  

prey consumed as response variable 

cf. analyses in main text where decapod predators are matched by body size (a combination of 

mass and maximum carapace dimension). Mean ± SE masses A. pallipes 10.6 ± 0.6 g, P. 

leniusculus 10.6 ± 0.6 g, E. sinensis 11.4 ± 0.4 g. ANOVA for difference in body mass of decapod 

species F2,82 = 0.72, p = 0.492. n = 5 for A. pallipes and n = 6 for P. leniusculus and E. sinensis. 

 

 

 

 

 

 

 

 

 

 

 

Figure A2.2 Proportion of D. villosus in the diet of decapod predators at varying relative densities of D. 

villosus to B. tentaculata. Symbols as for Fig. A2.1. Note that y axes begin at 0.6. Asterisk indicates 

significant deviation from null hypothesis (binomial tests): χ2 = 6.92, df = 1, p = 0.009. 
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Appendices to Chapter 3 
 

Appendix 3.1 Amphipod sizes 

Masses and lengths of amphipods used in each experiment (combination of experimental design, 

fish species and developmental stage in Table A3.1) were compared using ANOVAs. Length and 

mass were log-transformed where necessary to conform to model assumptions. Pairwise post-hoc 

comparisons were made using Tukey HSD tests. 

 

ANOVAs for both length and mass were significant (ANOVA p < 0.001) for all experiments. 

Post-hoc tests confirmed that across all experiments, large D. villosus were significantly heavier 

and longer than both G. pulex and intermediate D. villosus (Tukey HSDs p < 0.001 for all tests). 

G. pulex and intermediate D. villosus did not differ in mass or length in any experiment (Tukey 

HSDs p > 0.428 in all tests except for comparison of length in carp larvae functional response 

experiment p = 0.081).  

 

 

 

I also compared a combined index of body size, derived from principal components analysis on 

log length and log mass, amongst amphipod groups in each experiment. The first principal 

component described between 96.7 and 98.6% of the variance in body size. Results based on this 

Table A3.1 Size (wet mass in mg and length in mm) of amphipods used in each experiment. Amphipods 

were blotted dry before measurement of mass; lengths are from rostrum tip to telson tip for amphipods in 

natural, curved resting state. In all experiments, large D. villosus is significantly larger than both large G. 

pulex and intermediate D. villosus, which in turn do not differ significantly in size. 
 

Experimental Design Prey sp. Stage Mean ± SE Large  

G. pulex 

Intermediate  

D. villosus 

Large  

D. villosus 

Functional Response Carp Eggs Mass 52.3 ± 1.0 54.0 ± 1.2 105.0 ± 1.7 

   Length 17.2 ± 0.1 17.5 ± 0.2 22.1 ± 0.1 

  Larvae Mass 51.7 ± 1.0 53.9 ± 1.3 106.7 ± 2.0 

   Length  17.1 ± 0.1 17.6 ± 0.2 22.3 ± 0.2 

 Trout Eggs Mass 41.4 ± 1.0 42.7 ± 1.2 109.5 ± 2.8 

   Length  17.2 ± 0.1 17.5 ± 0.2 22.1 ± 0.1 

  Larvae Mass 41.4 ± 0.8 43.2 ± 1.2 106.1 ± 3.0 

   Length  15.9 ± 0.1 15.9 ± 0.2 21.6 ± 0.3 

Electivity Carp Eggs Mass 49.0 ± 2.3 53.3 ± 3.4 102.1 ± 4.1 

   Length  16.9 ± 0.3 17.3 ± 0.4 21.9 ± 0.3 

  Larvae Mass 49.4 ± 1.9 50.9 ± 3.5 110.8 ± 4.3 

   Length  16.7 ± 0.3 16.2 ± 0.6 23.1 ± 0.4 
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first principal component confirmed the previous analysis on length and mass separately: large 

D. villosus were bigger than the other amphipod groups in all experiments (Tukey HSDs p < 

0.001), whilst G. pulex and intermediate D. villosus did not differ in body size (Tukey HSDs p > 

0.518 in all tests except for comparison of body size in carp egg experiment p = 0.152). 

 

G. pulex and intermediate D. villosus were slightly larger in the carp experiments than the trout 

experiments, presumably due to seasonal differences in size structure of source amphipod 

populations (ANOVAs for amphipods used in egg experiments: G. pulex mass F1,104 = 59.07, p < 

0.001 and length F1,104 = 30.05, p < 0.001; intermediate D. villosus mass F1,106 = 42.22, p < 0.001 

and length F1,106 = 19.20, p < 0.001). Large D. villosus did not differ in size between seasons 

(ANOVAs for amphipods used in egg experiments: mass F1,120 = 2.05, p = 0.155 and length F1,120 

= 1.55, p = 0.216) but this could reflect deliberate selection of similar-sized individuals rather 

than the actual maximum sizes within the population. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Appendix 3.2 Functional response analyses on larvae killed  

In functional response experiments, some partial consumption of carp larvae was observed. When 

considering impacts of predators on prey populations, it is the number of prey killed (rather than 

consumed) which is important. If partial consumption is common relative to complete 

consumption, killing is less strongly related to satiation and the link between consumptive FRs 

and population impact is weakened (Dick et al. 2002). The carp larvae FR data were re-analysed 

using number of prey killed as response variables. The number of larvae killed was calculated as 

the number of larvae supplied minus the total number of live or dead but undamaged larvae 

remaining. These analyses yielded qualitatively identical and quantitatively similar results 

(Tables S3.1 to 3.3) to analyses based on prey consumption (see main paper). Thus, in this case 

consumptive FRs may provide a reasonable tool to infer impacts on prey populations.  
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Table A3.4 Comparison between functional response parameter estimates for three amphipod groups on 

carp larvae as prey, based on analysis using indicator variables in the frair package (Pritchard 2016). 

Significant differences (α = 0.05) are indicated in bold. a – attack coefficient; h – handling time (days.prey 

item−1); D – difference; SE – standard error.  
 

Prey Base Comparison  
Estimate 

(Da or Dh) 
SE z p 

Carp larvae Inter. D. villosus G. pulex a −0.222 1.167 −0.190 0.850 

   h −0.007 0.014 −0.489 0.625 

 Inter. D. villosus Large D. villosus a 0.114 0.962 0.118 0.906 

   h −0.050 0.011 −4.628 < 0.001 

 Large D. villosus G. pulex a −0.333 1.010 −0.330 0.742 

   h 0.042 0.012 3.654 < 0.001 

 

 

 

Table A3.2 Parameter estimates and significance levels from second order logistic regression of the 

proportion of carp larvae killed against initial larval density, for three amphipod groups. Quasibinomial 

errors were used due to overdispersion. ф – dispersion parameter for GLM; N0 – first order term; N2
0 – 

second order term. 
 

Amphipod Group ф Intercept p N0 p N2
0 p Type 

G. pulex 2.273 1.661 0.002 −0.105 0.018 8.145 x 10−4 0.243 II 

Inter. D. villosus 2.001 2.265 <0.001 −0.169 < 0.001 1.852 x 10−3 0.011 II 

Large D. villosus 1.192 3.069 <0.001 −0.150 < 0.001 1.412 x 10−3 0.007 II 

Table A3.3 Functional response parameter estimates for three amphipod groups on carp 

larvae as prey, extracted from Rogers’ random predator equation fitted to data in the frair 

package (Pritchard 2016).  a – attack coefficient; h – handling time (days.prey item−1); 

1/hT – maximum feeding rate (prey.day−1), where T = time in days; SE – standard error.  
 

Prey Amphipod Group a SE h SE 1/hT  

Carp larvae G. pulex 3.424 0.854 0.100 0.011 10.0 

 Inter. D. villosus 3.643 0.796 0.107 0.010 9.3 

 Large D. villosus 3.757 0.539 0.058 0.004 17.4 
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Appendix 3.3 Compositional analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A3.6 MANOVA tests for non-random food consumption, assuming equal availability of food 

types. As for the analyses using actual availability of food types (presented in Chapter 3 and in Table 

A3.5), p values were generated by randomisation with n = 1999.  

 

 G. pulex Inter. D. villosus Large D. villosus 

 Wilks’ Λ p Wilks’ Λ p Wilks’ Λ p 

Experiments with eggs 0.518 0.049 0.261 0.004 0.070 0.006 

Experiments with larvae 0.048 < 0.001 0.104 0.002 0.049 0.002 
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EGG experiments 
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LARVA expts 
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Appendix to Chapter 5 
 

Appendix 5.1 Exhaustive chase protocol 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

when tail flips = 0 

 

 

when tail flips = 0 

 

 

when tail flips = 0 

 

 

when tail flips = 0 

 

 

when tail flips = 0 

 

 

when tail flips = 0 

 

 

when tail flips = 0 

 

 

when tail flips = 0 

 

Fails to self-right 

within 30s 

 

 

Fails to self-right 

within 30s 

 

 

Fails to self-right 

within 30s 

 

 

Fails to self-right 

within 30s 

 

 

Fails to self-right 

within 30s 

 

 

Fails to self-right 

within 30s 

 

 

Fails to self-right 

within 30s 

Self-rights  

within 30s 

 

 

Self-rights  

within 30s 

 

 

Self-rights  

within 30s 

 

 

Self-rights  

within 30s 

 

 

Self-rights  

within 30s 

 

 

Self-rights  

within 30s 

 

 

Self-rights  

within 30s 

 

 

Self-rights  

within 30s 

 

1 minute chase 
 

(30 seconds chase from behind) 
 

(30 seconds tail flip when 

approached from the front) 

Turn onto back 

30 second chase  
 

(15 seconds chase from behind) 
 

(15 seconds tail flip when 

approached from the front) 

Repeat red (dotted) loop until 3 

consecutive failures to self-right  

 

i.e. turn/chase + turn/chase + 

turn/chase  respirometer 

 

Repeat red (dotted) loop until 3 

consecutive failures to self-right  

 

i.e. turn/chase + turn/chase + 

turn/chase  respirometer 

 

Repeat red (dotted) loop until 3 

consecutive failures to self-right  

 

i.e. turn/chase + turn/chase + 

turn/chase  respirometer 

 

Repeat red (dotted) loop until 3 

consecutive failures to self-right  

 

i.e. turn/chase + turn/chase + 


