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Abstract

Generalized varying coefficient models (GVCMs) form a family of statistical

utilities that are applicable to real world questions for exploring associations

between covariates and response variables. Researchers frequently fit GVCMs

with particular link transformation functions. It is vital to recognize that to

invest a model with a wrong link could provide extremely misleading knowl-

edge. This thesis intends to bypass the actual form of the link function and

explore a set of GVCMs whose link functions are monotonic. With the mono-

tonicity being secured, this thesis endeavours to make use of the maximum

rank correlation idea and proposes a maximum rank correlation estimation

(MRCE) method for GVCMs. In addition to the introduction of MRCE, this

thesis further extends the consideration to Generalized Semi-Varying Coeffi-

cient Models (GSVCMs), Panel data, simulations and empirical studies.
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1 Introduction

The varying coefficient models proposed by Cleveland, Grosse and Shyu

(1991) and Hastie and Tibshirani (1993) are useful extensions of linear mod-

els. The feature of standard varying coefficient models is to allow the co-

efficients to be smoothing non-parametric functions, which can be used to

explore the dynamics of the impacts of the covariates on the response vari-

able. Due to the generality of the functional coefficient, modelling bias can be

reduced significantly and the ‘curse of dimensionality’ can be avoided (Zhang,

Li and Song, 2002). There are wide applications of varying coefficient mod-

els in various disciplines. For example, Hoover et al.’s (1998) application of

the model to longitudinal data; non-linear time series applications of Chen

and Tsay (1993) and Cai, Fan and Yao (2000). Varying coefficient mod-

els form a very useful framework. There are as well a lot of extensions of

varying coefficient models in existing literature, including for instance semi-

parametric varying-coefficient partially linear models (Fan and Huang, 2005)

and semi-varying coefficient models (Li and Liang, 2008).

Despite the flexibility and interpretability of the varying coefficient mod-

els, there are situations where further extensions are preferred. For example,

the range of the response variable could be restricted; the variance of the re-

sponse variable could depend on its mean. These two issues are well addressed

by generalized linear models (GLMs) in extension to traditional linear mod-

els (Nelder and Wedderburn, 1972; McCullagh and Nelder, 1989). For details

of GLM, see Dobson (1990). There are a flexible class of applications arising

from GLMs. However, these parametric applications are not flexible enough

to capture the true underlying relationship between covariates and responses

(Lian, 2012). It is not always reasonable to suppose that the impact on the
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response variable is constant. Instead, with respect to certain covariates, the

association to the response variable can be varying and complex (Hastic and

Tibshirani, 1993). When varying impact exists, it is of interest to expand the

application of generalized linear model by relaxing some of its conditions.

The ideas of generalized linear models (GLMs) and varying coefficient

models (VCMs) are readily combined. The generalized varying coefficient

models (GVCMs) are extensions of both varying coefficient models and gen-

eralized linear models. One central technique of GVCMs is the application

of link function which describes how the mean response variable depends on

the linear predictor. Statistic works of GVCMs frequently assume that the

transformation link functions are some known functions. For example, Cai,

Fan and Li’s (2000) consider Poisson regression with log link function. With

this given link function, Local Maximum Likelihood Estimation method can

be an ideal approach to access the varying coefficients. Although, their at-

tempt is reasonable for count data analysis, using specified link function can

only be useful, rather than be true.

Real world data analysis are different from simulations. We don’t really

know which kind of function the link function should be. Miss-specified mod-

els could be extremely biased. A sensible way would be to let the data specify

the link function. This thesis attempts to extend GVCMs by loosening the

condition on link function. Instead of assuming that the link transformation

follows some specific functional form, the thesis supposes that the functional

form is unknown but structural. Our operation is intuitive and practically

interesting. In many situations - although one does not in advance acquire

the functional form of the link function - it is reasonable to assume that

the unknown link function possesses some certain features. In this thesis,

a particular group of structural link transformations, the strictly monotonic

14



transformations, are considered. A monotonic transformation preserves a

useful probability feature, which the thesis is going to introduce in later con-

text. For this type of models, this thesis utilizes the feature of monotonic link

function and estimate the varying coefficients with maximum rank correla-

tion estimation method. Based on the estimators of the varying coefficients,

the unknown monotonic function is approached with maximum likelihood

estimation.
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2 Literature Review

2.1 Local polynomial modelling

Non-parametric modelling methods are powerful in the sense that they allow

researchers to relax the assumptions on the forms of regression functions, and

let the available data search for the fine structural relationships. It has been

demonstrated that the local polynomial modelling methods have vast quality

statistical properties and outstanding practise performance. Therefore, the

local polynomial methods are treated as very strong tools in non-parametric

analysis. Their advantages can be revealed through applications, such as,

survival analysis, generalized linear models and time series. In this paper,

the understanding of the local polynomial modelling methods and their ap-

plication is crucial. In the beginning of the thesis, the author briefly reviews

the local polynomial modelling discussed in detail by Fan and Gijbels in their

1996 book, Local Polynomial Modeling and Its Applications.

The thesis starts by looking at the case of bivariate data. Suppose

(Xi, Yi), i = 1, · · · , n, are i.i.d, and generated from the population (X, Y ),

where X and Y satisfy the model

Y = m(X) + σ(X)ε. (2.1)

In model (2.1), variables X and ε are independent, and ε is from standard

Gaussian distribution. m(x) = E(Y |X = x) is the conditional mean at

X = x, and the conditional variance is denoted by σ(x) = V ar(Y |X = x).

Further, denote by f(·) the marginal density of X. One is interested in the

regression function m(·), and its derivatives m(j)(·), j = 1, · · · , p, where j is

referred to as the order of the derivatives.
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Instead of fitting the unknown regression function globally, the thesis

searches for the regression function values at grid points locally, using only

the data in the neighbourhood of each grid point, by Taylors expansion on

the base of Least Squares methods. Recall and apply the Taylors expansion

of order p for the regression function m(x) in the neighbourhood of x0,

m(x) ≈ m(x0) +m(1)(x− x0) +
m(2)(x0)

2!
(x− x0)2 + · · ·+ m(p)(x0)

p!
(x− x0)p.

(2.2)

Denote by

βν =
m(ν)(x0)

ν!
, ν = 0, · · · , p,

where β0 = m(x0). The approximation (2.2) can be rewrote as

m(x) =

p∑
j=0

βj(x− x0)j. (2.3)

Suppose Xi, i = 1, · · · , n, are the datum points. In the neighbourhood of x0,

consider the WLS (weighted least squares) problem

n∑
i=1

{
Yi −

p∑
j=0

βj(Xi − x0)j
}2

Kh(Xi − x0), (2.4)

where Kh(·) = K(·/h)
h

, K(·) is the kernel function, and h is the controlling

bandwidth. Minimization of (2.4) with respect to βj leads to the estimates

of the mean regression function m(x0) and its derivatives.

With the notations below, the WLS problem (2.4) can be re-expressed

in a matrix form, which is more convenient in practice. Given datum points

17



(Xi, Yi), i = 1, · · · , n, in the neighbourhood of x0, denote

X =


1 X1 − x0 · · · (X1 − x0)p
...

...

1 Xn − x0 · · · (Xn − x0)p

 , y =


Y1
...

Yn

 ,

W = diag
(
Kh(X1 − x0), · · · , Kh(Xn − x0)

)
,

and

β =
(
β0, · · · , βp

)T
.

The WLS problem in (2.4) is equivalent to

WLS = min
β

(y −Xβ)TW (y −Xβ). (2.5)

Take derivative of (2.5) with respect to β as

∂WLS

∂β
=
∂(y −Xβ)T

∂β

∂WLS

∂(y −Xβ)T
= −XT · 2W (y −Xβ).

One can easily obtain the solution vector

β̂ = (XTWX)−1XTWy, (2.6)

where β̂ = (β̂0, · · · , β̂p)T and m̂ν(x0) = ν!β̂ν , ν = 0, · · · , p, are the estimates

of interest.

To assess the performance of the estimates, a convenient subject to con-

sider is the MSE (Mean Squared Error) or MISE (Mean Integrated Squared
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Error). The definitions are as the following:

MSE(x) = E
[
{m̂ν(x)−m(ν)(x)}2|X

]
=

[
E{m̂ν(x)|X} −m(ν)(x)

]2
+ V ar{m̂ν(x)|X}, (2.7)

where
[
E{m̂ν(x)|X} - m(ν)(x)

]2
and V ar{m̂ν(x)|X} are called the condi-

tional bias and variance, respectively;

MISE(x) =

∫
MSE(x)w(x)dx, (2.8)

where w(·) > 0 is some weight function.

It is clear that to explore the MSE or the MISE, it is not avoidable to

look at the conditional bias and the variance. Derivation of the conditional

bias and variance of β̂ gives

E(β̂|X) = (XTWX)−1XTW (r + Xβ)

= β + (XTWX)−1XTWr,

and V ar(β̂|X) = (XTWX)−1(XTΣX)(XTWX)−1,

where Σ = diag{K2
h(X1 − x0)σ

2(X1), · · · , K2
h(Xn − x0)σ

2(Xn)}, and r =

m−Xβ is the residual vector.

The conditional bias and variance of β̂ are not directly usable due to

the existence of unknown quantities, r and Σ. One effective way is to ap-

proximate the conditional bias and variance by their first order asymptotic

expansions. The asymptotic behaviours of the conditional bias and variance

are well studied by Ruppert and Wand (1994) and quoted by Fan and Gijbels

(1996). Before recapping the asymptotic bias and variance in Theorem 2.1,
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a few notations have to be introduced. Let eν+1 be the indicator vector with

the (ν + 1)th entry being set as 1 and other entries being set as 0. Further

denote

µj =
∫
ujK(u)du, νj =

∫
ujK2(u)du,

S = (µj+l)0≤j,l≤p, S̃ = (µj+l+1)0≤j,l≤p,

S∗ = (νj+l+1)0≤j,l≤p, cp = (µp+1, · · · , µ2p+1)
T , and c̃p = (µp+2, · · · , µ2p+2)

T .

Theorem 2.1. Assume that f(x0) > 0 and that f(·), m(p+1) and σ2(·) are

continuous in a neighbourhood of x0. Further, assume that h→ 0 and nh→
∞. Then the asymptotic conditional variance of m̂ν(x0) is given by

V ar(m̂ν(x0)|X) = eTν+1S
−1S∗S−1eν+1

ν!2σ2(x0)

f(x0)nh1+2ν
+ op(

1

nh1+2ν
); (2.9)

The asymptotic conditional bias for p− ν odd is given by

Bias(m̂ν(x0)|X) = eTν+1S
−1cp

ν!

(p+ 1)!
mp+1(x0)h

p+1−ν + op(hp+1−ν); (2.10)

and the asymptotic conditional bias for p− ν even is

Bias(m̂ν(x0)|X) = eTν+1S
−1c̃p

ν!

(p+ 1)!

{
mp+1(x0) + (p+ 2)mp+2(x0)

ḟ(x0)

f(x0)
hp+2−ν

}
+ op(hp+2−ν), (2.11)

given that ḟ(·) and mp+2(·) are in a neighbourhood of x0 and nh3 →∞.

Shown in Theorem 2.1, the performance of local estimates is relevant with

many factors, such as, the kernel function, the design density, bandwidth

and polynomial order. Intuitively, kernel function determines the way how

weights are assigned to the datum points in the neighbourhood; the design
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density describes the marginal distribution of the datum points; a proper

polynomial order selection helps to balance the estimation bias and variance;

and the bandwidth selection controls the model complexity. Hence, all of

them are important to our local estimation and cannot be chosen arbitrarily.

Details of these problems are well discussed by Fan and Gijbels (1996) in

Local Polynomial Modeling and Its Applications. The thesis does not

intend to repeat their work.
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2.2 Varying coefficient models

The varying coefficient models (VCMs) are important tools utilized for ex-

ploring the dynamic pattern in many scientific areas, such as economics,

finance, epidemiology and so on. They are primarily developed from practi-

cal needs. Due to the flexibility and interpretability that varying coefficient

models possess, there have been solid developments on the models’ method-

ological, theoretical and practical sides (Fan and Zhang, 2008) in the past two

decades. In this section, the thesis only briefly recaps the varying coefficient

models to the basics.

2.2.1 Model construction

For given scaler U , over which the coefficient functions vary, covariates X =

(x1, · · · , xp)T , and response variable y, the varying coefficient model is defined

as

y =

p∑
j=1

βj(U)xj + ε, (2.12)

with E(ε|U, x1, · · · , xp) = 0, and V ar(ε|U, x1, · · · , xp) = δ2(U). When x1 ≡
1, the model permits a varying intercept term. For unknown coefficient

functions β(U) =
(
β1(U), · · · , βp(U)

)T
, the multivariate mean regression

function is given by

m(U,XT ) =

p∑
j=1

βj(U)xj,

where E(y|U,XT ) = m(U,XT ).

There are a few disciplines that the varying coefficient functions are es-

timated. For example, local polynomial modelling(Hoover et al., 1998; Fan

and Zhang, 1999), polynomial spline (Huang et al., 2002,2004; Huang and
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Shen, 2004) and smoothing spline (Hastie and Tibshirani, 1993; Chiang et

al., 2001). Since the varying coefficient models are primarily locally linear

models, Fan and Zhang (2008) claim that it is more reasonable to apply local

polynomial smoothing methods.

2.2.2 Estimation of the coefficient functions

Suppose that (Ui, X
T
i , yi), i = 1, · · · , n, consists a sample of (U,XT , y) from

model (2.12). For each given u, the local linear estimator β̂(u) of β(u) is the

part corresponding to a of the minimizer of

L(a, ȧ)
n∑
i=1

{
yi −XT

i a−XT
i ȧ(Ui − u)Kh(Ui − u)

}
, (2.13)

where h is the smoothing bandwidth and Kh(·) = K(·/h)
h

. K(·) is the ker-

nel function which is usually taken to be the Epanechnikov kernel K(t) =

0.75(1− t)+. The estimator is normally distributed, asymptotically.

Let X = (X1, · · · , Xn)T , U = diag(U1−u, · · · , Un−u), Y = (y1, · · · , yn)T ,

W = diag
(
Kh(U1 − u), · · · , Kh(Un − u)

)
, and Γ = XTUX. Then the esti-

mator β̂(u) is given by

β̂(u) = (Ip, 0p)(Γ
TWΓ)−1(ΓTWY ), (2.14)

where Ip is a p−dimensional identity matrix and 0p is a size p matrix with

each entry being 0.
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2.3 Generalized varying coefficient models

The generalized varying models are widely explored and used in statistical

applications. Like the generalized linear models (McCullagh and Nelder,

1989), the generalized varying models provide a framework for relating re-

sponse and predictor variables. The generalized varying coefficient models

allow the regression coefficients to vary depending on certain covariates, for

instance, age and time, which widens the scope and applicability in practice.

In the work of Cai, Fan and Li (2000), they consider a family of generalized

varying coefficient models with given link functions.

2.3.1 Model construction

Suppose U is a scalar over which the coefficient functions vary, X = (X1, · · · , Xp)
T

holds the covariates, and y is the response variable. The generalized varying

models basically have two assumptions. Firstly, the conditional distribution

of y given X = x is from the popular exponential family

f(y|X = x) = exp

{
θ(x)y − b (θ(x))

a(φ)
+ c(y, φ)

}
,

where a(·), b(·) and c(·, ·) are known functions; θ(·) and φ are the canon-

ical and dispersion parameters, respectively. The exponential family in-

cludes many commonly applied distributions, such as Gaussian, Poisson and

Gamma distribution.

Secondly, for each U , a generalized varying coefficient model gives

g
{
m(U,X)

}
= XTβ(U), (2.15)

where m(U,X) = E(y|U,X) is the conditional mean regression function,
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β(U) is the vector of varying coefficients, and g(·) is referred to as the link

function.

When the link function is provided, for example a log function or a logit

transformation, one is able to access the association between the covariates

and the responses by utilizing statistical estimation methods and hypothesis

testing techniques. The estimation of the varying coefficients with given link

function g(·) with maximum likelihood estimation method is discussed in

detail by Cai, Fan and Li (2000). Since the interest is in the accessibility to

the association between the covariates and the response variable, the thesis

is only to recall the estimation of the varying coefficients with given link

transformation.

2.3.2 Estimation of the varying coefficient functions

Local linear fittings are statistically efficient and design-adaptive (Fan, 1993),

and have nice boundary performance (Fan and Gijbels, 1996). At any point

u, with local linear approximation to the varying coefficients,

β(Ui) = β(u) + β̇(u)(Ui − u)

, the estimator β̂(u) of β(u) is the part corresponding to a of the maximizer

of the local log-likelihood function

L(a,b) =
1

n

n∑
i=1

`
[
g−1
(
Xi

Ta + Xi
Tb(Ui − u)

)
, yi
]
Kh(Ui − u), (2.16)

where h is the smoothing bandwidth, Kh(·) = K(·/h)
h

, and K(·) is the kernel

function.

Let Zi =
(
Xi

T ,Xi
T (Ui − u)

)
, and B = (a,b)T . To make the presen-
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tation clear, use d(·) to represent g−1(·). The maximizer of (2.16) can be

approximated by the maximizer of

L(B) =
1

n

n∑
i=1

`
[
d
(
Zi

TB
)
, yi
]
Kh(Ui − u).

Its first and second derivatives are given by

L̇(B) =
1

n

n∑
i=1

`
′ [
d(Zi

TB), yi
]
d

′
(Zi

TB)ZiKh(Ui − u),

and

L̈(B) =
1

n

n∑
i=1

{
`
′′ [
d(Zi

TB), yi
]
d

′2(Zi
TB) + `

′ [
d(Zi

TB), yi
]
d

′′
(Zi

TB)
}

×Zi
TZiKh(Ui − u).

The Newton-Raphson maximization algorithm updates the estimator as fol-

lows. Let Bn be current B, B is then updated via

Bn+1 = Bn − ῭(Bn)−1 ˙̀(Bn)

until convergence, which gives the estimates for B. Denote B̂ =
(
â, b̂

)T
,

β̂(u) = â is the estimators of the varying coefficients. In practise, one could

face singular matrix problem, Cai, Fan and Li (2000) suggest to take into

account the idea of ridge regression (Seifert and Gausser, 1996; Fan and

Chen, 1999), and use ridge parameters to tackle singular or nearly singular

matrix problems.
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3 Generalized Varying Coefficient Models with

Unknown Monotonic Link Function

In real world applications, it is common that researchers construct general-

ized varying coefficient models with specific link functions. For example, log

transformation is frequently applied for count data, and logit transformation

is mostly considered for binary data. However, it is not ideal to ’guess’ a

function and assume its validity. As a wrong model could be extremely bi-

ased, it is more desirable to let the link function be data specified. With

emphasis on regression coefficients estimation, generation of more applicable

statistical methods are therefore possible. Indeed, we are blinded if the link

function is completely unknown. Whereas, by assuming that the link func-

tion enjoys some certain properties, it is possible to undermine the hidden

structure of the varying coefficients.

3.1 Model Assumption

Let (XT
i , Ui, yi), i = 1, · · · , n, be an i.i.d. sample from some certain

population (XT, U, y), where y is the response variable, XT = X1, · · · , Xp
T

is the corresponding p-dimensional covariates, and U on which the varying

coefficients depend is a scalar/index. For simplicity, only univariate U is

considered in this thesis. Denote the mean regression function of y give XT

and U by m(XT , U) = E(y| U, XT ). Suppose the log-conditional density

function of y given (XT, U) is

C1(φ)f
(
m(XT , U)

)
+ C2(y, φ), (3.1)
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where f(·, ·) is a known function. φ is a vector of unknown nuisance param-

eters independent of m(XT , U), therefore the dispersion function C1(φ) > 0

would not affect the maximum likelihood property of m(XT , U). Denote by

β(U) = (β1(U), · · · , βp(U))T the p-dimensional unknown functional vector

holding the varying coefficient functions. The mean regression function is

supposed to be linear via an unknown monotonic link function g(·) as

g
{
m(XT , U)

}
= XTβ(U). (3.2)

To make the model identifiable for the proposed Maximum Rank Cor-

relation Estimation (MRCE) method, there is a constrain condition on the

varying coefficients. Denote the norm of β(·) at U = 0 by ||β(0)||. Assume

‖β(0)‖ is known in advance. The norm of β(·) at U = 0 does not impact

upon the monotonicity of the link function g(·), as ||β(0)|| > 0. However,

it does impose identifiability issue for the MRCE method to be proposed.

The reason is in that the proposed MRCE method calculates the integral

of the first order derivative of ‖β(·)‖. However, there is no information of

||β(0)||. For simplicity, assume ‖β(0)‖ = 1. Thus, in this thesis, the MRCE

method in fact estimates quantities that are proportional to the true varying

coefficients with a positive factor ||β(0)||.
To make further presentation clear, some important notions are provided

here. For any given U = u, let β0(u) =
β(u)

‖β(u)‖
denotes the direction of the

varying coefficient vector, and ‖β(u)‖ =
{
β(u)Tβ(u)

}1/2
is the L2 norm that

represents the length of the varying coefficients. Throughout this thesis, for

any function f(·), ḟ(·) is used to denote its derivative.
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3.2 Application of Maximum Rank Correlation

Motivated by the potential consequences of model miss-specification, Han

(1987) introduced the Maximum Rank Correlation (MRC) estimator for gen-

eralized transformation models for which the transformation function and

error distribution are both unknown. The estimator is n1/2 -consistent and

asymptotically normal (Sherman, 1993). Estimation of the transformation

function is further discussed by Horowitz (1996), Ye and Duan (1997), Cheng

(2002) and Zhou et al. (2009). Lian and Peng (2013) utilized the idea of

MRC estimation for linear transformation regression models. Inspired by

these works, the thesis intends to extend the application of MRC for gener-

alized varying coefficient models. Without loss of generality, this thesis only

considers strictly increasing link functions.

Given XT
i β(Ui) ≥ XT

j β(Uj), the monotonicity of g(·) and the indepen-

dence of U and X ensure that

P (yi ≥ yj|XT
i , Ui,X

T
j , Uj) ≥ P (yi ≤ yj|XT

i , Ui,X
T
j , Uj). (3.3)

Since terms for which i = j make a negligible asymptotic contribution, and

ties in (3.3) are irrelevant to our interests (Sherman, 1993), (3.3) can be

relaxed to

P (yi > yj|XT
i , Ui,X

T
j , Uj) > P (yi < yj|XT

i , Ui,X
T
j , Uj), (3.4)

when XT
i β(Ui) > XT

j β(Uj) and i 6= j. From (3.4), the global rank correla-

tion function can be constructed as

∑
i 6=j

I(yi > yj)I
(
XT
i β(Ui) > XT

j β(Uj)
)
, (3.5)
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where I(·) stands for the indicator function

I(·) = 1, if (·) is ture;

= 0, otherwise.

The primary intention of this thesis is to estimate the varying coefficients

through application of the rank correlation function with local regression

techniques. One has to be cautious when proceeding to local regression

techniques. At any location U = u, with local linear approximation to the

varying coefficients

β(Ui) ≈ β(u) + β̇(u)(Ui − u),

the localized version of (3.5) is given by

∑
i 6=j

I(yi > yj)I
(
XT
i [β(u) + β̇(u)(Ui − u)] > XT

j [β(u) + β̇(u)(Uj − u)]
)

×Kh(Ui − u)Kh(Uj − u), (3.6)

where Kh(t) = K(t/h)
h

, K(t) is the kernel function, and h is the smoothing

parameter defining the bandwidth at U = u. Potential estimator β̂(u) and
ˆ̇β(u) are those that maximize the objective function (3.6). However, it is

recognized that (3.6) is not identifiable.

Suppose β̂(u) and ˆ̇β(u) constitute the maximizer of (3.6). For any pos-

itive number K, multiply K to this maximizer gives â(u) = Kβ̂(u) and

ˆ̇a(u) = K ˆ̇β(u). Substitute â(u) and ˆ̇a(u) into (3.6), the locally weighted
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rank correlation function does not change, since

∑
i 6=j

I(yi > yj)I
(
XT
i [β(u) + β̇(u)(Ui − u)] > XT

j [β(u) + β̇(u)(Uj − u)]
)

×Kh(Ui − u)Kh(Uj − u)

=
∑
i 6=j

I(yi > yj)I
(
XT
i [a(u) + ȧ(u)(Ui − u)] > XT

j [a(u) + ȧ(u)(Uj − u)]
)

×Kh(Ui − u)Kh(Uj − u).

That is to say, â(u) and ˆ̇a(u) also constitute a maximizer of the local rank

correlation function. Therefore, the rank correlation function is not identifi-

able.

Direct application of the rank correlation idea is implausible. To conquer

this issue, the thesis proposes to estimate the varying coefficient function

β(·) in two stages. The intention here is to solve the identifiability issue

in rank correlation functions. Firstly, estimate the directions of the varying

coefficients, β̂0(·); secondly, estimate the norm of the varying coefficients,

||β̂(·)||. Estimators of the varying coefficients are therefore composed by β̂0(·)
and ||β̂(·)||. Given the estimated varying coefficients, β̂(·), the unknown link

function can be accessed afterwards.
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3.3 Estimation Procedure

Estimation of β(·) and the unknown monotonic link function g(·) are the

two main goals of this study. With the functional link function g(·) given,

the problem of estimating the varying coefficients is straightforward. The

Local Maximum Likelihood Estimation (Local MLE) method would provide

good estimates. Since the link function is totally unknown, exploring the

structure of the varying coefficients becomes complicated. By assuming that

the link function is monotonic, the thesis looks for a possible path to access

the varying coefficients.

3.3.1 One-Step Estimation of β0(·)

Without loss of generality, it is assumed that the link function g(·) is strictly

increasing. Thus, the proposed estimation procedure which is based on

maximum rank correlation is possible. The rank correlation between y and

XTβ(U) is defined in (3.5) as

∑
i 6=j

I(yi > yj)I
(
XT
iβ(Ui) > XT

jβ(Uj)
)
.

At any U = u, instead of local linear approximation to the varying coeffi-

cients, the local constant approximation gives β(Ui) ≈ β(u). The local rank

correlation function is then defined as

∑
i 6=j

I(yi > yj)I
(
XT
iβ(u) > XT

jβ(u)
)
Kh1(Ui − u)Kh1(Uj − u),

where Kh1(t) = K(t/h1)
h1

, and where K(t) is the kernel function, and h1 is the

smoothing parameter defining the width of the neighbouring at U = u.
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Let XT
i β(u) = XT

i β0(u)‖β(u)‖, and denote by a = β0(u) the vector that

holds directions of the varying coefficients at any given u. With aTa = 1, the

objective function for estimation of β0(u) is constructed as

L(a) =
∑
i 6=j

I(yi > yj)I
(
XT
i β0(u)‖β(u)‖ > XT

j β0(u)‖β(u)‖
)

×Kh1(Ui − u)Kh1(Uj − u)

=
∑
i 6=j

I(yi > yj)I
(
XT
i a > XT

ja
)
Kh1(Ui − u)Kh1(Uj − u). (3.7)

The problem now is how to find maximizers of the objective function (3.7).

This thesis is to introduce two possible solutions. We call them Method 1

and Method 2 for simplicity.

3.3.2 Method 1: General estimation

The objective function L(a) is not continuous due to the indicator function

I
(
XT
i a > XT

ja
)
. For the practical purpose of utilizing mathematical algo-

rithms, like the Newton-Raphson maximization/minimization algorithm, the

optimization of L(a) needs an extensive smooth approximation. Inspired by

Lin and Peng (2013), a smoothing distribution function Φ (·) is used to ap-

proximate the indicator function. The smoothing distribution function is

defined as

Φ(t) =

∫ t

−∞
φ(u)du, and φ(u) =

1√
2π
e−u

2/2.

Therefore,

I
(
XT
i a > XT

ja
)
≈ Φ

(
(Xi −Xj)

Ta

δ

)
,

where δ is a tuning parameter that controls the functional pattern of Φ (·).
As the sample size increases, for any given positive constant δ → 0+, the
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smoothing distribution function satisfies that

Φ

(
(Xi −Xj)

Ta

δ

)
→ 1, if XT

i a > XT
ja,

and

Φ

(
(Xi −Xj)

Ta

δ

)
→ 0, if XT

i a < XT
ja.

This ensures that the smoothing approximation makes sense. The objective

function (3.7) can therefore be approximated by

L(a) =
∑
i 6=j

I(yi > yj)Φ

(
(Xi −Xj)

Ta

δ

)
Kh1(Ui − u)Kh1(Uj − u),

with aTa = 1. (3.8)

In (3.8), there is no identifiability issue, as long as a is constrained by setting

the norm of a to be equal to 1. If â maximizes L(a), â is an estimator of

β0(u), and is denoted by β̂0(u).

There is one important issue to be noted here. For the application of local

constant approximation to the varying coefficients, the intercept term is not

added into the model. Suppose one wants to allow the linear combination to

have an intercept term. Denote the covariates, the varying coefficients and

their directions as Z = (1,XT )T , α(U) = (α(U),βT (U))T , and α0(U) =

(α0(U),βT0 (U))T , respectively, where α(·) and α0(·) are the intercept term

and its direction, and ‖α(0)‖ = 1. The link transformation gives

g
{
m(Z, U)

}
= ZTα(U)

= α(U) + XTβ(U)

=
(
α0(U) + XTβ0(U)

)
||α(U)||.
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At any U = u, the objective function (3.8) is given by

∑
i 6=j

I(yi > yj)Φ

(
(Zi − Zj)

Tα(u)

δ

)
Kh1(Ui − u)Kh1(Uj − u)

=
∑
i 6=j

I(yi > yj)Φ

(
(Xi −Xj)

Tβ0(u)

δ

)
Kh1(Ui − u)Kh1(Uj − u).

It is clear that the direction of the intercept term is cancelled out in the

maximization, which makes the estimation impossible. Indeed, one may

wish to find an approach that allows the existence of an intercept term. This

thesis suggests to consider this question in further research.

3.3.3 Method 2: Estimation of directions with strictly positive

(negative) component

In certain occasions, some components of the covariates impact on the re-

sponse variable positively or negatively. For example, some significant factors

that lead to specific diseases are always positively related to the number of

patients suffering from such diseases, while accessibility of medication on the

contrary is negatively associated with the number of patients. In such cases,

where at least one of the components of the varying coefficients is strictly

positive or negative, one can get rid of the identifiability issue in the stage of

direction estimation. For simplicity, this thesis only considers the case that

at least one of the components of the varying coefficient vector is strictly

positive.

Without loss of generality, suppose the first component of the varying

coefficients is strictly positive, i.e.

β1(·) > 0.
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At any given U = u, let a = β0(u) and a1 > 0 be the first component of

vector a. Then

a = a1 ∗ a?,

given that

a? =
(

1,
a2
a1
, · · · , ap

a1

)T
is achieved by dividing the remaining p − 1 components of a by the first

component a1. The objective function (3.7) can be transformed into

L(a?) =
∑
i 6=j

I(yi > yj)I
(
XT
i a

? > bXT
j a?
)
Kh1(Ui − u)Kh1(Uj − u).

Note that, as the first component of a? is 1, the identifiability issue in the

maximization of rank correlation is eliminated. In the same vein as Method

1 which aims at a more general estimation, replace the indicator function by

a smoothing distribution. Denote

I
(
XT
i a

? > XT
ja

?
)
≈ Φ

(
(Xi −Xj)

Ta?

δ

)
,

where

Φ(t) =

∫ t

−∞
φ(u)du, and φ(u) =

1√
2π
e−u

2/2,

and δ is a tuning parameter that controls the functional pattern of Φ (·). As

the sample size increases, for any given positive constant δ → 0+,

Φ

(
(Xi −Xj)

Ta?

δ

)
→ 1, if XT

i a
? > XT

ja
?,

and

Φ

(
(Xi −Xj)

Ta?

δ

)
→ 0, if XT

i a
? < XT

ja
?.
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The objective local rank correlation function is then constructed as

L(a?) =
∑
i 6=j

I(yi > yj)Φ

(
(Xi −Xj)

Ta?

δ

)
Kh1(Ui − u)Kh1(Uj − u). (3.9)

Suppose â? is the maximizer of (3.9). Then the estimator β̂0(·) is obtained

by standardizing â?, i.e.

β̂0(·) =
â?

‖â?‖
.

Comparing with Method 1, in Method 2, the dimension of unknown di-

rections is reduced from p to p − 1. Therefore, there are relatively more

information locally in the maximization iteration procedure. It is potential

that Method 2 would give better estimators for the directions than that of

Method 1.

3.3.4 Two-Step Estimation of β0(·)

In the maximum rank correlation approach, the varying coefficients are es-

timated by a multiplication of the estimated varying coefficients in the unit

circle and the estimates of the norm. When the directions of varying co-

efficients βj(·), j = 1, · · · p, have relatively similar degrees of smoothness,

the one-step approach proposed suffices. We may get reasonable estimates

for directions of the varying coefficients by applying Method 1 generally, or

by adopting Method 2 when the varying-coefficient vector includes a strictly

positive component. However, the estimated curve of the directions could be

either over or under smoothed, if the differences in smoothness amongst the

directions of the varying coefficients are not negligible. In such cases, a more

sophisticated way is to estimate the directions of the varying coefficients with

a two-step estimation procedure.
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The idea of two-step estimation is clearly explained in the literature of

Fan and Zhang (1999). However, the situation in this context is different,

as a two-step estimation only occurs at the stage of searching for directions

of the varying coefficients. The intuition is to use a smaller bandwidth in

the first stage using the one-step estimation method proposed. This would

provide an initial estimator for the directions which have smaller bias and

larger variance. As local linear smoothing would not impact on the bias

site, but improves the performance on the variance site. In the second stage,

treat the smoother initial estimator with a local linear modelling to reduce

the variance.

Without loss of generality, in model (3.1), assume that the direction of

the first varying coefficient function β1(·) is smoother than that of other

varying coefficient functions. Consider the objective function (3.8), suppose

now that estimates of the directions with one-step estimation method and

bandwidth h1 are derived. The estimators are denoted as β̂0j(·), j = 2, · · · , p.
The thesis now introduces the two-step estimation method for β01(·). The

two-step estimation method involves two stages:

• In the first stage of the two-step estimation, apply the one-step estima-

tion method with bandwidth h20. h20 is smaller comparing to the one-step

method bandwidth h1. This smaller bandwidth would yield initial estimates

β̃01(Ui) of β01(Ui), i = 1, · · · , n. The initial estimator has smaller bias and

larger variance than that of a standard one-step estimation using a larger

bandwidth h1.

• In the second stage of the two-step estimation, use a local linear ap-

proach to correct the variance site. Consider β̃01(Ui), i = 1, · · · , n, as a
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sample observation drawn from a linear model

η = β01(U) + ε. (3.10)

At any given point U = u, a standard local linear modelling supplies the

two-step estimator

β̂01(u) = (1, 0)
(
VTWV

)−1
VTWη,

where

V =


1 U1 − u
...

...

1 Un − u

 , η =


β̃01(U1)

...

β̃01(Un)

 ,

and

W = diag (Kh2(U1 − u), · · · , Kh2(Un − u)) .

h2 is the bandwidth used in the second stage of the estimation. Kh2(t) =
K(t/h2)
h2

is the weight function, where K(t) is the kernel function.

Up to this line, the two-step estimation method is only applied to the

first component of the direction of the varying coefficient vector. It is intu-

itive that, the two-step estimation would improve on the estimation of the

direction of the first component, while, the directions of the remaining p− 1

varying coefficients are estimated with one-step method using bandwidth h1.

Since the directions of the varying coefficients are estimated using different

methods, the norm of β̂0(·) is no longer equal to one. Therefore, a two-step

estimation method should be ended by a standardization of the estimated

directions provided by one-step method and two-step method.

Naturally, the next question following the introduction of two-step esti-
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mation method would be how to identify the smoothness of the functional

directions of the varying coefficients. This question is interesting and com-

plicated in the real world. Luckily, it may not be needed to answer this

question in this thesis. Since a two-step estimator would not be worse than

a one-step estimator (Fan and Zhang, 1996), two-step estimation method

can be extended to those rougher functional directions of the varying co-

efficients as well. One should bear in mind that when two-step estimation

method is applied for all components of the varying coefficient vector, there

are more second stage bandwidths included into the estimation. There will

be a sacrifice in computation cost, especially when bandwidths are derived

by data-driven algorithms.

3.3.5 Estimation of ‖β(·)‖

Denote the norm of the varying coefficient vector ‖β(·)‖ by N(·). Let

z = XTβ̂0(U), and zi = XT
i β̂0(Ui),

where β̂0(U) is the estimator of the directions of the varying coefficients by

either one-step or two-step estimation method.

Replacing the directions of the varying coefficients by their estimators

gives

XT
iβ0(Ui)N(Ui) ≈ XT

i β̂0(Ui)N(Ui),

which yields the following rank correlation between y and zN(U):

∑
i 6=j

I(yi > yj)I (ziN(Ui) > zjN(Uj)) .

For any given u, given Ui is in a small neighbourhood of u, the Taylor’s
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expansion leads to

N(Ui) ≈ N(u) + Ṅ(u)(Ui − u).

The local rank correlation is then approximated by

∑
i 6=j

I(yi > yj)I
(
zi

{
N(u) + Ṅ(u)(Ui − u)

}
> zj

{
N(u) + Ṅ(u)(Uj − u)

})
×Khn(Ui − u)Khn(Uj − u),

where Khn(t) = K(t/hn)
hn

, with K(t) is the kernel function, and hn is the

smoothing parameter defining the width of the neighbouring at U = u. Be-

cause N(u) > 0, the above objective function is equivalent to

∑
i 6=j

I(yi > yj)I (zi {1 + c(u)(Ui − u)} > zj {1 + c(u)(Uj − u)})

×Khn(Ui − u)Khn(Uj − u), (3.11)

where c(u) corresponds to Ṅ(u)/N(u). If ĉ(u) maximise (3.11), ĉ(u) is an

estimator of Ṅ(u)/N(u), and the estimator of N(u) is generated by

N̂(u) = exp

{∫ u

0

ĉ(u)du

}
. (3.12)

The estimator of β(u) is therefore conducted via

β̂(u) = N̂(u)β̂0(u).

One may wish to search for ĉ(u) by maximizing a smoothing approxima-

tion of (3.11). Similar to that in estimating the directions of the varying
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coefficients, the objective function can be defined as

∑
i 6=j

I(yi > yj)Φ

(
zi {1 + c(u)(Ui − u)} − zj {1 + c(u)(Uj − u)}

δ

)
×Khn(Ui − u)Khn(Uj − u). (3.13)

A standard Newton-Raphson maximization provides the maximizer ĉ(u), and

hence the estimator N̂(u). However, this intuition confronts technical difficul-

ties. Simulations indicates that Newton-Raphson maximization/minimization

method can hardly provide proper estimates for c(·). Therefore, we have to

abandon this idea and enquire grid regression method to find the maximizer

of (3.11).

3.3.6 Estimation of g(·)

Estimation of the link function g(·) is in fact about the estimation of the

conditional mean regression function m(X, U). The link transformation

g
{
m(XT , U)

}
= XTβ(U) is equivalent tom(XT , U) = g−1

{
XTβ(U)

}
. With-

out loss of generality, use g(·) to denote the inverse of the link function,

i.e. m(XT , U) = g
{
XTβ(U)

}
, which pertains the quality of monotonicity.

Once the estimator of β(·) is obtained, the estimation of g(·) becomes easier.

Firstly, apply the local maximum likelihood estimation to get an initial esti-

mator g̃(·) of g(·); secondly, make use of the monotonicity of g(·) to refine the

initial estimator to get the final estimator ĝ(·). The details are as follows.

Let ti = XT
i β̂(Ui). For any given t, denote the linear approximation of

g(ti) by

g(t) + ġ(t)(ti − t).

By simple calculation, following local log-likelihood function of g(t) and ġ(t)
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can be derived, i.e.

C1(φ)
n∑
i=1

f (d+ q(ti − t), yi)Khl(ti − t) +
n∑
i=1

C2(yi,φ)Khl(ti − t). (3.14)

where d and q represents g(t) and ġ(t) respectively, and hl is the bandwidth

used. An initial estimator g̃(t) of g(t) is the part, corresponding to d of

maximiser of (3.14).

Denote the longest subset of {(ti, g̃(ti)) : i = 1, · · · , n} that satisfies

the monotonicity,

t(i) ≤ · · · ≤ t(T ) and g̃(t(i)) ≤ · · · ≤ g̃(t(T )),

as
{(
t(i), g̃(t(i))

)
: i = 1, · · · , T

}
, and treat this subset as a sample from

the following univariate non-parametric regression model

η = g(ξ) + ε. (3.15)

By applying the standard local linear modelling, for any given t, the estimator

ĝ(t) of g(t) is given by

ĝ(t) = (1, 0)
(
TTWT

)−1
TTWη,

where

T =


1 ti1 − t
...

...

1 tiT − t

 , η =


g̃(ti1)

...

g̃(tiT )

 ,

and

W = diag (Khl(ti1 − t), · · · , Khl(tiT − t)) .
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When initial estimator g̃(t) is achieved, if the length of the longest subset

{(
t(i), g̃(t(i))

)
: i = 1, · · · , T

}
is close to the sample size n, one may simply achieve the estimator of the

link function by

ĝ(t) = O(g̃(t)|t)

where O(g̃(t)|t) is a strictly increasing function obtained by sorting g̃(t) along

t.
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3.4 Computational Algorithm

The employability of the proposed maximum rank correlation method de-

pends on how the two hurdles: the identifiability issue and the computational

maximization of rank correlation, are crossed. The former is conquered via

estimation of the directions β0(·) and the norm N(·) of the varying coef-

ficients separately, where the estimator of the varying coefficient vector is

composed through β(·) = β0(·)N(·). This thesis votes for Newton-Raphson

algorithm, which is an ideal tool that provides proper estimators. For the

latter obstacle, the author attempts to replace the indicator function by

its smooth approximation, so that Newton-Raphson maximization algorithm

(see Section 5.2 in Conte and De Boor, 1980) is applicable.

3.4.1 One Step Estimation of β0(U)

This thesis proposes two possible ways of obtaining estimators of β0(U),

which are briefly named Method 1 and Method 2.

Method 1

Recall the objective function (3.8). A penalty function is added to (3.8) and

leads to the following practical objective function

`(a) =
∑
i 6=j

I(yi > yj)Φ

(
(Xi −Xj)

Ta

δ

)
Kh1(Ui − u)Kh1(Uj − u)− λaTa,

(3.16)

where δ and λ are tuning parameters, and aTa = 1. At each U = u, maxi-

mization of (3.16) with respect to a provides the estimator β̂0(u) of β0(u).

The motivation of applying the penalty function here is that it helps to deal

with the convergence problem during the iterative Newton-Raphson maxi-

mization. Without the control of such penalty function, it is not uncommon
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that the iteration of updating estimates is hard to converge.

Let an be the current a. Denote the first two orders of derivatives of the

practical objective function by

˙̀(an) =
1

δ

∑
i 6=j

I(yi > yj)φ

(
(Xi −Xj)

Tan
δ

)
(Xi −Xj)×

Kh1(Ui − u)Kh1(Uj − u)− 2λan

=
1√
2πδ

∑
i 6=j

I(yi > yj) exp

(
−
{

(Xi −Xj)
Tan
}2

2δ2

)
(Xi −Xj)×

Kh1(Ui − u)Kh1(Uj − u)− 2λan,

and

῭(an) =
1

δ2

∑
i 6=j

I(yi > yj)φ̇

(
(Xi −Xj)

Tan
δ

)
Kh1(Ui − u)Kh1(Uj − u)×

(Xi −Xj)(Xi −Xj)
T − 2λIp

=
1√

2πδ3

∑
i 6=j

I(yi > yj) exp

(
−
{

(Xi −Xj)
Tan
}2

2δ2

)
(Xi −Xj)

Tan ×

Kh1(Ui − u)Kh1(Uj − u)(Xi −Xj)(Xi −Xj)
T − 2λIp,

where Ip is an identity matrix of size p.

There are two possible algorithms for updating the maximizer. (1) Up-

date a through

an+1 = an −
῭(an)
˙̀(an)

(3.17)

until convergence. The condition aTa = 1 is not considered in the progress.

When (3.17) converges to the maximizer â, standardization of â gives the

estimator of β̂0(·).
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(2) Conduct the updating process as

an+1 =
an − ῭(an)−1 ˙̀(an)

‖an − ῭(an)−1 ˙̀(an)‖
. (3.18)

The condition aTa = 1 is considered in each and every step of the updat-

ing iteration. Both algorithms give proper estimates, while the first one is

computationally cheaper.

To provide an initial value a0 for the Newton-Raphson algorithm, simply

pretend that (XT
i , Ui, yi), i = 1, · · · , n, are natural observations from the

varying-coefficient model

y = XTβ(U) + ε,

and proceed to a local linear approach. At any U = u, the estimator β̃(·) is

constructed as

β̃i(u) = e2i+1
T
(
XT

0W0X0

)−1
XT

0W0Y, i ∈ (1, . . . , p),

where

X0 =


X11 X11(U1 − u) . . . Xp1 Xp1(U1 − u)

...
...

...
...

...

X1n X1n(Un − u) . . . Xpn Xpn(U1 − u)

 , Y =


y1
...

yn

 ,

and

W0 = diag (Kh0(U1 − u), · · · , Kh0(Un − u)) ,

and h0 is the initial bandwidth that controls the span of the locality. Once the

estimates β̃(u) is in hand, it is normalized by dividing by its norm ‖β̃(u)‖.
Denote by β̃0(u) = β̃(u)/‖β̃(u)‖, and β̃0(U) is used as the initial estimator
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for estimating β0(u).

Method 2

Method 2 is built up under the assumption that the first component of

the varying coefficients is strictly positive. Violation of this pre-assumption

would invalidate the whole estimation procedure. Recall the objective func-

tion (3.9). Since it does not involve any constrains, direct application of

Newton-Raphson maximization algorithm gives the maximizer of a?.

Denote a?−1 = (a2/a1, · · · , ap/a1)T . Let a?−1n be the current a?−1 and

denote the first two orders of derivatives of the practical objective function

by

˙̀(a?−1n) =
1

δ

1

n(n− 1)

∑
i 6=j

I(yi > yj)φ

(
(Xi −Xj)

Ta?−1n
δ

)
×Kh1(Ui − u)Kh1(Uj − u)(Xi −Xj)

=
1√
2πδ

1

n(n− 1)

∑
i 6=j

I(yi > yj) exp

(
−
{

(Xi −Xj)
Ta?−1n

}2
2δ2

)
×Kh1(Ui − u)Kh1(Uj − u)(Xi −Xj),

and

῭(a?−1n) =
1

δ2
1

n(n− 1)

∑
i 6=j

I(yi > yj)φ̇

(
(Xi −Xj)

Ta?−1n
δ

)
×Kh1(Ui − u)Kh1(Uj − u)(Xi −Xj)(xi − xj)

T

=
1√

2πδ3
1

n(n− 1)

∑
i 6=j

I(yi > yj) exp

(
−
{

(Xi −Xj)
Ta?−1n

}2
2δ2

)
×(Xi −Xj)

Ta?−1nKh1(Ui − u)Kh1(Uj − u)(Xi −Xj)(Xi −Xj)
T.
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The updating algorithm of a?−1n+1
is defined as

a?−1n+1
= a?−1n − ῭(a?−1n)−1 ˙̀(a?−1n). (3.19)

Update (3.19) until convergence would give the estimator â?−1 of a?−1, and

standardization of â? =
(
1, â?−1

)T
leads to the estimator of β̂0(·).

Simulation studies suggest that Method 2 depends heavily on the initial

estimator. That is to say, initial estimates returned by treating a varying

coefficient model is not sufficient. What this thesis suggests, is to let Method

1 provide initial estimates for Method 2. However, it is not necessary to

proceed a full computation for Method 1. Update the estimates of Method

1 once or twice would give proper initial estimates for Method 2 without

increasing too much on the computation site.

3.4.2 Two Step Estimation of β0(·)

The initial stage of the two-step estimation shares the same computational

algorithm as that of the one-step approach. The difference is in that this

initial stage uses a smaller bandwidth. If h1 is the optimal bandwidth for the

one-step estimation, in the first stage of the two-step estimation, h20 < h1 is

used. Fan and Zhang (1999) suggest that a two-step estimator is not very

sensitive to this initial bandwidth h20 as long as it ensures negligible bias.

In practice, it is safe to multiply h1 by a factor between 0 and 1 to get h20.

In this project, h20 = 0.5h1 is applied for simplicity. On one hand, this

first stage bandwidth h20 is not ridiculously small, thus proper first stage

estimates of the directions of the varying coefficients are achievable. On

the other hand, with this smaller bandwidth, the computational cost is not

significantly increased.
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Without loss of generality, suppose direction of the first component of

the varying coefficients, β01(·), is smoother than the rest of the unit circle

varying coefficients. With the initial bandwidth h20, one maximizes the target

function (3.20)

`(a) =
∑
i 6=j

I(yi > yj)Φ

(
(Xi −Xj)

Ta

δ

)
Kh20(Ui − u)Kh20(Uj − u), (3.20)

with constrain condition aTa = 1. Either Method 1 or Method 2 (when

applicable) may be applied. This process provides the initial estimator β̃01(·)
of β01(·).

In the second stage of the two-step estimation, treat β̃01(Ui), i = 1, · · · , n,

as a realization from a linear model

η = β01(U) + ε,

where ε ∼ N(0, δ).

At any point U = u, a local linear approach produces the estimator β̄01(·)
of β01(·) as

β̄01(u) = e1
T
(
XT

2W2X2

)−1
XT

2W2η,

where

X2 =


1 (U1 − u)
...

...

1 (Un − u)

 , η =


β̃01(U1)

...

β̃01(Un)

 ,

and

W0 = diag (Kh2(U1 − u), · · · , Kh2(Un − u)) .

Suppose the estimators β̄0j(·) j = 2, · · · p are obtained via the one-step esti-
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mation, and β̄01(·) is provided by the two-step estimation method, and denote

‖β̄0(·)‖ as the norm of the estimator vector. The final estimators of β0j(·)
j = 1, · · · p are obtained by a standardization operation via

β̂0j(·) =
β̄0j(·)
‖β̄0(·)‖

.

In fact, the two-step estimation is not restricted to smoother functions.

As Zhang and Fan (1999) have suggested, a two-step estimation mostly leads

to increment in terms of approximation accuracy. This has been strongly

supported by numerous simulation studies in later sections. Therefore, this

thesis suggests to use two-step estimation method for each component of

the varying coefficients for obtaining estimates of their directions. On one

hand, this would improve the approximation accuracy for the directions of

the varying coefficients. On the other hand, the time for identification of

smoothness is saved.

In the work of Lin and Peng (2013), the norm of the varying coefficients

is constrained to be ‖β(·)‖ ≡ 1. This naturally extends to a more general

assumption, that is ‖β(·)‖ = N(·), where N(·) is some known positive func-

tion. When the norm is known in advance, the estimation of the varying

coefficients reduces to the estimation of the unit circle varying coefficients.

Consider the objective rank correlation function (3.21)

∑
i 6=j

I(yi > yj)I(XiN(Ui)β0(Ui) > XjN(Uj)β0(Uj)). (3.21)

Local constant approximation to the unit circle varying coefficients at any u

leads to ∑
i 6=j

I(yi > yj)I(XiN(Ui)β0(u) > XjN(Uj)β0(u)), (3.22)
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with β0
T (u)β0(u) = 1. Either the one-step or two-step method provides

estimates of β̂0(U).

3.4.3 Estimation of the norm ‖β(·)‖

When the estimates of the directions of the varying coefficients are obtained,

the estimation of the unknown norm becomes a univariate problem. The

idea of grid regression is considered in the estimation of the unknown norm.

Consider the following objective function defined in (3.11). This thesis tries

to approach the maximizer with two algorithms, which is named the blind

searching and the efficient searching in this context.

• Blind searching

At any point U = u, assume that the true value of c(u) is within an inter-

val [C0, CN ], where C0 and CN are two real numbers, and N is a positive

integer determines the number of grid points to be searched. Divide this

interval into N equally spaced subintervals. The dividing points are denoted

as C0, C1, · · · , CN . A blind searching calculates the scores of the local rank

correlation function for each of these dividing points. The estimator of c(u)

is chosen to be ĉ(u) = Ck, k ∈ {M, · · · , N −M} which maximizes the locally

weighted rank correlation function, where 0 < M < N is a positive integer

which ensures that the maximiser is not located at the edge of the searching

interval, so that the region of interest, [C0, CN ], is properly defined. Once

values of the estimator ĉ(·) at U = Ui, i = 1, · · · , n are fully achieved, the

estimator for the unknown norm is given by

N̂(u) = exp

{∫ u

0

ĉ(u)du

}
,
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and the estimator of the varying coefficient vector is obtained via

β̂(u) = N̂(u)β̂0(u).

The idea of the grid regression is straightforward. However, the question

comes to how large the searching region [C0, CNc ] should be defined as a

proper interval, and how much computational cost there would be if this

interval is very ‘wide’. In the real world, there is no idea about how the

true norm changes depending on U . Thus, the intuition is to proceed the

searching in some ‘wide’ interval all the time for each U = Ui, i = 1, · · · , n.

When the searching interval is ‘wide’, it is unavoidable that the computation

would be expensive. For instance, at point u, suppose the maximizer is at

some point between -100 to 100. Calculation of the local rank correlation

scores from -100 to 100 at grid points with subinterval length 0.1 results

in 2001 computations, which is extremely expensive when sample size is

large. Ironically, it is almost impossible to say a guessing searching interval

is ‘wide’ enough. Practically, in terms of blind searching, reduction of the

computational cost can only be made by assuming that a specified small

searching interval to the best knowledge of researchers has already covered

the location of the true maximizer.

Another issue to be highlighted is that some maximisers may hardly be

accepted to be the estimators of c(·). At any point U = u, start the grid

search from C0 and moves toward CN . If the rank correlation score firstly

increases to some ‘peak’ point and then starts to decrease, and the score

continues to decrease in a sufficient large number of steps, it is likely that

the maximizer has already been identified and the maximization of the rank

correlation occurs at the ‘peak’ point. Simulation studies show that around
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the ‘peak’ point, the score of the local rank correlation is not stable. There

might be confusing cases which give wrong estimators of c()̇. There might

be a searching grid, at which the local rank correlation score is the highest.

However, if one plots the local rank correlation scores against searching grids,

one finds that this highest score is a sudden jump from the smooth curve of

scores. These maximizers have to be avoid being treated as estimators of c(·)
falsely.

• Fast searching

In simulation studies, the searching interval can be constructed around the

true values of c(·). This would become a different story in the case of real

data analysis. One has no information about where the true values of c(·) are.

To let the maximization make sense, the scale of the grid searching region

would not be set as some interval with very small width. That is to say, one

has to set up a relatively wide searching interval, and the computation time

could be frustrating. Therefore, a time-saving procedure for estimating c(·)
which is free from the true values of c(·) and computationally cheap at the

same time is desirable.

Simulation studies have confirmed that the rank correlation function

(3.11) is quadratic. This is crucial to the idea of fast searching maximization

to propose. Say, of interest, c(u) is within an interval [L0, R0], where L0

and R0 are two real numbers that can be very large. At any U = um the

maximiser of c(u) is searched through the following procedures:

.1. First of all, instead of directly dividing the interval [L0, R0] into

numerous subintervals (for instance 1000 or even 10000), divide it into M

equally spaced subintervals. In simulation studies, M = 8, M = 10 and M =

12 are used and all work well. Denote the grid points by C10, C11, · · · , C1M .

Calculate the locally weighted rank correlation function at these M+1 nodes.
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Suppose C1k, k ∈ {1, · · · ,M−1}, is the value that maximizes the correlation

function. Note that if k = 0 or k = M , it suggests that the initial definition

of the searching interval [L0, R0] is not properly defined and needs to be

enlarged.

.2. Update the searching interval as [L1, R1], where L1 = C1k−1 and

R1 = C1k+1. Divide the updated searching interval into M equally spaced

subintervals, and denote the grids as C20, C21, · · · , C2M . Calculate the lo-

cally weighted rank correlation function at these M + 1 nodes. Suppose

C2k, where k ∈ {1, · · · ,M − 1}, is the value that maximizes the correlation

function.

.3. Repeat the above step until the length of each subinterval is smaller

than some satisfactory number, for example 0.1 or 0.05. When this condition

is satisfied, the node which gives maximum value of the objective function is

considered the practically maximizer of the locally weighted rank correlation

function, and is used as the estimator of c(·).
To illustrate whether this searching procedure is valid, in simulation stud-

ies, at any point U = u the initial interval is specified as [true c(·) −
10, true c(·) + 10]. Firstly, this interval is divided into 200 subintervals,

which involves subinterval length equals 0.1 and 201 calculations of the locally

weighted rank correlation. Secondly, the efficient fast searching procedure is

conducted, with M = 10 and the final length of the subinterval is set to be

smaller than 0.1. This would involve in total only around 40 calculations of

the locally weighted rank correlation. Simulation results indicate that the

time-saving efficient searching procedure is valid. To improve the validity

of this searching algorithm, one can use larger updating searching intervals.

For instance, instead of updating the maximizer between Ln = Cnk−1 and

Rn = Cnk+1, one could update the maximizer between L1 = C1k−S and
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R1 = C1k+S, where S is an integer larger than 1.

3.4.4 Estimation of the unknown link g(·)

According to the results above, the local log-likelihood function of g(·) can be

conducted easily. To find the maximizer of the log-likelihood function, initial

values of g(·) and g
′
(·) are required. Let ti = XT β̂(Ui) for i = 1, · · · , n. For

simplicity, treat yi i = 1, ·, n are natural observations from model

y = g(t) + ε,

where ε ∼ N(0, δ). Apply a standard local linear modelling and obtain the

initial estimates as g̃(t) and g̃
′
(t).

When initial estimates are obtained, consider the object function

`(d, q) =
1

n
C1(φ)

n∑
i=1

f (d+ q(ti − t), yi)Kh1(ti−t)+
n∑
i=1

C2(yi,φ)Kh1(ti−t).

(3.23)

Its first and second derivatives are given by

˙̀(d) =
1

n
C1(φ)

n∑
i=1

ḟ (d+ q(ti − t), yi)Kh1(ti − t),

˙̀(q) =
1

n
C1(φ)

n∑
i=1

ḟ (d+ q(ti − t), yi) (ti − t)Kh1(ti − t),
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and

῭(d) =
1

n
C1(φ)

n∑
i=1

f̈ (d+ q(ti − t), yi)Kh1(ti − t),

῭(dq) =
1

n
C1(φ)

n∑
i=1

f̈ (d+ q(ti − t), yi) (ti − t)Kh1(ti − t),

῭(q) =
1

n
C1(φ)

n∑
i=1

f̈ (d+ q(ti − t), yi) (ti − t)2Kh1(ti − t).

Denote by ˙̀ =

 ˙̀(d)

˙̀(q)

 and ῭ =

 ῭(d) ῭(dq)

῭(qd) ῭(q)

 the related vector and

matrix form of the above derivatives (Note that ῭(dq) = ῭(qd)). One keeps

updating d and q by

dn+1 = dn − eT1 ῭−1 ˙̀,

and

qn+1 = qn − eT2 ῭−1 ˙̀.

iteratively until convergence gives the Newton-Raphson estimates of d and

e.

Denote by g̃0(t) the maximizer of the log-likelihood function. The longest

non-decreasing subsequence of g̃0(t), say g̃(tl), is utilized as the initial esti-

mator of g(·). Treating that g̃(tli), i = 1, · · · , n is a set of realization from

an univariate non-parametric regression model

η = g(t) + ε.
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A standard local linear modelling gives the estimator of g(t) as

ĝ(t) = e1
T
(
TTWT

)−1
TTWη,

where

T =


1 tl1 − t
...

...

1 tlT − t

 , η =


g̃(t1)

...

g̃(tT )

 ,

and

W = diag (Khl2(tl1 − t), · · · , Khl2(tlT − t)) .
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4 Simulation Studies: Poisson Regression

In statistics, Poisson regression is a form of regression analysis frequently

used to model count data. It assumes that the response variable y is from

Poisson distribution. In practice, it is frequently assumed that the logarithm

of the mean regression function of y can be modelled by a linear combination

of unknown parameters. In this section, the thesis is going to investigate the

maximum rank correlation estimation method through simulation studies of

Poisson Regression. Before going through simulation studies, it is necessary

to recall the aims and difficulties of this study.

• Aims: First and foremost, of interest is to get access to the varying

coefficients given that the link function is monotonic. Secondly, the unknown

link function is to be estimated, therefore, its monotonicity could be verified.

• Hurdles: The proposed estimation method in this paper involves

many hurdles to be crossed. The full estimation procedure consists of quite

a few stages - the direction and the norm of the varying coefficients, and the

link transformation function. In each of these stages, there are corresponding

tuning parameters to be handled.

4.1 Data generation

Suppose the response variable y is from the exponential family, and it is from

Poisson distribution conditional on {X, U}, where X = (X1, . . . , Xp)
T and U

are the covariates. Denote the mean regression function of y given {Xi, Ui}
by λ(Xi, Ui), i = 1, · · · , n. Then the conditional density of y given Xi and

Ui could be expressed as

f(y = yi|Xi, Ui) =
λ(Xi, Ui)

yi

yi!
eλ(Xi,Ui), i = 1, · · · , n.
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In practice, frequently applied link function is the log transformation, i.e.

log (λ(Xi, Ui)) = Xi
Tβ(Ui), i = 1, · · · , n.

In this thesis, the conditional mean regression function λ(Xi, Ui) is assumed

to be linear via an unknown monotonic transformation

g (λ(Xi, Ui)) = XTβ(Ui), i = 1, · · · , n,

where β(·) is the p dimensional varying coefficient vector. Of interest is to

estimate the vector of varying-coefficients β(·), and the unknown monotonic

link function g(·).
In the following simulation studies, data are generated from Poisson re-

gression with small dimension of varying coefficients, and the log transforma-

tion is used as the underline authentic monotonic link function, for simplicity.

The covariates X = (X1, X2), where X1 and X2 are i.i.d are drawn from

standard Normal distribution

X ∼ N(0p,1p),

and U is generated from

U ∼ U [0, 1].

Values of the mean regression function λ(Xi, Ui) are then computed via the

log transformation function given the true varying coefficients. The response

variable yi is thus drown from poisson distribution with parameter λ(Xi, Ui).

Simulations with respect to the following three examples under the frame of

Poisson regression are conducted.
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Example 1 β1(U) = sin(2πU); β2(U) = cos(2πU).

Example 2 β1(U) = sin(3πU); β2(U) = cos(2πU).

Example 3 β1(U) = sin(πU) + 0.6; β2(U) = cos(2πU)− 0.2.

For each of these examples, 100 simulations with sample size n = 200,

n = 400 and n = 800 are treated using proposed estimation techniques.

Throughout this section, Epanechnikov Kernel K(t) = 0.75(1 − t2)+, which

is practically considered the optimal bandwidth due to its minimax property,

is used. For details about the minimax property, see Fan and Gijbels (1996).

At this stage of simulation, the proposed method is proceeded with respect

to constant smoothing parameters.

To make the presentation clearer, denote different maximization methods

as MRC1 with updating algorithm (3.17) for Method 1; MRC2 with updat-

ing algorithm (3.18) for Method 1; and MRC3 for Method 2. For Method 2,

of which the special case where the first component of the varying coefficients

is strictly positive, the initial estimates are provided by MRC2. Simulations

indicate that, when Method 2 is applied, the estimation accuracy is sensi-

tive to the initial estimates. There is evidence that MRC2 provides proper

estimates of the directions of the varying coefficients. Thus, MRC2 is used

to provide initial estimates. It is not necessary to spend time for MRC2 to

converge. One or two steps of iteration in maximization is sufficient.
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4.2 Selection of constant tuning parameters δ and λ

for one-step estimation of β0(·)

First and foremost, whichever method is applied to access the directions of

the varying coefficients, the selection of the tuning parameters δ and λ (λ is

excluded from the case when strictly positive impact of covariates is identi-

fied) is an unavoidable issue. Since, tuning parameters δ and λ are crucial

for estimating the unit circle varying coefficients. Before implementation of

the full MRCE method, the thesis firstly evaluates the impact of the tun-

ing parameters δ and λ on both the bandwidth selection and the estimation

performance of the unit circle varying coefficients β01(·) and β02(·).
The estimation for a general generalized varying coefficient model involves

both δ and λ. This thesis suggests to use some small positive number for λ,

and δ is defined to be proportional to the range of the denominator within

the smoothing approximation. For instance, at any point u, the objective

function is constructed as

`(a) =
1

n(n− 1)

∑
i 6=j

I(yi > yj)Φ

(
(xi − xj)

Ta

δ

)
Kh1(Ui−u)Kh1(Uj−u)−λaTa.

Denote the range of (xi − xj)
Ta by {Rmin, Rmax}. Then,

δ = M(Rmax −Rmin)

is used as the tuning parameter in the maximization, where 0 < M ≤ 1 is

a positive real number. The tuning parameter δ can be defined similarly for

Method 2.
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• Investigation of δ and λ for Method 1

Firstly, the impact of the combination of δ and λ is investigated with

respect to all the three examples with sample size n = 400, respectively,

regardless of whether there exists strictly positive coefficient. Since the sec-

ond stage of the two-step estimation does not involve tuning parameters δ

and λ, at this stage, only the one-step estimation method for estimating the

directions of the varying coefficients is considered. The investigation is de-

signed as the following. By allowing λ and δ to vary in intervals [0.01, 1.]

and [0.1, 1.], respectively, the mean integrated squared errors (MISE) of es-

timating the direction of the varying coefficients are calculated. To give a

demonstration of overall estimation performance, average of the MISEs for

each of the p estimators is calculated. The bandwidth used is selected as the

one which minimizes the MISE of estimating β0(·). Both the bandwidths

and the resulting MISEs of β̂0(·) are presented in Table 1.
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Example 1
MRC1 λ = 0.05 λ = 0.1 λ = 0.5 λ = 1.

δ = 0.1 - - - -
δ = 0.2 0.0997(0.104) 0.0104(0.104) 0.0111(0.104) 0.0117(0.104)
δ = 0.5 0.0099(0.104) 0.01(0.104) 0.01(0.104) 0.01(0.104)
δ = 1. 0.01(0.104) 0.01(0.104) 0.01(0.104) 0.01(0.104)
MRC2 λ = 0.05 λ = 0.1 λ = 0.5 λ = 1.

δ = 0.1 - - - -
δ = 0.2 0.01(0.104) 0.0106(0.104) 0.0127(0.104) 0.0145(0.104)
δ = 0.5 0.0095(0.104) 0.0102(0.104) 0.0103(0.104) 0.0103(0.104)
δ = 1. 0.0093(0.104) 0.0095(0.104) 0.0097(0.104) 0.0098(0.104)

Example 2
MRC1 λ = 0.05 λ = 0.1 λ = 0.5 λ = 1.

δ = 0.1 - - - -
δ = 0.2 0.0151(0.086) 0.0158(0.086) 0.0163(0.086) 0.0171(0.086)
δ = 0.5 0.0152(0.086) 0.0152(0.086) 0.0152(0.086) 0.0152(0.086)
δ = 1. 0.0153(0.086) 0.0153(0.086) 0.0153(0.086) 0.0153(0.086)
MRC2 λ = 0.05 λ = 0.1 λ = 0.5 λ = 1.

δ = 0.1 - - - -
δ = 0.2 0.0151(0.086) 0.016(0.086) 0.0171(0.086) 0.0186(0.086)
δ = 0.5 0.0151(0.086) 0.0152(0.086) 0.0152(0.086) 0.0155(0.086)
δ = 1. 0.0153(0.086) 0.0154(0.086) 0.0154(0.086) 0.0156(0.086)

Example 3
MRC1 λ = 0.01 λ = 0.05 λ = 0.1 λ = 0.5

δ = 0.1 - - - -
δ = 0.2 0.0071(0.124) 0.0077(0.124) 0.0093(0.124) 0.0127(0.124)
δ = 0.5 0.0076(0.124) 0.0076(0.124) 0.0076(0.124) 0.0076(0.124)
δ = 1. 0.0079(0.124) 0.0079(0.124) 0.0079(0.124) 0.0079(0.124)
MRC2 λ = 0.01 λ = 0.05 λ = 0.1 λ = 0.5

δ = 0.1 - - - -
δ = 0.2 0.0072(0.124) 0.0079(0.124) 0.0105(0.124) 0.0156(0.124)
δ = 0.5 0.0076(0.124) 0.0077(0.124) 0.0077(0.124) 0.0077(0.124)
δ = 1. 0.0080(0.124) 0.0081(0.124) 0.0081(0.124) 0.0081(0.124)

Table 1: Tuning parameters investigation for Method 1.

‘-’ means none-convergent estimates.
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Table 1 demonstrates that the estimation performance of MRC1 and

MRC2 are comparable. The selection of the tuning parameter δ and λ is

crucial to our MRC estimation in terms of estimation accuracy. Although

theoretically, δ should tend to 0, when δ is too small, the Newton-Raphson

maximization algorithm does not converge at all. This means that δ is a

more important factor comparing with λ in terms of computational conver-

gence. When δ is sufficiently large, the estimation performance tends to be

stable. While the tuning parameter λ is introduced to increase the speed

of computational convergence, it is noticed that the estimation performance

is not sensitive to λ. As long as δ ensures the computational convergence,

smaller λ is preferable.

An additional phenomenon is that the practical, optimal bandwidth is

not sensitive to the selection of δ and λ. For different combinations of δ and

λ, although the computation time and estimation performance vary, the opti-

mal bandwidth is stable. Therefore, when one tries to let the data itself select

tuning parameters for estimating the directions, the thesis suggests that δ

and λ would not have much impact on the bandwidth selection. Further, the

thesis concludes that a proper combination of constant tuning parameters

δ and λ is sufficient. And when trying to let the data itself select tuning

parameters, data-driven δ and λ are not taken into consideration. In further

simulations, it is recommended to use constant tuning parameter δ = 0.2

and λ = 0.1 which will give proper estimates for the directions of the varying

coefficients.

• Investigation of δ for Method 2

The impact of δ for the case where positive coefficients are identified needs

to be identified as well. 100 simulations with respect to Example 3 with sam-
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ple size n = 400 is conducted. For simplicity, at this stage, only the one-Step

estimation method for estimating the directions of the varying coefficients is

considered, since the second stage of the two-step estimation method does

not involve tuning parameter δ. It has been noticed that although one has

one less tuning parameter λ to consider, the selection of δ is not becoming

any easier. Simulations suggest that a small tuning parameter δ is preferable.

Let δ vary in [0.01, 0.05]. The mean integrated squared errors (MISEs)

of estimators, β0j(·), j = 1, 2 are calculated. Again, to give a demonstra-

tion of overall estimation performance. Average of the MISEs for each of

the p estimators is calculated. The bandwidth used is selected as the one

which minimizes the MISE for estimating β0(·). Both the bandwidth and the

resulting MISE of β̂0(·) are presented in Table 2.

δ = 0.02 δ = 0.03 δ = 0.04 δ = 0.05

MRC3 0.0051(0.179) 0.0027(0.179) 0.0029(0.179) 0.003(0.179)

Table 2: Tuning parameter investigation for Method 2.

When trying to estimate the directions with this method, it has to be em-

phasized that at least one component of the varying coefficient functions has

to be strictly positive. Table 2 indicates that for the purpose of estimation

accuracy, small tuning parameter δ is preferable. Compare with Method 1,

the MISE of the estimator of the directions is reduced from 0.007 in Method 1

to 0.003 in Method 2, with the practical bandwidth increased from 0.124 to

0.179. That is to say the estimation performance of Method 2 would be

significantly better once known that there is positive impact of at least one

covariate. In addition, it is also witnessed that the bandwidth selection pro-

cedure is not sensitive to δ. Thus, again, it is suggested to use constant δ.

However, when δ is too small, the Newton-Raphson maximization algorithm
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faces difficulty in computational convergence. To ensure that Method 2

retains stable and proper estimates for the directions of the varying coeffi-

cients, the thesis uses constant tuning parameter δ = 0.05 throughout this

paper.

4.3 Estimating the directions of the varying coefficients:

a comparison between one-step and two-step method

The thesis has proposed two methods for estimating the directions of vary-

ing coefficients. The one-step method estimates the directions all together;

while the two-step method serves the same purpose in two stages. Two-step

estimation is a crucial method to deal with cases that the directions of the

varying coefficient functions may possess different levels of smoothness. In

such cases, estimation of the directions of the varying coefficient functions

require different smoothing parameters.

Theoretically, when it is known in advance that the directions of the dif-

ferent varying coefficients enjoy approximately the same level of smoothness,

a one-step estimation method is sufficiently good and ready to be applied

for providing estimates for the directions of the varying coefficients. How-

ever, the situation becomes more complicated when this assumption does

not hold. Since estimating smoother functions requires larger bandwidth, a

one-step estimation in fact uses smaller bandwidth which suffers from the

variance site. In this case, the two-step estimation method is needed for

rescue.

Two-step method is initially designed for smoother functions. The idea

of two-step estimation is that it uses a smaller bandwidth in the first stage

to make the bias negligible and in the second stage let the local modelling
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to control the variance site. For rougher functions, the two-step estimation

would at least perform as good as the one-step estimation method. That

is to say, it is not needed to worry about how to identify which functional

direction of varying coefficient is smoother or rougher than others. Therefore,

when two-step method is used, it is applied to all functional directions of the

varying coefficients.

For Example 1 to Example 3, the directions of the varying coefficients

are estimated with both one-step and two-step methods. The bandwidths

are selected by the minimization of corresponding MISEs of estimators. Let

the MISEs be an indicator of estimation performance. Table 3 to 3 present

the estimation performance for all three examples. In terms of the two-step

estimation method, the first stage bandwidth is set as h20 = 0.5h1, where h1

is the optimal bandwidth used for the one step estimation.

• Example 1 β1(U) = sin(2πU); β2(U) = cos(2πU).

In Example 1, the two varying coefficients have the same order of smoothness.

As the norm of the varying coefficient vector is 1, corresponding functional

directions of the varying coefficients also have the same order of smoothness.

Although, a one-step estimation approach shall be sufficient, the two-step

method is as well implemented and compared.

Sample size n=200 n=400 n=800
Method 1-step 2-step 1-step 2-step 1-step 2-step

MISE{β̂01(·)} 0.022 0.013 0.012 0.007 0.008 0.004

MISE{β̂02(·)} 0.016 0.008 0.009 0.004 0.005 0.002

Table 3: Example 1: Mean integrated squared errors of β̂0j(·), j = 1, 2

Table 3 shows that as sample size increases, both one-step and two-step
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methods steadily improve the estimation accuracy of the directions of the

varying coefficients. Compare with one-step method, the increments in terms

of estimation performance for both β01(·) and β02(·) are significant. Take the

second component β02(·) as a demonstration. The mean integrated squared

error of β̂02(·) is halved in simulations of all three sample sizes.

Thus, for the case when varying coefficients are of similar smoothness,

it is ideal to use two-step estimation method for generating estimates of

the directions of the varying coefficients. To give a visual demonstration of

the estimation, Figure 1 plots the estimates of the directions of the varying

coefficients for different sample sizes that have the medium estimation errors

among 100 simulations.

U (n = 200)

C
oe

ffi
ci

en
t f

un
ct

io
n 

β 0
1(

U
)

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

U (n = 200)

C
oe

ffi
ci

en
t f

un
ct

io
n 

β 0
1(

U
)

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

U (n = 200)

C
oe

ffi
ci

en
t f

un
ct

io
n 

β 0
1(

U
)

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

1−step
2−step
True curve

U (n = 400)

C
oe

ffi
ci

en
t f

un
ct

io
n 

β 0
1(

U
)

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

U (n = 400)

C
oe

ffi
ci

en
t f

un
ct

io
n 

β 0
1(

U
)

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

U (n = 400)

C
oe

ffi
ci

en
t f

un
ct

io
n 

β 0
1(

U
)

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

1−step
2−step
True curve

U (n = 800)

C
oe

ffi
ci

en
t f

un
ct

io
n 

β 0
1(

U
)

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

U (n = 800)

C
oe

ffi
ci

en
t f

un
ct

io
n 

β 0
1(

U
)

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

U (n = 800)

C
oe

ffi
ci

en
t f

un
ct

io
n 

β 0
1(

U
)

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

1−step
2−step
True curve

U (n = 200)

C
oe

ffi
ci

en
t f

un
ct

io
n 

β 0
2(

U
)

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

U (n = 200)

C
oe

ffi
ci

en
t f

un
ct

io
n 

β 0
2(

U
)

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

U (n = 200)

C
oe

ffi
ci

en
t f

un
ct

io
n 

β 0
2(

U
)

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0 1−step
2−step
True curve

U (n = 400)

C
oe

ffi
ci

en
t f

un
ct

io
n 

β 0
2(

U
)

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

U (n = 400)

C
oe

ffi
ci

en
t f

un
ct

io
n 

β 0
2(

U
)

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

U (n = 400)

C
oe

ffi
ci

en
t f

un
ct

io
n 

β 0
2(

U
)

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0 1−step
2−step
True curve

U (n = 800)

C
oe

ffi
ci

en
t f

un
ct

io
n 

β 0
2(

U
)

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

U (n = 800)

C
oe

ffi
ci

en
t f

un
ct

io
n 

β 0
2(

U
)

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

U (n = 800)

C
oe

ffi
ci

en
t f

un
ct

io
n 

β 0
2(

U
)

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0 1−step
2−step
True curve

Figure 1: Direction estimation for Example 1.

The plots depict β̂0j(·), j = 1, 2, that have medium integrated squared errors among 100
simulations.
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• Example 2 β1(U) = sin(3πU); β2(U) = cos(2πU).

In Example 2, the second varying coefficient is smoother than the first one.

The thesis as well estimates the directions of the two varying coefficients

with both one-step and two-step methods. Estimation results are depicted

in Table 4 and Figure 2.

Sample size n=200 n=400 n=800
Method 1-step 2-step 1-step 2-step 1-step 2-step

MISE{β̂01(·)} 0.029 0.024 0.019 0.016 0.01 0.009

MISE{β̂02(·)} 0.022 0.018 0.014 0.012 0.006 0.005

Table 4: Example 2: Mean integrated squared errors of β̂0j(·), j = 1, 2
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Figure 2: Direction estimation for Example 2.

The plots depict β̂0j(·), j = 1, 2, that have medium integrated squared errors among 100
simulations.

Table 4 witnesses stable reduction of estimation error as sample size in-
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creases from 200 to 800. The two-step estimation method gives better esti-

mates of the directions, especially when the sample size is small. Despite that

the increment of estimation accuracy reduces as the sample size increases,

the two-step method is as well a preferable choice for obtaining estimates of

β0(·). Again the estimates of the directions of the varying coefficients with

medium estimation errors are plotted out to give a visual insight. Both one-

step and two-step methods capture the functional directions properly.

• Example 3 β1(U) = sin(πU) + 0.6; β2(U) = cos(2πU)− 0.2.

In Example 3, the first component of the varying coefficients is strictly pos-

itive. We first compare the estimation performance between Method 1 and

Method 2 with one-step method for simplicity.

Sample size n=200 n=400 n=800
Method 1 2 1 2 1 2

MISE{β̂01(·)} 0.0067 0.0034 0.0039 0.0026 0.0024 0.0015

MISE{β̂02(·)} 0.0209 0.0109 0.0118 0.0053 0.0066 0.0034

Table 5: Example 3: A comparison between Method 1 and 2.

It is seen in Table 5 that Method 2 is dramatically more accurate in esti-

mating the directions of the varying coefficients than Method 1. The mean

integrated squared errors returned by Method 2 is nearly half the values of

that given by Method 1. Therefore, when it is confident that some covari-

ate impacts on the response variable positively, Method 2 is preferable than

Method 1.

For Example 3, the one-step and two-step methods using Method 2 are

compared and demonstrated in Table 6.
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Sample size n=200 n=400 n=800
Method 2 1-step 2-step 1-step 2-step 1-step 2-step

MISE{β̂01(·)} 0.0034 0.0023 0.0026 0.0017 0.0015 0.0004

MISE{β̂02(·)} 0.0109 0.008 0.0053 0.0023 0.0034 0.0013

Table 6: Example 3: Mean integrated squared errors of β̂0j(·), j = 1, 2

Both one-step and two-step method approaches the directions of the vary-

ing coefficients reasonably, while comparing with the one-step method, Table

6 again witnesses dramatic reduction in estimation errors when the two-step

method is used. Such improvement may be visually clear in Figure 3, which

plots the estimates of the directions with medium integrated squared errors.
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Figure 3: Direction estimation for Example 3.

The plots depict β̂0j(·), j = 1, 2, that have medium integrated squared errors among 100
simulations.

Simulations of all three examples suggest that the maximum rank cor-
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relation method works well with the approximation of the directions of the

varying coefficients. Both one-step and two-step methods are satisfactory

approaches. While the two step estimation method improves dramatically to

the one-step estimation method, even when the varying coefficients possess

the same smoothness. This finding supports that, in practice, it is confident

to use the two step method for the estimation of the directions of the vary-

ing coefficients without thinking about the identification of the difference of

smoothness of the functional directions.

4.4 Estimation of the varying coefficients

With the estimation of the directions of the varying coefficients being simu-

lated, in this section, the task is to investigate the maximum rank correlation

method which provides estimates for the unknown norm and hence the vary-

ing coefficients. Unlike the estimation of the directions of the varying coeffi-

cients, which involves the maximization of an approximated smoothing rank

correlation function, the norm estimation is univariate and is conducted with

the idea of grid regression. To control the expense of computational cost, the

fast searching algorithm proposed is recommended.

Standard estimation of the varying coefficients

• Example 1 β1(U) = sin(2πU); β2(U) = cos(2πU).

In Example 1, ‖β(u)‖ ≡ 1 for any U = u. The target true maximiser of c(·)
is c(u) = 0 at any U = u. When applying the grid regression, the maximiser

of c(u) at any U = u is searched for between −20 and 20. The bandwidth

hn is chosen to be the one that minimizes the average value of the mean

integrated squared errors of β̂j(·), j = 1, 2. In Table 7, the mean integrated
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squared errors of the norm and corresponding varying coefficients are pre-

sented. Estimation of the norm involves estimates of the directions of the

varying coefficients. To identify the impact of direction estimation on the

estimation of the norm, the directions are estimated with both one-step and

two-step methods respectively.

Sample size n=200 n=400 n=800
Method 1-step 2-step 1-step 2-step 1-step 2-step

MISE{N̂(·)} 0.0023 0.0016 0.0011 0.0008 0.0003 0.0003

MISE{β̂1(·)} 0.023 0.0135 0.0124 0.0071 0.008 0.004

MISE{β̂2(·)} 0.0167 0.009 0.0098 0.0046 0.0051 0.0023

Table 7: Example 1: the mean integrated squared errors.

For Example 1, the estimation method for the directions does not chal-

lenge on the bandwidth selection for hn. For both one-step and two-step

methods, the practical bandwidths hn which minimize the mean integrated

squared errors of β̂(·) are identical. The two-step estimation method provides

better estimates of the directions of the varying coefficients. When two-step

estimates β̂0(Ui), i = 1, · · · , n, are used for norm estimation, estimates of the

norm given by the grid regression are closer to the true norm for samples sized

n = 200 and n = 400. When the sample size increases to 800, although the

mean integrated squared errors of β̂0(·) returned by one-step method is still

twice that of two-step method, the norm is estimated as accurately as that

of the two-step method. The advantage of two-step estimation method ag-

gregates and becomes more significant when the estimator β̂(·) is composed.

The mean integrated squared errors of β̂(·) obtained via two-step estimation

method is dramatically smaller than that of the one-step method. Thus, the

two-step method is not only a crucial tactic for direction estimation, it is
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promising in all stages of the estimation of the varying coefficients.
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Figure 4: Varying coefficient estimation for Example 1.

The plots depict β̂j(·), j = 1, 2, that have medium integrated squared errors among 100
simulations.

Figure 4 plots the estimated curves of the varying coefficients with both

one-step and two-step methods against the true functional varying coeffi-

cients. Both one-step and two-step methods approach the varying coefficients

properly, while the two-step method is considered preferable.

• Example 2 β1(U) = sin(3πU); β2(U) = cos(2πU).

For Example 2, the advantage of two-step estimation of the directions of

the varying coefficients is less dramatic than that of the one-step method.

Therefore, it is anticipated to witness increment in the estimation of the norm

and varying coefficients as significant as in Example 1. The target true c(·)
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is calculated at any U = u. Denote these true values as ct(Ui), i = 1, · · · , n.

When applying the grid regression at any U = u, the estimator of c(u) is seek

between ct(u)−20 and ct(u) + 20. The bandwidth hn is chosen to be the one

that minimizes the average value of the mean integrated squared errors of β̂j,

j = 1, 2. The mean integrated squared errors of the norm and corresponding

varying coefficients are presented in Table 8.

Sample size n=200 n=400 n=800
Method 1-step 2-step 1-step 2-step 1-step 2-step

MISE{N̂(·)} 0.088 0.085 0.063 0.063 0.034 0.032

MISE{β̂1(·)} 0.06 0.059 0.048 0.047 0.027 0.026

MISE{β̂2(·)} 0.071 0.061 0.04 0.038 0.021 0.019

Table 8: Example 2: the mean integrated squared errors.

In Example 2, again, the practical bandwidth hn which minimizes the

mean integrated squared errors of β̂(·) is identical for both one-step and

two-step methods, indicating a weak impact from direction estimation onto

bandwidth selection of norm estimation. The increment in norm estimation

for two-step method is negligible for Example 2. However, the two-step

method is still doing better in all stages of the estimation procedure. Two-

step method for the rougher function β1(·) is at least not worse than that

of one-step method. While for the smoother function β2(·), the reduction

in estimation errors is more significant. Thus, the two-step method is still

crucial for obtaining estimates of the varying coefficients for Example 2.
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Figure 5: Varying coefficient estimation for Example 2.

The plots depict β̂j(·), j = 1, 2, that have medium integrated squared errors among 100
simulations.

The varying coefficients are shown in Figure 5 as well for visual presenta-

tion. As the varying coefficients are more complicated than that of Example

1, it is found that small sample size may be an obstacle in this case.

Improved estimation of the varying coefficients

The thesis has implemented the idea of grid regression in the estimation of

the unknown norm. However, the estimation of the norm could be very diffi-

cult when bandwidth hn is small. This is because, the estimation of the norm

depends on the estimation of its derivatives, which is statistically difficult to

estimate. The difficulty aggregates when estimation at the left boundary of

U is inaccurate and unstable. Recall that to deal with the identifiability is-
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sue, it is set that ‖β(0)‖ = 1. When one has the estimator ĉ(·), the estimator

of the unknown norm is constructed as

N̂(u) = exp

{∫ u

0

ĉ(u)du

}
,

and the estimator of the varying coefficient vector is obtained via

β̂(u) = N̂(u)β̂0(u).

There is a potential threat here. As the integration starts from the left

boundary U = 0, when the estimates of c(·) is extremely poor near U = 0,

the poorness would impact on the estimates of the norm at all following

points. To reduce the risk of poor estimates of c(u) near the left boundary

of U , what the thesis suggests is to reconsider the identifiability condition

‖β(0)‖ = 1.

The condition, ‖β(0)‖ = 1, is set to avoid the identifiability issue fre-

quently confronted in the maximum rank correlation estimation. However,

it constrains on the estimation of the unknown norm, which integrates c(·)
from U = 0. Thus, it may be wiser to set ‖β(u)‖ is known for another u,

where stable and proper estimates of c(·) near U = u are confidently ex-

pected. The validity of this idea is tested for Example 1 and 2 by assuming

‖β(U = 0.2)‖. When one has estimates of ĉ(·), the estimator of the unknown

norm is constructed as

N̂(u) = exp

{∫ u

0.2

ĉ(u)du

}
‖β(0.2)‖,
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and the estimator of the varying coefficient vector is obtained via

β̂(u) = N̂(u)β̂0(u).

For Example 1 and 2, the thesis tests and compares this idea with the stan-

dard estimation procedure implemented in previous section.

• Example 1 β1(U) = sin(2πU); β2(U) = cos(2πU).

In Example 1, ‖β(u)‖ ≡ 1 at any U = u. Thus, the target true maximiser

c(·) is c(u) = 0 at any U = u. We search for the maximiser of c(u) at any

U = u between −20 and 20. The bandwidth hn is chosen to be the one that

minimizes the average value of the mean integrated squared errors of β̂j(·),
j = 1, 2. The directions of the varying coefficients are estimated with the

two-step method.
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Figure 6: Example 1: MISE against bandwidth hn.

The solid lines are the MISEs of N̂(·) against bandwidth hn given ‖β(0)‖ = 1; The dashed
lines are the MISEs of N̂(·) against bandwidth hn given ‖β(U = 0.2)‖.

Figure 6 compares the mean integrated squared error of N̂(·) for different

sample sizes. One significant feature is that by assuming ‖β(U = 0.2)‖ is

known, comparing with setting ‖β(0)‖ = 1, the mean integrated squared

error of N̂(·) is dramatically reduced for small hn. ĉ(·) is not impacted by
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the setting of the identifiability condition. What makes the difference in the

estimation of the norm is the improvement in the integration of ĉ(·). When

hn is small, ĉ(u) can be extremely poor for small u. The poorness of ĉ(·) at

small U = u invalidates reasonable ĉ(·) at larger U = u and deteriorates the

estimation of N(·) continuously during the integration of ĉ(·). By assum-

ing ‖β(U = 0.2)‖ is known, the integration of ĉ(·) starts from U = 0.2, a

relatively safe location where the estimates ĉ(·) are anticipated to be more

accurate than those at smaller u. The integration of ĉ(·) under this identifi-

ability condition gets rid of potential poor estimates of ĉ(·) for small u and

results in dramatic improvement in the estimation of the norm and hence

the varying coefficients, especially for small hn.

Sample size n=200 n=400 n=800
Method a b a b a b

MISE{N̂(·)} 0.0016 0.0011 0.0008 0.0005 0.0003 0.0002

MISE{β̂1(·)} 0.0135 0.0131 0.0071 0.0067 0.004 0.0039

MISE{β̂2(·)} 0.009 0.0088 0.0046 0.0046 0.0023 0.0023

Table 9: Example 1: comparison between standard and improved estimation.
’a’ denotes standard estimation, and ’b’ denotes the improved estimation.

Table 9 compare the estimation performance of the varying coefficients

with two different identifiability assumptions - the standard assumption

‖β(0)‖ = 1 and the modified assumption ‖β(0.2)‖ is given. The mean inte-

grated squared errors suggest that the modified identifiability condition does

not give significant improvement in the estimation of the varying coefficients.

The advantage of the modified identifiability condition is useful mainly for

small bandwidth hn. Up to this stage, the bandwidths are chosen by mini-

mization of mean integrated squared errors. When it comes to date-driven

bandwidth selection, the modified identifiability condition would have more
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significant advantages than the standard condition.

• Example 2 β1(U) = sin(3πU); β2(U) = cos(2πU).

The target true c(·) for Example 2 is calculated at any U = u. Denote these

true values as ct(Ui), i = 1, · · · , n. When applying the grid regression at any

U = u, search for the maximiser of c(u) between ct(u) − 20 and ct(u) + 20.

The bandwidth hn is chosen to be the one that minimizes the average value

of the mean integrated squared errors of β̂j, j = 1, 2. The directions of the

varying coefficients are estimated with the two-step method.
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Figure 7: Example 2: MISE against bandwidth hn.

The solid lines are the MISEs of N̂(·) against bandwidth hn given ‖β(0)‖ = 1; The dashed
lines are the MISEs of N̂(·) against bandwidth hn given ‖β(U = 0.2)‖.

Figure 7 has witnessed improvement in estimation of the norm, especially

when the bandwidth hn is small. The practical, optimal bandwidth hn under

the modified identifiability condition is smaller than that of the standard

condition for all three sample sizes. This is in line with the fact that when

hn is small under the standard identifiability condition, the estimates of c(·)
when u is small could be very poor, causing deterioration in the estimation

of the norm, thus larger hn is preferable. With the modified identifiability

condition, the impact of the estimates of c(·) when u is small is reduced since
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the integration of ĉ(·) that provides estimates of the norm starts from larger

u around which c(·) is better approached.

Sample size n=200 n=400 n=800
Method a b a b a b

MISE{N̂(·)} 0.085 0.067 0.063 0.04 0.032 0.027

MISE{β̂1(·)} 0.059 0.049 0.047 0.031 0.027 0.019

MISE{β̂2(·)} 0.061 0.055 0.038 0.034 0.019 0.019

Table 10: Example 2: comparison between standard and improved estimation.
’a’ denotes standard estimation, and ’b’ denotes the improved estimation.

Table 10 compares the estimation performance of the varying coeffi-

cients with two different identifiability assumptions - the standard assump-

tion ‖β(0)‖ = 1 and the modified condition ‖β(0.2)‖ is given. The modified

condition surpasses the standard assumption in the estimation of the norm

for all three sample sizes, while its advantage in the estimation of the varying

coefficients is reduced as sample size increases. This is because when sample

size is large, the estimates of c(·) for small u becomes accurate, thus the

integration from U = 0 is not worse than that from inner points (U=0.2 in

this simulation). We still conclude that the modified identifiability condition

is more stable and safer than the standard assumption in providing estimates

of the norm of the varying coefficients. Therefore, in later simulations and

real data analysis, the modified identifiability condition is utilized.
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4.5 Estimation of the unknown monotonic link func-

tion

With that the varying coefficients are estimated properly, the next task is to

estimate the monotonic link function. The link function

g(·) = log(·)

is used for all three examples. For simplicity, data set used for the estima-

tion of the unknown link function in this section is from Example 1. For

100 simulations with sample size n = 200, 400 and 800, the link function is

estimated by the proposed method.

Standardized sum of squares of Person’s residuals is considered as an

indicator of goodness of estimation performance. Denote the standardized

sum of squares of Person’s residuals by

r2j =
(yi − m̂(yi|Xi, Ui)√

m̂(yi|Xi, Ui)

)2
, i = 1, · · · , n,

where j = 1, · · · , 100 refers to the jth simulation. Consider r2j as a function

of hl, r
2
j (hl). Bandwidth for the estimation of the link function is chosen by

minimization of the following objective function

Score(hl) =
1

100

100∑
j=1

r2j (hl),

which is the mean value of standardized sum of squares of Person’s residuals

over 100 simulations.
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Sample size n=200 n=400 n=800
Method 1-step 2-step 1-step 2-step 1-step 2-step

Score 10.613 7.935 7.695 5.618 5.243 3.936

Table 11: Standardized Pearson’s residual sum of squares.

Table 11 indicates the impact of proper estimation of the varying coeffi-

cients on the link estimation. For Example 1, when the two-step method is

utilized for providing estimates of the directions of the varying coefficients,

the varying coefficients are approached more accurately than that of one-

step method. With the effort of two-step method, the goodness of fit is

significantly improved.
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Figure 8: Link function estimation.
Figures from the left to the right are estimated link function with medium sum of squares
of Pearson’s residuals for sample sizes n = 200, 400 and 800, respectively.
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5 Bandwidth Selection

Bandwidth selection is a naturally arisen question for non-parametric mod-

elling. A bandwidth is crucial in that, it decides the trade-off between mod-

elling bias and variance. When a smaller than optimal bandwidth is used,

local modelling should provide a local estimate with small bias on one hand

and large variance on the other. This is because small bandwidth includes

only limited local data. In practice, proper data-driven smoothing parame-

ters are desirable. Thus, in this section, the thesis tries to let the data itself

decide the smoothing parameters.

Smoothing parameter is crucial to the maximum rank correlation method,

especially when the norm is to be estimated. In this project, the estimation

of the varying coefficient functions and the unknown link function involves

quite a few bandwidths. We denote these bandwidths by h1 and h2, the

one-step and two-step estimation bandwidth used for approaching the di-

rections of the varying coefficient functions, respectively; hn, the bandwidth

applied to estimate the unknown norm; and hl, the bandwidth employed in

the estimation of the unknown link function. Bear in mind that most of

the difficulties in the whole procedure of estimation lies in the endeavour to

obtain accurate estimates of the unknown norm.

5.1 Data-driven constant bandwidth

When a global constant bandwidth is wanted, either the AIC criterion pro-

posed by Cheng, Zhang and Fan (2009) or the CV criterion may be utilized

as an approach for data-driven smoothing parameter selection. These two

criteria are introduced briefly in this section.
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AIC Criterion

Define the AIC for model (3.1) as

AIC(h1, hn, hl) = −2
n∑
i=1

lnL
(
ĝ(Xi

T β̂(Ui), yi)
)

+ 2κ, (5.1)

when directions are estimated using one-step method; or

AIC(h21, · · · , h2p, hn, hl) = −2
n∑
i=1

lnL
(
ĝ(Xi

T β̂(Ui), yi)
)

+ 2κ, (5.2)

when directions are estimated using two-step method; where κ is the number

of parameters involved in the estimation procedure. Bandwidths that are

utilized for providing initial estimates are not crucial as long as they are not

stupidly selected. Thus, these bandwidths are not included in (5.1) and (5.2).

According to Fan and Gijbels (1996), when local linear approximation is

used in non-parametric modelling, and when the sample size n is sufficiently

large, the number of unknown parameters that an unknown function amounts

to is approximately

h−1(v0 + v2/µ2),

where vi =
∫
tiK2(t)dt and µi =

∫
tiK(t)dt.

Similarly, when local constant approximation is used, the number of un-

known parameters that an unknown function amounts to is approximately

h−1v0.

In this project, the Epanecknicov kernel is utilized, hence v0 = 0.6 and v0 +

v2/µ2 ≈ 1.285714. Therefore, the number of unknown parameters involved
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in our estimation procedure that counts in the AIC is

κ = 0.6h−11 p+ 1.285714
(
h−1n + h−1l

)
,

when one-step method is applied; and

κ = 1.285714

(
p∑
j=1

h−12j + h−1n + h−1l

)
,

when two-step estimation method is used. The set of bandwidths to be used

is the set that gives the minimal of the AIC score.

CV Criterion

The cross-validation approach is also straightforward. Define the CV for

model (3.1) as

CV (h1, hn, hl) = −2
n∑
i=1

lnL
(
ĝ−i(Xi

T β̂
−i

(Ui), yi)
)
, (5.3)

when directions are estimated using one-step method; or

CV (h21, · · · , h2p, hn, hl) = −2
n∑
i=1

lnL
(
ĝ−i(Xi

T β̂
−i

(Ui), yi)
)
, (5.4)

when directions are estimated using one-step method. The estimates β̂
−i

(Ui),

i = 1, · · · , n, of the varying coefficients are provided by the data with the

ith observation being removed, that is {X−i, U−i, y−i}, i = 1, · · · , n. The

estimates ĝ−i(ti) of the link function are as well provided by the data with

the ith observation being removed, that is {t−i, y−i}, i = 1, · · · , n. The set

of practical optimal bandwidths, h1, h2j , j = 1, · · · , p, hn and hl is the com-
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bination that minimizes the CV score.

Bandwidth selection algorithm

It is frustrating that we have quite a few bandwidths to select. Moreover,

these bandwidths impact upon each other. If one wants to estimate the vary-

ing coefficients reasonably, initially, one has to have good estimates of both

their directions and the norm. However, the accuracy of estimating the norm

depends on how well the directions are approached. The bandwidth selection

procedure also involves the estimates of the link function, for which reason-

able estimates of the varying coefficients have to be ensured. That is to say,

the estimation stages, those of the direction estimation, norm estimation and

the link estimation, are inter-correlated to each other. Searching for optimal

bandwidths across all candidate bandwidths is therefore time-consuming, es-

pecially when the sample size is large.

It is absolutely not easy to say there is any rule, which on one hand is

computationally cheap and practically efficient on the other, to be applied.

For the sake of trading off between providing reliable bandwidths and saving

computational cost, we propose a bandwidth selection procedure which pro-

vides relatively reasonable bandwidths and reduces the computational cost

at the same time.

• Algorithm when one-step estimation method is used

1. Knowing that the link function is strictly monotonic, we start band-

width selection by setting a proper guess of hl = hl0. Let h = h1 = hn, using

one-step estimation method, search for ĥ that minimizes the bandwidth cri-

teria in use.

2. Fix the bandwidth for estimating the norm as hn = ĥ. Search for ĥ1
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that minimizes the bandwidth criteria in use. h1 = ĥ1 is selected as the final

bandwidth that provide estimates of the directions of the varying coefficients.

3. Firstly, fix the bandwidth for estimating the directions of the varying

coefficients as h1 = ĥ1. Then search for the bandwidth for estimating the

norm again, and find ĥn that minimizes the bandwidth criteria in use. hn =

ĥn is used as the final bandwidth that provide estimates of the norm of the

varying coefficients.

4. With h1 = ĥ1 and hn = ĥn being fixed, search for ĥl that minimizes

the bandwidth criteria in use. hl = ĥl is selected to be the bandwidth for

the estimation of the monotonic link function.

• Algorithm when two-step estimation method is used

When the two-step method is used for the estimation of the directions of the

varying coefficients, the first two steps of bandwidth selection are the same

as that of the algorithm with one-step estimation method.

1. Given a strictly monotonic link function, we start bandwidth selection

by setting a proper guess of hl = hl0. Let h = h1 = hn, using one-step

estimation method, search for ĥ that minimizes the bandwidth criteria in

use.

2. Fix the bandwidth for estimating the norm as hn = ĥ. Search for

ĥ1 that minimizes the bandwidth criteria in use. Due to that two-step esti-

mation method is not sensitive to the first state bandwidth, as long as it is

not too ugly. We set h20 = 0.5ĥ1 as the first stage bandwidth that provide

under-smoothed estimates of the directions of the varying coefficients.

3. With the bandwidth for the estimation of the norm of the varying

coefficients being fixed as hn = ĥ, we search for a ĥ2j, j = 1, · · · , p, that

minimize the bandwidth criteria in use. h2j = ĥ2j, j = 1, · · · , p are selected
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to be the second stage bandwidths for the estimation of the directions of the

varying coefficients.

4. With h20 = 0.5ĥ1 and h2j = ĥ2j, j = 1, · · · , p being selected, search for

ĥn that minimizes the bandwidth criteria in use. hn = ĥn is chosen to be the

bandwidth that provides estimates of the norm of the varying coefficients.

5. Fix h20 = 0.5ĥ1, h2j = ĥ2j, j = 1, · · · , p and hn = ĥn. Search for ĥl

that minimizes the bandwidth criteria in use. hl = ĥl is selected to be the

bandwidth for the estimation of the monotonic link function.

5.2 Nearest Neighbour Bandwidth

In this section, the Cross-Validation criterion is applied as a means of varying

bandwidth selection. We intend to use the idea of nearest neighbour band-

width. Suppose M is a positive integer. At a particular observation point,

the first M adjacent observations are used as the local data for statistical

exploration. M here determines the expand of the bandwidth

In terms of estimating the varying coefficients, the bandwidth selection

takes place with respect to U . At any given point U = u, denote the distance

between observation points Ui and u as D, and

Di = ||Ui − u||, i = 1, · · · , n.

Sort the distance vector D in an increasing order gives

{D(1), . . . , D(n)}.

The observations are also sorted with respect to absolute distance. The
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sorted observations are

{U(1),X(1), y(1); . . . ;U(n),X(n), y(n)}

Then the first M nearest observations, U(i),X(i), y(i), i = 1, · · · ,M , are used

as effective information at point u. Denote by r = D(M), and the kernel

function Kr

(
D(i)

)
at U(i) is defined as K

(
D(i)

r

)
/r.

Similarly, when the target is to estimate the unknown link function, the

varying bandwidth selection is based on t = XT β̂(U). Denote Ml as a

positive integer that determines the bandwidth span. At a given location t0,

denote the distance between observation ti and t0 by D, and

Di = ||ti − t0||, i = 1, · · · , n

Sort the distances in an increasing order gives

{D(1), . . . , D(n)}.

Then sorted the observations in order with respect to distance. The sorted

observations are

{t(1), y(1); . . . ; t(n), y(n)}.

Then the first Ml closest observations are used as effective information at

point t0. Denote by r = D(Ml), and the kernel function Kr

(
D(i)

)
at U(i) is

defined as K
(
D(i)

r

)
/r.

Cross-Validation Criterion

When one-step method is used for the estimation of the directions of the
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varying coefficients, the Cross-Validation objective function for model (3.1)

is defined as

CV (M1,Mn,Ml) = −2
n∑
i=1

l
(
ĝ−i(xi

T β̂−i(Ui), yi)
)
. (5.5)

Similarly, when the directions of the varying coefficients are estimated with

two-step method, the objective function is

CV (M21, · · · ,M2p,Mn,Ml) = −2
n∑
i=1

l
(
ĝ−i(xi

T β̂−i(Ui), yi)
)
, (5.6)

where M1,M21, · · · ,M2p, Mn and Ml are positive integers that determines

the local neighbourhood for estimation of the directions, the unknown norm

and the monotonic link function, respectively. β̂−i(·) and ĝ−i(·) are the

estimators of β(Ui) and g(·), which are computed with the ith observation

been deleted. A combination of M1,M21, · · · ,M2p, Mn and Ml that minimizes

corresponding CV criterion is then searched.

An ideal bandwidth selection algorithm which is potential in balancing

the computational cost and the bandwidth selection performance is desirable.

As is introduced in the previous section, the proposed bandwidth selection

algorithm should be working on this. When the nearest neighbour bandwidth

is of interest, the thesis suggests to look for proper bandwidths using the same

algorithm.

5.3 Simulations

In terms of real world application, data-driven bandwidths are more desir-

able, instead of depending on a researcher’s experience. In our generalized
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varying coefficient models, there are quite a few bandwidths to be consid-

ered, which are the one-step estimation bandwidth h1, the two-step estima-

tion bandwidths h2j, j = 1, · · · , p, for different components of the varying

coefficients, the bandwidth hn for estimating the unknown norm and the

bandwidth hl for estimating the unknown link function. This means that

the data-driven bandwidth selection could be very difficult. In addition to

the difficulty of handling the data-driven bandwidths, there is another issue

to be considered, that is the computation cost. The best choice is to not chase

the practically optimal, which gives a combination of all different bandwidths

that provides the best estimation performance, but the practically satisfac-

tory, which trades off between accuracy and time cost, instead. To provide

with a demonstration, 100 simulations with sample size n = 200 n = 400

and n = 800 for two examples are conducted. With both the Akaike infor-

mation (AIC) and the Cross-Validation (CV) criteria proposed, the thesis

has obtained data-driven global constant bandwidths and nearest neighbour

varying bandwidths, respectively.

• Example 1 β1(U) = sin(2πU); β2(U) = cos(2πU).

• Example 2 β1(U) = sin(3πU); β2(U) = cos(2πU).

5.3.1 Data-driven constant bandwidth

The selection of data-driven constant bandwidth is provided by AIC and

CV criteria. To balance the bandwidth selection and computation cost,

the proposed algorithms are used to search for a combination of practical

bandwidths. Table 12 demonstrates proper estimation results of the varying

coefficients for both the AIC and the CV criteria. The AIC criterion pro-

vides slightly better estimation performance than the CV criterion, while the

advantage is not dramatic.
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Example 1 n=200 n=400 n=800
AIC 1-step 2-step 1-step 2-step 1-step 2-step

MISE{β̂1(·)} 0.0216 0.0168 0.0118 0.007 0.0076 0.0039

MISE{β̂2(·)} 0.0216 0.016 0.0109 0.064 0.0058 0.003
CV 1-step 2-step 1-step 2-step 1-step 2-step

MISE{β̂1(·)} 0.0226 0.0173 0.013 0.008 0.0078 0.0039

MISE{β̂2(·)} 0.0245 0.0171 0.0122 0.0068 0.0061 0.0032

Example 2 n=200 n=400 n=800
AIC 1-step 2-step 1-step 2-step 1-step 2-step

MISE{β̂1(·)} 0.0614 0.0618 0.0356 0.0345 0.0224 0.0227

MISE{β̂2(·)} 0.0634 0.0643 0.0399 0.0344 0.0226 0.0214
CV 1-step 2-step 1-step 2-step 1-step 2-step

MISE{β̂1(·)} 0.0658 0.0647 0.0359 0.0356 0.0227 0.0227

MISE{β̂2(·)} 0.0706 0.0663 0.0409 0.0366 0.0231 0.0221

Table 12: Estimation with data-driven constant bandwidths.

5.3.2 Data-driven varying nearest bandwidth

By inquiring CV criteria, the data-driven varying nearest bandwidths are also

selected. Again both one-step and two-step estimation method to obtain

the estimators of the directions of the varying coefficients are applied and

compared. The bandwidth selection procedure is identical as that used for

data-driven constant bandwidth in precious section. The thesis is not going to

repeat here. Estimation results shown in Table 13 concludes with reasonable

estimation performance of the varying coefficients for both examples, when

CV criterion is used.
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Example 1 n=200 n=400 n=800
CV 1-step 2-step 1-step 2-step 1-step 2-step

MISE{β̂1(·)} 0.0318 0.0276 0.0176 0.0141 0.0098 0.0062

MISE{β̂2(·)} 0.0321 0.028 0.0187 0.0104 0.0082 0.0047

Example 2 n=200 n=400 n=800
CV 1-step 2-step 1-step 2-step 1-step 2-step

MISE{β̂1(·)} 0.0745 0.0739 0.0425 0.0401 0.0287 0.0276

MISE{β̂2(·)} 0.0801 0.0793 0.0479 0.0427 0.0293 0.0289

Table 13: Estimation with data-driven nearest neighbour bandwidths.
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6 Confidence band and hypothesis test

Confidence bands construction and hypothesis testing are two important sub-

jects that statistical inferences are interested in. Construction of confidence

bands is the major advantage of the bootstrap method (Faraway,1990). This

thesis frequently utilizes the bootstrap approach for the construction of con-

fidence bands and the hypothesis test.

6.1 Confidence bands of the varying coefficients

In practice, the intention is sometimes to estimate the confidence band of the

coefficients. The construction of confidence band is based on the distribution

of the maximum discrepancy between the estimated functional coefficient and

the true functional coefficient. It is hard to find the exact distribution of the

maximum discrepancy, however, it can be estimated by bootstrap.

For the jth varying coefficient βj(·), j ∈ {1, · · · , p}, consider the quantity

Tj = sup
u∈U

|β̂j(u)− βj(u)|
{var(β̂j(u)|X, U)}1/2

,

where β̂j(·) is the estimator of βj(·), and var(β̂j(·)|X, U) is the conditional

variance of β̂j(·). Suppose the upper α quantile of Tj is cα . If cα and

{var(β̂j(·)|X, U)}1/2 in Tj were both known, the confidence band could be

constructed as

β̂j(u)± {var(β̂j(u)|X, U)}1/2cα. (6.1)

Now the problem is to estimate cα and {var(β̂p(u)|X, U)}1/2, respectively.

Denote the corresponding estimators by ĉα and {var?(β̂p(u)|X, U)}1/2, then
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the confidence band is constructed as

β̂j(u)± {var?(β̂j(u)|X, U)}1/2ĉα. (6.2)

The estimation of cα and {var(β̂j(u)|X, U)}1/2 using the bootstrap approach

is demonstrated as the following:

(1) With the proposed maximum rank correlation estimation method,

estimate the functional coefficients β(·). Denote the estimators for each

functional coefficient as β̂j(·), j ∈ {1, · · · , p}.
(2) For each i = 1, · · · , n, generate a bootstrap sample Y ?

i based on the

estimated log conditional density function

`

[
ĝ−1

{
p∑
j=1

Xjiβ̂j(Ui)

}
, y

]
.

Estimate the varying coefficients βj(·) based on the bootstrap sample{
XT , U, Y ?

}
using the same estimation method, i.e. the proposed maximum

rank correlation estimation method. The resulting estimator β̂?j (·) is termed

as a bootstrap sample of β̂j(·), j ∈ {1, · · · , p}.
(3) Repeat step (2) M times provides M bootstrap samples β̂j,i(·), where

i = 1, · · · ,M and j ∈ {1, · · · , p}. The estimator {var?(β̂j(·)|XT , U)} is taken

to be the sample variance of the bootstrap sample β̂j,i(·), where i = 1, · · · ,M
and j ∈ {1, · · · , j}.

(4) Repeat (2) another M2 times to get bootstrap samples β̂j,i(·), where

i = 1, · · · ,M2 and j ∈ {1, · · · , p}. For each varying coefficient of each

bootstrap sample, compute the quantity

T ?j,i = sup
u∈U

|β̂?j (u)− β̂j(u|
{var?(β̂j(u)|X,U)}1/2

,
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where i = 1, · · · ,M2 and j ∈ {1, · · · , p}. T ?j,i, i = 1, · · · ,M2 is termed as a

bootstrap sample of Tj for the jth coefficient function. The estimator ĉα is

taken to be the upper α percentile of T ?j,i, i = 1, · · · ,m.

6.2 Hypothesis test of constant coefficients

The hypothesis test is another important part of statistical inference. The

basic idea of most hypothesis test techniques is to compare the observed

value of a test statistic with its empirical distribution calculated under the

assumption that the null hypothesis were true. The null is then rejected

or retained according to the magnitude of the test statistic relative to this

distribution. However, as the test statistic is compared to an empirical dis-

tribution, rather than the true distribution that the test statistic follows. It

is possible that the null hypothesis could be over-rejected or over-accepted.

Bootstrap hypothesis testing is a simulation-based testing method that

involves re-sampling from the sample and the estimators and construction

of simulated test statistic. In this study, of interest is to test whether a

covariate impacts on the response variable constantly. The hypothesis is

often constructed as

H0 : βj(·) = Cj ←→ H1 : βj(·) 6= Cj, (6.3)

where Cj, j ∈ {1, · · · , p} is the unknown constant coefficient indicating non-

varying impact of the jth covariate upon the response variable. The null

hypothesis in (6.3) means the impact of the jth covariate Xj is not varying

over time, and the alternative hypothesis means the impact is time varying.

Without loss of generality, in this section, the hypothesis test are con-

ducted using bootstrap approach for the pth component of the coefficient
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vector. Consider the hypothesis

H0 : βp(·) = Cp ←→ H1 : βp(·) 6= Cp. (6.4)

The crucial quantity to be considered for the test is

T = sup
u∈U

|β̂p(u)− Cp|
{var(β̂p(u)|X, U)}1/2

,

where β̂p(·) is the estimator of the functional coefficient βp(·) and var(β̂p(·)|X, U)

is the conditional variance of β̂p(·). The null hypothesis which attributes the

pth covariate with constant coefficient Cp

Suppose the upper α quantile of T under null hypothesis of (6.4) is cα .

If cα, Cp and {var(β̂p(u)|X, U)}1/2 in T were all known, the hypothesis test

with the rejection region can be defined as

sup
u∈U

|β̂p(u)− Cp|
{var(β̂p(u)|X, U)}1/2

> cα.

The problem is to estimate cα, Cp and {var(β̂p(·)|X,U)}1/2, respectively.

Denote by the corresponding estimators as ĉα, Ĉp and {var?(β̂p(·)|X,U)}1/2,
the hypothesis with size α is rejected when

sup
u∈U

|β̂p(u)− Ĉp|
{var?(β̂p(u)|X, U)}1/2

> ĉα.

The null hypothesis is accepted otherwise. Now the thesis illustrates how to

estimate cα, Cp and {var(β̂p(·)|X, U)}1/2.
Cp can be simply estimated by taking average of the estimates β̂p(·) across
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the datum points as

Ĉp = n−1
n∑
i=1

β̂p(Ui).

The thesis then demonstrates the estimation of cα and {var(β̂p(·)|X, U)}1/2

using the bootstrap approach.

(1) Under the null hypothesis, treat all other coefficients as functional

and the pth coefficient as constant, and estimate the functional coefficients

and the constant coefficient, respectively. Denote the estimators by β̄j(·),
j ∈ {1, · · · , p− 1}, and Ĉp.

(2) For each i = 1, · · · , n, generate a bootstrap sample Y ?
i based on the

estimated log conditional density function

`

[
ĝ−1

{
p−1∑
j=1

Xjiβ̄j(Ui) +XpiĈp

}
, y

]
.

Treat βp(·) as functional and estimate it based on the bootstrap sample{
XT , U, Y ?

}
. The resulting estimator β̂?p(·) is termed as a bootstrap sample

of β̂p(·)
(3) Repeat (2) M times providesM bootstrap samples β̂p,i(·), i = 1, · · · ,M .

The estimator var?(β̂p(·)|X,U) is taken to be the sample variance of the

bootstrap sample β̂p,i(·), i = 1, · · · ,M .

(4) Repeat (2) another M2 times to get a bootstrap sample β̂p,i(·), i =

1, · · · ,M2. And compute

T ?i = sup
u∈U

|β̂?p(u)− Ĉp|
{var?(β̂p(u)|X,U)}1/2

.

T ?i , i = 1, · · · ,M2 is termed as a bootstrap sample of T . The estimator

ĉα is taken to be the upper α percentile of T ?i , i = 1, · · · ,M2.
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6.3 Bandwidth selection

Bandwidth selection is always an issue to be considered in this section. In

the model settings, the varying coefficients are estimated in a few stages.

In each stage, there are corresponding bandwidth selection problems to be

solved. To look for the optimal practical bandwidths, complex algorithm and

time consuming computation are two obstacles that are hard to demise. In

previous simulation studies, the thesis has attempted to supply a bandwidth

selection algorithm that is not too complex and not too computationally

expensive. However, the observed sample and bootstrap samples are subject

to different bandwidths when applicable. We do not want to repeat the

above bandwidth selection algorithm for each and every bootstrap sample.

Bootstrap approach itself is indeed computationally expensive. It would be

exhausting if one attempts to search for data-driven bandwidths for each and

every bootstrap sample. These bandwidths can not simply be given according

to experience neither. To reduce the effort in bandwidth selection, the thesis

attempts to use data-driven bandwidths for bootstrap samples with as less

computational cost as possible.

Our intention of bandwidth selection is two-stage. First of all, for 1000

bootstrap samples, corresponding bandwidths are chosen by the AIC crite-

rion. Then, bandwidths used for hypothesis test and confidence bands con-

struction are determined to be the average of the corresponding bandwidths

for these 1000 bootstrap samples. The reason here is that with these band-

widths, there would be a balance between computation saving and statistical

validity. Details of these two-stage bandwidth selection are as follows.

Suppose the observed data set is proceeded with the proposed maximum

rank correlation estimation method where the directions of the varying co-
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efficients are estimated with the two-step method. The bandwidth used in

the first stage of the two-step method is denoted by h20. Since the second

stage bandwidth is not sensitive to the first stage bandwidth, h20 is used for

all bootstrap samples when the target is to estimate the directions of the

varying coefficients. Denote by hl the bandwidth for link function estimation

when the observed data set is treated. Since the link function is not the main

target for the hypothesis test and confidence band construction, hl is used

for bandwidth selection for bootstrap samples.

1.) For bootstrap sample {Y ?
i ,Xi, Ui}, i = 1, · · · , n. with h20 and h2j =

h20 for j = 1, · · · , p, estimates of the directions of the varying coefficients are

obtained. Search for h̃n that minimizes the AIC criterion.

2.) With h20 and h̃n, search for h2j, j = 1, · · · , p, that minimizes the AIC

criterion. Denote these bandwidths as ĥ2j, j = 1, · · · , p.
3.) h̃n is not the practical optimal bandwidth for the estimation of the

norm. With fixed h20 and ĥ2j, j = 1, · · · , p, search for the bandwidth for

estimating the norm again, and the resulting bandwidth is denoted by hathn.

4.) Repeat the above steps 100 times gives 100 sets of bandwidths. To

make the presentation more clear, express these bandwidths as h2j,i, j =

1, · · · , p, and hn,i for i = 1, · · · , 100. The combination of bandwidths used

for upcoming bootstrap samples are taken to be

h2j =
1

100

100∑
i=1

h2j,i, j = 1, · · · , p,

and

hn =
1

100

100∑
i=1

hn,i.
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6.4 Simulation: Hypothesis test

In this section, the thesis implements the hypothesis test within the frame-

work of Poisson regression. The link function is selected to be the commonly

used log transformation function for data generation.

• Example β1(u) = sin(πu) + 0.8; β2(u) = cos(πu)− 0.4.

For this example with support u ∈ [0, 1], the null and alternative hypotheses

are

H0 : βj(·) = Cj ←→ H1 : βj(·) 6= Cj,

where j = 1, 2. They test whether the impact of the covariates on the

response variable are varying or constant.

To test the impact of the first covariate, set

β1(u) = bsin(πu) + 0.8 and β2(u) = cos(πu)− 0.4,

where b ∈ {0, 0.1, · · · , 1}. For each fixed b, 1000 simulations with sample

size n = 500 are conducted. For significance level α = 0.05 and α = 0.1, the

hypothesis

H0 : β1(·) = C1 ←→ H1 : β1(·) 6= C1

is tested and the power of the test for each b is evaluated.

The impact of the second covariate is tested in the similar way. Set

β1(u) = sin(πu) + 0.8 and β2(u) = (1− b) + bcos(πu)− 0.4,

where b ∈ {0, 0.1, · · · , 1}. For each fixed b, 1000 simulations with sample

size n = 500 are conducted. For significance level α = 0.05 and α = 0.1, the
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hypothesis

H0 : β2(·) = C2 ←→ H1 : β2(·) 6= C2

is tested, and the power functions are calculated.

To examine how powerful the hypothesis tests are, the estimated power

functions for the varying coefficients are shown in Figure 9, which suggests

proper performance of the bootstrap approach.
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Figure 9: Power function.
The figures on the left are power functions of the hypothesis for β1(·) for significance
level α = 0.05 and 0.1, respectively;The figures on the right are power functions of the
hypothesis for β2(·) for significance level α = 0.05 and 0.1, respectively.The dotted lines
highlight the corresponding significance level.

6.5 Simulation: Confidence bands construction

Suppose it has been identified that all coefficients are functional. For the

following two examples, confidence bands of the varying coefficients are con-
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structed using the bootstrap approach.

• Example 1 β1(u) = sin(πu); β2(u) = cos(2πu).

Coverage probability β1(·) β2(·)
1-α=99 % 90% 94%

1-α=95 % 87% 92%

Table 14: Example 1: Coverage probability.

For example 1 with support u ∈ [0, 1]. We construct the bootstrap con-

fidence bands with the confidence level 1 − α is taken to be 99% and 95%,

respectively. The bandwidths in the estimation procedure, provided by AIC

criterion, are h20 = 0.0622, h21 = 0.1789, h22 = 0.0979, hn = 0.1448, hl =

0.1208, respectively. When it comes to the bootstrap confidence bands

construction for each simulation, the corresponding bandwidths for boot-

strap samples are derived from 100 bootstrap samples using the same AIC-

based bandwidth selection algorithm. The Monte Carol errors are of size√
0.95 ∗ 0.05/500 ≈ 0.01 for α = 0.05 and

√
0.99 ∗ 0.01/500 ≈ 0.004 for

α = 0.05. Table 14 shows that there are poor coverage probabilities.

• Example 2 β1(u) = sin(2πu); β2(u) = cos(2πu).

Coverage probability β1(·) β2(·)
1-α=99 % 88% 95%

1-α=95 % 85% 93%

Table 15: Example 2: Coverage probability.

Fo example 2 with support u ∈ [0, 1], the bootstrap confidence bands with

confidence level 1−α 99% and 95% are constructed. The bandwidths in the

estimation procedure ,provided by AIC criterion, are h20 = 0.0531, h21 =

0.2511, h22 = 0.2573, hn = 0.3259, hl = 0.1136; respectively. In the process
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of bootstrap confidence bands construction for each simulation, the corre-

sponding bandwidths for bootstrap samples are derived from 100 bootstrap

samples using the same AIC-based bandwidth selection algorithm. In Ta-

ble 15, the coverage probabilities confirm that current attempt of confidence

bands construction is potentially non-satisfactory.

Discussion and an explortory approach

Through exploration of the variance of the directions and the norm. It

is found worthy of constructing confidence bands for the varying coefficients

through a composition of corresponding confidence bands for the directions

and the norm.

Estimation of the directions involves an standardization operation, due

to that the norm of the direction is fixed to be 1. Such operation has the

following tendency: when the absolute value of an estimate β̂j(·) at u is large,

say |β̂j(u)| → 1 , the variance of the estimate would tend to 0. Therefore, in

the attempt of achieving var?(β̂0p(u)), the bootstrap samples β̂?0p(u) of β̂0p(u)

are estimated with the two-step estimation method without standardization

operation. Standardized β̂?0p(·) are used in all other occasions when relevant.

Denote [Blow
0 (·),Bup

0 (·)] and [N low(·),Nup(·)] the confidence bands for the

directions and the norm, where the superscripts low and up indicate lower

and upper confidence bands, respectively. Let

B(·) =
{
Blow

0 (·)N low(·), Bup
0 (·)N low(·), Blow

0 (·)Nup(·), Bup
0 (·)Nup(·)

}
.

The confidence bands of the varying coefficients at any given point u is con-

structed as

[min (B(u)) ,max (B(u))].
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With this sort of confidence bands composition, example 1 and 2 with sample

size n = 500 are treated, respectively. Bandwidths selection is proceeded as

instructed previously.

• Example 1 β1(u) = sin(πu); β2(u) = cos(2πu).

Coverage probability β1(·) β2(·)
1-α=99 % 97% 98%

1-α=95 % 95% 96%

Table 16: Example 1: Improved coverage probability

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

Confidence bands for β1(u)

u

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

u

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

u

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

Confidence bands for β2(u)

u

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

u

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

u

Figure 10: Example 1: estimated confidence bands (1− α = 0.95):

The dotted lines are the confidence bands with medium average band width, and the solid
lines are the true curves.

Table 16 indicates that the coverage probabilities have been dramatically

improved to a satisfactory level. Figure 10 presents estimated confidence

bands for β1(·) and β2(·), which have the medium band width. Compare

with previously constructed confidence bands, the idea of composition gives

more smooth and reliable confidence bands.

• Example 2 β1(u) = sin(2πu); β2(u) = cos(2πu).
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Coverage probability β1(·) β2(·)
1-α=99 % 97% 98%

1-α=95 % 96% 96%

Table 17: Example 2: Improved coverage probability
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Figure 11: Example 2: estimated confidence bands (1− α = 0.95).

The dotted lines are the confidence bands with medium average band width, and the solid
lines are the true curves.

The Monte Carol errors are of size 0.01 for α = 0.01 and 0.004 for α =

0.05. The coverage probabilities have too been significantly improved as well.

Figure 11 depicts estimated confidence bands for β1(·) and β2(·), which have

the medium width of the confidence bands. Through constructing confidence

bands with the composition of confidence bands for the directions and the

norm, reliable confidence bands are obtained again.
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7 Extention to Generalized Semi-Varying Co-

efficient Models with Unknown Monotonic

Link Transformation

The thesis has explored generalized varying coefficient models in previous

sections. In this section, the thesis extends the research to generalized semi-

varying coefficient models. In practice, some coefficients in generalized vary-

ing coefficient models may be constant. We pay a price on the variance side

of an estimator of a constant component, when the constant component is

treated as functional. The estimation for a generalized semi-varying coef-

ficient model is straightforward. However, it prompts the question of how

to identify the composition of the coefficient vector, among which there are

both varying and constant components. This is basically a model selection

problem.

7.1 Generalized Semi-varying Coefficient Models

Suppose that, a generalized semi-varying-coefficient model, whose model

structure,ML(p, q), involves L covariates among which p of them have vary-

ing compact upon the response variable, and q = L−p of them have constant

effect on the response variable. The mean regression function is supposed to

be linear via a monotonic link function g(·) as

g{m(U,X,Z)} = XTβ(U) + ZTα, (7.1)

where β(·) = {β1(·), . . . , βp(·)} is the varying-coefficient vector, p-dimensional

X and q-dimentional Z are the covariates, and α = {α1, . . . , αq} is the vector
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holding constant coefficients. Without loss of generality, the thesis assumes

that the link function g(·) is a strictly increasing link transformation.

For the purpose of further presentation, denote the coefficient vector hold-

ing both varying and constant components by

B(·) = {β(·)T ,αT}T ,

and the norm of the coefficient vector by N(·) = ‖B(·)‖. Further, the direc-

tion of B(·) is denoted by

B0(·) = {β0(·)T ,α0(·)T}T ,

where B0(·) = B(·)
‖B(·)‖ , β0(·) =

β(·)
‖β(·)‖

, and α0(·) = α(·)
‖α(·)‖ . To deal with the

identifiability issue, set ‖B(0)‖ ≡ 1. Let HT =
{
XT ,ZT

}T
, (7.1) is equivalent

to

g{m(U,H)} = HTB(U). (7.2)

7.2 Estimation procedure

Before proposing strategic model identification, the thesis introduces the es-

timation procedures first, assuming that the true model structure is success-

fully identified.

7.2.1 Estimation of the directions of the coefficients

First of all, estimators of the directions of the coefficients have to be achieved.

The estimation of the directions of the coefficients can be free from the model

structure, because the direction of a constant coefficient is also varying as
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long as the norm is not constant. Since the estimation of the direction has

nothing to do with the model structure, there is no difference between a gen-

eralized varying coefficient model and a generalized semi-varying coefficient

model, in terms of direction approximation. We can estimate the coefficient

vector B0(·) with either a one-step or a two-step method proposed previously.

Since their is nothing new in the estimation for the directions of the coeffi-

cients, detailed presentation of the estimation procedure is simply recalling

of previous proposed method, which we are not going to repeat here.

7.2.2 Estimation of the varying coefficients

When estimates of the directions of the coefficients are obtained, the norm of

the coefficient vector is estimated using the method introduced to generalized

varying coefficient models. Denote the norm of the coefficient vector ‖B(·)‖
by N(·). Let

v = HTB̂0(U), and vi = hTB̂0(Ui),

where B̂0(U) = {β̂
T

0 (U), α̂T
0 (U)}T is the estimator of the directions of the

coefficients by either one-step or two-step estimation method. Replacing the

directions of the varying coefficients by their estimators gives

hT
iB0(Ui)N(Ui) ≈ hT

i B̂0(Ui)N(Ui),

which yields the following rank correlation between y and vN(U)

∑
i 6=j

I(yi > yj)I (ziN(Ui) > zjN(Uj)) .
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For any given u, given Ui is in a small neighbourhood of u, by the Taylor’s

expansion

N(Ui) ≈ N(u) + Ṅ(u)(Ui − u),

the local rank correlation can be approximated by

∑
i 6=j

I(yi > yj)I
(
zi

{
N(u) + Ṅ(u)(Ui − u)

}
> zj

{
N(u) + Ṅ(u)(Uj − u)

})
×Khn(Ui − u)Khn(Uj − u),

where Khn(t) = K(t/hn)/hn, K(t) is the kernel function, and hn is the

smoothing parameter defining the width of the neighbouring at U = u.

Because N(u) > 0, the above objective function is equivalent to

∑
i 6=j

I(yi > yj)I (zi {1 + c(u)(Ui − u)} > zj {1 + c(u)(Uj − u)})

×Khn(Ui − u)Khn(Uj − u), (7.3)

where c(u) corresponds to Ṅ(u)/N(u). Let ĉ(u) maximise (7.3), ĉ(u) is an

estimator of Ṅ(u)/N(u), and the estimator of N(u) is generated by

N̂(u) = exp

{∫ u

0

ĉ(u)du

}
. (7.4)

The estimator of β(u) is therefore conducted via

β̂(u) = N̂(u)β̂0(u).

7.2.3 Estimation of the constant coefficients

When the estimators of the direction of the constant coefficient vector and

the norm of the coefficient vector are in hand. The estimator for a constant
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coefficient is straightforward. Firstly, treat the constant coefficient vector as

varying, i.e. α(U) = α. Denote the estimator of this varying version as

α̃(Ui) = α̂0(Ui)N̂(Ui).

The estimator of the constant coefficient vector is achieved by simplify taking

average of the estimates of α(·) across the observations of the scaler from U1

to Un, i.e.

α̂ = n−1
n∑
i=1

α̃(Ui).

7.3 Identification of constant coefficients

With the estimation procedure being proposed, the question is how to iden-

tify which coefficients are constant and which are variable. In this thesis,

cross-validation (CV) and Akaike information criterion (AIC) for model se-

lection are applied to identify the constant coefficients. The model selection

algorithms are provided by Zhang(2011).

CV based model identification

For each i = 1, · · · , n, delete the ith observation and estimate the coefficients

using the method proposed. Denote the estimators as β̂
−i

(·) and α̂−i, then

the log conditional density function of y at i givenXi, Zi and Ui is

Li = logf(yi; Xi,Zi,Z
T
i α̂
−i,XT

i β̂
−i

(Ui))
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Thus the cross validation score is given by

CV = −n−1
n∑
i=1

Li

To compute the CV scores for all possible models is not practically fea-

sible. For a model with in total L covariates, there are 2L possible models

to be considered. Of interest is to reduce the computational burden on one

hand, and retain the model selection accuracy on the other. Suppose the

underline true model structure is Mp,q, p + q = L,where p and q determine

the number of varying coefficients and constant coefficients. This section

demonstrates the Backward elimination and the Discrepancy from average

algorithms proposed by Zhang (2013).

• Backward elimination

Instead of computing the CV scores for all possible models, the backward

elimination operates as follows:

1. Start by playing a full model ML,0, with all coefficients are set to be

varying. The corresponding CV is computed and denoted by CVL

2. Treat one of the covariates βj(·), j = 1, ·, L to be constant, with others

being varying. This involves in total L models. Compute their CV scores

as CVL−1j , j = 1, ·, L. Denote the smallest CV score by CVL−1 = CVL−1k .

Suppose this score is achieved by model ML−1,1 with the kth coefficient being

constant. This model is considered a candidate model.

3. If CVL−1 > CVL, the final model is selected to be ML,0. Otherwise,

with the kth coefficient being fixed as constant, repeat step 2 by treating

L − 1 models with one more constant coefficient. Decision of model struc-

ture is made by comparing the smallest CV score CVL−2 with CVL−1. If

CVL−2 > CV1, then the model is selected to be ML−1,1. Otherwise, continue
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the backward elimination.

A backward elimination algorithm would treat in maximum 2−1L(L+ 1)

CV computations, which reduces the computation largely from the identifi-

cation of all possible models.

• Discrepancy from average

A more time saving way for the model selection is based on the discrepancy

from average algorithm, which focus on the discrepancy of the estimated

function from its average. The algorithm operates as follows:

1. Again, start by playing a full model ML,0. The corresponding CV

is computed and denoted by CVL. Then compute the discrepancy of the

estimated function β̂j·, j = 1, · · · , L from its average as

dj =
n∑
i=1

{β̂j(Ui)− β̄j}2, with β̄j = n−1
n∑
i=1

β̂j(Ui).

Sort dj, j = 1, · · · , L, in an increasing order as d(1) ≤ d(2) ≤ · · · ≤ d(L).

Suppose the possibility that a coefficient function is constant is in the same

order as d(j), j = 1, · · · , L
2. Treat the (1)-st coefficient,which has discrepancy d(1), as constant,

with others being varying. Model ML−1,1 is viewed as a candidate model,

and its corresponding CV is computed as CVL−1. If CVL−1 > CVL, then

the model selection is ended, and the identified model structure is ML,0.

Otherwise, continue the model identification by treating the (2)-nd coefficient

as constant.

The discrepancy from average algorithm is less accurate than the back-

ward elimination algorithm, however, the number of models it is to investi-

gate is only to the maximum L.
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AIC based model identification

For each i = 1, · · · , n, estimate the coefficients using the method proposed.

Denote the estimators as β̂(·) and α̂, then the log conditional density func-

tion of y given Xi, Zi and Ui is

Li = logf(yi; Xi,Zi,Z
T
i α̂,X

T
i β̂(Ui)).

Thus the AIC score can be calculated via

AIC = −2
n∑
i=1

Li + 2K,

where K is the number of parameters involved in our estimation procedure.

K = q + 0.6h−11 p+ 1.285714(h−1n + h−1l ),

when the directions are estimated with one-step method; and

K = q +

p∑
j=1

0.6h−12j + 1.285714(h−1n + h−1l ),

when the directions are estimated with two-step method.

• Backward elimination

1. Start by treating the model as a generalized varying coefficient model,ML,0,

with all coefficients are varying. In such case, the corresponding AIC score

is

AICL = −2
n∑
i=1

logf(Yi;Xi, Zi, Z
T
i α̂(Ui), X

T
i β̂(Ui)) + 2K,

where

K = 0.6h−11 L+ 1.285714(h−1n + h−1l ),
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when the directions are estimated with one-step method; and

K =
L∑
j=1

0.6h−12j + 1.285714(h−1n + h−1l ),

when the directions are estimated with two-step method.

2. Reduce the number of varying coefficients by one, and denote the

version of model as ML−1,1. For each possible model of this version, the

AIC is constructed by treating one of the varying coefficients as constant.

The model with minimal AIC score as is selected as a candidate model with

AICL−1. If AICL−1 > AICL, stop the model identification, and model ML,0

is selected. Otherwise, continue the model identification.

3. Suppose now the model is ML−k,k with AICL−k (If k = L, the model

idetification procedure is terminated, and the model M0,L, with all coeffi-

cients are constant, is selected.). Reduce the number of varying coefficients

by one, and denote the version of model as ML−k−1,k+1. For each possible

model of this version, the AIC is constructed by treating one of the varying

coefficients as constant. The model with minimal AIC score as is selected as

a candidate model with AICL−k−1. If AICL−k−1 > AICL−k, stop the model

identification, and model ML−k,k is selected. Otherwise, continue the model

identification.

• Discrepancy from average For the discrepancy from average algo-

rithm, the identification procedure is identical to the backward elimination

algorithm, except that in each step, only one candidate model is considered.

1. Start with the full model ML,0. Calculate the AIC score and denote it

by AICL.

2. Suppose at present the model is ML−k,k with AICL−k (If k = L,

the model idetification procedure is terminated, and the model M0,L, with
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all coefficients are constant, is selected.). Among the varying coefficients in

this model, let the one with minimal discrepancy from average as constant

gives a candidate modelML−k−1,k+1 with AICL−k−1. If AICL−k−1 > AICL−k,

terminate the model identification, and model ML−k,k is selected. Otherwise,

continue the model identification.

7.4 Simulation studies

Simulation studies in this section implement the model selection and esti-

mation for generalized semi-varying coefficient models with respect to two

examples.

7.4.1 Model Identification

Model selection is different from estimation. Therefore, the thesis is heading

for a different approach to bandwidths. In Zhang’s (2013) work, as long

as the bandwidths used are not ridiculously small, it is suggested to use

bandwidths as small as possible. However, the situation becomes different in

this project.

There are quite a few bandwidths to be handled simultaneously, and those

bandwidths are inter-dependent. Even the obtaining of the log-likelihood

function requires an estimation of the link function. Previous simulation

studies have demonstrated that our method does give proper estimators for

the directions of the varying coefficients, regardless of the model structure.

Therefore, it is confident to use small bandwidth for the estimation of the

directions, in terms of model selection. However, the estimation of the un-

known norm depends heavily on the estimator of its derivative.

When the identification of model structure is of interest, it is not necessary
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to spend too much effort in computation. Therefore, only the one-step esti-

mation method with small bandwidths h1 = 0.05 is used for the estimation

of directions of the coefficients, and bandwidth hn = 0.05, 0.1, 0.15 and 0.2

for estimating the norm are used for evaluation.

Example 1 β1(u) = sin(2πu); β2(u) = cos(πu) − 0.2; α1 = 0.; α2 =

0.6.

Example 2 β1(u) = sin(2πu); β2(u) = cos(2πu) − 1 +
√

0.8; α1 =

−0.2; α2 = 0.4.

For example 1 and example 2, CV and AIC criteria with both the Back-

ward elimination and Discrepancy from average algorithms are applied for

model selection. The frequencies that the right models are picked up using

the backward elimination algorithm are recorded in Table 18

Algorithm Eg. 1 Eg. 2

Backward elimination CV AIC CV AIC

hn = 0.05 82 64 96 98

hn = 0.1 90 91 98 99

hn = 0.15 90 92 99 100

hn = 0.2 90 92 99 100

Table 18: The number of picking up the right model among 100 attempts.

It is seen that although it is suggested to use small bandwidth for model

structure identification, one has to be careful in the decision of how small a

bandwidth should be. With different bandwidths being used for the estima-

tion of the norm, it is noticed that the frequency that the true model structure

is identified correctly tends to be stable as the bandwidths increases. There-

fore, this thesis suggests to try out a few different bandwidths for the norm

and believe in the model structure that most of the attempts agree.
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With the bandwidth for estimating the norm being fixed as hn = 0.15,

the thesis identifies the underline model structure for example 1 and example

2 with both the Backward elimination and the discrepancy from average

algorithm, the frequencies that the right model are identified are recorded in

Table 19

hn = 0.15 Eg. 1 Eg. 2

Algorithm CV AIC CV AIC

Backward elimination 90 92 99 100

Discrepancy from average 82 83 91 93

Table 19: The number of picking up the right model among 100 attempts.

It is seen that one has more than 90% chance of picking up the true

model structure when using the backward elimination algorithm, and more

than 85% with discrepancy from average algorithm. This suggests that the

proposed model selection methods work well.

7.4.2 Estimation for GSVCMs

The thesis is going to estimate for generalized semi-varying coefficient func-

tions with respect to two examples. Firstly, treat all coefficients as varying

and the directions of the coefficients are estimated. Both the one-step and

the two-step estimation methods are applied and their estimation perfor-

mances are compared. The estimator of the constant coefficients are derived

by taking average of its varying version over Ui, i = 1, · · · , n. At this stage,

the bandwidths used are the practical optimal bandwidths that minimizes

corresponding mean integrated squared errors.

•Example 1 β1(u) = sin(2πu); β2(u) = cos(πu)−0.2; α1 = 0.; α2 =

0.6.
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n=200 n=400 n=800

1-step 2-step 1-step 2-step 1-step 2-step

MISE(β̂1(·)) 0.024 0.021 0.015 0.013 0.009 0.008

MISE(β̂2(·)) 0.021 0.015 0.011 0.009 0.008 0.006

MISE(α̂1(·)) 0.004 0.004 0.002 0.002 0.001 0.001

MISE(α̂2(·)) 0.01 0.01 0.006 0.006 0.003 0.003

Table 20: Example 1: Mean integrated squared errors.

For Example 1, 100 simulations with sample size n = 200, n = 400 and

n = 800 are conducted. Table 20 demonstrates the reasonable estimation

performance for both the varying and constant coefficients. As sample size

increases, the estimation accuracy improves steadily. For the varying coef-

ficients, the two-step estimation method surpasses the one-step method in

estimation accuracy. Whereas, for the constant coefficients, it is noticed that

the one-step and the two-step estimation methods are comparable.

• Example 2 β1(u) = sin(2πu); β2(u) = cos(2πu) − 1 +
√

0.8; α1 =

−0.2; α2 = 0.4.

n=200 n=400 n=800

1-step 2-step 1-step 2-step 1-step 2-step

MISE(β̂1(·)) 0.024 0.018 0.015 0.01 0.009 0.006

MISE(β̂2(·)) 0.022 0.017 0.013 0.009 0.006 0.004

MISE(α̂1(·)) 0.006 0.006 0.003 0.003 0.002 0.002

MISE(α̂2(·)) 0.005 0.005 0.003 0.003 0.002 0.002

Table 21: Example 2: Mean integrated squared errors.

For Example 2, 100 simulations with sample size n = 200, n = 400

and n = 800 are conducted as well. Table 21 indicates that the estimation

performance for both the varying and constant coefficients are reasonable.
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As sample size increases, the estimation error decreases steadily. It is also

found that the two-step estimation method performs better than the one-

step method in estimation accuracy for the varying coefficients. For the

constant coefficients, the one-step and the two-step methods give comparable

estimation results.

7.4.3 Estimation with data-driven bandwidths

At this stage, the thesis is to estimate for generalized semi-varying coefficient

function with data-driven bandwidths. Since the two-step estimation method

is practically more applicable than the one-step method, only the two-step

estimation method is used for the estimation of the directions of the varying

coefficients.

For Example 1 and Example 2, 100 simulations with sample size n = 200,

n = 400 and n = 800 are conducted, respectively. Data-driven bandwidth

with both the AIC and CV algorithms are used and compared. Estimation

results are shown in Table 22, which demonstrates that the proposed esti-

mation method work reasonably well. With the two-step estimation method

being applied, the AIC and CV criteria produce comparable estimation re-

sults.
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Example 1 n=200 n=400 n=800

Criterion AIC CV AIC CV AIC CV

MISE(β̂1(·)) 0.027 0.027 0.013 0.013 0.008 0.008

MISE(β̂2(·)) 0.028 0.029 0.014 0.013 0.008 0.007

MISE(α̂1(·)) 0.004 0.004 0.002 0.002 0.001 0.001

MISE(α̂2(·)) 0.014 0.013 0.007 0.006 0.004 0.004

Example 2 n=200 n=400 n=800

Criterion AIC CV AIC CV AIC CV

MISE(β̂1(·)) 0.025 0.025 0.014 0.014 0.008 0.008

MISE(β̂2(·)) 0.029 0.029 0.015 0.015 0.007 0.007

MISE(α̂1(·)) 0.007 0.007 0.004 0.004 0.003 0.003

MISE(α̂2(·)) 0.008 0.008 0.007 0.007 0.006 0.005

Table 22: Estimation with data-driven bandwidths.
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8 Extension to panel data

The main interest of this research lies in studying the association between the

covariates and the response variable under the setting of generalized varying

coefficient models with unknown monotonic link function. In this section,

the thesis extends the exploration to panel data. In many applications, data

from different subjects are collected over a period of time. The number of

data points and the time of data collection for each subject might be different.

Suppose the number of subjects involved in a study is N . Let (XT
s , Us, Ys)

be an i.i.d. sample collected for the sth subject, s = 1, · · · , N . XT
s is

p-dimensional covariates, and Us is a scalar that the variation of the impact

of the covariates depend on. For simplicity, only univariate Us is considered

in this thesis.

For the sth subject, denote by XT
si, Usi and Ysi, i = 1, · · · , ns, the set of

observations of the corresponding covariates, scalar and responsible variable,

where ns, s = 1, · · · , N , is the number of observations collected for the

sth subject. Then the generalized varying coefficient model with unknown

monotonic link function for the sth subject is constructed as

g {m(Xs,i, Us,i)} = XT
s,iβs(Us,i), (8.1)

and

βs(Usi) = β(Us,i) + εs, with ε ∈ N(0p, σIp×p), (8.2)

where m(Xs,i, Us,i) = E(Ys,i|Xs,i, Us,i) is the mean regression function, βs(·)
is the p-dimensional unknown functional vector holding the varying coeffi-

cient functions, β(·) is the p-dimensional unknown functional vector holding

the common trend and εs is a p-dimensional error term that captures in-
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dividual difference. Without loss of generality, assume that ‖β(0)‖ = 1.

We endeavour to apply the method proposed in previous sections for the

estimation of β(·) and the unknown monotonic link function g(·).

8.1 Estimation Procedure

In fact model (8.1) is not identifiable, since the norm of βs(Usi) is unknown

and different for each subject. However, one does have access to βs(Usi) in

any way. The true vector varying coefficient function βs(Usi) defined in (8.2)

is equivalent to

Bs(Us,i)||βs(0)|| = β(Us,i) + εs,

where Bs(·) =
βs(·)
||βs(0)||

can be estimated using the proposed maximum rank

correlation estimation method given that ||Bs(0)|| = 1. However,since ||βs(0)||
is unknown, one has no access to the estimation of β(·) at the moment. It

is realized that, it is possible find a path to get an insight of β(·) via setting

control subject.

Without loss of generality, treat the first subject to be a control subject

and derive the following

Bs(Usi)||βs(0)||
||β1(0)||

=
β(Usi)

||β1(0)||
+

εs
||β1(0)||

.

Denote Ks =
||βs(0)||
||β1(0)||

, and K = 1

||β1(0)||
, then

Bs(Usi)Ks = β(Usi)K + εsK,

where both Ks and K are positive definite. Denote further α(·) = β(·)K,
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and µs = εsK, which lead to

Bs(Usi)Ks = α(Usi) + µs.

The above transformations makes the estimation of α(·), which is related

to β(·) with an unknown constant factorK, possible, since µ ∈ N(0p, KσIp×p).

Suppose the estimates B̂s(·) and K̂s are obtained, the estimator of α(·) is

taken to be

α̂(·) =
1

N

N∑
s=1

B̂s(·)K̂s.

The problem now lies in the estimation of the Ks. We propose an approach

as the following. Since all subjects are from the same group which share a

common β(·), the true varying coefficient functions are parallel, i.e.

βs(·)− β1(·) = εs − ε1,

which is equivalent to

Bs(·)Ks −B1(·)K1 = Bs(·)Ks −B1(·) = µs − µ1.

Suppose now estimates of B̂s(·) are obtained. Denote the distance between

B̂s,d(·)Ks and B̂1,d(·) by

Cd(·) = B̂s,d(·)Ks − B̂1,d(·),

the mean value of the distance Cd(·) by

ed =
1

n1

n1∑
i=1

Cd(U1,i),
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and the variation of Cd(·) from the mean value ed by

vd =
1

n1 − 1

n1∑
i=1

(Cd(U1,i)− ed)
2.

Then the objective function (8.3)

L(Ks) =

p∑
d=1

vd (8.3)

is considered, and the estimator of Ks is chosen to be the minimizer of (8.3).

8.2 Simulation studies

The number of subjects is set to be N = 20. For each subject Ys, s =

1, · · · , N , the observations are independently collected at Us,i, for i = 1, · · · , ns,
where ns is the number of observations of the sth subject. The proposed max-

imum rank correlation estimation method can not afford difficulties caused

by a small number of sample size. To insure that, at each panel, the vary-

ing coefficients can be properly estimated, ns, s = 1, ·, N , are drawn from

Uniform distribution Unif [0.8n, n], where n = 500 is the designed num-

ber of observations. U has uniform support [0, 1]. The covariates Xs,i, for

i = 1, · · · , ns, are two-dimensional and independently drawn from the stan-

dard normal distribution, and the error vector εs, is two-dimensional and

independently drawn from the normal distribution N(02, 0.5Ip×p).

8.2.1 Estimation for the panel data

• Example 1: βs,1(u) = sin(πu)+εs,1; βs,2(u) = cos(2πu)+εs,2; s =

1, · · · , N.
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For Example 1, 100 simulations with maximum number of observations n =

200, 400 and 800 are conducted. Recall the definitions:

βs(Usi) = Bs(Usi)||βs(0)|| = β(Usi) + εs,

and

Bs(Usi)Ks = α(Usi) + µs,

where Ks =
βs(0)||
||β1(0)||

, and K = 1

||β1(0)||
. Bs(·), Ks and α(·) are estimated,

respectively. Bandwidths are selected by considering MISE as functional to

corresponding bandwidth. The MISEs for the estimation of individual vary-

ing coefficients are calculated by assuming that ||βs(0)|| is known. ||βs(0)||
is absorbed by the link function which will not be involved in the estimation

procedure.

MISE of {β̂s,01(·)} {β̂s,02(·)} {β̂s,1(·)} {β̂s,2(·)}
s= 1 0.0023 0.0054 0.0155 0.0244
s= 2 0.0093 0.006 0.011 0.0197
s= 3 0.0054 0.005 0.0102 0.034
s= 4 0.0073 0.0056 0.016 0.0229
s= 5 0.003 0.0052 0.0145 0.0199

Group MISE{β̂1(·)} = 0.0041 MISE{β̂2(·)} = 0.0096

Table 23: Example 1: Mean integrated squared errors (n = 800).
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Figure 12: Example 1: Estimated varying coefficients (n = 800).
The solid lines are the true functional curves.The dotted lines are the estimated curves.

For simplicity, the thesis only present MISE outcomes for the first 5 sub-

jects with sample size n = 800. The mean integrated squared errors in table

23 indicate proper estimation of the varying coefficient at each panel. At this

stage of the paper, all subjects are assumed to share the common varying

coefficients β(·). The estimation of β(·) given ||βs(0)|| is also satisfactory. In

Figure 12, the estimated varying coefficients with medium estimation error

among 100 simulations are depicted to give an insight into the estimation

performance.

• Example 2: βs,1(u) = sin(2πu)+ εs,1; βs,2(u) = cos(2πu)+ εs,2; s =

1, · · · , N.
100 simulations with maximum number of observations n = 200, 400 and 800

are conducted for example 2. The simulations estimate Bs(·), Ks and α(·),
respectively. Bandwidths are selected by considering MISE as functional

to corresponding bandwidth. The MISEs for the estimation of individual

varying coefficients are calculated by assuming that ||βs(0)|| is known.

129



MISE of {β̂s,01(·)} {β̂s,02(·)} {β̂s,1(·)} {β̂s,2(·)}
s= 1 0.0043 0.0031 0.0301 0.0256
s= 2 0.0042 0.0046 0.0391 0.0318
s= 3 0.0035 0.0026 0.014 0.0139
s= 4 0.0041 0.003 0.0235 0.0191
s= 5 0.0045 0.0026 0.0204 0.0199

Group MISE{β̂1(·)} = 0.0136 MISE{β̂2(·)} = 0.0143

Table 24: Example 2: Mean integrated squared errors (n = 800).
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Figure 13: Example 2: Estimated varying coefficients (n = 800).
The solid lines are the true functional curves.The dotted lines are the estimated curves.

The mean integrated squared errors with sample size n = 800 in table

24 as well demonstrates satisfactory estimation of the varying coefficient at

each panel. The estimated varying coefficients with medium estimation error

among 100 simulations are ploted in Figure 13 as a demonstration of the

estimation performance.
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8.2.2 Estimation with data-driven bandwidths

At this stage, the thesis attempts to let the bandwidths be selected by the

data itself. For simplicity, only the AIC criterion is applied. For Example

1 and Example 2, 100 simulations with sample size n = 200, n = 400 and

n = 800 are conducted. Only estimation results for the first four subjects

with sample size n = 800 are presented.

Example 1 βs,1(u) = sin(πu)+εs,1; βs,2(u) = cos(2πu)+εs,2; s =

1, · · · , 20.

Panel s = 1 s = 2 s = 3 s = 4

MISE{β̂s,1(·)} 0.0173 0.012 0.011 0.0181

MISE{β̂s,2(·)} 0.0275 0.0259 0.0376 0.0249

Group MISE{β̂1(·)} = 0.006 MISE{β̂2(·)} = 0.0128

Table 25: Example 1: Estimation with AIC bandwidths (n = 800).
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Figure 14: Example 1: Data-driven varying coefficients (n = 800).
The solid lines are the true functional curves.The dotted lines are the estimated curves.

Example 2 βs,1(u) = sin(2πu)+εs,1; βs,2(u) = cos(2πu)+εs,2; s =

1, · · · , 20.
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Panel s = 1 s = 2 s = 3 s = 4

MISE{β̂s,1(·)} 0.0373 0.0555 0.0155 0.0276

MISE{β̂s,2(·)} 0.033 0.0458 0.0152 0.0214

Group MISE{β̂1(·)} = 0.0188 MISE{β̂2(·)} = 0.0184

Table 26: Example 2: Estimation with AIC bandwidths (n = 800).
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Figure 15: Example 2: Data-driven varying coefficients (n = 800).
The solid lines are the true functional curves.The dotted lines are the estimated curves.

The mean integrated squared errors with sample size n = 800 in Table

25 and Table 26 demonstrate reasonable estimation results of the varying

coefficient both for each panel and the group. The estimation performance

is depicted in Figure 14 and Figure 15, which plot the estimated varying

coefficients with medium estimation error among 100 simulations.
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9 Real Data Analysis: The Role of Visual

Cues in The Mating Decisions of Satellite

Horseshoe Crabs

At the new and full moon high tides during spring and summer, female horse-

shoe crabs together with their attached male partners arrive on the beach for

fertilization (Brockmann and Penn, 1992; Brockmann, 1996). These paired

crabs nest in the sand, where the males fertilize the eggs as the females lay

them. Horseshoe crabs are highly male-biased (Brockmann, 1996). Apart

from those males who are attached to females, unattached males come to

the beach as well and crowd around the couples for chances of fertilization.

These unattached male crabs are called satellites.

An interesting question is that whether the mating decisions of these

unattached males are tactical or random. If satellite crabs randomly crowd

around the paired couples, sizes of the groups should be similar (Brockmann,

1996) and females of pairs are likely to have equal values in fertilization

(Brockmann, 1996; Schwab, 2006). However, observed group sizes are vari-

able significantly, and attached females that attract satellites in general have

greater fertilization values and lay more eggs than females that do not at-

tract satellites. Since the mating decisions of satellite crabs are unlikely to

be random, they are tactical.

There is evidence that male horseshoe crabs use visual cues to locate

and pair with females or become their satellites (Barlow et al., 1982,1987;

Powers et al., 1991; Brockmann, 1996; Passaglia et al., 1997; Schwab and

Brockmann, 2007), while ignoring others. Although more recent studies have

identified that male crabs use other sensory cues, like chemical and tactile
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cues, to find their mates (Saunders et al., 2010; Johnson and Brockmann,

2012) as well, it is still interesting to understand the role of visual cues in

the mating decisions of satellite horseshoe crabs.

This thesis attempts to study the association between the number of

satellites and visual cues (female age and size) of paired female horseshoe

crabs using the proposed MRCE method. The problem refers to data from a

study that investigated factors that affect whether the female crab had any

satellites residing near her. The study was conducted by Brockmann (1996)

and his colleagues and involved observations for 173 female horseshoe crabs.

Each female horseshoe crab in this study had a male crab attached to her in

her nest.

Denote Sa as the number of satellites residing around an attached fe-

male, and Sai: i = 1, · · · , 173, as the number of satellites residing around

the ith female. Explanatory variables that are thought to affect satellite crabs’

mating decisions include paired female crabs age and size. As female crabs

grow older, their shell colour become darker, and spine conditions get worse.

The field researchers categorized female crabs according to their colours and

spine conditions, which are associate with female crabs’ age. Paired female

crabs’ size was measured according to their weight (Wt) in kg and cara-

pace width (W ) in cm. Denote paired female crabs’ colour by C : 1 =

light medium, 2 = medium, 3=medium dark, 4=dark and spine condition by

S : 1 = both good, 2 = one worn or broken, 3=both worn or broken. The

data is presented in Figure 16 and 17.
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Figure 16: The number of satellites residing around paired female crabs.
(A): Sa - Observed numbers of satellites; (B): Histogram of Sa; (C): Boxplot of Sa.
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Figure 17: Size and Age of paired female crabs.
(A): C - Histogram of colour; (B): Histogram of spine condition; (C): Boxplot of Sa.
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About 35% of the observed female crabs did not attract any satellite.

However, these female crabs did not show less fertilization values, since they

did not lay fewer eggs than female crabs that attracted satellites (Brock-

mann,1996). The unobserved difference in fertilization values between paired

crabs that attracted satellites and those that did not might be a localized

phenomenon in the observatory site. The paired female crabs were mostly

mature adults that were neither too old nor too young. Around 80% of them

were medium or medium dark, and more than 60% of them had both their

spines worn or broken. Their spine conditions, in a way, demonstrate their

success in surviving natural threats in the sea, since crabs that are too young

or too old are more likely to be eliminated in natural selection. There is a

clear linear association between weight and carapace width. Larger female

crabs were heavier and more likely to have wider carapace width.

Colour(C) and spine condition (S) are categorical variables. Before pro-

ceeding to data analysis, they are transformed into dummy variables. Denote

CT = (C1, C2, C3), where

C1 = 1, if light medium, C1 = 0, otherwise;

C2 = 1, if medium, C2 = 0, otherwise;

C3 = 1, if medium dark, C2 = 0, otherwise,

and S = (S1, S2), where

S1 = 1, if both good, S1 = 0, otherwise;

S2 = 1, if one worn or broken, S2 = 0, otherwise.

Let XT = (CT ,ST ,W,Wt) be the covariate vector. The conditional mean
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regression function m(X) is assumed to be linear via

gt {m(X)} = α + XTβ, (9.1)

where gt(·) is the unknown monotonic link function, α is the intercept term,

and β is the vector holding coefficient parameters.

9.1 Maximum likelihood estimation

When count data is considered, the monotonic link function is frequently

assumed to be the log function. When log transformation is applied, model

(9.1) is specified as

log {m(X)} = a+ XTβ. (9.2)

With a standard MLE, the estimation results are presented in Table 27.

Table 27: Analysis with maximum likelihood estimation method.

AIC=-141.208 P-Residuals=533.779

Parameter Estimate Std Error 95% CI 99% CI

a -0.801 0.919 [-2.602, 1.000] [-3.168, 1.566]
β1 0.531 0.229 [0.082, 0.980] [-0.059, 1.121]
β2 0.266 0.162 [-0.052, 0.584] [-0.151, 0.683]
β3 0.018 0.183 [-0.341, 0.377] [-0.453, 0.489]
β4 -0.087 0.121 [-0.324, 0.150] [-0.399, 0.245]
β5 -0.238 0.202 [-0.634, 0.158] [-0.758, 0.282]
β6 0.017 0.048 [-0.077, 0.111] [-0.107, 0.141]
β7 0.497 0.166 [0.172, 0.822] [0.069, 0.925]

The estimated coefficients indicate that, in the study, satellite male crabs

tended to attach to those paired female crabs, which were lighter (β̂1 = 0.531,

β̂2 = 0.266 and β̂3 = 0.018) and heavier (β̂7 = 0.497). Positive estimate
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β̂6 = 0.017 reveals only limited role of carapace width in relation to the

number of satellites. The association between satellite numbers and paired

female crabs’ spine condition was even negative (β̂4 = −0.087, β̂5 = −0.238).

95% Confidence intervals of the estimates emphasize the attractiveness of

lighter colour and heavier weight for the satellites. Whereas, 99% confidence

intervals only identify positive impact of female crabs’ weight on the number

of satellites.

Figure 18: MLE: Link function and residuals estimation.

m(X)

g t
(t

)

1 5 10 15

0

0.5

1

1.5

2

2.5 A

0 50 100 150

Subject

P
ea

rs
on

's
 r

es
id

ua
ls

−2

0

2

4

6 B

(A): Estimates of the link function. (B): the Pearson’s residuals.

It is interesting to see these estimates, since they might uncover how

satellite crabs evaluate the age and size of paired female crabs. Compare

with its spine conditions, the colour of a paired female might be a more

credible indicator of age. Younger crabs are lighter in colour. They are more

likely to (but not necessarily) have better spine conditions due to unforeseen

lives under the sea surface, where young and old crabs face equal risks of

survival. The size of female crabs is an important factor that determines

fertilization values. Paired female crabs that attract satellites are larger and

potentially more productive. However, MLE gives more explanatory power

to weight than carapace width in relation to female crabs’ size. The satellite
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crabs might evaluate the size of paired females in a more sophisticated way,

other than relying too much on the carapace width.

9.2 Maximum rank correlation estimation

Due to that the intercept can be absorbed by the link function. Given XT =

(CT ,ST ,W,Wt), model (9.1) is equivalent to

g {m(X)} = XTβ. (9.3)

To make the model identifiable, divide by ||β|| on both sides of model (9.3)

and obtain

g0 {m(X)} = XTβ0, (9.4)

where ||β0|| = 1 is the coefficient vector to be estimated. Thus g0(·), relative

to the true unknown link function gt(·) is

g0(·) =
gt(·)− α
||β||

.

The transformation of the link function from gt(·) to g0(·) does not deteriorate

monotonicity. Hence MRCE is applicable. Estimation results provided by

MRCE are shown in Table 28.

139



Table 28: Analysis with maxmum rank correlation estimation method.

AIC=-147.485 P-Residuals=541.014

Parameter Estimate Std Error 95% CI 99% CI

β01 0.732 0.168 [0.403, 1.062] [0.299, 1.165]
β02 0.436 0.098 [0.243, 0.628] [0.183, 0.689]
β03 0.251 0.123 [0.009, 0.493] [-0.067, 0.569]
β04 0.014 0.136 [-0.252, 0.281] [-0.336, 0.365]
β05 -0.103 0.153 [-0.404, 0.197] [-0.498, 0.291]
β06 0.032 0.051 [-0.067, 0.132] [-0.099, 0.163]
β07 0.446 0.176 [0.100, 0.792] [-0.009, 0.901]

According to biological definitions, colour and spine condition are two

indicators of female crabs’ age in their lifespan. Positive estimates of co-

efficients (β̂01 = 0.732 and β̂02 = 0.436 and β̂03 = 0.251) suggest that fe-

male crabs, whose colour were lighter, were more attractive to male satellite

crabs. Compare with colour, the spine condition was not a significant factor

to satellites mating decision. In general, the MRCE supports that younger

crabs were more admirable in the study field. The MLE method does not

conclude with strong positive impact of colour in determining the satellite

number, whereas the proposed MRCE method is more practically realistic

than the MLE method. The confidence intervals provided by MRCE confirm

the attractiveness of lighter colour of female crabs.

Estimates of coefficients for carapace width and weight are both positive,

(β̂06 = 0.032 and β̂07 = 0.446). Bootstrap confidence intervals suggest pos-

itive association between female crabs’ weight and satellite numbers. Com-

pare with females’ weights, their carapace widths possessed less fertilization

values in the site of study. Up to this stage, MRCE is only confident in

that unattached male crabs tend to join female crabs with lighter colour and

heavier weight.
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Figure 19: MRCE: Link function and residuals estimation (full model).
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(A): Estimates of the link function. (B): the Pearson’s residuals.

Compare with the MLE method, the MRCE method has smaller AIC

score (-147.485<-141.208), and larger sum of squares of Pearson’s residuals

(541.014>533.779). Both methods find that larger female crabs are more

attractive to male crabs. The proposed MRCE method further identifies

positive fertilization values of female crabs’ who were lighter in colour. The

MRCE returns the estimated link, which is not the commonly used log func-

tion or its linear transformations. As the MRCE method is more practically

realistic, this thesis would suggest to use MRCE method to fit the data,

instead of the MLE method.
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10 Real Data Analysis: Short-term Effects of

Fluctuating Air Pollution on Health

Since the 1990s a plenty of studies have focused on the effects of air pollution

on health outcomes in major European countries (Zmirou et al., 1996; Sun-

yer et al., 1996; Touloumi et al., 1996; Wordley et al., 1997), North America

(Dockery et al., 1993), South America (Saldiva et al., 1995; Borja-Aburto et

al., 1997) and certain Asian cities (Xu et al., 1994; Wong et al., 1999). Pos-

itive associations between fluctuations of certain air pollutants and changes

in mortalities or morbidities have been found in global cities, such as London

(de Leon et al., 1996), Amsterdam (Schouten et al., 1996), Paris (Dab et al.,

1996), Milan (Vigotti et al., 1996) and Hong Kong (Wong et al., 1999; Wong

et al., 2002).

In these studies, the response variables are mostly health outcomes which

are usually counts of hospital admissions for specific diseases. The core

model is therefore frequently selected from Poisson regression models, such as

linear model (Katsouyanni et al., 1996,1997) or generalized additive model

(Schwartz et al., 1996; Schwartz, 1996;) with log transformation. There are

at least two limitations in these studies: although the application of loga-

rithmically transformed data is practically reasonable, it is not sure whether

logarithmically transformed describes the data set correctly; the association

between air pollution and health outcomes may vary over time, hence the

scope should be extended from linear models to more complex models. In

this thesis, we have introduced the MRCE method. The objective in this sec-

tion is to extend from previous studies and implement the proposed method

with data collected in Hong Kong.
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10.1 Data description

The environmental data set consists of a collection of daily measurements of

air pollutants and other environmental factors in Hong Kong between Jan-

uary 1, 1994 and December 31, 1995. The health outcomes are counts of daily

hospital admissions of patients suffering from circulatory and respiratory dis-

eases in the city. Surrounded by the South China Sea on the east, south, and

west, Hong Kong is located on China’s south coast. It has a humid subtropi-

cal climate with hot, humid summers and mild, dry winters. As an intensely

urbanised and densely populated global city, local people in Hong Kong have

experienced adverse effects of ambient air pollution (Wong et al., 1999). Air

pollutants that are considered of major importance include Sulphur Dioxide

(SO2), Nitrogen Dioxide (NO2), Respirable suspended particulates (PM10)

and Ozone (O3).

Denote date of measurements by t, daily average concentration levels of

major air pollutants by covariates X = {X1, X2, X3, X4}, where X1 is SO2

(in µg/m3 ), X2 is NO2 (in µg/m3 ), X3 is PM10 (in µg/m3 ) and X4 is

O3 (in µg/m3 ), and hospital daily circulatory admissions, daily respiratory

admissions and daily total numbers of the two admissions as yC , yR and

y, respectively. This section attempts to explore the association between

changing air pollution levels and respiratory and circulatory health problems

using the proposed MRCE method. We start by brief presentation of the

data set.

10.1.1 Daily hospital admissions

According to International Classification of Diseases (ICD), target diseases

were allocated into two groups: respiratory diseases (ICD 460-466, 471-478,
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480-487, and 490-496) and circulatory diseases (ICD 410-417, 420-438, and

440-444) (Wong, et al., 1999). Emergency hospital admissions for these two

types of diseases were collected in all 12 major hospitals for 1994 and 1995.

Although the study period was not very long, the numbers of daily hospital

admissions were relatively high in 1994 and 1995 in Hong Kong. Summary

statistics of health outcomes are depicted in Table 29 and Figure 20.

Min 25th Percentile Medium Mean 75th Percentile Max

Circulatory admissions 56 90 105 106.2 122 193
Respiratory admissions 87 128 150 153.2 174 285
Total admissions 152 222 253 259.4 291 450

Table 29: Summary statistics of daily hospital admissions.

Date

C
irc

ul
at

or
y 

ad
m

is
si

on
s

 1994 Apr Jul Oct 1995 Apr Jul Oct  1996

60

80

100

120

140

160

180

Number of daily circulatory admissions

F
re

qu
en

cy
0

50
10

0
15

0
20

0

40 60 80 100 120 140 160 180 200

Date

R
es

pi
ra

to
ry

 a
dm

is
si

on
s

 1994 Apr Jul Oct 1995 Apr Jul Oct  1996

100

150

200

250

Number of daily respiratory admissions

F
re

qu
en

cy
0

50
10

0
15

0

80 100 120 140 160 180 200 220 240 260 280 300

Date

To
ta

l a
dm

is
si

on
s

 1994 Apr Jul Oct 1995 Apr Jul Oct  1996

150

200

250

300

350

400

450

Number of daily total admissions

F
re

qu
en

cy
0

20
40

60
80

10
0

12
0

160 200 240 280 320 360 400

Figure 20: Daily hospital admissions in HongKong for 1994-1995.
Figures on the left plot the recorded observations against the trend (red curve). Figures
on the right are histograms of daily hospital admissions.
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In general, more people in Hong Kong suffered from respiratory diseases

than circulatory problems in the two-year period, with mean daily hospital

admissions of 106.2 and 153.2, respectively. And more hospital admissions

were witnessed in 1995 than 1994 for both health problems. The risk of

having circulatory diseases tended to be higher in winter and lower in sum-

mer times, showing a seasonal trend. Changing pattens in daily respiratory

admissions were more complex. In 1994, the daily respiratory admission

fluctuated and stayed in a relatively low level. It increased rapidly from the

autumn of 1994 to the following spring. Before dropping and fluctuating to

the level of approximately 150 patients per day, daily respiratory hospital

admissions peaked in March 1995 at more than 250 patients daily.

10.1.2 Ambient air pollution

Sulphur dioxide (SO2) - In an urbanised city, like Hong Kong, SO2 is

mainly contributed by usage of fossil fuels containing sulphur. More specif-

ically, vehicles and industrial emissions in urban areas are major sources of

SO2 emission. Exposure to high levels of SO2 risks damaging the functioning

of respiratory system. For patients with respiratory and cardiac problems,

high concentrations of SO2 may aggravate their symptoms. Due to govern-

ment interventions in controlling air pollution, the SO2 concentrations have

been maintaining at very low levels in Hong Kong. However, prolonged ex-

posure at lower levels of SO2 may also increase the risk of developing chronic

respiratory disease.

Nitrogen dioxide (NO2) - NO2, which has potential to cause respi-

ratory diseases is formed by oxidation of nitric oxide. Hong Kong has fairly

high levels of NO2 emission from power plants and diesel vehicles. Due to

the proximity to the people, diesel vehicles are considered a more important
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risk factor to the functioning of respiratory system. The risk is higher in

roadside areas and under calm wind conditions.

Respirable suspended particulates (RSP) - RSP (or PM10) are par-

ticulate matters with aerodynamic diameters of 10 micrometres or smaller.

Combustion processes and industrial emissions are significant sources of RSP

in Hong Kong. RSP can penetrate deep into the lungs and cause chronic and

acute pulmonary diseases. Its adverse effects on human health can be more

risky if high RSP levels and higher levels of other pollutants coexist (Envi-

ronmental Protection Department, 1996).

Ozone (O3) - Ozone in this section means the ground-level ozone (or

tropospheric ozone), rather than the Ozone layer in Earth’s atmosphere. It is

a sort of air pollution created near the Earth’s surface by a series of compli-

cated photochemical reactions under daylight UV rays. The combustion of

fossil fuels produces major sources for the reactions. High levels of ozone can

irritate eye, nose and throat and normal lung function. Prolonged exposure

can aggravate respiratory infections.

Min 25th Percentile Medium Mean 75th Percentile Max

SO2 (µg/m3) 2.74 12.45 17.14 20.40 25.10 99.00
NO2 (µg/m3) 16.41 39.97 51.40 53.67 66.44 122.40
PM10 (µg/m3) 14.77 30.73 45.25 50.58 66.28 159.70
O3 (µg/m3) 0.00 11.85 24.25 29.46 44.22 129.90

Table 30: Summary statistics of daily pollutant levels.

Thanks to the governmental lead control efforts, the SO2 concentration

levels in Hong Kong were maintained at very low levels (Environmental Pro-

tection Department, 1996,1997). Mean daily SO2 concentration was only

20.4 g/m3, which was lower than major western cities. However, the mean

daily concentrations of NO2 and PM10 were quite high, at 51.4 g/m3 and
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45.25 g/m3, respectively. Ozone (O3) concentrations were comparable to

western cities (mean daily concentration at 29.46 g/m3).
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Figure 21: Daily air pollution levels in Hong Kong for 1994-1995.
Figures on the left plots the recorded daily average concentration of air pollutants against
the trend (red curve). Figures on the right are histograms of daily average air pollution
levels.

According to reports of Environmental Protection Department of Hong

Kong (1997, 1998), air pollutant concentrations are generally lower in sum-

mer times due to the washout effect of rainfall and dispersion function of

wind. This conclusion may explain well the changing patterns of NO2 and

PM10 emissions in Hong Kong for 1994 and 1995. The air pollution levels for

NO2 and PM10 were substantially lower in summer times. This is because

of the washout effects of rainfall and better dispersion of pollutant during
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the summer months. Higher concentrations of air pollutants were, in gen-

eral, recorded in the winter times, when the pollutants were trapped in Hong

Kong due to weather conditions.

The patterns for SO2 and ozone varied slightly from NO2 and PM10. SO2

concentration levels did not show significant variation in the two-year pe-

riod. The Environmental Protection Department (1996,1997) of Hong Kong

attributes this phenomenon to higher electricity demand under hot weather

conditions. In summer times, although the washout and dispersion effects

were more dramatic than in winter days, they were offset by increased elec-

tricity consumption. For ozone, higher average concentrations occurred in

October and November. The production of ozone is significant under strong

day light, slow wind speed and low humidity conditions. October and Novem-

ber in 1994 and 1995 had more suitable weather conditions for photochemical

formation of ozone.

10.2 Impact of air pollutants on health - respiratory

and circulatory problems combined

Air pollutants are important factors that cause respiratory and circulatory

problems. In their attempt of exploring the association between air pollution

and health, Cai, Fan and Li (2000) combined these two groups of health

problems and set the response variable as total number of daily hospital

admissions for respiratory and circulatory problems. They constructed a

GVCM with log transformation link function as

log [m(Xi, ti)] = a0(ti) + a1(ti)X1,i + a2(ti)X2,i + a3(ti)X3,i, (10.1)
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where X1, X2 and X3 represent daily average concentration levels of SO2,

NO2 and PM10, and m(Xi, ti) = E(yi|Xi, ti) is the mean regression function

of y given covariates X at time t. In case of confusion, note here that a0(·)
is the intercept term.

Since air pollutants are causal factors of circulatory and respiratory prob-

lems, it is reasonable to assume that the link function is strictly increasing.

This makes the application of maximum rank correlation estimation method

possible. In this thesis, we construct the model with monotonic link trans-

formation. Moreover, the impact of ground-level ozone concentrations (X4)

is also taken into the model. Suppose that the conditional mean regression

function m(Yi|Xi, ti), through an unknown link transformation, is linear as

g
(
m(Xi, ti)

)
= β1(ti)X1,i + β2(ti)X2,i + β3(ti)X3,i + β4(ti)X4,i, (10.2)

where β(·) = {β1(·), β2(·), β3(·), β4(·)}T is the varying coefficient vector of

interest, and g(·) is the unknown strictly increasing link function.

Denote the directions of the varying coefficients as β0(·), the norm of the

varying coefficients as N(·) = ||β(·)|| and the first order derivative of the

norm as Ṅ(·) = c(·). In our initial proposal, to make the model 10.2 identifi-

able, we commonly set N(t1) = ||β(t1)|| = 1. However, the estimation of the

varying coefficients at the beginning of 1994 frequently faces technical diffi-

culties. These difficulties and their solutions will be demonstrated and intro-

duced later. Instead of setting N(t1) = ||β(t1)|| = 1, N(t366) = ||β(t366)|| = 1

is used as an alternative.

The directions of the varying coefficients are estimated with two-step

estimation method. We do not known in advance where the true c(·) lies.

To let the grid regression method make sense, at any date t, we search the
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estimator of c(t) in a relatively large interval c(t) ∈ [−60, 60]. In terms of

the selection of tuning parameters, it is necessary to use relatively large δ,

since smaller δ would not allow the Newton-Raphson maximization algorithm

produce converged maximizers. The tuning parameters are chosen to be

δ = 0.3 and λ = 0.1. Bandwidths are provided by cross-validation criterion

regarding the objective function

CV (h) =
1

n

n∑
i=1

(
yi − m̂−i(yi|Xi, ti))√

m̂−i(yi|Xi, ti)

)2

, (10.3)

which is the mean value of the sum of squares of the Pearson’s residuals, and

where m̂−i(Xi, ti)) is the estimated conditional mean regression function of

y at t = ti with the ith observations being deleted from the data. h denotes

the set of bandwidths (h20, h2j, j = 1, · · · , 4, hn, and hl) applicable in the

estimation, where h20 is the first stage bandwidth for two-step estimation of

β(·), h2j, j = 1, · · · , 4, are second stage bandwidths for two-step estimation of

β(·), hn is the bandwidth for estimation of ||β(·)|| and hl is the link function

estimation bandwidth.

• Technical difficulty

On constructing the model, ideally the varying coefficients, their norms and

the first order derivatives of their norms are continuous and smooth functions.

Originated from the feature of MRCE method proposed, estimation of N(·) =

||β(·)|| is in fact approximation of c(·) = Ṅ(·)
N(·) . However, the estimation of

c(·) could be extremely problematic.

At any t, the estimator ĉ(t) of c(t) is searched in the interval [−60, 60].

However, un-negligible amount of estimates reach the upper or lower bound

of the searching region. Plot A in Figure 22 shows what the problems are

like. It is vital to have a reasonable solution to this problem.
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Figure 22: Technical difficulty and its solution.
(A) Problematic maximization of objective local rank correlation function. (B): Solution
to problems in (A).

• Solution to technical issues

To conquer problematic maximization issue depicted in Plot A of Figure 22,

the counting of local rank correlation scores shall be constrained. Suppose

β̂0(·) have being obtained. At any date t, denote c(t) =
˙N(t)

N(t)
, Zi = XT

i β̂0(ti)

and R = {||Zi(1 + c(ti − t))||, ||Zj(1 + c(tj − t))||}max, i, j = 1 · · · , n. An

objective function alternative to (3.11) is defined as

L(c) =
∑
i 6=j

I(yi > yj)I

(
0 <

Zi(1 + c(ti − t))− Zj(1 + c(tj − t))
R

≤M

)
,

where M > 0 is a constant. Maximization of this objective function at

through t produces smooth maximizers of c(·). The selection of M should

ensure that the objective rank correlation function is not overly constrained.

It can be chosen by the data itself. However, the computation cost would

dramatically be increased. For the data explored, M = 10 is used and

practically useful.

M = 10 eliminates most of the wearied estimates of c(·). Unluckily, there

are still a few poor estimates of c(·) remaining. As these poor estimates are
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minor, they are treated as outliers. When one obtains the estimates of c(·) at

all datum points, say ĉ(ti), i = 1, · · · , n. Sort ĉ(·) in an increasing order and

denote the new set as co(ti), i = 1, · · · , n. Estimates that are between 2.5%

and 97.5% quantile of co(·) are retained, and the remaining 5% estimates are

replaced by their local linear approximations. Plot B in Figure 22 shows

that, with a proper constrain M , reasonable estimates of c(·) are obtained.

• Results

Minimization of cross validation defined in formula (10.3) gives bandwidths:

h1 = 0.189, h21 = 0.126, h22 = 0.245, h23 = 0.358, h24 = 0.635, hn =

0.189 and hl = 0.177. With the tricks proposed, the estimated functional

coefficients are presented in Figure 23.
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Figure 23: Estimated varying coefficient functions.
The solid lines are estimated coefficient functions, and the dashed lines are the estimated
coefficient functions plus/minus twice estimated standard errors.
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β̂1(t) was predominantly negative before the winter of 1994, when its

value became positive and climbed rapidly. The growth of β̂1(t) slowed down

in 1995, and β̂1(t) began to drop from the level of 0.5 in September of 1995.

β̂2(t) and β̂3(t) were positive in the two-year time. β̂2(t) went up steadily

between the summer of 1994 and the Spring of 1995 and stayed at a high

level compared with other coefficients. β̂3(t) increased rapidly in the Spring

of 1994 and vibrated at the level just above 0.5. When it came to 1995,

it experienced another sharp increase in the Spring and dropped gradually

afterwards. The pattern of β̂4(t) began with a gradual growth in the first

four months of 1994. It gently decreased for more than one year’s time and

continued to decline sharply.

In general, major positive associations were found between daily hospital

admissions for circulatory and respiratory diseases and daily average concen-

trations of two air pollutants - NO2 and PM10. Among the four air pollutants

considered, NO2(mean daily concentration at 53.67 g/m3) and PM10(mean

daily concentration at 50.58 g/m3) concentration levels were much higher in

1994 and 1995. Due to their dominance in ambient air pollution, for Hong

Kong in 1994 and 1995, NO2 and PM10 pollution were important explanatory

factors to the emergence of circulatory and respiratory problems. Moreover,

the changing patterns of β̂2(t) and β̂3(t) suggests that the risk from NO2

tended to be more dominant than PM10.

Harmful impact of SO2 levels on health were only revealed in 1995, and

the impact was smaller compared with NO2 and PM10. It is not surprising

to see that the impact of SO2 on the health problems in this study was not

significant. Because, Hong Kong had controlled SO2 emission efficiently and

kept its concentrations to very low levels. What is surprising is that ground-

level ozone tended to be negatively associated with daily hospital admissions
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for circulatory and respiratory problems. This might be explained by Pönkä

and Virtanen (1996) who suggested that ozone is related to respiratory dis-

eases but not to circulatory diseases.
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Figure 24: Link function and Pearson’s residuals.
(A) Estimated curve of the unknown monotonic link function. (B) The solid line plots the
estimated m̂(X, t), where the dots are the observations of total daily hospital admissions
for Circulatory and Respiratory problems. (C) Pearson’s Residuals. (D) Histogram of
Pearson’s Residuals.

The proposed maximum rank correlation estimation method fits the data

quite well. The Pearson’s residuals are visually normal, indicating a proper

approach to the mean regression function. The top left graph in Figure 23

shows the estimated link function. Despite the boundary where the estimates

of the link function could be very bad, the estimated link function is visually

linear. At least, it is neither the commonly used log function, nor any simple

transformation of the log function.
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This finding is interesting and attributes the proposed MRCE method

more power in exploring real world problems. When it comes to count data,

researchers commonly get an insight into the linear association between co-

variates and the response variable with some known link transformation. It is

no doubt that the utilization of certain forms of link transformation is useful

and meaningful. However, once the link function is very mistakenly defined,

the model could be extremely wrong and providing misleading knowledge.

10.3 Short-term effects of air pollutants on respiratory

and circulatory problems

The MRCE method has explored the association between daily hospital ad-

missions for respiratory and circulatory problems and same-day ambient air

pollution levels. What also interests us is the short-term effects of air pollu-

tion on health. Such short-term effects can be explored through the associa-

tion between present hospital admissions and air conditions from a previous

time to the present via

g
(
m(Xi, ti, l)

)
=

4∑
p=1

βp(ti)
( l∑
j=0

Xp,i−jwj

)
, (10.4)

where l is the time lag, and wj refers to the weight function of air pollutant

level on lagged time ti−j, j = 0, · · · , l, with
∑l

j=0wj = 1. When l = 0, the

model reduces to (10.2) in previous section.

For simplicity, when time lag is set to be l, identical weights, wj = 1
l+1

,

j = 0, · · · , l, are used. Then the model consider short-term effects of air

155



pollution on health is constructed as

g
(
m(Xi, ti, l)

)
=

4∑
p=1

βp(ti)
( l∑
j=0

Xp,i−j

l + 1

)
. (10.5)

When time lag l is determined, of interest is to estimate the varying coeffi-

cients β(·). The bandwidths are chosen by the CV defined as

CV (h) =
1

n

n∑
i=1

(
yi − m̂−i(Xi, ti, l))√

m̂−i(Xi, ti, l)

)2

. (10.6)

The question is how to determine the time lag l. Due to that the interest

is the short-term effects of air pollution on health, only time lag l ≤ 3 are

considered. For each value of l, standard sum of squares of Pearson’s residuals

(Criterion 1)

1

n

n∑
i=1

(
yi − m̂(Xi, ti, l)√

m̂(Xi, ti, l)

)2

, (10.7)

and mean standard Pearson’s residuals (Criterion 2)

1

n

n∑
i=1

||yi − m̂−i(Xi, ti, l))||√
m̂−i(Xi, ti, l)

(10.8)

are calculated for time lag selection.

With l = 2, both criterion 1 (score = 4.68) and criterion 2 (score = 2.09)

achieve the minimal values. Therefore, l = 2 is selected as the practical

time lag. The CV criterion provides bandwidths: h1 = 0.228, h21 = 0.138,

h22 = 0.222, h23 = 0.138, h24 = 0.326, hn = 0.156 and hl = 0.1, which give

the minimal cross validation score defined in formula (10.6). The estimated
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functional coefficients are presented in Figure 25.
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Figure 25: Estimated varying coefficient functions with time lag l = 2.
The solid lines are estimated coefficient functions, and the dashed lines are the estimated
coefficient functions plus/minus twice estimated standard errors.

The patterns of β̂1(·), β̂2(·) and β̂3(·) revealed by MRCE method with time

lag l = 2 are similar to those given by l = 0 in previous section. Interestingly,

the estimated curve for β̂4(·) is very different. β̂4(·) increased rapidly in the

first half of 1994 and decreased fast in the following half-year time. In 1995,

β̂4(·) was mainly positive. However, the values of β̂4(·) were close to 0.

With two days time lag, short-term effects of ground level ozone con-

centration levels were detected. Importantly, in 1994, ozone was a more

significant air pollutant that other air pollutants that harmed human health.

Because of low SO2 levels in Hong Kong, SO2 was still an insignificant fac-

tor that caused increasing hospital admissions for circulatory and respiratory
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diseases. Despite that the impact of PM10 had decreased from April of 1995,

positive associations between daily hospital admissions for circulatory and

respiratory diseases and major air pollutants (NO2 and PM10) were dramatic

in Hong Kong during the observatory period.
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Figure 26: Link function and Pearson’s residuals with time lag l = 2.
(A) Estimated curve of the unknown monotonic link function. (B) The solid line plots the
estimated m̂(X, t), where the dots are the observations of total daily hospital admissions
for Circulatory and Respiratory problems. (C) Pearson’s Residuals. (D) Histogram of
Pearson’s Residuals.

Normal Pearson’s residuals indicates that the mean regression function

is well estimated and the data set is reasonably fitted. Shown in plot A

of 26, the estimated link function g(·) is increasing and close to linear.It is

confident to conclude that the underline link function is not a log function.

Therefore, the proposed MRCE method which assumes unknown monotonic

link function is potential in explaining the data set more efficiently.
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10.4 Two groups of diseases. Two Stories?

In previous analysis, the response variable is taken to be total number of daily

hospital admissions of patients suffering from circulatory and respiratory

problems. Under this setting, we actually assume identical link functions

that associates the covariates with different groups of diseases. It is clear

that air pollutants harm human bodies and cause circulatory and respiratory

problems through diverse mechanisms. Therefore, in the model setting stage,

it is more reasonable to take into consideration the potential that circulatory

and respiratory diseases are related to air pollution in different ways. In this

sense, link functions relate to these two health problems ought to be different.

With different monotonic link functions, the two health problems are studied

separately.

10.4.1 Short-term effects of air pollution on circulatory system

Suppose the conditional mean regression functionm(Xi, ti, l) is linear through

an unknown strictly increasing link transformation gC(·)

gC

(
m(Xi, ti, l)

)
=

4∑
p=1

βp(ti)
l∑

j=0

(
Xp,i−jwj

)
, (10.9)

where βp(·), p = 1, · · · , 4, are the varying coefficients, l is the time lag, and

wj = 1
l+1

, j = 0, · · · , l, are the weights. To make the model identifiable,

N(t366) = ||β(t366)|| = 1 is used.

The directions β0(·) of β(·) are estimated with two-step estimation method.

The estimator ĉ(·) of c(·) =
˙N(·)

N(·) at any t is searched in a relatively large in-

terval [-60,60]. Acceptable bandwidths are provided by the CV criterion
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regarding the objective function

CV (h) =
1

n

n∑
i=1

(
yC,i − m̂−i(Xi, ti, l)√

m̂−i(Xi, ti, l)

)2

. (10.10)

Due to that the interest is the short-term effects of air pollution on health,

only time lag l ≤ 3 are considered. For each value of l, standard sum of

squares of Pearson’s residuals (Criterion 1)

1

n

n∑
i=1

(
yC,i − m̂(Xi, ti, l)√

m̂(Xi, ti, l)

)2

, (10.11)

and mean standard Pearson’s residuals (Criterion 2)

1

n

n∑
i=1

||yC,i − m̂−i(Xi, ti, l))||√
m̂−i(Xi, ti, l)

(10.12)

are calculated for time lag selection.

Evaluation of Criteria 1 and 2 suggests time lag l = 0 which achieved

minimal value for Criterion 1 (scores at 3.54) and second smallest value for

Criterion 2 (scores at 1.67). With time lag l = 0, the CV criterion suggests

bandwidths: h1 = 0.251, h21 = 0.929, h22 = 0.222, h23 = 0.167, h24 = 0.698,

hn = 0.08 and hl = 0.556, which give the minimal cross validation score

defined in formula (10.6).

As is depicted in Figure 27, β̂1(·), β̂2(·) and β̂3(·) all went up gradually

from January 1994 to September 1995. In the winter of 1995, β̂1(·) and β̂2(·)
rocketed suddenly and, whereas β̂3(·) steeply dropped. The Pattern for β̂4(·)
was very different form other functional coefficients. It was negative in the

two-year period.
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Figure 27: Estimated varying coefficient functions with time lag l = 0.
The solid lines are estimated coefficient functions, and the dashed lines are the estimated
coefficient functions plus/minus twice estimated standard errors.

Major positive associations between circulatory diseases and air pollu-

tants (NO2 and PM10) were detected in Hong Kong for 1994 and 1995.

Although Hong Kong had low SO2 levels, the MRCE method as well iden-

tified harmful effects of SO2 on the circulatory system. In terms of impacts

of ground level ozone on the circulatory system, our finding is in accordance

with the claim of Pönkä and Virtanen (1996). Throughout 1994 and 1995,

ground-level ozone is not directly related to circulatory diseases. The identi-

fied time lag l = 0 suggests that the impacts of air pollution on the circulatory

system tended to be immediate and emergency for Hong Kong patients in

1994 and 1995. This finding advises the citizens to avoid too much roadside

activities, because vehicles are major sources of air pollutants.
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Figure 28: Link function and Pearson’s residuals with time lag l = 0.
(A) Estimated curve of the unknown monotonic link function. (B) The solid line plots the
estimated m̂(X, t), where the dots are the observations of total daily hospital admissions
for Circulatory and Respiratory problems. (C) Pearson’s Residuals. (D) Histogram of
Pearson’s Residuals.

Normal Pearson’s residuals indicates that the mean regression function is

well estimated and the data set is reasonably fitted.Plot A of 26 depicts the

estimated monotonic link function gC(·). gC(·) is not the commonly used log

function. This confirms that approaching the data set with unknown link

function is more practically realistic.
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10.4.2 Short-term effects of air pollution on respiratory system

Suppose the conditional mean regression functionm(Xi, ti, l) is linear through

an unknown strictly increasing link transformation gR(·)

gR

(
m(Xi, ti, l)

)
=

4∑
p=1

βp(ti)
l∑

j=0

(
Xp,i−jwj

)
, (10.13)

where βp(·), p = 1, · · · , 4, are the varying coefficients, l is the time lag, and

wj = 1
l+1

, j = 0, · · · , l, are the weights. To make the model identifiable, set

N(t366) = ||β(t366)|| = 1.

The directions β0(·) of β(·) are estimated with two-step estimation method.

The estimator ĉ(·) of c(·) =
˙N(·)

N(·) at any t is searched in a relatively large in-

terval [-60,60]. Reasonable bandwidths are provided by the CV criterion

regarding the objective function

CV (h) =
1

n

n∑
i=1

(
yR,i − m̂−i(Xi, ti, l)√

m̂−i(Xi, ti, l)

)2

. (10.14)

Due to that the interest is the short-term effects of air pollution on health,

only time lag l ≤ 3 are considered. For each value of l, standard sum of

squares of Pearson’s residuals (Criterion 1)

1

n

n∑
i=1

(
yR,i − m̂(Xi, ti, l)√

m̂(Xi, ti, l)

)2

, (10.15)

and mean standard Pearson’s residuals (Criterion 2)

1

n

n∑
i=1

||yR,i − m̂−i(Xi, ti, l))||√
m̂−i(Xi, ti, l)

(10.16)
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are calculated for time lag selection.

Both Criteria suggests time lag l = 3 which reached the minimal values

for Criterion 1 (scores at 3.39) and Criterion 2 (scores at 1.69). With time

lag l = 3, the CV criterion suggests bandwidths: h1 = 0.189, h21 = 0.222,

h22 = 0.269, h23 = 0.222, h24 = 0.433, hn = 0.156 and hl = 0.214, which give

the minimal cross validation score defined in formula (10.6).
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Figure 29: Estimated varying coefficient functions with time lag l = 3.
The solid lines are estimated coefficient functions, and the dashed lines are the estimated
coefficient functions plus/minus twice estimated standard errors.

Depicted in Figure 29 are the estimated coefficient functions for ambient

air pollutants. β̂1(·) was only positive in 1995, and its magnitude was much

smaller than other coefficients. The changing patterns for positive functions

β̂2(·) and β̂3(·) were similar. Both coefficient functions had increased grad-

ually in 1994 and then climbed quickly until May 1995. In the next eight
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months time, β̂2(·) and β̂3(·) declined gradually, while β̂3(·) was dropping

down faster than β̂2(·). β̂4(·) was also a positive function. It went up rapidly

from January 1994 and peaked at the end of June that year. In the following

one and a half year’s time, β̂4(·) dropped gradually.
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Figure 30: Link function and Pearson’s residuals with time lag l = 3.
(A) Estimated curve of the unknown monotonic link function. (B) The solid line plots the
estimated m̂(X, t), where the dots are the observations of total daily hospital admissions
for Circulatory and Respiratory problems. (C) Pearson’s Residuals. (D) Histogram of
Pearson’s Residuals.

It is found that respiratory diseases were positively associated with air

pollutants (NO2, PM10 and ground-level ozone), while the impact of SO2

on the respiratory system was not significant. Only very limited short-term

effects of SO2 were detected in 1995. High NO2 and PM10 concentration

levels in Hong Kong were still important factors that risked the respiratory

system, while positive association between ground level ozone and respiratory
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diseases was also revealed. In the study of circulatory diseases, impacts of air

pollution on the circulatory system was severe (l = 0) in Hong Kong for 1994

and 1995. The situation was different for respiratory diseases in Hong Kong

for the same time period. The impact of air pollution on the respiratory sys-

tem required time to trigger paroxysm (l = 3). Normal Pearson’s residuals

confirms that the mean regression function is well estimated and the data set

is reasonably fitted. The estimated monotonic link function gR(·) depicted

in Plot A of Figure 30 is close to linear rather than the commonly used log

function.

Conclusion

Through the exploration of association between air pollution and health prob-

lems (respiratory and circulatory) in Hong Kong for 1994-1995, it is identi-

fied that harmful impact from SO2 was limited, while NO2 and PM10 were

dramatic causal factors to both diseases. Ground-level was only related to

respiratory diseases, whereas positive association with circulatory problems

was not detected. The conducted analysis in this thesis is limited to situa-

tions in Hong Kong for 1994-1995 only. Conclusions can not be generalized

Hong Kong at present time or other locations.

Additionally, the unknown strictly increasing link function was not com-

monly applied log function. This indicates that the proposed MRCE method

for Generalized Varying Coefficient Models with unknown monotonic link

function is more practically meaningful (when applicable) than methods that

specify the link transformation.
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Abbreviations

AIC - Akaike information criterion;

CV - Cross validation;

GLM - Generalized linear model;

GSVCM -Generalized semi-varying coefficient model;

GVCM - Generalized varying coefficient model;

i.i.d - Independent and identically distributed;

MSE - Mean squared error;

MISE - Mean integrated squared error;

MLE - Maximum likelihood estimation;

MRCE - Maximum rank correlation estimation;

VCM - Varying coefficient model;

WLS - Weighted least squares.
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