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Abstract

Electrical impedance tomography (EIT) is a non-intrusiud gortable imaging tech-
nique which has been used widely in many medical, geologiedlindustrial applica-
tions for imaging the interior electrical conductivity ttibution within a region from
the knowledge of the injected currents through attachectreldes and resulting volt-
ages, or boundary potential and current flux. If the qua®itnvolved are all real then
EIT is called electrical resistance tomography (ERT).

The work in this thesis focuses on solving inverse geomegirablems in ERT
where we seek detecting the size, the shape and the locdtionay objects within
a given bounded domain. These ERT problems are governed fiigdess equation
subject either to the most practical and general boundangitons, forming the so-
called complete-electrode model (CEM), in two dimensiontodhe more idealised
boundary conditions in three-dimensions called the cowtits model.

Firstly, the method of the fundamental solutions (MFS) iplegal to solve the for-
ward problem of the two-dimensional complete-electrodeleh@f ERT in simply-
connected and multiple-connected domains (rigid incluseavity and composite bi-
material), as well as providing the corresponding MFS sohstfor the three-dimensional
continuous model. Secondly, a Bayesian approach and thekoM@&@hain Monte Carlo
(MCMC) estimation technique are employed in combinatioitk the numerical MFS
direct solver in order to obtain the inverse solution.

The MCMC algorithm is not only used for reconstruction, Hualso deals with
uncertainty assessment issues. The reliability and acgwha fitted object is in-
vestigated through some meaningful statistical aspeabs as the object boundary

histogram and object boundary credible intervals.
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Nomenclature

BEM matrices

electric flux density (Chaptdr) and single vector of MCMC
parameters (Chapt8)

vector/matrix of MFS coefficients

coefficient matrix obtained from applying the BEM to CEM
problem

magnetic current density

electric field

coefficient matrix obtained from applying the MFS to CEM
problem

coefficient matrices obtained from applying the BEM to
three-dimensional continuous model problem

gaps between the attached electrodes

fundamental solution

normal derivative of fundamental solution

magnetic field

identity matrix

current injected via the electrodg

current density in Chaptdr

current

length or the area of electroge

conditional distribution or likelihood ofy givenr andc
number of electrodes

number of boundary elements

outward unit normals

number of source points (degree of freedom)
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Ry

normal distbution

collocation points

source points

boundary element endpoint

boundary element midpoint

vector of discretised radii

radius of circle/sphere where the external source poimts ar
located

radius of circle/sphere where the internal source poirgs ar
located for first inclusion

radius of circle/sphere where the internal source poirds ar
located for second inclusion

external boundary segment

distance between centres of two circles/spheres

vector of noisy voltage data

electric potential

current flux (normal derivative)

measured voltages on the attached electegde

uniform distribution

vector of noisy current flux data

vector of noisy potential data

collocation points

unknown vector of linear system of algebraic equations
x-coordinates of unknown centres of two circles or spheres
defined spaces

y-coordinates of unknown centres of two circles or spheres
defined spaces

surface/contact impedance between the attached electrode

e, and the object
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2y, Z1

Greek Symbols

Qj, Ojq

o7

z-coordinates of unknown centres of two spheres

BEM discretised angles in Chapter

hyper-prior parameters for the MFS coefficients model pa-
rameters

hyper-prior parameters for the radii model parameters
BEM discretised angle in Chapter

the amount of variation between two adjacent MFS coeffi-
cients

the amount of variation between adjacent radii

ratio between conductivities of two materials

Dirac delta function

Kronecker delta function

electric permittivity (Chapterl) and ellipse parameter
(Chapten)

attached electrodes

additive noise variables

contraction parameter

additive noise variables

dilation parameter

vector of discretised angles

magnetic permeability

sources (‘singulaties’) vector

prior distribution for the MFS coeffiecents

prior distribution for radii

volume charge density

conductivity

proposed variance
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Abbreviations

BEM
CCl
CEM
cond
diam
EIT
ERT
FDM
FEM
FVM
MCMC
MFS

sign

Subscripts

UInner

(6u/an)lnner

anner = QQ

expectation of the voltage values
proposed variance

vector of discretised angles

BEM angle

domain (unit disk/sphere)
boundary of the domain

closure of(2

boundary element method
constant contact impedance
complete electrode model
condition number

diameter of the star-shaped object
electrical impedance tomography
electrical resistance tomography
finite difference method

finite element method

finite volume method

Markov chain Monte Carlo
method of fundamental solustions

signum function

potential solution on internal boundaé) (cavity) or on
0%), (bi-material composite)

current flux on the internal boundadf?;,,,.., (rigid inclu-
sion) or ondS2, (bi-material composite)

inner object



Nomenclature

UOuter

<8u/an)0uter

8QOuter

Superscripts
EM

uB
(du/on)"FM

uMFS

(Ou/ an)MFS

potential solution on external bounda?$ (rigid inclusion
and cavity) or oro(2; (bi-material composite)

current flux on external boundat)? (rigid inclusion and
cavity) or ond$?, (bi-material composite)

Outer boundary of?

BEM solution
BEM normal dervative
MFS solustion

MFS normal dervative
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Chapter 1

Introduction

1.1 Electrical impedance tomography and its applica-
tions

Electrical impedance tomography (EIT) is a non-intrusiees;-cost and portable tech-
nique of imaging the interior of a specimen based on the kadge of injected cur-
rents and the resulting voltages which are measured onr@liest, as explained in
[35, 36, 63, 65]. It has widespread applications in medi¢memedical applications)
such as detecting and imaging malignant breast tumour2d0¢comparing the com-
plex impedance properties of two different tissues [16ddoicing images of lung and
ventilation [27], monitoring brain function [32], idenyiing skin cancer [1], diagnosing
cervical cancer [9], measuring gastric emptying of liquedd and impedance changes
which occurs while the human brain is performing its acat[62, 64], and con-
structing images of minimally invasive surgery [50]. If #ile quantities involved are
real then, this version of the more general complex EIT is &lsown as electrical
resistance tomography (ERT). As for non-clinical applmwas, EIT/ERT is also used
in geophysics and industry, for instance, it is applied sxdver subsurface features
without digging [56], study gas-solids and liquid-solidswi [25], collect data from

two-phase pipe flow systems [23], investigate the mixingpsses at industrial plant
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scale [48] and observe hydrocyclone operation, [69].

When using this technique in electrostatics, for exampie,seeks to create images
of the electrical conductivity distribution in a body frorratic electrical measurements
on the boundary of that body; the electric conductivity nuees the ability of a ma-
terial to pass an electric current whilst the electricahpéivity measures the ability
of a material to interact with an electric field and becomeapréd by the field. In
addition to this, due to the differences in conductive progs in muscle tissue, fat
tissue, bones, and organs, an image of the conductivity endittivity distributions
inside the body can be used for effective medical diagnesBg using the EIT imag-
ing method, tumors can be detected and distinguished fratthyetissue at an early
stage because not only do the different organs have diffecrductivity, but also the
normal and abnormal tissues have different conductivity @ermittivity, e.g. cancer
cells contain a higher concentration of water and sodiunh [A@other advantage to
EIT is that it has safe long term effects no matter how many &jperiments have
been preformed on the patient. In contrast, when using magrapby, X-rays can be
used for the same purpose only if the examined tissues diffaificantly in their con-
ductivities but this can only happen if the disease is in italfstages [8]. In addition,
exposing the patient to a massive amount of radiation delynitas a bad impact on

health.

1.2 Inverse geometric EIT problems

The EIT direct (forward) problem prescribes the current 8axhe boundary, which in
turn, leads to calculation of voltages via an estimated gotidty distribution based
on Maxwell’s equations. In contrast, the inverse EIT prabkms to evaluate the in-
ner conductivity distribution and reconstruct an estirdateage of the objects in the
domain from the knowledge of the voltages for a wide pattéiinjecting currents. In

this problem, some part of the boundary must be identifiedsiine other part of the
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boundary, the medium properties, the governing equatidriteboundary conditions
(over-determined conditions) are all available [37]. Dadlte ill-posedness, which
means a big change in the inner impedance may result in ongryasmall change

in the boundary voltages and current flux, finding the sofutdthe EIT geometric

problem is not an easy task. Additionally, in an EIT iteratoptimization process, a
nonlinear least-squares objective function has to be at@dumany times using a for-
ward solver. Consequently, there is a need to obtain théisolaf the direct problem

accurately and fast if it is to be useful for real-time moriitg [31, 33, 55, 59].

Some comparison has been previously performed in [24] ertwhee forward solu-
tions of the finite volume method (FVM) and the finite elemeethod (FEM) in terms
of accuracy and stability, for the gap model of EIT. Also,wegcently an improved
boundary distributed source method has been compared]iw[@iithe more standard

BEM and FEM numerical forward solvers for ERT.

1.3 The mathematical formulation of EIT

To model electromagnetic phenomena, we use Maxwell’'s epsatwhich are given

by

v X E=-0,B, (Faraday’s law of induction) (1.1)
vxH=J+0D, (Ampere’s law of induction) (1.2)
VD =p, (Gauss’s law of electric field) (1.3)

v -B=0, (Gauss’s law of magnetic field) (1.4)

whereL is the electric field H is the electric flux density3 is the magnetic field/
is the current densityD is the magnetic current density apds the volume charge
density, [19, 70].

There exist constitutive relationships linking the elecaind magnetic flux densities
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D and B along with the electric and magnetic fieldsand #. These relationships

depend on the properties of the material and are given by

D=¢E, (1.5)
B=pupH, (1.6)
J=0E, (1.7)

wherese is the electric permittivity;, the magnetic permeability ardthe conductivity,
[8, 19, 70].

One way to obtain the differential equation for the intenbthe body is by assum-
ing that our experiments are static ones. This means thatweet the derivatives in
(1.1) and (1.2), in respect to time, to be zero. Then, frorh)(de conclude that there

is a electric potential such that
E=—vu. (1.8)

Using equations (1.7), (1.8), as well as taking the divetgeof (1.2), leads to the
Laplace’s conductivity equation which governs the eleghetentialu inside the do-

main{2 of the body,
V(e u)=0 in Q. (1.9)

The current density is produced by injecting currents via electrodes which are

attached to the surfa¢#) of the object). The resulting current density is specified as

a@:j on 0f. (1.10)
on

In [18], some mathematical models of the boundary condstiorERT have been

gradually developed to deduce the most suitable and gemeiddl. The most realistic
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model takes into account the influences of restricting thieec density values within
a specific range, not ignoring the shunting effect of eletds) and considering the

electrochemical effect between the electrode and the bbjec

1.3.1 The continuous model

This model is formulated by equations (1.9) and (1.10) togretvith the following
conditions:

/ jds=0 (conservation of the charge) (1.11)
o9

/ uds =0 (refering to the ‘ground’ or reference voltage)  (1.12)
o0

Although the continuous model is commonly used, it is a pddrmodel for real ex-
periments due to the lack of the current density valuas (1.10). In practice what
is known, are only the currents that are sent down the witeslad to discrete elec-
trodes, [8, 18, 19].

1.3.2 The gap model

This model is considered as an improvement of the continnoadel. Herein, the
current density is supposed to be non-zero and constaneacérelectrode and zero
between any two adjacent electrodes (in the gaps). Matheatigt the . attached
electrodes on the boundary are denoted jyor p = 1, L and the condition (1.10) is

modified as

) £ on g, p=1,L
Pl ? (1.13)

0 on 9O\UL_ e,
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where, is the current which is injected via electrodg and/, is the length or the

area of electrode. In addition, equation (1.11) can be rewritten in the form

> I,=0 (1.14)

Considering the current density as a constant is an ovelifiedpassumption and not
taking into account the shorting or shunting effect of thecebdes makes the gap

model wholly inadequate in many practical EIT applicatid8s 18, 19].

1.3.3 The shunt model

In the previous two models, the resistivity of the mediumvsrestimated due to the
ignorance of the shunting effect of electrodes. This desemtcounted for by the shunt
electrode model because it is assumed that the metal elesteve perfect conductors,
therefore, the electric potential under each electrodeasame constant. As a result,

equation (1.10) is replaced by

ou
This is combined with
ou .
o5 = 0 (in the gaps between electrodes) (1.16)

Furthermore, in order to obtain the very high conductivityetectrodes, we assume
thatu is a constant on each electrode. These constants repriesenéasured voltages

which take the form

u="U, on ¢, p=1L. (1.17)
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For more details, see [8, 18, 19].

1.3.4 The complete model

Unfortunately, the shunt model does not reproduce the expeatal data because it
fails to consider the electrochemical effect between tleetsdde and the object. At
the body-electrode interface there is a thin, highly resdayer called the effective
contact impedance or ‘surface impedance’ let us denotajtiastity byz,. This will

then replace (1.17) by

0 _
u+ zpo—a—“ —~U, on ¢, p=1,L (1.18)
n

Now, the complete model or the shunt-plus-surface-impeelarodel consists of (1.9),
(1.15) and (1.16), together with the conservation of chiagg1.14) and (1.12) which

can be rewritten as
>y U, =0 (1.19)

Then this complete electrode model (CEM) has a unique solusee [61] and Ap-
pendix A.

1.4 Data collection procedure

Two ways to collect the data for ERT problem are considerdtierthesis. Either we
inject a single current through the attached electrodescaluilate the potential and
current flux at equally-spaced points on the outer boundargalculate the voltage
measurements from equation (2.4) after we apply multipteetui patterns when the

CEM of ERT is solved in Chaptersand4. Also, for the continuous model inverse
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problem in three dimensions, which is considered in Chapt¢he data is Cauchy
data (the pair of boundary potential and current flux), seefé 1.1. Throughout the
thesis, both the potential and current flux are calculatékidy equally-spaced points
on the outer boundary, see Figure 1.1 (left), whilst theag#tvalues are calculated at

L equally-spaced points on the outer boundary, see Figur@igti).

Figure 1.1:A sketch of the direct problem whelh = 4 electrodes are attached: the blue dots
show the inner and outer source points, the green objectasiknand the red points show
where the measurements are collected.

1.5 Bayesian statistical approach

The purpose behind using statistical techniques is tomaftate the inverse problem in
the form of a statistical investigation (inference) in arttefind a desirable reconstruc-
tion of the conductivity distribution based on ERT dataslwiell known that the ERT
inverse problem is both ill-posed and non-linear, and thgeBen approach, linked
to Markov chain Monte Carlo (MCMC) algorithms, works as aulegization scheme
interpreted in terms of prior information, [58]. Modellirgf the prior information
is a very important process in order to achieve good knovdedgput the problem’s

solution. Using the statistical framework allows the siintof the inverse problem
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to be called the posterior distribution of the parameters&rest contingent on the
measurements, for more details see [34]. This posterittlglision is obtained from a
likelihood combined with a prior distribution using Bayésobrem, all the procedure
is stated in section 1.5.1. MCMC offers a flexible tool to yulvestigate the relia-
bility and quantify uncertainty of that posterior distrtlmn, but it makes intensive use
of the forward solver which can be a big drawback especialigmthree-dimensional
ERT problems are being solved. Hence, using the meshledsoblef fundamental
solutions (MFS) described in Chapt2ris ideal. Section 1.5.2 provides a general

background to the MCMC method.

1.5.1 Modelling of the ERT inverse problem

We shall solve the complete-electrode inverse model of E§tiiguthe Bayesian ap-
proach and the MFS to detect an unknown objegt,... (assumed star-shaped) con-
tained in a domaif2. The MFS coefficients = (ck)k:m—M, see (2.32) and the radii
r = (r;),—137» pParameterising the star-shaped domain, see (3.12) ahg)(Baust be
estimated, [36, 37]. A sketch of the mathematical probleshiginvestigated through-

out the thesis is shown in Figure 1.2.
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Figure 1.2: A sketch of the inverse problem whedh = 4 electrodes are attached: the red
object is unknown, and the green points show the locatiotiseomeasurement data.
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The following data model and its corresponding likelihooddtion, are used for all
the numerical experiments in this thesis whatever the d#ttype, [2]. For example,
let us consider the voltage data typevhere the number of attached electrodes is equal
to L allowing (L —1) multiple current patterns. In this case, the data model esengo
features of the measurements procedure. Firstly, the iapiorelationship between
the unknowng andc, and the voltage data is defined as the expectation of thagelt

values (or the free-noise voltages) denoted by
E[T|r,d = p(r, o), (1.20)

whereu(r,c) = Ui, p = 1,L, i = 1,(L —1) is obtained from the MFS forward
solutions using equation (2.4) when the — 1)-th current patterns defined in equa-
tions (3.27)-(3.33) are simultaneously applied. The totdlage data set igr,c) =
(Tj)j:m. Secondly, a stochastic component which describes howolteye data

varies around their expected values is introduced as

T = (T + ¥5); = (1.21)
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where the additive noise variablgs are assumed to follow independent Gaussian
distributions with zero mean and varianeg, this leads to the likelihood defined in

[2, 67], namelyZ|r,c ~ N((u(r, c),o%I) which has the density function
1
(T|r,c) = (2mo7) M0/ exp {—2—2 1T — plr, §)|!2} , or >0, (1.22)
or

The main ingredients in the Bayesian statistical approeetha above defined like-
lihood function and a prior distribution, to be defined latenich describes the model
parametersy andc before the voltage data. A proportion of the likelihood ftioc
times the prior distribution (using Bayes theorem) leadgh&posterior distribution,

see Section 3.3.1 for more details.

1.5.2 Markov Chain Monte Carlo estimation

The aim of solving the inverse ERT problem is to reconstracin@age by estimating
the unknown parameters (i.e. this set could be the radii@kthr-shaped object and
the MFS internal/external coefficients). For instance, nhata measurements are
Y ={Y;:j =1,...,n} and the values of the unknowns aXe= {X; : i = 1, ...,n},

the estimation is dependent on the posterior distribution

[Y[X)7(X)

m(X|Y) = T=Er,

(1.23)

wherel (Y| X) is a conditional distribution defined as the likelihood ftioo andr (X))
is a prior distribution.

Equation (1.23) can be written as

m(X|Y) o {(Y ]| X)m(X), (1.24)
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sincel(Y) is not dependent o and it does not play role in the estimation, [2].

In such inverse problems, the unknown paramgias of high dimension making
the posterior distribution complicated to be solved nuoadly using the standard reg-
ularization methods. At the same time, the analytical smubf the posterior problem
is impossible. This is why the Markov chain Monte Carlo (MCM€chnique is used
in this thesis to estimate the shape, size and location ointer inclusion, as well
as evaluating the constant contact impedance (CCI) valetsglen the attached elec-
trodes and the surface. Another advantage of using MCMCikehat it also allows
deeper investigation of the posterior distribution in terwhaccuracy and reliability by
plotting histograms and credible intervals of the unknowrameters, more details are

reported in Section 3.3.2.

1.6 Summary and outline of the thesis

In various applications of EIT, such as medical imaging avgig/sics, the purpose
is to evaluate the conductivity distribution within a domair his means reconstruct-
ing the conductivity of the whole domain using some eleatrineasurements which
are taken on the surface of the object (or body), [66]. Ths& tzan be achieved by
attaching a finite number of electrodes to the outside baynofathe object. Then,
currents are injected through the electrodes. The MFS & taseumerically simulate
the boundary voltages of the complete-electrode directalh@dERT. In this process,
we seek to determine an accurate solution because we laekaleone for such com-
plicated problems. Moreover, there are several advanthgésnake the MFS worth
while. Firstly, it is a meshless scheme because only thedryrpart of the domain
needs to be collocated and no interior points are invohEsl,37], unlike the FDM and
FEM where the solution domain is discretised into interrdlscand domain elements,
respectively. Secondly, the MFS avoids any integral catoahs whilst the boundary

element method (BEM) does not. This advantage makes the M&S ot only eas-
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ier to build in two dimensions comparing with the correspagdBEM code, but also
for the three-dimensional case. Also, it can be easily imgleted for irregular and
complex geometries, [15, 38]. Thirdly, the MFS is a BEM-typethod, so it shares
its advantages over the FEM and FDM, [38]. Finally, it sustel$y deals with infinite
domains by merging the behaviour of the resulting solutiatsthe fundamental so-
lution of the governing equation, [38].

Using the voltages as a data set to estimate the interiorucbindy distribution
results in an ill-posed inverse problem, which needs to lgelagized to obtain a
stable and reliable solution. The Bayesian process is alic#xgiatistical approach
which aims to determinate, interpret and reconstruct iredgem data using proba-
bility models. Also, this approach allows to assess thaldlty and uncertainty for
the unknowns by plotting the credibility intervals and theeglar histograms for each
sampled parameter, [28].

After introducing some background and fundamental corscefthis work, Chap-
ter 2 begins with the mathematical formulation of the cortgskdectrode model (CEM)
for ERT. Since in the direct problem of the CEM the constattiage on each electrode
is unknown, we can eliminate it by integrating the assodi&ebin boundary condi-
tion, as described in [22]. The resulting mathematical rhsdhen solved using two
numerical methods. These are the BEM and, for the first tineiieshless MFS. In
the same spirit as [36], we compare thoroughly the numemngsailts obtained by these
two methods for both simply-connected and multiply-coned@domains containing a
rigid inclusion or a cavity. An extension to composite bitaréls is also performed
afterwards. Finally, Section 2.8 highlights the conclasiof Chapte® paving the way
for of solving the inverse problem of ERT/EIT in the next cteap

In Chapter 3, we are interested in identifying the size aragstof the inner inclu-
sion. This means to approximate an image of the piecewissta@ohelectrical con-
ductivity distribution within the inclusion. So, we find tls®lution of the complete-
electrode inverse model of ERT using the Bayesian approadiihe MFS. Some ex-

amples using simulated experiments are examined to deratste effectiveness of
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the proposed statistical procedures.

In Chapter 4, we are interested in solving the inverse proldéCEM of ERT in
an annular domain containing rigid inclusions that havenamkn centres, this means
detecting the locations of those inner objects besides $iees and shapes. Firstly,
we assume that we have only one rigid inclusion in the anrddarain which has un-
known centre needing to be estimated from noisy data. Théidaepresented by the
boundary voltages obtained analytically or by solving ntioadly the direct problem
using the MFS and are corrupted by some Gaussian random fidissimulated data
are inverted using the MCMC method to produce a reconstmicti the inner object.
We find simultaneously the unknown centre and the CCI valeésd®en the attached
electrodes and the outer surface. In addition, we extendidhke to identify two inclu-
sions having unknowns centres.

In Chapter 5, we extend our work to the three-dimensional jiglablem and, for
simplicity, we consider solving the direct and inverse awmus model problems of
ERT. In the first part of the chapter, we apply the MFS to findvmd solutions of
three-dimensional Laplace’s equation subject to Dirichteindary conditions with or
without an inclusion and we compare the obtained resultsefriterior solutions and
the boundary derivative with the exact ones in cases wheimnalytical solution is
available. Then, we use the MFS to find the numerical norm@vatese on the outer
boundary when the number of the rigid inclusions is extertdegvo. Next, we pre-
form some numerical simulations and consider the same igabithat combines the
MCMC with the MFS to solve the inverse problems.

Finally, the conclusions of the thesis and further work aesented in Chapter 6.
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Solving the complete-electrode model

of direct ERT

2.1 Introduction

The EIT direct (forward) problem involves the calculatidivoltages, based on a given
conductivity distribution. In contrast, the inverse ElToplem aims to reconstruct the
inner conductivity distribution from knowledge of the vadfes from set of injected
current patterns. In the proposed iterative optimizaticocess, the nonlinear least-
squares objective function has to be evaluated many timag tise forward solver.
Consequently, there is a need to obtain the solution of trectproblem accurately
and fast, [31, 33, 55, 59].

Some comparison has been previously performed in [24] etiee finite volume
method (FVM) and the finite element method (FEM), for the gaqulet of EIT. Also,
very recently an improved boundary distributed source ouetias been compared in
[33] with the more standard boundary element method (BEM) BEM numerical
forward solvers for ERT.

We begin with the mathematical formulation (Section 2.1)ckhdescribes the

complete-electrode model (CEM) for ERT. Since in the diproblem of the CEM the

15
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constant voltage on each electrode is unknown, we can @imihby integrating the
associated Robin boundary condition, as described in [PR¢ resulting mathemati-
cal model is then solved using two numerical methods. Thes&BM (Section 2.3)
and, for the first time, the meshless method of fundamentatisns (MFS) (Section
2.4). In the same spirit as [33], we compare thoroughly theerical results obtained
by these two methods for both simply-connected (Sectiopgh8 multiply-connected
domains containing a rigid inclusion or a cavity (Sectiod)2 An extension to com-
posite bi-materials is also performed in Section 2.7. Fynabnclusions are given in
Section 2.8 paving the way for solving the inverse problerBRT/EIT in subsequent

chapters of the thesis.

2.2 Mathematical formulation

In this section, we consider Laplace’s equation in a (twoahsional) bounded domain
2, namely,
Vi =0, in Q, (2.1)

subject to certain boundary conditions which make the gmlihe so-called ‘complete-
electrode model’ (CEM), [61]. In this model, on the boundafythere are attached

electrodess,, forp = 1, L, see Figure 2.1.
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Figure 2.1:The two-dimensional CEM, fof. = 2 and4 electrodes.
Yy Yy
€2 g1
g1 €1
g2 €1
N
€3 94
€2 g2
g3 €4
On these electrodes we have the Robin boundary conditi@h, [2
ou 1 2,1
— - — ds = 22 on =1L 2.2

wheren is the outward unit normal to the boundai{?, % = v/ -1, ¢, is the length of

the electrode, and
du

is the injected constant current applied on the electegdand s.atisfyingzlf:1 I, =
0, andz, > 0 is the constant contact impedance. In equations (2.1)-(e3have
assumed that the mediufhhas unit constant conductivity, but later on we shall also
consider a piecewise constant version.

The derivation of the boundary condition (2.2) is as followke constant voltages
U, on the electrodes,, that are to be determined in the direct problem, are céiedla

in the inverse problem from the Robin boundary condition

0
u+zpa—z = U,

one, p=11L. (2.4)

Then, by integrating (2.4) ovet,, and using (2.3) we can eliminate the unknolin
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to obtain (2.2).
The electric current is assumed to vanish on the gap®r p = 1, L, between the

electrodes on the boundary part, so that

ou
5, =0 on OO\UL_ e, =: UL, g, (2.5)

In order to obtain a unique solution we also need that, [5],

/ uds = 0. (2.6)
o0

Equations (2.1), (2.2), (2.5) and (2.6) represent the tpeablem of ERT if the
domain(2 is simply-connected. If2 is multiply-connected, e.g. it contains holes, then

an additional boundary condition of the form

u=0, or 2—220, or zg—ZJru:O (2.7)
should be applied on the inner boundary portion®Qf wherez > 0 is a contact
impedance.

The CEM given by equations (2.1), (2.3)-(2.6) is uniquelivable, [61], and has
been validated in [18] as being in most agreement with erperts compared with the
simpler continuous, gap and shunt models of ERT/EIT.

Without loss of generality, we can assume as the unit disk{ (z, y) € R?|z? +
y* < 1}, otherwise we can always conformal a map from any the simphnrected
domain(2 onto the unit disk, [35].

A closed form solution of the direct problem of ERT is avai&abnly in very re-
stricted cases, e.g. fdr = 2 electrodes and no contact impedanegs= z, = 0,
[51], and therefore numerical methods are generally nacgsis the next sections we

describe and compare two such numerical methods.
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2.3 The boundary element method

The BEM has many advantages compared to other domain déstieh methods be-
cause it discretises only the boundary to obtain the unpeédoundary data and the
solution in the whole domain, [3, 41]. This reduction makestumber of unknowns,
which need to be determined, smaller in comparison with doiacretisation meth-
ods such as the FDM or FEM.

In this section, we will use the BEM to solve the forward pehl (2.1), (2.2),
(2.5) and (2.6) in the unit diskR = {(z,y) € R?|2? + y*> < 1}. The BEM reduces the

problem to one of solving the linear system of equations
Au' + Bu = 0, (2.8)

whereu := u (ﬁ) _ul= 2 (ﬁ,) __, A and B are matrices which depend
—/ j=1,M " j=1,M

solely on the geometry @f), and M is the number of boundary elements. The bound-

ary element endpointis, = (z;,y;) = (cos (3£2) ,sin (2)) for j = 1, M, with the
convention tha;_70 =Dy, and@j is the boundary element node. For a constant BEM
approximation;_?j is the midpoint of the segment; = PP The derivation of this

approximation can be briefly summarised in the followingrfsieps:

(i) Find the fundamental solutiofi(p, p) of Laplace’s equation satisfying

whered is the Dirac delta function. The fundamental solution whighseek is

based on the distance betw%eand;i. As a result, in two-dimensions

’ 1 / 1 / /
Gop) = —5-mlp—pl= =5/ —of + G -y),  @9)

wherep = (z,y) andp’ = (', 3/).

(i) Transform Laplace’s equation into the integral eqoati
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n@%@zéﬂszy——w@—+gmcw (2.10)

where

0.5 if pedQ (smooth)

np) = {1 if peq,

0 if p¢Q,
This is obtained using the fundamental solution (2.9) anee@'s identity.

(iii) Discretise the boundary into small straight line segtsI’; for j = 1, M/ and
assume that the boundary potentiadnd its normal derivativ% are approx-
imated by constant functions over each small boundary eleine Via these

approximations, the integral equation (2.10) is expressed

n(p)u(p) = Z i Aj(p) — Z u; B;(p), (2.11)
where
A = [ Gpr)
L | rn (ry2) = 1) if ab =0,
- T or

acos(B)(In(a) —In (b)) — h(1 —In (b)) + aysin(f) if ab#0
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Bw = [ G

0 if ab=0o0rpe {qu’ﬂj}

= 5o YV signa;i(p) — a;(p)) ity € ly—1, v,

Y sign(a;(p) — aj—1(p)) otherwise

where sign is the signum functiom,= [p — ;_9j_1|, b=|p— Bj" h = ‘]_jj — Bj_1"
a;_1(p) anda;(p) are the angles between theaxis and segmentgp. . P, and

@, respectively, and the anglésand are given by

b arecos [CEE I 4 o (CER Y
— arccos 72&1) s — arccos 72@}1 .

(iv) Apply equation (2.11) at the midpoint nodgsfor i = 1, M. This gives the sys-
tem of linear algebraic equations (2.8) with the unknowradv’. The system

can be rewritten as

M
> (Ayul + Byu) =0, i =T, 2.12)
j=1

whereA and B are matrices defined by

- N 1
Aij = Aj(Di), Bij = —Bj(ps) — 55@'7

whered;; is the Kronecker delta function.

In compact form, (2.12) represents the system of equati®s®3. (Specific boundary
conditions must be imposed to make the resulting systemuatesns (2.12) solvable.
The CEM boundary conditions (2.2), (2.5) and (2.6) will besidered next.

First, we collocate the boundary condition (2.2) for thecttedesz,, p = 1, L, at
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the nodeg;, resulting in

(2K+1)M/(2L)

21 2,1
/ _ Aplp
u¢+zpu@-——nwp E uk—f,
k=(KM/L)+1

i=(M+1+KM/L),(M + 2K + 1)M/(2L)), (2.13)

whereK =0, (L — 1). This yields% equations.
Secondly, by collocating the zero flux boundary conditiorb)Zor the gaps,,

p = 1, L, between electrodes at the nogigswe obtain

uh =0, i=(M+1+ (2K — 1)M/(2L)), (M + KM/L), (2.14)

whereK =1, L. This yields anothef/ equations.

Finally, the condition (2.6) yields one more equation, niggne

M
> up=0. (2.15)
k=1

To find the solution of the CEM problem (2.1), (2.2), (2.5) é&d) using the BEM,
the equations (2.12)-(2.15) have been reformulated in aHewiing generic matrix

form as a(2M + 1) x (2M) linear system of algebraic equations:

DX =b, (2.16)

where

15

X =

Of course, from equations (2.13) and (2.14), in principlecmald eliminate the cur-
rent fluxu' such that (2.16) can be reduced to a smdldér+ 1) x M linear system of

algebraic equations. Since the system of equations (& D&gr-determined (the num-
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ber of equations is greater than the number of unknowns) aneise the least-squares

method to solve it. This yields
X = (D"D)'D7b. (2.17)

Once the boundary values have been obtained accuratelgti@n2.11) can be

applied atp € 2 to provide explicitly the interior solution fai(p).

2.4 The method of fundamental solutions

One of the reasons why the method of fundamental solutiosS)Ms becoming in-
creasingly popular in various applications is that it is@gptually simple and easy to
describe and implement. The MFS is regarded as a meshlessaB&EMhas been used
to find the solution of inverse geometric problems governgddplace’s equation in
[35, 36].

The MFS seeks a solution of Laplace’s equation (2.1) as arinembination of

fundamental solutions of the form:
N R—
up) =Y ¢GE,p),  peQ=0U0N, (2.18)
j=1

Wheregj are called sources (‘singulaties’) and are located outSidand (¢)j—1w

are unknown coefficients to be determined by imposing thefary conditions (2.2),
(2.5) and (2.6). The approximation (2.18) is justified by tlenseness of the set of
these functions, a8 — oo, into the set of harmonic functions, see [14, 60] and Ap-
pendix A. Note that ifR? there is an additional constant which has to be included in
the expression (2.18) in order for the set to be completethisiconstant can usually
be taken to be zero without much loss of generality.

Since(? is the unit disk, we take the source points
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éj = (Sjl,ﬁf) = <Rcos <2%‘7) , Rsin (%)) , j=1,N,

wherel < R < oo, and the boundary collocation points

2mi 2mi
@i:(cos(%),sin(%)), =1, M.

From (2.9) we have

oG 1— (§o+&y)
6—n(§j’]—9> = 27T|§Jj —Qé , p=(z,y) € 09, (2.19)

where{ . = ( ;,€3). In order to obtain the coefficient vector= (c;);_, we substi-
tute equations (2.9) and (2.19) into the boundary condst{@m®), (2.5) and (2.6).
Firstly, we apply the boundary condition (2.2) for the etedess,, p = 1, L, at the

collocation points; one, resulting in

(2K+1)M/(2L) ac "
PP

G(éjaik) + Zp—r(éjaiz) Cj = A

G(&, )~ 1

J

M) =

P p=(KM/L)+1

<.
Il
—_

i=(KMJL)+1,(2K + 1)M/(2L), (2.20)

whereK =0, (L — 1). This yields% equations.
Secondly, by applying the zero flux boundary condition (2B)he gapsg,,p =

1, L, between electrodes, at the collocation pointsn g,, we obtain

Z cj%(gj,gi) =0, i=(1+ (2K —1)M/(2L)),(KM/L), (2.21)
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whereK =1, L. This yields anothe# equations.

Finally, imposing the condition (2.6) yields one more egurat

YD GGE ) =0. (2.22)

i=1 j=1

Again, to find the solution of the CEM problem (2.1), (2.2),52and (2.6) using
the MFS, the equations (2.20)-(2.22) have been refornualiiaténe following generic

matrix form as anfM + 1) x N linear system of algebraic equations

Fec=b. (2.23)

The least-squares method is used to solve the system of@usié2.23) ifA/+1 > N.
This yields

c=(FTF)" FTh. (2.24)

Once the coefficient vectar has been obtained accurately, equations (2.18) and
(2.19) provide explicitly the solution for the potentialin Q, and the current flux
Ou/on on oS).

2.5 Numerical results and discussion

In this section, we will discuss and compare the numeridalt®ms of the direct ERT
problem given by equations (2.1), (2.2), (2.5) and (2.6pot&d using the BEM and
the MFS.

Example 1. For simplicity, choosd. = 2 (only two electrodes which are attached
to the boundary) and solve the problem (2.1), (2.2), (2.9)@6) with the following
inputdata:z; = 2z, = I; = 1, and/l, = —1.

BEM Solution: The matrixD in equation (2.16) is given by
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By,  ifl=T,M,

Di,l - Z == 17 M
Ay ifl=(M+1),2M,
Using equations (2.13)- (2.15) we obtain
-z if (i—M)#1,1=1,M/4,
(1-2) if(i—M)=11=1,M/4,
D, = i=(M+1),(M+ M/4),
0 if l=(M/4+1),M,
\2152‘71 if [ = (M + 1), QM,
-z if (i—M)#1,l=(M/2+1),3M/4,
5 (1-L) f@-M)=11=(M/2+1),3M/4,
il —
0 if l=1,M/2UBM/4+1),M,
| 22641 if 1= (M+1),2M,

i=(M+M/2+1),(M+3M/4),

Di,l - (51'71, l — (M+ ].),ZM,

i=(M+MJ/A+1),(M+ M/2)U (M + 3M/4+1),2M.

The last row in the matriD is given by

1 ifl=101,
Doy, =
0 ifl=DM+1,2M.

Finally, the vectow is given by

T
Q:(O ah g z2b 0 0) .

= 01 = 12

Table 1 illustrates the numerical solution of the directijpeon (2.1), (2.2), (2.5)
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and (2.6) obtained using the BEM with various numbers of lbauypelementd/. We
only show the solution in the upper semi-disk because theatisalis symmetric on
the lower semi-disk, namely(z,y) = u(—x,—y) forz € (=1,1),y € (0,1). Also,

in Table 2.1 (as well as Tables 2.2 and 2.4 later on) we onlyshar simplicity of
illustration, the results at € {1,2,3,9}/10. We mention that the numerical results
for the other values of € {4,...,8}/10 have been found to possess similar features
and therefore are not included. From Table 2.1 it can be desrusing the BEM to
solve the CEM yields a convergent interior solution up torfdecimal places, as the

number of boundary elemenig increases.
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Table 2.1: The numerical solution of Example 1 at selected interionf®ofr, §) obtained
using the BEM for various numbers of boundary eleméits {8, 16,32, 64, 128,256}.

0 27/10 | 47/10 | 67/10 | 8x/10 | 107/10 | M
0.0540| 0.0487| 0.0247| -0.0085| -0.0386| 8
0.0556| 0.0502| 0.0255| -0.0088| -0.0398| 16
1/10 || 0.0561| 0.0508| 0.0257| -0.0088| -0.0401| 32
0.0562| 0.0506| 0.0257| -0.0089| -0.0401| 64
0.0562| 0.0506| 0.0257| -0.0089| -0.0402| 128
0.0562| 0.0507| 0.0258| -0.0089| -0.0402| 256
0.1083| 0.974| 0.0491| -0.0169| -0.0769| 8
0.1116| 0.1004| 0.0517| -0.0174| -0.0793| 16
2/10 || 0.1124| 0.1011| 0.0511| -0.0175| -0.0799| 32
0.1126| 0.1013| 0.0511| -0.0176| -0.0800| 64
0.1126| 0.1014| 0.0512| -0.0176| -0.0801| 128
0.1127| 0.1014| 0.0512| -0.0176| -0.0801| 256
0.1632| 0.1463| 0.0727| -0.0248| -0.1147| 8
0.1681| 0.1508| 0.0751| -0.0257| -0.1184| 16
3/10 || 0.1693| 0.1519| 0.0757| -0.0259| -0.1193| 32
0.1696| 0.1521| 0.0759| -0.0260| -0.1195| 64
0.1697| 0.1522| 0.0759| -0.0260| -0.1196| 128
0.1697| 0.1522| 0.0759| -0.0260| -0.1196| 256

0.5051| 0.4723| 0.1592| -0.0734| -0.3175| 8
0.5264| 0.4774| 0.1793| -0.0565| -0.3440| 16
9/10 || 0.5264| 0.4774| 0.1793| -0.0565| -0.3440| 32
0.5263| 0.4772| 0.1792| -0.0564| -0.3436| 64
0.5264| 0.4774| 0.1793| -0.0565| -0.3439| 128
0.5264| 0.4774| 0.1793| -0.0565| -0.3440| 256

Figures 2.2 and 2.3 show the BEM boundary solutiomf@nd its normal deriva-
tive du/0on, respectively. From these figures it can be seen that the B#iMisns for
bothu anddu/0n have rapid convergence on the boundary. So, we can rely se the
results and consider them as the ‘exact solution® of the-pedled direct problem of

the CEM of EIT.
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08 !
0 a1 02 03 04 05 0.6 07
8 K2n)

Figure 2.2:The boundary solution(1, ), as a function of) /(2), obtained using the BEM
with M € {64,128, 256}, for Example 1.

du/an(l,9)

04 05

0.1 02 03
& /(2m)

Figure 2.3:The normal derivativ%% (1,0), as a function o /(27), obtained using the BEM
with M € {64,128,256}, for Example 1.

Figure 2.4 shows the resulting voltagés p = 1, 2, obtained from equation (2.4).
In this figure the top part illustrates that the voltage iseed constant and equal to

U, ~ 1.1738, whilst the bottom one indicates thid ~ —1.1738.
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Figure 2.4:The voltaged/,,, p = 1,2, as functions of)/(27), obtained using the BEM with
M € {64,128,256}, for Example 1.

MFS solution: We now solve the problem (2.1), (2.2), (2.5) and (2.6) forrfagpée 1
using the MFS instead of the BEM.
To begin with, the firsf\/ /4 rows of the matrix/' in equation (2.23), corresponding

to the first electrode,, are

2
F =G, T

A YTA (Gij + Gisrj + o+ Gujag) + 216G
1

,J? Z: 17M/47 j: 17N7
whereG;; = G(§;, ;) andG; = 95 (¢;, ;). Another 2L rows in the matrix#
are generated by applying the boundary condition (2.20hersecond electrods,
namely

2
Fij=Gij— 0

ij m (G(M/2+1),j + G (mj242), + o+ GBM/4,j) + Zng,ja

i=(M/2+1),3MJ/4, j=1,N.

In addition, applying the no flux boundary condition (2.2&3ults in anothe@—f rows
given by

F;=Gij, i=(M/4+1),M/20(3M/4+1),M, j=1,N.

27.]’
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To end with, the last row in the matrik obtained from the condition (2.22) is:

M
F(MJrl)J — ZGi’j’ ] — 17N

i=1

Similarly, the vectob of the linear system of equations (2.23) is given by

Table 2.2 illustrates the numerical solution of the probi@mn), (2.2), (2.5) and
(2.6) obtained using the MFS with variodg = N and R = 1.15. From this table
it can be seen that using the MFS to solve the CEM provides wecgent interior
solution up to four decimal places. However, by inspectiaglés 2.1 and 2.2 it can be
seen that this convergence is slightly slower in the MFS thahe BEM, asM = N

increases.
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Table 2.2: The numerical solution of Example 1 at selected interionf®ofr, §) obtained
using the MFS for varioud/ = N € {8,16,32,64,128,256} andR = 1.15.

0 27/10 | 47/10 | 67/10 | 8x/10 | 107/10 | M
0.1316| 0.1225| 0.0619| -0.0213| -0.0968| 8
0.0731| 0.0658| 0.0334| -0.0115| -0.0227| 16
1/10 || 0.0578| 0.0521| 0.0265| -0.0091| -0.0413| 32
0.0562| 0.0507| 0.0257| -0.0088| -0.0401| 64
0.0562| 0.0506| 0.0257| -0.0088| -0.0401| 128
0.0561| 0.0506| 0.0257| -0.0088| -0.0401| 256
0.1466| 0.1318| 0.0664| -0.0227| -0.1040| 8
0.2740| 0.2457| 0.1216| -0.0422| -0.1909| 16
2/10 || 0.1160| 0.1043| 0.0526| -0.0180| -0.0824| 32
0.1127| 0.1014| 0.0512| -0.0175| -0.0801| 64
0.1126| 0.1013| 0.0511| -0.0175| -0.0801| 128
0.1126| 0.1013| 0.0511| -0.0175| -0.0800| 256
0.4144| 0.3704| 0.1777| -0.0422| -0.1909| 8
0.2210| 0.1981| 0.0982| -0.0335| -0.1552| 16
3/10 || 0.1747| 0.1567| 0.0781| -0.0267| -0.1230| 32
0.1698| 0.1523| 0.0759| -0.0259| -0.1197| 64
0.1697| 0.1522| 0.0759| -0.0259| -0.1196| 128
0.1696| 0.1522| 0.0759| -0.0259| -0.1195| 256

1.2972| 1.1393| 0.4321| -0.4131| -0.1860| 8
0.9671| 0.5922| 0.1302| -0.0360| -0.3042| 16
9/10 || 0.5478| 0.4905| 0.1825| -0.0572| -0.3505| 32
0.5270| 0.4783| 0.1791| -0.0564| -0.3439| 64
0.5265| 0.4775| 0.1792| -0.0564| -0.3439| 128
0.5263| 0.4773| 0.1792| -0.0564| -0.3437| 256

Figures 2.5 and 2.6 show comparisons between the BEM and Mi8ass for
the boundary data(1,0) andou/on(1, ), respectively. In these figures the markers
are shown only on a coarse selection of boundary points iardodallow the curves
to be distinguishable. In the MFS, we present the resultaiodd withR = 1.15
which is the choice for which the numerical MFS results acsest to the BEM re-
sults. In the absence of the BEM numerical results, or of atyéinal solution, one

could still optimize the choice of? by minimizing (with respect tak) the error in
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a least-squares sense, in the boundary conditions (2.5), 4&d (2.6) at points on
the boundary different to the collocation poirtls),_;;;. The reason whyt is close
to unity is because the boundary value problem possessgdaiities in the normal
derivative, see Figure 2.5, at the end points of the eleeg@dhere the Robin bound-
ary condition (2.3) and the Neumann boundary condition)(2i%. This in turn means
that the harmonic solution cannot be analytically continued too far outside the unit
disk ©2 and the MFS approximation (2.18) is accurate only provided the sources
(§j)j:17V are positioned on a circle of radidgs > 1 such that there are no singularities
in w in the circular annulug(z, y) € R?|1 < 22 +y* < r?}. From Figure 2.5 it can be
seen that there is excellent agreement between the BEM ai&dnidimerical solutions
except for the coarse boundary mesh/degrees of freedomai8 elements. How-
ever, increasing the number of collocation poinfsand the degrees of freedom,
leads to bothu(1, §) and its derivativeé)u/0n(1, §) showing good agreement with the
BEM solution. Furthermore, the MFS gives the closest agesgiio the BEM results
with M = N = 128 andR = 1.15. However, for the large choice @ff = N = 256,
the MFS shows some slight instability in the normal derwatisee Figure 2.6. This
instability is due to the ill-conditioning of the matrik. This is a commonly known
problem with the MFS, see [17, 43, 52].
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Figure 2.5:Comparison between 5 (1, 0) andu®FM (1,6), as functions o /(2x), for
Example 1.
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Figure 2.6: Comparison betweef

for Example 1.
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BEM (1,0), as functions of)/(27),

Table 2.3 shows the condition numbers, defined as the raticelea the largest sin-

gular value to the smallest one, of the BEM and MFS matricesd F', respectively.
This table shows that the BEM matrixX is well-conditioned, but the MFS matrik is

ill-conditioned.
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Table 2.3: Condition numbers of the matricd3 and F' of the BEM and MFS systems of
equations (2.16) and (2.23), respectively, for various Iners of boundary elemenid (in the
BEM) and degrees of freedom = N (in the MFS withR = 1.15), for Example 1.

M=N 8 16 32 64 128 256
cond(D) 3558 | 86.62 | 215.97 | 484.40 105 | 2 x 10°
cond(F) || 3x 107 | 5 x 101 | 3 x 1017 | 7 x 1010 | 2 x 1017 | 4 x 10™®

Example 2. We next solve Example 1 using the BEM and MFS when the number of
electrodes is increased fo= 4 and8, with the input data;, = 1 for p = 1, L and

injected currents

(

1 ifp=1,
I,=q9-1 ifp=1L, (2.25)
0 ifpe{2,...,L—1}.
\

Solution: Table 2.4 shows the numerical MFS and BEM interior solutiand the
absolute errors between them. It can be seen that for both 4 and . = 8, the
MFS and the BEM interior solutions agree up to three decirtadgs. In addition, the

accuracy increases as we move further towards the centne ofit disk.
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Table 2.4:The BEM numerical solution (witd/ = 128) of Example 2 at the some interior

points and (in brackets) the absolute errors between the BEMMFS (withAf = N = 128).

L=4

. o 21 /10 47 /10 67/10 8/10 107/10
1/10 0.0394 0.0426 0.0301 0.0088| -0.0146
(1x107%) | (1 x107%) | (8 x107%) | (2x107%) | (3 x 107°)

2/10 0.0841 0.0836 0.0551 0.0156] -0.0259
(3x107°) | (2x107°) | (1 x107°) | (3 x 107%) | (5 x 1079)

3/10 0.1340 0.1223 0.0752 0.0207| -0.0345
(5x107°) | (3x107°) | (1 x107°) | (3 x107%) | (5 x 107°)

9/10 0.5723 0.2593 0.1216 0.0330] -0.0560
(4x107%) | 3x107°) | (3x107°) | (3 x 107%) | (8 x 1079)

L=38

. 0 21 /10 47 /10 67/10 8/10 107/10
1/10 0.0199 0.0242 0.0191 0.0085| -0.0039
(7x107%) | (7x107%) | (4x107%) | (2x107%) | (9 x 1077)

2/10 0.0449 0.0484 0.0347 0.0147| -0.0067
(1x107°) | (1 x107%) | (7x107%) | (2x 107%) | (1 x 1079)

3/10 0.0752 0.0714 0.0469 0.0191] -0.0087
(2x107°) | (1 x107°) | (7Tx1079) | (2x 107%) | (1 x 1079)

9/10 0.3099 0.1451 0.0748 0.0276] -0.0127
(1x107%) | (1 x107°) | (4x107%) | (4x1077) | (2 x 1079)

Figures 2.7 and 2.8 represent the comparison on the boufmaly = 4 ands,

respectively. From these figures it can be seen that bothadetill follow the same

pattern as for the cade = 2.
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Figure 2.7:Comparison between the MFS and BEM solutions and their niateravatives on
the boundary when the number of electrodes is 4.
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Figure 2.8:Comparison between the MFS and BEM solutions and their nateravatives on
the boundary when the number of electrodes is 8.

2.6 Extension to multiply-connected domains

So far, the solution domain, which has been considered, has been a simply-connected
domain. In this section, we will investigate the direct ER®lgem in a domain which

has a void (rigid inclusion or cavity) inside.
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2.6.1 Applying the BEM to the direct ERT problem in an annular

domain with a rigid inclusion

Here, the solution domain is the annulus
N\ Qnner = {(z,y) € R?|(0.5)* < 22 + y* < 1}, where on the boundary of the hole
inside (rigid inclusion), the boundary conditioris= 0.

First, the external boundary = 1 is uniformly discretised intd// boundary ele-
ments and the numbering of these elements is anticlockv@gailarly, the internal
boundaryr = 0.5 is uniformly discretized into anotheY/ boundary elements, but

these are numbered clockwise, [55]. The endpoints of thermak boundary elements

271 271
pi = (20, 91) = (cos (ﬁ) ,sin (ﬁ)) , i=T,07,

with the convention thagO = p,,» Whereas the endpoints of the internal boundary

are

elements are

pi = (z5,y;) = (0.5 cos (27r - W) ,0.5sin (27r - LAZM))) ,

i=M+1,2M.

Sinceu = 0 on the boundary of the rigid inclusion, the EIT problem isueed to

solving a new linear system of BEM equations

BQOuter + Al’ = Q7 (2'26)
u Qu (5.
whereu = (u @))zzm’ andy’ = [ 79| = , on (B)i=1n1 . We also
7 ilnner a_Z(Z_)i)i:MJrl,QM

denote the boundary element ngde-= (p; + p;—1) /2fori =1, MUM + 2,2M, and

Py = (Pars1 + panr) /2
First, we collocate the boundary condition (2.2) for thectiedesz,, p = 1, L, at
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the node®; -, resulting in

(2K+1)M/(2L)

2 )
Ui—opm + ZpulzeQM Y7 Z Up = %7
P k=(KM/L)+1 p

i =@M+ 1+ KM/L),(2M + (2K + )M/(2L), (2.27)

whereK =0, (L — 1). This yieldsZ equations.
Second, by applying the zero flux boundary condition (2.5)the gapsy,, p =

1, L, between electrodes at the noges,,;, we obtain

Wy =0, i=(2M + 1+ (2K — 1)M/(2L)), 2M + KM/L), (2.28)

whereK = 1, L. This yields anothef, equations.

/ uwds =0
BQOuter

yields one more equation, namely,

Finally, the condition

M
> up=0. (2.29)
k=1

Therefore, to find the solution of the CEM problem (2.1), J2.5) and (2.6) in
an annular domain containing an inner rigid inclusion ugimg BEM, the equations
(2.27)-(2.29) are reformulated in the following matrix fioras a(3M + 1) x (3M)
linear system of algebraic equations:

DX =, (2.30)
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where

U uter

>
I

(2.31)

/
U Outer

/
U rnner

Since the system of equations (2.30) is over-determinetiave used the least-squares
method to solve it. This yields the solution (2.17) for thespecified boundary data
(2.31).

Once the boundary data has been obtained accurately, @g2tll) can be ap-

plied forp € € to provide explicitly the interior solution foi(p).

2.6.2 Applying the MES to the direct ERT problem in an annular

domain with a rigid inclusion

In this section, the MFS seeks a solution of Laplace’s equdf.1) as a linear combi-

nation of fundamental solutions of the form:

2N

up) =Y ¢GE.p), P EN e (2.32)

J=1

Where§j are the sources located outside the outer domain
Q={(z,y) eR*|2* +y* < 1}
and inside the rigid inclusion

Qrnner = {(5573/) S ]RQ|$2 + y2 < (O5)2} :
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The (c])j o are unknown coefficients to be determined by imposing thentary
conditions (2.2), (2.5), (2.6) and

u=0 on 8anne7"~ (233)

H 21
We take the external source poirgls = (¢},£7) = (Rcos (%), Rsin (%2)) for
j=1,N,wherel < R < oo, the internal source points
£ = (6.8 = (R1 cos (W) , Ry sin (W)) for j = N +1,2N, where
0 < Ry < 0.5. We also take the external boundary collocation points
z; = (cos (2) ,sin (22)) for i = 1, M, and the internal boundary collocation points
= (0.5 coS <(T) ,0.5sin ((T)> fori=M+1,2M.

For external pointp = (z,y) € 02 we have

a_G( )_1—(§}x+€§y)
on 2 —27T|§j—}_)|2 ’

j=T1,2N, (2.34)

whilst for internal pointp = (z,y) € 0Quner We have

oG (05 = (§z + &)
0 & = 05y, — g

j=T1,2N. (2.35)

In order to obtain the coefficient vector= (c;);_7zx, We substitute equations (2.9),
(2.34), and (2.35) into the boundary conditions (2.2), XA2&.6) and (2.33).
First, we apply the boundary condition (2.2) for the eledé&®:,, p = 1, L, at the

collocation points; one, resulting in

o
=2

o (2K+1)M/(2L) i

oG
G~ 3 2. Om)tag )| a="T"

P p=(KM/L)+1

<.
Il
—

i=(KM/L)+1,(2K + 1)M/(2L), (2.36)
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whereK =0, (L — 1). This ylelds equations.
Second, by applying the zero flux boundary condition (2.5hergaps,, p = 1, L,

between electrodes, we obtain

cha (& 2) =0, i=(1+Q2K-1)M/(2L)), (KM/L) (2.37)

whereK = 1, L. This yields anothe#] equations.
Third, we apply (2.33) which gived/ more equations

chG(_j,zi) =0, i=M+1,2M. (2.38)

Finally, by imposing the condition (2.6) and using (2.38glgs one more equation

2M 2N

ZZCJG(_J,,@) =0. (2.39)

i=1 j=1

Again, to find the solution of the CEM problem (2.1), (2.2).5R (2.6) and (2.33)
using the MFS, the equations (2.36)-(2.39) are reformdlaiehe following matrix

formas a2M + 1) x 2N linear system of algebraic equations:
Fc=b. (2.40)

The least-squares method is used to solve the system ofi@gi&2.40). This yields
the solution (2.24).

Once the coefficient vecterhas been obtained accurately, equations (2.32), (2.34)
and (2.35) provide explicitly the solution for the potehtig,,;... on the external bound-
ary o) and inside the annular domdih the current flux du/on)oue- ON the external
boundaryo$2 and the current fluxou/on) 1., on the internal bounda§2;,,,.., re-

spectively.
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Example 3. Solve the problem (2.1), (2.2), (2.5), (2.6) and (2.33) gdime BEM
and MFS with the same input data as in Example 1.

BEM solution: The matrixD in equation (2.30) is given by

Bi,l |f l = ]_,M,
Di,l - ’l - 172M
Ay ifl=(M+1),3M

-z if (1 —2M) #1,1=1,M/4,
5 (1—4) i @E—2M)=11=1,M/4,
il —
0 if | =(M/4+1),MU(2M +1),3M,
[ 2101 if | = (M +1),2M,
i=(2M+1),(2M + M/4),
-z if (i —2M) #1,1=(M/2+1),3M/4,
5 (1-2) if(i—2M)=11=(M/2+1),3M/4,
il —
0 if l=1,M/2U(3M/4+1),MU(2M +1),3M,
\2252‘,1 if | = (M -+ 1), QM,

i=(2M + MJ2+ 1), (2M + 3M]4),

Di,l - (51'71, |f l — (M+ ].),ZM,

i=02M+M/4+1),(M+M/2)U(2M +3M/4+1),3M.

The last row in the matrixD is given by
1 ifl=1M,

D@y =
0 ifl=0M +1,3M.
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Furthermore, the vectdris given by

T
b=(0 3% 0 22 0 0) (2.41)

MFS solution: Turning now to the MFS solution, the firdt' /4 rows of the matrix#’

in equation (2.40) corresponding to the first electrodare

2

F;j=Gi;— M, (Gi,j +Giprjt+ .+ GM/4,j) + 2G|

7/7]’

i=1,M/4, j=T1,2N.

Another% rows in the matrixt’ are generated by applying the boundary condition

(2.2) on the second electroelg namely

2

Fij=Gij— m(

Goujarnyg + Goujara) g + -+ Ganyay) + 2G5 5,

i=(MJ2+1),3M/4, j=T1,2N.

In addition, applying the no flux boundary condition (2.53uks in anothel%f rows

given by

Fy=G ., i=(M/4+1),M/203M/4+1, j=T1,2N.

7/7]’

Moreover, anothef/ rows are generated by applying the inner boundary condition

(2.33), namely,

Fj=Gij, i=(M+1),2M, j=1,2N.
To end with, the last row in the matrik, obtained using equation (2.39), is:
2M

Fonvynyy = ZGi,ja Jj=12N.

i=1
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The vecto of the linear system of equations (2.40) is given by

T
— [ 21 zolo
é—(T 0 =2 0 0) : (2.42)

In the MFS we také? = 1.15 andR; = 0.45.

Figures 2.9, 2.10 and 2.11 present a comparison betweerBieaBd MFS solu-
tions for the boundary data., (1, 6), (0u/0n)outer (1, 8) and(Ou/On) rpner (0.5, 0),
respectively. From these figures it can be seen that the BE#®r golution and its
derivative, as well as the BEM inner derivative are convetgas the number of
boundary element8/ increases. This is also true when the MFS is used except for
M = N = 256. In this later case, the outer solution still has reasonabderracy, but
the normal derivative (Figure 2.11) on the inner boundamgob®es highly unstable,

see also Table 2.5 for the condition numbers.

1 —E— BEM =8 0.5 g
05 —— MF5MeNS

—HE—EBEM M=16
—+— MFE,M=N=16

0 0

05

g 02 04 06 08 1 B 02 04 06 08 1
0.4

— 55— BEM M=32
——— MFS M=N=32

—E— BEMM=64
—+— MF&,M=N=54

D2 02
04 x : ; 0.4 B

gz 04 06 OB 1 0 02 04 0B 08 1
0.4 —E— BEMM=122 04 — g —B— BEM M=256

—+—MFSMN128 |

—*— MF5,M=N=256

a 0z 04 0& 0.8 1 o 02 04 D. 0s 1

Figure 2.9:Comparison between}ts (1,0) andu5%M (1,6), as functions ofl/(27), for
Example 3.
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! . —B— BEM, M= 1 —B— BEM M=16
0.5 = —+—— MF5,M=N=5 05 —— MF3,M=N=1%
0 0
a5 -0.5
Y L 1 L L | i L L L
1] nz2 0.4 06 0.8 1 1] 0z 0.4 0.6 0.8 1

—B— BEM M=32 e
—— WFEM=N=32

—B— BEM M=64
—— MF5M=N=6 ||

—B—BEM M=128
—*+— MFS M=N=128

—&— BEM.M=256
0.5 | e ——— MF5,M=N=258

Figure 2.10: Comparison betweeZ:)MES (1,0) and (9%)8EM (1,6), as functions of
0/(2mx), for Example 3.
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Figure 2.11:Comparison betwee(8%)} 5 (0.5,0) and (2)BEM (0.5, 6), as functions of
0/(2m), for Example 3.

Table 2.5: Condition numbers of the matricd3 and F' of the BEM and MFS systems of
equations (2.30) and (2.40), respectively, for various Iners of boundary elemenid (in the
BEM) and degrees of freedot/ = N (in the MFS withR = 1.15 and R; = 0.45), for
Example 3.

8 16 32 64 128 256
cond(D) || 2 x 10° 107 10° | 7x10° | 6 x10°] 5 x 107
cond(F) 107 [ 6x 107 | 2x 10% | 5 x 10 | 4 x 107 | 2 x 10™
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2.6.3 Applying the BEM to the direct ERT problem in an annular

domain with a cavity

Here, the solution domain is the same annulus as in Subsettol, but now it con-
tains a cavity inside on whose boundary/on = 0.
The BEM implementation is the same as that for the rigid isiclo of Subsection

2.6.1, however now the BEM reduces to solving the system adions

BQ + Al/Outer = Q7 (243)
U w(p. ),z
wherew i | 20wer | . (B,)i—t.n1  andub.,, == (2 (51)),_o
Urnner u(gi)izl\/erlQJ\J 7

Equations (27)-(29) remain the same. Therefore, to finddhgisn of the CEM (2.1),
(2.2), (2.5) and (2.6) in an annular domain with a cavity gsime BEM, the equations
(2.27)-(2.29) and (2.43) are reformulated in the follownatrix form as d3M + 1) x

(3M) linear system of algebraic equations:

DX =0b, (2.44)
where
Uouter
X - %/Outer (245)
anner

Since the system of equations (2.44) is over-determinetiave used the least-squares
method to solve it. This yields the solution (2.17) for thespecified boundary data
(2.45). Afterwards, equation (2.11) can be appliedfar Q2\Q;,,,., to provide explic-

itly the interior solution foru(p).
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2.6.4 Applying the MES to the direct ERT problem in an annular

domain with a cavity

Using the MFS to solve the forward ERT problem in a region Wwtgontains a cav-
ity inside is similar to solving that problem with the rigiddlusion of Subsection
2.6.2. The only difference is that the internal Dirichlenimgenous boundary condi-

tion (2.33) is replaced by the zero flux boundary condition

@ =0 on IQrner- (2.46)
on
Hence,
2N
oG L
;cj%@j,%) =0, i=M+1,2M. (2.47)

Due to this change, the rows

F;,=G,,, i=(M+1),2M, j=1,2N,

Z?J’

will be updated in the new matrix.

Example 4. Solve the problem (2.1), (2.2), (2.5), (2.6) and (2.46) gdime BEM
and MFS with the same input data as in Example 1.
Solution: The matrixD in equation (2.44) has the same structure as for Example 3,

but the last row is given by

1 ifl=1,MU2M~+1,3M,
Dy, =
0 ifl=DM+1,2M.

Furthermore, the vectdris the same as that given by (2.41).

Figures 2.12, 2.13 and 2.14 present a comparison betwedtieand MFS so-
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lution for the boundary datag..(1,6) and (0u/0n)outer(1,0) and wr,pe- (0.5, 0),

respectively. First, from Figures 2.12 and 2.13 the samelasions, as those obtained

from Figures 2.9 and 2.10 for the rigid inclusion problem ghBEple 3, can be drawn

for the cavity problem of Example 4. Second, for lalge= N = 256, the MFS insta-

bility in the normal derivative on the inner boundary of tigad inclusion, highlighted

in Figure 2.11, is not present in Figure 2.14. The reasorhisiis that retrieving higher

order derivatives is less accurate and less stable thaeviaty lower order ones, [47].

=

—HB—BEM, =58

—+— MFS, N=td=5

e

& T —8B—BEM, M=1B
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0.4 0.6 0.8

—B—EBEM, M=123
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Figure 2.12:Comparison betwe
Example 4.

1 0
IS (1,0) anduBEM (1,0), as functions o /(27), for
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Figure 2.13: Comparison betweeZ4)XE5 (1,0) and (9%)5EM (1,6), as functions

mn

0/(2m), for Example 4.

of



Chapter 2. 53
. —5— BEM, =3 5 —B—BEM, M=16
—+—MFS, N=M=8 —+— MFS, N=M=16

0 0
2 . . . f i i i i
0 02 04 0B 08 1 0 02 04 0B 08 1

—&—BEM, M=32 —B—BEM, M=64

—MPS, NeWESD | B ———MFE, NeM=f | P
g i-.d/ il

i"‘\ I"‘.--!“: ™

F“-"‘-.H-FI b

02 04 0B 0B 1 02 04 0B 08 1

—&—BEM, M=128
—+—MFS, N=hi=128 | @@

—5— BEM, M=256
——MFS, N=h=256 | B

Figure 2.14:Comparison between! 'S (0.5, ) anduBZ (0.5, 6), as functions of /(27),

Inner

for Example 4.

Inner

Table 2.6 shows the condition numbers of the BEM and MFS oedi) and ',
respectively. This table shows that the BEM matfixis well-conditioned, but the

MFS matrix " is ill-conditioned.

Table 2.6: Condition numbers of the matricd3 and F' of the BEM and MFS systems of
equations, for various numbers of boundary eleméit§n the BEM) and degrees of freedom
M = N (in the MFS withR = 1.15 and R; = 0.45), for Example 4.

8 16| 32 64 128 | 256
cond(D) || 31191 | 64353 | 10° | 2x 10° | 5 x 10° | x10*
cond(F) || 2 x 1017 | 5 x 10 | 108 | 9 x 10'7 | 5 x 10'7 | 10'®
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2.7 Extension to composite materials

In this section, the solution domain is represented by adtienal() = 2, UQ,, where
0 = {(z,y) € R?|(0.5)? < 2* + y* < 1} and

Qy = {(z,y) € R?*z* + 3> < (0.5)*}. So, the mathematical formulation of this prob-
lem is governed by two Laplace’s equations, are in each ditbedimensional bounded

domaing2; and(2,. The first equation is
v, = 0, in O, (2.48)

subject to the same boundary conditions (2.2), (2.5) are (2hich make the problem
the so-called ‘complete-electrode model* (CEM).

The second Laplace’s equation is
Uy = 0, in Qs (2.49)

subject to the following transmission conditions on theifaceQ; N Qy = 9N,:

U = U2 (250)
and
8u1 8u2
P 251
8711 fyang ( > )

wheren, is the outward unit normal to the boundai$2; of the material?; andn, =
—n, is the outward unit normal to the bounda$2, of the material),, and0 < v #

1 < oo is the ratio between the conductivities of the two matefizland(?;.

The previous cases (simply-connected and multiply-caiea@of Sections 2.5 and 2.6

could be considered as special cases of this compositeiatat&se, since:

(i) if v = 1, then the two composite material case becomes the simpiyexted
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domain of Section 2.5.

(i) if v = oo, then the two composite material case becomes the annutaaido

with a rigid inclusion of Section 2.6.1.

(iii) if v = 0, then the two composite material case becomes the annufaidavith

a cavity of Section 2.6.2.

In the formulation above), is defined as a general inclusion and the geometry of the

whole inclusion ERT problem is shown in Figure 2.15.

Figure 2.15:The two-dimensional CEM in a composite domain, for= 2 and4 electrodes.

) )

€2 g1
g1 €1

2.7.1 Applying the BEM to the direct ERT problem in a composie

bi-material

In this section, we will use the BEM to solve the inclusion ERDblem given by
equations (2.2), (2.5), (2.6), (2.48)-(2.51). For the fitsain(?,, the discretisation

of the boundary(?,, is the same as in Section 2.6.1. Hence, the BEM reduces the
Laplace’s equation (2.48) far; to a new linear system of equations similar to (2.26),

namely,

Buy + Au, = 0, (2.52)
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U u1(P.)i—177
P —O t P — Z 9

whereu, := uter 1. — e

W per ur(P,); i znr

u %(ﬁ) .

1 ;)i=1,M . _ .
and v} := | —OQuter | = Ona A=l . Equation (2.52) provides the first

o \4 8 (5, _vreia
A nner ony \P;)i=2I+1,20

2M rows of the matrixD.
Now, for the second domaifl, we discretise the internal bounday§), into M
boundary elements, directed clockwise. Hence, the BEMaesithe second Laplace’s

equation (2.49) for, to a new linear system of equations, similar to (2.8), namely
Buy + Aujy = 0, (2.53)

. Collocating

~ au ~
whereuy = (us(Parrt1-i));—gry1aa; @Nduy = (aTé(pQM-l-l—i))iM_H’QM
the interface transmission conditions (2.50) and (2.51hetorresponding boundary

element nodes and using (2.53) we obtain

1 -
B () e~ A (), =0 (2.54)

Equations (2.52) and (2.54) from a systenBaf equations witht M unknowns. In
order to make this system of equations uniquely solvablectmelitions (2.2), (2.5)
and (2.6) should be imposed on the outer boundary. To bedim we collocate the
boundary condition (2.2) for the electrodesp = 1, L, at the nodeg;_san, resulting
in

(2K +1)M/(2L)
2T

2zl
Ui (i—snr) + ZpU'1(i—snr) — Wl Z Uiy = %7
P p=(KM/L)+1 p

i=@BM+1+ KM/L),(3M + (2K + 1)M/(2L), (2.55)

whereK = 0, (L — 1). This yieldsZ equations.
Second, by applying the zero flux boundary condition (2.8hegaps,, p = 1, L,
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between electrodes, we obtain

Wy =0, i=(BM+1+ (2K —1)M/(2L)), 3M + KM/L),  (2.56)

whereK =1, L. This yields anothe# equations.

Finally, the condition (2.6) yield one more equation, namel

M
> uy =0. (2.57)
k=1

Therefore, to find the solution of the CEM given by equatidhg), (2.5) and (2.48)-
(2.51) in a composite material using the BEM, the equati@ris?), (2.54) and (2.55)-
(2.57) are reformulated in the following matrix form a4V + 1) x (4M) linear

system of algebraic equations:

DX =b, (2.58)
where
Uouter
Urnner
X = . (2.59)
l/Outer
ilnner

Since the system of equations (2.58) is over-determinetiave used the least-squares
method to solve it. This yields the solution (2.17) for thespecified boundary data
(2.59).
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2.7.2 Applying the MFS to the direct ERT problem in a composié

bi-material

In this section, the MFS for the Laplace’s equations (2.48) @.49) in the composite
material() = Q; U (), is applied by seeking a solution of Laplace’s equation (Ra43

a linear combination of fundamental solutions of the form:
2N .
w(p) =Y ¢GEp),  pe, (2.60)
j=1

where the source§j and the collocation points, are exactly the same as in Section
2.6.2, and by seeking a solution of Laplace’s equation {2a4% linear combination

of fundamental solutions of the form:

3N
wp)= Y 6GE.p.,  pe (2.61)

B j=2N+1
Similar domain decompositions technique for compositeens have been devel-
oped in [11-13] for the steady-state heat conduction g@eehy Laplace’s equation,
for the steady-state elasticity governed by the Laystem, and for the steady-state
heat transfer governed by the modified Helmholtz equatespectively.

In (2.61), the source§j are located outsid®;,,,,c,, SO

£ = (&.8) = (Rz oS (2”(97];2]\[)) , Ry sin (2”(]7];2]\[))) ., j=2N +1,3N,

where(0.5 < R, < oo, and the new internal boundary collocation points are

2m(i — 2M 2m(i — 2M —_
T, = (O.Bcos (%) ,0.5sin (%)) , i =2M +1,3M.

In order to obtain the coefficient vector= (c;);_izx, We substitute equations (2.9),
(2.34), and (2.35) into the boundary conditions. To begithywapplying the boundary

condition (2.2) results in equation (2.36), which in tunelyfs% equations. In addi-
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tion, applying the zero flux boundary condition (2.5) we af{@.38). This yields an
additional% equations.

Using the transmission conditions (2.50) and (2.51) resalt

2N 3N
> oGE )~ Y ¢GEx)=0, i=MTL2M  (262)
j=1 j=2N+1
and
2N 3N
Y oG r) — K Y ¢G(E ) =0, i=2M+1,3M, (2.63)
j=1 j=2N+1

respectively. These giv\/ equations.

Finally, by imposing the condition (2.6), yields one moreiatipn

2M 2N

ZZCJG(_],,@) =0. (2.64)

i=1 j=1

Again, to find the solution of the CEM problem (2.2), (2.5) 48d18)-(2.51) using
the MFS, the equations (2.60)-(2.64) are reformulatederféHowing matrix form as

a(3M + 1) x 3N linear system of algebraic equations:
Fec=b. (2.65)

The least-squares method is used to solve the system ofi@ygi&2.65). This yields
the solution (2.24).

Example 5. Solve the problem (2.2), (2.5) and (2.48)-(2.51) using te&vBand MFS

with the same input data as in Example 1 ang 2.
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BEM solution: The matrixD in equation (2.58) is given by

B,  if1=T1,20,

D, = 1=1,2M,
Al if l=(2M+1),4M,
and
B, ifl=DM+1,2M,
Diy=<A;, ifl=0BM+1),4M, i=(2M+1),3M.
0 ifl=1, MU (2M + 1),3M,
Using equations (2.55)-(2.57) we obtain
b if (i —3M)#1,1=1M/4,
5 (1-2)  if(i—=3M)=11=1,M/4,
il =
0 ifl=(M/4+1),2M U (3M +1),4M,
\2152‘,1 if | = (2M —+ 1),3M,

i=(3M + 1), 3M + M/4),

—-z if (i —3M)#1,1=(M/2+1),3M/4,

D (1-2) if(i—=3M)=11=(M/2+1),3M/4,
0 if 1 =1,M/2U (3M/4+1), MU (3M +1),4M,
| 22011 if | =(2M +1),3M,

i = (3M + M/2 + 1), (3M + 3M/4),

Di,l - 52‘71, |f l == (2M + 1),3M,

i=(3M+M/A+1),(M+ M/2)U (2M + 3M/A+1),4M.
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The last row in the matriXD is given by

1 ifl=101,
Dy, =
0  ifl=DM+1,4M.

Furthermore, the vectdris given by (2.41).
MFS solution: Turning now to the MFS solution, the firdt rows of the matrixt’ in

equation (2.65) are the same as those of the matirxExample 1. Moreover, another

M rows are generated by applying the inner boundary condiid®), namely,

FL‘,J‘IGZ"]', Z:(M—i—l),QM, jzl,QN,

F;‘J - _Gi,ija 1= (M—'—l),QM, ]: 2N—|— 1,3N

Another M rows in the matrixF' are obtained from (2.63) as

F,=G ., i=(2M+1),3M, j=1,2N,

7/7]’

F,;=2G;,_y, i=(2M+1),3M, j=2N+1,3N.
Finally, the last row in the matri¥’ is obtained from (2.64) as
2M
F(3M+1),j = ZGi,ja Jj=1N,
i=1
Fiamyy,; =0, j=N+1,3N.

Similarly, the vectob of the linear system of equations (2.65) is given by (2.42).
In the MFS we takeR = 1.15, R; = 0.45 and R, = 0.55.

Figures 2.16-2.19 present a comparison between the BEM &8l 9dlutions for
the boundary datag e, (1, ), wrnner (0.5, 0), (Ou/On)ouer(1,0) and
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(Ou/On) rmner (0.5, 0), respectively. The same conclusions as in Example 3 can be

drawn by observing these figures.

0 —HB—BEM, M=5 i —8—EBEM, M=16 |
—+—MFS, N==0G —+—MFS, N=h=18
5
0
-5
-10 : : : : -1 ; ; : :
0 0.2 0.4 0B 08 1 0 0.z 0.4 0B 08 1
1 BH—BEM, M=32 1 —E—BEM, M=B4 |

—+—MF3, N=h=32 —+— MF3, N=M=E4

0 02 04 085 08 p "o 02 04 06 08 1

1 —B—BEM, M=123 [ 1 H—BEM, M=256 |-
—+—MF 35, N=h=128 —+— MF3, M=M=256

Figure 2.16:Comparison between. 5> (1,0) andu5ZM (1,0), as functions o /(27), for
Example 5.
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10 —=— BEM, M=0 05 —HE—BEM, M=15
—+—MF5, h=M=5 ' —+—MFE, N=h=1k
5 4
0 - 0 -
5 .
-10 L . L : 0.5 : : ; :
0 02 04 06 0a 1 0 0.2 0.4 06 0a 1
—B— BEM, M=32 02 —&— BEM, M=64

0.4
0.2

o2

—+— MFS, N=M=32

0.4 ; s

—+—MWFS, N=M=64

e i

—&—BEM, M=123

—+—MFS, MN=M=123

0.2 0.4 0k 08 1

Figure 2.17:Comparison betweem)! 'S

for Example 5.

—B—EBEM, M=256
—+—MF3, N=hi=256

(0.5,0) anduPEM (0.5, 6), as functions o /(27),

Inner
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—HB—BEM, M=5
2 —+—MFS, M=M=5 1 B— BEM, M=18

—— MF3, N=M=18
1 1 0.5 1
] i ] =1
-1 1 05 1
-2 : X : ; -1 £ : L :
0 0.2 0.4 0.6 0.8 1 1] 0.2 0.4 0.6 0.8 1
1 B—EBEM, MM=32 R 1

—E— BEM, =64
—— MFS, N=N=64

—+—MF5, N=t=32

0.5 1 0.5

] 1 0

05 . 05

i 02 04 06 0B 1 13 02 0.4 08 08 1
1 B—BEM, M=128 | 1

—8— BEM, M=256
—+— MFS, N=h=256

—+—MF3, N=h=123

Figure 2.18: Comparison betweeZ“)MES (1,0) and (9%)8EM (1,0), as functions of
0/(2x), for Example 5.
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= =
5 BE bl 1 —HBE—EBEM, M=1&

b —+— MFS, N=M=16

0s
0 0
s
g 02 04 0B 08 1 T 02 04 06 08 1

1 —HB— BEM, M=32 1 —HB—BEM, M=64
2 —+—MFS, N=M=32 —+—MFS, N=M=E4

05 05
0 0
05¢F ns#
o0z 04 0B 08 Yo 02z 01 08 o8 1
1 —5—BEM, M-128 o —5—BEM, M2
——WFS, N=M=128 —+— WFS, N=M=255
10 “
ST o e L
A
U
g : : : : 0 : : : :
o 02 04 06 08 | 0 02 04 06 08 |
. _ : MFS u\BEM :
Figure 2.19:Comparison betweefg“), ' > (0.5,6) and(3%), "~ (0.5,6), as functions of

0/(2m), for Example 5.

2.8 Conclusions

This chapter has applied and compared the BEM and MFS to dotet CEM prob-
lem of ERT. These two numerical methods were examined faowarsimply and
multiply-connected domains with various homogeneous tdagnconditions on the
inner boundary in the latter case. Due to the lack of an aicalysolution, the BEM
solution has been considered as the ‘exact’ solution bedaissmore accurate than the
one obtained using the MFS which gives some instability wherdegrees of freedom

become too large. The boundary integrals involved in the BiaMe been evaluated
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analytically. As far as the computational time is concerrigath the BEM and the
MFS require almost the same modest amount of time (mainlg tesevert the linear
systems of equations (2.16) or (2.23)); e.g. 3, 5 and 30 sisdon)/ € {64, 128,256}
boundary elements, respectively. Another interestingtdoi make is that in the MFS
we have experimented with various valuesfdt> 1 and have found thak between
1.01 and 1.15 produces the most accurate results. For larger valugg ohe MFS
accuracy decreases showing that the harmonic funetmutside the unit disk domain
2 has reached its limit, i.e. the circle of radifiscaptured in its interior a singularity
of u. The nature of the Robin boundary condition (2.2) and, inegeln the sophisti-
cated CEM makes it difficult to predict analytically befoastd where the singularities
of u lie in the exterior of2. In any caseR should be chosen less than the magnitude
of the position vector of the nearest singularity to the ioricAlthough the MFS has
produced unstable solutions for large degrees of freedaoh asM = N = 256,
for lower values its accuracy and stability are excellenewlkompared to the BEM
numerical solution. Moreover, the MFS is much easier to engnt than the BEM
especially in three-dimensional problems in irregular dors.

In the rest of the thesis, the MFS developed in this chaptérbsiapplied and
combined with statistical inversion methods for solvingesal inverse problems of

ERT/EIT.
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|dentification of rigid inclusions in the

complete-electrode model of ERT

3.1 Introduction

In various applications of EIT, such as medical imaging apjg/sics, the purpose is
to reconstruct the conductivity within a region, which ntigge the human body or a
geographical area, using some non-invasive electricasurements which are taken
on the surface of the region, [66]. This task can be achieyeattaching electrodes to
the outside boundary of the region. Then, currents aretegethirough the electrodes
and simultaneously voltages between electrodes are mtotiking these voltages as
a data set to estimate the interior conductivity distribatis an ill-posed non-linear
inverse problem, which needs to be regularized in order taiola stable and reliable
solution. An alternative framework is offered by the Bagasapproach which is an
explicit statistical method widely used in image analy28,[30]. Within the recon-
struction process, and for data simulation, voltages caraloeillated using the solution
of Laplace’s equation, as described in [34], and here the MRkSed to solve this di-
rect problem numerically, [26].

In Section 3.2, the mathematical formulation is considgtieat is, a brief descrip-

67
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tion is given of the MFS for solving the direct problem of thENZ of ERT in a domain
containing a rigid inclusion. Then, the Bayesian statédticodeling approach and the
MCMC estimation technique will be discussed in Section Fidally, in Section 3.4
some examples, representing numerically simulated exeats, will be examined

thoroughly to demonstrate the effectiveness and accuifatye gproposed procedures.

3.2 Mathematical formulation

In this section, the mathematical models for the direct amdrise ERT problems are
formulated. We consider solving Laplace’s equation in a-twaensional doubly-

connected bounded domdin €2/, of uniform unit conductivity, namely,
v =0, in Q\Qrnner (3.1)

subject to certain boundary conditions which makes thelprolthe so-called ‘complete-
electrode model’ (CEM), [61]. In this model, on the boundafythere are attached
electrodess,, for p = 1, L. On the boundary(2 we also have the boundary conditions
(2.2), (2.5) and (2.6).

Assuming thafl;,,,..,. is a perfectly conductive rigid inclusion having infinite @t

least very large) conductivity we have the homogeneougBlgt boundary condition
u=0 on 0 ner- (3.2)

Insulated cavities over whichw/0n = 0 on 9€Q,.,,.- can also be considered.
Equations (2.2), (2.5), (2.6), (3.1) and (3.2) represeadinect problem of ERT in

the domairt2 containing a rigid inclusiofi;,, ...
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3.2.1 MFS for the direct problem

The MFS for solving the direct problem (2.2), (2.5), (2.8.1) and (3.2) is described
in Subsectior2.6.2.
For illustrative purposes, let us takd = N = 128, R = 1.15, Ry = 0.45 and

L = 4, and consider two current patterns, namely,

1 if p=1,
L,=q-1 ifp=4, (3.3)
0 if pe{2,3},
and
1 if p=1,
I,=q9-1 ifp=3, (3.4)
0 if pe{2,4}.

Figures 3.1a) and 3.1b) show the comparison between the MFS solutions for the
boundary potentiak(1, #) and the current fluxdu/on)(1, 0), respectively, for the cur-
rent patterns (3.3) and (3.4).
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0.6 T

--- L=4, I1=1, |2‘3=0, |4= -1
L=4, I1=l‘ |2‘4=0. |3= -1
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Figure 3.1:Comparison between the solutions fay « (1,0) and(b) du/dn (1,6), for the
current patterns (3.3) and (3.4).

Figure 3.2 shows the approximate equipotential lines oMR& solutions. (r, ),
wherer € (0.5,1) andd € [0, 27), for the current patterns (3.3) and (3.4). From this
figure it can be seen that when the current is injected in teedlectrode and drawn
out though the fourth electrode the equipotential linescWinriginate on the right side
of the domain do not fill the left side of the domain. Whilst wattee current is injected

in the first electrode, and drawn out through the third etetgr the equipotential lines



Chapter 3. 71

which originate on the top-right and bottom-left sides af domain fill the top-left

and bottom-right side of that domain.

Figure 3.2:Equipotential lines of the interior solutiom(r, #) for the current patterns (3.3)
(left) and (3.4) (right).

Figures 3.8q4) and 3.3b) show a comparison between the MFS solutions for the
boundary potentiak(1, ) and the current fluxou/on)(1, 6), respectively, when the
numbers of the attached electrodes Are- 2 andL = 4. In the casd. = 4 we take
the current pattern (3.4), whilst in the cabe= 2 we take the current patterih = 1

andl, = —1.
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Figure 3.3:Comparison between the solutions fa) « (1,6) and (b) du/dn (1,0), as func-
tions ofé/(2), for L = 2 and4 electrodes.

Elliptical Rigid Inclusion
Consider an elliptic rigid inclusiof;,,,,., = {(x,y) € R?| i—i + ‘Z—j < 1}. If a =0,
thenQ e, IS circle, Ifa > b, then);,,,...- is a horizontal ellipse, otherwige;,,...,- Is a

vertical ellipse. The polar coordinates of the ellipsezare a cos(#) andy = bsin(0).
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As a result, the radius is

() = ab . 0elo,2m), (3.5)

V/ (beos(8))® + (asin(9))”

and its derivative is

ab(b* — a?) cos(#) sin(6)

(6) = e
((beos(6))? + (asin(6))?)”

0 € [0,27). (3.6)

In equations (2.38) and (2.39), and for the internal points) € 0Qmers theg—f is

changed to
oG oG oG
on (éj’—) = %nm + a—ynya I = (l‘, y) € 8anne7"a (37)
where
Ple . —(@-¢&)  aa s U
%(ﬁj,_) = Tonl — 2 a—y(éj,@ = —m- J=1,2N,
W (r'(0) sin(0) + r(6) cos(0)) 0 r'(0) cos(0) + r(8) sin(0)
' rO2 ¢ r(0)2 + 1(0)?

Bean-shaped Rigid Inclusion
A more complicated geometry for the internal objegy.,....- is considered here, which
is a bean-shape inclusion described in [6, 7, 40] and defiggtebradial parameteri-

zation

~_05+04 cos@ + 0.1sin 26
N 0.1 +0.7cos® ’

r(0) 0 € [0,2n). (3.8)
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Its derivative is

0 —5sin 6 + 40cos?0 — 20 + 14cos®0
T —=
100 + 140 cos 6 + 49cos?6 ’

0 € [0,2r), (3.9)

wheref € [0, 27) hence, equations (3.5) and (3.6) is replaced by (3.8) a8l \{hen
using the MFS to solve forward EIT problem in an annular denvéih bean-shaped

rigid inclusion.

Direct Solver Comparison

We compare the boundary potentigll, #) and current flux(Ou/on) (1,6), on the
outer boundary(?, obtained from the circular, elliptical and bean-shapepeab
Qrnner- We apply the MFS when the number of attached electrodés 4s 2, and
both the number of collocation pointg and the number of degrees of freedom points
N are equal with\/ = N = 128. The contraction parametey = 0.9 and dilation
parameter; = 1.15 determine the locations of the sources; this means how,abose
far, the internal/external source points are from the ifmeaer boundary, respectively.

We have, [36, 40],

(The radii of the internal source points: n; x (radii of the inclusion

and

(The radii of the external source points nz x (radii of the unit disk.

Figures 3.4a) and 3.4b) show the comparison between the outer potential and cur-
rent flux for various shapes of rigid inclusion. From Figuré(3), it can be seen that
the curve corresponding to the boundary potential functesulting from the inner
horizontal elliptical object shows a small movement to tlgétrin comparison to that
obtained from the inner circular object. Whilst the curvetlod boundary potential

function produced when the domain contains the verticgdtedhl object illustrates an
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equal movement to the left, comparing to that obtained frbendircular object. We
finally observe that the boundary potential function rasglfrom the bean-shaped ob-
ject shows a very substantial difference to the correspawnfdinction from the circular
object.

Figure 3.4(b) shows the corresponding normal derivatikeg on (1, #) on the bound-
ary 0X2 for various shapes of rigid inclusions as in Figure(3)4 From this figure, it
can be seen that there are only small changes in the boundagntflux function
values obtained from the inner bean or horizontal/veredigtical object comparing
to the ones obtained from the circular object. More pregjs#l the first electrode, the
values of the horizontal ellipse function are greater thasé of the circle, whilst the
the values of the vertical ellipse function are smallerpbefeaching the mid-interval
where they intersect and swap roles afterwards, until teagh0.25. On the second
attached electrode, the values of the horizontal ellipsetfan are smaller that those of
the circle, whilst the values of the vertical ellipse functiare greater, before reaching
the mid-interval where they intersect on the second atthelextrode and swap roles

afterwards, until they readh75.
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circle
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Figure 3.4: Comparison betweefu) the boundary potentials (1,6) and (b) the normal
derivativesdu/on (1, 6), as functions of/(27), for various shapes of rigid inclusions.

3.3 Statistical approach

The general strategy behind the statistical approach isdast the inverse problem
in the form of a statistical inference problem. Throughdig description, the aim is
to solve the same inverse problem defined above concernenglémtification of the

shape, position and size of a rigid inclusiof;,,,... which is compactly embedded
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in the host mediung2. The goal of the statistical approach is to incorporate ashmu
information as possible about these quantities from alfs#s) including subjective
knowledge as well as data measurements. The uncertairitg ivaiue of all random
quantities must be modelled in terms of probability disttibns. In brief, the solution
of the inverse problem is then given by the most likely mogebmeter values based
on the appropriate probability distribution, but the prioiiatic nature means that it is
also possible to assess model reliability through proligisiatements such as credible
intervals, for more details see [34]. Central to this infeeis the posterior distribution
which is obtained from a likelihood combined with a priortdisution using Bayes
theorem, details of this procedure are stated in Subse8tid. Background to the
Markov chain Monte Carlo algorithm (MCMC), which permitsmarical solution of
the statistical inference problem, is provided in Subsecs.3.2. Although there is no
explicit solution of the inverse problem, the MCMC algontidoes make extensive
use of the direct numerical solver described in Subsecti®ri 3This approach allows
us not only to image the reconstruction, but also to deepdyrene the reliability and
uncertainty of that estimation.

Initially, a noisy data set of boundary potentidll, #) and current fluxu/on(1, 0)

is simulated based on the MFS. This data set can be written as

ou —
w; = u(ﬂ?]) + UrE v = %(ZCJ) + Cj, ] = 1,N, (310)

where the additive noise variablgsand(; follow independent Gaussian distributions
which have zero means and varianegsand o2, respectively. This leads to data

w = (w;),_1 andv = (v;),_7. The Gaussian distribution is widely used to model
and describe several kinds of natural variability, [7, &fd has been used elsewhere
for ERT data. Later we shall solve the inverse problem usoitage data (2.4) which,

when perturbed by noise, is given as

TP = Up + wpv p= L—La (311)
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wherey,, are Gaussian noise variables with mean zero and varigndeading to data
I = (Tp)

p=1,L

3.3.1 Statistical modelling

In order to detecf;,,..., assumed to be star-shaped, i. e.,
Qrnner = {r(0) (cos(0),sin(0)) |0 < r(0) < 1,0 € [0, 27}, (3.12)

contained in the domaif2 (assumed to be the unit disk), the MFS coefficiants

(ck)p—1za7 @nd the radii
ri=r2mi/M), i=1,M, (3.13)

must be estimated. These are the parameters of the model.
First, by supposing the independencewoéndv givenr andc, a suitable decom-

position of the likelihood is given by the Bayes theorem vitstates that
Hw, |, ¢) = l(w|r, ¢) x I(v]r, ¢). (3.14)

The inexactness in the measured data (3.10), and other noled sources of varia-
tion which can appear during the experiment, are quantifyigtidlikelinood, see [67],

with

1
lwlr,c) = (2mo2) N/ exp{——2 - Hw—@(LQ)HQ}, (3.15)
g,

w

and

elro) = @rot) 2 e { - Lo} @19)

v
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These likelihoods are the conditional distributionswofandv givenr ande¢, since
wlr,c ~ N (w(r, c),o21) andv|r,c ~ N (2(r, c), o). Moreover,

w(r,c) = (w;(r,c)),_r are the calculated boundary potential values afdc) =
(0;(r, ¢)),_1 are the calculated current flux values when the radii of theatarer
and the MFS coefficients are

Secondly, when the voltage data is used, the likelihood is
1 - 2
(Z|r,c) = (2mo7) " exp {——2 HI —T(r,c) H } : (3.17)
207

whereT'(r,¢c) = (Tp(g, g)) __are the calculated voltage values when the radii of
the object are and the MFS coefficients are The following models will be defined

in terms of datdw, v), but equally apply to dat& by replacing (w|r, ¢) x I(v|r, ¢) by
I(T|r,c).

In general, finding the estimates of the model parameteas,ishthe rigid inclu-
sion, from only the likelihood, may not be achievable beeatle inverse problem
is ill-conditioned in terms of the discrete set of MFS coédfits ¢ and there is also
ill-posedness and non-linearity between the measuredastatdhe radiir of the in-
clusion. In standard approaches, regularization is ugealiployed to overcome these
difficulties. However, the reconstruction can only be fowrsda point estimate and
fails to provide us with any information related to confiderstatements. That is why,
an alternative method based on the framework of Bayesi#istgtal modeling is con-
sidered. This method is represented by likelihood, priat #re resulting posterior

distribution. Here, a prior assumption that the boundaoyad the internal object is

gently varying, inspires smoothness. As a result, the ligtribution is defined as
- 1
r(el6) = 2ns) ™" exp {0 v}, (319
where 3% describes the amount of variation between adjacent radd, the norm

I7r]> = oM, (r; — ri21) is the first-order smoothing finite-difference, with the
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convention thaty = r;,.
Similarly, the same prior distribution can be applied toM¥ES coefficients to pro-

vide the prior distribution

wlelf) = ()™ e~ vl | (3.19)

Combination of the likelihood functions (3.15) and (3.16)hnthe prior distributions
(3.18) and (3.19) results in the posterior distribution

7(r, clw, v) oc l(wlr, o)l(v|r, ¢) x w(r|B,)m(c|Be). (3.20)

The likelihood function describes the relationship betwi datav, v and the param-
etersr, ¢ (that is, how likely is the data given the model that usesehmsameters).
Whilst, the prior distribution describes the relationshgiween the model parameters
before data is considered (that is how likely the paramedires are when data has
not yet been observed, or in other words an initial guesdi®parameter values), [7].
Now, since the prior parametefs and . are not known they should be involved in
the estimation process as well. We use hyper-prior (impiogistribution for these

prior parameters are given as

042
7(6;) ox exp {—2 ﬁg} | (3.21)
and
a;
7(Be) ox exp {—253} : (3.22)

The full posterior distributions can then be rewritten as

m(r, ¢, Br, Belw, v) oc lwlr, e)l(v|r, ¢) x w(r|p,)m(B,) x 7(c|Be)m(Be).  (3.23)
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There are two different sets of MFS coefficients- (¢;, ¢), those relating to the
inner source points and the others which are linked to theradurce points. This
suggests separating the prior distributions inte,|5.,) and 7 (cg|f.,), as well as
separating the hyper-prior distributions int¢g.,) andr (5., ), which have separate
hyper-prior parameters., anda.,, respectively. Then also writé. = (5., Beg).

To conclude, the final full posterior distribution, whichaigain defined as the prod-
uct of the likelihood functions, the various prior distritmns and corresponding hyper-

prior distributions, is

(1, ¢ Br, Beys Beplw, v) o< lwlr, c)l(v|r, ¢) x w(r|B,)m(5,)
XT(crlBe )™ (Bey) X m(cp|Beg)T(Beg)- (3.24)

Figure 3.5 illustrates the hierarchical relationship egwfixed data and fixed prior
parameters (boxes), and the model parameters which needetsiimated (circles). In
the central and the right panels of Figure 3.5, the prior ghing parameters need to
be estimated in addition to the MFS coefficients and the radies (right). This is
achievable by fixing the hyper-prior parameters at somegg@ate values. Whilst, in
the left panel the values of the prior smoothing parameteréixed with estimation of
only the MFS coefficients and the object radii. We may nee@parate the,. into 5.,
andg.x corresponding to the inner and the outer source points sthtaaner and the
outer MFS coefficients will be better estimated when theasof5.; and 5. are not

equal. Consequently, this change require$o be separated into.; anda.g, as well.
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Figure 3.5: Hierarchical structure of the model.

3.3.2 Markov Chain Monte Carlo estimation

Although the history of Markov chain Monte Carlo (MCMC) gt in the late 1940s,
it has not been used effectively in statistics until theyed890s. During the 1990s
this technique had a remarkable development and nowadayd@MC approach is
widely used for many estimation problems due to the valuabdlantages which it
has. For example, it is very convenient to use MCMC estimaifithe modeling is
complicated and the dimension of the parameter space i $amge these cases make
the use of standard numerical methods infeasible. Moredvaltows deep analysis
of the posterior distribution, not only calculation of pareter estimates and standard
deviations. Here plots of boundary histograms and credlitdgvals corresponding to
the object boundaries will be used, [34].

Once, the posterior distribution of the parameters is défiiteis possible to use
the Metropolis-Hastings algorithm, a special case of threegd MCMC approach, to
produce approximate samples from it by simulating a Markwairc. Throughout this
procedure, the Markov chain has the parameter set to besgstiras its state variables,
and the equilibrium distribution is required to exist and=lj@al to the posterior distri-

bution, see [4]. The MCMC method is not an estimation techaiigself, but it gives a
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framework to produce tailor-made iterative algorithmsathtan be used to study the
properties of the posterior distribution. This algoritham,output, provides a correlated
sample from the posterior distribution. The MCMC methodaséxd on two important
statistical ideas, these are Markov chains and rejectiompbag. The first technique
gives the ‘candidate’ values and the second tests thesesvalthe transitions in the
Markov chain are designed precisely to make an equilibriistridution exist and
which is equal to the target distribution. If the transisoin the Markov chain are
planned well, then after an initial transient period, knagrburn-in, the values which
pass the test have the same statistical properties as ifhduypeen taken from the
posterior distribution itself. Due to the nature of Markdwamns, however, there will
be some correlation in the sample which must be taken intowsxtavhen producing
the summary of the output. On the other hand, if the initiahsient period is long
and the sample is highly correlated, then using the MCMC oekth inefficient and
larger samples are required to obtain accurate and relegtimation. To conclude,
designing the algorithm carefully means that the final retmction does not rely on
the initial starting values of the parameters and the irstiape of the inclusion.

Let all the parameters, which have already been defined, ti@ pusingle vector,
B = (By);—1,- ForexampleB = (r,c), B = (r,c, 3, fc) Of B = (v, ¢, B, Bey, Beg)s
where the initial guess of the radii is chosen to form the b#st circle for the inner
inclusion and the initial values for the MFS coefficient paeders are selected to be
zero.

The Metropolis-Hastings procedure can be briefly describéide following steps:

Set an arbitrary value faB, sayB°

Repeat the next steps fbr= 1, K, whereK is the desired sample size
Repeat the next steps fore= 1, p
Suggest a new value for the i-th parametef, = B~ + A/(0,72) giving proposal

parameter vectoB” = (Bf, ..., Bf, B!, ..., B:71)
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Evaluaten = min{1, 7(B*|w,v) /7 (B* |w, v)}

Generate:; from the uniform distribution/(0, 1)

If o > u then accept the suggested value, otherwise reject it angl‘'set B!
End repeat

End repeat

Discard initial values and use remainder to make inference

A reasonable choice for the proposal variandecan be made after running some ini-
tial experiments. It must be neither too big nor too smallvoi@ the long transient
period and a highly correlated sample, [6, 7]. It has beerngiraheoretically in [54]
that the optimal acceptance rate2ix4%, for various problems of high dimensions.
Moreover, it is also worth examining the Markov chain pathg eavestigating sample
autocorrelation functions. For reasonable performartee paiths should appear ran-
dom and the autocorrelation functions should be nearly farall except small lags,

[2, 6, 7]. For more applications of MCMC to EIT, see [66, 67].

3.4 Numerical results and discussion

In this section, we will reconstruct a star-shaped rigidusmon in a series of exper-
iments based on simulated data. These data are either tineldrgupotentiakv and
the current fluxw on 052 (Section 3.4.1) or, the voltag&son the electrodes (Section
3.4.2). The measurements are obtained by solving the CE&ttdaroblem of ERT
given by equations (2.2), (2.5), (2.6), (3.1) and (3.2) gdimee MFS, as described in
Chapter2. Moreover, it is worth mentioning that all data are corrgpby additive
Gaussian noise with zero mean and standard deviatier).01.

The geometries considered in the experiments are circulelliptical inclusions.

The data simulation technique starts by obtaining the MFRSfictentsc which are
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divided in two different sets. The first group consistsNof= 128 external MFS co-
efficientsc, related to theV = 128 equally-spaced source points located outside the
domain2. Whilst, the second set consists 8f = 128 internal MFS coefficients;
related to theV = 128 equally-spaced source points, located inside the rigildigian
Qraner- Then, both sets of MFS coefficients are used to calculatpdbential and the

current flux, which are also used along with (2.4) to calauthe voltages.

3.4.1 Using the boundary potential and current flux data

In the following experiments, the simulated data are thendawy potential and the cur-
rent flux at30 equally-spaced points on the outer fixed bound#ywhen the number
of the collocation points on each bounda¥y ando;,,,.. is M = 128 and the hum-

ber of the electrodes i = 2 or 4.

The Truth Object is a Circle

In the following a single current pattern is injected thrbug= 2 electrodes with

1 if p=1,
I, = (3.25)

—1 if p=2,

thenu anddu/0n have been plotted earlier in Figure 3.3. The following meds#i

estimation will be considered.

Case 1:Fitting the simplest possible model (which is a circularea) including only

a single unknown radiusg, € (0, 1), in addition to the unknown MFS coefficients,

Experiment 1. Based on results from similar numerical experiments udiegMFS
and the Bayesian approach for shape estimation of objadtsplving the continuous

inverse model of EIT, [7], the hyper-parameter values amdfiata-, = 0.0116 and



Chapter 3. 86

ac, = 0.2457 for the internal and external MFS coefficients, respecfivaihis is
the situation described in the central panel in Figure 3¢éabse the prior smoothing
parameterg.,, S, are being estimated. The MCMC algorithm is implemented with
K = 2000 iterations, where the firgt)00 define the burn-in period.

Figure 3.6 illustrates the estimated object and the MFSficaagits. It can be seen
that the accuracy of the reconstruction is very good withestamated radius @f.5017,
compared to the true value 0f5, and with a standard deviation 6f0030. In addi-
tion to this, the MFS coefficients which are linked to the seupoints of the inner
boundary keep track with the exact values and have narroiviatecintervals. Whilst
the estimated MFS coefficients for the source points of therdaoundary show some
smoothness with wider credible intervals, which meanstgraancertainty than the

other coefficients.

05 AMI\ 1'? A

0/\ Ml s "\! 4/\ /\/\w
il \J\fv O: VW '

o L e

Figure 3.6: Circle model with full posterior distributiofitted circle (left) and MFS

coefficients along with credible intervals correspondmghe inner (middle) and outer
(right) boundaries. Herein and throughout, in the secordhhrd pictures with green
lines we denote the retrieved MFS coefficients with the ¢adadie intervals whilst the
black lines represent the MFS coefficients obtained frondifext problem.

Figure 3.7 illustrates that the reconstruction of the dacaobject is extremely good
since the estimation errors, which are defined as the difeerbetween the true and es-
timated radii, cannot be seen on the left-hand graph. Thdlmahd right-hand figures

show a circular histogram and circular credible intervespectively. The purpose of



Chapter 3. 87

these is to represent estimation variability. The darkeasiof the histogram indicate
the higher frequencies and the annular thickness of thelteeishterval refers to the

amount of variation.

1 1 //A\\\\ 1
05 05} , \ 05
/ \
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Figure 3.7: Circle model with full posterior distributiontv prior parametersa|. =
1.0, a¢, = 0.0116 anda, = 0.2457): error estimates (left), object boundary his-
togram (middle) and object boundary credible intervalitjg

Case 2:Fitting a more general model (which is a star-shaped objkat)includes32

radii, r, at equally-spaced angles, in addition to the unknown MFSHioents,c.

Experiment 2. The hyper-prior parameters,-, and a¢,, are the same as in the
previous experiment with,. = 1.0 used for the radius hyper-parameter. This is the sit-
uation described in the right-hand panel in the Figure 3cabse the prior smoothing
parameterg.,, S, andg, are being estimated.

Figure 3.8 displays the object reconstruction which seeambet reasonable all
around the object except at two small parts of the boundahe [&rgest error can
be described as an outward bump positioned in the top-leftgbahe reconstruction,
whilst the other smaller error is an inward bump located atibttom-right side. The
graphs in the middle and right show the internal MFS coeffitcestimation following
the true values (the black continuous line) with narrow dredintervals, but clearly
those associated with the internal source points are lettenated that those associ-

ated with the external source points.
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Figure 3.8: Star-shape model with full posterior distribnt fitted shape (left) and
MFS coefficients along with reliable intervals correspaomgio the inner (middle) and
outer (right) boundaries.

Figure 3.9 shows the accuracy and the variability in thealgconstruction. Here,
the average of the estimated radibi5161 with a standard deviation ©£0049. Over-
all, the errors in the left graph are quite small, howeverasimated errors are more
substantial in the top-left of the reconstructed objecliofeed by those which are
located in the bottom-right. This is even more clearly reprged in the annular thick-
ness of the credible interval graph. This pattern is dued@tsition of the electrodes.
The currents are injected through the first electrode, wisidbcated in the top-right
part of the outer boundary, and exit from the second eleetwaadich is located in the
bottom-left part. This makes the equipotential lines cdfierwhole domain (see Fig-

ure 3.2) except, importantly, in the small parts which hdaekumps.



Chapter 3. 89

1 1 T~ 1
/,/ ~

// ~
0.5 o5/ gmw | o5
0 0 ) ) 0
0.5 -0.5} /1 -05

AN /

Ny 7

-1 -1 ~ -1
-1 0 1 -1 0 1 -1 0 1

Figure 3.9: Star-shape model with full posterior distribatwith prior parameters
(o = 1.0, a¢, = 0.0116 andae,, = 0.2457): error estimates (left), object boundary
histogram (middle) and object boundary credible interxigh).

Figure 3.10 shows the posterior histograms for the prioi smdoothing parameter
and the prior MFS smoothing parameters. It can be seen thavérage of the prior
smoothing parameter for the radii 5 = 0.2611 (the standard deviation i&0334)
and the posterior estimates of the inner and outer MFS snmgptarameters are
Be, = 0.5104 and Bg, = 0.7390 (the standard deviations afe0667 and0.1172,
respectively). It is also obvious from the posterior histogs that there is substantial
variation in the smoothing parameter of the radiusvhich means it may not be well
estimated. In addition, the variation in the smoothing peter of the inner MFS co-
efficientsBCI is reasonably small which indicates it is well-estimateacwdver, the
smoothing parameter of the outer MFS coeﬁicie@@g shows much more variability.

Also, the histograms of the parameters are slightly pasgkew.
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Figure 3.10: Star-shape model with full posterior disttib and prior parameter in-
formation: histograms for the radius (left) and the MFS im(neiddle) and outer (right)
boundary coefficients.

In order to see the effect of running the MCMC algorithm fartifer iterations, the
calulations are re-started using the posterior estimat@stéal values. So that the ini-

tial values off3,, 5, andf¢,, are changed t0.2611, 0.5104 and0.7390, respectively.

15
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Figure 3.11: Star-shape model with full posterior disttibn and separated prior infor-
mation: fitted shape (left) and MFS coefficients (with créelibtervals) corresponding
to the inner (middle) and outer (right) boundaries.



Chapter 3. 91

1 1 T~ 1
~ ~
/// ~
/ N
0.5 05} , 0.5
0 0 ( ) 0
0.5 -05} /1 -os
AN /
Ny 7
-1 -1 ~ -1
-1 0 1 -1 0 1 -1 0 1

Figure 3.12: Star-shape model with full posterior disttita with prior parameters
(B, = 0.2611, a, = 1.0, Bc, = 0.5104, ag, = 0.0116 and g, = 0.7390, ac, =
0.2457): error estimates (left), object boundary histogram (rte@jldnd object bound-
ary credible interval (right).

All'in all, Figures 3.11 and 3.12 show more accurate reconstyn than the pre-
vious example although the estimation errors are stilltgreia the top-left followed
by the bottom right than elsewhere around the reconstruaitgett and the estimated

radii average i9.4953 with an estimated standard deviation0od039.

Experiment 3. In this experiment, running with,, = 1.0, as in the previous two
experiments, did not produce the same good performances, Waidecided here to
take a smaller value far,., say«a, = 0.1, which was also suggested in [6]. This results
in better reconstruction with a new estimated radii averafg&5012 and a standard
deviation0.0038. This is clearly shown by comparing Figures 3.13 and 3.14 wig-
ures 3.11 and 3.12.
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Figure 3.13: Star-shape model with full posterior disttibn and separated prior infor-
mation: fitted circle (left) and MFS coefficients (with crbbh intervals) corresponding
to the inner (middle) and outer (right) boundaries.
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Figure 3.14: Star-shape model with full posterior disttitn with prior parameters
(B, = 0.2611, a, = 0.1, Bc, = 0.5104, ag, = 0.0116 and g, = 0.7390, ac, =
0.2457): errors estimation (left), object boundary histogram ddi¢) and object
boundary credible interval (right).

The True Object is an Ellipse
To further test the estimation approach, we describe thenstauction of a series of

inclusions given by ellipses defined by the following:

anner = {(%y) S Rz

2 yQ
<1
05+ (05— !

wheree = {£0.1, +0.2}.
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Experiment 4. We fit a star-shape model using elliptical true data with thme
hyper-prior parameter values as in Experiment 3, when 2.

In Figure 3.15, the green part shows that the reconstrubigoksis smaller than the
true inclusion, whilst the red part illustrates the oppmskrom the same figure, it can
be seen that ds| is increased, the accuracy of the estimation becomes lowatewer
the orientation of the ellipse, horizontal or vertical. mstance, the estimation graphs
(left) show smaller errors when= +0.1 than whene = 4+0.2. Moreover, the his-
tograms and the credible interval graphs show nearly mlipteconstructions when
e = +0.1. Also, the estimated MFS coefficients follow the true valbester when

e = +0.1 than where = +0.2.
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Figure 3.15: Star-shape model with the hyper-prior paramseds in Figure 3.14. Er-
rors estimation (left), object boundary histogram, objeatindary credible interval,
fitted ellipse, MFS coefficients (with credible intervalgyesponding to the inner and
outer boundaries (right).

3.4.2 Using the voltage data

In this section, we use the voltaggs for p = 1, L, based on the annular domain with
a rigid circular or elliptical inclusion. These voltageg arsed as data instead of the
potentialw = (w;),_t% = u (1,0) and the current flux = (v;),_ = u(1,0).

To begin with, the number of the electroded.is= 4 and up to three different pat-
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terns of the injected currents are considered.

Case 1: In this case a single current pattern is considered wherenjgeticurrent
via two opposite electrodes, as in equation (3.4). In thgecanly one ERT direct

problem is solved to obtain four voltages.

Case 2:In this case two current patterns are considered where wetitl)e current

pattern (3.4), as well as another current pattern given by

(

1 if p=1,
L=4-1 ifp=2, (3.26)
0 if p e {3,4}.

\

Solving these two ERT direct problems results in eight \geta

Case 3:In this case, three current patterns are considered whergj@gt using the
current patterns (3.3), (3.4) and (3.26). This means thaetERT direct problems are
solved to obtain twelve voltages.

It is useful to first compare the direct solutions when ciacwdnd elliptical inclu-
sions are considered. Figures 3dpand 3.16b) illustrate a comparison between the
MFS solutions for the boundary potentiall, #) and the current fluxou/on)(1,0),
respectively, when the numbers of electrode# is- 4, and the inner circular, hori-
zontal and vertical elliptical inclusions are considerecbm Figure 3.16), it can be
seen that there are small variations in the boundary paldntiction values obtained
from the horizontal/vertical elliptical inclusions compd to the one obtained from
the circular inclusion. Whilst in Figure 3.18, the values of boundary current flux

functions of horizontal, vertical and circular rigid insions are almost the same.
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Figure 3.16:Comparison betweefu) boundary potentialél, §) and (b) the normal deriva-
tivesdu/0n (1,0), as functions ofl/(2), for the current patterns (3.26), (3.4) and (3.3).

The True Object is a Circle

Experiment 5. We fit a circular object model to reconstruct a circular rigidlu-
sion.
Firstly, we solve the inverse ERT problem in Case 1 and cenditht the target

object is a circle of radiuB.5 centred at the origin. So, only one single radius needs
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to be determined, as well as the8 internal MFS coefficients antk8 external MFS
coefficients, and withy; = 0.9 andnz = 1.15. The hyper-prior parameter of the in-
ternal and external MFS coefficients are fixechagt = 0.1160 andac,, = 2.4570,
respectively, as in Experiment 3.

Figures 3.17 and 3.18 illustrate the object and the MFS coefii estimation. It
can be seen that the reconstruction of the object shows exetiff circle with radius
equal t00.6738 and a standard deviation 6f0080. This is because in Experimeht
we have less data (justvoltage values) comparing to the experiments of the previou
subsection. The MFS coefficients which are linked to the aayoints of the outer
boundary keep track of the true values (the black line) ane bavery narrow credible
interval, but that those linked to the inner boundary do ndo¥vs the true values and

have wider credible interval.

Figure 3.17: Circle model with full posterior distributiofitted circle (left) and MFS
coefficients along with credible intervals correspondmthe inner (middle) and outer
boundaries (right).
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Figure 3.18: Circle model with full posterior distributievith prior parametersd,. =
1.0, a = 0.1, Be, = a¢, = 0.0116 and B¢, = ac, = 0.2457): errors estima-
tion (left), object boundary histogram (middle) and objectundary credible interval

(right).

Secondly, we solve the inverse ERT problem in Case 2. Figd@shows the fitted
circle (left) and the MFS coefficients linked to the inneténboundary (centre/right).
More precisely, the top ones are generated when using thentyrattern (3.26) to
calculate the first set of four voltages. Whilst, the bottarapips are obtained when
using the current pattern (3.4). All MFS coefficients aradregstimated comparing to

those in Case 1.

2 f

OLV\//\//V VAYAVAVAVAVAYAYS
-2 \
-4

4O : 2 4 6
2| ) A ks
9 M\A VWAAANVWY

0 2 4 6

-1 0 1

Figure 3.19: Circle model with full posterior distributiofitted circle (left) and MFS
coefficients along with credible intervals correspondmghe inner (middle) and outer
(right) boundaries.

Experiment 6. Now we fit a star-shaped model using data from a circular sichu

This uses4 radii, r at equally-spaced angles, in addition to the unknown inndr a
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outer MFS coefficients;. All the hyper-prior parameters are the same as in Experi-
ment 5.

The estimation errors of the three cases are illustrateldeneft hand side of Fig-
ure 3.20, followed by the object boundary histograms aneécaildjoundary credible
intervals. Then, the fitted shape and MFS coefficients (widdlible intervals) corre-
sponding to the inner and outer boundaries, respectivetpa right-hand side of the
same figure. It can be seen that the smallest error is in CaigecBmparison with
the true value of).5, this has the largest data set with twelve voltage measuresme
are used. Although Cases 1 and 2 show almost the same degesgnoétion error,
but Case 2 provides more reliable results because the digecdary histogram and

object boundary credible interval are more circular; thesams better shape estimation.
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Four voltages and the estimated radiug.i&707, with an estimated standard deviation

0.0065.
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Eight voltages and the estimated radiu8.is301, with an estimated standard
deviation0.0026.
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Twelve voltages and the estimated radiu8.i®09, with an estimated standard
deviation0.0027.

Figure 3.20: Star-shape model (left to right, then top tddi): Estimation errors,
object boundary histograms, object boundary crediblevatefitted shape, MFS co-
efficients (with credible intervals) corresponding to theer and outer boundaries.

The True Object is an Ellipse

Experiment 7. We fit a star-shaped model using the data from an elliptioaluin

sion as in Case 3. All the hyper-prior parameters are the sanreExperiment 5.
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Figure 3.21: Comparison between the star-shape fitted medti different number
of data voltages (left to right): estimation errors, objeotindary histogram, object
boundary credible interval, fitted ellipse, MFS coefficevith credible intervals)
corresponding to the inner and outer boundaries.

3.5 Extending to eighttoL = 8 electrodes

In this section, we use a data setok 8 = 56 voltage measurements coming from

L = 8 electrodes to estimate the rigid inclusion. The followiegen current patterns
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are used:
1 if p=1,
-1 ifp=2, (3.27)
0 if pe{3,4,5,6,7,8},
1 if p=1,
1 if p=3, (3.28)
0 if pe{2,4,5,6,7,8},
1 if p=1,
-1 ifp=41, (3.29)
0 if pe{2,3,5,6,7,8},
1 if p=1,
1 ifp=5 (3.30)
0 if pe{2,3,4,6,7,8},
1 if p=1,
1 if p=6, (3.31)
0 if pe{2,3,4,5,7,8},
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1 if p=1,
I,=9-1 ifp=71, (3.32)
0 if pe{2,3,4,5,6,8},
,
1 if p=1,
I,=9-1 ifp=s, (3.33)
0 if pe{2,3,4,5,6,7}.

This means that seven ERT direct problems are solved torohiaroltage measure-
ments to be used to solve the inverse ERT problem.

Figures 3.22z) and 3.22b) illustrate a comparison between the MFS solutions for
the boundary potential(1, #) and the current fluxou/on)(1, 0), respectively, when
the number of the attached electrodes is 8 using the seven current patterns (3.27)-
(3.33), for the circular and horizontal elliptical inclosis. In contrast, Figures 3.@3
and 3.23b) represent the same quantities except that the horizotiflad! inclusion
is replaced by the vertical one.

From Figures 3.2&) and 3.23a), it can be seen that there is some variation in the
boundary potential function values obtained from the &8dgd inclusions compared to
those obtained from the circular inclusion. Whilst in Figsi3.22b) and 3.23b) the

values of boundary current flux functions for all the inctuss are almost the same.
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Figure 3.22:Comparison betweefu) the boundary potentials (1,6) and (b) the normal
derivativesou/0n (1,0), as functions ob/(2r), for the current pattern (3.27) first curves on
the right, and (3.28), (3.29),(3.30), (3.31), (3.32) an@®383, subsequently. Horizontal ellipse,
e = +0.1 (dashed lines) and circle,= 0 (continuous lines).
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Figure 3.23:Comparison betweefu) the boundary potentials (1,6) and (b) the normal
derivativesou (1,6), as functions of)/(27), for the current pattern (3.27) first curves on the
right, (3.28), (3.29),(3.30), (3.31), (3.32) and (3.33)bsequently. Vertical ellipse,= —0.1
(dotted lines) and circle; = 0 (continuous lines).
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Experiment 8. We fit a star-shaped model to data from the circular inclusibinis
includes32 radii, r at equally-spaced angles, in addition to the unknown inner a
outer MFS coefficientsg. The hyper-prior parameters used here are the same as in

Experiment 3 multiplied by ten.
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Figure 3.24. Star-shape model with full posterior disttitn: fitted shape (left) and
MFS coefficients along with credible intervals correspoigdo the inner (middle) and
outer (right) boundaries.

From Figure 3.24, it can be seen that the accuracy of the sewmtion is slightly
biased with an estimated radii averagé)af’71 compared to its true value 0f5, and
a standard deviation @f.0007. So, the accuracy has increased compared to Experi-
ment 6. Also, both the outer and inner MFS coefficients of @llesn MFS solutions
follow the exact values and have very narrow credible irgkeriFigure 3.25 illustrates

that the reconstruction of a circular inclusion is extreyrggod.
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Figure 3.25: Star-shape model with full posterior disttibn with prior parameters
(o = 1.0, a¢, = 0.1160 andae, = 2.457): estimation errors (left), object boundary
histogram (middle) and object boundary credible interxight).

Experiment 9. We fit a star-shaped model using data from an elliptical siol. The

hyper-prior parameters used here are the same as in Expe@me
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Figure 3.26: Comparison between the fitted star-shape medtl different numbers

of data voltages (left to right): estimation errors, objeotindary histogram, object
boundary credible interval, fitted shape, MFS coefficiewith(credible intervals) cor-

responding to the inner and outer boundaries.

From Figure 3.26, it can be seen that o +0.1 the accuracy of the object re-

construction is very good because it is obvious that theneséd errors (left) are small
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and the object boundary histogram, the object boundarytadesiiterval, and the fitted
ellipse for both choices of show near ellipses. Moreover, the estimated MFS coef-
ficient values follow the true values. Here, we have only gdathose linked to the
current patterns (3.27), (3.28) and (3.29) because théhesst almost the same fea-

tures.

3.6 Conclusions

The Bayesian statistical approach combined with an MCM®Grélym have been used
in this chapter to solve the inverse complete-electrodeaim@blem using noisy ERT
data with the forward solution obtained from the MFS. In jgaitar, two types of noisy
data sets have been considered; the first comprises boypotantial and current flux
measurements while the second uses boundary voltage rapasus. The shape and
size of a rigid inclusions have been reconstructed in odetect the outline of vari-
ous objects.

These experiments have been gradually developed stariingwwiple and not very
practical cases, Experiments 1, 2 and 3, where the numbetachad electrodes on
the outer boundary wak = 2, ending with very realistic cases whete= 8 in Exper-
iments 8 and 9. Wheh = 2, there is only a single current pattern, whilst whegr- 8
there are seven possible current patterns all of which aiéaée to produce data for
the estimation process. In all of the reconstruction mqdietsinner rigid inclusion is
assumed to be a star-shaped object centred at the origidwithknown radii. There
are further parameters as there 828 inner MFS coefficients antk8 outer MFS co-
efficients which also need estimating. For each experintettuses the first data set,
a simulated noisy data set of potential and current flux nreasents was produced
using 60 numerical values calculated using the MFS at 30lygseaced points along
the region boundary.

In the experiments wheh = 2 the accuracy of the reconstruction from the single
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current pattern was surprisingly good. In other experimethiat are not shown here,
when L = 4 but using only a single current pattern it was found thatgisipposing
electrodes provides better estimation of the inner inolughan was obtained from a
single current pattern using adjacent electrodes. Wheringdwe the more realistic
cases and using all available current patterns, the impreméin accuracy increased
further and when the number of electrodes Wias 8, the reconstruction results were
very good. This used the maximum number of voltage measuresntigat is equal to
L(L — 1) = 56 as seven multiple current pattern are applied.

To conclude, this chapter demonstrates that using realisttage data produces
excellent final reconstructions of the rigid inclusion whte maximum number of
current patterns is used. Further it has been demonstraatdhe combination of
Bayesian statistical modelling and stochastic estimabiased on the MCMC algo-
rithm can be very successful. In particular, good recoetsivn of the shape of the
inclusions is possible along with simultaneous estimatbMFS coefficients. The
methods have also produced measures of uncertainty in ¥besasolution through

Bayesian credible intervals.
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Estimation of the centre, contact
Impedance and extension to multiple

rigid inclusions

4.1 Introduction

The purpose of this chapter is to solve inverse CEM problentsRT when the cen-
tre of the inner rigid inclusion is unknown. Then, determmthe different constant
contact impedances (CCI) on the electrodes, as well astoejestmultaneously the
unknown centre and the CCI. Lacking the exact knowledgeeo@Q@l is a result of the
electrochemical effect at the interface of electrode-skiere the properties of the skin
such as the degree of the skin’s thickness causes someaaairatach electrode-skin
interface. In a previous clinical work [45], ERT problemsre/solved for detecting an
unknown boundary of an internal object, as well as inacely&nown measured CCI.
We assume that the true values of the CCI are completely unkamd all we know
is that these values must be strictly positive constant® &t part of this chapter is
concerned with extending the inverse analysis to idemgfynultiple inner rigid inclu-

sions, [37, 49].

110
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4.2 The MFES forward solutions when the centre of the
circular rigid inclusion is not at the origin

In this section, we describe the main modifications requivedn applying the MFS
to solve the CEM direct problem solved in Sectibf.2 in the unit disk2 = B (0; 1)

which contains a rigid inclusion,
anner =B ((X071/E)>7 dl) = {(ZC,y) S R2|(I‘ - X0)2 + (y - }/0)2 < d%} ) (41)

whered; € (0,1), Xy € (—1,1) andY; € (—1,1) are chosen such th&;,,,,., C .

Alternatively, in polar coordinateQ;,,,.., can be represented as
x=Xg+rcos(h), y=Yy+rcos(d), re(0,d), 6€l0,2m). (4.2)
The geometrical condition thé&t;,,,.., C () recasts as

1 > (Xo+rcos(0)” + (Yy+ rsin(9))’
= XZH+YZ+r?+2r (Xocos(d) + Yysin(0)), r € (0,dy), 6 € [0,27)(4.3)

The coordinates of the internal boundary collocation poare
2, = (Xo + dy cos (26 ¥y + dy sin (26;0) ) for i = M+ 1,21,
and the internal source points are
€, = (6,6) = (Xo + Ry cos (200 ¥ + Rysin (2070 ) ) forj = N+ 12N,

where0) < R; < d;. Also, as previouslyR; is defined ask; = d; x n;, where

n; € (0, 1) is a contraction parameter.
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4.2.1 Numerical results and discussion

In this subsection, we show some comparisons between thedi#€& solutions for
the boundary potential, current flux and the voltages incageere the centre of the
circular rigid inclusion is changed from the origin(@.1, 0.1).

For illustrative purposes, letustake= 0.5, M = N = 128, R = 1.15, Ry = 0.45
andL = 4 with CCl values equal tag, » 343 = 1, and consider the three current pat-
terns (3.26), (3.4) and (3.3) in this order from the previchapter.

Figures 4.1a) and 4.1b) show comparisons between the MFS forward solutions
for the boundary potentiak(1,0) and the current fluXou/on)(1,0), respectively,
when the centre of the inner circular object(s0) and(0.1,0.1). From Figure 4.0a),
it can be seen that there are obvious variations in the bayipdéential when changing
the centre of the inner object from the origin(t&,, Y;) = (0.1,0.1). More precisely,
the greatest variations can be seen on the third attachettioele because the equipo-
tential lines cover that part of the domain much more whenctireent pattern (3.3)
is applied. Whilst, in Figure 4(1), the values of current flux are almost the same all

around the unit disk.
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Figure 4.1:(a) The boundary potential(1, §) and(b) the normal derivativé, u(1, §)
when the centre of the inner circle is(@t 0) (continuous line) and0.1, 0.1) (points),
as a functions of//(2r), for the current patterns (3.26) (blue), (3.4) (red) an®)3.
(green).

Since there is not much sensitivity in the potential and eislg the current flux
when the centre of the inner circular object is changed o) to (0.1,0.1), it is
worth investigating the differences in the calculated twarg voltaged/?, on the at-
tached electrodes,, p = 1,4, ¢ = 1,3, for the current patterns (3.26) € 1), (3.4)

( = 2) and (3.3) { = 3), see Table 4.1. From Table 4.1, it can be seen that the val-

ues for the voltage$Us, U}, U2, U2, U3, U3} are close to zero whatever the chosen
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centre, especially the valugs’Z, U2} where the best current pattern (3.4) is injected
through opposite electrodes. This is because the curremtsodinjected through the
corresponding attached electrodes. However, there aieenbte differences in all the

voltages when the centre is varied.

Table 4.1:The numerical voltages when the center of the inner rigitLision is at(0, 0) in
comparison with the resulting voltages when the centre {8.&4t0.1), for the current patterns
(3.26), (3.4) and (3.3).

| Current pattern (3.26) |
Voltages|| Centre(0,0) | Centre(0.1,0.1)

Ul ~ 1.7759 1.7101
U;s ~ -1.7759 -1.7294
Ui ~ -0.0221 -0.0069
Ul ~ 0.0221 0.0032

Current pattern (3.4)
Voltages|| Centre(0,0) | Centre(0.1,0.1)

U2 ~ 1.7980 1.7638
U2~ || 1.8x 10710 0.0086
U2 ~ -1.7980 -1.7785
U2~ | 5.5x 10710 0.0073

Current pattern (3.3)
Voltages|| Centre(0,0) | Centre(0.1,0.1)

U ~ 1.7759 1.7318
U3 ~ 0.0221 0.0358
U ~ -0.0221 -0.0252
Ul ~ -1.7759 -1.7535

4.3 The inverse solution when the centre of the inner

rigid inclusion is unknown

In this section, we will identify the inner objef;,,..., in the domairt2 when the cen-
tre (Xo, Yp) of that object, as well as the MFS coefficients (cx),_733; and the radii

r = (r;);—137 of the assumed star-shaped object are all unknown. Morgibvedata
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sets which are simulated here are the voltages on the elestrfor various current
patterns. This data set is obtained from the Robin boundargliion after solving the
CEM direct problem using the MFS. Further, these voltagescarrupted by adding
Gaussian noise with zero mean and standard deviatior).01. In all experiments in

this chapter, we consider the following cases:

Case 1: The injected current patterns are given by equations (3(363) and (3.3).
This is convenient when the number of the attached elecdrodéhe outer boundary
is L = 4. Basically, the voltages are calculated at 4 equally-sppaoets on the outer
boundary, that is at the locations where the four electr@desattached. These four
voltage values are obtained each time a current patterrplgedp This results in three

sets of voltages giving a total of 12 single voltage valuesyaly,

{U1, U3, U3, U},

when the first current pattern (3.26) is applied,

{Ur, U3, U5, UL},

when the second current pattern (3.4) is applied, and

{07, U3, U3, U3},

when the third current pattern (3.3) is applied.

Case 2:The injected current patterns are given by equations (23B) where the
number of the attached electroded.is- 8. This results in seven sets containing a total

of 56 voltage values to be used to produce the inverse solutemely:

(U1, U5,U3,U, UL, Ug, Uz, Ug },
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when we apply the current pattern (3.27),

{U, U3, U3, Uy Ug, Us, Uz, Ug
when we apply the current pattern (3.28),

{07, U3, U3, Uy, U, Ug, U7, Uy},
when we apply the current pattern (3.29),

{01, U3, U3, Uy, Us, U, U7, U},
when we apply the current pattern (3.30),

{U7, U3, U3, U3, U3, Ug, Uz, Ug },
when we apply the current pattern (3.31),

{07, U3, U3, Uy, Ug, Ug, Uz, Uy },
when we apply the current pattern (3.32), and

{U1, 03,03, U, U3, Ug, Uy, Ug },
when we apply the current pattern (3.33).

Experiment 1. We examine Cases 1 and 2 by fitting a star-shaped model tordata f
a true circular object of radius5 centred af0.1,0.1). In both cases, the unknowns
are 32 radii at equally-spaced angles- (r;,i = 1, 32), in addition to the 128 inner
MFS coefficients¢;, and the 128 outer MFS coefficients,, as well as the unknown

centre denoted b§X,, Y;).
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Assuming the centre of the inner object is unknown meansdti#ianal constraint
(4.3) is required in the MCMC to ensure that the star-shapgelcod stays within the
unit circle.

The hierarchical structure of the statistical parametedehon the right side of Fig-
ure 3.5 is considered here. Moreover, we fix the values of yipetprior parameters
(from Experiments and9 in Chapter 3) of the internal and external MFS coefficients
atag, = 0.1160 andac,, = 2.4570, respectively, as well as the hyper-prior parameter
value for the radius at,, = 1.0, and allow estimation of the smoothing parameters
Bey, Be,, andp,., as well as all the unknowns which have been mentioned earlie

Figure 4.2 shows a comparison between the reconstructitimeahner object in
Cases 1 and 2. From this figure, it can be seen that the acaoniréfog reconstruction
is very good whenl. = 8, with the estimated radius 04915 compared to its true
value of0.5, and a very small standard deviation®of009. Moreover, the estimated
centre i5(0.0906, 0.0989) in comparison to the true centfe.1000, 0.1000). However,
when L. = 4 the estimated radius 55593 with standard deviation.0004 and the
estimated centre is &b.1054, 0.1003). Both sets of outer and inner MFS coefficients
in Cases 1 and 2 keep follow the exact values and have smodtyeay narrow cred-
ible intervals. In the left side of Figure 4.2 the estimateds, which are defined as
the difference between the true and estimated radii, calyhbe seen on the graph.
Furthermore, the object boundary histograms are circuldrnespect to the estimated

centre.
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Figure 4.2: Results from the star-shaped model with differeimbers of data volt-
ages: errors estimation (left), object boundary histograhbject boundary credible
intervals, fitted circle, MFS coefficients (with credibldernvals) corresponding to the
inner and outer boundaries (right).

4.4 The MFS forward solutions when the constant con-
tact impedance is changed to piecewise constant

In this section, we study how the MFS forward solutions, inm of the boundary
potential, current flux and the voltages, are affected byaamgh in the constant contact

impedance (CClI).

4.4.1 Numerical results and discussion

For illustrative purposes, let us consider the centre oifther circle being at the origin,

takeM = N = 128, R = 1.15, R, = 0.45 and L = 4, and apply the current patterns



Chapter 4. 119

(3.26), (3.4) and (3.3). We investigate two different shes€ClI values, namely,

2D =1

D Y

p=1,4 on oQ, (4.4)

and

2P =1 p=12 P=2 p=34 onoQ. (4.5)

Table 4.2 shows the three calculated sets of voltages. Hristable, it can be seen
that injecting the current pattern (3.26) makes the voltadees, using both equations
(4.4) and (4.5), almost the same due to two reasons. Fitlséyoltages which are cal-
culated at electrodes » which carry current, have the same values because the values
of the CCl are still the same in both equations (4.4) and (4{5% 2? = 21 = 22 = 1.
Furthermore, voltages which are calculated at the freeesntielectrodess; 4, nearly
vanish for any positive value of the CCI. In contrast, theondjfferences between the
voltage values occurring when equations (3.4) and (3.3usee. More precisely, the
voltage valud’? drops from—1.7980 to —3.0723 due to the dramatic increase in the
corresponding value of the CCl from = 1to 22 = 2, as well as the voltage valu&’
decreases from-1.7759 to —3.0502 due to the same change of the CCI values from

zi =1t02% = 2.
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Table 4.2:The numerical voltages for the CCl values (4.4) and (4.5mthe center of the
inner circular rigid inclusion is af0, 0), for the current patterns (3.26), (3.4) and (3.3).

| Current pattern (3.26) |

Voltages|| z1234 =1 z12=1andz;4 =2
Ul ~ 1.7759 1.7760
Ul ~ || —1.7759 —1.7760
Ul~|  —0.0221 —0.0221
Ui ~ 0.0221 0.0221

Current pattern (3.4)
Voltages| zio34=1|z120=1andz, =2

U? ~ 1.7980 1.7981
U2~ | 1.8 % 10710 4.6 x 1077
U2 ~ —1.7980 —3.0723
U2~ | 5.5x 10710 4.6 x 107

Current pattern (3.3)
VOltageS 21,2,34 = 1 212 = 1 andZ374 =2

U ~ 1.7759 1.7760
Us ~ 0.0221 0.0222
U ~ —0.0221 —0.0221
U ~ —1.7759 —3.0502

4.5 The inverse solutions when the CCI values are un-
known

We consider Case 2 of Section 4.4, where both the centre afitiee rigid inclusion,
known. In the following experimentl, = 8 and we simulate 56 measured voltages
which are also corrupted by adding Gaussian noise with zelemmnand standard devi-

ationo = 0.01.

Experiment 2. We fit a star-shaped model from the circular data of radiGscen-
tred at(0.1,0.1), and the true values of the CCl atg, 34 = 1 andz; ¢ 75 = 2. We fix

the values of the hyper-prior parameters at the same valhiebwere considered in
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Experiment 1.
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Figure 4.3: The star-shaped model when the CCI values araktitee of the inner ob-
ject are unknown: errors estimation (left), object bougdastogram, object boundary
credible intervals, fitted circle, MFS coefficients (witledible intervals) correspond-
ing to the inner and outer boundaries (right).

From Figure 4.3, it can be seen that the accuracy of the racmtisn is very good,
with the estimated radius 0f4915 compared to its true value 6f5, and a very small
standard deviation di.0005. Moreover, the estimated centre(i1013,0.1040) in
comparison to the true cent(@.1000, 0.1000). Moreover, from Table 4.3 and Figure
4.4, it can be seen, in general, that the values of CCI are egéilinated comparing
to the true values, especialfy;, zs, 24, 26, 27, 23} Where the standard deviations are

relatively small.

Table 4.3:The average mean of the estimated contact impedances evIGMC iterations
with the corresponding standard deviations.

| || True value| Estimated valug Standard deviation

2 1 1.0671 0.0369
29 1 1.1583 0.1313
23 1 0.9637 0.0419
24 1 0.9156 0.0697
25 2 1.9036 0.1537
26 2 1.9641 0.0528
27 2 2.0660 0.0530
28 2 2.0333 0.0607




Chapter 4.

122

12

0.8

0.6

0.4

15

0.5

0.8

0.6

0.4

0.8

0.6

0.4

02 0.2 0.2
0 0 0 0
0 01 0.2 0 01 0.2 0 01 0.2 0.3 0 01 02 03
2 2 2 2
15 15 15 15
1 1 1 1
05 0.5 0.5 05
0 0 0 0
0 0.1 0.2 0 0.1 0.2 0 0.1 0.2 0 005 01 015 02

Figure 4.4: Histograms of the estimated contact impedances

4.6 The MFS forward solution for multiple rigid inclu-

sions

In this section, we illustrate the main modifications whick eequired when the MFS
Is applied to solve the CEM direct problem in the unit diskataining two rigid inclu-

sions,

annerl - Bl ((Xo, Yb)a dl)

= {(w0, y0) € R?|(zo — X0)* + (yo — Yo)* < di}, (4.6)
annerg = BZ ((Xla Yl); d2)

= {(z1.) € R*|(x1 — X1)* + (1n —V1)? < d3}, (4.7)
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where{d,, d>} € (0,1), {Xo, X1} € (—=1,1) and{Yy, Y1} € (-1, 1) are chosen such
thatQInnerla annerg - .
Alternatively, in polar coordinateQy,, ..., and€);,,..., can be represented, respec-

tively, as
xo = Xo +ricos(0), yo=Yy+ricos(d), ri€(0,dy), 6€l0,2m), (4.8)
and
r1 = X1 +recos(0), y1 =Y +mrycos(f), re€(0,dy), 6€]0,2m). (4.9)
The geometrical conditions th&,,,.c;, , 27nner, C €2 Can be recast as

1 > (Xo+rcos(8) + (Yo + 7 sin(f))?
= XJ+ Y7 +7r7+2r (Xocos(d) + Yysin(d)) ,

ry € (0,dy),0 € [0,27) (4.10)
and

1 > (X;+rycos(h) + (Y1 + rosin())”
= X7 4 Y7 475+ 2ry (Xy cos(0) + Yy sin(6)),
ro € (0,ds),0 € [0,27) (4.11)

and they must not intersect.
The coordinates of the boundary collocation point®on,, ..., are
z; = (XO + d; cos (MA;M)) , Yy + dy sin (MAZMU) fori= M +1,2M,
and the coordinates of the boundary collocation paifitg, ..., are
z; = (X1 + ds cos (W) , Y1 + dysin (W)) fori =2M +1,3M.

Also, the internal source points {2y,,,,c,, aNdQ,,,, are
€, = (€,€8) = (Xo+ Ry cos (2U2) ¥+ Rysin (2670)) for j = N+ 12N,
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and
€ = (§.6) = (Xi+Rscos (Lﬁm) Y1+ Ry sin (W)) for j = 2N + 1,3N,
where0) < R; < d; and0 < R, < d,. Also, R, and R, are defined previously as

Ry = dy x ny, andRy = dy X 1y, , Wheren;,,n;, € (0,1) are contraction parameters.

4.6.1 Numerical results and discussion

In this subsection, we show some comparisons between thedi#€& solutions for
the boundary potential, current flux and the voltages, irctige where the number of
rigid inclusions is extended to two circles being centetad &), 0.5) andC5(0, —0.5).
For illustrative purposes, we takel = N = 128, R = 1.15, Ry = Ry = 0.45,
d, = dy = 0.4 andL = 8, and apply the current patterns (3.27)-(3.33).

Figures 4.5q) and 4.%b) show comparisons between the MFS forward solutions
for the boundary potential(1, §) and the current fluxou/on)(1, ), when the unit
disc has one inclusioB; ((0,0.5), 0.4) comparing to when it has two inclusions
B; (C1,0.4) and By (C3,0.4). In general, it can be seen from these figures that the
boundary potential and the current flux follow the same pattBue to the properties
of equipotential lines and the current flow, it can be seetmi@n the current patterns
(3.27)-(3.29) are applied, the top-half of the unit disceslg scanned. As a result, the
values of the boundary potential and current flux are alniessame whether we have
one or two inclusions. However, using the other currenigoast has significant impact
on the potential and current flux values. More preciselybiggest difference in the
potential values in Figure 4(b) or in the current flux values in Figure 41, can be
seen when equation (3.32) is used, followed by when equéBi@®1) is applied, due
to the position of the second inclusioB; (Cs,0.4). Then, a smaller difference can
be seen when current pattern in equation (3.33) is empldg#owed by a gradually
decreasing difference obtained from applying the currattepns (3.30), (3.29), (3.28)
and (3.27), respectively.
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Figure 4.5:(a) The boundary potentiat (1,6) and (b) the normal derivativéu,, (1,6), as
functions off /(2), for the current pattern (3.27) first curves on the righ283. (3.29), (3.30),
(3.31), (3.32) and (3.33), subsequently. Two rigid inauasi, (dashed lines) and one rigid
inclusion, (continuous lines).
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Table 4.4:The numerical voltages when the center of the inner rigitlsion is at(0,0.5),
in comparison to when the centres of two rigid inclusionsatr@, 0.5) and (0,-0.5), for the
current patterns (3.27)-(3.33).

Using Equation (3.27)

The voltages| One inclusion| Two inclusions
Ul ~ 3.2366 3.2396
Us ~ -3.0174 -2.9964

Using Equation (3.28)
The voltages| One inclusion| Two inclusions
Ul ~ 3.2902 3.3010
Uz ~ -2.8683 -2.8503

Using Equation (3.29)
The voltages| One inclusion| Two inclusions
U ~ 3.3588 3.3381
U ~ -3.2724 -3.2429

Using Equation (3.30)
The voltages| One inclusion| Two inclusions
Ul ~ 3.4102 3.3506
U ~ -3.4371 -3.3506

Using Equation (3.31)
The voltages| One inclusion| Two inclusions
U} ~ 3.4096 3.3205
Ug ~ -3.4454 -3.0773

Using Equation (3.32)
The voltages| One inclusion| Two inclusions
US ~ 3.3507 3.2990
US ~ -3.3843 -2.8483

Using Equation (3.33)
The voltages| One inclusion| Two inclusions
Ul ~ 3.1855 3.1961
Ud ~ -3.2217 -3.1009

In Table 4.4, there is no need to report the values of voltages
{Us, UL, U5, Us, Uy Ug 1, {U3, U, U, UG, U7 Ug 3 (U3, U, US, UG, UZ L U,
{U3, U3, Uy, Ug, U7 U}, {U3, U3, UR, U2, UR U h, { U3, US, UYL U, UG, Ug
and{UJ, UZ UI, UI Ul U8}, since their values are almost zero. This is because these

voltage values are located at points where a free-currentrebles have been attached.
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It can be seen from Table 4.4 that although there are not miffeyeshces in the values
pared to the corresponding voltage values obtained usitygamre rigid inclusion in
the unit disk, differences in the compared voltages on tteeléd electrodes; 7 are
noticeable. This is due to the effect of the second rigidusidn centred at0, —0.5)

on the equipotential lines when the current patterns (Z84)(3.32) are applied.

4.7 The inverse solutions for two rigid inclusions

In this section, we consider Case 2 of Section 4.4 where thige=eof two inner rigid
inclusions are unknowr(,X,, Y) and (X, Y7). In the following experiment.. = 8
and we simulate 56 measured voltage which are also corrigytediding Gaussian
noise with zero mean and standard deviatioa 0.01.

Further modifications in the inverse mathematical formafatvhen extending the
number of the inclusions to two are considered. Assumingémres of the objects
are unknown means an additional condition is required inMIGMC to ensure that
the star-shaped objects do not intersect. So, the distateeén the centrgsYy, Yy)

and(X,Y7) should be greater than the sum of the diameters. As a resullt,

S =(Xo— X2+ (Yy — Y1)2 > diam(Qnner, ) + diam(Qpner, ), (4.12)
where the diameters 6i;,,,,.,, andQ;,..., are defined as

diam Qruper,) = max |z — vy, (4.13)

Qvgeaﬂlnnerl -
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and

diam(Qrpper,) = Max |z —y|, (4.14)

Qageaﬂln'mﬂg

respectively. Alternatively, in polar coordinates di@m,...,) can be represented as

diam(Q,er,) = max \/r2(6) +13(8) — 2r1(0)r1(9) cos(f —¢)  (4.15)

0,$€[0,27)

and similarly for dian(Q,,er )-

Experiment 3. We fit a star-shaped model to true circular data when the egwir
those objects are &0, 0.5) and (0, —0.5) with true radii equal td).4. Fitting star-
shaped models includes finding an estimated valuesZardii, r, for the first in-
clusion, and32 radii, r, for the second inclusion, the MFS coefficients,),_1z37
consisting of128 outer MFS coefficients corresponding @), 128 inner MFS
coefficients corresponding £o;,,,..., and128 inner MFS coefficients corresponding to
Q1nner,» iIN addition to the unknown centréXy, Yy) and (X, Y7).

Again, we emphasize that the condition (4.12) should be sadan the MCMC

reconstruction code. The diametersnf,,,..., andQ ..., can be simplified as

diam(Q7ner,) = max \/T%Z- + 13, = 2y cos(0; — 6;), (4.16)
i,j=1,32
and
diam(Qrpner,) = max_ \/rgi + 13, — 2ryira; cos(0; — 0;). (4.17)
i,j=1,32

We fix the values of the hyper-prior parameters at the sameesathich were consid-

ered in Experiments 1 and 2.
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Figure 4.6: The star-shape models for two inclusions whencéntres of the inner
objects are unknown, from left to right and continued on #eosd row: errors esti-
mation, object boundary histogram, object boundary ctediiiervals, fitted circles,

MFS coefficients (with credible intervals) correspondiagite inner and outer bound-
aries.

From Figure 4.6 it can be seen that the accuracy of the retmtisin is as good
as the corresponding reconstruction obtained in Expetirhgwhen only one rigid
inclusion is considered), in terms of the estimated radintees and the outer MFS
coefficients which still follow the true values. More pregig for the rigid inclusion
Qruner,» the estimated radii average(ist008 comparing to its true value.4, and a
standard deviation d@f.0009, whilst the estimated centre is @t0.0004, 0.5004) com-
paring to the truth one which i, 0.5). Moreover, for the rigid inclusiof;,,,.c,,
the estimated radii average (ist020 comparing to its true value.4 and a standard
deviation 0f0.00016 and estimated centre @t.0006, —0.5015) comparing to the truth
centre(0,0.5). However, the estimated values of the inner MFS coefficishtsv os-
cillations with wide credible intervals when the number wélusions is extended to

two.
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4.8 Conclusions

The Bayesian statistical approach in combination with arM@Calgorithm have been
successfully employed to solve inverse CEM problems usmglsted noisy data of
the voltages. We have considered the voltage data as theyosiessensitive to changes
in the centre, the CCI and in extending the number of objecta/o, than the poten-
tial and current flux data type. As a result, three differemerse problems have been
examined and solved to provide full reconstruction of theemobjects. Firstly, the in-
verse CEM problem has been solved in an annular domain wigidsimclusion where
the centre of the inclusion is unknown (Section 4.3). Selyprahother inverse CEM
problem has been solved in an annular domain with a rigidusich with unknown
centre, as well unknown CCI values (Section 4.5). Finaflg, inverse CEM problem
has been solved in an annular domain with two rigid inclusishere the centres of
these inclusions are unknown (Section 4.7). The expersngamonstrate that high
accuracy reconstructions of the inner object are obtaineglhvthe number of the at-

tached electrodes 5 = 8.
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Extension to three-dimensions

5.1 Introduction

This chapter aims to extend the previous two-dimensionalpedgations of direct and
inverse problems to three dimensions. As a remarkable stegrds solving the di-
rect and the inverse CEM problems of ERT (future work), in st fattempt, we will
consider the forward and inverse solutions of the contisunodel of ERT in three
dimensions. The MFS is again applied to find the forward smhstof the Dirichlet
problem for the three-dimensional Laplace’s equation enuhit sphere (Problem 1),
or in the unit sphere with a spherical/ellisoidal rigid inslon (Problem 2). We discuss
the numerical results for a set of examples and compare thémtlve corresponding
exact solutions where available.

Prior to this study, three-dimensional rigid inclusionyédeen reconstructed in
[15, 39, 57] by standard regularization schemes, where th8 Mas used to produce
the direct solution and a constrained optimization procedvas employed for deter-
mining the boundary of a three-dimensional star-shapedinglusion. In this chapter,
we use the Bayesian approach, instead of the gradient-laisédization of [15], to
find the inverse solution by extending the study of [6, 7] frovo-dimensions to three-

dimensions.

131
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5.2 Mathematical formulation

In this section, we consider Laplace’s equation for a thti@eensional bounded do-

main2, namely,
Au =0 in Q, (5.1)

and formulate two forward problems for different geometrie

Problem 1: We considef? as the unit spher@ = {(x,y,2) € R3|z% + 2 + 22 < 1}

and solve (5.1) subject to the Dirichlet boundary condition
u=f on o2. (5.2)

Problem 2: We consider an annular doman= Qo \ Q2 rnner With a rigid inclusion

@) Qnner = {(z,9,2) € R?| 2% +y* + 2% < (0.5)%}

or

$2 2 22
(b) anner = {(xuyv Z) S R3| (0.5)2 + (0?5)2 + (0.4)2 < 1}

inside the unit spher@o,i., = {(,y, 2) € R3|2? + y*> + 22 < 1}. Equation (5.1) is

solved subject to the Dirichlet boundary conditions

u=f on INouter (5.3)
and

u=20 on O rpner- (5.4)

On the other hand, in the inverse formulation, since the eonés not only to find
the potentiak:, but also identifying the rigid inclusiof;,,,...., the following Neumann

current flux measurement is required to compensate for tkeawn geometry of the
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inner rigid inclusion;,,.,.,, Nnamely,

ou

a_n =g on aQOuter. (55)

As a result, the inverse problem of the continuous model df BRyjiven by equations
(5.1) and (5.3)-(5.5). Unigueness of this problem wlfies 0 is provided in Appendix
A.

Problem 3: We consider an annular domaih = Qouer \(Qnnert U Qrnpert) With
two rigid inclusions, which need to be detected when therse@roblem is solved,
defined by

Qpnert = {(1,y,2) € R?| 22 + (y — 0.5)° + 22 < (0.4)2}

andQpne = {(7,y,2) € R3| 22 + (y + 0.5)° + 2% < (0.4)2}.

These are located inside the unit sphere. Then, equatibni$solved subject to (5.3),
(5.5) and

u=>0 on 8annm U 8annerz. (56)

5.3 The MFS for the direct Problem 1

In this section, we seek an approximation to the solutionagflace’s equation (5.1) in

the unit sphere as a linear combination of fundamentalisoisiin the following form:

=

-1

N
up) =YD ewGE, 0. peQ (5.7)

1 =1

TF

whereG is the fundamental solution of the three-dimensional Legitaequation given

by

(5.8)
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The source pointg, , are located outsid®, and¢y, for k = 1,(N — 1) andl =
1, N are unknown coefficients to be determined by imposing theBlet boundary
condition (5.2).

Sincef? is a sphere, we can use spherical coordinates for the boundiwocation
and source points. This leads to

x, ; = (sinf; cos ¢;,sin ; sin ¢;,cos;), i=1,(M —1), j=1,M, (5.9)

27.]

{, =R (sinék cos ¢y, sin 0 sing?)l,cosék> , k=1,(N-1), I=1,N, (5.10)

respectively, wher& > 1,

HZ:—M, i=1,(M-1), ¢;,= i , J=1.M
and
Tk _ 2m(l— 1)
9]6 N7 k 7( )7 ¢l N ) [ )

In total, the number of the collocation points(i&/ — 1) x M and the number of the
source points igN — 1) x N.

From (5.7), the normal derivative is approximated as

du L 0G
%(E) = Z chl%(ék,l’g% p € 897 (511)
k=1 I=1
where
oG oG oG oG
%(ék’lal_?) - (%nx + 8—yny + 5”2) (ék,laz_?)v (512)
oG B (x — &) oG _ (Y — &)
or @k,l’g) o 47r\]_9 _ §k7l‘3’ oy (§k,l’£) o 47r\]_9 _ §k7l‘3’
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oG (&)
(& p) = —W,

k=1,(N—-1 I=1,N

az ) ( )7 Y )

and the components of the outward unit normal vector to thiesphere are
n, = sinf cos ¢, n, =sinfsing, n, = cosd, 6 ¢c (0,7), ¢ € [0,2m).

In order to obtain the coefficient= (cy,),_i x—1, ;-7 We collocate equation (5.7)

at the points (5.9) and use the boundary condition (5.2)s fdgults in

N-1 N
ZGz‘jlekl =fij, i=1L(M-1), j=1M, (5.13)
k=1 1=1
where f;; = f(z;;) andGyjn = ﬁ fori =1,(M—-1), j =1,M, k=
Sk,l~ 24,J

1,(N —1)andl = 1, N. Expression (5.13) can be re-written as

N(N—1)
E FonC,=b,, m=1, M(M — 1), (5.14)
n=1
where
G111 Giiz ... Gianv .. Guw-in Giyn-12 - Guw-nn
G1211 Giziz ... Giaan .. Giywn-1n Gia(n-12 - Graw-nn
Giam Gunz - Gy - GIJM(;V—I)I GIJM(;V—I)Q GIJM(].V—I)N
Ga111 G211z ...  Gaun ... Goayw-1n Gay(n—1)2 - Gan-nN
Gao11 G212 ...  Gaainv ... Gaym—1)1 Gayn-1)2 - Gan-1N
Ganii Gaviz o Gamin o Gam(u—11 Gam(n-12 - Gam(N-1)N
G(]\/I—.l)lll G(]M—.l)112 - G(]\/I—ll)llN - G(]\/I—l).l(N—l)l G(]\/I—I)II(N—l)Q - G(]\/I—l);(N—l)N
Gam—n211 Gur-1212 - Guu-n2in - Guu-newv-11 Gur-new-12 - Gur-—12(v-—1)N

G(M—.l)lwll G(M—II)JMIQ - G(]Mfll)MlN - G(]Mfl)J.\J(Nfl)l G(MA)J.\J(NA)Q - G(M—I)JCI(N—I)N
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f11

C
c}; f12
CllN fl]\/f
ca1 fa1
c22 Fao
C= : andb = ;
2N fomr
C(N;l)l ’
C(N-1)2 for—11
for—1)2
c N;1 N .
= fou—nym

The linear system of algebraic equations (5.14) consis{dbf- 1) x M equations
with (N — 1) x N unknowns. IfA/ = N, we can directly apply the Gauss elimination
method to obtain the MFS coefficien€s,. However, if M > N the least-squares
method is used to solve the over-determined system of emsatb.14). This yields

the solution
~ -1 . ~
C= (FTF) FT b, (5.15)

Once the coefficient vectdE has been obtained accurately, equations (5.7) and
(5.12) provide explicitly the solution for the interior muitial u inside the domair?

and the current fluxu/on on the boundary().

5.3.1 Numerical results and discussion

In this section, we discuss the MFS solution of the direcblenm 1, given by equations
(5.1) and (5.2), and compare the numerically obtained tesuith the exact solutions

for the normal derivative on the boundary and the interidutsan.

Example 1: Solve Problem 1 using the MFS where the analytical soluson i

u(z,y, z) = 2* +9* — 222, (2,9,2) € Q. (5.16)
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Solution: ChoosingM = N = 16 results in15 x 16 = 240 collocation points
which meang240 equations. On the other hand, the number of the source peints
15 x 16 = 240, this in turn, means that the number of the unknowrislig as well.
We also haver = 5.

Figure 5.1 illustrates a comparisons between the exact d#fsl ilterior solutions,
as well as the exact and MFS normal derivatives. This figuosvstexcellent agree-
ment between the exact and numerical solutions; u2tand11 decimal places for
interior solution and the normal derivative, respectively

Figure 5.2 illustrates the absolute errors between thet exacnumerical solutions
previously illustrated in Figure 5.1. From this figure, iinche seen that the errors
decrease a8/ = N increases. Although the casgs and(f) (whenM = N = 32)
show smaller errors in terms of accuracy tifapand(d) (whenM = N = 16), the

latter show better representations in terms of the smosthokthe numerical interior

solutions and normal derivatives.

uM5(0.5,0,0)

Wosats

ll”"\\\

au/onMF$(1.0,6,¢)

o/ 0o den

e/(m) @(@2n

Figure 5.1: Comparison betweefr) the exact interior solution.“*2/(0.5, 0, ¢) and (b)
the MFS interior solutions.¥%(0.5, 8, ¢), and comparison betweén) the exact boundary
derivative(du/dn)¥"*!(1,6, ¢) and(d) the MFS boundary derivativeu/dn) (1,6, ¢),
as a functions op/(27) andd/m, whenM = N = 16 andR = 5.
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< 10° () M=N=8 %107 X107 (b) M=N=8 x10™*
16 4 : 2
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1.2 2
1
0.8 ? Pys
- 05
orm 0 0 @n
x10™ x107° (d) M=N=16 x107
2 1 6
15 4
2
1 1
: 05
o/m 0 0 @2n
x107 X102 (f) M=N=32 107

Figure 5.2:(a, ¢, e) the absolute errors between the MFS interior solutiof$™%(0.5, 6, ¢)
and the exact interior solution®*e<t(0.5,0, ¢), for M = N = {8,16,32}, respectively,
(b,d, f) the absolute errors between the MFS boundary derivétiugon™5)(1,6, ) and
the exact boundary derivati@u/on"**)(1, 0, ¢), for M = N = {8,16, 32}, respectively.
In all casesk = 5.
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Figure 5.3 illustrates the absolute errors between theteatnumerical interior
solutions and normal derivatives for fixdd = N = 16 and variousk € {2,5,10}.
From this figure, it can be seen that the errors decreasgtiasreases. Although the
casese) and(f) (whenR = 10) show smaller absolute errors in terms of accuracy

than the caseg) and(d) (whenR = 5), the latter show better representations in terms

of the smoothness of the numerical interior solutions arrdnabderivatives.
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Figure 5.3:(a, ¢, e) the absolute errors between the MFS interior solutiofg™%(0.5, 6, ¢)
and the exact interior solutiom”=%*(0.5, 0, ¢), for R = {2, 5,10}, respectively, andb, d, f)
the absolute errors between the MFS boundary derivétiugon® (1,6, ¢) and the exact
boundary derivativéou/on**)(1,0, ¢), for R = {2,5,10}, respectively. In all casell =
N = 16.

5.4 The MFS for the direct Problem?2

In this section, we seek an approximation to the solutiomabgion (5.1), in an annular

bounded domain with a rigid inclusion inside, as a linear boration of fundamental
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solutions in the following form:
2N-1
Z Z cuG (€ l,p pE Q. (5.17)

k=1

The internal source points denotedgj;y, are located inside the inner domaiq,,....,

and are defined, for Proble®a), b
{kl =R, (sm&k cos ¢y, sin 0 smgbl,cosek) k=1,(N—-1), [=1,N, (5.18)
where0 < R; < 0.5, and, for Problenz(b), by

§,1€l =N (0-5 sin ék Cos le, 0.5sin ék sin gz~51, 0.4 cos HNk) ,
F=1,(N-1), I=TN, (5.19)

where0 < n; < 1. Whilst the external source points denotedgég, are located

outside the outer domainy.,..., and are defined by

2 T ~ o~ ~
§kl =R (sm Or_ N1 COS P, 8in b, N1 sin ¢y, cos Gk,NJrl) ,

k=N,2(N—1), [=T1,N. (5.20)

Similarly, the internal collocation points denoted @;/] are located o<2;,er,

and are defined, for Problena), b

x; . = 0.5(sin; cos ¢, sinf; sin ¢;, cos6;), i=1,(M—1), j=1,M, (5.21)

7/7]

and, for Problen2(b), by

= (0.5sin0; cos ¢;,0.5sin 6§, sin ¢;, 0.4 cos b;) ,
i=1,(M—1), j=T1,M, (5.22)
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whilst the external collocation points denotedﬁ}g are located oo, and are
defined by

2 . . .
T, = (sin6;_pr41 cos ¢, sin 0, pryq sin ¢, cos 6 _pr11)

i=M_2M—1), j=1,M. (5.23)

As a result, in total the number of the collocation point2(8/ — 1) x M and the
number of the source points2§N — 1) x N; this means that the number of the MFS
inner and outer coefficients 8NV — 1) x N.

Here, for any collocation point = (z,y,2) € Qe the component of the

outward normal vector is
ngy = —sinfcos @, n, = —sinfsing, n, = —cosd, for 6 ¢c (0,7), ¢ €[0,2m).

In order to obtain the coefficient = (cy,), 51, ;17 We substitute (5.17) into

the boundary conditions (5.3) and (5.4). This results in

2(N-1) N
> Giuen=fiy, i=12(M-1), j=1M, (5.24)
k=1 I[=1
where fi; = f(z;;) andGiju = g — . fori = L2(M —1), j = 1L, M, k =
’ TSk, Ziy5

1,2(N —1)andl = 1, N. Note that from (5.4)f; , = 0fori =1, (M —1),5 =1, M.
Equation (5.24) can be re-written as
2N(N—1)

> FunCu=b,, m=12MM-1), (5.25)

n=1
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where

G111
G211

Gimit
Ga111
Ga211

ST
Il

Gamit

G[Q(]M.—l)]lll -
Ga(M—-1)211 -

G[Q(]\/I—ll)]lwll - G[Q(]M—ll)]l\/llN -

C11
C12

CIN
Cc21
C22

C= : andb =

C2N

C[2(N.71)]1
Cl2(N-1)]2

0[2(1\’;1)]1\’

Gi1in
Gi21N

GimiN
Ga1in
Gao1N

Ganmin

G[Q(]M;l)]llN -
Gl2(M—-1)]21N -

f11
fi12

fim
f21
fa2
famt

f[2(]&1.71)]1
Se(—1))2

f[Q(]M.—l)]I\/I

Gripm—1)1
Grapp(m—1)1

Gime(m-1)1
Garp2(m—1)1
Gazpa(m—1))1

Ganf2(m—-1))1

Gla(M—1D)12(N-1)]2 -
Gl(M-D]22(N-1)]1 -

G[Q(I\/I—l)]JIM[Q(N—l)]l -

Giipp(N—1)N
Grapp(N—1)N

GIJVI[2(.]\771)]N
Go1p2(N—1)|N
Gaopa(N—1)|N

Gonma(N-1)|N

G[Q(A/I—l)];[Q(N—l)]N
Gl(M-1)]22(N-1)]N

G[Q(I\/I—l)]];I[Q(N—l)]N

The above linear system of algebraic equations (5.25) stnef2(M — 1) x M

equations witl2(N — 1) x N unknowns. Its solution can be obtained as described at

the end of subsection 5.3.

5.4.1 Numerical results and discussion

In this section, we will discuss and compare the direct nicakand exact solutions

of Problem 2 given by equations (5.1), (5.3) and (5.4), fer tlormal derivatives on

the inner and outer boundaries and the interior solutions.

Example 2: Solve Problen2(a) using the MFS where the analytical solution is given
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by

! _ L (5.26)

) = e 08

Solution: ChoosingM = N = 16, resulting in30 x 16 = 480 collocation points and

480 source points. We also také= 5 andR; = 0.3.

Figure 5.4 illustrates a comparisons between the exaationteolutions and the
MFS interior solutions, as well as the corresponding nordeaivatives oro€;,,,..,
andoQo.- This figure shows an excellent agreement between the emdd¢ha nu-

merical MFS solutions up tb or 6 decimal places.

(b)
-0.3333

-0.3333

SOSUSIUN

“““‘ ““ _

\“W 0.3333
Pz

-0.3333

—0.9999

0.5
6/ @(2n) o [olea]

Figure 5.4:(a) The exact interior solutiom®*?°*(0.6, 6, ¢) and (b) the MFS interior solu-
tionsuM¥5(0.6, 6, ¢), (c) the exact outer derivativeu/dn)5 2 (1,6, ¢), (d) the MFS outer
derivative (9u/0n)ME5 (1,6, ¢), (¢) the inner exact derivativedu,/dn) %% (0.5, 6, ¢), and

Outer Inner

(f) the MFS inner derivativédu,/on) 15 (0.5, 6, ¢), as a functions ab/(27) andd /=, when

Inner

M=N=16,R=5andR; = 0.3.
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Figure 5.5:(a, d, g) The absolute errors between the MFS interior solutioH$'%(0.6, 6, ¢)
and the exact interior solution®*%<*(0.6,0, ¢), for M = N = {8,16,32}, respectively,
(b,e, h) the absolute errors between the MFS outer derivalitue/0n%)(1,6, ¢) and the
exact outer derivativédu,/on**)(1,0,¢), for M = N = {8,16, 32}, respectively, and
(c, f,4) the absolute errors between the MFS inner derivaiiue/0n%)(0.5,6, ¢) and the
exact inner derivativédu/on’*)(0.5,0, ¢), for M = N = {8,16, 32}, respectively, as a
functions of¢/(27) andf/m, whenR = 5 andR; = 0.3.
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Figure 5.6:(a, d, g) The absolute errors between the MFS interior solutioHg™%(0.6, 0, ¢)
and the exact interior solution”*?°*(0.6, 6, ¢), for R = {2, 5,10}, respectively,b, e, h) the
absolute errors between the MFS outer derivatie/on)" "% (1,0, ) and the exact outer
derivative (Ou/dn) """ (1,0, ¢), for R = {2,5,10}, respectively,(c, f,i) the absolute er-
rors between the MFS inner derivatiy@u,/on) (0.5, 6, ¢) and the exact inner derivative
(Bu/On)F™*(0.5,0, ¢), for R = {2,5,10}, respectively, as a functions of (2r), whend /=
andM = N =16 andR; = 0.3.
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Figures 5.5 and 5.6 illustrate the absolute errors betwleemxact the numerical
MFS solutions for various values éff = N € {8, 16,32} whenR = 5, and for var-
iousR € {2,5,10} whenM = M = 16, respectively. In these figurey, is fixed at
0.3. From Figure 5.5, it can be seen that/ds= N increases, the accuracy of MFS
solution increases. However, increasiRgrom 2 to 5 (whenM = N = 16) makes
those solutions even better and choosihg- 5 provides the same accuracy as when

R=25,for M = N = 16.

5.5 The MFS for the direct Problem3

In this section, we seek an approximation to the solutionqofagion (5.1), in an an-
nular bounded domain with two rigid inclusions inside, asna@dr combination of

fundamental solutions in the following form:

N
u(p) = > G, ), pe. (5.27)

1

L are located inside

The internal source points for the first rigid inclusion destbby¢

the inner domain;,.....1, and are defined, for Proble®n by
éllcl =R (sinék cos ¢y, sin ), singz;l,cosék> , k=1, (N-1), [=1,N, (5.28)

where0 < R, < 0.4, and denoted bgzl for the second inclusion, are located inside

the inner domaifl;,,....2, and are defined by

2 - ~ = - -
§kl =R, (sm Or_ N1 COS @y, Sin By, _ 41 sin ¢, cos 9k7N+1) ,

k=N2N-1), [=1,N, (5.29)
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where0 < R, < 0.4, as well. Whilst the external source points, denote@k%ly are

located outside the outer domdiy,,..., and are defined by

§i =R (Sin ék—[Q(N—l)-i—l}-i—l cos ¢y, sin ék—[Q(N—l)-i—l}-i—l sin ¢y, cos élc—[Q(N—l)-i—l}-‘,—l) ;

k=[2(N-1)+1],3(N-1), [=1,N. (5.30)

Similarly, the internal collocation points for the first lasion denoted b,w_l{j, are

located or)€;,.,...1, and are defined, for Problesn by

x; . = 0.4 (sin; cos ¢, sin6; sin ¢;, cos ), i=1,(M —1), j=1,M, (5.31)

27.]

and for second inclusion of Problesnthe internal collocation points are denoted by

2
x; ; and located 00,2

27 = 0.4 (sinb;_pr41 cos ¢;, sinb;_pr118in ¢, cos O;_pri1) ,

i=M_2M~—1), j=1,M, (5.32)

whilst, the external collocation points denoteddy, are located 0¥Qo..,, and are
defined by

ES’] = (sin 0i—[2(M—1)+1]+1 CoS ¢j> sin 0i—[2(M—1)+1]+1 sin ¢j> COS 02‘—[2(M—1)+1}+1) )

i=0R2(M-1)+1],3(M —-1), j=1M. (5.33)

As a result, in total the number of the collocation point8(8/ — 1) x M and the
number of the source points3§/N — 1) x N which in turn means that the number of
the MFS inner and outer coefficients3igVv — 1) x N.

In order to obtain the coefficient = <Ck’l)k:m7 —T We substitute (5.27) into
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the boundary conditions (5.3) and (5.6). This results in

3(N-1) N
Z ZGijklckl = fi,ju L= 173(M - 1)7 J=1M, (5-34)
=1

k=1 =

Wherefi,j = f(@lj) andGi]’kl = ﬁ, fori = 1,3(M— 1), ] = 1,M, k =
’ TSk %ig
1,3(N —1) andl = 1, N. Note that from (5.6)f;; = 0fori = 1,2(M —1),j =

1, M. Equation (5.34) can be re-written as

3N(N-1)
Y Fun Co=by, m=13M0 1), (5.35)
n=1
where
Gun Gin Gurm-nn Gui(N-1))N
Gion1 Gi21n Grap(m—1)1 Gia3(N-1)|N
Givi G GlJVI[S(.]Mfl)]l G1M[3(IN71)]N
Go111 Gonn Garz(m—1)1 Ga13(N-1)]N
Gao11 Gao1n Gaoz(m—1))1 Gaa3(N-1)|N
F — . . . . 9
Gam Gamin Ganmpz(v—1)1 Gam[3(N-1)N
G[S(]Ml—l)]lll - G[S(M;U]UN - G[S(]M—l)]ll[S(N—l)]Q - G[S(]VI—I)]i[S(N—l)]N
Gim-1)211 - Gpm-1))218 - GEm-n2arN-1)1 - GB-1)2B(N-1)N
G[S(M—ll)]]\lll - G[S(]M—ll)]MlN - G[S(]VI—I)]EM[S(N—I)]I - G[S(]VI—I)]]C{[S(N—I)]N
f
o i
CI'N fl]\f
co1 fo1
€22 f22
C= : andb = :
2N Jam
CJe .7 :
C{;Exjiﬁ fBar—n)
S3(v—1))2
0[3(1\7;1)]N

f[S(]M.—l)]IvI

The above linear system of algebraic equations (5.35) stnef3(M — 1) x M

equations witl8(N — 1) x N unknowns. Its solution can be obtained as described at
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the end of subsection 5.3.

5.5.1 Numerical results and discussion

In this section, as the analytical solution is not availalke will represent only the
direct numerical of the outer derivative which will be uséavards to determine the
shape and the size of the inner rigid inclusions in Prob3egiven by equations (5.1),
(5.3) and (5.6).

Example 3: Consider the numerical solution of the forward problem obliem

3 using the MFS where the functiofi in the boundary condition (5.3) is equal to
u(x,y, z) = 2 +y* — 222

Solution: ChooseM = N = 16, resulting in45 x 16 = 720 collocation points and
720 source points and sét = 5 andR; » = 0.3.

Figure 5.7 illustrates the MFS numerical normal derivatiga the external bound-
ary for fixedM = N = 16 and variousk € {2,5,10}. From this figure, it can be
seen that making larger does not greatly affect the values of the normal dévig in
terms of stability and smoothness. Figure 5.8 shows the $4R& numerical values
for fixed R = 5 and various\/ = N € {8, 16, 32,64}. In both Figures 5.7 and 5.8 it is

obvious that the two peaks are caused by the existence afthianer rigid inclusions.
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(a) M=N=16, R=2 (b) M=N=16, R=5

(c) M=N=16, R=10

Figure 5.7:(a, b, ¢) the MFS outer derivativédu/dn) 55> (1,6, ¢), as a functions ob/(27)
andf/m, whenM = N =16, R = {2,5,10} andR; » = 0.3.

(a) (b)

TN
5N 4

0.5

e/ @En e @(2m)

Figure 5.8:the MFS outer derivativédu/dn)s.5> (1,6, ¢), as a functions of/(2r) and

0/m,whenM = N = {8,16,32,64}, R =5andR; > = 0.3.
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5.6 The inverse solution for the continuous model of

ERT in three dimensions

We extend the study of [6, 7] concerning the solution of theeiee problem of the
two-dimensional continuous model of ERT to three dimersidore clearly, we will
invert the continuous model of ERT in three dimensions usiiregsame strategy that
has been applied throughout Chaptgrand4 for the CEM, where the MFS direct
solutions were combined with the MCMC method to detegta single inner rigid
object and(b) two rigid inclusions as described in Sectiér7. The inclusion model
parameters will be firstly defined and the description of tHeSWvill then be given.
Also, the necessary modifications in the statistical maagkpproach (corresponding
to Sections3.3.1 and3.3.2) will be considered. Finally, numerical simulations are re

ported to demonstrate the efficiency of the estimation o

5.6.1 Mathematical formulation of one rigid inclusion

Let us assume that we have a three-dimensional star-shaped ©,,,,... centered at

the origin in the unit spher@ and parametrised by

rij = 1(0i¢5), i=1,(N—-1)j=1N, (5.36)

using the spherical coordinated representation

Qrnner = {r(0, @) (sinf cos ¢, sinfsin ¢, cos ) | ¢ € [0,27],0 € [0,7)}. (5.37)

The input data consists of the potential and current fluxrgiwe (5.3) and (5.5), re-
spectively.
As in Chapter 3, the boundary potentiais specified as in (5.3) and the current

flux du/on is obtained numerically by solving the direct problem of temn 2, as
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described in Section 5.4, in order to provide the current data (5.5). Afterwards,

the potential and current flux values are corrupted withenas
wij = f(Tij) +nij, vijg=9(®iz)+ Gy, i =M,2(M -1), j=1,M, (5.38)

where the additive noise variablgs; and¢; ; follow independent Gaussian distribu-
tions which have zero means and varianegsndo?, respectively.

The rigid-inclusion condition (5.4) must be imposed as

2(

=

-1)

N
chlG< kl,r” (sin 6; cos ¢;, sin 6; sin ¢;, cos 6; )) 0,

1 I=1

=
Il

i=1,(N—-1), j=1,N. (5.39)

It is noticeable that the MFS introduces an extf&’ — 1) x N unknowns which
are represented in the MFES inner and outer coefficients. eTbesfficients could be
estimated simultaneously with thi& — 1) x N radii of the star-shaped object from the
system of equations (5.39), as well as fitting equations/{sahd the corresponding
approximation of the derivative as a linear combinationwfdamental solutions to

match the Cauchy data pair (5.38), that is,

2(N-1
> chla o Lig) = wige i=M2(M = 1), j=1,M, (5.40)
k=1 I[=1

and
N— N
Z Z o Lig) = Vi, i=M2(M 1), j =1, M. (5.41)
k=1 [=1

Equations (5.39)-(5.41) create a systeni/gf— 1) x N +2(M — 1) x M equations
with 3(N — 1) x N unknowns. Although the linearity in is obvious in equations
(5.40) and (5.41), equation (5.39) clearly shows nonligaetween- andc.

The constraind < r; < 1fori=1,(N —1), j =1, N should be imposed to
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ensure that the inner star-shaped object remains withinnitesphere during the re-

construction process.

5.6.2 Mathematical formulation of two rigid inclusions

Let us assume that we have two three-dimensional star-dhamgects();,,,...1 and

Qranero CeNtered at given points sayXo, Yy, Zo) and (X1, Yy, Z;) in the unit sphere

Q and represented by = (r;),_1 v, ;1w @Ndry = (r}),_i v, j—1v TESPEC-
tively.

The boundary potential is specified as in (5.3) and the current flix/0n is ob-
tained numerically by solving the direct problem of Probl&mas described in Section
5.5, in order to provide the current flux data (5.5). Then, theepbal and current flux

values are corrupted with noise as

Wy 5 = f(xz,j) +77i,j7 Vij = g(xz,j) + Ci,ja 1= (2(M - 1) + 1) 73(M - 1)7 j = 17M

(5.42)
The rigid-inclusion condition (5.6) is imposed as
3(N-1) N
Z cuG <§k P 7,5 (sin 6; cos ¢;, sin 6; sin ¢;, cos 01)) =0,
k=1 I=1 ’
i=1,2(N—1), j=1,N. (5.43)

Now, it can be seen that the MFS introduces an ex{ré — 1) x N unknowns
which are represented 2{N — 1) x N inner coefficients linked to the source points
of the first and the second inclusions, and — 1) x N outer coefficients linked to
the external source points. These coefficients are estihsieultaneously with the
2(N — 1) x N radii of the star-shaped objects from the system of equa({®m3), as
well as fitting equations (5.27) and the corresponding appration of the derivative

as a linear combination of fundamental solutions to matetGhuchy data pair (5.42),
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that is,
3(N-1) N
Z chlG e ig) = Wi, 1= 2(M =1)+1),3(M = 1), j =1, M,
k=1 =1
(5.44)
and
3(N-1) N

3G . ‘
Z Z kl kl’—lj) Vi, 1=02M-1)+1),2(M—-1), j=1,M.
k=1 I=1

Equations (5.43)-(5.45) create a syster@(@¥ — 1) x N +2(M —1) x M equations
with 5(N — 1) x N unknowns.
We need to take into account that the distance between tliesemould be greater

than the sum of the diameters

S = \/(XO - X1)2 + (1/0 - Y1)2 + (ZO - Z1)2 > dian(anner1> + dian‘(annerz%
(5.46)

where the diameters 6i;,,,,.,, andQ;,.,..., are defined in equations (4.13) and (4.14),

respectively, withe = (21, z2, 73) andy = (y1, y2, y3).

5.6.3 Statistical modelling in three-dimensions

The only modifications to the statistical modeling (Sectioh1) is that the data and

the model parameters become matrices instead of vectonsid&oing the case where

we have one rigid inclusion, the potential values @re= (w;;),_s75371), j—17 and
the current flux values = (v; ;),_s5mr—, ;=777 Whilst the model parameters are the
radiir = (rm-)i:m TN and MFS coefficients = (Ck,l)k:m —in- The

formulas of the likelihoods, the priors and the hyper-préaord the full posterior distri-
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bution stay the same after giving consideration to the dsiwerality of each variable.

Experiment 1. Find the inverse solution of Proble®da) by fitting:

(&) A spherical object model using the data from a sphermeausion of radiug).5

centred at0, 0, 0).

(b) A star-shaped object model using the data from a sphénidasion of radiug).5

centred at0, 0,0).

First of all, we calculate numerically the current flé/Ou on the external boundary
0Qouter DY solving the forward Dirichlet problem (5.1) and (5.3)4p as in Example
2, using the MFS witi N — 1) N = 35 x 36 = 1260. Then, the measured potential and
current flux (5.38) are calculated on a mesh of equally-gpao#ocation points, with
(M —1)M = 13 x 14 = 182, on the external fixed boundary 8f,,.... Data defined
in (5.38) is generated by adding Gaussian noise to thosedaoymeasurements with
a standard deviatiomn,, = o, = 0.01.

We take(N — 1) N = 14 x 15 = 210 which makes the discretised problem (that de-
fined in (5.39)-(5.41)) under-determined, since it cos${ N — 1) N +2(M —1)M =
210 + 2 x 182 = 574 equations wittB(N — 1)V = 3 x 210 = 630 unknowns. We
taken; = 0.6, R =5andR; = 0.3.

Secondly, the hierarchical structure of the statisticatleddn the right side of Fig-
ure 3.8 is considered here. Moreover, is it reasonable tahesesame hyper-prior
parameters that have been used in [6] and worked well for iixeat 3.3. So, we fix
the values of the hyper-prior parameters of the internalexternal MFS coefficients
atag, = 0.0116 anda¢, = 0.2457, respectively, as well as the hyper-prior parameter

value for the radius at,, = 0.1.
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K=5, the estimated radius=0.4884 (0.0014) K=10, the estimated radius=0.4930 (0.0048)

1 -1 -1

-1 -1 -1 -1

Figure 5.9:Spherical model reconstruction: the estimated radiusddous MCMC iterations
K € {5,10, 20,40}, for with full posterior distribution with hyper-prior pametersd, = 0.1,
ac, = 0.0116 andag, = 0.2457).

For both reconstruction casés) and(b), the constrain® < r; ; < 1 is required to
ensure that the reconstruction of the inner object staylsinvihe unit sphere at each
iteration of the MCMC. However, in Cade) the radiir; ; are equal, hence only one
radius is estimated in addition to tBeN — 1) x N coefficients.

Figure 5.9 shows the three-dimensional reconstructionartbe seen that, as the
number of MCMC iterations increasE € {5, 10, 20,40}, the corresponding esti-
mated radiug0.4884, 0.4930, 0.4977, 0.4987} becomes closer to the true value which
is 0.5 with relatively small standard deviation.

Figure 5.10 illustrates the three-dimensional reconstrndor the star-shaped model.
It can be seen that, as the number of MCMC iterations increéhseverage of corre-
sponding estimated radii becomes closer to the true valughvig0.5 and its standard
deviation is much smaller (i.e. wheki = 40 the estimated radius 54968 with cor-

responding standard deviatiord094).
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K=5, the estimated radius=0.4895 (0.0153) K=10, the estimated radius=0.4888 (0.0103)

Figure 5.10:Star-shaped model reconstruction: the estimated radiugaftous MCMC it-
erationsK € {5, 10,20, 40}, for with full posterior distribution with hyper-prior pameters
(o = 0.1, a¢, = 0.0116 andac, = 0.2457).

Experiment 2. Find the inverse solution of Proble2) by fitting a star-shaped object

model using the data from an ellipsoid inner inclusion ofuad

(0, ) = +/(0.5sin 6 cos ¢)2 + (0.5 sin fsin ¢)2 + (0.4 cos §)2,

0 € (0,7), ¢ €10,2m).

centred at0, 0, 0), where the Dirichlet data of2o,,.. is taken as
U(.I‘,y,Z) = ex-l—y’ (x7y7z) € agZOuter-

We apply the MFS with the same inputs as in Experiment 1.
Figure 5.11 shows an excellent three-dimensional recactstn for the ellipsoid
star-shaped model. The MCMC algorithm converges to thetetigsoid within just

a few iterations with a run time, fax’ = 80, at about three hours.
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0.5 0.5

o
o

oo
[;]6)]

Figure 5.11:Star-shaped model reconstruction: The exact inner eltipsmd the fitted ellip-
soids for various MCMC iteration& € {5, 10, 20, 40, 80}, with prior parametersa(. = 0.1,
ac, = 0.0116 andac, = 0.2457).

One way to illustrate that the MCMC works well is to considee -norm values
of (r}F5 —retact), wherei = 1,14, j = 1,15, as well as the maximum absolute error

values which are calculated over the grid fére {5, 10, 20, 40,80}, see Table 5.1.

The random fluctuations suggest that the algorithm is inlgxgim and mixing well.
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Table 5.1:The 2-norm of a(r%FS riect) and the maximum absolute error of the same
matrix, over the mesh = 1,14, 5 = 1,15, for Experiment 2 and corresponding to various
number of MCMC iterationds € {5, 10, 20, 40, 80, 160, 320}.

MFS exact

K ‘ ‘TMFS exact‘ ‘ max |7’ T’i,j
5 0.0068 0.0063
10 0.0053 0.0036
20 0.0066 0.0036
40 0.0086 0.0052
80 0.0084 0.0031
160 0.0102 0.0028
320 0.0168 0.0047

A better way to illustrate that the MCMC algorithm preformslins to investigate
the reliability of the obtained reconstructions in Figur&®bby running the same re-
constructing code fo2000 iterations. This took three days of running time. Figure
5.12 plots the object boundary credible intervals for sonoss:sections of the three-
dimensional reconstruction in the/-plane. From this figure, it can be seen that the
width of the credible intervals is very narrow near the tog #re bottom of the recon-
structed ellipsoid compared to the ones at the middle. Tharoence of such width
differences is physically interpreted as having less datiatp around the ellipsoid cen-

tre while there is more data towards the extreme top andinotto
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(a) (b) (c)
1 1 1
0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5
-1 -1 -1
-1 0 1 -1 0 1 -1 0 1
(d) (e) U]
1 1 1
0.5 0.5 05
0 0 0
-0.5 -0.5 -0.5
-1 -1 -1
-1 0 1 -1 0 1 -1 0 1

i . i i i i 3 6mr 8m 1lm 13
Figure 5.12:Credible intervals for various cross-sectighs- {{;, 75, 75> 14> it i1+ and
(¢);—115 € [0,2m).

An alternative way to examine the accuracy and uncertasty consider the sur-

face of the standard deviation shown in Figure 5.13. It casd®sn that the standard

deviation values over the grid= 1, 14, j = 1, 15 are close to each other but show an

ellipsoidal pattern. This confirms that the MCMC algorithsrcorrectly implemented.

2.8
26
2.4

2.2

Standard deviation values

)

Figure 5.13:The standard deviation over the chosen mesh.

As the standard deviation values are small over the selegtddhenceforth, it is
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sufficient to consider the reliability of the reconstruatiand efficiency of the MCMC

method using only the credible intervals.

Experiment 3. Find the inverse solution of Problemby fitting a star-shaped object
model using the data from two spherical inclusions of radiicentred at0, 0.5, 0)
and(0, —0.5,0).

Firstly, we calculate the current fluX:/0u numerically on the external boundary
INouter DY solving the forward Dirichlet problem (5.1), (5.3), (bd&nd (5.6) using the
MFS with the same inputs as in Experiment 1. However, we tat@ account that
extending the number of rigid inclusions to two leads to agbignumber of equa-
tions, 2(N — 1)N + 2(M — 1)M = 2 x 210 + 2 x 210 = 840 equations with
5(N —1)N =5 x 210 = 1050 unknowns.

Figure 5.14 illustrates excellent three-dimensional nstaction for the two star-
shaped models compared to the exact one. The MCMC algoritbwides very good
estimation for both inclusions compared to the truths déeriterations. Figure 5.15
shows the credible intervals over some selected crosgssdif the three-dimensional

reconstructions to ensure the certainty of the solution.
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n=5

exact

n=80

n=40

Figure 5.14: Star-shaped models reconstruction: The exact inner siolseamd the fitted

spheroids for various MCMC iterations € {5

0.1, ac, = 0.0116 andac, = 0.2457).

20, 40,80}, with prior parametersa,

10,

)
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@) (b) (©

1 1 1
0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5
-1 -1 -1
-1 0 1 -1 0 1 -1 0 1
(d) (e) ®
1 1 1
0.5 0.5 0.5
0 0 0
05 -0.5 -05
1 -1 -1
1 0 1 -1 0 1 -1 0 1

i . i i i i 3r 6 87 1llw 13
Figure 5.15:Credible intervals for various cross-sectighs- {{;, 15, 15> 14> 11 i1 ) and
(¢);—715 € [0,2m).

5.7 Conclusion

The MFS has been successfully used in combination with th&K@ethod to solve
the three-dimensional inverse problem in the continuoudehof ERT. In the first in-
stance, a series of examples have been solved by the MFSantorabtain the forward
solutions of direct problems in a simply-connected dom&roblem 1), multiply-
connected domain either with a spherical rigid inclusionnith an elliptical rigid
inclusion (Problem 2). These solutions are representeérmg of the MFS outer
boundary derivative, the MFS inner boundary derivativetiedMFS interior solutions
and are compared with the corresponding exact solution.M@BIC reconstruction
method successfully detects the three-dimensional ingtezre or ellipsoid. The pur-
pose of considering Examples 1-3 was to investigate andisssthe influence of the
number of collocation and source points, as well as themtlons. Furthermore, the
only difference in the statistical modelling in the thraednsional approach was that
we have to deal with matrices instead of vectors (Chaptensd34a in terms of the

data and model parameters. Numerical results illustrateg@od reconstructions for
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the inner objects in Problems 1-3. This is justified by theuascy and efficiency of
using MCMC algorithm which has been verified by plotting areections of credible

intervals.
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Conclusions

6.1 Summary

This thesis has dealt with a novel approach to solve elattitienography problems.
This approach can be described briefly as follows. The MF®died to direct ERT

problems subject to the CEM or continuous model boundarditions. Potential and

current flux or voltages are used in an MCMC reconstructigorhm in order to suc-

cessfully detect the shape, the size and the position of nigid inclusions contained
within a given underlying domain. The special kind of inee@oblems considered
in this thesis are called inverse geometric problems ang abeur in many real life

applications where the inner object is not known and neets thetermined.

In Chapter 1, the direct CEM problem of ERT is a well-posedpem because it
satisfies the existence, uniqueness and stability presd@il]. Also, it describes the
potential and current flux on the boundary which lead to theutated voltages. The
inverse ERT problem aims to reconstruct an inner inclusromfvoltage measure-
ments for a wide range of injected current patterns and gvely ill-posed, since a
big change in the conductivity distribution may result inexyvsmall variation in the
measured boundary voltages.

In Chapter 2, the two-dimensional CEM of ERT has been desdrily Laplace’s

equation subject to integrated Robin boundary conditiohere the electrochemical

165
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effect between the attached electrodes and the surface objbect has been added to
the shunt model. Moreover, the BEM and the MFS have beenexpfuifind the for-
ward solutions. These solutions were represented by tlempatk, current flux and the
voltages on the boundary and the interior potential. Thesewand examined for dif-
ferent ERT problems where the domain was simply-conneataaudtiply-connected
(containing either a rigid inclusion or a cavity). The methavere also extended to
obtain the forward solutions of composite bi-materialse BEM was considered as
the ‘exact’ solution because in such ERT problems the aicadgtutions are impossi-
ble to be obtain. Moreover, the BEM solution is convergermt stable.

Chapter3 has presented the solution of the inverse CEM of ERT in pldoarains
with a rigid inclusion inside using the MCMC and the MFS. Birsthe MFS numeri-
cal values of forward solutions for the potential and curfeerx on the outer boundary
have been compared for circular, elliptical and bean-stajged inclusions in order
to show the data sensitivity to the geometric shape chanigiéae anner object. This
ensured that such data is useful for finding the inverseisolof CEM problem. More-
over, the interior equipotential lines show that for a senglirrent pattern injecting on
opposite sides defined in (3.4) is better than applying aacadit current pattern, such
as (3.3), when we solved the inverse CEM problems. This isumex more of the
doubly-connected domain is scanned by the isolines. Ingbersl part of Chapter 3,
a set of experiments has been carried out to determine tlpe strad the size of in-
ner rigid inclusions based on combination of the MFS diretter and the statistical
modeling approach which has first been used in [6, 7] for ngaiusion reconstruc-
tions in two-dimensional continuous model problems. Sgcwritten MCMC code
has been used to reliably estimate the model parameter§ifBecoefficients and the
radii) of the inner object. The output was also used for pigterror estimates, ob-
ject boundary histograms, object boundary credible imtisp\itted inclusion, and to
estimate MFS coefficients (with credible intervals). Irtiadiexperiment, the optimal
hyper-prior parameters fixed values considered in [6] wesedu These worked well

for the simple experiment of fitting a circular object datathr object when, = 2,
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Experiment 1. After that, the hyper-prior parameters ofrtdii were varied and an
excellent reconstruction of fitting a star-shaped objeminfitrue circle data, Experi-
ment 3, has been achieved. However, fitting a star-shapedtdbjelliptical true data
whenZ = 2 (Experiment 4) did not provide as successful a reconstmdtr the inner
object as the one in Experiment 3. This is why, at this pointeskarch, we decided
to move to the more practical case when the number of elextrimdextended to four
and the data type is changed to be voltage measurementss bate, three different
current patterns were injected simultaneously and a se2 ebltages were collected.
The hyper-prior parameters of MFS coefficients and radii ehpdrameter in Experi-
ments 5-7 have been slightly changed by multiplying the ipresschoice by ten. This
resulted in much improvement in the inner object reconssnavhen we fitted a star-
shaped object using data from a circular or an ellipticdlusion, Experiments 6 and
7. In the last section of Chapter 3, we extended the numbeleofredes to eight to
create more realistic experiments. This produced sevearyvatterns which resulted
in 56 voltage measurements. The accuracy of the object recatistnwas very good.
This was obvious from the small estimated errors, the tingalboundary histogram,
the narrow object boundary credible intervals linked toitireer and outer MFS coef-
ficients, see Experiments 8 and 9.

In Chapter4, the identification of the centre of a rigid inclusion alonghwthe
constant contact impedances and extension to multiple ingiusions have been con-
sidered. We have utilised the same technique as before baseé MFS and MCMC
method and we have run three sets of experiments. The puopé&seeriment 1 was
to detect the shape, the size and the position of a star-dledpect when, = 4 and
L = 8 (this showed better object reconstruction and more acelyrastimated centre).
Experiment 2 was to identify the radii and centre of a rigidusion based on voltage
data collected from a circular true inclusion, as well asstineate the contact contact
impedances along (this provided good results). In ExpertrBewe extended the work
to detect two rigid inclusions which means, in fact, estiedativo sets of radii, in ad-

dition to estimating the centres of the two inclusions.
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In Chapter5, an extension to solve the three-dimensional ERT problesiban de-
veloped. The same strategy of combining the MFS and MCMC oaktvas employed
in order to solve the inverse continuous model problems of ERhree-dimensional
domains. This investigation will pave the way towards verggtical experiments of
solving the inverse CEM in three dimensions (future workjagples 1-4 examined
and compared the forward solutions for the outer derivative inner derivative and
the interior solutions. In terms of solving the inverse peofs, we used noisy Cauchy
data in order to estimate the model parameters. Extenditigrée dimensions has
caused some slight changes in the statistical modelingbapprwhere the measured
data and the model parameters were represented in matms fimstead of vectors
in two dimensional problems (Chapters 3 and 4). In all expenits, the star-shaped
model reconstructions showed very good fitted objects ftr boe inner (Experiments
1 and 2) or two inner rigid inclusions (Experiment 3).

In summary, the inverse problems of ERT have been solvedyudifS forward
solutions combined with the MCMC method. Most rigid inclusireconstructions
and model parameters have been well-estimated with verif eatienmated errors, esti-
mated standard deviation and very narrow credible interviis gives us insight into

solving real applications of ERT in future.

6.2 General conclusions

In this thesis, all the obtained MFS forward solutions of Efbblems were very
accurate since they provide very good agreement with the B&lMtions. Neverthe-
less, the MFS is much easier to implement especially in tdneensions, than the
BEM as it is a meshless method. Although applying the MFS ¢ostime set of two-
dimensional ERT problems shows some instability that cceunen the degrees of
freedom become very largé€ = M = 256, we have demonstrated that for lower val-

uesN = M € {16, 32,64, 128} its accuracy and stability were excellent compared to
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the BEM numerical solutions. It turns out to be sufficient bmaseN = M = 16 for
three-dimensional cases to produce very accurate ane $tttsh numerical solutions.
In addition, the computational time is much smaller whenNt€S has been applied.
This has a big advantage which clearly appears when the Miegtdiolver is called
thousands of times in the inverse problems as in the MCM@esiton algorithm. This
advantage is enhanced when three-dimensional reconstrweas considered, where
choosingV = M = 16 resulted in a large number 8fM — 1)M = 720 collocation
points and3(N — 1)N = 720 of source points.

We have considered two ways of collecting the input datadieoto find the inverse
solution of the CEM in ERT. Firstly, we injected a single ant through electrodes
then calculated the potential and current flux at equalpesgd points on the outer
boundary. It was proved that using two opposite electrodsgnoduced better recon-
struction than applying the single current via adjacenttebeles. However, there is an
ideal way of collecting data and providing better resultbeve we applied multiple
current patterns and then equation (2.4) is used to caécthat voltages. Increasing
the number of the current patterns allows us to obtain mdtag® data which, in turn,
leads to much better object reconstructions. As for soltreginverse problem of the
three-dimensional continuous model, the data was only &l@gpair of the boundary
potential and current flux which also provided excellenulss

We have clarified, through a series of experiments, that tbpgsed strategy of
using the Bayesian statistical framework (which is linkedite MFS direct solver) is
a very successful approach to solving ERT problems. Furtbe, the model param-
eters (this could be the radii, MFS coefficients, the cenb@dinates or the contact
impedance values) have been well-estimated. We have dématmasthat the MCMC
algorithm does not only provide the desired solutions bst alssess the uncertainties
and the reliability of those estimators by standard dewettj as well as by visualising

the object boundary histograms and credible intervals.
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6.3 Future work

So far, we have shown that the MFS combined with the Bayesaistical approach
can be developed for solving inverse geometric problemsig@d by Laplace’s equa-
tion in two and three dimensions. This corroborates the fdaathe MFS combined

with the MCMC algorithms can be implemented for other redat®rk, such as:

(i) Aninverse geometric problem related to solve the CEM RiTEn two and three
dimensions of Chapter 2 for a cavity (replacing equatiof)(By (2.46)) and for
bi-material composite (replacing equation (3.2) by equreti(2.50) and (2.50)).

(i) Another possible future work is to reconstruct more ghicated shapes of inclu-

sions and extend the analysis to solve three-dimensionaisa CEM of ERT.

(i) Assuming the number of rigid/cavity inclusions in (@nuous model/CEM) prob-
lem of ERT is not known, determine that number, as well asai¢e location,

the shape and the size of each inclusion.

(iv) Invert real data collected directly from the patient.
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Uniqueness proofs and density results

This appendix aims to cite the most significant theoretieallts that are linked to the

thesis, namely:

(i) The boundary curve of the inner rigid inclusion is unityudetected from one

pair of non-trivial Cauchy data specified on the externalratzuy, [29, 46].

(i) Density results for the MFS applied to two and three-éiraional potential prob-
lems, [14, 60].

(i) Well-posedness of the complete-electrode model (GHBL].

A.1 Uniqueness in determining a rigid inclusion

Assume that) = Qouser \QLrnner (With Qs € Qower) IS @an annular domain in
R, n = 2,3, with boundaryd) = 9Qouter U OQrpner- TO determine the unknown
boundaryo2;,... of a perfectly conducting inclusion (rigid inclusion), wave to
solve the following inverse boundary value problem:

Given a single pair of Cauchy datd, g) on Qo We wish to determin@$2;,,,.,

and a function: € C2(Q2) N C(Q) which satisfy the Laplace’s equation
Au=0 in Q (A1)

171
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subject to

u=0 on 0Qme (rigidinclusion) (A.2)

and the Cauchy data specification

u=f on 9Qouter, (A.3)
6—u =g on Nouer- (A.4)
on

The following theorem, [29, 46], gives the uniqueness ofitiverse problem (A.1)-
(A.4).

Theorem 1. Let 9Q;,,,.. = ' and 9Q;,,,.. = ' be two closed curves which are
contained in the interior of)o,.. and denote by. and« the solutions to the forward
well-posed Dirichlet problems (A.1)-(A.3) with the innendariesI’ and T, respec-
tively. Assuming thaf # 0 and

ou O0u
Y7 A.5
on  On (A.5)

on an open set a1Qo... thenl = T.

Proof. From (A.5) and Holmgren’s uniqueness theorem we can oblaitwt =
in the connected componeht of Qouier \ (2 rmner U QMW) which contains the ex-
terior boundaryoQo..... Without loss the generality, we can consider thét :=
(Q0uter \V)\Qrnner is @ Non-empty set. As a resuit,is defined inV* because it de-
scribes the solution of problem (A.1)-(A.3) fér. Moreover,« is harmonic inV*,
continuous i/, as well as it satisfies the homogeneous boundary conditierd on
oV*. This boundary condition shows that each boundary poifit either belongs to
IortodV NT.
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Now, forz € T" we haveu(x) = 0 because of the boundary condition fgrand for
z € T'we haveu(z) = i(x). Henceu(z) = 0 due to the homogeneous boundary con-
dition for z. Now, using the maximum principle for harmonic functions ea® obtain
thatu = 0 in V*, and from this it follows that: = 0 in Q. Finally, this contradicts the

fact thatf £ 0 on 0Q0.4. @and this completes the proof of uniqueness.

A.2 Density results for the solutions of harmonic prob-

lems

In this section, the following Dirichlet problem for Lapkls equation is considered:

2u=0 in QCR",
v (A.6)
u=f on 0.

In (A.6), the domair2 is bounded, otherwise a condition at infinity should be added
Let the functionG(z, y) = e;(z — y) define the fundamental solution of the elliptic

Laplacian operator, where

log || i _
o if n=2,

er1(x) = (A7)

2—n .
—(QEL)%_I, if n>2,

and~,_, is the area of the surface of the unit spher§id! in R". When we apply
the MFS, we seek the approximated solution of the probler)(As a finite linear

combination of fundamental solutions,

N N
un(z,e) =Y ¢Glz,y) =) celz—y), zeQ (A.8)
=1 =1
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where the ’singularities’gj e R™\Q and the MFS coefficient§c;},_; are deter-
mined by applying the boundary conditian= f on 0.

We investigate whether the span of the space of the finitatdioembinations (A.8)
is dense in the space of harmonic functiong2inwhere the sources (‘singularities’)
{Qj}jlev lie on a prescribed pseudo- bounda)’ enclosing the domaif. More

rigorously, we have the following definition on where the Métirces are located.

Definition 1. ConsiderQ2 and ()’ be open connected subseti®f. We say that?’

embraces) if Q c ', and’'\ 2 does not contain any closed connected components.

The SpaceC*(Q)

The space&? (), where € N, contains all functions which, together with all their
partial derivatives)“u of orders|a| < ), are continuous if2. The spac&*(Q2) con-
sists of all functions:, € C*(Q) for which D®w is uniformly continuous and bounded

in €2 for every|a| < A. This it is a Banach space with the norm

luly g = max sup|D%u(z)|. (A.9)

‘Cl{|§)\ QGQ

The following theorem states the density result which wasahe application of

the MFS for solving the problem (A.6).

Theorem 2. (see [60])Let() C Q' be domains iR™ such that)’ embraced2. Then,
the spaceY’ of finite linear combinatiorzjy:1 cjel(g—gj), wheree; is defined in (A.7)

and the sequenc@j}j:L—N C 0%, is dense in
Yy = {u € C?Q);Au=0in Q} N CHQ), (A.10)

with respect to the norm (A.9) of spa€e(Q) if n > 3. If n = 2, then the linear sum

X @ {c.1]g; c € R} is dense inY, with respect to the same norm
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A.3 Well-posedness of the CEM

The CEM which was described in equations (2.1) and (2.3)(8oes formulate well

if the conservation of charge is included

> I,=0, (A.11)

since this condition is needed for existence of a solutidsofa condition specifying

the zero potential (the ground) is needed for solution uengss, [61],

> U, =0 (A.12)

p=1

Now, to prove the uniqueness for the CEM, we assume that #rerevo solutions
(u,U) and (4, U) in H = H*(Q) & R” of equations (2.1) and (2.3)-(2.5) which satisfy
conditions (A.11) and (A.12). We let

(v, V) = (u,U) — (4,0); (A.13)
this means thatv, V) satisfies (2.1), (2.4), (2.5) and
ov
/% 5 ds =0, (A.14)

Hence, our solution consists of the electric potential mititerior which denoted by
v, as well asl surface voltages denoted b¥y

Using Green’s formula and equation (2.1), we obtain

Oz/vv- Vvd:p:/ v@ ds—/|vv|2dx. (A.15)
Q oo On Q
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We substitute condition (2.4) into (A.15) to obtain

L
9 ov\ Ov
= —z,— | — ds. A.l
/Q vl ees pEl / (Vp | 5 ds (A.16)

With the help of (A.14) using that, is constant ovet,, one can rewrite (A.16) as

L
/|VU|2dx:—Z / Zp
Q p=1 Y€

p

Wl s (A.17)
on

Sincez, > 0 it follows that both sides of equation (A.17) are equal offlthey are
zeros. This means thatis constant. From (2.4), this means that all the voltdgés
are also equal to the same constant. In addition to this, {AdR) it can be seen that
this constant must be zero. Hence, we have proved that) = (0, 0) which implies

the uniqueness of the solution of the CEM.
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