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Abstract 

Familiar identities can be easily recognised across different images. This contrasts with 

the difficulty in recognising unfamiliar identities across changes in image. Thus, cognitive 

models propose different neural processing of familiar and unfamiliar faces: familiar 

identities are suggested to be represented independent of face image (image-invariantly) 

while unfamiliar identities are suggested to be represented more image-dependently. 

This image-invariance proposed for familiar faces is suggested to underlie the familiar 

face recognition advantage. However, the neural correlate of this proposed difference in 

neural representation of familiar and unfamiliar identities remains unclear. This thesis 

presents multiple fMRI experiments conducted to investigate the neural correlate of 

familiar face recognition. The first empirical chapter shows a link between activity in the 

fusiform face area (FFA) and the familiar face recognition advantage. The second and 

third empirical chapters investigate the representation of faces within the FFA as well as 

other face-selective regions. The last empirical chapter demonstrates that the image-

invariant representation proposed to underlie the familiar face recognition advantage 

seems to lie outside the FFA and other core face-selective regions. Taken together, these 

findings support the suggested role of the FFA in identity processing. Additionally, we 

show that regions outside the core face-selective regions might be necessary for the 

recognition of familiar identities.  
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Chapter 1 – Introduction 

We can recognise faces easily, particularly if the face is familiar to us. Familiar faces are 

recognised across different viewing conditions, facial expressions, and changes in 

appearance such as hairstyle. However, the neural processes underlying familiar face 

recognition remain unclear. Models of face perception propose that specific regions of 

the brain are selective for face processing. These models suggest that familiar and 

unfamiliar faces are represented differently in these face-selective regions. Using 

neuroimaging, this thesis investigates the potential difference in neural representations 

of familiar and unfamiliar faces, and explores the neural correlates of face recognition. 

This chapter will: 1) contrast object with face processing; 2) describe models of 

face processing; and 3) contrast familiar with unfamiliar face processing. 

1.1 Faces: a special case of object processing 

Behavioural studies suggest a special mechanism for processing faces. Early evidence 

comes from studies investigating the effects of inversion (for review: Valentine, 1988). Yin 

et al. (1969) showed that inversion affects face recognition differently than other objects. 

In his study, participants viewed images of faces and other categories such as houses and 

were then tested on an old/new recognition task. Stimuli during encoding and test were 

presented either upright or inverted. For the upright orientation, performance for faces 

was best. However, for the inverted orientation, performance for faces was worst. Face 

recognition was disproportionally affected by inversion compared to other object 

categories. Participants made more than four times as many errors with inverted 

compared to upright faces. Hence, face recognition seems to differ from object 

recognition by being more orientation-sensitive.  
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In line with behavioural findings, neuropsychological case reports show that face 

processing can be affected independently from object processing. Injuries to 

occipitotemporal regions have been reported to impair face processing selectively leaving 

object processing intact: A condition known as prosopagnosia (Farah, 1996; Farah, 

Levinson, & Klein, 1995; McNeil & Warrington, 1993). For example, Farah et al. (1995) 

compared recognition ability of the prosopagnosic patient L.H. with normal subjects. They 

used different exemplars of two different categories: faces and eye glass frames, which 

similar to faces, show a high within category similarity. Normal subjects performed well 

for faces but much poorer with eye glass frames (mean accuracy: faces: 85%; eye glass 

frames: 67%). However, patient L.H. did not show an advantage for faces. He recognised 

faces and eye glass frames equally poorly (mean accuracy: faces: 64%; eye glass frames: 

63%). Thus face but not object recognition in prosopagnosics seems to be severely 

impaired compared to normal subjects.  

However, these results do not necessarily suggest that faces and objects rely on 

different processing. Face processing might simply be more difficult. Evidence against this 

alternative explanation provide cases of object agnosia, where participants’ object 

processing is impaired but face processing remains intact (Moscovitch, Winocur, & 

Behrmann, 1997). Taken together, the observed double-dissociation, where face and 

object processing can be impaired independently, suggests differential neural processing 

of faces and other object categories. 

Though providing evidence for differential neural processing of faces and other 

object categories, neuropsychological findings are limited in their generalisation, since 

they derive from patients with brain injuries. Neural processing in neuropsychological 

patients might be different compared to healthy participants. However, 
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electrophysiological studies testing healthy participants also show a difference between 

neural face and object processing.  

EEG studies show a different processing for faces compared to other objects. 

When participants view faces and non-face objects, only faces elicit a negative evoked 

response around 170ms after stimulus onset (N170) (Bentin, Allison, Puce, Perez, & 

McCarthy, 1996). Its face-selectivity is not influenced by task, since it remains significantly 

larger for faces than other objects regardless of whether faces were attended to or 

ignored (Carmel & Bentin, 2002). It is observed at electrodes located over the posterior 

temporal lobe, but due to the limited spatial resolution of electroencephalography its 

neural source cannot be localised more precisely. 

The high spatial resolution of neuroimaging methods allows better localisation of 

the neural correlate of the differential processing of faces and other object categories. 

Studies, which compare brain response to faces and other object categories, reveal brain 

regions such as the fusiform face area (FFA), which are activated more strongly by faces 

than other objects (Kanwisher, McDermott, & Chun, 1997; McCarthy, Puce, Gore, & 

Allison, 1997). However, faces and objects differ not only on their category. Faces are 

more homogeneous than other object categories. Additionally, faces show living beings 

while objects are inanimate. Also, face images show a typical symmetry other objects 

mostly lack. Thus the observed neural difference between faces and other objects could 

be explained by these alternative explanations rather than the category itself.  

An ingenious study by Kanwisher et al. (1997) systematically tested these 

alternative explanations. Faces were compared with different images of the same object 

category (houses) to control for within-category homogeneity and with another animate 

category (hands) to control for the difference between animate and inanimate. Using face 
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profiles instead of frontal views allowed to control for face symmetry. Each comparison 

yielded higher activity for faces than objects in areas such as the FFA ruling out all tested 

alternative explanations. This finding suggests that the neural processing difference 

between faces and objects reflects the face-selectivity of these regions. 

Nevertheless, whether the stronger FFA response for faces reflects truly face-

selectivity has been a matter of active debate. Alternatively, it has been suggested that 

this regions reflects within-category discrimination among highly familiar stimuli: FFA 

activity might reflect our encoding of individual faces rather than just the general 

category of faces automatically engaged due to our expertise with faces (Tarr & Gauthier, 

2000). Some evidence for this claim comes from studies investigating expert populations. 

Experts with many years of experience show FFA activity for non-face objects of expertise 

such as cars or birds (Gauthier, Skudlarski, Gore, & Anderson, 2000), or even stimuli 

highly dissimilar to faces like radiographs (Harley et al., 2009) or chess stimuli (Bilalić, 

Langner, Ulrich, & Grodd, 2011). However, even for experts with many years of 

experience with a non-face object category, faces still activate the FFA more than non-

face objects of expertise. Additionally, non-face objects of expertise have been shown to 

activate regions of the ventral occipitotemporal cortex beyond the FFA (Grill-Spector, 

Knouf, & Kanwisher, 2004; Rhodes, Byatt, Michie, & Puce, 2004). Thus the entire ventral 

occipitotemporal cortex might be involved in object recognition while neurons within the 

FFA might be engaged selectively by faces. 

Combined all these findings show that the category of faces differs from other 

object categories. Faces result in different behaviour, their processing can be selectively 

impaired and they evoke different brain responses compared to other object categories. 
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1.2 Models of face processing 

Two influential models have advanced our understanding of face processing. Bruce and 

Young’s cognitive model of face processing (1986), which differentiates between 

processing of invariant and changeable aspects of faces and Haxby, Hoffman and 

Gobbini’s  (2000) neural model of face processing, which proposes potential underlying 

neural correlates.  

1.2.1  Cognitive Model 

The most influential model of face processing was proposed by Bruce and Young (1986). 

According to this model faces are processed via two separate routes. One processes 

invariant facial features such as identity and the other one changeable aspects such as 

facial expression. Each function is assumed to be processed by different cognitive systems 

(Fig. 1.1).  

 

Figure 1.1  The functional model of face processing (Bruce & Young, 1986). The model proposes two 

separate routes for processing of identity and changeable aspects. [From (Calder & Young, 2005)]. 

Facial identity is proposed to be processed in several stages where its representation 

becomes more and more abstract. First, faces are encoded pictorially, a representation 

closely linked to the actual image. This representation is sufficient to recognise identical 



Chapter 1                                                                                                                          Introduction 

17 
 

images in an old/new recognition task (Bruce, 1982; Hay & Young, 1982). However, this 

representation is not sufficient to recognise a face across different image changes such as 

viewing angle, hairstyle or facial expression. A more abstract representation must be 

established: the structural code.  

The structural code is proposed to capture face-invariant aspects which remain 

constant across different images, a necessity for successful face recognition. It is claimed 

to be held in face recognition units (FRUs) and to process identity independently of 

changeable aspects such as facial expressions. From this invariant representation, the 

FRUs project to corresponding person identity nodes (PINs), causing a sense of familiarity. 

Activation of the PINs allows the retrieval of names, and other semantic information 

associated with the person.  

Taken together, the model predicts differential processing of identity and 

changeable aspects such as expressions. The identity representation becomes more and 

more abstract allowing recognition across different images. 

1.2.2  Neural Model  

Building upon the Bruce and Young’s (1986) model, Haxby et al. (2000) proposed a model 

trying to explain the neural mechanisms underlying face processing. Numerous studies 

report a network of brain regions activated more by faces than other object categories 

(Ishai, Ungerleider, Martin, Schouten, & Haxby, 1999; Kanwisher et al., 1997; McCarthy et 

al., 1997). Haxby et al.’s (2000) model suggests that within this network different areas 

are involved in processing different cognitive aspects of face processing. The core of this 

network form the fusiform face area (FFA), the occipital face area (OFA) and the superior 

temporal sulcus (STS) which are involved in the visual analysis of face stimuli. Within 
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these core regions, different regions are proposed to process different aspects of faces  

(Fig. 1.2). 

 

Figure 1.2  The neural model of face processing (Haxby et al., 2000). The model proposes separate 

processing of identity and changeable aspects. 

The OFA is proposed to be involved in the early detection of faces (Haxby et al., 2000; 

Pitcher, Walsh, Yovel, & Duchaine, 2007; Rotshtein, Henson, Treves, Driver, & Dolan, 

2004). After the detection, the information is passed to two pathways, a separation 

analogue to Bruce and Young’s model. One pathway projects to the STS processing 

changeable aspects such as facial expressions (Allison, Puce, & McCarthy, 2000; Engell & 

Haxby, 2007, Harris, Young, & Andrews, 2012; Pelphrey, Viola, & McCarthy, 2004; 

Winston, Henson, Fine-Goulden, & Dolan, 2004). The other pathway projects to the FFA 

which is involved in identity processing.  

Numerous studies have shown the FFA’s role in processing facial identity (Grill-

Spector et al., 2004; Hoffman & Haxby, 2000, Rotshtein et al., 2004). This processing is 

proposed to be independent of image, thus different images of the same identity should 
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activate the same representation (image-invariance). Our ability to recognise faces across 

different images is claimed to rely on this proposed image-invariant FFA representation.  

1.3 Differential processing of familiar and unfamiliar faces 

1.3.1. Behavioural studies 

Although face processing differs from that of other object categories, behavioural studies 

show differential processing within the category of faces itself. When participants are 

asked to judge whether two different images depict the same face or different faces, they 

are more accurate for familiar compared to unfamiliar faces (Bruce et al., 1999, Davies-

Thompson, Gouws, & Andrews, 2009, Hancock, Bruce, & Burton, 2000; Jenkins, White, 

Van Montfort, & Burton, 2011, Megreya & Burton, 2006). Particularly judging two 

different images as the same unfamiliar face causes participants to make the most 

mistakes. The familiar face recognition advantage is vast with up to 30% accuracy (Bruce 

et al., 1999) and is consistently reported across various image changes, such as viewpoint 

(Bruce, Valentine, & Baddeley, 1987), orientation and expression (Young, McWeeny, Hay, 

& Ellis, 1986) or poor image conditions (Bruce et al., 1999; Bruce, Henderson, Newman, & 

Burton, 2001).  

These findings have been attributed to a more image-invariant representation for 

familiar than unfamiliar faces. According to Bruce and Young’s cognitive model of face 

processing (1986) faces are first encoded pictorially. This representation is sufficient to 

recognise identical images in an old/new recognition task and explains while familiar and 

unfamiliar faces are recognised equally well, when the same images are used (Bruce, 

1982; Hay & Young, 1982). However, it is not sufficient to recognise a face across 

different image changes such as viewing angle, hairstyle or facial expression. A more 
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abstract representation is needed which encodes identity image-invariantly (structural 

code). The difference between familiar and unfamiliar faces is suggested to occur at this 

stage. While the structural code for familiar faces results from multiple previous 

encounters, the formation of the structural code for an unfamiliar face will be limited by 

its initial exposure. Thus the familiar face advantage might result from a richer structural 

code compared to unfamiliar faces.  

1.3.2  Neuropsychology 

In line with the behavioural familiar face advantage neuropsychological studies show a 

dissociation between familiar and unfamiliar face processing (Benton, 1980; Malone, 

Morris, Kay, & Levin, 1982). For instance, Malone et al. (1982) report a 

neuropsychological patient who was unable to recognise familiar faces e.g. family 

members and yet able to match unfamiliar faces. They also observed the inverse pattern 

of impairment in another patient, who was unable to match unfamiliar faces yet was able 

to recognise familiar faces. This double dissociation suggests differential neural 

processing of familiar and unfamiliar faces. However, neuropsychological findings have to 

be interpreted with reservation as they rely on findings obtained from neuropsychological 

patients, whose neural processing might be different from that of healthy participants. 

1.3.3  EEG  

Additional evidence for differential neural processing of familiar and unfamiliar faces 

comes from electrophysiological studies testing healthy participants. Using 

electrophysiological methods such as electroencephalography (EEG) allows to investigate 

the time course of the brain response. Differences between familiar and unfamiliar face 

processing have been reported as early as 170ms after stimulus onset (Caharel et al., 
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2002; Caharel, Ramon, & Rossion, 2014), but are more consistenly found at 250ms after 

stimulus onset (N250r, “r” for repetition effect) (Doerr, Herzmann, & Sommer, 2011; 

Herzmann, Schweinberger, Sommer, & Jentzsch, 2004; Gosling & Eimer, 2011; Pfütze, 

Sommer, & Schweinberger, 2002; Schweinberger, Pfütze, & Sommer, 1995). This early 

difference has been interpreted as the first activation of long-term memory 

representations retrieved for familiar faces. Other studies have shown differences at later 

time points, namely after 400ms (Bentin & Deouell, 2000; Paller, Gonsalves, Grabowecky, 

Bozic, & Yamada, 2000), an effect attributed to the semantic information associated with 

familiar faces.  

A recent study by Caharel, Ramon, and Rossion (2014) investigated differences in 

EEG signal between familiar and unfamiliar faces and asked which difference is linked to 

successfully recognition of a face as familiar. They used a familiarity judgement task 

requiring participants to judge whether a face was personally familiar or unfamiliar. 

Different EEG response for familiar compared to unfamiliar faces started to emerge at 

170ms after stimulus onset. However, only the difference within a later time window (220 

to 300ms) successfully predicted response time during correct judgements of a face as 

familiar. This finding suggests that appr. 200ms are sufficient for a neural response 

reflecting recognition of whether a face is familiar or not.  

Though EEG allows the analysis of the time course of a neural response with a 

precision of milliseconds, its spatial resolution is low not allowing precise localisation of 

the neural source of the observed difference. The high spatial resolution of neuroimaging 

methods can be used to investigate the brain regions reflecting the difference between 

familiar and unfamiliar face processing. 
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1.3.4  Neuroimaging 

The high resolution of neuroimaging techniques allows to investigate which brain regions 

are involved in processing familiar and unfamiliar faces. Neuroimaging studies addressing 

this question have used two main methods: direct contrasting and adaptation. fMRI-

contrasts are used to investigate which regions respond more to familiar compared to 

unfamiliar faces and vice versa. fMR-adaptation is used to investigate whether familiar 

faces are represented more image-invariantly than unfamiliar faces, a mechanism 

potentially underlying the familiar face recognition advantage. 

1.3.4.1  Direct comparison 

Many neuroimaging studies directly compare brain activity elicited by familiar and 

unfamiliar faces to pinpoint the brain regions differentiating between the two. Identity of 

familiar faces is better recognised than of unfamiliar faces, thus different processing of 

facial identity could underlie the familiar face advantage. Hence, one focus of interest is 

the FFA, since it is involved in processing invariant aspects of a face such as identity 

(Haxby et al., 2000). However, the results are mixed. Some studies report greater FFA 

activity for familiar compared to unfamiliar faces (Elfgren et al., 2006; Nielson et al., 2010; 

Sergent, Ohta, & MacDonald, 1992), while others fail to find such a difference (Gorno-

Tempini & Price, 2001; Leveroni et al., 2000; Pierce, Haist, Sedaghat, & Courchesne, 2004) 

[for a review (Natu & O’Toole, 2011)].  

Although FFA involvement is not consistently reported, another region emerges in 

most studies: the hippocampus. Studies comparing activity of famous or personally 

familiar faces with unfamiliar faces report stronger hippocampal activity for familiar vs. 

unfamiliar faces (Elfgren et al., 2006; Leveroni et al., 2000; Nielson et al., 2010; Pierce et 

al., 2004; Sergent et al., 1992). Hence, the difference between familiar and unfamiliar face 
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processing might lie outside the core face-selective regions, where according to Gobbini 

and Haxby’s (2007) person knowledge associated with familiar faces is processed. The 

hippocampus has been shown to abstractly encode facial identity since it is activated by 

different images of the same identity, its name, and even faces associated with it 

(Quiroga, Reddy, Kreiman, Koch, & Fried, 2005). Therefore, the hippocampus might form 

the neural substrate of person knowledge activated by familiar faces. Higher hippocampal 

response to familiar compared to unfamiliar faces might thus reflect the retrieval of 

semantic information associated with familiar faces, such as the name or profession. As 

retrieval of semantic information is not possible for unfamiliar faces, this might form the 

source of the difference between familiar and unfamiliar face processing.  

1.3.4.2  Underlying neural representation 

Numerous studies did not just directly compare familiar and unfamiliar face processing 

but investigated potential differences in the underlying neural representations. Of 

particular interest is whether the neural representation for familiar faces is more image-

invariant than for unfamiliar faces, since this could potentially account for the observed 

familiar face recognition advantage. 

An image-invariant representation might be the mechanism underlying the 

behavioural familiar face recognition advantage. It is defined as a representation which 

remains the same across different images. Familiar faces are claimed to be represented 

more image-invariantly than unfamiliar faces, explaining our superior recognition of 

familiar faces across different images (Bruce & Young, 1986). 

Image-invariant representations within the face processing network have been 

reported for unfamiliar faces. For instance, Andrews and Ewbank (2004) investigated 
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whether face-selective regions such as the OFA represent faces independently of image 

size. To test this, they presented the same face image in three different sizes. The OFA 

adapted across these changes suggesting that this area represents faces independent of 

image size. An even greater image-invariance has been observed in the FFA.  

The FFA represents unfamiliar faces invariant to changes in size, viewpoint, 

lighting, hairstyle, and facial expressions (Andrews & Ewbank, 2004; Eger, Schweinberger, 

Dolan, & Henson, 2005; Ewbank & Andrews, 2008; Pourtois, Schwartz, Seghier, Lazeyras, 

& Vuilleumier, 2005a, 2005b; Winston et al., 2004). For instance, Winston et al. (2004) 

tested FFA response to changes in identity and facial expression. On each trial two face 

images were shown successively. The identity and facial expression of the second 

stimulus could independently change or remain the same. FFA response adapted when 

the identity was repeated. However, no FFA adaptation was observed when identity 

changed and facial expressions were repeated. These findings supports FFA’s role in 

processing facial identity invariantly of other changes. 

Though these findings suggest that FFA processes identity, these findings have a 

major limitation: Same images rather than different images were used to represent the 

same identity. The observed adaptation might thus be due to the same image rather than 

the same depicted identity. Indeed, when different images of the same identity are used, 

the FFA adaptation seems to vanish (Davies-Thompson et al., 2009; Davies-Thompson, 

Newling, & Andrews, 2013; Eger et al., 2005; Pourtois et al., 2005a, 2005b; Xu, Yue, 

Lescroart, Biederman, & Kim, 2009).  

Nevertheless, the few studies reporting image-invariant representations using different 

images of the same identity, do not concordantly report a more image-invariant identity 
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representation for familiar compared to unfamiliar faces in the FFA (Davies-Thompson et 

al., 2013; Eger, Schweinberger, Dolan, & Henson, 2005; Pourtois et al., 2005b). 

 For instance, Pourtois et al. (2005b) tested image-invariance across different 

images of the same identity in an event-related design for familiar and unfamiliar faces. 

On each trial two different images of the same identity were presented differing in 

viewpoint. No image-invariant identity representations were observed in the FFA, neither 

for familiar nor for unfamiliar faces. In contrast, Eger and colleagues (2005) employed the 

same design but allowed greater changes between the two different images of each 

identity (viewing angle, lighting, hairstyle, etc.). They found an image-invariant 

representation in the FFA for familiar but not unfamiliar faces. 

 In conclusion, the underlying mechanism of the familiar face advantage remains 

unclear. A more image-invariant representation for familiar faces compared to unfamiliar 

faces is proposed. Although greater image-invariance in the FFA for familiar faces has 

been observed in some studies the results are mixed. 
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Chapter 2 – fMRI methods review 

To investigate the neural correlates of familiar face processing, I used functional magnetic 

resonance imaging (fMRI). fMRI measures brain responses by tracking changes in blood 

flow that are associated with increased neural activity. As neurons increase their firing 

rate, their energy intake increases. Consequently, the transfer of oxygen to those cells via 

the bloodstream increases as well. This leads to a local change in the supply of 

oxygenated blood. Ogawa, Lee, Kay, & Tank (1990) showed that this Blood Oxygenation 

Level-Dependent (BOLD) change caused a change in the local magnetic signal that could 

be detected with MRI. Thus, changes in the BOLD signal measured by MRI can be used to 

infer the underlying brain response.  

fMRI is an indirect measure of brain response limited by the temporal resolution 

of the haemodynamic response. Nevertheless, changes in BOLD response have been 

found to correlate with changes in local field potentials and action potentials which occur 

within milliseconds (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001). 

Additionally, its high spatial resolution allows the resolution of differences in brain 

response within millimetres and has thus made fMRI a fundamental technique to 

investigate brain response. A number of statistical techniques have been proposed for 

analysing fMRI data. These technique include univariate and multivariate analyses.  

2.1 Univariate Analysis  

Many fMRI analyses have used a univariate general linear model (GLM) approach to 

analyse the BOLD signal (Friston et al., 1995). Brain responses, within each voxel or within 

a region of interest (ROI), are modelled by regressors, e.g. one for each condition. To 
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model the response to one condition, a box-car model can be used. This model predicts a 

non-zero response when this condition is present and a zero response when it is absent. 

Since the changes in blood flow do not occur abruptly, the regressor should be convolved 

with a hemodynamic response function (HRF) to produce a better model of the expected 

time series of brain response. This model can then be used to explain the measured fMRI 

BOLD signal within each voxel or ROI (Fig. 2.1).  

 

Figure 2.1  Example of a univariate GLM analysis of fMRI data. A) fMRI experiment where images are 

presented in blocks followed by fixation periods. B) Box-car model of brain response based solely on block 

on- and off-sets and hemodynamic response function (HRF), which can be used to convolve the box-car-

model to create a better model. C) Measured fMRI response will be modelled by the convolved box-car-

model. 
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Modelling the brain response, will generate a statistical map of parameter estimates 

(regression coefficients) of the whole brain that reflect the model fit at each voxel; Voxels 

activated by the condition will be predicted well and receive a large coefficient value.  

A comparison or contrast between parameter estimates can be used to infer 

properties of the brain. For example, the parameter estimates can be contrasted against 

a baseline or the response to other experimental conditions. This analysis is performed 

independently for each voxel (univariate) and will generate a statistical map depicting 

voxels which show a significant difference in brain response (Huettel, Song, & McCarthy, 

2004). To determine whether these patterns are consistent across different participants, 

these statistical maps can then be submitted to a higher-level analysis. 

2.2 fMR-adaptation  

One limitation when using fMRI contrasts is that only one signal is obtained per voxel, 

thus its resolution is restricted by the voxel size. A voxel is a three-dimensional volume 

element and forms the smallest unit fMRI can measure (Huettel et al., 2004). However, 

even voxels of 1mm3 contain several hundred thousands of neurons. Therefore, 

difference in response within a single voxel may either reflect response of all neurons 

within that population, or alternatively greater change in only a subset of neurons  

(Fig. 2.2).  
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Figure 2.2 Possible neural ensembles underlying brain response within a voxel (Andrews, 2005).  

Response from a single voxel may either reflect response of all neurons within that population, or 

alternatively greater change in only a subset of voxels. 

One way to differentiate between these potential underlying sources of the signal is fMR-

adaptation (Grill-Spector & Malach, 2001). 

fMR-adaptation allows to target neural populations responding to particular 

functional properties (Grill-Spector & Malach, 2001). To do so, it relies upon the 

repetition effect on brain response: when a stimulus is presented repeatedly, fMRI signal 

decreases, whilst changing the stimulus results in a recovery of brain signal (Henson, 

Shallice, & Dolan, 2000). fMR-adaptation operationalises these two effects. First, a 

stimulus is repeated so that neurons responsive to it will adapt (= decrease their firing 
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rate). Second, a property of the stimulus is varied. Only neurons which are sensitive to 

the varied property will recover from the adaptation and increase their response. Thus, 

fMR-adaptation can be used to distinguish between neural populations with different 

functional properties within a voxel.  

2.3 Region of Interest (ROI) analysis 

Though fMRI analysis allows simultaneous analysis of the entire brain, it can be beneficial 

to restrict the analysis to regions of interest (ROIs). A ROI approach focusses on particular 

brain areas, e.g. the face-selective network. An advantage of the ROI analysis is that it 

minimises the number of voxels analysed, and therefore decreases the high family-wise 

error rates associated with the multiple comparisons across many voxels (Poldrack, 

2007).  

ROIs can be defined in numerous ways. They can be defined anatomically or 

functionally at a group level and then projected to individual brains, or separately in each 

individual. A problem with ROI analyses is that size of regions can vary within and across 

individuals. This creates problems in the interpretation of statistical analyses. To address 

this issue, I have developed an approach that generates ROIs of the same size for 

different regions and individuals. This involves measuring the brain response of a fixed 

number of most selective voxels in each ROI. This way differences between ROIs could 

not be due to differences in ROI size. To do so, I defined ROIs independently for each 

participant. Next, the peak voxel within each ROI was localized and finally a flood-fill 

algorithm systematically decreasing the threshold was used to include a fixed number of 

most selective voxels. This allowed me to generate ROIs with the same number of voxels 

across individuals. I varied the size of the ROIs systematically from 25 - 100 voxels in 25 
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voxel steps to investigate potential effects of ROI size. Finally, this method allowed me to 

compare activity across different ROIs as well as different participants controlling effects 

of ROI size. 

2.4 Multivariate Pattern Analysis (MVPA)  

A limitation of univariate methods is that they analyse each voxel independently. Multi-

voxel pattern analysis (MVPA) allows the comparison of the pattern of neural activity 

across multiple voxels simultaneously, independent of the overall mean response (Haxby 

et al., 2001). This can be useful when two conditions may produce the same overall mean 

response within a ROI, but may have different underlying neural patterns. This difference 

will be obscured by averaging within a ROI resulting in no significant difference between 

the conditions within this ROI. Therefore, analysing the pattern of neural activity across 

voxels within a ROI can find differences between conditions that could otherwise be 

masked by a standard ROI approach.  

2.4.1 Correlation-based method  

One of the simplest forms of MVPA of fMRI data is the correlation method first proposed 

in the original study by Haxby et al. (2001). This approach assesses how similar brain 

response patterns of two conditions are, by simply correlating them.  

Firstly, the data is split, e.g. into odd and even runs of the stimulus presentation of 

each condition. Next, parameter estimates are generated for each condition, separately 

for each run, using a univariate GLM analysis at each voxel within a region. Then, pairwise 

correlations are calculated between the patterns of parameter estimates across the splits 

of the data. This can be done comparing within-condition (e.g. faces-even with faces-odd) 

and between-condition (e.g. faces-even with houses-odd) (Fig. 2.3). 
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Figure 2.3 Illustration of a correlation-based MVPA paradigm from Haxby et al. (2001). Patterns were 

estimated for two stimulus conditions (faces and houses), each across two independent splits of the data 

(even and odd stimulus runs). Patterns are restricted to a region of interest (ROI), and correlated pairwise 

within- and between-conditions across the data splits.  

If stimulus conditions evoke distinctive brain response patterns, within-condition 

correlations should be higher than between-condition correlations. Haxby et al. (2001) 

demonstrated higher within- than between-category correlations for multiple stimulus 

conditions, such as faces, houses and chairs, indicating that distinct response patterns to 

different object categories could be discriminated. Furthermore, this result remained 

even when the analysis was restricted to only those voxels which did not show a selective 

univariate response to any condition. This demonstrates that while standard univariate 

analysis did not yield distinct brain responses to different categories, multivariate analysis 

was sensitive enough to reveal category-specific brain response patterns. 



Chapter 2   fMRI Methods 

33 
 

2.4.2 Representational Similarity Analysis (RSA)  

Correlation-based MVPA methods can be used to determine whether conditions elicit 

distinct response patterns. However, this analysis does not reveal the organizing 

principles. Representational similarity analysis (RSA) provides a method for understanding 

what is driving distinctive brain response patterns of conditions; (Kriegeskorte, Mur, & 

Bandettini, 2008). RSA allows us to test how well a model can explain the observed fMRI 

data similarity. Multiple models can be tested simultaneously against each other. Thus, 

RSA can be used to test which model can explain the observed brain response similarities 

best. Therefore, it contributes to understanding the functional dimension driving the 

observed brain response patterns.  

To perform a RSA at least two similarity matrices are needed, one of the brain 

response and one of one model. Similarity matrices can be constructed from any data 

available provided they all correspond to the same set of conditions. Figure 2.4 shows 

one example where one matrix is constructed from neural data using correlation-based 

MVPA and another from a model of the stimulus. Next, the similarity matrices are 

compared to one another, e.g. by correlating the corresponding elements between 

matrices. If the model is not a good predictor we will observe little similarity between 

observed brain response pattern similarities and similarities predicted by the model. 

However, a good model will predict the observed brain response similarities well and 

result in a high correlation. A high correlation suggests that similar functional dimensions 

underlie both measures. In this way, we can explicitly test hypotheses about the 

dimensions underlying the neural response.  
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Figure 2.4  Illustration of the Representational Similarity Analysis (RSA) paradigm (Kriegeskorte et al. ,2008). 

At least two similarity matrices are constructed, for example from neural data via MVPA, and from a model 

of the stimuli. To assess the representational similarity these two matrices can be compared, e.g. via 

correlation. High similarity between the matrices indicates that each measure is a good predictor of the 

relative similarity between conditions in the other measure.  
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Chapter 3 – Activity in the right fusiform face area 

predicts the behavioural advantage for the 

perception of familiar faces 

 

This chapter is adapted from: Weibert, K., & Andrews, T. J. (2015). Activity in the right 

fusiform face area predicts the behavioural advantage for the perception of familiar 

faces. Neuropsychologia, 75, 588-596.1 

3.1 Abstract 

People are extremely proficient at discriminating the identity of familiar faces, but are 

significantly worse with unfamiliar faces. Despite this clear behavioural difference in 

perception, the neural correlates of the advantage for familiar faces remain unclear. 

Here, we use an individual differences approach to explore the link between neural 

responses in face-selective regions and the behavioural advantage for the perception of 

familiar faces. First, we compared performance on an identity matching task with either 

familiar or unfamiliar faces. We found that participants were significantly better at 

matching the identity of familiar compared to unfamiliar faces. Next, we used fMRI to 

measure the response to familiar and unfamiliar faces. Consistent with the behavioural 

data, there was a significant difference in the neural response to familiar and unfamiliar 

faces in face-selective regions. Finally, we asked whether interindividual variation in 

behavioural performance could be predicted by corresponding variation in fMRI 

response. We found a significant correlation in the right fusiform face area (rFFA) 

                                                      
1 The author, Katja Weibert, designed the experiment, analysed the results, and wrote the article under 
the supervision of Prof. Timothy Andrews.   
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between the difference in response to familiar and unfamiliar faces and corresponding 

differences on the face-matching task. That is, participants who showed a larger response 

to familiar compared to unfamiliar faces in the rFFA also matched familiar faces much 

more accurately than unfamiliar faces. No other face-selective region showed a 

correlation between neural and matching accuracy. These results provide a link between 

activity in the rFFA and the perception of familiar faces. 

3.2 Introduction 

The ability to recognize familiar faces across a variety of changes in illumination, 

expression, viewing angle, and appearance contrasts with the inherent difficulty found in 

the perception and matching of unfamiliar faces across similar image manipulations 

(Bruce, Valentine, & Baddeley, 1987; Davies-Thompson et al., 2009; Hancock et al., 2000; 

Jenkins et al., 2011; Megreya & Burton, 2006; Johnston & Edmonds, 2009). This 

difference in perception has been incorporated into cognitive models of face processing, 

which propose that familiar and unfamiliar faces are represented differently in the human 

visual system (Bruce & Young, 1986; Burton, Bruce, & Hancock, 1999). These models 

propose that faces are initially encoded in a pictorial or image-dependent representation. 

This image dependent representation can be used for the perception and matching of 

unfamiliar faces. In contrast, the identification of a familiar face requires an image-

invariant representation that can be used to recognize familiar identity across different 

images.  

Despite the clear behavioural difference in the perception of familiar and 

unfamiliar faces, the neural correlates of this difference are much less clear (Natu & 

O’Toole, 2011). Functional imaging studies have consistently found regions in the 
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occipital and temporal lobes that respond selectively to faces (Kanwisher et al., 1997; 

McCarthy et al., 1997). Models of face processing suggest that one region within this core 

network — the fusiform face area (FFA) — is important for the representation of invariant 

facial characteristics that are necessary for familiar face recognition (Grill-Spector et al., 

2004; Haxby et al., 2000; Ishai, 2008). Consistent with these predictions, 

neuropsychological studies show that lesions in the approximate location of the FFA can 

lead to selective impairments in face recognition (Barton, Press, Keenan, & O’Connor, 

2002; Damasio, Damasio, & Van Hoesen, 1982). In contrast to evidence from brain 

lesions, neuroimaging studies that have directly compared the response in the FFA to 

familiar and unfamiliar faces have shown mixed results. Some studies report stronger FFA 

activity for familiar compared to unfamiliar faces (Elfgren et al., 2006; Gobbini, Leibenluft, 

Santiago, & Haxby, 2004; Pierce et al., 2004; Sergent et al., 1992), while others find no 

difference in response (Gorno-Tempini & Price, 2001; Leveroni et al., 2000). 

Support for the role of the FFA in familiar face recognition comes from studies 

that directly correlate neural responses with behavioural measures of face processing. 

For example, Grill-Spector and colleagues (2004) showed that the activation in the FFA 

was higher in trials when participants successfully detected and identified a familiar face 

than when they did not. Other studies have used an individual differences approach in 

which neural responses are correlated with behavioural performance in face recognition 

(Yovel & Kanwisher, 2005; Furl, Garrido, Dolan, Driver, & Duchaine, 2011; Huang, Song, 

Zhen, Yang, & Liu, 2014). For example, Furl and colleagues showed that performance 

across tasks that measure face matching and recognition correlated with face-selectivity 

in the FFA. However, this study included both normal and prosopagnosic participants, so 

it is not clear whether this relationship was primarily based on the difference between 
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these two participant groups. A more recent study, using a large population of normal 

participants found that differences in a memory task for faces compared to non-face 

objects was correlated with the selectivity of the FFA (Huang et al., 2014). However, this 

study only used unfamiliar faces and only tested recognition performance with identical 

images. So, it is unclear whether this relationship reflects image-based rather than 

identity-based face processing. A stronger test for a link between neural activity and the 

recognition of facial identity is to determine whether this correlation is still evident when 

different images from the same identity are shown (i.e. image-invariant perception). 

The aim of this study was (1) to determine whether there is a difference in the 

response to familiar and unfamiliar faces in face-selective regions and (2) to determine if 

individual differences in the response to familiar and unfamiliar faces can predict the 

behavioural advantage for familiar faces. To address these questions, we first measured 

the difference in neural response to familiar and unfamiliar faces in face-selective regions 

using fMRI. Next, participants performed a matching task that involved discriminating 

whether two different face images belonged to the same identity or a different identity. 

Participants performed this task with both familiar and unfamiliar faces. Our hypothesis 

was that individual differences in the matching task for familiar and unfamiliar faces 

would be reflected in corresponding differences in the neural response in face-selective 

regions, such as the FFA. To determine the face-specific nature of any relationship 

between neural and behavioural measures of face processing, we repeated the 

experiment with familiar and unfamiliar scenes. 
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3.3 Methods 

3.3.1 Participants 

40 right-handed participants with normal or corrected to normal vision participated in the 

experiment. Data from two participants had to be excluded: one participant showed 

uncorrectable motion artefacts, while data from another participant was withdrawn for 

routine screening. Data sets from 38 participants were therefore analysed (19 females; 

mean age: 24.3 ± 1.3 years). All participants gave their written informed consent. The 

study was approved by the York Neuroimaging Centre Ethics Committee. 

3.3.2 Behavioural Experiment 

There were two behavioural experiments: a face matching experiment and a 

scenematching experiment. A matching task was employed since it is commonly used to 

assess differences in recognition ability between familiar and unfamiliar stimuli (Bruce et 

al., 2001; Davies-Thompson et al., 2009; Epstein, Higgins, Jablonski, & Feiler, 2007; Young 

et al., 1986). There were 4 trial types in the face matching task (Fig. 3.1A):  

   (i) familiar face same (two different images with the same identity)  

   (ii) familiar face different (two different images with different identities)  

   (iii) unfamiliar face same (two different images with the same identity)  

   (iv) unfamiliar face different (two different images with different identities).  

Face stimuli were taken from a previous study (Davies-Thompson et al., 2013) and 

included male and female identities. Familiar faces consisted of pictures depicting famous 

UK/US celebrities. Unfamiliar faces depicted celebrities from other countries and were 

unknown to the participants. Participants had to judge whether the two images depicted 

the same identity or different identities with a button press. On each trial, a fixation cross 
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on a black screen was presented for 1.5s.This was followed by a face image for 800ms, a 

black screen for 200ms and then a second face image for 800ms. The gender was always 

the same in each trial. Eight images of 36 identities (288 images) were used to create 144 

trials. Half the trials used familiar faces and half the trials used unfamiliar faces. 

Moreover, half the trials included faces from the same identity and half the trials used 

faces from different identities. Accuracy and reaction time were measured for each trial. 

Response accuracy was converted to d’[z-score (hits) - z-score(false alarms)]. The scene 

matching task had an identical design (Fig. 3.1B). 

 

Figure 3.1   Example  trials from the matching task. Participants had to judge (A) whether two successive 

face images had the same identity or (B) whether two successive scenes depicted the same landmark. 

Images were either familiar or unfamiliar to the participants. 
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Scene stimuli were taken from public sources on the world-wide web and consisted of 

buildings from the following architectural styles: bridges, domed structures, classical 

architecture, neoclassical architecture, skyscrapers (art deco), and skyscrapers (high-

tech). Pairs of images in each trial were taken from the same subcategory of scene to 

minimize visual differences between the images.  

After the behavioural tasks, participants were given a recognition test. 

Recognition ability was measured with a questionnaire depicting one image of each of the 

familiar stimuli used (18 familiar faces, 18 familiar scenes). Participants were asked to 

name or provide some information of the images. Participants correctly recognized 91.5% 

(SD ± 13.7%) of the familiar faces and 56.1% (SD ± 17.1%) of the familiar scenes. 

3.3.3 Experimental Design 

There were 6 stimulus conditions in the fMRI experiment (Fig. 3.2):  

   (i) familiar faces 

   (ii) unfamiliar faces 

   (iii) scrambled faces 

   (iv) familiar scenes 

   (v) unfamiliar scenes 

   (vi) scrambled scenes  

Face and scene stimuli showed the same identities and landmarks that were used in the 

behavioural experiment. However, different images were used. Scrambled images were 

created by scrambling the phase of the face and scene images. All images were presented 

in greyscale. Stimuli from each condition were presented in a blocked design.  
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Figure 3.2   Example blocks of different stimulus conditions in the fMRI experiment: A) face stimuli and B) 

scene stimuli. 

Faces in each block always had the same gender. Scenes in each block were taken from 

the same subcategory of scene. Each stimulus block lasted for 9s and contained 9 images. 

Within each stimulus block, each image was presented for 800ms followed by a 200ms 

blank screen. Each of the six stimulus conditions was repeated 6 times. This gave a total 

of 36 blocks. The blocks were presented in a counterbalanced order. Blocks were 

separated by a 9s fixation screen (a white fixation cross on a black background).  To 

maintain attention, participants performed a one-back task in which participants 



Chapter 3  Familiar face recognition advantage 

43 
 

responded with a button press every time an identical image was directly repeated.  This 

allowed us to use a common behavioural task across all conditions and minimised the 

influence of task on neural response (Kanwisher et al., 1997; Davies-Thompson et al., 

2009).  

3.3.4 Imaging Parameters 

Data was collected using a GE 3 Tesla HD Excite MRI scanner at the York Neuroimaging 

Centre at the University of York. For each participant, a T1-weighted structural MRI 

(1x1x1mm voxel) and a gradient-echo EPI were acquired. The EPI sequence was recorded 

with a radio-frequency coil tuned to 127.4 MHz and was used to acquire 38 axial slices (TR 

= 3s, TE = 33ms, flip angle = 90°, FOV = 260mm, matrix size = 128 x 128, slice thickness = 

3mm, voxel size: 2.25 x 2.25 x 3mm). Data was analysed with FEAT version 4.1 

(http://www.fmrib.ox.ac.uk/fsl). The first 9 seconds (3 volumes) from each scan were 

discarded, and MCFLIRT motion correction, spatial smoothing (Gaussian, FWHM 5mm), 

and temporal high-pass filtering (cutoff 0.0093Hz) were applied.  

3.3.5 fMRI Analysis 

The BOLD response for each condition was modelled with a box-car function convolved 

with a standard haemodynamic response function. Face-selective regions were defined 

by the average statistical maps created by familiar faces > scrambled faces and unfamiliar 

faces > scrambled faces. Scene-selective regions were defined by the average statistical 

maps created by familiar scenes > scrambled scenes and unfamiliar scenes > scrambled 

scenes. Face-selective ROIs were defined independently for each participant. First, the 

threshold of the face-selective statistical map was adjusted until it divided into individual 

clusters that corresponded with the core face-selective regions (FFA, OFA, STS). The 

http://www.fmrib.ox.ac.uk/fsl
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cluster function in FSL was used to identify the peak voxel within each cluster. Next, a 

flood-fill algorithm was used to increase the size of the region incrementally based on the 

z-scores of individual voxels. This allowed us an objective method to generate ROIs with 

the same number of voxels across individuals. Our initial analysis was based on a ROI size 

of 50 most-selective voxels, but we also varied the size of the ROIs from 25 - 100 voxels. 

Only ROIs where all voxels lied above the minimum threshold of Z = 2.3 were included in 

the analysis. 

To measure the neural response to faces and scenes, the response of each voxel 

was averaged within a ROI. The units were converted from units of image intensity to 

percentage signal change (% MR signal change) and normalized to the start of each block 

(Fig. 3.3).  
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Figure 3.3   Average time course of response in A) face-selective regions and B) scene-selective regions 

across participants. Error bars represent 1 SE. 
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The peak response across the time series was taken at 9s after the onset of the block for 

each stimulus condition in each participant. To examine a potential relationship with 

behaviour, we calculated the difference between peak response to familiar and 

unfamiliar faces. This normalization is critical to remove overall differences in the 

amplitude of response across individuals. The relative difference between the neural 

response to familiar and unfamiliar faces was then compared with corresponding 

difference between familiar and unfamiliar faces in the behavioural task. 

Finally, a whole brain analysis was run to test whether effects observed during the 

ROI analysis could be found in regions outside the defined ROIs. First, the behavioural 

difference in d’ between familiar–unfamiliar face matching was measured for each 

participant. These values were demeaned across participants and then used as a 

regressor in the group analysis of the contrast of familiar > unfamiliar faces. This allowed 

us to determine if there were any regions in which individual differences in fMRI response 

between familiar and unfamiliar faces could predict the corresponding difference in 

matching performance. An analogue analysis was performed for scenes. To account for 

multiple comparisons, statistical thresholding was carried out using clusters determined 

by z > 2.3 and a corrected cluster significance of p = 0.05. 

3.4 Results 

3.4.1 Face matching task 

A matching task was used to determine differences in the perception of familiar and 

unfamiliar faces. Accuracy (d’) in the identification of familiar faces was significantly 

greater than for unfamiliar faces (familiar: M = 3.56, SD = 0.89; unfamiliar: M = 1.99, SD = 

0.51; t(37) = 11.61, p < .001). Although most participants showed an advantage for 
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familiar faces, there was individual variation in the magnitude of the effect. Figure 3.4A 

shows the range of performance across participants (range: -0.15 – 3.24). Response times 

also revealed a familiar face advantage: familiar faces were matched significantly faster 

than unfamiliar faces (familiar: M = 0.77s, SD = 0.16s; unfamiliar: M = 0.84s, SD = 0.18s; 

t(37) = -6.60, p < .001). There was also individual variation in the difference in response 

time to familiar and unfamiliar faces (range: -.26s ― .04s). 

3.4.2 fMRI response in face-selective regions 

The localiser scan revealed a number of face-selective regions: the fusiform face area 

(FFA), occipital face area (OFA) and superior temporal sulcus (STS). The peak coordinates 

of these regions and the number of ROIs that could be localized in each participant are 

shown in Table 3.1. The location of these ROIs correspond closely to those found in 

previous studies (Davies-Thompson & Andrews, 2012; Grill-Spector et al., 2004; 

Kanwisher et al., 1997).  
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Next, a repeated-measures ANOVA was performed separately for each ROI with the 

factors Category (faces and scenes) and Familiarity (familiar and unfamiliar). Table 3.2 

shows the effect of Category and Familiarity for each ROI. There was a significant main 

effect of Category for each ROI. This was due to higher responses to faces compared to 

scenes in face-selective regions and higher responses to scenes compared to faces in 

scene-selective regions. There was also a significant main effect of Familiarity in each ROI. 

This was due to higher responses to familiar compared to unfamiliar stimuli. There was 

no interaction between Category and Familiarity in all ROIs except the rOFA. This 

interaction was due to a higher response to familiar compared to unfamiliar faces, but no 

difference in the response to familiar and unfamiliar scenes.  

3.4.3 Correlation between fMRI and behavioural responses to faces 

To determine whether there was a link between responses in face-selective regions and 

the perception of familiar faces, we compared individual differences in fMRI response 

(Fig. 3.4B) with corresponding differences on the face matching task. Table 3.3 shows the 

correlation between neural response (familiar-unfamiliar) and behavioural accuracy 

(familiar-unfamiliar) across individuals in all ROIs. The rFFA showed a significant 

correlation (r(36) = 0.38, p < 0.05, confidence interval: 0.07 – 0.69) with accuracy on the 

face matching task (Fig. 3.4C). The correlation was not dependent on the size of the ROI 

(Fig. 3.4D). In contrast to the rFFA, no other face ROIs showed a correlation with 

behavioural accuracy on the face-matching experiment. The rOFA showed a marginal 

trend towards a correlation, which did not reach significance (r(35) = 0.29, p = 0.08, 

confidence interval: -0.04 – 0.62).  In contrast to accuracy, response times on the face 

matching task and neural response of any ROI did not correlate significantly (Table 3.4). 
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Figure 3.4   Behaviour and neural responses to familiar and unfamiliar faces and their correlation. 

 (A) behavioural matching performance and (B) rFFA response. Left graphs show group average with SE 

bars, right graphs show individual variation in the difference between familiar and unfamiliar faces.  

(C) Correlation between the rFFA response and matching performance. (D) The correlation remained 

significant when ROI size was varied from 25-100 voxels. This shows a link between responses in the rFFA 

and behavioural matching advantage for familiar faces. 

To test whether a relationship between fMRI activity and the behavioural matching 

advantage could be found in brain regions outside the core face-selective regions, we 
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performed a whole brain analysis. Consistent with the ROI analysis, a region in the right 

fusiform gyrus showed a significant correlation (Fig. 3.5 and Table 3.5). Only one other 

region in the ventral striatum showed a significant correlation between neural and 

behavioural responses. 

3.4.4 Behavioural and neural scene measures 

To test whether the patterns of response were specific to face perception, an identical 

analysis was performed using behavioural and neural responses to scenes. In contrast to 

faces, we did not observe a significant advantage on the perceptual matching task for 

familiar scenes. In fact, there was a small advantage for matching unfamiliar scenes in 

accuracy (famous: M = 3.06, SD = 0.59; unfamiliar: M = 3.45, SD = 0.66; t(37) = 3.93,  

p < .001) and response time (famous: M = 0.79s, SD = 0.18s; unfamiliar: M = 0.77s,  

SD = 0.18s; t(37) = 3.60, p < .001). This finding was unexpected, since a matching 

advantage for familiar scenes has previously been shown (Epstein et al., 2007). 

Nevertheless, there was individual variation in the difference between familiar and 

unfamiliar scene matching (d’ range: -1.94 ― 0.96). 
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Figure 3.5   Whole brain regression analysis between the contrast of familiar > unfamiliar faces and 

behavioural familiar face advantage. This analysis revealed significant clusters in the (A) right fusiform gyrus 

(fusiform) and (B) the ventral Striatum (striatum). 

Next, we tested whether individual variation in the perceptual matching of scenes could 

be predicted by activity in the rFFA. The rFFA did not show a correlation between neural 

responses and either accuracy (Table 3.6) or response time (Table 3.7) to scenes. None of 

the other face-selective ROIs showed a correlation between neural responses and either 

accuracy or response time for scenes, except for the rSTS which showed a negative 

correlation with response time for scenes (r(36) = -.33, p < .05, confidence interval:  

 -0.64 ― -0.01).  

Then we analysed the response in scene-selective regions using a repeated-

measures ANOVA with the factors Category (faces and scenes) and Familiarity (familiar 

and unfamiliar). The rPPA and lPPA responded significantly more to scenes than faces and 

to familiar compared to unfamiliar stimuli. There was no significant interaction between 

Category and Familiarity (Table 3.2). 
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Finally, there was no correlation between neural and behavioural responses to scenes in 

the scene-selective PPA. A whole-brain analysis was used to determine if there were any 

regions outside the ROIs that were defined that showed a correlation between neural and 

behavioural responses to scenes. However, we did not find any regions that showed a 

significant relationship. 

 

3.5 Discussion 

The aim of this study was to use an individual differences approach to determine the link 

between activity in face-selective regions and the perception of familiar faces. In a 

behavioural experiment, we found that participants were significantly more accurate 

when matching familiar faces compared to unfamiliar faces. Similarly, we found that the 

response in the rFFA was significantly higher to familiar faces compared to unfamiliar 

faces. Next, we determined whether there was a link between these neural and 

behavioural measures. Our results show a correlation between neural processing in the 

rFFA and the behavioural advantage for the perception of familiar faces. 

 Our results are consistent with previous studies that have shown familiar faces are 

easily recognized across changes in viewpoint and illumination, whereas unfamiliar faces 
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are more difficult to recognize across similar image manipulations (Bruce et al., 1987; 

Davies-Thompson et al., 2009; Hancock et al., 2000; Jenkins et al., 2011; Megreya & 

Burton, 2006). However, we also found that the magnitude of the difference on 

perceptual matching varied across participants (d’ range = -0.15 – 3.09). To determine the 

neural correlates of this individual variation in perceptual matching, we measured the 

response to familiar and unfamiliar faces in the FFA. We found that familiar faces elicited 

a significantly higher response in the FFA compared to unfamiliar faces (see also Elfgren 

et al., 2006; Gobbini et al., 2004; Pierce et al., 2004; Sergent et al., 1992). Moreover, the 

individual variation in neural response in the rFFA was positively correlated with 

individual differences in perceptual matching. That is, participants who showed a larger 

difference in the neural response to familiar and unfamiliar faces showed larger 

differences in perceptual matching of familiar and unfamiliar faces.  

A number of previous studies have used an individual differences approach to 

explore the link between activity in the FFA and behavioural performance in face 

processing (Bi, Chen, Zhou, He, & Fang, 2014; Furl et al., 2011; Huang et al., 2014; Yovel & 

Kanwisher, 2005). For example, Yovel and Kanwisher (2005) investigated whether 

response in any face-selective region could account for the behavioural face inversion 

effect. They found that individual differences in neural response in the FFA between 

upright and inverted faces correlated with difference in accuracy when matching upright 

versus inverted faces. A related finding was reported by Huang and colleagues (2014) 

who found that individual differences in a face-memory task correlated with face-

selectivity in the FFA. However, these studies used unfamiliar faces and only tested 

performance with identical images. Furl and colleagues (2011) addressed this issue by 

measuring performance on tests of face perception and recognition that could not be 



Chapter 3  Familiar face recognition advantage 

55 
 

solved by image matching. In their study, they showed that performance across these 

tasks correlated with face-selectivity in the FFA. However, this study included both 

normal and prosopagnosic participants, so it is not clear whether this relationship was 

primarily based on the difference between these two participant groups. The findings 

from our study demonstrate a clear link between the recognition of familiar faces and 

neural processing in the rFFA in normal participants.  

The responses in other face-selective regions, such as the OFA and STS, were also higher 

for familiar compared to unfamiliar faces. However, these regions did not correlate with 

accuracy on the matching task. There was also no correlation between neural and 

behavioural measures in the lFFA. This finding contrasts with previous studies that have 

reported a relationship between perception and neural response in both the right and 

left FFA (Bi et al., 2014; Furl et al., 2011; Huang et al., 2014; Yovel & Kanwisher, 2005). It 

is possible that the difference in this study reflects the use of familiar faces and an 

experimental design that could not be performed by image matching. There was also no 

correlation between activity in the STS and accuracy on the face matching task. This is 

consistent with the role of this region in the processing of changeable aspects of faces, 

such as expression and viewpoint (Allison et al., 2000; Baseler, Harris, Young, & Andrews, 

2014; Engell & Haxby, 2007; Harris, Young, & Andrews, 2012).  

A number of studies have used fMR-adaptation paradigms to probe the neural 

basis of familiar face perception in the FFA. Evidence that the FFA is important for face 

recognition has been shown in fMRI studies in which a reduced response (adaptation) is 

found for repeated images of the same face image (Andrews & Ewbank, 2004; Ewbank & 

Andrews, 2008; Grill-Spector et al., 1999; Loffler, Yourganov, Wilkinson, & Wilson, 2005; 
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Rotshtein et al., 2004). However, a stronger test for whether this demonstrates selectivity 

for the identity of the face is if the adaptation is still evident when different images from 

the same identity are shown (i.e. image-invariant adaptation). Although a number of 

studies have shown image-invariant adaptation to familiar faces in the FFA (Davies-

Thompson et al., 2013; Eger et al., 2005; Ewbank & Andrews, 2008; Henson et al., 2000; 

Loffler et al., 2005; Rotshtein et al., 2004), other studies have failed to find any image-

invariant adaptation (Davies-Thompson et al., 2009; Pourtois et al., 2005b). 

Studies using multivariate analyses have investigated if the pattern of response in the FFA 

can predict facial identity. Although early studies failed to find identity-selective patterns 

in the FFA (Kriegeskorte, Formisano, Sorger, & Goebel, 2007; Natu, Jiang, Narvekar, 

Keshvari, Blanz, & O’Toole,2010), more recent reports suggest that it is possible to 

decode identity in the pattern of response from the FFA (Nestor, Plaut, & Behrmann, 

2011; Anzellotti, Fairhall, & Caramazza, 2013; Goesaert, & Op de Beeck, 2013, Axelrod & 

Yovel, 2015).  

To investigate whether regions outside the face processing network could predict 

the behavioural familiar face matching advantage, we performed a whole brain analysis 

using difference in matching performance between familiar and unfamiliar faces as a 

regressor. Consistent with the ROI analysis, we found a significant effect in a region of the 

right fusiform gyrus overlapping with the average rFFA region of the ROI analysis. This 

analysis also revealed a region in the ventral striatum. The ventral striatum is part of the 

reward network (Haber & Knutson, 2010; Olds & Milner, 1954). It is not clear why this 

region was correlated with behavioural performance. However, it has also been shown to 

be activated by attractive faces which were not associated with any reward outcome 
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(Aharon et al., 2001). Therefore, it is possible that this relationship might reflect other 

aspects of the images that covary with familiarity. 

A number of studies have suggested that the FFA may be selective for within-

category discrimination of familiar objects rather than being specifically face-selective 

(Gauthier et al., 2000; Harley et al., 2009; McGugin, Gatenby, Gore, & Gauthier, 2012). 

For example, McGugin, Gauthier and colleagues (2012) reported that individual 

differences in the behavioural ability of car experts could be predicted by the difference 

in the selectivity of the FFA for cars. To address this issue, we compared behavioural 

performance on scenes with the response to scenes in the rFFA. Scenes were chosen 

since they are visually distinct from faces and, similarly to faces, there is a network of 

brain regions highly selective for scenes, like the PPA.  In contrast to faces, we found no 

correlation between the difference in rFFA response to famous and unfamiliar scenes and 

corresponding differences in accuracy on the perceptual matching task. We also did not 

see any correlation between these neural and behavioural measures in the PPA. One 

explanation could be that participants were not familiar enough with the famous scenes 

used in this study. Only about half of the famous scenes were reported as being familiar 

in the recognition test. Our results contrast with previous studies which have shown a 

matching advantage for familiar scenes across different views (Epstein et al. 2007). 

However, in this previous study, they used pictures of personally familiar scenes. Thus our 

famous scene stimuli might have not been sufficiently familiar, which is in line with the 

low recognition score for famous scenes.  

In conclusion, our results show that individual responses in the rFFA response can 

predict individual differences in perception of familiar and unfamiliar faces. This 
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relationship seems to be specific to the rFFA as it was not observed in any other face-

selective region. Taken together our results demonstrate a link between activity in the 

rFFA and the perception and recognition of familiar faces.  
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Chapter 4 – Spatial patterns of response in face 

regions to identity, viewpoint, and expression can 

be predicted by variance in image properties  

This chapter is adapted from: Weibert, Flack, Young & Andrews (2016). Spatial patterns 

of response in face regions to identity, viewpoint, and expression can be predicted by 

variance in image properties. (in preparation)2 

4.1 Abstract 

Models of face processing propose that the fusiform face area (FFA) plays an important 

role in processing facial identity. For example, patterns of response in the FFA can 

successfully decode facial identity across changes in viewpoint or expression. However, 

other studies have reported that the patterns of response in the FFA can decode 

viewpoint or expression across different identities. Thus, the relative role of identity, 

viewpoint, and expression on the pattern of response in the FFA remains unclear. Here, 

we used fMRI and a correlation-based MVPA to explore how identity, viewpoint, and 

expression are represented in face-selective regions. First, we contrasted the relative role 

of identity and viewpoint on patterns of response in face regions. Faces from three 

famous identities were shown from three different viewpoints. A representational 

similarity analysis of the fMRI data showed that viewpoint explained the pattern of  

response within face-selective regions significantly better than identity. Next, we 

compared effects of two changeable aspects, viewpoint and expression. Again, viewpoint 

predicted brain response within face-selective regions significantly better than 

expression. Finally, we asked whether lower-level image properties could explain these 

                                                      
2 The author, Katja Weibert, designed the experiment, analysed the results, and wrote the article under 
the supervision of Prof. Timothy Andrews.   
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findings. Lower-level image properties predicted the neural patterns in all face-selective 

regions. Our results suggest that coarse topographical organization of the face regions is 

based on the image properties conveyed by facial cues. 

4.2 Introduction 

The identity of familiar faces is easily recognised across different viewing conditions, such 

as changes in viewpoint and expression. Models of face processing propose separate 

processing of information about identity and changeable aspects of faces, such as 

viewpoint and expression (Bruce & Young, 1986; Haxby et al., 2000). While the early face 

processing occipital face area (OFA) is proposed to be sensitive to the visual properties of 

the face, the fusiform face area (FFA) is thought to show an image-invariant 

representation. This image-invariant representation might underlie our familiar face 

recognition ability across changes in viewpoint and expression (Bruce & Young, 1986; 

Burton, Bruce, & Hancock, 1999). 

Studies using multi-voxel pattern analysis (MVPA) provide evidence for an 

invariant representation of identity in the spatial pattern of response in the FFA 

(Anzellotti et al., 2013; Guntupalli, Wheeler, & Gobbini, 2016; Natu et al., 2010; Nestor et 

al., 2011). For instance, Anzellotti and colleagues (2013) measured brain response to 

different identities shown from different views. Then they trained a classifier on brain 

responses to all-but-one view of two identities and finally tested whether it could decode 

identity from the left-out view. Brain responses in the FFA allowed successful decoding of 

identity across different views. In line with these findings, other MVPA studies 

successfully decoded identity from FFA response across other changes such as facial 
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expressions (Nestor et al., 2011; Axelrod & Yovel, 2015) suggesting that the FFA 

represents the identity of a face change-independently. 

However, these findings contrast with other studies showing that there are 

distinct representations of changeable aspects of faces in the FFA (Axelrod & Yovel, 2012; 

Kietzmann, Swisher, König, & Tong, 2012; Said, Moore, Engell, Todorov, & Haxby, 2010; 

Wegrzyn et al., 2015; Zhang et al., 2016). For instance, Axelrod and Yovel (2012) 

measured brain response to different viewpoints shown of different identities. Then they 

trained a classifier to decode the view from the brain response. They could successfully 

decode viewpoint across different identities from FFA response. Thus while some studies 

report change-independent identity representations, others report identity-independent 

representations of changeable aspects within the FFA. 

The ability to decode identity and viewpoint in face regions might be explained by 

overlapping representations of viewpoint and identity. Freiwald and Tsao (2010) recorded 

from face-selective neurons in the macaque temporal lobe and found that, while 

posterior temporal regions represented the viewpoint of faces, a more view-invariant 

identity representation emerges towards more anterior regions. Similar findings have 

been reported by Guntupalli and colleagues (2016) who found that the identity 

representation became progressively view-invariant towards anterior regions of the 

temporal lobe. In this study, the response in the FFA contained viewpoint and identity 

information suggesting overlapping representations in this region might reflect an 

intermediate stage in the processing of facial identity. 

 An alternative explanation for the organization of face regions could be that they 

represent lower-level image properties. Images of different viewpoints vary in terms of 

lower-level image properties. Thus a region differentiating between different viewpoints 
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might in fact differentiate between different lower-level image properties associated with 

changes in viewpoint. Indeed, previous studies which successfully decoded identity or 

viewpoint information from FFA, also report successful decoding from the early face 

processing region OFA (Anzellotti et al., 2013; Natu et al., 2010; Wegrzyn et al., 2015)  

suggesting that image information might contribute to the reported successful decoding. 

Support for this alternative explanation provide studies reporting response in regions 

within the ventral stream to reflect lower-level image properties (Andrews, Watson, Rice, 

& Hartley, 2015; Rice, Watson, Hartley, & Andrews, 2014; Watson, Young, & Andrews, 

2016). 

The aim of this study was thus to investigate the relative contribution of identity, 

viewpoint, and expression on brain response in face-selective regions. Additionally, we 

tested whether the observed findings could be alternatively explained by lower-level 

image properties associated with these facial cues. To address this question, we 

performed two fMRI experiments. The first one compared identity and viewpoint effects 

using three identities shown from three different viewpoints (9 conditions). The second 

experiment used an analogue design showing three expressions from three different 

viewpoints. Finally, we compared lower-level image properties across conditions. We 

predict that if a region represents identity, different views of the same identity would 

elicit similar brain responses. On the other hand, if a region represents viewpoint 

independent of identity, we predict that same views of different identities elicit similar 

brain responses. However, if brain response in face-selective regions reflects lower-level 

image properties, we predict that conditions with similar lower-level image properties 

would elicit similar brain responses.  
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4.3 Methods 

4.3.1 Participants 

For experiment 1, data were collected from 19 participants (7 males, mean age = 22.8 ± 

1.0 years). For experiment 2, data were collected from 24 participants (9 males, mean age 

23.5 ± 2.5 years). All participants were right-handed with normal or corrected to normal 

vision. Written informed consent was obtained from all participants. The study was 

approved by the York Neuroimaging Centre Ethics Committee. 

4.3.2 Experiment 1 

Experiment 1 compared the effects of the invariant aspect identity and the changeable 

aspect viewpoint on brain response within face-selective regions. To investigate identity 

and viewpoint processing in face-selective regions, three different identities (Brad Pitt 

(BP), David Beckham (DB), and Justin Timberlake (JT)) were shown from three different 

views resulting in 9 stimulus conditions (Fig. 4.1): 

(i) Brad Pitt, left 

(ii) Brad Pitt, frontal 

(iii) Brad Pitt, right 

(iv) David Beckham, left 

(v) David Beckham, frontal 

(vi) David Beckham, right 

(vii) Justin Timberlake, left 

(viii) Justin Timberlake, frontal 

(ix) Justin Timberlake, right 
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Figure 4.1  Experiment 1: Experimental design and example blocks of one identity. Each identity was shown 

from three viewpoints (left, frontal and right). Within each block images shared identity and viewpoint. To 

measure response independent of image five different images were used in each block varying in hairstyle, 

lighting etc.. 

Stimuli were taken from a variety of internet sources using Google Images and were of 

three famous male identities: Brad Pitt, David Beckham, and Justin Timberlake. The use of 

famous identities had two advantages. First, it ensured recognition across different 

different viewpoints, which has been reported to be impaired for unfamiliar identities 

(Bruce et al., 1999; Davies-Thompson et al., 2009; Hancock et al., 2000). Personally 

familiar stimuli are also easily recognised across viewpoint changes. However, they have 

the disadvantage, that the stimulus sets must be individually tailored to each participant. 

Thus stimuli sets differ between participants in terms of lower-level image properties 

making them unsuitable for our experiment. Second advantage of using famous identities 

was that it allowed us to select different images for each condition. This ensured, that 

response to each condition does not reflect response to a certain image but rather across 

different images. Additionally, we could roughly match the appearance of our identities in 
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terms of hairstyles etc. as well as control lower-level image properties of this newly 

created stimulus set (see Table 4.1 for analysis of image properties). 

Prior to scanning we ensured that participants were familiar with our stimuli. 

Participants were asked to name the identities used. All participants could name all 

identities. After scanning, we also checked that participants could recognise the identities 

from the different images used in our experiment. Participants performed an identity 

matching task on the images used during the scan. On each trial they were shown two 

different images sequentially and asked whether they depicted the same identity or 

different identities. Performance was at ceiling (mean accuracy: 93.69%, ± 3.21%) 

suggesting that participants were very familiar with the identities shown.  

Five different face images were used in each condition. Greyscale versions of these 

images were presented in a blocked design. During the scan a one-back task was used to 

maintain attention, where participants responded with a button press every time an 

identical image was directly repeated (one target per block). Each stimulus block 

contained 6 images (5 unique images, 1 repeated). Performance was at ceiling (mean 

accuracy: 98.0% ± 0.01). Within each stimulus block, each image was presented for 800ms 

followed by a 200ms blank screen. So, each stimulus block lasted 6s. Blocks were 

separated by a 9s fixation screen (a white fixation cross on a black background). 

Experiment 1 consisted of two experimental runs, each with 4 repetitions of each of the 

nine stimulus (total of 36 blocks per run) presented in a counterbalanced order.  

 

 



Chapter 4  Identity, viewpoint, & expression 

66 
 

4.3.3. Experiment 2 

Experiment 2 compared the effects of the two changeable aspects, expression and 

viewpoint, on brain response within face-selective regions. Face images were taken from 

the Radboud Faces Database (Langner et al., 2010) and depicted different people posing 

three different expressions (happy, disgust, and fear) taken from three different 

viewpoints. This resulted in 9 stimulus conditions  (Fig. 4.2): 

I. happy, left  

II. happy, frontal  

III. happy, right  

IV. disgust, left  

V. disgust, frontal  

VI. disgust, right  

VII. fear, left 

VIII. fear, frontal  

IX. fear, right 

 

Figure 4.2  Experiment 2: Experimental design and example blocks of one expression. Each expression was 

shown from three viewpoints (left, frontal and right). Within each block images shared expression and 

viewpoint. To measure response independent of image images depicting five different identities were used. 
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A red-spot task was used to maintain attention during the scan, where participants 

responded with a button press every time a red spot appeared (one target per block). 

Performance was at ceiling (mean accuracy: 99.0% ± 1.9). Each stimulus block contained 5 

images. Within each stimulus block, each image was presented for 1000ms followed by a 

200ms blank screen. Each condition was repeated 6 times (total of 54 blocks) presented 

in a counterbalanced order.  

4.3.4 Imaging parameters 

Data from both fMRI experiments were collected using a GE 3 Tesla HD Excite MRI 

scanner at the York Neuroimaging Centre at the University of York. A T1-weighted 

structural MRI (1 x 1 x 1mm voxel) and a gradient-echo EPI were acquired for each 

participant. Functional data was collected using a gradient-echo EPI sequence with a 

radio-frequency coil tuned to 127.4 MHz was used to acquire 38 axial slices (TR = 3s, TE = 

33ms, flip angle = 90°, FOV = 260mm, matrix size = 128 x 128, slice thickness = 3mm, voxel 

size: 2.25 x 2.25 x 3mm).  

4.3.5 fMRI analysis 

First, we examined the magnitude of brain response to each stimulus condition in voxels 

within the ROI. Statistical analysis of the fMRI data was carried out using FEAT version 5.0 

in the FSL toolbox (http://www.fmrib.ox.ac.uk/fsl). The first 3 volumes (9 s) of each scan 

were removed to minimize the effects of magnetic saturation, and slice-timing correction 

was applied. Motion correction was followed by spatial smoothing (Gaussian, full width at 

half maximum 6 mm) and temporal high-pass filtering (cut-off, 0.01 Hz). Separately for 

each run, parameter estimates for each condition in the general linear model (GLM) were 

generated by regressing the hemodynamic response of each voxel against a box-car 
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regressor convolved with a single-gamma hemodynamic response function. In Experiment 

1, we additionally performed a fixed-effects analysis to compute the average parameter 

estimate for each condition across the two runs.  

Analyses were restricted to face-selective regions FFA, OFA and STS using masks 

from a previous study (Sormaz, Watson, Smith, Young, & Andrews, 2016). These masks 

were derived from data from a series of localiser scans using blocks of faces varying in 

identity and viewpoint as well as scrambled faces. Face-selective regions of interest (ROIs) 

were defined at the group level using the contrast faces > scrambled faces. First, the peak 

voxels for the OFA, FFA and STS in each hemisphere were localised. Then the 500 voxels 

with the highest z-scores within each region were selected and finally masks were 

combined across hemispheres generating 3 masks of equal size (1000 voxels) for the OFA, 

FFA and posterior STS (see Haxby et al., 2000).  

Next, we measured patterns of response to each stimulus condition within these 

face-selective regions. The reliability of response patterns was tested using a leave-one-

participant-out (LOPO) cross-validation paradigm (Poldrack, Halchenko, & Hanson, 2009; 

Shinkareva et al., 2008). First, parameter estimates were determined using a group 

analysis of all participants except one. This generated parameter estimates for each 

condition in each voxel. This LOPO process was repeated such that every participant was 

left out of a group analysis once. These data were then submitted to correlation-based 

pattern analyses (Haxby, Connolly, & Guntupalli, 2014; Haxby et al., 2001) implemented 

using the PyMVPA toolbox (http://www.pymvpa.org/; Hanke et al., 2009). Parameter 

estimates were normalised by subtracting the mean response per voxel across all 

experimental conditions (see Haxby et al., 2001). For each iteration of the LOPO cross-

validation, the normalised patterns of response to each stimulus condition were 

http://www.pymvpa.org/
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correlated between the group and the left-out participant. The final correlation matrix 

provides a measure of the similarity in the pattern of response across different 

combinations of conditions. These neural correlations were transformed using Fisher's Z-

transform and then converted into z scores. 

4.3.5.1 Regression analyses 

We next used a representational similarity analysis (RSA; Kriegeskorte, Mur, & Bandettini, 

2008) utilising multiple regression to assess the relative contributions of identity, 

viewpoint, and expression to the neural response patterns. For each aspect (identity, 

viewpoint, expression) a binary regressor was generated representing a model 

correlations matrix whereby ones were placed on those elements where the relevant 

factor was shared and zeroes on all other elements. The regressors were then entered 

into the multiple regression analysis of the LOPO data. This analysis yielded a beta value 

and associated standard error for each regressor which would be expected to differ 

significantly from zero if that regressor were able to explain a significant amount of the 

variance in the MVPA correlations. A t-contrast was used to assess the significance of the 

differences between the regression coefficients for each model. This was performed 

separately for Experiment 1 comparing identity with viewpoint and then Experiment 2 

comparing expression and viewpoint. 

4.3.5.2 Analysis of lower-level image properties 

To investigate the effects of lower-level image properties on patterns of neural response 

in face-selective regions, the image statistics of each object were computed using the 

GIST descriptor (http://people.csail.mit.edu/torralba/code/spatialenvelope/) (Oliva & 

Torralba, 2001). For each image, a vector of 2048 values was obtained by passing the 

image through a series of 32 Gabor filters (eight orientations at four spatial frequencies), 

http://people.csail.mit.edu/torralba/code/spatialenvelope/
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and windowing the filtered images along a 8x8 grid or 64 spatial locations (Fig. 4.3). Each 

vector represents the image in terms of the output of each gabor filter at each position 

across the image. 

 
 
Figure 4.3 Schematic illustration of the calculation of a GIST descriptor for an example image. A series of 

Gabor filters across eight orientations and four spatial frequencies are applied to the image. Each of the 

resulting 32 filtered images is then windowed along a 8x8 grid to give a final GIST descriptor of 2048 values 

(right). 

A Leave-One-Image-Out (LOIO) cross-validation procedure was used to assess the 

similarity of images in different conditions. GIST descriptors were averaged across all but 

one of the images within each condition. These average descriptors were then compared 

with each unique image creating within- and between-category correlations for each 

combination of condition. The similarity matrix of the correlation values for the GIST 

descriptor across all pairwise combinations of conditions was then used as a regressor in 

a multiple regression analysis to predict the fMRI pattern of response within face-

selective regions. This analysis yielded whether beta value and associated standard error 

differed significantly from zero and thus being able to explain a significant amount of the 

variance in the MVPA correlations.  
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4.4 Results 

4.4.1 Experiment 1: Identity versus viewpoint processing 

First, we measured the mean % signal change of each ROI to each identity at each 

viewpoint. Fig. 4.4 shows similar levels of response to all conditions within each region. 

Repeated measures ANOVA showed that there was no effect of identity in any face-

selective region (OFA: F(2,36) = 0.37, p = .694; FFA: F(2,36) = 0.01, p = .995; STS: F(2,36) = 

0.01, p = .994). There was also no effect of viewpoint in the FFA (F(2,36) = 1.69, p = .198). 

However, there was an effect of viewpoint in the OFA (F(2,36) = 7.62, p < .01) and the STS 

(F(2,36) = 8.98, p < .01). All regions showed significant interactions. The interactions were 

driven by higher responses to the left compared to the right view of BP (OFA: F(4,72) = 

4.83, p < .01; FFA: F(4,72) = 5.40, p < .01; STS: F(4,72) = 4.22, p < .01).  
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Figure 4.4  Brain response within face-selective regions  to each condition: Left, frontal, and right view of 

Brad Pitt (BP), David Beckham (DB), and Justin Timberlake (JT). 
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Next, we examined the pattern of brain response. For each ROI, we measured patterns of 

brain response for each of our conditions and then conducted a correlation based MVPA 

(Haxby et al., 2001) to measure their similarity (Fig. 4.5b). To test the effect of identity 

and viewpoint on the brain responses, we used a representational similarity analysis 

(Kriegeskorte et al., 2008). Model correlation matrices were generated where the 

patterns of brain response are entirely predicted by identity or by viewpoint (Fig. 4.5a). 

These were then used as regressors in a multiple regression analysis of the fMRI data  

(Fig. 4.5c).  

Identity did not predict patterns of response in any face-selective region (OFA: β = 

0.02, p = .209; FFA: β = 0.00, p = .875; and STS: β = 0.02, p = .169). However, viewpoint 

predicted patterns of response in all face-selective regions (OFA: β = 0.34, p < .001; FFA:  

β = 0.18, p < .001; and STS: β = 0.21, p < .001). Indeed, viewpoint was a significantly better 

predictor of brain response in all face-selective regions (OFA: t = 13.97, p < .001; FFA:  

t = 8.00, p < .001; and STS: t = 9.36, p < .001). Thus, viewpoint explained patterns of 

responses in all face-selective regions. 
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Figure 4.5 Regression analysis of the fMRI response patterns within face-selective regions.  

(a) Models used for the regression analysis of the fMRI response patterns. Binary models were defined 

representing the cases where the patterns of response are entirely predicted by either identity or viewpoint. 

Conditions labels code identity (BP = Brad Pitt, DB = David Beckham, and JT = Justin Timberlake) and 

viewpoint (left, frontal, or right), e.g. BP_L corresponds to Brad Pitt shown from the left. (b) Similarity of 

fMRI response patterns within face-selective regions measured using MVPA correlation for all conditions. 

These matrices were compared against binary regressor of identity and viewpoint using a multiple 

regression analysis. (c) The resulting beta coefficients for each regressor. Error bars represent 1 SE  

(*** p < .001). 
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4.4.2 Experiment 2: Expression versus viewpoint processing 

Next, we compared the effects of two changeable aspects, expression and viewpoint. 

First, we measured the mean % signal change of each ROI to each expression at each 

viewpoint. Figure 4.6 shows similar levels of response to all conditions within each region. 

Repeated measures ANOVAs showed that there was no effect of expression in any face-

selective region (OFA: F(2,46) = 0.45, p = .639; FFA: F(2,46) = 0.36, p = .700; STS: F(2,46) = 

0.22, p = .806). However, there was an effect of viewpoint in all face-selective regions 

(OFA: F(2,46) = 12.31, p < .001; FFA(2,46) = 8.03, p < .01; STS: F(2,46) = 8.04, p < .01). 

These effects were driven by slightly higher responses to the right view in the OFA and 

FFA, and lower responses to the frontal view in the STS. Finally, none of the face-selective 

regions showed any significant interactions (OFA: F(4,92) = 1.19, p = .322; FFA:  

F(4,92) = 0.15, p = .961; STS: F(4,92) = 1.76, p = 0.14).  
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Figure 4.6  Brain response within face-selective regions to each condition: Left, frontal, and right view of 

happy, disgust, and fear. 
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Next, we examined the pattern of brain response. For each ROI, we measured patterns of 

brain response for each of our conditions and then conducted a correlation based MVPA  

to measure their similarity (Fig. 4.7b). To test the effect of expression and viewpoint on 

the brain responses, we used a representational similarity analysis. Model correlation 

matrices were generated where the patterns of brain response are entirely predicted by 

identity or by viewpoint (Fig. 4.7a). These were then used as regressors in a multiple 

regression analysis of the fMRI data (Fig. 4.7c).  

Expression did not predict patterns of response in any face-selective region (OFA: 

β = 0.01, p = .327; FFA: β = 0.02, p = .149; and STS: β = 0.01, p = .499). However, just as in 

Experiment 1 viewpoint explained brain responses in all face-selective regions 

significantly better than expression (OFA: β = 0.31, p < .001 , t = 14.94, p < .001; FFA:  

β = 0.14, p < .001 , t = 5.69, p < .001; STS: β = 0.31, p < .001 , t = 15.31, p < .001). Thus, 

viewpoint explained patterns of responses in all face-selective regions in both 

experiments. 
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Figure 4.7 Regression analysis of the fMRI response patterns within face-selective regions.  

(a) Models used for the regression analysis of the fMRI response patterns. Binary models were defined 

representing the cases where the patterns of response are entirely predicted by either expression or 

viewpoint. (b) Similarity of fMRI response patterns within face-selective regions measured using MVPA 

correlation for all conditions. These matrices were compared against binary regressor of expression and 

viewpoint using a multiple regression analysis. (c) The resulting beta coefficients for each regressor. Error 

bars represent 1 SE (*** p < .001).  
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4.4.3 Processing of lower-level image properties 

Next, we asked whether the brain responses within face-selective regions could be 

explained by the lower-level properties of the image. To address this question, we 

measured lower-level image properties of each image using the GIST descriptor (Oliva & 

Torralba, 2001). We compared the images within and between conditions by correlating 

their GIST using a Leave-One-Image-Out (LOIO) analysis separately for each experiment. 

This yielded two average GIST similarity matrices (Fig. 4.8a and Fig. 4.8b). Next, we used 

this GIST similarity matrix as a regressor to predict brain response similarity within face-

selective regions. GIST predicted brain response similarity within all face-selective regions 

significantly in Experiment 1 (OFA: β = 1.60, p < .001; FFA: β = 0.95, p < .001; STS: β = 1.09, 

p < .001) as well as in Experiment 2 (OFA: β = 1.20, p < .001; FFA: β = 0.55, p < .001;  

β = 1.23, p < .001) (Fig. 4.8). Indeed the observed effects were around five times as high 

as the previously found viewpoint effects. 
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Figure 4.8  Regression analysis of the lower-level image properties. a) Similarity of GIST measured using 

LOIO correlation for all conditions. b) Results of regression analysis using GIST similarity matrix to predict 

brain response in each face-selective region. The resulting beta coefficients with error bars represent 1 SEM 

(*** p < .001). 
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4.5 Discussion 

The first aim of this study was to investigate the relative role higher level properties of 

faces such as identity, viewpoint, and expression on brain response patterns in face-

selective regions. In Experiment 1, participants viewed images from different identities at 

different views. Identity had no significant effect on patterns of response in face-selective 

regions. However, viewpoint significantly predicted response patterns in all face-selective 

regions. In Experiment 2, we showed images of faces with different expressions from 

different views. Again, only viewpoint significantly predicted response patterns in all face-

selective regions. Next, we asked whether response within face-selective regions could be 

explained by lower-level image properties. We found that indeed lower-level image 

properties predicted response patterns in all face-selective regions. 

 Previous studies have reported distinct patterns of neural response to different 

identities independent of changes to the image, e.g. different views (Axelrod & Yovel, 

2015; Guntupalli et al., 2016; Natu et al., 2010; Nestor et al., 2011). We did not find such 

an image-invariant representation of identity in any face-selective region. This could not 

be explained by difficulties to recognise the identities used, since all participants could 

name all our famous identities and successively recognised them across the different 

images used. A potential explanation could be our use of different images within each 

condition. Previous identity decoding studies measured brain response to the exactly 

same image (Anzellotti et al., 2013) or highly similar images, e.g. only varying slightly in 

size or position on screen  (Guntupalli et al., 2016). We deliberately measured brain 

response to each condition across different images. This way we tried to ensure we are 

capturing brain response specific to an identity rather than to specific images.  
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Viewpoint significantly predicted response patterns in all face-selective regions. This 

finding was consistent across different analyses and is in line with studies reporting 

viewpoint representation across different identities within face-selective regions (Axelrod 

& Yovel, 2012; Guntupalli et al., 2016; Kietzmann et al., 2012). Consistent, with previous 

findings (Axelrod & Yovel, 2012; Guntupalli et al., 2016), the largest viewpoint effect was 

observed in the OFA, which is thought to be involved in processing the visual properties 

of face images. This suggests that rather than an effect of viewpoint, this finding might 

reflect visual image properties. 

Recent studies have shown that lower-level image properties can be used to 

predict patterns of response in category-selective regions (Andrews et al., 2015; Rice et 

al., 2014; Watson et al., 2016). These findings suggest that response patterns within face-

selective regions may reflect lower-level image properties that typically co-occur with 

different facial cues such as identity, viewpoint, or expression rather than these higher 

level properties per se. Hence, we measured lower-level image properties of our 

conditions and used these to explain response within face-selective regions. We found a 

significant effect of lower-level image properties on response patterns of all face-selective 

regions.  

The link between the patterns of fMRI response to faces and their image 

properties has important implications for understanding how the ventral visual cortex is 

organized. The strong, linear relationship between low-level image properties and the 

spatial patterns of neural response suggests that more basic principles could underpin the 

topographic organization of face regions. These findings are consistent with previous 

studies that used PCA to show that neural responses to different object categories in 
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inferior temporal cortex can be predicted by variance in the principal components of the 

images (Baldassi et al., 2013; O'Toole, Jiang, Abdi, & Haxby, 2005). 

The patterns of fMRI response generalized across participants. Using a modified 

cross-validation analysis (Haxby et al., 2001), we compared the pattern of response in one 

participant with the pattern from a group analysis in which that participant was left out 

(Shinkareva et al., 2008; Poldrack et al., 2009; Haxby et al., 2001). This LOPO approach 

showed that the topographic patterns of response to different object categories were 

consistent across individuals. These observations are significant in that they suggest that 

our findings reflect the operation of consistent, large-scale topographical organizing 

principles, rather than an arbitrarily distributed representation in each individual. 

These results should not be taken to imply that higher level properties are not 

represented in face regions. Rather, these results show that the coarse, topographic 

organization is not dependent on these properties.  It is entirely possible that higher level 

properties such as identity and expression could be represented at a finer spatial scale 

than can be detected by fMRI. For example, in early visual areas topographic maps of the 

visual field are clearly evident across the cortical surface (Engel, Glover, & Wandell, 1997).  

However, at a finer scale of cortical organization, topographic maps have also been found 

for orientation. For example, change in the preferred stimulus orientation of neurons has 

been shown to occur gradually across the cortical surface (Bonhoeffer & Grinvald, 1991; 

Hubel & Wiesel, 1968). 

In conclusion, these results show that patterns of response in face regions are 

dominated by changes in the viewpoint of the face rather than changes in identity or 

expression. However, patterns of response are most clearly predicted by lower-level 

properties of the image. 
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Table 4.1   Mean image statistics (SD) of images in each condition.  

A 3 x 3 repeated measured ANOVA with identity (BP = Brad Pitt, DB = David Beckham, JT = Justin Timberlake) and viewpoint 

(left, frontal, right) revealed that the mean grey value intensity and RMS contrast did not differ between conditions (grey value 

intensity: identity: F(2,36) = 0.07, p > .05; viewpoint: F(2,36) = 0.09, p > .05; identity x viewpoint: F(4,36) = 0.23, p > .05; RMS 

contrast: identity: F(2,36) = 2.10, p > .05; viewpoint: F(2,36) = 0.02, p > .05; identity x viewpoint: F(4,36) = 0.88, p > .05). 

  left frontal right 

Grey value intensity BP 147.17 (6.96) 149.98 (7.09) 148.00 (5.15) 

 DB 148.61 (11.90) 146.73 (5.53) 148.03 (11.09) 

 JT 150.63 (9.07) 148.83 (3.68) 146.99 (3.24) 

RMS contrast BP 54.60 (4.97) 49.58 (4.04) 52.75 (2.89) 

 DB 48.53 (4.65) 50.97 (4.54) 49.73 (4.64) 

 JT 52.08 (9.28) 55.11 (5.47) 53.90 (5.47) 
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Chapter 5 – The neural representation of surface and 

shape in face-selective regions 

This chapter is adapted from: Weibert, Kramer, Ritchie, Burton & Andrews (2016). The 

neural representation of surface and shape in face-selective regions. (in preparation)3 

5.1 Abstract 

A full understanding of face recognition will involve identifying the visual information that 

is used to discriminate different identities and how this is represented in the brain.  

Previous behavioural studies have shown that the recognition and matching of familiar 

faces is primarily based on their surface properties. The aim of this study was to explore 

the importance of surface and shape properties in the neural representation of familiar 

faces. We took a set of face images and measured variance in the surface and shape 

properties of the face. A principal component analysis (PCA) was then used to represent 

this variability in surface and shape properties. Next, we measured patterns of neural 

response using fMRI. We showed participants a subset of the images and measured the 

patterns of brain response. We then determined whether surface or shape properties 

could predict patterns of response using a representational similarity analysis. In contrast 

to the prediction from behavioural studies, patterns of response in the FFA could only be 

predicted by the shape of the face image. The dissociation between the neural and 

behavioural findings suggests that, although the FFA may play a role in the recognition of 

facial identity, this region is not solely responsible for this process.  

                                                      
3 The author, Katja Weibert, designed the experiment, analysed the results, and wrote the article under 
the supervision of Prof. Timothy Andrews.   
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5.2 Introduction 

Neuroimaging studies have revealed a network of regions in the occipital and temporal 

lobe which form a core system for the visual analysis of faces (Haxby et al., 2000; 

Kanwisher et al., 1997). These studies have consistently found regions that show stronger 

responses to faces than other visual stimuli in the fusiform gyrus (the fusiform face area, 

or FFA), occipital cortex (the occipital face area, or OFA) and the posterior superior 

temporal sulcus (pSTS). These three functionally localisable regions form a core system 

for the visual analysis of faces in the widely used neural model of Haxby and colleagues 

(2000). Here, we are interested in developing a more detailed analysis of the information 

that is represented in face regions, and in particular whether it corresponds for the 

information that is critical to familiar face recognition. 

A distinction between shape and surface properties is widely used in face 

perception research (Bruce & Young, 1998, 2012). Any facial image consists of a set of 

edges created by abrupt changes in reflectance due to the shapes and positions of facial 

features and a broader pattern of reflectance based on the surface properties of the face 

– also known as texture or albedo (Bruce & Young, 1998, 2012). Surface properties result 

from the pattern of reflectance of light due to the combination of ambient illumination, 

the face's pigmentation, and shape from shading cues. Shape properties arise from the 

3D geometrical description of a face, and how that is projected onto a 2D image. 

A number of studies have shown that the surface properties of faces play a critical 

role in the invariant representation that is used for the recognition of familiar faces 

(Burton, Jenkins, Hancock, & White, 2005; Hole, George, Eaves, & Rasek, 2002; Russell, 

Biederman, Nederhouser, & Sinha, 2007; Russell & Sinha, 2007). For example, familiar 
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face recognition is not substantially affected if the surface properties are presented on a 

standardized shape (Burton et al., 2005), or when a face's shape is distorted by stretching 

the image (Hole et al., 2002). In contrast, line drawings of faces, which lack any surface 

properties, are not usually sufficient for recognition (Davies, Ellis, & Shepherd, 1978; 

Leder, 1999). The reason shape information may not be a reliable cue for the recognition 

of familiar face identity is thought to be that shape cues (particularly from the internal 

features of the face) vary across different images of the same face (Burton, 2013). 

Together, these studies suggest that surface properties of the face are the dominant cue 

in the recognition of familiar faces. 

The aim of this study was to investigate the relative importance of shape and 

surface properties in the neural representation of familiar faces. Within the core system 

of face-selective regions, the fusiform face area (FFA) is thought to be particularly 

important for the representation of invariant facial characteristics that are important for 

face recognition (Haxby et al., 2000; Grill-Spector et al., 2004; Rotshtein et al., 2004). To 

address whether patterns of response in brain regions such as the FFA are more sensitive 

to surface or shape properties, we measured the variance in a set of face images. The 

variance in the surface and shape properties was then analysed using PCA. This allowed 

us to determine the similarity of two face images in terms of either surface or shape 

properties. Next, we asked whether the similarity in either surface or shape properties 

could predict patterns of response in the FFA. Based on behavioural studies, our 

prediction was that patterns of response should be predicted by surface rather than 

shape. 
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5.3 Methods 

5.3.1 Subjects  

Twenty-three right-handed subjects with normal or corrected to normal vision 

participated in the experiment (9 males; mean age: 23.57 ± 0.86 years). All subjects gave 

their written informed consent. The study was approved by the York Neuroimaging 

Centre Ethics Committee. 

5.3.2 Stimuli 

Different face images of Leonardo DiCaprio were used. Using a famous identity ensured 

participants’ recognition (all participants could name Leonardo DiCaprio from an array of 

10 celebrities). Since a PCA analysis requires a large number of images using a famous 

identity also ensured that many different images were readily available. First, face images 

were gathered using the same technique as in Burton, Kramer, Ritchie, and Jenkins 

(2016). “Leonardo DiCaprio” was used in Google Images as a search term, along with 

criteria (full-color, large, face images only). Then the first 50 images meeting the following 

criteria were chosen: (a) no part of the face obscured (e.g., by clothing, glasses, or a 

hand); (b) pose very broadly full-face in order to allow the placement of landmarks for the 

PCA; and (c) pose standing or sitting, but not lying down, to limit head angle to relatively 

upright. Finally, the images were converted to greyscale (Fig. 5.1).  
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Figure 5.1  Stimuli for PCA. 

5.3.3 Image analysis using PCA 

PCA was performed as in Burton et al. (2016) using 50 different images of Leonardo 

DiCaprio. Each image was rescaled to 190 pixels wide x 285 pixels high, and converted to 

greyscale. Face shape was determined using anatomical landmarks. A standard grid 

comprised 82 xy-coordinates was used, resulting in a vector of 164 numbers (82 points x 2 

coordinates; Fig. 5.2a). Shape PCA was based on these shape vectors (Fig. 5.2b). Next, the 

surface PCA was computed. To do so, first the average shape was generated by 

computing the mean coordinates for each landmark of all 50 images. The surface for each 

image was then morphed to the average shape, yielding a vector of 54,150 numbers (190 

width x 285 height x 1 grey value intensity). Surface PCA was based on these surface 

vectors (Fig. 5.2b). 
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Figure 5.2  Example images with anatomical landmarks and corresponding PCA vectors.  

A) Example images, superimposed in blue are the 82 defined anatomical landmarks.  

B) Corresponding PCA-values of surface and shape. Images were described along 49 dimensions in surface 

and shape space using PCA (values of first 10 dimensions shown). To compare images the PCA vectors were 

correlated. This was done separately for surface and shape information. Left and middle images have similar 

surface information (r = .93) and similar shape information (r = .87). Left and right images have similar 

shape information (r = .59, p = .072), but different surface information (r = -.07). Middle and right images 

have similar shape information (r = .86), but different surface information (r = -.03). 

5.3.4 fMRI Experiment 

To investigate the neural representation of faces in face-selective regions, 10 images of 

Leonardo DiCaprio were used. These were chosen from the original images maintaining 
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the original variation in surface as well as shape. Each of the 10 stimuli was presented in a 

block resulting in 10 conditions. A red-spot task was used to maintain attention during the 

scan, where participants responded with a button press whenever they saw the red spot 

(one target per block). Each stimulus block lasted for 3s and contained 3 identical images. 

Within each stimulus block each image was presented for 800ms followed by a 200ms 

blank screen. Blocks were separated by a 6s fixation screen (a white fixation cross on a 

black background). The experiment consisted of two experimental runs, each with 6 

repetitions of each of the 10 stimuli conditions (total of 60 blocks per run) presented in a 

counterbalanced order.  

5.3.4.1 Imaging parameters 

Data from the fMRI experiment were collected using a GE 3 Tesla HD Excite MRI scanner 

at the York Neuroimaging Centre at the University of York. A T1-weighted structural MRI 

(1x1x 1mm voxel) and a gradient-echo EPI were acquired for each subject. Functional data 

was collected using a gradient-echo EPI sequence with a radio-frequency coil tuned to 

127.4 MHz was used to acquire 38 axial slices (TR = 3s, TE = 33ms, flip angle = 90°, FOV = 

260mm, matrix size = 128 x 128, slice thickness = 3mm, voxel size: 2.25 x 2.25 x 3mm).  

5.3.4.2 fMRI analysis 

Statistical analysis of the fMRI data was carried out using FEAT version 5.0 in the FSL 

toolbox (http://www.fmrib.ox.ac.uk/fsl). The first 3 volumes (9 s) of each scan were 

removed to minimize the effects of magnetic saturation, and slice-timing correction was 

applied. Motion correction was followed by spatial smoothing (Gaussian, full width at half 

maximum 6 mm) and temporal high-pass filtering (cut-off, 0.01 Hz). Separately for each 

run, parameter estimates for each condition in the general linear model (GLM) were 

generated by regressing the hemodynamic response of each voxel against a box-car 



Chapter 5  Surface and shape 

92 
 

regressor convolved with a single-gamma hemodynamic response function. Then, a fixed-

effects analysis was used to compute the average parameter estimate for each condition 

across the two runs. 

Analyses were restricted to face-selective regions FFA, OFA and STS using masks 

from a previous study (Sormaz, Watson, Smith, Young, & Andrews, 2016). Face-selective 

regions of interest (ROIs) were defined at the group level using the contrast faces > 

scrambled faces. First, the peak voxels for the OFA, FFA and STS in each hemisphere were 

localised. Then the 500 voxels with the highest z-scores within each region were selected 

and finally masks were combined across hemispheres generating 3 masks of equal size 

(1000 voxels) for the OFA, FFA and posterior STS forming the core face-selective regions 

in Haxby et al.'s (2000) neural model. 

Next, we measured patterns of response to each stimulus condition within these 

face-selective regions. Parameter estimates were generated for each condition. The 

reliability of response patterns was tested using a leave-one-participant-out (LOPO) cross-

validation paradigm (Poldrack et al.,2009; Shinkareva et al., 2008). First parameter 

estimates were determined using a group analysis of all participants except one. This 

generated parameter estimates for each condition in each voxel. This LOPO process was 

repeated such that every participant was left out of a group analysis once. These data 

were then submitted to correlation-based pattern analyses (Haxby et al., 2014; Haxby et 

al., 2001) implemented using the PyMVPA toolbox (http://www.pymvpa.org/; Hanke et 

al., 2009). Parameter estimates were normalised by subtracting the mean response per 

voxel across all experimental conditions (see Haxby et al., 2001). For each iteration of the 

LOPO cross-validation, the normalised patterns of response to each stimulus condition 

were correlated between the group and the left-out participant. The final correlation 

http://www.pymvpa.org/
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matrix provides a measure of the similarity in the pattern of response across different 

combinations of conditions. These neural correlations were transformed using Fisher's Z-

transform and then converted into z-scores. 

5.3.4.3 Regression analyses: Effect of PCA information on brain response 

We next used a representational similarity analysis (RSA; Kriegeskorte et al., 2008) 

utilising multiple regression to assess the relative contributions of surface and shape PCA-

information to the neural response patterns. For each factor (surface and shape) a 

regressor was generated by correlating the PCA vector of two images. This was repeated 

until all images were compared yielding two correlation matrices, one for surface and one 

for shape, representing the PCA image similarities. These regressors were then used to 

predict measured brain pattern similarities separately for the OFA, the FFA, and the STS, 

using multiple regression. This analysis yielded a beta value and associated standard error 

for each regressor which would be expected to differ significantly from zero if that 

regressor were able to explain a significant amount of the variance in the MVPA 

correlations. A t-contrast was used to assess the significance of the differences between 

the betas. 

5.3.5 Analysis of lower-level image properties measured by GIST 

To investigate general effects (unspecific to faces) of low-level image properties on 

patterns of neural response in face-selective regions, the image statistics of each object 

were computed using the GIST descriptor (http://people.csail.mit.edu/torralba/code/ 

spatialenvelope/) (Oliva, & Torralba, 2001). For each image, a vector of 2048 values was 

obtained by passing the image through a series of Gabor filters across eight orientations 

and four spatial frequencies, and windowing the filtered images along a 8x8 grid (Fig. 5.3).  

  

http://people.csail.mit.edu/torralba/code/
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Figure 5.3  Schematic illustration of the calculation of a GIST descriptor for an example image. A series of 

Gabor filters across eight orientations and four spatial frequencies are applied to the image. Each of the 

resulting 32 filtered images is then windowed along a 8x8 grid to give a final GIST descriptor of 2048 values 

(right). 

Each vector represents the image in terms of the spatial frequencies and orientations 

present at different positions across the image. To assess how similar individual images 

were, the GIST descriptors of two images were correlated. This was performed for each 

possible image pair resulting in a similarity matrix based on lower-level image properties. 

This similarity matrix of the correlation values for the GIST descriptor across all pairwise 

combinations of conditions was then used as a regressor in a multiple regression analysis 

to predict the fMRI pattern of response within face-selective regions. This analysis yielded 

whether beta value and associated standard error differed significantly from zero and 

thus being able to explain a significant amount of the variance in the MVPA correlations.  
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5.4 Results 

First, we measured the mean % signal change of each ROI to each face image (Fig. 5.4A). 

Fig. 5.4B shows similar levels of response to all face images within each region. A 

repeated measures ANOVA showed that there was an effect of region (F(2,44) = 40.82, p 

< .001), with lower response in the STS. There was also a small effect of face image 

(Greenhouse-Geisser corrected: F(4.85, 106.71) = 2.55, p < .05). This was due to a slightly 

higher reponse to face image 6 compared to image 3 and 8. However, there was no 

interaction between region and face image (Greenhouse-Geisser corrected: F(5.76, 

126.60) = 1.69, p = .132). 

 

Figure 5.4 Brain response within face-selective regions to each face image. A) Face images used in the fMRI 

experiment. B) Brain response within face-selective regions to each face image. All face images elicited 

comparable brain responses in all face-selective regions. 

Next, we examined the pattern of brain response. For each ROI, we measured patterns of 

brain response for each of our face images and then conducted a correlation-based MVPA 

to measure their similarity (Fig. 5.5B). To test the effect of PCA information (surface and 

shape) on the brain responses, we used a representational similarity analysis. Model 
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correlation matrices were computed by correlating PCA information of two images 

(separately for surface and shape) until all images were compared. Two model correlation 

matrices resulted, one describing PCA surface image similarities and one PCA shape image 

similarities (Fig. 5.5A). These were then used as regressors in a multiple regression 

analysis of the fMRI data (Fig. 5.5C).  

 

Figure 5.5 Regression analysis of the fMRI response patterns within face-selective regions.  

A) Models used for the regression analysis of the fMRI response patterns. To assess image similarity, PCA 

vectors of two images were correlated. This was performed for all pairwise image comparisons separately 

for surface and shape. B) Similarity of fMRI response patterns within face-selective regions measured using 

MVPA correlation for all face images. These matrices were compared against the regressors of surface and 

shape using a multiple regression analysis. C) The resulting beta coefficients for each regressor. Error bars 

represent 1 SEM (*** p < .001, ** p < .01). 
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Surface predicted patterns of response only in the early face processing OFA (β = 0.04,  

p < .001), but not in the FFA (β = 0.01, p = .314) and not in the STS (β = 0.00, p = .981). 

Shape predicted patterns of response in all face-selective regions (OFA: β = 0.04, p < .001; 

FFA: β = 0.02, p < .01; and STS: β = 0.01, p < .01). Although shape was a better predictor 

(higher β-value) of brain response in all face-selective regions, this difference did not 

reach significance (OFA: t = 0.28, p = .781; FFA: t = 0.53, p = .594; and STS: t = 1.27,  

p = .204).  

Next we asked whether the observed effects were specific to the face-measures 

(surface and shape) or reflect general lower-level image properties. To address this 

question, we used another measure of image properties, GIST, which captures image 

properties of scenes (Oliva & Torralba, 2001). Analogue to the PCA surface and shape 

analysis, we computed a model correlation matrix this time using the GIST information of 

two images, which was used as regressors in a multiple regression analysis of the fMRI 

data (Fig. 5.6A). GIST could not predict patterns of response in any face-selective region 

(OFA: β = -0.01, p = .970; FFA: β = -0.01, p = .823; STS: β = 0.01, p = .791) (Fig. 5.6B). 

Overall our results suggest patterns of response in face-selective regions are predicted by 

face shape. 
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Figure 5.6  Regression analysis of the non-face image properties using GIST. A) Similarity of all face pairings 

using GIST and correlation. B) Results of regression analysis using GIST similarity matrix to predict brain 

response in each face-selective region. The resulting beta coefficients with error bars represent 1 SE. 

5.5 Discussion 

The aim of this study was to investigate how the surface and shape properties of face 

images are represented in the brain. Variance in the surface and shape properties of a 

large set of images were described using PCA. We then measured the response to these 

faces in FFA. The similarity in the patterns of response in the FFA could be predicted by 

shape information, but not by surface properties. 

 Thinking of facial images as broadly consisting of surface (pigmentation, shading 

patterns) and shape (feature positions) properties has helped our understanding of facial 

identity recognition, where it is clear that although surface and shape cues can contribute 

(Russell, Sinha, Biederman, & Nederhouser, 2006; Troje, & Bülthoff, 1996), the role of 

surface cues becomes more salient for familiar faces (Burton et al., 2005 ; Russell & Sinha, 

2007). A useful way of testing the importance of surface- and edge-based cues in face 

perception is with contrast reversal (as in a photo negative). In a contrast-reversed image 
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the edges that define feature shapes remain in the same positions, despite the huge 

change in overall surface properties. Recognition of facial identity is severely disrupted by 

contrast-reversal, showing the importance of surface patterns to the recognition of facial 

identity (Bruce, & Langton, 1994; Burton et al., 2005; Russell et al., 2006). Further support 

for the importance of surface properties comes from studies showing that line drawings 

of faces are not usually sufficient for the accurate recognition or discrimination of identity 

(Davies et al., 1978; Leder, 1999). 

Our fMRI experiment built on these behavioural results by using the logic that a 

neural region that is directly responsible for the recognition of facial identity should show 

a corresponding differential sensitivity to surface over shape information. This was 

achieved with a paradigm in which surface and shape properties were used to predict 

patterns of neural response in the face regions. In contrast to our hypothesis, we found 

that the neural responses in the FFA could be predicted by shape but not by surface 

properties of the faces. The difference between previous behavioural findings using 

familiar faces and the pattern of neural responses in FFA implies that the spatial pattern 

of response is not directly linked to the recognition of identity.  

How do these findings sit with the idea that the FFA is involved in processing 

invariant characteristics of faces (Haxby et al., 2000; Gobbini, & Haxby, 2007)? Identity is 

obviously central to these invariant characteristics, making it tempting to equate the FFA 

with an area primarily responsible for face recognition. However, previous neuroimaging 

studies have reported mixed results about whether the FFA has an image-invariant 

representation of identity. Some studies have reported image-invariance (Loffler et al., 

2005;  Rotshtein et al., 2004; Eger et al., 2005; Ewbank, & Andrews, 2008; Davies-
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Thompson et al.,  2013), whereas others have reported image dependence (Grill-Spector 

et al. 1999; Andrews, & Ewbank, 2004; Pourtois et al., 2005b; Davies-Thompson et al., 

2009; Xu et al., 2009). More generally, these results are consistent with previous studies 

that have shown patterns of response in face regions are sensitive to the image 

properties (Yue, Tjan, & Biederman, 2006; Xu al., 2009; Rice et al., 2014; Watson et al., 

2016). For example, patterns of response in the fusiform gyrus to faces can be predicted 

by their image properties (Rice et al., 2014).  

Lower-level image properties have been shown to predict patterns of response in 

category-selective regions (Andrews et al., 2015; Rice, et al., 2014; Watson et al., 2016). 

The observed effects in face-selective regions could therefore reflect processing of 

general lower-level image properties rather than face-specific image information. To 

investigate this, we used the GIST-descriptor, a measure of lower-level image properties 

developed for scenes (Oliva & Torralba, 2001). In contrast to chapter 4, we found no 

effect of GIST on patterns of response in any face-selective region. The difference 

between these findings could be due to the stimuli used. In this chapter, all stimuli 

depicted the same identity and thus much less variation in low-level image properties. 

Our findings suggest, that only a face-specific measure of lower-level image properties, 

e.g. via PCA, allows this finer discrimination between different images of the same 

identity. 

Models of face processing suggest that information about faces is initially 

processed in the OFA (Kanwisher et al., 1997; Haxby et al., 2000). The OFA is thought to 

be involved in the visual analysis of the face image. Consistently, we found that patterns 

of response in the OFA could be predicted by both surface and shape properties of the 

face, supporting the suggested role of the OFA in early face processing.  
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Processing of changeable aspects of faces such as gaze and expression facial expressions 

is thought to occur in the posterior STS (Haxby et al., 2000). Previous studies have shown 

that judgements of changeable aspects of faces such as expression rely on shape 

information (Bruce & Young, 1998; Etcoff & Magee, 1992; McKelviet, 1973). Consistent 

with these findings, our results show that the patterns of response in the STS were 

sensitive to the shape of the face. 

  The perception of facial identity is proposed to involve the FFA (Haxby et al., 

2000). Behavioural studies have shown that surface information plays the primary role in 

identity processing (Bruce, & Langton, 1994; Burton et al., 2005; Davies et al., 1978; 

Leder, 1999; Russell et al., 2006). This suggests that the FFA should represent the surface 

information of faces. However, contrary to these predictions, we found that variation in 

surface information of faces did not predict patterns of response in the FFA. In fact, 

patterns of response in the FFA reflected shape information. 

In conclusion, the aim of this experiment was to determine the relative 

contribution of surface and shape properties to the neural representation of familiar 

faces. Consistent with behavioural findings and the neural model of face processing, we 

found that surface and shape properties predicted patterns of response in the early face 

processing OFA. Consistent with the models of face processing and behavioural findings, 

only shape properties influenced the pattern of response in the STS. Although surface 

properties have been shown to be important in identity processing, the response in the 

FFA did not represent surface properties. This implies that the spatial pattern of response 

in the FFA is not directly linked to the recognition of identity. 
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Chapter 6 – An image-invariant neural response to 

familiar faces in the human medial temporal lobe 

This chapter is adapted from: Weibert, Harris, Mitchell, Byrne, Young, & Andrews 

(2016). An image-invariant neural response to familiar faces in the human medial 

temporal lobe. (submitted)4 

6.1 Abstract 

The ability to recognize familiar faces with ease across different viewing conditions 

contrasts with the inherent difficulty in the perception of unfamiliar faces across similar 

image manipulations. Models of face processing suggest that this difference is based on 

the neural representation for familiar faces being more invariant to changes in the image, 

than it is for unfamiliar faces. Here, we used an fMR-adaptation paradigm to investigate 

neural correlates of image-invariant face recognition in face-selective regions of the 

human brain. Participants viewed faces presented in a blocked design. Each block 

contained different images of the same identity or different images from different 

identities. Faces in each block were either familiar or unfamiliar to the participants. First, 

we defined face-selective regions by comparing the response to faces with the response 

to scenes and scrambled faces. Next, we asked whether any of these face-selective 

regions showed image-invariant adaptation to the identity of a face. The core face-

selective regions showed image-invariant adaptation to familiar and unfamiliar faces. 

However, there was no difference in the adaptation to familiar compared to unfamiliar 

faces. In contrast, image-invariant adaptation for familiar faces, but not for unfamiliar 

                                                      
4 The author, Katja Weibert, designed the experiment, analysed the results, and wrote the article under 
the supervision of Prof. Timothy Andrews.   
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faces, was found in face-selective regions of the medial temporal lobe (MTL). Taken 

together, our results suggest that the marked differences in the perception of familiar 

and unfamiliar faces may depend critically on neural processes in the medial temporal 

lobe. 

6.2 Introduction 

As members of a highly social primate species, our everyday lives depend critically on 

being able to recognise people we know, so that we can interact with them appropriately 

based on our knowledge of their characteristics and personal histories. Recognising the 

faces of familiar individuals is often central to this process, and this has led to a great deal 

of interest in the neural underpinnings of face recognition. 

The distinction between often seen familiar faces and unfamiliar faces that have not 

been previously encountered is central to understanding face recognition. While 

photographs of unfamiliar faces can be remembered and later recognised remarkably 

well, recognition performance with unfamiliar faces breaks down as soon as any changes 

are made between studied and test images (Bruce, 1982; Longmore, Liu & Young, 2008). 

Remarkably, the same problems arise in perceiving unfamiliar faces, where the 

perceptual matching of unfamiliar faces is severely hampered by image changes (Hancock 

et al.,  2000; Kemp, Towell, & Pike, 1997). In striking contrast, the behavioural hallmark of 

familiar face recognition is that it is remarkably successful across substantial changes in 

expression, viewing angle, and lighting conditions (Bruce, 1994; Bruce & Young, 2012; 

Burton, 2013). 

These findings have been incorporated into cognitive models of face processing 

which propose that familiar faces are represented differently from unfamiliar faces (Bruce 
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& Young, 1986; Burton et al., 1999). These models propose that all faces are initially 

encoded in an image-dependent representation, which is sufficient to recognise identical 

images of faces. However, our ability to recognise familiar faces across changes relies on 

representations that are relatively invariant to changes in the image, which are often 

referred to as face recognition units (FRU) in models of face processing (Bruce & Young, 

1986). These FRUs interact with person identity nodes (PINs), which are involved in the 

retrieval of names, and other semantic information associated with the face (Bruce & 

Young, 1986). 

In terms of how faces are represented in the brain, many studies have followed 

Kanwisher and colleagues’ (1997) procedure of localising face-selective regions by 

contrasting neural responses to faces and other visual stimuli. These have revealed a 

network of posterior regions now usually designated the occipital face area (OFA), the 

fusiform face area (FFA) and the posterior superior temporal sulcus (STS) which form a 

core system for the visual analysis of faces in the widely used neural model proposed by 

Haxby and colleagues (2000). Within this core system of face-selective regions, the FFA is 

thought to be particularly important to the representation of invariant facial 

characteristics necessary for face recognition (Grill-Spector et al., 2004; Haxby et al., 

2000; Ishai, 2008). The Haxby et al. model explicitly acknowledges that other brain 

regions will contribute to the recognition of faces. One of these regions is the anterior 

temporal lobe which is suggested to represent biographical semantic knowledge 

associated with a face, e.g. the name of the person (Collins & Olson, 2014).  

Although functional localisers can be used to identify face-selective brain regions, 

this in itself gives only limited information about what such regions do. A powerful 
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complementary method for understanding the functional properties of a region is fMR-

adaptation, as it offers insight into the underlying neural mechanisms (Grill-Spector, 

Henson, & Martin, 2006). Consistent with Haxby et al.'s (2000) idea of FFA involvement in 

processing invariant aspects of faces (such as identity), fMRI studies have shown a 

reduced response (adaptation) to repeated images of the same face in the FFA (Andrews 

& Ewbank, 2004; Grill-Spector et al., 1999; Harris, Rice, Young, & Andrews, 2015; Loffler 

et al., 2005; Rotshtein et al., 2004; Yovel & Kanwisher, 2005). Such findings imply that the 

identity of the face is represented at some level in the FFA and it is being adapted by 

repeated presentations. However, given our discussion of the behavioural evidence, a 

much stronger test for a link between neural activity and the recognition of facial identity 

is needed to determine whether this adaptation is still evident when different images of 

the same identity are shown (i.e. image-invariant adaptation). It turns out that fMR-

adaptation studies that have used different images of the same identity have shown 

mixed results. Some studies show a complete absence of adaptation to different images 

in the FFA (Andrews & Ewbank, 2004; Grill-Spector et al., 1999; Pourtois, Schwartz, 

Seghier, Lazeyras, & Vuilleumier, 2005a; Xu, Yue, Lescroart, Biederman, & Kim, 2009), 

whereas other studies show continued adaptation (Loffler et al., 2005; Winston, Henson, 

Fine-Goulden, & Dolan, 2004). 

A limitation of previous studies using fMR-adaptation to probe the neural 

correlates of face recognition is that they often fail to provide a direct comparison of 

familiar and unfamiliar faces (Johnston & Edmonds, 2009; Natu & O’Toole, 2011). This is a 

key limitation since, as we have noted, cognitive models only propose an image-invariant 

representation for familiar and not for unfamiliar faces (Bruce & Young, 1986; Burton, et 

al., 1999). However, studies that have compared familiar and unfamiliar faces also report 
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mixed results. Some studies have found image-invariant identity adaptation in the FFA for 

familiar but not unfamiliar faces (Eger et al., 2005; Ewbank & Andrews, 2008), whereas 

other studies fail to find any difference in adaptation to familiar and unfamiliar faces 

(Davies-Thompson et al., 2009; Pourtois et al., 2005b). Together, these findings show at 

best limited evidence that the marked behavioural differences in the perception of 

familiar and unfamiliar faces are linked to differences in the way faces are represented in 

core face-selective regions of the human brain. One problem with identifying image-

invariant responses to faces is that the representation of identity may involve a sparse 

code (Quiroga et al., 2005) involving only a limited number of neurons and thus lie 

beyond detection in conventional fMRI designs. To address this issue, we performed an 

fMR-adaptation experiment with a large sample of participants (N = 80). Our aim was to 

use the combination of the sensitive adaptation method and the statistical power of a 

large participant sample to reveal regions in either the core or extended face processing 

network that show an image-invariant response to familiar faces. 
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6.3 Methods 

6.3.1 Participants  

Eighty right-handed participants with normal or corrected to normal vision participated in 

the experiment (45 females; mean age: 23.8 ± 4.2 years). All participants gave their 

written informed consent. The study was approved by the York Neuroimaging Centre 

Ethics Committee. 

6.3.2 fMRI Experiment 

Face stimuli were taken from previous studies (Davies-Thompson et al.,  2013; Weibert & 

Andrews, 2015) and included male and female identities. All images showed frontal views 

and neutral facial expressions, but varied in other aspects of appearance such as hairstyle 

and viewpoint. Our aim was to capture naturally occurring variation in images. Faces were 

either familiar or unfamiliar. Our familiar face stimuli depicted famous identities. An 

advantage of using famous faces was that it allowed us to use the same stimuli for each 

participant. This contrasts with the use of personally familiar faces in which different 

stimuli are used for each participant. To ensure familiarity with our familiar faces, prior to 

taking part in the experiment, participants were tested on their recognition of the familiar 

faces. Participants could name over 85% of the identities used (M = 85.5%, SD = 10.0%). 

Crucially, they could name all (100%) of the identities from the familiar same condition. 

This way we ensured, that they could recognise when the same famous identity was 

repeated across different images. We also measured low-level image properties of the 

familiar and unfamiliar faces. The mean change in image intensity was calculated by 

taking the average of the absolute differences in grey value at each pixel for successive 
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pairs of images within a block. Table 6.1 shows that the mean intensity change was 

similar across all face conditions (F(3,108) = 0.488, p > .5).  

 

  
 
 
 
 
 
 
 
 

There were 6 stimulus conditions in a block design fMRI experiment:  

I. familiar different  
II. familiar same  

III. unfamiliar different  
IV. unfamiliar same  
V. scenes  

VI. scrambled faces  

The different condition blocks included face images from different identities. The same 

condition blocks involved sequences of different images from the same identity (Fig. 6.1).  

 

Figure 6.1  Examples of stimuli. During each face condition different face images were shown of either 

different identities or the same identity of (a) familiar faces and (b) unfamiliar faces.  

Table 6.1   Mean change in intensity (S.D.) between successive images  

in each condition of the adaptation scan.  

 Same Identity Different Identity 

Familiar 16.1 (7.6) 17.2 (8.0) 

Unfamiliar 18.0 (8.7) 18.7 (8.7) 
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Scene stimuli were taken from the LabelMe scene database (Oliva & Torralba, 2001). 

Scrambled face images were created by scrambling the phase of the face images.  

All images were presented in greyscale. Stimuli from each condition were presented 

in a blocked design. Each stimulus block lasted for 9s and contained 8 images. Within 

each stimulus block each image was presented for 950ms followed by a 200ms blank 

screen. Each of the six stimulus conditions was repeated 4 times. This gave a total of 24 

blocks, which were presented in a counterbalanced order. Blocks were separated by a 9s 

fixation screen (a white fixation cross on a black background). To maintain attention 

during the scan, participants performed a one-back task in which they responded with a 

button press every time an identical image was directly repeated (one target per block). 

This allowed us to use a common behavioural task across all conditions and minimised the 

influence of task on the neural response.  

Data from the fMRI experiment were collected using a GE 3 Tesla HD Excite MRI 

scanner at the York Neuroimaging Centre at the University of York. A T1-weighted 

structural MRI (1 x 1 x 1mm voxel) and a gradient-echo EPI were acquired for each 

participant. Functional data was collected using a gradient-echo EPI sequence with a 

radio-frequency coil tuned to 127.4 MHz was used to acquire 38 axial slices (TR = 3s, TE = 

33ms, flip angle = 90°, FOV = 260mm, matrix size = 128 x 128, slice thickness = 3mm, voxel 

size: 2.25 x 2.25 x 3mm).  

Statistical analysis of the fMRI data was carried out using FEAT version 4.1 in the FSL 

toolbox (http://www.fmrib.ox.ac.uk/fsl). The first 3 volumes (9 s) of each scan were 

removed to minimize the effects of magnetic saturation, and slice-timing correction was 

applied. Motion correction was followed by spatial smoothing (Gaussian, full width at half 

maximum 6 mm) and temporal high-pass filtering (cut-off, 0.01 Hz). Regressors for each 
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condition in the general linear model (GLM) were convolved with a gamma hemodynamic 

response function. Individual participant data of all subjects were then aligned into MNI 

152 space and combined using a higher-level mixed effects group analysis of the whole-

brain to generate statistical maps across participants (FLAME, 

http://www.fmrib.ox.ac.uk/fsl). 

Face-selective regions were defined by contrasting each face condition with 

scenes and scrambled faces and then computing the average of these contrasts. This 

average contrast was used as a mask for all further analyses. Next, we determined voxels 

that responded more to familiar than unfamiliar faces (familiar different & familiar same 

> unfamiliar different & unfamiliar same). Finally, we measured adaptation to familiar and 

unfamiliar faces. Adaptation was defined by the contrast different > same. This was done 

separately for familiar and unfamiliar faces. To correct for multiple comparisons in all 

analyses, the resulting statistical maps were thresholded at z > 3.5, corresponding to  

p < 0.05 (voxel-wise corrected). 

Additionally, we performed a Region of Interest (ROI) analysis. ROIs were 

individually defined in each participant as in Weibert and Andrews (2015). First, an 

individual’s statistical map was divided into individual face-selective clusters 

corresponding to core face-selective regions FFA, OFA, and STS by increasing the z-score 

threshold. Next, the peak voxel within each face-selective cluster was identified using the 

cluster function in FSL. Then, a flood-fill algorithm was used to grow a ROI from each peak 

voxel of a fixed size (50 voxel chosen based on Weibert & Andrews, 2015). This was 

accomplished by increasing the z-score threshold until only 50 voxels lie above. This 

resulted in ROIs with the same number of voxels across individuals. Only ROIs where all 

voxels were above the minimum threshold of Z = 2.3 were included in the analysis. ROIs 

http://www.fmrib.ox.ac.uk/fsl
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were merged across hemispheres except in case of the STS, where it was not possible to 

reliably identify a face-selective region in the lSTS, which was not included in further 

analysis. 

6.4 Results 

6.4.1 Face-selective regions 

Using a whole-brain group analysis, we localized face-selective voxels across the 80 

participants. Significant face-selectivity was evident in the core face-selective regions: 

fusiform face area (FFA), occipital face area (OFA), and posterior superior temporal sulcus 

(STS) in both hemispheres (Fig. 6.2A). We also found significant face-selective responses 

with the whole-brain group analysis in the right inferior frontal gyrus (rIFG) and in the 

medial temporal lobes (MTL) of both hemispheres (Fig. 6.2B). The MTL region overlapped 

with hippocampus and amygdala (http://www.cma.mgh.harvard.edu/fsl_atlas.html). The 

peak coordinates of these regions were also comparable to previous studies (Table 6.2; 

Davies-Thompson & Andrews, 2012; Kanwisher et al., 1997; Weibert & Andrews, 2015). 
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Figure 6.2   Face-selective regions (red) in the (A) core face-selective regions (FFA: fusiform face area, OFA: 

occipital face area, posterior STS: superior temporal sulcus) and (B) extended face-selective regions (MTL: 

medial temporal lobe, rIFG: right inferior frontal gyrus). Voxels showing selectivity for familiarity (familiar > 

unfamiliar) are shown in blue and were found in the FFA, rIFG and MTL. Images are shown in radiological 

convention reporting MNI coordinates. 

6.4.2 Selectivity for familiarity 

Next, we performed a voxel-wise analysis within the face-selective regions to locate 

voxels that were more selective to familiar compared to unfamiliar faces. We found that 

19.5% of voxels within core face-selective regions responded more to familiar faces than 

to unfamiliar faces. These voxels were located in the FFA, but not in the OFA or STS  

(Fig. 6.2A, Table 6.2). This familiarity effect was more pronounced in the left hemisphere  

(LH: 57.1%, RH: 42.9%). There were no voxels that responded more to unfamiliar than 

familiar faces.  



Chapter 6  Image-invariance 

113 
 

We then asked whether voxels in extended face-selective regions responded more to 

familiar than to unfamiliar faces. We found that 31.7% of voxels within extended face-

selective regions responded more to familiar faces than to unfamiliar faces. These voxels 

overlapped with both the rIFG (30.8%) and MTL (69.2%) regions (Fig. 6.2B, Table 6.2). In 

the MTL, this familiarity effect was more pronounced in the left hemisphere (LH: 88.3%,  

RH: 11.7%). Again, there were no voxels that responded more to unfamiliar than familiar 

faces.  

6.4.3 Selectivity for identity 

Next, we investigated image-invariant adaptation to identity within core face-selective 

regions. This analysis was performed separately for familiar and unfamiliar faces by 

contrasting different identities > same identity. First, we investigated the core face-

selective regions. There were no voxels in the core face-selective regions that showed 

significant adaptation to familiar or unfamiliar faces. There were also no voxels that 

showed a significantly higher response to the inverse contrast (same identity > different 

identities) (Table 6.2). 
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It is possible that, although there were no significant differences in the independent 

voxels across the core face-selective regions, there was a difference in the mean response 

of a region. To address this possibility, we performed a ROI analysis in which the 

responses to each condition were averaged across voxels in each core face-selective ROI. 

The results of this analysis are shown in Figure 6.3. To analyse these results a 2x2 ANOVA 

was performed with familiarity and identity as factors. There was a significant effect of 

familiarity in the FFA (F(1,73) = 33.17, p < .001) and STS (F(1,46) = 30.41, p < .001) but not 

in the OFA (F(1,57) = 0.43, p = .516). This was due to a higher response to familiar faces 

compared to unfamiliar faces. There was a significant effect of identity in all regions (FFA: 

F(1,73) = 35.89, p < .001; OFA: F(1,57) = 20.05, p < .001; STS: F(1,46) = 26.18, p < .001). 

This was due to higher responses to different identity compared to same identity faces. 

Critically, however, none of the ROIs showed a significant interaction between familiarity 

and identity: FFA: F(1,73) = 2.64, p = .109; OFA: F(1,57) = 0.81, p = .372; STS: F(1,46) = 

2.76, p = .104. The absence of any difference in adaptation to familiar and unfamiliar 

faces suggests that the core face regions do not explain the behavioural advantage for 

familiar face recognition. 

 

Figure 6.3  ROI analysis of core face-selective regions. A significantly larger response to familiar compared to 

unfamiliar faces was evident in the FFA (N = 74) and STS (N = 47), but not in the OFA (N = 58). All regions 

showed adaptation to facial identity. However, there was no interaction between familiarity and identity. 
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Next, we investigated image-invariant adaptation in the extended face-selective regions 

separately for familiar and unfamiliar faces. Within the extended face-selective regions, 

16.6% of voxels showed an image-invariant adaptation to familiar faces. These voxels 

showed a smaller response (adaptation) to different images of the same familiar identity 

compared to images of different familiar identities (Table 6.2). Voxels showing image-

invariant adaptation to familiar faces were found bilaterally in the MTL (Fig. 6.4A, Table 

6.2). These voxels overlapped with the anatomical location of the hippocampus (59.8%) 

and the amygdala (40.2%) regions (Fig. 6.4B). No voxels showed image-invariant 

adaptation to unfamiliar faces. This analysis suggests that these voxels show image-

invariant adaptation to familiar but not unfamiliar faces. 

 

Figure 6.4  Adaptation to familiar face identity in the medial temporal lobe (MTL). Images are shown in 

radiological convention. (A) Voxels within the MTL that showed adaptation to familiar faces. This adaptation 

was only evident for familiar faces, but not unfamiliar faces (familiar different identities > familiar same 

identity, depicted in green). B) Region of image-invariance to familiar faces superimposed onto Harvard 

Oxford structural masks (red: amygdala, blue: hippocampus). C) Mean % MR signal change within this 

region averaged across participants. Error bars depict ± 1SE. 

However, although adaptation was evident to familiar faces but not to unfamiliar 

faces, this does not necessarily show that adaptation was greater to familiar than 

unfamiliar faces. To directly compare image-invariant adaptation to familiar and 

unfamiliar faces, we performed a 2x2 repeated measures ANOVA with familiarity and 



Chapter 6  Image-invariance 

117 
 

identity as factors. There was a significant effect of familiarity with higher response to 

familiar than unfamiliar faces (F(1,79) = 19.09, p < .001). There was also a significant 

effect of identity with higher response to different identity conditions than same identity 

conditions (F(1,79) = 8.76,  

p < .01). These effects were driven by a significant interaction between familiarity and 

identity (F(1,79) = 9.24, p < .01). Pairwise t-test revealed that there was no difference 

between the different identity and same identity conditions with unfamiliar faces (t(79) = 

0.60, p = .548). However, brain response significantly decreased for the same familiar 

identity compared to different familiar identities (t(79) = 3.83, p <.001). The adaptation to 

familiar faces was significantly larger than to unfamiliar faces (t(79) = 3.04, p < .01; Fig. 

6.4C). 

Finally, we asked whether there was any adaptation to faces in non face-selective 

regions. Table 6.3 shows the location of adaptation to faces outside the core and 

extended face-selective regions using a whole brain analysis. We found significant 

adaptation to familiar and unfamiliar faces in the precuneus. Adaptation to familiar faces 

was found in the middle temporal lobe and the insula. Adaptation to unfamiliar faces was 

found in the frontal pole.  
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6.5 Discussion 

The aim of this study was to determine the neural correlates for an image-invariant 

representation of familiar faces, analogue to face recognition units (Bruce and Young, 

1986). Using an fMR-adaptation paradigm, we found some evidence for an image-

invariant representation of facial identity in the core face-selective regions. However, this 

adaptation did not differ between familiar and unfamiliar faces. In contrast to the core 

face-selective regions, image-invariant adaptation was found for familiar, but not 

Table 6.3  Adaptation to familiar and unfamiliar faces in non face-selective regions. 

Voxel-wise analysis was thresholded at p < .05 (voxel-corrected for multiple comparisons). 

 MNI coordinates Adaptation (voxel) 

  familiar different > 

familiar same 

familiar different > 

familiar same 

 x y z   

precuneus -2 -60 20 952 560 

 4 -58 18 672 568 

middle temporal -58 -12 -10 616 - 

 62 -8 -18 280 - 

insula 34 -20 16 328 - 

frontal pole 8 64 12 - 1016 

 -2 62 14 - 464 
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unfamiliar faces in face-selective regions of the medial temporal lobe (MTL) potentially 

underlying the behavioural familiar face recognition advantage. 

Consistent with previous studies that have shown a bias towards familiar faces in 

face-selective regions, familiar faces generated a higher response compared to unfamiliar 

faces in the FFA, rSTS and MTL (Eger et al.,  2005; Elfgren et al., 2006; Leveroni et al., 

2000, Sergent et al., 1992). Overall, the familiarity effect was more pronounced in the left 

than right hemisphere, which is also consistent with previous studies (Elfgren et al., 2006; 

Gobbini & Haxby, 2007; Pierce et al., 2004). However, we did not find any selectivity for 

unfamiliar compared to familiar faces. This contrasts with previous studies that have 

found higher responses to unfamiliar faces in regions of the occipital and temporal lobes 

(Dubois et al., 1999; Gobbini et al., 2004; Mur, Ruff, Bodurka, Bandettini & Kriegeskorte, 

2010). It is not clear why we did not find selectivity for unfamiliar faces in these regions, 

but is should be noted that this selectivity was not consistent across these studies. 

Next, we investigated how face-selective regions represent identity information. 

Here, we found some image-invariant adaptation to facial identity in the core face-

selective regions. This result is consistent with previous studies, which have shown 

adaptation to facial identity across different images (Rotshtein et al., 2005; Eger et al., 

2005; Pourtois et al., 2005a; Ewbank & Andrews, 2008). This contrasts with other studies 

that have reported no adaptation to facial identity across different images within these 

regions (Davies-Thompson et al., 2009; Pourtois et al., 2005b). The ability to detect 

image-invariant adaptation in this study may reflect the increased power in our design. 

Although we found image-invariant identity adaptation, we found no interaction between 

identity processing and familiarity. The observed adaptation was equally pronounced for 

familiar compared to unfamiliar faces. This is in line with a recent study, where the 
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amount of image variation was systematically varied within a block and a similar release 

from adaptation was found for familiar as well as unfamiliar faces (Davies-Thompson et 

al., 2013). Together, it seems that the pattern of response in face-selective regions such 

as the FFA does not reflect the familiar face bias in face recognition. 

In contrast to the core face-selective regions, image-invariant adaptation was found in the 

MTL. Consistently with Bruce and Young’s model (1986), MTL adaptation was observed 

only for familiar but not unfamiliar faces. The MTL has previously been reported to 

respond more to familiar than to unfamiliar faces (Bar, Aminoff, & Ishai, 2008; Barense, 

Henson, & Graham, 2011; Eger et al., 2005; Elfgren et al., 2006; Ishai et al., 2002; Leveroni 

et al., 2000; Nielson et al., 2010; Pierce et al., 2004; Sergent et al., 1992). Additionally, it 

has been suggested to process semantic information associated with a face rather than 

the image itself (Haxby et al., 2000; Ranganath, Cohen, Dam, D’Esposito, 2004; Todorov, 

Gobbini, Evans, & Haxby, 2007). Our findings suggest that the involvement of MTL in 

familiar face recognition might reflect the activation of an image-invariant representation 

of person identity information (Burton et al., 1999).  

The reduction in response evident in fMR-adaptation can be explained by a variety 

of different neural mechanisms (Grill-Spector et al., 2006; Krekelberg, Boynton, & van 

Wezel, 2006; Summerfield, Trittschuh, Monti, Mesulam, & Egner, 2008). Models differ in 

terms of whether adaptation reflects a change in bottom-up processing (for example, 

neuronal fatigue or sharpening of the representation) or whether it reflects top-down 

control (for example, predictive processing or expectation). It is not possible to 

discriminate between these possibilities in this data. However, the role of the MTL in the 

recognition of familiar identity is consistent with studies that have recorded neural 

responses in the MTL. These electrophysiological studies have revealed that neurons in 
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the MTL respond to familiar identities across different stimuli such as different face 

images or even across modalities using face images and corresponding names (Quiroga et 

al., 2005; Nielson et al., 2010; Quiroga, Kraskov, Koch, & Fried, 2009). For example, 

Quiroga et al. (2005) investigated responses in the MTL in patients who had been 

implanted with depth electrodes. Subsets of neurons within the MTL seemed to respond 

selectively to a familiar identity across different stimuli, e.g. the actress Halle Berry. These 

neurons increased their firing rate for different photos of Halle Berry, her name, line 

drawings of her and even images depicting her masked as cat woman, a character she 

played. Such findings, suggest that the MTL might play a role in linking perception of a 

familiar face image with the knowledge associated with it (Ranganath et al., 2004; 

Todorov et al., 2007). Activity in the MTL might therefore reflect automatic retrieval of 

person-identity information from long-term memory. 

These findings are consistent with neuropsychological studies of prosopagnosia.  

Lesions to the fusiform gyrus often lead to a selective deficit in the ability to accurately 

perceive a face (apperceptive prosopagnosia) rather than in the matching of an image 

with a memory of a facial identity (associative prosopagnosia; Barton et al., 2002; Barton, 

2008). In contrast, lesions to anterior regions of the temporal lobe leave the perception of 

the face intact but impair recognition and semantic memory of people (Ellis, Young, & 

Critchley, 1989; Patterson, Nestor, & Rogers, 2007; Barton et al., 2008; Gainotti, 2014; 

Collins & Olson, 2014). Similar findings have been reported in people with developmental 

prosopagnosia.  These studies reveal largely intact activity in the core face-selective 

regions, but reduced activity in anterior regions that may reflect a disruption in the 

connectivity between the core and extended face regions (Thomas et al., 2009; Avidan et 

al., 2014).  
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Similar conclusions have been drawn from neuroimaging studies using 

multivariate analyses that have implicated the ventral anterior temporal lobes in the 

generation of image-invariant representations of facial identity (Kriegeskorte et al., 2007; 

Nestor et al., 2011; Anzellotti et al., 2014). We did not find face-selective responses in this 

anterior regions. However, this may reflect signal distortion and drop out in the MRI 

signal in our data due to the proximity to the sinuses (Axelrod, & Yovel, 2013; Visser, 

Jefferies, & Ralph, 2010). 

Finally, we asked whether adaptation was evident outside the face-selective 

regions.  We found adaptation to familiar faces in the precuneus, insula and middle 

temporal lobe, consistent with a previous study by Pourtois and colleagues (2005b). We 

also found adaptation to unfamiliar faces in the precuneus and frontal pole consistent 

with previous studies (Davies-Thompson et al., 2009; Pourtois et al., 2005b). 

In conclusion, we failed to find an image-invariant response to familiar but not 

unfamiliar faces in the core face-selective regions, such as the FFA. In contrast, we found 

image-invariant adaptation to specific to familiar faces in the MTL. This suggests that the 

recognition of familiar faces across different images relies on neural representations  

in the MTL. 
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Chapter 7 - Discussion 

The ease with which we recognise a familiar identity from face images that vary in 

illumination, expression, viewing angle, and appearance contrasts with the inherent 

difficulty in the recognition of unfamiliar identities (Bruce et al., 1987; Davies-Thompson 

et al., 2009; Hancock et al., 2000; Jenkins et al., 2011; Megreya & Burton, 2006; Johnston 

& Edmonds, 2009). Based on these findings, cognitive models of face processing have 

suggested that there are different neural representations of familiar and unfamiliar faces 

(Bruce & Young, 1986; Burton et al.,1999). These models propose that all faces are 

initially represented by image-dependent neural code.  However, it is only at later stages 

of processing that familiar faces are represented by an image-invariant code. This image-

invariant identity representation has been suggested to underlie the familiar identity 

recognition advantage. Nevertheless, the neural mechanisms underlying this advantage 

remain unclear (Natu & O’Toole, 2011). 

A wide range of studies have investigated the neural basis of face processing. 

Functional imaging studies have consistently found regions in the occipital and temporal 

lobes that respond selectively to faces (Kanwisher et al., 1997; McCarthy et al., 1997). 

Haxby and colleagues’ (2000) neural model of face processing suggests that different 

regions process different aspects of faces. One region — the fusiform face area (FFA) — is 

suggested to represent invariant facial characteristics, such as identity, that are necessary 

for familiar face recognition (Grill-Spector et al., 2004; Haxby et al., 2000; Ishai, 2008). 

Consistent with these neuroimaging studies, neuropsychological studies show that lesions 

in the approximate location of the FFA can lead to selective impairments in face 
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recognition (Barton et al., 2002; Damasio et al., 1982). These findings make the FFA a 

promising candidate for the neural correlate of the familiar face recognition advantage. 

However, neuroimaging studies directly comparing the response in the FFA to 

familiar and unfamiliar faces show mixed results. Some studies report stronger FFA 

activity for familiar compared to unfamiliar faces (Elfgren et al., 2006; Gobbini et al., 

2004; Pierce et al., 2004; Sergent et al., 1992). However, others find no difference in 

response  (Gorno-Tempini & Price, 2001; Leveroni et al., 2000) and one study found 

stronger response to unfamiliar than familiar faces (Gobbini et al., 2004). 

Thus, it remains unclear from previous research which role the FFA plays in the 

recognition of identity, particularly whether activity in this area can explain the familiar 

face recognition advantage. Therefore the aims of this thesis were: 

 To locate the the neural correlates of the familiar face recognition. 

 To explore the representation of familiar faces within face-selective regions.  

7.1 The neural correlate of the familiar face recognition 

advantage  

If the familiar face recognition advantage arises from differential processing of familiar 

and unfamiliar faces, we would expect to find a brain region (or regions), which responds 

differently to familiar and unfamiliar faces. This difference in brain response should 

account for the difference in behavioural face recognition between familiar and 

unfamiliar faces. Chapter 3 combined behavioural and fMRI techniques to address this 

question using an individual differences approach. First, brain activity was measured to 

familiar and unfamiliar faces. Next, participants face recognition of familiar and unfamiliar 
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faces was assessed. A correlational analysis of brain activity and behavioural recognition 

data revealed that activity in the rFFA predicts the behavioural familiar face recognition 

advantage. That is, the higher the difference in response to familiar compared to 

unfamiliar faces in the rFFA, the better familiar compared to unfamiliar face recognition. 

7.2 Representation of higher- and lower-level properties in face-

selective regions.  

Although the findings presented in Chapter 3 show the importance of FFA in familiar face 

recognition, the nature of the face representation within the FFA remains unclear. To 

address this, Chapter 4 investigated the organizing principles that underpin spatial 

patterns of response in the FFA. Previous studies have reported that there are distinct 

patterns of response to facial identities in the FFA that are independent of changes in 

viewpoint or expression (Anzellotti et al., 2013; Guntupalli et al., 2016; Natu et al., 2010; 

Nestor et al., 2011). However, other studies have shown distinct patterns of response to 

viewpoint or expression independent of identity (Axelrod & Yovel, 2012; Kietzmann et al., 

2012; Said et al., 2010; Wegrzyn et al., 2015; Zhang et al., 2016). To explore the relative 

role of these higher-level properties of faces, I compared the relative role of identity and 

viewpoint. The results clearly showed that patterns of response in the FFA and other face 

regions were dominated by changes in viewpoint. A similar pattern of results was evident 

for the effects of viewpoint and expression – a clear dominance for viewpoint in all 

regions including the STS, which previous studies have shown to be selective for 

expression (Allison et al., 2000; Engell & Haxby, 2007, Harris et al., 2012; Pelphrey et al., 

2004; Winston et al., 2004). 
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It is clear that changes in viewpoint give rise to a much larger change in the image than 

changes in identity or expression. Indeed, previous studies have shown that patterns of 

response in the ventral visual pathway can be predicted by low-level image properties 

(Andrews et al. 2015, Rice et al. 2014, Watson et al., 2016). So, it is possible that these 

patterns of response could be explained by sensitivity to lower-level properties of the 

image. To test this possibility, we measured image properties using the GIST descriptor 

and used the output to explain the observed brain responses. The GIST descriptor 

significantly explained patterns of brain response in all face-selective regions. Moreover, 

the effects were much larger than observed for viewpoint. Together, these findings 

suggest that the topographic organization within the FFA reflects lower-level image 

properties rather than higher-level face properties such as identity. 

7.3 How is visual information about faces represented in face-

selective regions?  

Chapter 4 showed that patterns of response in face-selective regions could be predicted 

by lower-level properties of the image rather than by higher-level properties such as 

identity. The aim of the Chapter 5 was to understand how visual information about faces 

is represented in these regions. 

There are many ways of thinking about the visual information conveyed by a 

photograph of a face, but one that has proved very useful is in terms of its shape and 

surface properties. Any facial image consists of a set of edges created by abrupt changes 

in reflectance due to the shapes and positions of facial features and a broader pattern of 

reflectance based on the surface properties of the face – also known as texture or albedo 

(Bruce & Young, 1998, 2012). Shape properties can be operationally defined by the spatial 
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locations of fiducial points that correspond to facial features; note that in this sense 

'shape' properties will include both the feature shapes and their positions. In contrast, 

surface properties result from the pattern of reflectance of light due to the combination 

of ambient illumination, the face's pigmentation, and shape from shading cues. 

Thinking of facial images as broadly consisting of shape (feature positions) and 

surface (pigmentation, shading patterns) properties has also helped our understanding of 

facial identity recognition, where both cues can contribute (Russell, Sinha, Biederman, & 

Nederhouser, 2006; Troje & Bülthoff, 1996).  However, the role of surface cues becomes 

more salient for familiar faces (Burton et al., 2005; Russell & Sinha, 2007). The fMRI 

experiment in Chapter 5 measured patterns of response to different face images. I then 

asked whether the shape or surface properties could best explain these patterns of 

response. Contrary to our prediction, I found that shape but not surface properties could 

explain patterns of response in the FFA.  This difference between the neural and 

perceptual responses to facial identity suggests that while the FFA may contribute to the 

early stages of analysis of invariant characteristics of faces, it is not itself responsible for 

the recognition of facial identity. 

7.4 Image-invariant representations of familiar faces  

Cognitive models of face processing suggest an image-invariant representation of familiar 

faces to underlie the familiar face recognition advantage. However, the findings reported 

in Chapters 4 and 5 did not provide any evidence for such a representation in the spatial 

pattern of response. Nevertheless, this does not mean that there is no image-invariant 

identity representation in the FFA. The representation could be finer spatial scale than is 

detected by MVPA. To address this issue, we used fMR-adaptation to investigate identity 
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representations within voxels (Grill-Spector & Malach, 2001). The principle behind fMRI 

adaptation is that repetition of a stimulus causes a reduction or habituation in the neural 

response, which leads to a lower fMRI signal. The sensitivity of the neural representation 

can then be determined for different changes to the stimulus. If the underlying neural 

representation is insensitive to a particular type of change in the stimulus, the reduction 

in fMRI signal for this type of change will be similar to the overall reduction produced by 

repetitions of identical stimuli. However, if the underlying neural representation is 

sensitive to this change, the fMRI signal will remain at its original (non-adapted) level. 

The aim of Chapter 6 was to use fMR-adaptation to investigate image-invariant 

adaptation in face regions. Participants viewed either different identities or different 

images of the same identity. Additionally, the identities were either familiar or unfamiliar. 

If the representation in the FFA is linked to the recognition of facial identity, we expected 

a lower response (adaptation) when different images of the same familiar identity are 

repeated compared to when images of different familiar identities are shown. Moreover, 

similar adaptation should not be evident for unfamiliar faces. 

 We found image-invariant adaptation in the FFA for both familiar and for 

unfamiliar faces. However, there was also no difference in the magnitude of adaptation to 

familiar and unfamiliar faces. This does not fit with models of familiar face processing that 

predict adaptation only for familiar faces. None of the other core face regions showed any 

image-invariant adaptation to familiar or unfamiliar faces. However, we also found face-

selective activity in the MTL. This region showed adaptation to familiar faces but not 

adaptation to unfamiliar faces. The MTL has been previously reported to store identity 

representations across different images or even different modalities, e.g. different images 
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of one identity and their spoken and written name (Quiroga, Kraskov, Koch, & Fried, 

2009; Quiroga, Reddy, Kreiman, Koch, & Fried, 2005; Nielson et al., 2010). Moreover, 

activity in the MTL has been suggested to reflect knowledge associated with an identity 

automatically activated by the face image (Haxby et al., 2000; Ranganath et al., 2004; 

Todorov et al., 2007). These results suggest that an image-invariant representation that 

could potentially underpin the behavioural familiar face recognition advantage seems to 

occur outside the FFA. A potential candidate for such a neural correlate seems to be the 

MTL, which shows an image-invariant representation for familiar but not unfamiliar 

identities.  

One potential avenue of future research that may help understand the familiar 

face recognition advantage would be to examine how the spatial patterns of response 

observed in these studies fits temporal patterns of response shown in EEG and MEG 

studies. Event-related potential (ERP) and magnetoencephalography (MEG) studies have 

also shown that faces and other objects can be distinguished by the pattern of electrical 

activity across the occipitotemporal lobe (for review see Schweinberger & Neumann, 

2016). Studies have investigated the importance of peaks in activity at 170msec and 

250msec in the processing of facial identity (Bindemann, Burton, Leuthold, & 

Schweinberger, 2008; Schweinberger,& Burton, 2003; Schweinberger, Pickering, Jentzsch, 

Burton, & Kaufmann, 2002). Overall, these findings suggest that that the occipitotemporal 

N250r is highly sensitive to the familiarity of faces, and reflects the transient activation of 

individual representations of repeated familiar faces in repetition priming experiments. A 

combination of MEG/EEG and fMRI could help provide a more complete spatial and 

temporal account of how familiar faces are represented in the brain. 
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7.5 Conclusion  

This thesis aimed to investigate the neural correlate of the behavioural familiar face 

recognition advantage. The first experiment provides some support for a link between 

response in the FFA and face recognition. The second, third, and fourth experiment do 

not provide much evidence for an image-invariant identity coding in the FFA, but rather 

coding of image properties important for face recognition. Finally, the fifth experiment 

shows some image-invariant adaptation in the FFA, but to both familiar and unfamiliar 

faces. However, we did find an image-invariant identity representation restricted to 

familiar faces outside the FFA, namely in the MTL.  

 According to Haxby and colleagues’ model of face processing, the FFA represents 

the identity of faces image-invariantly. Although we did find an image-invariant 

adaptation in brain response intensity, our findings also show that the pattern of 

response in the FFA is to some degree image-dependent reflecting different viewpoints of 

faces or different face images. Thus it seems that the FFA contains image-invariant but 

also image-dependent information of faces, potentially forming a link between 

representing the specific image of a face and the abstract image-invariant representation 

of the identity of the face. 

 In conclusion, these results show that the FFA plays a role in familiar face 

recognition, such as in the encoding of shape information. However, this FFA 

representation seems not to be sufficient for recognition. Instead, activation of face 

representations in regions such as the MTL appear to be important for the retrieval of 

person knowledge and successful face recognition. 
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