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Abstract v

Abstract

Electrical impedance tomography (EIT) is a non-intrusive and portable imaging tech-

nique which has been used widely in many medical, geologicaland industrial applica-

tions for imaging the interior electrical conductivity distribution within a region from

the knowledge of the injected currents through attached electrodes and resulting volt-

ages, or boundary potential and current flux. If the quantities involved are all real then

EIT is called electrical resistance tomography (ERT).

The work in this thesis focuses on solving inverse geometricproblems in ERT

where we seek detecting the size, the shape and the location of inner objects within

a given bounded domain. These ERT problems are governed by Laplace’s equation

subject either to the most practical and general boundary conditions, forming the so-

called complete-electrode model (CEM), in two dimensions or to the more idealised

boundary conditions in three-dimensions called the continuous model.

Firstly, the method of the fundamental solutions (MFS) is applied to solve the for-

ward problem of the two-dimensional complete-electrode model of ERT in simply-

connected and multiple-connected domains (rigid inclusion, cavity and composite bi-

material), as well as providing the corresponding MFS solutions for the three-dimensional

continuous model. Secondly, a Bayesian approach and the Markov Chain Monte Carlo

(MCMC) estimation technique are employed in combinations with the numerical MFS

direct solver in order to obtain the inverse solution.

The MCMC algorithm is not only used for reconstruction, but it also deals with

uncertainty assessment issues. The reliability and accuracy of a fitted object is in-

vestigated through some meaningful statistical aspects such as the object boundary

histogram and object boundary credible intervals.
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Nomenclature

Roman Symbols

A, B BEM matrices

B electric flux density (Chapter1) and single vector of MCMC

parameters (Chapter3)

c vector/matrix of MFS coefficients

D coefficient matrix obtained from applying the BEM to CEM

problem

D magnetic current density

E electric field

F coefficient matrix obtained from applying the MFS to CEM

problem

F̃ , F̂ , F̆ coefficient matrices obtained from applying the BEM to

three-dimensional continuous model problem

gp gaps between the attached electrodes

G fundamental solution

G′, ∂G
∂n

normal derivative of fundamental solution

H magnetic field

I identity matrix

Ip current injected via the electrodeεp

j current density in Chapter1

J current

ℓp length or the area of electrodep

l(w|r, c) conditional distribution or likelihood ofw givenr andc

L number of electrodes

M number of boundary elements

n, n1, n2 outward unit normals

N number of source points (degree of freedom)



Nomenclature vii

N normal distbution

p collocation points

p′ source points

p
j

boundary element endpoint

p̃
j

boundary element midpoint

r vector of discretised radii

R radius of circle/sphere where the external source points are

located

R1 radius of circle/sphere where the internal source points are

located for first inclusion

R2 radius of circle/sphere where the internal source points are

located for second inclusion

s external boundary segment

S distance between centres of two circles/spheres

T vector of noisy voltage data

u electric potential

u′, ∂u
∂n

current flux (normal derivative)

Up measured voltages on the attached electrodeεp

U uniform distribution

v vector of noisy current flux data

w vector of noisy potential data

x collocation points

X unknown vector of linear system of algebraic equations

X0,X1 x-coordinates of unknown centres of two circles or spheres

X defined spaces

Y0, Y1 y-coordinates of unknown centres of two circles or spheres

Y defined spaces

zp surface/contact impedance between the attached electrode

εp and the object



Nomenclature viii

Z0, Z1 z-coordinates of unknown centres of two spheres

Greek Symbols

αj , αj−1 BEM discretised angles in Chapter2

αc hyper-prior parameters for the MFS coefficients model pa-

rameters

αr hyper-prior parameters for the radii model parameters

β BEM discretised angle in Chapter2

βc the amount of variation between two adjacent MFS coeffi-

cients

βr the amount of variation between adjacent radii

γ ratio between conductivities of two materials

δ Dirac delta function

δij Kronecker delta function

ǫ electric permittivity (Chapter1) and ellipse parameter

(Chapter3)

εp attached electrodes

ζj additive noise variables

ηI contraction parameter

ηj additive noise variables

ηE dilation parameter

θ vector of discretised angles

µ magnetic permeability

ξ sources (‘singulaties’) vector

π(c|βc) prior distribution for the MFS coeffiecents

π(r|βr) prior distribution for radii

ρ volume charge density

σ conductivity

σ2
T , σ2

v , σ2
w proposed variance



Nomenclature ix

ς(r, c) expectation of the voltage values

τ 2v proposed variance

φ vector of discretised angles

ψ BEM angle

Ω domain (unit disk/sphere)

∂Ω boundary of the domain

Ω closure ofΩ

Abbreviations

BEM boundary element method

CCI constant contact impedance

CEM complete electrode model

cond condition number

diam diameter of the star-shaped object

EIT electrical impedance tomography

ERT electrical resistance tomography

FDM finite difference method

FEM finite element method

FVM finite volume method

MCMC Markov chain Monte Carlo

MFS method of fundamental solustions

sign signum function

Subscripts

uInner potential solution on internal boundary∂Ω (cavity) or on

∂Ω2 (bi-material composite)

(∂u/∂n)Inner current flux on the internal boundary∂ΩInner (rigid inclu-

sion) or on∂Ω2 (bi-material composite)

ΩInner = Ω2 inner object



Nomenclature x

uOuter potential solution on external boundary∂Ω (rigid inclusion

and cavity) or on∂Ω1 (bi-material composite)

(∂u/∂n)Outer current flux on external boundary∂Ω (rigid inclusion and

cavity) or on∂Ω1 (bi-material composite)

∂ΩOuter Outer boundary ofΩ

Superscripts

uBEM BEM solution

(∂u/∂n)BEM BEM normal dervative

uMFS MFS solustion

(∂u/∂n)MFS MFS normal dervative
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Chapter 1

Introduction

1.1 Electrical impedance tomography and its applica-

tions

Electrical impedance tomography (EIT) is a non-intrusive,low-cost and portable tech-

nique of imaging the interior of a specimen based on the knowledge of injected cur-

rents and the resulting voltages which are measured on electrodes, as explained in

[35, 36, 63, 65]. It has widespread applications in medicine(biomedical applications)

such as detecting and imaging malignant breast tumours [20,21], comparing the com-

plex impedance properties of two different tissues [16], producing images of lung and

ventilation [27], monitoring brain function [32], identifying skin cancer [1], diagnosing

cervical cancer [9], measuring gastric emptying of liquid feed and impedance changes

which occurs while the human brain is performing its activities [62, 64], and con-

structing images of minimally invasive surgery [50]. If allthe quantities involved are

real then, this version of the more general complex EIT is also known as electrical

resistance tomography (ERT). As for non-clinical applications, EIT/ERT is also used

in geophysics and industry, for instance, it is applied to discover subsurface features

without digging [56], study gas-solids and liquid-solids flows [25], collect data from

two-phase pipe flow systems [23], investigate the mixing processes at industrial plant

1
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scale [48] and observe hydrocyclone operation, [69].

When using this technique in electrostatics, for example, one seeks to create images

of the electrical conductivity distribution in a body from static electrical measurements

on the boundary of that body; the electric conductivity measures the ability of a ma-

terial to pass an electric current whilst the electrical permittivity measures the ability

of a material to interact with an electric field and become polarized by the field. In

addition to this, due to the differences in conductive properties in muscle tissue, fat

tissue, bones, and organs, an image of the conductivity and permittivity distributions

inside the body can be used for effective medical diagnostics. By using the EIT imag-

ing method, tumors can be detected and distinguished from healthy tissue at an early

stage because not only do the different organs have different conductivity, but also the

normal and abnormal tissues have different conductivity and permittivity, e.g. cancer

cells contain a higher concentration of water and sodium [16]. Another advantage to

EIT is that it has safe long term effects no matter how many EITexperiments have

been preformed on the patient. In contrast, when using mammography, X-rays can be

used for the same purpose only if the examined tissues differsignificantly in their con-

ductivities but this can only happen if the disease is in its final stages [8]. In addition,

exposing the patient to a massive amount of radiation definitely has a bad impact on

health.

1.2 Inverse geometric EIT problems

The EIT direct (forward) problem prescribes the current fluxon the boundary, which in

turn, leads to calculation of voltages via an estimated conductivity distribution based

on Maxwell’s equations. In contrast, the inverse EIT problem aims to evaluate the in-

ner conductivity distribution and reconstruct an estimated image of the objects in the

domain from the knowledge of the voltages for a wide pattern of injecting currents. In

this problem, some part of the boundary must be identified, whilst the other part of the
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boundary, the medium properties, the governing equation and the boundary conditions

(over-determined conditions) are all available [37]. Due to the ill-posedness, which

means a big change in the inner impedance may result in only a very small change

in the boundary voltages and current flux, finding the solution of the EIT geometric

problem is not an easy task. Additionally, in an EIT iterative optimization process, a

nonlinear least-squares objective function has to be evaluated many times using a for-

ward solver. Consequently, there is a need to obtain the solution of the direct problem

accurately and fast if it is to be useful for real-time monitoring [31, 33, 55, 59].

Some comparison has been previously performed in [24] between the forward solu-

tions of the finite volume method (FVM) and the finite element method (FEM) in terms

of accuracy and stability, for the gap model of EIT. Also, very recently an improved

boundary distributed source method has been compared in [37] with the more standard

BEM and FEM numerical forward solvers for ERT.

1.3 The mathematical formulation of EIT

To model electromagnetic phenomena, we use Maxwell’s equations which are given

by

▽×E = −∂tB, (Faraday’s law of induction), (1.1)

▽×H = J + ∂tD, (Ampere’s law of induction), (1.2)

▽ ·D = ρ, (Gauss’s law of electric field), (1.3)

▽ · B = 0, (Gauss’s law of magnetic field), (1.4)

whereE is the electric field,H is the electric flux density,B is the magnetic field,J

is the current density,D is the magnetic current density andρ is the volume charge

density, [19, 70].

There exist constitutive relationships linking the electric and magnetic flux densities
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D andB along with the electric and magnetic fieldsE andH. These relationships

depend on the properties of the material and are given by

D = ǫ E, (1.5)

B = µ H, (1.6)

J = σ E, (1.7)

whereǫ is the electric permittivity,µ the magnetic permeability andσ the conductivity,

[8, 19, 70].

One way to obtain the differential equation for the interiorof the body is by assum-

ing that our experiments are static ones. This means that we can set the derivatives in

(1.1) and (1.2), in respect to time, to be zero. Then, from (1.1) we conclude that there

is a electric potentialu such that

E = −▽ u. (1.8)

Using equations (1.7), (1.8), as well as taking the divergence of (1.2), leads to the

Laplace’s conductivity equation which governs the electric potentialu inside the do-

mainΩ of the body,

▽ · (σ▽ u) = 0 in Ω. (1.9)

The current densityj is produced by injecting currents via electrodes which are

attached to the surface∂Ω of the objectΩ. The resulting current density is specified as

σ
∂u

∂n
= j on ∂Ω. (1.10)

In [18], some mathematical models of the boundary conditions in ERT have been

gradually developed to deduce the most suitable and generalmodel. The most realistic
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model takes into account the influences of restricting the current density values within

a specific range, not ignoring the shunting effect of electrodes, and considering the

electrochemical effect between the electrode and the object.

1.3.1 The continuous model

This model is formulated by equations (1.9) and (1.10) together with the following

conditions:
∫

∂Ω

j ds = 0 (conservation of the charge), (1.11)

∫

∂Ω

u ds = 0 (refering to the ‘ground’ or reference voltage). (1.12)

Although the continuous model is commonly used, it is a poor EIT model for real ex-

periments due to the lack of the current density valuesj in (1.10). In practice what

is known, are only the currents that are sent down the wires attached to discrete elec-

trodes, [8, 18, 19].

1.3.2 The gap model

This model is considered as an improvement of the continuousmodel. Herein, the

current density is supposed to be non-zero and constant overeach electrode and zero

between any two adjacent electrodes (in the gaps). Mathematically, theL attached

electrodes on the boundary are denoted byεp, for p = 1, L and the condition (1.10) is

modified as

σ
∂u

∂n
=











Ip
ℓp

on εp, p = 1, L

0 on ∂Ω\∪L
p=1εp

(1.13)
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whereIp is the current which is injected via electrodeεp, andℓp is the length or the

area of electrodep. In addition, equation (1.11) can be rewritten in the form

L
∑

p=1

Ip = 0. (1.14)

Considering the current density as a constant is an oversimplified assumption and not

taking into account the shorting or shunting effect of the electrodes makes the gap

model wholly inadequate in many practical EIT applications, [8, 18, 19].

1.3.3 The shunt model

In the previous two models, the resistivity of the medium is overestimated due to the

ignorance of the shunting effect of electrodes. This defectis accounted for by the shunt

electrode model because it is assumed that the metal electrodes are perfect conductors,

therefore, the electric potential under each electrode is the same constant. As a result,

equation (1.10) is replaced by

∫

εp

σ
∂u

∂n
= Ip, p = 1, L. (1.15)

This is combined with

σ
∂u

∂n
= 0 (in the gaps between electrodes). (1.16)

Furthermore, in order to obtain the very high conductivity of electrodes, we assume

thatu is a constant on each electrode. These constants represent the measured voltages

which take the form

u = Up on εp, p = 1, L. (1.17)
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For more details, see [8, 18, 19].

1.3.4 The complete model

Unfortunately, the shunt model does not reproduce the experimental data because it

fails to consider the electrochemical effect between the electrode and the object. At

the body-electrode interface there is a thin, highly resistive layer called the effective

contact impedance or ‘surface impedance’ let us denote thisquantity byzp. This will

then replace (1.17) by

u+ zpσ
∂u

∂n
= Up on εp, p = 1, L. (1.18)

Now, the complete model or the shunt-plus-surface-impedance model consists of (1.9),

(1.15) and (1.16), together with the conservation of chargelaw (1.14) and (1.12) which

can be rewritten as

L
∑

p=1

Up = 0. (1.19)

Then this complete electrode model (CEM) has a unique solution, see [61] and Ap-

pendix A.

1.4 Data collection procedure

Two ways to collect the data for ERT problem are considered inthe thesis. Either we

inject a single current through the attached electrodes andcalculate the potential and

current flux at equally-spaced points on the outer boundary,or calculate the voltage

measurements from equation (2.4) after we apply multiple current patterns when the

CEM of ERT is solved in Chapters3 and4. Also, for the continuous model inverse
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problem in three dimensions, which is considered in Chapter5, the data is Cauchy

data (the pair of boundary potential and current flux), see Figure 1.1. Throughout the

thesis, both the potential and current flux are calculated atthirty equally-spaced points

on the outer boundary, see Figure 1.1 (left), whilst the voltage values are calculated at

L equally-spaced points on the outer boundary, see Figure 1.1(right).

Figure 1.1:A sketch of the direct problem whenL = 4 electrodes are attached: the blue dots
show the inner and outer source points, the green object is known, and the red points show
where the measurements are collected.
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1.5 Bayesian statistical approach

The purpose behind using statistical techniques is to reformulate the inverse problem in

the form of a statistical investigation (inference) in order to find a desirable reconstruc-

tion of the conductivity distribution based on ERT data. It is well known that the ERT

inverse problem is both ill-posed and non-linear, and the Bayesian approach, linked

to Markov chain Monte Carlo (MCMC) algorithms, works as a regularization scheme

interpreted in terms of prior information, [58]. Modellingof the prior information

is a very important process in order to achieve good knowledge about the problem’s

solution. Using the statistical framework allows the solution of the inverse problem
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to be called the posterior distribution of the parameters ofinterest contingent on the

measurements, for more details see [34]. This posterior distribution is obtained from a

likelihood combined with a prior distribution using Bayes theorem, all the procedure

is stated in section 1.5.1. MCMC offers a flexible tool to fully investigate the relia-

bility and quantify uncertainty of that posterior distribution, but it makes intensive use

of the forward solver which can be a big drawback especially when three-dimensional

ERT problems are being solved. Hence, using the meshless Method of fundamental

solutions (MFS) described in Chapter2, is ideal. Section 1.5.2 provides a general

background to the MCMC method.

1.5.1 Modelling of the ERT inverse problem

We shall solve the complete-electrode inverse model of ERT using the Bayesian ap-

proach and the MFS to detect an unknown objectΩInner (assumed star-shaped) con-

tained in a domainΩ. The MFS coefficientsc = (ck)k=1,2M , see (2.32) and the radii

r = (ri)i=1,M , parameterising the star-shaped domain, see (3.12) and (3.13), must be

estimated, [36, 37]. A sketch of the mathematical problem that is investigated through-

out the thesis is shown in Figure 1.2.
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Figure 1.2:A sketch of the inverse problem whenL = 4 electrodes are attached: the red
object is unknown, and the green points show the locations ofthe measurement data.

g1

g2

g3

g4

ε1

ε2

ε3
Ω2

Ω1

x

y

star-shaped

(ri, θi)

g1

g2

g3

g4

ε1

ε2

ε3

ε4

Ω2

Ω1

x

y

star-shaped

(ri, θi)

The following data model and its corresponding likelihood function, are used for all

the numerical experiments in this thesis whatever the data set type, [2]. For example,

let us consider the voltage data typeT where the number of attached electrodes is equal

toL allowing(L−1) multiple current patterns. In this case, the data model merges two

features of the measurements procedure. Firstly, the important relationship between

the unknownsr andc, and the voltage data is defined as the expectation of the voltage

values (or the free-noise voltages) denoted by

E[T |r, c] = µ(r, c), (1.20)

whereµ(r, c) = U i
p, p = 1, L, i = 1, (L− 1) is obtained from the MFS forward

solutions using equation (2.4) when the(L − 1)-th current patterns defined in equa-

tions (3.27)-(3.33) are simultaneously applied. The totalvoltage data set isµ(r, c) =

(Tj)j=1,L(L−1). Secondly, a stochastic component which describes how the voltage data

varies around their expected values is introduced as

T = (Tj + ψj)j=1,L(L−1), (1.21)
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where the additive noise variablesψj are assumed to follow independent Gaussian

distributions with zero mean and varianceσ2
T , this leads to the likelihood defined in

[2, 67], namely,T |r, c ∼ N((µ(r, c), σ2
T I) which has the density function

l(T |r, c) = (2πσ2
T )

−L(L−1)/2 exp

{

−
1

2σ2
T

‖T − µ(r, c)‖2
}

, σT > 0. (1.22)

The main ingredients in the Bayesian statistical approach are the above defined like-

lihood function and a prior distribution, to be defined later, which describes the model

parameters,r andc before the voltage data. A proportion of the likelihood function

times the prior distribution (using Bayes theorem) leads tothe posterior distribution,

see Section 3.3.1 for more details.

1.5.2 Markov Chain Monte Carlo estimation

The aim of solving the inverse ERT problem is to reconstruct an image by estimating

the unknown parameters (i.e. this set could be the radii of the star-shaped object and

the MFS internal/external coefficients). For instance, when data measurements are

Y = {Yj : j = 1, ..., n} and the values of the unknowns areX = {Xi : i = 1, ..., n},

the estimation is dependent on the posterior distribution

π(X|Y ) =
l(Y |X)π(X)

l(Y )
, (1.23)

wherel(Y |X) is a conditional distribution defined as the likelihood function andπ(X)

is a prior distribution.

Equation (1.23) can be written as

π(X|Y ) ∝ l(Y |X)π(X), (1.24)
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sincel(Y ) is not dependent onX and it does not play role in the estimation, [2].

In such inverse problems, the unknown parameterX is of high dimension making

the posterior distribution complicated to be solved numerically using the standard reg-

ularization methods. At the same time, the analytical solution of the posterior problem

is impossible. This is why the Markov chain Monte Carlo (MCMC) technique is used

in this thesis to estimate the shape, size and location of theinner inclusion, as well

as evaluating the constant contact impedance (CCI) values between the attached elec-

trodes and the surface. Another advantage of using MCMC hereis that it also allows

deeper investigation of the posterior distribution in terms of accuracy and reliability by

plotting histograms and credible intervals of the unknown parameters, more details are

reported in Section 3.3.2.

1.6 Summary and outline of the thesis

In various applications of EIT, such as medical imaging or geophysics, the purpose

is to evaluate the conductivity distribution within a domain. This means reconstruct-

ing the conductivity of the whole domain using some electrical measurements which

are taken on the surface of the object (or body), [66]. This task can be achieved by

attaching a finite number of electrodes to the outside boundary of the object. Then,

currents are injected through the electrodes. The MFS is used to numerically simulate

the boundary voltages of the complete-electrode direct model of ERT. In this process,

we seek to determine an accurate solution because we lack theexact one for such com-

plicated problems. Moreover, there are several advantagesthat make the MFS worth

while. Firstly, it is a meshless scheme because only the boundary part of the domain

needs to be collocated and no interior points are involved, [15, 37], unlike the FDM and

FEM where the solution domain is discretised into internal cells and domain elements,

respectively. Secondly, the MFS avoids any integral calculations whilst the boundary

element method (BEM) does not. This advantage makes the MFS code not only eas-
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ier to build in two dimensions comparing with the corresponding BEM code, but also

for the three-dimensional case. Also, it can be easily implemented for irregular and

complex geometries, [15, 38]. Thirdly, the MFS is a BEM-typemethod, so it shares

its advantages over the FEM and FDM, [38]. Finally, it successfully deals with infinite

domains by merging the behaviour of the resulting solutionsinto the fundamental so-

lution of the governing equation, [38].

Using the voltages as a data set to estimate the interior conductivity distribution

results in an ill-posed inverse problem, which needs to be regularized to obtain a

stable and reliable solution. The Bayesian process is an explicit statistical approach

which aims to determinate, interpret and reconstruct images from data using proba-

bility models. Also, this approach allows to assess the reliability and uncertainty for

the unknowns by plotting the credibility intervals and the circular histograms for each

sampled parameter, [28].

After introducing some background and fundamental concepts of this work, Chap-

ter 2 begins with the mathematical formulation of the complete-electrode model (CEM)

for ERT. Since in the direct problem of the CEM the constant voltage on each electrode

is unknown, we can eliminate it by integrating the associated Robin boundary condi-

tion, as described in [22]. The resulting mathematical model is then solved using two

numerical methods. These are the BEM and, for the first time, the meshless MFS. In

the same spirit as [36], we compare thoroughly the numericalresults obtained by these

two methods for both simply-connected and multiply-connected domains containing a

rigid inclusion or a cavity. An extension to composite bi-materials is also performed

afterwards. Finally, Section 2.8 highlights the conclusions of Chapter2 paving the way

for of solving the inverse problem of ERT/EIT in the next chapter.

In Chapter 3, we are interested in identifying the size and shape of the inner inclu-

sion. This means to approximate an image of the piecewise constant electrical con-

ductivity distribution within the inclusion. So, we find thesolution of the complete-

electrode inverse model of ERT using the Bayesian approach and the MFS. Some ex-

amples using simulated experiments are examined to demonstrate the effectiveness of
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the proposed statistical procedures.

In Chapter 4, we are interested in solving the inverse problem of CEM of ERT in

an annular domain containing rigid inclusions that have unknown centres, this means

detecting the locations of those inner objects besides their sizes and shapes. Firstly,

we assume that we have only one rigid inclusion in the annulardomain which has un-

known centre needing to be estimated from noisy data. This data is represented by the

boundary voltages obtained analytically or by solving numerically the direct problem

using the MFS and are corrupted by some Gaussian random noise. The simulated data

are inverted using the MCMC method to produce a reconstruction of the inner object.

We find simultaneously the unknown centre and the CCI values between the attached

electrodes and the outer surface. In addition, we extend thework to identify two inclu-

sions having unknowns centres.

In Chapter 5, we extend our work to the three-dimensional EITproblem and, for

simplicity, we consider solving the direct and inverse continuous model problems of

ERT. In the first part of the chapter, we apply the MFS to find forward solutions of

three-dimensional Laplace’s equation subject to Dirichlet boundary conditions with or

without an inclusion and we compare the obtained results of the interior solutions and

the boundary derivative with the exact ones in cases where ananalytical solution is

available. Then, we use the MFS to find the numerical normal derivative on the outer

boundary when the number of the rigid inclusions is extendedto two. Next, we pre-

form some numerical simulations and consider the same technique that combines the

MCMC with the MFS to solve the inverse problems.

Finally, the conclusions of the thesis and further work are presented in Chapter 6.
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Solving the complete-electrode model

of direct ERT

2.1 Introduction

The EIT direct (forward) problem involves the calculation of voltages, based on a given

conductivity distribution. In contrast, the inverse EIT problem aims to reconstruct the

inner conductivity distribution from knowledge of the voltages from set of injected

current patterns. In the proposed iterative optimization process, the nonlinear least-

squares objective function has to be evaluated many times using the forward solver.

Consequently, there is a need to obtain the solution of the direct problem accurately

and fast, [31, 33, 55, 59].

Some comparison has been previously performed in [24] between the finite volume

method (FVM) and the finite element method (FEM), for the gap model of EIT. Also,

very recently an improved boundary distributed source method has been compared in

[33] with the more standard boundary element method (BEM) and FEM numerical

forward solvers for ERT.

We begin with the mathematical formulation (Section 2.1) which describes the

complete-electrode model (CEM) for ERT. Since in the directproblem of the CEM the

15



Chapter 2. 16

constant voltage on each electrode is unknown, we can eliminate it by integrating the

associated Robin boundary condition, as described in [22].The resulting mathemati-

cal model is then solved using two numerical methods. These are BEM (Section 2.3)

and, for the first time, the meshless method of fundamental solutions (MFS) (Section

2.4). In the same spirit as [33], we compare thoroughly the numerical results obtained

by these two methods for both simply-connected (Section 2.5) and multiply-connected

domains containing a rigid inclusion or a cavity (Section 2.6). An extension to com-

posite bi-materials is also performed in Section 2.7. Finally, conclusions are given in

Section 2.8 paving the way for solving the inverse problem ofERT/EIT in subsequent

chapters of the thesis.

2.2 Mathematical formulation

In this section, we consider Laplace’s equation in a (two-dimensional) bounded domain

Ω, namely,

▽2u = 0, in Ω, (2.1)

subject to certain boundary conditions which make the problem the so-called ‘complete-

electrode model’ (CEM), [61]. In this model, on the boundary∂Ω there are attachedL

electrodes,εp, for p = 1, L, see Figure 2.1.
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Figure 2.1:The two-dimensional CEM, forL = 2 and4 electrodes.
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On these electrodes we have the Robin boundary condition, [22],

u+ zp
∂u

∂n
−

1

ℓp

∫

εp

u ds =
zpIp
ℓp

, on εp, p = 1, L, (2.2)

wheren is the outward unit normal to the boundary∂Ω, ∂
∂n

= ▽·n, ℓp is the length of

the electrodeεp and

Ip =

∫

εp

∂u

∂n
ds (2.3)

is the injected constant current applied on the electrodeεp and satisfying
∑L

p=1 Ip =

0, andzp > 0 is the constant contact impedance. In equations (2.1)-(2.3) we have

assumed that the mediumΩ has unit constant conductivity, but later on we shall also

consider a piecewise constant version.

The derivation of the boundary condition (2.2) is as follows. The constant voltages

Up on the electrodesεp, that are to be determined in the direct problem, are calculated

in the inverse problem from the Robin boundary condition

u+ zp
∂u

∂n
= Up, on εp, p = 1, L. (2.4)

Then, by integrating (2.4) overεp, and using (2.3) we can eliminate the unknownUp
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to obtain (2.2).

The electric current is assumed to vanish on the gaps,gp for p = 1, L, between the

electrodes on the boundary part, so that

∂u

∂n
= 0, on ∂Ω\∪L

p=1εp =: ∪L
p=1gp. (2.5)

In order to obtain a unique solution we also need that, [5],

∫

∂Ω

u ds = 0. (2.6)

Equations (2.1), (2.2), (2.5) and (2.6) represent the direct problem of ERT if the

domainΩ is simply-connected. IfΩ is multiply-connected, e.g. it contains holes, then

an additional boundary condition of the form

u = 0, or
∂u

∂n
= 0, or z

∂u

∂n
+ u = 0 (2.7)

should be applied on the inner boundary portions of∂Ω, wherez ≥ 0 is a contact

impedance.

The CEM given by equations (2.1), (2.3)-(2.6) is uniquely solvable, [61], and has

been validated in [18] as being in most agreement with experiments compared with the

simpler continuous, gap and shunt models of ERT/EIT.

Without loss of generality, we can assume thatΩ is the unit disk{(x, y) ∈ R
2|x2 +

y2 < 1}, otherwise we can always conformal a map from any the simply-connected

domainΩ onto the unit disk, [35].

A closed form solution of the direct problem of ERT is available only in very re-

stricted cases, e.g. forL = 2 electrodes and no contact impedancesz1 = z2 = 0,

[51], and therefore numerical methods are generally necessary. In the next sections we

describe and compare two such numerical methods.
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2.3 The boundary element method

The BEM has many advantages compared to other domain discretisation methods be-

cause it discretises only the boundary to obtain the unspecified boundary data and the

solution in the whole domain, [3, 41]. This reduction makes the number of unknowns,

which need to be determined, smaller in comparison with domain discretisation meth-

ods such as the FDM or FEM.

In this section, we will use the BEM to solve the forward problem (2.1), (2.2),

(2.5) and (2.6) in the unit diskΩ = {(x, y) ∈ R
2|x2 + y2 < 1}. The BEM reduces the

problem to one of solving the linear system of equations

Au′ +Bu = 0, (2.8)

whereu := u
(

p̃
j

)

j=1,M
, u′ := ∂u

∂n

(

p̃
j

)

j=1,M
, A andB are matrices which depend

solely on the geometry of∂Ω, andM is the number of boundary elements. The bound-

ary element endpoint isp
j
= (xj , yj) =

(

cos
(

2πj
M

)

, sin
(

2πj
M

))

for j = 1,M , with the

convention thatp
0
= p

M
and p̃

j
is the boundary element node. For a constant BEM

approximation,̃p
j

is the midpoint of the segmentΓj = p
j−1
, p

j
. The derivation of this

approximation can be briefly summarised in the following four steps:

(i) Find the fundamental solutionG(p, p′) of Laplace’s equation satisfying

▽2G(p, p′) = −δ(p− p′),

whereδ is the Dirac delta function. The fundamental solution whichwe seek is

based on the distance betweenp andp′. As a result, in two-dimensions

G(p, p′) = −
1

2π
ln |p− p′| = −

1

2π
ln

√

(x− x′)2 + (y − y′)2, (2.9)

wherep = (x, y) andp′ = (x′, y′).

(ii) Transform Laplace’s equation into the integral equation
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η(p)u(p) =

∫

∂Ω

[

G(p, p′)
∂u

∂n
− u(p′)

∂G

∂n
(p, p′)

]

dS, (2.10)

where

η(p) =



























0.5 if p ∈ ∂Ω (smooth),

1 if p ∈ Ω,

0 if p /∈ Ω,

This is obtained using the fundamental solution (2.9) and Green’s identity.

(iii) Discretise the boundary into small straight line segmentsΓj for j = 1,M and

assume that the boundary potentialu and its normal derivative∂u
∂n

are approx-

imated by constant functions over each small boundary element Γj . Via these

approximations, the integral equation (2.10) is expressedas

η(p)u(p) =
M
∑

j=1

u′jAj(p)−
M
∑

j=1

ujBj(p), (2.11)

where

Aj(p) =

∫

Γj

G(p, p′)dΓj(p
′)

= −
1

2π











h(ln (h/2)− 1) if ab = 0,

a cos(β)(ln (a)− ln (b))− h(1− ln (b)) + aψsin(β) if ab 6= 0
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Bj(p) =

∫

Γj

∂G

∂n
(p, p′)dΓj(p

′)

=
1

2π



























0 if ab = 0 or p ∈ {p
j−1
, p

j
}

ψ sign(αj−1(p)− αj(p)) if y ∈ [yj−1, yj],

ψ sign(αj(p)− αj−1(p)) otherwise

where sign is the signum function,a = |p− p
j−1

|, b = |p− p
j
|, h = |p

j
− p

j−1
|,

αj−1(p) andαj(p) are the angles between thex-axis and segmentsp, p
j−1

and

p, p
j
, respectively, and the anglesψ andβ are given by

ψ = arccos

(

a2 + b2 − h2

2ab

)

, β = arccos

(

a2 + h2 − b2

2ah

)

.

(iv) Apply equation (2.11) at the midpoint nodesp̃i for i = 1,M . This gives the sys-

tem of linear algebraic equations (2.8) with the unknownsu andu′. The system

can be rewritten as

M
∑

j=1

(Aiju
′
i +Bijui) = 0, i = 1,M, (2.12)

whereA andB are matrices defined by

Aij = Aj(p̃i), Bij = −Bj(p̃i)−
1

2
δij ,

whereδij is the Kronecker delta function.

In compact form, (2.12) represents the system of equations (2.8). Specific boundary

conditions must be imposed to make the resulting system of equations (2.12) solvable.

The CEM boundary conditions (2.2), (2.5) and (2.6) will be considered next.

First, we collocate the boundary condition (2.2) for the electrodesεp, p = 1, L, at
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the nodes̃pi, resulting in

ui + zpu
′
i −

2π

Mℓp

(2K+1)M/(2L)
∑

k=(KM/L)+1

uk =
zpIp
ℓp

,

i = (M + 1 +KM/L), (M + (2K + 1)M/(2L)), (2.13)

whereK = 0, (L− 1). This yieldsM
2

equations.

Secondly, by collocating the zero flux boundary condition (2.5) for the gapsgp,

p = 1, L, between electrodes at the nodesp̃i, we obtain

u′i = 0, i = (M + 1 + (2K − 1)M/(2L)), (M +KM/L), (2.14)

whereK = 1, L. This yields anotherM
2

equations.

Finally, the condition (2.6) yields one more equation, namely,

M
∑

k=1

uk = 0. (2.15)

To find the solution of the CEM problem (2.1), (2.2), (2.5) and(2.6) using the BEM,

the equations (2.12)-(2.15) have been reformulated in the following generic matrix

form as a(2M + 1)× (2M) linear system of algebraic equations:

DX = b, (2.16)

where

X =





u

u′



 .

Of course, from equations (2.13) and (2.14), in principle wecould eliminate the cur-

rent fluxu′ such that (2.16) can be reduced to a smaller(M + 1)×M linear system of

algebraic equations. Since the system of equations (2.16) is over-determined (the num-
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ber of equations is greater than the number of unknowns), we can use the least-squares

method to solve it. This yields

X = (DTD)−1DT b. (2.17)

Once the boundary values have been obtained accurately, equation (2.11) can be

applied atp ∈ Ω to provide explicitly the interior solution foru(p).

2.4 The method of fundamental solutions

One of the reasons why the method of fundamental solutions (MFS) is becoming in-

creasingly popular in various applications is that it is conceptually simple and easy to

describe and implement. The MFS is regarded as a meshless BEMand it has been used

to find the solution of inverse geometric problems governed by Laplace’s equation in

[35, 36].

The MFS seeks a solution of Laplace’s equation (2.1) as a linear combination of

fundamental solutions of the form:

u(p) =
N
∑

j=1

cjG(ξj , p), p ∈ Ω = Ω ∪ ∂Ω, (2.18)

whereξ
j

are called sources (‘singulaties’) and are located outsideΩ, and (cj)j=1,N

are unknown coefficients to be determined by imposing the boundary conditions (2.2),

(2.5) and (2.6). The approximation (2.18) is justified by thedenseness of the set of

these functions, asN → ∞, into the set of harmonic functions, see [14, 60] and Ap-

pendix A. Note that inR2 there is an additional constant which has to be included in

the expression (2.18) in order for the set to be complete, butthis constant can usually

be taken to be zero without much loss of generality.

SinceΩ is the unit disk, we take the source points
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ξ
j
= (ξ1j , ξ

2
j ) =

(

R cos

(

2πj

N

)

, R sin

(

2πj

N

))

, j = 1, N,

where1 < R <∞, and the boundary collocation points

xi =

(

cos

(

2πi

M

)

, sin

(

2πi

M

))

, i = 1,M.

From (2.9) we have

∂G

∂n
(ξ

j
, p) =

1− (ξ1jx+ ξ2j y)

2π|ξ
j
− p|2

, p = (x, y) ∈ ∂Ω, (2.19)

whereξ
j
= (ξ1j , ξ

2
j ). In order to obtain the coefficient vectorc = (cj)j=1,N , we substi-

tute equations (2.9) and (2.19) into the boundary conditions (2.2), (2.5) and (2.6).

Firstly, we apply the boundary condition (2.2) for the electrodesεp, p = 1, L, at the

collocation pointsxi on εp resulting in

N
∑

j=1



G(ξ
j
, xi)−

2π

Mℓp

(2K+1)M/(2L)
∑

k=(KM/L)+1

G(ξ
j
, xk) + zp

∂G

∂r
(ξ

j
, xi)



 cj =
zpIp
ℓp

,

i = (KM/L) + 1, (2K + 1)M/(2L), (2.20)

whereK = 0, (L− 1). This yieldsM
2

equations.

Secondly, by applying the zero flux boundary condition (2.5)on the gapsgp, p =

1, L, between electrodes, at the collocation pointsxi ongp, we obtain

N
∑

j=1

cj
∂G

∂r
(ξ

j
, xi) = 0, i = (1 + (2K − 1)M/(2L)), (KM/L), (2.21)
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whereK = 1, L. This yields anotherM
2

equations.

Finally, imposing the condition (2.6) yields one more equation

M
∑

i=1

N
∑

j=1

cjG(ξj, xi) = 0. (2.22)

Again, to find the solution of the CEM problem (2.1), (2.2), (2.5) and (2.6) using

the MFS, the equations (2.20)-(2.22) have been reformulated in the following generic

matrix form as an(M + 1)×N linear system of algebraic equations

Fc = b. (2.23)

The least-squares method is used to solve the system of equations (2.23) ifM+1 ≥ N .

This yields

c =
(

F TF
)−1

F T b. (2.24)

Once the coefficient vectorc has been obtained accurately, equations (2.18) and

(2.19) provide explicitly the solution for the potentialu in Ω, and the current flux

∂u/∂n on∂Ω.

2.5 Numerical results and discussion

In this section, we will discuss and compare the numerical solutions of the direct ERT

problem given by equations (2.1), (2.2), (2.5) and (2.6) obtained using the BEM and

the MFS.

Example 1. For simplicity, chooseL = 2 (only two electrodes which are attached

to the boundary) and solve the problem (2.1), (2.2), (2.5) and (2.6) with the following

input data:z1 = z2 = I1 = 1, andI2 = −1.

BEM Solution: The matrixD in equation (2.16) is given by
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Di,l =











Bi,l if l = 1,M,

Ai,l if l = (M + 1), 2M,

i = 1,M.

Using equations (2.13)- (2.15) we obtain

Di,l =







































− h
ℓ1

if (i−M) 6= l, l = 1,M/4,

(1− h
ℓ1
) if (i−M) = l, l = 1,M/4,

0 if l = (M/4 + 1),M,

z1δi,l if l = (M + 1), 2M,

i = (M + 1), (M +M/4),

Di,l =







































− h
ℓ2

if (i−M) 6= l, l = (M/2 + 1), 3M/4,

(1− h
ℓ2
) if (i−M) = l, l = (M/2 + 1), 3M/4,

0 if l = 1,M/2 ∪ (3M/4 + 1),M,

z2δi,l if l = (M + 1), 2M,

i = (M +M/2 + 1), (M + 3M/4),

Di,l = δi,l, l = (M + 1), 2M,

i = (M +M/4 + 1), (M +M/2) ∪ (M + 3M/4 + 1), 2M.

The last row in the matrixD is given by

D(2M+1),l =











1 if l = 1,M,

0 if l =M + 1, 2M.

Finally, the vectorb is given by

b =
(

0 z1I1
ℓ1

0 z2I2
ℓ2

0 0
)T

.

Table 1 illustrates the numerical solution of the direct problem (2.1), (2.2), (2.5)
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and (2.6) obtained using the BEM with various numbers of boundary elementsM . We

only show the solution in the upper semi-disk because the solution is symmetric on

the lower semi-disk, namelyu(x, y) = u(−x,−y) for x ∈ (−1, 1), y ∈ (0, 1). Also,

in Table 2.1 (as well as Tables 2.2 and 2.4 later on) we only show, for simplicity of

illustration, the results atr ∈ {1, 2, 3, 9}/10. We mention that the numerical results

for the other values ofr ∈ {4, ..., 8}/10 have been found to possess similar features

and therefore are not included. From Table 2.1 it can be seen that using the BEM to

solve the CEM yields a convergent interior solution up to four decimal places, as the

number of boundary elementsM increases.
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Table 2.1: The numerical solution of Example 1 at selected interior points (r, θ) obtained
using the BEM for various numbers of boundary elementsM ∈ {8, 16, 32, 64, 128, 256}.

r
θ

2π/10 4π/10 6π/10 8π/10 10π/10 M

0.0540 0.0487 0.0247 -0.0085 -0.0386 8
0.0556 0.0502 0.0255 -0.0088 -0.0398 16

1/10 0.0561 0.0508 0.0257 -0.0088 -0.0401 32
0.0562 0.0506 0.0257 -0.0089 -0.0401 64
0.0562 0.0506 0.0257 -0.0089 -0.0402 128
0.0562 0.0507 0.0258 -0.0089 -0.0402 256
0.1083 0.974 0.0491 -0.0169 -0.0769 8
0.1116 0.1004 0.0517 -0.0174 -0.0793 16

2/10 0.1124 0.1011 0.0511 -0.0175 -0.0799 32
0.1126 0.1013 0.0511 -0.0176 -0.0800 64
0.1126 0.1014 0.0512 -0.0176 -0.0801 128
0.1127 0.1014 0.0512 -0.0176 -0.0801 256
0.1632 0.1463 0.0727 -0.0248 -0.1147 8
0.1681 0.1508 0.0751 -0.0257 -0.1184 16

3/10 0.1693 0.1519 0.0757 -0.0259 -0.1193 32
0.1696 0.1521 0.0759 -0.0260 -0.1195 64
0.1697 0.1522 0.0759 -0.0260 -0.1196 128
0.1697 0.1522 0.0759 -0.0260 -0.1196 256

... ... ... ... ... ... ...
0.5051 0.4723 0.1592 -0.0734 -0.3175 8
0.5264 0.4774 0.1793 -0.0565 -0.3440 16

9/10 0.5264 0.4774 0.1793 -0.0565 -0.3440 32
0.5263 0.4772 0.1792 -0.0564 -0.3436 64
0.5264 0.4774 0.1793 -0.0565 -0.3439 128
0.5264 0.4774 0.1793 -0.0565 -0.3440 256

Figures 2.2 and 2.3 show the BEM boundary solution foru and its normal deriva-

tive ∂u/∂n, respectively. From these figures it can be seen that the BEM solutions for

bothu and∂u/∂n have rapid convergence on the boundary. So, we can rely on these

results and consider them as the ‘exact solution‘ of the well-posed direct problem of

the CEM of EIT.
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Figure 2.2:The boundary solutionu(1, θ), as a function ofθ/(2π), obtained using the BEM
with M ∈ {64, 128, 256}, for Example 1.

Figure 2.3:The normal derivative∂u∂n (1, θ), as a function ofθ/(2π), obtained using the BEM
with M ∈ {64, 128, 256}, for Example 1.

Figure 2.4 shows the resulting voltagesUp, p = 1, 2, obtained from equation (2.4).

In this figure the top part illustrates that the voltage is indeed constant and equal to

U1 ≈ 1.1738, whilst the bottom one indicates thatU2 ≈ −1.1738.
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Figure 2.4:The voltagesUp, p = 1, 2, as functions ofθ/(2π), obtained using the BEM with
M ∈ {64, 128, 256}, for Example 1.

MFS solution: We now solve the problem (2.1), (2.2), (2.5) and (2.6) for Example 1

using the MFS instead of the BEM.

To begin with, the firstM/4 rows of the matrixF in equation (2.23), corresponding

to the first electrodeε1, are

Fi,j = Gi,j −
2π

Mℓ1

(

Gi,j +Gi+1,j + ... +GM/4,j

)

+ z1G
′
i,j, i = 1,M/4, j = 1, N,

whereGi,j = G(ξj, xi) andG′
i,j = ∂G

∂n
(ξj, xi). Another M

4
rows in the matrixF

are generated by applying the boundary condition (2.20) on the second electrodeε2,

namely

Fi,j = Gi,j −
2π

Mℓ2

(

G(M/2+1),j +G(M/2+2),j + ... +G3M/4,j

)

+ z2G
′
i,j,

i = (M/2 + 1), 3M/4, j = 1, N.

In addition, applying the no flux boundary condition (2.21) results in anotherM
2

rows

given by

Fi,j = G′
i,j, i = (M/4 + 1),M/2 ∪ (3M/4 + 1),M, j = 1, N.
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To end with, the last row in the matrixF obtained from the condition (2.22) is:

F(M+1),j =

M
∑

i=1

Gi,j , j = 1, N.

Similarly, the vectorb of the linear system of equations (2.23) is given by

b =
(

z1I1
ℓ1

0 z2I2
ℓ2

0 0
)T

.

Table 2.2 illustrates the numerical solution of the problem(2.1), (2.2), (2.5) and

(2.6) obtained using the MFS with variousM = N andR = 1.15. From this table

it can be seen that using the MFS to solve the CEM provides a convergent interior

solution up to four decimal places. However, by inspecting Tables 2.1 and 2.2 it can be

seen that this convergence is slightly slower in the MFS thanin the BEM, asM = N

increases.
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Table 2.2: The numerical solution of Example 1 at selected interior points (r, θ) obtained
using the MFS for variousM = N ∈ {8, 16, 32, 64, 128, 256} andR = 1.15.

r
θ

2π/10 4π/10 6π/10 8π/10 10π/10 M

0.1316 0.1225 0.0619 -0.0213 -0.0968 8
0.0731 0.0658 0.0334 -0.0115 -0.0227 16

1/10 0.0578 0.0521 0.0265 -0.0091 -0.0413 32
0.0562 0.0507 0.0257 -0.0088 -0.0401 64
0.0562 0.0506 0.0257 -0.0088 -0.0401 128
0.0561 0.0506 0.0257 -0.0088 -0.0401 256
0.1466 0.1318 0.0664 -0.0227 -0.1040 8
0.2740 0.2457 0.1216 -0.0422 -0.1909 16

2/10 0.1160 0.1043 0.0526 -0.0180 -0.0824 32
0.1127 0.1014 0.0512 -0.0175 -0.0801 64
0.1126 0.1013 0.0511 -0.0175 -0.0801 128
0.1126 0.1013 0.0511 -0.0175 -0.0800 256
0.4144 0.3704 0.1777 -0.0422 -0.1909 8
0.2210 0.1981 0.0982 -0.0335 -0.1552 16

3/10 0.1747 0.1567 0.0781 -0.0267 -0.1230 32
0.1698 0.1523 0.0759 -0.0259 -0.1197 64
0.1697 0.1522 0.0759 -0.0259 -0.1196 128
0.1696 0.1522 0.0759 -0.0259 -0.1195 256

... ... ... ... ... ... ...
1.2972 1.1393 0.4321 -0.4131 -0.1860 8
0.9671 0.5922 0.1302 -0.0360 -0.3042 16

9/10 0.5478 0.4905 0.1825 -0.0572 -0.3505 32
0.5270 0.4783 0.1791 -0.0564 -0.3439 64
0.5265 0.4775 0.1792 -0.0564 -0.3439 128
0.5263 0.4773 0.1792 -0.0564 -0.3437 256

Figures 2.5 and 2.6 show comparisons between the BEM and MFS solutions for

the boundary datau(1, θ) and∂u/∂n(1, θ), respectively. In these figures the markers

are shown only on a coarse selection of boundary points in order to allow the curves

to be distinguishable. In the MFS, we present the results obtained withR = 1.15

which is the choice for which the numerical MFS results are closest to the BEM re-

sults. In the absence of the BEM numerical results, or of an analytical solution, one

could still optimize the choice ofR by minimizing (with respect toR) the error in
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a least-squares sense, in the boundary conditions (2.2), (2.5) and (2.6) at points on

the boundary different to the collocation points(xi)i=1,M . The reason whyR is close

to unity is because the boundary value problem possesses singularities in the normal

derivative, see Figure 2.5, at the end points of the electrodes where the Robin bound-

ary condition (2.3) and the Neumann boundary condition (2.5) mix. This in turn means

that the harmonic solutionu cannot be analytically continued too far outside the unit

diskΩ and the MFS approximation (2.18) is accurate only provided that the sources

(ξ
j
)j=1,N are positioned on a circle of radiusR > 1 such that there are no singularities

in u in the circular annulus{(x, y) ∈ R
2|1 < x2 + y2 < r2}. From Figure 2.5 it can be

seen that there is excellent agreement between the BEM and MFS numerical solutions

except for the coarse boundary mesh/degrees of freedom of 8 to 16 elements. How-

ever, increasing the number of collocation pointsM and the degrees of freedomN ,

leads to bothu(1, θ) and its derivative∂u/∂n(1, θ) showing good agreement with the

BEM solution. Furthermore, the MFS gives the closest agreement to the BEM results

with M = N = 128 andR = 1.15. However, for the large choice ofM = N = 256,

the MFS shows some slight instability in the normal derivative, see Figure 2.6. This

instability is due to the ill-conditioning of the matrixF . This is a commonly known

problem with the MFS, see [17, 43, 52].
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Figure 2.5:Comparison betweenuMFS (1, θ) anduBEM (1, θ), as functions ofθ/(2π), for
Example 1.
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Figure 2.6:Comparison between∂u∂n
MFS

(1, θ) and ∂u
∂n

BEM
(1, θ), as functions ofθ/(2π),

for Example 1.

Table 2.3 shows the condition numbers, defined as the ratio between the largest sin-

gular value to the smallest one, of the BEM and MFS matricesD andF , respectively.

This table shows that the BEM matrixD is well-conditioned, but the MFS matrixF is

ill-conditioned.
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Table 2.3: Condition numbers of the matricesD andF of the BEM and MFS systems of
equations (2.16) and (2.23), respectively, for various numbers of boundary elementsM (in the
BEM) and degrees of freedomM = N (in the MFS withR = 1.15), for Example 1.

M = N 8 16 32 64 128 256
cond(D) 35.58 86.62 215.97 484.40 103 2× 103

cond(F ) 3× 1016 5× 1016 3× 1017 7× 1016 2× 1017 4× 1018

Example 2. We next solve Example 1 using the BEM and MFS when the number of

electrodes is increased toL = 4 and8, with the input datazp = 1 for p = 1, L and

injected currents

Ip =



























1 if p = 1,

−1 if p = L,

0 if p ∈ {2, ..., L− 1}.

(2.25)

Solution: Table 2.4 shows the numerical MFS and BEM interior solutionsand the

absolute errors between them. It can be seen that for bothL = 4 andL = 8, the

MFS and the BEM interior solutions agree up to three decimal places. In addition, the

accuracy increases as we move further towards the centre of the unit disk.
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Table 2.4:The BEM numerical solution (withM = 128) of Example 2 at the some interior
points and (in brackets) the absolute errors between the BEMand MFS (withM = N = 128).

L = 4

r
θ

2π/10 4π/10 6π/10 8π/10 10π/10

1/10
0.0394 0.0426 0.0301 0.0088 -0.0146

(1× 10−5) (1× 10−5) (8× 10−6) (2× 10−6) (3× 10−6)

2/10
0.0841 0.0836 0.0551 0.0156 -0.0259

(3× 10−5) (2× 10−5) (1× 10−5) (3× 10−6) (5× 10−6)

3/10
0.1340 0.1223 0.0752 0.0207 -0.0345

(5× 10−5) (3× 10−5) (1× 10−5) (3× 10−6) (5× 10−6)

...
... ... ... ... ...

9/10
0.5723 0.2593 0.1216 0.0330 -0.0560

(4× 10−4) (3× 10−5) (3× 10−5) (3× 10−6) (8× 10−6)
L = 8

r
θ

2π/10 4π/10 6π/10 8π/10 10π/10

1/10
0.0199 0.0242 0.0191 0.0085 -0.0039

(7× 10−6) (7× 10−6) (4× 10−6) (2× 10−6) (9× 10−7)

2/10
0.0449 0.0484 0.0347 0.0147 -0.0067

(1× 10−5) (1× 10−5) (7× 10−6) (2× 10−6) (1× 10−6)

3/10
0.0752 0.0714 0.0469 0.0191 -0.0087

(2× 10−5) (1× 10−5) (7× 10−6) (2× 10−6) (1× 10−6)

...
... ... ... ... ...

9/10
0.3099 0.1451 0.0748 0.0276 -0.0127

(1× 10−4) (1× 10−5) (4× 10−6) (4× 10−7) (2× 10−6)

Figures 2.7 and 2.8 represent the comparison on the boundaryfor L = 4 and8,

respectively. From these figures it can be seen that both methods still follow the same

pattern as for the caseL = 2.
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Figure 2.7:Comparison between the MFS and BEM solutions and their normal derivatives on
the boundary when the number of electrodes isL = 4.

Figure 2.8:Comparison between the MFS and BEM solutions and their normal derivatives on
the boundary when the number of electrodes isL = 8.

2.6 Extension to multiply-connected domains

So far, the solution domainΩ, which has been considered, has been a simply-connected

domain. In this section, we will investigate the direct ERT problem in a domain which

has a void (rigid inclusion or cavity) inside.
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2.6.1 Applying the BEM to the direct ERT problem in an annular

domain with a rigid inclusion

Here, the solution domain is the annulus

Ω\ΩInner = {(x, y) ∈ R
2|(0.5)2 < x2 + y2 < 1} , where on the boundary of the hole

inside (rigid inclusion), the boundary condition isu = 0.

First, the external boundaryr = 1 is uniformly discretised intoM boundary ele-

ments and the numbering of these elements is anticlockwise.Similarly, the internal

boundaryr = 0.5 is uniformly discretized into anotherM boundary elements, but

these are numbered clockwise, [55]. The endpoints of the external boundary elements

are

pi = (xi, yi) =

(

cos

(

2πi

M

)

, sin

(

2πi

M

))

, i = 1,M,

with the convention thatp
0
= p

M
, whereas the endpoints of the internal boundary

elements are

pi = (xi, yi) =

(

0.5 cos

(

2π −
2π(i−M)

M

)

, 0.5 sin

(

2π −
2π(i−M)

M

))

,

i =M + 1, 2M.

Sinceu = 0 on the boundary of the rigid inclusion, the EIT problem is reduced to

solving a new linear system of BEM equations

BuOuter + Au′ = 0, (2.26)

whereu :=
(

u
(

p̃i
))

i=1,M
, andu′ :=





u′Outer

u′Inner



 :=





∂u
∂n
(p̃

i
)i=1,M

∂u
∂n
(p̃

i
)i=M+1,2M



 . We also

denote the boundary element nodep̃i = (pi + pi−1) /2 for i = 1,M ∪M + 2, 2M , and

p̃M+1 = (pM+1 + p2M ) /2.

First, we collocate the boundary condition (2.2) for the electrodesεp, p = 1, L, at
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the nodes̃pi−2M , resulting in

ui−2M + zpu
′
i−2M −

2π

Mℓp

(2K+1)M/(2L)
∑

k=(KM/L)+1

uk =
zpIp
ℓp

,

i = (2M + 1 +KM/L), (2M + (2K + 1)M/(2L), (2.27)

whereK = 0, (L− 1). This yieldsM
2

equations.

Second, by applying the zero flux boundary condition (2.5) for the gapsgp, p =

1, L, between electrodes at the nodesp̃i−2M , we obtain

u′i−2M = 0, i = (2M + 1 + (2K − 1)M/(2L)), (2M +KM/L), (2.28)

whereK = 1, L. This yields anotherM
2

equations.

Finally, the condition
∫

∂ΩOuter

u ds = 0

yields one more equation, namely,

M
∑

k=1

uk = 0. (2.29)

Therefore, to find the solution of the CEM problem (2.1), (2.2), (2.5) and (2.6) in

an annular domain containing an inner rigid inclusion usingthe BEM, the equations

(2.27)-(2.29) are reformulated in the following matrix form as a(3M + 1) × (3M)

linear system of algebraic equations:

DX = b, (2.30)
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where

X =











uOuter

u′Outer

u′Inner











. (2.31)

Since the system of equations (2.30) is over-determined, wehave used the least-squares

method to solve it. This yields the solution (2.17) for the unspecified boundary data

(2.31).

Once the boundary data has been obtained accurately, equation (2.11) can be ap-

plied forp ∈ Ω to provide explicitly the interior solution foru(p).

2.6.2 Applying the MFS to the direct ERT problem in an annular

domain with a rigid inclusion

In this section, the MFS seeks a solution of Laplace’s equation (2.1) as a linear combi-

nation of fundamental solutions of the form:

u(p) =

2N
∑

j=1

cjG(ξj, p), p ∈ Ω\ΩInner (2.32)

whereξ
j

are the sources located outside the outer domain

Ω =
{

(x, y) ∈ R
2|x2 + y2 < 1

}

and inside the rigid inclusion

ΩInner =
{

(x, y) ∈ R
2|x2 + y2 < (0.5)2

}

.
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The (cj)j=1,2N are unknown coefficients to be determined by imposing the boundary

conditions (2.2), (2.5), (2.6) and

u = 0 on ∂ΩInner. (2.33)

We take the external source pointsξ
j
= (ξ1j , ξ

2
j ) = (R cos

(

2πj
N

)

, R sin
(

2πj
N

)

) for

j = 1, N , where1 < R <∞, the internal source points

ξ
j
= (ξ1j , ξ

2
j ) =

(

R1 cos
(

2π(j−N)
N

)

, R1 sin
(

2π(j−N)
N

))

, for j = N + 1, 2N , where

0 < R1 < 0.5. We also take the external boundary collocation points

xi = (cos
(

2πi
M

)

, sin
(

2πi
M

)

) for i = 1,M , and the internal boundary collocation points

xi =
(

0.5 cos
(

2π(j−M)
M

)

, 0.5 sin
(

2π(j−M)
M

))

for i =M + 1, 2M .

For external pointsp = (x, y) ∈ ∂Ω we have

∂G

∂n
(ξ

j
, p) =

1− (ξ1jx+ ξ2j y)

−2π|ξ
j
− p|2

, j = 1, 2N, (2.34)

whilst for internal pointsp = (x, y) ∈ ∂ΩInner we have

∂G

∂n
(ξ

j
, p) =

(0.5)2 − (ξ1jx+ ξ2j y)

−2(0.5)π|ξ
j
− p|2

, j = 1, 2N. (2.35)

In order to obtain the coefficient vectorc = (cj)j=1,2N , we substitute equations (2.9),

(2.34), and (2.35) into the boundary conditions (2.2), (2.5), (2.6) and (2.33).

First, we apply the boundary condition (2.2) for the electrodesεp, p = 1, L, at the

collocation pointsxi on εp resulting in

2N
∑

j=1



G(ξ
j
, xi)−

2π

Mℓp

(2K+1)M/(2L)
∑

k=(KM/L)+1

G(ξ
j
, xk) + zp

∂G

∂r
(ξ

j
, xi)



 cj =
zpIp
ℓp

,

i = (KM/L) + 1, (2K + 1)M/(2L), (2.36)
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whereK = 0, (L− 1). This yieldsM
2

equations.

Second, by applying the zero flux boundary condition (2.5) onthe gapsgp, p = 1, L,

between electrodes, we obtain

2N
∑

j=1

cj
∂G

∂r
(ξ

j
, xi) = 0, i = (1 + (2K − 1)M/(2L)), (KM/L) (2.37)

whereK = 1, L. This yields anotherM
2

equations.

Third, we apply (2.33) which givesM more equations

2N
∑

j=1

cjG(ξj , xi) = 0, i =M + 1, 2M. (2.38)

Finally, by imposing the condition (2.6) and using (2.38), yields one more equation

2M
∑

i=1

2N
∑

j=1

cjG(ξj, xi) = 0. (2.39)

Again, to find the solution of the CEM problem (2.1), (2.2), (2.5), (2.6) and (2.33)

using the MFS, the equations (2.36)-(2.39) are reformulated in the following matrix

form as a(2M + 1)× 2N linear system of algebraic equations:

Fc = b. (2.40)

The least-squares method is used to solve the system of equations (2.40). This yields

the solution (2.24).

Once the coefficient vectorc has been obtained accurately, equations (2.32), (2.34)

and (2.35) provide explicitly the solution for the potential uOuter on the external bound-

ary∂Ω and inside the annular domainΩ, the current flux(∂u/∂n)Outer on the external

boundary∂Ω and the current flux(∂u/∂n)Inner on the internal boundary∂ΩInner, re-

spectively.
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Example 3. Solve the problem (2.1), (2.2), (2.5), (2.6) and (2.33) using the BEM

and MFS with the same input data as in Example 1.

BEM solution: The matrixD in equation (2.30) is given by

Di,l =











Bi,l if l = 1,M,

Ai,l if l = (M + 1), 3M

i = 1, 2M.

Using equations (2.27)-(2.29) we obtain:

Di,l =







































− h
ℓ1

if (i− 2M) 6= l, l = 1,M/4,

(1− h
ℓ1
) if (i− 2M) = l, l = 1,M/4,

0 if l = (M/4 + 1),M ∪ (2M + 1), 3M,

z1δi,l if l = (M + 1), 2M,

i = (2M + 1), (2M +M/4),

Di,l =







































− h
ℓ2

if (i− 2M) 6= l, l = (M/2 + 1), 3M/4,

(1− h
ℓ2
) if (i− 2M) = l, l = (M/2 + 1), 3M/4,

0 if l = 1,M/2 ∪ (3M/4 + 1),M ∪ (2M + 1), 3M,

z2δi,l if l = (M + 1), 2M,

i = (2M +M/2 + 1), (2M + 3M/4),

Di,l = δi,l, if l = (M + 1), 2M,

i = (2M +M/4 + 1), (M +M/2) ∪ (2M + 3M/4 + 1), 3M.

The last row in the matrixD is given by

D(3M+1),l =











1 if l = 1,M,

0 if l =M + 1, 3M.
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Furthermore, the vectorb is given by

b =
(

0 z1I1
ℓ1

0 z2I2
ℓ2

0 0
)T

. (2.41)

MFS solution: Turning now to the MFS solution, the firstM/4 rows of the matrixF

in equation (2.40) corresponding to the first electrodeε1 are

Fi,j = Gi,j −
2π

Mℓ1

(

Gi,j +Gi+1,j + ... +GM/4,j

)

+ z1G
′
i,j, i = 1,M/4, j = 1, 2N.

Another M
4

rows in the matrixF are generated by applying the boundary condition

(2.2) on the second electrodeε2, namely

Fi,j = Gi,j −
2π

Mℓ2

(

G(M/2+1),j +G(M/2+2),j + ...+G3M/4,j

)

+ z2G
′
i,j ,

i = (M/2 + 1), 3M/4, j = 1, 2N.

In addition, applying the no flux boundary condition (2.5) results in anotherM
2

rows

given by

Fi,j = G′
i,j, i = (M/4 + 1),M/2 ∪ 3M/4 + 1, j = 1, 2N.

Moreover, anotherM rows are generated by applying the inner boundary condition

(2.33), namely,

Fi,j = Gi,j, i = (M + 1), 2M, j = 1, 2N.

To end with, the last row in the matrixF , obtained using equation (2.39), is:

F2(M+1),j =

2M
∑

i=1

Gi,j, j = 1, 2N.
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The vectorb of the linear system of equations (2.40) is given by

b =
(

z1I1
ℓ1

0 z2I2
ℓ2

0 0
)T

. (2.42)

In the MFS we takeR = 1.15 andR1 = 0.45.

Figures 2.9, 2.10 and 2.11 present a comparison between the BEM and MFS solu-

tions for the boundary datauOuter(1, θ), (∂u/∂n)Outer(1, θ) and(∂u/∂n)Inner(0.5, θ),

respectively. From these figures it can be seen that the BEM outer solution and its

derivative, as well as the BEM inner derivative are convergent, as the number of

boundary elementsM increases. This is also true when the MFS is used except for

M = N = 256. In this later case, the outer solution still has reasonableaccuracy, but

the normal derivative (Figure 2.11) on the inner boundary becomes highly unstable,

see also Table 2.5 for the condition numbers.

Figure 2.9:Comparison betweenuMFS
Outer (1, θ) anduBEM

Outer (1, θ), as functions ofθ/(2π), for
Example 3.
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Figure 2.10: Comparison between(∂u∂n )
MFS
Outer (1, θ) and (∂u∂n)

BEM
Outer (1, θ), as functions of

θ/(2π), for Example 3.
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Figure 2.11:Comparison between(∂u∂n)
MFS
Inner (0.5, θ) and(∂u∂n)

BEM
Inner (0.5, θ), as functions of

θ/(2π), for Example 3.

Table 2.5: Condition numbers of the matricesD andF of the BEM and MFS systems of
equations (2.30) and (2.40), respectively, for various numbers of boundary elementsM (in the
BEM) and degrees of freedomM = N (in the MFS withR = 1.15 andR1 = 0.45), for
Example 3.

8 16 32 64 128 256
cond(D) 2× 103 104 105 7× 105 6× 106 5× 107

cond(F ) 1017 6× 1018 2× 1018 5× 1018 4× 1017 2× 1019
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2.6.3 Applying the BEM to the direct ERT problem in an annular

domain with a cavity

Here, the solution domain is the same annulus as in Subsection 2.6.1, but now it con-

tains a cavity inside on whose boundary∂u/∂n = 0.

The BEM implementation is the same as that for the rigid inclusion of Subsection

2.6.1, however now the BEM reduces to solving the system of equations

Bu+ Au′Outer = 0, (2.43)

whereu :=





uOuter

uInner



 :=





u(p̃
i
)i=1,M

u(p̃
i
)i=M+1,2M



, andu′Outer :=
(

∂u
∂n

(

p̃i
))

i=1,M
.

Equations (27)-(29) remain the same. Therefore, to find the solution of the CEM (2.1),

(2.2), (2.5) and (2.6) in an annular domain with a cavity using the BEM, the equations

(2.27)-(2.29) and (2.43) are reformulated in the followingmatrix form as a(3M + 1)×

(3M) linear system of algebraic equations:

DX = b, (2.44)

where

X =











uOuter

u′Outer

uInner











. (2.45)

Since the system of equations (2.44) is over-determined, wehave used the least-squares

method to solve it. This yields the solution (2.17) for the unspecified boundary data

(2.45). Afterwards, equation (2.11) can be applied forp ∈ Ω\ΩInner to provide explic-

itly the interior solution foru(p).
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2.6.4 Applying the MFS to the direct ERT problem in an annular

domain with a cavity

Using the MFS to solve the forward ERT problem in a region which contains a cav-

ity inside is similar to solving that problem with the rigid inclusion of Subsection

2.6.2. The only difference is that the internal Dirichlet homogenous boundary condi-

tion (2.33) is replaced by the zero flux boundary condition

∂u

∂n
= 0 on ∂ΩInner. (2.46)

Hence,

2N
∑

j=1

cj
∂G

∂n
(ξ

j
, xi) = 0, i =M + 1, 2M. (2.47)

Due to this change, the rows

Fi,j = G′
i,j, i = (M + 1), 2M, j = 1, 2N,

will be updated in the new matrixF .

Example 4. Solve the problem (2.1), (2.2), (2.5), (2.6) and (2.46) using the BEM

and MFS with the same input data as in Example 1.

Solution: The matrixD in equation (2.44) has the same structure as for Example 3,

but the last row is given by

D(3M+1),l =











1 if l = 1,M ∪ 2M + 1, 3M,

0 if l =M + 1, 2M.

Furthermore, the vectorb is the same as that given by (2.41).

Figures 2.12, 2.13 and 2.14 present a comparison between theBEM and MFS so-
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lution for the boundary datauOuter(1, θ) and (∂u/∂n)Outer(1, θ) anduInner(0.5, θ),

respectively. First, from Figures 2.12 and 2.13 the same conclusions, as those obtained

from Figures 2.9 and 2.10 for the rigid inclusion problem of Example 3, can be drawn

for the cavity problem of Example 4. Second, for largeM = N = 256, the MFS insta-

bility in the normal derivative on the inner boundary of the rigid inclusion, highlighted

in Figure 2.11, is not present in Figure 2.14. The reason for this is that retrieving higher

order derivatives is less accurate and less stable than retrieving lower order ones, [47].

Figure 2.12:Comparison betweenuMFS
Outer (1, θ) anduBEM

Outer (1, θ), as functions ofθ/(2π), for
Example 4.
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Figure 2.13: Comparison between(∂u∂n )
MFS
Outer (1, θ) and (∂u∂n )

BEM
Outer (1, θ) , as functions of

θ/(2π), for Example 4.
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Figure 2.14:Comparison betweenuMFS
Inner (0.5, θ) anduBEM

Inner (0.5, θ), as functions ofθ/(2π),
for Example 4.

Table 2.6 shows the condition numbers of the BEM and MFS matricesD andF ,

respectively. This table shows that the BEM matrixD is well-conditioned, but the

MFS matrixF is ill-conditioned.

Table 2.6: Condition numbers of the matricesD andF of the BEM and MFS systems of
equations, for various numbers of boundary elementsM (in the BEM) and degrees of freedom
M = N (in the MFS withR = 1.15 andR1 = 0.45), for Example 4.

8 16 32 64 128 256
cond(D) 311.91 643.53 103 2× 103 5× 103 ×104

cond(F ) 2× 1017 5× 1016 1018 9× 1017 5× 1017 1018



Chapter 2. 54

2.7 Extension to composite materials

In this section, the solution domain is represented by a bi-materialΩ = Ω1∪Ω2, where

Ω1 = {(x, y) ∈ R
2|(0.5)2 < x2 + y2 < 1} and

Ω2 = {(x, y) ∈ R
2|x2 + y2 < (0.5)2}. So, the mathematical formulation of this prob-

lem is governed by two Laplace’s equations, are in each of thetwo-dimensional bounded

domainsΩ1 andΩ2. The first equation is

▽2u1 = 0, in Ω1 (2.48)

subject to the same boundary conditions (2.2), (2.5) and (2.6) which make the problem

the so-called ‘complete-electrode model‘ (CEM).

The second Laplace’s equation is

▽2u2 = 0, in Ω2 (2.49)

subject to the following transmission conditions on the interfaceΩ1 ∩ Ω2 = ∂Ω2:

u1 = u2 (2.50)

and

∂u1
∂n1

= −γ
∂u2
∂n2

(2.51)

wheren1 is the outward unit normal to the boundary∂Ω1 of the materialΩ1 andn2 =

−n1 is the outward unit normal to the boundary∂Ω2 of the materialΩ2, and0 < γ 6=

1 <∞ is the ratio between the conductivities of the two materialsΩ2 andΩ1.

The previous cases (simply-connected and multiply-connected) of Sections 2.5 and 2.6

could be considered as special cases of this composite material case, since:

(i) if γ = 1, then the two composite material case becomes the simply-connected
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domain of Section 2.5.

(ii) if γ = ∞, then the two composite material case becomes the annular domain

with a rigid inclusion of Section 2.6.1.

(iii) if γ = 0, then the two composite material case becomes the annular domain with

a cavity of Section 2.6.2.

In the formulation above,Ω2 is defined as a general inclusion and the geometry of the

whole inclusion ERT problem is shown in Figure 2.15.

Figure 2.15:The two-dimensional CEM in a composite domain, forL = 2 and4 electrodes.
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2.7.1 Applying the BEM to the direct ERT problem in a composite

bi-material

In this section, we will use the BEM to solve the inclusion ERTproblem given by

equations (2.2), (2.5), (2.6), (2.48)-(2.51). For the firstdomainΩ1, the discretisation

of the boundary∂Ω1, is the same as in Section 2.6.1. Hence, the BEM reduces the

Laplace’s equation (2.48) foru1 to a new linear system of equations similar to (2.26),

namely,

Bu1 + Au′1 = 0, (2.52)
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whereu1 :=





u1Outer

u1Inner



 :=





u1(p̃i)i=1,M

u1(p̃i)i=M+1,2M





and u′1 :=





u′1Outer

u′1Inner



 :=





∂u1

∂n1
(p̃

i
)i=1,M

∂u1

∂n1
(p̃

i
)i=M+1,2M



. Equation (2.52) provides the first

2M rows of the matrixD.

Now, for the second domainΩ2 we discretise the internal boundary∂Ω2 into M

boundary elements, directed clockwise. Hence, the BEM reduces the second Laplace’s

equation (2.49) foru2 to a new linear system of equations, similar to (2.8), namely,

B̃u2 + Ãu′2 = 0, (2.53)

whereu2 = (u2(p̃2M+1−i))i=M+1,2M andu′2 =
(

∂u2

∂n2
(p̃2M+1−i)

)

i=M+1,2M
.Collocating

the interface transmission conditions (2.50) and (2.51) atthe corresponding boundary

element nodes and using (2.53) we obtain

B̃
(

u1
)

Inner
−

1

γ
Ã
(

u′1

)

Inner
= 0. (2.54)

Equations (2.52) and (2.54) from a system of3M equations with4M unknowns. In

order to make this system of equations uniquely solvable theconditions (2.2), (2.5)

and (2.6) should be imposed on the outer boundary. To begin with, we collocate the

boundary condition (2.2) for the electrodesεp, p = 1, L, at the nodes̃p(i−3M), resulting

in

u1(i−3M) + zpu
′
1(i−3M) −

2π

Mℓp

(2K+1)M/(2L)
∑

k=(KM/L)+1

u1k =
zpIp
ℓp

,

i = (3M + 1 +KM/L), (3M + (2K + 1)M/(2L), (2.55)

whereK = 0, (L− 1). This yieldsM
2

equations.

Second, by applying the zero flux boundary condition (2.5) onthe gapsgp, p = 1, L,
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between electrodes, we obtain

u′1(i−3M) = 0, i = (3M + 1 + (2K − 1)M/(2L)), (3M +KM/L), (2.56)

whereK = 1, L. This yields anotherM
2

equations.

Finally, the condition (2.6) yield one more equation, namely,

M
∑

k=1

u1k = 0. (2.57)

Therefore, to find the solution of the CEM given by equations (2.2), (2.5) and (2.48)-

(2.51) in a composite material using the BEM, the equations (2.52), (2.54) and (2.55)-

(2.57) are reformulated in the following matrix form as a(4M + 1) × (4M) linear

system of algebraic equations:

DX = b, (2.58)

where

X =

















uOuter

uInner

u′Outer

u′Inner

















. (2.59)

Since the system of equations (2.58) is over-determined, wehave used the least-squares

method to solve it. This yields the solution (2.17) for the unspecified boundary data

(2.59).
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2.7.2 Applying the MFS to the direct ERT problem in a composite

bi-material

In this section, the MFS for the Laplace’s equations (2.48) and (2.49) in the composite

materialΩ = Ω1 ∪ Ω2 is applied by seeking a solution of Laplace’s equation (2.48) as

a linear combination of fundamental solutions of the form:

u1(p) =
2N
∑

j=1

cjG(ξj, p), p ∈ Ω1, (2.60)

where the sourcesξ
j

and the collocation pointsxi are exactly the same as in Section

2.6.2, and by seeking a solution of Laplace’s equation (2.49) as a linear combination

of fundamental solutions of the form:

u2(p) =
3N
∑

j=2N+1

cjG(ξj, p), p ∈ Ω2. (2.61)

Similar domain decompositions technique for composite materials have been devel-

oped in [11–13] for the steady-state heat conduction governed by Laplace’s equation,

for the steady-state elasticity governed by the Lame´system, and for the steady-state

heat transfer governed by the modified Helmholtz equation, respectively.

In (2.61), the sourcesξ
j

are located outsideΩInner, so

ξ
j
= (ξ1j , ξ

2
j ) =

(

R2 cos

(

2π(j − 2N)

N

)

, R2 sin

(

2π(j − 2N)

N

))

, j = 2N + 1, 3N,

where0.5 < R2 <∞, and the new internal boundary collocation points are

xi =

(

0.5 cos

(

2π(i− 2M)

M

)

, 0.5 sin

(

2π(i− 2M)

M

))

, i = 2M + 1, 3M.

In order to obtain the coefficient vectorc = (cj)j=1,3N , we substitute equations (2.9),

(2.34), and (2.35) into the boundary conditions. To begin with, applying the boundary

condition (2.2) results in equation (2.36), which in turn yields M
2

equations. In addi-
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tion, applying the zero flux boundary condition (2.5) we obtain (2.38). This yields an

additionalM
2

equations.

Using the transmission conditions (2.50) and (2.51) results in

2N
∑

j=1

cjG(ξj , xi)−
3N
∑

j=2N+1

cjG(ξj , xi) = 0, i =M + 1, 2M (2.62)

and

2N
∑

j=1

cjG
′(ξ

j
, xi)− K̂

3N
∑

j=2N+1

cjG
′(ξ

j
, xi) = 0, i = 2M + 1, 3M, (2.63)

respectively. These give2M equations.

Finally, by imposing the condition (2.6), yields one more equation

2M
∑

i=1

2N
∑

j=1

cjG(ξj, xi) = 0. (2.64)

Again, to find the solution of the CEM problem (2.2), (2.5) and(2.48)-(2.51) using

the MFS, the equations (2.60)-(2.64) are reformulated in the following matrix form as

a (3M + 1)× 3N linear system of algebraic equations:

Fc = b. (2.65)

The least-squares method is used to solve the system of equations (2.65). This yields

the solution (2.24).

Example 5.Solve the problem (2.2), (2.5) and (2.48)-(2.51) using the BEM and MFS

with the same input data as in Example 1 andγ = 2.
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BEM solution: The matrixD in equation (2.58) is given by

Di,l =











Bi,l if l = 1, 2M,

Ai,l if l = (2M + 1), 4M,

i = 1, 2M,

and

Di,l =



























B̃i,l if l =M + 1, 2M,

Ãi,l if l = (3M + 1), 4M,

0 if l = 1,M ∪ (2M + 1), 3M,

i = (2M + 1), 3M.

Using equations (2.55)-(2.57) we obtain

Di,l =







































− h
ℓ1

if (i− 3M) 6= l, l = 1,M/4,

(1− h
ℓ1
) if (i− 3M) = l, l = 1,M/4,

0 if l = (M/4 + 1), 2M ∪ (3M + 1), 4M,

z1δi,l if l = (2M + 1), 3M,

i = (3M + 1), (3M +M/4),

Di,l =







































− h
ℓ2

if (i− 3M) 6= l, l = (M/2 + 1), 3M/4,

(1− h
ℓ2
) if (i− 3M) = l, l = (M/2 + 1), 3M/4,

0 if l = 1,M/2 ∪ (3M/4 + 1),M ∪ (3M + 1), 4M,

z2δi,l if l = (2M + 1), 3M,

i = (3M +M/2 + 1), (3M + 3M/4),

Di,l = δi,l, if l = (2M + 1), 3M,

i = (3M +M/4 + 1), (M +M/2) ∪ (2M + 3M/4 + 1), 4M.
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The last row in the matrixD is given by

D(4M+1),l =











1 if l = 1,M,

0 if l =M + 1, 4M.

Furthermore, the vectorb is given by (2.41).

MFS solution: Turning now to the MFS solution, the firstM rows of the matrixF in

equation (2.65) are the same as those of the matrixF in Example 1. Moreover, another

M rows are generated by applying the inner boundary condition(2.62), namely,

Fi,j = Gi,j, i = (M + 1), 2M, j = 1, 2N,

Fi,j = −Gi,j−N , i = (M + 1), 2M, j = 2N + 1, 3N.

AnotherM rows in the matrixF are obtained from (2.63) as

Fi,j = G′
i,j, i = (2M + 1), 3M, j = 1, 2N,

Fi,j = 2G′
i,j−N , i = (2M + 1), 3M, j = 2N + 1, 3N.

Finally, the last row in the matrixF is obtained from (2.64) as

F(3M+1),j =

2M
∑

i=1

Gi,j, j = 1, N,

F(3M+1),j = 0, j = N + 1, 3N.

Similarly, the vectorb of the linear system of equations (2.65) is given by (2.42).

In the MFS we takeR = 1.15,R1 = 0.45 andR2 = 0.55.

Figures 2.16-2.19 present a comparison between the BEM and MFS solutions for

the boundary datauOuter(1, θ), uInner(0.5, θ), (∂u/∂n)Outer(1, θ) and
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(∂u/∂n)Inner(0.5, θ), respectively. The same conclusions as in Example 3 can be

drawn by observing these figures.

Figure 2.16:Comparison betweenuMFS
Outer (1, θ) anduBEM

Outer (1, θ), as functions ofθ/(2π), for
Example 5.
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Figure 2.17:Comparison betweenuMFS
Inner (0.5, θ) anduBEM

Inner (0.5, θ), as functions ofθ/(2π),
for Example 5.
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Figure 2.18: Comparison between(∂u∂n)
MFS
Outer (1, θ) and (∂u∂n)

BEM
Outer (1, θ), as functions of

θ/(2π), for Example 5.
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Figure 2.19:Comparison between(∂u∂n )
MFS

Inner
(0.5, θ) and(∂u∂n )

BEM

Inner
(0.5, θ) , as functions of

θ/(2π), for Example 5.

2.8 Conclusions

This chapter has applied and compared the BEM and MFS to solvedirect CEM prob-

lem of ERT. These two numerical methods were examined for various simply and

multiply-connected domains with various homogeneous boundary conditions on the

inner boundary in the latter case. Due to the lack of an analytical solution, the BEM

solution has been considered as the ‘exact’ solution because it is more accurate than the

one obtained using the MFS which gives some instability whenthe degrees of freedom

become too large. The boundary integrals involved in the BEMhave been evaluated
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analytically. As far as the computational time is concerned, both the BEM and the

MFS require almost the same modest amount of time (mainly used to invert the linear

systems of equations (2.16) or (2.23)); e.g. 3, 5 and 30 seconds forM ∈ {64, 128, 256}

boundary elements, respectively. Another interesting point to make is that in the MFS

we have experimented with various values ofR > 1 and have found thatR between

1.01 and1.15 produces the most accurate results. For larger values ofR, the MFS

accuracy decreases showing that the harmonic functionu outside the unit disk domain

Ω has reached its limit, i.e. the circle of radiusR captured in its interior a singularity

of u. The nature of the Robin boundary condition (2.2) and, in general, the sophisti-

cated CEM makes it difficult to predict analytically beforehand where the singularities

of u lie in the exterior ofΩ. In any case,R should be chosen less than the magnitude

of the position vector of the nearest singularity to the origin. Although the MFS has

produced unstable solutions for large degrees of freedom, such asM = N = 256,

for lower values its accuracy and stability are excellent when compared to the BEM

numerical solution. Moreover, the MFS is much easier to implement than the BEM

especially in three-dimensional problems in irregular domains.

In the rest of the thesis, the MFS developed in this chapter will be applied and

combined with statistical inversion methods for solving several inverse problems of

ERT/EIT.
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Identification of rigid inclusions in the

complete-electrode model of ERT

3.1 Introduction

In various applications of EIT, such as medical imaging or geophysics, the purpose is

to reconstruct the conductivity within a region, which might be the human body or a

geographical area, using some non-invasive electrical measurements which are taken

on the surface of the region, [66]. This task can be achieved by attaching electrodes to

the outside boundary of the region. Then, currents are injected through the electrodes

and simultaneously voltages between electrodes are recorded. Using these voltages as

a data set to estimate the interior conductivity distribution is an ill-posed non-linear

inverse problem, which needs to be regularized in order to obtain a stable and reliable

solution. An alternative framework is offered by the Bayesian approach which is an

explicit statistical method widely used in image analysis [28, 30]. Within the recon-

struction process, and for data simulation, voltages can becalculated using the solution

of Laplace’s equation, as described in [34], and here the MFSis used to solve this di-

rect problem numerically, [26].

In Section 3.2, the mathematical formulation is considered; that is, a brief descrip-

67
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tion is given of the MFS for solving the direct problem of the CEM of ERT in a domain

containing a rigid inclusion. Then, the Bayesian statistical modeling approach and the

MCMC estimation technique will be discussed in Section 3.3.Finally, in Section 3.4

some examples, representing numerically simulated experiments, will be examined

thoroughly to demonstrate the effectiveness and accuracy of the proposed procedures.

3.2 Mathematical formulation

In this section, the mathematical models for the direct and inverse ERT problems are

formulated. We consider solving Laplace’s equation in a two-dimensional doubly-

connected bounded domainΩ\ΩInner of uniform unit conductivity, namely,

▽2u = 0, in Ω\ΩInner (3.1)

subject to certain boundary conditions which makes the problem the so-called ‘complete-

electrode model’ (CEM), [61]. In this model, on the boundary∂Ω there are attachedL

electrodes,εp, for p = 1, L. On the boundary∂Ω we also have the boundary conditions

(2.2), (2.5) and (2.6).

Assuming thatΩInner is a perfectly conductive rigid inclusion having infinite (or at

least very large) conductivity we have the homogeneous Dirichlet boundary condition

u = 0 on ∂ΩInner. (3.2)

Insulated cavities over which∂u/∂n = 0 on∂ΩInner can also be considered.

Equations (2.2), (2.5), (2.6), (3.1) and (3.2) represent the direct problem of ERT in

the domainΩ containing a rigid inclusionΩInner.
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3.2.1 MFS for the direct problem

The MFS for solving the direct problem (2.2), (2.5), (2.6), (3.1) and (3.2) is described

in Subsection2.6.2.

For illustrative purposes, let us takeM = N = 128, R = 1.15, R1 = 0.45 and

L = 4, and consider two current patterns, namely,

Ip =



























1 if p = 1,

−1 if p = 4,

0 if p ∈ {2, 3},

(3.3)

and

Ip =



























1 if p = 1,

−1 if p = 3,

0 if p ∈ {2, 4}.

(3.4)

Figures 3.1(a) and 3.1(b) show the comparison between the MFS solutions for the

boundary potentialu(1, θ) and the current flux(∂u/∂n)(1, θ), respectively, for the cur-

rent patterns (3.3) and (3.4).
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Figure 3.1:Comparison between the solutions for(a) u (1, θ) and(b) ∂u/∂n (1, θ), for the
current patterns (3.3) and (3.4).

Figure 3.2 shows the approximate equipotential lines of theMFS solutionsu (r, θ),

wherer ∈ (0.5, 1) andθ ∈ [0, 2π), for the current patterns (3.3) and (3.4). From this

figure it can be seen that when the current is injected in the first electrode and drawn

out though the fourth electrode the equipotential lines which originate on the right side

of the domain do not fill the left side of the domain. Whilst when the current is injected

in the first electrode, and drawn out through the third electrode, the equipotential lines
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which originate on the top-right and bottom-left sides of the domain fill the top-left

and bottom-right side of that domain.
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Figure 3.2:Equipotential lines of the interior solutionu (r, θ) for the current patterns (3.3)
(left) and (3.4) (right).

Figures 3.3(a) and 3.3(b) show a comparison between the MFS solutions for the

boundary potentialu(1, θ) and the current flux(∂u/∂n)(1, θ), respectively, when the

numbers of the attached electrodes areL = 2 andL = 4. In the caseL = 4 we take

the current pattern (3.4), whilst in the caseL = 2 we take the current patternI1 = 1

andI2 = −1.
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Figure 3.3:Comparison between the solutions for(a) u (1, θ) and(b) ∂u/∂n (1, θ), as func-
tions ofθ/(2π), for L = 2 and4 electrodes.

Elliptical Rigid Inclusion

Consider an elliptic rigid inclusionΩInner =
{

(x, y) ∈ R
2 | x2

a2
+ y2

b2
< 1

}

. If a = b,

thenΩInner is circle, If a > b, thenΩInner is a horizontal ellipse, otherwiseΩInner is a

vertical ellipse. The polar coordinates of the ellipse arex = a cos(θ) andy = b sin(θ).
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As a result, the radius is

r(θ) =
ab

√

(b cos(θ))2 + (a sin(θ))2
, θ ∈ [0, 2π), (3.5)

and its derivative is

r′(θ) =
ab(b2 − a2) cos(θ) sin(θ)

(

(b cos(θ))2 + (a sin(θ))2
)3/2

, θ ∈ [0, 2π). (3.6)

In equations (2.38) and (2.39), and for the internal points(x, y) ∈ ∂ΩInner, the ∂G
∂n

is

changed to

∂G

∂n
(ξ

j
, x) =

∂G

∂x
nx +

∂G

∂y
ny, x = (x, y) ∈ ∂ΩInner, (3.7)

where

∂G

∂x
(ξ

j
, x) = −

−(x− ξ1j )

2π|ξ
j
− x|2

,
∂G

∂y
(ξ

j
, x) = −

−(y − ξ2j )

2π|ξ
j
− x|2

. j = 1, 2N,

nx =
− (r′(θ) sin(θ) + r(θ) cos(θ))

√

r(θ)2 + r′(θ)2
, ny =

r′(θ) cos(θ) + r(θ) sin(θ)
√

r(θ)2 + r′(θ)2
.

Bean-shaped Rigid Inclusion

A more complicated geometry for the internal object∂ΩInner is considered here, which

is a bean-shape inclusion described in [6, 7, 40] and defined by the radial parameteri-

zation

r(θ) =
0.5 + 0.4 cos θ + 0.1 sin 2θ

0.1 + 0.7 cos θ
, θ ∈ [0, 2π). (3.8)
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Its derivative is

r′(θ) =
−5 sin θ + 40cos2θ − 20 + 14cos3θ

100 + 140 cos θ + 49cos2θ
, θ ∈ [0, 2π), (3.9)

whereθ ∈ [0, 2π) hence, equations (3.5) and (3.6) is replaced by (3.8) and (3.9) when

using the MFS to solve forward EIT problem in an annular domain with bean-shaped

rigid inclusion.

Direct Solver Comparison

We compare the boundary potentialu(1, θ) and current flux(∂u/∂n) (1, θ), on the

outer boundary∂Ω, obtained from the circular, elliptical and bean-shaped objects

ΩInner. We apply the MFS when the number of attached electrodes isL = 2, and

both the number of collocation pointsM and the number of degrees of freedom points

N are equal withM = N = 128. The contraction parameterηI = 0.9 and dilation

parameterηE = 1.15 determine the locations of the sources; this means how close, or

far, the internal/external source points are from the inner/outer boundary, respectively.

We have, [36, 40],

(The radii of the internal source points) = ηI × (radii of the inclusion)

and

(The radii of the external source points) = ηE × (radii of the unit disk).

Figures 3.4(a) and 3.4(b) show the comparison between the outer potential and cur-

rent flux for various shapes of rigid inclusion. From Figure 3.4(a), it can be seen that

the curve corresponding to the boundary potential functionresulting from the inner

horizontal elliptical object shows a small movement to the right in comparison to that

obtained from the inner circular object. Whilst the curve ofthe boundary potential

function produced when the domain contains the vertical elliptical object illustrates an
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equal movement to the left, comparing to that obtained from the circular object. We

finally observe that the boundary potential function resulting from the bean-shaped ob-

ject shows a very substantial difference to the corresponding function from the circular

object.

Figure 3.4(b) shows the corresponding normal derivative∂u/∂n (1, θ) on the bound-

ary ∂Ω for various shapes of rigid inclusions as in Figure 3.4(a). From this figure, it

can be seen that there are only small changes in the boundary current flux function

values obtained from the inner bean or horizontal/verticalelliptical object comparing

to the ones obtained from the circular object. More precisely, on the first electrode, the

values of the horizontal ellipse function are greater that those of the circle, whilst the

the values of the vertical ellipse function are smaller, before reaching the mid-interval

where they intersect and swap roles afterwards, until they reach0.25. On the second

attached electrode, the values of the horizontal ellipse function are smaller that those of

the circle, whilst the values of the vertical ellipse function are greater, before reaching

the mid-interval where they intersect on the second attached electrode and swap roles

afterwards, until they reach0.75.
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Figure 3.4: Comparison between(a) the boundary potentialsu (1, θ) and (b) the normal
derivatives∂u/∂n (1, θ), as functions ofθ/(2π), for various shapes of rigid inclusions.

3.3 Statistical approach

The general strategy behind the statistical approach is to recast the inverse problem

in the form of a statistical inference problem. Throughout this description, the aim is

to solve the same inverse problem defined above concerning the identification of the

shape, position and size of a rigid inclusion∂ΩInner which is compactly embedded
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in the host mediumΩ. The goal of the statistical approach is to incorporate as much

information as possible about these quantities from all sources, including subjective

knowledge as well as data measurements. The uncertainty in the value of all random

quantities must be modelled in terms of probability distributions. In brief, the solution

of the inverse problem is then given by the most likely model parameter values based

on the appropriate probability distribution, but the probabilistic nature means that it is

also possible to assess model reliability through probability statements such as credible

intervals, for more details see [34]. Central to this inference is the posterior distribution

which is obtained from a likelihood combined with a prior distribution using Bayes

theorem, details of this procedure are stated in Subsection3.3.1. Background to the

Markov chain Monte Carlo algorithm (MCMC), which permits numerical solution of

the statistical inference problem, is provided in Subsection 3.3.2. Although there is no

explicit solution of the inverse problem, the MCMC algorithm does make extensive

use of the direct numerical solver described in Subsection 3.2.1. This approach allows

us not only to image the reconstruction, but also to deeply examine the reliability and

uncertainty of that estimation.

Initially, a noisy data set of boundary potentialu(1, θ) and current flux∂u/∂n(1, θ)

is simulated based on the MFS. This data set can be written as

wj = u(xj) + ηj , vj =
∂u

∂n
(xj) + ζj, j = 1, N, (3.10)

where the additive noise variablesηj andζj follow independent Gaussian distributions

which have zero means and variancesσ2
w and σ2

v , respectively. This leads to data

w = (wj)j=1,N andv = (vj)j=1,N . The Gaussian distribution is widely used to model

and describe several kinds of natural variability, [7, 67],and has been used elsewhere

for ERT data. Later we shall solve the inverse problem using voltage data (2.4) which,

when perturbed by noise, is given as

Tp = Up + ψp, p = 1, L, (3.11)
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whereψp are Gaussian noise variables with mean zero and varianceσ2
T , leading to data

T = (Tp)p=1,L.

3.3.1 Statistical modelling

In order to detectΩInner, assumed to be star-shaped, i. e.,

ΩInner = {r(θ) (cos(θ), sin(θ)) |0 < r(θ) < 1, θ ∈ [0, 2π]}, (3.12)

contained in the domainΩ (assumed to be the unit disk), the MFS coefficientsc =

(ck)k=1,2M and the radii

ri = r(2πi/M), i = 1,M, (3.13)

must be estimated. These are the parameters of the model.

First, by supposing the independence ofw andv givenr andc, a suitable decom-

position of the likelihood is given by the Bayes theorem which states that

l(w, v|r, c) = l(w|r, c)× l(v|r, c). (3.14)

The inexactness in the measured data (3.10), and other uncontrolled sources of varia-

tion which can appear during the experiment, are quantified by the likelihood, see [67],

with

l(w|r, c) = (2πσ2
w)

−N/2 exp

{

−
1

2σ2
w

‖w − w̃(r, c)‖2
}

, (3.15)

and

l(v|r, c) = (2πσ2
v)

−N/2 exp

{

−
1

2σ2
v

‖v − ṽ(r, c)‖2
}

(3.16)



Chapter 3. 79

These likelihoods are the conditional distributions ofw and v given r and c, since

w|r, c ∼ N (w̃(r, c), σ2
wI) andv|r, c ∼ N (ṽ(r, c), σ2

vI). Moreover,

w̃(r, c) = (w̃j(r, c))j=1,N are the calculated boundary potential values andṽ(r, c) =

(ṽj(r, c))j=1,N are the calculated current flux values when the radii of the object arer

and the MFS coefficients arec.

Secondly, when the voltage data is used, the likelihood is

l(T |r, c) = (2πσ2
T )

−L/2 exp

{

−
1

2σ2
T

∥

∥

∥
T − T̃ (r, c)

∥

∥

∥

2
}

, (3.17)

whereT̃ (r, c) =
(

T̃p(r, c)
)

p=1,L
are the calculated voltage values when the radii of

the object arer and the MFS coefficients arec. The following models will be defined

in terms of data(w, v), but equally apply to dataT by replacingl(w|r, c)× l(v|r, c) by

l(T |r, c).

In general, finding the estimates of the model parameters, that is the rigid inclu-

sion, from only the likelihood, may not be achievable because the inverse problem

is ill-conditioned in terms of the discrete set of MFS coefficientsc and there is also

ill-posedness and non-linearity between the measured dataand the radiir of the in-

clusion. In standard approaches, regularization is usually employed to overcome these

difficulties. However, the reconstruction can only be foundas a point estimate and

fails to provide us with any information related to confidence statements. That is why,

an alternative method based on the framework of Bayesian statistical modeling is con-

sidered. This method is represented by likelihood, prior and the resulting posterior

distribution. Here, a prior assumption that the boundary around the internal object is

gently varying, inspires smoothness. As a result, the priordistribution is defined as

π(r|βr) = (2πβ2
r )

−M/2
exp

{

−
1

2β2
r

‖▽r‖2
}

, (3.18)

whereβ2
r describes the amount of variation between adjacent radii, and the norm

‖▽r‖2 =
∑M

i=1 (ri − ri−1)
2 is the first-order smoothing finite-difference, with the
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convention thatr0 = rM .

Similarly, the same prior distribution can be applied to theMFS coefficients to pro-

vide the prior distribution

π(c|βc) = (2πβc
2)

−N/2
exp

{

−
1

2β2
c

‖▽c‖2
}

. (3.19)

Combination of the likelihood functions (3.15) and (3.16) with the prior distributions

(3.18) and (3.19) results in the posterior distribution

π(r, c|w, v) ∝ l(w|r, c)l(v|r, c)× π(r|βr)π(c|βc). (3.20)

The likelihood function describes the relationship between the dataw, v and the param-

etersr, c (that is, how likely is the data given the model that uses these parameters).

Whilst, the prior distribution describes the relationshipbetween the model parameters

before data is considered (that is how likely the parameter values are when data has

not yet been observed, or in other words an initial guess for the parameter values), [7].

Now, since the prior parametersβr andβc are not known they should be involved in

the estimation process as well. We use hyper-prior (improper) distribution for these

prior parameters are given as

π(βr) ∝ exp

{

−
α2
r

2β2
r

}

, (3.21)

and

π(βc) ∝ exp

{

−
α2
c

2β2
c

}

. (3.22)

The full posterior distributions can then be rewritten as

π(r, c, βr, βc|w, v) ∝ l(w|r, c)l(v|r, c)× π(r|βr)π(βr)× π(c|βc)π(βc). (3.23)
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There are two different sets of MFS coefficientsc = (cI , cE), those relating to the

inner source points and the others which are linked to the outer source points. This

suggests separating the prior distributions intoπ(cI |βcI ) andπ(cE |βcE), as well as

separating the hyper-prior distributions intoπ(βcI ) andπ(βcE), which have separate

hyper-prior parametersαcI andαcE , respectively. Then also writeβc = (βcI , βcE).

To conclude, the final full posterior distribution, which isagain defined as the prod-

uct of the likelihood functions, the various prior distributions and corresponding hyper-

prior distributions, is

π(r, c, βr, βcI , βcE |w, v) ∝ l(w|r, c)l(v|r, c)× π(r|βr)π(βr)

×π(cI |βcI )π(βcI )× π(cE |βcE)π(βcE). (3.24)

Figure 3.5 illustrates the hierarchical relationship between fixed data and fixed prior

parameters (boxes), and the model parameters which need to be estimated (circles). In

the central and the right panels of Figure 3.5, the prior smoothing parameters need to

be estimated in addition to the MFS coefficients and the radiivalues (right). This is

achievable by fixing the hyper-prior parameters at some appropriate values. Whilst, in

the left panel the values of the prior smoothing parameters are fixed with estimation of

only the MFS coefficients and the object radii. We may need to separate theβc into βcI

andβcE corresponding to the inner and the outer source points so that the inner and the

outer MFS coefficients will be better estimated when the values ofβcI andβcE are not

equal. Consequently, this change requiresαc to be separated intoαcI andαcE, as well.
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Figure 3.5: Hierarchical structure of the model.

3.3.2 Markov Chain Monte Carlo estimation

Although the history of Markov chain Monte Carlo (MCMC) started in the late 1940s,

it has not been used effectively in statistics until the early 1990s. During the 1990s

this technique had a remarkable development and nowadays the MCMC approach is

widely used for many estimation problems due to the valuableadvantages which it

has. For example, it is very convenient to use MCMC estimation if the modeling is

complicated and the dimension of the parameter space is large since these cases make

the use of standard numerical methods infeasible. Moreover, it allows deep analysis

of the posterior distribution, not only calculation of parameter estimates and standard

deviations. Here plots of boundary histograms and credibleintervals corresponding to

the object boundaries will be used, [34].

Once, the posterior distribution of the parameters is defined, it is possible to use

the Metropolis-Hastings algorithm, a special case of the general MCMC approach, to

produce approximate samples from it by simulating a Markov chain. Throughout this

procedure, the Markov chain has the parameter set to be estimated as its state variables,

and the equilibrium distribution is required to exist and beequal to the posterior distri-

bution, see [4]. The MCMC method is not an estimation technique itself, but it gives a
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framework to produce tailor-made iterative algorithms which can be used to study the

properties of the posterior distribution. This algorithm,as output, provides a correlated

sample from the posterior distribution. The MCMC method is based on two important

statistical ideas, these are Markov chains and rejection sampling. The first technique

gives the ‘candidate’ values and the second tests these values. The transitions in the

Markov chain are designed precisely to make an equilibrium distribution exist and

which is equal to the target distribution. If the transitions in the Markov chain are

planned well, then after an initial transient period, knownas burn-in, the values which

pass the test have the same statistical properties as if theyhad been taken from the

posterior distribution itself. Due to the nature of Markov chains, however, there will

be some correlation in the sample which must be taken into account when producing

the summary of the output. On the other hand, if the initial transient period is long

and the sample is highly correlated, then using the MCMC method is inefficient and

larger samples are required to obtain accurate and reliableestimation. To conclude,

designing the algorithm carefully means that the final reconstruction does not rely on

the initial starting values of the parameters and the initial shape of the inclusion.

Let all the parameters, which have already been defined, be put in a single vector,

B = (Bi)i=1,p. For example,B = (r, c), B = (r, c, βr, βc) orB = (r, c, βr, βcI , βcE),

where the initial guess of the radii is chosen to form the bestfitted circle for the inner

inclusion and the initial values for the MFS coefficient parameters are selected to be

zero.

The Metropolis-Hastings procedure can be briefly describedin the following steps:

Set an arbitrary value forB, sayB0

Repeat the next steps fork = 1, K, whereK is the desired sample size

Repeat the next steps fori = 1, p

Suggest a new value for the i-th parameter,Bk
i = Bk−1

i + N (0, τ 2) giving proposal

parameter vectorBk = (Bk
1 , ..., B

k
i , B

k−1
i+1 , ..., B

k−1
p )
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Evaluateα = min{1, π(Bk|w, v)/π(Bk−1|w, v)}

Generateu from the uniform distribution,U(0, 1)

If α > u then accept the suggested value, otherwise reject it and setBk
i = Bk−1

i

End repeat

End repeat

Discard initial values and use remainder to make inference

A reasonable choice for the proposal variance,τ 2, can be made after running some ini-

tial experiments. It must be neither too big nor too small to avoid the long transient

period and a highly correlated sample, [6, 7]. It has been proven theoretically in [54]

that the optimal acceptance rate is23.4%, for various problems of high dimensions.

Moreover, it is also worth examining the Markov chain paths and investigating sample

autocorrelation functions. For reasonable performance, the paths should appear ran-

dom and the autocorrelation functions should be nearly zerofor all except small lags,

[2, 6, 7]. For more applications of MCMC to EIT, see [66, 67].

3.4 Numerical results and discussion

In this section, we will reconstruct a star-shaped rigid inclusion in a series of exper-

iments based on simulated data. These data are either the boundary potentialw and

the current fluxv on ∂Ω (Section 3.4.1) or, the voltagesT on the electrodes (Section

3.4.2). The measurements are obtained by solving the CEM direct problem of ERT

given by equations (2.2), (2.5), (2.6), (3.1) and (3.2) using the MFS, as described in

Chapter2. Moreover, it is worth mentioning that all data are corrupted by additive

Gaussian noise with zero mean and standard deviationσ = 0.01.

The geometries considered in the experiments are circular or elliptical inclusions.

The data simulation technique starts by obtaining the MFS coefficientsc which are
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divided in two different sets. The first group consists ofN = 128 external MFS co-

efficientscE related to theN = 128 equally-spaced source points located outside the

domainΩ. Whilst, the second set consists ofN = 128 internal MFS coefficientscI

related to theN = 128 equally-spaced source points, located inside the rigid inclusion

ΩInner. Then, both sets of MFS coefficients are used to calculate thepotential and the

current flux, which are also used along with (2.4) to calculate the voltages.

3.4.1 Using the boundary potential and current flux data

In the following experiments, the simulated data are the boundary potential and the cur-

rent flux at30 equally-spaced points on the outer fixed boundary∂Ω when the number

of the collocation points on each boundary∂Ω and∂ΩInner isM = 128 and the num-

ber of the electrodes isL = 2 or 4.

The Truth Object is a Circle

In the following a single current pattern is injected throughL = 2 electrodes with

Ip =











1 if p = 1,

−1 if p = 2,

(3.25)

thenu and∂u/∂n have been plotted earlier in Figure 3.3. The following models of

estimation will be considered.

Case 1:Fitting the simplest possible model (which is a circular object) including only

a single unknown radius,r ∈ (0, 1), in addition to the unknown MFS coefficients,c.

Experiment 1. Based on results from similar numerical experiments using the MFS

and the Bayesian approach for shape estimation of objects, but solving the continuous

inverse model of EIT, [7], the hyper-parameter values are fixed atαCI
= 0.0116 and
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αCE
= 0.2457 for the internal and external MFS coefficients, respectively. This is

the situation described in the central panel in Figure 3.5 because the prior smoothing

parametersβCI
, βCE

are being estimated. The MCMC algorithm is implemented with

K = 2000 iterations, where the first1000 define the burn-in period.

Figure 3.6 illustrates the estimated object and the MFS coefficients. It can be seen

that the accuracy of the reconstruction is very good with theestimated radius of0.5017,

compared to the true value of0.5, and with a standard deviation of0.0030. In addi-

tion to this, the MFS coefficients which are linked to the source points of the inner

boundary keep track with the exact values and have narrow credible intervals. Whilst

the estimated MFS coefficients for the source points of the outer boundary show some

smoothness with wider credible intervals, which means greater uncertainty than the

other coefficients.
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Figure 3.6: Circle model with full posterior distribution:fitted circle (left) and MFS
coefficients along with credible intervals corresponding to the inner (middle) and outer
(right) boundaries. Herein and throughout, in the second the third pictures with green
lines we denote the retrieved MFS coefficients with the creditable intervals whilst the
black lines represent the MFS coefficients obtained from thedirect problem.

Figure 3.7 illustrates that the reconstruction of the circular object is extremely good

since the estimation errors, which are defined as the difference between the true and es-

timated radii, cannot be seen on the left-hand graph. The middle and right-hand figures

show a circular histogram and circular credible interval, respectively. The purpose of
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these is to represent estimation variability. The darker areas of the histogram indicate

the higher frequencies and the annular thickness of the credible interval refers to the

amount of variation.
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Figure 3.7: Circle model with full posterior distribution with prior parameters (αr =
1.0, αCI

= 0.0116 andαCI
= 0.2457): error estimates (left), object boundary his-

togram (middle) and object boundary credible interval (right).

Case 2:Fitting a more general model (which is a star-shaped object)that includes32

radii, r, at equally-spaced angles, in addition to the unknown MFS coefficients,c.

Experiment 2. The hyper-prior parameters,αCI
andαCE

, are the same as in the

previous experiment withαr = 1.0 used for the radius hyper-parameter. This is the sit-

uation described in the right-hand panel in the Figure 3.5 because the prior smoothing

parametersβCI
, βCE

andβr are being estimated.

Figure 3.8 displays the object reconstruction which seems to be reasonable all

around the object except at two small parts of the boundary. The largest error can

be described as an outward bump positioned in the top-left part of the reconstruction,

whilst the other smaller error is an inward bump located in the bottom-right side. The

graphs in the middle and right show the internal MFS coefficient estimation following

the true values (the black continuous line) with narrow credible intervals, but clearly

those associated with the internal source points are betterestimated that those associ-

ated with the external source points.
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Figure 3.8: Star-shape model with full posterior distribution: fitted shape (left) and
MFS coefficients along with reliable intervals corresponding to the inner (middle) and
outer (right) boundaries.

Figure 3.9 shows the accuracy and the variability in the object reconstruction. Here,

the average of the estimated radii is0.5161 with a standard deviation of0.0049. Over-

all, the errors in the left graph are quite small, however theestimated errors are more

substantial in the top-left of the reconstructed object, followed by those which are

located in the bottom-right. This is even more clearly represented in the annular thick-

ness of the credible interval graph. This pattern is due to the position of the electrodes.

The currents are injected through the first electrode, whichis located in the top-right

part of the outer boundary, and exit from the second electrode which is located in the

bottom-left part. This makes the equipotential lines coverthe whole domain (see Fig-

ure 3.2) except, importantly, in the small parts which have the bumps.
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Figure 3.9: Star-shape model with full posterior distribution with prior parameters
(αr = 1.0, αCI

= 0.0116 andαCE
= 0.2457): error estimates (left), object boundary

histogram (middle) and object boundary credible interval (right).

Figure 3.10 shows the posterior histograms for the prior radii smoothing parameter

and the prior MFS smoothing parameters. It can be seen that the average of the prior

smoothing parameter for the radii iŝβr = 0.2611 (the standard deviation is0.0334)

and the posterior estimates of the inner and outer MFS smoothing parameters are

β̂CI
= 0.5104 and β̂CE

= 0.7390 (the standard deviations are0.0667 and 0.1172,

respectively). It is also obvious from the posterior histograms that there is substantial

variation in the smoothing parameter of the radiusβ̂r which means it may not be well

estimated. In addition, the variation in the smoothing parameter of the inner MFS co-

efficientsβ̂CI
is reasonably small which indicates it is well-estimated. However, the

smoothing parameter of the outer MFS coefficientsβ̂CE
shows much more variability.

Also, the histograms of the parameters are slightly positive skew.
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Figure 3.10: Star-shape model with full posterior distribution and prior parameter in-
formation: histograms for the radius (left) and the MFS inner (middle) and outer (right)
boundary coefficients.

In order to see the effect of running the MCMC algorithm for further iterations, the

calulations are re-started using the posterior estimates as initial values. So that the ini-

tial values ofβr, βCI
andβCE

are changed to0.2611, 0.5104 and0.7390, respectively.
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Figure 3.11: Star-shape model with full posterior distribution and separated prior infor-
mation: fitted shape (left) and MFS coefficients (with credible intervals) corresponding
to the inner (middle) and outer (right) boundaries.
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Figure 3.12: Star-shape model with full posterior distribution with prior parameters
(βr = 0.2611, αr = 1.0, βCI

= 0.5104, αCI
= 0.0116 andβCE

= 0.7390, αCE
=

0.2457): error estimates (left), object boundary histogram (middle) and object bound-
ary credible interval (right).

All in all, Figures 3.11 and 3.12 show more accurate reconstruction than the pre-

vious example although the estimation errors are still greater in the top-left followed

by the bottom right than elsewhere around the reconstructedobject and the estimated

radii average is0.4953 with an estimated standard deviation of0.0039.

Experiment 3. In this experiment, running withαr = 1.0, as in the previous two

experiments, did not produce the same good performance. Thus, we decided here to

take a smaller value forαr, sayαr = 0.1, which was also suggested in [6]. This results

in better reconstruction with a new estimated radii averageof 0.5012 and a standard

deviation0.0038. This is clearly shown by comparing Figures 3.13 and 3.14 with Fig-

ures 3.11 and 3.12.
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Figure 3.13: Star-shape model with full posterior distribution and separated prior infor-
mation: fitted circle (left) and MFS coefficients (with credible intervals) corresponding
to the inner (middle) and outer (right) boundaries.
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Figure 3.14: Star-shape model with full posterior distribution with prior parameters
(βr = 0.2611, αr = 0.1, βCI

= 0.5104, αCI
= 0.0116 andβCE

= 0.7390, αCE
=

0.2457): errors estimation (left), object boundary histogram (middle) and object
boundary credible interval (right).

The True Object is an Ellipse

To further test the estimation approach, we describe the reconstruction of a series of

inclusions given by ellipses defined by the following:

ΩInner =

{

(x, y) ∈ R
2

∣

∣

∣

∣

∣

x2

(0.5 + ǫ)2
+

y2

(0.5− ǫ)2
< 1

}

,

whereǫ = {±0.1,±0.2}.
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Experiment 4. We fit a star-shape model using elliptical true data with the same

hyper-prior parameter values as in Experiment 3, whenL = 2.

In Figure 3.15, the green part shows that the reconstructed shape is smaller than the

true inclusion, whilst the red part illustrates the opposite. From the same figure, it can

be seen that as|ǫ| is increased, the accuracy of the estimation becomes lower whatever

the orientation of the ellipse, horizontal or vertical. Forinstance, the estimation graphs

(left) show smaller errors whenǫ = ±0.1 than whenǫ = ±0.2. Moreover, the his-

tograms and the credible interval graphs show nearly elliptical reconstructions when

ǫ = ±0.1. Also, the estimated MFS coefficients follow the true valuesbetter when

ǫ = ±0.1 than whenǫ = ±0.2.
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Figure 3.15: Star-shape model with the hyper-prior parameters as in Figure 3.14. Er-
rors estimation (left), object boundary histogram, objectboundary credible interval,
fitted ellipse, MFS coefficients (with credible intervals) corresponding to the inner and
outer boundaries (right).

3.4.2 Using the voltage data

In this section, we use the voltagesTp, for p = 1, L, based on the annular domain with

a rigid circular or elliptical inclusion. These voltages are used as data instead of the

potentialw = (wj)j=1,N = u (1, θ) and the current fluxv = (vj)j=1,N = ∂u
∂n

(1, θ).

To begin with, the number of the electrodes isL = 4 and up to three different pat-



Chapter 3. 95

terns of the injected currents are considered.

Case 1: In this case a single current pattern is considered where we inject current

via two opposite electrodes, as in equation (3.4). In this case, only one ERT direct

problem is solved to obtain four voltages.

Case 2: In this case two current patterns are considered where we inject the current

pattern (3.4), as well as another current pattern given by

Ip =



























1 if p = 1,

−1 if p = 2,

0 if p ∈ {3, 4}.

(3.26)

Solving these two ERT direct problems results in eight voltages.

Case 3: In this case, three current patterns are considered where weinject using the

current patterns (3.3), (3.4) and (3.26). This means that three ERT direct problems are

solved to obtain twelve voltages.

It is useful to first compare the direct solutions when circular and elliptical inclu-

sions are considered. Figures 3.16(a) and 3.16(b) illustrate a comparison between the

MFS solutions for the boundary potentialu(1, θ) and the current flux(∂u/∂n)(1, θ),

respectively, when the numbers of electrodes isL = 4, and the inner circular, hori-

zontal and vertical elliptical inclusions are considered.From Figure 3.16(a), it can be

seen that there are small variations in the boundary potential function values obtained

from the horizontal/vertical elliptical inclusions compared to the one obtained from

the circular inclusion. Whilst in Figure 3.16(b), the values of boundary current flux

functions of horizontal, vertical and circular rigid inclusions are almost the same.
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Figure 3.16:Comparison between(a) boundary potentials(1, θ) and(b) the normal deriva-
tives∂u/∂n (1, θ), as functions ofθ/(2π), for the current patterns (3.26), (3.4) and (3.3).

The True Object is a Circle

Experiment 5. We fit a circular object model to reconstruct a circular rigidinclu-

sion.

Firstly, we solve the inverse ERT problem in Case 1 and consider that the target

object is a circle of radius0.5 centred at the origin. So, only one single radius needs
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to be determined, as well as the128 internal MFS coefficients and128 external MFS

coefficients, and withηI = 0.9 andηE = 1.15. The hyper-prior parameter of the in-

ternal and external MFS coefficients are fixed atαCI
= 0.1160 andαCE

= 2.4570,

respectively, as in Experiment 3.

Figures 3.17 and 3.18 illustrate the object and the MFS coefficient estimation. It

can be seen that the reconstruction of the object shows a different circle with radius

equal to0.6738 and a standard deviation of0.0080. This is because in Experiment5

we have less data (just4 voltage values) comparing to the experiments of the previous

subsection. The MFS coefficients which are linked to the source points of the outer

boundary keep track of the true values (the black line) and have a very narrow credible

interval, but that those linked to the inner boundary do not follows the true values and

have wider credible interval.
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Figure 3.17: Circle model with full posterior distribution: fitted circle (left) and MFS
coefficients along with credible intervals corresponding to the inner (middle) and outer
boundaries (right).
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Figure 3.18: Circle model with full posterior distributionwith prior parameters (βr =
1.0, αr = 0.1, βCI

= αCI
= 0.0116 andβCE

= αCE
= 0.2457): errors estima-

tion (left), object boundary histogram (middle) and objectboundary credible interval
(right).

Secondly, we solve the inverse ERT problem in Case 2. Figure 3.19 shows the fitted

circle (left) and the MFS coefficients linked to the inner/outer boundary (centre/right).

More precisely, the top ones are generated when using the current pattern (3.26) to

calculate the first set of four voltages. Whilst, the bottom graphs are obtained when

using the current pattern (3.4). All MFS coefficients are better estimated comparing to

those in Case 1.
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Figure 3.19: Circle model with full posterior distribution: fitted circle (left) and MFS
coefficients along with credible intervals corresponding to the inner (middle) and outer
(right) boundaries.

Experiment 6. Now we fit a star-shaped model using data from a circular inclusion.

This uses64 radii, r at equally-spaced angles, in addition to the unknown inner and
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outer MFS coefficients,c. All the hyper-prior parameters are the same as in Experi-

ment 5.

The estimation errors of the three cases are illustrated in the left hand side of Fig-

ure 3.20, followed by the object boundary histograms and object boundary credible

intervals. Then, the fitted shape and MFS coefficients (with credible intervals) corre-

sponding to the inner and outer boundaries, respectively, in the right-hand side of the

same figure. It can be seen that the smallest error is in Case 3,in comparison with

the true value of0.5, this has the largest data set with twelve voltage measurements

are used. Although Cases 1 and 2 show almost the same degree ofestimation error,

but Case 2 provides more reliable results because the objectboundary histogram and

object boundary credible interval are more circular; this means better shape estimation.



Chapter 3. 100

−1 0 1

−1

−0.5

0

0.5

1

−1 0 1

−1

−0.5

0

0.5

1

−1 0 1

−1

−0.5

0

0.5

1

−1 0 1

−1

−0.5

0

0.5

1

0 2 4 6

−0.05
0

0.05

0 2 4 6
−2

0

2

Four voltages and the estimated radius is0.4707, with an estimated standard deviation
0.0065.
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Eight voltages and the estimated radius is0.5301, with an estimated standard
deviation0.0026.
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Twelve voltages and the estimated radius is0.4909, with an estimated standard
deviation0.0027.

Figure 3.20: Star-shape model (left to right, then top to bottom): Estimation errors,
object boundary histograms, object boundary credible interval, fitted shape, MFS co-
efficients (with credible intervals) corresponding to the inner and outer boundaries.

The True Object is an Ellipse

Experiment 7. We fit a star-shaped model using the data from an elliptical inclu-

sion as in Case 3. All the hyper-prior parameters are the sameas in Experiment 5.
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Figure 3.21: Comparison between the star-shape fitted models with different number
of data voltages (left to right): estimation errors, objectboundary histogram, object
boundary credible interval, fitted ellipse, MFS coefficients (with credible intervals)
corresponding to the inner and outer boundaries.

3.5 Extending to eight toL = 8 electrodes

In this section, we use a data set of7 × 8 = 56 voltage measurements coming from

L = 8 electrodes to estimate the rigid inclusion. The following seven current patterns
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are used:

Ip =



























1 if p = 1,

−1 if p = 2,

0 if p ∈ {3, 4, 5, 6, 7, 8},

(3.27)

Ip =



























1 if p = 1,

−1 if p = 3,

0 if p ∈ {2, 4, 5, 6, 7, 8},

(3.28)

Ip =



























1 if p = 1,

−1 if p = 4,

0 if p ∈ {2, 3, 5, 6, 7, 8},

(3.29)

Ip =



























1 if p = 1,

−1 if p = 5,

0 if p ∈ {2, 3, 4, 6, 7, 8},

(3.30)

Ip =



























1 if p = 1,

−1 if p = 6,

0 if p ∈ {2, 3, 4, 5, 7, 8},

(3.31)
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Ip =



























1 if p = 1,

−1 if p = 7,

0 if p ∈ {2, 3, 4, 5, 6, 8},

(3.32)

Ip =



























1 if p = 1,

−1 if p = 8,

0 if p ∈ {2, 3, 4, 5, 6, 7}.

(3.33)

This means that seven ERT direct problems are solved to obtain 56 voltage measure-

ments to be used to solve the inverse ERT problem.

Figures 3.22(a) and 3.22(b) illustrate a comparison between the MFS solutions for

the boundary potentialu(1, θ) and the current flux(∂u/∂n)(1, θ), respectively, when

the number of the attached electrodes isL = 8 using the seven current patterns (3.27)-

(3.33), for the circular and horizontal elliptical inclusions. In contrast, Figures 3.23(a)

and 3.23(b) represent the same quantities except that the horizontal elliptical inclusion

is replaced by the vertical one.

From Figures 3.22(a) and 3.23(a), it can be seen that there is some variation in the

boundary potential function values obtained from the elliptical inclusions compared to

those obtained from the circular inclusion. Whilst in Figures 3.22(b) and 3.23(b) the

values of boundary current flux functions for all the inclusions are almost the same.
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Figure 3.22:Comparison between(a) the boundary potentialsu (1, θ) and (b) the normal
derivatives∂u/∂n (1, θ), as functions ofθ/(2π), for the current pattern (3.27) first curves on
the right, and (3.28), (3.29),(3.30), (3.31), (3.32) and (3.33), subsequently. Horizontal ellipse,
ǫ = +0.1 (dashed lines) and circle,ǫ = 0 (continuous lines).
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Figure 3.23:Comparison between(a) the boundary potentialsu (1, θ) and (b) the normal
derivatives∂u (1, θ), as functions ofθ/(2π), for the current pattern (3.27) first curves on the
right, (3.28), (3.29),(3.30), (3.31), (3.32) and (3.33), subsequently. Vertical ellipse,ǫ = −0.1
(dotted lines) and circle,ǫ = 0 (continuous lines).
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Experiment 8. We fit a star-shaped model to data from the circular inclusion. This

includes32 radii, r at equally-spaced angles, in addition to the unknown inner and

outer MFS coefficients,c. The hyper-prior parameters used here are the same as in

Experiment 3 multiplied by ten.
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Figure 3.24: Star-shape model with full posterior distribution: fitted shape (left) and
MFS coefficients along with credible intervals corresponding to the inner (middle) and
outer (right) boundaries.

From Figure 3.24, it can be seen that the accuracy of the reconstruction is slightly

biased with an estimated radii average of0.4871 compared to its true value of0.5, and

a standard deviation of0.0007. So, the accuracy has increased compared to Experi-

ment 6. Also, both the outer and inner MFS coefficients of all seven MFS solutions

follow the exact values and have very narrow credible interval. Figure 3.25 illustrates

that the reconstruction of a circular inclusion is extremely good.
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Figure 3.25: Star-shape model with full posterior distribution with prior parameters
(αr = 1.0, αCI

= 0.1160 andαCE
= 2.457): estimation errors (left), object boundary

histogram (middle) and object boundary credible interval (right).

Experiment 9. We fit a star-shaped model using data from an elliptical inclusion. The

hyper-prior parameters used here are the same as in Experiment 8.
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Figure 3.26: Comparison between the fitted star-shape models with different numbers
of data voltages (left to right): estimation errors, objectboundary histogram, object
boundary credible interval, fitted shape, MFS coefficients (with credible intervals) cor-
responding to the inner and outer boundaries.

From Figure 3.26, it can be seen that forǫ = ±0.1 the accuracy of the object re-

construction is very good because it is obvious that the estimated errors (left) are small
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and the object boundary histogram, the object boundary credible interval, and the fitted

ellipse for both choices ofǫ show near ellipses. Moreover, the estimated MFS coef-

ficient values follow the true values. Here, we have only ploted those linked to the

current patterns (3.27), (3.28) and (3.29) because the resthave almost the same fea-

tures.

3.6 Conclusions

The Bayesian statistical approach combined with an MCMC algorithm have been used

in this chapter to solve the inverse complete-electrode model problem using noisy ERT

data with the forward solution obtained from the MFS. In particular, two types of noisy

data sets have been considered; the first comprises boundarypotential and current flux

measurements while the second uses boundary voltage measurements. The shape and

size of a rigid inclusions have been reconstructed in order to detect the outline of vari-

ous objects.

These experiments have been gradually developed starting with simple and not very

practical cases, Experiments 1, 2 and 3, where the number of attached electrodes on

the outer boundary wasL = 2, ending with very realistic cases whereL = 8 in Exper-

iments 8 and 9. WhenL = 2, there is only a single current pattern, whilst whenL = 8

there are seven possible current patterns all of which are available to produce data for

the estimation process. In all of the reconstruction models, the inner rigid inclusion is

assumed to be a star-shaped object centred at the origin with32 unknown radii. There

are further parameters as there are128 inner MFS coefficients and128 outer MFS co-

efficients which also need estimating. For each experiment that uses the first data set,

a simulated noisy data set of potential and current flux measurements was produced

using 60 numerical values calculated using the MFS at 30 equally-spaced points along

the region boundary.

In the experiments whenL = 2 the accuracy of the reconstruction from the single
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current pattern was surprisingly good. In other experiments, that are not shown here,

whenL = 4 but using only a single current pattern it was found that using opposing

electrodes provides better estimation of the inner inclusion than was obtained from a

single current pattern using adjacent electrodes. When moving to the more realistic

cases and using all available current patterns, the improvement in accuracy increased

further and when the number of electrodes wasL = 8, the reconstruction results were

very good. This used the maximum number of voltage measurements that is equal to

L(L− 1) = 56 as seven multiple current pattern are applied.

To conclude, this chapter demonstrates that using realistic voltage data produces

excellent final reconstructions of the rigid inclusion whenthe maximum number of

current patterns is used. Further it has been demonstrated that the combination of

Bayesian statistical modelling and stochastic estimationbased on the MCMC algo-

rithm can be very successful. In particular, good reconstruction of the shape of the

inclusions is possible along with simultaneous estimationof MFS coefficients. The

methods have also produced measures of uncertainty in the inverse solution through

Bayesian credible intervals.
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Estimation of the centre, contact

impedance and extension to multiple

rigid inclusions

4.1 Introduction

The purpose of this chapter is to solve inverse CEM problems in ERT when the cen-

tre of the inner rigid inclusion is unknown. Then, determining the different constant

contact impedances (CCI) on the electrodes, as well as detecting simultaneously the

unknown centre and the CCI. Lacking the exact knowledge of the CCI is a result of the

electrochemical effect at the interface of electrode-skinwhere the properties of the skin

such as the degree of the skin’s thickness causes some variation in each electrode-skin

interface. In a previous clinical work [45], ERT problems were solved for detecting an

unknown boundary of an internal object, as well as inaccurately known measured CCI.

We assume that the true values of the CCI are completely unknown and all we know

is that these values must be strictly positive constants. The last part of this chapter is

concerned with extending the inverse analysis to identifying multiple inner rigid inclu-

sions, [37, 49].

110
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4.2 The MFS forward solutions when the centre of the

circular rigid inclusion is not at the origin

In this section, we describe the main modifications requiredwhen applying the MFS

to solve the CEM direct problem solved in Section2.6.2 in the unit diskΩ = B (0; 1)

which contains a rigid inclusion,

ΩInner = B ((X0, Y0); d1) =
{

(x, y) ∈ R
2|(x−X0)

2 + (y − Y0)
2 < d21

}

, (4.1)

whered1 ∈ (0, 1), X0 ∈ (−1, 1) andY0 ∈ (−1, 1) are chosen such thatΩInner ⊂ Ω.

Alternatively, in polar coordinatesΩInner can be represented as

x = X0 + r cos(θ), y = Y0 + r cos(θ), r ∈ (0, d1), θ ∈ [0, 2π). (4.2)

The geometrical condition thatΩInner ⊂ Ω recasts as

1 > (X0 + r cos(θ))2 + (Y0 + r sin(θ))2

= X2
0 + Y 2

0 + r2 + 2r (X0 cos(θ) + Y0 sin(θ)) , r ∈ (0, d1), θ ∈ [0, 2π).(4.3)

The coordinates of the internal boundary collocation points are

xi =
(

X0 + d1 cos
(

2π(i−M)
M

)

, Y0 + d1 sin
(

2π(i−M)
M

))

for i =M + 1, 2M ,

and the internal source points are

ξ
j
= (ξ1j , ξ

2
j ) =

(

X0 +R1 cos
(

2π(j−N)
N

)

, Y0 +R1 sin
(

2π(j−N)
N

))

for j = N + 1, 2N ,

where0 < R1 < d1. Also, as previously,R1 is defined asR1 = d1 × ηI , where

ηI ∈ (0, 1) is a contraction parameter.
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4.2.1 Numerical results and discussion

In this subsection, we show some comparisons between the MFSdirect solutions for

the boundary potential, current flux and the voltages in cases where the centre of the

circular rigid inclusion is changed from the origin to(0.1, 0.1).

For illustrative purposes, let us taked1 = 0.5,M = N = 128,R = 1.15,R1 = 0.45

andL = 4 with CCI values equal toz{1,2,3,4} = 1, and consider the three current pat-

terns (3.26), (3.4) and (3.3) in this order from the previouschapter.

Figures 4.1(a) and 4.1(b) show comparisons between the MFS forward solutions

for the boundary potentialu(1, θ) and the current flux(∂u/∂n)(1, θ), respectively,

when the centre of the inner circular object is(0, 0) and(0.1, 0.1). From Figure 4.1(a),

it can be seen that there are obvious variations in the boundary potential when changing

the centre of the inner object from the origin to(X0, Y0) = (0.1, 0.1). More precisely,

the greatest variations can be seen on the third attached electrode because the equipo-

tential lines cover that part of the domain much more when thecurrent pattern (3.3)

is applied. Whilst, in Figure 4.1(b), the values of current flux are almost the same all

around the unit disk.
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Figure 4.1:(a) The boundary potentialu(1, θ) and(b) the normal derivative∂nu(1, θ)
when the centre of the inner circle is at(0, 0) (continuous line) and(0.1, 0.1) (points),
as a functions ofθ/(2π), for the current patterns (3.26) (blue), (3.4) (red) and (3.3)
(green).

Since there is not much sensitivity in the potential and especially the current flux

when the centre of the inner circular object is changed from(0, 0) to (0.1, 0.1), it is

worth investigating the differences in the calculated boundary voltagesU i
p, on the at-

tached electrodesεp, p = 1, 4, i = 1, 3, for the current patterns (3.26) (i = 1), (3.4)

(i = 2) and (3.3) (i = 3), see Table 4.1. From Table 4.1, it can be seen that the val-

ues for the voltages{U1
3 , U

1
4 , U

2
2 , U

2
4 , U

3
2 , U

3
3} are close to zero whatever the chosen
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centre, especially the values{U2
2 , U

2
4} where the best current pattern (3.4) is injected

through opposite electrodes. This is because the currents are not injected through the

corresponding attached electrodes. However, there are noticeable differences in all the

voltages when the centre is varied.

Table 4.1:The numerical voltages when the center of the inner rigid inclusion is at(0, 0) in
comparison with the resulting voltages when the centre is at(0.1, 0.1), for the current patterns
(3.26), (3.4) and (3.3).

Current pattern (3.26)

Voltages Centre(0, 0) Centre(0.1, 0.1)
U1
1 ≈ 1.7759 1.7101

U1
2 ≈ -1.7759 -1.7294

U1
3 ≈ -0.0221 -0.0069

U1
4 ≈ 0.0221 0.0032

Current pattern (3.4)
Voltages Centre(0, 0) Centre(0.1, 0.1)
U2
1 ≈ 1.7980 1.7638

U2
2 ≈ 1.8× 10−10 0.0086

U2
3 ≈ -1.7980 -1.7785

U2
4 ≈ 5.5× 10−10 0.0073

Current pattern (3.3)
Voltages Centre(0, 0) Centre(0.1, 0.1)
U3
1 ≈ 1.7759 1.7318

U3
2 ≈ 0.0221 0.0358

U3
3 ≈ -0.0221 -0.0252

U3
4 ≈ -1.7759 -1.7535

4.3 The inverse solution when the centre of the inner

rigid inclusion is unknown

In this section, we will identify the inner objectΩInner in the domainΩ when the cen-

tre (X0, Y0) of that object, as well as the MFS coefficientsc = (ck)k=1,2M and the radii

r = (ri)i=1,M of the assumed star-shaped object are all unknown. Moreover, the data
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sets which are simulated here are the voltages on the electrodes for various current

patterns. This data set is obtained from the Robin boundary condition after solving the

CEM direct problem using the MFS. Further, these voltages are corrupted by adding

Gaussian noise with zero mean and standard deviationσ = 0.01. In all experiments in

this chapter, we consider the following cases:

Case 1: The injected current patterns are given by equations (3.26), (3.4) and (3.3).

This is convenient when the number of the attached electrodes on the outer boundary

isL = 4. Basically, the voltages are calculated at 4 equally-spaced points on the outer

boundary, that is at the locations where the four electrodesare attached. These four

voltage values are obtained each time a current pattern is applied. This results in three

sets of voltages giving a total of 12 single voltage values, namely,

{U1
1 , U

1
2 , U

1
3 , U

1
4},

when the first current pattern (3.26) is applied,

{U2
1 , U

2
2 , U

2
3 , U

2
4},

when the second current pattern (3.4) is applied, and

{U3
1 , U

3
3 , U

3
3 , U

3
4},

when the third current pattern (3.3) is applied.

Case 2:The injected current patterns are given by equations (3.27)-(3.33) where the

number of the attached electrodes isL = 8. This results in seven sets containing a total

of 56 voltage values to be used to produce the inverse solution, namely:

{U1
1 , U

1
2 , U

1
3 , U

1
4 , U

1
5 , U

1
6 , U

1
7 , U

1
8},
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when we apply the current pattern (3.27),

{U2
1 , U

2
2 , U

2
3 , U

2
4 , U

2
5 , U

2
6 , U

2
7 , U

2
8},

when we apply the current pattern (3.28),

{U3
1 , U

3
3 , U

3
3 , U

3
4 , U

3
5 , U

3
6 , U

3
7 , U

3
8},

when we apply the current pattern (3.29),

{U4
1 , U

4
2 , U

4
3 , U

4
4 , U

4
5 , U

4
6 , U

4
7 , U

4
8},

when we apply the current pattern (3.30),

{U5
1 , U

5
2 , U

5
3 , U

5
4 , U

5
5 , U

5
6 , U

5
7 , U

5
8},

when we apply the current pattern (3.31),

{U6
1 , U

6
2 , U

6
3 , U

6
4 , U

6
5 , U

6
6 , U

6
7 , U

6
8},

when we apply the current pattern (3.32), and

{U7
1 , U

7
2 , U

7
3 , U

7
4 , U

7
5 , U

7
6 , U

7
7 , U

7
8},

when we apply the current pattern (3.33).

Experiment 1. We examine Cases 1 and 2 by fitting a star-shaped model to data from

a true circular object of radius0.5 centred at(0.1, 0.1). In both cases, the unknowns

are 32 radii at equally-spaced anglesr = (ri, i = 1, 32), in addition to the 128 inner

MFS coefficients,cI , and the 128 outer MFS coefficients,cE , as well as the unknown

centre denoted by(X0, Y0).
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Assuming the centre of the inner object is unknown means the additional constraint

(4.3) is required in the MCMC to ensure that the star-shaped object stays within the

unit circle.

The hierarchical structure of the statistical parameter model on the right side of Fig-

ure 3.5 is considered here. Moreover, we fix the values of the hyper-prior parameters

(from Experiments8 and9 in Chapter 3) of the internal and external MFS coefficients

atαCI
= 0.1160 andαCE

= 2.4570, respectively, as well as the hyper-prior parameter

value for the radius atαr = 1.0, and allow estimation of the smoothing parameters

βCI
, βCE

andβr, as well as all the unknowns which have been mentioned earlier.

Figure 4.2 shows a comparison between the reconstruction ofthe inner object in

Cases 1 and 2. From this figure, it can be seen that the accuracyof the reconstruction

is very good whenL = 8, with the estimated radius of0.4915 compared to its true

value of0.5, and a very small standard deviation of0.0009. Moreover, the estimated

centre is(0.0906, 0.0989) in comparison to the true centre(0.1000, 0.1000). However,

whenL = 4 the estimated radius is0.5593 with standard deviation0.0004 and the

estimated centre is at(0.1054, 0.1003). Both sets of outer and inner MFS coefficients

in Cases 1 and 2 keep follow the exact values and have smooth and very narrow cred-

ible intervals. In the left side of Figure 4.2 the estimated errors, which are defined as

the difference between the true and estimated radii, can hardly be seen on the graph.

Furthermore, the object boundary histograms are circular with respect to the estimated

centre.
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Case 1. The number of the attached electrodes isL = 4 and the number of the
measured voltages is12.
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Case 2. The number of the attached electrodes isL = 8 and the number of the
measured voltages is56.

Figure 4.2: Results from the star-shaped model with different numbers of data volt-
ages: errors estimation (left), object boundary histogram, object boundary credible
intervals, fitted circle, MFS coefficients (with credible intervals) corresponding to the
inner and outer boundaries (right).

4.4 The MFS forward solutions when the constant con-

tact impedance is changed to piecewise constant

In this section, we study how the MFS forward solutions, in terms of the boundary

potential, current flux and the voltages, are affected by a change in the constant contact

impedance (CCI).

4.4.1 Numerical results and discussion

For illustrative purposes, let us consider the centre of theinner circle being at the origin,

takeM = N = 128, R = 1.15, R1 = 0.45 andL = 4, and apply the current patterns
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(3.26), (3.4) and (3.3). We investigate two different sets the CCI values, namely,

z(1)p = 1, p = 1, 4 on ∂Ω, (4.4)

and

z(2)p = 1, p = 1, 2, z(2)p = 2, p = 3, 4 on ∂Ω. (4.5)

Table 4.2 shows the three calculated sets of voltages. From this table, it can be seen

that injecting the current pattern (3.26) makes the voltagevalues, using both equations

(4.4) and (4.5), almost the same due to two reasons. Firstly,the voltages which are cal-

culated at electrodesε1,2 which carry current, have the same values because the values

of the CCI are still the same in both equations (4.4) and (4.5), z11 = z21 = z12 = z22 = 1.

Furthermore, voltages which are calculated at the free-current electrodes,ε3,4, nearly

vanish for any positive value of the CCI. In contrast, the major differences between the

voltage values occurring when equations (3.4) and (3.3) areused. More precisely, the

voltage valueU2
3 drops from−1.7980 to −3.0723 due to the dramatic increase in the

corresponding value of the CCI fromz13 = 1 to z23 = 2, as well as the voltage valueU3
4

decreases from−1.7759 to −3.0502 due to the same change of the CCI values from

z14 = 1 to z24 = 2.
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Table 4.2:The numerical voltages for the CCI values (4.4) and (4.5), when the center of the
inner circular rigid inclusion is at(0, 0), for the current patterns (3.26), (3.4) and (3.3).

Current pattern (3.26)

Voltages z1,2,3,4 = 1 z1,2 = 1 andz3,4 = 2
U1
1 ≈ 1.7759 1.7760

U1
2 ≈ −1.7759 −1.7760

U1
3 ≈ −0.0221 −0.0221

U1
4 ≈ 0.0221 0.0221

Current pattern (3.4)
Voltages z1,2,3,4 = 1 z1,2 = 1 andz3,4 = 2
U2
1 ≈ 1.7980 1.7981

U2
2 ≈ 1.8× 10−10 4.6× 10−5

U2
3 ≈ −1.7980 −3.0723

U2
4 ≈ 5.5× 10−10 4.6× 10−5

Current pattern (3.3)
Voltages z1,2,3,4 = 1 z1,2 = 1 andz3,4 = 2
U3
1 ≈ 1.7759 1.7760

U3
2 ≈ 0.0221 0.0222

U3
3 ≈ −0.0221 −0.0221

U3
4 ≈ −1.7759 −3.0502

4.5 The inverse solutions when the CCI values are un-

known

We consider Case 2 of Section 4.4, where both the centre of theinner rigid inclusion,

as well as the positive constant contact impedance (CCI) values{z1,2,3,4,5,6,7,8} are un-

known. In the following experiment,L = 8 and we simulate 56 measured voltages

which are also corrupted by adding Gaussian noise with zero mean and standard devi-

ationσ = 0.01.

Experiment 2. We fit a star-shaped model from the circular data of radius0.5 cen-

tred at(0.1, 0.1), and the true values of the CCI arez1,2,3,4 = 1 andz5,6,7,8 = 2. We fix

the values of the hyper-prior parameters at the same values which were considered in
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Experiment 1.
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Figure 4.3: The star-shaped model when the CCI values and thecentre of the inner ob-
ject are unknown: errors estimation (left), object boundary histogram, object boundary
credible intervals, fitted circle, MFS coefficients (with credible intervals) correspond-
ing to the inner and outer boundaries (right).

From Figure 4.3, it can be seen that the accuracy of the reconstruction is very good,

with the estimated radius of0.4915 compared to its true value of0.5, and a very small

standard deviation of0.0005. Moreover, the estimated centre is(0.1013, 0.1040) in

comparison to the true centre(0.1000, 0.1000). Moreover, from Table 4.3 and Figure

4.4, it can be seen, in general, that the values of CCI are wellestimated comparing

to the true values, especially{z1, z3, z4, z6, z7, z8} where the standard deviations are

relatively small.

Table 4.3:The average mean of the estimated contact impedances over the MCMC iterations
with the corresponding standard deviations.

True value Estimated value Standard deviation

z1 1 1.0671 0.0369
z2 1 1.1583 0.1313
z3 1 0.9637 0.0419
z4 1 0.9156 0.0697
z5 2 1.9036 0.1537
z6 2 1.9641 0.0528
z7 2 2.0660 0.0530
z8 2 2.0333 0.0607
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Figure 4.4: Histograms of the estimated contact impedances.

4.6 The MFS forward solution for multiple rigid inclu-

sions

In this section, we illustrate the main modifications which are required when the MFS

is applied to solve the CEM direct problem in the unit disk, containing two rigid inclu-

sions,

ΩInner1 = B1 ((X0, Y0); d1)

=
{

(x0, y0) ∈ R
2|(x0 −X0)

2 + (y0 − Y0)
2 < d21

}

, (4.6)

ΩInner2 = B2 ((X1, Y1); d2)

=
{

(x1, y1) ∈ R
2|(x1 −X1)

2 + (y1 − Y1)
2 < d22

}

, (4.7)



Chapter 4. 123

where{d1, d2} ∈ (0, 1), {X0, X1} ∈ (−1, 1) and{Y0, Y1} ∈ (−1, 1) are chosen such

thatΩInner1,ΩInner2 ⊂ Ω.

Alternatively, in polar coordinatesΩInner1 andΩInner2 can be represented, respec-

tively, as

x0 = X0 + r1 cos(θ), y0 = Y0 + r1 cos(θ), r1 ∈ (0, d1), θ ∈ [0, 2π), (4.8)

and

x1 = X1 + r2 cos(θ), y1 = Y1 + r2 cos(θ), r2 ∈ (0, d2), θ ∈ [0, 2π). (4.9)

The geometrical conditions thatΩInner1,ΩInner2 ⊂ Ω can be recast as

1 > (X0 + r1 cos(θ))
2 + (Y0 + r1 sin(θ))

2

= X2
0 + Y 2

0 + r21 + 2r1 (X0 cos(θ) + Y0 sin(θ)) ,

r1 ∈ (0, d1), θ ∈ [0, 2π) (4.10)

and

1 > (X1 + r2 cos(θ))
2 + (Y1 + r2 sin(θ))

2

= X2
1 + Y 2

1 + r22 + 2r2 (X1 cos(θ) + Y1 sin(θ)) ,

r2 ∈ (0, d2), θ ∈ [0, 2π) (4.11)

and they must not intersect.

The coordinates of the boundary collocation points on∂ΩInner1 are

xi =
(

X0 + d1 cos
(

2π(i−M)
M

)

, Y0 + d1 sin
(

2π(i−M)
M

))

for i =M + 1, 2M ,

and the coordinates of the boundary collocation points∂ΩInner2 are

xi =
(

X1 + d2 cos
(

2π(i−2M)
M

)

, Y1 + d2 sin
(

2π(i−2M)
M

))

for i = 2M + 1, 3M .

Also, the internal source points inΩInner1 andΩInner2 are

ξ
j
= (ξ1j , ξ

2
j ) = (X0+R1 cos

(

2π(j−N)
N

)

, Y0+R1 sin
(

2π(j−N)
N

)

) for j = N + 1, 2N ,



Chapter 4. 124

and

ξ
j
= (ξ1j , ξ

2
j ) = (X1+R2 cos

(

2π(j−2N)
N

)

, Y1+R2 sin
(

2π(j−2N)
N

)

) for j = 2N + 1, 3N ,

where0 < R1 < d1 and0 < R2 < d2. Also,R1 andR2 are defined previously as

R1 = d1 × ηI1 andR2 = d2 × ηI2 , whereηI1, ηI2 ∈ (0, 1) are contraction parameters.

4.6.1 Numerical results and discussion

In this subsection, we show some comparisons between the MFSdirect solutions for

the boundary potential, current flux and the voltages, in thecase where the number of

rigid inclusions is extended to two circles being centered atC1(0, 0.5) andC2(0,−0.5).

For illustrative purposes, we takeM = N = 128, R = 1.15, R1 = R2 = 0.45,

d1 = d2 = 0.4 andL = 8, and apply the current patterns (3.27)-(3.33).

Figures 4.5(a) and 4.5(b) show comparisons between the MFS forward solutions

for the boundary potentialu(1, θ) and the current flux(∂u/∂n)(1, θ), when the unit

disc has one inclusionB1 ((0, 0.5), 0.4) comparing to when it has two inclusions

B1 (C1, 0.4) andB2 (C2, 0.4). In general, it can be seen from these figures that the

boundary potential and the current flux follow the same pattern. Due to the properties

of equipotential lines and the current flow, it can be seen that when the current patterns

(3.27)-(3.29) are applied, the top-half of the unit disc is being scanned. As a result, the

values of the boundary potential and current flux are almost the same whether we have

one or two inclusions. However, using the other current patterns has significant impact

on the potential and current flux values. More precisely, thebiggest difference in the

potential values in Figure 4.5(a) or in the current flux values in Figure 4.5(b), can be

seen when equation (3.32) is used, followed by when equation(3.31) is applied, due

to the position of the second inclusion,B2 (C2, 0.4). Then, a smaller difference can

be seen when current pattern in equation (3.33) is employed,followed by a gradually

decreasing difference obtained from applying the current patterns (3.30), (3.29), (3.28)

and (3.27), respectively.
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Figure 4.5:(a) The boundary potentialu (1, θ) and(b) the normal derivative∂un (1, θ), as
functions ofθ/(2π), for the current pattern (3.27) first curves on the right, (3.28), (3.29), (3.30),
(3.31), (3.32) and (3.33), subsequently. Two rigid inclusions, (dashed lines) and one rigid
inclusion, (continuous lines).
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Table 4.4:The numerical voltages when the center of the inner rigid inclusion is at(0, 0.5),
in comparison to when the centres of two rigid inclusions areat (0, 0.5) and (0,-0.5), for the
current patterns (3.27)-(3.33).

Using Equation (3.27)

The voltages One inclusion Two inclusions
U1
1 ≈ 3.2366 3.2396

U1
2 ≈ -3.0174 -2.9964

Using Equation (3.28)
The voltages One inclusion Two inclusions

U2
1 ≈ 3.2902 3.3010

U2
3 ≈ -2.8683 -2.8503

Using Equation (3.29)
The voltages One inclusion Two inclusions

U3
1 ≈ 3.3588 3.3381

U3
4 ≈ -3.2724 -3.2429

Using Equation (3.30)
The voltages One inclusion Two inclusions

U4
1 ≈ 3.4102 3.3506

U4
5 ≈ -3.4371 -3.3506

Using Equation (3.31)
The voltages One inclusion Two inclusions

U5
1 ≈ 3.4096 3.3205

U5
6 ≈ -3.4454 -3.0773

Using Equation (3.32)
The voltages One inclusion Two inclusions

U6
1 ≈ 3.3507 3.2990

U6
7 ≈ -3.3843 -2.8483

Using Equation (3.33)

The voltages One inclusion Two inclusions
U7
1 ≈ 3.1855 3.1961

U7
8 ≈ -3.2217 -3.1009

In Table 4.4, there is no need to report the values of voltages

{U1
3 , U

1
4 , U

1
5 , U

1
6 , U

1
7 , U

1
8}, {U2

2 , U
2
4 , U

2
5 , U

2
6 , U

2
7 , U

2
8}, {U3

2 , U
3
3 , U

3
5 , U

3
6 , U

3
7 , U

3
8},

{U4
2 , U

4
3 , U

4
4 , U

4
6 , U

4
7 , U

4
8}, {U5

2 , U
5
3 , U

5
4 , U

5
5 , U

5
7 , U

5
8}, {U6

2 , U
6
3 , U

6
4 , U

6
5 , U

6
6 , U

6
8}

and{U7
2 , U

7
3 , U

7
4 , U

7
5 , U

7
6 , U

8
7}, since their values are almost zero. This is because these

voltage values are located at points where a free-current electrodes have been attached.
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It can be seen from Table 4.4 that although there are not many differences in the values

of the voltages on the electrodesε1,2,3,4,5,8 when two inner rigid inclusions are com-

pared to the corresponding voltage values obtained using only one rigid inclusion in

the unit disk, differences in the compared voltages on the attached electrodesε6,7 are

noticeable. This is due to the effect of the second rigid inclusion centred at(0,−0.5)

on the equipotential lines when the current patterns (3.31)and (3.32) are applied.

4.7 The inverse solutions for two rigid inclusions

In this section, we consider Case 2 of Section 4.4 where the centres of two inner rigid

inclusions are unknown,(X0, Y0) and(X1, Y1). In the following experiment,L = 8

and we simulate 56 measured voltage which are also corruptedby adding Gaussian

noise with zero mean and standard deviationσ = 0.01.

Further modifications in the inverse mathematical formulation when extending the

number of the inclusions to two are considered. Assuming thecentres of the objects

are unknown means an additional condition is required in theMCMC to ensure that

the star-shaped objects do not intersect. So, the distance between the centres(X0, Y0)

and(X1, Y1) should be greater than the sum of the diameters. As a result,

S =
√

(X0 −X1)2 + (Y0 − Y1)2 > diam(ΩInner1) + diam(ΩInner2), (4.12)

where the diameters ofΩInner1 andΩInner2 are defined as

diam(ΩInner1) = max
x,y∈∂ΩInner1

|x− y|, (4.13)
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and

diam(ΩInner2) = max
x,y∈∂ΩInner2

|x− y|, (4.14)

respectively. Alternatively, in polar coordinates diam(ΩInner1) can be represented as

diam(ΩInner1) = max
θ,φ∈[0,2π)

√

r21(θ) + r21(φ)− 2r1(θ)r1(φ) cos(θ − φ) (4.15)

and similarly for diam(ΩInner2).

Experiment 3. We fit a star-shaped model to true circular data when the centres of

those objects are at(0, 0.5) and (0,−0.5) with true radii equal to0.4. Fitting star-

shaped models includes finding an estimated values for32 radii, r1 for the first in-

clusion, and32 radii, r2 for the second inclusion, the MFS coefficients,(ck)k=1,3M

consisting of128 outer MFS coefficients corresponding to∂ΩOuter, 128 inner MFS

coefficients corresponding toΩInner1 and128 inner MFS coefficients corresponding to

ΩInner2, in addition to the unknown centres(X0, Y0) and(X1, Y1).

Again, we emphasize that the condition (4.12) should be imposed in the MCMC

reconstruction code. The diameters ofΩInner1 andΩInner2 can be simplified as

diam(ΩInner1) = max
i,j=1,32

√

r21i + r21j − 2r1ir1j cos(θi − θj), (4.16)

and

diam(ΩInner2) = max
i,j=1,32

√

r22i + r22j − 2r2ir2j cos(θi − θj). (4.17)

We fix the values of the hyper-prior parameters at the same values which were consid-

ered in Experiments 1 and 2.
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Figure 4.6: The star-shape models for two inclusions when the centres of the inner
objects are unknown, from left to right and continued on the second row: errors esti-
mation, object boundary histogram, object boundary credible intervals, fitted circles,
MFS coefficients (with credible intervals) corresponding to the inner and outer bound-
aries.

From Figure 4.6 it can be seen that the accuracy of the reconstruction is as good

as the corresponding reconstruction obtained in Experiment 1 (when only one rigid

inclusion is considered), in terms of the estimated radii, centres and the outer MFS

coefficients which still follow the true values. More precisely, for the rigid inclusion

ΩInner1, the estimated radii average is0.4008 comparing to its true value0.4, and a

standard deviation of0.0009, whilst the estimated centre is at(−0.0004, 0.5004) com-

paring to the truth one which is(0, 0.5). Moreover, for the rigid inclusionΩInner2,

the estimated radii average is0.4020 comparing to its true value0.4 and a standard

deviation of0.00016 and estimated centre at(0.0006,−0.5015) comparing to the truth

centre(0, 0.5). However, the estimated values of the inner MFS coefficientsshow os-

cillations with wide credible intervals when the number of inclusions is extended to

two.
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4.8 Conclusions

The Bayesian statistical approach in combination with an MCMC algorithm have been

successfully employed to solve inverse CEM problems using simulated noisy data of

the voltages. We have considered the voltage data as they aremore sensitive to changes

in the centre, the CCI and in extending the number of objects to two, than the poten-

tial and current flux data type. As a result, three different inverse problems have been

examined and solved to provide full reconstruction of the inner objects. Firstly, the in-

verse CEM problem has been solved in an annular domain with a rigid inclusion where

the centre of the inclusion is unknown (Section 4.3). Secondly, another inverse CEM

problem has been solved in an annular domain with a rigid inclusion with unknown

centre, as well unknown CCI values (Section 4.5). Finally, the inverse CEM problem

has been solved in an annular domain with two rigid inclusions where the centres of

these inclusions are unknown (Section 4.7). The experiments demonstrate that high

accuracy reconstructions of the inner object are obtained when the number of the at-

tached electrodes isL = 8.
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Extension to three-dimensions

5.1 Introduction

This chapter aims to extend the previous two-dimensional computations of direct and

inverse problems to three dimensions. As a remarkable step towards solving the di-

rect and the inverse CEM problems of ERT (future work), in a first attempt, we will

consider the forward and inverse solutions of the continuous model of ERT in three

dimensions. The MFS is again applied to find the forward solutions of the Dirichlet

problem for the three-dimensional Laplace’s equation in the unit sphere (Problem 1),

or in the unit sphere with a spherical/ellisoidal rigid inclusion (Problem 2). We discuss

the numerical results for a set of examples and compare them with the corresponding

exact solutions where available.

Prior to this study, three-dimensional rigid inclusions have been reconstructed in

[15, 39, 57] by standard regularization schemes, where the MFS was used to produce

the direct solution and a constrained optimization procedure was employed for deter-

mining the boundary of a three-dimensional star-shaped rigid inclusion. In this chapter,

we use the Bayesian approach, instead of the gradient-basedminimization of [15], to

find the inverse solution by extending the study of [6, 7] fromtwo-dimensions to three-

dimensions.

131
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5.2 Mathematical formulation

In this section, we consider Laplace’s equation for a three-dimensional bounded do-

mainΩ, namely,

△u = 0 in Ω, (5.1)

and formulate two forward problems for different geometries.

Problem 1: We considerΩ as the unit sphereΩ = {(x, y, z) ∈ R
3|x2 + y2 + z2 < 1}

and solve (5.1) subject to the Dirichlet boundary condition

u = f on ∂Ω. (5.2)

Problem 2: We consider an annular domainΩ = ΩOuter\ΩInner with a rigid inclusion

(a) ΩInner = {(x, y, z) ∈ R
3| x2 + y2 + z2 < (0.5)2}

or

(b) ΩInner =
{

(x, y, z) ∈ R
3| x2

(0.5)2
+ y2

(0.5)2
+ z2

(0.4)2
< 1

}

inside the unit sphereΩOuter = {(x, y, z) ∈ R
3|x2 + y2 + z2 < 1}. Equation (5.1) is

solved subject to the Dirichlet boundary conditions

u = f on ∂ΩOuter (5.3)

and

u = 0 on ∂ΩInner. (5.4)

On the other hand, in the inverse formulation, since the concern is not only to find

the potentialu but also identifying the rigid inclusionΩInner, the following Neumann

current flux measurement is required to compensate for the unknown geometry of the
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inner rigid inclusion∂ΩInner, namely,

∂u

∂n
= g on ∂ΩOuter. (5.5)

As a result, the inverse problem of the continuous model of ERT is given by equations

(5.1) and (5.3)-(5.5). Uniqueness of this problem whenf 6≡ 0 is provided in Appendix

A.

Problem 3: We consider an annular domainΩ = ΩOuter\(ΩInner1 ∪ ΩInner1) with

two rigid inclusions, which need to be detected when the inverse problem is solved,

defined by

ΩInner1 =
{

(x, y, z) ∈ R
3| x2 + (y − 0.5)2 + z2 < (0.4)2

}

andΩInner1 =
{

(x, y, z) ∈ R
3| x2 + (y + 0.5)2 + z2 < (0.4)2

}

.

These are located inside the unit sphere. Then, equation (5.1) is solved subject to (5.3),

(5.5) and

u = 0 on ∂ΩInner1 ∪ ∂ΩInner2. (5.6)

5.3 The MFS for the direct Problem 1

In this section, we seek an approximation to the solution of Laplace’s equation (5.1) in

the unit sphere as a linear combination of fundamental solutions in the following form:

u(p) =
N−1
∑

k=1

N
∑

l=1

cklG(ξk,l, p), p ∈ Ω, (5.7)

whereG is the fundamental solution of the three-dimensional Laplace’s equation given

by

G(ξ, p) =
1

4π|ξ − p|
. (5.8)
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The source pointsξ
k,l

are located outsideΩ, and ckl for k = 1, (N − 1) and l =

1, N are unknown coefficients to be determined by imposing the Dirichlet boundary

condition (5.2).

SinceΩ is a sphere, we can use spherical coordinates for the boundary collocation

and source points. This leads to

xi,j = (sin θi cos φj, sin θi sin φj, cos θi) , i = 1, (M − 1), j = 1,M, (5.9)

ξ
k,l

= R
(

sin θ̃k cos φ̃l, sin θ̃k sin φ̃l, cos θ̃k

)

, k = 1, (N − 1), l = 1, N, (5.10)

respectively, whereR > 1,

θi =
πi

M
, i = 1, (M − 1), φj =

2π(j − 1)

M
, j = 1,M

and

θk =
πk

N
, k = 1, (N − 1), φl =

2π(l − 1)

N
, l = 1, N.

In total, the number of the collocation points is(M − 1) ×M and the number of the

source points is(N − 1)×N .

From (5.7), the normal derivative is approximated as

∂u

∂n
(p) =

N−1
∑

k=1

N
∑

l=1

ckl
∂G

∂n
(ξ

k,l
, p), p ∈ ∂Ω, (5.11)

where

∂G

∂n
(ξ

k,l
, p) =

(

∂G

∂x
nx +

∂G

∂y
ny +

∂G

∂z
nz

)

(ξ
k,l
, p), (5.12)

∂G

∂x
(ξ

k,l
, p) = −

(x− ξk,l)

4π|p− ξ
k,l
|3
,

∂G

∂y
(ξ

k,l
, p) = −

(y − ξk,l)

4π|p− ξ
k,l
|3
,



Chapter 5. 135

∂G

∂z
(ξ

k,l
, p) = −

(z − ξk,l)

4π|p− ξ
k,l
|3
, k = 1, (N − 1), l = 1, N,

and the components of the outward unit normal vector to the unit sphere are

nx = sin θ cosφ, ny = sin θ sinφ, nz = cos θ, θ ∈ (0, π), φ ∈ [0, 2π).

In order to obtain the coefficientc = (ck,l)k=1,(N−1), l=1,N , we collocate equation (5.7)

at the points (5.9) and use the boundary condition (5.2). This results in

N−1
∑

k=1

N
∑

l=1

Gijklckl = fi,j, i = 1, (M − 1), j = 1,M, (5.13)

wherefi,j = f(xi,j) andGijkl =
1

4π|ξ
k,l

−xi,j |
for i = 1, (M − 1), j = 1,M, k =

1, (N − 1) andl = 1, N . Expression (5.13) can be re-written as

N(N−1)
∑

n=1

F̃m,n C̃n = b̃m, m = 1,M(M − 1), (5.14)

where

F̃ =





































G1111 G1112 ... G111N ... G11(N−1)1 G11(N−1)2 ... G11(N−1)N

G1211 G1212 ... G121N ... G12(N−1)1 G12(N−1)2 ... G12(N−1)N

...
...

...
...

...
...

...
...

...
G1M11 G1M12 ... G1M1N ... G1M(N−1)1 G1M(N−1)2 ... G1M(N−1)N

G2111 G2112 ... G211N ... G21(N−1)1 G21(N−1)2 ... G21(N−1)N

G2211 G2212 ... G221N ... G22(M−1)1 G22(N−1)2 ... G22(N−1)N

...
...

...
...

...
...

...
...

...
G2M11 G2M12 ... G2M1N ... G2M(M−1)1 G2M(N−1)2 ... G2M(N−1)N

...
...

...
...

...
...

...
...

...
G(M−1)111 G(M−1)112 ... G(M−1)11N ... G(M−1)1(N−1)1 G(M−1)1(N−1)2 ... G(M−1)1(N−1)N

G(M−1)211 G(M−1)212 ... G(M−1)21N ... G(M−1)2(N−1)1 G(M−1)2(N−1)2 ... G(M−1)2(N−1)N

...
...

...
...

...
...

...
...

...
G(M−1)M11 G(M−1)M12 ... G(M−1)M1N ... G(M−1)M(N−1)1 G(M−1)M(N−1)2 ... G(M−1)M(N−1)N





































,
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C̃ =































c11
c12
...

c1N
c21
c22
...

c2N
...

c(N−1)1
c(N−1)2

...
c(N−1)N































andb̃ =



































f11
f12
...

f1M
f21
f22
...

f2M
...

f(M−1)1

f(M−1)2

...
f(M−1)M



































.

The linear system of algebraic equations (5.14) consists of(M − 1) ×M equations

with (N − 1)×N unknowns. IfM = N , we can directly apply the Gauss elimination

method to obtain the MFS coefficients̃Cn. However, ifM > N the least-squares

method is used to solve the over-determined system of equations (5.14). This yields

the solution

C̃ =
(

F̃ T F̃
)−1

F̃ T
b̃. (5.15)

Once the coefficient vector̃C has been obtained accurately, equations (5.7) and

(5.12) provide explicitly the solution for the interior potentialu inside the domainΩ

and the current flux∂u/∂n on the boundary∂Ω.

5.3.1 Numerical results and discussion

In this section, we discuss the MFS solution of the direct Problem 1, given by equations

(5.1) and (5.2), and compare the numerically obtained results with the exact solutions

for the normal derivative on the boundary and the interior solution.

Example 1: Solve Problem 1 using the MFS where the analytical solution is

u(x, y, z) = x2 + y2 − 2z2, (x, y, z) ∈ Ω. (5.16)
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Solution: ChoosingM = N = 16 results in15 × 16 = 240 collocation points

which means240 equations. On the other hand, the number of the source pointsis

15 × 16 = 240, this in turn, means that the number of the unknowns is240, as well.

We also haveR = 5.

Figure 5.1 illustrates a comparisons between the exact and MFS interior solutions,

as well as the exact and MFS normal derivatives. This figure shows excellent agree-

ment between the exact and numerical solutions; up to12 and11 decimal places for

interior solution and the normal derivative, respectively.

Figure 5.2 illustrates the absolute errors between the exact and numerical solutions

previously illustrated in Figure 5.1. From this figure, it can be seen that the errors

decrease asM = N increases. Although the cases(e) and(f) (whenM = N = 32)

show smaller errors in terms of accuracy than(c) and(d) (whenM = N = 16), the

latter show better representations in terms of the smoothness of the numerical interior

solutions and normal derivatives.
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Figure 5.1: Comparison between(a) the exact interior solutionuExact(0.5, θ, φ) and (b)
the MFS interior solutionsuMFS(0.5, θ, φ), and comparison between(c) the exact boundary
derivative(∂u/∂n)Exact(1, θ, φ) and(d) the MFS boundary derivative(∂u/∂n)MFS(1, θ, φ),
as a functions ofφ/(2π) andθ/π, whenM = N = 16 andR = 5.
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Figure 5.2:(a, c, e) the absolute errors between the MFS interior solutionsuMFS(0.5, θ, φ)
and the exact interior solutionuExact(0.5, θ, φ), for M = N = {8, 16, 32}, respectively,
(b, d, f) the absolute errors between the MFS boundary derivative(∂u/∂nMFS)(1, θ, φ) and
the exact boundary derivative(∂u/∂nExact)(1, θ, φ), for M = N = {8, 16, 32}, respectively.
In all casesR = 5.



Chapter 5. 139

Figure 5.3 illustrates the absolute errors between the exact and numerical interior

solutions and normal derivatives for fixedM = N = 16 and variousR ∈ {2, 5, 10}.

From this figure, it can be seen that the errors decrease asR increases. Although the

cases(e) and(f) (whenR = 10) show smaller absolute errors in terms of accuracy

than the cases(c) and(d) (whenR = 5), the latter show better representations in terms

of the smoothness of the numerical interior solutions and normal derivatives.
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Figure 5.3:(a, c, e) the absolute errors between the MFS interior solutionsuMFS(0.5, θ, φ)
and the exact interior solutionuExact(0.5, θ, φ), for R = {2, 5, 10}, respectively, and(b, d, f)
the absolute errors between the MFS boundary derivative(∂u/∂nMFS)(1, θ, φ) and the exact
boundary derivative(∂u/∂nExact)(1, θ, φ), for R = {2, 5, 10}, respectively. In all casesM =
N = 16.

5.4 The MFS for the direct Problem2

In this section, we seek an approximation to the solution of equation (5.1), in an annular

bounded domain with a rigid inclusion inside, as a linear combination of fundamental
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solutions in the following form:

u(p) =

2(N−1)
∑

k=1

N
∑

l=1

cklG(ξk,l, p), p ∈ Ω. (5.17)

The internal source points denoted byξ1
k,l

, are located inside the inner domainΩInner,

and are defined, for Problem2(a), by

ξ1
k,l

= R1

(

sin θ̃k cos φ̃l, sin θ̃k sin φ̃l, cos θ̃k

)

, k = 1, (N − 1), l = 1, N, (5.18)

where0 < R1 < 0.5, and, for Problem2(b), by

ξ1
k,l

= ηI

(

0.5 sin θ̃k cos φ̃l, 0.5 sin θ̃k sin φ̃l, 0.4 cos θ̃k

)

,

k = 1, (N − 1), l = 1, N, (5.19)

where0 < ηI < 1. Whilst the external source points denoted byξ2
k,l

, are located

outside the outer domainΩOuter, and are defined by

ξ2
k,l

= R
(

sin θ̃k−N+1 cos φ̃l, sin θ̃k−N+1 sin φ̃l, cos θ̃k−N+1

)

,

k = N, 2(N − 1), l = 1, N. (5.20)

Similarly, the internal collocation points denoted byx1i,j, are located on∂ΩInner,

and are defined, for Problem2(a), by

x1i,j = 0.5 (sin θi cosφj , sin θi sinφj , cos θi) , i = 1, (M − 1), j = 1,M, (5.21)

and, for Problem2(b), by

x1i,j = (0.5 sin θi cosφj, 0.5 sin θi sinφj , 0.4 cos θi) ,

i = 1, (M − 1), j = 1,M, (5.22)
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whilst the external collocation points denoted byx2i,j are located on∂ΩOuter, and are

defined by

x2i,j = (sin θi−M+1 cosφj, sin θi−M+1 sin φj, cos θi−M+1) ,

i =M, 2(M − 1), j = 1,M. (5.23)

As a result, in total the number of the collocation points is2(M − 1) × M and the

number of the source points is2(N − 1)×N ; this means that the number of the MFS

inner and outer coefficients is2(N − 1)×N .

Here, for any collocation pointp = (x, y, z) ∈ ∂ΩInner, the component of the

outward normal vector is

nx = − sin θ cosφ, ny = − sin θ sin φ, nz = − cos θ, for θ ∈ (0, π), φ ∈ [0, 2π).

In order to obtain the coefficientc = (ck,l)k=1,2(N−1), l=1,N , we substitute (5.17) into

the boundary conditions (5.3) and (5.4). This results in

2(N−1)
∑

k=1

N
∑

l=1

Gijklckl = fi,j, i = 1, 2(M − 1), j = 1,M, (5.24)

wherefi,j = f(xi,j) andGijkl =
1

4π|ξ
k,l

−xi,j |
, for i = 1, 2(M − 1), j = 1,M, k =

1, 2(N − 1) andl = 1, N . Note that from (5.4),fi,j = 0 for i = 1, (M − 1), j = 1,M .

Equation (5.24) can be re-written as

2N(N−1)
∑

n=1

F̂m,n Ĉn = b̂m, m = 1, 2M(M − 1), (5.25)
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where

F̂ =





































G1111 ... G111N ... G11[2(M−1)]1 ... G11[2(N−1)]N

G1211 ... G121N ... G12[2(M−1)]1 ... G12[2(N−1)]N

...
...

...
...

...
...

...
G1M11 ... G1M1N ... G1M[2(M−1)]1 ... G1M[2(N−1)]N

G2111 ... G211N ... G21[2(M−1)]1 ... G21[2(N−1)]N

G2211 ... G221N ... G22[2(M−1)]1 ... G22[2(N−1)]N

...
...

...
...

...
...

...
G2M11 ... G2M1N ... G2M[2(M−1)]1 ... G2M[2(N−1)]N

...
...

...
...

...
...

...
G[2(M−1)]111 ... G[2(M−1)]11N ... G[2(M−1)]1[2(N−1)]2 ... G[2(M−1)]1[2(N−1)]N

G[2(M−1)]211 ... G[2(M−1)]21N ... G[2(M−1)]2[2(N−1)]1 ... G[2(M−1)]2[2(N−1)]N

...
...

...
...

...
...

...
G[2(M−1)]M11 ... G[2(M−1)]M1N ... G[2(M−1)]M[2(N−1)]1 ... G[2(M−1)]M[2(N−1)]N





































,

Ĉ =































c11
c12
...

c1N
c21
c22
...

c2N
...

c[2(N−1)]1
c[2(N−1)]2

...
c[2(N−1)]N































andb̂ =



































f11
f12
...

f1M
f21
f22
...

f2M
...

f[2(M−1)]1

f[2(M−1)]2

...
f[2(M−1)]M



































.

The above linear system of algebraic equations (5.25) consists of 2(M − 1) × M

equations with2(N − 1)× N unknowns. Its solution can be obtained as described at

the end of subsection 5.3.

5.4.1 Numerical results and discussion

In this section, we will discuss and compare the direct numerical and exact solutions

of Problem 2 given by equations (5.1), (5.3) and (5.4), for the normal derivatives on

the inner and outer boundaries and the interior solutions.

Example 2: Solve Problem2(a) using the MFS where the analytical solution is given
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by

u(x, y, z) =
1

√

x2 + y2 + z2
−

1

0.5
. (5.26)

Solution: ChoosingM = N = 16, resulting in30× 16 = 480 collocation points and

480 source points. We also takeR = 5 andR1 = 0.3.

Figure 5.4 illustrates a comparisons between the exact interior solutions and the

MFS interior solutions, as well as the corresponding normalderivatives on∂ΩInner

and∂ΩOuter. This figure shows an excellent agreement between the exact and the nu-

merical MFS solutions up to5 or 6 decimal places.
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Figure 5.4:(a) The exact interior solutionuExact(0.6, θ, φ) and(b) the MFS interior solu-
tionsuMFS(0.6, θ, φ), (c) the exact outer derivative(∂u/∂n)Exact

Outer(1, θ, φ), (d) the MFS outer
derivative(∂u/∂n)MFS

Outer(1, θ, φ), (e) the inner exact derivative(∂u/∂n)Exact
Inner(0.5, θ, φ), and

(f) the MFS inner derivative(∂u/∂n)MFS
Inner(0.5, θ, φ), as a functions ofφ/(2π) andθ/π, when

M = N = 16, R = 5 andR1 = 0.3.
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Figure 5.5:(a, d, g) The absolute errors between the MFS interior solutionsuMFS(0.6, θ, φ)
and the exact interior solutionuExact(0.6, θ, φ), for M = N = {8, 16, 32}, respectively,
(b, e, h) the absolute errors between the MFS outer derivative(∂u/∂nMFS)(1, θ, φ) and the
exact outer derivative(∂u/∂nExact)(1, θ, φ), for M = N = {8, 16, 32}, respectively, and
(c, f, i) the absolute errors between the MFS inner derivative(∂u/∂nMFS)(0.5, θ, φ) and the
exact inner derivative(∂u/∂nExact)(0.5, θ, φ), for M = N = {8, 16, 32}, respectively, as a
functions ofφ/(2π) andθ/π, whenR = 5 andR1 = 0.3.
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Figure 5.6:(a, d, g) The absolute errors between the MFS interior solutionsuMFS(0.6, θ, φ)
and the exact interior solutionuExact(0.6, θ, φ), for R = {2, 5, 10}, respectively,(b, e, h) the
absolute errors between the MFS outer derivative(∂u/∂n)MFS(1, θ, φ) and the exact outer
derivative(∂u/∂n)Exact(1, θ, φ), for R = {2, 5, 10}, respectively,(c, f, i) the absolute er-
rors between the MFS inner derivative(∂u/∂n)MFS(0.5, θ, φ) and the exact inner derivative
(∂u/∂n)Exact(0.5, θ, φ), for R = {2, 5, 10}, respectively, as a functions ofφ/(2π), whenθ/π
andM = N = 16 andR1 = 0.3.
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Figures 5.5 and 5.6 illustrate the absolute errors between the exact the numerical

MFS solutions for various values ofM = N ∈ {8, 16, 32} whenR = 5, and for var-

iousR ∈ {2, 5, 10} whenM = M = 16, respectively. In these figuresR1 is fixed at

0.3. From Figure 5.5, it can be seen that asM = N increases, the accuracy of MFS

solution increases. However, increasingR from 2 to 5 (whenM = N = 16) makes

those solutions even better and choosingR = 5 provides the same accuracy as when

R = 5, forM = N = 16.

5.5 The MFS for the direct Problem3

In this section, we seek an approximation to the solution of equation (5.1), in an an-

nular bounded domain with two rigid inclusions inside, as a linear combination of

fundamental solutions in the following form:

u(p) =

3(N−1)
∑

k=1

N
∑

l=1

cklG(ξk,l, p), p ∈ Ω. (5.27)

The internal source points for the first rigid inclusion denoted byξ1
k,l

, are located inside

the inner domainΩInner1, and are defined, for Problem3, by

ξ1
k,l

= R1

(

sin θ̃k cos φ̃l, sin θ̃k sin φ̃l, cos θ̃k

)

, k = 1, (N − 1), l = 1, N, (5.28)

where0 < R1 < 0.4, and denoted byξ2
k,l

for the second inclusion, are located inside

the inner domainΩInner2, and are defined by

ξ2
k,l

= R2

(

sin θ̃k−N+1 cos φ̃l, sin θ̃k−N+1 sin φ̃l, cos θ̃k−N+1

)

,

k = N, 2(N − 1), l = 1, N, (5.29)
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where0 < R2 < 0.4, as well. Whilst the external source points, denoted byξ3
k,l

, are

located outside the outer domainΩOuter, and are defined by

ξ3
k,l

= R
(

sin θ̃k−[2(N−1)+1]+1 cos φ̃l, sin θ̃k−[2(N−1)+1]+1 sin φ̃l, cos θ̃k−[2(N−1)+1]+1

)

,

k = [2(N − 1) + 1], 3(N − 1), l = 1, N. (5.30)

Similarly, the internal collocation points for the first inclusion denoted byx1i,j , are

located on∂ΩInner1, and are defined, for Problem3, by

x1i,j = 0.4 (sin θi cosφj, sin θi sin φj, cos θi) , i = 1, (M − 1), j = 1,M, (5.31)

and for second inclusion of Problem3, the internal collocation points are denoted by

x2i,j and located on∂ΩInner2

x2i,j = 0.4 (sin θi−M+1 cosφj, sin θi−M+1 sin φj, cos θi−M+1) ,

i =M, 2(M − 1), j = 1,M, (5.32)

whilst, the external collocation points denoted byx3i,j, are located on∂ΩOuter, and are

defined by

x3i,j =
(

sin θi−[2(M−1)+1]+1 cosφj , sin θi−[2(M−1)+1]+1 sin φj, cos θi−[2(M−1)+1]+1

)

,

i = [2(M − 1) + 1], 3(M − 1), j = 1,M. (5.33)

As a result, in total the number of the collocation points is3(M − 1) ×M and the

number of the source points is3(N − 1)×N which in turn means that the number of

the MFS inner and outer coefficients is3(N − 1)×N .

In order to obtain the coefficientc = (ck,l)k=1,3(N−1), l=1,N , we substitute (5.27) into
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the boundary conditions (5.3) and (5.6). This results in

3(N−1)
∑

k=1

N
∑

l=1

Gijklckl = fi,j, i = 1, 3(M − 1), j = 1,M, (5.34)

wherefi,j = f(xi,j) andGijkl =
1

4π|ξ
k,l

−xi,j |
, for i = 1, 3(M − 1), j = 1,M, k =

1, 3(N − 1) and l = 1, N . Note that from (5.6),fi,j = 0 for i = 1, 2(M − 1), j =

1,M . Equation (5.34) can be re-written as

3N(N−1)
∑

n=1

F̆m,n C̆n = b̆m, m = 1, 3M(M − 1), (5.35)

where

F̆ =





































G1111 ... G111N ... G11[3(M−1)]1 ... G11[3(N−1)]N

G1211 ... G121N ... G12[3(M−1)]1 ... G12[3(N−1)]N

...
...

...
...

...
...

...
G1M11 ... G1M1N ... G1M[3(M−1)]1 ... G1M[3(N−1)]N

G2111 ... G211N ... G21[3(M−1)]1 ... G21[3(N−1)]N

G2211 ... G221N ... G22[3(M−1)]1 ... G22[3(N−1)]N

...
...

...
...

...
...

...
G2M11 ... G2M1N ... G2M[3(M−1)]1 ... G2M[3(N−1)]N

...
...

...
...

...
...

...
G[3(M−1)]111 ... G[3(M−1)]11N ... G[3(M−1)]1[3(N−1)]2 ... G[3(M−1)]1[3(N−1)]N

G[3(M−1)]211 ... G[3(M−1)]21N ... G[3(M−1)]2[3(N−1)]1 ... G[3(M−1)]2[3(N−1)]N

...
...

...
...

...
...

...
G[3(M−1)]M11 ... G[3(M−1)]M1N ... G[3(M−1)]M[3(N−1)]1 ... G[3(M−1)]M[3(N−1)]N





































,

C̆ =































c11
c12
...

c1N
c21
c22
...

c2N
...

c[3(N−1)]1
c[3(N−1)]2

...
c[3(N−1)]N































andb̆ =



































f11
f12
...

f1M
f21
f22
...

f2M
...

f[3(M−1)]1

f[3(M−1)]2

...
f[3(M−1)]M



































.

The above linear system of algebraic equations (5.35) consists of 3(M − 1) × M

equations with3(N − 1)× N unknowns. Its solution can be obtained as described at
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the end of subsection 5.3.

5.5.1 Numerical results and discussion

In this section, as the analytical solution is not availablewe will represent only the

direct numerical of the outer derivative which will be used afterwards to determine the

shape and the size of the inner rigid inclusions in Problem3 given by equations (5.1),

(5.3) and (5.6).

Example 3: Consider the numerical solution of the forward problem of Problem

3 using the MFS where the functionf in the boundary condition (5.3) is equal to

u(x, y, z) = x2 + y2 − 2z2.

Solution: ChooseM = N = 16, resulting in45 × 16 = 720 collocation points and

720 source points and setR = 5 andR1,2 = 0.3.

Figure 5.7 illustrates the MFS numerical normal derivatives on the external bound-

ary for fixedM = N = 16 and variousR ∈ {2, 5, 10}. From this figure, it can be

seen that makingR larger does not greatly affect the values of the normal derivative in

terms of stability and smoothness. Figure 5.8 shows the sameMFS numerical values

for fixedR = 5 and variousM = N ∈ {8, 16, 32, 64}. In both Figures 5.7 and 5.8 it is

obvious that the two peaks are caused by the existence of the two inner rigid inclusions.
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Figure 5.7:(a, b, c) the MFS outer derivative(∂u/∂n)MFS
Outer(1, θ, φ), as a functions ofφ/(2π)

andθ/π, whenM = N = 16, R = {2, 5, 10} andR1,2 = 0.3.
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Figure 5.8: the MFS outer derivative(∂u/∂n)MFS
Outer(1, θ, φ), as a functions ofφ/(2π) and

θ/π, whenM = N = {8, 16, 32, 64}, R = 5 andR1,2 = 0.3.
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5.6 The inverse solution for the continuous model of

ERT in three dimensions

We extend the study of [6, 7] concerning the solution of the inverse problem of the

two-dimensional continuous model of ERT to three dimensions. More clearly, we will

invert the continuous model of ERT in three dimensions usingthe same strategy that

has been applied throughout Chapters3 and4 for the CEM, where the MFS direct

solutions were combined with the MCMC method to detect(a) a single inner rigid

object and(b) two rigid inclusions as described in Section4.7. The inclusion model

parameters will be firstly defined and the description of the MFS will then be given.

Also, the necessary modifications in the statistical modelling approach (corresponding

to Sections3.3.1 and3.3.2) will be considered. Finally, numerical simulations are re-

ported to demonstrate the efficiency of the estimation procedure.

5.6.1 Mathematical formulation of one rigid inclusion

Let us assume that we have a three-dimensional star-shaped objectΩInner centered at

the origin in the unit sphereΩ and parametrised by

rij = r(θi, φj), i = 1, (N − 1) j = 1, N, (5.36)

using the spherical coordinated representation

ΩInner = {r(θ, φ) (sin θ cosφ, sin θ sinφ, cos θ) | φ ∈ [0, 2π], θ ∈ [0, π)}. (5.37)

The input data consists of the potential and current flux given by (5.3) and (5.5), re-

spectively.

As in Chapter 3, the boundary potentialu is specified as in (5.3) and the current

flux ∂u/∂n is obtained numerically by solving the direct problem of Problem 2, as
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described in Section 5.4, in order to provide the current fluxdata (5.5). Afterwards,

the potential and current flux values are corrupted with noise as

wi,j = f(xi,j) + ηi,j , vi,j = g(xi,j) + ζi,j, i =M, 2(M − 1), j = 1,M, (5.38)

where the additive noise variablesηi,j andζi,j follow independent Gaussian distribu-

tions which have zero means and variancesσ2
w andσ2

v , respectively.

The rigid-inclusion condition (5.4) must be imposed as

2(N−1)
∑

k=1

N
∑

l=1

cklG
(

ξ
k,l
, ri,j(sin θi cosφj , sin θi sinφj, cos θi)

)

= 0,

i = 1, (N − 1), j = 1, N. (5.39)

It is noticeable that the MFS introduces an extra2(N − 1) × N unknowns which

are represented in the MFS inner and outer coefficients. These coefficients could be

estimated simultaneously with the(N−1)×N radii of the star-shaped object from the

system of equations (5.39), as well as fitting equations (5.17) and the corresponding

approximation of the derivative as a linear combination of fundamental solutions to

match the Cauchy data pair (5.38), that is,

2(N−1)
∑

k=1

N
∑

l=1

cklG(ξk,l, xi,j) = wi,j, i =M, 2(M − 1), j = 1,M, (5.40)

and

2(N−1)
∑

k=1

N
∑

l=1

ckl
∂G

∂n
(ξ

k,l
, xi,j) = vi,j, i =M, 2(M − 1), j = 1,M. (5.41)

Equations (5.39)-(5.41) create a system of(N −1)×N +2(M−1)×M equations

with 3(N − 1) × N unknowns. Although the linearity inc is obvious in equations

(5.40) and (5.41), equation (5.39) clearly shows nonlinearity betweenr andc.

The constraint0 < rij < 1 for i = 1, (N − 1), j = 1, N should be imposed to
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ensure that the inner star-shaped object remains within theunit sphere during the re-

construction process.

5.6.2 Mathematical formulation of two rigid inclusions

Let us assume that we have two three-dimensional star-shaped objectsΩInner1 and

ΩInner2 centered at given points say,(X0, Y0, Z0) and(X1, Y1, Z1) in the unit sphere

Ω and represented byr1 = (r1ij)i=1,(N−1), j=1,N andr2 = (r2ij)i=1,(N−1), j=1,N , respec-

tively.

The boundary potentialu is specified as in (5.3) and the current flux∂u/∂n is ob-

tained numerically by solving the direct problem of Problem3, as described in Section

5.5, in order to provide the current flux data (5.5). Then, the potential and current flux

values are corrupted with noise as

wi,j = f(xi,j) + ηi,j , vi,j = g(xi,j) + ζi,j, i = (2(M − 1) + 1) , 3(M − 1), j = 1,M.

(5.42)

The rigid-inclusion condition (5.6) is imposed as

3(N−1)
∑

k=1

N
∑

l=1

cklG
(

ξ
k,l
, ri,j(sin θi cos φj, sin θi sin φj, cos θi)

)

= 0,

i = 1, 2(N − 1), j = 1, N. (5.43)

Now, it can be seen that the MFS introduces an extra3(N − 1) × N unknowns

which are represented in2(N − 1) × N inner coefficients linked to the source points

of the first and the second inclusions, and(N − 1) × N outer coefficients linked to

the external source points. These coefficients are estimated simultaneously with the

2(N − 1)×N radii of the star-shaped objects from the system of equations (5.43), as

well as fitting equations (5.27) and the corresponding approximation of the derivative

as a linear combination of fundamental solutions to match the Cauchy data pair (5.42),
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that is,

3(N−1)
∑

k=1

N
∑

l=1

cklG(ξk,l, xi,j) = wi,j, i = (2(M − 1) + 1) , 3(M − 1), j = 1,M,

(5.44)

and

3(N−1)
∑

k=1

N
∑

l=1

ckl
∂G

∂n
(ξ

k,l
, xi,j) = vi,j, i = (2(M − 1) + 1) , 2(M − 1), j = 1,M.

(5.45)

Equations (5.43)-(5.45) create a system of2(N−1)×N+2(M−1)×M equations

with 5(N − 1)×N unknowns.

We need to take into account that the distance between the centres should be greater

than the sum of the diameters

S =
√

(X0 −X1)2 + (Y0 − Y1)2 + (Z0 − Z1)2 > diam(ΩInner1) + diam(ΩInner2),

(5.46)

where the diameters ofΩInner1 andΩInner2 are defined in equations (4.13) and (4.14),

respectively, withx = (x1, x2, x3) andy = (y1, y2, y3).

5.6.3 Statistical modelling in three-dimensions

The only modifications to the statistical modeling (Section3.3.1) is that the data and

the model parameters become matrices instead of vectors. Considering the case where

we have one rigid inclusion, the potential values arew = (wi,j)i=M,2(M−1), j=1,M and

the current flux valuesv = (vi,j)i=M,2(M−1), j=1,M , whilst the model parameters are the

radii r = (ri,j)i=1,(N−1), j=1,N and MFS coefficientsc = (ck,l)k=1,2(N−1), l=1,N . The

formulas of the likelihoods, the priors and the hyper-prior, and the full posterior distri-
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bution stay the same after giving consideration to the dimensionality of each variable.

Experiment 1. Find the inverse solution of Problem2(a) by fitting:

(a) A spherical object model using the data from a spherical inclusion of radius0.5

centred at(0, 0, 0).

(b) A star-shaped object model using the data from a spherical inclusion of radius0.5

centred at(0, 0, 0).

First of all, we calculate numerically the current flux∂u/∂u on the external boundary

∂ΩOuter by solving the forward Dirichlet problem (5.1) and (5.3)-(5.4), as in Example

2, using the MFS with(N−1)N = 35×36 = 1260. Then, the measured potential and

current flux (5.38) are calculated on a mesh of equally-spaced collocation points, with

(M − 1)M = 13× 14 = 182, on the external fixed boundary of∂ΩOuter. Data defined

in (5.38) is generated by adding Gaussian noise to those boundary measurements with

a standard deviationσw = σv = 0.01.

We take(N−1)N = 14×15 = 210 which makes the discretised problem (that de-

fined in (5.39)-(5.41)) under-determined, since it consists of(N−1)N+2(M−1)M =

210 + 2 × 182 = 574 equations with3(N − 1)N = 3 × 210 = 630 unknowns. We

takeηI = 0.6, R = 5 andR1 = 0.3.

Secondly, the hierarchical structure of the statistical model in the right side of Fig-

ure 3.8 is considered here. Moreover, is it reasonable to usethe same hyper-prior

parameters that have been used in [6] and worked well for Experiment 3.3. So, we fix

the values of the hyper-prior parameters of the internal andexternal MFS coefficients

atαCI
= 0.0116 andαCE

= 0.2457, respectively, as well as the hyper-prior parameter

value for the radius atαr = 0.1.
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Figure 5.9:Spherical model reconstruction: the estimated radius for various MCMC iterations
K ∈ {5, 10, 20, 40}, for with full posterior distribution with hyper-prior parameters (αr = 0.1,
αCI

= 0.0116 andαCI
= 0.2457).

For both reconstruction cases(a) and(b), the constraint0 < ri,j < 1 is required to

ensure that the reconstruction of the inner object stays within the unit sphere at each

iteration of the MCMC. However, in Case(a) the radiiri,j are equal, hence only one

radius is estimated in addition to the2(N − 1)×N coefficients.

Figure 5.9 shows the three-dimensional reconstruction. Itcan be seen that, as the

number of MCMC iterations increaseK ∈ {5, 10, 20, 40}, the corresponding esti-

mated radius{0.4884, 0.4930, 0.4977, 0.4987} becomes closer to the true value which

is 0.5 with relatively small standard deviation.

Figure 5.10 illustrates the three-dimensional reconstruction for the star-shaped model.

It can be seen that, as the number of MCMC iterations increase, the average of corre-

sponding estimated radii becomes closer to the true value which is0.5 and its standard

deviation is much smaller (i.e. whenK = 40 the estimated radius is0.4968 with cor-

responding standard deviation0.0094).
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Figure 5.10:Star-shaped model reconstruction: the estimated radius for various MCMC it-
erationsK ∈ {5, 10, 20, 40}, for with full posterior distribution with hyper-prior parameters
(αr = 0.1, αCI

= 0.0116 andαCI
= 0.2457).

Experiment 2. Find the inverse solution of Problem2(b) by fitting a star-shaped object

model using the data from an ellipsoid inner inclusion of radius

r(θ, φ) =
√

(0.5 sin θ cos φ)2 + (0.5 sin θ sin φ)2 + (0.4 cos θ)2,

θ ∈ (0, π), φ ∈ [0, 2π).

centred at(0, 0, 0), where the Dirichlet data on∂ΩOuter is taken as

u(x, y, z) = ex+y, (x, y, z) ∈ ∂ΩOuter.

We apply the MFS with the same inputs as in Experiment 1.

Figure 5.11 shows an excellent three-dimensional reconstruction for the ellipsoid

star-shaped model. The MCMC algorithm converges to the exact ellipsoid within just

a few iterations with a run time, forK = 80, at about three hours.
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Figure 5.11:Star-shaped model reconstruction: The exact inner ellipsoid, and the fitted ellip-
soids for various MCMC iterationsK ∈ {5, 10, 20, 40, 80}, with prior parameters (αr = 0.1,
αCI

= 0.0116 andαCI
= 0.2457).

One way to illustrate that the MCMC works well is to consider the 2-norm values

of (rMFS
i,j − rexacti,j ), wherei = 1, 14, j = 1, 15, as well as the maximum absolute error

values which are calculated over the grid forK ∈ {5, 10, 20, 40, 80}, see Table 5.1.

The random fluctuations suggest that the algorithm is in equilibrium and mixing well.
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Table 5.1:The 2-norm of a(rMFS
i,j − rexacti,j ) and the maximum absolute error of the same

matrix, over the meshi = 1, 14, j = 1, 15, for Experiment 2 and corresponding to various
number of MCMC iterationsK ∈ {5, 10, 20, 40, 80, 160, 320}.

K ||rMFS
i,j − rexacti,j || max |rMFS

i,j − rexacti,j |
5 0.0068 0.0063

10 0.0053 0.0036
20 0.0066 0.0036
40 0.0086 0.0052
80 0.0084 0.0031

160 0.0102 0.0028
320 0.0168 0.0047

A better way to illustrate that the MCMC algorithm preforms well is to investigate

the reliability of the obtained reconstructions in Figure 5.11 by running the same re-

constructing code for2000 iterations. This took three days of running time. Figure

5.12 plots the object boundary credible intervals for some cross-sections of the three-

dimensional reconstruction in thexy-plane. From this figure, it can be seen that the

width of the credible intervals is very narrow near the top and the bottom of the recon-

structed ellipsoid compared to the ones at the middle. The occurrence of such width

differences is physically interpreted as having less data points around the ellipsoid cen-

tre while there is more data towards the extreme top and bottom.
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Figure 5.12:Credible intervals for various cross-sectionsθ = { π
14 ,

3π
14 ,

6π
14 ,

8π
14 ,

11π
14

13π
14 } and

(φ)j=1,15 ∈ [0, 2π).

An alternative way to examine the accuracy and uncertainty is to consider the sur-

face of the standard deviation shown in Figure 5.13. It can beseen that the standard

deviation values over the gridi = 1, 14, j = 1, 15 are close to each other but show an

ellipsoidal pattern. This confirms that the MCMC algorithm is correctly implemented.
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Figure 5.13:The standard deviation over the chosen mesh.

As the standard deviation values are small over the selectedgrid, henceforth, it is
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sufficient to consider the reliability of the reconstruction and efficiency of the MCMC

method using only the credible intervals.

Experiment 3. Find the inverse solution of Problem3 by fitting a star-shaped object

model using the data from two spherical inclusions of radii0.4 centred at(0, 0.5, 0)

and(0,−0.5, 0).

Firstly, we calculate the current flux∂u/∂u numerically on the external boundary

∂ΩOuter by solving the forward Dirichlet problem (5.1), (5.3), (5.5) and (5.6) using the

MFS with the same inputs as in Experiment 1. However, we take into account that

extending the number of rigid inclusions to two leads to a bigger number of equa-

tions, 2(N − 1)N + 2(M − 1)M = 2 × 210 + 2 × 210 = 840 equations with

5(N − 1)N = 5× 210 = 1050 unknowns.

Figure 5.14 illustrates excellent three-dimensional reconstruction for the two star-

shaped models compared to the exact one. The MCMC algorithm provides very good

estimation for both inclusions compared to the truths afterfew iterations. Figure 5.15

shows the credible intervals over some selected cross-sections of the three-dimensional

reconstructions to ensure the certainty of the solution.
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Figure 5.14: Star-shaped models reconstruction: The exact inner spheroids and the fitted
spheroids for various MCMC iterationsK ∈ {5, 10, 20, 40, 80}, with prior parameters (αr =
0.1, αCI

= 0.0116 andαCI
= 0.2457).
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Figure 5.15:Credible intervals for various cross-sectionsθ = { π
14 ,
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14 ,
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14 } and

(φ)j=1,15 ∈ [0, 2π).

5.7 Conclusion

The MFS has been successfully used in combination with the MCMC method to solve

the three-dimensional inverse problem in the continuous model of ERT. In the first in-

stance, a series of examples have been solved by the MFS in order to obtain the forward

solutions of direct problems in a simply-connected domain (Problem 1), multiply-

connected domain either with a spherical rigid inclusion orwith an elliptical rigid

inclusion (Problem 2). These solutions are represented in terms of the MFS outer

boundary derivative, the MFS inner boundary derivative andthe MFS interior solutions

and are compared with the corresponding exact solution. TheMCMC reconstruction

method successfully detects the three-dimensional inner sphere or ellipsoid. The pur-

pose of considering Examples 1-3 was to investigate and discuss the influence of the

number of collocation and source points, as well as their locations. Furthermore, the

only difference in the statistical modelling in the three-dimensional approach was that

we have to deal with matrices instead of vectors (Chapters 3 and 4) in terms of the

data and model parameters. Numerical results illustrate very good reconstructions for
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the inner objects in Problems 1-3. This is justified by the accuracy and efficiency of

using MCMC algorithm which has been verified by plotting cross-sections of credible

intervals.
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Conclusions

6.1 Summary

This thesis has dealt with a novel approach to solve electrical tomography problems.

This approach can be described briefly as follows. The MFS is applied to direct ERT

problems subject to the CEM or continuous model boundary conditions. Potential and

current flux or voltages are used in an MCMC reconstruction algorithm in order to suc-

cessfully detect the shape, the size and the position of inner rigid inclusions contained

within a given underlying domain. The special kind of inverse problems considered

in this thesis are called inverse geometric problems and they occur in many real life

applications where the inner object is not known and needs tobe determined.

In Chapter 1, the direct CEM problem of ERT is a well-posed problem because it

satisfies the existence, uniqueness and stability properties [61]. Also, it describes the

potential and current flux on the boundary which lead to the calculated voltages. The

inverse ERT problem aims to reconstruct an inner inclusion from voltage measure-

ments for a wide range of injected current patterns and it is severely ill-posed, since a

big change in the conductivity distribution may result in a very small variation in the

measured boundary voltages.

In Chapter 2, the two-dimensional CEM of ERT has been described by Laplace’s

equation subject to integrated Robin boundary conditions where the electrochemical

165
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effect between the attached electrodes and the surface of the object has been added to

the shunt model. Moreover, the BEM and the MFS have been applied to find the for-

ward solutions. These solutions were represented by the potential, current flux and the

voltages on the boundary and the interior potential. These were and examined for dif-

ferent ERT problems where the domain was simply-connected or multiply-connected

(containing either a rigid inclusion or a cavity). The methods were also extended to

obtain the forward solutions of composite bi-materials. The BEM was considered as

the ‘exact’ solution because in such ERT problems the analytic solutions are impossi-

ble to be obtain. Moreover, the BEM solution is convergent and stable.

Chapter3 has presented the solution of the inverse CEM of ERT in planardomains

with a rigid inclusion inside using the MCMC and the MFS. Firstly, the MFS numeri-

cal values of forward solutions for the potential and current flux on the outer boundary

have been compared for circular, elliptical and bean-shaped rigid inclusions in order

to show the data sensitivity to the geometric shape changes of the inner object. This

ensured that such data is useful for finding the inverse solution of CEM problem. More-

over, the interior equipotential lines show that for a single current pattern injecting on

opposite sides defined in (3.4) is better than applying an adjacent current pattern, such

as (3.3), when we solved the inverse CEM problems. This is because more of the

doubly-connected domain is scanned by the isolines. In the second part of Chapter 3,

a set of experiments has been carried out to determine the shape and the size of in-

ner rigid inclusions based on combination of the MFS direct solver and the statistical

modeling approach which has first been used in [6, 7] for rigidinclusion reconstruc-

tions in two-dimensional continuous model problems. Specially written MCMC code

has been used to reliably estimate the model parameters (theMFS coefficients and the

radii) of the inner object. The output was also used for plotting error estimates, ob-

ject boundary histograms, object boundary credible intervals, fitted inclusion, and to

estimate MFS coefficients (with credible intervals). In initial experiment, the optimal

hyper-prior parameters fixed values considered in [6] were used. These worked well

for the simple experiment of fitting a circular object data truth object whenL = 2,
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Experiment 1. After that, the hyper-prior parameters of theradii were varied and an

excellent reconstruction of fitting a star-shaped object from true circle data, Experi-

ment 3, has been achieved. However, fitting a star-shaped object to elliptical true data

whenL = 2 (Experiment 4) did not provide as successful a reconstruction for the inner

object as the one in Experiment 3. This is why, at this point ofresearch, we decided

to move to the more practical case when the number of electrodes is extended to four

and the data type is changed to be voltage measurements. In this case, three different

current patterns were injected simultaneously and a set of 12 voltages were collected.

The hyper-prior parameters of MFS coefficients and radii model parameter in Experi-

ments 5-7 have been slightly changed by multiplying the previous choice by ten. This

resulted in much improvement in the inner object reconstruction when we fitted a star-

shaped object using data from a circular or an elliptical inclusion, Experiments 6 and

7. In the last section of Chapter 3, we extended the number of electrodes to eight to

create more realistic experiments. This produced seven current patterns which resulted

in 56 voltage measurements. The accuracy of the object reconstruction was very good.

This was obvious from the small estimated errors, the tiny object boundary histogram,

the narrow object boundary credible intervals linked to theinner and outer MFS coef-

ficients, see Experiments 8 and 9.

In Chapter4, the identification of the centre of a rigid inclusion along with the

constant contact impedances and extension to multiple rigid inclusions have been con-

sidered. We have utilised the same technique as before basedon the MFS and MCMC

method and we have run three sets of experiments. The purposeof Experiment 1 was

to detect the shape, the size and the position of a star-shaped object whenL = 4 and

L = 8 (this showed better object reconstruction and more accurately estimated centre).

Experiment 2 was to identify the radii and centre of a rigid inclusion based on voltage

data collected from a circular true inclusion, as well as to estimate the contact contact

impedances along (this provided good results). In Experiment 3, we extended the work

to detect two rigid inclusions which means, in fact, estimated two sets of radii, in ad-

dition to estimating the centres of the two inclusions.
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In Chapter5, an extension to solve the three-dimensional ERT problem has been de-

veloped. The same strategy of combining the MFS and MCMC method was employed

in order to solve the inverse continuous model problems of ERT in three-dimensional

domains. This investigation will pave the way towards very practical experiments of

solving the inverse CEM in three dimensions (future work). Examples 1-4 examined

and compared the forward solutions for the outer derivative, the inner derivative and

the interior solutions. In terms of solving the inverse problems, we used noisy Cauchy

data in order to estimate the model parameters. Extending tothree dimensions has

caused some slight changes in the statistical modeling approach where the measured

data and the model parameters were represented in matrix forms instead of vectors

in two dimensional problems (Chapters 3 and 4). In all experiments, the star-shaped

model reconstructions showed very good fitted objects for both one inner (Experiments

1 and 2) or two inner rigid inclusions (Experiment 3).

In summary, the inverse problems of ERT have been solved using MFS forward

solutions combined with the MCMC method. Most rigid inclusion reconstructions

and model parameters have been well-estimated with very small estimated errors, esti-

mated standard deviation and very narrow credible intervals. This gives us insight into

solving real applications of ERT in future.

6.2 General conclusions

In this thesis, all the obtained MFS forward solutions of ERTproblems were very

accurate since they provide very good agreement with the BEMsolutions. Neverthe-

less, the MFS is much easier to implement especially in three-dimensions, than the

BEM as it is a meshless method. Although applying the MFS to the same set of two-

dimensional ERT problems shows some instability that occurs when the degrees of

freedom become very largeN = M = 256, we have demonstrated that for lower val-

uesN = M ∈ {16, 32, 64, 128} its accuracy and stability were excellent compared to
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the BEM numerical solutions. It turns out to be sufficient to chooseN = M = 16 for

three-dimensional cases to produce very accurate and stable MFS numerical solutions.

In addition, the computational time is much smaller when theMFS has been applied.

This has a big advantage which clearly appears when the MFS direct solver is called

thousands of times in the inverse problems as in the MCMC estimation algorithm. This

advantage is enhanced when three-dimensional reconstruction was considered, where

choosingN = M = 16 resulted in a large number of3(M − 1)M = 720 collocation

points and3(N − 1)N = 720 of source points.

We have considered two ways of collecting the input data in order to find the inverse

solution of the CEM in ERT. Firstly, we injected a single current through electrodes

then calculated the potential and current flux at equally-spaced points on the outer

boundary. It was proved that using two opposite electrodes has produced better recon-

struction than applying the single current via adjacent electrodes. However, there is an

ideal way of collecting data and providing better results, where we applied multiple

current patterns and then equation (2.4) is used to calculate the voltages. Increasing

the number of the current patterns allows us to obtain more voltage data which, in turn,

leads to much better object reconstructions. As for solvingthe inverse problem of the

three-dimensional continuous model, the data was only a Cauchy pair of the boundary

potential and current flux which also provided excellent results.

We have clarified, through a series of experiments, that the proposed strategy of

using the Bayesian statistical framework (which is linked to the MFS direct solver) is

a very successful approach to solving ERT problems. Furthermore, the model param-

eters (this could be the radii, MFS coefficients, the centre coordinates or the contact

impedance values) have been well-estimated. We have demonstrated that the MCMC

algorithm does not only provide the desired solutions but also assess the uncertainties

and the reliability of those estimators by standard deviations, as well as by visualising

the object boundary histograms and credible intervals.
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6.3 Future work

So far, we have shown that the MFS combined with the Bayesian statistical approach

can be developed for solving inverse geometric problems governed by Laplace’s equa-

tion in two and three dimensions. This corroborates the ideathat the MFS combined

with the MCMC algorithms can be implemented for other related work, such as:

(i) An inverse geometric problem related to solve the CEM of ERT in two and three

dimensions of Chapter 2 for a cavity (replacing equation (3.2) by (2.46)) and for

bi-material composite (replacing equation (3.2) by equations (2.50) and (2.50)).

(ii) Another possible future work is to reconstruct more complicated shapes of inclu-

sions and extend the analysis to solve three-dimensional inverse CEM of ERT.

(iii) Assuming the number of rigid/cavity inclusions in (continuous model/CEM) prob-

lem of ERT is not known, determine that number, as well as detect the location,

the shape and the size of each inclusion.

(iv) Invert real data collected directly from the patient.
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Uniqueness proofs and density results

This appendix aims to cite the most significant theoretical results that are linked to the

thesis, namely:

(i) The boundary curve of the inner rigid inclusion is uniquely detected from one

pair of non-trivial Cauchy data specified on the external boundary, [29, 46].

(ii) Density results for the MFS applied to two and three-dimensional potential prob-

lems, [14, 60].

(iii) Well-posedness of the complete-electrode model (CEM), [61].

A.1 Uniqueness in determining a rigid inclusion

Assume thatΩ = ΩOuter\ΩInner (with ΩInner ⊂ ΩOuter) is an annular domain in

R
n, n = 2, 3, with boundary∂Ω = ∂ΩOuter ∪ ∂ΩInner. To determine the unknown

boundary∂ΩInner of a perfectly conducting inclusion (rigid inclusion), we have to

solve the following inverse boundary value problem:

Given a single pair of Cauchy data(f, g) on ∂ΩOuter we wish to determine∂ΩInner

and a functionu ∈ C2(Ω) ∩ C(Ω) which satisfy the Laplace’s equation

∆u = 0 in Ω (A.1)
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subject to

u = 0 on ∂ΩInner (rigid inclusion), (A.2)

and the Cauchy data specification

u = f on ∂ΩOuter, (A.3)

∂u

∂n
= g on ∂ΩOuter. (A.4)

The following theorem, [29, 46], gives the uniqueness of theinverse problem (A.1)-

(A.4).

Theorem 1. Let ∂ΩInner = Γ and ∂Ω̃Inner = Γ̃ be two closed curves which are

contained in the interior ofΩOuter and denote byu and ũ the solutions to the forward

well-posed Dirichlet problems (A.1)-(A.3) with the inner boundariesΓ and Γ̃, respec-

tively. Assuming thatf 6≡ 0 and

∂u

∂n
=
∂ũ

∂n
(A.5)

on an open set of∂ΩOuter thenΓ = Γ̃.

Proof. From (A.5) and Holmgren’s uniqueness theorem we can obtain that u = ũ

in the connected componentV of ΩOuter\(ΩInner ∪ Ω̃Inner) which contains the ex-

terior boundary∂ΩOuter. Without loss the generality, we can consider thatV ∗ :=

(ΩOuter\V )\ΩInner is a non-empty set. As a result,u is defined inV ∗ because it de-

scribes the solution of problem (A.1)-(A.3) forΓ. Moreover,u is harmonic inV ∗,

continuous inV
∗
, as well as it satisfies the homogeneous boundary conditionu = 0 on

∂V ∗. This boundary condition shows that each boundary point∂V ∗ either belongs to

Γ or to∂V ∩ Γ̃.
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Now, forx ∈ Γ we haveu(x) = 0 because of the boundary condition foru, and for

x ∈ Γ̃ we haveu(x) = ũ(x). Hence,u(x) = 0 due to the homogeneous boundary con-

dition for ũ. Now, using the maximum principle for harmonic functions wecan obtain

thatu = 0 in V ∗, and from this it follows thatu = 0 in Ω. Finally, this contradicts the

fact thatf 6≡ 0 on∂ΩOuter and this completes the proof of uniqueness.

A.2 Density results for the solutions of harmonic prob-

lems

In this section, the following Dirichlet problem for Laplace’s equation is considered:











▽2u = 0 in Ω ⊂ R
n,

u = f on ∂Ω.

(A.6)

In (A.6), the domainΩ is bounded, otherwise a condition at infinity should be added.

Let the functionG(x, y) = e1(x− y) define the fundamental solution of the elliptic

Laplacian operator, where

e1(x) =











− log |x|
2π

, if n = 2,

− |x|2−n

(2−n)γn−1
, if n > 2,

(A.7)

andγn−1 is the area of the surface of the unit spheroidSn−1 in R
n. When we apply

the MFS, we seek the approximated solution of the problem (A.6) as a finite linear

combination of fundamental solutions,

uN(x, c) =

N
∑

j=1

cjG(x, yj) =

N
∑

j=1

cje1(x− y
j
), x ∈ Ω, (A.8)



Appendix A. 174

where the ’singularities’y
j
∈ R

n\Ω and the MFS coefficients{cj}j=1,N are deter-

mined by applying the boundary conditionu = f on∂Ω.

We investigate whether the span of the space of the finite linear combinations (A.8)

is dense in the space of harmonic functions inΩ, where the sources (’singularities’)

{y
j
}j=1,N lie on a prescribed pseudo- boundary∂Ω′ enclosing the domainΩ. More

rigorously, we have the following definition on where the MFSsources are located.

Definition 1. ConsiderΩ andΩ′ be open connected subset ofR
n. We say thatΩ′

embracesΩ if Ω ⊂ Ω′, andΩ′\Ω does not contain any closed connected components.

The SpaceCλ(Ω)

The spaceCλ(Ω), whereλ ∈ N, contains all functionsu which, together with all their

partial derivativesDαu of orders|α| ≤ λ, are continuous inΩ. The spaceCλ(Ω) con-

sists of all functionsu ∈ Cλ(Ω) for whichDαu is uniformly continuous and bounded

in Ω for every|α| ≤ λ. This it is a Banach space with the norm

|u|λ,Ω = max
|α|≤λ

sup
x∈Ω

|Dαu(x)|. (A.9)

The following theorem states the density result which warrants the application of

the MFS for solving the problem (A.6).

Theorem 2. (see [60])LetΩ ⊂ Ω′ be domains inRn such thatΩ′ embracesΩ. Then,

the spaceX of finite linear combination
∑N

j=1 cje1(x−yj), wheree1 is defined in (A.7)

and the sequence{y
j
}j=1,N ⊂ ∂Ω′, is dense in

Yλ := {u ∈ C2(Ω);∆u = 0 in Ω} ∩ Cλ(Ω), (A.10)

with respect to the norm (A.9) of spaceCλ(Ω) if n ≥ 3. If n = 2, then the linear sum

X ⊕ {c.1|Ω; c ∈ R} is dense inYλ with respect to the same norm.
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A.3 Well-posedness of the CEM

The CEM which was described in equations (2.1) and (2.3)-(2.5), does formulate well

if the conservation of charge is included

L
∑

p=1

Ip = 0, (A.11)

since this condition is needed for existence of a solution. Also, a condition specifying

the zero potential (the ground) is needed for solution uniqueness, [61],

L
∑

p=1

Up = 0. (A.12)

Now, to prove the uniqueness for the CEM, we assume that thereare two solutions

(u, U) and(û, Û) inH = H1(Ω)⊕R
L of equations (2.1) and (2.3)-(2.5) which satisfy

conditions (A.11) and (A.12). We let

(v, V ) = (u, U)− (û, Û); (A.13)

this means that(v, V ) satisfies (2.1), (2.4), (2.5) and

∫

εp

∂v

∂n
ds = 0. (A.14)

Hence, our solution consists of the electric potential in the interior which denoted by

v, as well asL surface voltages denoted byV .

Using Green’s formula and equation (2.1), we obtain

0 =

∫

Ω

v▽ · ▽ v dx =

∫

∂Ω

v
∂v

∂n
ds−

∫

Ω

|▽v|2dx. (A.15)



Appendix A. 176

We substitute condition (2.4) into (A.15) to obtain

∫

Ω

|▽v|2dx =

L
∑

p=1

∫

εp

(

Vp − zp
∂v

∂n

)

∂v

∂n
ds. (A.16)

With the help of (A.14) using thatVp is constant overεp, one can rewrite (A.16) as

∫

Ω

|▽v|2dx = −
L
∑

p=1

∫

εp

zp

∣

∣

∣

∣

∣

∂v

∂n

∣

∣

∣

∣

∣

2

ds. (A.17)

Sincezp ≥ 0 it follows that both sides of equation (A.17) are equal only if they are

zeros. This means thatv is constant. From (2.4), this means that all the voltagesVp’s

are also equal to the same constant. In addition to this, from(A.12) it can be seen that

this constant must be zero. Hence, we have proved that(v, V ) = (0, 0) which implies

the uniqueness of the solution of the CEM.
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