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Abstract

This thesis examines the interaction between superconductivity and inhomo-

geneous ferromagnetism. Through careful engineering of the interface, it is

possible to unlock a new spin aligned triplet Cooper pair, which is capable of

penetrating and modifying the magnetisation of a ferromagnet in proximity to

a singlet, s-wave, BCS, superconductor. This triplet state is the building block

for the new class of super-spintronic devices.

Two candidate ferromagnetic systems in which to study the spin aligned triplet

are considered. Firstly, the rare-earth ferromagnet erbium is fabricated using

sputter deposition. Neutron diffraction measurements show the retention of

the conical magnetic state in the thin film form for the first time. This con-

ical state makes it an ideal candidate material for triplet Cooper pair genera-

tion. Placing erbium next to superconducting niobium has a drastic effect on

the critical temperature of the superconductor, causing a suppression and os-

cillation of Tc with erbium thickness. In addition the remanent state of erbium

at a single thickness can be used as a control to switch the niobium from the

superconducting state into the normal state.

The second system studied is the superconducting spin valve. In this system the

inhomogeneity is engineered in a multi-layer structure using exchange biased

Co. To study the nature and extent of the triplet Cooper pair in this structure,

large scale facility techniques are employed to look for expected changes to

the magnetic state of the heterostructure, with the onset of superconductivity.

Surprisingly, no observation directly attributable to the triplet Cooper pair was

observed. Instead a new type of induced ferromagnetism in a normal metal

coupled to the superconducting spin valve was discovered.
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Introduction
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Work on this thesis began in 2012. In that year the world produced 22,202 TWh of electri-

city [1]. In the same year the ICT ecosystem used 1,500 TWh, or about 7% of all electricity

produced (at a conservative estimate) [2]. Fossil fuels accounted for 80% of total energy sup-

ply, where some of the largest cloud computing providers source over 50% of their electricity

from coal power stations (considered to be the most polluting of all commercial energy sup-

plies) [3].

The dissipation of heat in traditional silicon (CMOS) based electronics is a major source

of inefficiency in energy usage. Superconductors are, by nature, dissipationless. Computing

via logic circuits based on Josephson junctions is also faster (circuits operating at 770 GHz

were shown in the 90’s) [4]. Even including refrigeration, the earliest test circuits did not re-

quire more power than conventional technologies [5]. The increased efficiency of both chip

design and refrigeration over the last 20 years have made superconducting computers or-

ders of magnitude more efficient than their conventional counterparts. Where efficiency

is presented in gigaFLOP (floating-point operations) per Joule, the most efficient super-

computers achieve 2 GFLOP/J, while an equivalent superconducting computer could de-

liver 500 GFLOP/J [5]. While not practical for the average home or office user, adoption of

superconducting technologies for cloud and supercomputers could significantly increase

processor speed and reduce the power consumption of ICT systems. The largest remain-

ing problem to building such a computer is low-temperature memory, which is not as well

developed as logic circuits. To achieve the promised increase in efficiency, a new type of

low-temperature memory architecture is needed.

While traditionally considered competing phenomena, when artificially juxtaposed there

is a wealth of physics at the interface between superconductors and ferromagnets. By pla-

cing an inhomogeneous magnetic texture at the superconductor/ferromagnet interface, it is

possible to create the so-called long ranged triplet component (LRTC) or finite spin Cooper

pair. This Cooper pair has both electron spins aligned in the same direction, hence creat-

ing a dissipationless spin current. The LRTC is less susceptible to magnetic scattering and

can therefore penetrate further into a proximitised ferromagnetic layer [6]. The LRTC is the

manifestation of complete synergy between the otherwise antagonistic phenomena.

Spintronics (spin transport electronics) aims to take advantage of the electrons spin de-

gree of freedom (in addition to charge) in order to perform logic operations. In doing so

logic operations controlled by spin currents can be performed faster and with greater en-

ergy efficiency than the charge only CMOS technologies [7].
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1.1 Thesis Outline

Incorporation of superconductors into spintronic device structures opens the exciting

possibility of performing logic operations on a dissipationless spin current [6]. This new

field is given the portmanteau super-spintronics [8]. Three such mechanisms have been

proposed. The injection of a normal spin current into a superconducting logic gate [9, 10].

Extracting spin polarised LRTC Cooper pairs for injection into established spintronic logic

gates [11]. Or a new class of all superconducting logic circuits via magnetic Josephson junc-

tions [12, 13].

In addition to performing logic operations, spintronics has found application as mag-

netic sensors in the read heads of hard disk drives. Several breakthroughs in complex het-

erostructures containing superconducting and ferromagnetic elements show promise as

potential cryogenic memory elements. In such a scheme, information could be stored by

the state of the system (superconducting or normal) where the Tc of the superconductor

can be tuned [14]. It is also possible to store information in the phase difference between

two superconducting layers in a 0-π Josephson junction [13, 15–17] or two such junctions

coupled as a SQUID [18].

1.1 Thesis Outline

As the field of super-spintronics is still in its infancy, the experimental work as part of this

thesis attempts to address two aims. The first aim is the characterisation and incorporation

into devices of new candidate ferromagnetic materials. The second aim is to examine the

nature of the LRTC and interactions at the S/F interface in the prototypical super-spintronic

device, the superconducting spin valve.

In chapter 2, a theoretical overview of ferromagnetism and superconductivity is presen-

ted, as well as the theoretical description of proximity effects between the two phenomena.

A detailed literature review of experimental developments in the field of super-spintronics

follows.

Chapter 3 details the experimental procedures used throughout this thesis, as well as

a discussion of how techniques can be combined to provide a complete description of a

samples properties.

The rare-earth ferromagnet erbium is sputter deposited onto heated substrates in chapter

4. The characterisation of the films using lab based as well as facility based neutron diffrac-

tion and reflectometry show that a conical ferromagnetic state is retained in the thin film

for the first time.
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1.1 Thesis Outline

In chapter 5, erbium is incorporated into superconducting devices. Placing erbium next

to superconducting niobium has a drastic effect on the critical temperature of the supercon-

ductor, causing a suppression and oscillation of Tc with erbium thickness of over 2.5 K. In

addition, the remanent state of erbium at a single thickness is used as a control to switch the

niobium from the superconducting state into the normal state. These two control mechan-

isms make it a promising candidate material for low temperature memory devices.

The superconducting spin-valve is studied in chapter 6. In this device, control of the

magnetic state of the two F-layers in an S/F/F or F/S/F heterostructure can be used to tune

the generation of the LRTC [19–22]. The generation of the LRTC—opening an additional

“leakage” channel for Cooper pairs—is believed to result in the lowering of the Tc of the sys-

tem. Neutron and muon techniques are employed to search for expected changes to the

magnetic state of the heterostructure, with the onset of triplet superconductivity. Surpris-

ingly, no observation directly attributable to the LRTC is observed. Instead a new type of

induced ferromagnetism is seen inside a normal metal coupled to the heterostructure.

Finally in chapter 7 all the results from experiments are summarised. An outlook for

future experimental work is also presented.
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CHAPTER 2

Background Theory and Literature Review
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2.1 Introduction

2.1 Introduction

This chapter aims to offer a brief introduction to the theories of magnetism and supercon-

ductivity. The mechanism of ferromagnetism in the itinerant metals is introduced. The

relevant phenomenological theories of superconductivity, as well as the microscopic theory

and important results are discussed. The interplay of proximity effects at the supercon-

ductor/ferromagnet interface is outlined theoretically followed finally by a detailed review

of recent theoretical and experimental advances in this field.

The theory and application of magnetism and magnetic materials is covered in detail

in the books of Ashcroft & Mermin [23] and Blundell [24]. The theory and application of

superconductivity is covered in detail in the books of Tinkham [25] and Annett [26].

2.2 Magnetism

“The study of magnetism is possibly the second-oldest profession in the world. Unlike the

oldest, interest has waxed and waned over the centuries” [27]. Recent advances in spintron-

ics have lead to renewed interest in ferromagnetism as a source of spin polarised carriers.

A ferromagnet has a spontaneous magnetisation even in the absence of an applied field. In

this section the mechanism for ferromagnetism for the itinerant ferromagnets is outlined.

The rare earth ferromagnet erbium is introduced in Chapter 4 where the mechanism for its

conical ferromagnetism is also discussed.

Materials which do not exhibit magnetic ordering fall broadly into two categories, dia-

magnetic and paramagnetic, governed by the sign of their magnetic susceptibility (χ) where

the magnetisation M of the material induced by an applied magnetic field H is given by M

= χH. When χ is negative the material exhibits diamagnetism. That is, the magnetic field

induces magnetic moment which opposes the applied field which caused it. Of particu-

lar interest is the description of bulk superconductors as ‘perfect diamagnets’ with χ = −1.

Physically this means the superconductor will expel all flux from inside it, an effect called

Meissner screening.

Paramagnetism corresponds to a positive susceptibility so that the applied field induces

magnetisation which aligns parallel with the applied field which caused it. Typically these

materials have unpaired electrons which, in the absence of a field, point in random direc-

tions. An external field can line up these electrons inducing a net magnetisation along the

field direction.
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2.2 Magnetism

2.2.1 Exchange Interaction

The exchange interaction is the fundamental reason for spontaneous alignment of spins

along a common direction in a ferromagnet. As a result of the Pauli exclusion principle for

fermionic electrons, spins which are aligned parallel cannot occupy the same spatial state

as one another. For fermions the total wave function must be antisymmetric.

In the simplest case, consider only two electrons with spacial coordinates r1 and r2 re-

spectively. The two individual electron states are ψa(r1) and ψb(r2). The wave function of

the joint state cannot be a product of the two states, as the product state does not obey ex-

change symmetry. Therefore, the only states which are allowed are a antisymmetric spin,

symmetric spatial (S=0, singlet) or a symmetric spin, antisymmetric spatial (S=1, triplet)

combination of the product.

Therefore, the total wave function for the singlet ΨS and triplet ΨT can be written as

[24]:

ΨS = 1p
2

[ψa(r1)ψb(r2)+ψa(r2)ψb(r1)]χS (2.1a)

ΨT = 1p
2

[ψa(r1)ψb(r2)−ψa(r2)ψb(r1)]χT (2.1b)

Assuming that both the spin parts are normalised the difference in the electrostatic en-

ergies of the two states is:

ES −ET = 2
∫
ψ∗

a(r1)ψ∗
b (r2)Vψa(r2)ψb(r1)dr1dr2, (2.2)

where V denotes the potential due to the Coulomb interaction. This difference in energy

is an electrostatic term due to the exchange of two identical particles and is used to define

the exchange constant:

J = ES −ET

2
. (2.3)

The Heisenberg model provides a way to generalise the interaction to all neighbouring

atoms, such that the exchange interaction between two spins i and j (Si ,S j ) is given by the

Heisenberg Hamiltonian:

EE x =−2JSi ·S j . (2.4)

Stoner showed that if the gain from this exchange energy is greater than the increase in

kinetic energy from altering the band structure, a spontaneous magnetisation would occur
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[28]. This becomes stable when the product of the exchange constant and the density of

states at the Fermi surface N (εF ) is greater than one and is known as the Stoner criterion:

J N (εF ) > 1 (2.5)

In the transition metals, the 3d electrons form a narrow band with a large density of

states. The complex structure within this 3d band means that only three elements Fe, Co

and Ni have peaks in N (εF ) at, or sufficiently near, εF , which fulfils the Stoner criterion at

room temperature.

2.2.2 Domains and Domain Walls

A ferromagnet typically contains many small regions called domains, within which the local

magnetisation reaches the saturation value. The direction of the magnetisations of differ-

ent domains need not be parallel, and in fact the most energetically favourable alignment

is often not parallel. This is due to the breakup into domains being favourable to satisfy

demagnetisation effects. The application of an applied field will counteract this, and work

to align the domains. The domain wall is the most basic type of magnetic inhomogeneity,

the topic of magnetic inhomogeneity and its interaction with superconductivity will be con-

sidered in detail in this work.

The domain wall is the region which connects adjacent domains. Domain walls can be

classified according to the angle between the magnetisation of the two domains. A 180◦ do-

main wall separates antiparallel magnetisations, a 90◦ domain wall separates perpendicular

magnetisations. In a thin film where competition between competing electronic orders be-

comes more prevalent, more complicated magnetic structures can form. In-plane magnetic

films of the type used in this work can form 360◦ domain walls at defect sites, or around in-

dividually pinned moments. In general is not uncommon to expect some combination of

domain walls, defects, vortices, dislocations and other singularities in a film. Huge amounts

of work has been undertaken to characterise such features, with the aim of incorporation

into magnetic storage devices. A review of this field can be found in reference [29].

2.3 Superconductivity

As is traditional in all PhD theses on superconductivity, it is noted that H. Kamerlingh Omnes

is credited with the discovery of superconductivity in 1911, while cooling mercury to liquid
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2.3 Superconductivity

He temperatures [30]. Next the two properties most identifiable with superconductivity are

stated: zero resistivity and perfect diamagnetism. In this section successful phenomenolo-

gical theories and their associated length scales are defined, as these results are of particular

relevance to practical situations. To give validation of the phenomenological theories, the

microscopic theory is introduced. Finally, the specific extension of triplet superconductivity

to this theory and its consequences are discussed. For more detail on this section the books

of Annett [26] and Tinkham [25] are recommended.

Before proceeding it is worthwhile defining the two typical length scales used through-

out this work. Firstly the coherence length (ξ) which characterises the distance over which

superconductivity can vary without undue energy increase. Physically this length scale can

be considered the effective size of the superconducting Cooper pair. This is also the length

scale associated with the proximity effect. Secondly the penetration depth (λ) which char-

acterises the distance taken for superconductivity to recover to bulk behaviour away from

a perturbation, physically this perturbation could be a vortex core. λ is the length scale

associated to the Meissner effect, and is hence often referred to as the magnetic screening

length.

2.3.1 Phenomenological Theories

While the microscopic theory of Bardeen, Cooper and Schrieffer (BCS) provides a detailed

description for the underling mechanism of superconductivity, it is the independently de-

veloped phenomenological theories that most accessibly describe the macroscopic beha-

viour of superconductors.

The London Equation

The first theory to account for the Meissner effect was developed by the London brothers in

1935 [31]. They assumed some fraction of conduction electrons become superfluidic with

the others remaining normal. Those with superfluid properties can carry the dissipationless

current. The London equation links the critical current density inside a superconductor, j,

to the magnetic vector potential, A, via the London parameter,Λ,

j =−A/Λ, (2.6)
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2.3 Superconductivity

and

Λ= ms

nse2 , (2.7)

where e, ns and ms are the charge, number density and mass of the superfluid electrons

respectively.

Considering the London equation and Ampère’s circuital law, spatially inside a super-

conductor an external field B0 will vary as

B(x) = B0 exp
(
− x

λL

)
, (2.8)

whereλL is the London penetration depth, or the distance over which the external magnetic

field is screened. λL can be related back to London parameter as

λL =
(
Λ

µ0

)1/2

. (2.9)

The Ginzburg-Landau Theory

For cases where the superconducting condensate is not constant in space, for example in

proximity effects, the microscopic BCS theory becomes very difficult to apply. In these situ-

ations it is the solutions to the Ginzburg-Landau (G-L) theory which are more readily applic-

able. For macroscopic behaviour it is the free energy of the system which holds information

about the critical fields and the spatial structure of superconductivity. While classically con-

sidered a phenomenological description of superconductivity, the work of Gor’kov showed

that the theory was derivable as a limiting case of the full BCS theory [32].

The G-L theory is an extension to the Landau theory of second order phase transitions.

Substituting the complexΨ for the order parameter Q, whereΨ is the G-L order parameter,

one first meets the G-L free energy functional [25]

∆G =αΨ∗Ψ+ β

2

(
Ψ∗Ψ

)2 + 1

2ms

[(ħ
i
∇−e∗A

)
Ψ

]2

+ 1

2µ0
B 2

m , (2.10)

where ∆G is the change in energy of the phase transition, α and β are values to be found,

Ψ∗Ψ = ns the density of superconducting charge carriers, ms and e∗ are the mass and

charge of the carriers (now known to be the Cooper pair so 2me and 2e) and Bm is the flux

to cancel applied magnetic field.

When fields and gradients are absent and we consider T close to Tc [25]
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∆G =αΨ∗Ψ+ β

2

(
Ψ∗Ψ

)2, (2.11)

where β is necessarily positive (to avoid divergence). For α< 0 the minimum in free energy

occures when Ψ∗Ψ = 0, that is the condensate is non-existant and the material is in the

normal state. Forα> 0 the minimum occurs whenΨ∗Ψ=−α/β, which describes a uniform

superconducting state of lower overall free energy.

By considering the case whereΨmay not be uniform everywhere, and instead imposing

fields, currents, or gradients one can minimise the G-L free energy functional with respect

toΨ (orΨ∗) or A, the magnetic vector potential. This leads to the two G-L differential equa-

tions [25]

αΨ∗Ψ+ β

2

(
Ψ∗Ψ

)2 + 1

2ms

[(ħ
i
∇−e∗A

)]2

Ψ= 0 (2.12)

and

Js = i e∗ħ
2ms

[
Ψ∗∇Ψ−Ψ∇Ψ∗

]
− e∗2A

ms
Ψ∗Ψ, (2.13)

respectively, whereΨ now varies in space withΨ(r) = |Ψ(r)|eiϕ(r).

From these two differential equations it is possible to come to useful experimental para-

meters which are used throughout this work. Where a coherence length or penetration

depth are referred to, they correspond to the following G-L results [25]

ξGL =
√

Φ0

2πHc2
(2.14)

and

λGL =
√

ms

µ0nse∗2 (2.15)

where Hc2 is the upper critical field and Φ0 the flux quantum. These two quantities are

linked by the dimensionless κ=λGL/ξGL . If κ< 1/
p

2 the superconductor is defined as type

I. When κ> 1/
p

2 the superconductor is type II [26]. While determining an estimate for ξGL

is simple, determination ofλGL is typically performed with muon spin rotation experiments.

To give some typical numbers for thin film polycrystalline Nb, at T well below Tc , ξGL ≈ 10

nm and λGL ≈ 90 nm [33, 34]. This gives κ= 9 and makes thin film Nb type II.
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2.3 Superconductivity

2.3.2 Bardeen, Cooper and Schrieffer (BCS) Theory

In 1957, Bardeen, Cooper and Schrieffer proposed a microscopic model of superconduct-

ivity [35, 36]. The principle is that in a metal, electrons with an energy near the Fermi en-

ergy could form a bound state and condense to a lower energy level. This bound state of the

electrons is referred to as a Cooper pair after the 1956 work of Cooper showing that two elec-

trons, which were added to a metal above the Fermi surface, could become bound through

the phonon mediated interaction [37].

Cooper Pairs

The physical explanation to support this attractive force between electrons comes by con-

sidering the motion of ions in the lattice. In a simple view, the first electron in the pair

polarises the medium by attracting positive ions towards it. The first electron moves from

this site leaving excess ions, which in turn attract the second electron in the pair. When this

interaction is strong enough to overcome the repulsive Coulomb interaction, a net attractive

force between the electrons is created and hence the superconducting state is formed. As a

solid is necessarily stiff and ions cannot significantly be moved, this electron-electron inter-

action is mediated instead by virtual lattice vibrations (phonons) rather than the physical

displacement of ions.

The consequence of this new bound pair of electrons is the shift from the behaviour of

individual spin 1/2 Fermions to a sea of new Cooper pairs which can be treated approxim-

ately with Bose-Einstein statistics. The most notable property of this new electron sea is the

ability to exist at the same energy level.

The Superconducting Gap

In a superconductor there exists a gap in the distribution of energy levels available to the

electrons. The superconducting electrons exist with a lower energy than the Fermi energy.

The consequence of this is that a finite amount of energy, ∆, must be supplied to excite

the electron. This means, to break a Cooper pair, ∆ must be applied to each electron in

the pair. If a Cooper pair is broken, then two electrons are created, but the first available

state for these Fermionic electrons is above the Fermi energy. ∆ is described the same way

as the macroscopic function Ψ in the G-L theory, the value of ∆ increases with decreasing

temperature, i.e. the higher the Tc a material has the larger ∆will be at 0 K. The existence of

this energy gap places an upper limit in the BCS theory on Tc of about 30 K. Any higher than
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this and thermal fluctuations are much larger than the size of ∆. At Tc , ∆= 0. Physically this

means it is no longer energetically favourable for electrons to form Cooper pairs. The gap

can be defined as [26]

2∆0K = 3.53kB Tc , (2.16)

independent of material, under the assumption that the mechanism for superconductivity

in the material has s-wave symmetry. For these conventional superconductors at temper-

atures T<Tc , the value of ∆ is large enough to prevent the normal scattering events which

would give rise to electrical resistance.

2.3.3 Triplet Superconductivity

The BCS theory assumes the electron-electron interaction is via isotropic virtual phonons.

If virtual phonons are involved then the spatial part of the wavefunction for the pair should

have a maximum when the separation is close to zero. This implies a symmetric spatial

wavefunction. But, overall the wavefuncton must be antisymmetric on particle exchange

due to the electrons in the Cooper pair both being Fermions. Therefore the spin part must

also be antisymmetric leading to the description of BCS superconductivity as spin singlet

and the writing of the wavefunction as,

|Ψ〉 = |0,0〉 = 1p
2

( |↑↓〉− |↓↑〉). (2.17)

It is now known that this is not the only symmetry that can sustain a superconducting

condensate and the study of unconventional non-BCS superconductivity is a very active

field. Unconventional superconductors can form the superconducting state with essentially

identical properties as the conventional superconductors. This is because properties such

as Meissner screening and zero-resistivity are dependent on the macroscopic coherence of

the state, rather than the specific mechanism which allows the state to form.

The symmetric spin-triplet states, |↑↓ + ↓↑〉, |↑↑〉 or |↓↓〉 are found in only a handful of su-

percondutors, where Sr2RuO4 is currently the best candidate material [38]. In these materi-

als the antisymmetry requirements are satisfied by the condensates of these superconduct-

ing materials being spatially antisymmetric, that is, odd in angular momentum (l). These

materials exhibit spatially anisotropic superconductivity and the condensate is therefore

highly susceptible to crystallographic irregularities, impurities and non-magnetic scatter-
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2.4 Proximity Effects

ing. For these reasons fabrication in thin film form is highly difficult and hence the system

is not a candidate for potential device applications.

The type of superconductivity studied in this thesis is the spin aligned triplet state (|↑↑〉
or |↓↓〉). The processes by which this state is generated will be considered later, but for now

the meaning of this state is considered. The spin aligned triplet state exists with quantum

numbers l=0 and S=1, however under the Pauli Exclusion Principle it appears forbidden.

In order to overcome this, the result of a theoretical paper written by Berezinskii in 1974,

concerning a proposed odd frequency phase in superfluid 3He, is employed [39]. While

this phase was never found and the work of Berezinskii was relatively unnoticed, in 2001

Bergeret et al. recognised a Berezinskii state could create a triplet state in BCS supercon-

ductors which avoids violating quantum mechanics [40]. The widely accepted proposal is

that while the triplet order parameter is symmetric in angular momentum, it is now anti-

symmetric in frequency. Cooper pair interaction is now asymmetric under a time reversal.

2.4 Proximity Effects

In the broadest terms, a proximity effect is the influence of one long-range order parameter

on another, when two systems of differing orders are forced to share an interface. In this

work it is the influence, competition and co-existence of superconducting and magnetic or-

ders within proximity structures which are of interest. Traditionally considered competing

phenomena, their differences are such that they can drastically alter each others properties,

or suppress one ordering altogether. There are several comprehensive reviews on this topic,

such as Buzdin [41], Bergeret [42] and Eschrig [43].

2.4.1 S/N

Key to this thesis is the understanding of the superconducting proximity effect. Considering

first the case where the adjacent material is a normal metal, some of the Cooper pairs from

the superconductor are able to extend a certain distance across the interface, into the nor-

mal metal. They retain their superconducting properties inside the normal metal. Inside

the normal metal, no new Cooper pairs are formed, rather the superconductor donates its

existing Cooper pairs. This extension of Cooper pairs close to the interface results in the

superconducting order parameter becoming weaker at the interface (referred to in some lit-

erature as the inverse proximity effect) [42]. This is the first example of the way in which,
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Spin Singlet
Superconductor

Interface

Normal Metal

_

Figure 2.1: Leakage of Cooper pairs at the superconductor/normal metal interface. Cooper pairs are

able to penetrate the normal metal, which causes the Cooper pair density inside the superconductor

to decrease.

for a thin film, proximity effects suppress the superconductivity, and with it a lowering of

the superconducting transition temperature occurs. Proximity at the S/N interface is shown

schematically in Figure 2.1.

Through the formalism of de Gennes, it is possible to describe the spatial extent of this

normal proximity effect through an effective coherence length inside the normal metal ξn

[44]. Inside the normal metal it is thermal fluctuations which destroy the coherence of the

Cooper pair. ξn is therefore given by the thermal diffusion length (LT ), and [41]

ξn =
√

ħD

2πkB T
, (2.18)

where D is the material dependent diffusion constant and T is the temperature. This length

scale is typically 100’s of nm into the normal metal [45].

An important characteristic of the superconducting proximity effect is the Andreev re-

flection at the microscopic scale [46]. Andreev demonstrated how single-electron states of

the normal metal are converted into Cooper pairs, and also explained the transformation

of a normal state current into the dissipationless supercurrent at the interface. An electron

with an energy below the superconducting gap is reflected at the interface as a hole. The

corresponding charge of 2e is transferred to the Cooper pair which appears on the super-

conducting side of the interface. The process can be detected as a doubling of the normal

metal’s conductance. The retro-reflected hole carries with it phase information of the su-

perconducting state [25, 47].
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2.4 Proximity Effects

2.4.2 S/F - Fulde-Ferrell-Larkin-Ovchinnikov State

When a ferromagnet is placed in proximity to a superconductor, it is no longer thermal fluc-

tuations which destroy the Cooper pairs. The exchange field present inside the ferromagnet

creates a re-entrant property which is caused by a shift in the momentum of the Cooper

pairs [41].

Cooper pairs which enter the ferromagnet will be aligned either parallel or antiparallel to

the direction of the exchange field. Parallel orientations will experience a decrease in poten-

tial energy relative to spins aligned antiparallel. The kinetic energy for parallel (antiparallel)

spins will be increased (decreased) by∆k2. The pairs inside the ferromagnet no longer have

zero total momentum. Now Cooper pairs exist with values of momentum ±∆k altering the

distribution of pairing density. This state was proposed by Fulde and Ferrell in 1964 [48] and

independently by Larkin and Ovchinnikov in 1965 [49] for superconductors in the presence

of a magnetic field and is referred to as the FFLO (or LOFF) state. This non-zero momentum

component will correspond to a generation of a new m = 0 triplet state at the interface and

an oscillation in the order parameter with respect to distance inside the ferromagnet.

These oscillations are shown schematically in Figure 2.2 for three possible ferromagnetic

cases. Firstly in the case of a weak ferromagnet (for example low Curie temperature CuNi)

the oscillations can extend a relatively long distance into the ferromagnet (typically 10’s nm)

and the inverse proximity effect is small. Proximity effects with the strong ferromagnet (for

example high Curie temperature Co) are of much shorter length scale (1-2 nm). In this sys-

tem the inverse proximity effect is larger, with a considerable m = 0 triplet component de-

tectable on the superconductors side of the interface. For the case of a half metal, where all

transport is 100% spin polarised, there is no leakage of either singlet or m = 0 triplets into

the ferromagnet. In this system there is a considerably larger inverse proximity effect.

The characteristic length scale for the decay of the singlet wavefunction inside the ferro-

magnet is defined as an effective coherence length (ξ f ) inside the F layer. ξ f depends upon

the type of electron transport within the system (ballistic or diffusive). A ballistic (or ‘clean’

in some literature) case is defined where ξ f >> l , where l is the electron mean free path

(mfp). The alternative diffusive (or ‘dirty’) case is defined where ξ f << l . The coherence

lengths in these two limiting cases are defined respectively as [41];

ξ f =
ħvF

2πT
(2.19)

and
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Figure 2.2: Leakage of Cooper pairs at the superconductor/ferromagnet interface. At the interface

a new S=1, m=0 (|1,0〉) short ranged triplet component is generated. Inside the weak and strong

ferromagnet, the singlet and triplet components oscillate out of phase with each other (the FFLO

state). In the case of a half metal, neither superconducting component can enter.
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ξ f =
√

ħDF

Eex
, (2.20)

where vF is the Fermi velocity, D f the diffusion coefficient and Eex the exchange energy of

the ferromagnet which is approximately given by kB Tcurie [41]. For the sputtered thin films

in this work it is the diffusive limit which is appropriate.

In the formalism of the BCS theory (using the conventions of Eschrig [6]) it is possible

to write the evolution of the wavefunction at the S/F interface in the following way. Starting

deep inside the superconductor, only singlet Cooper pairs exist;

|Ψ〉 = |0,0〉 = 1p
2

( |↑↓〉− |↓↑〉).

At the S/F interface the exchange energy adds a shifted momentum term Q,

|Ψ〉 = 1p
2

( |↑↓〉e iQx −|↓↑〉e−iQx
)
,

|Ψ〉 = 1p
2

[( |↑↓〉− |↓↑〉)cosQx + i
( |↑↓〉+ |↓↑〉)sinQx

]
,

which is simplified to,

|Ψ〉 = |0,0〉cosQx + i |1,0〉sinQx. (2.21)

where the |1,0〉 state is the short ranged, m = 0, triplet component (SRTC). The spatial de-

pendence on the singlet of cosine and the triplet of sine is the origin of the oscillation in the

FFLO state. This is referred to in some literature as the singlet/triplet mixed state.

2.4.3 S/F - Long Ranged Triplet Component

Continuing from the FFLO state, in the presence of an inhomogeneous magnetic field at the

interface, the |1,0〉 component can be converted into the possible states [6]:

|1,0〉→


|1,1〉 = |↑↑〉
|1,0〉 = 1p

2

( |↑↓〉+ |↓↑〉)
|1,−1〉 = |↓↓〉

(2.22)

where the symmetric spin-triplet states, |↑↑〉 and |↓↓〉 are known as the long ranged triplet
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Figure 2.3: Leakage of Cooper pairs at the superconductor/ferromagnet interface, where the inter-

face is inhomogeneous. Inside the inhomogeneity new S=1, m=±1 (|1,1〉 , |1,−1〉) triplet components

are generated, which can penetrate both strong ferromagnets and half metals.
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components (LRTC)1. Being aligned to the exchange field, ferromagnetic pair breaking no

longer takes place. The length scale for the LRTC to exist inside the ferromagnet is related to

thermal fluctuations with a similar mechanism to that of proximity to a normal metal [50].

The length scale for the LRTC proximity is therefore given by equation 2.18. A schematic

of this conversion is given in Figure 2.3. For the case of the strong ferromagnet the |↑↑〉
state is preferentially transmitted into the ferromagnet, although a smaller |↓↓〉 component

also exists in the minority band [6]. The typical length scale of this proximity effect is now

10’s nm [51]. In the case of a half metal, the minority band is insulating, and so only the |↑↑〉
component is transmitted, with the |↓↓〉 component reflected back into the superconductor.

For the case of a half metal the proximity effect can have ξ f =100’s nm [52].

The exact nature of the magnetic inhomogeneity required is somewhat ambiguous. The-

oretical literature has previously focused on LRTC generation by magnetic domain walls

[53–55], where the presence of a domain at the S/F interface was able to convert the short

range triplet into the LRTC. Other theoretical proposals have shown LRTC generation is pos-

sible using (but not limited to); conical ferromagnetic structure [56–61], multilayer struc-

tures [62–65], canted moments at the S/F interface [50], magnetic vortices [66, 67], spin-

orbit coupling [68, 69] and magnetic skyrmions [70, 71]. From the large body of theoretical

work, this thesis makes the reasonable assumption that any magnetic inhomogeneity will

generate a LRTC. The exception to this is the case for ideal antiferromagnetism, where the

repeat distance is much smaller than ξ, and so what may be perceived as magnetic inhomo-

geneity is not actually sampled by the Cooper pair. Due to the short mfp inside an antifer-

romagnet any proximity effect will be short lived (but with no FFLO or LRTC generation)

[72, 73].

2.5 Induced moment at the S/F interface

A key experimental aim of this thesis is the direct observation of the induced moment ex-

pected from triplet Cooper pairs in the S/F system. Three theoretical descriptions of the

expected induced moment are presented.

1In this case ‘long’ is in comparison to the FFLO state, where the m=0 triplet may be referred to as the ‘short’

ranged triplet component (SRTC). The penetration of the ‘long’ ranged triplet is not long compared to the singlet

penetration in S/N proximity.

20



2.5 Induced moment at the S/F interface

Figure 2.4: Spatial dependence of the induced magnetisation (MF 0) at the S/F interface (x/ξ0 = 0)

where ξ0 is the zero temperature coherence length. Inset: Schematic view of the inverse proximity

effect. Reproduced from Bergeret et al. [74].

2.5.1 Bergeret Inverse Proximity Induced Ferromagnetism

So far in this section, all that has been considered is the penetration of the superconducting

order into the adjacent metal. In the case of the adjacent metal being a ferromagnet Bergeret

et al. considered the question “can the ferromagnetic order penetrate the normal metal or

superconductor over long distances?” [74]. In the case of a N/F interface it is not uncommon

for the normal metal’s spins to become aligned at the interface, for example when vanadium

(in the normal state) is in proximity to iron [75, 76]. In this work, care was taken to choose

materials with no known N/F magnetic proximity. Any induced moment in these systems is

as a consequence of the onset of superconductivity.

Starting from the assumption that the F layer is thin and all Cooper pairs are antipar-

allel so the total magnetic moment of the pair is equal to zero, it is clear that the Cooper

pairs existing only in the superconductor cannot contribute to the magnetic moment of the

superconductor. The moment is simply zero. It is possible, nevertheless, to imagine some

pairs which are located in space in a more complex manner: one of the electrons of the pair

is in the superconductor, while the other moves in the ferromagnet. These pairs create the

magnetic moment in the superconductor. The direction along the ferromagnets moment

is preferable for the electron located in the ferromagnet. This makes the spin of the other

electron in the pair antiparallel to the ferromagnet. All such pairs equally contribute to the

magnetic moment in the bulk of the superconductor.

As a result, a ferromagnetic ordering is created in the superconductor with opposite dir-

ection to the ferromagnet over the length scale of the size of the Cooper pair, ξ. A second

21



2.5 Induced moment at the S/F interface

Figure 2.5: (a) The spatial variation of the singlet and short and long ranged triplet components

in a F/S/F trilayer. (c) The induced magnetisation from the triplet components. Reproduced from

Löfwander et al. [63].

consequence is the lowering of magnetic moment in the ferromagnet as the proximity ef-

fect reduces the density of states in the F layer. This result is reproduced from Ref [74] and

shown in Figure 2.4.

A small number of reports attribute observations to this effect, however in almost all

cases the technique employed did not have adequate statistics or the required spatial sens-

itivity to characterise the effect in detail [77–80]. A further report utilising the LEµSR tech-

nique (see section 3.8), which possesses the required spatial resolution, found the expec-

ted induced moment in the S layer, but with a length scale of only 1 − 2 nm. This is far

shorter than the coherence length inside the Nb S layer of 10 nm [33]. This report either

suggests that the key length scale of induced moment is more similar to the effective co-

herence length inside the ferromagnet, or that a rather different interfacial mechanism is

present in that work, and possibly others.

2.5.2 Löfwander Triplet Induced Spin Magnetisation

In the work of Bergeret et al. [74]; only homogeneous magnetisations and singlet Cooper

pairs were considered. Löfwander et al. extend this work to include triplet Cooper pairs

[63]. This work considers a F/S/F trilayer with arbitrary angle between the moments of the
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2.5 Induced moment at the S/F interface

F layers. When the moments are aligned parallel or antiparallel, singlet and short ranged

(m=0) triplet Cooper pairs exist inside the superconductor and very short distances inside

the ferromagnet. Inside the ferromagnet these two components oscillate and decay rap-

idly. For other orientations the m= 1 LRTC is also induced, which penetrates deep inside

the ferromagnet and does not oscillate. Figure 2.5 (a) shows the spatial profile of the three

components. Note that the LRTC is only generated nonlocally in one ferromagnet by diffu-

sion of the SRTC from the other through the superconductor. The consequence of this is the

LRTC at the interface is already quite small and hard to detect.

The most surprising finding of this work is that triplet pairs in isolation do not contribute

to induced moment, rather it is the product of the singlet and triplet components which is

proportional to the induced magnetisation. Both short and long ranged triplets contribute

to induced magnetisation. The consequence of this can be seen in Figure 2.5 (c) which

shows the spatial profile of the induced magnetisation (δM). Inside the superconductor

δM is spread out over the longer length scale ξs . But δM decays rapidly in the ferromagnet

on the scale ξ f , because of the dependence on the fast decaying singlet component.

A further consequence of the dependency on the presence of the singlet component is

that the oscillation periods of δM are different for the short and long ranged triplet com-

ponents. The oscillation period for δM induced by the LRTC is twice that for the SRTC. This

is caused by the product of an oscillating singlet with a monotonic LRTC and oscillating

SRTC. Inside the superconductor the induced moment is consistent with the description

from Bergeret et al., it should be antiparallel to the direction of the ferromagnetic moment

and decaying away from the interface over the length scale of a Cooper pair.

2.5.3 Inverse Meissner Screening

Several reports have studied theoretically the magnetic susceptibility of singlet and triplet

Cooper pairs inside proximity structures [81–85]. It is well known that superconductors

set up Meissner screening currents in response to an externally applied field. The LRTC,

however, contributes a positive component to susceptibility when it is present. When a

sample is designed so that one can isolate the LRTC inside a normal metal (for example in

an S/F1/F2/N spin valve) the response from the normal metal (from only the LRTC) will be

paramagnetic.

The ‘smoking gun’ experimental observation of this inverse Meissner screening is not

necessarily the observation of paramagnetic response, but the ability to reverse the suscept-
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2.6 Experimental Observation of the FFLO state

ibility of the normal metal by either tuning the production of the LRTC [84] or observing an

expected oscillation between positive and negative susceptibility with temperature [82].

It should be noted that this induced moment from the creation of paramagnetic screen-

ing currents is different in origin to the induced ferromagnetism of Bergeret et al. and

Löfwander et al.. In order to observe this effect one needs to design a structure where the

thicknesses of the layers in which these effects are observed are larger than the penetration

depth. Therefore it would be very difficult to deconvolute any response from the traditional

Meissner effect (which would be much larger in magnitude).

A very recent report claims the observation of an inverse Meissner screening effect cre-

ated by the LRTC [34] measured using the LEµSR technique outlined in Section 3.8. This

observed effect, however, is very small, with poor statistical fidelity and incomplete data

sets making it impossible to attribute the observed effect to the onset of superconductivity,

as opposed to changes in the ferromagnet’s magnetisation or a rearrangement of stray fields

due to screening by superconductivity (for example).

2.6 Experimental Observation of the FFLO state

The signature of the FFLO state is an oscillating superconducting wavefunction inside an

exchange field. The two main methods of detecting this oscillatory behaviour are in Tc

measurements of S/F bilayers and critical current measurements across S/F/S Josephson

junctions.

2.6.1 Measurements of Tc

The damped oscillatory behaviour of the superconducting order parameter inside an ad-

jacent F layer results in a nonmonotonic superconducting Tc dependence on the F layer

thickness. The predicted oscillatory-type dependence of the critical temperature [86, 87]

was subsequently observed experimentally in Nb/Gd [88], Nb/CuMn [89], and Nb/Co and

V/Co [90] multilayers, as well as in bilayers Nb/Ni [91], trilayers Fe/V/Fe [92], Fe/Nb/Fe [93],

Nb/[Fe/Cu] layers [94], and Fe/Pb/Fe [95].

2.6.2 Josephson Junctions

Oscillation of the order parameter inside the F layer in an S/F/S Josephson junction is re-

sponsible for a thickness dependent switching of the phase across the junction. At ferro-
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2.7 Experimental Observation of the LRTC

magnet thickness < ξF , the singlet pair wave function inside the ferromagnet changes little

and so the order parameter will be identical in both S layers. On the other hand, if the F

layer thickness is ≈ ξF then the singlet pair wave function may reach zero value at the centre

of the F layer, with an opposite sign or π shift of the phase of the order parameter in the

adjacent S layer [41]. This is the so-called 0−π transition. Now a highly reproduced result,

the first observation of reenterent 0−π− 0 critical current with F thickness was observed

in 2006 by Oboznov et al. for a weak ferromagnet [96] and by Robinson et al. for a strong

ferromagnet [97].

2.7 Experimental Observation of the LRTC

The first initial hints for the presence of the LRTC in S/F proximity structures came in 1998

with a report of Co wires with Al contacts showing a large decrease in resistance when the

Al was in the superconducting state. To explain this result it was concluded the proximity

effect in the Co wires had to be much longer than expected, however the authors did not

offer any insight into the origin of the effect [98]. A similar report the following year stated

“we observe a spectacular drop in the resistance of the F/S junction at the onset of super-

conductivity with slow changes persisting down to the lowest temperatures.” Additionally

it was commented that the sample-to-sample interface transparency had an important role

[99]. A similar observation in a wire made of Ho was reported in 2006 [56]. Ho has spiral

magnetisation, and so is capable of generating the LRTC. In 2010, a report from Wang et al.

demonstrated zero resistivity in a 600 nm long Co wire with superconducting electrodes at-

tributed to LRTC generation and propagation [100]. The extremely long length scale of the

effect compared to other works using Co was attributed to the wire being a single crystal,

although it was unclear where the necessary source of inhomogeneity to generate the LRTC

arose in this work.

2.7.1 Josephson Junctions

The first definitive observation of the LRTC came in 2006 from Keizer et al. in passing a

supercurrent through half metallic CrO2 [101]. In this work the only allowed proximity into

the half metal is the LRTC. The triplet supercurrent was propagated about a micron between

superconducting electrodes placed laterally on the surface of the CrO2. It was noted a large

sample to sample variation was observed, with only a minority of devices working (about 1

25



2.7 Experimental Observation of the LRTC

Figure 2.6: Critical current as a function of external magnetic field, applied in the plane of the film,

for a lateral NbTiN Josephson junction device across half-metallic CrO2. The raw data (showing hys-

teresis with magnetic switching) and SEM of fabricated devices are shown as insets. From Kiezer et

al. [101].

in 50) with a large range in Jc values. The LRTC generation was explained by the surface state

of the CrO2 providing the necessary inhomogeneity. If the local area of the contacts were in

a position of inhomogeneity, the LRTC was generated, otherwise no proximity effects were

observed.

Continuing this work, Anwar et al. showed that by optimising the treatment of the CrO2

surface by pre-deposition cleaning, triplet supercurrents could be passed through the CrO2

up to 700 nm [52]. This acted as confirmation of the results from 2006. These works on

half-metallic materials show the longest propagation through a ferromagnet and are the

only observations in the lateral junction geometry. This report was the first of 3 in 2010

which outline the now standard methods of injecting a controlled triplet supercurrent into

a ferromagnet.

The second report from Khaire et al. involved controlling the inhomogeneity by em-

ploying a multilayer approach [102]. Large area Josephson junctions were fabricated using

sputter deposition through masks in a S/F’/F/F”/S design. In this scheme the magnetisa-

tion of the F’ and F” layers are perpendicularly aligned to the F layer. This is achieved by

making the F’ and F” layers thin and with low anisotropy, so they are aligned to a small ex-
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ternal field. The central F layer is a Co/Ru/Co synthetic antiferromagnet (SAF). This layer

serves two purposes, upon the application of a saturating field and subsequent relaxation

of the field, the SAF aligns perpendicular to the applied field. Secondly the domains in the

two Co layers cancel, which significantly reduces the stray field effects from the layer. This

in turn minimises the magnetic flux in the junction. It is the misalignment of the SAF from

the other ferromagnets which generates the LRTC. Triplet currents were propagated up to

28 nm through the Co.

The third report from Robinson et al. added thin layers of the magnetic spiral material

Ho at both sides of Co in nano-pillar Josephson junction [51]. It was shown that tuning

the thickness of the Ho could control the LRTC generation, which was maximised when the

thickness of the Ho was enough for it to develop spiral magnetisation.

Following from these three initial break throughs, research into the Josephson junction

devices has continued in great depth. Several experiments have independently found evid-

ence for LRTC penetration across junctions of different materials, for example Sprungmann

et al. showed critical current characteristics consistent with LRTC generation in junctions

containing the Heusler alloy Cu2MnAl [103]. In this alloy intrinsic inhomogeneity is gener-

ated at interfaces, where a spin glass low moment phase exists. This interface magnetism

transitions to a ferromagnetic type ordering at the core of the film.

The group working on CrO2 has shown that adding additional ‘spin mixer’ layers of Ni

between the superconductor and CrO2 greatly improves the reliability of LRTC generation.

Additionally the surface state of the CrO2 can be controlled with substrate choice [104].

The second group employing the multilayer approach have reported optimisation of the

devices, with a confirmation of the domain structure of the SAF by PNR [105]. Additionally

they substituted the F’ and F” layers for ferromagnetic multilayers with perpendicular an-

isotropy and report that this too generates LRTC [106].Most recently efforts have focused on

the fabrication of switchable Josephson junctions for cryogenic memory elements [17]. By

utilising a combination of hard and soft magnetic layers for the F’ and F” spin mixer layers, it

is possible to independently switch F’ and F” and control LRTC generation [107]. This group

has also been the first to fabricate SQUID devices which employ two magnetic Josephson

junctions [18], although they are yet to incorporate the LRTC into the SQUID geometry.

The low temperature spiral properties of epitaxial Ho were studied with neutron diffrac-

tion, confirming its helical properties in the thin film [108]. Additionally, Josephson junc-

tions with Ho as the sole F layer were fabricated, in which no observation of the 0-π trans-
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ition was observed. This was due to the magnetic coherence length through the Ho being

very short, consistent with only a singlet component present inside the Ho. Gd was used in

an S/F/S junction where Bloch domain walls can be controllably generated at the interfaces.

When the domain walls were at the interface, evidence for the LRTC was observed [109]. In

a similar experiment, the interface in Cr/Fe can generate an antiferromagnet type order-

ing. This inhomogeneous ordering was used to generate a triplet supercurrent [110]. Finally

using a stack of ferromagnets with different anisotropies, triplet pairing was observed in a

junction with multilayered F structure [111].

There has been experimental and theoretical work to realise long ranged triplet type

proximity in Josephson type devices where the superconductor is a thin film high Tc , such

as YBCO [112–116]. Additionally the first step has been made in coupling a ferromagnet to

SrRuO3, which has an intrinsic triplet ordering [117].

2.7.2 Superconducting Spin Valves

Initial interest in the superconducting spin valve centred around the concept of achieving

an infinite magnetoresistance [118]. By measuring around the Tc of the superconductor,

it was theoretically possible to tune superconductivity by the mutual orientation (parallel

or antiparallel) of two F layers in an S/F1/F2 or F/S/F type multilayer. The initial physical

picture presented in early work in this field was that shifts in Tc were due to pair breaking

spin polarisations, extending into the S layer from the F layers. When the F layers were

antiparallel these polarisations effectively cancel out, however when parallel they enhance

each other and suppress superconductivity [14, 118–121].

The experimental results attempting to observe this infinite MR showed that while there

was a shift in Tc , it was a much smaller effect compared to predictions from theory. The

largest observed ∆Tc was ≈ 40 mK. This shift is much smaller than the typical transition

width of a thin film proximity coupled superconductor, and so the predicted complete switch-

ing was not observed [122–126]. Additionally it was observed that the higher Tc state was not

always observed in the parallel case [127–129]. Interestingly the MR measured in the trans-

ition was larger than expected for the same magnetic structure without a superconductor.

This may be due to the ability of a superconductor to carry information about the align-

ment of the ferromagnets as quasiparticles [130]. This will be discussed in detail later. In

2010 the complete switching effect was achieved in a system with a very narrow transition

width [131, 132]. This observation was followed up in 2013 in a system where the F layers
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were ferromagnetic insulators [133] and in 2015 where the F layers were the RE Ho (which

has already been shown to have a proximity effect with Nb) or Dy [134].

Together these observations fuelled a development of the theoretical framework to in-

clude the triplet superconducting components. The groundwork for the generation and

observation of the LRTC in a S/F1/F2 spin valve structure was developed by Fominov et al.

[65] and was later extended for an F/S/F type spin valve [135]. The now accepted interpreta-

tion of shifts in Tc between the parallel and antiparallel magnetisation alignments is via the

same mechanism as oscillations due to the FFLO state, singlet/triplet mixing. In these mag-

netic orientations only short ranged triplets and singlets are present. Switching between the

two magnetic alignments changes the effective thickness of the exchange field observable

to the superconductor. The sign of the shift (increase or decrease in Tc ) is now an oscillatory

function of ferromagnet thickness which is consistent with the previous observations [132].

Changing the separation angle to create misalignment creates the required non-collinearity

for LRTC generation. The LRTC effectively increases the range of coupling between the S/F

layers, creating additional channels for supercurrent leakage into the F layers. The con-

sequence of this is a reduction of pairs inside the superconductor and a suppression of Tc .

Maximum generation occurs at maximum non-collinearity (perpendicular or 90 degrees)

which is where the largest suppression in Tc should be observed. The triplet spin valve ef-

fect. This is now a widely accepted and reproduced result. Presented here are the current

experimental results showing angular dependence of superconducting spin valves consist-

ent with that of the triplet spin valve.

Leksin et al. first observed the signature triplet spin valve effect in an S/F1/F2 exchange

biased Pb/Fe spin valve [19] as reproduced in Figure 2.7. They continued to study the de-

pendency of thicknesses of each layer [136] and found that there was intermixing between

the Pb and Fe, which occurred after the deposition process and caused the degradation of

samples over the time scale of a week [137]. Adding Cu spacer layers significantly improved

the sample quality, and the size of the observed spin valve effect was found to be depend-

ent on the interfacial roughness; with smoother interfaces giving a larger effect. Rougher

or grainy films showed less angular dependence. This observation is consistent with other

reports [21, 138]. Most recently this group has worked on the ‘isolation’ of the triplet spin

valve effect. In the theoretical framework of Fominov there exists a narrow range of F thick-

nesses for which there is no change in Tc between parallel and antiparallel, but for which

the triplet effect is still present. Samples were recently fabricated which demonstrate this
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Figure 2.7: Angular dependence of the superconducting transition temperature of the S/F1/F2 su-

perconducting spin valve, showing minima at 90◦ as expected for triplet generation behaviour. The

thicknesses of the F1 layer are 0.6 (a), 1.0 (b) and 1.5 nm (c). Left: The dashed lines are the expected

behaviour of the spin valve when no LRTC formation is present. Right: The deviations from Tc 0◦

and theoretical result (solid red line) when the LRTC is present. From Leksin et al. [19].
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[139].

In addition to the Pb/Fe system, the S/F1/F2 triplet spin valve effect has been shown in

Nb/Py/Co pseudo spin valves [21], Nb/Co exchange biased spin valves [20, 22], and in the

F/S/F spin valve structure in Co/Nb/Co [22] and CuNi/Nb/CuNi [140]. The size of the spin

valve effect can be greatly enhanced by replacing the lower ‘drainage’ layer with a material

of very high spin polarisation such as CrO2 [141]. This is consistent with the large proximity

effects observed in Josephson junctions containing CrO2 and highlights the importance of

high spin polarisation in the transport of the LRTC.

The Tc shifts observed in these works have a periodicity of 180 degrees, which is then

related back to the orientation of the ferromagnetic layers and hence is attributed solely to

the triplet generation. None of these works factor in that the periodicity and magnitude of

the observed effect is the same as a number of other potential measurement artefacts. Upon

attempting this measurement the author became aware of the following things to look out

for.

Firstly the complex multilayer approach taken by all groups (and the sensitivity to very

thin layers) means that samples grown in different vacuum cycles can give very different

behaviour. In some works (for example [137]) interdiffusion between layers occurs on the

time scale of days after the structures are grown. Without clean interfaces it is impossible

to know the true thickness of layers (especially magnetic layers, in which the magnetisation

may weaken or dead layers appear).

The reported triplet spin effect is typically only 10-20 mK in size. It is therefore important

to have temperature stability in the measurement system which allows such small changes

in Tc to be reliably measured. This stability can either be the ability to measure at a constant

temperature and rotate the sample, or alternatively to have a well controlled cooling at a

constant rate, and record many cooling curves at fixed angles.

Next the issue of sample rotation needs to be addressed. In literature there does not

appear to be a consensus as to what is the best methodology for undertaking the sample

rotation. Two options were explored in this work. The first, application of a field by split pair

magnets or Helmholtz coils across the sample space. The sample and measurement stick

is subsequently rotated by hand or stepper motor in the field. The second methodology

is to place the entire cryostat between Helmholtz coils and rotate the cryostat. If rotation

occurs too quickly it is possible that the act of rotating the sample creates local heating. In

both measurements it is difficult to be able to align the sample so that it is exactly known
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what direction the field is pointing with respect to the pinning or current direction. It may

therefore be necessary to centre the sample before beginning measurements.

Non-uniformity of temperature, field and angle are all issues under rotation. Any change

to temperature or field uniformity during rotation may appear identical to the spin valve

effect. It is also impossible to mount a sample in such a way that the applied field will be

completely in-plane. Any misalignment will create an out-of-plane field component, which

will not be completely uniform under rotation. If the sample ‘wobbles’ under rotation then

this will change the out-of-plane field component, which will also change the Tc .

Finally, possibilities of vortex flow and induced voltage from this phenomena need to

be addressed. Even when a film is too thin to form in-plane vortices, the out-of-plane field

component will create vortices on the films surface. During rotation the angle between ap-

plied current and field will continually change, modifying the Lorentz force acting on the

vortices. As a function of angle, therefore, the induced voltage from the motion of the vor-

tices will oscillate with the same periodicity as the triplet spin valve effect.

There are also angular dependent studies which do not show evidence for triplet effects,

and instead show monotonic changes from parallel to antiparallel alignments [142] or com-

pletely anomalous Tc changes [143].

Samples grown by the author and measured by Dr. M. G. Flokstra have addressed all of

the above issues (in both sample preparation and how the measurement was performed.

See [22] for details on the experiment and section 2.10 plus Chapter 6 for characterisation of

the spin valves.) By rotating the sample at a constant temperature, Tc shifts consistent with

LRTC generation were observed, with the result plotted in Figure 2.8.

2.7.3 Density of States

The superconducting density of states (DoS) can be determined by tunnelling spectroscopy

and the measured conductance (d I /dV ) with bias voltage. The presence of a LRTC gives rise

to a conductance peak at zero bias, where in a purely BCS gapped state a minimum should

exist [144–146]. Most work to observe this peak at zero bias has been conducted on high Tc

superconductors which, despite having a different pairing mechanism, have similar prox-

imity effects with ferromagnets and can generate the LRTC when there is inhomogeneity

[112, 114]. Several reports have shown conductance behaviour consistent with the presence

of a LRTC on the ferromagnetic side of S/F bilayers in high Tc systems [113, 115, 147, 148].

While searching for signatures of Majorana fermions in proximity-induced topological
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Figure 2.8: (Red) Angular dependence of resistivity at various temperatures in the superconducting

transition for the S/F1/F2 superconducting spin valve grown by the author. Maxima in resistance is

at 90◦ and 270◦, corresponding to the minima in Tc , as expected for triplet generation. Additionally

shown in blue is the field dependance of the effect, demonstrating that applied field is a possible

control parameter for the spin valve effect. From Flokstra et al. [22].

33



2.7 Experimental Observation of the LRTC

superconducting juctions, Koren et al. found conductance spectra with a prominent zero

bias peak, suggesting the induced superconductivity in the topological insulator (Bi2Se3)

was triplet in nature [149, 150].

A recent report by Di Bernardo et al. has shown a number of sub-gap features in the DoS

in a hybrid Au/Nb/Ho multilayer, where the conductance was measured in the proximity

gapped Au layer [151]. A spatial mapping of sub gap features, reproduced in Figure 2.9,

showed most commonly a split double peak was observed, within which some zero bias

peaks are also present. These peaks only appear at very low temperatures (< 300 mK). There

were also normal areas and regions showing a purely BCS type gap. The application of an

in-plane field modified the conductance and could destroy the peaks. This was related to

the magnetic state of the Ho.

What should be noted, however, is that the LRTC is not the only source for sub-gap fea-

tures such as a zero bias peak. Similar sub-gap features to that seen by Di Bernardo et al.

exist as a result of Andreev processes in superconducting vortex cores and their surround-

ings [152–154]. At very low temperatures the core of a vortex gives a signature zero bias peak,

which is surrounded radially by splitting into a double peak. Confirmation of the result of

Di Bernardo et al. is needed to conclude if this is truly a triplet effect. The most import-

ant future experimental work would be the understanding of the temperature dependence

of the sub gap features and an observation of the zero bias peak in a region where it is not

surrounded by the split peak feature (which is not explicitly triplet in origin).

A recent observation in Bi/Ni bilayers showed that in thin film, when the two layers are

grown in proximity to each other, superconductivity with a zero bias peak is observed. As

neither layer superconducts on its own, it is suggested the system may have triplet pairing

where the superconductivity is generated at the Bi/Ni interface [155]. If correct, this opens

the exciting possibility of intrinsic triplet pairing in the thin film form, although possibilities

of intermixing and alloying of the two layers needs addressing (as some BiNi alloys exhibit

BCS superconductivity) [156–158].

2.7.4 Other Observations

Evidence for the LRTC can be deduced from Tc measurements of S/conical-F bilayers, where

an observed oscillation of Tc with the pitch length of the cone can be related to LRTC gen-

eration [57, 58]. Such oscillations were observed for Nb/Ho bilayers [159, 160].
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Figure 2.9: (a) Surface topography of the Au (3 nm)/Nb (20 nm)/Ho (9.5 nm)/Nb (6.5 nm)/sapphire

samples (right key indicates sample height) and in (b) a spatial map of the corresponding spectra

obtained at 290 mK; the different colours correspond to the different types of spectra observed and

match the spectra shown in (c)-(f ). From Di Bernardo et al. [151].

35



2.8 Spin Transfer through a Superconductor

2.8 Spin Transfer through a Superconductor

In addition to the type of proximity effects whereby purely Cooper pairs are considered, it is

important to also consider the case where spin polarised quasiparticles can be injected into

a superconductor.

A high priority for spintronics is to extend spin lifetime so it is long enough to perform

a logic operation, or can be manipulated and read. In diffusive material spin lifetimes are

typically fairly short, due to spin-orbit and spin-flip scattering processes. In a supercon-

ductor, it is possible to create spin 1/2 quasiparticles which carry a net spin component.

In the superconducting state it takes longer for such quasiparticles to scatter through pro-

cesses involving spin-orbit impurities relative to the scattering rates in the normal state. The

consequence is that spin lifetimes in superconductors can be increased by many orders of

magnitude relative to ferromagnetic metals [130, 161–166]. There have been several exper-

imental reports of increased spin lifetimes of up to a million times in superconducting Al

[10, 167, 168].

This is still a controversial result, with some experimental observations reporting a de-

crease in spin lifetimes (or relaxation length) when entering the superconducting state [169].

This is attributed to an increase in magnetic impurity scattering in the superconducting

state, which may be improved by using purer superconductor.

In recent experiments by Wakamura et al. it has been demonstrated that a supercon-

ductor with strong spin-orbit coupling can preferentially absorb a pure spin current [170].

In this experiment a pure spin current is generated in a Cu wire, which is then preferentially

absorbed into Nb both above and below Tc . It was possible to determine that the differences

between preferential absorption above and below Tc were caused by an increase of 4x in the

intrinsic spin relaxation time below Tc . This is consistent with other reports of an increase

in spin accumulation in the superconducting state [169].

2.9 Domain Enhanced Superconductivity

An additional mechanism by which to influence superconductivity in an S/F hybrid system

is presented here. It has been shown that altering the domain configuration in a F layer can

influence Tc in an S/F bilayer [54, 171, 172] or F/S/F trilayer [173]. What is of particular

interest in these works is that they have almost the opposite behaviour of the triplet spin

valve, where the tuning of inhomogeneity lowers Tc . The result of Zhu et al. is reproduced in
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2.9 Domain Enhanced Superconductivity

Figure 2.10: Domain enhanced superconductivity in a
[
Co/Pt

]
n/Nb/

[
Co/Pt

]
n multilayer, (a) nor-

malized magnetization at 10 K and (b) resistance R at 5.350 K versus magnetic field. (c) Resistance

(R) versus temperature (T) of the same sample at 4 KOe (in-plane saturation field, solid triangles),

0 KOe (remnant state, open circles), 0.5 KOe with measuring current parallel (CIW, open squares)

and perpendicular (CPW, solid stars) to stripe domains (both reduced from +10 KOe), and 0.5 KOe

(increased from −10 KOe, solid circles). The domain structure evolution is schematically shown on

the right. Reproduced from Zhu et al. [171].
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2.10 The Influence of Superconductivity on Magnetism

Figure 2.10. In this work a superconductor is sandwiched between Co/Pt multilayers. A field

history can break the ferromagnetic layers into multiple domains, this causes an increase

in Tc of 30 mK. Unlike the superconducting spin valve, here the low Tc state is when the

ferromagnetic layer is single domain and homogeneous.

2.10 The Influence of Superconductivity on Magnetism

Until now the focus of this literature review has been on the magnetic ordering altering the

pairing properties of the adjacent superconductor, or the mutual leakage of superconduct-

ivity into a ferromagnet. In this section the inverse case is considered, how does supercon-

ductivity affect the adjacent ferromagnet? The following contains mostly work performed by

P. J. Curran on samples fabricated by the author and J. Kim. While the results are of import-

ance to the interpretation of this thesis, they are presented independently in this section.

The observed phenomena can loosely be classified into two groups: Abrikosov vortex

mediated pinning of ferromagnetic domains [174], and the restructuring of ferromagnetic

domains due to changes in magnetostatic energy arising from Meissner screening currents

inside the superconductor [175–177]. It was shown that both of these phenomena were

present inside the superconducting spin valve [178].

In the spin valve the free magnetic layer switches and rotates at very small applied field

values (≈ 2.5 mT). Within the ferromagnetic layer are 360◦ domain walls. These are observed

using the scanning Hall probe microscopy technique (SHPM), and are shown in figure 2.11.

The stray fields from these domain walls create superconducting vortices which become

pinned at defects in the polycrystalline Nb. This is because, although the superconductor

is too thin to create screening currents in-plane, it is possible to set up surface screening

currents to screen out-of-plane field components (emerging as stray fields from the domain

structures). When the superconducting vortices become pinned, the magnetic domains are

also locked in position and orientation. In the normal state, these domain walls switch or

rotate with the bulk of the F layer. At T<Tc the domain structures remain unchanged when

an applied field of 10 mT is rotated through 180◦.

The presence of stray fields from the ferromagnetic layers, the modification of the stray

fields and the screening by the superconductor will become important in the discussion of

the induced magnetisation effect in chapter 6.
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Figure 2.11: Typical SHPM images of 360◦ DWs in the 2.4nm free Co layer of our sample at reman-

ence after saturation in positive fields at 77K, (a) and (b), and at 10K (c) (scale bars 5 µm). (d) Shows

a fit to the line scan indicated in (c), using a 360◦ DW model. Reproduced from [178].

2.11 Conclusions

The phenomena of superconductivity and ferromagnetism were traditionally considered

so highly competing that the fourth stated rule, of B. T. Matthias, for discovering super-

conductors (who himself discovered more than any other scientist) was simply “stay away

from magnetism” [179]. As it turns out, there is a wealth of physics present at the supercon-

ductor/ferromagnet interface. While much of this physics originates from the competition,

it has also been shown that complete synergy, via triplet proximity effects, is possible.
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CHAPTER 3

Experimental Methods
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3.1 Introduction

3.1 Introduction

To access new physics at material interfaces, one must first force materials (which have no

business existing naturally) together. To achieve this, metals in the thin film form are grown.

In this thin regime, interfacial (as opposed to bulk) properties and their effects dominate the

system. Metal deposition by the sputtering technique is outlined. Lab based characterisa-

tion of the thin films structural, electrical and magnetic properties are then discussed.

To study the nature of interactions at these interfaces, and ultimately to determine what

proximity effects exist, it is necessary to make use of neutron and muon techniques at large

scale facilities. This is due to the small measurement signals and length scales involved

in the proximity effect. The PNR and LEµSR techniques are outlined. Two strategies are

outlined to combine complimentary lab based and facilities techniques into a complete

model of the S/F interfaces studied in this work.

3.2 Sputtering

Thin film deposition in this thesis is performed by DC magnetron sputtering over two sys-

tems. Once the samples are loaded, the system is roughed using a rotary pump and then

evacuated to high vacuum overnight by a cryogenic pump. Liquid N2 is pumped around

the Meissner trap at least 90 minutes prior to growth. This is essentially a coil to which un-

wanted impurities (mostly water vapour) condense onto. A typical base pressure achieved

after 90 minutes of N2 cooling is 10−8 mbar for the first system and 10−7 mbar for the second

(which has a much larger volume to pump).

Sputter deposition is the process where positive ions of an excited plasma are acceler-

ated in an electric field towards a target. The target is composed of the material to be depos-

ited, and the impact of the positive ions on the target is sufficient to cause the ejection of

(neutral) atoms of the target material as well as free electrons. This ejection will take place at

a random (but net uniform) direction. However enough are ejected towards the substrate to

be incorporated in the new thin film. Behind the targets are high-flux permanent magnets

which prevent the escape of the ejected electrons. The electrons are confined, increasing

the plasma density and in turn creating a higher sputter rate.

By holding the substrate in a permanent magnetic field; magnetic layers can be grown

with a preferential orientation (easy axis). This is defined as the anisotropy field (Hk ). The

atomic mass and pressure of the Ar will affect the sputter rate and the mean free path of an
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3.2 Sputtering

ejected atom, respectively. They will both have an impact on the growth of the thin film,

with a combination of these and the substrate temperature determining the surface mo-

bility of the atoms as they arrive at the growing film. It is important therefore to aim for

consistency between depositions. The specific case for deposition onto heated substrates

(epitaxial sputtering) will be discussed in chapter 4.

The following preparation previsions are additionally undertaken in an attempt to pro-

duce sample to sample consistency; substrates are cleaned in an ultrasonic bath using acet-

one then IPA. Remaining moisture on the substrate is removed using compressed air. Any

substrate with visible particles after cleaning is discarded. Target and substrate holders are

cleaned prior to loading. Immediately prior to growth ‘pre-sputtering’ is performed. Non

reactive targets are pre-sputtered for a minimum of 5 minutes to remove any impurities

present at the surface, or any gas that has become trapped. Targets sensitive to oxidation

are pre-sputtered for 15 minutes to ensure the removal of any oxide layers formed. Targets

which are particular reactive or sensitive to contamination (Nb, Er, etc) are pre-sputtered for

longer (typically 30 minutes). In addition to cleaning the target these reactive materials are

getters to clean the local vacuum of water and oxygen in the region of the target, lowering

potential contaminates and improving film quality.

Growth rates for each material are calibrated using fits to the Kiessig fringes in XRR

measurements outlined in Section 3.5.2. Due to variations in the magnetrons and targets,

each material must be re-calibrated for different targets and sources. Once this is done

growth rates are consistent sample to sample in the same vacuum cycle, but may vary by

small amounts between consecutive growths due to breaking vacuum and potentially hav-

ing to remove the target from the magnetron.

This technique produces very high quality uniform films, with sharp interfaces. It is,

however, very difficult to control the exact vacuum quality. Factors such as how long the

system has pumped down, the efficiency of the Meissner trap, how warm the system was

when opened previously (if it was too cold, condensation can get trapped inside), and the

temperature of the cryogenic pump all have influence over the vacuum quality. For this

reason when growing elements that are highly sensitive to vacuum quality, such as Nb and

Er, it is not possible to directly compare samples deposited in different vacuum cycles. It

is also difficult (but possible) to make direct comparisons between samples grown in the

same vacuum cycle. Just as a pre-deposition getter improves local vacuum conditions, the

process of sputtering will cause an improvement throughout a deposition. It is therefore
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3.3 Electrical Transport

Figure 3.1: Schematic of a He flow cryostat used for magnetotransport measurements. Reproduced

from [180].

quite common to observe an increase in film quality sample-to-sample in a deposition run.

In this work several precautions are made to negate this, which are described in the relevant

chapter.

3.3 Electrical Transport

All electrical transport measurements were performed in an Oxford Instruments 4He flow

cryostat, shown schematically in Figure 3.1. The system has outer vacuum and liquid nitro-

gen jackets to thermally isolate an inner 4He reservoir. A Variable Temperature Insert (VTI)

is placed into this reservoir and controls the sample environment. Additionally inside the
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3.4 Magnetometry

reservoir surrounding the VTI is a superconducting solenoid capable of producing fields up

to 8 T.

The sample sits inside a sample head, which is interchangeable and application depend-

ent, which is then mounted to a measurement stick containing the electrical lines. The

sample stick and sample head are lowered from the top of the cryostat such that the sample

sits in the centre of the coil. The VTI is evacuated with a roughing pump, which then pulls
4He gas through the needle valve. The temperature can be controlled between 300 and 1.4 K

using a combination of gas flow, pressure and applying a heater mounted at the base of the

VTI.

Typically in this work the sample is first mounted inside a ceramic chip carrier package

with electrical contact made by wire bonding from the chip package to the sample. The

chip carrier is mounted in one of two sample heads, where in one the sample is aligned

perpendicular to the applied field and the other parallel. Sample temperature is recorded

from a Lakeshore 340 using a Cernox temperature sensor which is in thermal contact to the

chip carrier and is mounted within the sample head.

Electrical transport measurements are performed via four terminals with a Keithley 6221

current source and a 2182 nano-voltmeter. These, along with the temperature and magnetic

fields, are all controlled using custom software written in LabVIEW by Dr. G Burnell. The

communication between the equipment and PC is through a GPIB to USB adapter.

3.4 Magnetometry

Lab based magnetometry measurements are performed in an Oxford Instruments vibrating

sample magnetometer (VSM). The system’s cryostat is very similar to that used for trans-

port measurements. The VTI can be set between 2 and 300 K by controlling the flow of 4He

vapour and a heater.

The magnetic sample is placed between two pick-up coils and vibrated at a frequency of

55 Hz. It is first aligned to the coils by applying a constant field and moving the sample ver-

tically through the coils. Due to magnetic induction, an EMF will be induced in the coils, the

magnitude of which will be proportional to the magnetisation of the sample. The sample is

aligned vertically at maximum induced EMF. A lock-in amplifier, with a 55 Hz reference sig-

nal from the vibrators driver, is used to pick up the signal at specified frequency. The system

has a 6 T superconducting magnet. By sweeping an applied field and continuously measur-

ing the EMF a full hysteresis loop of the magnetisation can be measured [182]. Background

44



3.5 X-Ray Diffraction and Reflectometry

Figure 3.2: Schematic of the VSM in Leeds. Reproduced from [181].

signals from the substrate and probe must be subtracted from the loop. In addition, care is

taken preparing samples to avoid surface contamination by magnetic impurities [183].

3.5 X-Ray Diffraction and Reflectometry

The characteristics of the scattered particle (X-ray or neutron) are determined by the mech-

anism responsible for the scattering. For an X-ray this is the electromagnetic interaction

with electrons in the atoms shells. For each material the relative scattering is quantified

by a scattering length density (SLD) function, with SI units m−2 (or in this thesis in units of

classical electron radius (re ) per Å3), of the appropriate scattering material; nuclear, elec-

tromagnetic or dipole-dipole (magnetic). For the X-ray scattering in this section, magnetic

scattering is negligible.

The geometrical set up for specular reflectivity is shown in Figure 3.3. This is the gen-

eral case for a beam of incoming X-rays or neutrons, of wavelength λ impinges at a grazing

angle θ on a planar sample, and the fraction which bounce back with the same attributes is

ascertained. The specular scan consists of the coupled motion of the sample and detector

arms such that the detector arm moves at twice the rate of the sample arm. This yields the
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Figure 3.3: Schematic illustration of an X-ray or neutron, of wavelength λ, being reflected specularly,

at an angle θ, from the surface of a layered sample.

reflectivity curve R(Q), where [184]

Qz = 4π

λ
sinθ. (3.1)

3.5.1 Diffraction

In this work, X-ray diffraction (XRD) was used for structural phase identification and also to

assess the quality of the crystallinity of the epitaxially grown films. It is the similarity of the

X-ray wavelength and the characteristic separation of atomic planes in the solid state which

enables X-rays as a means to probe the structure of matter. The basic principle of XRD is

explained by Bragg’s diffraction law [184]

nλ= 2d sinθ, (3.2)

where by sweeping in 2θ and identifying points of constructive interference in the specular

reflectivity (Figure 3.3), information about the lattice spacing, d , is obtained. This inform-

ation is not limited to material identification, but also the determination of preferred crys-

tallographic phases and alignments as well as the presence of strain and other deformities

in the lattice.

An estimation for the crystallite size can be extracted from X-ray diffraction data using

the Scherrer equation [185]:

τ= Kλ

βcosθ
, (3.3)
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3.5 X-Ray Diffraction and Reflectometry

Figure 3.4: Schematic illustration of an X-ray diffractometer. Conventional θ−2θ geometry for low

angle reflections from the surface of a thin film on a substrate. In the specular condition the detector

angle, 2θ, is positioned at twice the sample angle, ω. Reproduced from [181].

where τ is the mean size of the ordered (crystalline) domains, K is a dimensionless shape

factor (typically 0.91),λ is the X-ray wavelength,β is the FWHM of theω/2θ peak (in radians)

and θ is the Bragg angle. In the case of highly crystalline thin films, this gives an indication

of the structural coherence length normal to the sample surface. In a thick enough thin film,

with very high epitaxy, one can approach the true crystallite grain size giving an indication

of the in-plane structural coherence.

3.5.2 Reflectometry

When performing a 2θ X-ray scan from 0◦; below some critical angle total external reflection

is observed. As the angle of incidence is increased above this critical angle a large reflectiv-

ity signal may be observed. Reducing the angle of incidence to these low angles creates a

1The Scherrer constant (K ) depends on how the FWHM is determined, the shape of the crystal and the size

distribution. Typically in thin films, values between 0.89 and 0.94 are used as this approximates a sphere with

cubic crystal structure. K can actually vary from 0.62 to 2.08. If the in-plane crystallite size is known (eg. from

SEM or AFM), the shape factor can be improved towards that of a cylinder (which more closely resembles the

true shape of crystallite growth in a thin film). In this work, where the in-plane grain size is unknown and

Gaussian modelling is used, K = 0.9 is used throughout for consistency. For a full description of K see reference

[186]
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3.6 Polarised Neutron Reflectometry

special case where the angles of the scattering vector are approximately the same size as the

layer thickness. This low angle reflectivity regime for X-rays generated by Cu Kα exists in the

approximate region 1-10◦. Above this, measured signals begin to return to the diffraction

type. Away from the critical edge, reflected intensity falls off approximately as θ−4 or faster

in the presence of roughness [184]. It is the rate of this fall off which allows the determina-

tion of a layer roughness.

For the simplest case of a single layer deposited on a substrate, Kiessig interference

fringes are observed in R(Q) [187]. They originate from the interference of the x-rays re-

flected from the surface and from the interface between the material and the substrate. The

periodicity is used to determine the thickness tfilm of the layer on the substrate, according

to the Kiessig equation:

nλ= 2tfilm
(

sin2θn − sin2θc
)1/2, (3.4)

where θn is the angle of the nth interference fringe and θc is the critical angle for total reflec-

tion. For a multilayer sample, many interference fringes sum to the total R(Q).

3.6 Polarised Neutron Reflectometry

The basic principles of PNR are outlined in Blundell & Bland [188], the review articles by

Majkrzak and Fitzsimmons [189, 190] and the book of Sivia [184]. For an overview of sci-

ence conducted using neutron reflectometry on magnetic thin films and nano-structures

the following review articles are recommended [191, 192].

3.6.1 Neutrons - Properties and Production

Neutrons are spin 1/2 neutral particles and as such are unaffected by the charge of orbital

electrons. The de Broglie wavelength of thermal neutrons is comparable to the interatomic

length scale. They interact with the nucleus of the atom via the strong nuclear force which,

although powerful, acts only over very short distances. This gives the neutron the ability

to deeply penetrate a sample and is the reason neutrons can be used to learn about the

structural properties of a sample.

If some of the atoms in the material under investigation are magnetic the incident neut-

rons can be scattered by them through a spin-based dipole-dipole interaction. This type

48



3.6 Polarised Neutron Reflectometry

of interaction is negligible in X-ray based scattering techniques, however with the neutron,

nuclear and magnetic scattering occurs at a similar rate.

There are two sources of neutrons for science. The first is from a nuclear reactor, where

(for example) 2 neutrons are emitted as the decay product of 236U. The second is from a pro-

cess called spallation. As results in this thesis were obtained at the ISIS spallation neutron

and muon facility, it is this second source of neutrons which will be outlined.

In essence, a stream of high energy protons strikes a tungsten target, which results in

neutrons, protons and other subatomic by-products being knocked out of the nuclei. Al-

though this debris of ejected particles is too hot for application, less energetic secondary

neutron emissions can be used. Unlike the continuous emissions from a nuclear reactor, at

a spallation source neutrons are produced in short bursts. This enables the use of the time-

of-flight technique. At ISIS a single pulse of neutrons in produced at a rate of 50 Hz at target

station 1 and 10 Hz at target station 2.

3.6.2 Time-of-Flight Technique Outline

Scattering measurements in the time-of-flight set up are performed by considering the pulse

of incoming neutrons as containing neutrons of many wavelengths. As opposed to consid-

ering a monochromatic source where R(Q) scans are acquired by physically rotating the

sample and detector, at a spallation source it is adequate to take a measurement of the

time taken for a neutron to arrive at the detector, and then work out its corresponding

wavelength, given by [184]

λ= h(t + t0)

mn(L+L0)
, (3.5)

where t is the time, measured from target impact, at which the scattered neutron (of mass

mn) is detected after a flight distance L from the moderator; t0 and L0 are small offsets to be

calibrated and h the Planck constant.

3.6.3 Experimental Set-Up on PolRef Beamline

The PolRef beamline has three modes of operation, neutron reflectivity, polarised neutron

reflectivity and polarisation analysis.

Neutron reflectivity allows the SLD to be obtained. This is highly complimentary to XRR,

but with the added advantage that neutrons are excellent for studying light elements which

may not scatter x-rays.
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3.6 Polarised Neutron Reflectometry

The addition of a polarising mirror to the beamline separates the u and d neutrons, al-

lowing only one spin state to reflect towards the sample. When scattering from a magnetic

sample, the total scattering is proportional to the sum/subtraction of nuclear and magnetic

scattering lengths (b)

btotal = bnuclear ±bmag. (3.6)

If an incident neutron enters a material it experiences a potential V0, and if the material is

magnetic then there is an extra potential Vmag

Vmag =µ ·B. (3.7)

where µ is the magnetic moment of the neutron and B is given by,

B = B0 +µ0M, (3.8)

where µ0 is the permittivity of free space and M is the magnetisation vector. B0 is the ap-

plied field which does not contribute to the scattering, but does define the magnetisation

direction. The polarised neutrons are sensitive to magnetism and the magnetic potential

changes sign depending on if the polarisation is up or down with respect to the magnetisa-

tion. The consequence of this is that each spin state has a different scattering length in the

magnetic medium. This is the basis for PNR and can be expressed as [193]

V± =Vnuclear ±Vmag = 2πħ2

m
N (bnuclear ±bmag), (3.9)

where N is the density and m the mass of the neutron. The total scattering length now has

a neutron polarisation dependence. The polarisation of the neutron beam is defined so

that the plus sign (spin up neutron state) corresponds to a beam of neutrons polarised by a

polariser with its magnetisation in the same direction as the sample magnetisation. When

the beamline is polarised, half the flux is lost. Practically this means count times increase by

a factor of 4.

When employing polarisation analysis four states are measured, uu and dd (the PNR

non-spin flip channels) plus du and ud (the spin flip channels). While the uu and dd chan-

nels hold the same information as u and d before, the spin flip channels can be used to

determine the magnitude and direction of the in-plane magnetic moments which may be
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canted from the applied field. To perform this measurement very large area samples are re-

quired and count times increase by a factor 16. Polarisation analysis was not performed in

this work.

3.6.4 Neutron Diffraction at Low Angle by Repeating Magnetic Structure

Although primarily designed for the purpose of low angle neutron reflectometry, the PolRef

beamline can be used for neutron diffraction as long as the (magnetic) Bragg peaks are at low

enough angles. For this the polariser is removed, and both spin states are simultaneously

passed through the sample to increase flux.

Neutron diffraction essentially operates on the same principle as that of XRD described

previously, but with two main differences. While XRD makes use of the monochromatic

source, neutron diffraction takes advantage of the time-of-flight technique. Secondly as the

neutron carries a spin it is able to interact with the repetitiveness of a magnetic lattice in

an analogous way to structural diffraction. This magnetic diffraction produces interference

effects which are superimposed onto the structural interference pattern. In materials with

more unusual magnetic orderings, where the magnetic repeat distance is larger than the

structural one, the magnetic diffraction produces a tighter diffraction pattern with each of

the main structural Bragg peaks having multiple satellite peaks. It is the relation between

structural and magnetic peaks which hold information about the relation between their lat-

tices [159].

3.7 Combined XRR and PNR Fitting Technique (GenX)

In order to interpret results from XRR and PNR techniques a physical model of the sample

needs to be built. Where possible in this work, the physical model of a samples structure

satisfies data from a combination of XRR and PNR. All fitting is performed using the GenX

software written by M. Björck, which is described in references [194, 195].

Within the fitting parameters are first the instrument properties. These are fixed by the

technique or particular instrument employed and include; wavelength of particle, instru-

ment resolution, incident intensity of the source and background signal.

With these fixed, a model for the sample can be built. GenX uses a layer model to build

its SLD profile. Starting from the substrate (which is assumed to be infinitely thick) each

layer is defined by scattering length density (SLD) (specific to each element with both real
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3.7 Combined XRR and PNR Fitting Technique (GenX)

and imaginary components), thickness and roughness parameters. For PNR there is an ad-

ditional magnetisation parameter. These combine to provide a total depth dependent SLD

for the sample.

While very attractive looking fits to experimental data can be achieved by allowing GenX

free reign over the parameter space, such a fit is probably not a physical representation of

the samples real parameters. It is therefore of importance to simplify the modelling of data

to as few parameters as possible. Outlined below are each fitting parameter and steps taken

to produce a physically meaningful final fit to experimental data. The first important tool in

performing this are the maximum/minimum boundary conditions which are set on every

free parameter during the fitting algorithm. Discussed below is the methodology as to how

these boundary conditions can be set for each parameter.

GenX provides a scattering lengths library of all elements, for both X-rays and neutrons.

Combining multiple elements in the scattering length can be used for alloys or other ele-

mental mixtures. As the scattering length has both a real and imaginary component, it has

to become two fitting parameters. In this work all elements and alloys employed have known

scattering lengths and so these are not included as fitting parameters, rather are fixed to the

nominal values [196, 197].

In GenX, the density is defined by atoms per Å3. The actual calculations use the scatter-

ing length density, the scattering length multiplied with the density. Thus, how the scatter-

ing length is defined must be taken into account when defining the density. As the scatter-

ing length library is scaled by units of electrons (Thompson scattering lengths), this density

value is used for convenience. This density can be calculated easily knowing the density in

g/cm3 and the molecular weight.

The density is a fitting parameter in a model, however for a continuous, uncontamin-

ated layer the density is not expected to deviate significantly from the bulk value. Where a

structure contains multiple layers of the same material a single density value is returned.

For a reactive un-capped metal it is often found an interface region of reduced density is

needed to be added to the model as the metal has become oxidised or abraded. The density

of this layer is treated separately as it is not an isotropic layer.

Thickness is defined in Å. For most fitting, this is the most important parameter in the

model. In thin film growth the sputter rates is one of the most controllable parameters dur-

ing deposition of the films. It therefore expected there will be no large deviations from the

nominal ‘as grown’ structure. Additionally limits can be set from calibration samples grown
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in the same vacuum cycle or physical limitations such as thickness not being negative.

In specular scattering there are two main contributions to roughness. For a single in-

terface these are surface roughness at a distinct structural boundary and inter-diffusion of

two atomic species at a gradual graded boundary [198]. From purely reflectometry data it is

not possible to distinguish between the two types of roughness. Rather a total RMS rough-

ness is extracted from relectivity data as per Névot and Croce [199]. This can be thought of

as an interface width. In this work, no inter-diffusion between layers is expected. A single

roughness per layer is returned from the fits, this value corresponds to the top interface of

the layer and is assumed to be roughness from distinct structural boundaries.

For PNR the additional magnetisation parameter is used. This is magnetic moment per

formula unit of the density. A positive returned moment corresponds to the magnetisation

of the layer being aligned in the same direction as the applied field. It is quite difficult to

place lower limits on this value as the magnetisation of a layer is often suppressed in very

thin films compared to the bulk, or a layer may contain magnetically dead interfacial re-

gions. For most thin films it is reasonable to assume the magnetisation of the layer will not

exceed the bulk value.

A good test for the physicality of a model is to directly transfer a structural model between

XRR and PNR techniques with the ability to fit different magnetic configurations of the same

sample by changing only the magnetisation in the magnetic layers. In practice the two tech-

niques have slightly different sensitivities to roughness and so this parameter may need to

be modified.

In summary a physical model should reproduce the experimental data set, with no large

deviations from the ‘as grown’ structure or ‘known’ material parameters such as density and

scattering length.

3.8 Low Energy Muon Spin Rotation (LEµSR)

Unlike X-ray and neutron based scattering, LEµSR is an implantation technique, where the

probe (muon) comes to rest inside the sample. It is the decay of the at rest muon which gives

information about the local implantation site. Bulk µSR has provided a wealth of informa-

tion about superconducting properties, such as flux lattices in high Tc and exotic supercon-

ductors. Bulk µSR can also be used as a probe of magnetisation for magnetic samples. For

a review of the applications of muons to condensed matter physics see Blundell [200]. The

implantation energies involved in bulk µSR would cause the muon to simply pass through a
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thin film. For this application a unique low energy µSR beamline was developed at the Paul

Scherrer Institut (PSI) in Switzerland. For a review of this beamline see Bakule & Morenzoni

[201].

3.8.1 Muons - Properties and Production

The muon is a second generation lepton with the same charge as an electron, but is 207

times more massive. For experimental condensed matter physics, the positive muon is

used. This is because the negative muon tends to implant at the site of the nucleus, where as

the positive muon will implant into the electron cloud (where the interesting physics takes

place).

To produce muons, first high energy proton beams (provided at PSI by a cyclotron ac-

celerator) are fired into a graphite target to produce pions via

p +p →π++p +n, (3.10)

and the pions decay into muons

π+ →µ++νµ, (3.11)

where νµ is a muon-neutrino. Using a particle physics trick, it is possible to produce 100%

spin polarised muons in this decay. The pions are stopped in a target material. As their

decay is two bodied, each decay product must have equal and opposite momentum. The

pion has zero spin so the muon spin must be opposite to the neutrino spin. Due to the

neutrino possessing a property called negative helicity, its spin is aligned antiparallel to its

momentum, this implies the muon spin is similarly aligned. It is also possible to create a

near monochromatic beam by selecting so-called surface muons. These muons are pro-

duced by positive pions that lost all their energy during the proton bombardment process

and decayed at rest near the target surface. The reason these muons form a near mono-

chromatic beam is that they all have a unique energy of 4.1 MeV and a momentum of 29.79

MeV/c. Negative pions cannot come to rest in a similar way (they are captured far deeper

inside the target material), and thus all the produced muons are positive, monochromatic

and 100% spin polarised. This 4.1 MeV beam is appropriate for bulk µSR, but far too high in

energy for a thin film, as the muons stopping profile is about 0.1−1 mm. For a thin film the

energy needs to be lowered to the keV range.

Once at rest inside a sample the muon decays with a lifetime of τµ = 2.2 µs as per
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µ+ → e++νe +νµ. (3.12)

The positron emission occurs preferentially along the muon spin direction. Unlike the two

body decay before, there is not a single direction of emission, rather this preferential direc-

tion is characterised by a probability distribution

W (θ) = 1+ (1/3)cos(θ), (3.13)

which is an energy averaged value of the positron spectrum.

3.8.2 LEµSR Technique Outline

When a particle with magnetic moment is placed in a magnetic field B (where B = µ0H),

the field will exert a torque upon the moment. This causes the process of Lamor precession

around field H with frequency ω. For the muon this is given by

ωµ = γµB, (3.14)

where γµ = 851 MHz T−1 is the gyromagnetic ratio for a muon. When the sample is placed

between two positron detectors, the value of B can be recovered by making a large num-

ber of single muon measurements of the decay product (positron) direction and time after

implantation. The ability to follow the time evolution of the Lamor precession, of a muon

experiencing B, makes the muon a local magnetic field probe.

A schematic illustration of the muon and positron detectors is shown in Figure 3.5. Prac-

tically in order to perform a measurement the muon must be detected prior to implantation

(start signal at t = t0). At this point the muons direction is pointing opposite to its direction

of travel, and it arrives and is implanted in the sample pointing towards the left detector,

with angle φ0. Now at rest at the implantation site, the muon precesses clockwise with fre-

quency ωµ. After time t , the muon has rotated over an angle ωµt and is now pointing in the

direction φ(t ) =ωµt +φ0. The probability of muon decay at t is given by (1/τµ)e−t/τµ .

If the muon decays a positron can be detected (stop signal) in one of two detectors. This

detection must take place before the next muon enters the sample (to be sure the time after

the start signal is valid). This is the first limitation on sample rate in the technique. The

other consideration is that the detectors do not cover all possible angles, leaving a range of
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Figure 3.5: Schematic illustration of the muon beam end and sample space. The incoming muon

polarisation, start counter and left & right positron detectors are shown. Reproduced from [201].

angles for which the emitted positron will not be detected, known as the ‘dark-angle’ which

is parametrised by β.

To calculate the probability P (t ) that at t a positron is detected on the left (right) de-

tector, the positron emission angle probability function (W (θ)) is integrated over all values

of theta that cause the positron to arrive at the left (right) detector, and multiply this by the

probability that the muon actually decayed at that time. For simplicity in this work, the

background corrected time spectra of positrons detected at the left (right) detector is given

by the parameter NL(t ) (NR (t )). The time evolution of the muon spin polarisation along the

axis of each detector is given by

NL(t ) = N0 exp

{
− t

τµ

}[
1+ A0P (t )

]
, (3.15)

NR (t ) = N0 exp

{
− t

τµ

}[
1− A0P (t )

]
. (3.16)

In Figure 3.6 the sum of the histograms show an exponential decay corresponding to the

nuclear decay of the muon. Within this decay is a periodic oscillation as the spins are aligned

preferentially towards one of the detectors.

The time evolution of this oscillation is the so-called asymmetry function, A(t ), determ-

ined as the normalised difference in signals observed by the two detectors:

A(t ) = A0P (t ) =−NL(t )−αNR (t )

NL(t )+αNR (t )
, (3.17)

where A0 is the experimentally observed maximum asymmetry and α is a scaling factor if

the two detectors have different efficiencies or the sample is not placed symmetrically. This

value is typically slightly lower than the intrinsic asymmetry of the muon decay, which is the
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Figure 3.6: Data for a typical spin valve structure used in Chapter 6. Showing (a) detector histograms

from the left and right detectors and (b) the extracted asymmetry of the histograms in (a). The best

fit results obtained to both signals are given by the black curves.

factor 1/3 in equation 3.13. It is A(t ) (or P (t )) which contains all the physical information

about the muon precession, and thus the magnetic structure.

3.8.3 Experimental Set-Up on LEµSR Beamline

At PSI, high energy surface muons are generated and transported to individual beamlines.

A schematic of the experimental set up on the LEµSR beamline is shown in Figure 3.7. This

shows the beam energy point, moderation chamber, focusing and trigger chamber and the

sample chamber. It is possible to isolate each chamber, which is important for the sample

change process. All chambers are pumped down to UHV pressures (< 10−8 mbar) as the

high accelerating voltages involved can cause sparking at higher pressures.

Before becoming useful for thin film studies, the incoming surface muons of energy 4.1

MeV must first be moderated. The interactions of particles implanted in some well-selected

materials (moderators) lead to a preferential emission at energies up to a few eV. This is

achieved by injecting the surface muons into aluminium foil (of thickness 100 µm) which is

covered in a 400Å argon cryosolid, which is in turn capped with nitrogen. What is essentially

a thin film of solid argon is maintained at a temperature of 10 K. The energy lowering mainly

occurs in the aluminium foil, while the argon film creates a minimum threshold value for the

energy of the outgoing muons. This process does not alter the polarisation of the film, and so

the outgoing beam of polarised muons can now be focused (by an electrostatic Einzel lens)

and re-accelerated to appropriate energies for LEµSR. The final stage in the moderation
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Figure 3.7: Schematic illustration of the muon beam line. Reproduced from [201].
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process is to separate the low energy muons from the background surface muons. This is

achieved with an electrostatic mirror which only reflects muons with energies of 10 or so eV.

Muons of higher energies pass straight through to the MCP1 fast muon detector.

The low energy muon beam is focussed by a second electrostatic Einzel lens onto the

trigger detector. Whenever a muon passes this detector the timer is started for a new (single)

measurement. This measurement time is completed when the emitted positron is detected.

Approximately 4500 muons per second are registered at the trigger detector, which means

the time between muons is larger than the average lifetime. This helps ensure the require-

ment that a single measurement has been completed before the next incoming muon. The

measurement event is aborted if the trigger detector is activated before the positron is detec-

ted or (as the positron detectors do not cover the entire area of possible emissions) 12.5 µs

has passed.

A final Einzel lens is used to focus muons onto the sample. The sample is mounted onto

a nickel plate, which is in turn mounted to a sapphire block. The nickel plate is chosen

so non-implanted muons are de-phased and do not contribute to the measurement count.

The sapphire block has the dual purpose of being a good thermal contact to the cold finger

of the cryostat and it electrically isolates the sample and nickel plate. This allows the sample

and nickel plate to be charged to high voltage (±12 KeV) which re-accelerates the incoming

muons and determines their energy upon implantation, allowing the chosen stopping pro-

file to be probed.

3.8.4 Fitting of the data

There are two general methodologies for the fitting of acquired data. The first is maximum

entropy analysis, where a Fourier transform is applied to the asymmetry data to obtain a

probability distribution of the local fields. The second involves performing a fit to the meas-

ured detector signals (the real-time raw data). It is this second approach which is employed

in this work. Fitting is performed using a custom MatLab script written by Dr. M. G. Flokstra.

The strategy of the program makes a best fit to the raw detector data using the Levenberg-

Marquardt algorithm [202].

For a specified stopping profile, it is not possible to reconstruct the field distribution.

When considering each implantation energy separately, a single average field value (<B>)

per energy is obtained. This can be considered the field value at the mean stopping dis-

tance (<x>) for the profile. For low energies, where the stopping profiles are fairly concise,
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this average field value is a good approximation of the local field profile. For higher energies,

where the stopping profile can be spread across most of the sample, ignoring the spatial de-

pendence of the field is clearly incorrect. The data is therefore modelled by taking all the

collected histograms at different energies (at a single temperature) and fit all data simul-

taneously, imposing a single model for B and using the muon stopping profiles to correctly

weight each ‘slice of the sample. More details of the fitting script can be found in [203].

3.9 PNR and LEµSR

PNR and LEµSR are complementary techniques for the investigation of magnetic thin films.

Together with XRR, PNR can help build a structural profile (density, thickness, magnetisa-

tion and roughness) of each layer in a multilayer sample. This is useful information for per-

forming the necessary Monte Carlo simulations for determining stopping profiles of muons

in the multilayer.

The two techniques probe magnetism is very different ways. LEµSR can only probe

very weak ferromagnetism, as the muons are easily de-phased inside a ferromagnet, but

has sensitivity of about 0.001 µB /atom as a local probe. PNR on the other hand is an excel-

lent probe of large moment ferromagnetism and determining the samples total magnetic

moment. Its sensitivity to magnetism within a layer is lower, however, limited to about

0.05 µB /atom before counting times become unreasonable.

PNR has the distinct advantage of being able to probe buried interfaces and gain mag-

netic information across the thickness of a sample. Additionally PNR has a very high spatial

sensitivity (≈ 10Å). PNR measures the magnetisation of each layer, although it is also pos-

sible to use it to measure flux vortices in superconductors [204]. The large moments asso-

ciated with the ferromagnetic layers in this work make it difficult to see any small induced

moments which may also be present in the system. LEµSR is an implantation technique

and instead of measuring the layers magnetisation, has a particularly high sensitivity at im-

plantation sites to small, local changes in magnetic field. Due to the spread of implantation

sites at any given energy, LEµSR has a lower spatial sensitivity (≈ 100Å), however with careful

sample design the muons can be implanted in only the region of interest.

In this work a combination of PNR and LEµSR is employed on the sample structure.

LEµSR is used to measure local changes in the external applied field in the superconduct-

ing state, the profile of which is then applied to data from PNR as a confirmation of similar

changes observed in that technique. PNR can be used to look for changes in the total mag-
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netisation of the sample, or additional moments at buried interfaces, inaccessible to LEµSR.

Thus the combinations of PNR and LEµSR is highly useful to find out the microscopic

magnetic information for thin films which can provide both the spatial and magnetic resol-

ution required to fully characterise the film.
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CHAPTER 4

The Growth and Characterisation of Epitaxial

Thin Film Erbium
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4.1 Introduction

Magnetic inhomogeneity is the key component in generating the LRTC. To understand the

role of intrinsic (as opposed to engineered) inhomogeneity, the rare earth (RE) metal er-

bium is studied. The RE metals possess complex magnetic properties, which have poten-

tial application to a range of emergent scientific areas, from enhanced spin-torque effects

within microwave-frequency spin filters [205] to the generation of the LRTC for injection

into Josephson devices [51].

Er is an example of a RE metal with a rich magnetic phase diagram. The realisation

of application for Er depends upon having a fine control over its physical and magnetic

properties. With the aim to incorporate thin film Er into S/F proximity structures, work

was undertaken for this chapter on the growth and characterisation of sputter deposited

epitaxial Er.

In this chapter, the work attributed solely to the author was all sample depositions,

sample optimisation, X-ray characterisation, fitting to neutron measurements. Initial growth

parameters were optimised by M. Batley. Neutron measurements were performed at the ISIS

neutron and muon source, with the assistance of P. J. Curran, G. Burnell and local contacts

C. J. Kinane and J. F. K Cooper. Magnetometry was carried out by the author and J. D. S. Witt.

Temperature dependent XRD was carried out by the author and C. J. Kinane.

4.2 Magnetism in the Rare Earth Elements

Chapter 2 outlined the mechanism for exchange in the room temperature Stoner ferromag-

nets. This is often referred to as direct exchange because it arises from the direct Coulomb

interaction among electrons from the two ions. This chapter introduces the RE ferromagnet

Er. Magnetic interactions in the RE metals do not occur due to the direct exchange and do

not satisfy the Stoner criterion. The origin of magnetic interactions comes between elec-

trons in the partially filled 4 f -shells. The 4 f electrons are very strongly bound, and their

orbitals are highly compact. The spatial extent of the band is much smaller than the in-

teratomic distance (so the overlap is very small), making the direct exchange almost non-

existent.

The 4 f -electrons in the RE ferromagnets are coupled through their interaction with the

conduction electrons. This mechanism is known as indirect exchange and can be stronger

than direct exchange coupling. An explanation of indirect exchange was developed in 1954
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by Ruderman and Kittel [206], which was later refined and expanded by Kasuya [207] and

Yosida [208] to what is now referred to as the RKKY coupling interaction. In the formalism

of exchange presented in Chapter 2, the RE ion at site i creates a local field, hi = JSi /gµBµ0.

When a conduction electron is in the vicinity of the RE ion, it interacts locally with the 4 f

electrons. This interaction spin-polarises the conduction electron, which propagates the

polarisation through the lattice to any point j . This magnetisation of the conduction elec-

trons at site j , associated with the initial field hi at another site, is described by a susceptibil-

ity χi j . The induced magnetisation can be written m j =χi j hi and is the indirect interaction

between spins on the two sites. Considering this now as an exchange interaction:

EE x =−J 2χi j Si ·S j /µ0(gµB )2. (4.1)

The sign of the magnetic interaction depends upon the susceptibility χi j which is dis-

tance (r ) dependent and gives [24]

EE x ∝ cos2kF r

r 3 , (4.2)

where kF is the radius of the Fermi surface. For free electrons this interaction acts at long

distance and for RE metals χi j oscillates spatially between being positive and negative.

Therefore depending on r the interaction can be ferromagnetic or antiferromagnetic. This

long range oscillation in Er and other RE elements leads to long period magnetic structures,

which can be incommensurate with the lattice spacing.

4.3 Erbium

Er is a trivalent RE metal (Z=68), with highly localised 4-f electrons and hexagonal close

packing (HCP) crystal structure. Similar to its neighbour holmium, it has a very large mag-

netic moment (≈ 9 µB /atom). Competing interactions within the material creates an exotic

magnetic phase diagram, the subject of which will be studied in the thin film form in this

chapter.

The most important magnetic interaction in Er (like other heavy RE metals), is the iso-

tropic RKKY exchange interaction. This results in a minimised free energy when the ferro-

magnetism consists of sheets perpendicular to the c-axis, with the moments rotating through

a certain angle from one sheet to the next. Competing with this is the crystalline anisotropy

in the HCP structure, which favours magnetic alignment either along or perpendicular to
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Figure 4.1: Schematic showing the magnetic structure as a function of temperature for bulk Er.

the c-axis. In the latter case, for example in holmium, this results in an in-plane helix mag-

netic structure. In the former case, the strength of this anisotropy becomes more important.

If strong enough, alignment perpendicular to the c-axis becomes completely suppressed,

for example in thulium. In Er, this crystalline anisotropy is weaker than for thulium, result-

ing in an initial ordering of moments parallel to the c-axis, followed at lower temperatures

by a canting out of the c-plane driven by crystalline anisotropy [209]. To recover the bulk

magnetic phases of Er in thin film, the crystallographic quality of the film is very important.

Bulk Er has three distinct magnetic transitions. Within the three magnetic phases there

are many other reproducible (but metastable) commensurate states. Below the high tem-

perature paramagnetic phase (≈ 85 K) Er first gains a sinusoidal, c-axis modulated (CAM)

antiferromagnetic phase with a wavelength of about 7 atomic layers (which is traditionally

labelled by the magnetic wave vector τc = 2/7, in units of reciprocal lattice parameter, c∗). As

the temperature is lowered the magnetic wave vector of the CAM peaks at ≈ 52 K. Below this

temperature Er enters an ‘intermediate’ phase where the in-plane moments begin to order

creating what has been referred to by Cowley et al. as an antiferromagnetic “wobbling cyc-

loid” [209]. The magnetic repeat distance increases with decreasing temperature, through a

number of stable commensurate phases, to 8 atomic layers (τc = 1/4). These states exhibit

a ferrimagnetic moment. Finally, below 18 K a conical c-axis ferromagnetic phase is formed

with a wavevector (τc = 5/21), as summarised in Figure 4.1. The formation of this lowest

temperature phase is accompanied by a small expansion in the c-axis lattice parameter.
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The three main magnetic transitions were identified in bulk samples using neutron dif-

fraction in the 1960’s by the group of Cable et al. [210], however the exact ordering of the

intermediate phase remained an open problem. Neutron and x-ray scattering techniques

in the 80’s and 90’s finally revealed the multitude of commensurate and incommensurate

spin structures within the intermediate phase [209, 211–214]. These phases were addition-

ally confirmed by the group of N. Ali et al. using magnetometry and transport techniques

[215–217].

Previous work on thin film Er has failed to show the recovery of the low temperature

bulk-like conical phase, even in films as thick as 1 µm[218–221]. It was clear from these

works that the magnetic structure was extremely sensitive to in-plane strain. To date all pre-

vious work has used molecular beam epitaxy (MBE) to deposit films. While this technique

produces high-quality films, it is not ideal for incorporation into heterostructures or nano-

devices due to the low sample throughput and requirements of ultra high vacuum. In this

work for the first time DC magnetron sputtering onto heated substrates has been employed

for thin film growth of Er with the aim to exploit the varied magnetic properties in hybrid

S/F heterostructures.

4.4 Epitaxial Growth

Up until now, this work has only considered sputter deposition at ambient temperature.

While this method still produces high quality samples (from the point of view of having

sharp interfaces) the low surface mobility of deposited atoms means that crystal ordering is

unfavourable. Depending on the element in question, this leads to either amorphous films

with no crystal ordering, or polycrystalline films with possibilities of mixed growth phases

and small grain sizes.

By performing deposition at high temperature (typically 1/3 the melting point of the ma-

terial) it is possible to increase the surface mobility of the deposited atoms enough to pro-

mote the nucleation of single crystal phase. This is described as the epitaxial growth condi-

tion. A homoepitaxial grown film maintains the crystallographic alignment of the substrate

upon which it is grown. Where the texture of a film takes crystal ordering from the previous

layer (in a multilayer) it is of the heteroepitaxial growth type.

Using previous work [220–222] as a guide, c-plane Al2O3 substrates are used, and the

growth of a thin Nb seed/buffer layer on the substrate precedes Er growth. Nb is chosen for

three reasons; firstly, it is known to grow with good epitaxy in the (110) phase on sapphire.
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Growth Temperature Er (002) FWHM (o) Structural

(◦C) coherence

700 0.71 39%

600 0.35 79%

550 0.31 90%

500 0.30 93%

450 0.34 81%

Table 4.1: The FWHM for the 2θ scans and the calculated structural coherence (see text) for a 30 nm

Er film varying deposition temperature.

Secondly, it has very little reaction with RE metals and acts as a buffer to stop Er from react-

ing with oxygen from the substrate to form Er2O3. Finally it is a superconductor, which is

advantageous in the context of this thesis. A Lu capping layer to prevent oxidation of the Er

is chosen for good lattice matching between materials.

The Er grows epitaxially on the most densely packed Nb (110) plane, in the Nishiyama-

Wasserman orientation. The in-plane axis of hcp Er [101̄0] is aligned with bcc Nb [1̄10] with

3:4 supercell commensuration in their nearest-neighbour distances along these axes [222].

4.4.1 Optimal Growth Parameters

All films were deposited using DC sputtering as described in Chapter 3 with the addition

of substrate heaters on the sample wheel. At the highest temperature of 700◦C the base

pressure of the system was 10−7 mbar, however this pressure improved towards lower tem-

peratures. Samples in this chapter were grown onto 0.65 mm thick c-plane Al2O3 single-

side-polished substrates which were annealed overnight at the maximum temperature for

the system. Growth was performed at a typical Ar flow of 55 sccm and partial pressure of 2-3

µbar, a substrate-sample distance of 70 mm and at a typical growth rate of 0.1 nm s−1.

Initial investigation focussed on optimising the growth temperature for the Nb buffer

and Er layers. The Nb film quality improved in crystallinity, morphology and superconduct-

ing Tc as the growth temperature was increased. The highest heater temperature of 700◦C

was lower than the ideal Nb deposition temperature of 900-950◦C [222], but was used for

the rest of this work.

Next the growth temperature of the Er layers was considered. Table 4.1 shows the tem-

perature dependence of the structural coherence (determined using the Scherrer equation
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3.3) of the (002) peak for 30 nm Er films, deposited on 10 nm Nb buffer. The highest epitaxy

was achieved for films grown at 500 and 550◦C. Although both temperatures appear to give

an almost identical structural coherence, careful examination of the XRD data (not shown)

revealed that the growth texture entered a mixed phase at 550◦C, and began to favour Er

(100). In addition, all films grown above 500◦C showed a significant increase in Er2O3 con-

tamination. 500◦C was chosen as the optimal deposition temperature for this study. Growth

of a Lu capping layer at this temperature, immediately following Er deposition, provided

good protection from oxide contamination. It was also unlikely to cause any strain to the

film as it has good lattice matching and has previously been used as a seed layer [221]. Thin

Nb or Ta caps were found to be ineffective at protecting the reactive Er from oxidation, pos-

sibly due to a tendency to grow as islands and not continuous layers. Alternatively, a thick

Nb (10 nm plus) layer can be used to ensure coverage.

For the rest of this chapter, the properties of a set of 5 samples are considered. They

were grown in the same vacuum cycle, under the previously determined optimised growth

condition. They all have 10 nm Nb buffer and 5 nm Lu capping layers. They are identified

by the thickness of the Er layer (5, 10, 20, 50, 200 nm).

4.5 Structural Properties

Structural characterisation was performed using XRD, as shown in Figure 4.2. All samples

show strong structural Bragg peaks, identified in the figure, and somewhat reassuringly

there is no evidence for Er2O3 in any film. The 50 nm film appears to be somewhat of an

anomaly and has grown more polycrystalline. This can be explained if the heater bulb above

this particular substrate was faulty during growth, reducing the substrate temperature.

The full-widths at half-maxima (FWHM) for the principle peaks of Nb (110) and Er (002)

are shown in Table 4.2. Using the Scherrer equation 3.3 structural coherence perpendicular

to the plane is estimated. Strain analysis may be carried out by considering the position of

the Bragg peaks compared to the ideal case (from powder diffraction). For the Er films in

heteroepitaxial growth, lattice mismatching between Nb and Er will translate a Bragg peak

from the ideal angle (to smaller angles if the lattice is being stretched and to higher angles if

compressed). Non-uniform strain can cause the peak to broaden and may be mistaken for

a reduction in grain size. In this work the Er is between two layers (Nb and Lu) with similar

lattice constants. It is therefore assumed any strain is uniform.

Figure 4.3 shows the thickness dependence of the c-axis lattice spacing at 300 K. All films
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Figure 4.2: XRD of all films studied in this chapter with main structural peaks identified. The instru-

ment was aligned to the samples surface.
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4.5 Structural Properties

Er thickness FWHM (o) Structural

(nm) Nb(011) Er(002) coherence (nm)

200 1.15 0.09 98.1

50 * 0.28 32.7

20 1.15 0.44 20.8

10 1.26 0.95 9.7

5 1.16 1.52 6.0

Table 4.2: The FWHM for the 2θ scans and the calculated structural coherence. (*see text.)

show signs of strain, increasing the lattice spacing from the bulk value. As to be expected,

the thinnest samples show the largest strain, which changes with thickness and has settled

by 50 nm.

The FWHM for the main peaks in Figure 4.2 are shown in Table 4.2. Nb grain sizes

range from 7.3-8.1 nm, indicating very high structural coherence and consistency between

samples. For the thinnest Er films, the structural coherence is very close to the layer thick-

ness, indicating strong epitaxy. Considering next the 50 nm film, the Nb structural phase

was clearly different in this sample than the others. Figure 4.2 shows almost no detectable

peak where the Nb(001) phase is expected. This is possibly due to a reduced heater tem-

perature during growth. This caused the Er film to have a reduced structural coherence and

a mixed growth phase. A strong secondary peak of Er(011) is observed, with a comparable

structural coherence of 29.5 nm. Finally the structural coherence of the 200 nm sample is

98.1 nm. This is probably approaching the true crystallite grain size.

4.5.1 Temperature Dependent XRD

Temperature dependent XRD is possible using the Rigaku SmartLab with an Oxford Phenix

cold stage. The temperature dependence of the Er(002) peak position for the 200 nm thick

sample in the temperature range 12 - 300 K is shown in Figure 4.3. Firstly, the lattice para-

meter at all temperatures is higher than bulk (solid line). Taking this offset into account,

the temperature dependence is qualitatively similar to that of bulk Er. In both the thin film

and and bulk samples there is a structural transition at 20− 22 K, where the lattice para-

meter abruptly changes. This is related to the first order transition into the low temperature

ferromagnetic phase.
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Figure 4.3: The c-axis lattice spacing for the 200 nm thick Er film with the bulk behaviour shown.

The thickness dependence at 300 K is also shown. Dashed line is a guide for the eye

It has been shown previously [159] that Nb grown on c-plane sapphire contracts smoothly

and isotropically with decreasing temperature. Over this temperature range, the contraction

is in good agreement with Nb (and the sapphire) thermal expansion coefficient. No struc-

tural transitions of the type observed in the Er are expected for the Nb, Lu or sapphire.

4.6 Magnetic Characterisation

Figure 4.4 shows OOP magnetometry for the 200 nm thick sample acquired at an applied

field of 200 mT, from 120 to 5 K obtained with the Oxford VSM apparatus. It is possible in the

data to see the transition from paramagnetic, through antiferromagnetic, to a ferromagnetic

state.

The first transition is characterised by the ‘bump’ in the magnetisation near 80 K, corres-

ponding to the paramagnetic to CAM antiferromagnetic phase. The next feature occurs at

around 20 K, where the magnetisation of the film sharply increases. From what is expected

for bulk crystals, this is most likely due to the formation of the conical ferromagnetic phase.

The phase transitions visible in the magnetometry data occur at temperatures very close the

bulk transitions at 85 and 18 K respectively.

There is a noticeable temperature hysteresis between the cooling and warming data, as
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Figure 4.4: Normalised Moment with temperature for the the 200 nm thick Er film measured at a

field of 200 mT and a cooling rate of 5 K/minute.

indicated by the blue (cooling) and red (warming) arrows. This was reproducible even with

very slow temperature ramping (1 K/minute), and is therefore a property of the film rather

than artefact of the measurement. In Er, this temperature hysteresis is to be expected and is

a common feature of both bulk [213] and MBE grown films [221].

Hysteresis loops for the films are shown in Figure 4.5 for both OOP and IP orientations

at 2 K. The most notable observation is the presence of Meissner screening at low fields,

particularly for the 20 nm sample. This confirmation of superconductivity in the 10 nm thick

Nb layer confirms the high quality of the buffer layer. As these samples were not designed

to be superconducting (10 nm is typically too thin for Nb to become superconducting when

adjacent to a ferromagnet), it is quite surprising that the Meissner state was observed in any

sample. This is encouraging for the prospect of producing hybrid S/F devices.

With the exception of the OOP measurement of the 200 nm thick sample, the maximum

applied field of 6 T did not fully close the loops. In all films the loops are not square-like and

the Er shows very small remanent magnetisation. This is due to the Er re-forming the conical

or helical magnetic state upon relaxation of the field, instead of retaining ferromagnetic

behaviour. This behaviour is quite different to holmium, which in thin films saturates IP

at fields of typically only 300 mT, after which the squareness of its hysteresis loop suggest
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Figure 4.5: Normalised magnetic hysteresis loops for the (a)-(b) 200, (c)-(d) 50, (e)-(f ) 20 and (g)-(h)

5 nm films in out-of-plane (left hand column) and in-plane (right hand column) sample alignment,

measured at 2 K. In the 20 nm sample the Nb buffer layer has become superconducting with the

Meissner response dominating the signal at low fields.
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Figure 4.6: Magnetisation at “saturation” in an applied field of 6 T at 2 K for in-plane and out-of-

plane field orientations as a function of Er thickness. The theoretical maximum is also shown.

a ferromagnetic ordering takes over and the spiral magnetism does not reform [151]. This

difference is most likely due to the c-axis crystalline anisotropy in the HCP structure being

more important, or certainly being retained to a greater extent, in thin film Er.

From these data, the OOP and IP magnetisation at 6 T and 2 K for all Er thicknesses are

extracted and plotted in Figure 4.6. The 200 nm thick sample exhibits bulk-like behaviour,

with the OOP magnetisation approaching the theoretical maximum, ≈ 2700 emu cm−3 (grey

line). The IP magnetisation reaches only approximately half this value. As with bulk, the IP

components will not reach more than ≈ 3/5 saturation until an applied field above 10 T. This

IP magnetisation remains constant for the 50 and 25 nm thick samples, however the OOP

magnetisation becomes suppressed. This is probably due to the suppression of the conical

ferromagnetic phase, consistent with other reports of thin films in literature.

The 5 nm sample has a markedly different behaviour. In this thickness range there is a

switching of the magnitude of the two components, with the IP magnetisation now much

larger than the OOP magnetisation. While the OOP magnetisation is similar to that of the

25 and 50 nm thick films, the IP magnetisation is close to the theoretical maximum. This

is a strong indication that, for this thickness range, the RKKY interaction at the interface is

weakened, making the film more susceptible to IP fields, and saturating completely along

this direction. The reason why this occurs only in the thinnest sample, is the dominance
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4.7 Neutron Diffraction

of surfaces disrupting the long ranged RKKY interaction. The weakening of RKKY interac-

tion at the surface makes these moments easier to rotate. This in turn causes the nearest

neighbours to align with the field, until the spiral has completely unwound and the sample

is saturated. For the samples which are not dominated by the surface, the RKKY interaction

is simply too strong in the available field range.

From these measurements, it was not possible to extract the exact magnetic phase of the

Er. For this, neutron diffraction was performed.

4.7 Neutron Diffraction

As outlined in section 3.6.4 it is possible to use the PolRef beamline at ISIS to observe low

angle magnetic Bragg peaks. In the case of Er this will be the observation of the spiral (000τc )

peak. The value of τc can be related to the magnetic repeat distance in the c-axis direction.

When expressed in units of the reciprocal lattice parameter, τc = l/n, where n is the number

of c-axis lattice parameters within which l full magnetic repeats are contained. Neutron dif-

fraction was performed on the 200 and 50 nm thick samples. In addition neutron diffraction

was attempted on the 5 nm thick sample, however the (000τc ) peak was too weak. This was

not too surprising since its thickness would not allow many repeats of the magnetic struc-

ture for neutrons to scatter off. Due to constraints of allotted beamtime, the other samples

were not measured.

Figure 4.7 shows the variation in the (000τc ) peak as a function of temperature for the

200 nm thick Er sample. The data at each temperature are well described by the Gaussian

distribution function, which is used to determine peak positions (Bragg angle) in addition

to giving an integrated intensity of the peak, plotted in Figure 4.8.

Figure 4.8 shows the magnetic wavelength (in units of the reciprocal lattice vector) as

a function of temperature for the 200 nm and 50 nm Er samples. Also plotted is the bulk

behaviour and expected commensurate states. For the 200 nm sample it is clear that τc

increases for increasing temperatures, in a way that is qualitatively similar to bulk. The

slight increase in transition temperatures at which the main magnetic transitions occur can

be explained by the temperature hysteresis observed in Figure 4.4.

In previous reports on MBE grown thin films it was not uncommon for the conical ferro-

magnetic state to be completely suppressed [221]. This appears to be the case for the 50 nm

film, which reaches at the lowest temperatures the commensurate τc = 1/4 state. At higher

temperatures the signal from this sample became too weak to detect.
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Figure 4.7: The momentum transfer versus the intensity of the magnetic diffraction peak for the 200

nm thick Er sample as a function of temperature. Lines through the data are as a guide for the eye.

It is also not uncommon for thin films to have commensurate states inconsistent with

bulk behaviour. The most interesting part of the data in figure 4.8 is the attainment of a

hitherto unseen magnetic state. At temperatures below 25 K the 200 nm sample has ‘locked

in’ to a τc = 4/17 commensurate state. This corresponds to a magnetic repeat distance of 8.5

atomic layers in the c-axis. This is the first report of the recovery of the conical ferromagnetic

state in thin film Er of any thickness or growth method.

The integrated intensity of the magnetic Bragg peaks is directly related to the magnetisa-

tion, I ∝ M 2, which is in turn related to the degree of order within, and the temperature of

the sample. For the 200 nm thick sample a clear variation in the (000τc ) peak with temper-

ature is visible. From both the peak height in Figure 4.7 and the integrated intensity in the

top part of Figure 4.8, the (000τc ) peak is approximately constant between 5 and 10 K, before

becoming weaker with increasing temperature. This has strong implications for the design

of Er based devices. In the temperature regime that one would be interested in for super-

conductor applications, this result shows that there is no change in the magnetic properties

of the Er.
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Figure 4.8: Top: The integrated intensity of Gaussian fits to the data in Figure 4.7 for the 200 nm

sample. Bottom: the magnetic wavelength (in units of the reciprocal lattice vector) as a function of

temperature for the 200 nm and 50 nm Er samples. Also shown are the values for bulk single-crystal

(solid purple) and the commensurate bulk phases (dashed horizontal lines). Lines through the data

are as a guide for the eye.
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Figure 4.9: (a) Low-angle X-ray reflectometry and corresponding fit. (b) The SLD (in units of classical

electron radius (re ) per Å3) with depth from the fit in (a). The returned fit parameters are given in

Table 6.1.

4.8 PNR of 5 nm Thick Sample

The magnetic (000τc ) Bragg peak in the 5 nm thick sample was too stretched and so did

not give a detectable signal. For this sample the PolRef beamline was returned to its polar-

ised state, and PNR was performed on the sample to extract detail about the magnetism.

Measurement was performed at 5 K where any signal would be largest.

4.8.1 X-ray Reflectometry

The nominal as-grown structure was Al2O3 (substrate) / Nb (10 nm) / Er (5 nm) / Lu (5 nm).

The XRR data and model fit from this representative sample can be seen in fig. 4.9. The ex-

tracted parameters are shown in Table 6.1. There is good agreement between the modelled

values and the nominal structure, however the Er layer is slightly thicker than expected. The

interfacial roughness is small for all layers. Of particular note for this work is the low in-

terfacial roughness (σ) between the Nb layer and the adjacent Er layer, indicating a lack of

intermixing.

4.8.2 Polarised Neutron Reflectometry

Fitting the PNR allows the scattering length density (SLD) to be obtained. This technique is

highly complementary to XRR. The addition of a polarising mirror to the beamline separates

the up (u) and down (d) neutrons, allowing only one spin state to reflect towards the sample.
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4.8 PNR of 5 nm Thick Sample

Table 4.3: Material parameters extracted from the fit in fig. 4.9. The error in the extracted values is

approximately 10%.

Layer Density (f.u./Å3) Thickness (Å) σ (Å)

LuO 0.030 12 6

Lu 0.033 35 2

Er 0.032 62 5

Nb 0.055 84 3

Al2O3 0.065 ∞ 3
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Figure 4.10: Polarised neutron reflectometry curves from the 6nm Er film. The two neutron spin

states are shown (u,d) along with the corresponding fit described in the text.
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4.8 PNR of 5 nm Thick Sample

When scattering from a magnetic sample, the total scattering is proportional to the sum

of nuclear and magnetic scattering length. Careful fitting to the two obtained reflectivity

curves allows the extraction of depth dependent magnetisation.

Figure 4.10 shows the obtained PNR curves for the sample with a corresponding fits to

each spin state. The structural properties are imported from the XRR fit and the magnet-

isation of each layer is a fitting parameter. Despite the in-plane saturation moment of the

sample being high (consistent with bulk), there appears to be very little splitting between

the two spin states in the PNR data. This is also seen in the spin asymmetry (Figure 4.11 (a)),

which is the difference between the two spin states normalised to their sum.

To guide the neutrons only a small applied measurement field (10 mT) is needed. Cool-

ing in this small field is not expected to have any impact on the magnetic state of the Er. At

this field and temperature value (5 K), Er is expected to be in a highly non-collinear or spiral

magnetic phase. Atomic scale antiferromagnetism is too short a lengthscale for neutron re-

flectivity to probe, and as such is seen as net zero moment. In Er, however, the spiral repeat

distance (equivalent to the antiferromagnetic lengthscale) is several atomic layers long; this

is still too short for full depth dependence, but allows some insight.

Two fitting techniques are employed on the data. The first technique treats the mag-

netic moment inside the Er layer as being constant with depth, and will return the average

moment inside the Er (model 1). The second technique allows the moment to be a depth

dependent free parameter (model 2). In both cases, positive magnetisation corresponds to

moments pointing in the direction of applied field. For a saturated, ordered, ferromagnet

both fitting techniques would return that the magnetisation of the entire layer is positive.

The spin asymmetry and results of the two fitting techniques are presented in Figure

4.11. The differences between the two models are too subtle to observe in the reflectivity

data, and even in the spin asymmetry there are only very small differences at low Q. Notably

at higher Q (> 0.08Å−1) the models begin to separate, with model 2 providing a closer fit in

this region.

Model 1 (shown in Figure 4.11 (b)) returns a constant magnetic moment inside the

sample of -0.3 µB /atom. This is far lower than the moment possessed by the individual Er

atoms (over 9 µB /atom). The returned moment is also negative. This solution is therefore

most likely a returned ‘average’ magnetisation due to an inhomogeneous magnetic state

within the Er layer.

Model 2 (shown in Figure 4.11 (c)) returns a small total moment, but a large, oscillating,
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Figure 4.11: (a) Spin asymmetry for the PNR data in Figure 4.10 with two models (see text) for the

magnetism in the Er layer shown in (b) and (c).

depth dependent internal moment. The oscillation between positive and negative magnet-

isation values returned from this fitting technique is a good approximation for spiral mag-

netisation inside the Er layer. The average moment of this model (returned by integration)

is -0.26± 0.05 µB /atom, consistent with the returned moment for model 1.

This model appears to have given some additional insight into the local magnetic state.

It returns a magnetic spiral with repeat distance of ≈ 2.5 nm. This corresponds to a magnetic

repeat distance of 4.3 atomic layers. Examining the expected bulk phases of Er, this is not

consistent with any known commensurate state.

In order to interpret which of the two models provides the most insight into the actual

magnetic state of the sample, one needs to consider the magnetometry. This showed the Er

layer retained a high moment per atom but with a low net average remanent moment. Both

models predict the latter, but only the spiral model predicts the former and is hence a can-

didate for the non-collinear state of the system. Even if the returned model does not match

the exact magnetic state of the sample, the PNR shows evidence that the magnetisation of

this sample is highly disordered.

4.9 Conclusions

The primary purpose of this chapter was to demonstrate that sputter deposited thin films of

Er exhibit the intrinsic inhomogeneous magnetic properties of the bulk. It has been shown

that indeed many of the features of bulk Er are attainable in thin film form, however in

decreasing Er thickness the low temperature magnetic phases become suppressed. In par-
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ticular the ferromagnetic OOP conical magnetic phase was only observed for the thickest

sample which was found to be sufficiently bulk-like that all three magnetic phases were

retained. In this film a new magnetic commensurate state, with longer magnetic repeat dis-

tance than bulk, was reported for the first time. Due to the excellent epitaxy of the sample,

the magnetic properties were highly c-axis influenced.

A significant strain on the thin films was found, which placed the c-axis lattice constants

at greater values than reported elsewhere. Taking into account this offset, the temperature

dependence of the Er lattice parameters for the 200 nm thick sample qualitatively matched

that of previous experiments on bulk and MBE grown thin films including a low temperature

structural transition.

By reducing the film thickness to 50 nm, the neutron diffraction showed the suppression

of the conical phase as at the lowest temperatures the film only reached the 1/4 state. This

suppression of an OOP component of magnetism most likely arised as the contribution of

the thin films demagnetising energy began to outweigh that from the magnetocrystalline

anisotropy, typical in films of decreasing thickness.

The thinnest, 5 nm thick sample showed both suppression of the conical phase and

weakening of the intermediate phase. PNR data provided some evidence that this sample

reaches a spiral phase, however this magnetic phase does not match any known commen-

surate state and must be metastable. The application of a 6 T field revealed the IP magnet-

isation reached the theoretical maximum, suggesting a complete unwinding of the spiral

magnetisation. Upon relaxation of the field, the Er did not retain ferromagnetic remanence,

rather re-forming the spiral state or another nearly compensated magnetic structure. In

thicker films, the c-axis crystalline anisotropy became greater, resulting in the OOP magnet-

isation becoming the largest component.
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CHAPTER 5

Control of Superconductivity in Nb/Er Bilayers
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5.1 Introduction

5.1 Introduction

For a homogeneous F layer, the damped oscillatory behaviour of the superconducting order

parameter inside an adjacent F layer (Figure 2.2) results in a non-monotonic superconduct-

ing critical temperature (Tc ) dependence on the F layer thickness, where an initial sharp

drop in Tc is followed by a re-entrant increase and stabilisation of Tc . This predicted de-

pendence of Tc [86, 87] was subsequently observed experimentally in a large number of

systems. A review of these measurements is given in Chapter 2. For the case when the F

layer is conical, the non-monotonic Tc becomes oscillatory, where the pitch of the oscil-

lation is linked to the repeat length of the cone. This is in part due to preferential LRTC

generation by the conical F layer [57, 58]. Such oscillations were observed in previous works

for Nb/Ho bilayers [159, 160]. The first aim of this section is to explore if similar oscillations

are observed in Nb/Er bilayers.

While an oscillatory Tc with Er thickness would contain a lot of physical information

about the system, it would not be particularly useful from a device perspective. By making

the Er layer thicker, the metastable magnetic states explored in Chapter 4 become available.

The influence of these metastable states on the superconductivity of an adjacent Nb layer

is studied in the second part of this chapter. It has been proposed that if switching between

the superconducting and normal states can be achieved by an external magnetic field, it can

used as a memory device which is analogous to those based on giant magnetoresistance

[14].

In this chapter, the work attributed solely to the author was all sample depositions, op-

timisation and characterisation and electrical transport measurements. Magnetometry was

carried out by the author and J. D. S. Witt who also contributed data analysis code.

5.2 Growth of Nb/Er Heterostructures

All samples in this chapter were prepared with DC magnetron sputter deposition in the sys-

tem described in Chapter 4. To ensure consistency between samples, up to 24 complete

samples were deposited in a single vacuum cycle with or without the use of the heater bulbs.

A series of Nb/Er bilayer films were sputter deposited at ambient temperature onto

thermally oxidised Si substrates, 10×10 mm. The Nb thickness was fixed at 20 nm (which is

just thick enough to be reliably superconducting), while the Er layer thickness was varied in

the 0.8 - 12.8 nm range. All films were capped with 5 nm of Lu. In order to ensure sample-
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to-sample consistency, and negate any artefact arising from growth order (as Tc generally

increases with growth order), the Er thickness was randomised and the Nb was deposited 5

nm at a time on all samples. The Er and Lu were deposited immediately following the final

5 nm Nb layer. Every sixth sample was a Nb film with no Er to ensure any changes in Nb

quality with growth order could be tracked.

For polycrystalline Nb the coherence length (ξGL) was determined using equation 2.14

to be 10.5±0.5 nm. At 20 nm the Nb will be highly sensitive to the S/F interface as it is less

than 2ξGL thick, but will still have a measurable Tc in the available 4He cryostat.

5.3 Tc Oscillations with Er Thickness

The transition into the superconducting state was investigated by measuring the resistance

of each bilayer as a function of temperature, R(T). The films were diced into approximately

3×3 mm cuttings, mounted into chip-carrier packages where electrical contact was made

to the samples by wire bonding. The chip carrier was mounted in a sample holder, allowing

application of the field parallel to the plane of the sample. The chip package was in good

thermal contact to a cernox temperature sensor. The resistance as a function of temperature

of the samples, from which Tc is obtained, was always measured at zero applied field at a

constant cooling/warming rate of 0.2 K/minute. Temperature sweeps, both cooling and

warming, were recorded to check for temperature hysteresis in the measurements (which

was found to be of order 20 mK).

5.3.1 Stepped Transitions

The initial aim to compare the Nb Tc to the thickness (d) of the Er for a constant Nb thick-

ness was complicated by the observation of step features appearing in some of the trans-

itions. Some examples of such curves are shown in Figure 5.1. In most polycrystalline films

there is a small feature present at around 5 K. This appears to be related to the Tc of the Nb

films without any Er. As will be shown, this feature may still be sensitive to the adjacent Er.

In every growth, 4 single layer Nb films were deposited in order to track systematic changes

in Tc during the growth. None of these samples showed a stepped transition, whereas ap-

proximatively 70% of Nb/Er bilayers showed the step.

Some common explanations for step-like features in the transition curves can be ruled

out for this system. The sputtering technique employed in this work is very unlikely to create
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Figure 5.1: Normalised resistance as a function of temperature for four typical polycrystalline

samples. The red curve shows behaviour for a single continuous transition of a single Nb layer

sample, while the other curves show steps of varying height and width in the transition of Nb/Er

bilayers . Interestingly two Nb/Er samples showed initial onset of Tc at higher temperature than the

single Nb layer.

a significant thickness gradient. To check the uniformity of the films, a 20×20 mm film was

diced into several pieces and XRR was performed. A 5% variation in thickness was observed,

this variation is only slightly greater than the error in individually calculated thickness by fit-

ting to Keissig fringes. By comparison, the sample size for transport measurements was only

3×3 mm, where uniformity in film thickness will be very high. Crystallographic inhomo-

geneity is a further possibility, but again very unlikely. Current induced local heating (or

locally exceeding the critical current density) can be ruled out because the step-like features

showed no dependency on applied current between 100 nA and 1 mA. For all measurements

in this chapter a current of 10 µA was used. In a sheet film, the local current density will be

very low. Poor interface transparency can cause anomalous features in resistivity around

the superconducting transition, as current paths change to flow preferentially through the

superconductor. The formation of an oxide barrier at the interface would cause such ef-

fects. Calculation of the oxidation time (as the monolayer formation time, τML) is possible

through [223]

τML = a

ZA
, (5.1)
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5.3 Tc Oscillations with Er Thickness

where a is the number of spaces, per unit of surface area, which can accept a specific gas and

ZA is the impingement ratio. The typical value of partial water pressure (the main source

of oxygen) in the vacuum is 5×10−9 mbar giving τML ≈ 15 minutes. This is much longer

than the (at most) 20 seconds taken for the system to move a sample between sources. It

should also be noted that a bad interface would destroy the proximity effects presented in

this chapter. In addition, other S/F films (where the F layer was homogeneous) reported in

this work, grown in the same vacuum system and measured with the same instrumentation,

do not show stepped transitions. Step-like features have been observed previously in work

containing helical F layers, for example Witt et al. in Nb/Ho bilayers [159, 160]. It is therefore

believed that the origin of the step is the proximity effect of the Nb with spiral magnetisation.

Typically in this type of measurement, Tc is defined as the temperature at which the

resistance has reached 50% of the normal state (RN ) value. Due to the step-like features this

is not as appropriate in this case. To investigate the step-like features further, Tc is extracted

at 5, 50 and 98% of RN .

5.3.2 Tc vs. d

Figure 5.2 shows the variation in Tc as a function of Er layer thickness, d , for the three pos-

itions along the transition. In (a) and (b), Tc is normalised against the critical temperature

of the Nb on-its-own samples. At 5 and 50% of RN there is an overall oscillatory trend with

minima at 5.0±0.8 and 12.0±0.8 nm. On initial inspection this would appear comparable

to the type of oscillation observed in conventional S/F bilayers. In these systems, the calcu-

lations of Buzdin et al. showed the thickness at which the initial minima occurs at is related

to ξ f and although the theoretical calculations show further minima are possible, in most

instances they are not observed [41]. This is due to the now exponentially small component

of superconductivity which remains at multiple values of ξ f in the ferromagnetic layer.

When the data are plotted in growth order (not shown) there is no trend in Tc as a func-

tion of growth order for the samples with Er. For the single layer Nb films, a monotonic

increase in Tc with growth order is observed. This is linked to the improving vacuum con-

ditions as a function of time. The growth of reference Nb films allows for this small increase

to be corrected, with the corrected data shown in Figure 5.2 (a) and b. The small spread in

Nb Tc (≈ 0.3 K) is shown in (c) and is much smaller than the suppression measured at 5 and

50% of RN attributed to the Er proximity effect (up to 2.5 K).

The 98% RN behaviour is somewhat different. At this position in the stepped trans-
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Figure 5.2: Oscillations of Tc of Nb/Er bilayers with the thickness, d , of Er at three positions along the

transition curve. (a) At 5% RN (the normal state resistance), (b) At 50% RN and (c) At 98% RN . In (c)

the samples have been separated by colour to indicate if they showed a single or stepped transition

(see text for details). Error bars are estimated from the spread in Tc of 4 single layer Nb films grown

in the same vacuum cycle. The error in d is estimated to be 0.4 nm.
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5.3 Tc Oscillations with Er Thickness

itions it is the initial onset of superconductivity at around 5 K which is probed. For clarity

samples without a stepped transition are plotted in red. In samples which show no stepped

transition, an approximately exponential decay with d is observed. Where there is a stepped

transition, this 98% initial onset shows an oscillation which qualitatively similar minima and

maxima positions as the 5 and 50% data. This is interesting, in that the two components (de-

cay and oscillation) of the 5 and 50% data appear to have been separated out in this onset

Tc . The spread of the oscillations (≈ 1.3 K) is much larger than the spread in Tc of the single

layer Nb films. Additionally it is noted with interest that for two consecutive Er thickness,

the observed onset Tc is actually higher than that of any of the single layer Nb films. Due to

the random growth order, these two samples were not grown one after another, rather they

were the second (8 nm Er) and twentieth (7.2 nm Er) samples deposited.

5.3.3 Discussion

An attempt to fit the oscillations in Tc observed for the polycrystalline samples within the

framework of the traditional S/F theory is now made. For the simplified case of a transparent

interface, Buzdin showed [41] the critical temperature of an S/F bilayer can be described by

Tc −T 0
c

Tc
= π

4Tcτ0

(
sinh

(
2y

)+ sin
(
2y

)
cosh

(
2y

)−cos
(
2y

))
, (5.2)

where τ−1
0 = (Ds/2dsξ f )σ f /σs and 2y = 2d f /ξ f is the dimensionless F layer thickness. The

respective conductivities of Nb,σs = 7.66×106 S/m, and Erσ f = 1.16×106 S/m. The effective

coherence length inside the F layer was calculated with

ξ f =
√

ħD f

Eex
, (5.3)

where the exchange energy (Eex ) is given by kB TCurie. The TCurie is assumed to be the low

temperature transition to the conical ferromagnetic state and set to 20 K. This gives an ef-

fective ξ f ≈ 12 nm for Er. The fit to the data was made worse using the high temperature

transition from the CAM antiferromagnetic to intermediate phase.

A further theory developed by Wu et al. considered the case where the F layer was a

conical ferromagnet [57, 58]. For Er, this may be the more appropriate model to use. This

model has not been explicitly solved for the case of Nb and Er. The model shows that Tc

oscillations are linked to the repeat length of the spiral. This in turn plays a competing

role with the FFLO state. For a ferromagnet such as Er with a small Eex (due to the low
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Figure 5.3: The Tc 50% dependence of the Nb/Er bilayers as a function of the Er layer thickness, d .

Also plotted is the result of the simplified S/F model (equation 5.2) and the spiral repeat distance to

indicate if the oscillation was due to the spiral magnetisation as predicted in reference [58].

Curie temperature) the maximum in the Tc oscillation is expected when the thickness d f is

a multiple of the spiral repeat distance (τc ).

Figure 5.3 shows the result of the Buzdin S/F model and a schematic representation of

the spiral repeat distance (for the 2/7 commensurate state) with the experimental data at

50% of the transition. The 2/7 commensurate state is chosen as it is the first commensurate

state of the intermediate phase, however the repeat distance by PNR on the 5 nm Er film in

Section 4.8 provides some evidence that the true repeat distance may be shorter.

Considering the data in comparison to the Buzdin S/F model, it is possible using the

aforementioned physical parameters to place the minimum in Tc at the same point as the

data. The model, however, does not reproduce the immediate increase to a peak in Tc or

predict that there should be a second oscillation in the this range of Er thickness.

The maxima and minima in the data do not match the repeat distance of the spiral, with

the first minimum at 5.0±0.8 nm and the second at 12.0±0.8 nm, the oscillations are approx-

imately twice the spiral repeat length. This discrepancy could be explained in analogy to

the “aliasing” effect in RKKY coupled magnetic multilayers, where the thickness increments

do not allow the probing of the true magnetic spiral distance, causing the appearance of a

longer ranged oscillation [224–228]. To test for this, the thickness increments would need to
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5.3 Tc Oscillations with Er Thickness

be significantly reduced.

For a S/AF (antiferromagnet) proximity effect, no oscillations in Tc are expected at all

[72]. Due to the extremely short repeat length of antiferromagnetism, the Cooper pair does

not sample the magnetisation and so does not form the FFLO state. This case is more sim-

ilar to the S/N proximity effect, where increase the thickness of the AF cause the critical

temperature to decrease monotonically due to the proximity effect.

5.3.4 Epitaxial Samples

Using the previously determined best growth parameters, the Nb was deposited at a nom-

inal temperature of 700◦C, after which the system was cooled to 500◦C, a final thin Nb in-

terface layer was deposited at this temperature, followed directly by the Er and then a 5 nm-

thick Lu capping layer.

An attempt to reproduce this data set was undertaken for epitaxial samples. Under these

growth conditions, resulting single layer Nb films showed a large sample-to-sample vari-

ation. This was most likely due to a combination of changing vacuum conditions during the

growth and inconsistent heating provided by individual bulbs. The heating bulbs for prac-

tical reasons are of varying age, which could impact the maximum temperature (and hence

epitaxy of the films) achieved. Evidence of this sample-to-sample variation in epitaxial films

was also observed in Chapter 4, for example in the films which showed unexpected super-

conductivity and the mixed phase growth of the 50 nm sample. In the current deposition

chamber set-up it was not possible to overcome this.

Despite this limitation, Figure 5.4 shows that, within the obtained data, it is possible that

oscillations may still exist, with minima at 4, 8 and 12 nm. In order to further investigate this

a much higher density of points around the minima would be necessary. Some general con-

clusions, however, can still be drawn from the epitaxial sample set. If these oscillations are

physical, then the theories discussed previously in an attempt to fit the polycrystalline data

would also fail to reproduce the oscillation seen here. The apparent change in periodicity of

the oscillations between polycrystalline and epitaxial data sets may be explained from the

increased strain which will be present in the epitaxial films.

These films of much improved crystalline quality still showed step-like features in a

number of samples, strengthening the argument that these features are as a result of the

proximity of Nb to a spiral ferromagnet.
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Figure 5.4: Oscillations in Tc for Nb/Er bilayers with the thickness, d , of Er at 50% of the normal state

resistance. Error bars are estimated from the spread in Tc of 4 single layer Nb films grown in the same

vacuum cycle. The error in d is estimated to be 0.4 nm.

5.4 Control of Tc in a Single Bilayer

Increasing Er thickness in turn increases the availability of the metastable magnetic states

within the Er phase diagram. The aim of this investigation is to see if controlling these meta-

stable states can influence the superconductivity of an adjacent Nb layer. The motivation

for this is the recent results on the superconducting spin valve (SSV). In a SSV, control of the

magnetic state of the two F-layers in an S/F/F or F/S/F heterostructure can tune the gen-

eration of the LRTC [19–22]. The generation of the LRTC (opening an additional “leakage”

channel for Cooper pairs) is believed to result in the lowering of the Tc of the system. Typic-

ally, the suppression of Tc is of the order 10–20 mK, although by introducing a half-metal as

the bottom F-layer, this effect can be significantly increased [141].

Such manipulation of the F-layers requires careful engineering of the heterostructure

and the rotation of the sample in an applied magnetic field. The pitfalls of this measurement

are discussed in detail in Section 2.7.2. The motivation for this work is therefore to create

a simplified S/F hybrid system, where the superconductivity can be controlled by a single

adjacent F-layer. A limitation was placed on the system to only require the ability to apply

an external field in one direction (without the need for sample rotation).

The same cryostat employed previously is now used with the superconducting magnets
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Figure 5.5: Positive quadrant of the magnetic hysteresis loop (circles) and minor loops (solid lines) of

the bilayer at 10 K with field applied in-plane. The data are displayed on a log-log plot for increased

clarity.

on. The resistance as a function of temperature of the samples, from which Tc is obtained,

was always measured at zero applied field. The initial field, to set the remanent magnetic

state, was applied in-plane, above the superconducting Tc , immediately prior to measure-

ment.

5.4.1 Magnetic Characterisation

The magnetisation versus field data, along with minor loops, for the 25 nm-thick Er bilayer

sample at 10 K are shown in fig. 5.5. The red circles show the initial magnetisation and full

magnetic hysteresis behaviour for applied magnetic fields up to 6 T. The solid lines are a

series of minor loops, from which information about the remanent magnetisation (Mr ) of

the sample can be obtained. The Mr as a function of initial field data are collated in the

lower panel of Figure 5.6.

It is evident from Figures 5.5 and 5.6 that at low fields, there is little change to the reman-

ent state of the Er. This indicates that, in this range, the stabilisation of the spiral magnetic

structure in the Er is robust against perturbation by the externally applied magnetic fields.

The large increase in Mr between 2–3 T is evidence that, for initial field values greater than

this, the Er does not re-enter the same spiral phase upon relaxation of the field. This is con-
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Figure 5.7: Resistance as a function of temperature for the as-cooled magnetic state (triangles) and

post 8 T field saturation (squares). Both warming and cooling data are included and the changing

step heights marked. Inset: The evolution of Tc as a function of initial field.

sistent with previous characterisation work which shows that at approximately 2.5 T there is

a phase transition, for an in-plane applied field, into a distorted spiral phase, known as ‘fan’

or ‘canted-fan’ [217, 229].

5.4.2 Electrical Transport

In Figure 5.7 the resistance as a function of temperature for the 25 nm-thick Er bilayer

sample can be seen. The data show the onset of superconductivity as the temperature is

decreased for the as-grown case (triangles) and after the application of an 8 T applied mag-

netic field (squares). In the inset of Figure 5.7 the evolution of the Tc as a function of the

initial applied magnetic field can be seen. Resistance as a function of temperature was al-

ways measured in zero applied magnetic field and Tc was defined as 50% of the normal state

resistance. ∆Tc is calculated as the difference between Tc of the the as-grown state and Tc

after the application and removal of a magnetic field. The ∆Tc data for all of the initial ap-

plied magnetic field values are collated in Figure 5.6.

It is immediately clear that there is a strong link between the Mr of the Er and the Tc

of the superconductor. This correlation, between the properties of Er and Nb, show that

both the Tc of the Nb and the magnetic state of the Er are strongly dependent upon the
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field history of the sample. It also shows that there is a strong coupling between the S and

F layers. The largest change to ∆Tc comes between 2–3 T, which, as mentioned previously,

is also the field value where the Er state is expected to change magnetic phase. After the

application of the largest field possible in our system, 8 T, the Tc of the Nb was suppressed

by approximately 140 mK, which is the largest value reported for such a system. Once the

metastable magnetic state is altered, the Tc of the Nb does not change further, until the

sample is warmed through the curie temperature, which effectively ‘resets’ the system.

It was observed, in the upper panel of Figure 5.6, that the height of the step as a fraction

of the transition is field history dependent. Interestingly, this step height change occurs at

a different field than the largest changes in Mr and ∆Tc . The step height changes just as

the gradient of Mr begins to increase, this will be just at the transition between metastable

phases. While the change in step height does not appear to be intrinsically linked to the

change in Tc , it is still clearly linked to the magnetic state of the Er layer through the prox-

imity effect. This further supports that the stepped transitions in these samples do not have

a trivial cause.

5.5 Discussion

As a conical ferromagnet, Er is an ideal system in which to generate the LRTC [59]. In this

chapter, however, it is not possible to directly attribute LRTC generation to the observed

lowering of Tc . In the superconducting spin valve, it is the rotation from an aligned ho-

mogeneous magnetic orientation to the misaligned inhomogeneous magnetic state which

creates the LRTC proximity effect. The generation of the LRTC allows more effective leak-

age of supercurrent from the S layer, and results in a lowering of Tc . In this experiment the

disordered, as cooled, conical magnetic state has the higher Tc . The application of a field

is most likely to align the surface moments and create a ‘fan’ structure. This is also an in-

homogeneous magnetic state, which may produce a larger triplet component (resulting in

a observed lowering of Tc ), although further theoretical modelling outside the scope of this

work is needed to support this.

The size of this Tc effect is generally larger than that reported for spin-valves (and is

not the only reported case of the disordered magnetic state resulting in a higher measured

Tc [143, 171, 172, 230]). It is therefore necessary to use caution for the interpretation of Tc

measurements alone as evidence for the presence of the LRTC in a S/F system.

In the transition curves, shown in fig. 5.7, three step-like features can be seen. The origin
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of these steps is most likely similar to the previously discussed steps. For the epitaxial Nb,

it is not unreasonable for the Tc of a bare film to be in the region of ≈ 8 K, where the first

step occurs. This is evidence of local regions of the bilayer film where the Er has no direct

influence on the Nb, that is, where the two materials are not coupled by the proximity effect.

One possibility for this is at the Er grain boundaries or local regions around the wire-bond

contacts, where the force of the contact may have disrupted the Nb/Er interface. This inter-

pretation is supported by the observation that there is no field history dependence of this

step. Again local current induced heating, crystallographic inhomogeneity and thickness

gradients are ruled out for this sample.

5.6 Conclusions

The Tc oscillations as a function of Er thickness showed a highly complex oscillation for both

polycrystalline and epitaxial data sets. It was not possible to reproduce this oscillation in the

framework of the simplified S/F theory. Additionally the periodicity appeared to be longer

ranged than the spiral repeat distance for any expected commensurate state for thin film Er.

This ruled out attributing the oscillation solely to the spiral magnetisation.

The step like features present in many of the Nb/Er samples are of interest due to the

origin of the step believed to be caused by the proximity effect with spiral magnetisation.

Such steps are not observed in S/F samples where the F layer was homogeneous. They are

possible evidence for a spatial variation in the influence of the proximity effect. It has been

observed previously that by removing the spiral magnet, Tc recovers to that expected for a

bare film and additionally step like features disappear [230].

It was observed that the ferromagnetic remanent state of Er, when proximity coupled

to a superconductor, can have a strong influence on the Tc of the superconductor. The ap-

plication of magnetic field is able to change the metastable magnetic state of the Er. This

modification results in a fundamental change to the shape and temperature of the super-

conducting transition. The shift in Tc of 140 mK was much larger than previously observed

in spin valves or for singlet domain wall effects. It is hoped that the observation of this un-

conventional effect proves fruitful for refinement of S/F theory, and offers a new route for

device application for low temperature super-spintronics.
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CHAPTER 6

Induced Moment in a Normal Metal Coupled to

a Superconducting Spin Valve
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6.1 Introduction

6.1 Introduction

In lab based transport results, evidence for the presence of the LRTC in superconducting

spin valves is extracted from the angular dependance of Tc with LRTC generation. This result

was summarised in Section 2.7.2. While this behavour matches the theoretical expectation

of LRTC generation in the spin valve, it gives little direct information about the nature or

extent of the LRTC in the heterostructure. In an attempt to address these questions, the

local magnetic state of the same heterostructures as those in reference [22] are studied in

this chapter. Two large scale facility based magnetism probes (neutrons and muons) are

used to search for an expected induced moment originating from the triplet Cooper pair.

In this chapter, the work attributed to the author were sample depositions (which were

performed jointly with J. Kim), sample optimisation and development, magnetometry, X-

ray characterisation and fitting, fitting to neutron measurements. Neutron measurements

were performed at the ISIS neutron and muon source, with the assistance of G. Burnell and

local contacts C. J. Kinane and J. F. K Cooper. Muon spin rotation measurements were per-

formed at PSI, with the assistance of S. L. Lee and M. G. Flokstra (who also contributed the

fitting code) and local contact T. Prokscha. Additionally S. L. Lee and M. G. Flokstra gave

significant advice on the how to present LEµSR data and contributed graphs and graphics

where acknowledged.

6.2 Sample Design

As established in Chapter 2, the key ingredient for the generation of the LRTC is magnetic

inhomogeneity. This chapter considers the prototypical super-spintronic device, the super-

conducting spin valve. In this system, the degree of magnetic inhomogeneity can be tuned

by controlling the angle of separation of the two ferromagnets. There are two possible geo-

metries for this system, the ‘superconductor on top’ SFF and the ‘superconductor in the

middle’ FSF [22], both of which show the expected modulation in Tc with LRTC generation.

The former case is employed in this chapter.

In order to be able to control this angle, careful sample design is necessary. In general

the SFF spin valve takes the form:

sub/Ta(buffer)/Co(seed)/IrMn(pinning)/Co(pinned)/Nb(spacer)/Co(free)/Nb(S)/Cap,
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sub/Ta(75Å)/Co(30Å)/IrMn(50Å)/Co(12Å)/Nb(30Å)/Co(24Å)/Nb(500Å)/Au(700Å),

where the choice of substrate is experiment specific. For electrical transport, thermally ox-

idised SiOx is used to prevent current paths inside the substrate. For facilities experiments,

lightly doped Si is chosen so that any necessary accelerating voltages can be applied across

the samples. The role of the Ta buffer is to grow in a bcc phase to improve growth quality, the

adjacent Co seed layer sets the the direction of pinning and the antiferromagnetism in the

IrMn, which in turn pins the next Co layer. The free Co layer is separated from the pinned Co

layer by a thin Nb spacer layer, which is non-superconducting in this thickness range and

acts to decouple the switching of the Co layers. The superconducting layer is deposited on

top of the free Co layer. The structure has a capping layer (typically Au) which acts to both

protect from oxidation and, when needed, as a moderating layer for muon implantation

experiments.

Samples were prepared by DC magnetron sputtering as described in Chapter 3, in a sys-

tem with base pressure 10−8 mbar, at ambient temperature with all layers deposited imme-

diately proceeding each other in a single vacuum cycle.

When considering the aim of this chapter was to observe the small induced magnetism

from the triplet components, it is necessary to be careful with the choice of superconductor.

Nb is chosen due to its relative ease to sputter and favourable Tc , however it is highly sens-

itive to vacuum quality and thickness. As discussed previously for transport type experi-

ments, the key consideration is trade off between thickness and coherence length, so that

the superconductors properties are dominated by the interface. For the facilities work in

this chapter the key trade off is between thickness (to provide a good Tc ) and penetration

depth. For thin film Nb λGL ≈ 90 nm [34]. If the film thickness begins to approach λGL then

any induced moment may be mistaken for a Meissner response from the superconductor.

The typical base temperature of a 4He cryostat employed by neutron and muon facilities is

3 K. To see any effects, it is favourable to be measuring at a least Tc /2. A thickness of 50 nm

was chosen as films have a typical Tc of 7.5 K (vacuum condition dependant, but generally

reproducible) but are still only half of λGL , removing the possibility of significant screen-

ing currents forming in the direction of sample thickness. Surface screening currents are

observed where a technique has sensitivity to out-of-plane fields. On these heterostructes

out-of-plane stray fields and surface screening were studied using the scanning Hall probe

technique in reference [178], which is summarised in Chapter 2 and in the supplementary
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Figure 6.1: Magnetic switching of the three magnetic layers in the spin valve structure for (a) field

parallel to the easy axis and (b) perpendicular. The insets show the minor loop switching of the top

‘free’ layer only. Blue and red arrows indicate the direction of each layer at the corresponding field.

information of references [22, 231].

6.2.1 Magnetic Characterisation

The chosen exchange biased spin valve structure produces highly reproducible magnetic

configurations. The addition of the bottom Co seed layer underneath the IrMn creates room

temperature exchange bias, and negates the necessity for complicated field cooling or post

growth annealing. The former being impractical from an experimental perspective at the

facilities used in this work and the latter unwanted due to possible intermixing which can

occur during annealing. The direction of exchange bias is along the growth field.

Figure 6.1 shows magnetic hysteresis loops for the spin valve. In (a) the field direction

is aligned parallel to the growth field. In this orientation it is easy to obtain magnetic con-

figuration where the ‘pinned’ and ‘free’ layers are parallel or antiparallel. The inset shows

the minor loop for the ‘free’ layer switching only. There is a small field offset from zero in all

these measurements, due to trapped flux in the VSM magnet. The ‘free’ layer switches with a

coercive field of about 5 mT. From an experimental perspective, it was discovered that not all

facilities have magnets which are calibrated in these low field ranges. It is somewhat lucky,

therefore, that a field of up to 45 mT can be applied before any of the other magnetic layers

begin to switch. Once the free layer saturates, it is the Co seed layer which switches next,

followed finally by the pinned layer. When saturating the layers antiparallel to the direction

of exchange bias, a field of 300 mT is required, compared to only 5 mT in the direction of
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exchange bias.

Figure 6.1 (b) shows the same spin valve, after an in-plane rotation of 90◦, with the field

applied perpendicular to the growth field. For the small applied fields shown in the inset,

the pinned layer will only move by some very small angle, while the free layer will align

with the field along its hard axis. It is interesting to note that the loop is less square, due to

this being the layer’s hard axis. The free layer will be aligned to the external field at about

10 mT. The spin valve is now set up in the perpendicular state where the separation between

the F layers is 90◦. Unlike for the parallel applied field, the exchange biasing in this direc-

tion makes the switching of subsequent layers harder, rather than offset. For subsequently

higher applied fields, the remaining two layers will be rotated away from the growth dir-

ection into the applied field. For either positive or negative fields the two layers saturate

at 300 mT. Upon removal of the field the ferromagnetic layers will relax back into the easy

(growth) field direction.

6.3 PNR and XRR Fitting of Device Structure

In order to interpret results from muon and neutron facility techniques it is first important to

build a physical model of the spin valve system. This is achieved by fitting the PNR and XRR

curves. Allowing the GenX software free parameters of XRR scans of the complete spin valve

structure leads to model with 23 free parameters (each material is fitted with a density and

individual layers given a thickness and roughness, except the substrate which is assumed to

be infinity thick). While very attractive looking fits can be achieved by allowing GenX free

reign over the parameter space, such a fit is probably not a physical representation of the

sample’s real parameters. The problem gets worse with PNR where magnetism in each layer

also becomes a fitting parameter as discussed in Section 3.7. In this section all PNR was

performed at the CRISP beamline at ISIS.

The limitations of the model come from the specifics of the PNR and XRR techniques.

With this in mind small changes are made to the model between the two data sets. The XRR

technique is more sensitive to interfacial roughness (due to the much higher Q range), while

in PNR the structure is simplified to having sharp interfaces and only surface roughness.

With the PNR technique it is difficult to extract information about the IrMn layer as the SLD

for Mn in neutrons in negative, cancelling out with the positive SLD of Ir, making the net

SLD for the alloy close to zero. This can be seen in the returned density value in Table 6.1.

While this would have been a real problem if the alloy was placed next to air, the surrounding
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6.3 PNR and XRR Fitting of Device Structure

Figure 6.2: (a) Low angle X-ray reflectometry and corresponding fit. The returned fit parameters are

given in Table 6.1. (b) The returned scattering length density (SLD) with depth through the hetero-

structure. For clarity each layer is identified.

Co layers provide enough difference in contrast for the layers parameters to be extracted. It

should also be noted that, as an atomic antiferromagnet, IrMn has close to no net moment

and does not contribute to the total magnetisation of the sample as observed in PNR.

Figures 6.2 and 6.3 show the fitted reflectivity curves for the typical spin valve used in this

chapter. The model itself, while physical, does not perfectly reproduce all features of the re-

flectivity curves. The largest deviation from the data is at high Q values in the perpendicular

magnetic state (Figure 6.3 (e) (f ), although from studying the spin asymmetry the model

clearly reproduces the general trend in the data, even if the magnitude is slightly different.

In addition there is a very small deviation at the critical edge in the XRR fit. This could be

caused by the prerequisite of the model to take as many previously known densities as pos-

sible, or it could be due to misalignment of the sample in the X-ray diffractometer. No such

deviation is observed in the neutron fits and so the model is not corrected for this. Methods

to improve this type of modelling involve inserting additional layers to account for interfa-

cial effects such as intermixing and magnetic dead layers. Additionally it is not uncommon

to add oxide layers at the surface (and occasionally on the substrate) of the structure. As

the top Au layer is generally robust to oxidation, and in an effort to avoid adding any more

complexity, these routes were avoided.

Table 6.1 shows the structural parameters that went into the model. The nominal ‘as

grown’ structure is identical to that in Section 6.2. As can be seen there is a good agreement

with the expected as-grown structure. The error in these extracted values is difficult to ro-
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Figure 6.3: (a),(c),(e) Polarised neutron reflectometry of the spin valve. The two neutron spin states

are shown (u - blue, d - red) along with the corresponding fit. The insets show the SLD profiles

where the red corresponds to structural information and the blue magnetic. (b),(d),(f ) The spin

asymmetry (see text) extracted from the PNR curves with corresponding fit. With applied field (a),(b)

antiparallel, (c),(d) parallel and (e),(f ) perpendicular to the pinning direction.
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6.4 Evidence for Magnetic Induction in the S/F Heterostructure

Layer Density (f.u./Å3) Thickness (Å) Roughness (Å)

Au 0.0543 747 14

Nb 0.0520 514 8

Co 0.0899 22.5 2

Nb 0.0520 37.5 5

Co 0.0899 9.12 3

IrMn 0.001* 47.2 3

Co 0.0899 30.2 4

Ta 0.0550 93.7 6

Si (sub) 0.0497 ∞ 8

Table 6.1: Material parameters for the PNR and XRR model of the data shown in Figures 6.2 and 6.3.

The error in the extracted values is difficult to robustly quantify and is discussed further in the text.

*The total SLD for this alloy is close to zero due to the positive Ir cancelling with the negative Mn, so

a density cannot be found.

bustly quantify. For each individual data set one can determine a parameters impact on the

returned figure of merit. This would indicate that the values have error of order 10%. This

does not, however, take into account the impact changing a layer would have on the other

six data sets which are being fitted by an identical structural model. The values in Table 6.1

should therefore be treated as one possible physical model which can be used to fit all seven

datasets, rather than returned absolute values from a fit.

6.4 Evidence for Magnetic Induction in the S/F Heterostructure

6.4.1 Expected Results

The traditional inverse proximity effect at the S/F interface is predicted to show an increase

in moment inside the F layer and an induced moment in the S layer of opposite sign to the

F layers exchange field [74]. Covered in more detail in Chapter 2, the naive description of

this effect is that the F layer allows one spin state of the Cooper pair to enter, while the other

is stuck on the S side of the interface. This would result in an induced moment largest at

the S/F interface, decaying exponentially away with the coherence length. The profile of

Bergeret type induced moment from the inverse proximity effect is shown in Figure 2.4.

A small number of reports attribute observations to this effect, however in almost all
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6.4 Evidence for Magnetic Induction in the S/F Heterostructure

cases the technique employed did not have adequate statistics or the required spatial sens-

itivity to characterise the effect in detail [77–80]. A further report by M. G. Flokstra et al.

utilising the LEM technique, which possesses the required spatial resolution, found the ex-

pected induced moment in the S layer, but with a length scale of only 1 -2 nm. This is far

shorter than the coherence length inside the Nb S layer (about 10 nm) [33]. This report either

suggests that the key length scale of the induced moment is an order of magnitude shorter

than expected, and actually closer to the effective coherence length of a Cooper pair inside

the ferromagnet, or that a rather different interfacial mechanism is at play in that work, and

possibly others.

The spin valve structures employed in this work have two key features which are differ-

ent from those reported in reference [33]. Firstly, the ability to tune the angle between ferro-

magnets with the application of a small field. This allows the study of proximity effects with

controlled generation of LTRC. It has been shown using careful electrical transport measure-

ments (see Chapter 2 and reference [22]) that the structures used in this work are capable of

producing the LRTC. Secondly, the presence of a thick capping layer placed directly on top

of the superconductor. In previous work a ferromagnet was placed between the cap and su-

perconductor to move the S/F interface higher in the structure. While initially this appeared

a trivial choice, it turned out to be a key experimental consideration.

A very recent report claims the observation with the LEM technique of an ‘inverse Meiss-

ner screening’ effect created by the LRTC [34]. This observation however is tiny, with the

poor statistical fidelity and incomplete data sets making it impossible to attribute the ob-

served effect to the onset of superconductivity, as opposed to changes in the ferromagnets

magnetisation (for example). If confirmed, this observation is not contradictory to the type

of ferromagnetic induced moment which is the aim of this chapter, as it has a different fun-

damental origin, being created by screening currents.

6.4.2 Using LEµSR Technique

To study the flux profile B<y> as a function of depth, y, in the superconducting spin-valves

first the LEµSR technique is employed. The technique, outlined in Section 3.8, uses muons

as a local magnetic probe.
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6.4 Evidence for Magnetic Induction in the S/F Heterostructure

Figure 6.4: The change in local field upon cooling through the superconductors Tc as a function of

implantation depth into the heterostructure. Schematic to show the stopping profiles from Monte

Carlo simulation inside the heterostructure. Reproduced from [231].

5 nm Gold Cap

The first sample presented has a very thin Au cap, the only job of which is to protect the Nb

layer from oxidation. When the Nb is in the superconducting state, it is expected the Au will

be fully proximitised by its neighbour, as its thickness is much less than the effective ξ. At

this thickness there is very little moderation of the incoming muons, reducing the available

energy range. The consequence of this is that the Nb layer can be studied with negligible

contribution from the Au layer.

This very thin Au thickness allows detailed probing inside the superconductor and spe-

cifically at the S/F interface. This sample geometry is the best chance to observe induced

magnetisation of the inverse proximity type at the S/F interface. Figure 6.4 shows the result

of this study. No significant difference in the field profile with temperature is observed for

muons which probe the superconducting layer. For the highest energy muons, the stopping

profile extends into the bottom F1/F2 spin valve structure. At this energy a small contribu-

tion of an additional positive magnetisation was detected. This is probably due to a redis-

tribution of stray fields in this region when the Nb becomes superconducting, with similar

mechanism as discussed in Chapter 2.

The other important feature of this sample is the lack of Meissner screening in the Nb

107



6.4 Evidence for Magnetic Induction in the S/F Heterostructure

(a) (b)

Figure 6.5: Resulting Monte Carlo simulations for (a) the stopping profile of accelerated muons en-

tering the sample and (b) the fraction of muons stopped in the N (Au) and S (Nb) layers. Adapted

from an early draft of [231].

layer. At a thickness of 50 nm the Nb layer is significantly thinner than the penetration

depth. From the errors in Figure 6.4 an upper limit can be set that any Meissner screening

contributes less than 1 G (or less than 1% of the applied field) to the measured signal.

73 nm Gold Cap

The next sample considered has a 73 nm Au capping layer. At this thickness the Au provides

strong moderation of the incoming muons energy, allowing for measurements purely inside

the Au, or at higher energies a stopping profile which peaks inside the Nb layer. Figure 6.5

shows the calculated stopping profiles and extracted stopping fractions for this sample.

Performing the same measurements as that of the thin Au sample immediately shows a

large difference between 10 and 3 K. Figure 6.6 shows that in this sample, at all measured

energies, there is a lowering of the local field value upon cooling through Tc .

It is next important to establish that the observed effect is indeed due to the onset of

superconductivity in the sample. To do this, a single energy of muon implantation is chosen

(12 keV) and the measurement is performed at many fields. This is shown in Figure 6.7,

where at the onset of superconductivity at 7.5 K, an immediate reduction in the local field

occurs. By comparison, above Tc the field is constant from 25 to 8 K. For the chosen fer-

romagnet (Co) there is no change in magnetisation in this temperature range, allowing the

attribution of the observed effect to be due entirely to the onset of superconductivity.

At the chosen energy value of 12 keV the stopping fraction of muons is entirely inside
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Figure 6.6: The change in local field upon cooling through the superconductors Tc as a function of

implantation depth into the heterostructure.

the Au layer, suggesting that the observed effect is much more complicated than Meissner

expulsion from within the superconducting layer. It is therefore important next to calculate

the profile of the induced magnetisation responsible for the lowering of the local field value

below Tc .

So far data analysis has been performed on the individual data sets corresponding to

each energy and temperature value. While fitting each of these asymmetries separately

provides a good indication of the local field, it is not a particularly powerful method to ex-

tract an overall field profile, due to the large spread of stopping positions and overlapping

in stopping profiles between progressive implantation energies.

The data is therefore treated with the muon fitting program developed by Dr. M. G.

Flokstra, as outlined in Chapter 3 and detailed in references [203, 231]. It is now possible to

fit a function to all datasets simultaneously. Goodness of fit is returned by χ2 analysis.

In the fitting program, the Au/Nb interface is defined from the known thicknesses. The

two layers are treated separately, where any induced moment is allowed to either grow or

decay with any length in a Gaussian type profile from this defined interface. Additionally,

the interface can be arbitrarily moved.

Employing this analysis returns a best fit for the profile of induced moment shown in

Figure 6.8. Here the red and blue lines correspond to the returned fit to the 10 K (red) and

3 K (blue) data. The black curve shows the profile of induced magnetisation corresponding

to the fit. In addition, the returned field values from the fitting of individual asymmetries is

shown as the circles. Good agreement between the fit and circles show the accuracy of the
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Figure 6.7: Measured local field with temperature, showing no change above the superconducting

transition and sharp decrease at the onset of superconductivity. Inset: the stopping profile at 12 keV

where the measurements were performed. Reproduced from [231]
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Figure 6.8: Returned best fits (solid coloured lines) to the experimental data (represented by the

circles). The black curve indicates the profile of induced magnetisation corresponding to the fit.
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Figure 6.9: The returned best fit to the experimental data showed a peak at the Au/Nb interface

(Figure 6.8 and solid curve). It is important to establish if this peak truly exists at the interface by

allowing the peak position to vary. Here, the range in induced magnetisation profiles returned by

fixing the peak location and fitting the experimental data are shown. The returned χ2 analysis in this

range is shown in Figure 6.10.

proposed profile of induced magnetisation.

Above Tc , at all measured energies no change is seen in the induced moment. This is

reflected in the flat red field profile showing only the applied field of 150 K. Below Tc there is

an additional magnetic contribution from the sample, which opposes the applied field and

lowers the measured field value. This is caused by an additional induced moment inside the

sample.

Below Tc , the returned induced magnetisation profile shows the additional induced

magnetisation has a maximum at the Au/Nb interface. The moment decays inside the Au

with a length scale of approximately 30 nm. Inside the Nb layer, the moment decays approx-

imately twice as quickly and is zero at the Nb/Co interface.

Next, it is important to check that the induced moment is truly maximum at the Au/Nb

interface. This can be done by artificially moving the interface in the model and examining

the returned induced magnetisation profiles, which are plotted in Figure 6.9. This effectively

changes the location of the maximum induced moment.

Moving the location of the maximum induced moment has a drastic effect on the profile

of the induced magnetisation. Moving into the Nb layer increases the peak moment and

decay length into the Au layer. The consequence of this is a much sharper decay into the Nb
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Figure 6.10: Returned χ2 in the range of the possible profiles in Figure 6.9. The minimum in χ2

confirms that the peak in induced moment exists at the Au/Nb interface.

layer (to keep the total induced moment approximately the same in all possible profiles).

Moving into the Au layer does the opposite to the induced magnetisation profile. Pla-

cing the peak in moment at 10 nm into the Au makes the decay lengths in the two layers

symmetric (traditional Meissner type response inside a superconductor). Moving further

into the Au drastically increases the decay length and total moment inside the Nb layer.

To establish where the peak in induced moment exists, χ2 analysis is applied to each

model to find the best fit to the experimental data. Figure 6.10 shows the returned χ2 value

obtained by changing the location of the peak in moment in the previous figure. The lowest

χ2 is returned for the peak in moment being located at the Au/Nb interface (within the error

of the known thicknesses of the two layers).

6.4.3 Using PNR Technique

The profile of the induced magnetism Au/Nb interface has been extracted from the muon

data. This technique has shown this induced moment is reproducible across multiple samples,

next it is important to establish if the effect can be observed in other techniques. PNR has

already been employed to characterise the spin valves, and a physical model of the device

structure has been extracted. To see if the induced moment can be observed in this tech-

nique, the following experimental procedure was undertaken; set up the magnetic config-
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uration of the spin valve and take a high fidelity measurement above Tc (10 K). The error bar

on each point is governed purely by Poisson statistics, hence requiring long measurement

times (in the order of 1 day) for detecting subtle effects. The sample was cooled through

Tc and the measurement repeated at the base temperature of the cryostat to look for differ-

ences created by the superconducting state.

PNR has the additional benefit of being able to probe buried interfaces, so if there was

additional induced moment elsewhere in the structure this should be visible. The ‘usual’

sensitivity of PNR is around 0.05 µB /atom, which from simulations would be on the limit

in terms of observing the effect. In order to maximise the chance of observing any effect,

the POLREF beamline at ISIS was used due to its improved background and resolution. The

general model of the 70 nm gold capped spin valve from Section 6.3 was employed in the

normal state, with small modifications made to take into account for the improved reflecto-

metry data now available and the changes to the magnetic layers between room temperat-

ure and 10 K (although these changes were typically only 10 %).

Figure 6.11 (a) shows the spin asymmetry of the two measured temperatures, 10 K (red)

and 3 K (blue), for the acquired reflectivity data (positive offset) and model (negative off-

set). The range shown encompasses the critical edge (which is sensitive to changes in the

total magnetisation) and the length scale of the effective coherence lengths inside the su-

perconducting system (where any signals from superconducting effects should be largest).

Considering first the positive offset data. The spin asymmetry is, to a first approximation,

independent of the structural parameters and depends only on the magnetic structure, thus

the changes seen between the datasets are indicative of a magnetic response caused by the

onset of superconductivity.

The negative offset 10 K model is the best possible fit to the 10 K reflectivity which sat-

isfies the prerequisites of the physical model outlined before. The differences in reflectivity

are too subtle to allow quantitative fitting, so instead a magnetic response in the Au capping

layer consistent with the profile obtained from the muon fitting was superimposed onto the

fit. In the neutron model this corresponds to an induced moment of 0.015 µB /atom with a

decay length of 20 nm and is shown as the negative offset 3 K (blue) line.

The position, size and direction of the differences between the 10 K fit and 3 K model

agree very well with the differences in the datasets. This is demonstrated further in Figure

6.11 (b). Here a∆ spin asymmetry is defined as the differences between 10 K and 3 K datasets

and is plotted as the square points which are joined by the thin solid line for clarity. In order
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Figure 6.11: (a) The spin asymmetry at 10 K (red) and 3 K (blue) with positive (negative) offset for

the the reflectivity data (model - see text). (b) The changes in the spin asymmetry between 10 K and

3 K with a guide of the eye (connected squares and dotted line) and the change in the model’s spin

asymmetry when introducing the induced magnetisation profile (solid line).

114



6.5 Comparison to Theory

to aid the reading of the dataset, a next nearest neighbour smoothing function is applied to

the dataset and is plotted as the pink dotted line. The purpose of this line is only as a guide

for the eye through the general trend of the dataset. On top of the dataset a further solid line

is plotted showing the differences between the 10 K fit and the 3 K model.

It is striking, especially at lower Q, how closely the model follows the trends seen in

the dataset. While the magnitude of the peaks may be slightly different, up until approx-

imately 0.035 Å−1 the peak positions match that of the smoothed data set. In the region

corresponding to 0.035-0.045 Å−1 the model begins to deviate from the smoothed dataset.

Examination of the data points show that the ∆ spin asymmetry in this region is generally

positive. The model reproduces this trend, and peaks with the cluster of data points around

0.0425 Å−1. There is also strong correlation with the large ∆ spin asymmetry observed at

around 0.05 Å−1. At higher Q the error bars become larger and so no further information

can be extracted from the trends in ∆ spin asymmetry.

Clearly an induced moment of 0.015 µB /atom is well below the PNR techniques accep-

ted sensitivity of 0.05 µB /atom. The reason that this effect is observable at all is due to the

extremely high fidelity of the acquired data and the length scale of the induced moment.

Additionally, when in this perpendicular magnetic configuration, PNR is insensitive to two

of the three magnetic layers. Comparing the absolute magnetism above and below Tc , the

induced moment decaying over the long length scale contributes to approximately a 10 %

change to the ‘total’ magnetism.

6.5 Comparison to Theory

Chapter 2 outlined three possible theoretical descriptions for the profile of induced mag-

netic response in S/F systems. Here comparison of the experimental data to theory are

presented with possible mechanisms outside of established theory proposed.

6.5.1 Differences from Expected Theory

Firstly considering traditional Meissner screening as the origin of the effect. In order for

Meissner screening to take place in the plane of the sample (the direction of these meas-

urements sensitivity), the thickness of the superconductor must be comparable in size to

the magnetic penetration depth. For thick Nb films λGL ≈ 95 nm, or about twice the layer

thickness [34]. In the thickness regime studied here it is very likely longer than this. If one
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were to create a system of adequate thickness to establish a screening current, the expected

profile would be largest at the centre of the superconductor, decaying at the interfaces, as

observed in reference [34]. It is also worth noting that the size of the Meissner screening

effect in previous work (for example [34] where the Nb layer which is over twice as thick as

in this chapter) is smaller than the effect observed here. It is possible for a small amount of

screening current to enter the normal metal, however any screening inside the normal metal

would be small. It is highly unlikely for a Meissner screening profile to have maximum at the

interface with, or so close to, a normal metal.

When considering the inverse Meissner screening effect [81–85] with relevance to this

work, what is clear is that this effect does not manifest from the location of LRTC genera-

tion, or where the LRTC would be a maximum. The effect manifests at the N/S interface,

which is inconsistent with the expected spatial variation of screening currents and the ob-

served temperature dependence shows no oscillations in sign. This theory cannot explain

the observations of this work. It is therefore concluded to be an induced ferromagnetism.

Considering the inverse proximity theory of Bergeret et al. [74] a couple of similarities

can be seen. The moment is induced in the opposite direction to the ferromagnetic mo-

ment. It is largest at the interface and decays exponentially over the effective coherence

length of the material. However, the induced moment manifests at the wrong interface. It

is expected that the inverse proximity effect occurs at the S/F interface, instead the induced

magnetisation appears at the N/S interface. In fact, no induced moment is observed at the

S/F interface in any measurements during this study.

The same is true when considering the theory of Löfwander et al. [63]. The maximum

triplet generation will be at the S/F interface. Any induced moment should be at a maximum

here.

6.6 Possible Mechanisms

What is observed, in two complementary techniques, is a type of induced magnetism not

currently attributable to the established theory of superconductivity. Having ruled out the

traditional mechanisms for induced moment in S/F proximity structures it is important to

identify possible routes for a complete theoretical description of this effect. The key ques-

tion to address here is how the remote magnetisation in the normal metal layer can be

provided by the superconductivity of the interlayer.
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Figure 6.12: Nonlocal correlations near the N1/S/N2 structure. Pure spin current is injected from

N1 and a finite spin current is generated in N2 by CAR and EC. One should note that the direction

of the spin currents attributed to CAR and EC are in the same direction and there is no net spin

accumulation in the superconductor. Adapted from [232].

6.6.1 Spin Transfer Across the Superconducting Interlayer

Andreev reflections into singlet Cooper pairs at a S/N interface cannot transfer a net spin

across the interface. When the superconductor has multiple interfaces which are (relat-

ively) close to one another (on the length scale of a few ξs), nonlocal effects such as crossed

Andreev reflection (CAR) and elastic co-tunnelling (EC) become possible [232].

Considering two normal metals in contact with a superconductor (an N/S/N multilayer).

In CAR, an electron with one spin orientation, e.g., spin up, is injected from the first normal

metal into the superconductor, resulting in a hole with spin down being injected from the

superconductor into the second normal metal, with generation of a Cooper pair in the su-

perconductor. In the second process, EC, the incoming spin up electron from the first nor-

mal metal enters the superconductor by pairing with a spin down electron from an already

existing Cooper pair, which in turn simultaneously donates its original spin up electron to

the second normal metal layer [232]. These processes are shown schematically in Figure

6.12.

Modifying this process to a F/S/N structure changes this picture slightly. Here a spon-

taneous spin accumulation is needed to create an energy-dependent imbalance between

the spin density on either side of the superconductor. This imbalance can result from the

inverse proximity effect of Bergeret et al. where electrons aligned with the ferromagnet will

preferentially enter the ferromagnet, creating a spin imbalance. Although the induced mag-

netisation from inverse proximity effect was not observed in this system, there is a suppres-

sion of Tc when the superconductor is grown next to the ferromagnet. This is evidence of a

weakened order parameter at the S/F interface, one signature of inverse proximity in a su-

perconducting heterostructure. It has also been shown by transport measurements on the
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structures that triplet proximity effects do exist in these samples which necessarily means

the presence of spin aligned Cooper pairs at the S/F interface. Theoretically it is proposed

that spin currents appear in SFF spin valves with non-collinear spin alignment, even in an

unbiased structure, but disappear in the collinear alignment [233, 234].

The presence of spin imbalance from any of the above mechanisms limits the possible

CAR and EC processes. For CAR a Cooper pair can only be created by taking a spin down

electron from the F layer, or annihilated by donating a spin up electron to the F layer. For EC

spin down electrons can only move from F to N and spin up electrons can only move from

N to F. All possible processes result in a net spin down on the N side and a net spin up on the

F side, thus effectively transferring spin across the S layer.

6.6.2 Anomalous Meissner Screening

An upper limit on the size of the traditional Meissner screening contribution has been meas-

ured as 1% of the applied field. Traditional Meissner screening would be maximum at the

centre of the superconducting layer, not the S/N interface. It is possible however, that the

addition of the thick Au layer on top of the Nb has modified the system enough that anom-

alous Meissner screening occurs.

There exists a small number of experimental reports that normal metals coupled to bulk

superconductors can exhibit large Meissner screening [235, 236]. Although it has not been

observed in the thin film, or in a technique with the spatial sensitivity of the neutron and

muon techniques employed in this work, it is at least possible that the Au coupled to the

superconducting Nb can exhibit an anomalous Meissner screening response. Theoretically,

under certain limits, it is possible for normal metals coupled to superconductors to show

Meissner screening [237–240]. While this screening effect can have influence over a long

range, it is not clear if the screening inside the normal metal would be significantly higher

in comparison to the adjacent superconductor or if it could occur even when screening was

not observed in the superconductor on its own, as it was in this chapter. None of these works

consider the addition of the ferromagnetic layers in the heterostructure, which is important

in these structures.
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6.7 Conclusions

In this Chapter the local magnetic profile of superconducting spin valves were studied. Us-

ing lab based transport techniques there was considerable evidence for triplet proximity

effects in the samples. Muon and neutron techniques were used to search for the three pos-

sible signals attributable to the presence of triplet Cooper pairs in the heterostructure.

None of the samples measured using the muon or neutron facilities showed induced

moment immediately attributable to the accepted proposal of triplet superconductivity. It

was also possible to rule out traditional Meissner expulsion as the origin of observed effect.

Two possible mechanisms that would account for the observations were introduced,

however of all the theories discussed, none are satisfactory for explaining the observations.

It is therefore of importance for new theoretical work to explain why the three measure-

ment techniques on the same sample don’t agree on the nature of the triplet pair at the S/F

interface.
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Conclusions, Further Work and Future Outlook
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7.1 Conclusion

Proximity effects at the superconductor/ferromagnet interface provide a wealth of new phys-

ical phenomena. The triplet Cooper pair has been the source of theoretical and experi-

mental interest since the first observation 10 years ago, with the publication of over 300

research papers in that time. This thesis set out with two aims. To provide new candid-

ate materials in which to study S/F proximity effects, and to probe the nature of the triplet

Cooper pair. Here the important steps leading to, and the results obtained in addressing,

these aims are summarised.

7.1 Conclusion

With the aim of providing new candidate materials for super-spintronics, this thesis repor-

ted the successful growth and integration into devices of thin film Er in Chapter 4. The

epitaxial Er films were found, in the thickest regime studied, to retain all bulk-like magnetic

phases, including the ferromagnetic conical phase not observed in thin film before. Upon

reduction of thickness the lower temperature magnetic phases began to be suppressed, but

even in the thinnest film studied there was some evidence that the spiral magnetic state

was retained. The growth of Er is preceded by a Nb buffer layer. This is advantageous when

considering the creation of super-spintronic devices for application due to the favourable

Tc and popularity of Nb in established superconducting logic [5].

A prototypical Nb/Er bilayer device was fabricated in Chapter 5. Two control mechan-

isms for the control of Tc in the bilayer were demonstrated. First it was shown that as a

function of Er thickness a re-entrant type of oscillatory Tc may be observed. While main-

taining similar features to such oscillations caused by the FFLO state at superconductor /

homogeneous ferromagnet interfaces, the Nb/Er bilayer is more complicated, and could

not be fitted by established theory. This was most likely due to generation and mixing of

the LRTC at the interface with the inhomogeneous magnetism competing with the FFLO

oscillations.

A second type of bilayer was fabricated with a thicker Er layer, to allow access to more

of the metastable magnetic phases. By manipulation of the metastable magnetic state of

the Er at remanence, a superconducting ‘switch’ was realised. Such a switch satisfied the

requirements of the cryogenic memory element first proposed by Oh et al. [14] with several

key advantages. Firstly, once the state was set the information about the state was retained

at remanence. Secondly, unlike the proposed spin-valve structure, no rotation of the device

in a field was needed. Finally, the observed suppression in Tc of 140 mK was larger than that
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seen in the superconducting spin valve.

Chapter 6 considered the local magnetic state of the superconducting spin valve, the

prototypical device for super-spintronics. In these structures the response of the supercon-

ducting layer to rotation of the ferromagnets was consistent with established theory. The

same theoretical framework predicted an inducted magnet moment at the superconductor

/ ferromagnet interface from triplet Cooper pairs. While studying these interfaces the pre-

dicted moment was not observed. Rather, a new induced moment at a remote normal metal

/ superconductor interface was found using the LEµSR and PNR techniques. This moment

decayed away from this interface and was not present at the superconductor / ferromagnet

interface. Finally, possible mechanisms towards a complete theoretical description of this

new effect were presented.

In conclusion, direct observation of a long ranged triplet component to the supercon-

ducting condensate was not explicitly observed in this thesis. While any contribution to

the studied samples ferromagnetism could have been too small, the presence of a hitherto

unpredicted ferromagnetism present inside a normal metal capping layer suggests that the

results of this thesis require a re-formulation of established theory.

7.2 Further Work and Outlook

7.2.1 Erbium Characterisation

Due to time constraints on the neutron beamline, it was not possible to perform all the

measurements one would ideally want to fully characterise the magnetic state of the Er.

Given further opportunities to investigate this topic it would be interesting to examine a

wider sample set.

To help with the interpretation of Chapter 5, work understanding the field history de-

pendence of the magnetic structure should be undertaken. This could be performed with

the PNR or neutron diffraction techniques in a large applied field. The neutron diffraction

measurements would be able to detect the breakdown of the meta-stable magnetic states

and give a definitive identification of the post-saturation state. It would also be interest-

ing to perform PNR at saturation of the thinnest Er sample, to understand the complete

unwinding and re-zipping of the spiral magnetisation.

Additionally, it would be interesting to study in more detail the crossover in thickness

from saturation in-plane having the largest magnetisation, to the out-of-plane component
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becoming the larger at saturation.

7.2.2 Nb/Er Bilayer Devices

The most important aspects of the bilayers results which need further work are the confirm-

ation of the oscillation period, and the confirmation that the observed oscillation is of the

type seen in standard S/F bilayers. It also remains to fit a model which accurately repro-

duces all of the features.

Trivial origins of the stepped transition observed in Nb/Er bilayers have been effectively

ruled out, leaving the possibility that these steps originate from the proximity effect.

7.2.3 The Superconducting Spin-Valve

The discovery of an induced moment appearing in a normal metal coupled to a supercon-

ducting spin valve is perhaps the most surprising and least understood result in this thesis.

The largest open questions are:

1) What is the origin of this effect?

The presented mechanisms for spin transfer through a superconductor are expected to

have dependence on superconductor thickness, decaying on the length scale of the coher-

ence length. It would therefore be of great interest to perform measurements of the effect

as a function of superconductor thickness. Care would have to be taken to avoid Meissner

screening which would become larger with thicker films.

To probe the question of anomalous Meissner screening, removing layers from the struc-

ture to simplify it to the point the effect disappears would be interesting to try. This could

also be done by placing insulating layers throughout the structure, to remove key interfaces

without changing the stray fields in the system.

2) Does it work with other metals?

Gold was chosen because it does not oxidise and hence makes a good capping mater-

ial. From the perspective of superconducting proximity in the thin film, it is not a particu-

larly well studied system. There are competing reports in literature on the length scale and

nature of the proximity effect [241, 242]. Substituting for other normal metal caps with dif-

ferent electrical properties (such as mean free path and spin diffusion length) could help in

understanding the key length scale involved in the effect.

The allocation of beamtime means that only one experiment to study this effect more

using LEµSR can be undertaken in a year. It would therefore be an important discovery
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to find signatures of the effect which are detectable in electrical transport of nano-devices.

These have the potential for measurement in the lab, and are more readily converted to

super-spintronic logic device application.
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