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Abstract 

Protein phosphorylation by tyrosine kinases evolved in multicellular organisms to 

regulate intracellular signalling pathways associated with proliferation, differentiation and 

migration. In most tissues, basal protein tyrosine phosphorylation is maintained at low 

levels, but in the brain, basal tyrosine kinase activity is high and regulates key processes 

in the developing and mature brain and is dysregulated in neurological disorders. N1-Src 

is a neuronal splice variant of the ubiquitous proto-oncogene C-Src tyrosine kinase, 

which differs by a six amino acid insert in its SH3 domain. Since the SH3 domain confers 

substrate specificity, it is anticipated that both C- and N1-Src will have different 

substrates and functions. Specifically, N1-Src is highly active in the developing brain and 

has been implicated in neuronal differentiation. Studies also suggest a role for N1-Src in 

ion channel regulation, however, the mode of action of N1-Src remains poorly 

understood. The primary aim of this study was to further clarify the role of N1-Src in both 

the developing and adult brain. To achieve this, a multidisciplinary approach was 

adopted, which sought to 1) identify novel N1-Src substrates 2) determine the function 

of N1-Src in developing neurons and 3) dissect the signalling pathways downstream of 

N1-Src. 

Recombinant, active Src kinases were generated to undertake in vitro kinase assays 

with putative N1-Src substrates. Src-dependent phosphorylation of HCN1, a pacemaker 

channel identified as an N1-Src interactor in a yeast 2-hybird screen, could not be 

detected. This result was not conclusive as surprisingly, the assay did not detect Src or 

PKC phosphorylation of NR2A, an NMDA receptor subunit, previously characterised as 

a robust Src and PKC substrate. However, a screen of several putative N1-Src SH3 

binding peptides revealed some encouraging candidates to pursue as substrates. To 

address the function of N1-Src in neuronal development, N1-Src was overexpressed or 

knocked down in cultured hippocampal neurons. Both manipulations were detrimental to 

neurite outgrowth and neuronal polarization, suggesting that N1-Src activates 

cytoskeletal remodelling pathways and precise levels of N1-Src are required for normal 

cellular development in vitro. The molecular mechanism of this phenomenon was 

investigated in a fibroblast cell line, in which N1-Src overexpression induces neurite-like 

processes. Using this model, an investigation into the role of N1-Src in RhoA signalling 

implied that N1-Src does not drive process outgrowth via the inhibition of RhoA, however 

constitutive activation of RhoA, prevented N1-Src mediated process extension. 

Preliminary results suggested that N1-Src overexpression enhances RhoA activation, 

which could form part of a negative feedback loop. Taken together, I have implicated N1-

Src in neurite outgrowth, which provides a starting point for understanding the 

mechanistic role of N1-Src in pathways that dictate neuronal morphology. 
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Chapter 1. Introduction 

1.1 Protein Phosphorylation 

Protein phosphorylation is a post-translational modification (PTM), which alters protein 

function. The phenomenon of protein phosphorylation was first observed by Burnett and 

Kennedy in 1954, who demonstrated that casein was phosphorylated by the liver 

enzyme, casein kinase. Since this initial discovery, the field has expanded greatly with 

approximately 17,000 proteins known to be phosphorylated at one or more sites. Protein 

phosphorylation is therefore acknowledged as a key regulator of many cell biological 

mechanisms including proliferation, differentiation, migration, and trafficking, as well as 

many neuronal and immunological processes.  

Phosphorylation is a reversible covalent modification that involves the transfer of a 

phosphoryl group to a hydroxylated amino acid residue (serine (Ser), threonine (Thr) or 

tyrosine (Tyr)) on a protein substrate. In cells, the forward phosphorylation reaction is 

catalysed by enzymes called kinases, which use adenosine triphosphate (ATP) 

molecules as phosphoryl donors. Phosphatase enzymes catalyse the reverse, 

dephosphorylation reaction, which remove the phosphoryl group from the amino acid 

residue.  

As one of the largest gene families, the protein kinases make up 1.7 % of the human 

genome, with 518 members, most of which contain a conserved protein kinase catalytic 

domains that facilitate phosphoryl transfer (Manning et al., 2002). There are two main 

types of kinases; the Ser/Thr kinases and Tyr- kinases. Although, dual specificity kinases 

with both Ser/Thr and Tyr- kinase activity, also exist (e.g. (Roskoski, 2012)). The 

proportion of Ser, Thr, and Tyr phospho-sites within the phosphoproteome varies. Of the 

6,600 phosphorylation sites derived from 2,244 proteins in the phosphoproteome of 

HeLa cells, 86.4 % of the sites were phosho-serine residues, 11.8 % were 

phosphothreonine residues and 1.8 % were phosphotyrosine residues (Olsen et al., 

2006).  

A further class of kinase, termed the pseudokinases, has also been described (reviewed 

in (Zeqiraj and van Aalten, 2010). These kinases lack residues present in the active site 

of the conserved eukaryotic kinase domain that are critical for catalysis. For example, 

the psuedokinase STRAD, which forms part of a tumour suppressing complex with the 

adaptor protein MO25 and the kinase LKB1, serves to activate LKB1 via a 

phosphorylation independent mechanism. When bound as a psuedosubstrate in 

complex with LKB1, STRAD acts as an allosteric activator of the kinase (Zeqiraj et al., 

2009). The pseudokinase is thought to have lost its ability to catalyse substrate 
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phosphoyrlation throughout evolution (Zeqiraj and van Aalten, 2010). Further examples 

of pseudokinases, whose functions are mediated via the formation of protein-protein 

interactions, include ILK (Fukuda et al., 2009), HER3 (Jura et al., 2009) and VRK3 (Kang 

and Kim, 2008). Whilst all pseudokinases were widely considered in the field to be 

inactive, in the past decade studies have emerged that have demonstrated that several 

pseudokinases are in fact catalytically active (Taylor and Kornev, 2010), although they 

are still the subject of much controversy.  

Phosphorylation can exert its effects by modifying the activity, stability or localization of 

the target protein. In addition, protein phosphorylation can also facilitate or disrupt 

protein-protein interactions (Sopko and Andrews, 2008). This places both kinases and 

phosphatases at the centre of many diverse signalling networks, which regulate virtually 

all cellular processes. Given that protein phosphorylation is linked to such a broad range 

of functions in cell biology, it is unsurprising that the deregulation of both kinases and 

phosphatases can result in a variety of disease pathologies. For example multiple types 

of cancer (Mammoto et al., 2016), vascular diseases (Nakamura et al., 2016) and 

neurodegenerative diseases (Gatta et al., 2016) have been linked to aberrant protein 

phosphorylation.   

1.1.1 Tyrosine Phosphorylation  

Whilst tyrosine phosphorylation accounts for the lowest proportion of protein phospho-

sites in comparison to Ser/Thr, this does not make it any less important. The human 

kinome contains 90 tyrosine kinases, which can be categorised into to two families: 

receptor tyrosine kinases (RTKs) and non-receptor tyrosine kinases (nRTKs) (Manning 

et al., 2002).  

RTKs account for 58 of the 90 tyrosine kinases and are type 1 transmembrane proteins 

that contain three distinct domains: an N-terminal extracellular domain, a single 

transmembrane domain and a C-terminal cytoplasmic domain (Manning et al., 2002). 

Generally, RTKs are activated upon ligand binding to the extracellular domain, which 

results in receptor dimerization (or in some cases oligomerisation), triggering the 

transphosphorylation of tyrosines in their cytosolic C-terminal domain. This in turn, 

creates binding sites for proteins containing Src homology 2 (SH2) domains (discussed 

in Section 1.2.4) or phosphotyrosine binding (PTB) domains. The subsequent RTK 

phosphorylation of various docking proteins, such as Gab1, can also facilitate the 

recruitment of other signalling proteins that act in downstream signalling transduction 

pathways (Lemmon and Schlessinger, 2010). Therefore, in effect, the intracellular 

domains of activated RTKs act as junctions where multiple signalling pathways can be 

triggered (Lemmon and Schlessinger, 2010).  
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Two of the major downstream signalling pathways that are triggered downstream of RTK 

activation include the Ras/Map kinase (MAPK) and the PI-3K/Akt pathways. Both of 

these pathways are initiated through the recruitment of the adaptor protein Grb2, which 

binds to the phosphorylated C-terminal tail of RTKs (Lemmon and Schlessinger, 2010). 

To stimulate the Ras/MAPK pathway, the two SH3 domains of Grb2 bind to SOS, a 

guanine nucleotide exchange factor (GEF) that catalyses the activation of the GTPase 

Ras. Activated Ras recruits and activates RAF, which triggers a MAPK cascade involving 

the subsequent activation of MEK and ERK (English et al., 1999). To activate the PI-3K 

pathway, Grb2 recruits the docking protein Gab1, which becomes phosphorylated and 

binds to the p85 subunit of PI-3K, resulting in the activation of the kinase. PI-3K catalyses 

the production of the lipid, phosphoinositide-3,4,5-triphosphate (PIP3). PIP3 recruits Akt 

to the membrane via its pleckstrin-homology (PH) domain, where it is activated and 

phosphorylates downstream targets (Cantley, 2002). These pathways together with 

others, form an interconnected complex signalling network that regulate key cellular 

processes including cell proliferation, differentiation and survival (Lemmon and 

Schlessinger, 2010). 

Dissimilar to RTKs, nRTKs are mainly cytosolic intracellular proteins, although some are 

membrane localised since they contain an N-terminal lipid modification. Many act as 

additional subunits of cell surface receptors that do not have catalytic tyrosine kinase 

domains themselves (reviewed in Hunter, 2009) whilst some kinases, such as Src, are 

recruited to activated RTKs. Therefore, in response to receptor ligand binding, nRTKs 

are capable of triggering downstream signalling events (Neet and Hunter, 1996). Whilst 

there are nine families of nRTKs, the Src family of kinases will be the point of discussion 

in the remainder of this introduction.    

1.2 The Structure and Regulation of Src Family kinases (SFKs) 

Src family kinases (SFKs) are nRTKs, which comprise 11 known individual members 

(Manning et al., 2002). Eight of the family members, namely Blk, C-Src, Fgr, Fyn, Hck, 

Lck, Lyn and Yes, have been the most comprehensively studied and over the years, 

structural studies have revealed that SFKs share the same conserved modular structure, 

differing only by the N-terminal regions of the protein (Figure 1.1). The modular domains, 

termed Src homology (SH) domains, have since been described to occur in many other 

types of protein. The SFKs each comprise the following six domains: the SH4, unique, 

SH3, SH2, SH1 (or kinase domain) and the C-terminal domains (Figure 1.1; reviewed in 

Engen et al., 2008). The role of each of these domains in both the function and regulation 

of the kinase is discussed below.   
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Figure 1.1: Schematic Diagram Illustrating the Modular Structure of SFKs. 

The structure of each family member contains an N-terminal SH4 domain, followed by 
the unique, SH3, SH2 and catalytic kinase domains. The SH4 domain contains a lipid 
modification, which facilitates membrane tethering. Both the SH3 and SH2 domains 
confer substrate specificity by binding PXXP or phosphotyrosine motifs respectively, 
whereas the kinase domain catalyses the phosphorylation of bound substrates. The 
phosphorylation of Y-416 in the kinase domain promotes catalytic activity. Adjacent to 
the kinase domain is the C-terminal tail, which contains the highly conserved Y-527 and 
regulates the autoinhibition of SFKs upon phosphorylation.  
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1.2.1 The SH4 Domain  

The N-terminal region of SFKs, comprising the SH4 and unique domains, is the least 

conserved area of the protein and its structure is intrinsically disordered. Lipid 

modification of the SH4 domain facilitates tethering to the plasma membrane, as well as 

other intracellular membrane compartments and is required for SFK function in vivo 

(Resh, 1994). All SFKs are myristoylated and many undergo additional palmitoylation 

(Resh, 1994, Koegl et al., 1994). Indeed, the myristoylation and palmitoylation sites, Gly-

2 and Cys-3 (except in C-Src and Blk) respectively, are two of just a few conserved 

residues at the N-terminus (Koegl et al., 1994).  

The sole irreversible myrystoylation of SFKs occurs promptly after translation, whereas 

palmitoylation is a more dynamic, reversible modification that is dependent upon 

myristoylation and can occur at multiple sites in some SFKs (e.g. Lck and Fyn; (Buss et 

al., 1984, Paige et al., 1993, Koegl et al., 1994). Whilst this secondary modification 

strengthens membrane binding, palmitoylation has also been reported to localise SFKs 

to caveolae in the plasma membrane and to regulate the trafficking of SFKs (Shenoy-

Scaria et al., 1994, Sato et al., 2009). The basic residues that flank the lipid modification 

sites also promote the kinases’ interaction with the negatively charged plasma 

membrane (Silverman et al., 1993). Localisation of SFKs to the membrane enables the 

kinases to interact with and phosphorylate other membrane-localised proteins, as well 

as cytoplasmic components. Therefore, this modification is intrinsic to the function of 

SFKs, which are key components of many different signalling pathways and regulate 

many cellular processes. 

1.2.2 The Unique Domain 

The unique domain is the intrinsically disordered region (IDR) situated between the SH4 

and SH3 domains of SFKs, which typically consist of 50-80 residues. Whilst the unique 

domains are not conserved between the different SFK members, the domain of each 

individual kinase is conserved between species (Amata et al., 2014). This indicates a 

specific role of the unique domain in the regulation and function of each kinase. In 

support, the swapping of the unique domains of C-Src and Yes, effectively switches the 

functional properties of the kinases (Summy et al., 2003, Hoey et al., 2000).  

Post-translational modification of the unique domain via phosphorylation has proved to 

be an important regulator of SFK function (Amata et al., 2014). In the literature there are 

many examples that demonstrate the divergent roles of the multiple phosphorylation 

events within the unique domains of SFKs (reviewed in Amata et al., 2014). For example, 

phosphorylation of C-Src by PKA at Ser-17 has been implicated in the translocation of 
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the kinase to the cytosol in response to platelet-derived growth factor (PDGF) and the 

cAMP dependent activation of the small GTPase Rap1 (Walker et al., 1993, Obara et al., 

2004). Whereas, Thr-37, Thr-46 and Ser-75 phosphorylation by cyclin-dependent kinase 

1 (cdk1) promotes the activation of Src during mitosis, by disrupting regulatory 

intramolecular interactions (Shenoy et al., 1992).  

In recent years, a novel regulatory mechanism involving unique-lipid interactions in C-

Src has emerged. Whilst the unique domain has been defined as an IDR, NMR 

spectroscopy revealed the presence of two partially structured regions between residues 

60-74 (Pérez et al., 2009). Perez and colleagues demonstrated using NMR that this 

region comprises an additional lipid binding site, which promotes intermolecular 

interactions with acidic lipids. Further experiments established that lipid binding by the 

unique domain could be regulated by the phosphorylation of Ser-37 and Thr-75, which 

largely diminished unique-lipid binding, with little effect observed on SH4-lipid 

interactions (Perez et al., 2013). In the same study, the unique domain was found to 

interact with the SH3 domain, which also displayed a degree of lipid binding. The binding 

of the SH3 domain to positively charged lipids and the unique domain occurred away 

from the substrate docking site, and interaction of the SH3 domain with a high affinity 

proline rich peptide resulted in the abolition of unique-SH3 contacts. In addition to this, 

the unique-SH3 interaction was perturbed by the binding of calcium-loaded calmodulin 

to the unique domain, which prevented unique-lipid interactions, suggesting this 

interaction is regulated by calcium signalling (Perez et al., 2013). It is now thought that 

the SH3 domain acts as a scaffold for the unique domain, which forms a disordered loop 

between the SH4 and SH3 domains (Maffei et al., 2015).   

Together these data present a novel regulatory role for the unique domain, although thus 

far, these interactions have only been described in vitro. Nevertheless, the observation 

that C-Src mutants, defective in unique-lipid binding, negatively affected Xenopus laevis 

oocyte maturation, a process that is usually promoted by wild type (WT) C-Src, suggests 

unique-lipid interactions are required for C-Src function, and could be relevant to other 

SFKs.   

1.2.3  The SH3 Domain 

The SH3 domain, which consists of approximately 60 amino acid residues, is widely 

recognised throughout cell biology as a facilitator of protein-protein interactions. Whilst it 

was first described as one of the six modular domains of C-Src, almost 300 SH3-

containing proteins have since been identified in humans (Kärkkäinen et al., 2006). In 

addition to their presence in eukaryotes, SH3 containing proteins also occur in 

prokaryotes and viruses (Whisstock and Lesk, 1999). Therefore, it is unsurprising that 
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SH3 domains are key players in many signal transduction pathways. Some of their main 

functions include promoting multiprotein complex formation, substrate recognition, and 

enzymatic regulation, as well as enhancing localised protein concentration (Mayer, 

2001). 

In SFKs, SH3 domains play multiple key roles. Primarily, the SH3 facilitates substrate 

docking and has an important role in the regulation of kinase activity via the formation of 

intramolecular interactions (discussed in Section 1.2.7). More recently, the SH3 was 

shown to act as a scaffold for the intrinsically disordered unique domain and is thought 

to interact with the lipid membrane (discussed in Section 1.2.2, (Perez et al., 2013)).  

When the structure of the C-Src SH3 domain was solved in 1992, it was revealed that 

the protein consisted of two short three-stranded anti-parallel β-pleated sheets that were 

positioned at approximately right angles to each other (Figure 1.2, (Yu et al., 1992). A 

hydrophobic core was identified at the interface between the two β-pleated sheets, which 

was flanked by connecting n-Src and RT loops (Feng et al., 1995, Yu et al., 1992, Noble 

et al., 1993, Xu et al., 1997). This conserved hydrophobic region, a flat surface populated 

mostly by aromatic residues, contains three shallow binding pockets and is the site of 

substrate recognition (Noble et al., 1993, Musacchio et al., 1994).  

SH3 domains interact with substrate regions that contain short amino acid sequences, 

rich in proline residues, called PXXP motifs (where X is any amino acid residue). The 

motifs adopt the conformation of a left handed polyproline helix type 2 (PPII, (Musacchio 

et al., 1994)). Since all SH3 domains recognise a consensus centred around a PXXP 

motif, it is the flanking residues that confer specificity to individual proteins, ensuring that 

all SH3 domains do not recognise the same subsets of proteins. Whilst the third binding 

pocket, dubbed the ‘specificity pocket’, facilitates the binding of the flanking residues, 

further interactions with the n-Src and RT loops (the main sources of variation in SH3 

domains) outside of the hydrophobic core, have also been described (Alexandropoulos 

et al., 1995, Ren et al., 1993, Weng et al., 1995, Rickles et al., 1995, Feng et al., 1995). 

C-Src is capable of binding two types of sequence; the class I R/KΦPXΦP and class II 

PΦXPΦR/K motifs (where Φ and X represent a hydrophobic or any amino acid residue 

respectively; (Zarrinpar et al., 2003, Mayer, 2001). These motif sequences reflect the 

ability of the SH3 hydrophobic core to bind the PPII substrates in two opposing 

conformations (Feng et al., 1994). Whilst two of the shallow substrate pockets on the 

binding interface form contacts with the two ΦP dipeptides, the third pocket, formed by 

the n-Src and RT loops, is typically occupied with the side chain of a positively charged 

residue (R/K, Figure 1.2, (Feng et al., 1995, Kay et al., 2000, Mayer, 2001)). 
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A diagram of the crystal structure of the C-Src SH3 domain (purple) in complex with a 
class I ligand (grey, R/KΦPXΦP). The ligand forms contacts with three pockets on the 
binding interface. The two ΦP dipeptides interact with two shallow pockets, whereas the 
third pocket, occupied with the side chain of the positively charged residue flanking the 
PXΦP motif. The position of the n-Src loop, which form part of the specificity pocket, is 
indicated. The n-Src loop is also the region of the SH3 domain in which N1 and N2 mini-
exon inserts are incorporated, which gives rise to the neuronal splice variants of Src 
(discussed further in Section 1.5). The crystal structure was solved by Feng et al., (1995) 
and the image was created by Dr Gareth Evans (University of York). PDB code 1QWF. 

  

Figure 1.2: The Structure of the C-Src SH3 Domain in Complex with a Class I 

Ligand. 
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1.2.4 The SH2 Domain 

The approximately 100 amino acid SH2 domain resides C-terminal to the SH3 domain 

and also recognises a specific short peptide motif. SH2 domains were first described by 

Sadowski and colleagues (1986) as a non-catalytic conserved domain observed in SFKs 

and fps . They speculated that the domain may facilitate protein-protein interactions. It is 

now known that there are 110 proteins in the human proteome, that contain at least one 

SH2 domain, which effectively link tyrosine kinases to a diverse array of signalling 

pathways, since they specifically bind phosphotyrosine containing motifs (Liu et al., 

2006). In SFKs, the SH2 domain provides a site for substrate recognition but also plays 

a key role in their autoinhibition, by facilitating an intramolecular interaction with the C-

terminal tail. This interaction will be discussed further in Section 1.2.7.   

Pioneering studies established that SH2 domains, confer specificity for different binding 

partners, through the recognition of different phosphotyrosine containing consensus 

motifs (Zhou et al., 1993, Songyang et al., 1994). For example, the Abl SH2 domain 

recognises the motif pYENP (where p signifies a phosphorylated residue), whereas the 

Crk SH2 domain binds to pYDHP motifs (Songyang et al., 1994). Similar studies have 

also identified the SFK SH2 binding motif, pYEEI, which was determined from a 

phospho-peptide library screen, after it bound to the SH2 domain with high affinity (Zhou 

et al., 1993). Further studies confirmed that the phosphorylation of the tyrosine residue 

was critical for this high affinity interaction (Bradshaw et al., 1999). In addition to the 

canonical pYEEI binding motif, more comprehensive studies have highlighted the 

significance of other residues flanking the motif between residue positions -2 to +4, which 

may also confer binding specificity to SFKs (Bradshaw et al., 1999, Filippakopoulos et 

al., 2009). 

Waksman and colleagues (1993) determined the crystal structure of the V-Src SH2 

domain in complex with an 11-residue pYEEI peptide (Figure 1.3). The study likens the 

ligand to a ‘two-pronged plug’ that engages with the SH2 domain, which is described as 

the corresponding ‘two holed socket’. The protein is composed of two β-sheets linked by 

a single β-strand, which are flanked at either side by an α-helix (Figure 1.3). The largest 

β-sheet is central to the domain and separates the SH2 into two functionally distinct 

areas.   

The phosphotyrosine forms a series of interactions with a pocket at one side of the 

domain, consisting of one face of the central β-sheet, a loop and an α-helix. Whereas 

the distal Ile residue, occupies the hydrophobic pocket on the other side of the central β-

sheet, which effectively engulfs the side chain of the residue. The remaining two central 

Glu residues are positioned on the surface of the SH2 domain and form contacts with  
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A diagram of the crystal structure of the V-Src SH2 domain in complex with a 
phosphotyrosine ligand (green). The protein is composed of two β-sheets (orange) linked 
by a single β-strand, which are flanked at either side by an α-helix (blue). The SH2 is 
partitioned into two functionally distinct compartments by the largest β-sheet at the centre 
of the domain. The phosphotyrosine interacts with a binding pocket at one side of the 
domain, whereas the distal Ile residue forms contacts with the hydrophobic pocket on 
the other side of the central β-sheet. The two central Glu residues lie on the surface of 
the SH2 domain. The crystal structure was solved by Waksman et al. (1993). The image 
was generated in RCSB Protein Workshop, PDB code 1SHA. 

  

Figure 1.3: The Structure of the V-Src SH2 Domain. 
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basic residues (Waksman et al., 1993). These findings were further supported by a 

similar study in which the SH2 domain of a different SFK, Lck, was crystalised (Eck et 

al., 1993). 

1.2.5 The SH1 (Kinase) Domain 

The catalytic kinase domain is connected to the SH2 domain via a flexible regulatory 

linker, and houses the active site of the enzyme where substrate phosphorylation takes 

place. The crystal structures of dozens of catalytic domains obtained from different 

kinases have revealed that the domains are structurally similar (Nolen et al., 2004). In 

fact, Manning and colleagues (2002) were able to identify 478 kinases in the human 

genome on the basis that they shared structurally conserved features of a common 

catalytic domain. However, in a similar fashion to SH2 and SH3 domains, the kinase 

domain recognises a specific motif that also governs substrate binding. Songyang and 

colleagues (1995) demonstrated that whilst catalytic domains shared many conserved 

mechanistic properties, substrate recognition was dependent on differing sequence 

motifs for the kinases tested. Whilst both V- and C-Src recognised the sequence 

EEEIYGEF, the SFK Lck optimally bound to peptides containing the sequence 

XEXIYGVLF (where X is any amino acid, (Songyang et al., 1995)). This indicated that 

the kinase domain further contributes to the substrate specificity already conferred by 

SH2 and SH3 domains.  

The kinase domain consists of two distinct lobes that are connected by a short linker 

region. The composition of the smaller N-terminal (N) lobe includes five antiparallel β-

strands, as well as an α-helix and a glycine-rich loop. Whereas the larger C-terminal (C) 

lobe is comprised of seven α-helices, a four stranded β-sheet situated on the surface of 

a deep cleft that exists between the two lobes, and also a series of loops including a 

catalytic and an important regulatory activation loop. The cleft that occurs between the 

lobes facilitates nucleotide binding and substrate phosphorylation. Here, the terminal 

phosphoryl group of ATP is added to a tyrosine residue. Whilst the N-lobe is 

predominantly concerned with Mg-ATP binding at the base of the cleft which exposes a 

transferrable phosphate group, the C-lobe is associated with substrate recognition and 

catalysis (Knighton et al., 1991, Boggon and Eck, 2004).    

The N- and C- lobes work in synchrony during catalysis, facilitating ‘open’ and ‘closed’ 

conformations (Yamaguchi and Hendrickson, 1996). In the open conformation, which is 

promoted and stabilised by the phosphorylation of Tyr-416 (chicken C-Src nomenclature) 

on the C-lobe’s activation loop, ATP and substrate binding occurs (Breitenlechner et al., 

2005, Huse and Kuriyan, 2002, Roskoski, 2004). When the two lobes effectively ‘close’ 

together, the phosphorylation event occurs and ADP is released upon the ‘re-opening’ 
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of the complex (Roskoski, 2004). The phosphorylation at Tyr-416 can either occur as a 

result of auto- or trans-phosphorylation, the latter of which occurs between SFK 

molecules, indicating that Tyr-416 phosphorylation is a self-regulatory event amongst 

SFKs (Sugimoto et al., 1985, Imamoto and Soriano, 1993). This mechanism of regulation 

has also been observed for multiple other unrelated kinases, whereby phosphorylation 

of the activation loop propagates increased kinase activity (Huse and Kuriyan, 2002). 

1.2.6 The C-terminal Domain (CTD) 

The C-termini of SFKs contain between 15-17 residues, including the highly conserved 

Tyr-527 residue. The phosphorylation of Tyr-527 by the tyrosine kinases Csk or Chk, 

promotes an autoregulatory structural conformation that inhibits kinase activity 

(discussed further in Section 1.2.7). Importantly, phosphatases that facilitate the 

dephosphorylation of this residue, such as PTP1B, PTPα and SHP1/2, facilitate the 

activation of the kinase (Bjorge et al., 2000, Harder et al., 1998, Somani et al., 1997, 

Zhang et al., 2004).  

1.2.7 The Autoregulation of SFKs 

Whilst SFK activity can be regulated by myristoylation, palmitoylation and 

phosphorylation, which are outlined above, the autoinhibition of SFKs is probably the 

most studied and best characterised regulatory mechanism and is described below.  

Phosphorylation of Tyr-527 in the C-terminal region of SFKs generates an SH2 domain 

binding motif that facilitates an intramolecular interaction between the C-terminal tail and 

the SH2 domain of the kinase (Xu et al., 1997, Schindler et al., 1999, Sicheri et al., 1997, 

Williams et al., 1997). The importance of this interaction has been demonstrated on 

multiple occasions, including in a study on C-Src, whereby the substitution of Tyr-527 

with a Phe residue, resulted in the constitutive activation of C-Src and cellular 

transformation (Reynolds et al., 1987). Such studies indicated that the SH2:Y527 

interaction forms part of an autoinhibitory mechanism. Tyrosine phosphorylation at Tyr-

527 is coordinated by C-terminal Src kinase (Csk), whose major role in maintaining SFKs 

in the inactive conformation was highlighted by gene knock-out studies in mice. A large 

increase in the activity of C-Src, Fyn and Lyn was observed in Csk-/- mice, which was 

thought to contribute to the resultant embryonic lethal phenotype (Imamoto and Soriano, 

1993, Nada et al., 2003).  

In addition to the SH2:Y527 interaction, crystal structures of C-Src, Hck and Lck revealed 

that a second interaction occurs simultaneously between the SH3 domain and a PPII 

helix present in the linker region connecting the SH2 and kinase domains (Xu et al., 

1997, Schindler et al., 1999, Sicheri et al., 1997). The SH3:linker interaction is thought 

to stabilise the SH2:Y527 interaction. Mutations of critical proline residues in the PPII 
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helix of the linker responsible for SH3 binding in Hck, resulted in elevated kinase activity 

and increased transforming capabilities in mouse fibroblasts (Briggs and Smithgall, 

1999). This indicated the importance of this interaction in conjunction with SH2:Y527 

binding.  

The result of both the SH2:Y527 and SH3:linker interactions is the subsequent effects 

on the catalytic kinase domain. In this ‘closed’ inhibitory conformation (Figure 1.4), both 

the SH2 and SH3 domains apply pressure on the kinase domain, at the opposite side to 

the active site, which alters the orientation of both the N- and C-lobes. In the active site 

cleft, a catalytically important α-helix is displaced and the activation loop is forced into a 

partially helical conformation that is incompatible with substrate binding, and prevents 

autophosphorylation at Tyr-416 (Xu et al., 1997, Schindler et al., 1999, Sicheri et al., 

1997).  

The interaction formed between the C-terminal tail and the SH2, as well as those formed 

between the SH3 and the linker are relatively weak. This is because the SH2 and SH3 

binding motifs present in the linker and C-terminal tail respectively, do not conform 

exactly to the specific motifs described above (i.e. SH3: PXXP; SH2: YEEI). This means 

that higher affinity substrates are capable of displacing these interactions (Figure 1.4), 

The binding of an SH2 or SH3 containing substrate partially activates the kinase and 

promotes Tyr-416 phosphoryaltion, although whether the displacement of one of the 

intermolecular interactions results in the disruption of the second to promote the open 

active kinase conformation is still uncertain (Figure 1.4).  

The significance of this autoregulatory mechanism, which has been alluded to in the 

above paragraphs, lies in the ability of constitutively activated C-Src to transform ‘normal’ 

cells into ‘cancerous’ cells, in which cell proliferation and survival mechanisms are 

upregulated. For example, a strain of the closely related viral oncogene V-Src promotes 

cell transformation due to its high constitutive activity, which is attributed to the deletion 

of a portion of the C-terminus or the mutation of Tyr-527. The absence of the Tyr-527 

residue, is therefore thought to prevent the autoinhibition of the kinase, which promotes 

cellular phenotypes that would usually be tightly regulated. Examples demonstrating the 

critical nature of this mechanism in the context of typical SFKs are outlined above 

whereby the mutation of Tyr-527 or the critical proline in PPII helix linker resulted in cell 

transformation (Reynolds et al., 1987, Briggs and Smithgall, 1999).  
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Figure 1.4: A Schematic Illustrating SFK Activation. 

In the closed inactive complex, SH3: linker and 
SH2: Y257 interactions prevent catalytic activity. 
Since these interactions are low affinity, they can 
be displaced by higher affinity SH3 or SH2 
containing substrates, which facilitates the 
autophosphorylation of Tyr-416 at the active site 
of the kinase domain, resulting in partial activation. 
These SH2 and SH3 substrate bound 
conformations are thought to promote the open 
kinase conformation, resulting in full kinase 
activation.  
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1.3 Cellular Functions of C-Src 

The founding member of SFKs, C-Src, is a proto-oncogene that was first discovered after 

its viral counterpart V-Src, a retroviral oncogene accountable for sarcomas caused by 

the Rous sarcoma virus, was found to have been captured from its host genome 

(Stehelin et al., 1976, Shalloway et al., 1981, Takeya and Hanafusa, 1983). Since, its 

discovery, a large number of C-Src substrates have been identified and a diverse range 

of functions have since emerged for the kinase, including roles in cell proliferation, 

differentiation, motility and survival. In addition to this, C-Src has been implicated in the 

mechanisms governing learning and memory (Engen et al., 2008). Therefore, it is 

unsurprising that C-Src activity lies at the heart of a diverse range of signalling networks, 

due to its ability to phosphorylate and recognise a plethora of substrates.  

Upstream of C-Src, kinase activity has been shown to be upregulated in response to a 

range of cell surface receptor signals. For example, multiple mitogen activated growth 

factor receptors (e.g. epidermal growth factor receptors (EGFR) and PDGFRs), Integrins, 

G-protein coupled receptors (GPCRs e.g. β-adrenergic receptor) and receptor tyrosine 

phosphatases (e.g. PTPα) have all been linked to C-Src activation and subsequent 

signalling events (Gould and Hunter, 1988, Luttrell et al., 1999, Schaller et al., 1999, 

Zheng et al., 2000). These studies, amongst others, have shown or suggested that C-

Src is involved in the intracellular relay of cell-cell and cell-matrix signals; a phenomenon 

that is now widely acknowledged and has been investigated a great deal.  

Perhaps one of the most well-known roles of C-Src is its participation in focal adhesion 

signalling and cell spreading. In both C-Src-/- fibroblasts and osteoclasts, as well as 

epithelial cells treated with an SFK inhibitor, both integrin-dependent cell-matrix 

adhesion and cell spreading are reduced (Kaplan et al., 1995, Felsenfeld et al., 1999, 

Lakkakorpi et al., 2001, Jones et al., 2002). Active C-Src localises at focal adhesions at 

sites of integrin clustering on the cell membrane, which is triggered by ECM stimuli 

(Kaplan et al., 1994, Playford and Schaller, 2004). However, this localisation is abolished 

in the absence of the SH4 or SH3 domains of the kinase, which highlights the necessity 

of membrane association and the likely role of the SH3 domain in substrate recognition 

(Kaplan et al., 1994). At focal adhesions, C-Src is found in complex with multiple other 

proteins including Focal adhesion kinase (FAK), p130CAS and paxillin, which have also 

been shown to be phosphorylated by the kinase (Glenney and Zokas, 1989, Kanner et 

al., 1990).  

During cell spreading, integrin engagement results in the autophosphorylation of FAK at 

Tyr-397, which recruits C-Src by providing an SH2 binding site (Schaller et al., 1994). C-

Src phosphorylates FAK at multiple sites, enabling the recruitment of other focal 
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adhesion complex components (Calalb et al., 1995, Calalb et al., 1996). This triggers a 

series of signalling events that regulate Rho GTPase-mediated cytoskeletal dynamics. 

The recruitment and phosphorylation of the scaffolding protein p130CAS, paves the way 

for the further recruitment of Crk, DOCK180 and ELMO1. A complex between the latter 

two proteins activates Rac1 via guanine nucleotide exchange factor (GEF) activity 

(Chodniewicz and Klemke, 2004). In a parallel pathway, Rac1 activation is also promoted 

via the FAK/Src complex component Paxillin, whose phosphorylation recruits Paxillin 

kinase linker (PKL) and subsequently β-PIX, which is also a Rac1 GEF (ten Klooster et 

al., 2006). Simultaneously, the transient inactivation of RhoA is promoted via the FAK/Src 

complex, through the recruitment and phosphorylation of p190rhoGAP. The latter, is a 

GTPase activating protein (GAP) that renders RhoA inactive by stimulating GTP 

hydrolysis (Arthur et al., 2000, Ren et al., 2000). Whilst Rac1 activation promotes cell 

protrusion, RhoA inactivation suppresses contractility of the actin cytoskeleton. 

Therefore, through co-ordinating the activities of Rac1 and RhoA, the FAK/Src complex 

facilitates cell spreading (Huveneers and Danen, 2009).  

In conjunction with integrin-dependent FAK/Src signalling, considerable crosstalk with 

growth factor receptors and cell adhesion molecules also plays a role in the regulation 

of cell spreading. For example, the integrin-dependent Src-mediated phosphorylation of 

EGFR promotes cell spreading upon the stimulation PI3K signalling, which results in 

Vav1-mediated Rac1 activation (Moro et al., 2002, Marcoux and Vuori, 2003). Since C-

Src was first discovered, a clearer picture has emerged whereby a range interconnected 

networks involving different types of cell surface receptors, co-ordinate downstream Rho 

GTPase-mediated cytoskeletal dynamics, via a combination of intermediate signals in 

which C-Src is a key player. Together, such networks are capable of regulating cell-

matrix adhesion and cell-cell adhesion to coordinate processes that include cell 

migration, proliferation and survival (Huveneers and Danen, 2009).  

1.3.1 C-Src Functions in the Brain 

1.3.1.1 The Role of C-Src in the Developing Brain 

In the 1980’s, a body of work investigating the relative expression of C-Src in various 

organisms, indicated that in both frogs and fish, C-Src expression was at its highest in 

both the developing and mature brain (Schartl and Barnekow, 1984). Further studies 

demonstrated that in some areas of the rat brain including the cerebellum, hippocampus 

and striatum, maximal C-Src expression was between 6 to 20 times higher in comparison 

to the corresponding adult tissues. It was observed that these increases in C-Src activity 

largely correlated with peak times of neurogenesis and neuronal growth, suggesting a 

potential role for C-Src in neuronal development (Cartwright et al., 1988). Manness and 
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colleagues proposed that C-Src expression occurs in two phases during neuronal 

development (Maness et al., 1986, Fults et al., 1985). Firstly, C-Src expression becomes 

elevated in the neuroectoderm of gastrulating embryos, which coincides with the period 

when cells commit to a specific cell lineage (Maness et al., 1986). The second phase, 

described in cerebellar neuronal progenitor cells, occurs during neuronal differentiation 

(Fults et al., 1985). 

Since these observations were made, C-Src has been implicated in multiple roles during 

neuronal development. The enrichment of activated C-Src in neuronal growth cone 

membranes indicated a potential role for the kinase in axonal outgrowth and guidance, 

which was confirmed in later studies (Maness et al., 1989). Growth cones are the 

dynamic structures present at the tip of growing axons, which facilitate the directional 

outgrowth of axons in response to external stimuli including a variety of guidance cues, 

as well as cell adhesion molecules present on neighbouring cells. SFKs have been 

implicated downstream of multiple cell surface receptors including EphA, Trk, DCC and 

PlexinA, which are stimulated by the following guidance cues: ephrins, neurotrophins, 

netrin and semaphorins respectively to promote neurite outgrowth (Knoll and Drescher, 

2004, Liu et al., 2004, Falk et al., 2005). However, the specific mechanisms through 

which the kinases act are largely uncharacterised. Specifically, the recruitment of both 

C-Src and FAK to the activated netrin receptor DCC has been shown to be required for 

netrin mediated neurite outgrowth (Liu et al., 2004). Whilst the direct mechanism involved 

in unknown, netrin mediates neurite outgrowth via the modulation of PI3K, ERK and Rho 

GTPases; therefore, it is likely that Src/FAK signalling acts upstream of these signalling 

components (Liu et al., 2004).  

C-Src mediated neurite outgrowth can also be regulated by cell adhesion receptors, in 

particular L1-CAM. Ignelzi and colleagues (1994) demonstrated that neurite outgrowth 

was reduced in Src-/- cerebellar granule neurons (CGNs) that were cultured on, L1-CAM. 

Neurite outgrowth on the extracellular matrix component laminin, which stimulates 

integrin signalling, was unaffected (Ignelzi Jr et al., 1994). This pointed towards a specific 

role for C-Src in L1-CAM-mediated neurite outgrowth, since laminin failed to evoke a 

response. However, it is possible that the functional redundancy between SFKs could 

mask a potential role for C-Src.   

The neuronal specific cell-cell adhesion molecule L1-CAM, consists of an N-terminal 

extracellular domain (6 x immunoglobulin-like domains connected to 5 x fibronectin type 

III repeats), a transmembrane domain and a cytoplasmic domain c-terminal domain 

(CTD), which contains multiple phosphorylation sites that are thought to regulate L1-

CAM-cytoskeletal interactions (Crossin and Krushel, 2000). To date, three sites on the 
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cytoplasmic CTD of L1-CAM have been implicated in L1-CAM cytoskeletal interactions 

and C-Src is thought to be involved in the regulation of these interactions, either directly 

or indirectly (Nagaraj and Hortsch, 2006).  

L1-CAM is thought to interact with the actin-spectrin cytoskeleton by binding ankyrin B 

via the FIGQY motif in the cytoplasmic CTD. By generating L1-CAM-/- cerebellar neurons 

that expressed a L1-CAM-CTD truncation mutant (110 of 114 CTD amino acids deleted) 

whilst growing on a wild type L1-CAM substrate, Cheng et al., (2005) showed that L1-

CAM-CTD was unnecessary for neurite outgrowth. This agrees with findings by (Gil et 

al., 2003), who demonstrated that L1-CAM/ankyrin binding renders L1-CAM stationary 

in the membrane, preventing L1-CAM mediated neurite outgrowth. Thus when the 

ankyrin binding motif is absent, L1-CAM can stimulate neurite outgrowth. However, 

contradictory evidence published by (Nishimura et al., 2003) suggests L1-CAM/ankyrin 

interactions stimulate neurite initiation. Nevertheless, tyrosine phosphorylation of the 

FIGQY motif prevents L1-CAM binding to ankyrin, although it is not thought that this motif 

is directly phosphorylated by SFKs under basal conditions (Whittard et al., 2006a). 

Despite this, epidermal growth factor (EGF), neural growth factor (NGF) and fibroblast 

growth factor (FGF) receptors and the MAP kinase pathway have been implicated in 

FIGQY phosphorylation pathways, and often involve Src kinase. 

In cerebellar neurons, neurite branching but not neurite outgrowth is mediated by L1-

CAM interaction with cytoskeletal component ezrin-moesin-radixin (ERM). Both a 

juxtamembrane ERM binding motif and the RSLE endocytosis motif were demonstrated 

to be required for the regulation of neurite branching (Cheng et al., 2005). The tyrosine 

(Tyr-1176) that precedes the RSLE region is phosphorylated by C-Src (demonstrated in 

vivo), and prevents clathrin-mediated endocytosis of L1-CAM by prohibiting AP-2 binding 

to the L1-CTD (Schaefer et al., 2002). Phosphorylation of Tyr-1176 by Src may also be 

a means of perturbing L1-CAM/ERM interactions. 

A further occasion, whereby C-Src has been implicated in the regulation of neurite 

outgrowth is in relation to p190rhoGAP, which promotes neurite extension by 

downregulating the activity of RhoA. The study demonstrated that both C-Src and Fyn 

are the primary kinases in both the developing and mature brain that phosphorylate 

p190rhoGAP and C-Src-mediated phosphorylation of p190rhoGAP is known to promote 

the inactivation of RhoA (Brouns et al., 2001). However, this study did not directly link 

Src to the effects of p190rhoGAP on axon outgrowth and guidance. 

1.3.1.2 The Role of C-Src in the Adult Brain 

In the adult nervous system, C-Src regulates synaptic transmission and plasticity. 

Synaptic transmission facilitates the relay of information between neurons. This form of 
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communication is dependent upon the release of chemical messengers 

(neurotransmitters) from the pre-synapse, which bind to post-synaptic ion-channel 

receptors. Neurotransmitters can have an excitatory (e.g. glutamate) or inhibitory effect 

(γ-aminobutyric acid; GABA), resulting in the depolarisation or hyperpolarisation of the 

post-synaptic membrane respectively. Synaptic plasticity is defined by the ability of 

synapses to strengthen or weaken. This can manifest for example, as an increase or 

decrease in the amount of neurotransmitter released at the pre-synapse (short-term 

plasticity) or the number of receptors present at the post-synapse (a factor in long-term 

plasticity).    

Short-term synaptic plasticity, which may last between tens of milliseconds to minutes, 

can manifest as synaptic depression, facilitation or augmentation/posttetanic potentiation 

(PTP). During short-term depression and facilitation, the deliverance of two stimuli in 

close succession gives rise to a response to the second, which is either smaller 

(depression) or greater (facilitation) than the first. Whereas, synaptic augmentation or 

PTP occurs in response to sustained presynaptic activation and can occur for up to 

several minutes (Regehr, 2012). Such mechanisms of short-term synaptic plasticity 

regulate the mobilisation of neurotransmitter from the pre-synapse into the synaptic cleft, 

resulting in a reduction (depression; (Betz, 1970)) or increase (facilitation and 

augmentation; (Katz and Miledi, 1968, Magleby and Zengel, 1975)) in their release. For 

example, facilitation takes place, when pre-synaptic calcium levels become elevated due 

to the arrival of two closely spaced action potentials at the pre-synapse. Since pre-

synaptic calcium levels regulate membrane-vesicle fusion, more neurotransmitter is 

released after the second action potential, which strengthens the synapse (Katz and 

Miledi, 1968). On the other hand, depression occurs when the pool of readily releasable 

vesicles has become depleted. Therefore, synaptic strength declines until 

neurotransmitter levels are restored by the reserve pool of vesicles (Betz, 1970). 

The most commonly studied types of long-term synaptic plasticity, are long-term 

potentiation (LTP) and long-term depression (LTD). These forms of plasticity are largely 

regulated at the postsynapse via the modulation of glutamate receptors (Traynelis et al., 

2010). The activation of ionotropic NMDA receptors (NMDARs) in the postsynapse is 

often required for triggering both LTP and LTD. However, in order to relieve the Mg2+ 

channel blockade of glutamate bound NMDARs, sustained membrane depolarisation 

must be achieved through either high frequency stimulation (LTP) or prolonged low 

frequency stimulation (LTD) at the post-synapse (Malenka, 1994). Once activated, the 

second messenger Ca2+ enters through the channel, activating either protein kinases 

(e.g. CAMKII) in LTP or protein phosphatases (e.g. calcineurin) in LTD (Soderling and 

Derkach, 2000, Mulkey et al., 1993). The resulting, complex downstream signalling 
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cascades regulate events that either serve to strengthen (LTP) or weaken (LTD) at the 

synapse. For example, one of the main pathways through which synaptic strength is 

determined, is through the regulation of AMPA receptor (AMPAR) trafficking to the 

postsynaptic membrane (Malinow and Malenka, 2002). AMPARs are a further class of 

ionotropic receptor that are activated upon glutamate binding, resulting in Na+ influx and 

membrane depolarisation. During LTP or LTD, AMPARs are inserted into the membrane 

(Shi et al., 1999) or removed by endocytosis (Carroll et al., 1999), respectively.  

In addition to the involvement of ionotropic receptors in the regulation of long-term 

synaptic plasticity, a second class of receptor, termed the metabotropic receptors, also 

contribute to its maintenance (Mukherjee and Manahan-Vaughan, 2013). Metabotropic 

receptors differ from ionotropic receptors in that they do not contain an ion channel pore 

(for example many are G-protein-coupled receptors (GPCRs)), however, they are still 

activated upon neurotransmitter (e.g. glutamate) binding. This class of receptor is 

indirectly linked with ion channel function at the post-synapse through the regulation of 

downstream intracellular signalling pathways. Therefore, the mode of action of 

metabotropic receptors on synaptic activity is slower in comparison to ionotropic 

receptors (Mukherjee and Manahan-Vaughan, 2013). During long-term synaptic 

plasticity, multiple types of glutamate metabotropic receptors (e.g. mGluR1 and 

mGluR5), have been implicated in the regulation of ion channel activity, including 

NMDARs (e.g. Trepanier et al., 2013), AMPARs (e.g. Kelly et al., 2009) and SK channels 

(e.g. Tigaret et al., 2016).  

At the post-synapse, C-Src regulates ion channel signalling. In particularly, ionotropic 

glutamate NMDARs and AMPARs, voltage-gated potassium and calcium channels, 

GABAA receptors and nicotinic acetylcholine receptors can all be regulated by C-Src 

(Wang and Salter, 1994, Fadool et al., 1997, Cataldi et al., 1996, Moss et al., 1995, Wang 

et al., 2004). The regulation of NMDARs by Src is probably the most widely studied, 

given the high profile role of NMDARs in learning, memory and synaptic development, 

which is due to their modulation of excitatory synaptic transmission and plasticity (Sanz-

Clemente et al., 2013).                                                                                                                                                                                                                                                                                                                                     

NMDARs are heterotetrameric complexes, which consist of two NR1 subunits and two 

NR2 (NR2A-D) or NR3 (NR3A-B) subunits. Differential phosphorylation of the NR2 

subunits mediated by SFKs plays a key role in their modulation (Salter and Kalia, 2004).  

Over the past couple of decades, the role of C-Src in the regulation of NMDARs has 

been characterised in terms its biochemical, molecular and physiological roles. Src 

regulation of NMDARs stimulates long term potentiation in CA1 hippocampal neurons 

(Yang et al., 2012) and could potentially be a therapeutic target for the treatment of 



 
 

36 
 

inflammatory and neuropathic pain, schizophrenia and the damaging effects of ischemia 

and reperfusion (Liu et al., 2008, Trepanier et al., 2013).  

Protein tyrosine kinases enhance NMDAR currents in hippocampal and spinal dorsal 

horn neurons and it has been demonstrated that NR2A and NR2B subunits are tyrosine 

phosphorylated via Western blot analysis of immunoprecipitated NR2A and NR2B from 

isolated rat cortical synaptic membranes (Lau and Huganir, 1995, Wang and Salter, 

1994). Furthermore, electrophysiological experiments on human embryonic kidney cells 

(HEK-293) expressing NMDARs containing NR1 and NR2A-D subunits confirmed the 

activating effects of Src on NR2A containing channels, and demonstrated the necessity 

of the CTD for Src-mediated effects (Kohr and Seeburg, 1996). Biochemical 

characterisation of the NR2A subunit phosphorylation by V-Src, when co-expressed 

alongside the NR1 subunit in HEK-293 cells, defined the regions where NR2A was 

phosphorylated, using CTD truncation mutants of NR2A. This enabled the identification 

of specific tyrosine mutants that reduced NR2A phosphorylation. Three individual 

tyrosines, Tyr-1292, Tyr-1325, and Tyr-1387, were identified as V-Src targets (Yang and 

Leonard, 2001). Thus extensive evidence exists implicating Src in NMDAR regulation.  

In addition, there is an increasing amount of research placing Src regulation of NMDARs 

in the context of signalling pathways. For example, Lu et al. (1999) demonstrated that 

the enhancement of NMDAR currents mediated indirectly by GPCR ligand binding (i.e. 

muscarine and lysophosphatidic acid) and the subsequent activation of PKC, was 

prevented upon the inhibition of Src.  These results indicated that Src acts downstream 

of the muscarinic and lysophosphatidic acid GPCRs and PKC, to positively regulate 

NMDAR activity (Lu et al., 1999). It is speculated that PKC may activate Src indirectly, 

by modifying the tyrosine kinases CAKβ/PYK2, which in turn phosphorylate and activate 

Src, although this is yet to be confirmed.   

More recently, differential roles of Src and Fyn kinases in LTP and LTD, acting through 

different signalling pathways has been shown. In CA1 hippocampal neurons, Src 

phosphorylation of NR2A in NR1/NR2A NMDARs enhances channel activity and 

stimulates LTP. However, Fyn kinase phosphorylates NR2B in NR1A/NR2B NMDARs, 

increasing channel activity and enhancing LTD (Yang et al., 2012). This differential 

stimulation of either LTP or LTD by either NR2A or NR2B containing channels 

respectively, is thought to be a consequence of the differences between the resultant 

Ca2+ currents that flow through the channels (Erreger et al., 2005). NR1/NR2A channels 

activate and deactivate more quickly than NR1/NR2B channels, resulting in a 

considerable, yet transient influx of Ca2+ ions. Whereas, NR1/NR2A ion channels open 

and close more slowly, enabling a much greater volume of Ca2+ entry (Erreger et al., 



 
 

37 
 

2005). In the same study, roles for different GPCRs, namely the pituitary adenylate 

cyclase activating peptide 1 receptor and dopamine 1 receptor, in the selective activation 

of Src and Fyn kinases respectively, are also defined (Yang et al., 2012, Macdonald et 

al., 2005). 

Not only do these findings clearly implicate GPCRs and PKC as key players in Src 

regulation of NMDARs, they also indicate an important role for Src in the regulation of 

synaptic plasticity in the hippocampus, supporting its importance for learning and 

memory.   

A further mode of NMDAR regulation by Src has been reported, whereby activation of 

group 1 (mGluR1 and mGluR5) and 2 (mGluR2/3) metabotropic glutamate receptors 

enhance NMDAR currents via Src activation (Heidinger et al., 2002, Benquet et al., 2002, 

Yang et al., 2012, Trepanier et al., 2013). Ca2+ calmodulin dependent activation of Src, 

Fyn and Pyk2 kinases triggered by mGluR1 activity led to increased NR2A and NR2B 

phosphorylation and enhanced NMDAR currents in cortical neurons (Heidinger et al., 

2002). Benquet et al. reported similar findings in relation to mGluR1 but also realised 

that activation of mGluR5 stimulates a GPCR-dependent mechanism, which acts via the 

PKC signalling pathway to increase Src activity and enhance NMDAR currents in CA1 

neurons (Benquet et al., 2002). Furthermore and also in CA1 neurons, inhibition of the 

protein kinase A (PKA) post-mGluR2 activation stimulates Src and thus increases 

subtype specific NR1/NR2A receptor currents (Trepanier et al., 2013).  

In addition to these regulatory mechanisms, activation of C-Src via receptor tyrosine 

kinase, cytokine receptor and integrin pathways can also influence NMDAR function. It 

is thought that these pathways converge at the point of C-Src activation to effect changes 

in NMDAR regulation that ultimately controls synaptic transmission and plasticity (Salter 

and Kalia, 2004).  

A role for C-Src has also been described at the pre-synapse. Synaptosomes (isolated 

nerve terminals) derived from the hippocampi of rats that were subject to spacial maze 

learning contained increased levels and activity of C-Src. In addition to this, interactions 

with proteins including synapsin1 and synaptophysin were promoted (Zhao et al., 2000). 

These proteins along with dynamin1, are known to interact with C-Src on presynaptic 

vesicles, which is thought to regulate mechanisms involved in synaptic vesicle 

endocytosis (synaptophysin/dynamin1) and recycling (synapsin1) (Barnekow et al., 

1990, Foster-Barber and Bishop, 1998, Evans and Cousin, 2005, Messa et al., 2010). 

Therefore, in conjunction with regulating synaptic transmission and plasticity at the post-

synapse, C-Src also appears to have an important role in maintaining synaptic 

transmission at the pre-synapse.   
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1.4 SFKs in Health and Disease 

Given that C-Src is expressed ubiquitously and has been implicated in multiple cellular 

fundamental processes, it was widely anticipated that Src-/- mice would not be viable or 

at the very least display serious pathological defects. However, studies revealed that the 

C-Src knockout mouse was viable and the only abnormality that was detected was in 

relation to bone re-modelling, since the mice developed osteoporosis (Soriano et al., 

1991). Interestingly, no neurological impairments were detected, which was surprising 

since C-Src is highly expressed in the brain. It was thought that the reason that so few 

abnormalities were observed in C-Src-/- mice, was a result of the functional redundancy 

occurring between the kinases. This theory was supported by the fact that double 

knockout mice of both C-Src and Fyn or C-Src and Yes are not viable, which suggested 

that the kinases regulate overlapping functions that are essential for life (Stein et al., 

1994).  

In addition to osteoporosis, the dysregulation of C-Src has since been linked to multiple 

disease pathologies, associated with its regulation of the NMDA receptor (discussed in 

Section 1.3.1.2) and has also been linked to glutamate induced neurodegeneration (Liu 

et al., 2008, Trepanier et al., 2013, Khanna et al., 2007). C-Src is also inextricably linked 

to many types of cancer, including breast (Picon-Ruiz et al., 2016), colon (Xiao et al., 

2016), skin (Choi et al., 2015), lung (Karachaliou et al., 2016) and ovarian (Sun et al., 

2016). This is unsurprising, given that C-Src’s major cellular roles include promoting cell 

proliferation, motility, invasion and survival. When constitutively activated, C-Src, like its 

viral counterpart V-Src, possesses the ability to transform cells, which is one of the 

reasons why C-Src activity is so tightly regulated (Cartwright et al., 1987). In cancer, the 

aberrant upregulation of C-Src activity is not typically related to genetic mutations in the 

kinase, although this has been observed in some cases. Instead, it is thought that kinase 

activity is promoted by increased protein levels or in response to cellular stimuli, such as 

its recruitment to EGFRs (Ishizawar and Parsons, 2004). Currently, there are multiple 

therapeutic C-Src inhibitors in development, which are reviewed by (Kim et al., 2009).  

1.5 Neuronal Src Kinases 

In 1985, Brugge and colleagues first observed that neurons expressed a variant of Src 

that was biochemically distinct from C-Src. They demonstrated that Src expressed in 

neurons had a higher specific activity in comparison to the Src expressed in astrocyte 

cultures, and saw that the neuronal variant displayed a shift in electrophoretic mobility 

with respect to C-Src (Brugge et al., 1985). It was later revealed that two neuronal splice 

variants of C-Src exist, named N1- and N2-Src, which contain a 6 and 17 amino acid 

residue insert in their SH3 domains respectively (Figure 1.5; (Martinez et al., 1987, Pyper 

and Bolen, 1990, Pyper and Bolen, 1989).  
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N1-Src and N2-Src are splice variants derived from C-Src, which differ only by short 
inserts in their SH3 domains. Whilst N1-Src contains a 6 amino acid insert, N2-Src 
contains a 17 amino acid insert, which includes the first 5 amino acids of the N1-Src 
insert. The sequences of the amino acid inserts are indicated above. 
  

Figure 1.5: Schematic Diagram Illustrating the Mini-exon Inserts in the SH3 Domains of 

Neuronal Src Kinases. 
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Both kinases demonstrated increased catalytic activity in comparison to C-Src, although 

N2-Src appeared to have higher constitutive activity with respect N1-Src (Brugge et al., 

1985, Levy and Brugge, 1989, Keenan et al., 2015). This is thought to be a consequence 

of the placement of the N-Src inserts in the n-Src loop of their SH3 domains. The 

importance of the n-Src loop in the autoregulation of V-Src kinase activity, was 

demonstrated, when mutation of the n-Src loop resulted in increased kinase activity 

(Brábek et al., 2002). Since both N1- and N2-Src demonstrated a reduced affinity for an 

SH3:kinase linker peptide in vitro, it is proposed that the observed increased kinase 

activity may be caused by disrupted intramolecular interactions between the SH3 domain 

and kinase linker, which are crucial for the autoinhibitory regulation of the kinases 

(Keenan et al., 2015). This idea is supported by a further study, in which N1-Src activity 

remained high, despite the kinase being predominately phosphorylated at Tyr-527; the 

residue on the C-terminal tail that promotes autoinhibition (Levy and Brugge, 1989).   

The mRNA of N1-Src incorporates an 18 nucleotide mini-exon insert that arises due to 

a splicing event that occurs between exons 3 and 4 of the C-Src gene (Martinez et al., 

1987). The N2-Src mRNA sequence contains a 51 nucleotide insert, which is the product 

of two splicing events. In N2-Src mRNA, both the N1 and N2 mini-exon inserts are 

included and the N1 mini-exon acts as a splice acceptor for the N2 mini-exon. This results 

in a change in the final amino acid of the N1-Src insert from an Arg residue to a Ser  

residue (Pyper and Bolen, 1990). These splicing events are regulated by positive and 

negative regulatory elements in a tissue specific manner. In non-neuronal tissues, the 

splicing events described above are skipped (Levy et al., 1987, Martinez et al., 1987). 

This is thought to be regulated by the polypyrimidine tract binding protein (PTB), which 

binds to negative regulatory elements that lie upstream of the N1 exon and represses 

the N1 splicing event (Chan and Black, 1997). Since the N1 exon splicing event is 

required for the inclusion of the N2 exon, this would prevent the expression of both N1- 

and N2-Src in non-neuronal tissues. In neuronal cells, N1 exon splicing is dependent 

upon the presence of a conserved enhancer sequence downstream of the N1 exon and 

repression of N1 splicing by PTB is lifted however, the mechanisms involved require 

further investigation (Black, 1991, Modafferi and Black, 1997, Chou et al., 2000).  

The discovery that N1-Src is evolutionarily conserved in mammals, birds, reptiles and 

fish lead to the belief that N1-Src expression is required for neural processes 

characteristic of ‘higher’ organisms (Raulf et al., 1989, Yang et al., 1989). Since C-Src 

expression has been detected in the most basic of organisms such as the sponge, the 

evolution of the N1- and N2-Src genes suggests their involvement in more complex brain 

specific functions (Ottilie et al., 1992). The presence of a similar neuronal splice variant 
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of C-Src was also identified in frogs. Xenopus laevis produces a neuronal C-Src variant 

that contains a five amino acid insert instead of six. At both ends of the frog insert lie Arg 

residues that are conserved amongst other animals, whilst the remaining residues are 

divergent (Collett and Steele, 1992). This suggests that these conserved charged 

residues may be key to role of N1-Src. However, Collet and Steele (1992) did not find an 

N2-Src homologue present in frogs, indicating that their divergence from other 

vertebrates must have occurred before the evolution of the N2 mini-exon.  

1.5.1 The Spatiotemporal Expression of N1-Src 

Wiestler and Walter (1988) first described the pattern of expression of N1-Src in the 

developing mouse brain. They observed that N1-Src expression first became visible at 

embryonic day 10 (E10) and subsequently monitored the expression level of the kinase 

in the mouse forebrain, midbrain and cerebellum between E9 to postnatal day 28 (P28). 

In both the forebrain and midbrain, the level of N1-Src expression was considerably 

higher than C-Src. N1-Src expression peaked at E18 and declined thereafter, but 

remained at a higher level than C-Src in the forebrain, whereas in the cerebellum, C- and 

N1-Src expression was comparable between E14 to P28. Given that in the period 

between E14-18 an increasing number of cells become post-mitotic and differentiated, it 

is thought that N1-Src could play a role in these processes (Wiestler and Walter, 1988). 

In support of these data, Ross and colleagues demonstrated that N1-Src mRNA was 

prevalent in the rat central nervous system (CNS) between E15-19, signifying a 

prominent role for N1-Src in the developing brain (Ross et al., 1988).  

Studies indicate that N1-Src also plays an important role in the adult brain. The immuno-

staining of adult rat brain slices revealed that N1-Src is widely expressed in the mature 

brain, but is particularly enriched in the midbrain, hippocampus, cerebellum, pons, 

medulla and the cerebral cortex (Sugrue et al., 1990). A second study, which investigated 

the localisation of N1-Src mRNA by in situ hybridisation, supported these findings (Ross 

et al., 1988). N1-Src mRNA was most noticeably present in the forebrain, in the 

pyramidal layers and dentate gyrus of the hippocampus, the granule layer of the 

cerebellum and the olfactory bulb region of the brain. Interestingly, Le Beau and 

colleagues (1987) also measured heightened N1-Src activity in the majority of these 

structures in comparison to other brain regions. Since enhanced Src kinase activity can 

be linked with neuronal plasticity, it is thought that N1-Src could be a key component in 

driving this process. Notably, whilst both C- and N1-Src appeared to display high levels 

of mRNA in the cerebellum, N1-Src mRNA levels were markedly higher in the 

hippocampus, cerebral cortex as well as other regions of the forebrain (Ross et al., 

1988). Taking these data into account, and the fact that differential levels of C- and N1-

Src expression levels have been observed in the developing brain, this highlights the 
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spatial and temporal differences that exist in C- and N1-Src expression in both the 

mature and adult brain. Therefore, these data support the theory that both kinases will 

have different functions.   

In the foetal rat brain N1-Src is enriched in growth cone membrane extracts, suggesting 

a potential role for N1-Src in axonal extension and guidance (Maness et al., 1988). 

Whereas, in the adult brain, Sugrue and colleagues (1990) reported that N1-Src 

expression was present in all neuronal compartments i.e. the cell soma, axon, dendrites 

and nerve terminals, suggesting widespread roles for N1-Src within cells. Despite only 

containing a single lipid modification, N1-Src has also been placed at lipid rafts, which 

are signalling hubs rich in multiple types of cell surface receptors and cellular signalling 

components (Mukherjee et al., 2003). Moreover, the N1-Src detected in the lipid raft 

fractions of mouse brain lysates displayed increased kinase activity, suggesting that N1-

Src may play a role in signalling events directed from lipid rafts (Mukherjee et al., 2003). 

Interestingly, lipid rafts have been implicated in multiple neuronal functions including cell 

adhesion, axonal guidance and synaptic transmission, which are all processes that N1-

Src is predicted to partake in when considering the spatiotemporal expression of the 

kinase (Tsui-Pierchala et al., 2002).  

1.5.2 Physiological Functions of the Neuronal Srcs 

There are very few studies in the literature that have addressed the functional relevance 

of the two neuronal splice variants of Src. Whilst no specific neuronal roles have been 

assigned to N2-Src, only a couple of studies have investigated the effects of N1-Src 

overexpression in different subsets of neurons. Kotani and colleagues (2007) explored 

the role of N1-Src during the morphogenesis of Purkinje neurons, a class of GABAergic 

neuron present in the Purkinje layer of the cerebellum, which are characterised by their 

large dendritic arbours. In transgenic mice overexpressing N1-Src (WT) and 

constitutively active N1-Src (Y527F), the organisation of the Purkinje cell layer in their 

cerebellum was disrupted. This effect was more profound in the Y527F mice. In addition 

to this, a large proportion of Y527F cells at postnatal day 7 (P7) had polarization defects, 

since the multiple dendritic shafts characteristic of earlier stages in development, failed 

to converge into a single shaft. Investigations into the molecular basis for these 

observations revealed that these morphological defects were linked to the aberrant 

arrangement of microtubules present in the dendritic shafts of the unpolarised neurons 

(Kotani et al., 2007). This study directly linked the effects of N1-Src to altered cytoskeletal 

dynamics, which are integral to the processes governing neuronal morphogenesis.  

A second study, from Worley and colleagues (1997), compared the effects of both C- 

and N1-Src in multiple cell types from the developing Xenopus laevis retina. Whilst 
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axonal outgrowth was markedly reduced in retinal ganglion cells overexpressing the 

constitutively active mutants of both C- and N1-Src, their effects were different in ventral 

forebrain neurons. Conversely, the over expression of both WT and Y527F N1-Src in 

ventral forebrain neurons resulted in an increase in neurite outgrowth, whereas Y527F 

C-Src had the opposite effect. The effects of both C- and N1-Src Y527F on photoreceptor 

differentiation were also monitored, which was severely reduced in the presence of both 

kinases (Worley et al., 1997). These results, in conjunction with those observed by Kotani 

and colleagues, suggest a role for N1-Src during neuronal morphogenesis, which varied 

between different neuronal types. In addition to this, whilst C- and N1-Src overexpression 

appears to have similar effects on neuronal development in some cell types, they also 

appear to differ in others. This indicates that both C- and N1-Src could have different 

functions in some subclasses of neurons in the brain. 

Worley and colleagues (1997) also demonstrated that Xenopus epithelial cells 

overexpressing N1-Src projected neurite-like processes, whereas C-Src transfected 

cells were predominantly adopted a rounded and more spread morphology. Whilst these 

findings demonstrated the different roles for both kinases in a non-neuronal cell type, 

they also re-enforced the observation made by Kotani which suggested that N1-Src 

modulates cytoskeletal dynamics to direct changes in cell morphology.  

1.5.3 Neuronal Src Kinases in Neuroblastoma 

Whilst no neuronal functions or bona fide substrates of N2-Src have been reported, the 

kinase has been shown to be associated with the positive prognosis of neuroblastoma 

cancer patients at stage IV-S of the disease (Bjelfman et al., 1990, Matsunaga et al., 

1998). The childhood cancer, neuroblastoma, is derived from immature neuroblasts in 

the sympathetic nervous system that fail to differentiate and undergo uncontrolled 

proliferation. Like many others, the cancer is defined by a series of tumorigenic stages, 

which in this case range from stages I-IV, but can also manifest as stage IV-S (Evans et 

al., 1971). However, unlike the majority of other cancer types, neuroblastoma cells 

possess the ability to differentiate and mature. The degree of cellular differentiation that 

occurs within tumours, which is a determinant of the prognosis outcome, appears to be 

dependent on the age of the child and the stage of the cancer. For example, tumour cells 

in younger patients (under 12 months) tend to be more likely to terminally differentiate, 

making the cancer less aggressive. For the same reason, tumours at stage IV-S, can 

spontaneously regress and are therefore associated with a positive prognosis (Rudolph 

et al., 1997).  

Bjelfman and colleagues (1990) observed that neuronal Src was elevated in 

neuroblastoma cases, which had a positive prognosis. Further investigations revealed 
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that whilst N1-Src expression was upregulated in differentiating neuroblastoma cells, its 

sole expression in the absence of N2-Src was not a sufficient marker for positive 

prognosis. However, cells that had undergone or were undergoing terminal 

differentiation expressed high levels of N2-Src, similar to those observed in human brain 

tissue, which correlated with the spontaneous regression of the cancer (Matsunaga et 

al., 1998). Therefore, N2-Src was identified as a promising prognostic marker for 

neuroblastoma patients, as well as a potential therapeutic target in the treatment of the 

disease. Since there is little published data describing the functional role of N2-Src, it 

remains unclear whether N2-Src plays a causative role in the differentiation of 

neuroblastoma cells. Although it is tempting to speculate that the kinase may prove to 

be an important therapeutic target, since the closely related N1-Src has been implicated 

in the processes of neuronal differentiation by regulating cytoskeletal dynamics (see 

sections 1.5.1 and 1.5.2) (Kotani et al., 2007, Maness et al., 1988, Wiestler and Walter, 

1988, Worley et al., 1997). 

1.5.4 Substrates and Binding Partners of N1-Src 

The N1- and N2-Src mini-exon inserts occur in the SH3 domain of the kinases, which 

are important for substrate binding. The precise site of insertion lies in the n-Src loop, 

which forms an integral part of the ‘specificity’ pocket that typically interacts with the 

positively charged residue flanking the PXXP core of the substrate binding motif. The n-

Src loop, which in addition to the RT loop is the site of most variation in the SH3 domains 

of SFKs, has also been implicated in forming alternative interactions with binding 

partners. Therefore, it is sensible to predict that the SH3 domains of both N1- and N2-

Src would bind a different subset of substrates in comparison C-Src. In support of this 

prediction, a recent study published by the Evans lab demonstrated that both N1-Src and 

N2-Src displayed a reduced affinity for traditional class I and II C-Src SH3 binding ligands 

(discussed further in Section 3.1, (Keenan et al., 2015)). 

Whilst no N2-Src SH3 binding partners have been identified, there are a number of 

studies in the literature that have performed C- and N1-Src SH3 pull-down studies with 

candidate binding partners. The outcome of these studies, amongst others, are 

summarised in Table 1.1. The ability of both the C- and N1-Src SH3 domains to bind to 

the proteins of interest, was determined by blotting for the kinase SH3 domains in the 

pulldown assays and comparing the relative intensities of their protein bands. Several 

proteins, including ASAP1, RICH1, dynamin, SNP70 and the well-known C-Src substrate 

FAK (discussed in Section 1.3) bound to the C-Src SH3 domain but did not appear to 

interact with N1-Src. In addition to this, the N1-Src SH3 domain seemed to have a 

reduced affinity for 3BP-1, CR16, Daam1 and Sam68 in comparison to the C-Src SH3 

domain. These findings further support the theory that as a result of the N1-Src SH3 
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mini-exon insertion, the kinase has a reduced or complete lack of affinity for C-Src 

substrates.   

It is particularly interesting that the N1-Src SH3 does not appear to interact with FAK, 

since the C-Src/FAK complex is integral to many cellular signalling transduction 

pathways that regulate proliferation, motility, survival and neurite outgrowth in neurons. 

However, a study, performed by Ruest and colleagues (2001), demonstrated the N1-Src 

precipitated with FAK when both kinases were co-expressed in COS7 cells. Furthermore, 

the study suggested that N1-Src recruitment by FAK facilitated the phosphorylation of 

p130CAS. In addition to this, they demonstrated that in their model, N1-Src mediated 

phosphorylation of CAS was greater than C-Src (Ruest et al., 2001). Therefore, these 

observations suggest that the interaction of N1-Src with FAK via an alternative 

mechanism could be sufficient to recruit the kinase. Indeed, it has been documented that 

the autophosphorylation of FAK at Y397 creates a C-Src SH2 binding motif (Schaller et 

al., 1994). In this instance, it could be possible that N1-Src substrate specificity governed 

by the SH2 domain overrides that of the SH3 domain. Alternatively, N1-Src could be 

interacting indirectly with FAK via a different binding partner.   
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Table 1.1: A Summary of C- and N1-Src SH3 Binding Partners and their Relative 
Ability to Bind to each Kinase. 

 

N.D=not determined 

 

 

 

Protein Protein type 

Binds to: 
Comparison 
of C- and N1-

Src interaction 
Reference 

C-Src 
SH3 
(Y/N) 

N1-Src 
SH3 
(Y/N) 

ASAP1 Arf1 GAP Y N - 
(Brown et al., 

1998) 

3BP-1 Rac GAP  Y Y C>N1 
(Cicchetti et 
al., 1992) 

CR16 MAPK substrate Y Y C>N1 
(Weiler et al., 

1996) 

Daam1 Formin Y Y C>N1 
(Aspenstrom 
et al., 2006) 

Delphilin Formin - Y N.D 
(Miyagi et al., 

2002) 

Dynamin 

GTPase localised 
at the pre-
synaptic 

membrane 

Y N - 
(Foster-Barber 

and Bishop, 
1998) 

EVL 
Actin-associated 

protein 
Y Y N1>C 

(Lambrechts 
et al., 2000) 

FAK Kinase Y N - 
(Messina et 
al., 2003) 

HCN1 Ion channel - Y N.D 
(Santoro et al., 

1997) 

NR2A Ion channel - Y N.D 
(Groveman et 

al., 2011) 

Rich1 
Rho/Rac/cdc42 

GAP 
Y N - 

(Richnau and 
Aspenstrom, 

2001) 

Sam68 Adaptor protein Y Y C>N1 
(Finan et al., 

1996) 

SNP70 
Nuclear protein, 
co-localises with 
splicing factors 

Y N - 
(Craggs et al., 

2001) 

Synapsin 
Protein localised 

at synaptic 
vesicles 

Y N 
- 

 

(Foster-Barber 
and Bishop, 

1998) 

Tau 
Microtubule 

associated protein 
Y N - 

(Reynolds et 
al., 2008) 
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One protein in particular, Ena/Vasp like protein (EVL), was demonstrated to show 

preferable binding to the N1-Src SH3 in comparison to C-Src in vitro (Lambrechts et al., 

2000). EVL is a member of the Ena/Vasp family of proteins, which are known to play a 

role in axon guidance by regulating actin cytoskeletal dynamics, however the functional 

implications of the N1-Src SH3 domain binding to EVL require further investigation. In 

addition, the relatively poorly understood formin, Delphilin, has also been identified as a 

binding partner of the N1-Src SH3 domain in vitro (Miyagi et al., 2002). Delphilin acts as 

a scaffolding protein expressed in the neuronal post-synaptic density that binds the 

glutamate receptor GluRδ2, which plays a role in motor coordination, synapse formation 

and synaptic plasticity (Kashiwabuchi et al., 1995). Whilst the exact roles of Delphilin 

have not been defined, it is possible that it also serves to regulate cytoskeletal dynamics, 

which appears to be the main role of other members of the formin family (Wallar and 

Alberts, 2003). To date, the physiological relevance of the interaction between N1-Src 

and Delphilin has not been reported in the literature. 

N1-Src has also been shown to interact with the C-terminal domain (CTD) of the 

hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) in rat brain lysates 

(Santoro et al., 1997). HCN1 belongs to a family of four HCN channels (HCN1-4) that 

are expressed throughout the peripheral and central nervous systems, as well as in 

cardiac tissue. They are homotetrameric voltage gated pore loop channels known as 

‘pacemakers’, since they are responsible for the rhythmic excitation of neurons and 

cardiac pacemaker cells. The structure of each subunit has two main portions; the 

transmembrane core and the CTD. A hyperpolarization activated current (Ih) passes 

through the channels in response to membrane hyperpolarization and cAMP binding 

(Wahl-Schott and Biel, 2009). HCN1 channels have been implicated in multiple, diverse 

functions including learning and memory (Nolan et al., 2004, Nolan et al., 2003), balance 

controlled by the inner ear (Horwitz et al., 2011), resting potentials in neurons and the 

regulation of presynaptic neurotransmitter release (Southan et al., 2000). HCN1 is also 

thought to be involved in various disease pathologies including epilepsy (Santoro et al., 

2010) and Alzheimer’s disease (Saito et al., 2012).   

Little is known about the interaction and effects of neuronal Src on the HCN1 channel. 

Santoro et al. (1997) first discovered HCN1 by identifying the channel as a binding 

partner of the N1-Src SH3 domain, which was used as bait in a yeast two-hybrid 

experiment. Subsequently, there have been no reports of N1-Src regulation of HCN1, 

although there is literature describing a role for C-Src in the regulation of the HCN family 

of channels. Whole cell patch clamp experiments performed on HEK-293 cells 

transfected with HCN2 or HCN4 exhibited decelerated activation kinetics and in HCN4 

transfected cells, decreased whole cell conductance when treated with the C-Src 
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inhibitor, 4-5-amino-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3-4-d]pyrimidine (PP2) (Li et al., 

2008a, Zong et al., 2005). The same effects were shown in dominant negative Src 

mutants (Arinsburg et al., 2006, Zong et al., 2005), suggesting C-Src is involved in HCN 

channel regulation.  

Site-directed mutagenesis (SDM) experiments revealed that conserved Tyr-531 and Tyr-

554 phosphorylation sites (confirmed by mass spectrometry) in the CTD of HCN4 alter 

channel activation (Li et al., 2008a) and channel activation kinetics (Li et al., 2008a, 

Aktories et al., 2004) respectively. Li and colleagues (2008a) reported that Y531F 

mutants almost abolished the effects of PP2 on voltage dependent channel activation, 

whereas Tyr-554 mutants had unaltered activation kinetics in the presence of PP2. Zong 

and colleagues (2005) gained the same results in relation to Tyr-554 for both HCN2 and 

HCN4. This group however did not show that C-Src had an effect on voltage dependent 

activation of HCN channels or a role for Tyr-531. Despite these conflicting discoveries, it 

is apparent that Tyr phosphorylation by C-Src plays a role in HCN channel activation. 

In addition to N1-Src binding to the HCN1 channel, Groveman and colleagues confirmed 

that the CTD of the NR2A subunit in NMDA receptors (described in Section 1.3.1.2) can 

be phosphorylated by and bind N1-Src in vitro. They also demonstrated that NR1/NR2A 

receptor currents are enhanced in HEK-293 cells when co-expressed with N1-Src, 

indicating that similar to C-Src, N1-Src is capable of activating NMDAR currents 

(Groveman et al., 2011). However, this study did not investigate the differences, if any, 

between their phosphorylation of, or binding affinities to, the NR2A-CTD, nor did it report 

the effects of C- vs N1-Src on NMDAR currents. Furthermore, whether the kinases 

activate the channels via the same or different mechanisms in vivo remains to be 

discovered.   
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1.6 Aims 

Whilst little is known about the precise functions and substrates of N1-Src, the literature 

suggests that N1-Src is important in the developing brain, potentially regulating 

cytoskeletal dynamics during neuronal morphogenesis (Kotani et al., 2007, Worley et al., 

1997). In addition to this, N1-Src localization data and the interactions observed between 

N1-Src and several ion channels (Santoro et al., 1997, Groveman et al., 2011) indicate 

that the kinase may also play an important role in the adult brain. The primary aim of this 

project was to therefore clarify the roles of N1-Src in neuronal signalling through three 

specific approaches:  

1) Identify novel N1-Src substrates: 

Firstly, experiments were focussed on discovering novel N1-Src substrates. To identify 

whether HCN1 was an N1-Src substrate, in vitro kinase assays were performed using 

purified recombinant protein. In addition, the ability of N1-Src SH3 binding peptides, 

selected from putative N1-Src substrates, to enhance phosphorylation of an ideal Src 

substrate sequence, was investigated. 

2) Determine the function of N1-Src in developing neurons: 

With the aim of further understanding the role of N1-Src in neuronal development, the 

morphology of primary rat hippocampal neurons in N1-Src overexpression and shRNA 

knockdown studies were examined. 

3) Dissect the signalling pathways downstream of N1-Src: 

The signalling mechanisms through which N1-Src acts were also investigated, focussing 

specifically on L1-CAM and RhoA signalling pathways using a fibroblast cell model.  
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Chapter 2. Materials and Methods 

2.1 Materials 

2.1.1 Molecular Biology Reagents 

Oligonucleotides were purchased from Integrated DNA technologies (Leuven, Belgium). 

Pfu DNA polymerase was purchased from Thermo Scientific (Waltham, MA) and Taq 

DNA polymerase was a kind gift from Dr Dani Ungar (University of York). DNA ligase 

and ligase buffer were obtained from Promega (Fitchburg, WI). All restriction enzymes 

were purchased from New England Biolabs (NEB, Ipswich, MA). Both NucleoSpin® 

Plasmid mini- and midi-prep kits were sourced from Machery-Nagel (Düren, Germany) 

and gel extraction kits were purchased from Quiagen (Venlo, Netherlands). DNA 

HyperLadder I and SYBR®Safe were obtained from BioLine (London, UK) and Life 

Technologies (Paisley, UK), respectively. XL10 Gold supercompetent E coli were from 

Stratagene (Stockport, UK). XL10 Gold ultra-competent cells were purchased from 

Agilent Technologies (Stockport, UK). BL21-DE3 cells were a kind gift from Dr Daniel 

Ungar, and both the Rosetta 2 and Rosetta GamiB cell strains were a kind gift from Dr 

Wayne Paes.  

The pLINK, pLINK-C3, pmCherry-N1, pRK7-NR2A vectors were a kind gift from Dr 

Sangeeta Chawla (University of York) (Grant et al., 1998). The pGEX-6P-1 plasmids 

encoding YA, PD1 were made in house by Dr Sarah Keenan and the P1-13 GST-fusion 

peptides by Dr Gareth Evans (University of York). The pSUPER N-Src shRNA constructs 

A and B were designed in the Evans lab and prepared by Katharina Mahal. The pcDNA3-

eGFP-RhoA constructs were gifts from Gary Bokoch (plasmid numbers #12965 (WT 

RhoA), #12968 (Q63L) and #12967 (T19N) (Subauste et al., 2000). L1-4A (pCDNA3-L1-

CAM) was a gift from Vance Lemmon (plasmid number #13268) (Cheng et al., 2005).  

2.1.2 Protein Biochemistry Reagents 

Protein ladders were purchased from BioRad, Hercules (CA). The PVDF and Immobilon 

Western enhanced chemiluminescence (ECL) solution were both obtained from Millipore 

(Watford, UK). Glutathione agarose beads were purchased from GenScript (Piscataway, 

NJ) and 3C protease was sourced from the Technology Facility in the Department of 

Biology, University of York. The RhoA pull down activation assay kit was purchased from 

Cytoskeleton Inc. (Denver, CO) and the GFP conjugated protein G beads used were a 

kind gift from Dr Paul Pryor (University of York). The recombinant PKC-zeta and MBP 

proteins were sourced from Millipore (Watford, UK) and Sigma (Dorset, UK) respectively.  

The following antibodies were purchased from: Actin B from Abcam (Cambridge), FLAG 

(M2) from Sigma (Dorset, UK), PY20 from BD Bioscience (San Diego, CA) and pY416 
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and GFP(a) were from Cell Signalling Technologies (Boston, MA). In addition, both α-

mouse and α-rabbit horseradish peroxidase (HRP) antibodies were purchased from 

Sigma (Dorset, UK). 

2.1.3 Cell Biology Reagents 

Dulbecco’s Modified Eagle Medium (DMEM) and Alexa Fluor® conjugated secondary 

antibodies were obtained from GIBCO, Invitrogen (Paisley, UK). EcoTransfect and 

Lipofectamine® transfection reagents were purchased from OZ Biosciences (Marseille, 

France) and Invitrogen (Paisley, UK). The GFP(b) antibody that was used solely for 

immunofluorescence experiments was a kind gift from Dr Paul Pryor (University of York).     

Unless otherwise stated all other chemicals and reagents were purchased from Sigma 

(Dorset, UK). 

2.2 Molecular Biology  

2.2.1 Polymerase Chain Reaction (PCR) 

The rat NR2A-CTD (C-terminal domain) was PCR amplified from the pRK7:NR2A 

construct. The PCR reaction contained 100 ng of pRK7:NR2A, 1X polymerase buffer, 

0.2 mM dNTPs, 1 µM of the forward (5' CGGAATTCAAGGACTGTAGCGATGTTGAC 3') and 

reverse (5' AGTATCGAATCTGATGTTTAACTCGAGGCG 3') primers, 0.5 U of Pfu DNA 

polymerase and distilled water (dH20) to 50 µl. To amplify the rat NR2A-CTD, the PCR 

reaction was subjected to the following conditions: an initial denaturation step of 95 ˚C 

for 5 min, 25 repeated cycles of 95 ˚C for 30 seconds (s) (denaturation), 53 ˚C for 45 s 

(primer annealing) and 72 ˚C for 1 minute (min) (extension), as well as a final extension 

step at 72 ˚C for 10 min.    

2.2.2 Agarose Gel Electrophoresis  

Agarose gels were used to visualise and quantify DNA bands. To prepare an agarose 

gel (0.7-2 %), agarose was dissolved in 60 ml of 1X TAE buffer (40 mM Tris, 20 mM 

acetic acid, and 1 mM EDTA) using a microwave oven. The molten agarose was briefly 

cooled and SYBR®Safe DNA stain was added at a 1 in 20,000 dilution (v/v). The solution 

was poured into a gel cassette and a suitable well comb was secured into the cassette 

to form wells. After setting at room temperature, the gel was immersed in 1X TAE and 

DNA samples were diluted with 5X Orange G loading buffer (0.5 % (w/v) Orange G and 

25 % glycerol (v/v) in dH2O) and loaded into the gel. The DNA was separated by 

electrophoresis by applying a potential difference of ~ 80 V across the gel for ~ 30 min. 

DNA within the gel was visualised under a blue safelight.  
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2.2.3 Restriction Digest of Deoxyribonucleic Acid (DNA) 

Restriction digests were performed using restriction endonucleases (NEB or Promega) 

and were carried out according to the manufacturers’ instructions. Typically, a double 

restriction digest reaction (30 µl) contained 100-500 ng of plasmid DNA, an appropriate 

reaction buffer (1X), 0.1 mg ml-1 of BSA, 1 µl of each restriction enzyme and dH20. The 

reactions were incubated for 1 hour (h) at 37 ˚C.  

For subcloning, a preparative digest reaction (60 µl) was performed, in which 2-6 µg DNA 

was digested by 2 µl of each restriction enzyme for 1 hour (h) at 37 ˚C. In this case, the 

whole reaction was loaded and separated by agarose gel electrophoresis. The relevant 

bands were excised and gel extracted (Section 2.2.4).   

2.2.4 Agarose Gel Extraction of DNA Fragments 

DNA bands were excised from an agarose gel under safelight, using a scalpel and DNA 

was extracted using a gel extraction kit, following the manufacturer’s instructions. A 

sample of the extracted product was separated by agarose gel electrophoresis (Section 

2.2.2), visualised and then quantified by comparing the band size to those of a known 

quantity from 5 µl of HyperLadder I.  

2.2.5 Annealing of Complimentary Oligonucleotides 

Complimentary oligonucleotides (oligos) were annealed in a 10 µl reaction containing 

3.3 µM of each oligonucleotide and 4 µl of annealing buffer (100 mM NaCl and 50 mM 

HEPES, pH 7.4). The mixture was incubated in a PCR machine at 90 °C for 4 min 

followed by a 70 °C incubation for 10 minutes. The annealed oligos were slowly cooled 

to 10 °C (e.g. step-cool to 37 °C for 15-20 min, then to 10 °C or room temperature) before 

using or moving them to refrigerated storage. 

2.2.6 Ligation of PCR Product into pJET1.2 

A CloneJET PCR cloning kit (Thermo Fisher Scientific, Loughborough, UK) was used to 

ligate 50-100 ng of gel-extracted, blunt-ended PCR products into the propagation vector 

pJET1.2 according to the manufacturer’s instructions.       

2.2.7 DNA Ligation 

To ligate restriction digested, gel-purified DNA, the insert was incubated with a gel-

purified linearised plasmid in a 10 µl reaction containing a 3:1 molar ratio of insert to 

vector (typically 100 ng of vector), 3 Units (U) of T4 DNA ligase, 1X ligation buffer and 

dH2O. The reaction was incubated at room temperature for 3 h or overnight at 4 ˚C.    

2.2.8 Bacterial Transformation 

Plasmid DNA (~100 ng) was incubated with 50 µl of XL10 Gold competent E.coli cells at 

4 ˚C for 15-30 minutes. To facilitate the uptake of plasmid DNA, the bacteria were heat 
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shocked for 45 s at 42 ˚C, and subsequently placed on ice for a further 2 min. Sterile 

Lysogeny Broth (LB, 450 µl of 1 % NaCl, 1 % Tryptone and 0.5 % yeast extract (w/v) in 

dH2O) was added to the bacteria, which were incubated at 37 ˚C with agitation. After 1 

h, the bacteria were spread onto LB agar (1 % NaCl, 1 % Tryptone, 0.5 % yeast extract 

and 2 % agar (w/v) in dH2O) plates containing the appropriate antibiotic(s) (ampicillin 100 

µg/ml, kanamycin 50 µg/ml, chloramphenicol 34 µg ml-1 or tetracycline 15 µg ml-1). The 

plates were incubated overnight at 37 ˚C and subsequently stored at 4 ˚C. Aseptic 

technique was employed throughout the transformation process. 

2.2.9 PCR Colony Screening 

PCR was used to screen individual E. coli colonies for the successful inclusion of a DNA 

insert into a plasmid vector backbone. A PCR reaction (20 µl) contained 1X GoTaq buffer 

(Promega), 1 µM dNTPs, 2 µM of the forward and reverse primers, 0.1 µl of Taq 

polymerase and dH2O. Finally, a scrape of each colony to be tested was mixed into 

separate PCR reactions using a sterile pipette tip. The PCR reaction conditions were as 

described in Section 2.2.1 however, the primer annealing temperature was changed to 

55 ̊ C and the extension time was extended to 1 min per kb of product during the repeated 

cycles. The PCR products were separated by agarose gel electrophoresis (Section 2.2.2) 

and successful clones were mini-prepped (Section 2.2.10). 

2.2.10 Preparation of Plasmid DNA from Bacterial Cultures 

Starter cultures containing 5 ml or 100 ml of selective LB medium were inoculated with 

a single colony (or a scrape from a glycerol stock) of E. coli transformed with the desired 

plasmid. The cultures were incubated overnight at 37 ˚C with agitation and then 

centrifuged at 4 ˚C, for 10 min, at 4500 g. Plasmid DNA was isolated from the bacteria 

using a Machery and Nagel NucleoSpin® Plasmid mini-prep kit (5 ml cultures) or a 

NucleoSpin® Midi-prep kit (100 ml cultures) according to the manufacturer’s instructions. 

The quantity and quality of isolated DNA were analysed using a NanoDrop 

spectrophotometer (Thermo Scientific) in the University of York Technology Facility.   

2.2.11 Sequencing of Plasmid Constructs 

The sequences of all DNA plasmid constructs produced were confirmed by the 

sequencing service in the Genomics Unit of the Technology Facility, University of York. 

Pre-mixes contained 100-200 ng of plasmid DNA and 3.2 µM of a vector-specific forward 

or reverse primer. The sequencing data were subsequently analysed using the Applied 

Biosystems Sequence Scanner software v1.0. ClustalW2 software was used to generate 

sequence alignment (http://www.ebi.ac.uk/Tools/msa/clustalw2/). 
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2.2.12 Preparation of Glycerol Stocks for Storage of Plasmid DNA 

For long-term storage, 1 ml of a bacterial culture containing XL10 Gold E. coli, 

transformed with plasmid DNA, was mixed with 1 ml of sterile 50 % (v/v) glycerol solution 

(in dH2O) and stored at -80 ˚C in a cryovial.   

2.2.13 Cloning  

2.2.13.1 Src-pmCherry Constructs 

Preparative digests (Section 2.2.3) were performed to excise the full length open reading 

frame (ORF) of C-, N1- and N2-Src from the relevant pFLAG-Src-plamids and to linearise 

pmCherry-N1. The enzymes used were XhoI (5’) and BamHI (3’) with NEB buffer 3. The 

products were separated by agarose gel electrophoresis (Section 2.2.2) and gel 

extracted (Section 2.2.4). C-, N1- and N2-Src were ligated (Section 2.2.7) into linearised 

pmCherry-N1, transformed into XL10 Gold bacteria (Section 2.2.8) and the subsequent 

colonies were screened by colony PCR (Section 2.2.9). Successful colonies were 

mini-prepped and sequenced (Sections 2.2.10-11).     

2.2.13.2 pGEX-6P-1: hHCN1-CTD 

hHCN1-CTD was PCR amplified and cloned into the propagation vector pJET1.2 by 

Dr Sarah Keenan. Using the restriction enzymes SalI (5’) and NotI (3’) with buffer 3, 

preparative digests were performed to excise hHCN1-CTD from pJET1.2 and to linearise 

the plasmid pGEX-6P-1. Following the procedure outlined in Section 2.2.13.1 hHCN1-

CTD was sub-cloned into pGEX-6P-1 producing the construct pGEX-6P-1:hHCN1-CTD.  

2.2.13.3 pGEX-6P-1: rNR2A-CTD 

The rNR2A-CTD was PCR amplified from the vector pRK7:NR2A, which contained the 

ORF of the NR2A subunit of the NMDA receptor (NMDAR) (Section 2.2.1). The PCR 

product was gel extracted (Section 2.2.4), ligated into pJET1.2 (Section 2.2.6) and a 

preparative digest (Section 2.2.3) was performed using the enzymes XhoI (5’) and EcoRI 

(3’) with buffer 3 to excise the rNR2A-CTD insert from the plasmid. The rNR2A-CTD was 

then sub-cloned into linearised pGEX-6P-1 according to the procedure described in 

Section 2.2.13.1. 

2.2.13.4 pGEX-4T-1: CTD Constructs  

pGEX-6P-1:hHCN1-CTD and pGEX-6P-1:rNR2A-CTD were cut with SalI (5’) and NotI 

(3’) or XhoI (5’) and EcoRI (3’) respectively and the CTDs were individually sub-cloned 

into linearised pGEX-4T-1 following the procedures described in Section 2.2.13.1. 

2.2.13.5 pGEX-6P-1 Constructs Encoding GST-fusion Peptides. 

The plasmid pGEX-6P-1-‘Y’ containing the ideal Src substrate (Y) was generated by 

ligating the appropriate annealed oligos (See Table 2.1) into linearised pGEX-6P-1, 
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which was pre-cut using the enzymes BamHI (5’) and EcoRI (3’). Subsequently, the 

remaining annealed oligos corresponding to YA, PD1, PD1-P5A or P1-13 (See Table 

2.1) were ligated into the linearised pGEX-6P1-‘Y’ plasmid, which was pre-cut with the 

restriction enzymes SalI (5’) and NotI (3’). This yielded plasmid constructs that contained 

the Y sequence, followed by the sequence of one of the remaining SH3 domain binding 

motifs. Both oligo sequences were separated by a short linker sequence that was 15 bp 

in length and corresponded to the sequence of the multiple cloning site of the plasmid 

between the 5’ EcoRI and 3’ SalI restriction sites. The constructs containing YA and PD1 

were cloned by Dr Sarah Keenan (Keenan, 2012), whereas those containing peptides 

P1-13 were cloned by Dr Gareth Evans.  
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Table 2.1: The Oligonucleotide Sequences Used to Generate GST-fusion Peptide 
Substrates for C- and N1-Src 

Name Oligonucleotide Sequence 

Y 
 

FWD AATTCGGTGGCGGTGCAGAAGAGGAAATTTACGGTGAATTTGG  

REV TCGAACAAATTCACCGTAAATTTCCTCTTCTGCACCGCCACCG  

YA 
FWD TCGACTCGGTGGCGGTGTGAGCCTGGCGCGTCGTGCGCTGGCAGCTCTGGCGTAAGC  

REV GGCCGCTTACGCCAGAGCTGCCAGCGCACGACGCGCCAGGCTCACACCGCCACCGAG  

PD1 
 

FWD TCGACTCGGTGGCGGTGCGTGGCATCGCATGCCGGCGTATACCGCGAAATATCCGGC  

REV GGCCGCCGGATATTTCGCGGTATACGCCGGCATGCGATGCCAGCCACCGCCACCGAG  

PD1-
P5A 

FWD TCGACTCGGTGGCGGTGGCTGGCATCGCATGGCAGCGTATACCGCGAAATATCCGGC  

REV GGCCGCCGGATATTTCGCGGTATACGCTGCCATGCGATGCCAGCCACCGCCACCGAG  

P1 
 

FWD TCGACTCGAAACAAGACCACCTGCAAATACTGCTAGGTTACAATAAGG 

REV GGCCCCTTATTGTAACCTAGCAGTATTTGCAGGTGGTCTTGTTTCGAG 

P2 
 

FWD TCGACTCAAGGAAAAAGGACCAATATTAACACAAAGAGAAGCATAAGG 

REV GGCCCCTTATGCTTCTCTTTGTGTTAATATTGGTCCTTTTTCCTTGAG 

P3 
FWD TCGACTCATAGGAAGATGTCCAAGCGATCCTTATAAACATAGTTAAGG 

REV GGCCCCTTAACTATGTTTATAAGGATCGCTTGGACATCTTCCTATGAG 

P4 
FWD TCGACTCCAACCTAAAACACCAGTACCAGCACAAAGAGAAAGGTAAGG 

REV GGCCCCTTACCTTTCTCTTTGTGCTGGTACTGGTGTTTTAGGTTG GAG 

P5 
FWD TCGACTCCATAGGAGAACACCAAGTGAAGCAGATAGATGGTTATAAGG 

REV GGCCCCTTATAACCATCTATCTGCTTCACTTGGTGTTCTCCTATGGAG 

P6 
FWD TCGACTCTATTTAAGGCAACCATATTACGCAACAAGAGTAAATTAAGG 

REV GGCCCCTTAATTTACTCTTGTTGCGTAATATGGTTGCCTTAAATAGAG 

P7 
FWD TCGACTCAATTTAAAAGAACCATTATTAACATTTAGATTAAATTAAGG 

REV GGCCCCTTAATTTAATCTAAATGTTAATAATGGTTCTTTTAAATTGAG 

P8 
FWD TCGACTCACTCAAAAGAGTCCAGCTACAGCACCTAAACCAATGTAAGG 

REV GGCCCCTTACATTGGTTTAGGTGCTGTAGCTGGACTCTTTTGAGTGAG 

P9 
FWD TCGACTCGTAAAGAAAAATCCAGGAATAGCTGCAAAATGGTGGTAAGG 

REV GGCCCCTTACCACCATTTTGCAGCTATTCCTGGATTTTTCTTTACGAG 

P10 
FWD TCGACTCTATAGCAAAATACCATTAGATACAAGTAGATTAGCATAAGG 

REV GGCCCTTATGCTAATCTACTTGTATCTAATGGTATTTTGCTATAGAG 

P11 
FWD TCGACTCGGACCAAAGAGGCCTGGTAATACATTAAGAAAATGGTAAGG 

REV GGCCCCTTACCATTTTCTTAATGTATTACCAGGCCTCTTTGGTCCGAG 

P12 
FWD TCGACTCGCTGCAAAGATACCAGATAAAACAGAAAGATTACATTAAGG 

REV GGCCCCTTAATGTAATCTTTCTGTTTTATCTGGTATCTTTGCAGCGAG 

P13 
FWD TCGACTCGGAGCAAGAAGTCCAGCTCCAACAAGAAAAGAATTTTAAGG 

REV GGCCCCTTAAAATTCTTTTCTTGTTGGAGCTGGACTTCTTGCTCCGAG 
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2.3 Protein Biochemistry  

2.3.1 Protein Expression  

GST-fusion proteins were expressed in E. coli cells and subsequently purified. 

Depending on the protein, different E. coli strains were used for expression (see Table 

2.2). The majority of GST-fusion proteins were expressed in BL21 (DE3) E. coli, since 

they are deficient in the proteases Lon and OmpT, enhancing protein production from 

cloned genes. The Rosetta 2 E. coli strain was trialled or used for proteins whose 

corresponding gene sequences contained many rare E. coli codons, given that this stain 

contains plasmids that encode for several of the rare tRNAs. Additionally, Rosetta Gami 

B E. coli, which also express the rare tRNAs found in Rossetta 2 cells, were used for 

proteins containing disulphide bonds. This strain is also a double mutant in thioredoxin 

reductase (trxB) and glutathione reductase (gor), which creates a more oxidising 

cytoplasmic environment and enhances protein folding through stimulating the formation 

of disulphide bonds between cysteine residues. 

A single colony of E. coli cells, transformed with a pGEX construct, was used to inoculate 

a starter culture of LB (50 ml) and incubated with agitation (200 rpm), overnight at 37 ˚C 

in the presence of the appropriate antibiotics (See Table 2.2). The starter culture was 

added to 1 L of LB under antibiotic selection and placed in a shaking incubator for 3-4 h 

until OD600 = 0.6 - 1. The culture was induced with isopropyl β-D-1-thiogalactopyranoside 

(IPTG; 1 mM) for 3 h at 37 ˚C (or overnight at 18 ˚C) with constant agitation. Cultured 

bacteria were pelleted in a Sorvall Evolution centrifuge at 5000 g for 10 min and the 

supernatant was discarded and the pellets were frozen at -80 ˚C.  

2.3.2 Purification of Recombinant Proteins  

Different bacterial cell lysis methods were used, for the purification of each GST fusion 

protein, in order to optimise the final protein yield and stability. Sonication (i) was used 

for the purification of GST, the GST- P1-13 and GST-PTP1B-HisΔ80Src kinase protein 

purification, whereas French press (ii) was used for the purification of GST-hHCN1-CTD 

and GST-rNR2A-CTD. 

(i) Frozen E. coli cell pellets were thawed on ice and resuspended in phosphate 

buffered saline (PBS, 30 ml) containing lysozyme (133 µM final concentration), 

phenylmethanesulfonylfluoride (PMSF, 1 mM) and 1X protease inhibitor cocktail 

(Sigma-Aldrich). After incubating on ice for 30 min, Triton X-100 (1.5 % w/v) and 

dithiothreitol (DTT, 7 mM) were added. This solution was subjected to 6 x 1 min 

cycles of 30 s 10 kHz sonication and 30 s gentle agitation.  

(ii) Frozen E. coli cell pellets were thawed on ice and resuspended in breaking buffer 

(100 mM HEPES, 500 mM KCl, 2 mM β-Mercaptoethanol in dH2O) containing 

https://en.wikipedia.org/wiki/Isopropyl_%CE%B2-D-1-thiogalactopyranoside
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PMSF (1 mM) and 1 X protease inhibitor cocktail. Cells were lysed at 4 ˚C using 

a manual French press (Thermo Scientific). 

Insoluble matter was removed from the lysate by centrifugation for 30 min at 17200 g 

and 4 ˚C. Cleared lysate was incubated with glutathione agarose (0.1-1 ml) for 1-2 h. 

Beads were washed five times with PBS, followed by one wash with 1.2 M NaCl in PBS 

and a further two washes with PBS. After each wash, the beads were centrifuged for 5 

min at 720 g at 4 ˚C. Protein was eluted from the beads by the addition of 600 µl 

glutathione elution buffer per 0.5 ml beads and incubation at room temperature for 20-

30 min with agitation. This elution process was repeated 3 times. Eluted protein was 

aliquoted and frozen at -80 ˚C following analysis by sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE) (Section 2.3.4). 

Table 2.2: Antibiotic and Growth Conditions for E.Coli Expressing Various pGEX 
Constructs 

Construct 
E-coli 
strain 

Antibiotic resistance 

Growth 
conditions 
post- IPTG 
induction 

pGEX-4T-1 
pGEX-6P-1 
pGEX-6P-1:Peptide 
constructs 
pGEX-6P-1:hHCN1-
CTD 
pGEX-4T-1:rNR2A-
CTD 
pGEX-6P-1:PTP1B-
HisΔ80C-Src/N1-Src 

BL21 Ampicillin (100 µg ml-1) 3-4 h at 37 ˚C 
with shaking 
(200 rpm) 

pGEX-6P-1:hHCN1-
CTD 
pGEX-4T-1:hHCN1-
CTD 
pGEX-4T-1:rNR2A-
CTD 

Rosetta 
2 

Ampicillin (100 µg ml-1) 
Chloramphenicol (34 µg ml-1) 

16 h at 18 ˚C 
with shaking 
(200 rpm) 

pGEX-4T-1:rNR2A-
CTD 

Rosetta 
Gami B 

Ampicillin (100 µg ml-1) 
Chloramphenicol (34 µg ml-1) 
Tetracycline (12.5 µg ml-1) 
Kanamycin (15 µg ml-1) 

16 h at 18 ˚C 
with shaking 
(200 rpm) 

 

2.3.3 Cleavage of the GST Tag from GST Fusion Proteins 

GST was cleaved from glutathione resin bound GST fusion proteins using PreScission 

protease (produced by York Technology Facility). Proteins were incubated with 50 µg 

PreScission protease for 48 h at 4 ˚C, rotating end over end.  
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2.3.4 SDS-Polyacrylamide Gel Electrophoresis (PAGE) 

Sodium dodecyl sulphate (SDS) polyacrylamide gels comprising a resolving gel (10-15 

% acrylamide, 0.05 % ammonium persulfate (APS), 0.01 % tetramethylethylenediamine 

(TEMED), 375 mM Tris, pH 8.8, and 0.1% SDS) and a stacking gel (5 % acrylamide, 

0.05 % APS, 0.01 % TEMED, 125 mM Tris pH 6.8 and 0.1 % SDS) were prepared and 

transferred into a gel electrophoresis tank (BioRad) containing 1X SDS-PAGE buffer (25 

mM Tris, 192 mM glycine, 0.1 % SDS). Protein samples were denatured at 95 ˚C for 10 

min and separated alongside 5 µl of a protein ladder at 180 V for approximately 1 h. Gels 

were either stained with Coomassie Brilliant blue stain for 30 min, followed by de-staining 

(40 % (v/v) methanol, 10 % (v/v) glacial acetic acid in dH2O) overnight to visualise protein 

bands or transferred to methanol-activated polyvinylidene fluoride (PVDF) membrane 

(Immobilon-P) for Western blot analysis. 

2.3.5 Wet Transfer 

Protein samples separated by SDS-PAGE were transferred onto PVDF by wet transfer. 

Briefly, 6 cm x 8 cm PVDF was pre-soaked for 1 min in methanol followed by distilled 

water for 1 min and then transfer buffer (25 mM Tris, 192 mM glycine, 20 % methanol). 

Two 6 cm x 8 cm sponges and sheets of filter paper were also soaked in transfer buffer. 

The SDS polyacrylamide gel and PVDF membrane were sandwiched between the filter 

papers and sponges in a transfer cassette and subjected to electrophoretic transfer at 

66 V for 1 h (or 20 V overnight). Successful transfer of proteins was confirmed by 

Ponceau staining, 

2.3.6 Western Blotting  

Transferred proteins of interest were detected using the appropriate antibodies via 

Western blotting (see Table 2.3 for antibodies and their dilution factors). The PVDF 

membrane was blocked with 3 % BSA (for phosphotyrosine antibodies) or 3 % Marvel 

skimmed milk powder in PBS, followed by incubation with the appropriate primary 

antibody (Table 2.3). Incubations were carried out for 2 h at room temperature or 

overnight at 4 ̊ C. The membrane was washed 3 x 5 min in PBS containing 0.5 % Tween-

20 and subsequently incubated with a HRP-conjugated secondary antibody solution (3 

% milk and 0.5 % Tween-20 in PBS) for 1 h. The membrane was subjected to 3 x 10 min 

washes with 0.5 % Tween-20 in PBS. All incubations were performed at room 

temperature with shaking unless specified otherwise. ECL substrate was added to the 

PVDF membrane, the membrane was blotted with 3 mm filter paper to remove excess 

liquid, wrapped in cling film and placed in a film cassette. Membranes were exposed to 

photo-sensitive film (Santa Cruz) for a relevant period of time. The film was developed, 

rinsed in water and fixed. 
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Table 2.3: Western Blotting Antibodies and Blocking Conditions 

 
Primary 
antibody 

Secondary antibody 

Antibody Block Concentration Antibody Concentration 

Actin B 
3 % milk 
in PBS 

1:10000 
α-rabbit 

HRP 
1:5000 

FLAG 
3 % milk 
in PBS 

1:1000 
α-mouse 

HRP 
1:5000 

GFP(a) 
3 % milk 
in PBS 

1:2000 
α-mouse 

HRP 
1:5000 

PY20 
3 % BSA 
in PBS 

1:1000 
α-mouse 

HRP 
1:5000 

pY416 
3 % BSA 
in PBS 

1:2000 
α-rabbit 

HRP 
1:5000 

RhoA 
5 % milk 
in PBS 

1:500 
α-mouse 

HRP 
1:5000 

 

2.3.7 In Vitro Kinase Assays with GST-hHCN1- and GST-rNR2A- Purified Proteins   

In vitro C-Src and N1-Src kinase assay reactions (25 µl) were performed using GST-

hHCN1- (5 µM) and GST-rNR2A-CTD (5 µM) substrates in reaction buffer A (Table 2.4). 

The ideal Src substrate GST-YA (10 µM) was used as the positive control and GST (10 

µM) alone as a negative control. The assays were performed in the absence or presence 

of 40 nM HisΔ80-C- or N1-Src for each substrate. Assays were performed at 30 ˚C for 1 

h. Kinase reactions that were performed with glutathione agarose-bound protein 

substrates contained approximately 10 µg of GST-tagged substrate. These reactions 

were performed with GST-hHCN1- and GST-rNR2A-CTD proteins that were expressed 

and purified from the pGEX-4T-1 plasmid constructs. Since these proteins contained a 

thrombin cleavage site in place of a PreScission protease cleavage site, residual 

PreScission protease present in HisΔ80-Src kinase stocks could not cleave the protein. 

The reactions were performed separately with reaction buffers B and C (Table 2.4) and 

were subjected to shaking (150 rpm) at 30 ˚C for 1 h. All reactions were terminated by 

the addition of 2 X Laemmli buffer (25 µl) and stored at -20 ˚C. Kinase assay protein 

samples were separated by SDS-PAGE and analysed by Western blotting (Sections 

2.3.4-6). 

2.3.8 In Vitro γ-32P ATP Kinase Assays with hHCN1- and rNR2A-CTD 

In vitro kinase assays were performed in 50 µl reactions containing 100 nM HisΔ80C- 

and N1-Src, 5 µM untagged hHCN1- or rNR2A-CTD, 10 mM MgCl2, 0.5 mM ATP, and 5 

µCi γ-32P ATP in 100mM Tris (pH 7.5). The reactions were incubated for 3 h at 30 ᵒC. 

Every 1 h, 10 µl of the reactions were removed, terminated with 2X Laemmli buffer and 

stored at -20 ᵒC. Further in vitro kinase assays (25 µl) with an increased concentration of 

hHCN1- (5.8 µM) and rNR2A-CTD (7.2 µM) were performed that also 
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Table 2.4: Kinase Buffers Used for In Vitro Kinase Assays Containing GST-hHCN1-
CTD and GST-rNR2A-CTD 

Reaction 
Buffer 

A B C 

 100 mM Tris 
0.5 mM ATP 
10 mM MgCl2 

40 nM Src 
pH 7.5 

100 mM Tris 
0.5 mM ATP 
10 mM MgCl2 

50 µg/ml BSA 
1 mM DTT 
40 nM Src 
pH 7.5 

100 mM Tris 
0.5 mM ATP 
10 mM MgCl2 

50 µg/ml BSA 
1 mM DTT 
200 µM NaVO4

3- 
40 nM Src 
pH 7.5 

 

 

contained 100 nM HisΔ80C- and N1-Src, 10 mM MgCl2, 0.5 mM ATP, and 2 µCi γ-32P 

ATP in 100 mM Tris (pH 7.5). The reactions were incubated at 30 ᵒC and terminated after 

3 h with 2X Laemmli buffer and stored at -20 ᵒC. For both types of kinase assays, an 

identical reaction with the positive control GST-YA was performed. Kinase assay protein 

samples were separated by SDS-PAGE (Section 2.4.4) and then the gels were 

sandwiched between two acetate sheets and exposed to X-ray film for 24-48 h.    

2.3.9  In Vitro Protein Kinase C-zeta (PKC-zeta) Kinase Assays with hHCN1- or 

rNR2A-CTD  

In vitro kinase assays (25 µl) were performed in the presence or absence of the 

constitutively active form of protein kinase C (PKC-zeta; 50 ng) with the rNR2A- or 

hHCN1-CTDs (5 µM). Reactions also contained 10 mM MgCl2, 0.5 mM ATP, and 2 µCi 

γ-32P ATP in 100 mM Tris (pH 7.5) and were incubated at 30 ᵒC for 3 h. Reactions were 

terminated with 2X Laemmli buffer and stored at -20 ᵒC. Identical reactions containing 

myelin basic protein (MBP, 5 µM) were performed and served as a positive control for 

PKC-zeta kinase activity. Kinase assay samples were analysed as described in Section 

2.3.8.    

2.3.10 In Vitro HisΔ80-N1-Src Kinase Assays with Putative GST-fusion Peptide 

Substrates  

In vitro HisΔ80-N1-Src kinase reactions (25 µl) containing PD1 (positive control; 1.7, 5 

or 15 µM), PD1-P5A (negative control; 1.7, 5 or 15 µM) and the putative N1-Src GST-

fusion peptide substrates P1-13 (5 µM) were performed using reaction buffer A, however, 

a kinase concentration of 5 nM was used (Table 2.4). The assays were incubated at 

30 ˚C for 1 h and the reactions were terminated by the addition of 2X Laemmli buffer (25 

µl) and stored at -20 ˚C. Kinase assay protein samples (5 µl) were separated by SDS-

PAGE in duplicate. One set of gels were analysed by Western blotting (Sections 2.3.4-
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6), whilst the other set were Coomassie stained and subsequently de-stained, to enable 

the comparison of GST-fusion peptide quantities between reactions.      

To facilitate the comparison of substrates GST-P1-13 with both GST-PD1 (5 µM) and 

GST-PD1-P5A (5 µM), densitometry was performed on the resulting blots and 

Coomassie stained gels from three replicates in Image J. Within a single replicate, the 

two blots (blot 1 contained samples P1-6 and blot 2 contained samples P7-13) contained 

the same quantitiy of a GST-PD1 positive control. Therefore the densitometry values 

were normalised to the density of the same GST-PD1 band across blots. In addition, to 

account for potential differences in the amount of substrate in each reaction, 

densitometry bands obtained for each phospho-protein were normalised to the 

densitometry values from the corresponding Coomassie stained protein bands. Finally, 

the values within each experiment were normalised to PD1 to account for potential 

differences in the processing of blots and Coomassie gels between biological replicates. 

Differences between the data values obtained were assessed for significance using a 

one-way ANOVA.      

2.3.11 Immunoprecipitation (IP) 

For each condition, a T75 flask of cultured COS7 cells (3 x 106 cells) was transfected 

with the appropriate plasmid constructs according following the procedure outlined in 

Section 2.4.3. The cells in each T75 flask were lysed in 1 ml of ice cold 1X 

radioimmunoprecipitation assay buffer (RIPA) buffer (20 mM Tris-HCl (pH 7.5), 270 mM 

sucrose, 1 % Triton X-100, 5 % glycerol, 10 mM sodium β-glycerophosphate, 1 mM 

ethylene glycol tetraacetic acid (EGTA), 1 mM ethylenediaminetetraacetic acid (EDTA), 

0.1 % β-mercaptoethanol, 1 mM sodium orthovanadate, 0.1 % phosphatase inhibitor, 1 

mM PMSF). Cells were scraped from the bottom of the flasks and extracted on ice for 10 

min. The cell lysates were then centrifuged for 10 min at 16,000 g at 4 ˚C to remove 

insoluble matter. Protein G agarose (20 µl aliquots) conjugated to a GFP antibody was 

pre-washed in RIPA buffer and incubated end over end, overnight at 4°C with the 

appropriate cell lysate. The following day, the beads were pelleted by centrifugation for 

5 min at 16,000 g at 4 ˚C. The supernatant was removed and the beads were transferred 

into SPIN-X columns (Corning) and washed x 3 with 500 µl of RIPA buffer. Proteins that 

were retained by the GFP resin were eluted upon the addition of 50 µl of 2X Laemmli 

buffer (Sigma-Aldrich) to the SPIN-X columns.  

2.3.12 RhoA Pull-down Activation Assay 

The RhoA pull-down activation assays were performed using a commercial kit purchased 

from Cytoskeleton Inc. according to the manufacturer’s instructions. For each condition, 

a 10 cm dish of COS7 cells (1 x 106 cells) was transfected with the appropriate plasmid 

https://en.wikipedia.org/wiki/Ethylenediaminetetraacetic_acid
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constructs according to the procedure outlined in Section 2.4.3. Cells were lysed in 500 

µl of the provided cell lysis buffer (50 mM Tris pH 7.5, 10 mM MgCl2, 0.5 M NaCl, 2 % 

Igepal and 1 X protease inhibitor cocktail) and lysates were immediately clarified at 

10000 g, for 10 min at 4 ˚C.  

Clarified lysates were snap frozen and stored at -80 ˚C and the protein content of the 

lysates (~2 mg ml-1) was assessed by Bradford assay (Bradford, 1976). Thawed protein 

lysate aliquots (500 µl) were incubated separately with Rhotekin RhoA binding domain 

(RBD) beads (25 µg) at 4 ˚C, rotating end over end. As a positive and negative control, 

cell lysates containing wild type RhoA, were pre-loaded with guanosine triphosphate 

(GTP) or guanosine diphosphate (GDP), respectively. After a 1 h incubation, the 

supernatant was removed, the beads were resuspended in the provided wash buffer (25 

mM Tris pH 7.5, 30 mM MgCl2, 40 mM NaCl) and transferred into SPIN-X columns, which 

had been prewashed. The SPIN-X columns were centrifuged at 5000 g for 1 min at 4 ˚C 

to pellet the beads and remove the wash buffer. Proteins that were pulled down by the 

Rhotekin RBD beads were eluted upon the addition of 20 µl of 2X Laemmli buffer to the 

SPIN-X columns. Eluted samples were stored at -20 ˚C until use. Input (total protein 

lysate; 2 %) and eluted protein (10 µl) samples were run on separate gels and subjected 

to Western blotting (Sections 2.3.4-6).  

2.4 Cell Biology Techniques 

2.4.1 Culture of Mammalian Cell Lines  

The culture of mammalian cell lines was performed under sterile conditions in a Class 2 

biological safety cabinet. COS7 and B104 cell lines were cultured in high glucose DMEM 

containing glutamine and pyruvate. The media was supplemented with 10 % foetal 

bovine serum (FBS) and 1 % penicillin-streptomycin (PenStrep). Cells were maintained 

in a 37 ˚C incubator with 5 % CO2.  

2.4.1.1 Revival of Cell Stocks 

Cells were removed from storage at -80 ˚C and thawed for 2 min in a 37 ˚C water bath. 

Cells were then placed in a T25 flask containing 5 ml of media pre-warmed to 37 ˚C. The 

media was replaced the following day. 

2.4.1.2 Passage of Mammalian Cell Lines 

Adherent cells were washed with PBS and incubated with 1X trypsin-EDTA (Invitrogen) 

for 2-5 min at 37 ˚C. The trypsin was inhibited with culture medium containing 10 % FBS 

and 1 % PenStrep. Cells were collected from the bottom of the flask and centrifuged at 

130 g, for 5 min at room temperature. After centrifugation, the cells were resuspended in 
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culture medium and 1/5th of the suspension was replaced into a new flask containing pre-

warmed media.        

2.4.1.3 Cell Storage 

For long term storage, cells resuspended after passage were added in equal proportion 

to freezing media (90% FBS, 10 % DMSO) and stored, in cryovials, at -80 ˚C.  

2.4.1.4 Plating Cells 

Passaged cells were counted using a haemocytometer and 2 x 104 or 1 x 105 cells were 

plated into single wells of a 24 or 6 well plate, respectively. For immunocytochemistry 

experiments, cells were plated on 13 mm coverslips in a 24 well plate.  

2.4.2 L1-CAM Process Outgrowth Assay 

The wells of 8 well chamber slides were pre-coated with L1-CAM protein dissolved in 

PBS (40 µl; 50 µg/ml) or PBS alone (40 µl; control). 1 x 10-5 COS7 cells were plated in 

each well and subsequently transfected and processed for immunofluorescence. The 

plastic eight well chamber was removed from the slides using a tool provided by the 

manufacturer.    

2.4.3 Cell Line Transfections using EcoTransfect Reagent 

Mammalian cell lines were transfected with plasmid constructs using EcoTransfect 

according to the manufacturer’s instructions. Briefly, DMEM containing plasmid DNA was 

incubated with DMEM containing EcoTransfect (at a ratio of 1µg DNA: 2 µl EcoTransfect) 

for 20 min at room temperature. The transfection solution was applied dropwise to plated 

or flasks of cells and incubated for 48 h at 37 ˚C with 5 % CO2. Cells were either fixed 

and stained or lysed for use in an immunoprecipitation assay (Section 2.3.11) or for 

Western blot analysis (Section 2.3.4-6).  

2.4.4 Preparation of Rat Hippocampal Neurons 

Rat hippocampi were dissected from euthanised new born (postnatal day 0, P0) Wistar 

rats by Dr Sangeeta Chawla. Dr Chawla’s protocol for the preparation of hippocampal 

neurons from new born rats has been approved by the Biology Ethics Committee. The 

subsequent dissociation of cells was carried out by either myself, Dr Chawla or 

Christopher Ugbode according to a pre-published procedure (Belfield et al., 2006). 

Briefly, dissected hippocampi were incubated at 37 ˚C with papain enzyme solution for 

a total of 40 min, with additional fresh enzyme solution being added after 20 min. The 

hippocampi were washed x 3 with pre-warmed dissociation media containing kynurenic 

acid and magnesium chloride/sulphate. After washing, the hippocampi were incubated 

with 2 ml of trypsin inhibitor for 5 min at 37 ˚C. This procedure was repeated x 3 and 

followed by 3 washes with warmed growth medium. The hippocampi were dissociated 
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by trituration in growth medium and diluted in OPTI+ solution to give an equivalent 

concentration of one hippocampus per 2 ml of media. The cells were plated on coverslips 

that were pre-coated in poly-D-lysine (PDL; coverslips were incubated at RT with 15 µg 

ml-1 PDL for 1-2 h end over end and air dried under sterile conditions). Cells were plated 

at a density of 2.5 - 5 x 105 cells per well of a 24 well plate. 

2.4.4.1 Transfection of Rat Hippocampal Neurons 

P1 primary rat hippocampal neurons were transfected, 24 h after plating, with various 

DNA constructs using Lipofectamine® reagent in accordance with the manufacturer’s 

instructions. Briefly, for a single well of a 24 well plate, midi-prepped DNA and 2.5 µl 

Lipofectamine® reagent were each added to 200 µl Neurobasal media (Gibco, Life 

technologies) in separate tubes (for shRNA experiments the ratio was 0.1 µg ShRNA: 2 

ul Lipofectamine® and for mCherry constructs the ratio was 0.25 µg DNA to 2 ul of 

Lipofectamine®). The contents of both tubes were mixed and incubated at room 

temperature for 20 min. The growth medium from the hippocampal neurons was 

removed, and replaced with DNA/ Lipofectamine® solution. After a ~5 h incubation 

period at 37 ˚C with 5 % CO2, the DNA/Lipofectamine® solution was aspirated from the 

cells and the previously removed growth medium was reapplied. Cells were cultured for 

a further 48 h (P3), fixed, stained and mounted onto slides (Section 2.4.5.1). For some 

experiments (Section 4.2.7), neurons were cultured until P7 before cells were fixed. 

2.4.5 Immunocytochemistry 

2.4.5.1 Cell Fixation and Staining 

Cells were washed x 3 with PBS and fixed in a paraformaldehyde (PFA) solution (4 % 

PFA and 4 % sucrose in PBS, pH to 7.4) at room temperature. After 20 min, cells were 

washed x 3 with PBS. To permeabilise the cells, 0.1 % Triton X-100 dissolved in PBS, 

was applied for 30 min at room temperature. Cells were subsequently stained with an 

appropriate primary antibody at the required dilution for 2 h at room temperature (Table 

2.5). After washing the cells x 3 with PBS, cells were incubated in the dark with an Alexa 

Fluor® secondary antibody raised in the correct species, at a dilution of 1:500 for 1 h 

(Table 2.5). After a further 3 washes in PBS and once in water, the coverslips were air 

dried and mounted onto slides in Mowiol mounting medium (10 % Mowiol, 25 % glycerol 

in 0.1 M Tris pH 8.5) containing 1 µg ml-1 DAPI (4',6-diamidino-2-phenylindole) stain and 

stored at 4 ˚C prior to processing by microscopy. 
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Table 2.5: Primary and Secondary Antibodies Used in Immunocytochemistry 

Primary Antibody 
Secondary 
antibody 

Name Concentration Name Concentration 

GFP(b) 1:1000 α-rabbit Alexa Fluor®488 1:500 

FLAG 1:1000 α-mouse Alexa Fluor®594 1:500 

L1-CAM 1:1000 α-mouse Alexa Fluor® 488 1:500 
 

2.5 Cell Imaging  

2.5.1 Image Capture Using a Fluorescence Microscope 

Fluorescence images were captured using a Nikon TE200 epifluorescence inverted 

microscope with a RoleraXR CCD (QImaging) camera controlled by SimplePCI Software 

(Hamamatsu). Images of COS7 cells or hippocampal neurons were acquired using a 

40X or 20X objective lens.   

2.5.2 Coverslip Tiling Using the Zeiss Slidescanner 

Fluorescence images of whole coverslips containing transfected hippocampal neurons 

were acquired with a 20X objective lens, using a Zeiss AxioScan.Z1 slide scanner. 

Images were processed using the Zeiss image software analysis programme Zen Blue.  

2.6 Analysis of Cell Morphology Data 

2.6.1 Morphological Analysis Using NeuronJ 

Image analysis of both COS7 and neuronal cells was performed using ImageJ. To 

compile tiled images of the same neuron where required, the stitching plugin for ImageJ 

was used (Preibisch et al., 2009). Neurite morphology data was extracted from images 

using the NeuronJ plugin, which allows the semi-automatic tracing of neurites, which 

were subsequently categorised into neurites/processes, primary branches, secondary 

branches and tertiary branches. The NeuronJ programme calculated the lengths of 

individual neurites/processes and branches, which were subsequently compiled in 

Microsoft Excel (Meijering et al., 2004). In a similar fashion, NeuronJ was used to trace 

and measure neurite-like extensions projected by COS7 cells under different cellular 

conditions.     

To measure additional morphological parameters of COS7 cells, the perimeter of 

individual cells was manually traced in ImageJ and subsequently used to calculate the 

area (μm2) and circularity of the cells. Circularity (4π(area/perimeter2)) was used to 

describe the ‘roundness’ of the cells measured, whereby a value of 1 describes a perfect 

circle and a value of 0 represents an elongated oblong shape (Schneider et al., 2012). 
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2.6.2 Statistical Analysis of Cell Data 

Statistical analysis was performed on data combined from experiments containing at 

least three biological replicates. Statistical tests were not performed when the experiment 

comprised fewer than three biological replicates.  

Data are presented as mean ± SEM. SigmaStat v12.5 software was used to perform all 

statistical analyses. Normal distribution was determined using a Shapiro-Wilk test. For 

normally distributed data, paired or unpaired Student’s two-tailed t-test was used to 

compare two samples. Multiple comparisons on non-parametric data were made using 

Kruskal-Wallis tests (or one-way ANOVA on ranks) on the total number of cells from 

three biological replicates (unless stated otherwise). Where the outcome of the Kruskal-

Wallis test was significant, a Dunn-Bonferroni post-hoc test was used for the pairwise 

comparison between the fixed variables. For experiments containing two factors, 

statistical significance was assessed using a two-way ANOVA on the total number of 

cells from three biological replicates (unless stated otherwise). A post-hoc Tukey test 

was used to facilitate the pairwise comparison between the fixed variables where 

necessary. Results were considered significant when P < 0.05 (*). 
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Chapter 3. Discovery of Novel N1-Src Substrates 

3.1 Introduction 

The lack of tools available that enable the discrimination between C- and N1-Src kinases, 

such as N1-Src specific activators, inhibitors, antibodies and knock-out mice, has 

hampered the discovery of N1-Src substrates. It is therefore unsurprising that few bona 

fide N1-Src substrates have been identified since N1-Src’s discovery by Levy and 

colleagues in 1987. For this reason, it is anticipated that the phosphorylation of some 

neuronal substrates that have previously been assigned to C-Src activity, are in fact 

attributable to N1-Src. 

Given that N1-Src differs from C-Src by only a short insert in the SH3 domain, the area 

of the protein that co-ordinates substrate docking, it is highly likely that C- and N1-Src 

have different substrates. This was alluded to by Keenan et al., (2015), who 

demonstrated that in relation to C-Src, both N1- and N2-Src had a low affinity for ideal 

Src substrates that were linked to the canonical C-Src SH3 binding motifs (Classes I and 

II). They also showed that in vitro phosphorylation of synaptophysin, a well-established 

substrate of C-Src in the brain, was greatly reduced when incubated with N1- and N2-

Src compared to C-Src (Keenan et al., 2015). Taken together, this evidence suggested 

that N1-Src has a reduced affinity for C-Src substrates and therefore may have different 

substrates to C-Src in neurons. 

Of the few substrates known to be phosphorylated by N1-Src in vitro, the C-terminal 

domain (CTD) of the NMDA receptor (NMDAR) subunit, NR2A, has also been shown to 

be phosphorylated by V-Src and regulated by C-Src (Yang and Leonard, 2001, Yu et al., 

1997, Groveman et al., 2011). However, phosphorylation of the NR2A-CTD by C- and 

N1-Src has not been compared and since ion channel CTD phosphorylation often occurs 

at multiple residues and by more than one kinase, it is possible that C- and N1-Src might 

phosphorylate the NR2A subunit at different sites. Whilst it has been shown that V-Src 

phosphorylates the NR2A-CTD at three individual tyrosine residues, the specific 

residues phosphorylated by N1-Src remain unknown. In addition, whilst Groveman et al., 

(2011) showed that NR1-1A/NR2A receptor currents were enhanced in HEK-293 cells 

when co-expressed with N1-Src, the differential effects of C- and N1-Src were not 

investigated.  

Amongst other proteins (see Section 1.5.4), a second type of neuronal ion channel, 

hyperpolarisation-activated cyclic nucleotide-gated 1 (HCN1), has been shown to 

interact with N1-Src, however phosphorylation of the protein by N1-Src has not been 

demonstrated (Santoro et al., 1997). It was anticipated that HCN1 could be an N1-Src 
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substrate, since other HCN channels have been shown to be regulated and 

phosphorylated by C-Src (Li et al., 2008a, Arinsburg et al., 2006, Zong et al., 2005). For 

example, the direct phosphorylation of recombinant GST-HCN2-CTD was demonstrated 

in an in vitro kinase assay with C-Src (Rolli-Derkinderen et al., 2005).        

Given that very few N1-Src substrates have been identified and recent studies suggest 

that N1-Src has a lower affinity for traditional C-Src substrates, further studies carried 

out in the Evans lab sought to identify an N1-Src SH3 binding consensus motif that would 

ultimately lead to the discovery of novel N1-Src substrates (Keenan, 2012). A consensus 

motif for N1-Src SH3 substrate binding was established after performing a phage display 

experiment, in which a library of short peptides, consisting of 12 amino acids each, were 

screened for preferential binding to the N1-Src SH3 domain. Notably, the N1-Src SH3 

binding consensus motif deviated from the traditional proline rich PXXP motifs that bind 

the C-Src SH3 and instead, had preferential affinity for a PXXT/A sequence, that was 

flanked either side with a positive residue.  

A follow-up bioinformatics study was performed with the aim of identifying putative N1-

Src substrates. Proteins that contained the newly identified N1-Src SH3 binding motif, 

which were also predicted to be phosphorylated by a Src family kinase (SFK), were 

pinpointed as potential N1-Src substrates. Interestingly, after grouping the potential 

substrates into functional clusters, this revealed that a large proportion of the substrates 

identified were involved in processes that are crucial to neuronal development, including 

cell adhesion molecule signalling, Ras/Rho protein signalling and cytoskeletal 

rearrangement. This aligned with reports in the literature that N1-Src is involved in 

neuronal development (Kotani et al., 2007, Wiestler and Walter, 1988, Worley et al., 

1997).   

Whilst progress is being made, a huge gap remains in the literature with respect to our 

understanding of bona fide N1-Src substrates. This must be addressed in order to dissect 

the function of N1-Src. Given that N1-Src has been shown to be highly expressed in the 

developing brain (Wiestler and Walter, 1988) and the fact that there is evidence 

implicating N1-Src in ion-channel regulation (Groveman et al., 2011), it appears that N1-

Src could be an integral signalling component of neuronal processes taking place in both 

the developing and adult brain.  
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3.1.1 Aims  

The principal aim of this chapter was to identify novel N1-Src substrates. It was 

hypothesised that N1-Src phosphorylates the HCN1-CTD, ultimately regulating the ion 

channel’s activity. It was also predicted that both the HCN1- and NR2A-CTDs would be 

phosphorylated by C- and N1-Src to different extents, potentially at different tyrosine 

residues. Therefore, in vitro kinase assays were performed with both the GST tagged 

human (h) HCN1-CTD and rat (r) NR2A-CTDs.  

In addition to this, a second approach was adopted, with the aim of validating predicted 

N1-Src substrates that were identified in the bioinformatics study described in Section 

3.1 and which had known roles in the developing and adult brain. Peptides that were 

derived from putative N1-Src substrates and were predicted to bind the N1-Src SH3 

domain, were linked with the ideal Src substrate motif (YGEF) that is phosphorylated by 

the kinase domain, and screened for enhanced phosphorylation by N1-Src.   
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3.2 Results 

3.2.1 The Purification of Recombinant Src kinases 

Recombinant C- and N1-Src kinases were expressed and purified for in vitro kinase 

assays (see Section 2.3.1-2), with the aim of discovering novel N1-Src substrates. 

Multiple studies have found that the bacterial expression of Src is problematic, delivering 

highly degraded protein, poor yields and protein aggregation resulting in the formation of 

inclusion bodies (Saya et al., 1993, Osusky et al., 1995). These poor results have been 

attributed to Src kinase activity, given that the bacterial expression of an inactive mutant 

of Src eradicated these problems (Wang et al., 2001a). Wang et al., (2006) devised a 

strategy to overcome the effects of Src kinase activity on the quality of protein expression 

in bacteria. This was accomplished by fusing Src to a phosphatase catalytic domain 

(PTP1B), which is thought to counteract the aberrant phosphorylation caused by the 

kinases (Wang et al., 2006b). A similar approach has been successfully adopted by the 

Evans lab to express both C-Src and the neuronal Src kinases (Keenan et al., 2015).  

C- and N1-Src kinases are routinely recombinantly expressed minus the first 80 residues 

(Δ80), since these residues are not required for kinase activity in vitro (Keenan et al., 

2015). The Δ80C- and N1-Src were expressed with a GST tag, tyrosine phosphatase 

catalytic domain (PTP1B) and HIS tag fused to the N-termini of the proteins (Figure 

3.1A). The GST tag and PTP1B were cleaved from the Srcs, after the proteins had been 

isolated from the bacterial lysates, to yield His-Δ80C- and N1-Src (~55 kDa) 

(Figure 3.1B). To achieve this, protein bound glutathione resin, was treated with 

PreScission protease (a fusion protein of human rhinovirus 3C protease and GST). 

Figure 3.1B shows an example of the cleavage reactions and the purified cleaved protein 

for His-Δ80C- and N1-Src.  
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(A) Schematic diagram of recombinant Src kinases lacking the first 80 N-terminal 

residues (Δ80). The proteins were N-terminally tagged with GST, the phosphatase 

PTP1B and six histidine residues (HIS), to facilitate the expression and purification of the 

proteins. The PTP1B and HIS tag were separated by a PreScission protease site 

(LEVLFQ/GP) to allow for the release of GST-PTP1B from HIS-Δ80-Src. (B) Left panel 

– Coomassie stained, 12.5 % SDS polyacrylamide gel showing preparations of GST-

PTP1B-cleaved HisΔ80C- and N1-Src. Proteins were isolated from 1 L cultures of BL21 

E. coli cells, purified using glutathione resin and subsequently cleaved from their GST-

PTP1B tag with PreScission protease. The lanes correspond the whole cleavage 

reaction (CR) and purified cleaved protein (CP) for each kinase. Right panel – 

Coomassie stained, 12.5 % SDS polyacrylamide gel showing 1 μg of purified C- and N1-

Src kinases based on pre-determined protein concentrations.   

 

 

 

 

 

 

 

 

Figure 3.1: Purification of Recombinant C- and N1-Src Kinases 
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3.2.2 The Expression and Purification of GST-hHCN1- and GST-rNR2A-CTD  

Santoro et al., (1997) found that the CTD of HCN1 binds to the N1-Src SH3 domain. 

Since there is also evidence in the literature for C-Src phosphorylation of HCN channel 

CTDs (Zong et al., 2005), in vitro kinase assays were performed to determine whether 

the human HCN1-CTD (hHCN1-CTD) is an N1-Src substrate. Given that phosphorylation 

of the NR2A-CTD by C- and N1-Src has previously been documented (Groveman et al., 

2011), this was used as a positive control for the assay, with a view to performing further 

studies to pinpoint the phosphorylated residues. Therefore, firstly, GST-hHCN1- (80.5 

kDa) and GST-rNR2A-CTD (69.2 kDa) proteins were expressed and purified for use in 

in vitro kinase assays with recombinant His-Δ80C- and N1-Src kinases (Figure 3.2).  

The sequence encoding hHCN1-CTD was cloned into pGEX-6P1 and the induction of 

recombinant GST-hHCN1-CTD was achieved in BL21 E.Coli upon IPTG induction for 

3 h at 37 °C. Figure 3.2A (left panel) shows the protein recovered from the elution of 

GST-hHCN1-CTD from glutathione resin. The elution appeared successful, since there 

was a purified protein band in the region of 80.5 kDa, the molecular weight (MW) of the 

recombinant protein. However, the estimated concentration of intact GST-hHCN1-CTD 

protein was low (approximately 200 µg ml-1).  

With the aim of improving the protein yield and reducing the degradation of the protein, 

hHCN1-CTD was A) expressed in Rosetta 2 E. coli cells and B) induced at a lower 

temperature (18 °C) and over a longer period of time (overnight). Rosetta 2 cells differ 

from the BL21 strain because they contain plasmids that encode tRNAs for codons that 

are rare in E. coli, but which are often present in eukaryotic genes. Analysis of the 

hHCN1-CTD DNA sequence revealed that 72 of the 521 codons are low usage codons 

in E. coli, 17 of which are prolines; residues important for SH3 domain substrate 

interactions. In addition, a reduction in the rate of protein synthesis by expressing the 

protein overnight and at a reduced temperature, can often increase the yield of soluble 

mammalian proteins. Reducing the growth temperature also reduces the rate of 

proteolytic cleavage, which should ultimately improve the protein yield.  

An improved yield of full length GST-hHCN1-CTD was achieved using Rosetta 2 cells 

and a reduced induction temperature, since the estimated concentration of eluted protein 

was approximately 300-400 µg ml-1 (Figure 3.2 (middle panel). In addition to the increase 

in GST-hHCN1-CTD, there also appeared to be an increase in contaminants and/or 

break down products of GST-hHCN1-CTD (Figure 3.2A middle panel – right lane) 

compared to protein purified from BL21 cells (Figure 3.2A left panel – right lane). 

Centrifugal protein concentrators with a molecular weight cut off of 30 kDa were used 

with the intention of increasing protein concentration, and removing the lower molecular 
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weight degradation products, however little improvement in protein concentration was 

achieved and it was found that a large proportion of protein was retained in the filtrate 

(data not shown).   

In order to try to improve protein yield further, the method of cell lysis was modified. In 

place of sonication, a French press was used. After GST-hHCN1-CTD was expressed 

and bound to glutathione resin, the resulting protein appeared to contain a smaller 

proportion of lower molecular weight bands (Figure 3.2A, right panel – right lane), 

indicating that the French press lysis method resulted in reduced degradation of GST-

hHCN1-CTD, however the protein yield remained unchanged. This protein was carried 

forward for use as a candidate substrate for His-Δ80N1-Src in in vitro kinase assays.  

GST-rNR2A-CTD was expressed in a variety of E. coli strains for 3 h at 37 ̊ C or overnight 

at 18 ˚C to obtain optimal levels of expression (Figure 3.2 B). Cells were lysed using a 

French press and lysates were incubated with glutathione resin; after extensive washing 

of the beads, the protein was eluted. Figure 3.2 B (left panel) indicated that greater 

amounts of expressed protein were obtained using the following combination of 

conditions: BL21 cells induced for 3 h at 37 ˚C and overnight at 18 ˚C, Rosetta 2 cells 

induced for 3 h at 37 ̊ C and Rosetta Gami B cells induced overnight at 18 ̊ C. From each 

of these expression conditions, eluted protein obtained from Rosetta Gami B cells 

appeared to contain less fragmented protein (Figure 3.2B, right panel). Rosetta Gami B 

cells contain the same plasmids as Rosetta 2 cells that encode rare tRNAs in E. coli but 

also contain mutations in thioredoxin reductase and glutathione reductase genes. These 

mutated genes enhance disulphide bond formation in the cytoplasm, improving protein 

folding and stability. Similar to hHCN1-CTD, the rNR2A-CTD DNA sequence contains 

many rare codons (40/369 codons) and encodes eight cysteine residues. Thus, 

expression in Rosetta Gami B cells induced overnight at 18 ˚C was the method of 

expression selected for GST-rNR2A-CTD.  
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(A) Left panel - Coomassie stained, 12.5 or 10 % SDS-PAGE gels showing glutathione 
resin-purified GST-hHCN1-CTD (80.5 kDa) from sonicated BL21 (left gel) and Rosetta 2 
(middle gel) E. Coli cells that had been cultured at 37 °C for 3 h or 18 °C overnight post-
IPTG induction, respectively. Lanes correspond to 1 µg BSA and 10 µl eluate (E1) 
containing GST-hHCN1-CTD. Right panel - GST-hHCN1-CTD expressed in and 
isolated from Rosetta 2 E. coli cells that had been incubated at 18 °C overnight and 
subjected to the French press lysis method. Lanes correspond to uninduced (UI) and 
IPTG-induced (I) bacterial protein samples and 5 µl of glutathione resin bound GST-
hHCN1-CTD (5 µl beads). (B) Coomassie stained, 10 % SDS-PAGE gels showing: Left 
panel- Samples (2 µl) of uninduced (UI) and induced (I) BL21, Rosetta 2 and Rosetta 
Gami B cells expressing GST-rNR2A-CTD (69.2 kDa) cultured at 37 ˚C for 3 h or 18 ˚C 
overnight post-IPTG induction, Right panel- GST-rNR2A-CTD isolated from cell types 
induced under conditions described for left panel and purified using glutathione resin. 
Protein was eluted using glutathione elution buffer. Lanes were loaded with 10 µl of each 
eluate containing GST-rNR2A-CTD. 

  

Figure 3.2: Optimisation of GST-hHCN1- and GST-rNR2A-CTD Expression and 

Purification 
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3.2.3 The In Vitro Phosphorylation of GST-hHCN1-CTD and GST-rNR2A-CTD 

Could not be Detected via Western Blotting 

To determine whether HisΔ80C- or N1-Src kinase phosphorylates GST-hHCN1-CTD, an 

in vitro kinase assay was performed using the recombinantly expressed proteins 

described in Sections 3.1.1 and 3.1.2. A GST tagged peptide (GST-YA, 31.5 kDa) 

containing the ideal Src substrate peptide sequence AEEEIYGEF, was used as a 

positive control for C- and N1-Src activity (Keenan et al., 2015). GST-rNR2A-CTD was 

used as a second positive control, given that both C- and N1-Src have been shown to 

phosphorylate this protein, which is also the CTD of an ion channel expressed in the 

brain. To confirm that the GST tag was not phosphorylated, GST was incubated with 

both kinases.   

GST, GST-YA, GST-rNR2A-CTD and GST-hHCN1-CTD (5 µM) were incubated in 

individual kinase reactions with ATP (0.5 µM) and MgCl2 (10 mM) in 100 mM Tris (pH 

7.5), and in the presence or absence of HisΔ80C- or N1- Src. The composition of this 

buffer has been adopted by the Evans lab in previous studies (Keenan et al., 2015) 

(Section 2.3.8, Table 2.4). Figures 3.3 A and B, show that the purified recombinant Src 

kinases (described in Section 3.2.1) were active in the phosphorylation reactions as 

tyrosine phosphorylation of the positive control GST-YA (31.5 kDa) was evident. It was 

apparent that in Figure 3.3 A, HisΔ80C-Src phosphorylation of GST-YA, was greater 

than that of HisΔ80N1-Src. Phosphorylation of GST-YA was shown to be specific as the 

purified kinases did not phosphorylate GST, which does not contain any known Src 

phosphorylation sites and served as a negative control. Unfortunately, tyrosine 

phosphorylation of GST-rNR2A-CTD and GST-hHCN1-CTD by HisΔ80C- or N1 Src was 

not detected by this method. The blots presented in Figure 3.3 represent short exposures 

(< 1 min), however longer exposures of up to 30 min did not show a PY20 signal for 

GST-rNR2A-CTD, GST-hHCN1-CTD or GST either (data not shown).  

With the aim of optimizing the assay, the phosphorylation reaction buffer described by 

Keenan et al., (2015) was adapted to incorporate elements of that used by Zong et al., 

(2005), who demonstrated the in vitro phosphorylation of GST-HCN2-CTD by C-Src. In 

the reactions performed by Zong and colleagues, GST-HCN2-CTD was phosphorylated 

whilst still bound to glutathione resin. In addition to ATP (0.35 mM) and MgCl2 (10 mM), 

their reaction buffer also contained the reducing agent DTT (1 mM) and the phosphatase 

inhibitor, pervanadate (200 µM). Despite incorporating these changes into the kinase 

reactions (Figure 3.3 B), phosphorylation of neither the hHCN1-CTD nor the rNR2A-CTD 

were detected when incubated with HisΔ80C- or N1-Src. The blots shown in Figures 3.3   
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GST, GST-YA and rNR2A-CTD (5 µM; A) and hHCN1-CTD (5 µM; B) were incubated 

with C-, N1-Src or no kinase (control) at 30 °C for 3 h with ATP (0.5 mM), MgCl2 (10 

mM) in Tris pH7.5 (100 mM). The reactions (25 µl) were terminated with 2X Laemmli 

buffer. Samples were separated by SDS-PAGE, transferred onto PVDF and analysed by 

Western blotting using the primary antibody PY20 and anti-mouse HRP secondary 

antibody. The blots presented in (A) and (B) represent the results obtained using the 

different combinations of conditions described in (C).   

  

Figure 3.3: Attempted Detection of GST-hHCN1-CTD and GST-rNR2A-CTD 

Phosphorylation by C- and N1-Src. 
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A and B were indicative of the results obtained across several experiments with different 

conditions (summarised in Figure 3.3 C). 

3.2.4 Expression and Purification of Untagged hHCN1- and rNR2A-CTD. 

In Section 3.2.2, GST-hHCN1- and GST-rNR2A-CTD were expressed and purified, 

however protein yield was low due to high levels of protein degradation and poor elution 

from the glutathione resin. In order to determine whether the strong interaction between 

GST and glutathione resin was restricting the yield of recombinant proteins, the GST tag 

was cleaved from the N-terminus of both proteins. Proteins expressed from the pGEX-

6P-1 vector have a PreScission protease cleavage site (LEVLFQ/GP) separating the 

GST tag and the protein of interest (Figure 3.4A). To this end, PreScission protease was 

added to the glutathione resin-bound GST-hHCN1-CTD and GST-rNR2A-CTD and the 

GST tag was subsequently cleaved from each protein.  

Figures 3.4 B and C show the expression and purification steps taken in the preparation 

of rNR2A- and hHCN1-CTD. GST-hHCN1-CTD migrated to the correct size with a 

molecular weight of approximately 80.5 kDa. Upon cleavage of the protein with 

PreScission protease, the cleaved protein migrated to a level that corresponded with the 

predicted molecular weight of 54.1 kDa. The GST-rNR2A-CTD protein band also 

migrated to the correct molecular weight, in the region of 69.2 kDa, however, upon 

cleavage of the GST tag (26.4 kDa), the band observed was approximately 10 kDa 

higher than the expected size of the cleaved protein (42.8 kDa). In addition to this, the 

untagged rNR2A-CTD appeared as a doublet band. The protein concentrations of both 

rNR2A-CTD and hHCN1-CTD were estimated to be approximately 400 µg µl-1, which 

was equivalent to 9.5 and 7.7 µM, respectively. Whilst there was little improvement in 

yield, it was evident from the Coomassie staining of both rNR2A- and hHCN1-CTD, that 

the preparations contained fewer contaminants than the preparations of the GST-tagged 

equivalents (Figure 3.2). Therefore, these protein preparations containing untagged 

protein, were carried forward for use in the γ-32P ATP kinase assays.  

3.2.5 hHCN1-CTD and rNR2A-CTD Phosphorylation was not Detected by 

Autoradiography.  

Whilst phosphorylation of the GST-YA positive control was detected in previous kinase 

assays (Figures 3.3 A and B), indicating that the method used (Section 2.3.1-3) to purify 

C- and N1-Src resulted in active kinases, phosphorylation of the second positive control, 

rNR2A-CTD, was not observed by Western blotting (Figures 3.3 A and B). Since 

phosphorylation of rNR2A-CTD by N1-Src has previously been observed by Groveman  
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(A) Schematic diagram of GST-rNR2A/hHCN1-CTDs (69.2 kDa/80.5 kDa) showing the 

presence of a PreScission protease cleavage site (LEVLFQ/GP) separating the GST tag 

(26.4 kDa) from the protein of interest. 10 % SDS polyacrylamide gels show preparations 

of GST-cleaved hHCN1-CTD (54.1 kDa) (B) and rNR2A-CTD (42.8 kDa) (C). The GST-

hHCN1-CTD and GST-rNR2A-CTD were isolated from 2 L cultures of Rosetta 2 or 

Rossetta Gami B E. coli cells respectively, bound to glutathione resin and subsequently 

cleaved from their GST tag with PreScission protease. The lanes correspond to 

Uninduced (UI) and IPTG induced (I) E. coli lysates, 2.5 μl glutathione resin bound with 

rNR2A- or hHCN1-CTD and 5 μl of eluate containing cleaved protein (CP). 

 

 

 

 

  

Figure 3.4: Recombinant Expression and Cleavage of GST-hHCN1- and GST-

rNR2A-CTD. 
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et al., (2011) using ELISA, and phosphorylation by C-Src is documented in the literature 

(Yang and Leonard, 2001), further measures were taken to improve the assay. With the 

aim of increasing the sensitivity of phosphorylation detection, HisΔ80C- and N1-Src 

kinase assays were performed using γ-32P ATP across a 3 h time course. It was 

anticipated that improving the purity of the proteins (Figure 3.4), together with increasing 

the sensitivity of the assay would optimise the observed output of the reaction. 

Phosphorylation of the positive control GST-YA was detected in both time courses 

(Figures 3.5 A and B, upper panels), indicated by a band that corresponded with the 

molecular weight of the protein (31.5 kDa). However, phosphorylation of both hHCN1-

CTD and rNR2A-CTD by either C- or N1-Src was not detected (Figures 3.5 A and B, 

upper panels). The Coomassie stained SDS-PAGE gels for both experiments (Figures 

3.5A and B, lower panels), indicated that equal amounts of protein (rNR2A-CTD and 

hHCN1-CTD) were present in the reaction contents removed at each time interval. 

However, it appeared that there was breakdown of the GST-YA positive control, since a 

large band at approximately 25 kDa (most likely GST) was observed. Yet despite this, 

phosphorylation of GST-YA was still detected.   

A further kinase assay was performed (Figure 3.6), in which the largest amount of protein 

substrate achievable was added to a larger total reaction volume. This resulted in the 

maximum amount of protein being loaded onto the protein gel. The prepared reactions 

contained 5.8 µM hHCN1-CTD and 7.2 µM rNR2A-CTD, resulting in the loading of 

approximately 4.5 µg of protein on to the protein gel for analysis. This was almost double 

the quantity of protein (approximately 2-2.5 µg) that was analysed in the time course 

shown in Figure 3.5. GST-YA, rNR2A-CTD and hHCN1-CTD were incubated separately 

in the presence or absence (negative control) of C- or N1-Src with γ-32P ATP. Whilst 

phosphorylation by both C- and N1-Src of the GST-YA positive control was detected by 

the autoradiograph (Mr=~31.5 kDa), neither the rNR2A-CTD nor hHCN1-CTD were 

phosphorylated (Figure 3.6, upper panel). The Coomassie stained gels confirmed that 

equal quantities of each protein were added to the kinase reactions (Figure 3.6, lower 

panel).     

  



 
 

83 
 

 

5 µM rNR2A-CTD (A) and hHCN1-CTD (B) were incubated with C- or N1-Src at 30 °C 

for 3 h with γ-32P ATP. At different time intervals, 10 μl of the reaction was removed and 

terminated with 2X Laemmli buffer. Phosphorylation of GST-YA by C- and N1-Src was 

used as a positive control. Samples were subjected to SDS-PAGE and gels were 

exposed to X-ray film for 24 h and developed using an X-ray processor (upper panels). 

Gels were also stained with Coomassie to visualise all prominent protein bands (lower 

panels). 

 

 

 

 

 

 

 

 

Figure 3.5: Neither rNR2A-CTD nor hHCN1-CTD Phosphorylation by C- or N1- Src 

were Detected by Autoradiography. 
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GST-YA (5 μM), rNR2A-CTD (7.2 μM) and hHCN1-CTD (5.8 μM) were incubated with 

no kinase, C- or N1-Src at 30 °C for 3 h with γ-32P ATP. Reactions (25 µl) were terminated 

by addition of 2X Laemmli buffer. Samples (30 μl) were subject to SDS-PAGE and the 

gel was stained with Coomassie to visualise protein bands (lower panel). The gel was 

exposed to X-ray film for 24 h and developed using an X-ray processor (upper panel). 

 

 

 

 

 

  

Figure 3.6: Increasing the Reaction Content of rNR2A-CTD and hHCN1-CTD did 

not Result in Detectable Phosphorylation by C- or N1- Src by Autoradiography. 
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3.2.6 Phosphorylation of the rNR2A- and hHCN1-CTD by PKC was not Detected 

by Autoradiography.  

Since the detectable phosphorylation of the rNR2A-CTD by C- or N1-Src was not 

achieved, despite utilising published method modifications, a kinase assay using a third 

enzyme that was known to phosphorylate the rNR2A-CTD and thought to phosphorylate 

the hHCN1-CTD was performed (Leonard and Hell, 1997, Reetz and Strauss, 2013). 

Phosphorylation of GST-YA by purified C- and N1-Src suggested that both kinases were 

active and that it was more likely an issue with the protein substrates. The aim of this 

experiment was to determine whether this was the case by using an alternative kinase, 

namely Protein Kinase C (PKC), a serine/threonine kinase known to phosphorylate 

rNR2A-CTD on at least 3 residues (Figure 3.7A) (Chen and Roche, 2007). In addition to 

this, it is also thought that PKC phosphorylates the HCN1-CTD, since PKC is a known 

modulator of HCN1 channel activity and PKC activation corresponds with increased 

serine phosphorylation of the protein (Reetz and Strauss, 2013, Williams et al., 2015). 

Myelin basic protein (MBP), a well-known substrate of PKC, was used as a positive 

control for the experiment, in the event that rNR2A-CTD and hHCN1-CTD were not 

phosphorylated.     

MBP obtained from Sigma, rNR2A-CTD and hHCN1-CTD (5 µM), were incubated 

separately in the presence or absence of PKC-zeta and γ-32P ATP for 3 h (Figure 3.7B). 

Phosphorylation of the positive control, MBP, was detected, indicated by a band that 

corresponded with the molecular weight of the protein (18.4 kDa) and the Coomassie 

stained protein band (Figures 3.7 B). However, phosphorylation of rNR2A-CTD by PKC-

zeta was not detected (Figures 3.7 B, upper panel). In addition to this, whilst the full 

length hHCN1-CTD did not appear to be phosphorylated, there was a faint band at 

approximately 28 kDa that corresponded to a protein contaminant that originated from 

the hHCN1-CTD protein preparation. The Coomassie stained SDS-PAGE gel (Figure 3.7 

B, lower panels) indicated that equal amounts of protein (MBP, rNR2A-CTD and hHCN1-

CTD) were present in the reaction, which were incubated in the presence or absence of 

PKC-zeta. Given that the rNR2A-CTD positive control was not phosphorylated and the 

results obtained in the C- and N1-Src kinase assays, no firm conclusions could be drawn 

from these data with regards to the ability of C- or N1-Src to phosphorylate hHCN1-CTD 

or rNR2A-CTD.      
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(A) Schematic diagram showing residues 1047-1464 of NR2A i.e. the 418 residue NR2A-

CTD. Three serine (S) residues (S1291, S1312 and S1416) phosphorylated within 

NR2A-CTD by PKC are labelled. (B) MBP (5 µM), rNR2A-CTD and hHCN1-CTD were 

incubated separately with PKC-zeta and γ-32P ATP at 30 °C for 3 h. Reactions (25 µl) 

were terminated by addition of 2X Laemmli buffer and the samples (30 μl) were subjected 

to SDS-PAGE. The 10 % gel was stained with Coomassie to visualise protein bands 

(lower panel) and was exposed to X-ray film for 24 h (upper panel). 

 

  

Figure 3.7: Neither Full Length rNR2A-CTD nor hHCN1-CTD were Phosphorylated 

by PKC-Zeta when Incubated with γ-32P ATP for 3 h. 
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3.2.7 Prospective N1-Src Substrates Identified Through a Peptide Substrate 

Screen. 

Given that the phosphorylation of rNR2A- and hHCN1-CTD was not observed in vitro, a 

different approach, utilising prospective substrates from the bioinformatics screen 

(described in Section 3.1) was adopted. The aim of this was to identify novel, putative 

N1-Src substrates, that contained the N1-Src SH3 binding consensus sequence 

described in Section 3.1. In the second half of this chapter, a phosphorylation screen of 

peptides whose sequences were selected from prospective substrates of interest and 

contained the N1-Src consensus motif, was performed.  

The phosphorylation of the prospective peptide substrates was compared with the 

phosphorylation of PD1, a positive control peptide that contained the N1-Src SH3 binding 

motif, as well as PD1-P5A, the negative control for PD1, in which a critical residue 

necessary for N1-Src SH3 binding is mutated to alanine (Figure 3.8). Like the ideal Src 

substrate peptide YA each of the peptides (PD1 and PD1-P5A) were expressed as GST 

fusions (Figure 3.8). The peptides comprised the ideal Src substrate (AEEEIYGEF), 

which contained a tyrosine (Y) residue that is phosphorylated by Src, followed by a short 

linker, and finally the SH3 domain binding motif (Figure 3.8). The latter sequence 

containing the SH3 binding motif varied between the prospective peptide substrates 

selected, but most adhered exactly to the established N1-Src consensus motif 

+XPXXT/AX+ (where + is a positively charged amino acid residue and X can be any 

residue, see Figure 3.8).  

Given that the phosphorylation of the prospective N1-Src peptide substrates was to be 

compared to the level of PD1 and PD1-P5A phosphorylation, firstly, the concentrations 

at which PD1 and PD1-P5A phosphorylation differed were established. Since both PD1 

and PD1-P5A contain the ideal Src substrate sequence, both GST-fusion peptides are 

phosphorylated regardless of the presence of the N1-Src SH3 binding motif, which was 

mutated in PD1-P5A. Therefore, it was necessary to determine a protein concentration 

at which PD1 phosphorylation by N1-Src exceeded PD1-P5A phosphorylation.  

Previous studies in the Evans lab have directly compared the phosphorylation of PD1 by 

N1-Src to that of YA; the GST-fusion peptide that encodes the ideal Src substrate linked 

to a mutated C-Src SH3 binding motif, which is similar to PD1-P5A. The Km for PD1 

phosphorylation was significantly lower than that of GST-YA, and it appeared that the 

greatest differences in phosphorylation occurred between the substrate concentrations 

of 1-25 µM. PD1-P5A was also shown to be phosphorylated poorly by N1-Src at a 

concentration of 8.3 µM compared to PD1, which was similar to GST-YA (Keenan, 2012). 
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The GST- fusion peptides created contained the ideal Src substrate, AEEEIYGEF (Y), 

which contains a tyrosine residue (purple) that can be phosphorylated by Src kinase 

domains. In PD1, Y was linked to the proposed consensus motif for optimal N1-Src SH3 

binding. The control for PD1 (PD1-P5A), contained a mutation in the fifth proline residue 

(underlined) of the PD1 consensus motif, which abolishes substrate docking to the N1-

Src SH3 domain. In the putative peptide substrates, Y was linked to peptides derived 

from prospective N1-Src substrates that contained the N1-Src SH3 consensus motif, and 

were predicted to be phosphorylated by Src. Residues critical to the consensus SH3 

binding motif are depicted in bold, positively charged residues are highlighted in red.   

 

 

 

 

 

 

 

 

 

  

Figure 3.8: GST-Fusion Peptide Substrates Contained the Proposed N1-Src SH3   

Binding Consensus Sequence Linked to the ‘Ideal Src Substrate’. 
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In this study, the in vitro phosphorylation of PD1-P5A and PD1 were compared at three 

different concentrations to confirm at which concentration the greatest difference in 

phosphorylation occurred. PD1 and PD1-P5A were incubated separately with N1-Src 

kinase and ATP at final concentrations of 1.7, 5 and 15 µM. A Coomassie stained SDS-

PAGE gel confirmed equal protein loading between the PD1 and PD1-P5A reactions 

(Figure 3.9). Western blot data of the same reactions indicated that neither PD1-P5A nor 

PD1 were phosphorylated at a concentration of 1.7 µM however, PD1 phosphorylation 

exceeded PD1-P5A phosphorylation at concentrations of 5 and 15 µM. The difference in 

phosphorylation levels between PD1-P5A and PD1 was greatest at 5 µM, therefore this 

concentration was carried forward for use in the peptide substrate screen. 
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A Western blot (W.B) and the corresponding Coomassie stained 15 % gel representing 

samples (5 µl) from N1-Src kinase assay reactions containing PD1-P5A and PD1. The 

substrates (1.7, 5 and 15 µM) were incubated in separate reactions with N1-Src (5 nM), 

ATP (0.5 mM) and MgCl2 (10 mM) in Tris pH 7.5 (100 mM) for 1.5 h at 30 °C. Reactions 

were terminated with 2 X Laemmli buffer. Tyrosine phosphorylation of the GST-fusion 

peptides was detected by Western blotting, using the primary antibody α-PY20 and α-

mouse HRP secondary. 

 

 

  

Figure 3.9: Differential Phosphorylation of PD1-P5A and PD1 was Observed at a 

Substrate Concentration of 5 µM. 
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Interesting putative N1-Src substrates that fitted the criteria of containing an N1-Src SH3 

domain binding motif, as well as being predicted to be tyrosine phosphorylated by Src, 

were selected for use in the peptide substrate screen (Table 3.1). Since N1-Src is highly 

expressed in the developing brain and has been implicated to play a role in neuronal 

development, differentiation and cytoskeletal dynamics (Kotani et al., 2007, Worley et 

al., 1997, Maness et al., 1988), the majority of the prospective substrates selected for 

analysis in the screen were linked to these processes.  

RACGAP1, ARHGAP1, KALRN, TRIO and ARHGAP5 are a mixture of Rho family 

GTPase activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs) 

that regulate actin cytoskeletal dynamics, many of which play a role in neuronal 

development. Proteins such as ANK2 and RAF1, are linked to the L1-CAM and MAP 

kinase signalling pathways respectively, which regulate axon outgrowth, whereas NUMB 

regulates cell differentiation through inhibition of NOTCH signalling. Previous work in the 

Evans lab has established a link between L1-CAM mediated neurite outgrowth and N1-

Src; this will be discussed further in Chapter 4. Other selected targets such as M4K-1, 

SYNJ1 and AKAP2 and PTPN6 were identified as interesting potential N1-Src substrates 

that are involved in various signalling processes in the brain or in the latter case, in the 

regulation of Src itself. Finally, whilst the NMDAR subunit NR2A does not have a 

consensus motif that conforms exactly with the optimal N1-Src SH3 binding sequence, 

it has been shown to be phosphorylated by N1-Src (Groveman et al., 2011). It would 

therefore be interesting to determine whether the selected peptide enhances 

phosphorylation of the ideal Src substrate.  

Complimentary oligonucleotides that encoded the prospective N1-Src SH3 domain 

binding peptides were annealed and sub-cloned into pGEX-4T-1 by Dr Gareth Evans. 

Successful clones encoding the GST-fusion peptides P1-P13 (see Table 3.1) were 

transformed into BL21 E. coli cells. The proteins were expressed (Figure 3.10A) and 

batch purified using glutathione resin (Section 2.3.2). The concentrations of each protein 

were determined by Nanodrop and confirmed by the observation of equal loading of 1 ug 

of each protein on a Coomassie stained gel. Many of the GST-fusion peptides expressed 

(~31 kDa), including PD1 and PD1-P5A, appeared as doublet bands on the gel (Figure 

3.10B). These GST-fusion peptides were carried forward for use in in vitro N1-Src kinase 

assays.     
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Table 3.1: Prospective N1-Src Substrate Candidates that were Selected for the In 
Vitro Kinase Assay Screen. 

Residues representing the N1-Src SH3 domain binding motif are shown in bold, with 

positively charged residues highlighted in red. Each peptide (P) was given a number 

between 1 and 13. *The consensus motif in the NR2A peptide selected, did not adhere 

exactly to the proposed N1-Src SH3 binding sequence. 

  

Peptide 
Protein of 

origin 
Peptide 

Sequence 
Role 

P1 M4K-1 ETRPPANTARLQ 
Plays a role in cerebral ischemia, 
linked with Src (Li et al., 2008b). 

P2 ANK2 KEKGPILTQREA 
Links L1-CAM to the actin 

cytoskeleton during axon outgrowth 
(Whittard et al., 2006b). 

P3 NR2A IGRCPSDPYKHS* 

NMDA receptor subunit, reportedly 
phosphorylated by C- and N1-Src 
(Groveman et al., 2011, Lau and 

Huganir, 1995). 

P4 RAF1 QPKTPVPAQRER 
MAPKKK, plays a role in neuronal 
differentiation and axon outgrowth 

(Markus et al., 2002). 

P5 NUMB HRRTPSEADRWL 
Part of the notch signalling pathway, 

regulates in cell differentiation 
(Wakamatsu et al., 1999). 

P6 PTPN6 YLRQPYYATRVN 
Phosphatase involved in Src 

regulation and regulated by Src itself 
(Poole and Jones, 2005). 

P7 RACGAP1 NLKEPLLTFRLN 
Rac GAP, cell differentiation 

(Kitamura et al., 2001). 

P8 ARHGAP1 TQKSPATAPKPM 
Rho GAP, cytoskeletal remodelling 

(Clay and Halloran, 2013). 

P9 AKAP2 VKKNPGIAAKWW 
PKA anchoring protein that is 

enriched in the cerebellum 
(Wang et al., 2001b). 

P10 KALRN YSKIPLDTSRLA 
Rho GEF, dendritic morphogenesis.  
(Yan et al., 2014, Xie et al., 2010). 

P11 TRIO GPKRPGNTLRKW 
Rho GEF, neuronal development 
(Bateman and Van Vactor, 2001). 

P12 ARHGAP5 AAKIPDKTERLH 
Rho GAP, a known C-Src substrate 

important in the developing brain 
(Brouns et al., 2001). 

P13 SYNJ1 GARSPAPTRKEF 
Synaptic vesicle endocytosis  

(Slepnev and De Camilli, 2000). 
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Coomassie stained, 15 % SDS polyacrylamide gel showing (A) samples (2 µl) of 

uninduced (UI) and induced (I) BL21 E. coli cells expressing peptides P1-13 that were 

cultured at 37 ˚C for 3 h after IPTG induction. (B) Samples (1µg) of eluted GST-fusion 

peptides that were isolated from 0.3 L cultures of IPTG-induced BL21 E. coli cells and 

purified using glutathione resin. The proteins were eluted using glutathione elution buffer, 

and the concentrations were determined using a Nanodrop spectrophotometer.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Expression and Purification of GST-Fusion Peptides P1-P13. 
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The GST-fusion proteins PD1, PD1-P5A and substrates P1-13 (5 µM) were incubated 

with N1-Src in a kinase reaction (described in Section 2.3.10). The samples were 

distributed across two blots, both containing the samples PD1-P5A and PD1, however 

the first blot contained samples P1-7 and the second represented samples P8-13. A 

second set of identical protein gels were Coomassie stained, to control for the protein 

contents of the reactions.  

The Western blots presented in Figure 3.11A demonstrate the variability in 

phosphorylation of the GST-fusion peptides between three experimental relicates of the 

substrate phosphorylation screen. Whilst PD1 phosphorylation was obviously greater 

than PD1-P5A phosphorylation for two out of three experimental replicates, there 

appeared to be a large degree of variabilty between the differences in phosphorylation 

on blots within each experiment. In addition, in the case of replicate 2, the bands for PD1 

and PD1-P5A were very similar on the blot containing samples P1-7, but this was not 

reflected by the bands for the same samples present on the second blot. Upon first 

inspection, replicates 2 and 3 did not appear to produce results that were consistent with 

the first, or each other. However these observations did not take into account possible 

fluctutations in the protein contents of the reactions evidenced by the Coomasie stained 

protein gels (Figure 3.11A; lower panels) or the differences that would inevitably arise 

from the processing of different blot exposures.   

Figure 3.11B represents data that were obtained after performing densitometry on 

phosphorylated substrate bands (~31 kDa) present on the developed blots (Figure 

3.11A), using ImageJ. Since the blots produced within each replicate both contained 

bands for the PD1 positive control, to facilitate the comparison of substrate 

phosphorylation between blots, the densitometry values of one blot were adjusted 

according to the the scale factor obtained from dividing the lowest PD1 densitometry 

value by the highest. In addition, to account for potential differences in the amount 

substrate added per reaction, the densitometry bands obtained for each phosphorylated 

protein were divided by the densitometry values from the corresponding Coomassie 

stained GST-fusion peptide bands. Finally, to account for potential differences in the 

processing of blots and Coomassie gels between biological replicates, the values within 

each experiment were normalised to PD1. Differences between the data values obtained 

were assessed for significance using a one-way ANOVA.   
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(A) Western blots and their corresponding Coomassie stained gels (15 %) representing 
samples (5 µl) from N1-Src kinase assay reactions containing the GST-fusion peptide 
substrates PD1-P5A, PD1 and P1-13 (N=3). GST-fusion peptides (5 µM) were incubated 
with N1-Src (5 nM), ATP (0.5 mM) and MgCl2 (10 mM) in Tris pH 7.5 (100 mM) for 1.5 h 
at 30 °C. Reactions were terminated by the addition of 2X Laemmli buffer. Tyrosine 
phosphorylation of the substrates was detected by Western blotting using the primary 
antibody α-PY20 and α-mouse HRP secondary. (B) In ImageJ, substrate 
phosphorylation was quantified after performing densitometry blots obtained from 3 
independent experiments. Within individual replicates, densitometry values were 
adjusted to account for different PD1 values between blots and the quantity of substrate 
added to each reaction. The resulting values obtained for each experiment were 
normalised to the values for PD1. Statistical significance was assessed using a one-way 
ANOVA. 

  

Figure 3.11: Assessment of the Tyrosine Phosphorylation of Putative N1-Src GST-

Fusion Peptide Substrates by Western Blotting 
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Densitometry analysis (Figure 3.11B) revealed that whilst the peptide substrates P1-13 

appeared to be phosphorylated by N1-Src at comparable or greater levels than PD1, no 

significant differences between the phosphorylation levels of P1-P13, PD1 or PD1-P5A 

were observed. However, the error bars, particularly for substrates P1-7, re-affirmed 

previous observations regarding the reproducibility of the results between replicates. In 

order for candidate N1-Src substrates to be identified in the future, this assay must be 

optimised, to reduce the degree of variability between replicates.   
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3.3 Discussion 

3.3.1 A Lack of In Vitro Phosphorylation of rNR2A-CTD and hHCN1-CTD by C- 

and N1-Src. 

The primary aim of this chapter was to determine whether the human HCN1-CTD was 

phosphorylated by N1-Src and to identify the critical residues required for this process. 

The second aim was to compare C- and N1-Src phosphorylation of the rNR2A-CTD, with 

a view to pinpointing the phosphorylated residues using mass spectrometry and site 

directed mutagenesis.  

However, after performing in vitro kinase assays with both the hHCN1- and rNR2A-

CTDs, phosphorylation of both of these proteins could not be detected by either Western 

blotting or autoradiography. This was particularly surprising in the case of the rNR2A-

CTD, which was a positive control for the experiment. In addition, phosphorylation of the 

rNR2A-CTD by PKC-zeta was not observed, despite this modification being reported 

previously (Gardoni et al., 2001a, Leonard and Hell, 1997). This suggested that there 

was a technical problem with the assay used. There are multiple aspects of the 

experiments performed that could have affected the outcome, which will be discussed 

below.   

Firstly, there is a possibility that there was a problem with the recombinant hHCN1- and 

rNR2A-CTD proteins, which could have contributed to the negative result of the kinase 

assays. However, measures were taken to ensure that the recombinant proteins used 

were comparable to those produced in similar studies. Prior to the expression of the 

proteins, the nucleotide sequence of both the hHCN1-CTD and the rNR2A-CTD were 

cloned into pGEX-6P-1 (or 4T-1, depending on the method used) and the construct 

sequences were verified. This provided confidence that the proteins expressed were the 

correct proteins, which had no mutations that could affect protein folding or function. In 

addition to this, mass spectrometry was used to confirm the identity of the proteins. The 

masses of the Coomassie stained GST-tagged proteins corresponded to the expected 

masses of GST-hHCN1- and GST-rNR2A-CTD, which were 80.5 and 69.2 kDa 

respectively. Whilst the coomassie stained GST-cleaved hHCN1-CTD band appeared at 

the correct mass, that of rNR2A ran slightly higher than expected. However, attempts to 

identify the exact mass of the protein were unsuccessful due to technical issues. Despite 

this, it is not uncommon for proteins to run at a slightly different mass than expected, and 

since the GST-rNR2A-CTD appeared to be the correct molecular weight, and a 

Coomassie stained GST band (26.4 kDa) was observed in the GST-rNR2A-CTD 

cleavage reaction (data not shown), it was unlikely that this was a cause for concern.  
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Notably, the recombinant GST-fusion proteins expressed both contained a ladder of 

contaminants that were visible on a Coomassie stained gel and were likely a result of 

protein degradation. It was thought that this could have been due to the fact that 

mammalian proteins were being expressed in a bacterial system, in which some 

mammalian codons are rarely used and therefore the correct tRNAs are lacking. As a 

result, protein translation can be affected. This was primarily tackled by expressing the 

proteins in E. coli strains containing plasmids that encoded tRNAs for some of the codons 

that are rarely used in bacterial protein translation. However, this did not eradicate 

protein truncation/degradation. In future, codon optimisation of the nucleotide sequences 

could be performed to replace rare codons with those that are commonplace in bacteria 

with the aim of improving protein translation, however double stranded DNA synthesis is 

costly, and might not resolve the problem of degradation.  

Altering the bacterial lysis method from sonication to using a French press appeared to 

have a mild effect on GST-hHCN1-CTD degradation, yet the greatest effects were 

observed when the proteins were cleaved from their GST tags. Whilst this did not totally 

diminish protein degradation, it appeared to be largely reduced. Despite this, improving 

the purity of the protein expressed had no effect on the outcome of the phosphorylation 

reactions performed.  

Whilst there was a possibility that the degradation products had inhibited the kinase 

reactions, studies in the literature, in which GST-HCN-CTDs have been shown to be 

phosphorylated, have used recombinant proteins that had a similar pattern of breakdown 

products. For example, recombinant HCN2- and HCN4-CTDs were shown to be 

phosphorylated by in vitro C-Src and PKA respectively and suffered a comparable 

degree of protein degradation (Zong et al., 2005, Liao et al., 2010). In addition, (Santoro 

et al., 2004) successfully showed an interaction between the HCN1-CTD and Trip8b, 

irrespective of the degradation products in the protein preparation. In all of these studies, 

the purification of GST-HCN-CTDs was performed using glutathione resin, the method 

that was adopted in this study. Furthermore, whilst the in vitro phosphorylation of the 

NR2A-CTD by C-Src was not shown using recombinant proteins, a smaller portion of the 

GST-NR2A-CTD (residues 1244-1464) including degradation products, was shown to be 

phosphorylated by α-CAMKII (Gardoni et al., 2001a, Gardoni et al., 2001b). The results 

from these studies suggested that the presence of protein degradation products affected 

neither protein phosphorylation nor protein-protein interactions.  

The activity of the recombinant Src kinases used in these experiments was confirmed by 

the successful phosphorylation of the ideal Src substrate (GST-YA). The recombinant 

kinases, which are routinely used in the Evans lab for in vitro kinase assays, have also 
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been shown to phosphorylate synaptophysin (C-, N1- and N2-Src) and the N-terminal 

domains of Mint1, 2 and 3 (C-Src only) (Keenan et al., 2015, Dunning et al., 2016). In 

addition to this, the kinase activity of PKC-zeta was demonstrated by phosphorylating 

the positive control, MBP. Thus, there is considerable evidence suggesting the kinases 

used, were capable of phosphorylating both hHCN1- and rNR2A-CTDs.  

The composition of the kinase assays used in this study, including the buffer used 

(100 Mm Tris pH 7.5) and concentration of the co-factors ATP (0.5 mM) and MgCl2 

(10 mM), had been used in previous studies in the Evans lab (Keenan et al., 2015). 

These conditions were also similar to those used by (Zong et al., 2005) in the 

phosphorylation of the HCN2-CTD by C-Src, however, the reactions also included 

1 mM DTT and 200 µM pervanadate, the latter of which is a phosphatase inhibitor. In 

addition, the kinase reactions were performed using GST-HCN2-CTD that remained 

bound to glutathione resin (beads). However, incorporation of these changes into the 

experiments performed had no effect on the outcome of the GST-rNR2A- and GST-

hHCN1-CTD phosphorylation assays. Increasing the sensitivity of the assay by 

incubating the substrates with γ-32P ATP also had no effect on the result. One possibility 

could be that the buffer in which the reactions were performed, negatively affected the 

reaction outcome. To test this, different buffers that are also commonly used for kinases 

assays, such as HEPES, MOPS or MES, could be trialled.  

Two different methods were used to detect protein phosphorylation in the studies in this 

chapter. In the first instance, protein phosphorylation was detected via Western Blotting, 

using a phospho-tyrosine specific primary antibody. This method was adopted since it 

provides a relatively simple and safe way of achieving selectivity and sensitivity. 

However, even though the phosphorylation of the YA positive control was achieved, 

phosphorylation of both the hHCN1- and rNR2A-CTDs was not detected using this 

technique. Therefore, with the aim of increasing the sensitivity of the phosphorylation 

detection method, a 32P kinase assay was designed. Using this method, phosphorylated 

proteins were radiolabelled with 32P and protein phosphorylation was directly detected 

using autoradiography. Therefore, the detection of protein phosphorylation did not rely 

upon a multi-step method involving different antibody incubations, unlike Western 

Blotting. This eradicated potential issues that may arise with Western Blotting, such as 

poor specificity of the phospho-tyrosine primary antibody, which may differ from protein 

to protein. However, after performing 32P kinase assays with both hHCN1- and rNR2A-

CTD, their phosphorylation was undetected by autoradiography. In addition to this, the 

phosphorylation of the YA positive control did not exceed and was in some cases lower 

than the signal that was generated via the Western Blotting of similar control samples. 

This suggested that this technique did not provide superior sensitivity in the detection of 
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protein phosphorylation. This could have been because the incorporation of radiolabelled 

phosphate into the substrate was too low, which could be addressed by increasing the 

concentration of radiolabelled ATP in the reaction. In addition to this, the sensitivity of 

the autoradiography detection method could be enhanced by using a phosphorescent 

intensifying screen. The β-particles emitted by 32P can sometimes pass through X-Ray 

film without activating the silver halide crystals inside the film, which is required for 

detection. When a phosphorescent intensifying screen is irradiated by one of these 

particles, it releases light which in turn activates the crystals in the film, enhancing the 

sensitivity of the assay.  

Other methods that have been used in the phosphorylation of the NR2- and HCN-CTDs 

include ELISA and the immunoprecipitation of the full length ion channel subunits from 

heterologous or primary neuronal cells that were either co-expressing a kinase, or 

incubated with a kinase post-extraction. In studies by Yang and Leonard (2001), 

phosphorylated NR2A was immunoprecipitated from HEK293 cells that co-expressed V-

Src with both the NR2A and NR1 subunits of the NMDAR or NR2A alone. In addition, 

phosphorylation of the NR2A subunit by PKC has been demonstrated with NMDARs that 

were solubilised from rat brains and subsequently incubated with PKC in vitro (Leonard 

and Hell, 1997). Multiple other studies involving the phosphorylation of the NR2-CTDs 

have also used similar approaches with multiple kinases (Lau and Huganir, 1995, 

Nakazawa et al., 2001). Groveman et al., (2011), used an alternative method to 

demonstrate the tyrosine phosphorylation of the NR2A-CTD by N1-Src. An ELISA-based 

assay was used, whereby N1-Src was incubated with Mg2+, Mn2+ and ATP in NR2A-CTD 

coated wells. Phosphorylation of the protein was detected using a HRP-conjugated 

phosphotyrosine antibody and was shown to increase steadily over a period of 1 h. There 

is a possibility that this observation could have been a false positive, however, given the 

precedence for Src phosphorylation of the NR2A subunit and the fact that N1-Src was 

also shown to bind to the NR2A-CTD, this is unlikely.   

To conclude, the experiments performed in this chapter were unable to report a definitive 

outcome with regard to whether the hHCN1-CTD is a substrate of N1-Src. Despite the 

fact that hHCN1-CTD was not reported, the lack of phosphorylation of the rNR2A-CTD, 

which has been shown to be phosphorylated by both C- and N1-Src, meant that firm 

conclusions could not be derived. Whilst it seems unlikely that the substrate degradation 

products, kinase activity or reaction buffer contents were the root cause of the problem 

given the evidence presented from the literature, it is possible that there was an issue 

regarding the correct folding of the protein substrates. 
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To determine whether the proteins are folded correctly, a technique called circular 

dichroism (CD) could be used to derive information regarding the secondary structures 

of both the hHCN1- and rNR2A-CTDs. The basis of the technique is dependent upon the 

differential absorption of left and right circularly polarised light by chromophores that 

possess intrinsic chirality. The CD spectra for peptide bond absorption in the proteins of 

interest, can provide information regarding the proportion of α-helices, β-pleated sheets 

and β-turns, which make up the secondary structures of the proteins.    

In addition to the use of CD, a functional assay could be used to ensure that the proteins 

are correctly folded. For example, the cyclic nucleotide binding domain in the HCN1-

CTD, is known to bind cyclic adenosine monophosphate (cAMP), which facilitates the 

voltage-dependent activation of the HCN1 channel (Biel, 2009). A binding assay with the 

recombinantly expressed hHCN1-CTD and cAMP- conjugated resin could be performed 

to establish whether the hHCN1-CTD is folded properly. Similarly, the NR2A-CTD has 

multiple known binding partners, including members of the PSD-95/SAP-97 family, which 

bind via there PDZ domains to the C-terminal tail of the NR2A-CTD (Niethammer et al., 

1996). Such interactions could be exploited in a pull-down assay, to determine whether 

the recombinantly expressed rNR2A-CTD is functional and folded correctly. 

Moving forward from these studies, there are multiple avenues that could be explored in 

order to try to further optimise the kinase assays, with the aim of achieving rNR2A-CTD 

phosphorylation by C-, N1-Src and PKC, such as codon optimizing the DNA sequence 

of the substrates or trialling multiple reaction buffers. However, after taking into account 

the financial and time costs, it might be more productive to perform these 

phosphorylation studies by overexpressing the CTDs or full length channel subunits with 

C- or N1-Src in heterologous cells, and subsequently immunoprecipitating the tyrosine 

phosphorylated substrates.  

3.3.2 The Design of an In Vitro Kinase Assay Peptide Substrate Screen to Identify 

Putative Novel N1-Src Peptides. 

In the second part of this chapter, the aim was to design an in vitro kinase assay screen 

to test the ability of peptides selected from putative N1-Src substrates, which contained 

the N1-Src SH3 binding motif, to enhance the phosphorylation of the ideal Src substrate. 

Interesting N1-Src substrate candidates that were identified in a bioinformatics study, 

were selected based on the fact that they were linked to processes in which N1-Src is 

predicted to play a role (e.g. the regulation of cytoskeletal dynamics during neuronal 

development; Table 3.1).  

The GST-fusion peptides PD1-P5A, PD1 and P1-13 were successfully expressed and 

purified (Figure 5.10). Although, many of the purified GST-fusion peptides appeared as 



 
 

102 
 

doublet or in some cases triplet bands on coomassie stained proteins gels. There are 

several reasons that may have contributed to this observation. For example, contaminant 

protease activity or poor protein stability may have led to the breakdown of the proteins.   

To facilitate the comparison of the phosphorylation of the different GST-fusion peptides 

P1-P13 with respect to the positive (PD1) and negative (PD1-P5A) controls, a 

concentration at which the phosphorylation of PD1 exceeded that of PD1-P5A was 

determined (µM) and carried forward for use in the N1-Src substrate screen (Figure 3.9). 

This result was in accordance with a previous result in the Evans lab whereby PD1-P5A 

was shown to be phosphorylated poorly by N1-Src at a concentration of 8.3 µM when 

compared to PD1. Therefore, an N1-Src substrate screen that compared the 

phosphorylation of P1-13, to that of both PD1 and PD1-P5A was performed at the 

selected concentration, to identify potential N1-Src substrates based on the ability of their 

corresponding predicted N1-Src SH3 binding motif peptides to enhance the 

phosphorylation of the ideal Src substrate.  

The outcome of the experiments performed were inconclusive due to the variability that 

occurred within and between expreimental replicates (Figures 3.11A and B). 

Phosphorylation of the positive control PD1 was notably greater than PD1-P5A 

phosphorylation for two out of three experimental replicates, however there was a 

noticable degree of variabilty between the differences in phosphorylation on blots within 

each experiment. Within replicate two, the bands for PD1 and PD1-P5A were very similar 

on the blot containing samples P1-7 but this was not the case in the second blot ( P1-8), 

since PD1 phosphorylation exceeded that of PD1-P5A. The densitometry analysis 

(Figure 3.11B) that compared the phosphorylation of P1-13 to PD1 and PD1-P5A 

revealed that the degree of error between the experimental replicates was large, 

particularly for samples P1-7 and no statistically significant differences were observed.   

The degree of variabilty observed, could have been linked to human error or due to 

issues that occurred during Western blotting, such as uneven transfer. Performing the in 

vitro kinase assays with γ-32P ATP would prevent any error caused by an uneven 

transfer, since autoradiography could be used to detect peptide phosphorylation.  

Alternatively, in place of using GST-fusion peptides, the phosphorylation of synthesised 

peptides lacking the GST tag could be compared in an in vitro kinase assay with γ-32P 

ATP. In this assay, the capture of positively charged phosphopeptides that are pre-

treated with phosphoric acid are captured by negatively charged phosphocellulose 

paper, which can subsequently be subjected to Cerenkov counting. This method was 

published by Hastie et al (2006) and is also commonly used to determine the kinetics of 

protein kinase reactions. If this assay can be appropriately optimised, for promising 
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substrate candidates, the kinetics of peptide phosphorylation could be compared to those 

for PD1 phosphorylation to determine whether the substrates are worth pursuing in 

further studies. 

It should also be noted that the use of phospho-specific antibodies makes the 

quantification of phosphorylated protein more difficult. This is because it is unlikely that 

all phosphorylated substrates will be labelled by the antibody and blotting must take 

place within the linear dynamic range of detection to ensure optimal quantification. These 

issues could be overcome using radioactive labelling, since a Cerenkov counter could 

be used to detect and quantify every radio-labelled protein within the samples.  

3.3.3 Alternative Methods for Discovering Novel N1-Src Substrates. 

Once optimised, the peptide screen described in this chapter could provide valuable 

information regarding the discovery of novel N1-Src substrates, however the technique 

presented is relatively low throughput. An alternative in vitro approach that has been 

published by the Schweitzer and Snyder laboratories, would involve the use of a protein 

microarray to screen hundreds of proteins simultaneously for phosphorylation by the 

kinase of interest (i.e. N1-Src; (Meng et al., 2008, Mok et al., 2009)). This would involve 

incubating immobilised functional proteins in solution with recombinant active N1-Src 

kinase and radiolabelled ATP, which could be subsequently analysed by 

autoradiography to reveal novel substrates. The main drawback of this method, aside 

from expense, is that identified targets would then need to be validated in vivo. 

An additional method, that is more frequently used to identify protein kinase substrates, 

is called phosphoproteomics (see Roux and Thibault, 2013 for a comprehensive review 

of methods). Phosphoproteomics generally requires two major steps: 1) the enrichment 

of phospho-proteins or -peptides from cellular extracts, which are 2) analysed using 

tandem-mass spectrometry (MS/MS). The data obtained from the MS/MS is used to 

identify the phosphorylated proteins (i.e. kinase substrates) from large peptide 

databases. The advantages of this method, are that it can be used to identify substrates 

from cultured cells and tissue samples, therefore the substrates that are identified are 

more likely to be physiologically relevant. However, in order to produce optimal results, 

large amounts of material are required and low abundance phospho-sites are often 

undetected. In addition to this, phosphoproteomics does not distinguish between 

proteins that are phosphorylated directly or indirectly by the kinase.  

Kevin Shokat’s laboratory developed a novel technique for identifying direct kinase 

substrates using a protein engineering based method (e.g. Blethrow et al., 2008, 

Ubersax et al., 2003). The technique involves mutating a residue in the ATP-binding 

pocket of the kinase of interest, in a manner that favours the binding of a radio-labelled 
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ATP analogue ([γ-32P]-N6-cyclopentyl-ATP), without compromising catalytic activity. The 

resultant kinase is then incubated with cellular lysates, in the presence of the ATP 

analogue, which results in the radiolabelling of target substrates that can subsequently 

be identified by MS (Blethrow et al., 2008, Ubersax et al., 2003). This approach has been 

used to successfully engineer mutants of both V-Src (Shah et al., 1997) and Fyn (Liu et 

al., 1998). It could therefore likely likely be adopted for N1-Src, since V-Src, Fyn and N1-

Src kinases share a conserved catalytic kinase domain. The main disadvantage of this 

method relates to the physiological relevance of the substrates identified, although this 

could be confirmed in vivo once the initial experiment has been completed. 
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Chapter 4. The Role of N1-Src in Neuronal Development 

4.1 Introduction 

Many of the putative N1-Src substrates that were screened in Chapter 3 had previously 

been implicated in neuronal morphogenesis. Whilst further method development will be 

required to validate the putative N1-Src substrates from Chapter 3, limited studies in the 

literature have also linked N1-Src with neuronal development (Wiestler and Walter, 1988, 

Kotani et al., 2007, Worley et al., 1997). Chapter 4 will therefore focus on determining 

the functional effects of N1-Src during neuronal morphogenesis.  

4.1.1 N1-Src and Neuronal Development. 

Both the existing literature concerning N1-Src (discussed in Section 1.5.1-2) and 

previous work in the Evans lab link N1-Src function to neuronal development. N1-Src 

expression is elevated above C-Src levels in mouse brain lysates during early 

development, from embryonic day nine onwards (Wiestler and Walter, 1988) and 

conflicting studies have shown that overexpression of N1-Src alters the morphology of 

several types of neurons after plating (Worley et al., 1997, Kotani et al., 2007). Kotani et 

al., (2007) found that in transgenic mice overexpressing constitutively active N1-Src, 

aberrant dendritic morphology occurred in Purkinje neurons and this was less apparent 

in mice overexpressing the non-mutated (less active) N1-Src. In contrast, Worley et al., 

(1997) discovered that in Xenopus ventral forebrain neurons, N1-Src overexpression 

increased the length of the longest neurite. However, the same study showed that retinal 

ganglion cells were unaffected by N1-Src overexpression, yet constitutively active N1-

Src stunted axonal outgrowth.  

Studies in the Evans lab, which utilised a novel putative peptide inhibitor of N1-Src found 

that axon number, length and the number of branches per axon decreased in cerebellar 

granule neurons (CGNs), whereas total neurite length, number of branches per axon and 

average branch length were reduced in hippocampal neurons (Keenan, 2012). Taken 

together these findings suggest that N1-Src may play different roles in different subsets 

of neurons.   

4.1.2 The Role of N1-Src in L1-CAM Mediated Neurite Outgrowth. 

A role for Src in L1-CAM-mediated neurite outgrowth was previously described by Ignelzi 

and colleagues using Src-/- mice, which did not discriminate between specific isoforms. 

A possible role for N1-Src in axonal outgrowth in relation to L1CAM signalling was 

demonstrated in the Evans lab. Cerebellar granule neurons cultured on L1-CAM had 

reduced axonogenesis and reduced axon length in the presence of a selective N1-Src 

inhibitor (Keenan, 2012). Also, 6 potential N1-Src targets have been identified, using 
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bioinformatics (described in Section 3.1.) that are involved in L1CAM signalling, including 

ankyrin B, which anchors L1CAM to the cytoskeleton, modulating L1CAM dependent 

cytoskeletal remodelling (Keenan, 2012). 

4.1.3 Using Rodent Model Systems for Studying the Effects of N1-Src on 

Neuronal Morphology. 

The N1-Src 18 bp mini-exon is conserved in rodents (Martinez et al., 1987, Cartwright et 

al., 1987), thus mouse and rat models provide useful mammalian tools for investigating 

the functions of neuronal Src. The primary cell culture of multiple types of neurons 

derived from juvenile rodent brain tissue has been well documented and is widely used 

experimentally (e.g. (Costa et al., 2016, Smothers et al., 2016, Winkle et al., 2016). In 

this study, hippocampal neurons were used to dissect the role of N1-Src during neuronal 

morphogenesis for two reasons. Firstly, N1-Src expression has previously been detected 

in hippocampal tissue, therefore manipulations of this experimental system are 

physiologically relevant (Sugrue et al., 1990). This also enables the endogenous 

expression of N1-Src to be targeted by RNA silencing methods. Secondly, hippocampal 

neurons develop a more complex neuronal morphology in culture, compared to some 

other commonly utilised cell types such as CGNs. Hippocampal neurons exhibit 

branched neurites; therefore, more complex information can be derived from 

morphological studies.  

When cultured in vitro, hippocampal neurons undergo a well characterised series of 

morphological changes, which ultimately result in polarised mature neurons (Figure 4.1). 

Upon plating, the neurons are spherical in shape, with a lamellipodium surrounding the 

periphery of the cell (Figure 4.1; stage 1). At stage two, the cells extend multiple short 

neurites, which undergo cycles of extension and retraction until one of the neurites 

begins to grow rapidly during stage 3. This neurite will eventually become the axon. After 

this stage, the remaining shorter neurites develop into dendrites (stage 4) and after 

approximately one week in culture, the functional polarisation of the axon and dendrites 

occurs and synapses are created (Dotti et al., 1988, Tahirovic and Bradke, 2009). In the 

majority of the neuronal experiments performed in this chapter, the cells were fixed 2 

days post transfection (DPT), approximately stage 4 of the polarisation process, 

therefore the effects of N1-Src on the early stages of neuronal morphogenesis could be 

assessed. 
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Adapted from (Baj et al., 2014) and (Tahirovic and Bradke, 2009). In culture, hippocampal neurons follow a distinct pattern of development (Dotti et al., 
1988). Upon plating, the rounded cells extend lamellipodia from the cell periphery (stage 1). After 0.5-1 days (d) in culture, several dynamic minor 
processes protrude from the cell body (stage 2), one of which, later (1-2 d) begins to rapidly elongate; this process will become the future axon (stage 
3). At stage 4, the shorter processes grow and develop into dendrites, after which the cells continue to mature and create synaptic connections with 
other neurons (stages 5-6).

Figure 4.1: The Neuronal Polarization of Rat Hippocampal Neurons in Culture (Dotti’s Classification System). 
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4.1.4 Aims 

The ability to specifically knockdown the neuronal splice variants of C-Src has not 

previously been achieved and in the literature, only overexpression studies have been 

reported, delivering conflicting results (Kotani et al., 2007 and Worley et al., 1997). 

Therefore, there are gaps in the field relating to the specific role of N1-Src. This study 

aimed to resolve this controversy by performing both the overexpression and knockdown 

of N1-Src in the same neuronal model (rat hippocampal neurons).  

Ignelzi et al. (1997) demonstrated that Src was required for L1-CAM mediated neurite 

outgrowth, however the specific isoform of Src (C-/N1-/N2-Src) involved was unclear. 

Previous work in the Evans lab suggested a link between N1-Src and L1-CAM-mediated 

neurite outgrowth in CGNs, but whether L1-CAM homophilic or heterophilic interactions 

were involved in the pathway was not investigated. Further experiments were performed 

using a fibroblast model, to determine whether N1-Src mediates process extension via 

L1-CAM homophilic or heterophilic interactions. 

4.2 Results  

4.2.1 Measuring the Morphological Parameters of Rat Hippocampal Neurons. 

In order to quantify changes in neuronal morphology, the NeuronJ plugin for the image 

analysis software ImageJ was used throughout this chapter. NeuronJ provides a semi-

automatic method for tracing neurons in captured microscope images, and facilitates the 

labelling and measurement of different neuronal features including neurites, primary, 

secondary and tertiary branches (Figure 4.2A).  

In this study, the overexpression and shRNA knockdown of N1-Src were performed in 

neurons dissociated from the hippocampi of new-born Wistar rats that were transfected 

after 1 day in vitro (DIV) and fixed and imaged after 2 DPT. Therefore, the effects of N1-

Src on the initial processes of neurite outgrowth could be analysed. At this stage in 

development (stage 4), the major process that will form the axon has begun to grow 

rapidly and outgrowth of the remaining ‘minor’ processes that will form the dendrites has 

also started. Despite this, at this stage the molecular distinction between the axon and 

dendrites can only be determined for approximately 70 % of cultured neurons (Baj et al., 

2014). For this reason, the parameters measured in these studies describe neuronal 

morphology in terms of neurites, for example total length of neurites and length of longest 

neurite (Figure 4.2B). Since, the mechanisms governing neurite branching are different 

to those for neurite outgrowth (Gallo, 2011), parameters describing the primary, 

secondary and tertiary branching of neurites were also measured (Figure 4.2B).  



 
 

110 
 

(A) An example of a neuronal tracing drawn over a 5 DIV hippocampal neuron that was 
transfected with pSuper after 1 DIV. Tracings were drawn using the NeuronJ plugin for 
ImageJ. Different features of the neurons including neurites (green) and primary (red), 
secondary (purple) and tertiary (yellow) branches are highlighted. (B) Schematics of the 
different combinations of tracings that were used to calculate parameters, which describe 
multiple morphological features of the neurons in vitro. 

Figure 4.2: Schematic Diagram Depicting the Method of Hippocampal 

Neuronal Morphology Analysis Using NeuronJ. 
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From the raw neuronal morphology data, it was apparent that there was significant 

variation between the data values obtained for different rat hippocampal neuron 

preparations. This might be attributable to the fact that neurons from each biological 

replicate were cultured from the dissociated hippocampi of individual rat litters that 

descended from different parents. Therefore, it is feasible that natural variation between 

rat litters was responsible for the differences observed between cultures. Alternatively, 

there is a possibility that a variation in the conditions, in which the experiments were 

performed is accountable for the results observed, given that each biological replicate 

was completed independently on different days.  

Figure 4.3 gives an example of control data, where neurons were transfected with the 

empty vector pSuper-CFP and the average total length of neurites per cell was 

measured. In this example, there was a significant difference in mean total neurite length 

occurring between replicates 1-3 and replicate 4 (Figure 4.3A). This is reflected in the 

frequency distribution plot, where there is a shift towards shorter total neurite lengths for 

replicate 4 (Figure 4.3B). To account for these inherent differences between cultures, the 

values for each treatment were normalised to the average control value for each 

parameter.  
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Rat hippocampal neurons (1DIV) were transfected with pSuper-CFP (control) for 48 h 
and processed for immunofluorescence. Using a Zeiss slide scanner, images of four 
whole coverslips were captured per condition from which 30 images of individual neurons 
were randomly selected. In ImageJ, the NeuronJ plugin was used to trace and measure 
neurites. The mean values (A) and frequency distribution (B) of the total length of 
neurites are presented. 

  

Figure 4.3: The Length of Rat Hippocampal Neurons Varied Between 

Cultures. 
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4.2.2 N1-Src Overexpression in Hippocampal Neurons Leads to Aberrant 

Neuronal Morphology.  

Previous studies characterising N1-Src overexpression in vivo have produced conflicting 

results with regards to the function of N1-Src (Section 4.1.1). In addition to this, 

overexpression of N1-Src in Xenopus epithelial cells (Worley et al., 1997) as well as the 

monkey fibroblast cell line COS7 (Keenan, 2012, Lewis, 2014) leads to the formation of 

neurite-like processes, suggesting N1-Src facilitates process extension. To begin 

characterising the role of N1-Src in the neuronal morphogenesis of rat hippocampal 

neurons, N1-Src-mCherry was overexpressed. N1-Src and C-Src overexpression were 

compared to determine the functional differences, if any, between the kinases. 

To analyse the neuronal morphology of the pmCherry, C- or N1-Src-mCherry transfected 

cells (Figure 4.4), neurites were traced and measured in NeuronJ (as described in 

Section 4.2.1) and the average number of neurites, total length of neurites and length of 

longest neurite per cell were analysed for three biological replicates (Figure 4.5).  

Hippocampal neurons overexpressing N1-Src displayed aberrant neuronal morphology 

when compared to control and C-Src overexpressing neurons, with the majority of 

neurons appearing smaller and underdeveloped (Figure 4.4). In contrast, neurons 

overexpressing C-Src were similar to control neurons, if not larger. These findings were 

supported by the quantification of neurite lengths (Figure 4.5). The mean number of 

neurites was significantly reduced in N1-Src overexpressing neurons compared control 

cells (p=0.032 *, Figure 4.5A). In addition, there was a marked significant decrease in 

the mean total length of neurites (p= <0.001 ***, Figure 4.5C) and the length of the 

longest neurite (p= <0.001 ***, Figure 4.5E) in N1- Src overexpressing neurons 

compared to control cells. These data were also depicted in frequency plots, which 

clearly showed that the distribution of values for mean total neurite length and length of 

longest neurite particularly, were shifted towards lower values (left) for N1-Src 

expressing cells (Figure 4.5 B, D and F.)   

In comparison to control cells, C-Src overexpression resulted in elevated values for all 

the parameters measured, however these differences were not significant (Figure 4.5 

A,C and E). These results were reflected in the frequency plots, where C-Src curves 

were slightly shifted to the right (Figure 4.5 B, D and F). However, the decrease in 

average number of neurites, total length of neurites and length of longest neurite in N1-

Src overexpressing cells compared to C-Src were highly significant (p <0.001 *** for all 

parameters), indicating that C- and N1-Src have hugely different effects when 

overexpressed in hippocampal neurons.  
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Representative images from an N = 3 experiment, displaying the effects of the 

overexpression of C-Src- and N1-Src-mCherry on cell morphology in comparison to the 

empty vector control (pmCherry). 1 DIV rat hippocampal neurons were transfected for 

48 h and processed for immunofluorescence. Using a fluorescence microscope, 25-30 

images were captured per condition across 3 coverslips. The Stitching plugin for ImageJ 

was used to overlay multiple images taken of the same neuron. The expression of 

mCherry and mCherry-Src kinases are displayed in green. N=3, scale bar = 50 µm. 

  

Figure 4.4: Overexpression of N1-Src-mCherry in Hippocampal Neurons Resulted 

in Aberrant Neuronal Morphology. 
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1 DIV rat hippocampal neurons were transfected with empty pmCherry (control), C-Src-
mCherry or N1-Src-mCherry for 48 h and processed for immunofluorescence. Using a 
fluorescence microscope, 26-30 images were captured per condition across 3 
coverslips. In ImageJ, the NeuronJ plugin was used to trace and measure neurites. The 
mean values and frequency distribution were assessed for the following parameters: the 
number of neurites (A, B), total length of neurites (C, D), and length of longest neurite 
(E, F). C-Src and N1-Src data were normalised to the mean value of the control for each 
replicate. The experiment was performed 3 times and statistical significance of the 
pooled data (n=84-88) was assessed in SPSS (*p<0.05, ***p<0.001). Control n=88, C-
Src n=87, N1-Src n=84. 

Figure 4.5: N1-Src-mCherry Overexpression in Hippocampal Neurons Resulted in 

Aberrant Neurite Outgrowth. 
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4.2.3 N1-Src Overexpression Affects the Development of Cultured Rat 

Hippocampal Neurons. 

After analysing the morphology of the neurons overexpressing mCherry, C-Src- and N1-

Src-mCherry, there were apparent differences in the developmental stages of the 

transfected neurons between conditions. Therefore, using Dotti’s classification system, 

depicted in Figure 4.1, the developmental stages of the neurons were determined. The 

percentage of cells at stages 1, 2 or 3 and above was calculated for each condition and 

the statistical significance between the values obtained for each developmental stage 

was determined using a one-way ANOVA, followed by a post-hoc Tukey’s test (Figure 

4.6).  

The analysis revealed that 100 % of the control and C-Src-mCherry expressing cells 

were at stage 3 or above. This meant that the cells had at least reached the stage at 

which the rapid elongation of one of the ‘minor neurites’ (the future axon) had begun. 

However, in N1-Src-mCherry transfected cells, there was a significant decrease (35 %) 

in the number of cells at stage 3 or above in comparison to Control and C-Src-mCherry 

transfected cells which corresponded to a significant increase (31 %) in the percentage 

of cells that were at stage 2 (minor processes only). These data implied that the 

overexpression of N1-Src in hippocampal neurons had a marked effect on 

developmental progression.   
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1 DIV rat hippocampal neurons were transfected for 48 h with pmcherry (Control), p-C-
Src-mcherry (C-Src) and p-N1-Src-mcherry (N1-Src), fixed and processed for 
immunofluorescence. Using a fluorescence microscope, 25-30 images were captured 
per condition across 3 coverslips. The Stitching plugin for ImageJ was used to overlay 
multiple images taken of the same neuron. The developmental stage of the neurons was 
determined using Dotti’s classification system (Dotti et al., 1988). N=3, n=25-30, 
**p=<0.01, ***p=<0.001. 
  

Figure 4.6: The Overexpression of N1-Src-mCherry Disrupted Hippocampal 

Neuron Development in Culture. 
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4.2.4 N1-Src can be Specifically Knocked Down Using shRNA. 

Whilst overexpressing the kinase is one means of gaining information about the function 

of N1-Src, manipulating the endogenous protein could provide more physiologically 

relevant information about the role of the kinase. Two common methods that would 

achieve such a result are 1.) the inhibition of kinase activity or 2.) the knock-down of 

protein expression in cells. Unfortunately, current commercial inhibitors of N1-Src are 

non-specific and target all SFKs, including C-Src (Kim et al., 2009). Therefore, it is 

impossible to assign specific functions to N1-Src using these inhibitors. For this reason, 

the approach used to manipulate endogenous levels of N1-Src concentrated upon 

achieving the specific knockdown of N1-Src kinase levels in neurons.   

In this study, two independent shRNAs, designed to specifically knock-down the 

expression of N1-Src were used (Figure 4.7). Given that N1-Src only differs from C-Src 

by an 18 base pair (or 6 amino acid) insert in the SH3 domain, the design of the shRNAs 

was limited to correspond to that area of the gene (Figure 4.7A). Since, the N2-Src SH3 

insert incorporates the first 17 base pairs as of the N1-Src SH3 insert, to ensure N1-Src 

specificity, it was important that the shRNAs not only incorporated the sequence of the 

SH3 insert, but also overlapped with the flanking sequence in Exon4 (Figure 4.7A). The 

shRNAs (designed by Dr Gareth Evans) were cloned into the pSuper-CFP vector by 

Katarina Mahal. The pSuper RNA interference (RNAi) system used, facilitates the 

production of shRNA molecules, which trigger the down-regulation of the target gene, in 

this case N1-Src.  

Given that there are no effective, commercially available antibodies to detect N1-Src, the 

specificity and efficacy of the N1-Src shRNAs A and B were tested by co-expressing 

FLAG-tagged N1-, N2- or C-Src with the individual shRNAs, in the monkey fibroblast cell 

line COS7 (Figure 4.7B). This method proved successful as each of the FLAG-tagged 

kinases could be detected by Western blot and therefore the effect of shRNA A and B 

on Flag-kinase expression levels could be assessed. The bands were subjected to 

densitometry analysis (Figure 4.7C) which illustrated the effects of shRNAs A and B on 

the expression of Flag-tagged C-, N1- and N2-Src with respect to the pSuper-CFP 

control. shRNA A predominantly affected N1-Src expression, causing a 68 % reduction 

in N1-Src protein levels. However, C- and N2-Src expression were also reduced, albeit 

to a lesser degree than N1-Src, by 16 and 35 % respectively. In contrast, shRNA B 

largely knocked down N2-Src, resulting in a 96 % reduction in protein expression. N1-

Src expression was relatively unaffected by shRNA B (reduced by 9 %), whereas there  
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(A) shRNAs A and B were designed to target N1-Src expression, however there was 
also a high degree of sequence complementarity with N2-Src. (B) COS7 cells were co-
transfected with C-, N1- or N2-Src-FLAG and empty pSuper-CFP, shRNA A or shRNA 
B. Cells were lysed in 2X Laemmli buffer after 4 h and samples were resolved by SDS-
PAGE, transferred to PVDF and analysed by Western blotting using an α-FLAG primary, 
followed by an α-mouse HRP secondary. (C) Src-FLAG bands from a data set of n=1, 
were subject to densitometry analysis using ImageJ and normalised to the densitometry 
values of the B-actin bands. 

Figure 4.7: shRNAs A and B Largely Depleted N1- and N2-Src Expression 

Respectively. 
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was a partial depletion in C-Src expression by 37 %. Together, these results suggested 

that shRNA A and B were capable of depleting the expression of multiple Src splice 

variants. However, whilst shRNA A mostly targeted N1-Src, the main target of shRNA B 

was N2-Src resulting in an almost complete knockdown.    

4.2.5 Knockdown of N1-Src with shRNA A Reduces the Length of Longest 

Neurite. 

After testing the shRNAs in COS7 cells, the shRNA constructs were transfected into 

hippocampal neurons to assess the effect of downregulating N1- and N2-Src expression 

on neuronal morphology.  

Figure 4.8 depicts representative images of control, shRNA A and shRNA B transfected 

neurons. On first inspection, pSuper-CFP-shRNA-A transfected neurons appear smaller, 

and the length of the longest neurite was shorter, in comparison to control and p-Super-

CFP-shRNA-B transfected neurons. This observation was supported by the 

morphological data gathered (Figure 4.9). In comparison to control cells, those 

expressing shRNA A exhibited a significant decrease (11.7%) in the mean number of 

neurites per cell (p=0.045 *). This result was significantly different to that obtained for 

cells expressing shRNA B, in which there was a significant increase in the number of 

neurites (15.8%, (p=<0.001 ***), compared to control cells (Figure 4.9A). The 

corresponding representative frequency plot (Figure 4.9B) supported these findings. In 

addition, whilst shRNA B had little effect on the mean total length of neurites per cell 

(Figure 4.9C) and mean length of longest neurite (Figure 4.9E), in cells containing 

shRNA A there was a significant decrease in both parameters, by 21 % and 28 % 

respectively, in comparison to control cells (p=<0.001 ***). In the frequency plots, the 

overall distribution of values was shifted to the left of the control and shRNA B curves 

(Figure 4.9 D and F).   

Taken together, these results suggested that the down-regulation of N1-Src expression 

by shRNA A negatively affected neurite outgrowth, in particular, the length of longest 

neurite and number of neurites produced. Whereas the effects of shRNA B differed, 

resulting in an increased mean number of neurites per cell.  
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Figure 4.8: Representative Images of the Morphological Effects of shRNAs A and 
B in Hippocampal Neurons. 
Rat hippocampal neurons were transfected at 1DIV with pSuper-CFP, shRNA A or 
shRNA B and fixed after 48 h.The cells were processed for immunofluorescence. Using 
a Zeiss slidescanner, images of four whole coverslips were captured per condition from 
which 30 images of individual neurons were randomly selected. Representative images 
are shown from N=3. Scale bar = 50 µm. 
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Rat hippocampal neurons (1DIV) were transfected with pSuper-CFP (control), pSuper-
CFP-shRNA-A or p-Super-CFP-shRNA-B for 48 h and fixed in 4 % PFA. The cells were 
processed for immunofluorescence and using a Zeiss slide scanner, images of four 
coverslips were captured per condition, from which 30 images of individual neurons were 
randomly selected. In ImageJ, the NeuronJ plugin was used to trace and measure 
neurites. The mean values and frequency distribution were assessed for the following 
parameters: the number of neurites (A,B), total length of neurites (C,D), and length of 
longest neurite (E,F). shRNA A and B data were normalised to the mean value of the 
pSuper-CFP control for each replicate. The experiment was performed 3 times and 
statistical significance of the pooled data (n=90) was assessed in SPSS (*p<0.05, 
**p<0.01, ***p<0.001). 

Figure 4.9: Knockdown of N1-Src by Two Independent shRNAs (A and B) Resulted 

in Atypical Neuronal Morphology. 
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4.2.6 N2-Src shRNA B Increases Neurite Branching 

After determining the effects of a reduction of N1-Src expression on neurite outgrowth, 

the effects on neurite branching were assessed. Whilst shRNA A had no significant effect 

on the primary branching of neurites compared to control cells, a slight decrease in the 

mean number of primary branches (reduced by 6.2 %, Figure 4.10A), total length of 

primary branches (reduced by 14.9 %, Figure 4.10C) and average length of primary 

branches (reduced by 8.9 %, Figure 4.10E) was observed. This was reflected in the 

frequency plots for shRNA A, where the curves were shifted left, in comparison to the 

control curves (Figure 4.10B, D and F). In contrast, for cells transfected with shRNA B, 

there was no significant change in the mean total length of primary branches (Figure 

4.10C and D), however there was a striking and significant increase (40 %) in the mean 

number of primary branches (p=<0.001 ***, Figure 4.10A). This can be visualised further 

in the frequency plot, where the shRNA B values are shifted to the right (Figure 4.10B). 

In addition to this, there is a significant decrease in the average length of primary 

branches compared to control cells (p=0.025 *, Figure 4.10E), however this does not 

vary significantly from shRNA A transfected cells (Figure 4.10E). 

In addition to studying the growth of primary branches, the percentage of cells with 

secondary (Figure 4.11A) or tertiary (Figure 4.11B) branches was determined. The 

average percentage of cells with secondary or tertiary branches was not significantly 

altered in either shRNA A or shRNA B transfected cells in comparison to the pSuper-

CFP control. 

Overall, these data suggest that the downregulation of N1-Src by shRNA A had no effect 

on the primary branching of neurites in 2 DPT rat hippocampal neurons. However, cells 

transfected with shRNA B displayed increased primary branching of neurites, with a 

shorter average length, but the mean total length of neurites was unaffected. The 

percentage of cells with secondary and tertiary branching was unaffected in cells 

transfected with either shRNA.     
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In ImageJ, the NeuronJ plugin was used to trace and measure the primary branches of 
neurites from 2 DPT hippocampal neurons that were transfected with the pSuper 
(control) or N1-Src shRNA A or B. The mean values and frequency distribution were 
analysed respectively for the following parameters: the number of primary branches 
(A,B), total length of primary branches (C,D), and the average length of primary 
branches/cell (E,F). Across 3-4 coverslips, 30 cells per condition were analysed from 
images captured using a slide scanner. The shRNA A and B data were normalised to 
the mean value of the control for each replicate. The experiment was performed 3 times 
and statistical significance of the pooled data (n=90) was assessed in SPSS (*p<0.05, 
***p<0.005). 

Figure 4.10: N1-Src Knockdown by Two Independent shRNAs had Little Effect on 

the Primary Branching of Neurites in Hippocampal Neurons. 
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In ImageJ, the NeuronJ plugin was used to trace the secondary and tertiary branches of 
3 DIV hippocampal neurons that were transfected with pSuper-CFP (Control) or pSuper-
CFP-N1-Src-shRNA-A or -B. The average percentage of cells with secondary (A) and 
tertiary (B) branches were calculated. Across 3-4 coverslips, 30 cells per condition were 
analysed from images captured using a slide scanner. The experiment was performed 3 
times and statistical significance was assessed in SPSS using a one-way ANOVA (n.s. 
= not significant). 

 

  

Figure 4.11: N1-Src Knockdown by Two Independent shRNAs did not Affect the 

Percentage of Hippocampal Neurons with Secondary and Tertiary Branches 
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4.2.7 A Time-course of N1-Src Shrna Transfection Reveals the Length of Longest 

Neurite Further Decreases with Time. 

In Section 4.2.4, the transfection of pSuper-CFP: shRNA-A into 1 DIV rat hippocampal 

neurons, which predominantly targeted N1-Src expression, resulted in a significant 

reduction in the length of longest neurite (Figure 4.10E). To determine whether this effect 

changed with respect to time, a time course was performed comparing the effect of 

shRNA A on the length of longest neurite, with that of the pSuper-CFP control. Similar to 

previous experiments, within each biological replicate, the values for the length of longest 

neurite were normalised to the mean value measured for pSuper-CFP at 2 DPT. The 

data presented incorporated two biological repeats, therefore statistical analysis was not 

performed on the data.  

In Figure 4.12A, representative images illustrate the profound effect of shRNA A on the 

length of longest neurite with respect to time, compared to control cells. shRNA A greatly 

reduced the length of longest neurite when compared to control cells and the decrease 

between control and shRNA A transfected cells became greater over time, from 21 % to 

64 % (Figure 4.12B). In addition to this, whilst the length of longest neurite in control cells 

increased with respect to time, this was also the case for shRNA A transfected cells up 

until 4 DPT, after which the length of longest neurite decreased by 47 % (Figure 4.12B). 

These data strongly indicate that the depletion of N1-Src by shRNA A reduces the length 

of longest neurite and that this effect becomes greater with time.   
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(A) Representative images showing the effect of shRNA A over time after, in comparison 
to the empty vector control (pSuper). Rat hippocampal neurons were transfected at 1DIV 
and fixed after 2, 4 or 6 h.The cells were processed for immunofluorescence. Using a 
Zeiss slidescanner, images of four whole coverslips were captured per condition from 
which 30 images of individual neurons were randomly selected. Scale bar = 50 µm. (B) 
In ImageJ, the NeuronJ plugin was used to trace and measure the length of longest 
neurite and the mean values were plotted as a function of time for control and shRNA A 
transfected cells. All data points were normalised to the mean value of the 2 DPT control 
time point for each replicate. N=2. 

  

Figure 4.12: The Effect of N1-Src Depletion by shRNA A on the Length of Longest 

Neurite Increased with Respect to Time. 
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4.2.8 The Role of N1-Src in L1-CAM Mediated Neurite Outgrowth. 

The results from the shRNA experiments (Sections 4.2.4-6) established a potential role 

for N1-Src in neurite outgrowth. N1-Src shRNA A, the most potent of the two shRNAs, 

evoked a significant reduction in the length of longest neurite (Figure 4.9E). The 

magnitude of this effect increased with respect to time up to 6 DPT (Figure 4.12). Since 

cultured hippocampal neurons are known to develop an axon after 3-4 DIV, this 

suggested that N1-Src plays a role in axon outgrowth in developing hippocampal 

neurons. One mechanism through which N1-Src could regulate axon outgrowth is via the 

L1-CAM signalling pathway. Ignelzi et al., (1994) demonstrated that impaired neurite 

outgrowth occurred in Src-/- CGNs cultured on L1-CAM. Whilst this study did not directly 

implicate N1-Src, in the Src-/- mice, C-, N1- and N2-Src expression were abolished, 

therefore this function could be linked to the neuronal kinases, which are the predominant 

isoforms of Src in the developing brain (Wiestler and Walter, 1988). In addition to this, 

studies in the Evans lab specifically pointed to a role for N1-Src in L1-mediated neurite 

outgrowth in CGNs. These studies, however, did not address whether L1-CAM 

homophilic or heterophilic interactions were responsible for the effects observed.   

Since preliminary data from the Evans lab showed that N1-Src induces the formation of 

neurite-like processes in the fibroblast cell line COS7, this concept was used to develop 

an assay to test the effects of N1-Src within L1-CAM signalling pathways. In order to 

develop a model for N1-Src-mediated process outgrowth triggered by extracellular L1-

CAM, process outgrowth was analysed in COS7 cells overexpressing mCherry (Control) 

or N1-Src-mCherry that were plated in control or L1-CAM substrate (L1-Fc) coated wells. 

To determine whether L1-CAM homophilic interactions were necessary for this process, 

N1-Src-mCherry was co-expressed with human L1-CAM in the presence or absence of 

L1-Fc. 

The data presented (Figures 4.13 and 4.14) represent a single biological replicate. In 

order to draw firm conclusions from these data, further biological repeats must be 

performed, however, early indications of the appropriateness of this model and 

preliminary findings could be examined.  
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Representative images showing the localization of N1-Src-mCherry and L1-CAM in COS7 cells, grown in the absence or presence of L1-Fc. 
COS7 cells were cultured in control or L1-Fc coated wells for 24 hours prior to being cotransfected with combinations of pmCherry (Control, red) 
or p-N1-Src-mCherry (N1-Src, red) and pcDNA5-CFP (Control, green) or pcDNA5-L1-CAM (L1CAM, green). The amount of co-localisation 
(yellow) was assessed when images were merged. The cells were fixed 48 h post-transfection and processed for immunofluorescence using a 
rabbit anti-sera raised against CFP, a mouse anti L1-CAM antibody and the relevant AlexaFluor488 secondary antibodies. Images were captured 
(30 fields of view) using a fluorescence microscope with a 40 X objective lens. Scalebar= 20 µm, N=1.   

Figure 4.13: N1-Src-mCherry Co-localised with L1-CAM in the Perinuclear Region of COS7 Cells that were Grown in the Absence or 

Presence of L1-Fc. 
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COS7 cells that were cultured in control or L1-Fc coated wells, were co-transfected with 
combinations of pmCherry or p-N1-Src-mCherry and pcDNA5-CFP or pcDNA5-L1-CAM. 
The cells were fixed 48 h post-transfection and processed for immunofluorescence. 
Images were captured using a fluorescence microscope with a 40 X objective lens and 
the percentage of cells with processes was calculated from the cells present in 30 fields 
of view (n=97-208) (A). Of the cells that had processes (n=11-43) the number of 
processes per cell (B) and the average process per cell (μm) were measured (C). N=1. 

  

Figure 4.14: Preliminary Results Indicated that Homophilic L1-CAM Signalling did 

not Enhance Process Outgrowth in COS7 Cells. 
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Figure 4.13 shows representative images of cells transfected with the different 

combinations of conditions plated in control and L1-Fc coated wells. In cells that 

expressed N1-Src-mCherry and CFP, plated under control conditions, N1-Src 

accumulated in the perinuclear region and appeared diffuse throughout the cell. This 

distribution of N1-Src-mCherry appeared the same when cells transfected with the same 

constructs were plated on L1-Fc. In contrast, when L1-CAM was expressed in control 

cells alongside mCherry, whilst there was some perinuclear localization of the protein, 

the staining revealed the presence of multiple puncta distributed throughout the cytosol. 

A similar pattern of expression was visible in cells grown on L1-Fc substrate. Upon 

expression of both N1-Src-mCherry and L1-CAM together in either control or L1-Fc 

coated wells, both proteins appeared to co-localise in the perinuclear region, however 

there was no obvious co-localization between the L1-CAM puncta in the cytosol and N1-

Src-mCherry.   

To assess the effects of N1-Src-mCherry and L1-CAM expression on process extension 

in cells plated both in the absence or presence of L1-Fc, multiple parameters were 

quantified (Figure 4.14). These included the percentage of cells with processes (Figure 

4.14A), the average number of processes (Figure 4.14B) and the average length of 

processes (Figure 4.14C). In cells co-expressing mCherry and CFP, the percentage of 

cells extending processes was low (6.02 %) when grown in the absence of L1-Fc and 

this increase more than doubled in the presence of L1-Fc (13.94 %) (Figure 4.14A). 

There was little change in the average number and length of neurites (Figure 4.14B and 

C) in these cells. 

In contrast, co-expression of N1-Src-mCherry and CFP in control wells resulted in an 

increased proportion of cells (24.81 %) with processes (Figure 4.14A). This has been 

observed in previous studies in the Evans lab and notably in Section 5.2.1-2. This has 

contributed to the hypothesis that N1-Src plays a role in cytoskeletal re-modelling and 

process formation/extension. There was only a small increase in the percentage of cells 

with processes (4.64 %) in N1-Src-mCherry and CFP expressing cells grown on L1-Fc, 

with little change observed in the average number and length of processes.  

In addition to expressing mCherry or N1-Src-mCherry with CFP (control), these proteins 

were also co-expressed with full length L1-CAM, with the aim of further understanding 

whether N1-Src regulates process outgrowth via an L1-L1 homophilic interaction 

stimulated signalling pathway.  

In mCherry and L1-CAM expressing cells grown in control wells, there was an 11.29 % 

increase in the percentage of cells with processes compared to mCherry and CFP 
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expressing cells (Figure 4.14A). Whilst the average number of processes remained the 

same (Figure 4.14B), there was a 45 % increase in the average process length (Figure 

4.14C). This suggested that L1-CAM expression in COS7 cells may enhance process 

outgrowth. When grown in L1-Fc coated wells, there was a slight increase (5.37 %) in 

the percentage of cells with processes, in comparison to control wells (Figure 4.14A). 

There was little change in the average number of neurites (Figure 4.14B), however the 

average length of neurites was reduced by 40 % back to the levels in control cells co-

expressing mCherry and CFP (Figure 4.14C).   

The difference in the percentage of cells with processes in N1-Src-mCherry and CFP or 

L1-CAM expressing cells was virtually unchanged in control wells. However, there was 

a decrease in cells with processes from 23.64 % to 16.81 % when those cells were grown 

on L1-Fc (Figure 4.14A). Whilst there was an increase in the average number of 

processes per cell from 1.11 to 1.45 (Figure 4.14B), the average length of neurites per 

cell remained unaltered (Figure 4.14C). 
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4.3 Discussion 

The studies conducted in Chapter 4 sought to gain further insight into the functional role 

of N1-Src during neuronal morphogenesis. To address this, two main approaches were 

employed; 1) the overexpression and 2) shRNA knockdown of the kinase. These 

experiments provided evidence to support the hypothesis that N1-Src is involved in 

neurite outgrowth and could play a major role in axonal elongation. The first direct 

comparison between the roles of N1- and N2-Src during neuronal development 

demonstrated different functions for the kinases. Since previous data from the Evans lab 

suggested that N1-Src may act downstream of L1-CAM signalling to promote axon 

extension, further experiments were aimed at developing a model for L1-CAM mediated 

N1-Src signalling in the heterologous fibroblast cell line COS7. Whilst further biological 

repeats are required to draw firm conclusions from the data, preliminary results 

suggested that N1-Src did not evoke downstream signalling that enhanced the formation 

or elongation of neurite-like processes. However, the data suggested that L1-L1 

homophilic signalling may have had an inhibitory effect via N1-Src signalling.   

4.3.1 The Experimental Use of Primary Hippocampal Neurons. 

Whilst there are many advantages to using cultured hippocampal neurons 

experimentally (discussed in Section 4.1.3), there are also certain caveats. The main 

limitation to consider when using dissociated hippocampal neurons is the resulting 

heterogeneous cell populations obtained. These contain both CA1 and CA3 

glutamatergic pyramidal neurons, as well as various types of GABAergic interneurons 

(Benson et al., 1994). It is important to note that data outputs from experiments using 

these cells incorporated the results from the whole cell population, since it is difficult to 

tease apart differences between cells after 3 DIV (Figure 4.1). Despite this, pyramidal 

neurons are thought to comprise approximately 85-90 % of the total cell population, 

therefore the results obtained could be largely attributed to these types of neurons 

(Schlessinger et al., 1978, Boss et al., 1987). Since dentate granule cells develop 

postnatally, these cells were not present in the P0 hippocampal preparations used in the 

experiments described in this chapter.  

There were also significant differences in the morphological parameters of control cells 

between different biological replicates, most noticeably between replicate 4 and the other 

replicates (Figure 4.3). This is likely attributed to the occurrence of natural variation 

between different rat litters. To account for these differences, individual values for each 

parameter measured in shRNA A or shRNA B expressing cells, were normalised to the 

average value of the control (pSuper-CFP transfected cells) (Figures 4.9 and 4.10). This 
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approach to data analysis has been adopted in many other studies, most notably by 

Vance Lemmon, whose pioneering work on L1-CAM mediated neurite outgrowth is 

referenced throughout this thesis (Cheng et al., 2005, Blackmore et al., 2010).   

4.3.2 N1-Src Overexpression Resulted in Aberrant Neurite Outgrowth.  

Overexpression of N1-Src in hippocampal neurons resulted in a highly significant 

reduction in the average total length of neurites and average length of longest neurite, 

as well as a reduction in the average number of neurites per cell (Figures 4.4 and 4.5). 

This indicated that the overexpression of the kinase had a severe effect on the 

development of hippocampal neuron morphology. After 3 DIV, 100 % of mCherry and C-

Src-mCherry expressing cells were at stage three or above in the developmental 

sequence of events undertaken by hippocampal neurons in culture (described in Figure 

4.1), which meant that the neurons were polarised since one of the minor neurites had 

been selected to become the axon. However, approximately half of N1-Src expressing 

cells appeared to not have progressed past stage two (Figure 4.6). This suggested that 

N1-Src-mCherry overexpression had affected the polarization of the neurons. In these 

experiments, the neurons were transfected after 1 DIV, at which point the cells measured 

were expected to have been at the developmental stages two or three. Therefore, one 

possible explanation for the results observed could be that the overexpression of N1-

Src-mCherry prevented the progression of the neurons from stage two to stage three, 

whereas the neurons that were already at stage three at the time of transfection 

subsequently suffered stunted neurite outgrowth. To test this theory, it would be useful 

to track the development of N1-Src-mCherry overexpressing neurons in real time using 

live imaging. To understand whether N1-Src-mCherry overexpression, is either delaying 

or blocking developmental progression, a timecourse overexpressing the kinase over a 

longer period of time could be performed. 

The results of N1-Src-mCherry overexpression on neuronal development observed in 

this study (Figures 4.4-4.6) have some similarities and differences when compared to 

the two N1-Src overexpression studies that have previously been published (Kotani et 

al., 2007, Worley et al., 1997). Kotani et al., (2007) used an L7 promoter to drive the 

overexpression of constitutively active N1-Src (Y535F) in Purkinje neurons of transgenic 

mice. Whilst N1-SrcY535F had little effect in P3-P5 cells, surprisingly at P7, many of the 

Purkinje neurons appeared less polarised compared to control cells and displayed 

aberrant dendritic morphology, retaining multiple dendritic shafts and forming abnormal 

dendritic branches. These defects however, were not observed in P10 mice and 

onwards, implying that another mechanism may compensate for the effect observed 

(Kotani et al., 2007). Although the results in this chapter did not report phenotypic 
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changes relating solely to dendritic structures, the results did suggest that 

overexpression of the kinase resulted in defects in neuronal polarization. Unlike this 

study, Kotani et al., (2007) did not report any findings relating to alterations in neurite 

length, nor did they discuss an axon-related phenotype, but it is unclear whether this was 

investigated. A further study by Worley et al., (1997) found that the axonal lengths of 

Xenopus ventral forebrain neurons increased in N1-Src overexpressing cells, 

contradicting the findings in this chapter. It is important to note, however, that the number 

of neurons measured by Worley et al., (1997) was of a very small sample size (n=5) 

whereas the results shown in Figure 4.5 were generated using a larger sample size 

(n=84-88 across 3 biological replicates).  

Overexpression of C-Src-mCherry in hippocampal neurons had little effect on neuronal 

morphology compared to control cells (Figure 4.4), with no significant changes in the 

average number of neurites, total length of neurites and length of longest neurite (Figure 

4.5). However, the differences in these parameters between C- and N1-Src-mCherry 

expressing cells were highly significant, given the aberrant morphology observed in N1-

Src-mCherry cells. Although C-Src has been linked to neurite outgrowth in numerous 

studies, the lack of phenotype observed in this work could be attributed to the fact that 

C-Src has relatively low constitutive activity, especially in comparison to the N-Srcs 

(Ignelzi Jr et al., 1994, Brouns et al., 2001, Keenan et al., 2015). In the various studies 

in the literature, C-Src mediated neurite outgrowth is placed in the context of a signalling 

mechanism, therefore, it is likely that C-Src activity must be triggered by a suitable 

stimulus to evoke changes in neurite outgrowth (Ignelzi Jr et al., 1994). Since it has been 

shown that N1-Src has much higher constitutive activity than C-Src, this could explain 

the severe changes in neurite outgrowth attributable to N1-Src overexpression (Keenan 

et al., 2015). To understand further the potential differences between C- and N1-Src 

function, it could be useful to compare the effects of the overexpression of constitutively 

active C-Src with wild type or constitutively active N1-Src.   

Taken together, these results suggested that N1-Src overexpression in hippocampal 

neurons leads to aberrant neuronal development by disrupting neuronal polarization as 

well as causing stunted neurite outgrowth. N1-Src-mCherry overexpression also had a 

much greater effect on neuronal morphology than C-Src-mCherry, which could be 

attributed to the differences in constitutive activity between C- and N1-Src reported in 

other studies, or differences in substrate specificity. In addition, N1-Src overexpression 

appeared to have different effects in different cell types, which suggests that N1-Src has 

cell type specific functions. Alternatively, overexpression of the kinase could lead to the 

occurrence of non-physiological effects, caused by aberrant signalling. This is a 
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possibility given the high constitutive activity of the kinase. For this reason, shRNA 

knockdown studies (Figures 4.7-4.12) were performed to shed further light on the 

physiological roles of N1-Src and will be the subject of discussion in the sections that 

follow.  

It should be noted that in order to link the effects of the overexpression of C-, N1- and 

N2-Src directly to the catalytic activity of the kinases, the experiment should be repeated 

using kinase-null mutants as an additional control. By including this control, the possibility 

that the kinases mediate their effects through the formation of protein-protein interactions 

or other means, could be ruled out. In addition to this, a second control should be 

included to assess the protein levels of the overexpressed kinases. The performance of 

this control is necessary to show that the differences between the effects of C-Src and 

N1-/N2-Src can be specifically attributed to the individual functions of the kinases and 

are not caused by differences in their expression levels. In the overexpression study 

performed in this chapter, the transfection efficiency of the neurons used was too low to 

be able to perform an accurate quantification of the kinase expression levels. However, 

this could be overcome by using a lentiviral gene delivery system to greatly improve the 

transfection efficiency of the neurons. In order to be able to deduce firm conclusions from 

these data in the future, the experiment should be repeated using both of these controls. 

4.3.3 The Specificity of the N1-Src Targeting shRNAs.  

Two independent shRNAs were designed with the aim of specifically depleting the 

expression of N1-Src. Given that N1- and N2-Src differ from each other and C-Src via 

small mini-exon inserts in their SH3 domains (illustrated in Figure 4.7A), the scope for 

designing N1-Src specific shRNAs was limited. The difficulty of this task was reflected 

by the results obtained after testing the efficacy of the shRNAs in COS7 cells (Figures 

4.7B and C). Whilst shRNA A was largely specific to N1-Src, depleting N1-Src protein 

levels by approximately 70 %, N2-Src by 35 % and C-Src by only 15 %, shRNA B was 

largely specific to N2-Src, depleting N2-Src protein levels by approximately 95 %, C-Src 

by 37 % and N1-Src by less than 10 %. These represent data from an n=1, since the 

results from additional experimental repeats were invalid due to technical faults. 

However, the outcome of the experiment is supported by the initial shRNA efficacy 

experiments performed by Katharina Mahal, who also cloned the shRNAs (Mahal, 2010). 

The depletion of C- and N2-Src protein levels by both shRNAs is likely due to the partial 

sequence complementarity shared between the shRNAs and the mRNA’s of the kinases, 

however the fact that shRNA B depleted N2-Src protein by much greater levels was 
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surprising, since shRNA A shared greater sequence complementarity with N2-Src 

compared to shRNA B.  

Ideally the efficacy of the shRNA’s would have been tested in hippocampal neurons 

however, the fact that there are no commercially available antibodies for N1-Src and the 

neuronal transfection efficiency using Lipofectamine was poor, meant that this was not 

a feasible option. To overcome these issues, the effect of the shRNAs on the levels of 

C-, N1- and N2-Src mRNA could be assessed using reverse-transcription PCR (rt-PCR), 

although a much greater neuronal transfection efficiency would need to be achieved. 

This could be addressed by using a highly efficient lentiviral system, to deliver the siRNA 

into the hippocampal neurons. In addition, an experiment similar to the one performed in 

this chapter in COS7 cells could be performed with hippocampal neurons, using the 

lentiviral system to improve transfection efficiency. 

4.3.4 Depletion of N1-Src Expression by shRNA A Resulted in Reduced Neurite 

Outgrowth.  

Depletion of N1-Src expression by shRNA A had a significant effect on neurite outgrowth 

in cultured hippocampal neurons. The average number of neurites, total length of 

neurites and length of longest neurite were significantly reduced (Figure 4.9), whereas 

neurite branching was unaffected (Figures 4.10 and 4.11). This study was the first of its 

kind, to predominantly target the knockdown of N1-Src expression, with respect to C- 

and N2-Src and suggested that N1-Src may play a role in the formation and extension 

of neurites. The impaired outgrowth of the longest neurite mediated by shRNA A, 

worsened with respect to time (Figure 4.12) implying that N1-Src expression was vital to 

the mechanisms that governed neurite outgrowth. Since the neurons analysed were fixed 

between 2-6 DPT, and 100 % of the cells were observed to have reached stage 3 or 

above using Dotti’s classification system (Figure 4.1) of hippocampal neuron 

development, it was likely that N1-Src depletion by shRNA A particularly inhibited axonal 

outgrowth. Furthermore, the decrease in the length of longest neurite between shRNA A 

transfected cells fixed at 4 and 6 DPT, suggested that in addition to inhibiting the 

mechanisms that drive neurite extension, exposure of the cells to shRNA A for this period 

of time, could have ultimately led to neurite retraction. In order to determine the statistical 

significance of the data, a third biological repeat should be performed. 

Whilst there are no studies that directly link N1-Src knockdown to neurite outgrowth, 

(Ignelzi Jr et al., 1994) found that neurite outgrowth was impaired in CGN’s cultured from 

Src-/- mice that were grown on the neuronal cell adhesion molecule L1-CAM. The mouse 

knockout used was not specific to a single splice variant of Src, and therefore the 
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expression of C-, N1- and N2-Src kinases would have been abolished in the neurons 

used. Therefore, it is plausible that this phenotype could be at least partially assigned to 

N1-Src, which would support the findings of the shRNA A transfection. However, in the 

Ignelzi study (1994), impaired neurite outgrowth was observed in CGNs that were 

cultured on L1-CAM, whereas Src-/- cells grown on laminin, which stimulates integrin 

mediated neurite outgrowth, were not affected. This suggested that Src facilitated neurite 

outgrowth via an L1-CAM dependent pathway. 

In the studies carried out in this thesis, hippocampal neurons were grown on poly D-

lysine (PDL), a commonly used synthetic polyamino acid, which facilitated the adherence 

and growth of cells on glass. Therefore, in the absence of external extracellular matrix 

signalling cues, including cell adhesion molecules and integrins, depletion of N1-Src still 

resulted in reduced neurite outgrowth. This could suggest that N1-Src drives neurite 

outgrowth via an intrinsic mechanism that operates in the absence of external factors. 

One possible explanation for this could be the high constitutive kinase activity that N1-

Src possesses. 

Src has also been linked to the regulation of neurite outgrowth in conjunction with 

p190RhoGAP, which regulates actin cytoskeletal dynamics via the GTPase RhoA. 

Overexpression of p190RhoGAP promotes neurite outgrowth in neuroblastoma cells, 

which is similar to the effects of N1-Src overexpression in fibroblasts (Brouns et al., 2001, 

Worley et al., 1997). In addition, p190RhoGAP was also shown to be the most prominent 

tyrosine phosphorylated protein in whole mouse brain lysates, which was reduced in 

Src-/- mice and almost completely abolished in Src-/-/Fyn-/- double knock out mice (Brouns 

et al., 2001). Thus, it appears that both Src and Fyn are regulators of p190RhoGAP in 

the brain. Whilst C-Src has been shown to phosphorylate p190RhoGAP in fibroblasts, 

the possibility that N1-Src could regulate the protein has not been explored (Roof et al., 

1998). Brouns et al., (2001) also demonstrated that p190RhoGAP was localised to the 

distal tips of neurites, alongside F-actin, in hippocampal neurons (E18.5) cultured on 

PDL and interestingly, biochemical studies have also shown that N1-Src is present in 

neuronal growth cone membranes in developing rat brain. Whether C- or N1-Src directly 

phosphorylates and regulates p190RhoGAP to promote neurite outgrowth in primary 

neurons still remains to be shown 

Unpublished work in the Evans lab established an N1-Src inhibitor called PD1, through 

the development of an N1-Src specific SH3 binding motif (Keenan, 2012). N1-Src 

inhibition by PD1 in hippocampal neurons resulted in a decrease in the primary branching 

of neurites, but had no effect on the average number of neurites formed or neurite 
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lengths. However, the outcomes of the shRNA A depletion of N1-Src did not support 

these findings, and pointed towards a role for N1-Src in neurite formation and extension. 

This could be explained by the occurrence of off target effects in either the PD1 or shRNA 

studies, or may be due to the differences between the methods used. As a competitive 

inhibitor of N1-Src, PD1 elicits an acute response, whereas shRNAs act to prevent 

protein synthesis by targeting mRNA for degradation. To confirm the differences in the 

functions ascribed to N1-Src and provide greater confidence in the shRNA knockdown, 

it would be useful to perform this study with a second N1-Src specific shRNA.  

Given that there was only a partial depletion in the expression of C- (12 %) and N2-Src 

(35 %) by shRNA A, it seemed that neither of the kinases were able to functionally 

compensate for the effect of the ~ 70 % depletion of N1-Src expression up to 6 DPT. 

This suggests that the kinases have different functional roles. This is in part, supported 

by the outcome of the shRNA B transfection in which N2-Src expression was 

predominantly depleted and a different morphological phenotype was observed 

(discussed in Section 4.3.5). Since the sequence, of C-Src is fully conserved with N1- 

and N2-Src, with the exception of the n-Src loop, it would be difficult to establish the 

specific functional role of C-Src in neurons, without resorting to overexpression 

techniques, which cannot always be relied upon to determine physiological function.  

4.3.5 The Overexpression and Knockdown of N1-Src Display Similar Effects on 

Neuronal Morphology. 

Interestingly, both the overexpression of N1-Src and the knockdown of N1-Src by 

shRNA A yielded similar results, in that both experiments resulted in a reduction in 

neurite outgrowth. This observation is likely attributable to the fact that the 

overexpression of a kinase can cause aberrant signalling. There are multiple 

explanations why this might occur (reviewed by Prelich, 2012). For example, the 

overexpression of the kinase might disrupt the formation of multi-protein complexes, in 

which N1-Src is a key component. This may be due to the formation of subassemblies 

that include N1-Src bound to one or more of the other complex components, but which 

do not form the whole functional complex, leading to the loss of function of the kinase. A 

further explanation could be that the overexpression of the kinase may result in the 

aberrant phosphorylation of cellular proteins, which results in the inhibition of neurite 

outgrowth. In addition to this, it is possible that overexpressing the kinase results in the 

sequestration of signalling components into complexes with N1-Src, preventing such 

components from interacting with other proteins that are also necessary for the regulation 

of neurite outgrowth.  
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4.3.6 The Effect of shRNA B on the Primary Branching of Neurites.  

Originally shRNA B was designed to knockdown N1-Src expression, however testing of 

the shRNA in COS7 cells revealed that shRNA B was in fact extremely effective at 

knocking down N2-Src expression and partially reduced C-Src levels by 37 % (Figure 

4.7). Interestingly, the results obtained from shRNA B transfected cells were different to 

shRNA A transfected cells. shRNA B transfection resulted in a highly significant increase 

in the average number of primary branches as well as a decrease in the average length 

of primary branches, with little change in the total length of primary branches per cell 

(Figure 4.10). An increase in the average number of neurites was also observed (Figure 

4.9). These results suggested that N2-Src may play a role in the primary branching of 

neurites, serving to inhibit or regulate primary branching events, and potentially 

regulating branch extension. 

To date, there are no studies in the literature describing the function or substrates of 

N2-Src in primary neurons. However, N2-Src has been linked to a positive prognosis in 

the childhood cancer neuroblastoma, in which tumour cells spontaneously differentiate 

into benign neuronal cells (Matsunaga et al., 1998, Terui et al., 2005). Whilst there is 

precedence in the literature for a role of N2-Src in neuronal differentiation, any potential 

effects that could have altered the cell fate of the hippocampal neurons could not have 

been detected in these experiments, since the fate of the cells used had already been 

determined. In addition to this, 100 % of the cells transfected with shRNA B that were 

analysed (n=90) had successfully polarised.  

Taken together, the shRNA results presented in this chapter indicate different roles for 

N1- and N2-Src in neuronal morphogenesis. Whilst shRNA A demonstrated a partial 

knockdown of N2-Src by 35 %, given there was no correlation with the results for shRNA 

B, which primarily depleted N2-Src protein levels, it is likely that the partial knockdown 

of N2-Src was not great enough to cause a significant effect. Taking this into account, 

since N2-Src protein levels were depleted by 96 % by shRNA B, whereas C-Src and N1-

Src levels were reduced by 37 % and 9 % respectively (Figure 4.7), it is reasonable to 

assume that the effects of this shRNA could be largely attributed to the role of N2-Src. 

Therefore, this study provides the first comparative analysis of the effects of both N1- 

and N2-Src on neuronal morphogenesis, and suggests that the kinases have different 

functions. N1-Src appeared to play a role in neurite extension, whereas N2-Src regulated 

the formation of primary branches (Figure 4.10). To confirm the validity of these effects, 

a second shRNA targeting each kinase should be tested. This would discount the 

possibility that off-target effects contributed to these results.   
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Chapter 5. Dissecting the Role of N1-Src in RhoA Signalling 

5.1 Introduction 

In Chapter 4, N1-Src was implicated in the mechanisms governing neurite outgrowth and 

in particular, regulation of the average number of neurites and length of longest neurite. 

Rho GTPases are key players in directing cytoskeletal dynamics during neurite 

outgrowth (reviewed in (Stankiewicz and Linseman, 2014) and mounting evidence 

suggests that there could be a potential link between N1-Src activity and RhoA signalling.  

Firstly, bioinformatics studies in the Evans lab have identified several putative N1-Src 

substrates involved in RhoA signalling, including p190RhoGAP, ARHGAP1, TRIO and 

KALIRIN (Keenan, 2012). In addition to this, N1-Src has also been shown to interact with 

DAAM1 in vitro, which is a known effector of RhoA and has been shown to mediate the 

formation of branched protrusions in fibroblasts, in a C-Src dependent manner 

(Aspenstrom et al., 2006).  

There have also been multiple reports linking C-Src and RhoA, including a study that 

identified p190RhoGAP as the principal substrate for C-Src and Fyn in the brain (Brouns 

et al., 2001) and a separate study, which reported that C-Src can directly phosphorylate 

and regulate RhoA activity in vitro (Uezu et al., 2012). With this in mind, Chapter 5 will 

focus on investigating a potential role for N1-Src in RhoA signalling, with the aim of 

providing further insight into the role of N1-Src in neurite outgrowth. 

5.1.1 RhoA as a Regulator of Cell Morphology 

Of the many processes that Rho GTPases regulate, perhaps their role in the regulation 

of cell morphology and motility, via the control of the actin cytoskeleton, are the most 

widely studied. To date, there are 20 known Rho GTPases amongst which RhoA, Rac1 

and Cdc42 are the best characterised. The role of RhoA was first demonstrated in 

fibroblasts, where RhoA activation resulted in the formation of stress fibres (contractile 

actin-myosin filaments) and focal adhesion complexes in response to various 

extracellular stimuli (Ridley and Hall, 1992). Whilst activation of RhoA promotes cell 

contraction and rounding, inactivation of this GTPase promotes membrane protrusion. 

This is also the case in neurons, where RhoA activation stimulates neurite retraction and 

rounding of the cell body and inactivation enhances neurite outgrowth (Kozma et al., 

1997). 

5.1.2 The Molecular Mechanism and Regulation of the Small GTPase RhoA 

Rho GTPases, share a common mechanism of action and are often referred to as 

‘molecular switches’, alternating between their ‘on’ (active) and ‘off’ (inactive) states, 

enabling the tight regulation of downstream signalling pathways (Figure 5.1).  
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RhoA operates as a molecular switch, which alternates between an ‘on’ (active) or ‘off’ 
(inactive) state. When bound to GDP, RhoA is rendered inactive, whereas GTP-bound 
RhoA is active. When the RhoA is active and GDP-bound, this enables effector binding 
and facilitates downstream signalling pathways. The cycling between RhoA-GDP and 
RhoA-GTP is facilitated by GEFs, which activate the GTPase and GAPs, which inactivate 
the GTPase. The C-terminus of RhoA is prenylated, which facilitates the attachment of 
active RhoA to the plasma membrane and intracellular membrane compartments. 
RhoGDIs bind to the lipid modification on RhoA and sequesters RhoA in the cytosol, 
effectively inactivating the GTPase. 

  

Figure 5.1: Schematic Diagram Illustrating the Mechanism of RhoA Activation 

and Inactivation. 
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When active, Rho GTPases are bound to guanosine triphosphate (GTP), which 

facilitates the conformation dependent binding of effector proteins. Upon hydrolysis of 

GTP to guanosine diphosphate (GDP), the GTPase switches to its inactive, GDP bound 

state, which prevents effectors binding and effectively ‘switches off’ downstream 

signalling events.  

There are two classes of proteins, namely guanine nucleotide-exchange factors (GEFs) 

and GTPase activating proteins (GAPs), which catalyse the ‘activation’ (GTP bound) and 

‘inactivation’ (GDP bound) of Rho GTPases, respectively (Figure 5.1). GEFs act by 

catalysing the exchange of GDP for GTP, whereas GAPs induce GTPase activity that 

results in GTP hydrolysis, yielding the GDP bound form (Fritz and Pertz, 2016). 

The regulation of RhoA is an extremely complex process that involves multiple inputs. In 

the human genome, whilst there are 20 members of the Rho GTPase family, there are 

83 known activators (GEFs) and 67 known inactivators (GAPs). Therefore, a single Rho 

GTPase can be regulated by multiple GAPs and GEFs. Some GAPs and GEFs also 

exhibit a degree of promiscuity and are capable of regulating more than one Rho 

GTPase. For example, the GEF Vav2 is known to activate RhoA, Cdc42 and Rac1 (Abe 

et al., 2000). In turn, the activity of Rho GAPs and GEFs can also be modulated by post-

translational modifications (e.g. (Uezu et al., 2012).  

In addition to GAP and GEF activity, a further mode of RhoA regulation occurs via the 

interaction of RhoA with a Rho guanine dissociation inhibitor (RhoGDI; Figure 5.1). The 

C-terminus of RhoA is prenylated, which facilitates the attachment of active RhoA to the 

plasma membrane and intracellular membrane compartments. RhoGDIs bind to the lipid 

modification on RhoA, effectively forming inactive complexes that are soluble in the 

cytosol (Cherfils and Zeghouf, 2013).  

The direct regulation of RhoA by post-translational modifications has also been reported. 

RhoA can be targeted for degradation upon the ubiquitination of Lys-6 and -7 or Lys-135 

by the E3 ubiquitin ligases Smurf1 and FBXl19, respectively (Wang et al., 2006a, Wei et 

al., 2013).   

Furthermore, RhoA activity can be regulated by direct phosphorylation of the protein. 

Protein kinase A (PKA) and Protein kinase G (PKG) phosphorylate RhoA at Ser-188, 

which promotes the inactivation of RhoA by sequestering the protein into a complex with 

RhoGDI (Ellerbroek et al., 2003). This modification is also thought to protect RhoA from 

ubiquitin-mediated degradation as well as disrupt the interaction between RhoA and 

ROCK, a major effector that binds to RhoA (Rolli-Derkinderen et al., 2005). C-Src has 
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been shown to phosphorylate RhoA at Tyr-34 and -66, which is also proposed to disrupt 

effector binding and therefore downstream signalling processes (Uezu et al., 2012).  

5.1.3 Aims  

Since there is evidence to suggest that N1-Src may play a role in RhoA signalling, the 

aim of this study was to determine whether N1-Src drives cytoskeletal dynamics via a 

RhoA dependent signalling mechanism. This work was carried out using a fibroblast 

model (also used in Chapter 5), in which N1-Src overexpression has previously been 

shown to increase process formation and reduce cell area in COS7 cells (Keenan, 2012). 

The hypothesis underpinning this work is that N1-Src will serve to promote the 

inactivation or act downstream of inactivated RhoA, which will ultimately lead to 

increased process formation and outgrowth in COS7 cells. This was investigated using 

a variety of cell biology and biochemical techniques.  
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5.2 Results 

5.2.1 Dissecting the Role of N1-Src in RhoA Signalling Using RhoA Mutants.   

In this chapter, a fibroblast model was employed to address the hypothesis that N1-Src 

regulates neurite outgrowth via the inhibition of RhoA. As previously described in Chapter 

4, the overexpression of N1-Src-mCherry in COS7 cells results in the formation of 

neurite-like processes in a portion of cells, which suggests that N1-Src regulates 

conserved cytoskeletal mechanisms that direct changes in cell morphology. This 

phenotype is not commonly observed in COS7 control cells (≤10 %) and therefore 

provides a simpler model for investigating manipulations of N1-Src signalling, as subtle 

effects on neurite outgrowth in hippocampal neurons can often be difficult to detect. A 

further advantage of using the COS7 cell line for studying N1-Src signalling is that these 

cells can be cultured and transfected more easily than neurons.      

In this study, the morphology of COS7 cells overexpressing N1-Src-mCherry alongside 

wild type (WT), constitutively active (Q63L) and dominant negative (T19N) GFP-RhoA 

was analysed. RhoA Q63L is a mutant that is unable to hydrolyse GTP and is therefore 

locked in the GTP-bound active state, whereas RhoA T19N acts by sequestering 

upstream GEFs, thus preventing exchange of GDP for GTP, rendering the protein 

inactive (Figure 5.2).   

The RhoA proteins were N-terminally-tagged with GFP, therefore an empty vector GFP 

control was used as a negative control. In addition to this, the GFP and RhoA constructs 

were co-transfected with plasmids expressing C-Src-mCherry (to compare with N1-Src-

mCherry) and mCherry (a control for the Src-mCherry constructs). Multiple 

morphological parameters were measured, including the percentage of cells with 

processes (Figure 5.4A), cell area (Figure 5.6A) and the circularity of the cells (Figure 

5.6B).    

Representative images indicated that, for all three GFP-RhoA constructs (WT, Q63L and 

T19N), the proteins were largely localised in the perinuclear region of COS7 cells (Figure 

5.3). They also appeared diffuse within the cytosol with some protein concentrated within 

small puncta. In the case of GFP-RhoA-WT and -Q63L, some protein was localised at 

the plasma membrane (Figure 5.3). When co-expressed with C-Src-mCherry, GFP-

RhoA-WT, -Q63L and -T19N appeared to co-localise with C-Src-mCherry in the 

perinuclear region (Figure 5.3B). This was also the case for N1-Src-mCherry co-

expressed with GFP-RhoA-WT and -T19N, but was less apparent in GFP-RhoA-Q63L 

transfected cells, where the RhoA mutant appeared more diffuse throughout the cells 

(Figure 5.3C). Upon first inspection, the morphology of cells expressing GFP-RhoA-

Q63L was more compact and rounded. Whereas in GFP-RhoA-WT and -T19N  
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RhoA wild type (WT) is capable of cycling between inactive GDP-bound and active GTP-

bound RhoA and vice versa, which is facilitated by GEFs and GAPs. The dominant 

negative RhoA mutant (T19N) is GDP bound, since the protein sequesters Rho GEFs, 

preventing the exchange of GDP for GTP. This protein can also interfere with other Rho 

GTPase signalling pathways since some GEFs are capable of regulating more than one 

GTPase. Constitutively active RhoA is continuously locked in the GTP bound active form 

and sequesters effector proteins, triggering downstream signalling events.  

Figure 5.2: Schematic Diagram Illustrating the Dominant Negative and 

Constitutively Active RhoA Mutants. 
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Representative images of COS7 cells co-transfected with empty- (A), C-Src (B) or N1-

Src-mCherry (C) and RhoA WT, Q63L or T19N. Cells were transfected for 48 h fixed and 

processed for immunofluorescence. Images were captured of 15 fields of view per 

condition using a fluorescence microscope. N=3, scale bar= 50 µm.   

Figure 5.3: N1-Src Co-localises with RhoA WT and T19N in the Perinuclear Region 
of COS7 Cells, which is Less Apparent in RhoA Q63L Expressing Cells. 
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transfected cells, a greater number of cells appeared to project neurite-like processes, 

particularly when co-transfected with mCherry or N1-Src-mCherry (Figures 5.3 A and C).  

To assess the differential effects of the GFP-RhoA constructs on the ability of COS7 cells 

to form neurite-like processes in the presence of mCherry, C-Src- or N1-Src-mCherry, 

the percentage of cells with processes and average number of processes per cell were 

quantified (Figure 5.4). Statistical analysis revealed that the percentage of cells with 

processes for GFP, GFP-RhoA-WT, -Q63L and -T19N expressing cells, was not 

dependent upon the Src-mCherry construct that was co-expressed, despite the fact that 

N1-Src-mCherry overexpression in control (GFP) and GFP-RhoA-T19N expressing cells 

resulted in an elevation in the percentage of cells with processes with respect to the 

corresponding mCherry expressing cells (Figure 5.4A). However, statistical analysis of 

the data did indicate that the overall average of the percentage of cells with processes 

in N1-Src-mCherry expressing cells was significantly higher in comparison to mCherry 

(p=0.049 *) and C-Src-mCherry (p=<0.001 ***) expressing cells (statistics for averaged 

data not shown on graph). In addition to this, the ability of cells overexpressing GFP-

RhoA-WT and -T19N to form processes (Figure 5.4A) was significantly elevated with 

respect to GFP-RhoA-Q63L (p=0.037 * and <0.001 ***, respectively) and GFP (T19N 

only; p=0.005 **) cells (statistics for averaged data not shown on graph).   

Figure 5.4B shows data depicting the average number of processes per cell, which 

follows the same trend as the percentage of cells with processes data (Figure 5.4A). 

Statistical analysis of these data indicated that process formation in the GFP-RhoA 

construct transfected cells was dependent on the presence of the Src-mCherry construct.  

The data highlighted that in GFP-RhoA-T19N cells co-expressing mCherry, there was a 

significant increase in the average number of processes per cell in comparison to GFP 

and GFP-RhoA-Q63L transfected cells (Figure 5.4B). The phenotype of RhoA WT 

transfected cells appeared to lie somewhere between that of GFP-RhoA-Q63L and -

T19N cells. Whilst the values obtained for C-Src-mCherry did not vary widely with respect 

to mCherry transfected cells, N1-Src-mCherry promoted process formation (Figure 

5.4B).  

The increase in the average number of processes in cells co-expressing N1-Src-mCherry 

and GFP was close to significance (p=0.061) when compared to mCherry containing 

cells. In addition to this, process formation was significantly higher in N1-Src-mCherry 

and GFP-RhoA-T19N expressing cells with respect to their mCherry and C-Src-mCherry 

expressing counterparts (p>0.001 ***). Whereas in GFP-RhoA-Q63L expressing cells 

process formation was comparable across mCherry, C-Src-mCherry and N1-Src-

mCherry expressing cells.  
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The percentage of cells with processes (A) and average number of processes per cell 
(B) were determined from images of COS7 cells that were co-transfected with mCherry, 
C-Src- or N1-Src-mCherry plasmids and constructs expressing GFP, GFP-RhoA-WT, -
Q63L or -T19N. The cells were transfected for 48 h, fixed and processed for 
immunofluorescence. The analysis was performed on 30 cells per condition, from a 
maximum of 15 fields of view. The experiments were performed 3 times and statistical 
analysis of the average number of processes per cell was performed on pooled data 
(n=90) using a two-way ANOVA. (* p<0.05, ** p<0.01, *** p<0.001).   

 

Figure 5.4: The Effects N1-Src-mCherry and the GFP-RhoA Mutants on Process 

Extension in COS7 Cells. 
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Although process extension by N1-Src-mCherry and GFP-RhoA-Q63L cells was not 

significantly different from their GFP transfected counterparts, it was significantly 

reduced in comparison to GFP-RhoA-WT (p=0.001 ***) and -T19N (p<0.001 ***) 

expressing cells. This indicated that N1-Src-mCherry was unable to promote process 

formation in the presence of GFP-RhoA-Q63L.  

With the aim of further understanding the effects of N1-Src-mCherry on process 

outgrowth, a more in depth morphological analysis was performed on the conditions that 

resulted in more than 20 % of the cells producing neurite-like processes (Figure 5.5).  

When N1-Src-mCherry was co-expressed with GFP-RhoA-T19N, there was a significant 

increase in the average number of processes (Figure 5.5A) and total length of processes 

per cell (Figure 5.5B), when compared to GFP (p=0.01 ** and 0.007 **, respectively) and 

GFP-RhoA-WT (total length of processes only; p=0.022 *) cells (Figure 5.5B). However, 

there was no significant change in the length of the longest process (Figure 5.5C), 

average process length (data not shown) or the number of branches per cell (Figure 

5.5D). Furthermore, when comparing the same morphological parameters in mCherry or 

N1-Src-mCherry cells co-expressing GFP-RhoA-T19N, it was apparent that N1-Src-

mCherry activity significantly enhanced the effects of GFP-RhoA-T19N process 

outgrowth (Figure 5.5E, p=0.008 **) and branching (Figure 5.5H, p=0.02 *), which 

resulted in an increase in the total length of processes (Figure 5.5F, p= 0.009 **). Once 

again, the length of the longest process and average process length (data not shown) 

remained unaffected.   

The area of cells co-expressing WT RhoA and mCherry was comparable to GFP 

expressing cells. However, GFP-RhoA-Q63L expression triggered a significant decrease 

in cell area with respect to GFP or GFP-RhoA-WT cells (Figure 5.6A, p=0.008 ** and 

0.006 **, respectively). In addition, there was a close to significant or significant reduction 

in the area of GFP-RhoA-T19N expressing cells in comparison to control (GFP; p=0.058) 

and GFP-RhoA-WT (p=0.042 *) cells, respectively. In terms of cell area, C-Src 

expressing cells behaved similarly to mCherry expressing cells, with the exception of 

GFP-RhoA-T19N, in which the area remained unchanged in relation to GFP and GFP-

RhoA-WT cells (Figure 5.6A). Therefore, there was a significant increase in the average 

area of GFP-RhoA-T19N cells expressing C-Src-mCherry, compared to mCherry 

(p=0.006 **).  

Amongst N1-Src-mCherry transfected cells, the area of GFP, GFP-RhoA-WT and -T19N 

containing cells was comparable, however GFP-RhoA-Q63L induced a significant 

reduction in the average cell area with respect to GFP-RhoA-WT (p=0.015 *) and -T19N  
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The average number of processes, total length of processes, length of longest process 
and number of branches per cell were determined for cells that were identified as 
extending processes and that were transfected with constructs encoding either N1-Src-
mCherry and GFP (n=19), GFP-RhoA-WT (n=22) or -T19N (n=34; A-D), or GFP-RhoA-
T19N and mCherry (n=20) or N1-Src-mCherry (n=34; E-H). The analysis was performed 
on data obtained from three experiments and statistical analyses were performed on the 
pooled data (see n numbers above) (* p<0.05, ** p<0.01, *** p<0.001).    

Figure 5.5: Process and Branch Formation is Enhanced in Cells Co-expressing N1-

Src-mCherry and GFP-RhoA-T19N. 
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The average cell area (A) and circularity (B) of cells were determined in ImageJ after 
tracing the perimeter of cells that were co-transfected with mCherry, C-Src- or N1-Src-
mCherry and GFP, GFP-RhoA-WT, -Q63L or -T19N. The cells were transfected for 48 
h, fixed and processed for immunofluorescence. The analysis was performed on 30 cells 
per condition, from a maximum of 15 fields of view. The experiments were performed 3 
times and statistical analysis was performed on pooled data (n=90) using a two-way 
ANOVA. (* p<0.05, ** p<0.01, *** p<0.001).   

 

Figure 5.6: The Effects of N1-Src-mCherry and the GFP-RhoA Mutants on the 

Cell Area and Circularity of COS7 Cells. 
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(p=0.024 *) (Figure 5.6A). In cells co-expressing N1-Src-mCherry and GFP, GFP-RhoA-

WT or -Q63L, there was a significant reduction in cell area with respect to their mCherry 

expressing counterparts (p=<0.001 ***, 0.011 *, 0.026 *, respecitvely). Whereas in GFP-

RhoA-T19N expressing cells, the cell area was consistent with the corresponding 

mCherry control (Figure 5.6A). 

In comparison to C-Src-mCherry cells co-expressing GFP or GFP-RhoA-T19N, there 

was a significant decrease in the cell area of the equivalent cells expressing N1-Src-

mCherry (p=0.045 * and p=<0.001***, respectively). 

Taken together, these data indicated that in mCherry expressing cells, both GFP-RhoA-

Q63L and -T19N reduced cell area in comparison to control and GFP-RhoA-WT cells. In 

addition, the results emphasised the fact that N1-Src-mCherry overexpression with GFP 

and the RhoA constructs reduced cell area with respect to their mCherry expressing 

counterparts, with exception of GFP-RhoA-T19N cells, which remained unchanged.  

To further understand the effects of the RhoA constructs on cell morphology, in the 

presence or absence of C- and N1-Src-mCherry, the circularity of the cells was 

measured (Figure 5.6B). The data obtained indicated that the circularity of the cells 

expressing the different RhoA constructs was not dependent on the expression of the 

Src-mCherry construct. 

In general, the circularity of the cells expressing GFP, GFP-RhoA-WT, -Q63L or -T19N 

appeared similar regardless of the presence of the mCherry constructs. However, it 

should be noted that the difference in the overall mean values of circularity were 

significantly different for C-Src-mCherry expressing cells with respect to mCherry and 

N1-Src-mCherry expressing cells. This reflects the slight increase in the circularity of C-

Src-mCherry transfected cells in comparison to mCherry and N1-Src-mCherry 

transfected cells (Figure 5.6B). In addition to this, there was a statistically significant 

increase (p<0.001 ***) in the average circularity values of GFP-RhoA-Q63L expressing 

cells, with respect to the other Rho constructs (GFP, GFP-RhoA-WT and -T19N) (Figure 

5.6B). It should also be noted that the circularity of cells co-expressing GFP-RhoA-T19N 

and N1-Src-mCherry, was reduced by approximately 30 and 40 % compared to their 

corresponding cells expressing mCherry and C-Src-mCherry, respectively (Figure 5.6B).   

Overall these data suggested that whilst C-Src-mCherry expressing cells behaved 

similarly to mCherry expressing cells, N1-Src-mCherry appeared to promote process 

outgrowth and reduce cell area in GFP, GFP-RhoA-WT and -T19N cells (Figure 5.6A). 

A closer inspection of the morphology of process-extending cells provided additional 

evidence indicating that N1-Src-mCherry overexpression enhanced GFP-RhoA-T19N- 
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mediated process and branch formation. However, the Q63L RhoA mutant prevented 

N1-Src-mCherry-mediated process formation, increased cell circularity and decreased 

cell area further. 

5.2.2 Manipulating RhoA-N1-Src Signalling via the Inhibition of Rho. 

With the aim of providing further insight into the role of N1-Src in Rho signalling 

pathways, a selective inactivator of Rho isoforms A, B and C was used. Exoenzyme C3 

transferase (C3) ADP-ribosylates an asparagine residue (Asp 41) in the effector binding 

region of Rho. This modification serves to inhibit the activation of Rho proteins via GEFs 

and results in the sequestration of ADP-ribosylated Rho-GDP in the Rho-GDI complex, 

in the cytosol (Figure 5.7, (Aktories et al., 2004)). Apart from also inactivating Rho B and 

C, this differs to the dominant negative RhoA mutation (T19N) because although RhoA 

is locked into the inactive GDP-bound form, T19N also sequesters RhoA GEFs, which 

might also interfere with the activation of other Rho family GTPases. In these studies, C- 

and N1-Src-mCherry were co-expressed with C3, to assess whether the kinases 

enhanced or reduced the effects of C3 inactivation.   

Empty mCherry, C-Src- and N1-Src-mCherry constructs were co-transfected into COS7 

cells with the empty vector pLINK or the Rho inhibitor C3 (pLINK-C3) to determine the 

effect of N1- and C-Src-mCherry on process outgrowth in cells containing inactivated 

RhoA, B, C.   

Upon first inspection, cells co-transfected with pLINK and N1-Src-mCherry appeared 

smaller with many extending neurite-like processes from the cell body, whereas mCherry 

and C-Src-mCherry expressing cells were larger and more spread (Figure 5.8A). Both 

C- and N1-Src-mCherry were largely co-localised to the perinuclear regions of the cell 

(Figure 5.8A). However, when mCherry or the Src-mCherry constructs were co-

expressed with C3, a large proportion of the cells exhibited a decrease in the area of the 

cell body, which also extended one or more neurite-like processes.  

To quantify the effects of C3 on process formation in the presence of C- and N1-Src-

mCherry, firstly, the percentage of cells with processes under each condition was 

analysed (Figure 5.8B). The analysis revealed that in control cells (pLINK) expressing 

N1-Src-mCherry, the percentage of cells with processes was significantly higher (28.9 

%) than in mCherry (8.9 %; p=0.004 **) and C-Src-mCherry (7.8 %; p=0.003 **) 

expressing cells. When mCherry and C-Src-mCherry were co-expressed with C3, the 

RhoA/B/C inhibitor; there was a highly significant increase in the percentage of cells with 

processes from 8.9 % to 45.6 % (p <0.001 ***) and 7.8 % to 50 % (p <0.001 ***), 

respectively. Similarly, there was a large increase in C3 and N1-Src-mCherry expressing  
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The exoenzyme C3 transferase ADP-ribosylates RhoA at Asp-41. This modification 
inhibits Rho A, B and C by preventing the activation of Rho via GEFs and leading to the 
sequestration of ADP-ribosylated Rho-GDP in the Rho-GDI complex in the cytosol. 
(Adapted from Aktories et al., 2004). 

 

  

Figure 5.7: Schematic Diagram Illustrating the Inhibition of RhoA-C by C3. 
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(A) Representative images of COS7 cells co-transfected with empty-, C-Src or N1-Src-
mCherry and pLINK or pLINK-C3 (C3). Cells were transfected for 48 h, fixed and 
processed for immunofluorescence. Images were captured of 15 fields of view per 
condition using a fluorescence microscope. N=3, scale bar= 50 µm. (B) The percentage 
of cells with processes was determined from 30 cells per condition, from a maximum of 
15 fields of view. The experiments were performed 3 times and statistical analysis was 
determined using a two-way ANOVA (* p<0.05, *** p<0.001).   

  

Figure 5.8: Overexpression of N1-Src-mCherry did not Enhance C3 Mediated 

Process Formation. 
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cells compared to control cells from 28.9 % to 47.2% (p=0.003 **). However, when 

comparing the percentage of C3 expressing cells with processes between groups, i.e. 

mCherry, C-Src- and N1-Src-mCherry expressing cells, there was very little difference 

(45.6, 50, and 47.2 %, respectively). 

In addition to this, exactly the same data trends were observed when analysing the 

average number of processes per cell (data not shown).     

These data demonstrated that both N1-Src and inactive Rho were capable of individually 

promoting process formation in control cells (i.e. pLink or mCherry expressing cells 

respectively), however N1-Src-mCherry was unable to further drive process outgrowth 

in cells containing inactive Rho above the levels observed in both mCherry and C-Src-

mCherry expressing cells. 

To further understand the effects of N1-Src-mCherry in C3 expressing cells, further 

morphological analysis was performed on the conditions that resulted in greater than 20 

% of cells producing neurite-like processes (Figure 5.9). Of the cells co-expressing N1-

Src-mCherry and C3 that formed processes, the average number of processes (p=0.002 

**, Figure 5.9A), total length of processes (p=0.006 **, Figure 5.9B) and number of 

branches (p=0.005 **, Figure 5.9D) per cell were significantly elevated with respect to 

the corresponding GFP expressing cells, whereas process length remained unchanged 

(Figure 5.9C). However, when the same properties were compared amongst C3 

expressing cells containing mCherry, C-Src- or N1-Src-mCherry, there were no 

significant changes (Figures 5.9 E-H). This suggested that N1-Src-mCherry 

overexpression did not enhance the effects of C3 on process or branch formation in 

COS7 cells.  

In control (pLINK transfected) cells, there was a significant decrease in the mean area 

of cells expressing N1-Src-mCherry with respect to mCherry (p <0.001 ***) and C-Src-

mCherry (p <0.001 ***) containing cells, which were comparable (Figure 5.10A). 

Interestingly, when mCherry and C-Src-mCherry were co-expressed with C3, the area 

of the transfected cells was significantly reduced to similar levels by approximately 40 % 

(p<0.001 ***) (Figure 5.10A). Whilst the area of N1-Src-mCherry and C3 transfected cells 

decreased a further 22 % in comparison to control cells (p=0.017 *), the average cell 

area was not significantly different to cells co-expressing both C3 and mCherry or C-Src-

mCherry (Figure 5.10A).   

The trends in the differences in the circularity of the cells analysed (Figure 5.10B) were 

very similar to those observed with cell area. N1-Src-mCherry overexpression in control  
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The average number of processes, total length of processes, length of longest process 
and number of branches per cell were determined for cells that were identified as 
extending processes and that were transfected with either N1-Src-mCherry and pLINK 
(n=26) or C3 (n= 45; A-D), or C3 and mCherry (n=41), C- (n=45) or N1-Src-mCherry 
(n=45; E-H) constructs. The analysis was performed on data obtained from three  
experiments and statistical analyses were performed on the pooled data (** p<0.01).   

Figure 5.9: Process and Branch Formation, as well as the Length of Longest 
Process was Comparable in Cells Co-expressing C3 and empty-, C- or N1-Src-

mCherry. 
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The average cell area (A) and circularity (B) of cells were determined in ImageJ after 
tracing the perimeter of cells that were co-transfected with mCherry, C-Src- or N1-Src-
mCherry constructs and pLINK (control) or pLINK-C3 (C3). The cells were transfected 
for 48 h, fixed and processed for immunofluorescence. The analysis was performed on 
30 cells per condition, from a maximum of 15 fields of view. The experiments were 
performed 3 times and statistical analysis was performed on pooled data (n=90) using a 
two-way ANOVA. (* p<0.05, *** p<0.001).   

Figure 5.10: The Effects of the mCherry-Srcs and C3 Inactivation of Rho on the 

Cell Area and Circularity of COS7 Cells. 
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(pLINK) cells resulted in a significant reduction in circularity of the cells with respect to 

mCherry and C-Src-mCherry transfected cells (p<0.001 ***), indicating the shape of the 

cells expressing N1-Src-mCherry were more elongated, which is visible in Figure 5.8A. 

Notably, in C-Src-mCherry expressing cells, there was a significant increase in circularity 

with respect to mCherry expressing cells (p <0.038 *). When co-expressed with C3, the 

circularity in mCherry, C- or N1-Src-mCherry expressing cells was significantly reduced 

(p <0.001 ***) to similar levels, in comparison to control cells (Figure 5.10B). 

Taken together, these results indicated that the overexpression of N1-Src-mCherry in 

COS7 cells results in a similar, yet weaker phenotype to the inactivation of RhoA by C3. 

N1-Src-mCherry overexpression in pLINK transfected cells resulted in an increase in the 

percentage of cells with processes (Figure 5.8B) and a decrease in cell circularity (Figure 

5.10B) as well as cell area (Figure 5.10A) compared to mCherry containing cells. Cells 

overexpressing C-Src-mCherry largely resembled mCherry expressing cells with the 

exception that C-Src-mCherry containing cells had a higher circularity. Irrespective of the 

presence of C- or N1-Src-mCherry, the percentage of cells with processes (Figure 5.8), 

circularity and cell area (Figure 5.10) was comparable in C3 expressing cells. A more in 

depth analysis of the cells extending processes also revealed that C3 had the same 

effects on the average number of processes (Figure 5.9E), total length of processes 

(Figure 5.9F), length of longest process (Figure 5.9G) and number of branches per cell 

(Figure 5.9H) in mCherry, C-Src and N1-Src-mCherry containing cells. This indicated 

that N1-Src-mCherry did not enhance the effects of C3 within this experimental system. 

This result was different to that in Figure 5.4, where N1-Src-mCherry enhanced process 

outgrowth above control levels in GFP-RhoA-T19N (dominant negative) transfected 

cells. 

5.2.3 Overexpression of GFP-RhoA-WT, -Q63L and -T19N did not Affect N1-Src-

FLAG Activity in COS7 Cells. 

The effect of the overexpression of GFP-RhoA-WT, -Q63L and -T19N on the activation 

status of N1-Src- in comparison to C-Src-FLAG was explored to determine whether the 

kinase acts downstream of RhoA under basal conditions (Figure 5.11). Phosphorylation 

of the kinase on Tyr-416 (Y416) in the active site is a marker of kinase activity. The 

different GFP-RhoA constructs (including GFP) were co-expressed with either C- or N1-

Src-FLAG and kinase activity was detected via Western Blotting.   

Phosphorylation of C-Src-FLAG at Tyr-416 was elevated in the presence of GFP-RhoA-

WT in comparison to cells overexpressing GFP alone. However, the GFP-RhoA-Q63L 

and -T19N mutants did not enhance C-Src-FLAG activity over the levels observed in 

GFP and C-Src-FLAG expressing cells. It should be noted that expression of levels of 
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the different RhoA mutants varied, which may account for the reduced C-Src activity 

seen in GFP-RhoA-mutant and C-Src-FLAG expressing cells. Upon first inspection, N1-

Src-FLAG activity, in cells co-expressing N1-Src-FLAG and GFP-RhoA Q63L, appeared 

reduced compared to GFP, GFP-RhoA-WT and -T19N expressing cells. However, the 

amount of N1-Src-FLAG also appears reduced, which could account for this observation. 

Therefore, overall, N1-Src-FLAG activity did not appear to be affected by GFP-RhoA-

WT, -Q63L or -T19N. 

In figure 5.11B, the levels of Tyr-416 phosphorylation were quantified by performing 

densitometry analysis of the protein bands from three biological replicates. Since the 

protein levels of Src-FLAG and the GFP-RhoA mutants appeared to vary between 

conditions, phosphorylation of Tyr-416 was normalised to the amounts of both Src-FLAG 

and RhoA-GFP.  

In C-Src-FLAG transfected cells, the results indicated that Tyr-416 phosphorylation 

appeared slightly higher when cells were co-transfected with GFP-RhoA-WT or -Q63L in 

comparison to control cells. Whereas C-Src-FLAG and GFP-RhoA-T19N co-transfected 

cells displayed even higher levels of kinase activity with respect to control cells. However, 

statistical analysis of these data confirmed that these observations were insignificant. In 

cells co-transfected with N1-Src-FLAG and GFP, GFP-RhoA-WT or -Q63L, the level of 

Tyr-416 phosphorylation was similar between conditions.  This was slightly elevated in 

N1-Src-FLAG cells co-expressing GFP-RhoA-T19N, although this observation was not 

significant. Overall, these data indicated that the co-expression of neither C- nor N1-Src-

FLAG with the GFP-RhoA mutants resulted in significant changes to the activity of the 

kinases.  

It should also be noted that the baseline level of Tyr-416 phosphorylation in N1-Src-

FLAG transfected cells was elevated, when compared to C-Src transfected cells. 

However, the error bars on the N1-Src data points were particularly large, indicating that 

a high degree of variation occurred within the three biological replicates. In addition, there 

was no significant interaction between the C-Src- and N1-Src-FLAG data. Further 

repeats of this data set should be performed in order to determine the potential 

differences between the kinase activity of C-Src- and N1-Src-FLAG in COS7 cells.   
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COS7 cells were co-transfected with C-Src- or N1-Src-FLAG and GFP, GFP-RhoA-WT, 

-Q63L or -T19N. The cells were transfected for 48 h, lysed, separated by SDS PAGE 

and subject to Western blot analysis. Kinase activity was assessed by monitoring the 

phosphorylation of Tyr-416. The blots shown are a representative of n=3. B) Tyr-416 

phosphorylation was quantified by performing densitometry in ImageJ. Phosphorylation 

of Tyr-416 was normalised to the amounts of Src-FLAG and GFP-RhoA and statistical 

analysis of the data (n=3) was performed using a two-way ANOVA.  

  

Figure 5.11: Overexpression of GFP-RhoA-WT, -Q63L or -T19N had Little Effect on 

C- or N1-Src-FLAG Activity. 
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5.2.4 N1-Src and C-Src-FLAG Interacted with Active GFP-RhoA-WT in COS7 

Cells.  

Since N1-Src appeared to co-localise with GFP-RhoA-WT and -T19N (Figure 5.3), the 

possibility that N1-Src interacts with RhoA was investigated. An immunoprecipitation (IP) 

using α-GFP conjugated resin that bound the GFP-tagged RhoA-WT was performed to 

determine whether N1-Src-FLAG could be pulled-down with the GTPase in COS7 cells 

(Figure 5.12). Further negative controls were performed to confirm that N1-Src-FLAG did 

not interact with GFP and that GFP-RhoA-WT did not interact FLAG alone. Whilst these 

controls were verified, N1-Src-FLAG did not appear to be pulled-down by GFP-RhoA-

WT.  

As p190RhoGAP has previously been shown to interact with RhoA, as a positive control, 

the blot was probed with a p190RhoGAP specific antibody, however the protein could 

not be detected in either the input or pull-down lanes (data not shown).  

The overexpression of constitutively active C-Src has previously been linked to RhoA 

phosphorylation in mouse 3T3 cells and directly inactivates RhoA activity (Uezu et al., 

2012). However, GFP-RhoA-WT did not appear to be phosphorylated in N1-Src-FLAG 

overexpressing cells (Figure 5.12). It should also be noted that in the input lanes for the 

cell lysates containing N1-Src-FLAG, bands representing a phospho-tyrosine modified 

protein, which corresponded to the molecular weight of N1-Src, were present. However, 

this was not detected in the GFP-RhoA-WT/N1-Src-FLAG IP lane (Figure 5.12). 

Together these results suggested that N1-Src neither phosphorylates nor interacts with 

RhoA WT. However, the inclusion of a further positive control to demonstrate that GFP-

RhoA-WT interacts with known binding partners (e.g. p190rhoGAP) will be required to 

verify the latter result.    

5.2.4 C- and N1-Src-FLAG Evoked Differential Effects on the Activation of GFP-

RhoA-WT. 

Previous experiments have suggested that N1-Src-FLAG does not bind to or 

phosphorylate GFP-RhoA-WT under basal cellular conditions, however, these studies 

did not provide evidence regarding the effect of the kinase on GTPase activity. Therefore, 

to assess the effect of both C- and N1-Src-FLAG on RhoA activity, a commercial RhoA 

GTPase activation assay kit was used.  

The basis of this assay relies upon the well characterised interaction between the RhoA 

binding domain (RBD) of Rhotekin (a RhoA effector) and RhoA-GTP. The kit consists of 

a pull-down assay that can be used to indicate the levels of GTP-bound RhoA in treated  
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COS7 cells were co-transfected with Empty- or N1-Src-FLAG and GFP or GFP-RhoA-

WT constructs for 48 h. The cells were lysed in RIPA buffer and GFP or GFP-RhoA-WT 

was immunoprecipitated from cell lysates using an α-GFP resin. Input (1 %) and 

immunoprecipitation (IP) samples were separated by SDS-PAGE and subject to Western 

blot analysis. The blots shown are representative of the results obtained for n=3.   

 

  

Figure 5.12: N1-Src-FLAG neither Interacted with nor Phosphorylated GFP-RhoA-

WT. 



 
 

166 
 

cells. The advantage of using this kit is that it is designed to monitor the activation status 

of endogenous cellular RhoA, however this proved technically difficult. Whilst GTP 

loaded RhoA was easily detected (positive control), in two separate experiments, either 

trace levels or no active RhoA were detected in cell lysates containing Empty-, C-Src- or 

N1-Src-FLAG. Therefore, it was difficult to deduce any conclusions from these data 

regarding the effects of the kinases (data not shown). 

Taking this into account, the experiment was repeated in cells that were transfected with 

GFP-RhoA-WT (Figure 5.13). In addition to controls, whereby cells were loaded with 

either GDP (negative) and GTP (positive), which confirmed the GFP-tagged GTPase 

was functional, further controls, were transfected with either GFP-RhoA-Q63L (positive) 

or -T19N (negative). In the case of GFP-RhoA-T19N expressing cells, no signal 

indicating the presence of GFP-RhoA-GTP was detected, whereas a large signal was 

observed for the cells that contained GFP-RhoA-Q63L (Figure 5.13). 

The result observed for the GFP-RhoA-T19N negative control implied that the GFP tag 

had no affinity for the GST-Rhotekin RBD resin. In comparison to cells that co-expressed 

both GFP-RhoA-WT and an empty FLAG construct, C-Src-FLAG appeared to evoke an 

increase in the amount of GTP-bound GFP-RhoA-WT. This was also true for N1-Src-

FLAG expressing cells but to a lesser extent than for C-Src. The PVDF membrane 

containing the pull-down samples was probed with an α-FLAG antibody to determine 

whether the kinases co-purified with GFP-RhoA-GTP. Both C-Src- and a small amount 

N1-Src-FLAG were detected in the pull-downs.  

Taken together, these results suggested that both C- and N1-Src-FLAG activate GFP-

RhoA-WT under basal cellular conditions and interact with GFP-RhoA-GTP but this 

interaction is much weaker in N1-Src-FLAG transfected cells. In order to confirm the 

results obtained in this assay, replicate experiments must be performed. In order to 

confirm the results obtained in this assay, replicate experiments must be performed. In 

addition, a further negative control that would involve a GST-Rhotekin pulldown in the 

absence of GFP-RhoA-WT should be included, to discount the possibility that C- or N1-

Src could be binding to Rhotekin . 
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COS7 cells were co-transfected with Empty-, C-Src or N1-Src-FLAG and GFP-RhoA-

WT, -T19N (negative control) or -Q63L (positive control) construcuts for 48 h. In the first 

two lanes, cell lysates were pre-loaded with either GTP (positive control) or GDP 

(negative control). Using a RhoA GTPase kit, the cells were lysed and samples were 

incubated with GST-Rhotekin-RBD resin to pull-down active GTP-bound GFP-RhoA. 

Input (2 %) and pull-down samples were separated by SDS-PAGE and subject to 

Western blot analysis. N=1, *cells were co-transfected with an Empty FLAG vector.   

  

Figure 5.13: C- and N1-Src have Differential Effects on the Activation Status of 

GFP-RhoA. 
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5.3 Discussion 

5.3.1 Dissecting the Role of N1-Src and RhoA in the Regulation of Process 

Outgrowth in COS7 Cells. 

The studies conducted in Chapter 5 sought to determine whether N1-Src-mediated 

process outgrowth in COS7 cells is dependent upon RhoA inactivation. Using a 

combination of RhoA mutants and a RhoA inhibitor in COS7 cells, as well as biochemical 

approaches, the role of N1-Src in RhoA signalling was dissected. The outcomes of these 

experiments are discussed below. 

5.3.1.1 The Effect of N1-Src-mCherry on Cell Morphology 

When overexpressed in COS7 cells, N1-Src-mCherry promotes process formation; this 

was demonstrated in Figures 5.4 and 5.8 and has previously been shown in the Evans 

lab (Keenan, 2012). Despite the fact that there was not a statistically significant 

difference in the percentage of cells with processes between the cells co-expressing 

either of the Src-mCherry and GFP-RhoA constructs (Figure 5.4A), the overall mean 

percentage of cells with processes for N1-Src-mCherry transfected cells was significantly 

higher than that of mCherry and C-Src-mCherry expressing cells. In addition to 

increasing process formation, N1-Src-mCherry overexpression also resulted in a 

significant reduction in cell area (Figure 5.6A) and in some cases, circularity (Figure 

5.10B). This model was used, in conjunction with biochemical studies, to test the 

hypothesis that N1-Src regulates cell morphology of COS7 cells (in particular process 

formation) via the inhibition of RhoA.  

To test the effects of N1-Src on RhoA signalling (or vice versa), N1-Src-mCherry was 

overexpressed with different GFP-RhoA constructs and a RhoA inhibitor (C3). 

Overexpression of the GFP-RhoA-mutants and C3 had distinct effects on cell 

morphology themselves (Figures 5.3-6 and 5.8-10) and will be discussed in Section 

5.3.1.2-4 to follow. 

5.3.1.2 The Effect of RhoA Inactivation on Cell Morphology 

GFP-RhoA-T19N (dominant negative mutant) expression resulted in an elevation of 

process formation (Figure 5.4), a reduction in cell area (Figure 5.6A), but cell circularity 

remained unaffected (Figure 5.6B). This mimicked the effects of N1-Src-mCherry 

overexpression, suggesting that signalling resulting from GFP-RhoA inactivation (T19N) 

and via N1-Src worked towards a common goal. This was supported by the observation 

that inhibition of all three Rho proteins (A, B and C) also resulted in elevated process 

outgrowth (Figure 5.8). 
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Analysis of process formation in cells co-expressing N1-Src-mCherry and GFP-RhoA-

T19N in comparison to the corresponding mCherry or GFP expressing cells, produced 

conflicting results (Figure 5.4). The percentage of cells with processes in cells co-

expressing mCherry and GFP-RhoA-T19N or N1-Src-mCherry and GFP were very 

similar (~20-25 %). When N1-Src-mCherry and GFP-RhoA-T19N were expressed 

together the effect on the percentage of cells with processes was almost additive (~40 

%), which suggested that N1-Src-mCherry and GFP-RhoA-T19N act through separate 

pathways (Figure 5.4A).  

However, when quantifying the average number of processes per cell (Figure 5.4B), the 

effect appeared synergistic (more than additive), which would suggest that both GFP-

RhoA-T19N and N1-Src-mCherry were working together to enhance process formation 

(Figure 5.4B). However, this would be unlikely to be as a result of N1-Src-mCherry 

inhibiting the GTPase, since the T19N construct is dominant negative, thus RhoA is 

already inactivated.  

An in depth analysis of the cells that contained the construct combinations that produced 

greater than 20 % of cells with processes (Figure 5.5), revealed that whilst the average 

number of processes was significantly higher in N1-Src-mCherry and GFP-RhoA-T19N 

co-transfected cells, the effect appeared to be additive, rather than synergistic (Figure 

5.5A). This agreed with the data presented in Figure 5.4A, which suggested that N1-Src 

and RhoA act via separate pathways to drive process formation in COS7 cells. The 

presence of N1-Src-mCherry in GFP-RhoA-T19N expressing cells, had a significant 

impact on the number of branches per cell (~0.7 branches per cell), compared to GFP-

RhoA-T19N cells expressing the mCherry control (~0.2 branches per cell, Figure 5.5H). 

Comparing this result to the number of branches per cell observed for GFP and N1-Src-

mCherry expressing cells (~0.2 branches per cell, Figure 5.5D) the effect of N1-Src-

mCherry and GFP-RhoA-T19N together appeared to be synergistic. However, 

confidence in this result should be improved by increasing the sample size, since the 

error bars were very large.  

5.3.1.3 The Effect of the RhoA/B/C Inhibition on Cell Morphology 

A further experiment that was aimed at understanding the potential interplay between 

N1-Src and RhoA GDP-mediated process outgrowth, was performed using the 

RhoA/B/C inhibitor C3 (Figures 5.8-10). In this experiment, almost 50 % of cells 

transfected with pLINK-C3 produced processes regardless of the Src-mCherry status of 

the cells (Figure 5.8B). However, the percentage of cells with processes when N1-Src-

Cherry was co-expressed with pLINK-C3 did not appear to be the result of an additive 

effect of the percentages of cells with processes when mCherry and C3 or N1-Src-
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mCherry and pLINK (control) were co-expressed (Figure 5.8B). This result differed from 

the additive effect seen when N1-Src-mCherry and GFP-RhoA-T19N were co-expressed 

(Figure 5.5A), which suggested that both N1-Src and inactive RhoA work via separate 

pathways. There are multiple explanations that could explain this outcome. 

Firstly, since all of the cell parameters that were measured were comparable in C3 

expressing cells (Figure 5.8B), it is possible that within the experimental system used, 

maximal phenotypic effects were observed and therefore the effects of additional 

stimulators of process outgrowth (i.e. N1-Src) were not clearly represented. A second 

theory is that N1-Src-mCherry drives RhoB or C inactivation, which is why an additive 

effect on neurite outgrowth was not observed, since the Rho GTPases were inhibited by 

C3. Alternatively, the opposite could have occurred, whereby inactive Rho B or C 

antagonised N1-Src-mCherry mediated process formation. However, it seems unlikely 

that inactive Rho would serve to inhibit N1-Src, when they are working towards a 

common goal and this also appears to be the function of active RhoA (discussed in 

Section 5.3.1.5).   

Before a valid conclusion can be deduced from the C3 data, a dose response experiment 

using a commercial cell permeable C3 protein should be performed to ascertain the 

upper boundaries of the model, and determine the validity of the results obtained. 

Alternatively, a similar titration could be performed using a small molecule inhibitor of 

RhoA, namely Rhosin (Merck Millipore, Watford, UK)(Shang et al., 2012). 

5.3.1.4 The Effect of Constitutively Active RhoA on Cell Morphology.  

In cells overexpressing GFP-RhoA-Q63L (constitutively active mutant), process 

formation remained comparable to the GFP control (Figure 5.4), whereas cell area 

decreased (Figure 5.6A) and circularity increased (Figure 5.6B). This was in line with the 

known function of active RhoA, which promotes stress fibre formation and acto-myosin 

contractility. 

The data for the co-expression of N1-Src-mCherry with GFP-RhoA-Q63L, suggested 

that this RhoA mutation prevented N1-Src mediated process formation (Figure 5.4). In 

addition to this, ithe circularity of N1-Src-mCherry and GFP-RhoA-Q63L co-expressing 

cells (Figure 5.6B) was equivalent to the cells co-expressing GFP-RhoA-Q63L and the 

mCherry control, whereas cell area was significantly reduced (Figure 5.6A) when N1-

Src-mCherry was present versus mCherry alone. However, there was not a significant 

difference in cell area when GFP or GFP-RhoA-Q63L were co-expressed with N1-Src-

mCherry. The constitutive activation of RhoA probably inhibited N1-Src mediated 

process outgrowth via cross-talk with the N1-Src signalling pathway. Co-expression of 

N1-Src-mCherry with GFP-RhoA-Q63L did not appear to directly affect N1-Src activity, 
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however this does not discount the fact that RhoA-Q63L could disrupt a signalling 

pathway downstream of N1-Src.  

5.3.1.5 The Effect of N1-Src-on the Activation of RhoA 

Under basal conditions, in cells containing GFP-RhoA-WT, there is a mixture of GDP- 

and GTP-bound RhoA, which was evidenced by the RhoA GTPase activation assay 

(Figure 5.13). This could explain the fact that the GFP-RhoA-WT cell morphological 

phenotype lay somewhere in between that of GFP-RhoA-Q63L and-T19N when co-

expressed with the mCherry control. The opposing roles of GDP- and GTP-bound RhoA, 

the latter of which was demonstrated to be enhanced by N1-Src-FLAG expression 

(Figure 5.13), could also account for the phenotype observed in cells co-expressing 

GFP-RhoA-WT and N1-Src-mCherry, whereby neither the percentage of cells with 

processes (Figure 5.4A), nor the average number of processes per cell (Figure 5.4B) 

were altered with respect to the cells co-expressing N1-Src-mCherry and the GFP 

control. 

Finally, the RhoA GTPase activation assay revealed that in cells transfected with N1-

Src-FLAG and GFP-RhoA-WT, the kinase promoted the activation of RhoA and some 

N1-Src-FLAG was pulled down with active (GTP-bound) RhoA (Figure 5.13). Whilst this 

experiment needs to be repeated, one explanation for N1-Src serving to activate RhoA, 

could be that the kinase forms part of a negative feedback loop modelled in Figure 5.14. 

This would involve the self-regulation of N1-Src mediated process outgrowth. This type 

of regulation is not uncommon, and since COS7 cells would not ordinarily form neurite-

like processes, the existence of a negative feedback regulatory step could be feasible. 

Since small amounts of N1-Src-FLAG appeared to be pulled down with GFP-RhoA-WT-

GTP, it is possible that N1-Src could form part of a complex with RhoA-GTP, in which it 

serves to regulate the activity of a Rho GEF to facilitate RhoA activation. In order to test 

this, it would be interesting to perform mass spectrometry on the proteins that are pulled-

down in complex with RhoA, to identify candidate substrates.   
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Both GDP-bound RhoA and N1-Src promote process outgrowth in COS7 cells, whereas 
activation of RhoA results in stress fibre formation and acto-myosin contractility and 
inhibits N1-Src mediated process outgrowth. In a proposed negative feedback loop, N1-
Src mediated process outgrowth may be self-regulated by activating RhoA. 

 

 

 

 

 

Figure 5.14: Schematic of the Proposed N1-Src/RhoA Signalling Pathway 

Regulating COS7 Cell Morphology. 
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5.3.2 The Alternate Roles of C- and N1-Src in RhoA Signalling 

For the most part of this chapter, the roles of both C- and N1-Src-mCherry in RhoA 

signalling were investigated, enabling a comparison of the two kinases. In Figure 5.9B 

(C3 experiment), there was a significantly reduced proportion of cells extending 

processes amongst control cells (pLINK transfected) expressing C-Src-mCherry in 

comparison to N1-Src-mCherry.This data was also supported by the data in Figure 5.4, 

in which the overall average percentage of cells with processes in cells overexpressing 

C-Src-mCherry and the RhoA constructs, was also significantly reduced with respect to 

the corresponding N1-Src-mCherry expressing cells. In addition to this, the overall 

average value of circularity (Figure 5.10B) for C-Src-mCherry transfected cells was 

significantly higher in comparison to Empty- and N1-Src-mCherry containing cells. Since 

increased circularity is a feature of GFP-RhoA-Q63L expressing cells (Figure 5.6B), this 

observation could be in part related to the fact that C-Src-FLAG overexpression 

appeared to activate GFP-RhoA-WT in COS7 cells, under basal cellular conditions 

(Figure 5.13). 

The average area of the cells co-expressing C-Src-mCherry and GFP was similar to their 

mCherry expressing counterparts, however the cell area of N1-Src-mCherry containing 

cells was significantly reduced (Figure 5.6A). When combined, these data highlighted 

the opposing roles of C- and N1-Src in the regulation of cell morphology. Whilst C-Src-

mCherry expressing cells appeared more rounded and spread, N1-Src-mCherry 

promoted process outgrowth and shrinking of the cell body.  

In C-Src-mCherry transfected cells, process formation did not vary significantly in GFP-

RhoA-WT, -Q63L and -T19N cells in comparison to the GFP control (Figure 5.4). There 

was also no observable difference in process formation between C-Src-mCherry cells 

co-expressing either GFP-RhoA-Q63L or -T19N. In contrast, a significant difference in 

the average number of processes per cell was observed between the GFP-RhoA-Q63L 

and -T19N cells co-expressing either mCherry or N1-Src-mCherry (Figure 5.4B). 

However, the error bar for the percentage of cells with processes in C-Src-mCherry and 

GFP-RhoA-T19N co-transfected cells was particularly large (Figure 5.4A), therefore 

further repeats of this dataset would increase confidence in this outcome. Despite this 

large error bar, these data further emphasised the difference between the effects of C- 

and N1-Src-mCherry on process outgrowth in COS7 cells, whereby C-Src-mCherry had 

little effect on process formation and cells behaved similarly to mCherry control cells.    

5.3.2.1 The Differential Activation of RhoA by N1 and C-Src 

Surprisingly, preliminary data suggested that C-Src activated RhoA to a greater extent 

than N1-Src under basal cellular conditions (Figure 5.13). Whilst it seems sensible that 
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C-Src would activate RhoA more so than N1-Src, given the role of N1-Src in process 

outgrowth, the majority of the literature linking C-Src with RhoA, conclude that C-Src 

serves to inactivate RhoA (Arthur et al., 2000, Brouns et al., 2001). 

 In neurons, the inactivation of RhoA via p190RhoGAP, which has been shown to be a 

major substrate of Src in the brain, promotes axon outgrowth and fasciculation and 

formed part of the basis for the investigation in this chapter (Brouns et al., 2001). 

Moreover, in non-neuronal cells types, C-Src-mediated inactivation of RhoA via the 

stimulation of p190RhoGAP activity in response to integrin engagement, has been widely 

studied and plays a key role in the regulation of cell-matrix adhesion, cell spreading and 

migration (reviewed in Huveneers and Danen, 2009). Although it should be noted that in 

the latter studies, this mechanism was dependent on the engagement of integrins via an 

extracellular stimulus, whereas the studies in this chapter were performed under basal 

conditions.    

One possible pathway through which C-Src could promote RhoA activation is via the 

regulation of RhoGDI. RhoGDI binds inactive RhoA, prevents activation of the GTPase 

and sequesters the protein into the cytosol. Co-transfection of constitutively active C-Src 

and RhoGDI in HeLa cells revealed that the kinase phosphorylates RhoGDI under basal 

conditions (DerMardirossian et al., 2006). This was shown to largely reduce the amounts 

of RhoA, Rac1 and Cdc42 in complex with RhoGDI, resulting in an increase in membrane 

localised RhoGDI.  

Although the direct effects on Rho GTPase activation were not shown biochemically, 

diminished levels of the RhoA, Rac1 and Cdc42 in complex with RhoGDI appeared to 

increase cell spreading and membrane ruffling; functions that are associated with the 

activation of Rho GTPases.   

5.3.3 RhoA as a Binding Partner for N1-Src 

Preliminary data also suggested that both C- and N1-Src-FLAG interacted with GFP-

RhoA-GTP and that this interaction appeared proportional to the degree of RhoA 

activation (Figure 5.13). Although this interaction needs to be confirmed by repeating the 

experiment with further controls, this observation could potentially reinforce the idea that 

C-Src substrates bind poorly to and are weakly phosphorylated by N1-Src. This 

phenomenon was proposed by Keenan et al., (2015) and has also been alluded to in 

multiple other studies, whereby the N1-Src SH3 domain has been shown to bind multiple 

proteins including CR16, Synapsin and DAAM1 with reduced affinity in comparison to C-

Src (Weiler et al., 1996, Onofri et al., 1997, Aspenstrom et al., 2006). In addition to this, 

other studies have shown that some C-Src SH3 binding partners, such as SNP70, 
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ASAP1 and RICH1, are unable to bind N1-Src (Richnau and Aspenstrom, 2001, Craggs 

et al., 2001, Brown et al., 1998).  

Taking the above evidence into account, it is possible that both C- and N1-Src-FLAG 

activated GFP-RhoA-WT by modulating the same substrate. If this was the case, how 

the interaction between both C- or N1-Src with active RhoA, could relate to a potential 

mechanism involving the phosphorylation of RhoGDI is unclear, and should be the 

subject of future studies. Alternatively, N1-Src could be acting via a completely separate 

mechanism to C-Src. To address this, it would be interesting to perform mass 

spectrometry on the Src-RhoA-GTP complexes to identify and compare the potential 

binding partners and substrates of the kinases.       

5.3.4 Concluding Remarks  

The RhoA mutant data presented in this chapter suggest a potential role for N1-Src in 

process outgrowth via a signalling pathway that is independent of RhoA-GDP related 

signalling. However, in order to determine whether this observation is correct, further 

clarification of the effect of N1-Src in C3 treated cells is required. If this role is confirmed, 

the hypothesis underpinning this work, which stated that N1-Src regulates process 

outgrowth by inactivating RhoA, would be disproved. Further data suggested that N1-

Src could form part of a negative feedback loop, whereby stimulation of process 

outgrowth by N1-Src enhanced RhoA activation, which subsequently served to prevent 

N1-Src mediated process outgrowth. However, further experiments should be performed 

to confirm these proposals. Preliminary data also indicated that both N1- and C-Src 

interacted with RhoA GTP but to different extents, providing further biochemical evidence 

for the differences between C- and N1-Src.     

Whilst further repeats of some datasets are required, these results have provided new 

insights into the regulation of N1-Src mediated process outgrowth in COS7 cells. Future 

work should be directed towards investigating the role of N1-Src in other Rho GTPase 

signalling pathways, such as Rac1 and Cdc42, which have also been implicated in 

neurite outgrowth (Hoshino and Nakamura, 2003). Whilst monitoring the role of N1-Src 

in the basal signalling pathways of COS7 cells has provided a good starting point for 

studying N1-Src effects in heterologous cells, moving forwards, identifying the external 

cues that trigger downstream N1-Src signalling pathways in neurons should be a priority.    
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Chapter 6. Conclusions and Future Directions 

The work presented in this thesis provides a thorough characterisation of the cell 

functions of N1-Src during neuronal development and incorporates the first mechanistic 

insight into N1-Src signalling. In addition, progress was also made towards the 

development of an in vitro peptide phosphorylation screen for identifying putative N1-Src 

substrates, which could provide a useful tool for future studies. The specific outcomes of 

this thesis are discussed below.     

6.1 N1-Src as a Regulator of Ion Channel Signalling 

With a dearth of N1-Src substrates in the literature, HCN1, which was identified in a N1-

SH3 yeast 2-hybrid screen, appeared to be an excellent candidate for further study 

(Santoro et al., 1997). There is precedence of a role for N1-Src in ion channel signalling, 

given that N1-Src has been shown to bind and phosphorylate the NR2A subunit of the 

NMDAR (Groveman et al., 2011). In addition, the phosphorylation and regulation of 

related HCN channels (2 and 4) by C-Src has previously been demonstrated (Zong et 

al., 2005, Li et al., 2008a). With this in mind, in vitro phosphorylation assays with the 

intracellular HCN1-CTD were performed.  

Whilst the phosphorylation of the HCN1-CTD could not be detected from in vitro kinase 

assays, the fact that the NR2A-CTD positive control was not phosphorylated either, 

meant that no firm conclusions could be derived from these data. Therefore, HCN1- and 

NR2A-CTD could not be ruled out as N1-Src substrates, especially since the 

phosphorylation of NR2A has been demonstrated previously (Groveman et al., 2011).    

C-Src is not thought to regulate HCN1 channel activity, since studies in the Yu lab 

indicated that HCN1 channel currents expressed in HEK293 cells were unaffected by 

SFK inhibition, whereas HCN2 channel activation was inhibited, despite the fact that C-

Src is co-immunoprecipitated with both channels (Yu et al., 2004). The addition of N1-

Src into a similar system would be a simple way of determining the physiological effects 

of N1-Src on channel regulation, as a secondary approach. It would be interesting to 

perform immunoprecipitation assays with both C- and N1-Src, comparing both the 

binding affinities for HCN1 and the channel phosphorylation status. It is possible that the 

HCN1 channel could be a weaker substrate for C-Src than N1-Src. Sequence analysis 

of the HCN1-CTD revealed that is does not contain a N1-Src SH3 binding motif, however 

it does contain several PXXP motifs, which should be explored if the phosphorylation of 

the channel is demonstrated in cells.   

Groveman et al., (2011) demonstrated that the NR2A-CTD of the NMDAR was 

phosphorylated in vitro by N1-Src and also showed that NR1/NR2A receptor currents 
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were enhanced in HEK-293 cells when co-expressed with N1-Src. Whilst N1-Src served 

as a positive control in the experiments carried out in this thesis, the ultimate aim, if 

phosphorylation had been demonstrated, was to identify and compare the tyrosine 

residues phosphorylated by N1-Src to those of C-Src, using mass spectrometry and to 

subsequently confirm these findings using site directed mutagenesis. A peptide selected 

from the NR2A tail (RCPSDPYK) was also included in the GST-fusion peptide substrate 

screen, since it largely conformed to the N1-Src SH3 binding consensus motif that was 

previously identified in the Evans lab by Dr Sarah Keenan (Keenan, 2012). When this 

peptide screen is optimised, the results could provide evidence this region binds to N1-

Src and the mutagenesis of critical residues of the NR2A subunit could be performed to 

potentially abolish this interaction in cells.       

Both NMDARs and the HCN1 channel are vital for correct brain function. Indeed, the 

dysregulation of these channels has severe implications in health and disease. For 

example, the improper regulation of the NMDAR has been linked with neurodegenerative 

disease (Mota et al., 2014a, Mota et al., 2014b), schizophrenia (Cohen et al., 2015) and 

ischemic stroke (Knox et al., 2013). One method through which N1-Src might be 

implicated in the damaging effects of cerebral ischaemia, is through the stimulation of 

the M4K-1 pathway via NMDAR activation. Li et al., (2008b) demonstrated that the 

application of the generic SFK inhibitor PP2, resulted in the decreased activation of M4K-

1, which subsequently downregulated the MLK3/JNK3/c-jun pathway, known to mediate 

ischemic effects. This was thought to be mediated via SFK activation of the NMDAR. 

The same inhibitor was subsequently shown to protect neuronal cells against ischaemic 

mediated-cell death. This theory would align with the observation by Groveman et al., 

(2011) that N1-Src activates NMDARs, although both C-Src and Fyn are also capable of 

activating them. The indiscriminate effects of PP2 on SFKs, makes it difficult to pin-point 

the kinase involved and requires further investigation. However encouragingly, M4K-1 

was also identified as a potential N1-Src substrate that was included in the in GST-fusion 

peptide screen in Chapter 3. The potential phosphorylation of M4K-1 could provide a 

further layer of kinase regulation in response to cerebral ischemia.  

6.2 The Role of N1-Src in Neuronal Development and Cytoskeletal 

Dynamics 

In this study, the effects of N1-Src on primary rat hippocampal neuronal morphology 

were determined. The shRNA-mediated knockdown of N1-Src impaired neurite 

outgrowth, particularly with respect to the length of longest neurite. In addition, there was 

also a significant reduction in the number of neurites per cell. Together these data not 

only implicated N1-Src in axon outgrowth, but also suggest that N1-Src plays a role in 

neurite formation.  
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The striking effects of N1-Src on neuronal morphology implied that N1-Src is involved in 

the regulation of neuronal cytoskeletal dynamics. The combined effects of both actin and 

microtubule dynamics drive axon outgrowth: microtubule polymerization creates a 

pushing force originating from the axon shaft, whereas the retrograde flow of actin at the 

leading edge of the growth cone creates a pulling force. The signalling mechanisms that 

ultimately coordinate these actions are diverse and complex. A comprehensive view 

outlining these pathways is reviewed in (Lewis et al., 2013).  

For several reasons this study focused on the potential role of N1-Src in RhoA GTPase-

mediated neurite outgrowth. Many of the GST-fusion peptides that were screened in 

Chapter 3 were derived from multiple Rho GTPase GAPs or GEFs that had previously 

been demonstrated to play a role in neuronal development. For example, 

p190BRhoGAP, whose role is to inactivate RhoA, had previously been demonstrated to 

promote axonal outgrowth and guidance (Brouns et al., 2001). In addition, Src and Fyn 

has been identified as the main kinase that phosphorylates the GAP in the developing 

brain. Whilst, C-Src has been shown to phosphorylate p190RhoGAP in non-neuronal 

cells, the presence of a putative N1-Src SH3 binding motif on the GAP suggested this 

protein could also be under the regulation of N1-Src.  

Although the results of the N1-Src substrate screen were inconclusive, a complimentary 

study was performed to determine the effects of N1-Src on RhoA signalling in COS7 

cells. The data suggested that whilst the inactivation of RhoA enhanced process 

formation in COS7 cells under basal cellular conditions, N1-Src did not mediate these 

effects. Although, the constitutive activation of RhoA prevented N1-Src mediated 

process formation and surprisingly, N1-Src appeared to enhance RhoA activation, which 

I speculated could form part of a negative feedback loop.   

The overexpression of N1-Src also resulted in impaired neurite outgrowth, with a 

significant proportion of cells failing to polarise. The conflicting results obtained for the 

shRNA and overexpression studies suggested that the dysregulation of N1-Src when 

overexpressed, resulted in non-physiological effects. A previous study by Kotani and 

colleagues (2007), who overexpressed N1-Src in cerebellar Purkinje neurons, also noted 

defects in neuronal polarisation since the multiple dendritic shafts characteristic of earlier 

stages in development, failed to converge into a single shaft. They linked this to the 

aberrant arrangement of microtubules, visible by EM, present in the dendritic shafts of 

the unpolarised neurons (Kotani et al., 2007). In hippocampal neurons, microtubule 

stabilization in one of the minor neurites formed in the early stages of development 

occurs prior to axon specification and outgrowth (Witte et al., 2008). However, when 

neurons are treated with the microtubule stabilising reagent taxol, the resultant effect is 
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aberrant neuronal polarization (Conde and Caceres, 2009). Given that the 

overexpression of N1-Src has been demonstrated to negatively affect neuronal 

polarisation, investigating the role of N1-Src in the regulation of microtubule dynamics 

could provide an interesting line of inquiry. 

6.3 Different Roles of C-, N1- and N2-Src 

The work carried out in Chapters 4 and 5 highlighted the different functions of the three 

Src isoforms. Whilst the overexpression of C-Src had no effects on cultured hippocampal 

neuronal morphology, the overexpression of N1-Src resulted in aberrant neuronal 

polarization and neurite outgrowth. The second major difference observed between C- 

and N1-Src was the differential activation of RhoA, under basal cellular conditions. Whilst 

the latter result requires further conformation, the differences observed provide specific 

examples that highlight how the small structural difference in the n-Src loop of the SH3 

domain of N1-Src, is capable of altering both phenotype and signal transduction with 

respect to C-Src. In addition, the first direct comparison of the functions of N1- and N2-

Src during the neuronal morphogenesis of hippocampal neurons in vitro was performed. 

shRNA knockdown of both kinases revealed that whilst N1-Src plays a critical role in 

driving neurite outgrowth, N2-Src appears to play a role in the regulation of neurite 

branching. In conclusion, these studies have provided direct evidence, suggesting that 

all three Src isoforms regulate different cellular processes.    

6.4 Future Directions 

The N1-Src and N2-Src shRNAs characterised in this study provide a useful tool for 

dissecting the roles of N-Src in neuronal development. To take this research one step 

further, the splice variant specific shRNAs could be used to generate N1- and N2-Src 

specific knockout mice. Although firstly, the phenotypic effects of these shRNAs should 

be confirmed by testing a second set of shRNAs targeting the two splice variants. This 

technique, which has previously been demonstrated by (Tiscornia et al., 2003), would 

involve generating transgenic mice that constitutively express the shRNAs. Since both 

the N1- and N2-Src genes incorporate the N1 mini-exon insert, knocking down N1-Src 

would also result in the loss of N2-Src. Therefore, using shRNAs to constitutively 

knockdown the kinases would overcome this issue.  

The previously generated C-Src-/- mice were deficient in C-, N1- and N2-Src expression, 

making it impossible to assign any phenotypes observed to C-Src only. The literature 

indicated that no obvious neurological phenotypes arose in the absence of the kinases, 

which was thought to be in part due to the functional redundancy between Src kinases 

(Soriano et al., 1991). It’s also possible that other signalling pathways could compensate 

for the loss of Src, for example during neurite outgrowth. However, Ignelzi and 
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colleagues (1994) demonstrated that neurite outgrowth was impaired in cultured 

cerebellar granule neurons from C-Src -/- mice that were grown on L1-CAM, which has 

since been demonstrated in the Evans lab to be potentially regulated by N1-Src (Keenan, 

2012).  

The generation of an N1-Src deficient mouse would facilitate a more in depth analysis of 

the effects of N1-Src at a phenotypic level but perhaps more importantly at the molecular 

level. It would enable the analysis of multiple neuronal types in the brain and help 

produce a more comprehensive picture of the cell type-specific functions of N1-Src 

during neuronal morphogenesis. In addition, the analysis of brain tissue slices, could be 

used to determine the physiological relevance of N1-Src mediated effects, by assessing 

the native biological architecture of neuronal networks. The dissection of N1-Src 

signalling pathways with respect to external stimuli (e.g. growth factors or cell adhesion 

signalling) and downstream targets (e.g. Rho GTPases) could feasibly be carried out in 

neurons, in place of simpler models, eliminating the obstacle of poor transfection 

efficiency. 

In conclusion, this study has been instrumental in providing a platform for future lines of 

investigation into the roles of N1-Src.  The key to advancing the findings reported in this 

thesis, will involve the further integration of both phenotypic studies and those seeking 

to de-lineate the signalling transduction pathways through which N1-Src operates in 

neurons.    
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Abbreviations 

3’   Three prime 

5’   Five prime 

aa   Amino acid(s) 

AMPAR α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor  

APS  Ammonium persulfate 

Arg  Arginine 

ATP   Adenosine triphosphate  

BSA  Bovine serum albumin 

C   Carboxyl  

˚C   Degrees centigrade  

cDNA   Copy deoxyribonucleic acid 

CGNs  Cerebellar granule neurons 

CNS  Central nervous system 

Cos-7   African green monkey kidney fibroblasts 

CTD  C-terminal domain 

dH2O   Distilled water 

DIV  Days in vitro 

DMEM  Dulbecco’s modified Eagle’s medium 

DMSO  Dimethyl sulfoxide  

DNA   Deoxyribonucleic acid  

dNTPs  Deoxynucleoside triphosphates 

DPT  Days post-transfection 

DRD1  Dopamine 1 receptor 

DTT   Dithiothreitol  

E  Embryonic 

ECL   Enhanced chemiluminescence 

ECM  Extracellular matrix 

E.coli   Escherichia coli  

EDTA  Ethylenediaminetetraacetic acid  

EGFR  Epidermal growth factor receptor 

EGTA  Ethylene glycol tetraacetic acid 
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ERK  Extracellular signal-regulated kinase 

EVL  Ena/Vasp-like protein 

FAK  Focal adhesion kinase 

FBS   Foetal bovine serum 

g   Grams 

g   Gravitational force 

GABA  у-aminobutyric acid 

GAP  GTPase activating protein 

GDP  Guanosine diphosphate 

GFP   Green fluorescent protein  

GPCR  G-protein coupled receptor 

GST   Glutathione-S-transferase  

GTP  Guanosine-5’-triphosphate 

HCN(1) Hyperpolarisation-activated cyclic nucleotide-gated (channel 1) 

HIS   Epitope tag consisting of histidine residues 

HRP   Horseradish peroxidase 

Ih   Hyperpolarisation activated current 

IPTG  Isopropyl-β-D-1-thiogalactopyranoside  

kbp   Kilobase pairs  

kDa   Kiladaltons  

L   Litre(s) 

L1-CAM L1-cell adehesion molecule  

LB   Lysogeny broth 

LTD  Long-term depression 

LTP  Long-term potentiation 

µg   Microgram(s)  

µg µl-1   Microgram(s) per microlitre 

µg ml-1  Microgram(s) per millilitre 

µm   Micrometre(s)  

µm2   Micrometre(s) squared  

µM   Micromolar  

M   Molar   
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mg   Milligram(s)  

mGluR Metabotropic glutamate receptors 

mg ml-1 Milligrams(s) per millilitre 

ml  Millilitre(s)  

mm  Millimetre(s) 

mM   Millimolar 

MBP  Myelin binding protein 

min   Minute(s)  

MW   Molecular weight 

N   Amino  

NEB  New England Biolabs 

ng   Nanogram(s) 

NMDAR N-methyl-D-aspartate receptor 

O.D600   Optical density measured at 600 nm 

Oligos  Oligonucleotides 

ORF(s)  Open reading frame(s)  

P  Postnatal 

PAC1  Pituitary adenylate cyclase activating peptide 1 receptor 

PBS   Phosphate buffered saline  

PCR   Polymerase chain reaction  

PDGFR Platelet derived growth factor receptor 

PDL  Poly-D-lysine 

PenStrep  Penicillin-streptomycin  

pH   -log10 concentration of hydrogen ions 

PI3K  Phosphoinositide 3-kinase 

PKC   Protein kinase C 

PKL  Paxillin kinase linker 

PMSF   Phenylmethanesulfonylfluoride  

PP2  (+-butyl)pyrazolo[3,4-d]pyrimidine 

Pro  Proline 

PTB  Polypyrimidine tract binding protein 

PTM  Post translational modification 
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PVDF   Polyvinylidene fluoride membrane 

RhoA  Ras homolog gene family member A 

RIPA  Radioimmunoprecipitation assay 

RBD  RhoA binding domain 

RNA   Ribonucleic acid  

RSV  Rous sarcoma virus 

RTK  Receptor tyrosine kinase 

RTPs  Receptor tyrosine phosphatases 

S  Seconds 

SDM  Site directed mutagenesis 

SDS   Sodium dodecyl sulphate  

SDS-PAGE  Sodium dodecyl sulphate polyacrylamide gel electrophoresis  

Ser  Serine 

SH2  Src homoly 2 

SH3   Src homology 3  

ShRNA Short hairpin RNA 

SFK  Src family kinase 

TAE  Tris-acetate-EDTA 

TBS   Tris buffered saline  

TBST   Tris buffered saline containing Tween-20  

TEMED  Tetramethylethylenediamine 

Thr  Threonine 

tRNA   Transfer RNA  

U   Units 

Uml-1   Units per ml 

V   Volts 

v/v   Volume per volume 

WT  Wild type 

w/v   Weight per volume  
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