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Abstract 
 

Merkel cell carcinoma (MCC) is a rare but highly metastatic skin cancer that 

affects immunosuppressed individuals. The MCC tumour arises from 

mechanoreceptor merkel cells in the basal layer of the epidermis and is able 

to spread through the dermal lymphatic system. Merkel cell polyomavirus 

(MCPyV) has been detected in the majority of MCC tumour samples. 

Truncation mutations of the large tumour antigen (LT) are observed in the 

integrated genome rendering the virus replication defective. These 

replication-disabling mutations are only present in MCPyV isolates found in 

cancers and absent from viruses derived from non-tumour tissues. As such 

aberrant expression of truncated LT (tLT) and small T (ST) antigens is 

thought to be implicated in MCC development. Elucidating the cellular 

pathways affected by the MCPyV T antigens involved in oncogenesis and 

tumour progression is essential to understand the effects of these 

oncoproteins in cellular transformation and tumourigenesis. A quantitative 

proteomic approach has been used to identify cellular proteins and 

pathways that are differentially expressed upon expression of MCPyV tLT. 

Bioinformatic analysis of the stable isotope labelling by amino acid in cell 

culture (SILAC) datasets highlight several pathways that are dysregulated 

upon tLT expression. These pathways include cell cycle regulation, cell 

death and survival, and cell-cell connections. Further analysis confirmed the 

effects of MCPyV tLT on these pathways showing alterations within the cell 

cycle, specifically disrupting the G1 checkpoint to enhance entry to the S-

phase, which may prolonged the S phase to allow viral DNA replication. In 

addition, results suggest that MCPyV tLT expression may also delay the 

apoptosis-inducing properties of various compounds but was not capable to 

fully inhibit the apoptotic cascade. In contrast, although proteomic analysis 

highlighted a number of cell-cell connections related pathways to be 

differentially altered upon tLT expression, follow up experiments were not 

able to confirm these results.  
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DTT dithiothreitol 
E. coli Escherichia coli 
E2F E2 factor 
EB-1 end binding protein - 1 
EBV Epstein-Barr virus 
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1.0.  Introduction 

1.1.  Cancer 
 

Cancer is a group of diseases that exhibit the common feature of abnormal 

uncontrolled growth, with potential to invade and spread to other parts of 

the body. The hallmarks of cancer comprise six biological capabilities 

acquired during the development of the tumour. These features include 

proliferative signalling, evading growth suppressors, resisting cell death, 

enabling replicative immortality, inducing angiogenesis, and activating 

invasion and metastasis (Hanahan and Weinberg, 2000, 2011).  

 
 

Figure 1.1: The hallmarks of cancer. 

The hallmarks of cancer includes six biological capabilities acquired through the 
development of tumour. Illustration adapted from (Hanahan and Weinberg, 2011). 

 
A fundamental trait of cancer cells is their ability to sustain progressive 

proliferation. This feature does not usually occur in healthy cells and 

tissues where they are able to control the production and release of the 

appropriate growth-promoting signals essential in cell growth and 

regulating cell division. Thus, the homeostasis of cell numbers are 
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maintained  according to the cell’s needs and functions. Cancer cells on 

the other hand deregulate these checkpoint signals and emit signals which 

drive progression through the cell cycle, inducing cell proliferation, 

increasing the cell numbers and enhancing cell survival, as well as up 

regulating energy metabolism. Cancer cells are also capable of inducing 

angiogenesis locally and becoming resistant to apoptosis as well as tissue 

invasion resulting in metastasis. These hallmarks of cancers are present in 

variable degrees in different diseases, among different cases of the same 

cancer and even in a given malignant tumour after time (Hanahan and 

Weinberg, 2000). Transformed cells have already acquired some of these 

hallmarks when they develop into a malignant tumour, and further 

mutations strengthen these oncogenic properties during tumour 

progression. Furthermore, new features may also be acquired, enabling the 

malignant tumour to become more heterogeneous and aggressive. These 

cancer determining features and pathways can also be required for efficient 

viral replication (Elgui de Oliveira, 2007). As such, infection by oncogenic 

viruses offers a prone-to-transformation scenario, in which the development 

of a malignant tumour is likely to happen. 

 

1.2.  Viruses and Cancer 
 

There are many causes of cancers and infectious agents, such as viruses, 

are considered to be an important factor in the development of various 

human tumours. The estimated total number of cancers attributable to 

infection is approximately 1.9 million cases per year, or 17.8% of the global 

cancer burden (Parkin, 2006). In the developed world, cancer accounts for 

20% of all deaths and is the highest cause of death after cardiovascular 

disease. Viral infection is thought to play a significant role in cancer 

formation and maintenance. The first tumour virus, Rous sarcoma virus 

(RSV) which causes tumours in chickens, was discovered in 1911 by 

Peyton Rous (Javier and Butel, 2008). Following this discovery, several 

other mammalian tumour viruses were identified including murine 

polyomavirus (MPyV) and simian vacuolating virus 40 (SV40) (Moore and 
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Chang, 2010b; Stewart et al., 1958; Sweet and Hilleman, 1960). The 

known human tumour viruses, including Epstein-Barr virus (EBV), hepatitis 

B virus (HBV), human papilloma virus (HPV), human T-lymphotrophic virus 

(HTLV-1), hepatitis C virus (HCV), Kaposi’s sarcoma-associated 

herpesvirus (KSHV) and Merkel cell polyomavirus (MCPyV). Through 

intensive research it has been shown that most cancer associated viruses 

express specific oncoproteins which facilitate cell growth, proliferation and 

transformation of the host cell (Table 1.1).  

 

Virus Family/Genome Examples of 
Oncoproteins 

Associated 
cancers 

Epstein-Barr Virus 
(EBV) - 1964 

Herpesviridae - 
dsDNA LMP1 

Burkitt’s lymphoma, 
nasopharyngeal 
carcinoma, most 
lymphoproliferative 
disorders 

Hepatitis B Virus 
(HBV) - 1965 

Hepadnaviridae - 
ssDNA and dsDNA 

HBx 

 

Some hepatocellular 
carcinomas 

Human T- 
lymphotrophic 
virus-1 (HTLV-1) -
1980 

Retroviridae - 
ssRNA 

 

Tax 

 

Adult T cell lymphoma 

 

Human 
papillomaviruses 
(HPV) 16 and 17 -
1983 and 1984 

Papillomaviridae - 
dsDNA E5, E6, E7 Cervical cancer and 

most penile cancers 

Hepatitis C Virus 
(HCV) - 1989 

Hepaciviridae - 
(+)ssRNA 

NS5A 

 

Some hepatocellular 
carcinomas and 
lymphomas 

Kaposi’s scarcoma 
associated 
herpesvirus 
(KSHV) - 1994 

Herpesviridae - 
dsDNA 

LANA, vflip, vBcl- 
2 and others 

Kaposi’s sarcoma, 
primary effusion 
lymphoma and some 
multicentric 
Castleman’s disease 

Merkel Cell 
Polyomavirus 
(MCPyV) - 2008 

Polyomaviridae - 
dsDNA 

 

T antigens - LT 
and ST 

 

80-95% Merkel cell 
carcinoma cases 

 

Table 1.1: Human tumour viruses and their oncoproteins.  

List of the known human tumour viruses, date of discovery, virus family, genome structure 
and the viral-associated cancer. Adapted from (Moore and Chang, 2010b). 

 

Studying tumour viruses has also revealed fundamental molecular events 

that trigger the development of all human cancers, regardless of etiology. 

Both RNA and DNA tumour virus research has contributed distinct insights 

into the disease process by revealing central roles for cellular oncogene 
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activation and tumour suppressor gene inactivation, respectively. Most 

known cellular oncogenes have been identified through studies of human 

tumour viruses. In addition, viruses have been important in the 

identification of the p53 tumour suppressor protein and many functions of 

the retinoblastoma (Rb) tumour suppressor gene. 

 

1.3.  Polyomaviruses 
 

Polyomaviruses are non-enveloped, double stranded DNA viruses with 

icosahedral capsids. Their DNA genomes are approximately 5 kbp in 

length. The Polyomaviridae family mostly infect birds, mammals and 

humans (Van Ghelue et al., 2012). However, each respective polyomavirus 

only infects specific species, thus they have a limited host range (Imperiale, 

2001). The polyomaviruses are classified as the only genus in the 

polyomaviridae family. The name polyomavirus is derived from words poly-, 

which means ‘many’ and –oma, which means ‘tumours’. The first 

polyomavirus identified was murine polyomavirus (MPyV), followed by 

simian vacuolating virus 40 (SV40), two years later in 1960. These two 

viruses have been widely used as model systems for understanding 

polyomavirus DNA structure, replication and transcription (White and 

Khalili, 2004). Moreover, they have been valuable tools for studying virus-

induced transformation mechanisms (Siebrasse et al., 2012a). This has led 

to fundamental insights into carcinogenesis, due to SV40 having the ability 

to transform human cells in vitro and induce tumours in rodents in vivo 

(Moens et al., 2007).  

 

Human polyomaviruses were first discovered and isolated about 30 years 

ago. Starting with the isolation of BK virus (BKPyV) from urine of a renal 

transplant patient (Gardner et al., 1971) and JCPyV from the brain of a 

patient with progressive multifocal leukoencephalotheraphy (PML) (Padgett 

et al., 1971). JCPyV is a common infection during childhood and early 

adolescence with seroprevalence of 70 to 90% in adult population (Padgett 
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and Walker, 1973; Shackelton et al., 2006). However, it is now established 

as the causative agent in PML, as PML mainly occurs in patients with 

compromised immune systems, such as acquired immune deficiency 

syndrome (AIDS) and transplant patients. Under these conditions, virus 

reactivation can occur resulting in lytic replication in oligodendrocytes 

leading to focus formation and demyelinated areas (Safak and Khalili, 

2003). JCPyV has also been shown to induce transformation of human and 

rodent cells in vitro and in animal models (Nozawa et al., 1987). Both 

JCPyV and BKPyV share approximately 75% sequence identity and have 

similar infection routes (Chesters et al., 1983). Like JCPyV, BKPyV 

reactivation can occur under immune suppression leading to a lytic 

replication cycle (Egli et al., 2009).  

 

In 2007 two additional human polyomaviruses were identified by deep 

sequencing of DNAse-treated respiratory fluids from patients with 

respiratory tract infections. They were named after the institutions in which 

they were isolated; namely Karolinska Institute polyomavirus (KIPyV) 

(Allander et al., 2007) and Washington University polyomavirus (WUPyV) 

(Gaynor et al., 2007). Since then, other polyomaviruses have been 

discovered through a variety of techniques. Most of the methods used 

involved virus enrichment from samples, treatment with DNase to eliminate 

unencapsidated DNA, followed by protease treatment to disrupt the virions, 

followed by deep-sequencing. In 2008, Merkel cell polyomavirus (MCPyV) 

was discovered using digital transcriptome subtraction prepared from a 

Merkel cell carcinoma (MCC) specimen. Here, human sequences were 

subtracted to identify novel viral sequences. In the same year, 

trichodysplasia spinulosa-associated polyomavirus (TSPyV) was isolated 

and discovered from trichodysplasia spinulosa lesions from inner root 

sheath cells of hair follicles using the rolling circle amplification method 

(van der Meijden et al., 2010). Again, lytic reactivation of TSPyV in 

immune-compromised individuals results in this rare skin disease. Human 

polyomavirus 6 (HPyV6) and human polyomavirus 7 (HPyV7), have also 

been identified using the same method from human skin, using degenerate 

primers corresponding to other human polyomavirus sequences. However, 
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individuals harbouring HPyV6 or HPyV7 showed no clinical symptoms 

(Schowalter et al., 2010). Another novel human polyomavirus 9 (HPyV9) 

was isolated from kidney transplant patients (Scuda et al., 2011) and 

Malawi polyomavirus (MWPyV) was isolated from healthy stool samples 

and named after the source of the original virus isolate (Siebrasse et al., 

2012a). HPyV10 was discovered from a patient presenting with warts, 

hypogammaglobulinemia, infection and myelokathexis (WHIM) syndrome 

(Buck et al., 2012). Notably, within the last 4 years, MX polyomavirus 

(MXPyV) was also isolated from acute diarrheal samples of children (Yu et 

al., 2012),  human polyomavirus 12 (HPyV12) from resected liver samples 

(Korup et al., 2013) and St Louis polyomavirus (STLPyV) was isolated from 

stool specimens obtained from both the Gambia and the United States (Lim 

et al., 2013).  

 

To date, over 21  full genome sequences of polyomaviruses have been 

deposited in Genbank. Through phylogenetic analysis of the human 

polyomaviruses protein sequences’; JCPyV, BKPyV, KIPyV and WUPyV 

appear to be closely related to SV40. In contrast, MCPyV appears to be 

more closely related to the archetypal murine polyomavirus (MPyV). 

Therefore, due to the explosion in new polyomaviruses being identified, the 

role of the human polyomaviruses in disease is now a focus of intense 

research.  

  

1.3.1.  Genome organization of polyomaviruses 
 

The polyomavirus genome is small, circular and double stranded; between 

5.0 and 5.3 kbp in length (JCPyV-5130 bp; BKPyV-5153 bp; KIPyV-5040 

bp, WUPyV-5229 bp; MCPyV-5387 bp). It is contained within a non 

enveloped, 40-45 nm icosahedral capsid. Generally, the genome can be 

divided into three functional regions; the early region encoding regulatory 

proteins involved in viral DNA replication and gene expression; the late 

region that encodes the capsid proteins; and origin of replication and 

transcription control elements (Figure 1.2).  

 



- 8 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Schematic presentation of genome organization of SV40.  

SV40 genomic DNA is composed of three elements: the early and late coding units and 
the regulatory region. The early unit encodes large T antigen (LT), small t antigen (sT), 
17K T antigen (17KT). The late unit encodes the three structural proteins (VP1, VP2, and 
VP3) and the agnoprotein (agno) and a pre-microRNA (miRNA). The regulatory region 
(ori) contains sequences for the early and late promoter and the origin of replication. 
Image taken from (Ahuja et al., 2005). 

 

Transcription of the early and late coding regions produce primary 

transcripts, which undergo differential splicing producing multiple mRNAs 

encoding a variety of distinct proteins. The early region encodes the T 

antigens, namely the large T antigen (LT), the small T antigen (ST) and the 

middle T antigen (MT). The late region, transcribed in the other direction 

encodes three structural proteins required for viral capsid formation: VP1, 

VP2 and VP3. The additional protein, VP4, also termed as agnoprotein was 

observed in SV40, BKPyV and JCPyV which may function as a viroporin 

(Raghava et al., 2011; Suzuki et al., 2010). 
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1.3.2.  Virus life cycle 
 

The life cycle of polyomaviruses has been well characterised, primarily  

using SV40 as a model to provide a better understanding of processes 

involved in polyomavirus infection and replication. Figure 1.3 highlights a 

schematic overview of the life cycle of polyomavirus.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1.3: The life cycle of the polyomavirus. 

Life cycle of the polyomaviruses. After entry, viral particles (red) pass through the 
cytoplasm to reach the nucleus, where the main processes of viral replication take place. 
The first step consists of expression of the early genes (blue), especially the large tumour 
antigen (LT) which is necessary for replication of the viral genome. The following step 
permits the production of structural proteins (late stage, red) prior to the assembly of new 
virions and their release into the extracellular medium (adapted from Fields, 4th edition). 

 

The virus enters the cell by attaching to specific cell receptors, mainly sialic 

acids on cell surface. For example, JCPyV binds to host cells via α2-6-

linked sialic acids on cell membrane glycoproteins and glycolipids 

(Komagome et al., 2002); while initial attachement of SV40 is through the 

cell receptor ganglioside GM1 (Campanero-Rhodes et al., 2007; Neu et al., 

2008) and both  BKPyV and MPyV  bind to sialylated glycans (Low et al., 
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2006; Tsai et al., 2003). The viral capsid enters the cell by endocytosis and 

is transported to the nucleus, where the DNA is uncoated and viral 

transcription begins. It starts with the expression of the early transcription 

unit, producing a series of alternative mRNA transcripts, which encode the 

tumour antigens of the virus, the large and small tumour antigens (LT and 

ST).  The ST antigen comprises a 17 kDa protein (~180 residues), 

localised to the nucleus and cytoplasm (Moens et al., 2007). ST is 

expressed from the same transcriptional start site as LT but the ST 

transcription reads through the splice site to encode the rest of the ST 

protein. Both LT and ST share the same N-terminal region, which consists 

of a complement receptor type 1 (CR1) and heat shock protein-binding 

domains,  however, only ST contains a protein phosphatase 2A (PP2A) 

family interaction domain. Upon expression and translation of the late viral 

capsid proteins, virus assembly occurs  in the nucleus. The packaged virus 

particles are then released by cell lysis or by cell membrane fusion 

exocytosis (Ahuja et al., 2005). 

 

1.3.3.  Integration of the polyomaviruses 
 

Integration of the viral genome into host chromosomal DNA has been 

demonstrated for many polyomaviruses, including MPyV, SV40, JCPyV 

and BKPyV (Chenciner et al., 1980; Hirai et al., 1971; Mandl and Frisque, 

1986). The pattern of integration of SV40 occurs at random sites in host 

chromosomes, although some integration sites  were more predominant in 

selected clones (Hara and Kaji, 1987). This has been confirmed recently in 

MCPyV, where integration was observed to be random but localised in 

certain sites within the host genome (Feng et al., 2008; Martel-Jantin et al., 

2012). Martel-Jantin et al., discovered this viral junction was located within 

the second exon of the LT antigen, after the pRB binding domain. This 

suggests that integration may result in MCPyV LT tumour truncations 

removing the helicase binding domains, inhibiting viral replication, 

facilitating host cell transformation (Houben et al., 2010a; Martel-Jantin et 

al., 2012; Shuda et al., 2008). 
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1.3.4.   The oncogenic potential of polyomavirus T antigens. 
 

All polyomaviruses encode both LT and ST antigens, which are important 

regulatory oncoproteins required for viral replication. However, due to the 

small genome size, polyomaviruses rely strongly on host cellular replication 

machinery to replicate their genomes. For example, they have to 

reprogram the host cell cycle to induce progression into S-phase, in order 

to create an optimal environment for virus replication (Moens et al., 2007). 

This is thought to be an important mechanism in polyomavirus-induced 

cellular transformation as early gene expression in non-permissive cells 

results in aberrant cell cycle stimulation and interference with host cell 

signalling pathways (Ahuja et al., 2005). Importantly, research using SV40 

suggests that both SV40 T antigens are required for transformation of 

human fibroblasts; ST alone is incapable of transforming cells but 

enhances LT-induced cell transformation (Noda et al., 1987).  Therefore, it 

is believed that the SV40 LT antigen is the major oncoprotein involved in 

the neoplastic process of polyomaviruses, while ST enhances SV40 LT-

mediated transformation and oncogenic progression.  

 

1.3.4.1.  Large  T antigen 
 

The large T (LT) antigen is a multifunctional nuclear phosphoprotein, 

approximately 700 amino acids residues in length. LT contains the 

conserved J domain within its N-terminus and a unique C-terminal region 

(Figure 1.4). The J domain comprises a protein binding domain for Hsc70 

and a conserved Cr1 domain. Within its unique region the LT protein 

contains multiple distinct protein binding domains, such as the LxCxE motif, 

which are required for pRb binding (DeCaprio et al., 1988). LT also 

contains a DNA binding domain within the mid-region of the protein and a 

C-terminal bipartite region, which facilitates an interaction between LT and 

the tumour suppressor protein p53, which promotes viral DNA replication 

(Kierstead and Tevethia, 1993; Peden et al., 1989).  

 

 



- 12 - 

 
 

 

 

 

 

 

 

Figure 1.4: Schematic diagram of polyomavirus large T antigen.  

The J domain is a common region found in both LT and ST antigens. J domain contains a 
binding region to Hsc70, while the unique region posses only in LT contains a binding 
domain for pRb, a DNA binding domain and an ATPase domain which interacts with p53. 
Image taken from (Khalili et al., 2008b). 

 

1.3.4.1.1.  Role of LT in the virus life cycle 
 
The LT antigen promotes cell cycle dysregulation by driving the host cell 

into S-phase, aided by LT helicase and ATPase activity, which promotes 

DNA unwinding, along with additional specific domains required for binding 

cellular replication proteins (Moens et al., 2007). In SV40, LT acts as an 

essential factor in early viral DNA replication and binds to the viral origin of 

replication, through its DNA binding domain (Stahl et al., 1986). Binding 

promotes DNA helix unwinding and transcription complex formation (Dean 

et al., 1987). Here, LT stimulates viral DNA replication by the recruitment of 

cellular proteins required for transcription complex formation at the viral 

promoter region. Both the J domain and the ATPase domain of SV40 LT 

are necessary for direct binding of LT to the catalytic subunit of DNA 

polymerase-α (Dornreiter et al., 1990). Moreover, the DNA helicase activity 

of SV40 LT is required for efficient viral DNA replication, through this 

activity SV40 LT also interacts with components of the holoenzyme, 

namely nucleolin and topoisomerase 1, required for DNA unwinding  

(Seinsoth et al., 2003).  
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1.3.4.1.2.  Role of LT in host cell transformation 

 
Several studies have shown that expression of SV40 LT alone is sufficient 

to induce transformation of rat fibroblast cells and is thought to be a result 

of binding to the tumour suppressor proteins, p53 and Rb (Ahuja et al., 

2005; Saenz-Robles et al., 2001; Sullivan and Pipas, 2002). However, 

mutations in other regions of LT which do not disrupt these interactions 

also inhibit LT-induced transformation, suggesting other LT functions may 

contribute to tumourigenesis. Taking this observation into consideration, it 

suggests that both BKPyV and SV40 LT can induce mutagenic effects in 

the host DNA by affecting DNA repair and response pathways 

(Sachsenmeier and Pipas, 2001). 

 

1.3.4.1.2.1.   Binding tumour suppressor proteins 

 

LT-mediated transformation is primarily due to its interactions with the 

cellular tumour suppressor proteins, pRb and p53 (Moens et al., 2007; 

Saenz-Robles et al., 2001). Here LT is believed to exert its functions by 

inhibiting these tumour suppressor proteins so that cells are able to enter 

the S phase, enhancing viral genome replication. Importantly, LT binding 

mutants defective for pRb binding are incapable of inducing cellular 

transformation (Bollag et al., 2000; Chen and Paucha, 1990; DeCaprio et 

al., 1988; Harris et al., 1998). An active pRb functions as a tumour 

suppressor protein by preventing excessive cell growth and inhibits cell 

cycle progression until the cell is ready to divide. Active pRb proteins bind 

to E2F factors and repress E2F-dependent gene expression, such as C-

myc and C-fos which are required for S-phase entry (Rowland and 

Bernards, 2006). Figure 1.5 illustrates the interactions of polyomavirus LT 

antigen targeting the tumour suppressor proteins, p53 and pRb. 
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Figure 1.5: The effects of polyomavirus LT antigen on regulatory pathways, 
targeting the regulatory pathway implicating in the inactivation of pRb-E2F and p53.  

LT antigen may effect the functions through its binding to p53 and pRb. This binding 
inactivates the function of p53 and subsequently blocked the expression of p21, which is 
cyclin-dependent kinase inhibitor causing the cell cycle checkpoints dysfunction. Active Rb 
proteins binds to E2F to inhibits cell cycle progression. The interactions of RB to LT 
antigen (LTA) release E2F from the RB-E2F complex, causing the progression of cell 
cycle from G1 phase to S phase. The release of E2F also can also through the 
phosprorylation of RB. Image taken from (Becker et al., 2009).  

 

In addition, LT also affects expression levels of the pRb protein and its 

other related family members, such as p107 and p130. This is supported 

by studies demonstrating that expression of SV40 LT lowers the 

expression levels of p130 in mouse embryonic fibroblasts while the BKPyV 

LT protein has been shown to reduce the levels of expression of all three 

pRb family members (Harris et al., 1996). The tumour suppressor protein, 

p53 functions as a regulator of the cell cycle as well as directing apoptosis 

and DNA damage repair. Aberrant p53 regulation is the most common 

feature of many human cancers. Polyomavirus regulation of p53 is required 

as inhibition of pRb activity by LT binding results in the transcription of E2F 

responsive genes resulting in the activation of p14ARF, whose downstream 

effect results in activation of p53 and transcription of p53-regulated genes 

(Quelle et al., 1995). This would result in cell growth arrest and apoptosis. 

However, LT binding renders p53 transcriptionally inactive, as p53 can no 

longer access and bind to p53-responsive promoters (Jiang et al., 1993; 

Segawa et al., 1993). Expression of LT alone is sufficient to downregulate 
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the expression of p53 responsive genes, allowing virus replication to 

proceed in permissive cells but in non-permissive cells this can lead to host 

cell transformation (Mietz et al., 1992; White and Khalili, 2004).  

 

1.3.4.1.2.2.  Binding Cullin 7 

 
SV40 LT is also able to interact with cullin 7 (cul7), a core protein in the E3 

ubiquitin ligase protein degradation complex (Dias et al., 2002). This 

interaction prevents cell growth in low serum conditions and exhibits 

deficiencies in anchorage dependent growth (Ali et al., 2004). This 

demonstrates the importance of this interaction in relation to 

tumourigenesis, however the mechanism involved is yet to be understood.  

 

1.3.4.1.2.3.  IRS 1 

 

Polyomavirus LT expression can result in inhibition of the homologous 

recombination-direct DNA repair (HRR) response (Trojanek et al., 2006). 

Both JCPyV and SV40 LT antigens have been shown to induce 

translocation of insulin receptor substrate 1 (IRS 1) to the nucleus, resulting 

in an interaction between IRS1 and Rad51, a DNA repair component 

(Lassak et al., 2002; Prisco et al., 2002). Moreover, the expression of a 

dominant negative IRS 1 mutant inhibits anchorage independent growth of 

JCPyV LT transformed cells (Lassak et al., 2002). This suggests that there 

may be multiple mechanisms which mediate anchorage independent 

growth of transformed cells. 

 

1.3.4.1.2.4.  Binding β-catenin 
 
β-catenin is a subunit of the cadherin protein complex and functions as an 

intracellular signal transducer in the Wnt signalling pathway.  β-catenin is 

able to form complexes with transcription factors and activate transcription 



- 16 - 

of specific target genes, such as C-myc and cyclin D1 (Enam et al., 2002; 

Gan et al., 2001). Activation of the Wnt signalling pathway has been 

associated with tumour formation and progression in various cancer types 

(Mandl and Frisque, 1986; Reya and Clevers, 2005). Moreover, mutations 

and overexpression of β-catenin are also observed in many cancers 

(Morin, 1999). Several studies have shown that LT can directly bind to β-

catenin, thereby increasing its stability and enhancing activation of its 

target genes. As such, this is an additional contributing mechanism 

involved in LT-inducing tumour formation (Enam et al., 2002; Gan et al., 

2001).  

 

1.3.4.2  Small T antigen 

 
The Small T (ST) antigen coding region is approximately 500 base pairs in 

length, encoding a 17 kDa protein. ST localises to the nucleus and 

cytoplasm and is highly conserved across the polyomavirus family (Moens 

et al., 2007). The common region, termed the J domain, is present in the N-

terminal of the protein, and contains a conserved DnaJ (HPDDKGG) 

binding domain for the cellular heat shock protein, Hsc70, which acts as a 

chaperone protein to prevent protein aggregation during viral infection, 

replication and cellular stress (Figure 1.6). The carboxy-terminal of ST 

contains a conserved motif (CxxP/CxC) at 97-103 residues which is 

required for binding protein phosphatase 2A (PP2A), which is the major 

serine/threonine phosphatase in mammalian cells (Janssens and Goris, 

2001; Rodriguez-Viciana et al., 2006).  

 

 
 

 

 

Figure 1.6: Schematic representation of polyomavirus small T antigens and the 
binding domains within the protein.  

The J domain is a common region found in both LT and ST. J domain possess the binding 
site for Hsc70. The C-terminal ST protein contains a DNA binding domain and a PP2A 
binding domain. Image taken from (Khalili et al., 2008b). 
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1.3.4.2.1.  ST interacts with PP2A 
 

Several lines of evidence indicate that the functional region of the 

polyomavirus ST antigens lie within the unique region and specifically 

within the interacting domain of phosphatase 2A (PP2A) (Janssens and 

Goris, 2001). PP2A is the major serine/threonine phosphatase in 

mammalian cells and regulates many biological processes; including 

development, differentiation and growth control. The enzyme exists as a 

heterotrimeric complex composed of the core enzyme consisting of the C 

subunit and a regulatory A subunit, and variable isoform B subunits (Usui 

et al., 1988). The variability of numerous B subunits allows distinct 

substrate specificity (Janssens and Goris, 2001). Due to these multiple 

substrates, PP2A is an essential  regulator of multiple downstream 

signalling pathways affecting signal transduction, apoptosis, cell cycle 

regulation and proteolysis pathways (Mumby, 2007).SV40 ST targets PP2A 

function by replacing its B subunit, which can inactivate its activity; leading 

to increased cell proliferation and anchorage independent growth of cells 

(Khalili et al., 2008a). Figure 1.7 illustrates the interaction of ST with PP2A 

and the resulting  effect on inhibition of the PP2A complex.  

 

 

 

 

Figure 1.7: Polyomavirus ST protein interaction with PP2A.  

PP2A complex comprises three subunit; A, B and C. Subunit B and T antigen 
competitively compete the binding site. ST binds to the PP2A complex and replaces the B 
subunit of the PP2A complex resulting in inactivation of the PP2A enzyme towards its 
respective substrate. This interaction results in cell proliferation and anchorage 
independent growth of the cells. Image taken from (Khalili et al., 2008a). 

 
There are two isoforms of the PP2A A subunit; the alpha (α) and beta (β). 

SV40 ST has been shown to only interact with the Aα but not Aβ subunit 
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(Zhou et al., 2003). Here the SV40 ST-PP2A  binding site overlaps and 

blocks the B subunit binding site (Ruediger et al., 1994). ST can therefore 

act as a competitive inhibitor and compete with the B subunits for A subunit 

binding. Multiple experiments have shown that SV40 ST inhibits PP2A 

activity both in vitro and in vivo by preventing the binding of multiple 

different substrates to PP2A (Hahn et al., 2002; Yang et al., 1991; Yu et al., 

2001). Moreover, ST may also function as transfer factor,  changing the 

specificity of PP2A targeting in cells; for example modulating the 

transcriptional activity of cellular genes, including the androgen receptor 

(Yang et al., 2005), which may also contribute to cellular transformation. 

 

1.3.4.2.2.  Role of ST in the viral life cycle 
 
Expression of SV40 ST increases viral early promoter activity and also 

promotes the ability of LT to induce expression from the late promoter 

(Bikel and Loeken, 1992). Microarray studies on SV40 ST-expressing 

human embryonic kidney cells, have shown that ST promotes the 

expression of cellular survival genes involved in cell motility, cancer growth, 

metastasis and cell survival (Moreno et al., 2004a). However in some 

cases, when LT is present in high levels, the requirement for ST is reduced 

(Bikel et al., 1987).  

 

The major role of ST involves the interaction with PP2A, as mentioned 

previously. This interaction is thought to contribute to virus replication 

indirectly by disrupting the cell cycle and driving cells into S-phase, thus 

allowing recruitment of the host cell machinery required for viral replication 

(Sontag et al., 1993). ST has also been shown to affect cell cycle 

progression by decreasing cellular levels of p27/kip1 (Khalili et al., 2008b). 

The mechanism by which ST mediates this decrease is not fully 

understood, although it is possible that the ST-PP2A interaction could 

result in a reduction of cyclin E/CDK2 dephosphorylation, which in turn 

would regulate p27/kip1 levels and stimulate cell cycle progression. ST 

expression also upregulates other cell cycle progression factors, including 

cyclin D1 and B and thymidine kinase (Moreno et al., 2004b). 
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1.3.4.2.3.  Role of ST in cell transformation 
 

A number of studies have shown that deletions within the common region 

between LT and ST, the J domain, inhibits T antigen-mediated 

transformation (Khalili et al., 2008b). It is thought that, through the J 

domain, T antigens play an important role in promoting S-phase entry, as 

well as promoting virus replication in permissive cells and transformation in 

non-permissive cells. Specifically, the SV40 ST has been shown to be 

essential for cell cycle progression, anchorage independent growth and 

transformation (Hahn et al., 2002). The ST-PP2A interaction can affect the 

expression of transcription factors, such as C-myc. C-myc is activated by 

phosphorylation and this promotes binding to more than 15% of human 

gene promoters and enhancer sequences (Martinato et al., 2008). The ST-

PP2A interaction inhibits dephosphorylation of C-myc, thus promoting C-

myc stabilisation (Tiemann et al., 1995). In turn, this can directly induce cell 

transformation by altering cell proliferation, growth and apoptotic signalling 

(Yeh et al., 2004). In addition, ST also activates other cellular transcription 

factors; such as activator protein 1 (AP-1), specificity protein 1 (Sp1), 

cAMP response element-binding protein (CREB) and nuclear factor κB 

(NF-kB). These transcription factors are also important in regulating cell 

proliferation and cell growth (Conkright and Montminy, 2005; Moens et al., 

2007; Ozanne et al., 2007; Piva et al., 2006). Furthermore, SV40 ST has 

also been shown to induce aberrant activation of the phosphatidylinositol 3-

kinase (PI3K) pathway, resulting in phosphorylation of cellular targets, such 

as Akt (Yuan and Cantley, 2008). Akt is a serine/threonine kinase important 

in cell survival, metabolism and angiogenesis. The inhibition of Akt activity 

can repress ST-mediated transformation (Rodriguez-Viciana et al., 2006). 

Inhibition of Akt dephosphorylation may also increase telomerase 

phosphorylation and activity (Kang et al., 1999). It is also thought that ST 

may possess anti-apoptosis capabilities and antagonize the LT-induced 

cellular apoptosis response, which enhances transformation of rat embryo 

fibroblasts. This is supported by mutational analysis of LT, in which mutants 

defective in the pRB-binding domain fail to induce an apoptotic response. 
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However, a mutant in the p53-binding domain remains functional in 

inducing apoptosis (Kolzau et al., 1999).  

 

1.3.4.3.  Middle T antigen 

 
The middle T  (MT) antigen is an alternative spliced product of rodent 

polyomavirus early transcripts. They usually comprise 421 amino acids, 

encoding a 55 kDa protein (Ito et al., 1977). MT is the major transforming 

protein of rodent polyomaviruses. Expression of MT is sufficient for 

transformation and is also essential for tumourigenesis (Fluck and 

Schaffhausen, 2009). MT possesses similar structural domains  to ST and 

is composed of all but the final 4 C-terminal amino acids of ST, thus 

sharing the J domain and PP2A binding domains (Figure 1.8). The 

remaining 230 amino acids of the C-terminal portion of MT are unique and 

contain multiple phosphorylation sites. Phosphorylation of this region is 

crucial for the ability of MT to recruit or activate specific cellular 

components (Ito et al., 1977). Moreover, the six amino acids at the C-

terminus of the hydrophobic domain are essential for cellular 

transformation, as removal of this region completely abolished 

transformation (Zhou et al., 2011). 

 

 

 

 

 

 

 

Figure 1.8: Schematic representation of the polyomavirus MT antigen. 

MT contains a common region with ST, including the J domain, PP2A binding, Src binding 
and Hsc70 binding domains. The unique region has multiple phosphorylation sites and a 
transmembrane binding domain. Adapted from Fluck and Schaffhausen, 2009) 
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1.4.  Merkel cell carcinoma 
 

Merkel cell carcinoma (MCC) is a rare but highly aggressive 

neuroendocrine skin carcinoma. The tumour is associated with Merkel 

cells, which are oval cells of epidermal lineage from Merkel cell-neurite 

receptor complexes (Morrison et al., 2009). These receptor complexes are 

located in touch-sensitive areas of the skin, such as hair follicles and 

epithelial structures known as “touch domes” and are a major component of 

the somatosensory system that mediate light-touch responses (Maricich et 

al., 2009). MCC is able to spread through the dermal lymphatic system and 

exhibits a high mortality rate, approximately 28% of patients die within 2 

years of diagnosis (Poulsen, 2004b; Tadmor et al., 2011b). MCC is always 

associated with immunosuppression. Moreover, there is slight male 

predominance but the main risk factors associated with MCC are being a 

fair-skinned individual, being 65 years or older and there is also a strong 

association with sun exposure. The five-year relative survival rate is 75%, 

59% and 25% for localised, regional and distant MCC, respectively (Agelli 

and Clegg, 2003). Thus, the early identification and targeted treatment of 

this cancer is significantly important. Primary treatment of MCC involves 

surgical excision of the tumour. Removal can also be combined with 

ionising radiation therapy for patients who undergo removal of larger 

tumours as an adjuvant to reduce the risk of recurrence (Gupta et al., 

2006). Distant metastasis is commonly treated with chemotherapy as 

surgery for metastatic MCC has limited success and is mostly palliative in 

nature (Bichakjian et al., 2007). 

 

1.4.1. Epidemiology of MCC 
 

In the general population, incidence of MCC was higher in males, whites, 

and in people older than 65 years (Agelli and Clegg, 2003). MCC incidence 

in United States is 0.6 per 100,000 persons annually, however the number 

is increasing (Afanasiev et al., 2013). The rising incidence also seen in 

Australia (8%) and Netherlands (3.5%) within 2001 to 2007 (Agelli et al., 
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2010; Reichgelt and Visser, 2011). This rising incidence is believed due to 

the awareness and improved diagnostic techniques. The median age is 

around 70 years at time of diagnosis, while very low statistic of cases for 

patients 49 years below, approximately 4% and rare in children with only 

scattered case reports (Albores-Saavedra et al., 2010). Immunodefiency 

also one of the risk factors in incidence of MCC. Approximately 13-fold 

greater diagnosis in patients with AIDS and 10-fold greater for patients with 

solid organ transplant (Becker, 2010). Patients with a history of 

photochemotheraphy treatment showed an incidence of MCC 100 times 

greater than in the general population (Lunder and Stern, 1998),suggesting 

that the immunosuppressant and UV exposure are additional risk factors of 

MCC besides age.  

 

1.4.2. Diagnosis of MCC and histopathology 

 
MCC was first described as a flesh-coloured or blueish-red glassy painless 

nodule (less than 2 cm in diameter) or a mass (more than 2 cm in diameter) 

anywhere on the body including the forearm, lip, face, leg, buttocks, head 

and neck (Toker, 1972). Histopathologically, there were irregular 

aggregates of pyknotic cells with little cytoplasm (Tope and Sangueza, 

1994). MCC tumours are visualised as a lesion of nested small round cells 

with scanty cytoplasm, a round nucleus, dispersed granular chromatin and 

not clearly visible nucleoli, amongst infiltrating cells and vascular invasion 

(Wong and Wang, 2010). The diagnosis of the MCC includes clinical nodal 

evaluation and sentinel lymph node biopsy (SLNB). SLNB is highly 

recommended in diagnosis of MCC for both stage I and stage II with 

significant accurate result   (Paulson et al., 2013). Currently, treatment of 

primary MCC includes surgical excision with complete removal of the 

tumour, and followed by radiotheraphy to minimise the reoccurance (Gupta 

et al., 2006). Patients with distant metastasis are mostly treated utilising 

chemotherapy (Bichakjian et al., 2007). Depending on the stages of the 

MCC infection, the effectiveness of treatment varies among the patients’ 

immune system and response to the therapy.  
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1.4.3.  Merkel cell polyomaviruses (MCPyV) 
 

In 2008, a novel human polyomavirus was discovered and isolated from 

MCC tumours. Here digital transcriptome subtraction was employed, where 

mRNA was extracted from a primary MCC tumour followed by cDNA library 

preparation and next-generation sequencing. The subsequent sequence 

data was analysed, all known human sequences removed and remaining 

sequences then compared against pathogen databases.  In contrast with 

other human polyomaviruses, MCPyV is the first human polyomavirus that 

has been conclusively shown to be associated with a human malignancy. 

In approximately 80%-97% of MCC tumours, the MCPyV genome is 

integrated into the host chromosome in a clonal pattern, which suggests 

that MCPyV integration precedes clonal expansion of the tumour cells 

(Feng et al., 2008). Following these findings several others have reported 

similar statistics for clonal integration of the virus genome into the cellular 

genome of MCC tumours (Laude et al., 2010, Martel-Jantin et al., 

2012 and Sastre-Garau et al., 2009) and MCC cell lines (Fischer et al., 

2010). In addition, MCC tumour metastases were also found to be MCPyV 

positive and possess the same integration patterns as the original tumour 

(Laude et al., 2010). 

 

Serological data from patient blood detecting MCPyV structural proteins, 

VP1 and VP2 suggests that the majority of the general population is 

seropositive, with 80% of the adult population positive, while 50% of 

children under the age of 15 are positive (Kean et al., 2009). As such 

MCPyV is probably a common skin commensal. Interestingly, in addition to 

MCC samples, MCPyV DNA has been isolated from Kaposi’s sarcoma 

(Katano et al., 2009), small cell lung carcinoma (Andres et al., 2009) and 

various melanoma skin cancers (Kassem et al., 2009). Although, whether 

MCPyV is a contributing factor to these cancers is controversial and yet to 

be fully demonstrated. However, there is a more significance correlation 

between MCPyV and squamous cell carcinoma (SCC) recently highlighted, 

with the presence of MCPyV in 40% of cutaneous SSC cases (Reisinger et 
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al., 2010). Similar findings to MCC have been demonstrated with mutated 

non-replicating genomes identified contained truncated versions of LT. 

However, further characterisation of the role of MCPyV in SSC is now 

required.  

 

1.4.2.1. Epidemiology of MCPyV 

 
MCPyV is thought to be acquired in early childhood, causing a widespread 

and asymptomatic infection in immunocompetent individuals. MCPyV is 

typically detected in most of the MCCs and as a result is suspected as one 

of the causative roles in carcinogenesis of the MCC. Recent molecular and 

serological data showed that MCPyV infection is most common in the 

upper and lower respiratory tract samples, and also found in tonsils, nasal 

swabs and nasopharyngeal aspirates in adults (Kantola et al., 2009). 

Seroprevalence of MCPyV in the general population is approximately 61 to 

96.2%, with seroprevalence in adults over age 80 higher than 90% (Nicol et 

al., 2013; Zhang et al., 2014). On the other hand, the seroprevalence 

among children aged 1 to 4 years is approximately 40%, which is increased 

to 87% in children aged 15 to 19 years (Nicol et al., 2013).  

 
1.4.2.2.  MCPyV genome 

  
Similar to other polyomaviruses, the MCPyV genome comprises 5387 base 

pairs, organised into three distinct regions; the non-coding control region 

(NCCR) containing the viral promoters and bi-directional origin of 

replication, and the early and late protein coding regions. Figure 1.9 

illustrates the genomic organisation of MCPyV. Genomic sequence 

analysis shows that MCPyV is closely related to other polyomaviruses. 

Specifically, phylogenetic studies comparing data from all polyomavirus 

structural genes and LT sequences, demonstrated that  surprisingly 

MCPyV is most closely related to MPyV and Chimpanzee polyomavirus 

(ChPyV), compared to SV40 (Siebrasse et al., 2012b). 
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Figure 1.9: Genome organisation of MCPyV. 

Schematic representation of genome organization of MCPyV divided into three distinct 
regions. Non-coding region (NCCR) comprises origin of replication and bi-directional 
promoters. Early gene region: Large T antigen (LT), small T antigen (ST), 57kT antigen 
(57kT), alternative T antigen open reading frame (ALTO), and microRNA (miRNA). Late 
gene region: capsid proteins (VP1-3). Image taken from Stakaityte et al., (2014). 

 

 

1.4.2.2.1.  MCPyV Origin of Replication 
 

The MCPyV non-coding control region  (NCCR) contains the origin of 

replication, which is approximately 71 base pairs in length. The origin of 

replication contains an AT-rich region, an early enhancer domain and a 

binding site for the LT antigen. The binding site is composed of ten 

repeating guanine-rich pentanucleotide sequences (PS), in which eight of 

them correspond to the general polyomavirus consensus of 5′-GAGGG-3′. 

However the other two PS are different to ones to those found in other 

polyomaviruses. In MCPyV these unique remaining PS are 5′-GGGGC-3′ 

and 5′-GAGCC-3′. Mutational analysis has shown that only four of the eight 

of these PS are essential for origin replication activity. However single point 
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mutations within this region can reduce LT assembly on the origin, resulting 

in elimination of viral replication (Kwun et al., 2009). Kwun and colleagues 

also demonstrated that tumour-derived LT containing truncating mutations 

in either the origin-binding domain or the helicase domain also prevent LT-

origin assembly.  

 

1.4.2.2.2.  MCPyV T antigens 
 

The genes encoding the early antigens of MCPyV, also known as T 

antigens are approximately 3 kbp and the resulting transcrips are 

differentially spliced to produce mRNAs encoding the large T antigen (LT), 

the small T antigen (ST) and the 57 kDa T antigen (57kT) (Feng et al., 

2008). All the T antigens share the same short amino-terminal sequence, 

which consists of the conserved CR1 epitope, which is functionally similar 

to the cell transforming region of adenoviruses and DnaJ domain that is 

essential for binding to the cellular heat shock protein Hsc70 (Feng et al., 

2008). Alternative splicing produces a distinct carboxy-terminus, which 

determines the variability in the functions of the T antigen spliced products. 

Figure 1.10 illustrates the schematic presentation of each different spliced 

product of MCPyV T antigens and their protein binding sites.   
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Figure 1.10: Mapping of the multiply-spliced MCPyV T antigens.  

The T antigens of MCPyV are LT, ST and 57kT. All three encode CR1 (yellow, LXXLL) 
and DnaJ (lilac, HPDKGG) domains. ST contains two PP2A Aα binding sites (R7 and 
L142), a PP2A Aβ/PP4C binding site (amino acids 97–111) and an large T-stabilisation 
domain (LSD, amino acids 91–95). LT shares the pRb binding domain with 57kT; in 
addition, it has unique origin binding (OBD), zinc finger, leucine zipper, ATPase and 
helicase domains. The MCPyV-unique region (MUR) of LT contains the hVam6p binding 
site. Image taken from Stakaityte et al., (2014). 

 

1.4.2.2.2.1.  MCPyV Large T antigen (LT) 
 
The MCPyV LT protein comprises approximately 816 amino acids and its 

mRNA composed of two exons. Similar to the other polyomaviruses, the 

MCPyV LT  gene contains major functional domains, such as a highly 

conserved pRb binding domain (LxCxE), an origin binding domain (OBD) 

and a nuclear localisation signal (NLS) (Shuda et al., 2008). The NLS 

functions in nuclear localisation of LT when expressed in mammalian cells 

(Liu et al., 2011b). Interestingly, although MCPyV LT possesses similar 

binding domains to SV40 LT, they only share approximately 30% sequence 

identity (Topalis et al., 2013), indicating novel functional regions may be 

present within the MCPyV LT. For example, MCPyV LT possess an unique 

region (MUR), approximately 200 amino acid sequence (Liu et al., 2011b) 

and also encodes a virus miRNA important in regulating early gene 

expression (Seo et al., 2009). 
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1.4.2.2.2.2.  MCPyV Small T antigen (ST) 
 

The MCPyV ST encodes a protein comprising 186 amino acids. The ST 

has a major role in viral replication as well as cellular transformation. It  

shares the common J domain, but the unique carboxy-terminal region is 

produced by transcriptional read-through of the exon splice site used by 

both the 57kT and LT transcripts. This unique region contains the protein 

phosphatase 2A (PP2A) Aα subunit binding site, which is important for 

virus replication and virus-induced transformation in other polyomaviruses 

(Pallas et al., 1990). Recently, a PP2A Aβ and/or protein phosphatase 4C 

(PP4C) binding site has also been discovered located near its carboxy 

terminus, which may have a role in protecting MCPyV from the cellular 

immune response (Griffiths et al., 2013). Following this discovery, another 

MCPyV ST domain was identified, the LT-binding domain (LBD). LBD 

functions to stabilise LT and aids in the replication of the MCPyV genome 

(Kwun et al., 2013). 

 

1.4.2.2.2.3.  MCPyV 57 kiloDalton T Antigen (57kT) 
 
The MCPyV 57kT is a 432 amino acids. It  shares the common J domain 

region with LT and ST, and possess similar protein binding domains such 

as Hsc70, CR1 epitope, MUR and pRb domains. Little information exists 

about the role of 57kT. However 57kT has been shown to have a high 

degree of homology with SV40 17kT, suggesting that it could function 

independently and in cooperation with the T antigens in promoting host cell 

proliferation in vivo (Comerford et al., 2012; Zerrahn et al., 1993).  

 

1.4.2.2.3.  Alternative T antigen open reading frame 
 
Recently an overprinted gene within the T antigen locus was discovered, 

namely the alternative T antigen open reading frame (ALTO). ALTO 

contains the 200 amino acid MUR region of LT, in the +1 frame relative to 
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the second exon of LT gene and expressed during viral genome 

replication. Through the phylogenetic tree analysis, ALTO is believed to be 

evolutionarily related to the middle T antigen of murine polyomavirus 

(Carter et al., 2013). The start codon of ALTO overlaps with the YGS/T 

motif of LT and is located near the pRb binding domain (Carter et al., 

2013).  

 

1.4.2.2.4.  MCPyV Late Proteins 
 

The late MCPyV region, by differential splicing and internal translation, 

produces three capsid proteins: VP1, VP2, and VP3. The major capsid 

protein VP1 is the major component of the virus capsid consisting of 72 

pentamers with a 5:2 ratio of the minor protein VP2. Both VP1 and VP2 

have been shown to self-assemble into virus-like particles in vitro (Touze et 

al., 2010). VP3 is a product of internal translation of VP2, surprisingly 

however, it does not form part of the native MCPyV capsid (Schowalter and 

Buck, 2013). The virus capsid is unenveloped and is about 40-55 nm in 

size, comparable to other polyomaviruses, despite the absence of VP3. 

 
The crystal structure of VP1 was determined as a symmetrical, ring-shaped 

homopentamer with the five monomers arranged around a central five-fold 

axis. Each VP1 monomer is composed of two antiparallel β sheets, which 

form a β-sandwich with jelly-roll topology. Variable loops create unique 

interaction surfaces on the outer surface of the pentamer (Neu et al., 2012). 

VP1 has a nuclear-localisation signal (NLS) at its amino-terminus, and 

shows a diffuse nuclear pattern. VP2 on the other hand seems to lack a 

NLS and is localized in the cytoplasm. However, co-expression of VP1 

redistributes VP2 to nuclear compartment (Schowalter and Buck, 2013). 

VP2 seems to be dispensable for most entry steps in some cell lines, as it 

does not affect trafficking, viral DNA packaging, or binding to cellular 

receptors (Neu et al., 2012; Schowalter and Buck, 2013).  
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1.4.2.2.5.   MCPyV MicroRNA 
 
In addition to the structural proteins, the late region also encodes a 22-

nucleotide-long microRNA (miRNA), MCPyV-miR-M1-5p. The miRNA is 

transcribed from the antisense strand of the LT coding region (Seo et al., 

2009). Recent analysis suggests that the MCPyV-miR-M1-5p  might 

regulate the expression of the early genes, reducing the levels of early 

gene transcripts. This is due to its complementarity with a section of the LT 

transcript. It may also have a role to play in cellular transformation, as its 

expression is preserved in at least half of MCPyV-positive MCC tumours 

(Lee et al., 2011). 

 

1.4.2.3.  The Lifecycle of MCPyV 
 
MCPyV virus particles are chronically shed from human skin, indicating that 

the natural host cell may reside in the epidermis (Schowalter et al., 2010). 

At present, only a limited number of human-derived primary keratinocytes 

and transformed melanocytes have been shown to be susceptible to 

MCPyV infection. However, it is possible to propagate the virus in human 

embryonic kidney cell-derived cultures (HEK-293), where LT and ST are 

over-expressed in trans, also known as 293-4T cells (Schowalter et al., 

2011). This system is now used to to study the life cycle of MCPyV. 

 

1.4.2.3.1.  MCPyV Attachment and Entry 
 
Unlike most polyomaviruses which utilize gangliosides or sialic acid-

containing glycolipids, the initial stages of host cell attachment for MCPyV 

appear to involve glycosaminoglycans, in particular heparan sulphate and 

chondroitin sulphate. MCPyV is also able to bind gangliosides, specifically 

Gt1b, which carries three different sialic acids, and is probably required for 

post-attachment entry (Schowalter et al., 2011). Figure 1.11 illustrates the 

current model of MCPyV entry, a two-step attachment-and-entry process 

involving two separate types of host cell plasma membrane factors. The 



- 31 - 

utilisation of glycosaminoglycans by MCPyV for cellular attachment is 

similar to the entry tactics of papillomaviruses, which are exclusively tropic 

for keratinocytes, a type of epithelial cell. This is a possible example of 

convergent evolution, and further suggests the epidermis as the natural 

host reservior for MCPyV. 

 

 

 

 

 
 
 
 

 

Figure 1.11:  Two-step attachment and entry receptors of MCPyV.  

Initial attachment involved the MCPyV binds to glycosaminoglycan (GAG), such as 
heparan sulfate. The second step involved binding to Neu5Ac-ganglioside to facilitate viral 
entry. Image taken from Stakaityte et al., (2014). 

 

1.4.2.3.2.  MCPyV Replication 
 
MCPyV is able to complete its replication cycle in the host cell nucleus and 

form virions, without inducing tumourigenesis in permissive cells. As a 

small double-stranded DNA virus, it relies on multiple host factors to 

successfully transcribe its genome and replicate. The T antigens are vital 

for this purpose and are expressed immediately upon entry into the nucleus 

of the host cell. Similar to other polyomaviruses, these gene products 

induce the host cell to enter S-phase, altering the cellular environment to 

be preferable for virus replication. Once sufficient levels of the T antigens 

are present, it is thought that the MCPyV-encoded miRNA inhibits further 

early gene transcription in a negative feedback loop, thus shifting the focus 

to genome replication and the expression of the late region encoding the 

capsid proteins (Seo et al., 2009).  
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Similar to other polyomaviruses, expression of LT is thought to initiate viral 

genome replication. In SV40, LT oligomerises to form hexameric 

molecules, which then bind to the origin of replication (Wessel et al., 1992). 

The LT helicase domain is then responsible for unwinding genomic DNA 

allowing replication to proceed in a bidirectional manner. The origin of 

replication core region of MCPyV is composed of a poly(T) rich tract and 

eight GAGGC-like motifs, which are required for initiation of replication 

(Harrison et al., 2011). In addition, MCPyV LT also possess several unique 

features that affect virus replication. For example, LT interacts with several 

novel cellular host proteins such as hVam6p, Brd4 and DDR factors, which 

are believed to play important roles in MCPyV LT-mediated DNA replication 

(Liu et al., 2011b; Tsang et al., 2014; Wang et al., 2012).  

 

LT is necessary for the replication of MCPyV DNA, however it does not 

facilitate the process efficiently on its own. ST is also needed to enhance 

replication, with knockdown of ST leading to inhibition of replication (Kwun 

et al., 2013). ST is thought to specifically play a role in genome replication 

by promoting the hyper-phosphorylation of the translation regulator eIF4E 

binding protein (4E-BP1) (Shuda et al., 2011b), resulting in an increase in 

the production of cellular proteins and host factors necessary for viral 

replication. In addition, ST also prevents the turnover of LT by targeting the 

cellular SCF ubiquitin E3 ligase, Fbw7. Fbw7 acts as the recognition 

component that targets LT for proteasomal degradation (Welcker and 

Clurman, 2008). Fbw7 is important as a tumour suppressor protein and is 

deregulated in several human cancers (Maser et al., 2007; Wood et al., 

2007), with loss of Fbw7 resulting in tumourigenesis and genetic instability 

(Mao et al., 2004; Rajagopalan et al., 2004).  

 

1.4.2.3.3.  MCPyV Assembly and Egress 
 
Little is presently known about MCPyV assembly and egress from the host 

cell (Neumann et al., 2011). There is a suggestion that LT-mediated 

sequestration of hVam6p to the nucleus during virus replication might 

contribute in viral uncoating or to egress via lysosomal processing (Liu et 
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al., 2011b). MCPyV does not encode an agnoprotein, which is known to 

play an essential role in virus particle assembly and maturation in other 

polyomaviruses, such as SV40, JCPyV and BKPyV (Khalili et al., 2005). 

Moreover, MCPyV does not encode an equivalent of SV40 VP4, which has 

been shown to trigger lytic virion release (Daniels et al., 2007). Thus, 

alternative pathways must be involved in MCPyV assembly and egress, 

however, these are yet to be elucidated. However, there is the possibility 

that the natural process of keratinocyte desquamation in the skin might 

serve as mechanism of MCPyV virion release.  

 

1.4.2.4.  MCPyV and Tumourigenesis 
 

The role of MCPyV as the causative factor in the development of MCC is 

closely related to integration of the viral genome and to defective viral 

replication in the tumour cells, resulting in aberrant expression of the ST 

and truncated LT antigens, which eventually leads to cellular proliferation 

(Moore and Chang, 2010b).  

 

Upon MCPyV integration, the viral genome retains full-length LT, which is 

capable of initiating host DNA replication. This unlicensed replication will 

result in replication fork collision and DNA breakage, which will eventually 

lead to cytopathic cell death (Shuda et al., 2008). Thus a second mutation 

is needed to eliminate LT-initiated DNA replication for the cell to survive 

once MCPyV has integrated, and only a cell with both mutations is likely to 

develop into a tumour. The requirement for two separate events prior to 

tumourigenesis may help to explain why MCC is so rare (Moore and 

Chang, 2010b). It is also possible, however, that LT may first become 

truncated, with MCPyV going through rolling circle replication prior to 

integration (DeCaprio and Garcea, 2013). Expression of truncated LT leads 

to defective DNA repair and cell cycle arrest upon exposure to ultraviolet 

(UV) radiation (Demetriou et al., 2012), and this increase in genomic 

instability may promote integration of the viral genome. Besides the 

mutations within LT antigen, several groups have also reported mutations 
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in the origin of replication and the VP1 gene in MCC-derived MCPyV 

genomic sequences that prevent efficient replication and progeny virion 

production, respectively (Feng et al., 2011; Kassem et al., 2008; Kwun et 

al., 2009; Neumann et al., 2011). 

 

The exact functions and transforming activities of the MCPyV truncated 

large T antigen are unknown. However, the truncated version of the LT 

antigen was shown to be more effective in promoting growth of human and 

mouse fibroblasts compared to full length LT and the 57kT protein (Cheng 

et al., 2013). The reason why truncating mutations occur in MCPyV is 

unknown, as this has not been found in other polyomaviruses. The 

enhanced tumourigenicity of truncated forms of the LT antigen found in 

MCC might be due to removal of C-terminal residues that have been shown 

to possess growth inhibitory effects in several cell types (Liu et al., 2013). 

Interestingly, the truncated version of LT expressed in different tumours 

varies in size, depending on the site of their deletions (Kassem et al., 

2008). However, all result in the inhibition of viral replication that may result 

in cell lysis and death. As such, there is a strong pressure in tumour cells to 

inhibit viral replication (Moore and Chang, 2010a). However, the integrated 

replication defective virus in MCC cells retains motifs that potentially 

contribute to uncontrolled cell growth and cell survival (Moore and Chang, 

2010b). This results in a defective integrated virus, which expresses viral 

ST and the truncated version of the LT protein. Figure 1.12 illustrates the 

mutation events that occurring in the viral genome and truncation of LT in 

MCPyV.  
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Figure 1.12: Mechanism by which MCPyV may induce MCC tumourigenesis, 
involving two mutation events.  

In mechanism A, the first mutation involves viral genome integration into the host 
chromosomes; which leads to autonomous viral origin DNA replication and wild type 
of T antigen is expressed in the cells. The replicated DNA strands may collide with 
cellular replication forks causing DNA fragmentation. When the second mutation 
occurs resulting in viral LT antigen losing its helicase binding region, this eliminates 
the ability for the virus to replicate. In mechanism B, the truncation of LT is thought 
to occur before integration. Either way, these changes in the virus lead to cellular 
transformation and tumour proliferation. Image taken from Stakaityte et al. (2014). 

 

1.4.2.5.  Differences in MCPyV T antigen function 
 

Considering the extensive research performed characterising the functions 

of the SV40 T antigens, it was presumed that the MCPyV LT antigen would 

be the major oncogene and major contributing factor to the development of 

MCC, as overexpression of SV40 LT is sufficient to transform mouse 

fibroblasts. In contrast, MCPyV ST was found expressed in most MCC 

samples, approximately up to 97% occurrence in MCC cases. Moreover,  

ST expression, even at low levels, is essential for tumourigenesis, as 

knockdown of MCPyV ST alone showed total inhibition of the growth of 

MCPyV-positive MCC cells (Shuda et al., 2011a). LT DNA is present at an 

average of 5.2 copies per tumour cell and LT protein expression has also 

been detected in the nuclei of these cells (Shuda et al., 2009). Surprisingly, 

the expression levels of LT protein in MCCs range from barely detectable 

to extremely high levels. This raises a question of whether MCC tumours 

with low or undetectable levels of MCPyV LT protein expression have 

additional specific mutations in either oncogenes or tumour suppressor 
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genes that might also contribute to cell transformation and tumour 

formation.  

1.4.2.5.1.  Role of MCPyV LT 
 

LT is highly expressed in 75% of MCPyV-positive MCC tumour samples 

(Shuda et al., 2009). However, expression of full length or truncated LT is 

insufficient to initiate cellular transformation (Shuda et al., 2011b). As such, 

MCPyV LT is believed to be important in enhancing proliferation and 

survival of MCC tumours (Houben et al., 2010a), but not in inducing 

transformation. This might be due to the inability of full length and truncated 

LT to interact with p53, diminishing the transforming activity of MCPyV LT 

(Cheng et al., 2013). However, the truncated LT has been shown to be 

more efficient at inducing cellular proliferation compared to the full length 

construct, which has growth inhibitory effects contained with the last 100 

amino acids residues of the C-terminus (Cheng et al., 2013). MCPyV LT 

has been shown to be involved in viral replication and manipulation of host 

pathways through multiple cellular protein-protein interactions. 

 

1.4.2.5.1.1.  Interaction of MCPyV LT with tumour 
suppressor proteins 
 
The transforming ability of LT in polyomaviruses is dependent upon 

manipulation of the key tumour suppressor proteins, p53 and Rb. The cell 

cycle checkpoint protein p53 is activated by cellular stress and blocks 

genome replication under conditions that could perpetuate DNA damage- 

induced errors (Vousden and Lane, 2007). This is achieved by p53 

promoting the expression of genes that induce DNA repair, cell-cycle arrest 

and apoptosis. Binding of SV40 LT to p53 inhibits this transcriptional 

activity and therefore permits inappropriate cellular proliferation (Lane and 

Crawford, 1979). The Rb protein functions to control entry into S-phase of 

the cell cycle. In resting cells pRb is bound to E2F, however upon activation 

of cyclin-dependent kinases pRb is phosphorylated which disrupts this 

complex. This permits E2F to activate the transcription of genes required 
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for cell cycle progression. The conserved LXCXE motif within LT mediates 

binding to Rb and inhibits the interaction with E2F (Figure 1.13). This  

bypasses the S-phase checkpoint and leads to uncontrolled cell 

proliferation.  

 

 
 
 
 
 
 

 

Figure 1.13: Effects of LT expression on cell proliferation. 

During infection of MCPyV, expression of LT antigen binds to the tumour suppressor 
protein, pRb and deactivates it. The released of the E2F factors resulting the transcription 
of cell cycle progression-associated gene and entering the S-phase to allow unlicensed 
viral replication and leads to cell proliferation. Image taken from Stakaityte et al. (2014). 

 

In contrast to other polyomaviruses, MCPyV LT is truncated in tumour cells. 

The majority of reported LT mutations involve truncation of the entire C-

terminal domain, suggesting an additional selective pressure upon 

transforming cells for removal of this region of LT. Truncated LT has also 

been shown to be more efficient at inducing cellular proliferation than full 

length LT (Cheng et al., 2013). Following this, recent studies have 

demonstrated that MCPyV infection activates the cellular DNA damage 

response in a manner dependent upon the LT carboxy-terminus (Li et al., 

2013). Activation of DNA damage kinases was found to promote cell cycle 

arrest in a p53-dependent manner. Comparable to this, SV40 infection also 

activates the ATM DNA damage pathway (Shi et al., 2005). However, 

cellular proliferation is not restricted as the SV40 LT inhibits downstream 

activities of p53. Therefore MCPyV LT truncations are likely to be selected 

to avoid activation of the DNA damage response (DDR) in the absence of 

p53 inactivation.  
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1.4.2.5.1.2.  Interaction of MCPyV LT with hVam6p 
 

Sequence comparison of polyomavirus LT have highlighted that some of 

the binding sites or domains within MCPyV LT appear to be distinct from 

other polyomaviruses. A recent review highlights that the MCPyV T 

antigens might utilise novel cellular targets proteins allowing MCPyV T 

antigens to perform distinct functions from other polymaviruses. These 

observations are supported by tandem affinity pull-down assays which 

have demonstrated that MCPyV LT uniquely interacts with the cytoplasmic 

vacuolar sorting protein, hVam6p (Liu et al., 2011a). Mutation studies 

showed that MCPyV LT binds to hVam6p via its unique region, MUR (Liu et 

al., 2011b). hVam6p is relocalised from the cytoplasm to the nucleus upon 

expression of MCPyV LT, disrupting its lysosome clustering. This 

interaction and relocalisation of hVam6p is not observed upon expression 

of SV40 LT. hVam6p is believed to function as an antiviral host factor. 

Overexpression analysis of hVam6p showed  its ability to significantly 

reduce the number of MCPyV virions by approximately 90% (Feng et al., 

2011). In addition, mutation studies abrogating the LT-hVam6p binding 

domain significantly increased infectious virion production between 4-6 fold 

(Feng et al., 2011; Liu et al., 2011b). However the mechanism involved is 

yet to be determined. This suggests a possible role of hVam6p as a 

MCPyV anti-viral cellular response factor. 

 

1.4.2.5.1.3.  Interaction of MCPyV with Brd4 
 
MCPyV LT-mediated viral replication is associated with the interaction of 

MCPyV LT and the chromatin-associated bromodomain containing protein 

4 (Brd4). Brd4 acts by recruiting cellular replication factors required for viral 

replication. For example, the LT-Brd4 interaction facilitates recruitment of 

the cellular replication factor C (RFC) to MCPyV replication complexes 

(Wang et al., 2012). RFC then loads PCNA clamp and DNA polymerase δ, 

both of which are required for elongation of MCPyV DNA (Feng et al., 

2011). Viral DNA replication can be inhibited by expression of a dominant 

negative Brd4 inhibitor (Wang et al., 2012), highlighting the important role 
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of the LT-Brd4 interaction in facilitating successful viral DNA replication.  

 

1.4.2.5.1.4.   Interaction of MCPyV LT with survivin 
 

MCPyV LT also targets survivin, a member of the inhibitor of apoptosis 

protein family that is upregulated in a number of lymphomas and metastatic 

melanoma (Ambrosini et al., 1997). Survivin functions as an inhibitor of 

apoptosis by prolonging cell viability, and later contributes to cellular 

transformation by facilitating the insurgence of mutations and promoting 

cellular resistance to chemotherapy. Knockdown of MCPyV T antigens in 

MCPyV positive MCC cells shows that survivin mRNA and protein levels 

fall, resulting in MCC cell death (Arora et al., 2012a). Interestingly, survivin 

gene transcription is enhanced as well as other S-phase proteins, including 

E2F1 and cyclin E, in LT-expressing cells (Arora et al., 2012a). As survivin 

protein expression is critical to the survival of MCPyV-positive cells, the 

small molecule survivin inhibitor, called YM155, potently and selectively 

shown to initiates irreversible and programmed MCPyV-positive MCC cell 

death (Arora et al., 2012b). Besides MCPyV, both SV40 and JCPyV 

infections exhibit upregulation of survivin expression (Ambrosini et al., 

1997; Jiang et al., 2004; Pina-Oviedo et al., 2007; Raj et al., 2008). As 

such, identifying cellular pathways, such as those involving survivin,  could 

lead to the rapid identification of additional drug candidates for treating 

virus-induced cancers. 

 

1.4.2.5.1.5.  Interaction of MCPyV LT with DNA damage 
response (DDR) factors 
 
DNA damage response (DDR) factors are thought to play a role in MCPyV 

LT-mediated DNA replication (Tsang et al., 2014). The DNA damage 

response pathways, namely  ATM and ATR, are redistributed in the 

nucleus upon expression of LT, specifically they are localised to replication 

foci where they co-localise with LT, to support efficient viral DNA replication 

(Tsang et al., 2014). Besides MCPyV, HPV infection has also been shown 
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to induce DDR activation and recruitment of these factors at their viral 

replication sites (Gillespie et al., 2012), suggesting similar host factors may 

be involved in MCPyV replication and the virus life cycle. 

1.4.2.5.2.  Role of MCPyV Small T (ST) antigen 
 

MCPyV ST is expressed in most MCC samples, in approximately 97% of all 

MCC cases. It has also been suggested that low level ST protein 

expression is sufficient for tumourigenesis, as siRNA-mediated depletion of 

MCPyV ST showed total growth inhibition of MCPyV-positive MCC cells 

(Shuda et al., 2011a). Moreover, expression of ST is also sufficient to 

induce rodent fibroblast transformation, loss of contact inhibition, 

anchorage-dependent and serum independent growth. In contrast, these 

phenotypic changes are not observed in the cells expressing full length or 

truncated forms of LT (Shuda et al., 2011b). 

1.4.2.5.2.1.  Interaction with protein phosphatase  
 
MCPyV ST contains a binding domain for PP2A, as well as another cellular 

phosphatase, PP4C (Griffiths et al., 2013). However unlike other 

polyomaviruses, the transforming effect of MCPyV ST may not involve its 

binding and interaction with PP2A (Shuda et al., 2011a). Although MCPyV 

ST does bind to the PP2A structural Aα subunit and the catalytic subunit, 

no effect on host cell or virus replication has been identified upon deletion 

of this domain. Specifically, mutants with disrupted MCPyV ST-PP2A Aα 

interaction could still induce both cell transformation and anchorage-

dependent colony formation (Shuda et al., 2011b). In contrast, in SV40, 

binding of PP2A resulted in altered  binding to substrates and specificity of 

the PP2A holoenzymes (Pallas et al., 1990; Sontag et al., 1993). As such, 

this ST-PP2A Aα interaction is critical for SV40 induced transformation and 

cell proliferation. In contrast, the mode of action of MCPyV ST oncogenicity 

may utilise other mechanisms, specifically through its interactions to PP2A 

Aβ and/or PP4C.  
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1.4.2.5.2.2. ST dysregulated cap-dependent translation 
 
MCPyV ST is also believed to function downstream of the mTOR signalling 

pathway  (Figure 1.14), by reducing the turnover of phosphorylated 4E-BP1 

and leading to enhanced eIF4E activity and increased protein production 

and cell proliferation (Shuda et al., 2011b). MCPyV ST phosphorylates and 

inactivates the translational inhibitor 4E-BP1,  a key regulator for translation 

of initiation factor eIF4E (Shuda et al., 2011b). This finding is distinct from 

SV40, which promotes the Akt pathway by inhibition of PP2A Aα activity 

resulting in dephosphorylation of Akt (Rodriguez-Viciana et al., 2006; Zhao 

et al., 2003).  

 

 
 

 

 

 

 

 
 

 

 

 

 

Figure 1.14: The different target proteins of MCPyV ST and SV40 ST in mTOR 
signaling pathway.  

Akt-mTOR pathway involve activities of Akt, mTORC1 (raptor complex), mTORC2 (Rictor 
complex), and S6K kinases. MCPyV ST targets the 4E-BP1, which prevents 4E-BP1 from 
sequestering the eIF4E cap-dependent translational factor; compared to SV40 ST, which 
inhibits PP2A leading to Akt phosphorylation. Several kinase inhibitors such as LY294002, 
MK2206, rapamycin and PP242 Torin 1 with their respective targets also shown in the 
figure. Adapted from Shuda et al., (2011). 

 

1.4.2.5.2.3.  ST prevents proteasomal degradation of LT 
 
A novel LT-binding domain (LBD) has also been identified within the 

MCPyV ST protein, which is thought to play a role in preventing LT 

MCPyV 
ST 
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proteolysis (Kwun et al., 2013). Interestingly, a mutation within the LBD 

region ablates the ability of MCPyV ST to induce transformation (Kwun et 

al., 2013). This mutant does not effect ST’s ability to bind to PP2A, 

confirming that ST induced transformation is independent of its interaction 

with PP2A. Interestingly however, MCPyV ST  targets the cellular ubiquitin 

ligase SCFFwb7 resulting in the stabilization of cell cycle regulators, such as 

c-Myc and cyclin E (Kwun et al., 2013).   

 

1.4.2.5.2.4.  ST involvement in host innate immune response 
 

MCPyV ST has been shown to inhibit NF-κB mediated transcription via an 

interaction with NEMO. This renders NF-κB incapable of translocating to 

the nucleus and activating transcription (Griffiths et al., 2013). This 

interaction is dependent on ST binding to the cellular phosphatase PP2A 

Aβ and/or PP4C, which promote dephosphorylation of the IKK complex. 

This ST-mediated disruption of the NF-κB pathway may help to 

downregulate the host innate immune response and enhance persistence 

of the MCPyV infection. Besides MCPyV, other viruses have also been 

shown to be capable of preventing NF-κB mediated signaling (Le Negrate, 

2012). HPV E7 and HCV core protein inhibit IKB degradation preventing 

NF-κB  translocating to the nucleus, while cytomegalovirus (CMV) disrupts 

NF-κB activation through a direct interaction with NEMO (Fliss et al., 2012; 

Joo et al., 2005; Randall et al., 2012; Spitkovsky et al., 2002).  

 

1.4.2.5.2.5.  ST promotes cell motility and migration 
 
Knight et al (2015) demonstrated that MCPyV ST promotes the 

destabilisation of the host cell microtubule network through an interaction 

with the cellular microtubule degrading protein, stathmin. This 

destabilisation of microtubules enhances cell motility of ST-expressing cells 

and may have implications for the highly metastatic nature of MCC (Knight 

et al., 2015). Moreover, regulation of this process involves binding of ST 
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with the cellular catalytic subunit of PP4C, which enhances the 

dephosphorylation and activation of stathmin. 

 

1.5.  Regulation pathways in cancer 

 
Quantitative proteomic analysis performed using cells expressing MCPyV T 

antigens, several cancer-related pathways were found to be differentially 

affected. The elucidation of possible functions of MCPyV ST and truncated 

LT will be discussed regarding the basis of these pathways, in particular 

focussing on their possible roles in dysregulating the cell cycle, apoptosis,  

cell junctions and cell motility. 

 
1.5.1.  Cell cycle regulations 
 

Regulation of the cell cycle involves numerous mechanisms, including the 

regulation of cyclin-dependent kinases (CDK) by cyclins, CDK inhibitors, 

phosphorylation of cellular proteins, cell checkpoint controls and DNA 

damage effects (Vermeulen et al., 2003). The alteration of this important 

cellular event can lead to aberrant cell proliferation and development of 

cancer. Cell division involves two consecutive processes, DNA replication 

and segregation of replicated chromosomes into two separate cells. 

Replication of DNA happens during the interphase stage, termed  the S-

phase. The S phase is preceded by G1, here the cells prepare for DNA 

synthesis, following S phase is G2, a gap where cells prepare for mitosis 

(M). Thus, G1, S, G2 and M phases are the subdivisions of the standard cell 

cycle (Figure 1.15). Of note is that cells in G1 can also enter a resting state, 

G0 before commitment to DNA replication.  
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Figure 1.15: Stages in the cell cycle with the regulatory CDKs and cyclins. 

The stages of the cell cycle consist of a DNA synthesis (S) phase and mitotic (M) phase, 
separated with gap (G1 and G2). The control of each cell cycle stage is regulated by the 
complexes of CDKs and cyclins at specific points in the cell cycle. The kinase subunits 
(CDKs) are expressed along with their activating proteins (cyclins), which the levels falls 
and increase; regulates the progression of each phases. The association and 
phosphorylation of the kinase and their cyclins essential in each phases. Adapted from 
(Suryadinata et al., 2010). 

 

Successful progress through the cell cycle requires the coordination of 

various macromolecular complexes to regulate synthesis, assembly and 

movements; here chromosomes must be replicated, condensed, 

segregated and decondensed (Hartwell and Kastan, 1994). Coordination of 

these processes are achieved by a series of changes (phase transitions) in 

the CDKs. In mammalian cells, a succession of kinase subunits (CDK4, 

CDK2 and CDC2) are expressed along with a succession of cyclins (D, E, 

A and B), as cells progress from G1 to mitosis (Sherr, 1993). CDK protein 

levels remain relatively stable during the cell cycle, but their activating 

proteins, cyclins, rise and fall in level during the cell cycle (Evans et al., 

1983; Pines and Hunter, 1991). Different cyclins are required at different 

M	
  

G2	
  

S	
  

G1	
  
Cyclin	
  D-­‐
CDK	
  4/6	
  	
  

Cyclin	
  E-­‐
CDK	
  2	
  

Cyclin	
  B	
  
CDK	
  1	
  

Cyclin	
  A-­‐	
  
CDK2	
  

Cyclin	
  A-­‐	
  
CDK1	
  



- 45 - 

phases, such as association of cyclin A with CDK2 is required for passage 

into S-phase, while association with CDK1 is required for entry into mitosis 

(M) phase (Vermeulen et al., 2003). 

 

1.5.1.1.  Restriction points and checkpoints 
 

The restriction point is a point of no return in G1, in which the cell is 

committed to cell cycle progression and division. There are various 

checkpoints ensuring the orderly sequence of  cell cycle events (Hartwell 

and Weinert, 1989). At the G1-S checkpoint, the control is dependent on 

p53 levels, whereby the cellular level of p53 is normally low. However,  

DNA damage can lead to rapid induction of p53 activity (Levine, 1997). 

This causes a checkpoint arrest, preventing cell cycle progression to allow 

DNA repair. If DNA damage occurs during G2, cells are able to initiate a cell 

cycle arrest in the presence or absence of p53 (Vermeulen et al., 2003). A 

second checkpoint involves CDK1, in which mitosis can be prevented by 

maintaining high levels of CDK1 in its inhibited form. This could be 

achieved by inhibitory phosphorylation or by sequestration of components 

of the CDK1-cyclin B complex (Vermeulen et al., 2003).  

 

1.5.1.2.  Cell cycle and cancer 
 

Genetic alteration of regulators of the cell division can result in uncontrolled 

cell proliferation. Therefore dysregulation of the cell cycle is associated with 

cancer. Mutated genes observed in cancer include genes that encode 

CDKs, cyclins, CDK-activating enzymes, CK1, CDK substrates and 

checkpoint proteins (McDonald and El-Deiry, 2000; Sherr, 1996). 

 

1.5.1.3.  DNA viruses effect cell cycle regulation 
 

A number of DNA viruses use different strategies to regulate the cell cycle 

checkpoint and modulate cellular proliferation pathways. They target critical 

regulators in the cell cycle to provide beneficial conditions to achieve 
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efficient viral replication (Swanton and Jones, 2001). Many viruses induce 

quiescent cells to enter the cell cycle to increase pools of 

deoxynucleotides, and some small DNA viruses promote entry into the S-

phase to activate the host cell replication machinery. Alternatively, some 

larger viruses can arrest cells in specific stages of the cell cycle to limit the 

competition with the host for replication resources. Arrest at a specific cell 

cycle stage may inhibit early cell death in infected cells and evade immune 

defences or assist virus assembly (Bagga and Bouchard, 2014). Cell cycle 

arrest may also be implicated in helping delay the initiation of the  apoptotic 

cascade in infected cells (He et al., 2010). Arrest at the G2/M checkpoint 

may also assist the virus to avoid host immune defences by preventing 

production of new cells (Zeng et al., 2010). As such, the alteration of the 

cell cycle associated with viral infection contributes to cell transformation, 

tumour progression and maintenance.  

 

1.5.1.4.  Anaphase Promoting Complex (APC) 
 

The anaphase promoting complex (APC), is an E3 ubiquitin ligase required 

for the ubiquitination and subsequent proteasomal degradation of multiple 

cell cycle regulatory and effector proteins. Without the APC, cells cannot 

separate sister chromatids during anaphase, exit mitosis, or properly enter 

S phase (Thornton et al., 2006). Several viruses have been reported to 

target the APC due to its important role in the cell cycle. For example, in 

human cytomegalovirus (HCMV) virus infection, a novel viral regulator 

protein pUL21, has been shown to induce degradation of specific APC 

subunits (Fehr et al., 2012). Besides HCMV, a number of viruses that 

encode APC regulators are known to cause cancer, these viruses include 

HTLV-1, HPV and HBV (DeCaprio, 2009; Hwang et al., 1998; King et al., 

1995; Robert et al., 2002). This also suggests that virus-mediated 

regulation of APC may be central in the development of cancer. Due to its 

importance in  cell cycle control, the APC is also a potential candidate as 

an anticancer drug target (Zeng et al., 2010). However, APC targets more 

than 30 proteins for ubiquitination and degradation, thus inhibition of this 
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complex would stabilize its substrates, which may be important for virus 

replication (Peters, 2006).  

 
1.5.2.  Cell death and cell survival 

 
Cells can respond to stress in various ways ranging from the activation of 

survival pathways to the initiation of cell death to eliminate damaged 

cells. This initial response is to defend against and recover from the stress 

stimulus. Apoptosis is a programmed mechanism that allows the cell to 

commit suicide. As such, apoptosis is important for cell survival in 

multicellular organisms as it is a mechanism to remove damaged or 

infected cells that  may interfere with the normal functioning of the 

organism. Cells undergoing apoptosis show morphological changes such 

as shrinkage, blebbing of the plasma membrane, chromatin condensation 

and DNA fragmentation (Kerr et al., 1972). Typical apoptotic features 

include: activation of a number of apoptotic protease (caspase) enzymes, 

PARP cleavage and alterations in expression levels of p53 or Bcl-2 family 

members. Alteration in the apoptosis process can contribute to 

tumourigenesis and tumour progression (Fulda, 2010). Many viruses have 

developed the ability to control host survival and death to ensure efficient 

propagation while inactivating or avoiding the host immune response 

during infection (McLean et al., 2008). 

 

1.5.2.1. Viruses disruption of host apoptotic pathways 
 

Prevention of apoptosis during herpes infection, specifically persistent 

oncogenic viruses such as Epstein-Barr Virus (EBV), is via upregulation of 

the host cell anti-apoptotic proteins Bcl-2, A20 and Bfl-1 by the 

multifunctional viral protein LMP-1 (D'Souza et al., 2000; Fries et al., 1996; 

Henderson et al., 1991). In addition, EBV encodes a homologue of Bcl-2, 

designated BHRF-1 (Henderson et al., 1993). Other human herpesvirus, 

such as Kaposi’s sarcoma associated herpesvirus (KSHV), also encode 
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homologues of Bcl-2 and as a result have been shown to block apoptosis 

efficiently in mammalian cells (Cheng et al., 1997; Sarid et al., 1997).  

 

In  addition, viral gene products are also able to modulate a number of 

regulatory networks that direct cells towards apoptosis. For instance, p53 is 

negatively regulated by the oncoprotein mouse double minute 2 homolog 

(Mdm2) and targeted for ubiquitin-mediated proteolysis (Piette et al., 1997). 

DNA tumour viruses like adenovirus, SV40 and HPV drive infected cells to 

deregulate growth regulatory pathways via releasing transcription factors, 

E2F family from pRB complex. This release of E2F activates genes 

necessary for cell cycle progression, however on the downside the 

mechanism  also activates p53 by the upregulation of p14ARF expression 

(Bates et al., 1998). As such, these viruses need mechanisms to 

counteract the upregulation of p53. The SV40 LT antigen sequesters p53 

and prevents binding to its recognition element in cellular DNA (Yanai and 

Obinata, 1994). In contrast, the HPV E6 protein promotes the degradation 

of p53 by forming a complex with E6-AP, a ubiquitin protein ligase 

(Scheffner et al., 1990).  In addition, KSHV latency-associated nuclear 

antigen (LANA-1) has been shown to target both pRB/E2F and to interact 

with p53 (Radkov et al., 2000). 

 

1.5.3. Cell-cell connections 
 

Cells connect to each other through intercellular adhesion. Adhesion 

occurs through specific cell adhesion molecules, depending on the type of 

interaction. Cell–cell adhesion is ensured by junction complexes that 

contains tight junctions (TJ) and adherens junctions (AJ) (Farquhar and 

Palade, 1963). Cell junctions function to maintain the integrity of epithelial 

tissues and also regulate signalling between cells. Importantly, 

dysregulation of cell junctions can lead to oncogenic transformation and 

metastasis (Talbot et al., 2012). 
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1.5.3.1.  Cell junctions 

 
The tight junction is a multifunctional complex essential for a functional cell 

adhesive barrier involved in paracellular permeability regulation and 

establishing cell polarity (Soini, 2012). The junction complex comprises of 

transmembrane proteins occludin and claudin, in association with junctional 

adhesion molecules, JAMs (Figure 1.16). The zonula occludens (ZO) 

proteins are involved in linking these transmembrane proteins with the actin 

cytoskeleton and also function in the regulation of these signalling 

complexes (Hartsock and Nelson, 2008). Claudin 1 and claudin-11 have 

been reported to have roles in cell proliferation, while ZO-1,2,3 have been 

shown to be implicated in  regulatory suppression of cell proliferation and 

oncogenesis (Aijaz et al., 2006; Matter et al., 2005). ZO-1 has a specific 

role in reducing cell proliferation, depending on the cellular density via 

reducing the nuclear accumulation of cell division kinase-4 (CDK4) (Paris et 

al., 2008).  

 

 
 

 

 

 

 

 

 
 

Figure 1.16:  Components of the tight junction in polarized epithelial cells.  

Tight junction with transmembrane proteins (top to bottom): junctional adhesion molecule 
(JAM), claudin and occludin. All these proteins are associated with the zonula occludens 
proteins ZO-1, ZO-2 and ZO-3 through their cytosolic tails, while ZO proteins link the 
transmembrane proteins to the actin cytoskeleton. Image adapted from Mateo et al., 
(2015). 
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Downregulation of tight junction proteins and their associated adhesion 

factors has been strongly implicated in the transformation and invasion of 

tumours. Dysregulation of the transmembrane protein occludin has been 

shown to increase progression and metastatic potential in several cancers 

(Kurrey et al., 2005; Orban et al., 2008; Tobioka et al., 2004). Specifically, 

altered levels  of occludin and ZO-1 protein expression have been shown 

when comparing primary and metastatic cells, which suggest that 

downregulation of the tight junction proteins occur during the metastatic 

cascade indicating the importance of these proteins in cancer metastasis 

(Orban et al., 2008). 

 

On other hand, adheren junctions are sites of lateral cell-cell adhesion and 

have a specific role as anchoring junctions for establishing an intercellular 

adhesive structure between the cytoskeleton and plasma membrane 

(Kundu et al., 2008). There are three primary protein families which form 

adherens junctions, namely cadherins, armadillo proteins and plakins 

(Dusek and Attardi, 2011). Downregulation of these cell adhesion 

complexes are essential for separation of cells for metastasis. As such, 

carcinoma cells have shown significant loss of intracellular adhesive 

properties (Cavallaro and Christofori, 2004). Here, reduction in expression 

levels of the invasion suppressor protein E-cadherin coupled with an 

increased expression of N-cadherin correlates with invasiveness and 

migration of cancer cells (Beavon, 2000). DNA tumour viruses have also 

been shown to be involved in promoting loss of cell adhesion. For instance, 

HPV E6 interacts with E6AP, a ubiquitin protein ligase which promotes 

degradation of epithelial cell tight junctions (Talis et al., 1998). Moreover, 

the SV40 ST antigen also promotes redistribution and downregulation of 

proteins involved in tight junction complexes, such as E-cadherin, ZO-1, 

claudin 1 and occludin through an interaction with PP2A (Nunbhakdi-Craig 

et al., 2003). MCPyV infection also leads to the relocalisation of E-cadherin 

inducing the redistribution of  cell membrane adhesion complexes to the 

nucleus in MCC tumours (Han et al., 2000), although the mechanism 

involved in this process is yet to be elucidated. 
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1.6. Thesis Aims 
 

Several studies have demonstrated the importance of the MCPyV T 

antigens in viral replication and host cell transformation. Both ST and LT 

expression is detected in most MCC samples indicating significant roles of 

these T antigens in MCC tumorigenesis. Upon commencing this study, the 

Whitehouse laboratory had identified a group of proteins that were 

differentially expressed upon MCPyV ST expression through SILAC-based 

proteomic analysis. Aligned with this analysis, work in this thesis describes 

further experiments to determine the effects of both ST and truncated 

MCPyV LT expression on the cellular proteome. The aims for this thesis 

are: 

 

1. To screen selected cellular proteins that are differentially expressed 

in SILAC dataset upon expression of MCPyV ST protein. 

Quantitative proteomic analysis of this dataset identified several 

interesting differentially expressed cellular target proteins that were 

associated with enhancing motility, invasion and migration in various 

cancers, such as vitronectin (Vn), kinesin-like protein 14 (Kif14) and 

periplakin (PPL). As such these ST-cellular protein interactions had 

potential for ST-induced cancer development and might be related 

to MCPyV functioning. 

2. To develop a stable cell line with the ability to inducibly express the 

MCPyV truncated LT antigen. The production of the MCPyV tLT 

stable cell lines would allow the screening of cellular  differential 

expression of protein levels using a SILAC quantitative proteomic 

based assay. Several bioinformatic tools were then utilised to 

identify significant pathways and protein complexes affected by 

MCPyV tLT antigen.  

3. To evaluate several cellular proteins and pathways that are 

potentially affected upon expression of MCPyV tLT. In Chapter 5, 

assays on cell cycle, apoptosis and cell survival pathways as well as 

cell-cell connections is used to evaluate the effects of MCPyV 

truncated LT expression.  
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Chapter 2 

Materials and Methods  



- 53 - 

2.0.  Materials and methods 

 

2.1.  Materials 
 

2.1.1.  Cell lines and mammalian cell culture reagents 
 

Human embryonic kidney (HEK) 293 FlipIn cells were used for preparation 

of inducible MCPyV truncated LT stable cell lines and transfection; HEK 

293T cells were used for pull-down and immunoprecipitation assays; while 

MCC13 cells were used for immunofluorescence analysis. Stable inducible 

referred as i293-ST, iEGFP and iEGFP-ST were previously generated in 

the Whitehouse laboratory were used to study the level of expression of 

selected cellular proteins upon induction of ST. All the tissue culture media 

and culture supplements were purchased from either Life TechnologiesTM, 

LonzaTM, Sigma-AldrichTM or Dundee Cell Products (for SILAC media only). 

Selection antibiotics were provided by either InVivoGenTM or Life 

TechnologiesTM and LipofectamineTM 2000 was sourced from Life 

TechnologiesTM.  

 

2.1.2.  Chemicals  

 

All chemicals and solvents (analytical grade) were provided by Sigma-

Aldrich®, Melford Laboratories Ltd. and Life TechnologiesTM, unless stated 

otherwise. Solutions were sterilised using 0.22 µm filters (Millipore), or by 

autoclaving (121°C, 30 minutes, 15 psi). All water used, unless mentioned 

otherwise, was deionised water obtained from an ELGA PURELAB ultra 

machine (ELGA).  
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2.1.3.  Enzymes  

 

Restriction enzymes were obtained from New England BioLabs, and other 

enzymes and their suppliers are listed in Table 2.1.  

Enzyme    
Supplier  

Platinum® Pfx DNA polymerase  

  
Life TechnologiesTM  

   

 
Taq DNA polymerase  

Superscript® II reverse transcriptase  

Proteinase K  

RNase out  
 
T4 DNA ligase  New England BioLabs Inc.  

DNA-freeTM DNase I treatment kit  Ambion®  

DNase I Amplification Grade  Sigma-Aldrich®  

2x SensiMixTM SYBR No-ROX kit  Bioline 

   

Table 2.1: List of enzymes used and the supplier. 

 

2.1.4.  Antibodies 

 

Antibodies were used  in Western blot analysis, immunofluorescent and 

immunoprecipitation assays to study the expression of proteins, the 

subcellular localization of transfected proteins and the protein-protein 

interactions of T antigen with target cellular proteins. Primary antibodies 

were obtained from a variety of suppliers, detailed in Table 2.2. 

Horseradish peroxidase (HRP) conjugated anti-mouse and anti-rabbit 

secondary antibodies were supplied by DakoTM and used for western 

blotting at 1:5000 concentration . Alexa-fluor conjugated anti-mouse and 
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anti-rabbit antibodies used for immunofluorescence microscopy were from  

Life TechnologiesTM. The 2T2 antibody (kindly provided by Dr Christopher 

Buck, National Cancer Institute, Bethesda, MD), which recognises the J-

domain leader peptides present in both MCPyV ST and MCPyV LT was 

used at 1:5 dilution for immunoblot analysis. 

 

Antibody                Origin Working dilution Supplier 
WB IF 

Anti-FLAG (F7425) Rabbit 1:2500 -  
Sigma Anti-GST (G1160) Mouse 1:3000 - 

Anti-GAPDH 
(ab8245) 

Mouse 1:5000 - 

Anti-Vitronectin 
(ab13413) 

Mouse 1:1000 1:200  
Abcam 
 Anti-Kif14 (ab3746) Rabbit 1:1000 1:100 

Anti-Periplakin 
(ab196256) 

Rabbit 1:500 1:200 

Anti-GFP (632592) Mouse 1:5000 - Living Colors 

Anti-Myc (M4439) Mouse  1:5000   1:250  Sigma 

Anti-Lamin B (NA12) Mouse  1:5000  -  Calbiochem  

Anti-ZO-1 (ab59720) Rabbit  1:1000   1:200  Abcam 

Anti-2T2  Mouse  1:5  -  Dr C Buck  

Anti-CDK2 (ab32147) Rabbit 1:1000 - Abcam 

Anti-CDK1 (246IP) Mouse 1:1000 - Abcam 
Anti-cyclin A (H-432) 
Sc-751, Lot #G0811 

Rabbit 1:500 - Santa Cruz 

Anti-cyclin B1 (H-433) 
Sc-752,Lot # H0112 

Rabbit 1:500 - Santa Cruz 

Anti-Cyclin E (M-20) 
Sc-481, Lot # G0212 

Rabbit 1:500 - Santa Cruz 

Anti-Cyclin D1 (M-20) 
Sc-718, Lot #A1911 

Rabbit 1:500 - Santa Cruz 

Anti-phospho p53 Rabbit 1:1000 - Cell Signaling 
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(Ser15) #9284S technology 
Anti-p53 (DO-1)  
Sc-126 

Mouse 1:2000 - Santa Cruz 

Anti-caspase 3 
(#9662) 

Rabbit 1:1000 - Cell signalling 
technology 

Anti-Bad (#92925) Rabbit 1:1000 1:100 Cell signalling 
technology 

Anti-phospho Bad 
(Ser112) #5284P 

Rabbit 1:1000 1:100 Cell signalling 
technology 

Anti-β-catenin 
(ab3572) 

Rabbit 1:1000 1:200 Abcam 

Anti-cleaved PARP 
(#D214) 

Rabbit 1:1000 
 

- Cell signalling 
technology 

Anti-myc (C3956) Rabbit - 1:200 Sigma 

Table 2.2: List of primary antibodies and working dilutions used for various 
applications and their suppliers. 

 

2.1.5.  Plasmid constructs 

Plasmid constructs used in this thesis are listed in Table 2.3. 

 

Plasmid Parent vector Source/contributor 

pEGFP pEGFPcl Clontech 

pEGFP-ST pEGFPcl Whitehouse Laboratory 

pEGFP-tLT pEGFPcl Whitehouse Laboratory 

pGST pGEX-4T Amersham 

pGST-Vn pGEX-4T Whitehouse Laboratory 

pGST-ST pGEX-4T Whitehouse Laboratory 

i293-ST pcDNA5/frt/To/His Whitehouse Laboratory 

i293-tLT pcDNA5/frt/To/His This work 

pSV40 LT pBabe puro (ori) Prof Blair (University of 
Leeds) 
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pMCPyV WTLT pCDNA4HisMax Prof Blair (University of 
Leeds) 

pESG wtp53 

 
pESG-IBAwt Prof Blair (University of 

Leeds) 

Kif14 protein 
vector (human)  

(PV053856) 

pPM-C-His NBS Biologicals Ltd 

Table 2.3: List of recombinant plasmid, parent vector and their source or 
contributors. 

 

2.1.6.  Oligonucleotides 

 
Oligonucleotide primers for DNA sequencing and polymerase chain 

reaction (PCR) were supplied by Sigma-Aldrich®. A full list of primers used 

are shown in Table 2.4. Oligo(dT)12-8 was supplied by Sigma, in order to 

perform reverse transcription.  

Primer name Application Sequence (5′-3′) 

pCDNA5 FRT-

TOLT forward 

PCR, 

cloning 

GGGGGTACCACCATGGATTTAG

TCCTAAATAGGAAAG (Kpn1) 

pCDNA5 FRT-

TOLT Reverse 

PCR, 

cloning 

CGAGCGGCCGCTCACTTATCGTCGTC

ATCCTTGTAATCATGATCGAATGGAGG

AGGGGT (Not1) 

Bad For qRT-PCR GTTCCAGATCCCAGAGTTTG 

Bad Rev qRT-PCR CCTCCATGATGGCTGCTG 

PPL For qRT-PCR TGAATTCTCGGAAATCAACATGGCAGC 

PPL Rev qRT-PCR AGTCGACCTTCTGCCCAGATACCAAGA 

Kif For qRT-PCR AGCAGTTCTGAAAGGGAGCA 

Kif Rev qRT-PCR ATCACTGGCCAAGTTGCGAA 

Vn For qRT-PCR CCTTCACCGACCTCAAGAAC 

Vn Rev qRT-PCR GAAGCCGTCAGAGATATTTCG 
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ZO1 For qRT-PCR CGGTCCTCTGAGCCTGTAAG 

ZO1 Rev qRT-PCR GGATCTACATGCGACGACAA 

GAPDH For qRT-PCR GTGGTCGTTGAGGGCAATG 

GAPDH Rev qRT-PCR TGTCAGTGGTGGACCTGAC 

Table 2.4: Oligonucleotide sequences and their application. 

 

2.2.  Methods 
 

2.2.1.  Molecular Cloning 

 

2.2.1.1.  Construction of recombinant MCPyV truncated LT 
construct 

 
Truncated LT gene was amplified from genomic cDNA using the  pCDNA5 

FRT-TOLT forward and reverse primers. The primer sequences are  listed 

in Table 2.4. DNA was PCR amplified (Section 2.2.1.1.) and separated by 

agarose gel electrophoresis (Section 2.2.1.3.). Appropriate size DNA bands 

were cut and gel purified using QIAquick® Gel Extraction Kit (Qiagen). 

according to the manufacturer’s standard protocol. The PCR product was 

excised with specific restriction enzymes and ligated into the appropriate 

linearised double stranded DNA vector via a cloning vector, such as pCR 

Blunt (InvitrogenTM). The ligation mixtures were transformed in  chemically 

competent bacteria (Section 2.2.1.7.) and selected by appropriate 

antibiotic. Successful inserts were verified by restriction digestion analysis 

(Section 2.2.1.5) and PCR amplification (Section 2.2.1.2.). All constructs 

were purified (Section 2.2.1.9.) and sequenced to validate the identity of 

the inserted fragments (Section 2.2.1.10.).  
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2.2.1.2.  Polymerase chain reaction (PCR)  
 

PCR amplification was performed in thin-walled 0.2 ml PCR tubes 

(Axygen), using a TC-412 thermal cycler (TechneTM). Reactions were 

carried out using Platinum® Pfx or Taq DNA polymerase. Pfx DNA 

polymerase was used for gene amplification during cloning due to the need 

for a proofreading enzyme, while Taq DNA polymerase was used for 

screening of positive transformants. Reactions were performed in a total 

volume of 50 µl, containing the following components: 1-10 ng template 

DNA, 0.2 mM of each primer, 1× polymerase amplification buffer, 1.5 mM 

MgSO4/MgCl2, 1 µl DNA polymerase, 200 µM dNTPs. The conditions for  

PCR amplification were set up at 95 °C for 5 minutes, followed by 35 cycles 

of 95°C for 1 minute, 60°C for 1 minute and 72°C for 2 minutes. A final 

extension at 72°C for 10 minutes. PCR products were then analysed by 

agarose gel electrophoresis (Section 2.2.1.3). 

 

2.2.1.3.  Agarose gel electrophoresis 
 

Double stranded DNA fragments were separated by agarose gel 

electrophoresis, using 1% agarose gels. Agarose was dissolved in TBE 

buffer [90 mM Tris-base, 2 mM EDTA, 80 mM boric acid] to which 0.5 

µg/mL ethidium bromide was added. A 10 x solution of gel loading buffer 

[0.25% (w/v) Orange G dye, 30% (v/v) glycerol] was mixed with DNA 

samples, resulting in 1x final concentration. A DNA ladder, 100 bp or 1 kb 

(InvitrogenTM) was run alongside the samples. Electrophoresis was 

performed with TBE buffer in HE 99× Max horizontal electrophoresis tanks 

(Hoefer) at 100 V for 1 hour. DNA was visualised under ultra-violet light and 

corresponding images were taken using the GeneGenius bio-imaging 

system (Syngene). 
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2.2.1.4.  Purification of DNA  
 

DNA bands of the expected size of the PCR product were excised from the 

agarose gels and purified using the QIAquick gel extraction kit (Qiagen), 

according to the manufacturer’s instructions. The weight of the DNA gel 

slice was recorded and the slice was dissolved in 3 gel volume of buffer 

QG followed by incubation at 50°C for 10 minutes. Upon melting of the 

agarose slices, one volume of isopropanol was added to the sample and 

mixed. This mixture was then applied to a QIAquick column and centrifuged 

for 1 minute at 13,000 × g at room temperature. The column was washed 

using 750 µL wash buffer and centrifuged for 1 minute at 13,000 × g, room 

temperature. DNA was eluted into a sterile eppendorf tube by applying 30 

µL elution buffer followed by centrifugation for 1 minute at 13,000 × g at 

room temperature. Purified DNA was stored at -20°C until further use. 

 

2.2.1.5.  Restriction enzyme digestion 
 

Restriction enzyme digestion was performed according to the 

manufacturer’s protocol with compatible buffers if double digestion was 

required. Reactions were carried out in a total volume of 10-20 µL with 1U 

of restriction enzyme used per 1 µg of DNA to be digested. Reactions were 

incubated for 2 hours at 37°C followed by incubation at 65°C for a minimum 

of 20 minutes to inactivate the reactions. Resulting fragments were 

analysed by agarose electrophoresis (section 2.2.1.3.) and gel purified 

(section 2.2.1.4.).  

 

2.2.1.6.  DNA ligation 
 
Ligations were performed using T4 DNA ligase buffer, 1 U of T4 DNA 

ligase (InvitrogenTM), added to approximately 10-100 ng of linearised vector 

and insert DNA with 1:3 molar ratio of vector to insert, in a total volume of 

10 µl. Reagents were mixed gently and incubated at 16°C for 1 hour. 
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2.2.1.7.  Preparation of chemically competent DH5α  
 

All cloning was carried out using Escherichia coli (E.coli) strain DH5α. 

Chemically competent E.coli was prepared using a rubidium chloride-based 

method. Liquid cultures were grown in autoclaved Luria broth (LB) [1% 

(w/v) tryptone, 0.5% (w/v) NaCl, 0.5% (w/v) yeast extract, pH 7.5] and 

incubated at 37°C with shaking. DH5α cells were streaked on LB agar 

plates (1% NaCl, 1% Tryptone, 0.5% Yeast Extract and 1.5% Agar) 

followed by incubation at 37°C. One colony was used to inoculate 2 mL of 

LB media and incubated for 5 hours at 37°C with shaking. Following this, 

0.5 mL of the culture was used to inoculate 50 mL of LB media and the 

cells were grown at 37°C with shaking until an OD600 of 0.3-0.6 was 

reached. The cells were subsequently pelleted by centrifugation at 5,000 × 

g for 5 minutes at 4°C. The pellet was resuspended in 40 mL ice-cold filter-

sterilised TFB1 buffer [30 mM KOAc, 10 mM CaCl2, 50 mM MnCl2,100 mM 

RbCl, 15% (v/v) glycerol, adjusted to pH 5.8 with acetic acid] and incubated 

for 5 minutes at 4°C. The cells were centrifuged at 5,000 × g for 5 minutes 

at 4°C followed by gentle resuspension of cells in 2 mL ice-cold filter-

sterilised TFB2 buffer [10 mM MOPS, 75 mM CaCl2, 10 mM RbCl, 15% 

(v/v) glycerol, adjusted to pH 6.4 with KOH]. This was followed by 

incubation at 4°C for 20 minutes and subsequently cells were aliquoted and 

quickly frozen on dry ice, followed by storage at -80°C.  

 

2.2.1.8.  Bacterial transformation 
 
Plasmids were transformed into 50 µL E. coli DH5α competent cells 

(originally from Invitrogen) for cloning purposes or E. coli BL21 (originally 

from Novogen) for bacterial expression studies. Competent cells were 

thawed on ice. Approximately 10 ng of plasmid DNA was added and mixed 

by gentle pipetting. Cells were incubated for 30 min on ice and placed in a 

42°C water bath for 50 sec. The heat-shocked cells were then incubated on 

ice for 2 min. After incubation, 0.25 mL of SOC medium [2% tryptone, 0.5% 

yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, 
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and 20 mM glucose] was added to the cells and these were incubated at 

37°C for 1 hour. Finally, 100 µL of transformed cells were plated onto LB 

plates supplemented with the appropriate antibiotic and plates were 

incubated overnight at 37°C. 

 

2.2.1.9.  Plasmid extraction 
 
Small scale purification of plasmid DNA was carried out to  using QIAprep 

Spin Miniprep Kit (Qiagen)., while large scale preparation of plasmid DNA 

were performed using a Maxiprep kit (Qiagen) according to the supplier’s 

protocol. The 5 mL (small scale) and 500 mL (large scale) of overnight 

bacterial culture was harvested by centrifugation at 4000 × g for 10 min. 

The pelleted bacterial cells were resuspended with 10 mL resuspension 

buffer (50 mM Tris-HCl, pH 8.0 and 10 mM EDTA) supplemented with 

RNase A (100 µg/mL). The homogenous bacterial cell suspension was 

lysed with 10 mL lysis buffer [0.2 M NaOH and 1% (w/v) SDS] and 

incubated for 5 min at room temperature. The lysed cells were precipitated 

with 10 mL precipitation buffer [3.1 M potassium acetate, pH 5.5] and 

centrifuged at 13,000 × g for 10 min at room temperature. The supernatant 

was then transferred onto an equilibrated anion-exchange resin column 

and allowed to drain by gravity flow. The column was washed with 60 mL 

wash buffer [0.1 M sodium acetate, pH 5.0, 825 mM NaCl] and bound 

plasmid DNA was eluted with 15 mL elution buffer [100 mM Tris-HCl, pH 

8.5, 1.25 M NaCl]. The eluted plasmid DNA was precipitated with 10.5 mL 

isopropanol at room temperature and centrifuged at 13,000 × g for 30 min 

at 4°C. The precipitated plasmid was washed with 10 mL 70% (v/v) ethanol 

and centrifuged at 13,000 × g for 15 min at 4°C. The DNA pellet was air-

dried and resuspended in 100 µL DNase free water. 

 

2.2.1.10.  DNA sequencing 
 
Putative positive plasmids were extracted and DNA concentration was 

quantified by NanoDrop  prior to be sent for DNA sequencing.  Plasmid 

DNA was sent to GATC at a concentration of 30 ng/µL in 50 µL total 
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volume. DNA sequencing was performed by GATC Biotech to confirm the 

correct cloned sequences. Primers used for sequencing were T7 and BGH 

reverse primer.  All sequences were aligned and blast against public 

GenBank databases.  

 

2.2.2. Mammalian Cell Culture 
 

2.2.2.1.  Cell lines 
 

Human embryonic kidney HEK 293 FlpInTM (Life Technologies) were kindly 

supplied by Stuart Wilson (University of Sheffield, UK) were used as the 

parental cell line for generation of the i293-tLT (this work) as well as stable 

inducible cell lines generated by members of Whitehouse laboratory, i293-

ST, iEGFP and iEGFP-ST. In addition, the human non-small cell lung 

carcinoma cell line, H1299 were provided by Professor Eric Blair 

(University of Leeds, UK) and a Merkel cell carcinoma cell line that was 

MCPyV negative, MCC13 was obtained from the European Collection of 

Authenticated Cell Cultures (ECACC). 

 

2.2.2.2.  Cell lines maintenance 

 
HEK 293 FlpInTM, i293-ST, i293-tLT, i293-T, iEGFP, iEGFP-ST  cell lines 

were maintained in Dulbecco’s modified Eagle’s medium (DMEM, 

InvitrogenTM), supplemented with 10% (v/v) foetal bovine serum (FBS) and 

5 U/mL penicillin and streptomycin. HEK 293 FlipInTM cells were maintained 

in DMEM containing 100 µg/mL zeocin (InvitrogenTM), while i293-ST, i293-

tLT, iEGFP and iEGFP-ST cells were maintained in DMEM containing 100 

µg/mL Hygromycin B (InvitrogenTM). All cell lines were passaged every 3 to 

4 days. Confluent cell layers were removed from 75 cm2 tissue culture 

vessel surfaces by kinetic force. The cells were split 1:20 into flasks with 

10% DMEM containing appropriate antibiotics. The H1299 cells were 

maintained in 10% DMEM and passaged every 3-4 days, whereby the 

confluent cell layer was removed by trypsinisation and the cells were 



- 64 - 

subsequently split 1:20 into new flask containing 10% DMEM. The MCC13 

cells were maintained in Roswell Park Memorial Institute (RPMI) media, 

supplemented with 5 U/ml penicillin and streptomycin and 15% FBS. The 

MCC13 cells were passaged in the same manner as H1299 cells but using 

15% RPMI. For long term storage of cell lines, cells were aliquoted into 1.8 

mL Cryotubes (NUNCTM) at 1 × 106 cells/mL. Cells were resuspended in 

freezing media [90% (v/v) FCS, 10% (v/v) DMSO], cryotubes were then 

stored at -80°C for 24 hours in an isopropanol containing  freezing 

container (Nalgene) and then transferred to liquid nitrogen for long term 

storage. All cell lines were incubated in an InCu saFe Copper-Enriched 

Stainless Steel CO2 incubator (Panasonic), with 5% CO2 concentration. 

 

2.2.2.3.  Maintaining cells in SILAC media  
 

Media used to label i293-tLT cells prior to SILAC based quantitative 

proteomic analysis was purchased from Dundee Cell Products and 

supplemented with 10% dialysed foetal calf serum (Dundee Cell Products). 

i293-tLT cells were passaged 8 times in both R0K0 DMEM (containing 12C 

L-Arginine and 12C L- Lysine), and R6K4 DMEM (containing 13C L-Arginine 

and 13C L-Lysine), herein referred to as ‘’light DMEM’’ and ‘’heavy DMEM’’, 

respectively to ensure full incorporation of the labelled amino acids. Upon 

each passage, both light DMEM media and heavy DMEM media was 

supplemented with Hygromycin B (Life TechnologiesTM). For SILAC 

analysis, a set of  i293-tLTcells was grown in light DMEM and maintained 

uninduced while another set of cells was grown in heavy DMEM and 

induced with doxycyline for 48 hours prior harvested for protein 

fractionation.  

 
2.2.2.4.  Preparation of inducible tLT stable cell lines 
 
To generate a cell line with inducible MCPyV tLT expression, 293 FlipIn 

cells were co-transfected with tLT-FLAG (in pCDNA5/FRT) and 

pPGK/Flip/ObpA plasmid constructs at a 1:9 ratio. The cell line was 
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selected and maintained under Hygromycin B selection at 100 µg/ml and 

referred to as i293-tLT. The cell line was derived from a single clone, and 

propagated until confluency, before the induction and expression of the 

desired protein of interest was tested. 

 

2.2.2.5.  Mammalian cell culture based protocols  

2.2.2.5.1.  Transfection of mammalian cells  
 
A standard transfection protocol was followed for all assays unless stated 

otherwise. Approximately 5 × 105 were seeded into a well (35 mm 

diameter) of a 6-well plate the day before transfection, to allow cells to grow 

to 70% confluency upon transfection. All transfections were performed 

using LipofectamineTM 2000, according to the manufacturers protocol. Per 

reaction (1 well of a 6-well plate), 3 µL LipofectamineTM 2000 was diluted in 

100 µL  media (either DMEM or RPMI depending on the cell line) and 

mixed with 1 µg total plasmid DNA, which was also diluted in 100 µL 

media. This mixture was incubated for 10 minutes at room temperature, 

during this time the media on the seeded cells was replaced with either 2 

mL DMEM or RPMI (for 6-8 hour transfections). If overnight transfection 

needed, DMEM or RPMI containing 2.5% FBS were used, herein referred 

to as “2.5% DMEM’’ or “2.5% RPMI’’. Following incubation the transfection 

mixture was then added to the cells in a drop-wise manner and cells were 

incubated at 37°C for either 6 hours or 16 hours, depending upon the 

experiment. Following this time the transfection media was replaced with 

the corresponding media for that cell line (either 10% DMEM, 10% RPMI, 

15% RPMI, respectively) and allowed to express the respective 

recombinant proteins for 24, 48 or 72 hours depending upon experiment.  

 

2.2.2.5.2.  Induction of i293-ST and i293-tLT cells 
 

Approximately 1x105 of i293-ST or i293-tLT cells were seeded into each 

well of a 6-well plate. Once cells were adhered to the tissue culture dish, 4 
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µL doxycycline hyclate (Life TechnologiesTM) was added to 2 mL complete 

DMEM, at a final concentration of 2 µg/mL. Cells were harvested after 

incubation at 37°C for 24 and 48 hours’ time points. SILAC analysis of 

i293-tLT required cell growth on a large scale, resulting in 5 x 175 cm3 

tissue culture vessels (Sigma-AldrichTM). Concurrent with this, 

approximately 1 x 107 cells per flask were induced with 2 µg/mL 

doxycycline hyclate in a volume of 30 mL R6K4 DMEM, while control cells, 

grown in 30 mL R0K0 DMEM, were left uninduced. 

 

2.2.3.  Protein Analysis 

 
2.2.3.1.  Preparation of mammalian cell lysates  
 

For experiments that required analysis of cellular proteins, mammalian cells 

were removed from the tissue culture plates by pipetting with 1 mL PBS. 

Adherent cells such as MCC13 and H1299 were removed from the surface 

of the culture plate by scraping in the presence of 1 mL PBS. The cells 

suspension was then centrifuged at 500 × g at room temperature. The cell 

pellet was resuspended and lysed in 100 µL RIPA lysis buffer [150 nM Tris-

HCl, 50 mM Tris base ultrapure, 1% NP40, pH 7.6, with 1 x protease 

inhibitor EDTA (Roche)], which was pre-chilled to 4°C. This was incubated 

on ice for 30 minutes, with mixing every 10 minutes, followed by 

centrifugation of the cell lysates in a pre-chilled centrifuge at 4°C, 13,200 × 

g for 10 minutes. The supernatant was then transferred to a clean 

Eppendorf and stored at -20°C until further use. The harvested proteins 

were quantified by Bradford assay to ensure equal loading prior to analysis 

by immuno blotting. 

 

2.2.3.2.  Bradford assay 
 
A standard curve of a serial dilution series (0.1-1.0 mg/mL) BSA dissolved 

in RIPA lysis buffer [150 nM Tris-HCl, 50 mM Tris base ultrapure, 1% 

NP40, pH 7.6, with 1 x protease inhibitor EDTA (Roche)] was generated. 
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The concentration of each protein sample was determined from its 

absorbance by interpolation. Generally, 5 µL of standards or samples were 

pipetted into wells, followed by adding of 250 µL 1 × dye reagent (BioRad) 

to each well. The samples were mixed thoroughly using a microplate mixer, 

followed by incubation at room temperature for 15 minutes before the 

absorbance at 595 nm was measured by using microplate reader. 

 

2.2.3.3.  SDS-PAGE 
 
Cell lysates were mixed with protein solubilising buffer  [50 mM Tris-HCl 

(pH 6.8), 2% (w/v) SDS, 20% (v/v) glycerol, 50 µg/mL bromophenol blue, 

10 mM DTT] and boiled at 95 °C for 10 minutes. Appropriate percentages 

of acrylamide gel were prepared according to the size of tested proteins. 

The reagents and the volumes added are listed in Table 2.5. All SDS-

PAGE was performed using a Mini-PROTEAN 3 cell (Bio-Rad), set up 

according to the manufacturer’s instructions. Gels were run in Tris-glycine 

running buffer [25 mM Tris, 192 mM glycine, 0.1% (w/v) SDS] at 180 V for 

1 hour. The BenchMark pre-stained protein standards were run alongside 

samples to indicate their molecular weight.  

Reagents 6% 10% 12% 

Acrylamide/bis-acrylamide  2.0 mL 1.7 mL 2.0 mL 

1 M Tris-HCl (pH 8.8) 1.3 mL 1.3 mL 1.3 mL 

10% (w/v) SDS 50 µL 50 µL 50 µL 

dH2O 2.6 mL 1.9 mL 1.6 mL 

10% (w/v) ammonium 
persulfate 

50 µL 50 µL 50 µL 

TEMED 8 µL 4 µL 4 µL 

Table 2.5: Reagents and the volumes required to prepare SDS-PAGE resolving gels 
of an indicated percentage acrylamide. 
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2.2.3.4.  Immunoblotting 
 

Proteins separated by SDS-PAGE were transferred to Hybond C 

membranes (Amersham Biosciences), using the Bio-Rad Mini Trans-Blot 

Electrophoretic Transfer Cell (BioRad), as stated in the manufacturer’s 

instructions. The gel and membrane were sandwiched between four pieces 

of Whatman 3 mm filter paper, all of which was soaked in transfer buffer 

[25 mM Tris, 190 mM glycine, 20% (v/v) methanol], before being secured in 

the Mini Trans-Blot. Proteins were transferred at 100 V for 1 hour or 

overnight, depending on the size of the protein. The blot was removed and 

incubated in blocking buffer [20 mM Tris, 500 mM NaCl, 0.1% (v/v) Tween-

20, 5% skimmed milk] for 1 hour at room temperature followed by 

incubation with the primary antibody diluted in blocking solution overnight 

at 4°C. The membrane was washed three times, for 5 minutes in TBS-

Tween solution [20 mM Tris, 500 mM NaCl, 0.1% Tween-20], before 

incubation with appropriate secondary antibody conjugated to HRP. Bands 

were visualised using Hyperfilm ECLTM (Amersham), by enhanced 

chemiluminescence (ECL), using the EZ-ECL kit (Geneflow). Films were 

developed in a SRX-101A developer (Konica).  

 

2.2.3.5.  Coomassie stain analysis  

 
Proteins were visualised by incubating SDS-PAGE gel (Section 2.2.5.3) in 

coomassie stain [0.1% (w/v) Coomassie Blue R-250, 50% (v/v) methanol, 

10% (v/v) acetic acid] for 1 hours at room temperature, followed by 

incubation with coomassie de-stain [25% (v/v) methanol, 10% (v/v) acetic 

acid] for 30 minutes. Used de-stain was then replaced with fresh de-stain 

and incubated for a further 30 minutes at room temperature.  
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2.2.4.  Analysis of protein-protein interactions 
 

2.2.4.1.  Glutathione S-transferase (GST) pull down assay 
 
To study the protein-protein interaction of ST with other target proteins, 

plasmids containing GST and GST tagged MCPyV ST were overexpressed 

in bacterial expression system. Initially, the appropriate concentration of 

plasmid was transformed into chemically competent BL21 cells 

(Stratagene) using heat shock method as described in Section 2.2.1.8. A 

single colony of transformant was picked and used to inoculate 10 mL of 

LB media for an overnight culture under antibiotic selection, which  was left 

shaking at 37°C. The next day, the 10 mL overnight culture was added into 

100 mL LB containing  50 µg/mL selection antibiotics and the incubation 

was continued for another 2 hours with shaking at 37°C. Following this, 

Isopropyl-β-D-thio-galactoside (IPTG) was added to a final concentration of 

0.4 µM. For a time course study,  1 mL of culture were harvested every 

hour after the induction and labelled as T(1-4) and before induction (T0).  

 

The time course lysate samples were subjected to SDS-PAGE and stained 

with coomassie blue to see the overexpression of the proteins. The 

remaining culture was harvested after 4 hours incubation and was pelleted 

by centrifugation for 10 minutes at 5,000 × g, 4°C. The pellets were then 

gently resuspended in 5 mL lysis buffer [PBS, 1% Triton X-100, Complete® 

Protease Inhibitor EDTA free (Roche)]. To lyse the cells completely, the 

cells were sonicated for 10 times for 10 seconds on followed by 10 seconds 

off, using a Soniprep150 (MSE). The lysate was incubated for 

approximately 20 minutes on ice and 50 µL of the lysate was kept as whole 

cell lysate. After incubation, the lysate was cleared by centrifugation for 30 

minutes at 5,000 × g, 4°C. Supernatant was added to 25 µL prepared GST 

beads. The mixture was incubated for 2 hours with continuous rotation. The 

GST beads were then pelleted at 500 × g, for 5 minutes and washed  3 

times with 5 mL ice-cold PBS and subsequent centrifugation. The cell 

lysate, 293T or induced and uninduced iST-293, was added to the GST 

beads and incubated for 2 hours at 4°C with continuous rotation. After the 
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incubation, the GST beads were pelleted at 500 × g for 5 minutes, gently 

washed with ice cold PBS for 3 times. 100 µL of 2 × protein solubilising 

buffer [50 mM Tris-HCl (pH 6.8), 2% (w/v) SDS, 20% (v/v) glycerol, 50 

µg/mL bromophenol blue, 10 mM DTT] was added to resuspend the GST 

beads, which was subsequently boiled for 10 minutes to elute bound 

proteins and then used for SDS-PAGE analysis and western blotting.  

 

2.2.4.2. Immunoprecipitation of GFP-fusion proteins 

 
HEK 293T cells were transfected with GFP or GFP-ST plasmids (Section 

2.2.2.5.1). The cells were subjected to lysis 24 hours post-transfection. 

Lysis and immunoprecipitation of GFP-fusion proteins was performed using 

GFP-trap beads (Chromotek) that consist of a single-domain anti-GFP 

antibody conjugated to an agarose bead matrix. Cell pellets were incubated 

for 30 min on ice with 200 µL lysis buffer [10 mM Tris-HCl, pH 7.5, 150 mM 

NaCl, 0.5 mM EDTA, 0.5% NP-40, and EDTA-free protease inhibitor]. The 

lysate was cleared by centrifugation at 12,000 x g for 10 mins and diluted 

5-fold with dilution buffer [10 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.5 mM 

EDTA, and EDTA-free protease inhibitor]. The GFP-trap beads were 

equilibrated with ice-cold dilution buffer and then incubated with diluted cell 

lysate for 2 hours at 4°C on a rotary mixer, followed by centrifugation at 

2,700 × g for 2 min. The bead pellet was washed once with dilution buffer, 

followed by a single wash in buffer [10 mM Tris-HCl, pH 7.5, 300 mM NaCl, 

0.5 mM EDTA, and EDTA-free protease inhibitor]. After centrifugation of 

the GFP-trap beads as described above and removal of the wash buffer, 

the beads were resuspended in 2 × protein solubilising buffer and boiled for 

10 minutes to elute bound proteins. The precipitated proteins were 

subjected to western blotting analysis (section 2.2.4.2).  
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2.2.5.  Immunofluorescence microscopy 
 
Initially, the coverslips were immersed in 100% ethanol to sterilise the 

surface, before placing in sterile 6 well tissue culture dish. The coverslip 

were allowed to air dry to get rid of ethanol residues before the surfaces 

were treated with 0.01% poly-L-lysine solution for 15 minutes at room 

temperature followed by a brief wash 3 times in PBS. Approximately 1 × 

105 of MCC13 cells were seeded onto the treated coverslips and incubated 

overnight to allow the cells to adhere to the surface. The next day, cells 

were transfected with appropriate constructs (as describ. After transfection 

and subsequent protein expression , cell monolayers were washed gently 

for 3 times with PBS followed by fixation with 4% (v/v) paraformaldehyde in 

PBS for 15 min at room temperature. The cells were again washed 3 times 

in 2 ml PBS and permeabilised in 1% (v/v) Triton X-100 in PBS for 10 

minutes at room temperature, before 3 further washes in 2 ml PBS.  

 

Coverslips were then covered with blocking solution [PBS, 1% (w/v) bovine 

serum albumin (BSA)] followed by incubation at 37°C for 1 hour. The 

appropriate primary antibody was applied to the cells in the blocking 

solutuion and incubation was continued overnight at 4°C. The cell 

monolayer was carefully washed 5 times in blocking solution, before an 

appropriate AlexaFluor conjugated secondary antibody was applied to the 

cells. After 1 hour incubation at 37 °C, the secondary antibody was 

removed and the cells were carefully washed 5 times with PBS.  Coverslips 

were mounted onto microscope slides using VECTORSHIELD® with DAPI 

mounting media (Vector Laboratories) and visualised on an LSM510 META 

laser scanning inverted confocal microscope, using the LSM5 image 

browser. 
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2.2.6. Fractionation and proteomic analysis 
 

2.2.6.1. Nuclear and cytoplasmic fractionation 
 
SILAC analysis of i293-tLT cells required the protein fractionation to reduce 

the complexity of the sample. Approximately 1 × 107 cells per flask were 

induced with 2 µg/mL doxycycline hyclate in a volume of 30 mL R6K4 

DMEM, while the control, left uninduced were grown in 30 mL R0K0 DMEM. 

Both i293-tLT cells grown as monolayers were washed in ice-cold 

phosphate buffered saline (PBS). The cells were pelleted at 1200 rpm for 3 

min at room temperature and cell pellets resuspended in ice-cold 0.1% 

NP40 (Calbiochem, CA, USA) in PBS. The lysate was labelled "cytosolic 

fraction". The pellet was then resuspended in 1 ml of ice-cold 0.1% NP40 in 

PBS, and centrifuged as above. The pellet was resuspended with Laemmli 

sample buffer [65.8 mM Tris-HCl, pH 6.8, 2.1% SDS, 26.3% (w/v) glycerol, 

0.01% bromophenol blue] and this sample designated as "nuclear fraction". 

Prior to the samples being sent for Liquid chromatography–mass 

spectrometry/mass spectrometry (LC-MS/MS) analysis, the proteins were 

quantitated by Bradford assay and samples were mixed in 1:1 ratio 

(uninduced : induced) for both cytoplasmic and nuclear fraction samples. 

 
2.2.6.2. Mass spectrometry and proteomic analysis  
 

Both mixed cytoplasmic and nuclear fractions samples were outsourced to 

University of Bristol Proteomics Facility to identify and quantify the 

precipitated proteins. Peptides were quantified and identified using 

Proteome Discoverer™ Software. For analysis and quantification of 

proteins levels, a 2.0 fold cut-off was chosen and a 2 peptide cut-off. 

Proteomic analysis was performed using The Database for Annotation, 

Visualization and Integrated Discovery (DAVID) (Huang da et al., 2009a, b) 

and Ingenuity Pathway Analysis (IPA) web-based softwares.  
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2.2.7. Analysis of protein functions 
 

2.2.7.1. Standard cell proliferation assay  
 
i293-GFP, i293-GFPST, HEK293 and i293-tLT cells were seeded into 6-

well plates in triplicate. Protein expression was induced with doxycycline 

hyclate at 2 µg/mL. At the chosen time points (24, 48, 72 hours post 

induction), cells were detached from the tissue culture plate surface via 

trypsinisation [0.25% (v/v) trypsin, in PBS], washed in 1 mL PBS and 

centrifuged at 1,200 ×	
 g for 3 minutes at room temperature. The cell pellet 

was then resuspended in 1 mL PBS. 0.2 mL cell suspension was added to 

0.3 mL PBS and 0.5 mL Trypan Blue solution 0.4% (w/v) (Sigma) and 

mixed thoroughly. Cells were then counted using a haemocytometer 

(Neubauer Improved).  

 
2.2.7.2. Cell cycle analysis  
 

HEK293 and i293-tLT cells were seeded into 6-well plates in triplicate and 

left to grow overnight. Protein expression was induced with doxycycline 

hyclate at 2 µg/mL. After 24 hours post induction, cells were detached from 

the tissue culture plate surface, washed in 1 mL PBS and centrifuged at 

1,200 × g for 3 minutes at room temperature. The cells were resuspended 

in 1 mL PBS, counted and pelleted again. The supernatant was removed 

and the tubes flicked to disturb the pellet of cells. Ice-cold 70% ethanol was 

added dropwise to the pellet whilst vortexing, in order to resuspend the 

cells. A sufficient amount of cold ethanol was then added to obtain a cell 

concentration of 106 cells per mL. Immediately, samples were stored at 

−20°C for at least 24 hours to fix the cells. For analysis, the cells were 

pelleted at 1,200 × g for 3 minutes at room temperature. All ethanol residue 

was removed  and the pellets were washed twice in ice-cold PBS. Pellets 

were resuspended in PBS with 0.5 mg RNAse A and 10 ug/mL Propidium 

Iodide. The cells were then incubated at 37°C for 3 hours, followed by 

centrifugation at 1,200 × g for 3 minutes at room temperature. The pellets 



- 74 - 

were resuspended in PBS. Samples were run on a LSR Fortessa flow 

cytometer (BD Biosciences). At a low flow rate and analysed with ModFit 

software. For experiments involving other LT plasmid constructs, HEK293 

cells were seeded into 6-well plates and transfected with the appropriate 

constructs (section 2.2.2.5.1).  

 

2.2.7.3. Apoptosis assay 
 
HEK293 and i293-tLT cells were seeded into 6-well plates in triplicate and 

left to grow overnight. Protein expression was induced with doxycycline 

hyclate at 2 µg/mL. After 24 hours post-induction, staurosporine (Sigma-

Aldrich) was added at a final concentration of 10 µM. The cells were 

incubated for at least 5 hours before being harvested. The morphology of 

the treated cells was observed through an inverted microscope and images 

were captured at different time points within the incubation time. 

Afterwards, the treated cells were washed in 1 mL PBS and centrifuged at 

1,200 × g for 3 minutes at room temperature. The cell pellet was then 

resuspend in 1 mL PBS and the number of cells counted prior to labelling. 

Approximately 1 × 105 cells were used per sample. The cells were pelleted 

and washed for 2 to 3 times with ice-cold 1×  Annexin V labelling buffer 

[10× (0.1 M Hepes pH 7.4, 1.4 M NaCl, 25 mM CaCl2)]. This step is 

important to ensure the cell culture medium is removed completely, 

especially if EDTA was used to harvest the cells. 50 mL of the labelling 

buffer and 5 µL of Annexin-V-FITC (Abcam) were added to each pellet and 

resuspended thoroughly. The samples were then were incubated on ice for 

15 minutes before 5 µL of Propidium Iodide (50 mg/mL) were added to 

each sample. After mixing, they were immediately run on the flow 

cytometer. 
 

2.2.7.4. Scratch wound-healing assay 
 

The appropriate 6-well plates were coated in poly-L-lysine prior to 

incubation with the cells. The next day, the monolayer of cells was scraped 
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in a straight line using P200 pipette tips. Excessive debris from the scratch 

was removed by washing the cells once and replacing the growth medium. 

The cells were visualized and imaged in the same area and location 

between 0 to 40 hours after scratching. Scratches and subsequent cell 

growth was visualised using the inverted microscopy. 

 
2.2.8. Gene expression analysis by qRT-PCR  
 
2.2.8.1. RNA extraction  
 
i293-ST or i293-tLT cells were seeded at a density of 4 ×	
 105 cells in 

triplicate per condition and induced for 48 hours at 37°C with 2 µg/mL 

doxycycline hyclate. For the i293-tLT experiment, HEK 293 cells were used 

as a control. For the i293-ST experiment, i293-ST cells were left uninduced 

and used as a control. Following incubation, cells were directly lysed by 

addition of 1 mL TRIzol reagent (Life Technologies™) per well according to 

the manufacturer’s instruction. Briefly, after incubation at room temperature 

for 5 minutes, 200 µL chloroform were added to each sample followed by 

vigorous mixing for 15 seconds and incubation at room temperature for 3 

minutes. Samples were then centrifuged at 12,000 × g for 15 minutes at 

4°C and the upper, RNA containing, aqueous colourless phase was 

transferred to a fresh RNase-free tube. RNA was then precipitated by 

addition of 500 µL isopropanol and incubation at room temperature for 10 

minutes before being centrifuged at 12,0000 × g at 4°C for 10 minutes. The 

supernatant was carefully aspirated and the pellet washed in 1 mL 75% 

ethanol and briefly vortexed, followed by centrifugation at 7,500 × g for 5 

minutes at 4°C. The supernatant was once again aspirated and the pellet 

air-dried for 5 minutes. The pellet was resuspended in 49 µL DEPC-treated 

water with 1 µL RNaseOUT™ (Life Technologies) and incubated at 57°C for 

10 minutes. The RNA was immediately DNase I treated (Section 2.2.8.2) 

and reverse transcribed (2.2.8.3). Any remaining RNA was stored at -80°C 

until further use.  
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2.2.8.2. DNase I treatment  
 
A DNase I kit supplied by Ambion™ was used to remove any potential 

contaminating DNA from RNA samples (Section 2.2.8.1) as per the 

manufacturers protocol. 0.1 volume of DNase reaction buffer and 0.5 µL 

Amplification Grade DNase I were added to each sample, gently mixed and 

incubated for 30 minutes at 37°C. This was followed by addition of 0.1 

volume Stop solution, thorough mixing and incubation at 70°C for 10 

minutes. Samples were then briefly chilled on ice and then transferred for 

long term storage at -80°C. RNA concentration was measured using a 

NanoDrop (Eppendorf) and all samples were diluted in RNase-free water to 

a final concentration of 50 ng/µL prior proceed to qRT-PCR.  
 
2.2.8.3. Reverse transcription  
 
cDNA was synthesized from the total cellular RNA by using ProtoScript® II 

Reverse Transcriptase (New England Biolabs), according to the 

manufacturer’s protocol. The initial sample mixture contained 1 µg DNase I 

treated RNA, 1 µL dNTP mix (2.5 mM per dNTP), 1 µL Oligo(dT)12-18 primer 

and water to a total volume of 12 µL. Samples were mixed and incubated 

at 65°C for 5 minutes and then quick-chilled on ice. Following this, 4 µL 5 × 

First-Strand buffer, 2 µL 0.1 M DTT, 1 µL RNaseOUT™ and 1 µL 

ProtoScript® II Reverse Transcriptase were added to each sample. 

Samples were mixed gently and incubated at 42°C for 50 minutes, followed 

by enzyme inactivation at 70°C for 15 minutes. This was then followed by 

ethanol precipitation to remove unused dNTPs, salts and enzymes.  

 

2.2.8.4. Ethanol precipitation  
 
2 µL of 3 M sodium acetate, pH 5.6, and 60 µL ice cold 100% ethanol was 

added into each cDNA sample (Section 2.2.8.3) and mixed gently, followed 

by incubation at 4°C for 10 minutes. Samples were then centrifuged at 

12,000 × g for 10 minutes at 4°C and the supernatant discarded. The pellet 
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was then washed in 1 mL ice-cold 100% ethanol and further centrifuged at 

12,000 × g for 10 minutes at 4°C. The supernatant was removed and the 

pellet air-dried briefly, followed by resuspension of the cDNA pellet in 20 µL 

nuclease-free water (Sigma). The cDNA concentration was determined by 

NanoDrop and subsequently diluted to a final concentration of 2 ng/mL in 

nuclease-free water.  

 
2.2.8.5. qRT-PCR reaction  
 
Each reaction PCR reaction was performed in duplicate using two different 

primer pairs (GAPDH as a reference and a pair of test primers). The PCR 

master mix contained the following for each reaction: 12.5 µL SensiMix 

SYBR® No-ROX kit (Bioline), 2 µL primer mix (5 µM of both forward and 

reverse primers), 5.5 µL nuclease-free water and 5 µL cDNA (10 ng final 

amount). The PCR reactions were performed using a Rotor-GeneTM Q 

5plex MRM Platform (Qiagen) using the Rotor-Gene 6000 series software 

version. A PCR program (pre-programmed 3 Step with Melt) consisted of 

95°C for 10 minutes and then 40 cycles of: 95°C for 15 seconds, 60°C for 

30 seconds and 72°C for 20 seconds were used in setting the qRT-PCR 

reaction. Quantitative analysis was then performed using the comparative 

CT method (Boyne and Whitehouse, 2006). Each tested primer set was 

normalised to GAPDH.  
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Chapter 3 

Analysis of potential differentially expressed cellular proteins upon 
MCPyV ST expression identified by a previous SILAC-based 
quantitative proteomic assay. 
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3.0. Analysis of potential differentially expressed cellular 
proteins upon MCPyV ST expression identified by a 
previous SILAC-based quantitative proteomic assay. 

 

3.1.  Introduction 
 

The Merkel cell polyomavirus (MCPyV) genome has been found to be 

clonally integrated in the majority of Merkel cell carcinoma (MCC). This 

leads to the hypothesis that aberrant expression of MCPyV T antigens may 

contribute to MCC pathogenesis. Interestingly, expression of the MCPyV 

ST and LT antigens varies in patient samples; ST expression is detected in 

92% of samples, whereas only 75% are positive for LT expression. This 

indicates that MCPyV ST has important roles in cell transformation and 

tumour maintenance in MCC.  

 

To further investigate what effect MCPyV ST expression has upon the host 

cell proteome, a SILAC-based quantitative proteomic approach was 

performed utilizing a HEK 293 Flp-In cell line capable of inducible MCPyV 

ST expression, termed i293-ST. This analysis aimed to identify differentially 

expressed cellular proteins, which may help to determine how  MCPyV ST 

contributes to MCC pathogenesis. Amongst the most highly upregulated 

proteins upon MCPyV ST expression were proteins associated with 

enhancing cell motility, invasion and migration. For example, previous work 

has confirmed that the microtubule-associated protein, stathmin is 

upregulated upon MCPyV ST expression and has been implicated in 

MCPyV ST-mediated microtubule destabilization and cell motility (Knight et 

al., 2015). However, from this large dataset there are several other 

differentially expressed protein candidates which may also be involved in 

MCPyV ST-induced pathogenesis.  This chapter therefore describes an 

initial screen of three additional proteins of particular interest, which were 

highly upregulated upon MCPyV ST expression. These proteins were 

kinesin family protein (Kif14), Vitronectin (Vn) and periplakin (PPL), each 

have interesting and potential properties for cancer development which 
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may be related to MCPyV ST functioning and thus merited further 

investigation. 

 

Kif14 is a member of the motor protein kinesin superfamily of proteins 

(KIFs), which are known to be involved in cancer progression. Specifically, 

depletion of KIF14 is thought to delay the metaphase-to-anaphase 

transition, resulting in a binucleated status, which enhances tumour 

progression. However, the exact correlation between KIF14 and cancer 

progression remains ambiguous (Xu et al., 2014), but may function through 

integrin activation, regulating cell spreading, cell-matrix adhesiveness and 

cell migration (Ahmed et al., 2012). Periplakin (PPL) is a member of the 

plakin family which have various functions in connecting cytoskeleton 

elements to form intercellular junction complexes and has been implicated 

in cell motility. In addition, PPL also plays a role as a localization signal for 

oncogenic serine/threonine protein kinase Akt/protein kinase B (PKB)-

mediated signaling in human cancer cell lines. Vitronectin is a abundant 

glycoprotein found in serum and is also associated with the extracellular 

matrix. It has a defined activity in cell adhesion, promoting cell attachment, 

spreading, proliferation and differentiation of many normal and neoplastic 

types of cells. 

 

The aim of this chapter was therefore first to confirm that these three 

proteins of interest were differentially expressed upon MCPyV ST 

expression and to determine whether they interacted with the MCPyV ST 

protein. If so, it would lead to a better understanding how MCPyV ST 

functions. Moreover, importantly this chapter would provide valuable 

experience in the molecular techniques required for downstream analysis 

of MCPyV truncated LT proteomic analysis described in later chapters and 

is the main focus of this thesis.  
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3.2. Differential expression of target cellular proteins upon 
expression of MCPyV ST. 

 

The first step in elucidating whether the three highlighted proteins of 

interest identified by the SILAC-based quantitative proteomic screen have 

a role in MCPyV ST-mediated tumourigenesis, was to confirm that their 

expression was induced upon ST expression. Quantitative proteomic 

analysis suggested that Kif14, Vitronectin and periplakin were upregulated 

by 3.7, 2.5 and 5.2 fold, respectively (personal communication Professor 

Whitehouse).  To this end, the expression levels of the three cellular 

proteins were assessed in the i293-ST cell line. This is a 293 Flp-In cell line 

capable of inducible MCPyV ST expression upon the addition of 

doxycycline hyclate. Therefore, i293-ST cells remained uninduced or were 

induced for 24 or 48 hours and cell lysates analysed by immunoblotting. To 

confirm induction of MCPyV ST expression, western blotting was 

performed using a FLAG-specific antibody, whereas expression of the 

cellular proteins were detected using commercially available monoclonal 

antibodies specific for Kif14-, Vitronectin- and periplakin-proteins, 

respectively. To ensure similar loading for each sample, GAPDH was used 

as a control, in addition to protein concentration determination using a 

Bradford assay prior to immunoblot analysis.  

 

From the SILAC-based quantitative proteomics profiles, all three target 

proteins showed increased expression upon MCPyV ST induction. 

However, although immunoblot results showed increased levels of MCPyV 

ST expression at 24 and 48 hours respectively upon induction (Figure 3.1). 

Immunoblotting experiments demonstrate contradictory results for the three 

cellular proteins when comparing immunoblot analysis with the quantitative 

proteomic dataset. The expression levels of Periplakin were increased at 

48 hours, similar to the quantitative proteomic dataset. However, both 

vitronectin and Kif14 protein levels were unchanged upon expression of 

MCPyV ST at both time points.  
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(ii) 
 

 

 

 

 

 

 

 

 

 

Figure 3.1: Analysis of differential cellular protein expression upon MCPyV ST 
induction. 

 
(i) i293-ST cells were induced with doxycyclin hyclate and cell lysates were harvested at 0, 
24 and 48 hours time point. Each sample was loaded equally to visualise the effects of 
respective cellular protein expression. Immunoblotting was then performed using 
periplakin (1:500), KIF14 (1:1000) and vitronectin (1:1000)-specific antibodies at the 
respective dilution shown. ST protein was tagged with FLAG and detected using 
polyclonal FLAG antibody (1:2500) and anti-GAPDH (1:5000) antibody was used as the 
loading control (n=3). (ii) Densitometry relative levels of each tested proteins expressed at 
0 Hr, 24 Hrs and 48 Hrs normalised with GAPDH loading control.  
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3.3. Levels of mRNA transcripts in the cells expressing 
MCPyV ST does not reflect the levels of protein 
observed in immunoblot analysis. 

 

To further investigate the discrepancy between the immunoblot results and 

previous quantitative proteomic analysis, qRT-PCR was performed to 

determine the transcript levels of each cellular protein of interest using 

exon specific primers for Kif14, vitronectin and periplakin. i293-ST cells 

remained uninduced or were induced for 24 hours and total RNA was then 

extracted and qRT-PCR performed (Figure 3.2). The results demonstrated 

that transcript levels for both periplakin and vitronectin are increased by 

approximately 2.5 fold upon MCPyV ST expression compared to uninduced 

cells, whereas mRNA levels of Kif14 varied between 0.5 to 1.5 in each of 

the samples evaluated. Again these results were inconsistent, showing that 

the transcript levels did not represent the protein expression levels 

observed in the above immunoblot analysis. The only cellular protein which 

has consistent findings between the quantitative proteomic dataset, 

transcript levels and immunoblot analysis is periplakin.  

 

 

 

 

 

 

 

 

Figure 3.2: Quantification of mRNA levels of periplakin (PPL), Kinesin-like protein 
(Kif14) and Vitronectin (Vn) by qRT-PCR.  

i293-ST cells were either left untreated or induced with doxycycline for 24 hours. RNA 
extractions were performed in triplicate for each condition and cDNA was generated by 
reverse transcription. qPCR  reactions were carried out using SensiMixTM SYBR Kit No-
ROX Kit with periplakin, Kif14, Vitronectin and GAPDH specific primers. The fold change 
in mRNA transcript were calculated based on threshold values (Ct) difference between 
each individual samples (with and without ST expression) and normalised with the GAPDH 
values. The graph shows the average fold change and standard deviations from a 
combination of three independent experiments. 
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3.4. Analysing the effect of MCPyV ST expression on the 
subcellular localisation of the three cellular proteins. 
 

To further analyse whether the three cellular proteins, periplakin, vitronectin 

and Kif14, have any role in the functioning of MCPyV ST, 

immunofluorescence studies were performed. This approach aimed to 

determine whether the subcellular localisation of the cellular proteins were 

altered upon MCPyV ST expression and/or the cellular protein co-localised 

with the ST protein. MCC13 cells were transfected with a control plasmid, 

pGFP, or a plasmid expressing an GFP-tagged ST construct (previously 

produced by Dr David Griffiths, Whitehouse laboratory). After 24 hours post 

transfection, the cells were fixed, permeabilised and incubated with primary 

antibodies specific for each target cellular protein and secondary antibodies 

conjugated with Alexa fluor 546. MCPyV ST expression was analysed by 

direct GFP fluorescence, while the nuclear DNA was stained with DAPI. 

 

3.4.1.  MCPyV ST and Periplakin. 

 
Periplakin (PPL) is a member of the plakin family which have various 

functions in connecting cytoskeleton elements to form intercellular junction 

complexes (Sonnenberg and Liem, 2007). Most of the plakin family 

function as "molecular bridges" linking the intracellular cytoskeleton and 

cell-cell junctions. Gene mapping of the domains utilising a variety of 

periplakin deletion constructs (DiColandrea et al., 2000) showed that the 

periplakin N-terminus localizes at the plasma membrane in a punctate 

distribution, whereas the C-terminus associates with keratin filaments. Of 

particular interest in regard to MCPyV ST-induced tumourigenesis is that 

PPL knockdown resulted in reduced cellular movement and attachment 

activity of cells (Tonoike et al., 2011).  

 

Several studies have investigated the subcellular localization of Periplakin. 

It has been shown to localize to desmosomes, the interdesmosomal 

plasma membrane and intermediate filaments between cells (DiColandrea 

et al., 2000). Moreover, in transient expression studies of primary human 
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keratinocytes, periplakin accumulated on the apical plasma membrane and 

at cell-cell contacts. Therefore, to examine the subcellular localisation of 

periplakin in control or GFP-ST expressing cells, the MCPyV negative MCC 

cell line, MCC13 was transfected with GFP or GFP-ST expression 

constructs and after 24 hours, cells were fixed, permeabilised and 

periplakin staining was analysed using a periplakin-specific antibody. GFP 

and GFP-ST localisation was visualised by direct fluorescence (Figure 3.3). 

GFP staining is observed diffuse throughout the cytoplasm and nucleus, 

where GFP-ST localises to both the nucleus and cytoplasm, with enhanced 

staining in the perinuclear region of the cell (Knight et al., 2015).  Indirect 

immunofluorescence studies of periplakin in GFP-expressing control cells 

shows similar staining and localisation to previously described studies, 

where periplakin is present throughout regions of the cytoplasm. Enhanced 

staining was observed in the perinuclear region with some punctate 

staining discernibly visible which is reminiscent of vesticular staining. 

However, the exact localisation needs to be confirmed with colocalisation of 

characterised cellular marker proteins. A similar staining was observed for 

periplakin in GFP-ST expressing cells. A proportion of MCPyV ST 

appeared to colocalise with periplakin in the cytoplasm and also around the 

perinuclear region, where ST is evident. This may suggest a possible 

interaction and relocalisation of a small proportion of periplakin to this 

region upon ST expression, as an enhanced concentration of periplakin is 

observed in this region in GFP-ST expressing cells.   
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Figure 3.3: Immunofluorescence analysis of MCC13 cells transfected with GFP and 
GFP-ST expressing vectors.  

MCC13 cells were transfected with GFP or GFP-ST expressing vectors. After 24 hours, 
the cells were fixed,  permeabilised ,then incubated with anti-periplakin (1:100) overnight 
at 4°C. The secondary antibody Alexa fluor 488 goat anti rabbit used at 1:500 dilution for 
1h at room temperature. Mounting medium VECTASHIELD  contains 4’,6-diamidino-2-
phenylindole (DAPI) and used to counterstain DNA (blue).  

 

3.4.2. MCPyV ST and the motor protein kinesin family 
(Kif14) 
 
The kinesin superfamily of proteins (KIFs) generally function to transport 

membranous organelles and protein complexes in a microtubule- and ATP-

dependent manner. KIFs have been associated with cancer progression, 

by disturbing the cell cycle. For example, downregulation of Kif14  

expression has been shown to delay the transition of metaphase to 

anaphase in lung adenocarcinomas causing a binucleated status, which 

enhances tumour progression (Hung et al., 2013). Conversely, Kif14 

overexpression inhibits anchorage-independent growth in vitro and also 

inhibits cancer cell migration, invasion and adhesion to the extracellular 

matrix. An adhesion molecule, cadherin 11 (CDH11), was recruited to the 

cellular membrane which has been implicated in the adhesive, migratory 

and invasive properties of the cell (Hung et al., 2013). In addition, Kif14 

interacts with supervillin, a membrane protein involved in directing cellular 

motility (Smith et al., 2010). Considering the highly metastatic of the MCC, 
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the further elucidation of a possible interaction of MCPyV ST and Kif14 was 

also examining initially by immunofluorescence studies. KIF14 is localized 

to the cytoplasm during interphase, and becomes tightly localized to the 

midbody and central spindle during cytokinesis (Carleton et al., 2006b; 

Gruneberg et al., 2006a). As above, the subcellular localisation of Kif14 

was examined in GFP and GFP-ST expressing MCC13 cells, using a Kif14-

specific antibody (Figure 3.4). Results show that  in GFP-expressing control 

cells, Kif14 localised to the cytoplasm, mainly diffusely but some cells 

contained punctate structures. Expression of MCPyV ST was observed to 

colocalise with a diffuse proportion of Kif14 in the cytoplasm. More 

noticeable nuclear puncta were also observed in GFP-ST infected cells. 

However, these were also observed in a non-transfected cells in this 

sample. Although comparison between the GFP and GFP-ST showed 

possible alterations of Kif14 distribution, these were not conclusive. Further 

optimisation of the antibody for immunofluorescence studies was  

performed, but failed to show any further improvement. 

 

 

 

 

 

 

 

 

 

Figure 3.4: Immunofluorescence analysis of MCC13 cancer cells transfected with 
GFP and GFP tagged ST antigen.   

MCC13 cells were transfected with GFP or GFP-ST expressing vectors. After 24 hours, 
the cells were fixed,  permeabilised and then incubated with anti-Kif14 (1:100) overnight at 
4°C. The secondary antibody Alexa fluor 488 goat anti rabbit used at 1:500 dilution for 1h 
at room temperature. Mounting medium VECTASHIELD  contains 4’,6-diamidino-2-
phenylindole (DAPI) and used to counterstain DNA (blue). 
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3.4.3. MCPyV ST and Vitronectin.  
 

Vitronectin is an abundant and multi-functional glycoprotein found in serum 

and is also associated with the extracellular matrix. It has a defined activity 

in cell adhesion, promoting cell attachment, spreading, proliferation and 

differentiation of many normal and neoplastic cell types. As such it is a key 

protein in regulating cell homeostasis (Preissner and Seiffert, 1998) and 

tumour malignancy (Felding-Habermann and Cheresh, 1993). Vitronectin 

also possesses binding sites for membrane-bound integrins which function 

to anchor cells to the cellular matrix. These interactions are thought to be 

associated with vitronectin’s role in cell migration and signal transduction.  

 

Immunofluorescence studies were therefore performed as above in 

transfected GFP and GFP-ST to determine if MCPyV ST colocalised or 

altered the subcellular localisation of vitronectin (Figure 3.5). Analysis of 

GFP-expressing cells appeared to show that vitronectin was present in the 

cytoplasm and the nucleus of GFP-expressing cells. This was rather 

surprising due to its known function as a glycoprotein. In contrast, 

vitronectin was observed in the cytoplasm and perhaps the extracellular 

matrix in MCPyV ST expressing cells. Due to the discrepancy of vitronectin 

staining in control cells further immunofluorescence studies are required to 

investigate any possible redistribution or colocalization with MCPyV ST. 
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Figure 3.5: Immunofluorescence analysis of MCC13 cells transfected with GFP and 
GFP tagged ST antigen.  

MCC13 cells were transfected with GFP or GFP-ST expressing vectors. After 24 hours, 
the cells were fixed,  permeabilised and then incubated with anti-vitronectin (1:100) 
overnight at 4°C. The secondary antibody Alexa fluor 488 goat anti rabbit used at 1:500 
dilution for 1h at room temperature. Mounting medium VECTASHIELD  contains 4’,6-
diamidino-2-phenylindole (DAPI) and used to counterstain DNA (blue). 

 

3.5. Assessing the possible interaction of prioritised cellular 
proteins with MCPyV ST. 

 
The previous attempts to confirm whether the prioritised proteins identified 

from the SILAC-based quantitative proteomic dataset may play a role in 

MCPyV ST-induced cell motility proved inconsistent. In contrast to the 

proteomic data not all the proteins were induced upon MCPyV ST 

expression as assessed by immunoblotting or qRT-PCR. Moreover, 

immunofluorescence studies suggested little redistribution of the cellular 

proteins upon expression of the viral protein. However some colocalisation 

was observed with a proportion of MCPyV ST and the prioritised proteins, 

such as periplakin. Therefore, the final selection criteria to assess any 

relevance of the prioritise cellular proteins to MCPyV ST function was to 

determine whether the cellular proteins interacted with MCPyV ST using 

GST-pulldown assays. 
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3.5.1. Expression and purification of proteins to GST beads.  
 
GST pull-down assays were performed using either recombinant expressed 

control GST protein or GST-ST protein incubated with HEK 293 cell 

lysates. Initially, an expression time course was performed to assess 

whether both recombinant GST and GST-ST could be expressed and 

purified in bacteria. Plasmids encoding GST and GST-ST (kindly provided 

by Dr David Griffiths) were transformed into competent E. coli BL21 cells 

for optimal expression and grown at 37ºC for 2 hours, prior to induction with 

IPTG. Samples were then harvested at 0, 1, 2, 3, and 4 hours post-

induction and analysed by immunoblotting using a GST-specific antibody. 

The results demonstrated that both GST and GST-ST proteins were 

efficiency expressed after one hour induction (Figure 3.6).  
 

 

 

 

 
 

 
 

 

Figure 3.6:  Recombinant protein expression trials of GST and GST-ST in a bacterial 
expression system.  

Western blot analysis of the recombinant protein expression of GST and GST-ST. The 
recombinant expression plasmids were transformed into E. coli BL21. Protein samples 
were analysed at hourly time points post induction using a GST-specific antibody. 
Recombinant proteins were expressed at the correct predicted sizes, of around 45 kDa for 
GST-ST; while the expression of the GST control construct is shown around 26-28 kDa. 
The cell lysates were prepared and separated by electrophoresis on 12% polyacrylamide 
gels at 180V for 1 hr, protein were transferred to nitrocellulose membrane and probed 
against GST-monoclonal antibody; 1: 3000.  

 

For GST-pulldown assays to be performed, it was first necessary to 

determine if the expressed GST and GST-ST recombinant proteins could 

be bound and purified using GST-affinity beads. Therefore, the 4-hour 

induced bacterial time points for GST and GST-ST were suspended in 
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protein solubilising buffer and lysed by sonication to break open the cells. 

The purified bacterial lysate was then incubated with GST-affinity beads to 

purify the protein prior to pulldown experiments. GST and GST-ST proteins 

were successfully shown to bind the GST-affinity beads allowing 

purification and pulldown assays to be performed (Figure 3.7).  

 
 

 
 
 
 
 
 
 
 

 

Figure 3.7: Purification of recombinant GST protein and GST-ST proteins to GST-
affinity beads.  

Immunoblot analysis of the expressed GST and GST-ST proteins at various stages of 
purification. The lanes are labelled indicating the samples that have been loaded to the 
gel. The labelled samples are WC (whole cell lysate); L (lysate), P (Pellet), B (Protein 
binds to the beads). The arrows indicate GST and GST-ST protein were successfully 
purified and bound to beads for GST-pulldown assays. The cell lysates were prepared and 
separated by electrophoresis on 12% polyacrylamide gels at 180V for 1 hr, protein were 
transferred to nitrocellulose membrane and probed against GST-monoclonal antibody; 1: 
3000.  

 
 

3.5.2. Pull-down assays to assess the interactions between 
GST and GST-ST with prioritised cellular proteins. 
 
An interaction between MCPyV ST and the prioritised protein may suggest 

a possible role in the regulation and function of the viral protein in inducing 

cell motility. To assess any possible interaction between the cellular 

proteins and GST-ST, GST pulldown assays were performed. Bead bound 

GST or GST-ST proteins were incubated with a HEK293 cellular lysate for 

4 hours. The precipitated proteins were then analysed by western blotting 
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using Kif14-, Vitronectin- and periplakin-specific antibodies. The GST-

pulldown assay results showed that the MCPyV-ST did not interact with 

periplakin or vitronectin. However, results do show a possible interaction 

with Kif14 (Figure 3.8). It is also questionable why the vitronectin showed 

an interaction with GST but not GST-ST. To further investigate this 

observation the reverse pulldown experiment was performed by expressing 

recombinant vitronectin in bacteria and assessing whether this interacts 

with a cellular lysate expressing MCPyV ST protein.  

 
 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 3.8: Pull down assay of GST and GST-ST with 293T cell lysates.  

Immunoblot analysis of pulldown experiment of beads bound GST or GST-ST incubated 
with cellular lysate and immunoblotted with Kif14-, Vitronectin- and periplakin-monoclonal 
antibodies. Precipitated proteins were then separated by electrophoresis and transferred to 
nitrocellulose membrane and probed using appropriate primary antibodies against PPL 
(1:500), Kif14 (1:500) and Vn (1:1000) and Anti-GAPDH (1:5000) antibody was used as 
the loading control. 

 
 

3.5.2.1. Assessing an interaction between GST-vitronectin 
and MCPyV ST. 

 

Due to the interaction of vitronectin with the GST control in pulldown 

assays, reverse pulldown assays were attempted using recombinant GST-

vitronectin. We were kindly provided with a GST-vitronectin construct from 
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Professor Hocking, University of Rochester Medical Centre, USA. Initial 

studies were therefore performed to determine whether GST-vitronectin 

can be expressed and purified, as in the above experiments. Samples were 

harvested at 0, 1, 2, 3, and 4 hours post induction and the 4 hour 

expression time point analysed by SDS-PAGE and coomassie staining. 

Results showed that significant amounts of recombinant GST-vitronectin 

were produced at 4 hours post induction with IPTG (Figure 3.9). The 

protein is expressed at the expected size of approximately 101 kDa 

(Vitronectin 75 kDa and GST 26 kDa).  

 

 

 

 

 

 

 

 

 
 

 

Figure 3.9: Overexpression of GST-ST, GST-VN and GST in bacterial BL21 cells.  

Recombinant GST, GST-ST and GST-VN plasmids were transformed in bacteria cells, E. 
coli BL21. Samples were harvested at four hours post IPTG induction and  analysed by 
SDS-PAGE and coomassie staining. The expected sizes of protein bands detected at 
approximately 50 kDa, 101 kDa and 26 kDa respectively. 

 

Upon confirmation that vitronectin could be expressed as a recombinant 

GST fusion protein, GST pulldown assays where performed to assess if it 

interacted with MCPyV ST. GST-vitronectin was bound to GST affinity 

beads as described above and then incubated with uninduced and induced 

MCPyV ST expressing cellular lysates for two hours. The beads were then 

washed three times and precipitated proteins analysed by immunoblotting 

using a GST- and a Flag-specific antibody recognising the MCPyV ST-Flag 

fusion protein (Figure 3.10). 
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Figure 3.10: GST-pull down assay of GST and GST-VN with uninduced and induced 
i293-ST cell lysates.  

Immunoblot analysis of pulldown experiment of GST beads bound GST or GST-Vn 
expressed proteins were incubated with i293-ST cellular lysate either left untreated or 
treated with doxycycline to study the direct interaction of MCPyV ST (Flag tagged ST) and 
Vitronectin. Immunoblot analysis of pull down of GST and GST-Vn incubated with 
untreated and treated i293-ST cell lysates. 

 
 

Results demonstrate that GST and GST-Vn proteins were both 

successfully expressed and bound to GST-affinity beads. Unfortunately 

however, little can be taken from this experiment. Even though the GST-Vn 

was expressed and bound to the GST beads, the immunoblot using the 

Flag-specific antibody showed that MCPyV ST was not precipitated using  

uninduced or induced i293-ST cell lysates. Similar to the previous GST and 

GST-ST pull down assay, only GST resulted in a slight amount of 

precipitated ST-Flag protein. Therefore, these results suggest that 

vitronectin does not interact with MCPyV ST. 
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3.5.3. Immunoprecipitation assays to further investigate 
possible interactions between MCPyV ST and prioritised 
cellular proteins. 

 
To further investigate any potential interaction between MCPyV ST and the 

prioritised cellular proteins, co-immunoprecipitations were performed using 

GFP-Trap®_A beads. To this end,  GFP and GFP-ST expression vectors 

were transfected into 293 cells and after 24 hours the cell lysates were 

incubated with GFP-Trap beads for two hours. After subsequent washing, 

precipitated proteins were separated by SDS-PAGE and immunoblotted 

with GFP-, Vn-, Kif14- and PPL-specific antibodies.  

 

Immunoblot results demonstrated that both GFP and GFP-ST were 

efficiently bound by the GFP-Trap beads. However, the results showed that 

no interactions were observed between MCPyV ST and all the target 

proteins as the IP immunoblot lanes were all blank (Figure 3.11).  Although, 

this result was expected for periplakin and vitronectin, as no interaction was 

observed with the GST-pulldown analysis, an interaction between MCPyV 

ST and Kif14 was expected. However, the Kif14 antibody failed to identify 

endogenous protein even in the input lanes. This might be due to the large 

size of Kif14 causing low efficiency membrane transfer, even though the 

transfer was carried out overnight. The periplakin signals were also very 

weak in the input showing that very little protein had transferred or was 

expressed in the HEK 293 cells.  
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Figure 3.11: Coimmunoprecipitation assays to examine possible interactions 
between GFP-ST and the prioritised cellular proteins.  

HEK 293 cells transfected with GFP and GFP-ST expressing vectors and after 24 hours 
cell lysates were bound to GFP trap beads. Precipitated proteins were then separated by 
electrophoresis and transferred to nitrocellulose membrane and probed using appropriate 
primary antibodies against PPL (1:500), Kif14 (1:500) and Vn (1:1000). ST protein was 
tagged with GFP (1:5000) to confirm the expression of ST in the samples and Anti-
GAPDH (1:5000) antibody was used as the loading control.  

 

3.6. Elucidation of possible function of Kif14. 
 
The GST-pulldown assays in Figure 3.8, suggested that MCPyV ST may 

interact with Kif14. However, this was not confirmed using 

coimmunoprecipitation assays, although no Kif14 inputs were observed in 

this blot. To confirm a possible interaction between MCPyV ST and Kif14, 

immunofluorescence studies were repeated using a Kif14-His tagged 

expression vector (pPM-C-His). The overexpression construct may 

overcome the issues previously observed with the poor Kif14-specific 

antibody on both immunofluorescence and immunoblotting and also avoid 

poor western blot transfer of such a large protein (186 kDa). 

Immunofluorescence studies were performed in MCC13 cells transfected 

with GFP or GFP-ST in the presence of the Kif14-His expression vector. 
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After 24 hours, the cells were fixed, permeabilised and stained with either 

His-specific or Kif14 specific antibodies, whereas GFP and GFP-ST were 

identified by direct fluorescence. Results show that Kif14 overexpression 

results in a diffuse cytoplasmic localisation in addition to discrete nuclear 

puncta (Figure 3.12). This localisation was similar in both GFP and GFP-ST 

expressing cells. Interestingly, there was significant colocalisation between 

GFP-ST and Kif14 in the cytoplasm, which may suggest a possible 

interaction.  

(i) 

 

 

 

 

 

 

 

 

 

 

(ii) 

 

 

 

 

 

 

 
 

 

Figure 3.12: Immunofluorescence studies suggest colocalisation between GFP-ST 
and overexpressing Kif14-His tagged proteins.    

MCC13 cells were seeded onto poly-L-lysine coated coverslips prior to transfection with 
either eGFP  or eGFP-ST in the presence of a KiF14 overexpression construct, pPM-C-
His. Cells were fixed and permeabilised prior to staining with His- or Kif14-specific 
antibodies (red) and mounting medium VECTASHIELD  contains 4’,6-diamidino-2-
phenylindole (DAPI) and used to counterstain DNA (blue).   
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3.7.  Discussion 
 

The objective of this chapter was to screen three cellular proteins which 

were highlighted from a previous SILAC-based quantitative proteomic 

screen which were upregulated upon the expression of the MCPyV ST 

protein.  The selected protein targets, periplakin, Kif14 and vitronectin were 

prioritised as their characterised role in mammalian cells could possibly be 

implicated in MCPyV ST-mediated roles in enhanced cell motility and 

cellular transformation.  Therefore the  aim was to perform initial screening 

of the interactions between these three prioritised proteins and MCPyV ST 

using several pulldown assays and immunofluorescence colocalisation 

studies.  Importantly, the second  purpose of these studies were also to 

familiarize myself with the techniques which will be used to investigate the 

function of cellular proteins which were differentially expressed upon 

MCPyV truncated large T antigen, which was the focus of the next two 

chapters and the main objective of my thesis.  

 

From the initial screening of these proteins, data showed that Periplakin 

levels were significantly enhanced upon MCPyV ST expression which 

validated the previous quantitative proteomic approach. In contrast, Kif14 

and vitronectin showed little increase in immunoblot analysis, in contrast to 

the proteomic results. Further validation was therefore performed 

assessing the transcript levels for each protein, but again this did not 

correlate with the SILAC or immunoblot result, apart from periplakin. 

Further experiments could now be performed to investigate how MCPyV 

ST upregulates periplakin protein levels, whether this is a combination of 

enhanced transcription and translation pathways is yet to be determined.   

 

GST-pulldown assays suggested that MCPyV ST interacts with one of the 

three prioritized proteins, Kif14. Results also showed that a proportion of 

MCPyV ST also colocalised with overexpressed Kif14 in the cytoplasm of 

transfected cells. The role of Kif14 is cancer development  is controversial. 

Results have shown that Kif14 can function either as a oncogene or a 

tumour suppressor in various cancer types. For example, Kif14 expression 
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has been found in several human malignancies, including retinoblastoma, 

breast cancer, ovarian cancer, lung cancer, liver cancer and laryngeal 

carcinoma (Ahmed et al., 2012; Basavarajappa and Corson, 2012; Corson 

et al., 2005; Madhavan et al., 2007; Markowski et al., 2009a; Markowski et 

al., 2009b; Theriault et al., 2012; Yang et al., 2014). Here, Kif14 

overexpression has been demonstrated to be involved in tumour 

progression and also related to poor patient survival. In contrast however, 

high levels of Kif14 expression inhibits tumour growth and cancer 

metastasis in lung adenocarcinoma (Hung et al., 2013). Here, 

overexpression and silencing of Kif14 enhanced or reduced the recruitment 

of CDH11 in the membrane fraction, suggesting that Kif14 might act 

through recruiting adhesion molecules to the cell membrane and 

modulating cell adhesive, migratory and invasive properties. Therefore, at 

present it is unknown why MCPyV ST potentially targets Kif14. It may either 

utilise Kif14 for enhancing cell motility and migratory properties, or target 

Kif14 to rescue its inhibitory effects. Further experiments are now required 

to assess the role of Kif14 in MCPyV ST-induced cell motility and migration, 

by siRNA-mediated depletion studies to determine what effect this has 

upon cell motility in MCPyV ST-expressing cells.  
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4.0.  Quantitative proteomic analysis of the host cell 
proteome upon expression of  truncated MCPyV LT 

4.1.  Introduction. 
 

The large tumour (LT) antigen appears to be an important cell transforming 

factor in many polyomaviruses. The most extensively studied 

polyomavirus, simian virus 40, LT antigen has been shown to be an 

essential oncogene able to modulate many viral and cellular processes 

(Pipas, 2009). In general, polyomavirus LT antigens are believed to play 

roles in virus replication, transcription and virus-induced transformation, 

targeting multiple cellular pathways which regulate cell proliferation, cell 

death and the inflammatory response (An et al., 2012). In SV40 LT-induced 

transformation, at least three conserved domains are believed to be 

involved; the J domain and LxCxE motif which bind to Hsc70 and tumour 

suppressor retinoblastoma (Rb) proteins, respectively and a p53 binding 

domain. The N-terminus which includes the J domain and the LxCxE motif 

are sufficient for cell transformation in vitro (Sullivan and Pipas, 2002). 

Other than SV40, the LT antigen encoded by other polyomaviruses such as 

JC and BK also have been shown to induce transformation in vitro even 

though the transformation efficiencies are reduced compared to SV40 LT 

(Bollag et al., 1989; Bollag et al., 2000). This might be due to the reduced 

binding affinity of these proteins to the Rb family of proteins (Dyson et al., 

1990). Similar to SV40, these viruses require LT to interfere with cell cycle 

control checkpoints forcing the host cell into entering the DNA replication 

stage which may eventually lead to cell transformation and tumourigenesis.  

 

Similarly, the MCPyV LT is thought to play a role in MCC tumourigenesis 

as well as tumour cell maintenance. Importantly, siRNA-mediated 

knockdown of MCPyV LT in MCPyV positive MCC cells results in 

abandonment of cell growth and eventually cell death (Arora et al., 2012a), 

suggesting LT is essential for the development of MCC. However, there are 
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unique features of the MCPyV LT protein compared to other 

polyomaviruses. Genetic analysis has demonstrated that MCPyV LT 

undergoes truncated mutagenesis in MCC, which has not been shown in 

other polyomaviruses. These truncated mutations result in the virus 

becoming replicative defective, due to the  truncated LT losing its DNA 

binding and helicase domains but retaining the retinoblastoma (Rb) binding 

domain (Shuda et al., 2008).  

 

At present, a number of cellular proteins have been shown to be 

associated with MCPyV LT functioning. It specifically binds to Rb and 

VPS39, vacuolar protein sorting 39 homolog or novel cellular target protein, 

hVam6p (Liu et al., 2011; Shuda et al., 2008). Interestingly, LT binding 

results in hVam6p relocalisation from the cytoplasm to the nucleus (Chang 

et al., 2011; Liu et al., 2011). hVam6p is believed to function as an antiviral 

host factor due to its ability to reduce the number of MCPyV virions (Feng 

et al., 2011). The MCPyV LT also targets survivin, a member of the inhibitor 

of apoptosis protein family which is upregulated in lymphoma and 

metastatic melanoma (Ambrosini et al., 1997). Survivin mRNA transcripts 

and protein levels were found to be decreased upon knockdown of MCPyV 

LT in MCPyV-positive infected cells, whilst survivin protein expression 

increased in cells expressing MCPyV LT antigen (Arora et al., 2012).  

 

Although a few LT-host cell protein interactions have been identified to 

date, the exact functions and transforming activities of MCPyV truncated LT 

antigen are still to be fully elucidated. The importance of the truncated 

version of LT antigen has recently been shown to be more effective in 

promoting growth of human and mouse fibroblasts compared to full length 

LT and the 57 kT proteins (Cheng et al., 2013). This is due to mutations 

which produce truncations in the MCPyV LT antigen found in MCC, 

resulting in the deletion of C-terminal residues which possess inhibitory 

effects on cell growth in several cell types (Liu et al., 2013). In many 

samples of MCC, truncated LT proteins vary in size depending on the site 

of their mutations (Kassem et al., 2008). This shows the strong selective 

pressures within the tumours to eliminate the viral replication capabilities. 
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Importantly, MCC containing replication defective virus retain essential LT 

motifs which potentially contributes to uncontrolled cell growth and cell 

survival.  

 

Besides the truncating mutations within the LT antigen, several groups 

have also reported mutations in the origin of replication and VP1 gene in 

MCC-derived MCPyV genomic sequences that also prevent efficient 

replication and progeny virion production, respectively (Feng et al., 2011; 

Kassem et al., 2008; Kwun et al., 2009; Neumann et al., 2011). A 

replication defective feature is common in tumour viruses, as this is also 

observed in some papillomavirus-induced cancers. The selection of 

truncated mutations in MCPyV LT is probably driven to reduce active viral 

replication in these cells, thus preventing uncontrolled viral replication that 

may cause cell lysis and death (Moore and Chang, 2010).  

 

To further explore the host cell interactions implicated in MCPyV truncated 

LT (tLT) functioning, an unbiased quantitative proteomic approach was 

used. This study provides a global perspective on cellular protein regulation 

upon expression of MCPyV tLT antigen in cancer cells. Initially, in order to 

further investigate the effects of the  MCPyV tLT antigen on the cellular 

proteome, a stable cell line capable of inducibly expressing the truncated 

version of LT antigen upon treatment with doxycycline hyclate was 

produced. SILAC-based labelling coupled with mass spectrometry analysis 

was then performed comparing cells with and without expression of MCPyV 

tLT antigen. From the quantitative proteomic analysis, several possible 

pathways have been identified and selected for further analysis to elucidate 

the possible function of the tLT antigen in MCPyV-induced tumourigenesis.  

 

4.2.  Amplification of MCPyV tLT gene. 
 

A truncated form of the MCPyV LT antigen is found in MCC. This mutation 

renders the virus replication defective and is also believed to be essential 

for transformation and pathogenesis. In order to further characterize the 
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function and possible effects of tLT protein expression on the cellular 

proteome, a cDNA clone comprising the tLT gene was first generated. This 

is required to prevent expression of the MCPyV ST, which is also contained 

in the genomic region encompassing LT. The Whitehouse laboratory has 

previously isolated the MCPyV genomic region containing ST and tLT 

genes from a MCC tumour sample, which was cloned into the eukaryotic 

expression vector, pEGFP-C1, termed pST/LT-GFP. To isolate the 

truncated LT cDNA, total RNA was extracted from pST/LT-GFP transfected 

cells. Reverse transcription was then performed using an oligo dT primer to 

generate cDNA. PCR was then performed using tLT specific primers to 

amplify the truncated form of LT cDNA.  The MCPyV tLT cDNA was PCR 

amplified with specifically designed primers incorporating restriction 

enzymes KpnI and NotI with a C-terminal FLAG tag. The MCPyV tLT was 

successfully amplified at the expected size (Figure 4.1).   

 

 

 

 

 

 

 

 

Figure 4.1: PCR amplification of MCPyV tLT cDNA.  

cDNA was generated from pST/LT-GFP transfected cells and used as template for PCR 
amplification of MCPyV truncated LT. The PCR product was analysed by agarose gel 
electrophoresis, indicating that MCPyV LT cDNA was amplified successfully at expected 
size (approximately 825bp with FLAG-tagged at the C-terminus, lane 2). Lane 3 is a 
negative control PCR reaction without addition of cDNA template. 

 

4.3. Production of a recombinant clone of FLAG-tagged 
MCPyV truncated LT in pcDNA5/FRT. 

 

The first step in producing a stable cell line capable of inducibly  expressing 

MCPyV truncated LT was to produce a eukaryotic expression vector 
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expressing the MCPyV truncated LT antigen. To clone the amplified 

truncated LT cDNA into appropriate expression vectors, the amplified PCR 

product was initially excised from an agarose gel, purified and ligated into a 

pCR product transfer vector, pCRblunt, for sequencing purposes. Upon 

transformation, positive colonies were selected; miniprepped and purified 

DNA digested using KpnI and NotI restriction enzymes. Results are shown 

in Figure 4.2, which shows that all clones contained the approximately 800 

bp length truncated LT cDNA PCR product. The positive clones were then 

confirmed by sequencing and proceeded for the subcloning into 

mammalian expression vectors.  

 

                                 

 

 

 

 

 

 

Figure 4.2: Restriction digest analysis of 10 putative cloned pCRblunt constructs 
containing truncated MCPyV LT.  

Clones 1-10 were digested with restriction enzymes KpnI and NotI to screen for positive 
recombinant clones. Digests were analysed by agarose gel electrophoresis, which 
indicated that MCPyV truncated LT had been cloned into pCRblunt successfully. The 
positive clones were sent for sequencing. The correct sequences of LT obtained from the 
sequencing data with Flag-tagged sequence at the C-terminus of each clone. 

 

The truncated LT cDNA was then subcloned into the eukaryotic expression 

vector, pcDNA5/FRT in order to produce a inducible cell line containing the 

truncated LT gene. pcDNA5/FRT is a mammalian expression vector 

containing a FLP recombinant target (FRT) site for Flp recombinase-

mediated integration of the vector into the genome of the 293 FlpIn cell 

line. To produce this construct, the previously selected positive pCRblunt 

clones were double digested with KpnI and NotI restriction enzymes to 

excise the truncated MCPyV LT. This purified fragment was then ligated 
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with pCDNA5/FRT previously digested with the same restriction enzymes. 

Ligation reactions were carried out with different ratios of vector and insert 

to ensure that cloning was successfully performed. Upon transformation, 7 

colonies were picked and grown in LB media for DNA extraction. Purified 

plasmid DNA was then analysed using double digestion and PCR using LT 

specific primers (Figure 4.3).  

 

 

 

 

 

 

 

 

Figure 4.3: Screening of putative clones containing MCPyV tLT in pCDNA5/FRT.  

Putative clones were analysed by double digestion of restriction enzyme and PCR. From 
the 7 clones, 4 were positive, containing the MCPyV tLT cDNA. These were sent for 
sequencing to ensure the correct sequence. Control for restriction enzymes analysis, C1 is 
an empty vector of pCDNA5/FRT and PCR without DNA template, C2 were run alongside 
with the test samples. DNA ladder M1, 1KB plus and M2, 100bp were also run to ensure 
the correct size of desired gene. 

 

The results indicated that out of 7 clones analysed, 4 were positive for 

truncated LT cDNA insertion. These results were subsequently verified by 

DNA sequencing using the primers T7 for forward reaction and BGH 

reverse primers as reverse reaction to sequence the MCV LT recombinant 

clones. Sequences were aligned with the public database Genbank and 

found to be identical with MCPyV LT gene sequence. Moreover, 

sequencing confirmed that the Flag tag was in the correct reading frame. 

This construct is now referred to as pcDNAFlag-tLT. 
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4.4. Expression of MCPyV truncated LT in mammalian HEK 
293 cells. 

 

To confirm that recombinant clones of pcDNAFlag-tLT were able to express 

the MCPyV tLT protein, the plasmid construct was transfected into HEK 

293 cells. After 24 hours post transfection, cell lysates were harvested and 

analysed by immunoblotting using a FLAG-specific antibody. Results 

showed that pcDNAFlag-LT was able to express a truncated form of LT, at 

the correct predicted size of approximately 40 kDa, with clear distinct bands 

detected with anti-FLAG antibody (Figure 4.4).  

 

    

          

 

 

 

 

Figure 4.4: Expression of FLAG-truncated LT in HEK 293 cells.  

Immunoblot analysis of  lane (1) Untransfected cell lysate (2) lysate from 293 cells 
transfected with empty pCDNA5/FRT and (3) lysate from 293 cells transfected 
pcDNAFlag-LT. Immunoblot analysis was performed using a polyclonal anti-FLAG 
antibody (1:2500) and anti-Rabbit (1:5000) conjugated HRP antibody. The FLAG-LT is 
expressed at the correct expected size, approximately 40 kDa. No band is detected in both 
control conditions. 

 

4.5. Using the FlpInTM system for generation of a cell line 
capable of inducibly expressing truncated MCPyV LT. 

 
The generation of the pcDNAFlag-LT expression construct was essential to 

further investigate the effect of MCPyV truncated LT expression on the 

cellular proteome, as well as elucidating novel potential interaction partners 

for MCPyV truncated LT. The longer term aim was to perform Stable-

isotope labelling by amino acids in cell culture (SILAC)-based high 
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throughput quantitative proteomics technique to obtain a list of 

differentiated cellular proteins upon expression of MCPyV truncated LT. 

However, to perform this type of analysis it is first necessary to generate a 

stable cell line which could inducibly express the MCPyV truncated LT 

proteins in a homogenous population of cells. Therefore, to produce this 

inducible cell line, 293 FlpIn cells were co-transfected with pcDNAFLAG-LT 

and pPGK/Flip/ObpA. This co-transfection resulted in integration of MCPyV 

tLT at specific site of recombination into the HEK 293 FlpIn genome. The 

schematic diagram of the integration and expression of a gene of interest in 

the HEK 293 Flp InTM System is presented in Figure 4.5.  

 

Transfected cells were then selected and maintained under Hygromycin B 

selection. Multiple putative MCPyV tLT cell lines were then screened and 

tested for induction and expression of the truncated LT protein. To this end, 

the expression of MCPyV truncated LT was tested by incubating each 

putative cell line clone with 2 µg/mL Doxycycline hyclate (Dox) for 24 and 

48 hours. Each clone was then analysed for the ability to stably express the 

truncated LT protein at desired levels and without extensive “leaky” 

expression, namely background of truncated LT expression in the absence 

of the induced agent. This is a crucial point as the control should show no 

or leaky induction of truncated LT for reliable stable cell lines to be 

established for SILAC-based experiments. Therefore, the selection criteria 

for stable cell line is for the consistent expression of the protein of interest 

in high levels and also to ensure that tested cells are expressing the protein 

of choice in homogenous populations. This is important as in downstream 

SILAC-based quantitative proteomic analysis, the evaluation of fold 

changes of protein levels require 100% of populations expressing the 

truncated LT antigen.  
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Figure 4.5. Schematic diagram of 293 Flp In system for the generation of stable cell 
line. 

(i) and (ii) The pcDNA5/FRT/TOTM mammalian expression vector containing gene of 
interest (GOI), in this case is MCPyV truncated large T antigen, and co transfected with 
pPGK/Flip/ObpA into the HEK 293 Flp InTM parent cells. The Flp recombinase expressed 
from the pPGK/Flip/ObpA vector facilitates a homologous recombinant event between the 
FRT site in the pcDNA5/FRT/TOTM expression vector and the FRT site in the HEK 293 Flip 
InsTM cells. (iii) Integration of the pCDNA5/FRT/TOTM expression vector expressing the 
hygromycin resistance gene. The Tet repressor (TetR) represses expression of the GOI 
(MCPyV truncated LT). (iv) The addition of tetracyclin (Doxycycline hyclate at 2 µg/mL) 
induced the MCPyV truncated LT expression. Adapted from Craig, 1988; Sauer, (1994). 

 

Figure 4.6 presents a selection of the clones isolated and characterised for 

inducible expression of truncated LT antigen. Results show the high degree 

of  variability of expression levels of FLAG-tagged MCPyV truncated LT 

upon doxycycline hyclate treatment of each clone. Clone four was selected 

for further analysis as it provided acceptable levels of induction and the 

least ‘leaky’ expression levels in untreated cells. This clone was therefore 

utilised in downstream SILAC-based quantitative proteomic studies and 

termed i293-tLT . 
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Figure 4.6: Evaluation of each inducible monoclonal clone of MCPyV tLT-Flag cell 
line.  

Monoclonal populations of i293-tLT cells were left untreated or treated with doxycyline for 
24 or 48 hours. Cells were then harvested and lysed prior to analysed by immunoblotting 
with FLAG-and GAPDH-specific antibodies. Clone 4 showed good inducible expression 
levels of MCPyV truncated LT protein after 24 hours and 48 hours of induction with the 
least ‘leaky’ expression of untreated samples. The clone 4 was therefore used in the 
SILAC-based quantitiaitve proteomic assay.  

 

4.6. SILAC–based quantitative proteomics. 

 
In order to determine the effects of MCPyV tLT expression on the host 

cellular proteome, SILAC-based quantitative proteomics was performed 

utilising the MCPyV tLT stable inducible cell line (i293-tLT). This method 

enables the identification of differentially expressed proteins in two different 

conditions, namely uninduced and induced samples, which express 

MCPyV tLT. Moreover the analysis can also be extended to specific sub-

cellular compartments, in this case, nuclear and cytoplasmic fractions. In 

this experiment, two cell populations, uninduced and induced treated cells 

with doxycyclin are grown in cell culture media that are identical except  

that one condition is  labelled with a ‘light’ and the other a ‘heavy’ form of 

amino acid media (12C and 13C labelled L-arginine and L-lysine, 

respectively). Through at least 8 passages, the labelled analogue of an 

amino acid supplied in the cell culture medium was incorporated into all 

newly synthesized proteins, which results in a mass shift of the 

corresponding peptides. This mass shift can then be detected by mass 

spectrometry. When both samples are combined, the ratio of peak 

intensities in the mass spectrum reflects the relative protein abundance. 
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Schematic representative of the methodology behind SILAC-based mass 

spectrometry quantitative proteomic analysis is highlighted below (Figure 

4.7).  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 4.7: The schematic work flow on SILAC-based quantitative proteomic 
analysis. 

i293-tLT cells are differentially labelled by growing them in ‘light’ medium or ‘heavy’ 
medium. Cells were then left untreated or treated with doxycycline hyclate, then subjected 
to cellular fractionation to reduce the complexity and increase the purity of the samples. 
Corresponding samples were mixed in 1:1 ratios before being separated in SDS-PAGE. 
10 gel slices per lane were excised and trypsin digest prior to analysed by LC-MS/MS to 
determine the relative abundance of proteins in heavy labelled cells compared to light 
labelled cells.  
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4.6.1.  Cell Fractionation to reduce the complexity of the 
samples. 
 

Prior to LC-MS/MS analysis, cellular fractionation was carried out to semi-

purify samples and reduce their complexity. To this end, the samples were 

fractionated into nuclear and cytoplasmic fractions (Figure 4.8). Flag-

tagged truncated LT antigen was expressed in induced samples for both 

cytoplasmic and nuclear fractions. In addition, the Lamin B was detected in 

the nuclear sample with very faint bands detected in cytoplasmic fractions, 

and GAPDH was only found in cytoplasmic fractions, confirming that the 

nuclear and cytoplasmic fractions were relatively pure.  

 

 

 

 

 

 

 

 

 

 
 

Figure 4.8: Cell fractionation of inducible cell lines uninduced (grown in light SILAC 
media) and induced (grown in heavy SILAC media). 

(A) Cytoplasmic and nuclear fractions of light and heavy medium labelled SILAC samples. 
Cell lysates were prepared and equal masses of protein were separated by 
electrophoresis on 12% polyacrylamide gels, protein transferred to nitrocellulose 
membrane and probed against FLAG-, Lamin B- and GAPDH-specific antibodies. Bound 
antibodies were detected with HRP-conjugated secondary antibodies against the primary 
antibodies and the blot was developed using ECL solution and exposed to film. The FLAG-
tagged large T truncated proteins were only detected in the induced samples, being 
absent in uninduced sample for both cytoplasmic and nuclear. Lamin B was used as the 
protein marker for nuclear fractions and GAPDH used as protein marker for the 
cytoplasmic fractions.   
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Both cytoplasmic and nuclear fractions were assessed for protein 

quantification, then mixed in equal quantities (Figure 4.9). The respective 

samples were then sent to the University of Bristol Proteomics Facility for 

LC-MS/MS analysis using a LTQ-Orbitrap Velos mass spectrometer and 

subsequent bioinformatic analysis.  

 

In addition, protein samples were also visualised by SDS-PAGE to ensure 

the both cytoplasmic and nuclear fractions were separated and relative 

pure by analysing the presence of histones, which can be clearly seen in 

the nuclear samples and absent in cytoplasmic fractions (Figure 4.9). The 

figure also provides initial determination of concentrations, but precise 

determinations were performed by quantitation of total proteins using a 

Bradford assay prior to being mixed. 

 

 

 

 

 

 

 

 

 

Figure 4.9: Normalisation of protein amounts to be mixed in induced and uninduced 
samples.  

Cytoplasmic and nuclear fractions were produced for each protein sample, to reduce the 
complexity of the samples before both cytoplasmic and nuclear samples mixed in 1:1 
ratios. Analysis to confirm the ratios were performed using SDS-PAGE and coomassie 
staining. Histones proteins can be clearly seen in the nuclear fractions and whole cells 
samples, showing show fractionation was successful.  
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4.6.2.  Summary of SILAC data analysis. 
 

Mass spectrometry analysis provides a list of peptides present in both 

cytoplasmic and nuclear fractions. Peptide identification and quantification 

was performed using Proteome discovererTM software. The peak list was 

subsequently searched with the Mascot search engine (version 2.1.04, 

Matrix science, London) against the International protein Index human 

protein database (version 3.6, forward and reverse database) of 80,412 

proteins. For analysis and quantification of proteins, a two-fold cut off was 

chosen and a two peptide cut off. Annotation of molecular functions and 

affected pathway analysis was performed either by using the Database for 

Annotation, Visualization and Integrated Discovery (DAVID) v6.7 (Huang 

da et al., 2009b) or  by using Ingenuity Pathway Analysis (IPA).   

 

Interestingly, the data received identified only a small subset of proteins to 

be upregulated at least two-fold in samples expressing the truncated large 

T antigen; a total of 282 proteins in nuclear samples and 181 proteins in 

cytoplasmic fractions. Rather surprisingly however, a much larger number 

of downregulated proteins were identified in both nuclear and cytoplasmic 

samples, 1684 proteins and 731 proteins, respectively (Table 4.1). The 

changes in protein expression were more significant in nuclear samples 

compared in cytoplasmic samples. However, there were only a small 

number of proteins changes that are common in both fractions. As 

important controls, abundant expression of truncated LT protein was 

identified only in induced samples and multiple house-keeping genes were 

relatively unchanged in this analysis. 
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A 

Fractions Nuclear Cytoplasmic 

 Proteins Identified 5704 4310 

 Upregulated (>2 fold increases) 282 181 

Common increases in nuclear and cytoplasmic  3 

 Downregulated (>2 fold decreases) 1684 731 

Common decreases in nuclear and cytoplasmic 130 

 

B 

 

 

   
     
     
     
     
     
     
     
     
     

Table 4.1. Summary of SILAC data from i293-truncated LT nuclear and cytoplasmic 
fractions. 

(A) Proteins identified in the SILAC profiles comparing induced and uninduced LT proteins 
in both nuclear and cytoplasmic fractions. List of proteins identified were further 
categorized by at least 2 fold increases and decreases in induced samples. (B) Analysis of 
the numbers of overall proteins that were identified and showing changes upon expression 
of truncated LT antigen in both cytoplasmic and nuclear fractions. Generally, most are 
downregulated proteins in the induced samples compared to the number of upregulated 
proteins. Abundant LT protein expression was observed only in induced samples and 
house-keeping genes were relatively unchanged. 

 

4.7. Bioinformatic analysis of possible molecular and 
cellular functions affected by truncated LT antigen 
expression. 

 

The list of proteins identified in both nuclear and cytoplasmic samples by 

LC/MS-MS were analysed using DAVID v6.7 to identify possible molecular 

and cellular functional significance. Table 4.2 showed a list of possible 

functional pathways which may be affected by MCPyV tLT highlighted from 

Cytoplasmic	
  
912 

Nuclear	
  
1966 

133 
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the SILAC data. This analysis takes into account only proteins which 

showed changes of at least two-fold compared to the control samples. The 

list of identified proteins detected in the SILAC were submitted to the 

DAVID proteomics analysis to perform the analysis by using functional 

annotation tools. The analysis combined both upregulated and 

downregulated lists to determine the most affected molecular functions by 

MCPyV tLT antigen. From the results, cell death and survival function was 

highlighted in both nuclear and cytoplasmic fractions, specifically 246 

associated proteins were identified in cytoplasmic fractions, whereas total 

of 764 associated proteins were in the nuclear fraction. These numbers 

were significantly higher than in other possible molecular functions in both 

fractions and were deemed to be a priority area in future work to determine 

if MCPyV tLT antigen played any role in causing or inhibiting cell death and 

survival. 

 

Sample	
  
Fractions 

Molecular	
  and	
  cellular	
  
functions 

p-­‐value #	
  molecules 

Cytoplasmic 
fractions 
  
  
  
  

Cellular assembly and 
organization 

8.45E-07-9.87E-03 158 

Cellular Function and 
maintenance 

8.45E-07-9.87E-03 209 

Cell death and survival 1.32E-06-9.87E-03 246 
Cell morphology 4.09E-06-9.87E-03 155 
Cellular movement 7.63E-06-9.87E-03 143 

Nuclear 
fractions 
  
  
  
  

Post-translational 
modification 

9.70E-20-6.30E-05 130 

Nucleic acid metabolism 8.77E-19-5.26E-04 219 
Protein folding 9.88E-19-9.88E-19 43 
Small Molecule 
Biochemistry 

4.83E-18-1.26E-03 470 

Cell death and survival 5.39E-18-1.26E-03 764 
 

Table 4.2: List of the top five molecular and cellular functions identified with the 
number of proteins differentially changed upon truncated LT antigen 
expression, either upregulated or downregulated by at least two-fold different.  

Identified protein profiles from SILAC MCPyV truncated LT data were submitted to the 
DAVID software and analysed in functional annotation tools. The listed possible molecular 
and cellular functions determined based on the number of molecules identified to be 
differentiated between uninduced and induced MCPyV truncated LT expression. 
Comparing both cytoplasmic and nuclear fractions, the common molecular and cellular 
functions annotation identified is cell death and survival, which both showed highest 
number of molecules affected in the pathway.   



- 117 - 

A similar functional pathway analysis was also performed using Ingenuity 

Pathway Analysis, utilising the IPA core analysis; which considers and 

identifies genes that are significantly changed in particular molecular and 

function groups. Analysis was performed separately on the list of proteins 

identified from the nuclear or cytoplasmic fractions. Figure 4.10 highlights 

the comparison of identified proteins in both cytoplasmic and nuclear 

fractions based on its possible functional annotations.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 4.10: Comparison of nuclear and cytoplasmic functions on annotations of 
molecular and cellular functions of identified SILAC protein molecules using 
IPA bioinformatics software analysis. 

The identified SILAC protein profiles were blasted to the IPA software and compared the 
annotations of possible protein function. Both cytoplasmic and nuclear differentiated 
proteins were analysed separately. From the 12 top molecular and cellular function 
identified, cell death and survival showed high identified molecules in both cytoplasmic 
and nuclear fraction. Beside that, other interesting possible function also being highlighted 
in red box to pursue their effects upon expression of MCPyV truncated LT antigen. 

 

Among the identified pathway, again cell death and survival was 

highlighted in both fractions, however there were several additional 

functions identified by the IPA software compared to the DAVID analysis, 

that could possibly be affected in both cytoplasmic and nuclear fractions. 
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These may be of interest to pursue in further downstream assays,  

including cellular assembly and organization, cell cycle, as well as cellular 

movement. Further work on these possible functions will be the focus of  

investigation in Chapter five of this thesis. Further analysis of the 

quantitative proteomic data was also performed using the same lists of 

both upregulated and downregulated proteins but this time focusing on the 

possible top canonical pathways that were affected by MCPyV tLT antigen 

expression. Table 4.3 highlights the top five canonical pathways which 

were possibly affected by the expression of tLT antigen. The annotations of 

pathways were identified by submitting the lists of both cytoplasmic and 

nuclear SILAC datasets separately to the IPA bioinformatics software and 

analysing by selecting the pathway analysis to visualise the most 

significant affected pathways. The lists were again filtering by only 

considering at least two-fold changes in both upregulated and 

downregulated lists. The ratio stated in Table 4.3 is the ratio of the 

identified proteins in the SILAC datasets to known proteins involved in the 

stated pathways.  

 Samples Top Canonical Pathways Ratio 
Cytoplasmic 
fraction 
  
  

Virus Entry via endocytic pathways 19/101 (0.188) 

Renin-angiotensin signaling 19/126 (0.151) 

ErbB Signaling 15/90 (0.167) 

Germ Cell -Sertoli Cell junction 
signaling 

21/169 (0.124) 

p70S6K Signaling 18/132 (0.136) 
Nuclear 
fraction 
  

Protein ubiquitin pathway 92/270 (0.341) 

tRNA charging 29/81 (0.358) 

Regulation of eIF4 and p70S6K 
Signaling 

61/175 (0.349) 

mTOR Signaling 64/213 (0.3) 

Mitocondrial Dysfunction 54/201 (0.269) 

Table 4.3: Top five canonical pathways affected by the expression of MCPyV 
truncated LT protein in nuclear and cytoplasmic fractions.  

The canonical pathway, generalised pathways that represent common properties of 
signalling pathways effected upon expression of MCPyV truncated LT antigen in both 
cytoplasmic and nuclear fraction. The ratio represents the number of molecules identified 
in the SILAC protein profiles compared to the number molecules that involved in the 
particular pathway. In bracket is the percentage of the molecules.  
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Comparing the cytoplasmic and nuclear datasets, the common related 

pathways identified were related to cellular stress responses and 

apoptosis, such as virus entry via endocytic pathways, protein ubiquitin 

pathway, ErbB signaling, tRNA charging and regulation of eIF4 and 

p70S6K signaling. The protein ubiquitination pathway is particularly 

interesting to highlight here as it plays a major role in the degradation of 

short-lived or regulatory proteins involved in a variety of cellular processes, 

including the cell cycle, cell proliferation, apoptosis, DNA repair, 

transcription regulation, cell surface receptors, ion channels regulation and 

antigen presentation. The surprising observation that many differentially 

altered proteins appeared to be downregulated upon expression of MCPyV 

tLT antigen, may be linked to tLT modulation of the ubiquitin degradation 

pathway. This may lead to the upregulation of protein degradation 

pathways leading to the observed reduction in many protein levels.  

 

The eIF4 and p70S6K signalling pathways play critical roles in translational 

regulation; which has key roles in the regulation of cell growth. 

Overexpression of eIF4E leads to cellular transformation and cell 

proliferation; while the translational inhibitor 4EBPI also controls the 

p70S6K pathway, important for cell cycle progression (Flynn and Proud, 

1996; Shahbazian et al., 2010). It is interesting to note that alterations in 

proliferation and cell cycle pathways are high on the list of differentially 

altered pathways, suggesting that MCPyV tLT might target these pathways 

to modulate cell growth and cell cycle changes. Furthermore, P13K/AKT 

signalling and the mammalian target rapamycin (mTOR) pathways which 

regulate multiple biological processes, including cell survival, proliferation, 

growth, and cell and glycogen metabolism (Laplante and Sabatini, 2009) 

were also differentially expressed. The mTOR pathway is known to be 

activated during various cellular processes, such as tumour formation and 

angiogenesis and is deregulated in human disease. Analysis was also 

carried out to determine if changes seen in each fraction were due to 

directional movement between compartments and not protein degradation 

or accumulation, for example protein trafficking from the nucleus to 

cytoplasm or viva versa. Table 4.4 highlights the pathways affected due to 
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proteins upregulated in the nuclear fractions based on reduced counts of 

that protein from the cytoplasmic fraction. Distinct to the previous table, this 

analysed the upregulated protein datasets in the nucleus compared to the 

downregulated cytoplasmic protein datasets. However, the results identified 

limited pathways that were affected. These pathways included ubiquitin 

mediated proteolysis, cell cycle and spliceosome, although a low number 

count of proteins were detected in each pathway, with 5, 4 and 4 counts 

identified, respectively. This suggests that altered nucleocytoplasmic 

shuttling may not be responsible for the differential changes observed in 

the nuclear and cytoplasmic datasets and the dramatic reduction in many 

cellular proteins may be due to the upregulation of ubiquitin-mediated 

degradation pathways.  

 

Pathways Count P-value 

Ubiquitin mediated proteolysis 5 1.4E-3 

Progesterone-mediated oocyte maturation 4 3.7E-3 

Oocyte meiosis 4 7.4E-3 

Cell cycle 4 1.1E-2 

Spliceosome 4 1.1E-2 

Chromatin structure and dynamics 2 9.4E-2 

Table 4.4: Effected pathways in which identified SILAC proteins showed to be 
upregulated in nuclear fraction. 

The identified peptides accession number in the SILAC protein profile were submitted to 
the bioinformatics tools and analysed for the possible effected pathways identified several 
pathway to be upregulated upon expression of MCPyV truncated LT antigen. Presented in 
the table is the count hit in the pathway with the P-value showing the significant of the hit.  

 

Aligned to this rationale was the interesting correlation between ubiquitin 

mediated proteolysis and cell cycle regulation, as both pathways appear to 

be upregulated in the analysis. This could explain why many other cellular 

proteins are downregulated in cells expressing truncated LT antigen. The 

regulation of cell cycle is particularly important in cancer development. An 

interesting observation related to this hypothesis is that the SILAC dataset 

highlights that the anaphase-promoting complex (APC) is found to be 
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upregulated upon truncated LT expression, illustrated in Figure 4.11. APC 

is an E3 ubiquitin ligase required for ubiquitination and subsequent 

proteasome degradation of multiple cell cycle regulator and effector 

proteins (Fehr and Yu, 2013).  

 

 

  
 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: KEGG pathway shows several of APC/C molecule components are 
targeted in cells expressing MCPyV truncated LT antigen.  

The targeted molecules identified in MCPyV truncated LT SILAC datasets are labelled with 
star. From the targeted molecules, Anaphase-promoting complexs APC/C was identified; 
Apc 2, the cullin component as well as other APC/C subunit (Apc1, Apc6 and Apc8). 

 
Further analysis examined the downregulated datasets for identified 

proteins in nuclear fractions which were increased in the cytoplasmic 

dataset. Using the same analysis bioinformatics software, Table 4.5 shows 

the list of affected pathways to be downregulated in the nuclear fractions 

samples. As stated previously, the lists of affected pathways 

downregulated in the MCPyV tLT SILAC identified sample for nuclear 

fraction appeared to be more dramatic than the cytoplasmic dataset. 

Interestingly, the pathways that were highly downregulated by MCPyV tLT 

were pathways related to cellular cell-cell connection and movement. 
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Pathways Count % P-value 

Regulation of actin 

cytoskeleton 
27 2.6 5.30E-02 

Tight junction 26 2.5 5.3S-2 

Oxidative phosphorylation 23 2.2 1.70E-03 

Glycolysis/gluconeogenesis 21 2 6.80E-08 

Axon guidance 17 1.6 9.50E-02 

Aminoacyl-tRNA biosynthesis 16 1.5 7.80E-07 

Valine,leucine and isoleucine 

degradation 
15 1.4 1.20E-05 

Gap junction 15 1.4 2.10E-02 

VEGF signaling pathway 13 1.2 2.80E-02 

Adherens junction 13 1.2 3.30E-02 

Integrin signaling pathway 8 0.8 4.20E-02 

Synaptic proteins at the 

synaptic junction 
7 0.7 5.50E-03 

uCalpain and friends in cell 

spread 
6 0.6 5.70E-03 

Table 4.5: Pathways that showed to be downregulated at least two-fold changes in 
cells expressing MCPyV truncated large T antigen in nuclear fraction. 

The pathways presented related to cellular junctions and cell connections showed to be 
altered in SILAC profiles of MCPyV truncated LT antigen expression suggesting the 
possible effects of truncated LT in cell movement and cell migration. The count of hit, 
percentage and p-value of each pathway were shown in the table.  

 

As shown in Table 4.5, pathways related to cellular junctions, such as 

remodelling of tight junction, epithelial adheren junctions, actin cytoskeleton 

signalling and integrin signalling were also showed to be altered in the  

differential profiles upon MCPyV tLT antigen, adding to the possibility that 

truncated LT, as well as MCPyV ST, may contribute to cell movement and 

migration. We have previously shown that MCPyV ST can enhance cell 

motility and migration by affected pathways controlling microtubule 

destabilisation (Knight et al., 2014) and the actin cytoskeleton (Stakaityte et 

al., manuscript in preparation). Specifically, MCPyV ST enhances 

expression of the microtubule control protein, Stathmin and also 

upregulates Rho-GTPase activity inducing filopodia formation. However, in 

contrast to MCPyV ST SILAC-based quantitative proteomic data, our 
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SILAC data suggests that expression of the truncated LT antigen may lead 

to a downregulation of specific pathways associated with cell movement 

and migration. This might suggest that truncated LT antigen does not 

enhance cell motility but may contribute to the initial stages of metastatic 

properties of the infected cells, by enhancing  the downregulation of 

proteins involved in cell-cell connections. This may lead to the ability of 

cells to ‘breakaway’ from the main primary tumour and work in conjunction 

with  MCPyV ST which then increases motility and migration of these cells. 
 

In support of this hypothesis, Figure 4.12 illustrates that cellular tight 

junction pathways are affected upon expression of MCPyV tLT antigen. 

KEGG  pathway analysis demonstrated that a significant number of 

proteins in these pathways are altered in the SILAC-based quantitative 

proteomic dataset, as highlighted by the red star, that shows identified 

cellular proteins in the SILAC dataset that been targeted. Further work 

related to the tight junctions has been carried out in the next chapter of the 

thesis. To study the effects of the MCPyV tLT on the tight junction, we 

selected the zona occuldens proteins, ZO-1, a family of tight junction 

associated proteins that function as cross-linkers, anchoring the tight 

junction strand proteins to the actin-based cytoskeleton (Itoh et al., 1997) 

as a target protein in this study  (circle with yellow in the figure). From the 

Figure 4.11, it is apparent that the most of the proteins identified in the 

SILAC dataset are downstream pathways of proteins of ZO-1. Therefore, 

the changes in the ZO-1 might be interesting to elucidate in detail. This will 

be described further in the next chapter. 
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Figure 4.12: SILAC identified tight junction components. 

Diagram illustrating the KEGG tight junction pathway, protein identified in SILAC 
cytoplasmic data set were highlighted with red star. The many proteins identified in the 
SILAC dataset are downstream pathway of zona occuldens protein 1 (circled in yellow) 
and this protein was chosen further analysis on effects of truncated LT antigen in tight 
junction pathway. 

 
In addition, metabolism-related pathways were also found to be highly 

affected upon induction of MCPyV tLT antigen. These pathways included 

oxidative phosphorylation, glycolysis/gluconeogenesis, amonoacyl-tRNA 

biosynthesis, valine, leucine and isoleucine degradation, phosphoinositides 

and inositol phosphate metabolism. The targeted proteins were labelled 

with a star in Figure 4.13. These findings may suggest that  MCPyV 

truncated LT leads to tumourigenesis by potentially altering the metabolic 

status of MCPyV-induced cancer cells. Cancer cells fundamentally possess 

altered metabolism pathways, which is an emerging hallmark feature for 

tumour development. This includes switching to aerobic glycolysis in order 

to provide precursors for massive biomass synthesis. Inositol phosphate 

metabolism components, such as inositol polyphosphate phosphatase 1 
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(INPP1), is highly expressed in aggressive human cancer cells (Benjamin 

et al., 2014). The findings showed glycolytic control in cancer cells 

promotes key oncogenic lipid signalling pathways essential for cancer cell 

motility, invasiveness and tumourigenicity. A similar mechanism might be 

targeted by MCPyV truncated LT to enhance transformation of Merkel 

carcinoma cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Phosphoinositides and their downstream targets pathway.  

The targeted molecules involving with cell survival, proliferation and migration function 
(labelled with star). The targeted molecules identified  were directly towards the cell 
survival, cell migration and proliferation downstream pathway.  

 

Axon guidance is another pathway that was highlighted in the SILAC-based 

quantitative proteomic dataset (Figure 4.14). The axon guidance pathway 

is also particularly interesting, as this pathway has been suggested to be 

involved in tumour suppression (Chedotal et al., 2005). Specifically, a 

variety of genetic mutations have been identified within proteins associated 

with this pathway in human cancers.  Frequent loss of heterozygosity is 

observed in tumours and cancer cell lines and significant hypermethylation 

in gene-associated promoters (Li et al., 2009; Normanno et al., 2015; 

Zhang et al., 2015). The number of mutated axon guidance molecules and 

the heterogeneity of cancer cells are significantly important as the numbers 
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of axon guidance molecules levels reduced were associated with mismatch 

repair deficiency or mutations in Kirsten Rat Sarcoma Viral Oncogene 

Homolog (KRAS), or serine/threonine-protein kinase B-Raf (BRAF) in the 

case of colorectal cancer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: SILAC identified axon guidance pathway components. 

Diagram illustrating the KEGG axon guidance pathway, protein identified in SILAC nuclear 
downregulated data set were highlighted with red star.  
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In addition, proteins associated with axon guidance have also been shown 

to suppress cell proliferation, cell migration and invasion, as well as 

increase apoptosis in both normal and cancer cells, as a response to DNA-

damaging agents. As such, axon guidance molecules are found to be 

frequently downregulated during tumourigenesis and tumour progression in 

breast and colorectal cancer; suggesting they play a crucial role as tumour 

suppressors (Chedotal et al., 2005; Harburg and Hinck, 2011; Li et al., 

2009). 

 

In the cytoplasmic fraction, the possible affected pathways that showed to 

be changed either increased or decreased also related to cell-cell contacts 

such as focal adhesion, tight junction, and adherens junction pathways. As 

discussed in the nuclear fraction section earlier, therefore the same 

possibility exists that truncated LT antigen may contribute to the initial 

stages of metastatic properties of the infected cells, by enhancing  the 

downregulation of proteins involved in cell-cell connections. In cytoplasmic 

fraction pathway annotation also showed related pathways such as focal 

adhesion, tight junction, and adherens junctions. This data suggests that 

this possible function of MCPyV truncated LT merits further investigation. 
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Pathways Count Up Down P-value 

Focal adhesion 13 3 10 8.90E-01 

MAPK signaling pathway 13 10 3 6.30E-02 

Tight junction 9 2 7 3.10E-01 

Fc epsilon RI signaling 

pathway 6 1 5 6.30E-02 

Phosphoinositides and their 

downstream targets 5 0 5 2.20E-03 

Inositol phosphate 

metabolism 5 0 5 6.00E-02 

Glycolysis/gluconeogenesis 5 0 5 8.20E-02 

BCR signaling pathway 4 1 3 5.20E-02 

Adherens junction 5 0 5 7.00E-02 

VEGF, hypoxia and 

angiogenesis 3 3 0 6.30E-02 

 

Table 4.6: Pathways that showed at least two-fold changes in cells expressing 
MCPyV truncated LT antigen.  

The annotated pathways were compared either the changes cellular proteins involved 
were upregulated or downregulated. The count value is the number of identified molecules 
for both upregulated and downregulated proteins in the annotated pathways are 
statistically significant based on the calculated P-value. The likelihood of the association 
between a set of SILAC identified genes and the pathway is measured using the right-
tailed Fisher Exact Test.  
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4.8.  Discussion 
 

The aim of this chapter was to investigate the effects of MCPyV truncated 

LT protein expression on the host cell proteome, required in cell signalling 

and tumourigenesis on a unbiased global scale. For this, SILAC-based 

quantitative proteomics was utilised to determine the differential protein 

abundance upon expression of MCPyV truncated LT antigen. In order to 

delineate the effects of LT antigen on the cellular proteome, it was first 

necessary to produce a stable cell line capable of regulated expression of 

the MCPyV truncated LT antigen. This would ensure a  homologous 

population to assess fold changes and possible functional target proteins 

upon induction.  

 

Upon starting the project, this stable cell line expressing inducible truncated 

LT protein was not available in our laboratory. Therefore, the first objective 

of this chapter was to produce the MCPyV truncated LT stable cell line. To 

this end, truncated LT-cDNA was successfully amplified and cloned into 

pcDNA5FRT, mammalian expression vector plasmid enabling production of 

a number of monoclonal inducible cell lines. Upon production of these cell 

lines, it was essential to test several clones of these stable cell lines to 

obtain a cell line which showed high induction levels of the truncated LT 

protein, but also with a high degree of regulated ‘non-leaky’ expression. 

This selection process is highly important to ensure the homologous 

population of cells for validation of proteomics SILAC data later. After 

selection and testing of an appropriate cell line, the chosen stable cell line 

was grown in differentially isotope labelled DMEM medium, then left 

untreated or treated with the doxycylin hyclate. Simple cell fractionation 

was carried out to obtain extended coverage of the proteome changes in 

both cytoplasmic and nuclear compartments as well as to reduce 

complexity of the samples for the mass spectrometry experiments. Both 

treated and non-treated samples were mixed and analysed by mass 

spectrometry for both nuclear and cytoplasmic samples. 
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SILAC-based quantitative proteomic analysis was performed in an attempt 

to determine possible molecular functions of identified cellular proteins 

which showed differential expression upon MCPyV truncated LT 

expression. Bioinformatic analysis highlighted specific pathways the viral 

oncogene may be targetting, which could be implicated in MCPyV-induced 

tumourigenesis. The listed SILAC dataset identified proteins used for the 

bioinformatic analysis were either upregulated or downregulated by at least 

two-fold. The bioinformatic analysis was formed using both IPA and DAVID 

softwares.  

 

Surprisingly, the SILAC datasets for each fractions showed many proteins 

appeared to be downregulated in the cells expressing MCPyV truncated LT 

antigen. However, a possible correlation for the reduction in the cellular 

proteome might be due to the targeting of the ubiquitin proteasomal 

degradation pathway. The upregulation of the ubiquitin proteasomal 

degradation pathway and several proteins associated with the APC 

complex upon expression of truncated LT suggests the regulation of cell 

cycle might be one of the major functions of MCPyV LT. The APC complex 

is essential for enabling cell progressing through anaphase, exit from 

mitosis and preventing premature entry into S-phase (Thornton et al., 

2006). The APC complex is an important regulator in cell cycle pathway as 

it targets more than 30 proteins for ubiquitin-dependent proteasome 

degradation (Peters, 2006). Among the long list of target molecules and 

substrates recognized by APC are cyclin A and cyclin B. The degradation 

of the cyclins during mitosis reduces CDK activity, and leads to 

disassembly of the mitotic spindle, chromosome decondensation, 

reformation of the nuclear envelope and formation of cytokinetic growth 

(King et al., 1995; Murray et al., 1989; Sudakin et al., 1995). To determine 

how MCPyV truncated LT plays a  role in targeting the APC and affects 

cyclin levels in cells, different cyclins could be compared in the cells 

expressing MCPyV truncated LT antigen and compared with the control. 

This will be further analysed and discussed in the following chapter of this 

thesis. For the next chapter cell cycle analysis and cell growth was also 
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examined to observe possible effects of truncated LT antigen on cell 

proliferation. 

 

From the preliminary SILAC-based quantitiative proteomic data, the most 

likely pathways affected by MCPyV truncated LT antigen expression are 

predicted to be associated with cell death and survival, as both cytoplasmic 

and nuclear fractions highlighted these pathways with top hits in functional 

and pathways annotations. Programmed cell death or apoptosis is 

important for cellular destruction for variable cellular processes including 

the development or prevention of oncogenic transformation (Galluzzi et al., 

2010; Hanahan and Weinberg, 2000; Zhivotovsky and Orrenius, 2010). 

This apoptosis process must be tightly controlled as dysregulated cell 

death relates to a large number of pathologies. Different strategies are 

utilised by cells to prevent cell death including regulation of apoptosis, anti-

apoptotic and pro-survival pathway and identification of anti-apoptotic 

sequences, autophagy and necrosis (Portt et al., 2011). Further analysis of 

the cell death and survival pathway will be discussed further in the 

following chapter to delineate the effects of the MCPyV truncated LT on cell 

death and survival. 

 

Other possible functions of truncated LT include cellular assembly and 

organisation of cell movement. The pathways associated with the cellular 

movement specifically identified in this dataset includes cell-cell junctions, 

such as tight junctions, gap junctions, adheren junctions, integrin signalling 

pathway, synaptic proteins at the synaptic junction and cell spreading. This 

finding leads to the intriguing possibility that there may be a synergistic 

effect on enhancing cell motility and migration upon MCPyV ST and 

truncated LT expression. Previous data suggests that MCPyV ST 

enhances cell motility and it may be the case that LT downregulates 

expression of junction proteins allowing the migratory cell to break away 

from the primary tumour enhancing metastatic spread of merkel cell 

carcinoma cells.  
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In addition, other possible targeted pathways of interest to be further 

analysed in the future are alterations in metabolic pathways such as 

oxidative phosphorylation, glycolysis/glucogenesis and inositol phosphate 

metabolism (Benjamin et al., 2014). This altered metabolism and link to 

tumourigenesis would enhance the biosynthesis of uncontrolled cell mass, 

as metabolic alterations are required for tumour cells to be able to respond 

to the proliferative signals that are delivered by oncogenic signalling 

pathways (Cairns et al., 2011). 

 

Axon guidance pathways may also be of interest, as many recent studies 

have highlighted  the importance of dysregulation of these pathways, 

specifically relating to tumour suppression or oncogenesis in breast 

cancers (Harburg and Hinck, 2011). Axon guidance-associated molecules 

also have important effects on vascular endothelial growth factor (VEGF), 

hypoxia and angiogenesis. Several molecules in this pathway such as 

netrins, slit proteins, semaphorins, ephrins and their cognate receptors 

UNC5, Robo1-4, neuropilin and EphB have been studied as potential 

targets for new antiangiogenic therapies (Pircher et al., 2014). Further 

study regarding these target molecules might give a better understanding 

to how MCPyV truncated LT targets these molecules and enhances cancer 

progression and angiogenesis.  

 

In conclusion, this chapter has described the process of generating a 

stable cell line that is able to regulate expression of MCPyV truncated LT 

upon induction required for SILAC-based quantitative proteomics. 

Bioinformatic analysis discussed in this chapter highlights several potential 

proteins and pathways effected upon expression of MCPyV truncated LT 

expression. The next chapter will discuss further the effects of truncated LT 

in selected pathways including cell death and survival, cell cycle and cell-

cell connection associated pathways in order to delineate possible 

functions of MCPyV truncated LT antigen in MCPyV-induced 

tumourigenesis.  
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5.0.  Evaluating Possible Functions of Merkel Cell 
Polyomavirus Truncated Large T Antigen. 

 

5.1.  Introduction 
 

The full length MCPyV large T (LT) antigen comprises 816 amino acids in 

length, however, LT is frequently truncated in MCC rendering the virus 

replication deficient. Polyomavirus LT antigens possess numerous 

functions in infection, including the initiation of viral replication and 

manipulation of the host cell cycle. MCPyV LT antigen is composed of two 

exons and contains several conserved domains found in many other 

polyomaviruses; including the retinoblastoma protein (pRb)  binding 

domain sequence (LXCXE), a nuclear localisation signal (NLS) and the 

origin binding domain (OBD) (Kierstead and Tevethia, 1993; Nakamura et 

al., 2010; Peden et al., 1989; Topalis et al., 2013). However, some binding 

sites or domains within MCPyV LT appear to be distinct from other 

polyomaviruses. For example, MCPyV LT shares only 34% sequence 

identity with SV40 LT antigen (Topalis et al., 2013). MCPyV LT also 

contains the MCPyV unique region (MUR), an additional 200 residue 

domain located between the first exon and OBD; which binds to the host 

cytoplasmic cellular factor, vacuolar sorting protein Vam6p (Liu et al., 

2011b). hVam6p is relocalised from the cytoplasm to the nucleus upon 

expression of MCPyV LT. Although the mechanism of relocalisation is yet 

to be determined, hVam6p is believed to function as an antiviral host factor 

due to its ability to significantly reduce the number of MCPyV virions by 

approximately 90% (Feng et al., 2011).  

 

Besides hVamp6p, MCPyV LT also targets survivin, a member of the 

inhibitor of apoptosis protein family, which is upregulated in many forms of 

lymphoma and metastatic melanoma (Ambrosini et al., 1997). Survivin 

functions as an inhibitor of apoptosis by prolonging cell viability, and also 

contributes to the transformation of cells by promoting cellular resistance to 
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chemotherapy. Knockdown of MCPyV T antigens in MCPyV positive MCC 

cells leads to lower survivin mRNA and protein levels, resulting in MCC cell 

death (Arora et al., 2012a). Not surprisingly therefore, survivin gene 

expression is enhanced, as well as other S-phase proteins including E2F1 

and cyclin E, in MCPyV LT expressing cells (Arora et al., 2012a). As such, 

it is believed survivin expression is critical to the survival of MCPyV-positive 

cells and this hypothesis is supported by recently experiments 

demonstrating that the small molecule survivin inhibitor, YM155, potently 

and selectively initiates irreversible and programmed cell death of MCPyV-

positive MCC cells. Besides MCPyV, both SV40 and JCV infection exhibit 

upregulation of survivin expression (Ambrosini et al., 1997; Jiang et al., 

2004; Pina-Oviedo et al., 2007; Raj et al., 2008). Identifying the survivin-

controlled cellular pathways induced by LT antigens could lead to the rapid 

identification of additional drug candidates for treating polyomavirus 

infections. 

 

MCPyV LT is also important in initiating transformation and survival of MCC 

tumours, as abandonment of cell growth is observed in MCPyV-LT 

depleted cells which eventually leads to cell death (Houben et al., 2010b). 

This cell death, due to the loss of LT function, surprisingly lacks any typical 

apoptosis features such as caspase activation, PARP cleavage and 

alterations in expression levels of p53 or Bcl-2 family (Houben et al., 

2010b). This suggests that MCPyV LT-mediated changes in the Rb-E2F 

pathway, through LT-RB interactions, probably result in cell death by 

autophagy or necrosis-related processes.  

 
Although it has been known for several years that the LT antigen is 

truncated in MCC, little research has focused on how the truncated LT 

contributes to tumourigenesis, in contrast to the full length LT antigen. This 

is rather surprising as expression of the truncated forms of LT are 

expressed in MCC. Therefore, the main objective of this chapter was to 

evaluate the role of prioritized differentially expressed cellular proteins 

identified in the quantitative proteomic analysis of truncated LT-expressing 

cells. These functions include the effects of MCPyV truncated LT antigen 
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on the host cell cycle, apoptosis and cell survival pathways as well as cell-

cell connections.  

 

5.2.  MCPyV truncated large T antigen expression may 
affect  cell cycle regulation. 

 

The MCPyV truncated LT antigen SILAC-based quantitative proteomic 

dataset identified a number of differentially expressed cellular proteins 

which regulate the host cell cycle. Regulation of cell cycle checkpoints are 

unquestionably important in cancer development, as mutations which occur 

in these pathways not only affect cell proliferation, but also increase 

genetic instability accelerating cellular evolution (Hartwell and Kastan, 

1994). The G1 checkpoint is a key step in inhibiting cancer development 

and genomic instability as this cell cycle arrest step allows the cell to 

maintain DNA integrity and to check signs of DNA damage that might 

cause functional problems or development of tumour growth. As such, if 

DNA damage is observed, G1 arrest will prevent the cells from entering S 

phase and further proliferation and ultimately lead to apoptosis. Therefore, 

it is believed that expression of MCPyV LT may enhance cell proliferation 

by affecting the G1 checkpoint. Supporting this theory are results which 

show that expression of wild type MCPyV LT antigen leads to loss of the 

G1 checkpoint in UISO cells without affecting DNA repair pathways. In 

contrast, truncated LT-expressing cells resulted in loss of DNA repair 

pathways as well as G1 checkpoint control (Demetriou et al., 2012). This 

suggests that truncated LT antigen expression generates cell cycle defects 

which lead to cell proliferation and also impair DNA repair pathways which 

may enhance genomic instability, which is observed in many MCCs.  
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5.2.1. Cell cycle analysis.  
 

5.2.1.1.  Cell cycle analysis of MCPyV truncated LT antigen 
expressing cells. 
 

To first investigate any potential effects of MCPyV truncated LT antigen 

expression on cell cycle checkpoints, cell cycle analysis was performed to 

visualise the percentage of cells in each phase of the cell cycle. Analysis 

was carried out using a standard protocol of measuring the DNA content 

within cells by labelling DNA with propidium iodide (PI) and quantifying the 

amount of cell populations in every cell cycle phases using flow cytometry.   

 

Initial experiments were performed in the control 293 cell line transfected 

with either a control eGFP expressing plasmid or an eGFP tagged MCPyV 

truncated LT (GFP-tLT). The transfected cells were harvested and sorted 

by fluorescence activated cell sorting (FACS), prior to being analysed by 

flow cytometry. The percentage of cells in each phase of the cell cycle is 

summarised in Figure 5.1. The cell cycle analysis of the transfected cells 

harbouring the respective plasmids showed there was no significant 

changes on G1 populations comparing control and truncated LT-

expressing cells. However, expression of truncated LT showed a slight 

increase in the S phase population of cells, compared to control cells (6%). 

This may be an indication that expression of truncated LT may affect the 

G1 checkpoint, enhancing the transition of cells into the S phase. However, 

this increase in S phase cells was smaller than expected and this may 

have been due to inefficient transfection of cells and the resulting low 

number of cells which were gated to ensure only homologous cell 

populations were analysed in the cell cycle.   
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Figure 5.1: Cell cycle analysis of the HEK293-GFP and GFP-tLT expressing cells 

The HEK293 cells were transfected with plasmids expressing GFP or GFP tagged MCPyV 
truncated LT (gfptLt) using standard lipofectamine protocols. After 24 hours, cells were 
harvested and sorting for GFP expression. Cells were then fixed with cold ethanol and 
labelled with the DNA-binding dye propidium iodide (PI). The cells were then analysed by 
using flow cytometry to determine the percentages of cells in each phase of the cell cycle 
utilising the ModFit software. P values using an unpaired test are indicated. The 
experiments were run in triplicate.  

 

Therefore, to overcome the issues with the low efficiency gating of only 

transfected cell populations, cell cycle analysis was repeated using the 

stable cell line capable of inducible expression of the truncated LT, 

comparing the control versus induced i293-tLT cells. Results in Figure 5.2 

show that expression of MCPyV truncated LT results in a small increase in 

the percentage of cells in S phase compared to control cells. This again 

suggests that truncated LT expression may bypass the G1 checkpoint and 

drive cells into S phase.  The accumulation of cells in S phase may be 

related to the interactions of truncated LT antigen with the cellular Rb 

protein. The MCPyV truncated LT antigen still retains the ability to bind with 

very high affinity to Rb and can also partially relocalize Rb to the cytoplasm 

(Borchert et al., 2014).  

 

During the G1 phase of the cell cycle, Rb binds and represses the cellular 

activator, E2F transcription factor, causing repression of G1-to-S transition. 
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Therefore, expression of truncated LT and its binding to Rb is thought to 

release E2F allowing cells to progress to S phase and overcoming the 

restriction checkpoint in the cell cycle. Moreover, the loss of the G1-S 

checkpoint can lead to genomic instability, inappropriate survival of 

genetically damaged cells, and further the evolution of cells to malignancy 

(Hartwell and Kastan, 1994). Therefore, it would also be interesting to 

determine whether truncated LT-expressing cells have more genomic 

instability than control cells. This work is continuing in the Whitehouse 

laboratory.  

 

Besides the effects of the S-phase populations, drastic changes in the G2 

populations were also observed in the figure 5.2. In control cells without 

truncated LT expression, the G2 population is approximately 12%, but no 

cells in G2 were observed in cell expressing truncated LT antigen. This 

finding is surprising and interesting as truncated LT antigen might be able 

to block the progression in cell cycle entering G2 phase. 

 

 

 

  

Figure 5.2: Percentage distribution of cells in each phase of the cell cycle. 

The stable cell line capable of inducible expression of MCPyV truncated LT antigen 
remained uninduced or induced with Doxycyclin for 24 hours.  Cells were then fixed with 
cold ethanol and labelled with the DNA-binding dye propidium iodide (PI). The cells were 
then analysed by using flow cytometry to determine the percentages of cells in each phase 
of the cell cycle utilising the ModFit software. The experiments were run in triplicate. 
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5.2.2. The identified proteins in SILAC that relate to the cell 
cycle. 
 

An intriguing observation from the results in Figure 5.2, was the lack of 

cells entering the G2 phase of the cell cycle upon expression of the 

truncated LT. The prolonging of S-phase in cells is often caused by 

changes in cyclin and other cell cycle regulatory protein levels (Wataya-

Kaneda et al., 2001). To further examine this phenotype, the SILAC 

dataset was analysed for proteins which associate with the cell cycle, cell 

proliferation and ubiquitin proteosomal degradation (Table 5.1). 

 

Accession 
#  
Peptides 

Medium 
/Light 

Description Function 

O95613 2 100.000 Pericentrin  Integral component of 
the centrosome that 
serves as a scaffold 
for anchoring proteins 

Q9NXV6 3 100.000 CDKN2A-
interacting protein  

RNA binding and p53 
binding; negative 
regulation of cell 
growth, positive 
regulation of signal 
transduction 
and regulation of 
protein stability 

Q8TCE5 2 100.000 GBP2 protein  Interferon-induced 
guanylate-binding 
protein 2 

D3DR32 7 6.321 M-phase 
phosphoprotein 1 

 Specifically 
phosphorylated at the 
G2/M transition 

B4DL80 4 3.559 Cell division cycle 
protein 27 
homolog  

 Component of 
anaphase  promoting 
complexes/cyclosome 

Q9UJX6 5 3.155 Anaphase-
promoting 
complex subunit 2  

 Component of 
anaphase  promoting 
complexes/cyclosome 

F5GY68 3 2.942 Anaphase-
promoting 
complex subunit 5  

 Component of 
anaphase  promoting 
complexes/cyclosome 

Q9UJX2 3 2.377 Cell division cycle 
protein 23 
homolog  

Component of the 
anaphase promoting 
complex/cyclosome 
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Q9H1A4 4 2.179 Anaphase-
promoting 
complex subunit 1  

Component of the 
anaphase promoting 
complex/cyclosome  

Q5UIP0 5 2.163 Telomere-
associated 
protein RIF1  

Required for 
checkpoint mediated 
arrest of cell cycle 
progression in 
response to DNA 
damage during S-
phase  

Q1XBU8 3 3.573 Cell proliferation-
inducing protein 
23  

Induce cell 
proliferation 

B4DHK6 3 11.082 S-phase kinase 
associated 
protein 2 

Skp2 is the substrate 
recruiting component 
of the SCFSkp2 
complex, which 
targets cell cycle 
control elements, 
such as p27 and p21 

E9PK91 21 4.384 Bcl-2-associated 
transcription 
factor 1  

Death-promoting 
transcriptional 
repressor. May be 
involved in cyclin-
D1/CCND1 mRNA 
stability  

H9A532 4 3.863 BCL6 
corepressor-
cyclin B fusion 
protein 

Interacting selectively 
with a repressing 
transcription factor to 
stop, prevent, or 
reduce the frequency, 
rate or extent of 
transcription 

B2R9L6 6 0.449 CDC2-related 
kinase (CDK1 
associated 
kinase) 

To regulate important 
transitions in the 
eukaryotic cell cycle 
with the cyclins family. 

Q59HA5 2 0.333 Cyclin G-
associated kinase 
variant 

Cyclin G is a direct 
transcriptional target 
of the p53 tumor 
suppressor gene 
product downstream 
of p53.   

Table 5.1: The list of proteins that showed differential changes of at least two-fold 
upon expression of MCPyV truncated LT in quantitative proteomic datasets 
associated with cell cycle control.  

The proteins identified in the SILAC dataset in both nuclear and cytoplasmic samples and 
blasts for it’s functions are listed with accession ID, number of peptide identified, fold 
change, name and their possible functions. 
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In general, APC is a cell cycle-regulated E3 ubiquitin ligase that controls 

progression through mitosis and the G1 phase of the cell cycle. This 

ubiquitin ligase is required for ubiquitination and subsequent proteasome 

degradation of multiple cell cycle regulatory and effector proteins; where as 

without the APC, the cell would be unable to separate the sister chromatids 

during anaphase, exit mitosis, or properly enter S-phase (Thornton et al., 

2006). It may also be the case that MCPyV truncated LT-mediated 

upregulation of APC components might also affect additional cell cycle 

regulatory proteins for polyubiquitination and proteasomal degradation. 

Well known substrates for the APC include cyclin A, cyclin B and securin 

(Fehr and Yu, 2013), which in turn regulate CDK activity which may affect 

other parts of the cell cycle. In mammalian cells, levels of cyclin-dependent 

kinases (CDK4, CDK2 and CDC2) in each phase correlates with 

expression levels of cyclins (D, E, A and B) (Sherr, 1993). The complex 

formation between CDK4 and several D cyclins function early and probably 

in response to the growth factors; CDK2 complexes with cyclin E or A or 

both, and is found to be essential for DNA replication; and CDC2 

complexes with cyclin A and B and is essential for mitosis (Hartwell and 

Kastan, 1994). In the truncated LT dataset, CDK2 was found to be highly 

upregulated and may therefore be a target of MCPyV truncated LT. CDK2 

complexes with cyclin E and A promoting the G1/S phase transition and 

also drives cells through S-phase (Aleem et al., 2005; Satyanarayana et 

al., 2008).  

 

To determine whether expression of the truncated LT has any effect on the 

levels of CDKs and cyclins, 293 cells were transfected with either a control 

plasmid, truncated LT, wild type LT and SV40 LT expression vectors. After 

24 hours, cell lysates were harvested and immunoblots were performed 

using a range of CDK- and cyclin-specific  antibodies (Figure 5.3). 

Immunoblot and densitometry analysis suggest that CDK2 may be slightly 

increased upon truncated LT expression, although this was not as 

significant as the proteomic data suggests, which may be due to the 

transfection method utilised in contrast to the stable cell line proteomic 

data. A similar result was also found in cells expressing the MCPyV full 
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length LT. However there are no changes in CDK1 levels in any of the 

samples tested. Analysis of cyclin levels upon truncated LT expression also 

showed differential expression. Firstly, cyclin A levels appeared to be slight 

increased upon truncated LT expression.  This result supports the flow 

cytometry cell cycle analysis in Figure 5.1 and 5.2, as cyclin A can activate 

both CDK1 and CDK2 and functions in both S-phase and mitosis (Pagano 

et al., 1992). Here cyclin A-CDK interactions are believed to be important 

for initiation and restriction of DNA replication in S-phase, whereas in 

mitosis it stabilises cyclin B (Yam et al., 2002). Interestingly, expression of 

cyclin A is found to be elevated in a variety of tumours by 

immunohistochemical detection, which specifically compares the cancer 

cells with surrounding non cancer tissue. Considering that both cyclin A 

and CDK2 showed slight elevation in MCPyV truncated LT transfected cells 

as well as CDK2 was highlighted to be upregulated in the SILAC MCPyV 

truncated LT dataset, suggests the possibility that MCPyV truncated LT 

targets CDK2-cyclin A complexes to promote the G1/S phase transition and 

drive cells through S-phase, which may result in cell proliferation and 

tumourigenesis.  
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Figure 5.3: Expression of truncated LT leads to the differential expression of 
cyclins. 

HEK293 cells were transfected with either a control plasmid, MCPyV truncated LT, wild 
type MCPyV LT, SV40 LT antigen. After 24 hours, cells were harvested and lysates 
subjected to immunoblotting using CDK- and cyclin-specific antibodies, GAPDH for used 
as a loading control and 2T2 monoclonal antibody was used to detect the MCPyV LT 
proteins. P-value for each comparison were using student t-test calculation. 
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Comparing expression levels of the other cyclins, cyclin B levels were also 

increased in MCPyV truncated LT, however this increase was not as 

significant upon full length MCPyV and SV40 LT expression. It may be the 

case that increased cyclin B levels further enhance cell proliferation in 

truncated LT cells, driving them through the G2/M transition. Cyclin D 

however remained fairly constant in MCPyV truncated LT and SV40 LT 

expressing cells,  but slightly reduced upon MCPyV full length LT 

expression. Unfortunately, analysis of Cyclin E levels could not be 

assessed due to the reactivity of the antibody reagents available at the time 

of this analysis. 

 

It is also worthy of note that the MCPyV truncated LT SILAC dataset 

highlights the upregulation of S-phase kinase associated protein 2 (Skp2), 

more than 11-fold, although this was not confirmed experimentally due to 

poor antibody reagents. Skp2 protein is the substrate recruiting component 

of the SCF Skp2 complex, targeting cell cycle control elements, such as 

p27 and p21. The loss of the p27 results in increased cell proliferation and 

p27 knockout mice show enlarged organs and pronounced tumour 

development (Fero et al., 1998; Kiyokawa et al., 1996; Nakayama et al., 

1996). The cyclin-dependent kinase inhibitor p21 promotes cell cycle arrest 

and functions as both a sensor and an effector of multiple anti-proliferative 

signals (Abbas and Dutta, 2009). Therefore, by additionally disturbing p27 

and p21 normal regulation, truncated LT  expression may lead to cell 

transformation. 

 

5.2.3.  Cell growth and proliferation. 

 
Alterations in the control of the cell cycle often have downstream effects on 

cell growth and proliferation. It is also worth noting that in the SILAC-based 

quantitative proteomic dataset for MCPyV truncated LT, cell proliferation-

inducing protein 23 was upregulated to 3.5-fold compared to the control 

cells. Therefore, to determine whether the potential alteration of cell cycle 

regulation in MCPyV truncated LT-expressing cells also affected cell growth 
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and proliferation, a simple cell counting assay was carried out using cells 

transfected either control eGFP, eGFP-MCPyV truncated LT antigen, 

MCPyV full length LT, SV40 LT and SV40 genomic T antigen expression 

vectors. The cells were seeded at a specific density of 5000 cells and 

counted after 24 hrs and 48 hrs using a heamocytometer. Figure 5.4 

demonstrates that expression of both MCPyV truncated LT and full length 

LT resulted in a  increase in cell number after 24 and 48 hours compared to 

the control cells.  

 

Figure 5.4: Expression of MCPyV truncated LT enhances cell proliferation. 

HEK293 cells were transfected with plasmids expressing GFP, GFP-MCPyV truncated LT, 
MCPyV full length LT, SV40 LT and SV40 T antigen. The cells were counted and seeded 
with the same amount for each well (5000 cells). The cells were then counted using flow 
cytometry at 24 hrs and 48 hrs. The experiments were run in triplicate. 

 

Interestingly, the truncated LT cells showed the highest rate of proliferation 

of all the transfected cells tested, suggesting this construct is the most 

potent at inducing cell proliferation. Again, this supports results in Figure 

5.3 which show that expression of truncated LT showed the most 

significant alterations in cyclin A and B levels, compared to the other LT 

expression constructs. Moreover, these results support recent findings 

suggesting that MCPyV LT antigen expressed cells showed increased 

potential in supporting cellular proliferation, focus formation and 
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anchorage-independent cell growth compared to full length MCPyV (Li et 

al., 2013). 

 

5.3.  Effects of MCPyV truncated LT on apoptosis and cell 
survival pathways. 

 

Quantitative proteomic analysis of the MCPyV truncated LT antigen SILAC 

dataset, in which both upregulated and downregulated identified proteins 

were combined and analysed together, highlighted that the most affected 

molecular function was cell death and survival. The identified molecules 

associated with this function were significantly higher than other possible 

molecular functions in both fractions suggesting that MCPyV truncated LT 

might play an important role in causing or inhibiting cell death and survival. 

Of particular interest was the observation that expression of MCPyV 

truncated LT resulted in the reduced expression of proapoptotic proteins, 

specifically the BCL-2 family member, BAD. Therefore, experiments were 

performed to determine if MCPyV truncated LT expression affected Bad 

protein levels and apoptosis induction.  
 

5.3.1.  The pro-apoptotic BAD protein is downregulated in 
the MCPyV truncated LT SILAC proteomic dataset. 
 

MCPyV LT is known to target survivin, a member of the inhibitor of 

apoptosis protein family that is upregulated in a variety of lymphomas and 

metastatic melanomas (Ambrosini et al., 1997). Survivin functions as an 

inhibitor of apoptosis by prolonging cell viability, and later contributes to cell 

transformation by facilitating the insurgence of mutations and promoting 

cellular resistance to chemotherapy. Knockdown of MCPyV LT antigens in 

MCPyV positive MCC cells showed that survivin mRNA and protein levels 

fell resulting in MCC cell death (Arora et al., 2012a). Surprisingly, we could 

not detect survivin in our MCPyV truncated LT antigen SILAC proteomic 

dataset, which may be due to lack of coverage of the complete host cell 

proteome. However, aligned to apoptosis regulation, the related BCL-2 
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family member protein (BAD), appeared to be differentially expressed in 

our SILAC proteomic analysis, reduced by five-fold. It may be the case that 

the MCPyV LT has multiple mechanisms to regulate the apoptotic 

response, by increasing the expression of anti-apoptotic proteins, such as 

survivin, and also reducing expression of pro-apoptotic proteins, such as 

BAD. The BAD protein is a pro-apoptotic member of the BCL-2 gene family 

involved in initiating apoptosis. BAD functions by forming heterodimers with 

anti-apoptotic proteins, such as BCL-2, to prevent them from stopping 

apoptosis (Trecherel et al., 2012). Moreover, Trecherel et al., showed that 

expression of BAD in vascular smooth muscle cells leads to apoptosis 

induction, suggesting BAD promotes cell death. In our SILAC analysis, the 

BAD protein was found to be downregulated upon expression of truncated 

LT protein, suggesting a possible virus-mediated apoptotic inhibition 

mechanism. This is supported by experiments in which reduction of BAD 

expression by RNA interference (RNAi) has been shown to prevent 

apoptosis in response to P13K/Akt kinase pathway inhibition in PTEN-

deficient tumour cells (She et al., 2005). As such, truncated LT-mediated 

repression of BAD function may play an important role in inhibiting 

apoptosis allowing the initiation of tumourigenesis. The proteomic analysis 

of SILAC MCPyV tLT dataset identified downregulation of protein BAD 

(Figure 5.5). 

  



- 149 - 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Pathway analysis of the quantitative proteomic dataset suggests the pro-
apoptotic protein, BAD is downregulated upon MCPyV truncated LT expression. 

The BAD protein was identified to be downregulated in the bioinformatics analysis. 
Besides BAD other molecules such as PAK, NF-kB and FAK were upregulated in the 
SILAC truncated LT. The other identified molecules in the SILAC are shown in purple.  

 

To validate the quantitative proteomic data, immunoblot analysis was 

performed on cell lysates harvested from uninduced versus induced 

HEK293-tLT expressing cells. Results showed that levels of BAD protein 

were decreased in truncated LT-expressing cells compared to its 

uninduced non-expressing counterpart (Figure 5.6). This confirmed the 

results identified by the MCPyV truncated LT SILAC proteomics analysis. 
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Figure 5.6: Expression of truncated LT leads to a reduction in the level of the pro-
apoptotic protein, BAD.  

i293-tLT cells remained uninduced or were induced by 24 hours using doxycycline. Cell 
lysates were then harvested and equal amounts of protein were separated by 
electrophoresis on 12% polyacrylamide gels, transferred to nitrocellulose membrane and 
probed using FLAG-, BAD- and GAPDH-specific antibodies. GAPDH was used a loading 
control. Densitometry quantification of the western blots was carried out using the Image J 
software and is shown a percentage of relative densitometry to the loading control, 
GAPDH. 

 

5.3.2.  Induction of apoptosis and DNA damage. 
 

As MCPyV truncated LT expression leads to reduced protein BAD levels, 

experiments were next performed to determine whether truncated LT 

expression was sufficient to prevent apoptosis. To this end, the rates of 

apoptosis and cell death were examined upon the  treatment of apoptosis-

inducing chemicals, namely staurosporine and etoposide. Staurosporine, a 

protein kinase inhibitor, which has been characterized as a strong inducer 

of apoptosis in many different cell types. The mechanism(s) by which 

staurosporine induces apoptosis, however, remains controversial. It is 

generally believed that the mitochondrial apoptotic pathway plays a critical 

role in staurosporine-induced apoptosis, whereas other studies only 

showed a requirement for caspase activation in staurosporine-induced 

apoptosis. Alternatively caspase-independent mechanism(s) have also 
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been suggested. As such, multiple mechanisms may therefore be involved 

in staurosporine-induced apoptosis and these may vary between different 

cell types (Belmokhtar et al., 2001). Etoposide is a major anti-tumour agent 

that is used to treat a variety of cancers. It exerts its anti-neoplastic activity 

by inhibiting topoisomerase II, which leads to DNA strand breaks, inhibition 

of DNA replication, and apoptotic cell death (Lezcano et al., 2014).  

 

5.3.2.1.  Treatment with staurosporine. 

 
To determine whether expression of truncated LT protects or enhances the 

survival time of cells after treatment with the apoptotic inducing agent, 

staurosporine,  an apoptosis assay was carried out. This assay is based on 

the observation that soon after initiating apoptosis, cells translocate 

phosphatidylserine from the inner face of the plasma membrane to the cell 

surface. Once on the cell surface, phosphatidylserine can be detected with 

a fluorescent conjugate of Annexin V and quantified by flow cytometry. This 

analysis can then be represented as a percentage of apoptotic to living 

cells in the tested populations (Figure 5.7). Results from this analysis 

demonstrated that untreated uninduced and truncated LT cells had a 

similar high percentage of living cells. In contrast, the addition of 

staurosporine resulted in a higher percentage of apoptotic, annexin V 

positive cells, in fact approximately doubling the amount in both cases. This 

suggests that although truncated LT expression may affect BAD 

expression, it  is unable to prevent the apopotic-inducing potential of 

staurosporine. This may be due to the multiple mechanisms involved in 

staurosporine-induced apoptosis described above. 
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Figure 5.7: Expression of truncated LT is not sufficient to inhibit staurosporine-
induced apoptosis. 

The i293-tLT cell remained uninduced or were induced with doxycycline to allow MCPyV 
truncated LT expression for 24 hours. The cells were then left untreated or treated with 1 
µM staurosporine. After 12 hours, the cells were harvested and labelled with annexin-V-
FITC and propidium iodide (50µg/mL) prior to be analysed by flow cytometry. The 
experiments were run in triplicate (n=3). 

 
Although the results shown in Figure 5.7 do not show any significant 

difference in the potential of truncated LT to inhibit apoptosis initiation as 

measured by the annexin V assay, this did not address the potential of 

truncated LT to delay the process of apoptosis upon the addition of 

staurosporine. To address this question, staurosporine was again added to 

control and truncated LT-expressing cells and the cells were visualised for 

cell number density and significant signs of cell death over a 24 hour 

period. Results are shown in Figure 5.8. Here an equal number of cells 

were seeded into 6 well plates, and cells remained uninduced or induced 

for truncated LT expression. After 24 hours, cells were then either treated 

with DMSO or staurosporine. In DMSO cells, both control and truncated 

LT-expressing cells have proliferated and started to become confluent in 

the dish. This is more pronounced for truncated LT expressing cells, due to 

their increased proliferation as previously described in Figure 5.4.  
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In contrast, the addition of staurosporine to control cells results in their cell 

death by 24 hours. The images show cells clumped together floating in 

media. However, truncated LT-expressing cells, although not proliferating 

to the same level as untreated cells, are still alive at 24 hours suggesting 

that truncated LT expression may delay the apoptotic-inducing properties 

of staurosporine. However, eventually (24 hours later) these cells are also 

dead. This suggests that MCPyV truncated LT might play role in the 

increased survival rate of infected cells, which in the longer term may 

contribute to cell transformation. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Expression of truncated MCPyV LT may delay the apoptotic-inducing 
properties of  staurosporine. 

The i293-tLT cell remained uninduced or were induced with doxycycline to allow MCPyV 
truncated LT expression for 24 hours. The cells were them left untreated or treated with 1 
µM staurosporine. Cells were then observed at 0 Hr, 5 Hrs and 24 Hrs using an inverted 
microscope for the sign of apoptosis or cell death (40×	
 magnification).  
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5.3.2.2.  Treatment with etoposide. 
 

Staurosporine can induce apoptosis by multiple mechanisms, therefore to 

further investigate any potential of truncated LT to inhibit or delay 

apoptosis, a more specific apoptotic inducer was utilised. Etoposide inhibits 

topoisomerase II, which leads to DNA strand breaks, inhibition of DNA 

replication, and apoptotic cell death (Pommier et al., 2010). This 

mechanism is particularly relevant for MCPyV as recent studies have 

shown that components of the ataxia telangiectasia mutated (ATM)- and 

ataxia telangiectasia and Rad3 related (ATR)-mediated DNA damage 

response pathways accumulate in MCPyV LT-positive nuclear foci (Tsang 

et al., 2014).  

 

As the live cell imaging was more informative that the annexin V-based 

assay in previous studies with straurosporine, the effect of etoposide was 

initially investigated using this method. An equal number of cells were 

seeded into 6 well plates, and cells remained uninduced or induced for 

truncated LT expression. After 24 hours, cells were then either treated with 

DMSO or etoposide. Cells were then compared at 0 and 24 hour time 

points. Figure 5.9 shows images of cell sheets at 24 hours post treatment. 

Results clearly show that in control cells treated with etoposide large 

amounts of cell membrane blebbing was observed, which is a clear 

indication of apoptotic cells. In contrast, although a small amount of 

blebbing was observed in truncated LT-expressing cells, this was much 

less pronounced than in controls cells. Again, this may indicate that 

truncated LT may delay the onset of the apoptotic response upon treatment 

of etoposide.    
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Figure 5.9: Expression of truncated LT may reduce the amount of the apoptotic 
blebbing induced by etoposide. 

The i293-tLT cell remained uninduced or were induced with doxycycline to allow MCPyV 
truncated LT expression for 24 hours. The cells were them left untreated or treated with 50 
µM etoposide. Cells were then observed at 24 Hrs using an inverted microscope for the 
sign of apoptotic blebbing.  

 

To further investigate whether truncated LT antigen has any inhibitory 

effect on the apoptotic inducing properties of etoposide, immunoblotting 

was performed to assess proteins levels of key proteins associated with the 

apoptotic pathway. To this end, HEK 293 cells were transfected with a 

control eGFP plasmid, MCPyV truncated LT antigen (tLT), or MCPyV wild 

type full length LT (WTLT), after 24 hours cells were treated with either 

DMSO or etoposide and then immunoblotting performed using PARP-, 

phosphorylated p53-, BAD- and caspase 3-specific antibodies. Results 

show truncated LT reduced the expression of cleaved PARP, 

phosphorylated p53 and BAD compared to the control plasmid (Figure 

5.10). A similar trend was also observed with MCPyV full length LT. 

However, full length LT experiments was much lower than the truncated 

form, as indicated by the 2T2 antibody which recognises both forms.  This 

might due to the stability of the LT antigen in the transfected cells, where 
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the truncated version maybe more favourable to the cells. The difference in 

the levels of expression between the full length LT and truncated LT has 

been previous observed in the literature (Borchert et al., 2014). 

 

The tumour suppressor protein p53 is an important regulator of the 

apoptotic cascade in response to DNA damage. Genomic instability and 

tumour development are associated with its inactivation or loss of function 

(Levine, 1997). Post translational modifications, such as phosphorylation of 

p53, play important roles in activating p53 responses to various cellular and 

genotoxic stresses. Specifically, phosphorylation of p53 has been proposed 

to stabilize p53, enhancing its apoptotic function. Therefore, if truncated LT-

expressing cells do have a delayed or reduced apoptotic levels, it is not 

therefore surprising that a reduced level of phosphorylated p53 is 

observed. 
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(i) 

 

 

 

 

Figure 5.10: MCPyV truncated LT leads to the reduction in host cell proteins 
involved in cell death. 

(i) HEK293 cells were transfected with either a control plasmid, MCPyV truncated LT (tLT), 
and MCPyV full length LT (WTLT). After 24 hours, cells were treated with DMSO or 50 µM 
etoposide for one hour. The cells were then harvested and lysates were detected with 
specific antibodies related to DNA damage and apoptosis-associated proteins. (ii) 
Densitometry quantification of the immunoblot was carried out using the Image J software 
and is shown a percentage of relative densitometry to the loading control, GAPDH. 
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Importantly however, to demonstrate that expression of MCPyV truncated 

LT reduced only the levels of phosphorylated p53, in contrast to the total 

levels of p53, immunoblotting was performed to assess p53 total levels in 

H1299 null cells, which expressed MCPyV ST and truncated LT antigen, 

and also a range of other viral antigens known to regulate p53 levels. The 

H1299 cells were chosen in this experiment as these cells have a 

homozygous partial deletion of the TP53 gene, therefore the tumour 

suppressor p53 protein were not expressed in this cell type. Thus, the 

amount of p53 protein in this blot was only expressed by p53 

overexpression constructs that been transfected with the viral antigen. This 

determined whether the p53 protein levels were only affected by the viral 

antigen and not due to variability of p53 protein produced by the host cells.  

 

Figure 5.11 demonstrates that total p53 levels in H1299 cells without and 

with cotransfection of the p53 overexpression construct and the tested viral 

antigen constructs. In the control sample, the cells without p53 expression, 

p53 bands were clearly undetected. Whereas, in cells which were 

cotransfected with the p53 overexpression construct, the expression of p53 

varied in the range of different viral antigens. Both MCPyV ST and 

truncated LT antigen showed increased amounts of p53 level compared to 

the GFP control by 1.7-fold. This was confirmed using densitometry 

analysis which shows that p53 total levels are similar in MCPyV ST and 

truncated LT-expressing cells. Notably, the HPV16 E7 showed the highest 

expression of the p53. This result was expected as the expression of E7 

has previously been shown to stabilize p53 in the absence of the E6 

antigen (Seavey et al., 1999). 
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Figure 5.11: Analysis of expression levels of p53 in the MCPyV T antigen expressing 
cells. 

(i) H1299 p53 null or wild type cells were transfected either with a range of viral oncogene 
expression constructed and immunoblot analysis was performed using a total p53 and 
GAPDH specific antibodies. GAPDH was used as a loading control. (ii) Densitometry 
quantification of the western blots was carried out using the Image J software and is 
shown a percentage of relative densitometry to the loading control, GAPDH. 
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5.4.  Effects of MCPyV truncated LT on cell movement and 
cell junctions 

 

In chapter 4, bioinformatics analysis highlighted that MCPyV truncated LT 

expression may affect cell-cell connections. Specifically, analysis showed 

that key components of cellular pathways involving tight junctions, 

regulation of actin cytoskeleton, gap junctions, adherens junction, integrin 

signaling pathways, synaptic proteins at the synaptic junction and uCalpain 

and friends in cell spread proteins were differentially expressed upon 

MCPyV truncated LT expression. This observation may be important in 

MCC development as tight junction proteins has been shown to be involved 

in the control of cellular proliferation and differentiation (Martin and Jiang, 

2009). Importantly, tight junction proteins, in addition to their structural 

functions also regulate both signal transduction emanating from the plasma 

membrane and gene expression in the nucleus. In addition, studies of 

human tumours reveal a direct correlation between the loss of functional 

tight junctions and associated proteins in cancer progression and 

metastasis.  

 

5.4.1.  Effects of MCPyV truncated LT antigen expression on 
levels of tight junction protein, zona occuldens proteins  
 

To initially study any possible effects that MCPyV truncated large T 

expression had upon host cell tight junctions, immunoblotting was 

performed to assess differential expression of the zona occuludens protein, 

ZO-1. This is a family member of tight junction associated proteins that 

function as cross-linkers, anchoring the tight junction strand proteins to the 

actin-based cytoskeleton (Itoh et al., 1997). ZO-1 was chosen as Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway analysis in the 

previous chapter showed that most of the proteins targeted in the SILAC 

dataset were downstream of ZO-1, as such changes in ZO-1 will highlight if 

the pathway is affected by truncated LT expression. Immunoblot analysis of 

ZO-1 protein levels showed a slight increase in truncated LT-expressing 

cells (Figure 5.12), this was rather surprising as they result contradicted the 
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quantitative proteomic results. Considering the large size of ZO-1, 

approximately 194 kDa, and the poor quality of the western blot, the 

efficiency of transfer proteins onto the membrane during blotting and the 

antibody used may be the reason for this surprising result. 

 

 

 

 

 

 

 

 

 

Figure 5.12: Expression levels of tight junction protein ZO-1, increase in cells 
expressing truncated MCPyV LT.  

HEK293 cells were transfected with either a control plasmid or MCPyV truncated LT (tLT). 
After 24 hours, cell lysates were probed using Flag-, ZO-1- and GAPDH-specific 
antibodies. GAPDH was used as a loading control. P 

 

To further investigate any possible effect of truncated LT expression on 

ZO-1, immunofluorescence studies were performed assessing endogenous 

ZO-1 subcellular localisation and also the subcellular localisation of ZO-1 

myc-tagged constructs; which comprises of N-terminus and  C-terminus 

truncation mutants. It is believed that the ZO-1 N-terminus is required for 

tight junction assembly, whereas the C-terminus may elicit specific 

properties of the tight junction, which are yet to be fully understood. Initial 

immunofluorescence studies attempted to assess the subcellular 

localisation of ZO-1 using ZO-1-specific antibodies, however, results shown 

in Figure 5.13 (top 2 panels), show an unexpected localisation in both 

control eGFP- and LT-expressing cells. Here ZO-1 was mainly present in 

the nucleus with weaker diffuse staining throughout the cytoplasm. No 

localisation was observed at tight junctions. Therefore immunofluorescence 

was also performed in cell expressing the ZO-1 truncation myc-tagged 

mutants, with ZO-1- specific antibodies (Figure  5.13, bottom 3 panels). 
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The subcellular localisation of these tagged constructs was surprising, with 

all 3 constructs concentrating around the perinuclear region and diffusely 

staining in the cytoplasm, which is reminiscent of microtubule staining. 

Therefore, taken into consideration the aberrant sub-cellular staining 

observed, experiments using the ZO-1 antibody and truncation mutants 

were not taken any further. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5.13: Localisation of ZO-1 proteins in control and GFP-tLT-expressing cells. 

HEK293 cells were transfected with either a eGFP or eGFP-tLT expressing plasmid, in the 
absence or presence of ZO-1 truncation mutants (ZO-1 (N), ZO-1 (C), and ZO-1 (MT)) for 
24 hours. The cells were fixed, permeabilised and stained with ZO-1 specific antibodies, 
whereas eGFP was directly visualised.   
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The previous experiments using the ZO-1-specific antibody were unable to 

show distinct cell-cell connection staining between neighbouring cells. 

Therefore, other cell-cell adhesion proteins, namely β-catenin, were used 

to investigate the effects of truncated LT on cell-cell connections. Figure 

5.14 demonstrates the immunofluorescence staining in eGFP versus eGFP 

tLT-expressing cells using the β-catenin-specific antibody. Results show 

that significant changes in distribution and intensity of β-catenin protein 

staining in cells expressing MCPyV truncated LT antigen. The protein β-

catenin seems to be accumulated more on the cytoplasmic membrane 

between the neighbouring cells. This may suggest possible breakdown or 

re-organisation of the cell-cell connections upon interactions of the MCPyV 

truncated LT antigen. This finding is preliminary and more future research 

is now required to elucidate further the effects of MCPyV truncated LT on 

downstream tight junction protein components that had been detected in 

the SILAC datasets.  

 

Interestingly, a large group of tight junction-associated proteins consist of 

members from the diverse family of PDZ domain-containing proteins, 

including the ZO-family of proteins. Consistent with having multiple protein-

binding domains, PDZ proteins typically function as scaffolds to assemble 

transmembrane and cytosolic proteins into supramolecular signaling 

complexes, as well as to tether such complexes to the actin cytoskeleton 

and to localize them at specialized membrane sites of cell-cell contacts, 

such as tight junctions (Martin and Jiang, 2009). It will be interesting to now 

determine if truncated LT affects these signalling complexes. 
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Figure 5.14: Immunofluorescence studies suggest that tight junction components 
may be reorganised upon coexpression with MCPyV truncated LT. 

HEK293 cells were transfected with eGFP or eGFP-tLT for 24 hours, then fixed 
permeabilised and stained with a β-catenin-specific  antibody. GFP fluorescence was 
directly visualised.  

 
5.4.2.  MCPyV truncated LT does not affect cell motility 
 

MCC cells are highly metastatic and the Whitehouse group have recently 

demonstrated that expression of MCPyV ST enhances cell motility and the 

metastatic potential of MCC cells (Knight et al., 2015). To also determine if 

truncated LT has any additional effects on cell motility, scratch assays were 

performed using the truncated LT inducible cell line (Figure 5.15). A 

confluent cell sheet of i293-tLT and i293-ST cells remained uninduced or 

were induced with doxycline. Cells were then subjected to a scratch using a 

p200 pipette tip in a continuous straight line through the well. After 24 

hours, cellular growth back into the wound was recorded for 24 hours 

(Figure 15). Results indicate that, in contrast to uninduced cells, expression 

of MCPyV ST enhanced the motility and migration of cells into the wound, 

confirming previous results. In contrast no enhancement in migration and 

cellular growth back into the wound was observed upon expression of 

truncated LT, suggesting that it did not play a role in cell migration.  
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Figure 5.15: Scratch assay shows MCPyV truncated LT expression does not 
enhance cell migration.   

i293-ST and i293-tLT cells were seeded onto poly-L-lysine coated 6 well plates and 
remained uninduced or were incubated in the presence of Doxycycline hyclate. After 24 
hours, a scratch was created by scraping the monolayer using a P200 pipette tip. 
Migration of cells toward the scratch was observed over a 24 hour period and images 
taken under a Zeiss light microscope at 40× magnification. 

 

5.5.  Discussion 
 
The main aim of this chapter was to evaluate the potential role of 

differentially expressed proteins upon truncated LT expression, highlighted 

by the quantitative proteomic approach in the previous chapter. The 

evaluations were carried out using several approaches and assays in order 

to investigate the possible functions that the MCPyV truncated LT has upon 

regulating the cellular proteome and which may relate to MCPyV 

pathogenesis. 

 

Firstly, the quantitative proteomics analysis highlighted many stress-related 

and apoptosis pathways were affected upon truncated LT expression. For 

example, increases in stress response of tumour, cell death, apoptosis and 

movement disorders-related pathways were observed. Interestingly, 

pathways involved in the immortalization of fibroblast cell lines also 

increased, suggesting that while infected cells were suffering stress, 
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MCPyV truncated LT might utilise mechanisms to enhance transformation 

and  immortalization of these cells. This feature is similar to SV40 LT 

antigen where episomal viral DNA can lead to stable transformation and 

immortalization of fibroblast cell lines (Morelli et al., 2004). This aligns with 

the role of many persistently infected viruses with oncogenic potential 

which can influence tumour sustainment and progression and induce 

escape pathways from apoptosis and immune surveillance (Carbone et al., 

2004).  

 

A major pathway that was highly upregulated upon truncated LT 

expression was involved in regulating the cell cycle. The cell cycle analysis 

carried out using the inducible cell line expressing MCPyV truncated LT 

showed significant changes in the cell population distributions across cell 

cycle phases, namely affecting the G1 checkpoint, enhancing the transition 

of cells from G1 into the S phase. These changes can be explained by the 

ability of MCPyV truncated LT to bind the retinoblastoma tumour 

suppressor protein (pRB). pRb is known as negative regulator of cell 

proliferation and cell cycle control. pRb prevents entry to the S phase by 

forming an inhibitory complex with transcription factors of the E2F family 

(Chau and Wang, 2003). MCPyV truncated LT antigen possesses a Rb 

binding motif (LXCXE) which is highly conserved across polyomaviruses 

allowing binding to the pocket domain of pRB with high affinity (Borchert et 

al., 2014). Binding of the LT with pRb results in dysregulation of E2F-

mediated transcription driving cells into the S-phase, whereby the viral 

genome can be replicated (Becker et al., 2009). Furthermore, this LT 

antigen/pRb interaction is thought to be important for the growth-promoting 

properties of MCPyV-infected MCC cells (Houben et al., 2012). The loss of 

the G1-S checkpoint could also contribute to genomic instability and 

transformation of the cells. A recent study has demonstrated that truncated 

LT expression alone is sufficient to cause repair and cell cycle arrest 

defects in MCPyV-negative MCC cells (Demetriou et al., 2012).  

 

Results also highlighted several protein targets associated with cell 

proliferation, ubiquitin proteasomal degradation and anaphase promoting 
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complexes (APC)  that were shown to be upregulated upon expression of 

MCPyV truncated LT antigen. The latter two pathways may provide an 

explanation as to why so many cellular proteins seem to be downregulated 

in the quantitative proteomic truncated LT dataset. Cells often use ubiquitin 

as a covalent modifier of other proteins both to activate their function and to 

target them for degradation (Hochstrasser, 2009). Several components of 

APC complexes were upregulated in the SILAC dataset which may play a 

role in cell cycle control, poly-ubiquitination and proteasomal degradation. 

APC is essential for separation of sister chromatids during anaphase and 

regulates cells to exit mitosis or enter the S-phase (Thornton et al., 2006). 

Among the known substrates for the APC is cyclin A (Fehr and Yu, 2013). 

Interestingly, cyclin A and CDK2 were found to be slightly elevated in 

MCPyV truncated LT expressing cells. CDK2 binding to cyclin A  is 

essential for DNA replication (Hartwell and Kastan, 1994) as well as 

promoting the G1/S phase transition and driving cells through S-phase 

(Aleem et al., 2005). This regulation of the cell cycle may therefore be 

related to the increased proliferative capacity of truncated LT-expressing 

cells. The cell growth counting analysis showed MCPyV truncated LT-

expressing cells  exhibit rapid growth activity compared to the controls 

suggesting that MCPyV  truncated LT possesses a proliferative activity. 

Interestingly, the rate of growth in truncated LT cells was noticeably higher 

than the full length version of the LT antigen, suggesting that MCPyV LT C-

terminal helicase domain contains growth inhibitory properties, as recently 

suggested  (Li et al., 2015).  

 

Proteomic analysis also highlighted cell death and cell survival pathways 

were highly affected by truncated LT expression. To validate this 

hypothesis  we chose to focus on the pro-apoptotic protein, BAD, which is 

known to interact with BCL2-associated agonist of cell death (Trecherel et 

al., 2012). Trecherel et al., showed vascular smooth muscle cells undergo 

apoptosis upon induction of BAD, suggesting BAD promotes cell death. 

Our SILAC analysis suggested that the BAD protein is downregulated upon 

expression of MCPyV truncated LT. Interestingly, reduction of BAD 

expression by RNA interference prevents apoptosis in response to 
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P13K/Akt kinase pathway inhibition in PTEN-deficient tumour cells (She et 

al., 2005). Therefore, expression of truncated LT downregulating BAD 

function, may enhance cells to inhibit apoptosis and initiate tumourigenesis, 

as well as increasing the survival rate of the cancer cells. Further analysis 

on the induction of apoptosis and DNA damage were carried out to 

evaluate the effect of truncated LT to inhibit cell death pathways. Results 

suggest that truncated LT expression may delay the apoptosis-inducing 

properties of staurosporine and etoposide, suggesting that MCPyV 

truncated LT might play role in the increased survival rate of infected cells, 

which in the longer term may contribute to cell transformation. This may be 

due to truncated LT expression reducing the pro-apoptotic forms of 

phosphorylated p53, however how this is achieved is currently unknown. In 

SV40-infected cells, LT binding to p53 results in p53 stabilization leading to 

abundant amounts of p53 that is functionally inactive (Oren and Levine, 

1981; Oren et al., 1981). However, in contrast to SV40, MCPyV truncated 

LT does not contain the direct binding site for p53. Thus a different 

mechanism is used by MCPyV truncated LT antigen to stabilise p53. 

Interestingly, the MCPyV full length LT antigen has also been shown not to 

directly bind p53, but is able to target the p53 pathway and reduce p53 

dependent transcription (Borchert et al., 2014). How this is achieved is 

currently under investigation.  

 
In addition to apoptosis and cell survival pathway, the other possible main 

function of truncated LT based on our SILAC proteomic data is in 

regulating cell-cell connection related pathways. The SILAC data suggests 

that truncated LT expression leads to the downregulation of various 

proteins associated with these pathways. This is particularly interesting as 

truncated LT might have a function in regulating the connective proteins 

between cells that enable cells to break apart leading to migration and 

metastasis. At present our preliminary analysis using cell-cell connections 

associated proteins could not address this question and this area of 

research requires further investigation.  
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Chapter 6 
Final discussion and future perspectives 
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6.0.  Final discussion and future perspectives 
 
MCC is a rare but highly aggressive neuroendocrine skin cancer which is 

able to spread effectively through the dermal lympathic system. As such it 

exhibits a high mortality rate (Poulsen, 2004a; Tadmor et al., 2011a). 

Merkel cell polyomavirus (MCPyV) has been detected in the majority of 

MCC tumour samples and is monoclonally integrated in primary and 

metastatic tumour cells (Feng et al., 2008). Thus, infection and integration 

occur before the clonal expansion of the tumour cells, indicating the 

importance of MCPyV in the initiation of tumourigenesis.  Moreover, 

truncation mutations of the LT antigen are commonly observed in the 

integrated genome of the MCPyV positive samples of MCC (Shuda et al., 

2008). These LT mutations render the virus replication defective leading to 

aberrant expression of MCPyV tumour antigens which is implicated in 

cellular transformation.   

 

To date, several studies have demonstrated the importance of the MCPyV 

T antigens in viral replication and host cell transformation. MCPyV ST 

expression is detected in 92% of MCC tumour samples, indicating a 

significant role of ST in tumourigenesis (Shuda et al., 2011b). Notably, 

expression of MCPyV ST alone is sufficient to promote anchorage 

independent growth of rodent cells, loss of contact inhibition and facilitates 

cellular transformation (Shuda et al., 2011b). Recently, MCPyV ST has also 

been shown to promote the destabilization of the host cell microtubule 

network which enhances cell motility and migration (Knight et al., 2015). 

This is a particularly interesting finding as it may suggest why MCC 

possess such highly metastatic properties. Aligned with this observation, 

quantitative SILAC-based proteomic analysis, which compared control and 

MCPyV ST expressing cells, has highlighted numerous other cellular 

proteins that are differentially expressed upon MCPyV ST expression which 

affect the host cell cytoskeleton and may also been involved in enhancing 

cell motility and metastasis.  
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The aim of chapter 3 was to further characterise three proteins of potential 

interest, namely kinesin protein family 14 (Kif14), vitronectin (Vn) and 

periplakin (PPL), in relation to MCPyV ST-induced cell motility. These 

proteins were prioritised as they were identified to be differentially 

expressed in a previous SILAC-based quantitative proteomic study and 

have been previously shown to be dysregulated in other types of human 

cancer. 

 

From the results presented in chapter 3, it was surprisingly however that 

only one of the prioritised proteins, periplakin, showed a similar increase in 

expression levels as suggested by the quantitative proteomic data, 

whereas Kif14 and vitronectin levels showed only a slight, if any, increase. 

At present, why there is a discrepancy in the quantitative proteomic data to 

the western blot data is unknown. Previous work has shown consistency in 

the correlation between western blot and proteomic values in this dataset, 

namely Stathmin (Knight et al., 2015), and also a range of cytoskeletal 

regulatory proteins, such as cortactin, cofilin-1 and Actin-related protein 2/3  

complex subunits (Personal communication Prof. A Whitehouse).  

Although, a caveat of the western blot data was the poor quantity of some 

of the antibody reagents used. Alternative experiments could be performed 

to further analyse whether the 3 prioritised proteins are differentially 

expressed upon MCPyV ST expression or in MCCs. For example, 

multicolour immunohistochemistry analysis could be performed on formalin-

fixed, paraffin-embedded (FFPE) sections of primary MCC tumours. Here 

sections would be incubated with cytokeratin 20 (CK20), a marker widely 

used to distinguish MCC as well as the prioritised protein-specific 

antibodies. Importantly, an isotyped-matched control would also be needed 

to be included as a negative control. This methodology has been 

successfully used in the Whitehouse laboratory previously to show higher 

levels of stathmin expression coincident with CK20 staining in regions of 

the tumour, suggesting that MCC tumour cells express increased levels of 

stathmin (Knight et al., 2015). 
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PPL is a member of the plakin family proteins that serve as epidermal 

cytolinkers and are components of cell-cell and cell-matrix adhesion 

complexes. Proteins in this family connect the microfilament, microtubule 

(MT) and intermediate filament (IF) systems with each other and also 

connect cell junction complexes to organelle and plasma membranes 

(Bouameur et al., 2014). They also act as scaffolds and adaptors for 

signalling proteins that modulate cytoskeletal dynamics. As such, there is 

an emerging interest in this versatile protein family regarding their 

functions. Importantly, elucidating a link between periplakin and MCPyV 

ST-induced changes in cell motility and cytoskeletal proteins may highlight 

a potential role for periplakin in carcinogenesis, tumour progression, 

cellular movement or attachment activity.  

 

One set of experiments which should be a priority in the future is to assess 

the effect of siRNA-mediated depletion of PPL in MCPyV ST-expressing 

cells. Interestingly, PPL knockdown in pharyngeal squamous cancer cell 

lines appeared to decrease tumour growth and resulted in accumulation of 

cells in G2/M phase (Tonoike et al., 2011). Moreover, the PPL knockdown 

also suppressed cellular movement and attachment suggesting that PPL 

potentially engages in cellular movement (Tonoike et al., 2011). Therefore, 

key experiments, upon effective PPL depletion, could be to examine 

MCPyV ST-induced cell motility by live cell imaging using an Incucyte 

kinetic live cell imaging system. Cells could be imaged every 30 minutes 

over a 24 hour period and cell motility tracked using Image J software. 

Additional motility assays such as a scratch assay and matrigel-based 

migration and invasion assays could also be performed. Moreover, a cell 

scatter assay could be performed which measures the dispersion of 

compact colonies of epithelial cells. Previous results in the Whitehouse 

laboratory have shown that MCPyV ST-expressing cells have enhanced 

dispersal rates, which may lead to a more motile and metastatic 

phenotype. Therefore, due to the potential link between PPL and cell 

junction complexes, these experiments could be performed in control and 

MCPyV ST-expressing cells in the presence or absence of PPL.  

Furthermore, the phenotype of control and MCPyV ST-expressing cells 
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could be examined using confocal microscopy, comparing PPL expressing 

and PPL-depleted cells, of particular interest would be to examine the 

destabilisation of the microtubule network and the potential formation of 

filopodia, which are both prompted by MCPyV ST expression. In addition, 

although the initial screening of protein-protein interactions failed to show a 

direct interaction between MCPyV ST and PPL, this needs to be confirmed 

due to the low detection level in the input samples of PPL. Considering the 

extremely large size of the PPL proteins and the efficiency of the 

immunoblotting transfer, the detection systems might be optimised to 

reconfirm the possible interactions of MCPyV ST and PPL. If no interaction 

is observed further investigations might focus on the mechanism by which 

MCPyV ST enhances PPL expression. One possible mechanism is that 

PPL upregulation is a result of MCPyV ST dysregulation of cap-dependent 

translation, through maintenance of the hyperphosphorylated state of the 

translation initiation factor 4E-BP1.  

 

A similar set of depletion-based experiments could also be performed to 

assess any possible role of Kif14 in MCPyV ST-expressing cells. Kif14 was 

shown to directly interact with MCPyV ST using GST-pulldown assays and 

colocalised with overexpressed Kif14 in the cytoplasm. To date, the role of 

Kif14 in tumour development is still yet to be fully elucidated. Confusingly 

overexpression studies of Kif14 either suggest that it may have a role in 

progression or inhibition of various tumours (Ahmed et al., 2012; 

Basavarajappa and Corson, 2012; Corson et al., 2005; Hung et al., 2013; 

Singel et al., 2014; Yang et al., 2014; Yang et al., 2013), whereas 

knockdown of the Kif14 leads to the progression of tumour development by 

formation of binucleated cells resulting from cytokinesis failure (Carleton et 

al., 2006a; Gruneberg et al., 2006b; Zhu et al., 2005). As such, examining 

the link between Kif14 and MCPyV ST may help to resolve these 

questions.  

 

In other hand, unfortunately, results examining a possible link with MCPyV 

ST and vitronectin failed to showed any differential expression levels or 
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possible interactions through our initial screening. Therefore, work on 

vitronectin would not be a priority in the future. 

  

Chapters 4 and 5 focussed on examining the possible effects of MCPyV 

truncated LT (tLT) expression of the cellular proteome. Polyomavirus LT 

antigens are large, multifunctional proteins involved in viral genome 

replication and are also capable of manipulating multiple host cell pathways 

through numerous protein-protein interactions. For example, the widely 

studied SV40 LT protein coordinates viral DNA replication during a 

productive life cycle by instigating dynamic interactions with cellular DNA 

replication factors (Topalis et al., 2013). Moreover, the multifunctionality of 

SV40 LT is demonstrated through interactions with various cellular targets 

including pRb, p53 and Hsc70 (Saenz-Robles et al., 2001). For instance, 

cellular proliferation induced by SV40 involves binding and inhibition of pRb 

function, thus triggering E2F-dependent expression (Rathi et al., 2009). 

Similar to SV40, MCPyV LT also possess several conserved domains; 

such as the pRb binding, DNA binding and helicase domains, however 

MCPyV also possess an unique region (MUR). This unique LT region is 

responsible for interacting with the host cellular factor Vam6p and also 

encodes a viral miRNA (Liu et al., 2011b; Seo et al., 2009).  

 

The widely characterised signature feature of MCPyV-positive MCC is the 

presence of mutations in LT. These mutations prematurely truncate the LT 

protein at the C-terminus, rendering the integrated viral genome replication 

defective (Shuda et al., 2008). There are proposed reasons for the 

generation of these mutations; firstly to prevent unlicensed viral gene 

replication or secondly the mutations are caused by selective pressure by 

the host upon cell transformation. Specifically, the MCPyV LT C-terminus 

has recently been shown to have an inhibitory effect upon growth and also 

to activate the cellular DNA damage response (Cheng et al., 2013). 

Therefore, the aim of chapters 4 and 5 were to assess what effect 

truncated LT protein expression had upon the host cell proteome. 

Moreover, this research may highlight novel avenues for future therapeutic 

intervention of MCC. 
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Therefore to explore the effects on the cellular proteome upon MCPyV tLT 

expression, high throughput unbiased quantitative SILAC-based proteomic 

analysis was conducted to identify differentially expressed host cell 

proteins and pathways regulated by MCPyV tLT expression. SILAC-based 

analysis coupled with LC-MS/MS and subsequent downstream 

bioinformatic analysis has been established as a highly informative tool to 

study virus-host interactions (Munday et al., 2012). Through this approach, 

my results identified that a large number of cellular differentially expressed 

proteins were downregulated at least two-fold. This was a rather surprising 

result but consistent downregulation of cellular proteins was observed in 

both cytoplasmic and nuclear fractions. The reason why so many cellular 

proteins were downregulated upon expression of MCPyV tLT is yet to be 

determined. Interestingly however, among the tLT-effected pathways, the 

ubiquitin-proteosomal degradation pathway is upregulated and thus may 

provide a logical explanation for the large number of downregulated cellular 

proteins upon tLT expression. Notably, other DNA viruses like human 

papillomavirus (HPV) encode oncoproteins, such as E6 and E7, can induce 

proteolysis of host cell tumour suppressor proteins p53 and pRb through 

the ubiquitin-proteosome pathway (Boyer et al., 1996; Scheffner et al., 

1990). In addition, a number of herpesviruses can induce proteasome-

dependent degradation of complete nuclear organelles, such 

as  promyelocytic leukemia (PML) nuclear bodies (Chelbi-Alix and de The, 

1999), which is thought to prevent PML inducing an antiviral and anti-

proliferation; interferon (IFN)-mediated response (Chelbi-Alix et al., 1998). 

Conversely, MCPyV ST is found to inhibit MCPyV LT degradation by 

inhibiting the function of the cellular SCF(Fbw7) E3 ligase (Kwun et al., 

2013).  

 

We believe this is the first observation that MCPyV tLT may affect ubiquitin-

proteasome degradation pathways. Considering this surprising result and 

the numerous cellular proteins that were downregulated in MCPyV tLT 

expressing cells, further work must be performed to confirm the link 
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between MCPyV tLT and ubiquitin-mediated degradation. A first key 

experiment would be to determine whether tLT-mediated degradation could 

occur in the presence of the proteasome inhibitor, MG132. Here, HEK 293 

cells could be transfected with GFP or GFP-tLT expression constructs in 

the absence and presence of MG132, added to the cell media 12 hours 

post-transfection. The cell lysates could then be subjected to SDS-PAGE 

and subsequent immunoblotting with a range of antibodies to cellular 

proteins which were suggested to be downregulated upon tLT expression. 

It would also be of  interest to determine where this downregulation is 

specific to the tLT construct compared to the full length LT. In addition, to 

confirm that the observed proteasomal degradation of host cell proteins in 

the presence of tLT is directly related to ubiquitin-mediated degradation 

pathways, immunoblotting could also be performed using ubiquitin-specific 

antibodies to determine the presence of a ladder of ubiquitinated target-

protein species upon MCPyV truncated LT expression. 
 
Bioinformatic analysis also showed dysregulation of other cellular pathways 

upon MCPyV truncated LT (tLT) expression, namely cell cycle alteration 

and cell proliferation, apoptosis and cell survival and cell-cell contacts. 

Following identification of these pathways, the focus of chapter 5 was to 

confirm the proteomic dataset using a range of assays including cell cycle 

analysis, cell growth and proliferation and apoptosis assays. Results 

demonstrated that MCPyV tLT expression altered cell cycle progression. 

Taking into consideration previous work on other polyomavirus LT proteins, 

such as SV40, it is likely that this cell cycle control is due to the interaction 

of LT with the tumour suppressor protein, pRb. pRb is responsible for a 

major G1 checkpoint to block early S-phase entry and cell growth 

(Weinberg, 1995). This correlates with our analysis, whereby expression of 

MCPyV tLT results in a slight accumulation of the cell population in S-

phase. In addition, we also discovered that CDK2 and cyclin A were slightly 

elevated. Binding and interaction of CDK2 and cyclin A is essential for DNA 

replication and promotes host cell G1/S transition (Hartwell and Kastan, 

1994); which may related to the cell proliferative activity of MCPyV tLT.  
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Interestingly, several other proteins which regulate the cell cycle where 

identified in the MCPyV tLT-proteomic dataset which merit further 

investigation, in particular components of anaphase-promoting 

complex/cyclosome (APC/C) and S-phase kinase associated protein 2 

(Skp2). Skp2 can form a complex with the cyclin A-CDK2 complex and 

specifically target cell cycle control elements, such as p27 for ubiquitin 

degradation (Carrano et al., 1999). Skp2 is also suggested to act as proto-

oncogene, as overexpression of Skp2 is frequently detected in various 

human cancers (Chan et al., 2010). Elevation of Skp2 by 11-fold in MCPyV 

tLT expressing cells indicates that Skp2 might play an important role in 

MCC tumourigenesis. Notably, inactivation of Skp2 restricts cancer 

development by triggering a cellular senescence and/or apoptosis 

response in vivo (Lin et al., 2010). Interestingly, recent studies have 

identified a specific Skp2 inhibitor, SZL-P1-41, using high-throughput in 

silico screening of large and diverse chemical libraries (Chan et al., 2013). 

This Skp2 inhibitor, which binds to Skp2 and suppresses Skp2 E3 ligase 

activity, exhibits potent antitumour activities in multiple animal models and 

cooperates with chemotherapeutic agents to reduce cancer cell survival. 

Therefore, it would be of major interest to determine whether SZL-P1-41 is 

a promising therapeutic compound for MCPyV-induced MCC. Similarly, 

components of the anaphase promoting complex/cyclosome (APC/C) were 

also elevated in the MCPyV tLT-proteomic dataset. The APC/C is a 13-

subunit ubiquitin ligase protein complex that controls the cell cycle.  Small 

molecule inhibitors of the APC/C called proTAME and apcin, have recently 

been discovered. ProTAME is a cell permeable prodrug that is converted to 

TAME (Tosyl-L-Arginine Methyl Ester) by intracellular esterases. TAME 

structurally mimics the IR-tail of the co-activators and therefore binds to 

APC/C, blocking the interaction of cell civision cycle 20 (Cdc20) or 

Cadherin-1(Cdh1) proteins with the APC/C (Zeng et al., 2010). Apcin is a 

small molecule that prevents substrate recognition by binding to Cdc20 

(Sackton et al., 2014). Again, it would be of interest to determine if these 

small molecules have therapeutic potential against MCC. 
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The apoptosis inducing experiments showed that upon treatment with 

staurosporine or etoposide, MCPyV tLT may possess a specific capability 

to delay the apoptotic cascade, but results suggest that it was not fully 

capable to inhibit apoptosis. However, the true potential of tLT as a pro-

survival factor in these experiments may not have been highlighted, due to 

the high potency of these apoptotic-inducing compounds. Therefore, to fully 

address the pro-survival properties of MCPyV tLT, these experiments could 

be repeated with a greater concentration range of staurosporine or 

etoposide or using alternative apoptotic-inducing stimuli, such as bleomycin 

or cisplatin.  Interestingly, it may be the case that MCPyV tLT can target 

multiple stages/proteins in the apoptotic cascade. Firstly, it has previous 

been shown that tLT targets survivin, an inhibitor for apoptosis and found to 

be upregulated in various lymphoma and metastatic melanomas 

(Ambrosini et al., 1997). It is believed that survivin functions to inhibit 

apoptosis by prolonging cell viability, which eventually leads to cellular 

transformation. Secondly, results from the MCPyV tLT-proteomic dataset, 

generated in Chapter 4, suggest that MCPyV tLT also targets the pro-

apoptotic protein, BCL-2-associated death promoter (BAD). BAD was found 

to be downregulated upon expression of MCPyV tLT in the SILAC dataset 

which was confirmed by immunoblot analysis. The reduction of BAD by 

RNA interference (RNAi) has also been shown to prevent apoptosis in 

PTEN-deficient tumour cells (She et al., 2005). In regards of this evidence, 

further work on the mechanism of how tLT downregulates BAD merits 

investigation.  

 

BAD induces apoptosis by inhibiting anti-apoptotic BCL-2-family members, 

namely BCL-x and BCL-2; thereby allowing other pro-apoptotic proteins, 

such as BAK and BAX, to aggregate and induce release of cytochrome c, 

followed by caspase activation and apoptosis. The pro-apoptotic activity of 

BAD is regulated through its phosphorylation. Only the non-phosphorylated 

form of BAD heterodimerizes with BCL-xl or BCL-2, whereas 

phosphorylated BAD is sequestered and inactivated/degraded in the 

cytosol by binding to 14-3-3. Therefore, possible mechanisms by which tLT 

may downregulate bad activity could be investigated. For example, does 
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tLT bind BAD, preventing its heterodimerisation potential with BCL-xl or 

BCL-2. Alternatively does expression of tLT affect its phosphorylation 

status by enhancing the activity of kinases which are known to 

phosphorylate BAD, such as Pim-2 kinase, protein kinase A and PI 3-

kinase. 
 

Finally, bioinformatic data presented also highlighted cell-cell connection 

related pathways such as cell junctions, integrin signalling, and regulation 

of actin cytoskeleton. In contrast with MCPyV ST analysis discussed 

earlier, many of the proteins within these associated pathways were 

detected to be downregulated upon expression of MCPyV tLT. This 

indicates that the tLT may play a different role to ST in relation to cell 

motility and migration. Moreover, expression of tLT failed to  enhance cell 

motility as observed in the scratch wound assay, in contrast with cells 

expressing MCPyV ST. To further investigate the link between MCPyV tLT 

function and cell-cell connections, we first chose to examine the zona 

occuldens protein, ZO-1; a tight junction-related protein. Tight junctions 

have been shown to be involved in the control of cellular proliferation and 

differentiation, whereby loss of the tight junction can lead to invasion and 

metastasis of cancer cells (Martin and Jiang, 2009).  Here, tight junctions 

function as the barrier in adhesive to prevent cell dissociation (Hollande et 

al., 2001). Overcoming the tight junction barrier is an important step for a 

cancer cell to metastasize. Our downstream analysis on ZO-1 showed 

contradictory results compared to the proteomic dataset, although 

immunofluorescences studies were inconclusive due to poor antibody 

staining. The overexpression of ZO-1 also failed to show any cell-cell 

connection staining as expected. Therefore, other cell-cell connections 

component, namely  β-catenin were selected and results showed that 

MCPyV tLT expression was capable of downregulating the cell-cell barrier. 

Initial work using immunofluorescence studies showed significant changes 

in the distribution and intensity of β-catenin staining upon tLT expression, 

suggesting the possible break-down and re-organisation of cell junctions. 

Further work on this protein and other cell junction components is now 

required to fully elucidate whether MCPyV tLT functions in cell junction 
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break-down and which signalling complexes are involved. Moreover, it 

would also be of interest to determine whether tLT acts in synergy with the 

MCPyV ST in this function. 

 

In summary, results presented herein expand our current understanding on 

the effects of MCPyV ST and tLT antigens on the host cell proteome. 

These results may help to identify possible functions and binding partners 

of the MCPyV T antigens. Moreover, this information, in the longer term, 

may highlight potential therapeutic targets for the treatment of MCPyV-

induced MCC. 
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Appendices 

 

DNA sequence of MCPyV LT truncated gene 

ATGGATTTAGTCCTAAATAGGAAAGAAAGAGAGGCTCTCTGCAAGCTT
TTAGAGATTGCTCCTAATTGTTATGGCAACATCCCTCTGATGAAAGCT
GCTTTCAAAAGAAGCTGCTTAAAGCATCACCCTGATAAAGGGGGAAAT
CCTGTTATAATGATGGAATTGAACACCCTTTGGAGCAAATTCCAGCAA
AATATCCACAAGCTCAGAAGTGACTTCTCTATGTTTGATGAGGTTGAC
GAGGCCCCTATATATGGGACCACTAAATTCAAAGAATGGTGGAGATCA
GGAGGATTCAGCTTCGGGAAGGCATACGAATATGGGCCCAATCCACA
CGGGACCAACTCAAGATCCAGAAAGCCTTCCTCCAATGCATCCAGGG
GAGCCCCCAGTGGAAGCTCACCACCCCACAGCCAGAGCTCTTCCTCT
GGGTATGGGTCCTTCTCAGCGTCCCAGGCTTCAGACTCCCAGTCCAG
AGGACCCGATATACCTCCCGAACACCATGAGGAACCCACCTCATCCT
CTGGATCCAGTAGCAGAGAGGAGACCACCAATTCAGGAAGAGAATCC
AGCACACCCAATGGAACCAGTGTACCTAGAAATTCTTCCAGAACTGAT
GGCACCTGGGAGGATCTCTTCTGCGATGAATCACTTTCCTCCCCTGA
GCCTCCCTCGTCCTCTGAGGAGCCTGAGGAGCCCCCCTCCTCAAGAA
GCTCGCCCCGGCAGCCCCCGTCTTCCTCTGCCGAGGAGGCCTCGTC
ATCTCAGTTTACAGATGAGGAATACAGATCCTCCTCCTTCACCACCCC
GAAGACCCCTCCTCCATTCGATCATGATTACAAGGATGACGACGATAA
GTGAGCGGCCGCTCGAGTCTAGAGGGCCCGTACGCCGCC 

 

Protein sequence of tLT 

M D L V L N R K E R E A L C K L L E I A P N C Y G N I P L M K A A F K R 
S C L K H H P D K G G N P V I M M E L N T L W S K F Q Q N I H K L R S 
D F S M F D E V D E A P I Y G T T K F K E W W R S G G F S F G K A Y E 
Y G P N P H G T N S R S R K P S S N A S R G A P S G S S P P H S Q S 
S S S G Y G S F S A S Q A S D S Q S R G P D I P P E H H E E P T S S S 
G S S S R E E T T N S G R E S S T P N G T S V P R N S S R T D G T W 
E D L F C D E S L S S P E P P S S S E E P E E P P S S R S S P R Q P P 
S S S A E E A S S S Q F T D E E Y R S S S F T T P K T P P P F D H D Y 
K D D D D K Stop 
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Additional identified proteins from MCPyV truncated LT SILAC 
proteomic dataset 

 
Accession # Peptides MW [kDa] Score Description 

B3KUD7 25 68.5 317.50 DNA REPLICATION LICENSING FACTOR MCM7  

Q59GM9 22 98.8 256.69 Phosphorylase  

Q14315 11 290.8 114.20 Filamin-C  

Q8IVF2 4 616.2 72.65 Protein AHNAK2  

Q9NRW1 6 23.4 66.71 Ras-related protein Rab-6B  

B7ZKR7 4 115.2 40.69 AP-3 complex subunit beta-2  

A8MPP7 3 55.4 39.47 SRSF protein kinase 3  

Full length LT 5 92.3 39.44 Full length LT 

Q9UQ05 2 111.6 36.86 Potassium voltage-gated channel subfamily H 

member 4  

B1WB49 3 293.2 34.51 BDP1 protein  

Q96L93 2 151.9 32.06 Kinesin-like protein  

Q9NS88 2 282.4 22.13 Alpha1A-voltage-dependent calcium channel  

H7C5G4 3 10.8 19.39 Replication factor C subunit 2  

Q5SGD2 2 41.0 18.97 Protein phosphatase 1L  

B7Z6T2 2 77.5 14.13 Type II inositol-3,4-bisphosphate4-phosphatase  

H0Y843 2 136.7 13.94 EF-hand calcium-binding domain-containing protein 

5  

J3QQZ1 2 208.0 10.80 Sodium channel protein type 4 subunit alpha  

B4DHK6 3 44.2 9.59 S-phase kinase-associated protein 2  

B4E1J7 2 70.1 15.68 Centromere/kinetochore protein  

C9JBZ4 3 44.8 13.42 HAUS augmin-like complex subunit 8  

B4DW39 2 67.6 10.30 Fc receptor-like protein 5  

O14513 3 208.4 34.80 Nck-associated protein 5  

B4DXG2 2 36.1 5.75 Son of sevenless homolog 1  

Q6IEH8 2 315.9 16.30 Transcriptional regulator  
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Accession # Peptides MW [kDa] Score Description 

Q8WUM4 29 96.0 444.04 Programmed cell death 6-interacting protein  

Q14222 6 24.2 420.00 EEF1A protein  

P46821 33 270.5 364.25 Microtubule-associated protein  

P11216 23 96.6 301.10 Glycogen phosphorylase 

Q5R370 15 21.2 243.75 Calcyclin binding protein  

P27824 15 67.5 241.28 Calnexin  

Q10567 20 104.6 193.50 AP-1 complex subunit beta-1 

P63010 17 104.5 184.19 AP-2 complex subunit beta  

P16989 8 40.1 164.83 DNA-binding protein A  

G3V1R9 13 44.8 155.82 Inositol-3-phosphate synthase 1  

H3BSC1 11 22.5 127.84 Ras-related protein Rab-11A  

Q9BSJ8 19 122.8 127.64 Extended synaptotagmin-1  

E7EVA0 7 245.3 126.67 Microtubule-associated protein  

P31947 5 27.8 123.53 14-3-3 protein sigma  

P60953 7 21.2 59.01 Cell division control protein 

Q07157 4 195.3 24.96 Tight junction protein ZO-1 

H0Y564 3 161.5 24.37 Anaphase-promoting complex subunit 1  

O75843 2 87.1 21.66 AP-1 complex subunit gamma-like 2  

Q00653 3 96.7 21.11 Nuclear factor NF-kappa-B p100 subunit  

A0JLQ9 2 66.5 19.82 STAT2 protein  

O75747 3 165.6 19.42 Phosphatidylinositol 4-phosphate 3-kinase C2  

G5E9Y3 3 151.0 18.18 Arf-GAP with Rho-GAP domain, ANK repeat and PH 

domain-containing protein 3  

A8K9T5 2 105.1 15.97 E3 ubiquitin-protein ligase  

B1ALD0 2 64.5 11.77 AP-4 complex subunit beta-1  

Q9BRQ8 2 40.5 11.42 Apoptosis-inducing factor 2  

B7Z1I0 2 36.4 10.88 Integrin-linked protein kinase  

E5RGA6 2 18.2 9.82 Focal adhesion kinase 1  

Q59GT9 2 66.9 7.61 Gap junction protein  

Q96BT7 2 75.2 4.65 Alkylated DNA repair protein alkB homolog 8  

 

 




