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Abstract

In this thesis, we address problems encountered in complex network analysis using graph

theoretic methods. The thesis specifically centers on the challenge of how to characterize

the structural properties and time evolution of graphs. We commence by providing a

brief roadmap for our research in Chapter 1, followed by a review of the relevant research

literature in Chapter 2. The remainder of the thesis is structured as follows.

In Chapter 3, we focus on the graph entropic characterizations and explore whether

the von Neumann entropy recently defined only on undirected graphs, can be extended

to the domain of directed graphs. The substantial contribution involves a simplified form

of the entropy which can be expressed in terms of simple graph statistics, such as graph

size and vertex in-degree and out-degree. Chapter 4 further investigates the uses and

applications of the von Neumann entropy in order to solve a number of network analysis

and machine learning problems. The contribution in this chapter includes an entropic edge

assortativity measure and an entropic graph embedding method, which are developed for

both undirected and directed graphs.

The next part of the thesis analyzes the time-evolving complex networks using physical

and information theoretic approaches. In particular, Chapter 5 provides a thermodynamic

framework for handling dynamic graphs using ideas from algebraic graph theory and sta-

tistical mechanics. This allows us to derive expressions for a number of thermodynamic

functions, including energy, entropy and temperature, which are shown to be efficient in

identifying abrupt structural changes and phase transitions in real-world dynamical sys-

tems. Chapter 6 develops a novel method for constructing a generative model to analyze

the structure of labeled data, which provides a number of novel directions to the study of

graph time-series. Finally, in Chapter 7, we provide concluding remarks and discuss the

limitations of our methodologies, and point out possible future research directions.
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Chapter 1

Introduction

In this chapter, we provide a roadmap for the research presented in this thesis. Specifically,

we give the motivation of our research, i.e., the reason why we are interested in the study

of the characterization and time evolution of complex networks. To commence, we address

the problems encountered in the network science literature and show what the state-of-

the-art solutions for these problems are. Then, we present our research goals of the thesis,

which are to develop novel methods for characterizing the structural complexity and time

evolution of complex networks. We provide a brief overview of how we will accomplish

these research goals, i.e., the novel contributions we will make in the remainder of the

thesis. Finally, this chapter concludes with an outline of the rest of the thesis.

1.1 Problems in Network Science

The study of networks has been one of the fundamental branches of discrete mathematics.

In 1736, Leonhard Euler has published the solution to a historically notable mathematics

problem, namely the Seven Bridges of Königsberg [94]. This work is often cited as the

foundation of graph theory, which has continued to develop into a substantial body of

knowledge in the following centuries. Recently, however, there has been a new movement

in network research, with a considerable interest in studying the statistical properties

of large-scale complex networks. This is due to the fact that they play a crucial role

in revealing essential features of the structure, function and dynamics of many large-

scale systems in biology, physics and the social sciences [3] [28] [34]. In fact, complex

networks provide convenient models for complex systems. Specifically, a complex network

is a diagrammatic representation of a complex system. It consists of vertices, which
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Figure 1.1: The problem of Seven Bridges of Königsberg: finding a way to walk around

the town that would cross each bridge once and only once. Picture taken from Wikipedia

https://en.wikipedia.org/wiki/K%C3%B6nigsberg.

represent the components of the system, and edges that connect pairs of vertices, and

which represent the interconnections between the components. For instance, a social

network can be represented by a network whose vertices represent individuals and whose

edges are the social relationships between individuals.

To render such representations tractable, it is essential to have to hand methods for

characterizing their salient properties. One way of viewing complex networks is as graphs

whose connectivity properties deviate from those of regular graphs [34]. Whereas regular

graphs can be thought of as simple, complex networks are highly non-regular in structure.

Structural complexity is therefore perhaps the most important characteristic of a complex

network as it reveals the way in which vertices and edges are arranged in the network,

providing a significant influence on the network function and performance [47]. Computa-

tionally efficient measures for assessing structural complexity are therefore an imperative

tool in the analysis of complex networks.

Graph theory offers an attractive route to such complexity measures since it provides

effective tools for characterizing network structure together with their intrinsic complexity.

This approach has led to the design of several practical methods for characterizing the

global and local structure of undirected graphs [95] [35]. A good recent review of the state-

of-the-art can be found in the collection of papers edited by Dehmer and Mowshowitz [39].

However, while the problem of characterizing the structural complexity of undirected

graphs is well studied, there is relatively little literature aimed at studying the structural
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1.1 Problems in Network Science

features of directed graphs. One of the reasons for this is that the graph theory underpin-

ning directed graphs is less developed than that for undirected graphs. In the real world,

those complex networks represented by directed graphs are perhaps even more common

than those represented by undirected graphs. For example, the World Wide Web is a di-

rected network in which vertices represent web pages and edges are the hyperlinks between

pages. Another common example is furnished by citation networks in which the vertices

are scholarly papers while the edges are the citations between them. One recent exception

is the work of Riis [109] who has extended the computation of entropy to directed graphs,

using the concepts of guessing number and shortest index code. The author shows that

the entropy is the same as the guessing number and is bounded by the graph size and

the shortest index code length. Berwanger et al. [16] have proposed a new parameter

for the complexity of infinite directed graphs by measuring the extent to which cycles in

graphs are intertwined. Recently, Escolano et al. [45] have extended the heat diffusion-

thermodynamic depth approach for undirected networks to directed networks and thus

obtain a means of quantifying the complexity of structural patterns encoded by directed

graphs. To fill this important gap in the literature, one of the research goals in this thesis

is to develop novel and effective methods for quantifying the structural complexity for di-

rected networks. To this end, we explore whether a number of characterizations developed

only on undirected graphs can be extended to the domain of directed graphs, using some

recent results from spectral graph theory.

Turning attention to a substantial branch in machine learning, namely the statistical

pattern recognition, we note that the feature-vector-based methods are often used since

they provide powerful and flexible tools for representing patterns. On the other hand,

graph-based representations, which are employed in the area of structural pattern recog-

nition, have proved to be an elegant means of implementing pattern characterization tasks,

due to the fact that they have a number of advantages over feature vectors. For instance,

graphs can represent more structural information of a pattern than feature vectors [108].

With such structural features to hand, especially multi-dimension ones, then problems

such as graph embedding, clustering and classification can be addressed using standard

machine learning and pattern recognition techniques. Motivated by the utility of both

feature-vector-based methods and graph-based representations, in the thesis we seek a

way to preserve the advantages of these two approaches. In particular, we aim to develop

a method based on information theory to extract multi-dimensional graph features, which
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can be served as a long-vector for characterizing the structure of both undirected and

directed graphs. We also show that by performing principal component analysis (PCA)

on the feature vectors for samples, we manage to embed populations of graphs into a

low-dimensional feature space.

Over the recent years, there has been a vast amount of effort expended on the problems

of how to represent networks, and from this representation derive succinct characteriza-

tions of network structure and in particular how this structure evolves with time [62] [4] [2].

Broadly speaking the representations and the resulting characterizations are goal-directed,

and have centered around ways of capturing network substructure using clusters, or no-

tions such as hubs and communities [94] [47] [50] [39]. Here the underlying representations

are based on the connectivity structure of the network, or statistics that capture the

connectivity structure such as degree distributions [5] [6].

A more principled approach is to try to characterize the properties of networks using

ideas from statistical physics [64] [67]. Here the network can be succinctly described

using a partition function, and thermodynamic characterizations of the network such as

entropy, total energy and temperature can be derived from the partition function [89] [41]

[53]. However, to embark on this type of analysis, the microstates of the network system

must be specified and a clear interpretation of the network thermodynamics provided.

This approach has provided some deep insights into network behaviour. For instance,

in the work [18], the Bose-Einstein partition function is used to model a Bose gas on a

network, and the process of Bose condensation and its quantum mechanical implications

have been studied. This model has also been extended to understand processes such as

super-symmetry in networks [17].

Although the bulk of existing network theory is concerned with static networks, most

networks are in reality dynamic in nature. Specifically, networks grow and evolve with

the addition of new components and connections, or the rewiring of connections from

one component to another [2]. Motivated by the need to fill this gap in the literature

and to augment the methods available for understanding the evolution of time-varying

networks, in this thesis we aim to establish a thermodynamic framework for analyzing the

structural evolution of time-varying networks. We also aim to develop a novel method for

constructing a generative model to analyze the underlying average connectivity structure

of dynamic networks (or graph time-series). We explore how this model can be fitted to the

graph time-series data using an information theoretic approach that aims at minimizing
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a description length criterion, with the von Neumann entropy encoding the complexity

of the model. We then present a new fixed-point iteration scheme to locate the optimal

structure of the generative model. This method explores a number of new perspectives on

the study of time-evolving networks.

1.2 Research Goals

To address these problems encountered in network science and to make contributions to

developing novel and efficient graph-based methods, the research goals in this thesis are

the following:

• To explore whether a number of graph complexity measures previously defined only

on undirected graphs, can be extended to the domain of directed graphs. Specifi-

cally, we aim to develop the directed analogues of the von Neumann entropy [99]

and Estrada’s heterogeneity index [46], by making use of some recent results from

spectral graph theory concerning the construction of the normalized Laplacian ma-

trix for directed graphs [31].

• To explore a number of uses and applications based on the development of the

approximate von Neumann entropy of both undirected and directed graphs. In par-

ticular, we aim to investigate whether these applications can be used to quantify the

entropic assortative mixing properties of networks and to deal with network analysis

and machine learning problems, such as structural pattern recognition.

• To develop a novel method for characterizing the evolution of time-varying complex

networks. Specifically, we aim to adopt a thermodynamic representation of network

structure computed from a) a polynomial (or algebraic) characterization of graph

structure and b) a statistical mechanical approach that associate the microscopic

configurations with the eigenstates of the normalized Laplacian spectrum of a net-

work respectively. Both approaches allow us to derive expressions for a number of

thermodynamic functions including the energy, entropy and temperature.

• To develop a novel method for constructing a generative model to analyze the struc-
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ture of a set of labeled graphs. In particular, the vertex set is fixed and the set of

possible connections between vertices change between samples in the graph data.

The generative model aims to represent these changes with a Gaussian probability

distribution for the connection weights on each individual edge. We fit this model

to the sample graph data by minimizing a description length criterion, with the von

Neumann entropy controlling the complexity of the fitted model structure and the

Gaussian log-likelihood controlling the mean edge weights and variances. Then, we

aim to obtain the optimal model structure by processing a new fix-point iteration

scheme.

1.3 Contributions

To achieve these research goals in this thesis, we make the following novel contributions:

• The first contribution in this thesis will be the development of a novel entropy mea-

sure for assessing the structural complexity of directed graphs. To commence, we use

the recently defined directed graph normalized Laplacian matrix to extend the anal-

ysis of von Neumann entropy from undirected graphs to directed graphs. We will

then show how this entropy measure can be approximated by simple graph char-

acteristics, such as graph size and vertex in-degree and out-degree statistics. We

further find approximations to the von Neumann entropy that apply to both weakly

and strongly directed graphs. Moreover, we will define an analogous directed version

of the graph heterogeneity index, which quantifies the structural heterogeneity prop-

erties of directed graphs. We will demonstrate experimentally the usefulness of these

complexity measures in characterizing structure from both artificial and empirical

data.

• The second substantial contribution will be the development of an entropic edge as-

sortativity measure as well as an entropic graph embedding method, both of which

are dependent on the von Neumann entropy development. First, commencing from

the approximate entropy expression, we derive a quantity which measures the local

entropic contribution associated with each edge in a graph. We will show how this

quantity can be used to define a novel entropic edge assortativity measure for both

24



1.3 Contributions

undirected and directed graphs. Moreover, we will proceed to show that this local

measure in fact encodes a number of properties of the intrinsic structural properties

of a graph, leading to the possibility of analyzing how the von Neumann entropy

is distributed on the graph. We aim to explore whether such entropy distribution

can be used to solve structural pattern recognition problems. To do this, we show

that this entropy distribution can be in fact encoded as a multivariate array, which

captures the structure of the graph in terms of an entropic measure of complexity.

As a result, such array can be viewed as a sample of entropy histograms from various

graphs, allowing us to embed populations of graphs into a low-dimensional feature

space, by using PCA or other machine learning techniques. These structural features

can be used to implement the tasks of graph clustering and classification, by em-

ploying suitable algorithms in machine learning techniques. Then, we will undertake

experiments to compare the graph classification accuracy of the proposed embedding

method with a number of state-of-the-art embedding and kernel methods, in order

to investigate the efficiency of our embedding method.

• The third contribution we will make in this thesis is the development of the ther-

modynamic representations used for characterizing the evolution of time-varying

complex networks. Based on the idea that most of the aggregate thermodynamic

variables such as the total energy, free energy, entropy, and pressure, can be ex-

pressed in terms of the partition function or its derivatives, we aim to establish a

link between a characteristic polynomial (or algebraic) characterization of a network

and the Boltzmann partition function. This allows us to derive a number of ther-

modynamic quantities for the network, including the average energy and entropy.

Assuming that the system does not change volume, we can also compute the tem-

perature, defined as the rate of change of entropy with energy. On the other hand,

we will show that the approximate von Neumann entropy can also be interpreted as

the thermodynamic entropy of a network, when we associate the microscopic config-

urations of the network with the eigenstates of the normalized Laplacian spectrum.

This interpretation gives us a new approach to developing additional thermodynamic

functions, such as internal energy and temperature. We will show all these thermo-

dynamic measures are based on simple graph features including graph size, number

of edges and degree statistics. Finally, the experimental results will reveal that both
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thermodynamic representations provide an efficient tool for detecting abrupt changes

and characterizing different stages in financial and biological network evolution.

• The final substantial contribution in the thesis will be the development of a gener-

ative model that captures the underlying connectivity structure of a set of labeled

graphs. Specifically, in the graph data the weights of the connectivity between ver-

tices in the graph change while the vertex number and label do not. So we only

concentrate on the edge patterns present in those graphs and we adopt a Gaussian

probability distribution to represent the connectivity changes on each individual

edge. This yields a probabilistic framework which describes the likelihood of the

observed data given the model structure. Then, we will explore how this structure

can be fitted to the sample graph data by minimizing a description length crite-

rion. We will show how this problem can be solved numerically by adopting a new

fixed-point iteration scheme which locates the elements of the optimal weighted ad-

jacency matrix of the model structure. This structure is initialized using the mean

weighted adjacency matrix for the sample graphs, and then is optimized at each step

to best fit the data by an adjustment that is determined by the von Neumann en-

tropy. Finally, we will undertake experiments to evaluate the properties of the model

learning method and also to explore the practical utility of the generative model on

real-world data, and this shows the generative model reveals new perspectives in

analyzing graph time-series data.

1.4 Thesis Structure

The remainder of the thesis is structured as follows. In Chapter 2, we review the research

literature related to the work presented in the thesis. In Chapter 3, we give the devel-

opment of the approximate von Neumann entropy and heterogeneity index of directed

graphs. Chapter 4 presents the work of applications of the von Neumann entropy, in-

cluding the entropic edge assortativity measure and entropic graph embedding methods.

Chapter 5 provides two different thermodynamic frameworks for analyzing the structural

evolutions of time-varying networks. In Chapter 6, we develop a method for learning a

generative model that captures the underlying connectivity structure of a set of sample
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graphs, and explore how this model can be used to better analyze graph time-series data.

Finally, Chapter 7 concludes the work reported in the thesis and provides possible future

research directions.
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Chapter 2

Literature Survey

A complex network can be formally defined as a diagrammatic representation of a com-

plex system. It consists of vertices, which represent the components of the system, and

edges that connect pairs of vertices, and which represent the interconnections between

the components. Generally speaking, what makes the networks “complex” is that they

often display non-trivial topological properties, which are uncommon in “simple” networks

such as regular graphs. In other words, complex networks are so huge that it is difficult

to understand their global characteristics by analyzing the local properties of individual

vertices or edges [123] [21] [73]. Therefore, in order to render such networks tractable, it

is essential to have to hand methods for characterizing their salient properties. In this

thesis, our research aims at developing effective methods for characterizing complex net-

works with different structure and understanding the time evolution of dynamic networks.

In the light of this aim, we review relevant research literature on these network science

challenges in this chapter.

2.1 Graph Theory in Natural Sciences

One way of viewing complex networks is as graphs whose topological features deviate from

those of regular graphs [34]. Whereas regular graphs can be thought of as simple, complex

networks are highly non-regular in structure. It is for this reason that graph theory and its

applications play a vital role in diverse research fields, including biochemistry, electrical

engineering, computer science and operations research [101]. In the following, we briefly

explain how the graph-theoretic applications contribute to these areas.

• Biochemistry: Due to the complexity of the control mechanisms involved, and the
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Figure 2.1: The peroxisomal protein-protein interaction network. The green circles repre-

sent peroxisomal core proteins and the yellow ones are their direct neighbours. The red

and blue lines connecting circles indicate the protein-protein interactions are detected by

either binary or cluster assay respectively. Picture by Luciani and Bazzoni [83].

large number of possible interactions, graph-based models are becoming increasingly

popular in bioinformatics and chemoinformatics. Specifically, graphs can be used to

model cellular networks, whose cellular components are represented by vertices and

whose cellular interactions are edges in the graph. A good example is furnished by

the protein-protein interaction (PPI) networks, whose structure is often represented

by undirected graphs. The proteins are modeled by vertices and edges are drawn

between two vertices if the corresponding proteins physically bind [1]. Such models

allow scientists to analyze the similarity between proteins and to predict the char-

acteristics of the cells.

• Telecommunications engineering: A communications network is often formally

defined as a collection of terminals and telecommunications links. Graphs have

proved to be an important application in modeling communications networks, with

vertices representing terminals and edges indicating telecommunications between

terminals [42]. One of the objectives in telecommunications engineering is to solve

the problem of how accurately and how effectively the symbols of communication

can be transmitted on the telecommunications network.
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• Computer vision: Over the recent years, graph-based methods have been widely

employed to overcome serious challenges in computer vision, such as object recogni-

tion, correspondence matching and image segmentation. Overall, hierarchical image

features are regularly modeled by tree structures or directed acyclic graphs, whose

vertices represent image abstractions and whose edges indicate the spatial relations

or mappings between them [70].

• Operations research: Graph-based methods are also widely used as a power-

ful tool for implementing operations research problems, such as modeling transport

networks, activity networks and theory of games. One of the most successful appli-

cations is furnished by the planning and scheduling of large complicated projects in

operations research [117].

• Network analysis: In recent decades, a variety of network science techniques have

been developed to analyze the behaviour of networked systems. Traditionally, such

systems are modeled as random graphs, i.e., the classical Erdős-Rényi model [43].

Specifically, this model defines a random graph as a number of labeled vertices ran-

domly connected by edges with a given probability. The random graph theory has

proved to provide many important results that are relevant to complex networks [3].

However, the network science has witnessed a shift in focus in recent years, center-

ing on the challenge of modeling networks as mechanical systems and studying their

statistical properties [94]. For instance, Watts and Strogatz [124] have proposed a

model that can be used to simulate network “small-world” effects. Moreover, the

degree distribution of a large number of realistic networks has been shown to follow

a power-law distribution, indicating that those networks are in fact “scale-free”. To

model such networks, the Barabási-Albert model has been developed to generate

random “scale-free” graphs using a preferential attachment mechanism [13].

2.2 Graph Characterization

We focus on one of the most challenging problems in network science, namely the charac-

terization of graph structure. The key to this problem is to extract a set of characteristics
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(a) British Isles (b) Europe

Figure 2.2: Transport networks generated from large-scale online data (over one million

Tweet-based trips) in August 2011. The thickness of a transport line in the network is

proportional to the volume of Tweets sent along its path. Picture by Eric Fischer

https://www.flickr.com/photos/walkingsf/albums/72157628993413851.
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from graph structure which capture both the individual structural pattern and the vari-

ations between structure classes. Broadly speaking, graph theorists have adopted three

different routes to addressing the graph characterization problem, namely a) topological

features, b) spectral or algebraic graph theory and c) complexity measures.

2.2.1 Topological Features

One of the most widely encountered problems in network analysis is how to find the most

“influential” or “functional” vertex in a network. The conceptually simplest centrality

measure is the vertex degree, which is the number of edges connected to the vertex. The

degree information gives many useful insights about the topology of a graph. The degree

distribution function characterizes the spread of vertex degree in a graph, and gives the

probability that a vertex has a particular degree. In the work [3], it has been revealed that

in a random graph, the vertex degree generally follows a Poisson distribution, while the

degree distribution of most realistic networks significantly differs from that of a random

graph.

Another effective vertex centrality measure is called the closeness, which is dependent

on the total distance of the vertex to all other vertices in a graph. In effect, the closeness

centrality measures the speed of the information flow from a given vertex to others on a

graph [48], as a high closeness vertex has a small total distance from all other reachable

vertices to it. The betweenness centrality, on the other hand, quantifies the frequency of

a vertex lies on the shortest path between two other vertices. In other words, it gives how

effectively that a vertex exerts over the interactions of other vertices in a network [52].

Other important centrality measures include the Katz centrality and Google’s PageRank

[72].

Although the vertices play an important role in understanding the graph topology,

many useful insights also reside in the information conveyed by paths on a graph. The

length of the longest geodesic path between any pair of vertices in a graph is called

the graph diameter. Chung and Lu [32] have studied that when the vertex connecting

probability is large, most Erdős-Rényi random graphs are likely to have small diameters.

This is because the graph diameter is proportional to the ratio between the logarithms of

vertex number and average degree [3]. In other words, the diameter is a measurement of

the linear size of a graph.

Another well-studied topological feature is the clustering coefficient. In many empirical
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networks it can be observed that if vertices a and b are connected, b and c are connected,

then a and c are highly likely to become connected. For instance, in a social network,

individuals often create cliques with a high density of ties. In other words, the “friend of

your friend is likely also to be your friend” [94]. Mathematically, this inherent tendency

to clustering is quantified by [124]

Clustering Coefficient =
3× number of triangles

number of connected triplets of vertices
.

In this formula, a connected triplet is a connected substructure consisting of three vertices

and two edges. The factor 3 in the numerator is needed because of the fact that each

triangle is counted three times in the formula. In principle, the clustering coefficient

quantifies triangle density in a network by computing the average probability that two

vertices that share the same neighbours are connected.

2.2.2 Spectral and Algebraic Graph Theory

An alternative approach to probing graph structure is to extract vertex permutation in-

variants straightforwardly from a number of graph matrix representations. Two of the

most effective routes adopted by graph theorists include spectral graph theory and alge-

braic graph theory [20]. These two approaches are intimately related. Both commence

from a matrix representation of a graph. In the case of spectral graph theory, it is the

eigenvalues and eigenvectors of the matrix that are of interest [99] [25]. In algebraic graph

theory, a characteristic polynomial is computed from the determinant of the identity ma-

trix minus a multiple of the matrix. The coefficients of this polynomial are determined

by symmetric polynomials of the matrix eigenvalues and they provide many useful graph

invariants.

Generally speaking, spectral graph theory studies the properties of the spectra of graph

matrix representations, such as the adjacency matrix, the Laplacian matrix and their nor-

malized forms. Although it is generally difficult to characterize a graph by its spectra,

some essential structural characteristics of the graph can still be deduced from them [30].

Graph eigenvalues have proved to play a crucial role in the fundamental understanding

of graphs. From the Perron-Frobenius theorem, we can immediately draw the conclusion

that the largest eigenvalue of the adjacency matrix has multiplicity one if the graph is

connected. It is interesting to note that for the Laplacian matrix, this property corre-

sponds to its smallest eigenvalue, i.e., zero-eigenvalue. More generally, the multiplicity
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of 0 as an eigenvalue of the Laplacian matrix is equivalent to the number of connected

components in the graph [31]. The second smallest Laplacian eigenvalue also plays a spe-

cial role in a number of problems in graph theory, including the graph expansion and

the maximum cut problem. The difference between the second and the first eigenvalues,

which is called the eigenvalue gap, measures the graph connectivity properties [30]. More-

over, the Perron-Frobenius theorem also implies that the left eigenvector corresponding to

the largest eigenvalue of the transition matrix, is the unique stationary distribution of a

random walk on a graph, which is a very important result in random walk theory.

Overall, spectral methods have been exploited directly and with great effect in graph

characterization and machine learning. Much of this is due to the close links between

graph spectra and random walks on graphs. However, there has been less interest in

the algebraic approach. This may be something of an oversight, since there are strong

links between algebraic graph theory and number theory, and results from algebraic graph

theory can be used to construct important invariants that can be used to probe network

structure.

More explicitly, algebraic graph theory aims at using linear algebra, group theory and

graph invariants to study the properties of structural patterns. The coefficients of the

characteristic polynomial of a graph matrix can be taken as graph characteristics, and

have been shown closely related to the graph spectra [106]. For example, the coefficients

of the Laplacian characteristic polynomial are related to the number of spanning trees

and spanning forests in a graph. In particular, for certain graphs in (a, b)-linear classes,

the coefficients can be simply determined by the number of vertices in the graph [96].

Moreover, the Laplacian matrix can be used to construct a zeta function, which can be

viewed as an analogue of the Riemann zeta function from number theory [111]. This zeta

function, is in fact the moment generating function for the heat kernel, and its derivative

at origin can be used to measure the number of spanning trees contained in a graph [127].

The Ihara zeta function, which is derived from a characteristic polynomial for the oriented

line graph of a network, can be used to determine the distribution of prime cycles of

various length in the network and is also closely linked to the dynamics of a discrete time

quantum walk on the network [113] [105] [104]. This latter type of representation has been

shown to lift some of the problems in cospectrality of networks encountered if conventional

spectral methods are used.
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2.2.3 Complexity Measures

Quantifying the intrinsic complexity of graphs is a problem of fundamental practical im-

portance, not only in network analysis but also in other areas such as pattern recognition

and control theory [48]. Existing approaches are based either on randomness complexity

or statistical complexity. The difference between these two approaches is that randomness

complexity aims to quantify the degree of randomness or disorganization of a combinato-

rial structure, while statistical complexity aims to distinguish a combinatorial structure

using statistical features such as vertex degree statistics, edge density or the Laplacian

spectrum. Historically, most early work in this area falls into the randomness class, while

recent work is statistically based and aims to compute entropic measures of complexity.

2.2.3.1 Randomness Complexity

Graph-based entropy measures have proved to be an elegant approach to quantifying

the randomness complexity of graphs. More explicitly, this approach aims at applying an

entropy function to a probability distribution defined on a graph. For example, an effective

way to accomplish this is to assign a probability distribution over the components of the

partition of a graph based on graph structural features [39]. The most commonly adopted

complexity measure is Shannon’s entropy function, but several different families of entropy

functions have also been developed.

The concept of graph entropy is first introduced by Rashevsky [103], who has named

this measure as the “topological information content” in his early work. Specifically, Ra-

shevsky has used a number of graph invariants, including the vertex number and the

degree sequence, to develop entropic measures that quantify the structural complexity of

graphs. Commencing from Rashevsky’s topological information content, Mowshowitz [91]

has further developed graph structural information measures based on the automorphism

partitioning and the chromatic decomposition of the vertices in a graph. Some interesting

results can be drawn regarding this entropy measure. For instance, graphs whose auto-

morphism group consists of the identity alone have the maximal entropy while the minimal

entropy is reached for complete graphs. The properties of this entropy have been further

investigated in the work [39].

One of the earliest and classical contributions in randomness complexity is Körner’s

entropy associated with a graph [75]. The original motivation of this measure is to com-

pute the entropy of an information source with ambiguous alphabet. Extending this idea
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to graphs, the Körner’s entropy is defined as the minimal cross entropy between the ver-

tex packing polytope and the vertex probability distribution [45]. Unfortunately, as this

complexity measure is posed as a coding optimization problem in information theory, it

cannot be used as a quantity to reflect the graph structural properties. Another drawback

of this approach is that it is not applicable to more general unweighted graphs. These

shortcomings seriously limit the direct use of Körner’s entropy in the field of network

analysis.

There are a number of alternative methods that are based on Shannon’s entropy for

quantifying the complexity of a graph. In general, Shannon’s entropy function can be

directly applied to a probability distribution whose values are assigned by functions that

capture the structural characteristics of a graph. Recently, the normalized Laplacian

spectrum has been shown to provide a complexity level characterization via definition of

the von Neumann entropy (or quantum entropy) associated with a density matrix [99]

[4]. By mapping between discrete Laplacians and quantum states [25], provided that the

discrete Laplacian [19] [20] is scaled by the inverse of the volume of the graph, a density

matrix is obtained whose entropy can be computed using the spectrum of the discrete

Laplacian. This measure can distinguish between different structures in extremal graph

theory. In particular, star graphs yield the maximal entropy value and the entropy reaches

its minimum for regular graphs.

Recently, based on the development of the graph topological information functionals,

Dehmer has proposed a generalized framework for defining graph entropies [38]. Specif-

ically, by using graph topological characteristics to map vertices to positive reals, the

so-called “information functionals” can be defined. Then, a probability distribution can

be derived from such functionals, which can further be used to compute the graph entropy.

Clearly, with various topological information functionals to hand, different interpretations

of the graph entropy can be defined. The resulting entropies have proved to be useful in

classifying graphs with various structural patterns. Moreover, this generalized framework

offers an attractive route to defining the complexity trace, which can be used to charac-

terize phase transitions in graph structure. Finally, the computational complexity of the

graph entropy is polynomial, which shows the efficiency of this generalized framework.

An important extension of this framework is the work [40]. Motivated by the fact

that the classical structure descriptors based on the adjacency matrix spectrum are often

misleading because of the large number of isospectral graphs, this work aims to tackle
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this problem and focuses on the spectrum of other certain graph matrix representations

in order to define a number of novel descriptor families. Such descriptors then allow a

novel graph entropy that quantifies the complexity of the underlying graph topology with

a given information functional to be defined. The experimental results suggest that these

novel complexity measures are effective in characterizing different chemical structures and

thus, have broad applications in fields related to structural chemistry such as drug design

and medical chemistry [39].

By applying an entropy function to the normalized degree correlation matrix, the so-

called “off-diagonal” complexity measure has been proposed recently [33]. The central idea

commences from the observation that a biased edge distribution entropy, whose extremal

value is reached for a power-law distribution, can be defined on small “scale-free” graphs.

Extending this approach to the distribution of correlations between degrees of pairs of

vertices, a discrete graph entropy can be defined and computed. This complexity takes

on the value zero for both regular lattices and complete graphs and has small values for

random graphs and large values for complex structures.

2.2.3.2 Statistical Complexity

The main drawback of randomness complexity is that it does not capture properly the

correlations between vertices [50]. Statistical complexity aims to overcome this problem by

measuring regularities beyond randomness, and does not necessarily grow monotonically

with randomness. It is natural to realize that both completely random systems and com-

pletely ordered ones should have a minimal statistical complexity. The first randomness

complexity measure introduced, namely the Kolmogorov complexity [74] of an object, is

quantified by the length of the shortest algorithm required to reproduce the object. On

the other hand, the statistical counterpart of Kolmogorov complexity, the logical depth de-

vised by Bennett [15], is a measure of complexity based on the algorithmic information and

computational complexity of an algorithm which can be used to recreate a given piece of

information. In essence, the logical depth complexity measure differs from its randomness

counterpart in that it is based on the notion of a process rather than a measure.

A set of important recent additions to the statistical complexity literature are the

graph spectral methods. In fact, there exist strong links between the eigenvalue-based and

polynomial-based approaches and many practical graph structure characterizations have

been developed based on such connections. For example, Luo et al. [84] have defined the
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eigenmodes using the leading eigenvectors of the graph adjacency matrix, and that can be

used to compute vectors of spectral properties. Then, graphs can be embedded in a pattern

space via those vectors. The method has proved to be efficient in overcoming problems

such as graph clustering and object identification. It is also known that the spectrum of

the graph Laplacians can be used as an elegant means of characterizing the topological

structure of graphs. For instance, Wilson et al. [126] focus on the Laplacian spectral

decomposition and show how the coefficients of the permutation invariant polynomials

that are computed from the elements of the spectral matrix for the graph Laplacians,

can be used as features that capture the metric structure of graphs. Another important

example is furnished by Estrada’s network heterogeneity index [46]. In effect, this index

gauges differences in degree for all pairs of connected vertices and is dependent on vertex

degree statistics and graph size. The expression for the index can be expressed in terms

of the Laplacian matrix of graphs. The lower bound of this quantity is zero, which occurs

for a regular graph while the upper bound is equal to one, which is obtained for a star

graph.

A finer characterization is provided by the Ihara zeta function [66], which is a natural

extension of the Riemann zeta function in number theory, and is built out of prime cycles

in a graph. Specifically, the expression for the Ihara zeta function of a graph is closely

related to the quasi characteristic polynomial of the adjacency matrix of the associated

oriented line graph, whose polynomial coefficients are determined by the cycle structure

of the graph. Commencing from this observation, Ren et al. [106] have developed a

novel method for characterizing unweighted graphs by using the polynomial coefficients

determined by the Ihara zeta function. They also show how the graph characterization

based on the Ihara coefficients can be extended from unweighted to weighted graphs.

Experimental evaluations suggest that the Ihara coefficients in fact outperform the graph

spectral methods in terms of distinguishing structures that belong to various structural

classes.

The thermodynamic depth is a measure which takes on low values for both random and

ordered systems. Hence, it is interesting to explore whether the idea of thermodynamic

depth can be extended to graphs in order to obtain novel complexity quantities. However,

this requires a definition of the macroscopic states of the graph. To overcome this challenge,

Escolano et al. [45] [44] show that by establishing a link between heat kernels and Birkhoff

polytopes on a graph, a time-evolving complexity measure can be obtained. Working in
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the domain of structural pattern recognition, Xiao et al. [127] have explored how the heat

kernel trace can be used as a means of characterizing the structural complexity of graphs.

They have also used the derivative of the zeta function at origin as a characterization

for distinguishing different types of graphs. Moreover, they show how the heat-content

can be used to develop a series of graph invariants. In common with the symmetric

polynomials, the heat-content coefficients are permutation invariants that depend on both

the eigenvalues and eigenvectors of the Laplacian matrix associated with a graph.

2.3 Graph Causality

Recently, there has been a vast amount of effort expended on the problems of understand-

ing the causal relationships between complex network components, such as the economic

agents in financial markets [87] [77] [76]. In general, most current literature aims at study-

ing correlation-based networks. In fact, there exist a large number of distinct relationships

between economic components in a financial market. By adopting appropriate filtration

methods, the most influential correlations can be reserved for constructing the financial

market network, which is used for further statistical analyses [122].

Broadly speaking, the correlation-based networks are obtained via two dominant rela-

tionship filtration approaches, namely a) hierarchical clustering and b) thresholding [37].

For hierarchical methods, the networks can be constructed from the Minimum Spanning

Tree (MST) [86], which has proved to be one of the earliest and most important filtration

techniques. More explicitly, the filtering procedure linked to MST and SL (Single Link-

age, which is a hierarchical clustering mechanism that is closely related to MST) allows

the elements in the financial market to be arranged into a hierarchical structure, and has

proved to provide an efficient way to improve portfolio optimization [121]. Another ef-

fective method for building correlation-based networks is the Planar Maximally Filtered

Graph (PMFG) [122], which is a generalized framework of the MST, and manages to main-

tain a higher amount of information, with less strict topological constraints. Although the

hierarchical clustering methods are effective in uncovering the nested structure of stock

correlations in a financial market, they have a main drawback, namely the strict topologi-

cal constraints on the network, which make it difficult to reflect the statistical significance

of correlations.

On the other hand, for the thresholding methods, a correlation-based network can

either be created by simply retaining the n-largest correlations between assets [97], or

40



2.4 Graph Evolution

more generally, by examining the correlations between economic agents. In other words,

the connection between two components is dependent on whether or not their correlation

exceeds a predetermined threshold value [76] [65] [61]. So determining the threshold value

is critical in constructing threshold networks. In particular, a lower threshold leads to the

observation that groups of economic elements gradually merge to form larger groups, and

finally merge into the whole financial market [37]. Conversely, with an increasing threshold,

the market progressively disintegrates into smaller fragments of economic sectors. This

shows the main weakness of thresholding methods is that the appropriate threshold value

is difficult to determine, and the resulting networks may not be able to show the nested

structure in the financial market. The advantage of this approach, one the other hand, is

that threshold-based network are robust to correlation uncertainty.

Turning attention to the causal inference of graphs, there are two extensively-used

methods for deriving the relationships in a network, namely a) cross-correlation and b)

Granger causality. Cross-correlations of financial time-series are of great interest at both

theoretical and practical levels [114]. This is because they contain information about the

way how the time-series influences each other over time, which provides a useful route

to reflecting the price changes in the stock market [76]. On the other hand, the Granger

causality concept, originally defined by Wiener [125] and Granger [57], has attracted a

great deal of interest in the econometrics literature since the 1960s. In principle, Granger

causality represents a causal relationship between two time-series, i.e., if by including

the past information of one time-series, the prediction error of another time-series can

be reduced, then we say the first time-series Granger-causes the second one [129]. In

other words, the Granger causality gives the information whether one time-series can help

forecast another. Recently, the original Granger causality notation has been extended to

multivariate cases: the conditional Granger causality analysis [55] has been developed for

multivariate data and makes the Granger causality interpretation more straightforward.

2.4 Graph Evolution

Until recently, one fundamental field of graph theory that has broad applications in net-

work analysis, has received marginal attention, namely evolutionary graph theory. In fact,

many real-world complex systems such as the citation networks, communications networks,

neural networks and financial networks give rise to structures that change with time. In

order to analyze such graphs, efficient tools for understanding their time-dependent struc-
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ture and function are required. In general, graph evolution can be approached from both

macroscopic and microscopic directions [58].

On the one hand, the macroscopic approach aims at studying how the global parame-

ters of a dynamic graph evolve from one snapshot to another. This can be accomplished

by directly employing a number of graph characterizations that are developed on static

graphs to each snapshot, and then analyzing the time evolution of these characteriza-

tions. Specifically, statistical thermodynamics can be combined with both graph theory

and kinetics to provide a practical framework for handling highly structured and highly

interactive time-evolving complex systems [89]. By using a random walk that maximizes

the Ruelle-Bowens free-energy rate on weighted graphs, a novel centrality measure can

be computed, and this has been successfully applied to both connected and disconnected

large-scale networks [41]. Recently, it has been demonstrated that the subgraph centrality

can be interpreted as a partition function of a network [49], and as a result the entropy,

internal energy and the Helmholtz free energy can be defined using spectral graph theory.

The authors have also argued that the thermodynamic quantities are intimately related to

the complex network dynamics. This approach combines the theoretical tools developed

for studying graph spectra in the context of statistical mechanics of complex networks and

clearly point out the potentials of the current approach to study real-world time-varying

networks.

On the other hand, at the microscopic level, it is the birth-death dynamics of individual

vertex or edge in the graph evolution that are under study. In the classical Barabási-Albert

model [13], dynamic properties are ascribed to a preferential attachment mechanism for

graph growth, i.e., adding new vertices which connect to the existing vertices in the graph.

The preferential attachment mechanism particularly shows that the connection probability

of an existing vertex and the newly added one is proportional to its degree. In effect, this

mechanism describes the dynamics as the addition of new vertices. However, graph evo-

lution can also be shaped by a number of extra microscopic events, including the removal

of vertices and the addition, removal and rewiring of edges [3]. Based on this observation,

Grindrod and Higham [58] have introduced a tractable framework for modeling evolving

graphs. To do this, they propose a novel range-dependent birth-death mechanism, which

allows a variety of evolutionary behaviours to be modeled. The resulting dynamic graph

model is set up as a discrete-time Markov chain, and an analogous continuous-time frame-

work can also be developed. This model has proved to be efficient in investigating the
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evolutionary processes that take place on an evolving graph.

2.5 Summary

In this chapter, we have provided a research literature survey on a) applications of graph

theory in natural sciences, b) different methods for characterizing graph structure and

c) approaches to studying and modeling graph dynamics. We have also analyzed the

strengths and deficiencies of the existing methods. To summarize this chapter, we draw a

number of conclusions based on the relevant research literature survey.

Complex network analysis has proved to play an increasingly significant role in natural

sciences recently, and graph theory offers an interesting route to characterizing the struc-

tural features of networks. Although topological characteristics provide a straightforward

meaning concerning the graph structure, their direct use in structural characterization

is limited because common graph topological features do not take topological scales into

account. Therefore, more recent literature aims at characterizing graph structure using

spectral or algebraic graph theory and complexity measures. Specifically, graph-based

entropy measures have proved to be an elegant approach to quantifying the structural

complexity of graphs. Unfortunately, although many entropy functions have been adopted

to analyze the complexity of undirected graphs, such as the Körner’s entropy, Shannon

entropy and von Neumann entropy, there is relatively little literature aimed at studying

the structural features of directed graphs. One of the reasons for this is that the graph

theory underpinning directed graphs is less developed than that for undirected graphs.

Motivated by the need to fill this gap in the literature, in Chapter 3 we explore whether

the von Neumann entropy, and other complexity measures, which have been defined only

on undirected graphs, can be extended to the domain of directed graphs. We also show

how to simplify the computation of these measures and evaluate their properties on both

artificial and real-world network data. In Chapter 4 we further explore some uses and

applications based on the von Neumann entropy expression. In particular, the approxi-

mate entropy formula gives a distribution of how the von Neumann entropy spreads on a

graph. Commencing from the edge entropy and entropy distribution, we suggest a num-

ber of novel graph structure characterizations for both undirected and directed graphs,

including an entropic assortativity measure and an entropic graph embedding method.

Although the bulk of existing network theory is concerned with static networks, most

realistic networks are in reality dynamic in nature. Turning attention to the literature
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relevant to the time-evolving networks, we note that many methods do not take into

account the graph structural changes between snapshots in the graph time-series, such

as the vertex attribute change, degree change and edge weight change. In order to make

sufficient use of such information and to propose novel methods for studying the evolution

of dynamic networks, in Chapter 5 we present a thermodynamic representation of graphs

based on the link between characteristic polynomial and the partition function. Moreover,

commencing from the link between network microscopic configurations and its Laplacian

eigenstates, we explore whether the von Neumann entropy can be used as a thermodynamic

entropy, and also whether we can develop expressions for other thermodynamic functions,

including the internal energy and temperature accordingly. Finally, Chapter 6 develops

a novel method for analyzing the time evolution of time-evolving networks, by learning a

generative model that best captures the underlying connectivity structure present in a set

of labeled graphs.
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Chapter 3

Von Neumann Entropy of

Directed Complex Networks

This chapter is motivated by the need to establish novel and effective methods for measur-

ing the structural complexity of directed graphs. In particular, we first explore whether

the von Neumann entropy previously defined only on undirected graphs [99] can be ex-

tended to the domain of directed graphs. To do this we make use of some recent results

from spectral graph theory concerning the construction of the normalized Laplacian ma-

trix for directed graphs [31]. We then show how to extend the heterogeneity index, which

is developed for undirected graphs and dependent on vertex degrees as well as graph size,

to the domain of directed graphs. We illustrate the usefulness of these graph complex-

ity measures defined in this chapter on both artificial and real-world datasets, including

structures from protein databases and high energy physics theory citation networks.

3.1 Preliminaries

Before introducing the development of the von Neumann entropy, in this section we provide

some basic definitions and notations in graph theory that will be used throughout the

thesis.

A graph is an ordered pair G = (V, E) consisting of a vertex set V together with an

edge set E ⊆ V × V. If (u, v) ∈ E , i.e., vertices u and v are connected by edge (u, v), we

say that u is adjacent to v.

An undirected graph is a graph in which edges have no orientation, which means that

edge (u, v) is identical to edge (v, u). On the other hand, a directed graph is a graph with
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an orientation on each edge. In particular, an edge (u, v) is considered to be directed

from u to v, where u is called the starting vertex and v is called the end vertex. In the

remaining of this thesis we will use the notation G = (V, E) to represent both undirected

and directed graphs.

The adjacency matrix A of a graph G = (V, E) is defined as

Auv =

 1 if (u, v) ∈ E

0 otherwise.

For undirected graphs, the degree at vertex u is defined as the number of vertices adjacent

to u

du =
∑
v∈V

Auv =
∑
v∈V

Avu.

Similarly, for directed graphs, the in-degree and out-degree at vertex u are respectively

given as

dinu =
∑
v∈V

Avu, d
out
u =

∑
v∈V

Auv.

A path in a graph is a sequence of edges that connect a sequence of distinctive vertices.

When there is a path between every pair of vertices in a graph, the graph is said to be

connected.

For a directed graph, it is strongly connected if every vertex in the graph is reachable

from any other vertex. In other words, there are directed paths that contain any two

vertices in the directed graph.

The (combinatorial) Laplacian matrix L of a graph G = (V, E) is defined as L = D−A

where D is the degree matrix with the degrees of the vertices of the graph along the

diagonal and zeros elsewhere. The elementwise expression of L is given as

Luv =


−1 if (u, v) ∈ E

du if u = v

0 otherwise.

In the remainder of the thesis, we will apply a number of concepts from physics to the

domains of graph theory and network science to study the properties of complex networks.

In order to have a deeper understanding of these ideas, here we give a brief introduction

of these physics definitions.

In information theory, the entropy (or Shannon entropy), is defined as the average

value of information contained in a message, which is transmitted via a channel between

transmitter and receiver.
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In classical statistical mechanics, the Gibbs entropy, named after Josiah Willard Gibbs,

is interpreted as the statistical entropy of the distribution of microstates that defines the

macroscopic state of a system. On the other hand, the von Neumann entropy, named after

John von Neumann, is the quantum analogue of the classical Gibbs entropy in the field of

quantum mechanics.

Another significant concept in statistical mechanics is the partition function, which de-

scribes the statistical properties of a system in thermodynamic equilibrium. More impor-

tantly, the partition function can be used to derive most of the aggregate thermodynamic

functions of the system, including the total energy, entropy and temperature.

3.1.1 Datasets Overview

In this subsection we give an overview of the datasets will be used for experiments in

this thesis. In particular, we will use a large number of different datasets: the first

two are synthetically generated artificial networks; while the other datasets are extracted

from real-world complex systems, including databases from both biological and financial

domains.

• Preferential Attachment Network Dataset. Consists of 10 directed networks evolved

under preferential attachment. Each network starts from a fully connected seed net-

work of 5 vertices. At each time step, a new vertex is added to the network. This

vertex connects to vertices already in the network with a probability proportional

to the steady state probability of a random walk taking place on the network. See

Antiqueira et al. [8] for details about the model.

• Random Directed Graph Dataset. Contains a large number of directed graphs which

are randomly generated according to one of three different directed random graph

models, namely a) the classical Erdős-Rényi model, b) the “small-world” model, in-

troduced by Watts and Strogatz [124], and c) the Barabási-Albert model [13]. The

different directed graphs in the database are created using a variety of model param-

eters, e.g., the graph size and the connection probability in the Erdős-Rényi model,

the edge rewiring probability [47] in the “small-world” model and the number of

added connections at each time step [47] in the Barabási-Albert model.
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• Protein Dataset. Is extracted from the protein database previously used by Riesen

and Bunke [107]. It consists of over 200 graphs, representing proteins from the Pro-

tein Data Bank [16], labeled with their corresponding enzyme class labels from the

BRENDA enzyme database [112]. The database consists of six classes (labeled EC

1,· · · , EC 6), which represent proteins out of the six enzyme commission top level

hierarchy (EC classes). The proteins are converted into graphs by first replacing

the secondary structure elements of a protein with vertices, and then constructing

a 3-nearest neighbour graph for the secondary structure elements. The graphs are

thus directed.

• Citation Network Dataset. Is the Arxiv HEP-TH (high energy physics theory) cita-

tion network. This is an evolving citation graph Gehrke et al. [54] extracted from

the e-print arXiv. The directed network represents the citations within a dataset of

27770 papers by 352807 directed edges. If a paper u cites paper v, then the graph

contains a directed edge from vertex u to vertex v. Since there is no information

about papers that are not included in the database, we do not consider such papers

in the network. The data covers papers in the period from January 1993 to April

2003 (124 months). It begins within a few months of the inception of the arXiv, and

thus represents essentially the complete history of its HEP-TH section [80].

• MUTAG Dataset. Consists of graphs representing 188 mutagenic aromatic and het-

eroaromatic nitro compounds assayed for mutagenicity on bacterium Salmonella ty-

phimurium. We delete the labels of vertices and edges of each compound in order

to transform these weighted graphs to unweighted ones.

• NCI1 and NCI109 Dataset. Are two subsets of the National Cancer Institute (NCI)

database, consisting of graphs representing chemical compounds screened for activ-

ity against non-small cell lung cancer and ovarian cancer cell line respectively. Each

subset contains two classes, labeled by active or inactive anti-cancer screen.

• D&D Dataset. Contains 1178 proteins, with 691 enzymes and 487 non-enzymes.

Each protein is represented by a graph, in which the vertices are amino acids while
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edges are the connections between acids.

• COIL Dataset. Contains object recognition data collected by Nene et al. [92], in

which each 3D object consists of 72 images collected from equally spaced changes

in viewing direction over 360 degrees. For each image, we establish a 3-nearest

neighbour graph on the extracted feature points, i.e., each feature point have three

directed edges going to its nearest neighbour points, thus the graph is directed and

the out-degree of all vertices is 3. There are two subsets in this database, one contains

the directed graphs extracted from 4 different 3D objects while the other contains

graphs from 8 objects.

• NYSE Stock Market Network Dataset. Is extracted from a database consisting of the

daily prices of 3799 stocks traded on the New York Stock Exchange (NYSE). This

data has been well analyzed in [118], which has provided an empirical investigation

studying the role of communities in the structure of the inferred NYSE stock market.

The authors have also defined a community-based model to represent the topological

variations of the market during financial crises. Here we make use of a similar rep-

resentation of the financial database. Specifically, we employ the correlation-based

network to represent the structure of the stock market since many meaningful eco-

nomic insights can be extracted from the stock correlation matrices [14] [22] [27].

To construct the dynamic network, 347 stocks that have historical data from Jan-

uary 1986 to February 2011 are selected [100] [118]. Then, we use a time window

of 28 days and move this window along time to obtain a sequence (from day 29 to

day 6004) in which each temporal window contains a time-series of the daily return

stock values over a 28-day period. We represent trades between different stocks as

a network. For each time window, we compute the cross-correlation coefficients be-

tween the time-series for each pair of stocks, and create connections between them if

the maximum absolute value of the correlation coefficient is among the highest 5%

of the total cross correlation coefficients. This yields a time-varying stock market

network with a fixed number of 347 vertices and varying edge structure for each of

5976 trading days.
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• Drosophila Melanogaster Gene Network Dataset. Is extracted from DNA microar-

rays that contain the transcriptional profiles for nearly one-third of all predicted

fruit fly (Drosophila melanogaster) genes through the complete life cycle, from fer-

tilization to adult. The data is sampled at 66 sequential developmental time points.

The fruit fly life cycle is divided into four stages, namely the embryonic (samples

1-30), larval (samples 31-40) and pupal (samples 41-58) periods together with the

first 30 days of adulthood (samples 59-66). Early embryos are sampled hourly and

adults are sampled at multiday intervals according to the speed of the morphological

changes. At each time point, by comparing each experimental sample to a reference

pooled mRNA sample, the relative abundance of each transcript can be measured,

which can further be used as a gene’s expression level [9]. To represent this gene

expression measurements data using a time-evolving network, the following steps are

followed [119]. At each developmental point the 588 genes that are known to play

an important role in the development of the Drosophila are selected. These genes

are the vertices of the network. The edges are established based on the distribution

of the gene expression values, which can be modeled as a binary pair-wise Markov

Random Field (MRF) whose parameter indicates the strength of undirected interac-

tions between two genes. In other words, two genes are connected when their model

parameter exceeds a threshold. This dataset thus yields a time-evolving Drosophila

gene-regulatory network with a fixed number of 588 vertices, sampled at 66 devel-

opmental time points.

3.2 Approximate Von Neumann Entropy for Directed

Graphs

In this section, we develop a novel entropy measure for assessing the structural complexity

of directed graphs. Although there are many existing alternative measures for quantify-

ing the structural properties of undirected graphs, there are relatively few corresponding

measures for directed graphs. To fill this gap in the literature, we explore an alternative

technique that is applicable to directed graphs. We commence by using Chung’s general-

ization of the Laplacian of a directed graph to extend the computation of von Neumann

entropy from undirected to directed graphs. We provide a simplified form of the entropy
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which can be expressed in terms of simple vertex in-degree and out-degree statistics. More-

over, we find approximate forms of the von Neumann entropy that apply to both weakly

and strongly directed graphs, and that can be used to characterize network structure.

One natural way of capturing the structural complexity of directed graphs is to use

simple statistics that quantify the balance of in-degree and out-degree at different vertices.

A similar but largely heuristic approach has been used to characterize undirected graphs in

terms of vertex degree. In fact Han et al.’s work [59] puts this work on a firmer footing by

showing how simple vertex degree statistics can be used to approximate the von Neumann

entropy for undirected graphs. This is a natural step since in information theory, entropy

is a measure of unpredictability or information content in a random variable [66]. By

extending this definition to graphs we arrive at a natural way of characterizing their

structural complexity. In particular, we can use ideas related to random walks on directed

graphs to compute their entropy, and these lead naturally to a characterization in terms

of vertex in-degree and out-degree statistics.

Our work commences from Passerini and Severini’s postulate [99] that the combinato-

rial Laplacian can be scaled by the sum of vertex degrees in the graph, and the resulting

matrix interpreted as the scaled density matrix of an undirected graph. As a result, it is

possible to compute the von Neumann entropy of a graph from the eigenvalues of the as-

sociated combinatorial Laplacian. We extend this work to directed graphs, using Chung’s

definition of the normalized Laplacian of a directed graph [31]. According to this defini-

tion, the directed normalized Laplacian matrix is Hermitian, so Passerini and Severini’s

density matrix interpretation still holds in the domain of directed graphs. Furthermore,

the directed graph von Neumann entropy is essentially the Shannon entropy associated

with the normalized Laplacian eigenvalues. Following Han et al. [59] we again approx-

imate the Shannon entropy by its quadratic counterpart, with the result that the von

Neumann entropy can be simplified in terms of simple in-degree and out-degree statistics.

Specifically, the resulting entropy expression depends on the in-degree and out-degree of

pairs of vertices connected by edges. To further simplify this expression, we consider

graphs that are either weakly or strongly directed, i.e., those in which there are large or

small proportions of bidirectional edges, and develop corresponding approximations of the

von Neumann entropy. The approximations accord with our physical intuition concerning

in-degree and out-degree on vertices and connecting edges.
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3.2.1 Von Neumann Entropy of Undirected Graphs

In this section, our aim is to propose a novel entropy measure for characterizing the

complexity of directed graphs. We commence from the von Neumann entropy development

for undirected graphs. Then, we extend the development to the domain of directed graphs

by making use of Chung’s definition of the Laplacian for directed graphs. This leads

to an expression for the von Neumann entropy in terms of the in-degree and out-degree

statistics of vertices. We then provide approximations of the von Neumann entropy for

both strongly directed graphs where there are few bidirectional edges and weakly directed

graphs where there are few edges that are unidirectional.

Passerini and Severini [99] have argued that the combinatorial Laplacian can be in-

terpreted as the density matrix of an undirected graph. Therefore, it is possible to define

the von Neumann entropy of a graph and calculate it from the eigenvalues of the asso-

ciated combinatorial Laplacian. In order to gain new insights about the meaning of the

von Neumann entropy of a graph, we now show how to obtain a simplified expression for

this entropy that can be written in terms of the degrees of the vertices. We commence

by summarizing the approximation of the undirected graph von Neumann entropy pre-

sented by Han et al. [59], and then develop this further to illustrate the limitations of the

approximations used.

Although Passerini and Severini have used the traditional Laplacian in their cal-

culations, in order to simplify matters we use the normalized Laplacian matrix L̃ =

D−1/2LD−1/2 here. In our analysis the choice of normalization is not an important de-

tail since both Laplacian and normalized Laplacian matrices make valid density matrices.

Furthermore, the scaling of the eigenvalues does not affect the functional dependence of

the entropy with the degree. In particular, the largest eigenvalue of the Laplacian matrix

is bounded by twice the largest vertex degree in a graph, while the normalized Laplacian

matrix has eigenvalues between 0 and 2. With this choice of density matrix, the von

Neumann entropy of the undirected graph is the Shannon entropy associated with the

normalized Laplacian eigenvalues, i.e.,

HU
V N = −

|V|∑
i=1

λ̃i
|V|

ln
λ̃i
|V|

, (3.1)

where λ̃i, i = 1, · · · , |V| are the eigenvalues of the normalized Laplacian matrix L̃.

Commencing from this definition and making use of the quadratic approximation to

the Shannon entropy (i.e., −x lnx ≈ x(1− x), which holds well when x is close to 0 or 1),

52



3.2 Approximate Von Neumann Entropy for Directed
Graphs

Han et al. [59] approximate the von Neumann entropy by

HU
Q =

|V|∑
i=1

λ̃i
|V|

(1− λ̃i
|V|

).

For undirected graphs this quadratic approximation allows the von Neumann entropy to

be expressed in terms of the trace of the normalized Laplacian (which is equal to the sum of

the normalized Laplacian eigenvalues) and the trace of the squared normalized Laplacian

(which is equal to the sum of the squares of the normalized Laplacian eigenvalues), with

the result that

HU
V N =

Tr[L̃]

|V|
− Tr[L̃2]

|V|2
. (3.2)

For undirected graphs, the two traces appearing in the above expression are given in terms

of statistics for the degree of vertices in the graph [59], with the result that

HU
V N = 1− 1

|V|
− 1

|V|2
∑

(u,v)∈E

1

dudv
. (3.3)

This formula contains two measures of graph structure, the first one is the number of

vertices of graph, while the second one is based on degree statistics for pairs of ver-

tices connected by edges. Moreover, the computational complexity of this expression is

quadratic in graph size, which is much simpler than that of the original entropy.

The accuracy of the above expression depends on the veracity of the quadratic approx-

imation to the Shannon entropy −x lnx ≈ x(1−x). This approximation is known to hold

well when either x→ 0 or x→ 1, which guarantees the accuracy of the quadratic entropy

since λ̃i
|V| → 0 when the graph size is very large.

A more precise expression for the von Neumann entropy can be obtained by making a

second-order Taylor series approximation for the Shannon entropy with expansion point

x0 at the mean value of λ̃
|V| , i.e.,

x0 =

∑|V|
i=1

λ̃i
|V|

|V|
=
Tr[L̃]

|V|2
.

The second-order Taylor expansion for x lnx about the expansion point x0 is

x lnx ≈ −x(− lnx0 −
x

2x0
)− x0

2
.

Substituting this series approximation for the Shannon entropy with expansion point

x0 =
Tr[L̃]

|V|2
=

1

|V|
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into the expression for the von Neumann entropy Eq. (3.1), we obtain

HU
T = ln |V| − 1

2|V|
∑

(u,v)∈E

1

dudv
. (3.4)

As a result, the Taylor series approximation to the von Neumann entropy at the expansion

point x0 = 1
|V| and the quadratic approximation are related by

HU
T =

|V|
2
HU
Q + ln |V|+ 1− |V|

2
.

In other words, the two entropies are related by an offset and a scale, which are related to

the number of vertices in the graph. Since we are concerned in applying the von Neumann

entropy for characterizing the structure of graphs, the differences caused by the influence

of graph size do not matter in our analysis. Therefore, both expressions can be used.

Throughout the chapter we use the simpler expression given by HU
Q .

3.2.2 Normalized Laplacian Matrix of Directed Graphs

The transition matrix P of a graph is a matrix describing the transitions of a Markov

chain on the graph. On a directed graph G = (V, E), P is given as

Puv =

 1
doutu

if (u, v) ∈ E

0 otherwise.

It is interesting to note that for a strongly connected graph, the transition matrix P is

column-stochastic. Moreover, according to the Perron-Frobenius theorem, on a strongly

connected graph, P has a unique left eigenvector φ with φ(u) > 0, for all u ∈ V, which

satisfies φP = ρφ where ρ denotes the eigenvalue of P . The theorem also implies that if P

is aperiodic, the eigenvalues of P have absolute values smaller than the leading eigenvalue

ρ = 1. Thus any random walk on a directed graph will converge to a unique stationary

distribution if the graph satisfies the properties of strong connection and aperiodicity. We

normalize φ such that
∑|V|

i=1 φ(i) = 1, this normalized vector corresponds to the unique

stationary distribution. Therefore, the probability of a random walker being at vertex u

is the sum of all incoming probabilities of vertices v satisfying (v, u) ∈ E , i.e., φ(u) =∑
v,(v,u)∈E φ(v)Pvu. Based on the properties of the random walk on a directed graph,

we assume that the eigenvector component φ(u) is proportional to the in-degree of the

corresponding vertex dinu , i.e.,
φ(u)

φ(v)
≈ dinu
dinv

(3.5)
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From this, we derive

φ(u)

dinu
≈ φ(v)

dinv

=
φ(1) + φ(2) + · · ·+ φ(|V|)
din1 + din2 + · · ·+ din|V|

=
1

vol(G)
,

where vol(G) is the volume of the graph, defined as the sum of all vertex in-degree or

out-degree. To illustrate the plausibility of the above assumption, we note that

φ(u) =
∑

v,(v,u)∈E

φ(v)Pvu

=
∑

v,(v,u)∈E

dinv
vol(G)

· Avu
doutv

=
1

vol(G)

∑
v,(v,u)∈E

dinv
doutv

=
dinu

vol(G)

〈
dinv
doutv

〉
v,(v,u)∈E

.

This implies that the approximation in Eq. (3.5) holds only when the neighbourhood of

vertex u has similar out-degree and in-degree. Although this condition may seem to be a

strong requirement, we will undertake experiments to analyze how the local average vertex

degree ratio

ru =

〈
dinv
doutv

〉
v,(v,u)∈E

(3.6)

of u affects the accuracy of our suggested approximate von Neumann entropy (provided

later) and the result reveals that this ratio indeed does not cause a significant error.

As stated in Chung [31], if we let Φ = diag(φ(1), φ(2), · · · ), then the normalized

Laplacian matrix of a directed graph can be defined as

L̃ = I − Φ1/2PΦ−1/2 + Φ−1/2P TΦ1/2

2
, (3.7)

where I is the identify matrix.

Clearly, the normalized Laplacian matrix is Hermitian, i.e., L̃ = L̃T where L̃T denotes

the conjugated transpose of L̃.

3.2.3 Von Neumann Entropy of Directed Graphs

Following the development of the von Neumann entropy of undirected graphs, the true

von Neumann entropy for a directed graph can be computed using the Shannon entropy
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associated with the eigenvalues of its normalized Laplacian matrix. Unfortunately, for

large graphs this is not a viable proposition since the time required to solve the eigensystem

is cubic in the number of vertices. To overcome this problem we extend the analysis of

Han et al. [59] from undirected to directed graphs. To do this we again make use of the

quadratic approximation to the Shannon entropy in order to obtain a simplified expression

for the von Neumann entropy of a directed graph, which can be computed in a time that is

quadratic in the number of vertices. Our starting point is the quadratic approximation to

the von Neumann entropy in terms of the traces of normalized Laplacian and the squared

normalized Laplacian, which is given in Eq. (3.2)

HD
TV N =

Tr[L̃]

|V|
− Tr[L̃2]

|V|2
. (3.8)

To simplify this expression a step further, we repeat the computation of the traces

for the case of a directed graph. This is not a straightforward task, and requires that we

distinguish between the in-degree and out-degree of vertices. We first consider Chung’s

expression for the normalized Laplacian of directed graphs and write

Tr[L̃] = Tr[I − Φ1/2PΦ−1/2 + Φ−1/2P TΦ1/2

2
]

= Tr[I]− 1

2
Tr[Φ1/2PΦ−1/2]− 1

2
Tr[Φ−1/2P TΦ1/2].

Since the matrix trace is invariant under cyclic permutations, we have

Tr[L̃] = Tr[I]− 1

2
Tr[PΦ−1/2Φ1/2]− 1

2
Tr[P TΦ1/2Φ−1/2]

= Tr[I]− 1

2
Tr[P ]− 1

2
Tr[P T ].

The diagonal elements of the transition matrix P are all zeros, hence we obtain

Tr[L̃] = Tr[I] = |V|,

which is exactly the same as in the case of undirected graphs.

Next we turn our attention to Tr[L̃2]:

Tr[L̃2] = Tr[I2 − (Φ1/2PΦ−1/2 + Φ−1/2P TΦ1/2) +
1

4
(Φ1/2PΦ−1/2Φ1/2PΦ−1/2

+Φ1/2PΦ−1/2Φ−1/2P TΦ1/2 + Φ−1/2P TΦ1/2Φ1/2PΦ−1/2

+Φ−1/2P TΦ1/2Φ−1/2P TΦ1/2)]

= Tr[I2]− Tr[P ]− Tr[P T ] +
1

4
(Tr[P 2] + Tr[PΦ−1P TΦ]

+Tr[P TΦPΦ−1] + Tr[P T
2
])

= |V|+ 1

2
(Tr[P 2] + Tr[PΦ−1P TΦ]),
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which is different to the result obtained in the case of undirected graphs.

To continue the development we first partition the edge set E of the graph G into two

disjoint subsets E1 and E2, where E1 = {(u, v)|(u, v) ∈ E
∧

(v, u) /∈ E}, E2 = {(u, v)|(u, v) ∈

E
∧

(v, u) ∈ E} that satisfy the conditions E1
⋃
E2 = E , E1

⋂
E2 = ∅. Then according to

the definition of the transition matrix, we find

Tr[P 2] =
∑
u∈V

∑
v∈V

PuvPvu =
∑

(u,v)∈E2

1

doutu doutv

.

Using the fact that Φ = diag(φ(1), (2), · · · ) we have

Tr[PΦ−1P TΦ] =
∑
u∈V

∑
v∈V

P 2
uv

φ(u)

φ(v)
=

∑
(u,v)∈E

φ(u)

φ(v)dout2u

.

Using Eq. (3.5), we can approximate the von Neumann entropy of a directed graph in

terms of the in-degree and out-degree of the vertices as follows

HD
VN = 1− 1

|V|
− 1

2|V|2

{ ∑
(u,v)∈E

(
1

doutu doutv

+
dinu

dinv d
out2
u

)
−

∑
(u,v)∈E1

1

doutu doutv

}
(3.9)

or, equivalently,

HD
VN = 1− 1

|V|
− 1

2|V|2

{ ∑
(u,v)∈E

dinu
dinv d

out2
u

+
∑

(u,v)∈E2

1

doutu doutv

}
. (3.10)

It is interesting to identify the structures that give extremal values of our approximate

entropy. By inspection of Eq. (3.9) and Eq. (3.10), when the terms in the curly brackets

reach their largest value, the von Neumann entropy takes on its minimum value. This

occurs when the structure is a circle graph, in which each vertex has only one outgoing

edge and one incoming edge. On the other hand, when the terms in the curly brackets

take on their smallest value, the entropy is maximal. This occurs when there are no

bidirectional edges in the graph. Vertices that have outgoing edges have no incoming

edges. A typical example of this type of structure is a star graph.

However, there are a number of assumptions concerning the admissible structure of the

graph which underpin the definition of directed graph Laplacian and hence the derivation

of our approximate entropy. Two of these are in conflict with the two conditions giving

extremal values of the entropy. The condition that the walks on the graph are aperiodic is

not consistent with cycle structure, while the condition that they are strongly connected is

not consistent with the star graph case. Nonetheless, even if the assumptions underpinning

the formula break down in these two cases, it is empirically interesting that is behaves in

this way.
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The maximum and minimum von Neumann entropies corresponding to these cases are

as follows. For a circle directed graph, all vertices have the same out-degree and in-degree

equal to 1, then

HD
VN = 1− 1

|V|
− 1

2|V|2
· |V| = 1− 1

|V|
− 1

2|V|
.

Turning attention to the case of a star graph, the centre vertex has out-degree (in-degree)

|V| − 1, and the remaining vertices have in-degree (out-degree) 1. In this case

HD
VN = 1− 1

|V|
− 1

2|V|2
· 0 = 1− 1

|V|
.

So if we do not take into account the requirements of the entropy definition on directed

graphs, i.e., when we analyze in a quantitative manner, the approximate von Neumann

entropy suggested in Eq. (3.10) gives the minimum value for the ring graph, which is

the simplest regular graph. It takes on its maximum value for star graphs. The latter

structure can be viewed as the most complex, since it has the greatest difference in vertex

out-degree and in-degree.

To proceed the development, we can simplify the approximate von Neumann entropy

expression according to the relative sizes of the sets E1 and E2, to provide approximations

to the von Neumann entropy which are specific to weakly and strongly directed graphs.

For weakly directed (WD) graphs, |E1| � |E2|, i.e., few of the edges are not bidirec-

tional, we can ignore the summation over E1 in Eq. (3.9). Re-writing the remaining terms

in curly brackets in terms of a common denominator and then dividing numerator and

denominator by doutu doutv we obtain

HWD
VN = 1− 1

|V|
− 1

2|V|2
∑

(u,v)∈E

{ dinu
doutu

+ dinv
doutv

doutu dinv

}
. (3.11)

The term 1 − 1
|V| tends to unity as the graph size becomes large. In the summation,

the numerator is given in terms of the sum of the ratios of in-degree and out-degree of the

vertices. Since the directed edges cannot start at a sink (a vertex of zero out-degree), the

ratios do not become infinite.

On the other hand, for strongly directed (SD) graphs, there are few bidirectional

edges, i.e., |E2| � |E1|, and we can ignore the summation over E2 in Eq. (3.10), giving the

approximate entropy for strongly directed graphs

HSD
V N = 1− 1

|V|
− 1

2|V|2
∑

(u,v)∈E

{
dinu

dinv d
out2
u

}
. (3.12)
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Both the weakly and strongly directed forms of the von Neumann entropy HWD
VN and

HSD
V N contain two terms. The first is the graph size while the second one depends on the

in-degree and out-degree statistics of each pair of vertices connected by an edge. Moreover,

the computational complexity of these expressions is quadratic in the graph size.

There are a number of points to note concerning the development above. First, the nor-

malized Laplacian matrix of directed graphs denoted by L̃ in Eq. (3.7) satisfies Passerini

and Severini’s conditions [99] for the density matrix. Moreover, we have shown that L̃ is

Hermitian, so its eigenvalues are all real. Hence theoretically, the density matrix interpre-

tation of Passerini and Severini [99] can be extended to directed graphs. Secondly, when

the out-degree and in-degree are the same at all vertices, the von Neumann entropies for

directed and undirected graphs are identical.

To conclude this section, it is worth discussing the role of sinks in our analysis. A sink is

a vertex with several incident edges, but no outgoing edges. Hence they are characterized

by zero out-degree. One obvious problem with our formulation is that our expression for

the von Neumann entropy of a weakly directed graph, which is given in Eq. (3.9), will

become singular when vertex v is a sink, i.e., doutv = 0. However, in the case of weakly

directed graphs, the likelihood of sink vertices is small, since the number of bidirectional

edges is large. We can reach the same conclusion by recalling that the graph represents a

Markov chain with equal transition probabilities on the vertices. If the chain is irreducible

and aperiodic, then the convergence to a stationary distribution is guaranteed. Otherwise,

the final distribution may not be stable or may depend on the initial conditions. In

particular, if the irreducibility condition is not true, then the Perron-Frobenius theorem

does not hold and we cannot construct the Laplacian in that case, or at least it is not

clear if the theorems in Chung’s paper hold. So if we demand that the Markov chain is

irreducible, this means the graph is strongly connected and there are no sinks in the graph.

3.3 Heterogeneity Index for Directed Graphs

In this section we propose a novel measure for quantifying the structural heterogeneity

properties of directed graphs. We extend the development of Estrada’s heterogeneity index

[46] from undirected graphs to directed graphs in order to define an analogous directed

heterogeneity measure. We then provide a normalized form of the directed heterogeneity

index which can be expressed in terms of simple vertex in-degree and out-degree statistics.

We show this measure has the lower bound 0 and the upper bound 1, for regular graphs
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and star graphs respectively.

To commence, we follow Estrada’s work [46] and establish a local assessment to quantify

the relative irregularity associated with a single edge in a directed graph. Specifically, on an

undirected graph G = (V, E), Estrada uses the following quantity to measure the variation

in degrees at vertices connected by an edge:

ωUuv = [f(du)− f(dv)]
2,

where f(d) is a function of the vertex degree d. To extend this evaluation to directed

graphs, we assess the difference in the out-degree of the starting vertex and the in-degree

of the end vertex of a directed edge (u, v) and write

ωDuv = [f(doutu )− f(dinv )]2.

This local degree heterogeneity measure takes on a value zero when the out-degree of the

starting vertex is the same as the in-degree of the end vertex. On the other hand, this

local measure should increase as the difference between the two degrees increases. Thus

we can select f(d) = d−1/2. This is mainly because this function allows us to measure

the degree difference in both quantity and magnitude. For instance, suppose (u1, v1) and

(u2, v2) are two edges in the directed graph and we have doutu1 = 1, dinv1 = 11, doutu2 = 90,

dinv2 = 100. The simple vertex degree difference cannot distinguish between these two edges

as dinv1−d
out
u1 = dinv2−d

out
u2 = 10. However, using f(d) = d−1/2 we obtain ωDu1v1 = 0.488 while

ωDu2v2 = 2.93 · 10−5, which indicates that (u1, v1) has relatively greater edge irregularity

than (u2, v2).

Then the local heterogeneity assessment associated with the irregularity of the edge

(u, v) in a directed graph G = (V, E) is given by

ωDuv =

{
1√
doutu

− 1√
dinv

}2

.

To compute the global heterogeneity measure of a directed graph we sum the local measure

over all the edges in the graph to obtain

ΩD =
∑

(u,v)∈E

{
1√
doutu

− 1√
dinv

}2

=
∑

(u,v)∈E

{
1

doutu

+
1

dinv

}
−2

∑
(u,v)∈E

1√
doutu dinv

. (3.13)

Clearly, the directed heterogeneity index should take on the minimum value when the

directed graph is regular, i.e., all the vertices have the same in-degree and out-degree. In
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contrast, the index is maximal when the graph is a star graph, i.e., there exists a central

vertex such that all the other vertices connect and only connect to it. We calculate the

lower and upper bounds of ΩD according to these constraints.

For a regular directed graph, suppose all the vertices have the same in-degree and

out-degree d0, then we have

ΩD =
∑

(u,v)∈E

{
1

d0
+

1

d0

}
−2

∑
(u,v)∈E

1

d0
= 0.

On the other hand, for a star graph, the central vertex has out-degree (in-degree) |V| − 1

and all the other vertices have in-degree (out-degree) 1. Then,

ΩD =

|V|∑
i=1

(
1

|V| − 1
+ 1)− 2

|V|∑
i=1

1√
|V| − 1

=
|V|(|V| − 2

√
|V| − 1)

|V| − 1

≈ |V| − 2
√
|V| − 1,

when the graph size |V| is large enough.

We hence have the following lower and upper bounds for the directed heterogeneity

index

0 ≤ ΩD =
∑

(u,v)∈E

{
1

doutu

+
1

dinv
− 2√

doutu dinv

}
≤ |V| − 2

√
|V| − 1.

Based on the above analysis we define the following normalized heterogeneity index

Ω̃D =
ΩD

|V| − 2
√
|V| − 1

=

∑
(u,v)∈E

{
1

doutu

+
1

dinv
− 2√

doutu dinv

}
|V| − 2

√
|V| − 1

. (3.14)

This index is defined over the interval [0, 1] and is zero for regular directed graphs, one for

star graphs. Clearly, the normalized index depends on two terms, the first one is the graph

size while the second one is based on the statistics of vertex in-degree and out-degree. To

summarize, the directed heterogeneity index captures the structural irregularity of each

edge in a directed graph by measuring the relative difference of degrees at both the starting

vertex and the end vertex. Moreover it accounts for the effect of graph size, so in principle

it provides an efficient means of quantifying a directed graph’s structural complexity.

To conclude this section, it is worth discussing the choice of using simple degree pair

doutu and dinv to calculate the relative irregularity associated with a single directed edge

(u, v). Recall the approximate von Neumann entropy of the strongly directed graphs,
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which is given in Eq. (3.12):

HSD
V N = 1− 1

|V|
− 1

2|V|2
∑

(u,v)∈E

{
dinu

dinv d
out2
u

}
.

This entropy measure contains the term doutu dinv as an invariant in the denominator, since

this combination of degrees is of importance in representing the structural characteristics

of the associated edge in a directed graph. Moreover, in some directed graphs, there may

exist edges that end at sink vertices (with no outgoing edges) and edges that start from

source vertices (with no incoming edges), as a result, such a combination of vertex degrees

becomes the only choice that can be employed to compute the degree-based irregularity

of these edges.

3.4 Experiments

We have derived an expression for the von Neumann entropy of a directed graph, and

have provided approximations that apply to both weakly and strongly directed graphs.

We have also developed a novel version of Estrada’s heterogeneity index to measure the

heterogeneous characteristics of directed graphs quantitatively. In this section, we explore

whether these graph complexity measures can be used to characterize different directed

graph structure patterns and determine changes in the structure of dynamic directed

graphs.

3.4.1 Directed Von Neumann Entropy

We confine our attention to two principal tasks. The first one is to explore whether

the complexity measures can be used to distinguish different types of directed graphs.

The second is to use the complexity measures to detect abrupt changes in the structure of

networks that evolve with time. For most experiments, we normalize the entropy measures

studied, including the approximate von Neumann entropy in Eq. (3.10) together with its

approximations for both weakly and strongly directed graphs given in Eq. (3.11) and Eq.

(3.12) respectively. The normalization is with respect to the graph size, and this removes

some of the size dependence. Specifically, we compute the quantity

Y D
VN = |V| ·

∣∣∣∣HD
VN − (1− 1

|V|
)

∣∣∣∣
=

1

2|V|

{ ∑
(u,v)∈E

dinu
dinv d

out2
u

+
∑

(u,v)∈E2

1

doutu doutv

}
(3.15)
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as a normalized quantity which captures variations in the in-degree and out-degree statis-

tics in the same manner as the approximate von Neumann entropy HD
VN . Similarly, the

corresponding normalized quantities for the weakly and strongly directed approximations

HWD
VN and HSD

V N are given as

Y WD
VN =

1

2|V|
∑

(u,v)∈E

{ dinu
doutu

+ dinv
doutv

doutu dinv

}
(3.16)

and

Y SD
V N =

1

2|V|
∑

(u,v)∈E

{
dinu

dinv d
out2
u

}
. (3.17)

It is important to note that these normalized quantities and the original entropy measures

have opposite monotonicity properties. In other words when the normalized entropy Y D
VN

decreases, the approximate von Neumann entropy HD
VN increases.

In this section we use four different datasets, namely Preferential Attachment Network

Dataset, Random Directed Graph Dataset, Protein Dataset and Citation Network Dataset.

The first two datasets are synthetically generated artificial networks, while the other two

are extracted from real-world systems.

An important point to note concerning these datasets is that in the development of

the directed von Neumann entropy, to keep our development simple and straightforward,

we require the directed graph under study is strongly connected, but here the graphs used

for experiments do not always guarantee the strong connectivity, which implies that the

graphs may have more than one strongly connected components. To compute the von

Neumann entropy for such graphs, we follow the method used by Bai and Hancock [12].

According to their work, suppose a graph G = (V, E) consists of two connected components

G1 = (V1, E1) and G2 = (V2, E2). Then, the entropy (denoted by H here) of G = (V, E) is

computed as the entropy of the disjoint union graph of G1 and G2, i.e.,

H(G) = H(GDU ) = π1H(G1) + π2H(G2),

where GDU = G1 ∪ G2 = {V1 ∪ V2, E1 ∪ E2}. Moreover, π1 and π2 indicate the entropy

weights which are determined by the size of the connected components, i.e., π1 = |V1|
|V1|+|V2|

and π2 = |V2|
|V1|+|V2| respectively. Following this idea, the normalized von Neumann entropy

for a directed graph can be simply computed as the sum of the entropy for each strongly

connected component. The weight of each component is not needed as the quantity Y D
VN

already takes into account the graph size. In other words, by using this strategy, our
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Chapter 3: Von Neumann Entropy of Directed Complex Networks

suggested approximate von Neumann entropy can also apply to directed graphs that are

not strongly connected.

An alternative way to compute the entropy of a graph consisting of connected compo-

nents would be first construct a product graph of the components and then compute the

entropy of the resulting product graph. Unfortunately, constructing a product graph is

computationally burdensome. Furthermore, the number of vertices for the product graph

is significantly greater than that of the disjoint union graph. So in order to simplify

matters, in our analysis we will use the former entropy computing method.

It is also worth noting that in the Citation Network Dataset, citation networks do

not contain bidirectional edges (a paper cannot cite any paper that has not yet been

written). As a result they are strongly directed graphs that contain a number of sink

vertices. According to our previous analysis, these sink vertices may lead to situations

where the directed graph von Neumann entropy is not well defined. However, from the

strongly directed von Neumann entropy approximation obtained in Eq. (3.12), we find

for a directed edge (u, v) the denominator term dinv d
out2
u is only related to the out-degree

of the starting vertex u and the in-degree of the end vertex v. This means that the

sink vertices do not make the expression singular, so the strongly directed von Neumann

entropy approximation can still be computed in a valid manner on citation networks.

We investigate the difference between the previously defined undirected graph von Neu-

mann entropy and its directed analogue in order to analyze how these entropies correlate.

To do this, we select the directed graphs in the Preferential Attachment Network Dataset

and compute their normalized entropies using Eq. (3.15), we then drop all the edge ori-

entations to make the graphs undirected and compute their corresponding entropies using

the following normalized quantity

Y U
V N =

1

|V|2
∑

(u,v)∈E

1

dudv
. (3.18)

Figure 3.1 shows the mean of the normalized entropies and their difference versus graph

size for both directed and the corresponding undirected graphs. The main feature to note

is that as time evolves, the difference between the two normalized entropies maintains

small, which suggests that the directed and undirected graph von Neumann entropies

have consistence on graphs that are well correlated. From the plot, at some particular

time, the directed entropy (blue solid line) fluctuates significantly while the corresponding

undirected one (red dotted line) does not, as a result, the difference between them becomes
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Figure 3.1: Comparing approximate von Neumann entropies for undirected and directed

graphs.

Datasets Wiki-Vote p2p-G05 p2p-G06 p2p-G08 p2p-G09 Arxiv HEP-TH

Graph size 8297 8846 8717 6301 8114 27751

Min. ratio 0.0213 0.0303 0.0177 0.0208 0.0182 0.0035

Max. ratio 24.7500 22.4583 12.0000 9.2222 19.7000 46.6667

Average ratio 0.1984 0.4663 0.4501 0.4335 0.4196 0.4874

True entropy 0.0128 0.0343 0.0361 0.0374 0.0357 0.0430

Approx. entropy 0.0142 0.0489 0.0412 0.0387 0.0419 0.0585

Table 3.1: Average vertex degree ratio and relative error for real-world network data.

particularly large. This implies that by dropping the edge directions, the undirected graph

obtained loses some of the structural information residing in the directed graph, and the

undirected graph von Neumann entropy also fails to capture such structure characteristics.

In the previous development we made use of the assumption that the local average

vertex degree ratio ru, which is computed using Eq. (3.6), is close to unity in order to

develop our approximate expression for the von Neumann entropy. In order to explore

whether this assumption is empirically valid, we explore the dependence of the approximate

entropy on the average value of the vertex degree ratio. To this end we compute the average
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Chapter 3: Von Neumann Entropy of Directed Complex Networks

of the local degree ratios over all vertices in a graph, i.e.,

r̄ =
1

|V|
∑
u∈V

ru, (3.19)

where ru is the degree ratio for vertex u. We investigate empirically how this global ratio

affects the accuracy of the approximate von Neumann entropy.

We commence by studying some real-world directed networks and compare their nor-

malized approximate von Neumann entropies Eq. (3.15) with normalized true entropies,

which are computed using the formula

Y D
TV N = |V| ·

∣∣∣∣HD
TV N − (1− 1

|V|
)

∣∣∣∣. (3.20)

The networks under study include the Wikipedia vote network [79], the Gnutella peer-

to-peer networks from August 5 to 9, 2002, which are a sequence of snapshots of the

Gnutella peer-to-peer file sharing network [110] and the Arxiv HEP-TH citation network

in the Citation Network Dataset. Table 3.1 gives the network size, the minimum and

maximum values of the local degree ratio, and the average degree ratio. The table also

lists the values of both the true entropy and approximate entropy. For each network

studied, the average vertex degree ratio is always between 0 and 1, although locally the

degree ratio differs significantly. The main feature to note is that the difference between

the true and approximate entropy is relatively small, even though we are dealing with

large networks.

To take this analysis a step further, we use the random directed graphs in the Random

Directed Graph Dataset. These graphs are generated according to three different models,

and we use them to investigate the degree to which the approximate entropy deviates from

the true value for different types of structure. We generate 1000 graphs for each model.

For each graph we compute the relative error in the normalized approximate entropy, i.e.,

|Y D
VN − Y D

TV N |/Y D
TV N . We then calculate the mean and standard deviation of the relative

error, and explore the dependence on the global vertex degree ratio defined in Eq. (3.19).

Figure 3.2 shows the mean and standard deviation (standard deviation shown as an

error bar) of the relative error as a function of the global vertex degree ratio. The statis-

tics needed for this plot are accumulated over graphs whose average vertex degree ratio

falls into a fixed interval. From the plot, the relative error is negligible (less than 0.2%)

for graphs with global vertex degree ratios ranging between 0.4 and 1.1. Moreover, it

takes on its minimum value when the ratio is equal to unity. This is as expected since
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Figure 3.2: Mean and standard deviation of relative error of normalized entropy for graphs

with different global vertex in-degree/out-degree ratios.

our development of the approximate von Neumann entropy expression is based on the

assumption given in Eq. (3.5), which shows that local vertices have the similar in-degree

and out-degree. Therefore the experimental results demonstrate that the approximate von

Neumann entropy does not deviate too far from the true value even when the global vertex

degree ratio is not close to unity and thus our assumption appears empirically valid.

Then, we use the Preferential Attachment Network Dataset to examine the accuracy

of the approximations of the entropy for weakly and strongly directed graphs. In other

words, we verify that the simplified expressions approximate well the true values of von

Neumann entropy. In fact, the evolving directed graphs in the Preferential Attachment

Network Dataset are strongly directed as the number of unidirectional edges is significantly

greater than that of bidirectional edges. To obtain weakly directed graphs, we choose

a large number of pairs of vertices that are connected by unidirectional edges in these

strongly directed graphs, and change the unidirectional connections to bidirectional ones.

In Figs. 3.3(a) and 3.3(b) we show the mean of the normalized entropies versus graph

size for the directed graphs in the Preferential Attachment Network Dataset. Here we

have computed the approximate entropies for weakly and strongly directed graphs Y WD
VN

and Y SD
V N using Eq. (3.16) and Eq. (3.17) respectively. We compare their values with the

normalized approximate entropy Y D
VN given in Eq. (3.15) and the normalized true entropy
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Figure 3.3: Approximations to the von Neumann entropy.

Y D
TV N defined in Eq. (3.20).

From both plots, as the network evolves, all these quantities decrease gradually to a

value close to zero, which implies that the true von Neumann entropy and its approxima-

tions increase monotonically until a plateaux value of unity is reached. It is also worth

noting that the difference between these entropies is negligible, thus we can deduce that

the approximate von Neumann entropy we suggested (red dashed line) approximates the

true von Neumann entropy (blue solid line) very well.

Figure 3.4 shows scatter plots of the weakly and strongly directed approximations Y WD
VN

and Y SD
V N versus the approximate entropy Y D

VN for sets of weakly directed and strongly

directed graphs. We select the relevant sets of graphs from the Preferential Attachment

Network Dataset using a fixed time interval, which gives 50 samples for strongly and

weakly directed graphs respectively.

From Fig. 3.4, the scatter plots of the weakly (strongly) directed approximations Y WD
VN

(Y SD
V N ) are much closer to the true values for the weakly (strongly) directed graphs Y D

VN .

Thus we conclude that the true value of von Neumann entropy and the simplified weakly

(strongly) directed form we suggested are approximately equivalent on weakly (strongly)

directed graphs.

Next we aim to explore whether the von Neumann entropy can be used to distinguish

directed graphs with different structural properties. To this end we have generated graphs

with different parameter settings and have explored the dependence of the von Neumann
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Figure 3.4: Comparing approximate von Neumann entropies for weakly directed and

strongly directed graphs.

entropy on these parameters.

We commence by considering the Erdős-Rényi model, where the two parameters are

the graph size n (or number of vertices) and the vertex connection probability p. We vary

these parameters and randomly generate a number of directed graphs at each setting. We

compute the mean and standard deviation of the normalized approximate von Neumann

entropy Y D
VN from Eq. (3.15) over samples with the same parameter settings.

Figure 3.5(a) shows the normalized approximate von Neumann entropy (mean and

standard deviation as an error bar) for the Erdős-Rényi model, with n = 20, 30, 50, 100

as a function of p varying from 0.1 to 0.9. Figure 3.5(b) plots the same data for p =

0.1, 0.2, 0.3, 0.9 as a function of n varying from 20 to 100. From the plots, the mean

value of the normalized entropy decreases gradually, which implies that the von Neumann

entropy increases with both the graph size and the vertex connection probability. This

result is as expected since in an Erdős-Rényi network, the structure becomes more complex

when there are both a large number of vertices in the network (n is large) and there are a

large number of random edges in the network (p is large). When the probability p is small,

the standard deviation of entropy is particularly large. This is because for a network with a

fixed size, a smaller number of directed edges in the network leads to a greater uncertainty

of how these edges are connected. As a result there is significant variance in the network
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Figure 3.5: Mean and standard deviation of normalized approximate von Neumann en-

tropy as a function of model parameters for Erdős-Rényi graphs.

entropy.

We then proceed to apply the von Neumann entropy to the directed graphs in the

Random Directed Graph Dataset to investigate whether different topologies can be distin-

guished. Figure 3.6 shows the mean value of the normalized approximate von Neumann

entropy as a function of graph size (again, standard deviation as an error bar). For a

given graph size, the difference in mean entropy for different models is much larger than

the standard deviation of the entropy within each model. This suggests that the variance

in von Neumann entropy due to different parameter settings is much smaller than that

due to differences in structure, which means that different network models have different

values of von Neumann entropy for a given size.

Next we verify whether the von Neumann entropy can be used to determine the enzyme

class of the protein graphs. Here in order to better visualize the result, we use the orig-

inal approximate von Neumann entropy expression Eq. (3.10) instead of the normalized

entropy Eq. (3.15). In Fig. 3.7 we show a histogram of the von Neumann entropy for the

graphs in the database. The different line styles represent different enzyme classes in the

database. Four classes of proteins (EC 3, EC 4, EC 5 and EC 6) show some separation.

Another interesting feature is that class EC 1 is located between and is also overlapped

with class EC 3 and EC 6. Because of the larger population of EC 1, the overlap is in fact

relatively small. Unfortunately, class EC 2, on the other hand, cannot be easily separated

as it is mixed with classes EC 3 and EC 5.

The above experiments in this section show that the directed von Neumann entropy
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Figure 3.6: Mean and standard deviation of normalized approximate von Neumann en-

tropy as a function of graph size for different models of directed graphs.
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Figure 3.7: Histograms of approximate von Neumann entropy for different enzyme classes

of proteins.
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can be efficiently used to distinguish different types of directed graphs from both artificial

and real-world data since it captures differences in structural features of directed networks.

Then, we explore whether the von Neumann entropy and its simplifications for strongly

and weakly directed graphs can be used to detect changes in the structure of a citation

network that evolves over time. In this context, it is important to note that a high impact

(or highly cited) paper may cause a much more significant change in the network structure

than a paper with an average citation profile, since such paper usually leads to a paradigm

change in the subject it concerns.

We convert the Arxiv HEP-TH citation network to an evolving directed graph and

explore whether the directed von Neumann entropy can be used to detect changes in

graph structure caused by the publication of high impact papers.

As noted earlier, the Citation Network Dataset is hermetic in the sense that it does

not contain any citation information related to papers that fall outside its coverage. Thus

the citation graph grows from a single vertex to a graph consisting of 27770 vertices with

352807 directed edges. Occasionally a newly published paper may cite a number of papers

that are not in the current citation network, i.e., these papers do not cite any papers in

the dataset and are only cited by other papers in it. In this case we regard the newly

published paper as a primary paper and the cited papers as its secondary papers. The

primary paper and the secondary papers are thus introduced into the network at the same

time epoch.

There are 25001 primary papers in the dataset, and we label them from 1 to 25001

according to the time at which they first appear in the citation network. Hence these

ordinal labels index the epoch at which papers appear in the database and can be viewed

as a time sequence, i.e., the citation network begins at t = 1 (January 1993) and ends at

t = 25001 (April 2003).

The impact of a paper on a citation network is not reflected immediately after it is

published. Instead, the influence develops and is sustained for a period of time. This is

because after the publication of a high impact paper, a large number of subsequent papers

will cite it (in the citation graph, the corresponding vertex will have a large in-degree). As

a result its influence will be sustained until the most recent paper has cited it. In order

to capture the impact of a paper, we use the rate of change of the directed von Neumann

entropy.

To use this quantity to measure the citational influence of a paper, suppose a primary
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Figure 3.8: Citational influence factor and vertex in-degree as a function of time for the

Arxiv HEP-TH citation network.

paper u is published at time t0, and its impact is sustained for a period of length N , which

means the impact ends at time tN . We define the citational influence factor ξu of paper u

as the mean value of the relative change in the normalized strongly directed approximation

Y SD
V N , which is given in Eq. (3.17), over the relevant influence period t0, t1, · · · , tN , i.e.,

ξu ,

∑N
i=1

{
Y SD
V N (ti)− Y SD

V N (t0)

}
N · Y SD

V N (t0)
. (3.21)

From the dataset we find that most papers have an influence period between 5000 to

6000 (measured in terms of change in sequence number). Thus we take the average and fix

N = 5500. At the beginning of the citation sequence the volume of data is not sufficient

for reliable analysis. We thus start the analysis at t = 5000 instead of t = 1 and terminate

at t = 24000 which gives a sequence length of 19000.

In Fig. 3.8, we plot both the influence factor and the in-degree distribution for pri-

mary papers against time. The main feature to note is that although the influence factor

fluctuates, it decreases gradually to a value close to zero. This is because as time evolves,

the citation network size increases rapidly, reducing the potential relative impact of more

recent papers. Another important feature of this figure is that our influence factor can be

used to reveal the changes in structure caused by influential papers. In the plot at epochs

close to t = 2000, 4500, 14000, we see some significant fluctuations in the influence factor
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curve, which represent significant changes in network structure. Turning our attention to

the in-degree distribution, there are peaks at epochs around t = 2000, 4500, 14000, which

means that papers published at these times are cited heavily. Thus we combine these

observations and suggest that the influential papers can create significant changes in the

structure of the evolving citation network.

To take this analysis a step further, we modify the original citation data and explore

how the influence factors change. To this end, we select papers from a period of time and

delete most of their citation connections. Figures 3.9(a) and 3.9(b) show the analysis before

and after modifying the data if we delete connections in the time interval a) t ∈ [4000, 6000]

and b) t ∈ [8000, 12000]. As a result, the revised influence factors show a sharp drop in

values, but after a transient time return to the behavior of the original curve. Thus there

are significant differences in the network structure when high impact papers are published,

and the directed graph von Neumann entropy can capture such differences.

3.4.2 Directed Heterogeneity Index

We proceed to analyze whether the directed heterogeneity index can be used to deter-

mine the topological structure of directed graphs efficiently. To do this, we commence

by using this new index to distinguish different types of directed graphs in both Random

Directed Graph Dataset and Protein Dataset, then we use it to detect abrupt changes in

the structure of an evolving network, i.e., the Citation Network Dataset.

Figure 3.10(a) shows the directed heterogeneity index (mean and standard deviation

as an error bar) for the Erdős-Rényi model, with n = 20, 30, 50, 100 and as a function of

p varying from 0.2 to 0.9. Figure 3.10(b) plots the same data for p = 0.1, 0.3, 0.9 as a

function of n varying from 30 to 100. From the plots, the directed heterogeneity index

decreases gradually with both the graph size and the vertex connecting probability. This

result is as expected since in an Erdős-Rényi network, the vertex out-degree and in-degree

distribution becomes more uniform (less heterogeneous) when there are a large number

of vertices in the network (n is large) and there are more edges that randomly connect

two vertices in the network (p is large). When the probability p is small, the standard

deviation of the directed heterogeneity index is particularly large. This is because for a

network with a fixed size, a smaller number of directed edges in the network leads to a

greater deviation in vertex out-degree and in-degree distribution (more heterogeneous).

As a result there is significant variance in the network heterogeneous characteristics.
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Figure 3.9: Citational influence factor and vertex in-degree as a function of time for

modified citation networks when citation data are deleted during different time periods.
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Figure 3.10: Mean and standard deviation of directed heterogeneity index as a function

of model parameters for Erdős-Rényi graphs.
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Figure 3.11: Mean, variance and standard deviation of directed heterogeneity index as a

function of graph size for different models of directed graphs.
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Figure 3.12: Histograms of unnormalized directed heterogeneity index for different enzyme

classes of proteins.

Figure 3.11 shows both the mean and variance of the directed heterogeneity index

as functions of graph size (again, standard deviation as an error bar). The mean values

of directed heterogeneity index for Barabási-Albert and “small-world” graphs almost do

not change with graph size, although the mean value of Erdős-Rényi graphs decreases

slightly, which conforms to the result shown in Fig. 3.10. Moreover, for a given size of

the graph the difference in mean heterogeneity index for different models is much larger

than the standard deviation of heterogeneity index within each model. The variance in

heterogeneity index due to different parameter settings is much smaller than that due to

differences in structure. This means that different network models have different values of

directed heterogeneity index for a given size.

Next we aim to verify whether the directed heterogeneity index can be used to de-

termine the enzyme class of the protein graphs. Here in order to obtain clearer visual

results, we use the quantity ΩD given in Eq. (3.13) instead of the normalized directed

heterogeneity index given in Eq. (3.14). In Fig. 3.12 we show a histogram of the directed

heterogeneity index for the protein graphs in the Protein Dataset. The different coloured

lines represent different enzyme classes in the database. The result is satisfying as four

classes of proteins (EC 1, EC 3, EC 4 and EC 6) show some separation. Unfortunately,

classes EC 2 and EC 5, on the other hand, cannot be easily separated as they are mixed
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Figure 3.13: Citational heterogeneous influence factor as a function of time for the Arxiv

HEP-TH citation network.

with classes EC 3 and EC 4.

The experiments show that the directed heterogeneity index can be efficiently used to

distinguish different types of directed graphs from both artificial and real-world data since

it captures the relative irregularity of each edge and the heterogeneous characteristics of

a directed network.

Then, we investigate whether the directed heterogeneity index can be used to detect

changes in the structure of a citation network that evolves over time. Similarly, we define

the relative heterogeneous influence factor ξ′u of paper u as the mean value of the relative

change in quantity Ω̃D which is given in Eq. (3.14) over the relevant influence period

t0, t1, · · · , tN , i.e.,

ξ′u ,

∑N
i=1

{
Ω̃D(ti)− Ω̃D(t0)

}
N · Ω̃D(t0)

. (3.22)

In Fig. 3.13, we plot the heterogeneous influence factor for primary papers against

time. The main feature to note is that although the influence factor fluctuates, it de-

creases gradually to a value close to zero. This is because at the beginning, the citation

network size is relatively small, any added paper may change the paper citation distribu-

tion significantly, then the rate of change in the citation network’s directed heterogeneity

index is great. However, as time evolves, a rapidly increasing number of papers are in-
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Figure 3.14: Citational heterogeneous influence factor as a function of time for modified

citation networks when citation data are deleted between 4000 and 6000 time epochs.

troduced to the citation network, and most of these papers are of average citation profile,

making the paper citation distribution more uniform, and that leads to the decrease of

the relative heterogeneous impact of new papers.

We then modify the original citation data and explore how the relative heterogeneous

influence factors change. To this end, we select papers from some period of time and

delete most of their citation connections. Figure 3.14 shows the analysis before and after

modifying the data if we delete connections in the time interval t ∈ [4000, 6000]. It

clearly displays the revised influence factors show a sharp increase in values, but after a

transient time return to the similar behavior of the original curve. This is not unexpected

as after modifying, all the papers published between time 4000 and 6000 have citation

profiles much lower than the average, making the network heterogeneous characteristics

significantly different from the original data. As a result, the rate of change in citation

network’s directed heterogeneity index becomes greater and the difference is sustained for a

certain period of time. Thus there are significant differences in the network structure when

both high impact and low impact papers are published as they change the paper citation

heterogeneous features, and the suggested directed heterogeneity index can capture such

differences.
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3.5 Summary

This chapter is motivated by the aim to develop novel and effective measures for quan-

tifying the structural complexity of directed graphs. We have made a number of novel

contributions. First we have shown how to compute the von Neumann entropy of a di-

rected graph using Chung’s definition of the normalized Laplacian matrix. We simplify the

calculation of von Neumann entropy by replacing the Shannon entropy by the quadratic

entropy. From this starting point, we have developed approximations to the entropy that

can be computed using vertex in-degree and out-degree statistics. Moreover, we present

specific approximations of the von Neumann entropy that apply to both strongly and

weakly directed graphs, according to whether or not the majority of edges are unidirec-

tional edges. We have also followed Estrada’s idea and have constructed a directed version

of heterogeneity index that can be used to measure the heterogeneous characteristics of

directed graphs.

To evaluate both complexity measures and analyze their properties, we have under-

taken experiments on both artificial and real-world network data. These experiments

demonstrate that both the approximate von Neumann entropy and the heterogeneity in-

dex for directed graphs can be used to distinguish different classes of directed graphs

(proteins) and analyze the structural changes of time-evolving networks (Arxiv HEP-TH

citation network). Moreover, we show that the entropy characterization is not unduely

limited by the approximations made in deriving it.

The work reported in this chapter can clearly be extended in a number of different

ways. Firstly, we acknowledge that we have explored a relatively limited quantity of

empirical data. It would for example be interesting to see if the method can be used

to detect network anomalies and disturbances. Another interesting line of investigation

would be to explore whether the method can be applied to the PageRank matrix, since

it too is based on random walks on directed graphs. Finally, we plan to explore whether

this work can be extended to edge-weighted graphs, labeled graphs and hypergraphs.
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Chapter 4

Uses and Applications of Von

Neumann Entropy

In this chapter, we explore a number of applications of the approximate von Neumann

entropy for network analysis problems involving both undirected and directed graphs.

First, commencing from the graph von Neumann entropy expression, we derive a local

entropic contribution associated with each edge in the graph and use this to propose a

novel entropic edge assortativity measure for both undirected and directed graphs. Then,

we use this local entropic measure to analyze how the von Neumann entropy is distributed

over edges in a graph. We show that this measure encodes a number of properties of

the intrinsic structural properties of a graph, leading to the possibility of characterizing

graphs of different structure. Specifically, we explore whether the von Neumann entropy

distribution of a graph can be used to solve structural pattern recognition problems. To

this end, we commence from the von Neumann entropy approximations and we calculate

the entropic probability distribution for both undirected and directed graphs. Then, we

extract multi-dimensional features that can be used to effectively represent the statistical

information of the structural characteristics of those graphs.

4.1 An Entropic Edge Assortativity Measure

Assortativity or assortative mixing is the tendency of a network’s vertices to connect to

others with similar characteristics, and this has been shown to play a vital role in the

structural properties of complex networks. Specifically, assortativity is often formalized as

a correlation between the degree distinction of two vertices in a graph. This interpretation
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of assortativity indicates that a network is highly assortative if the high degree vertices

tend to be connected to other vertices with high degrees. Most of the existing assortativity

measures have been developed on the basis of vertex degree information. However, there is

a significant amount of additional information residing in the edges in a network, such as

the edge directionality and weights. Recently, Foster et al. [51] have pointed out that the

classification based on network assortativity is not always efficient for undirected networks.

They further show that the fundamental feature of edge direction in a network also plays

an important role, and thus propose a set of four directed assortativity measures based

on vertex in-degree and out-degree combinations. Moreover, the von Neumann entropy

has proved to be an efficient entropic complexity level characterization of the structural

and functional properties of both undirected and directed networks. Hence, in this section

we aim to explore whether we can combine these two methods and propose a novel edge

assortativity measure which quantifies the entropic preference of edges to form connec-

tions between similar vertices in undirected and directed graphs. We use this measure

to analyze how the entropy is distributed over edges. We also show that this quantity

encodes a number of properties of the intrinsic structural properties of a graph, leading

to the possibility of characterizing graphs of different structure.

4.1.1 Entropy Contribution for Undirected Edges

To commence, we recall the approximate von Neumann entropy of undirected graphs,

which is given in Eq. (3.3)

HU
V N = 1− 1

|V|
− 1

|V|2
∑

(u,v)∈E

1

dudv
.

This approximation clearly contains two measures of graph structure. The first term

measures the effect of graph size and the second term of this formula simply calculates

the sum of each edge contribution to the whole entropy of a graph. This leads to the

possibility of defining a normalized local entropic measure for a single edge in the graph.

To this end, we normalize the entropy expression with respect to the total number of

edges in the graph in order to obtain a normalized edge entropy contribution, i.e.,

γUuv =
1

|V||E|dudv
. (4.1)

For an arbitrary graph, this normalized local entropic measure clearly avoids graph size

bias and gives the von Neumann entropy contribution associated with each edge in the

graph.
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4.1.2 Entropy Contribution for Directed Edges

Turning attention to the case of directed graphs, the approximations to the directed graph

von Neumann entropy are expressed in Eq. (3.9) and Eq. (3.10):

HD
VN = 1− 1

|V|
− 1

2|V|2

{ ∑
(u,v)∈E

(
1

doutu doutv

+
dinu

dinv d
out2
u

)
−

∑
(u,v)∈E1

1

doutu doutv

}

and

HD
VN = 1− 1

|V|
− 1

2|V|2

{ ∑
(u,v)∈E

dinu
dinv d

out2
u

+
∑

(u,v)∈E2

1

doutu doutv

}
.

In particular, when the graph is weakly directed, we ignore the summation over E1 in

Eq. (3.9) in order to obtain the approximate entropy given in Eq. (3.11)

HWD
VN = 1− 1

|V|
− 1

2|V|2
∑

(u,v)∈E

{ dinu
doutu

+ dinv
doutv

doutu dinv

}
.

It is natural to realize that in our analysis an undirected graph is equivalent to a weakly

directed graph, since their von Neumann entropy expressions Eq. (3.3) and Eq. (3.11) are

equivalent if we consider each undirected edge as a bidirectional one.

On the other hand, we can similarly obtain the approximate entropy for strongly

directed graphs:

HSD
V N = 1− 1

|V|
− 1

2|V|2
∑

(u,v)∈E

{
dinu

dinv d
out2
u

}
,

which is given in Eq. (3.12). This approximation clearly sums the entropy contribution

from each directed edge, which is based on the in and out-degree statistics of the vertices

connected by the edge. In other words, we can compute a normalized local entropy measure

for each directed edge in the strongly directed graph. To do this, we remove the term 1− 1
|V|

and normalize the remaining term with respect to the number of edges in the graph so

that we obtain

γDuv =
dinu

|V||E|dinv dout
2

u

(4.2)

as the von Neumann entropy contribution for the edge (u, v).

4.1.3 Entropic Edge Assortativity Measure for Undirected Graphs

In this subsection, we propose a novel assortativity measure for both undirected and di-

rected graphs based on the von Neumann entropy contributions associated with undirected

and directed edges respectively. This method provides useful underpinning at the use of

entropy in determining graph structure. For instance, a high entropic edge assortativity
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indicates that edges with large entropy contributions associate preferentially and form

some high entropy clusters in a graph. In contrast, a negative assortativity results from

edges with high and low entropies that connect to each other.

Generally speaking, the assortativity is defined as a network indicator which measures

to what extent the vertices are connected in a network. The most commonly used network

assortativity is the one determined by the degree of vertices in the network, which is

introduced by Newman [93]. Moreover, many other vertex characteristics can also be

used to define the network assortativity, including the vertex centrality measures such as

closeness and betweenness [47]. However, the vertex-based assortativity alone cannot be

served as a sufficient network analysis tool since it does not consider the great amount of

information contained in the network edges. Our goal is therefore to construct an edge-

based network assortativity, using both the vertex and edge information, i.e., degree and

edge entropy respectively.

We first consider undirected graphs. Mathematically, the traditional degree assorta-

tivity is given as a function of the degrees of pairs of linked vertices in an undirected graph

G = (V, E) [93]:

CD =
|E|−1

∑
(u,v)∈E dudv − [|E|−1

∑
(u,v)∈E

du+dv
2 ]2

|E|−1
∑

(u,v)∈E
d2u+d

2
v

2 − [|E|−1
∑

(u,v)∈E
du+dv

2 ]2
∈ [−1, 1]. (4.3)

When CD = 1, the network is said to be perfectly assortative, when CD = 0 the network

is non-assortative, and when CD = −1 the network is completely disassortative.

Similarly, for a directed graph G = (V, E), a set of four degree assortativity measures

can also be defined according to Foster et al. [51]. Let α, β ∈ {in, out} be the directionality

index for an edge at a vertex (i.e., whether it is incoming or outgoing). Then the directed

degree assortativity measures are

CD(α, β) =
|E|−1

∑
(u,v)∈E [(d

α
u − d̄αu)(dβv −

¯
dβv )]

σασβ
, (4.4)

where d̄αu = |E|−1
∑

(u,v)∈E d
α
u and σα =

√
|E|−1

∑
(u,v)∈E(d

α
u − d̄αu)2;

¯
dβv and σβ are simi-

larly defined.

With these definitions to hand, in order to obtain the edge-based network assortativity,

we simply use the edge entropy information to replace the vertex degree in the formulas

above, which means that the edge assortativity is quantified by the Pearson correlation

coefficient of edge entropies in a network.

To proceed, we show how the edge entropy information is computed on both undi-

rected and directed graphs. Suppose G = (V, E) is an undirected graph, or equivalently,
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Figure 4.1: Illustration of calculation of quantities ΓUuv and ΓUvu associated with an undi-

rected edge (u, v).

a weakly directed graph, then for an edge (u, v), we define the entropy contribution asso-

ciated with the end vertex u of this edge ΓUuv as the summation of the entropies on the

edges connected with u except the edge (u, v), i.e., ΓUuv =
∑

(t,u)∈E,t6=v γ
U
tu. The entropy

contribution associated with another end vertex v is therefore ΓUvu =
∑

(v,w)∈E,w 6=u γ
U
vw.

Then, we define the undirected edge entropic assortativity as the Pearson correlation

coefficient of the entropy contributions associated with the two end vertices connected by

an edge in the graph G = (V, E), with the result that

CUE =

∑
(u,v)∈E(Γ

U
uv − Γ̄Uuv)(Γ

U
vu − Γ̄Uvu)

σUu σ
U
v

, (4.5)

where Γ̄Uuv = |E|−1
∑

(u,v)∈E ΓUuv and σUu =
√∑

(u,v)∈E(Γ
U
uv − Γ̄Uuv)

2; Γ̄Uvu and σUv are sim-

ilarly defined. Clearly, this edge assortativity index provides a novel way to understand

the entropic preference of edges to form connections between similar vertices in a graph.

4.1.4 Entropic Edge Assortativity Measure for Directed Graphs

We turn our attention to the domain of directed graphs. Here we mainly focus on the

strongly directed graphs, i.e., graphs in which there are few bidirectional edges. Assume

G = (V, E) is a strongly directed graph, then for a directed edge starting from vertex u,

ending at vertex v, we define the edge entropic assortativity as the Pearson correlation co-

efficient between the edge entropy contribution Γuuv associated with all the outgoing edges
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Figure 4.2: Illustration of calculation of quantities ΓDuv and ΓDvu associated with a directed

edge (u, v).

of vertex u (exclude edge (u, v)) and the contribution Γvuv associated with all the incoming

connections of vertex v (except edge (u, v)). The reason we use such definition is that this

expression conforms to the structure of the approximate von Neumann entropy for strongly

directed graphs given in Eq. (3.12). Mathematically, we have Γuuv =
∑

(u,s)∈E,s 6=v γ
D
us and

Γvuv =
∑

(p,v)∈E,p 6=u γ
D
pv.

Therefore the edge entropic assortativity coefficient for strongly directed graphs is

given by

CDE =

∑
(u,v)∈E(Γ

u
uv − Γ̄uuv)(Γ

v
uv − Γ̄vuv)

σDu σ
D
v

, (4.6)

where Γ̄uuv = |E|−1
∑

(u,v)∈E Γuuv and σDu =
√∑

(u,v)∈E(Γ
u
uv − Γ̄uuv)

2; Γ̄vuv and σDv are sim-

ilarly defined. This measure is bounded between -1 and 1: a high coefficient of a graph

indicates that most of the directed edges in the graph start from the vertex with outgoing

edges that have high entropy contributions, and point to the vertex with incoming edges

with high entropy contributions. Conversely, a negative coefficient results from most of

the directed edges connect two vertices that have significantly different von Neumann edge

entropy contributions.
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4.2 Entropic Graph Embedding via Multivariate

Degree Distributions

Structural complexity measures and embedding have both been extensively and separately

employed for the problems of graph clustering and classification. In this section we aim to

explore whether entropy component analysis (ECA) can be used as a means of combining

these two fundamental approaches. Specifically we develop a novel method that embeds

both undirected and directed graphs into a feature space based on the graph edge entropy

distribution. The method commences from a characterization based on the distribution of

the von Neumann entropy of a graph with the degree configurations associated with edges.

Based on this analysis we identify the local entropy contribution associated with each edge

in a graph, and thus obtain a simple entropic characterization of graph structure, based

on a histogram in which the bins are indexed by vertex degree and the bin-contents is the

total entropy contribution associated with the edges that connect vertices of specific degree.

This distribution of entropy with vertex degree can be encoded as a multivariate array,

which captures the structure of the graph in terms of an entropic measure of complexity.

The matrix can hence be viewed as a sample of entropy histograms from different graphs.

By performing PCA on a sample of histograms, we embed populations of graphs into a

low-dimensional space. We apply this method to the problem of graph classification, and

compare the classification results of our new method with some alternative state-of-the-art

pattern recognition methods on bioinformatics data.

4.2.1 Undirected Graph Embedding via Von Neumann Entropy

Distribution

In our analysis, we propose a novel graph embedding method based on the idea of kernel

ECA [69], which is a technique that transforms data to a space spanned by those kernel

PCA axes contributing most to the entropy estimate of the data. Specifically, commencing

from an approximation of the von Neumann entropy of an undirected graph, we analyze the

contribution originating from each edge. We show that this contribution is determined

by the reciprocal of the product of the degrees of the two vertices defining the edge.

Based on this observation we explore the bivariate distribution of entropy with different

combinations of vertex degree that define edges in a graph. In practice this distribution

can be computed by constructing a two-dimensional histogram whose bins are indexed
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by the degrees of the connected vertices and whose contents accumulate the edge entropy

contribution over the entire graph. The contents of the histogram can be represented by

a matrix whose contents can be encoded as a long vector, which serves as a feature vector

for the graph.

One of the problems that potentially limits this approach is that the vertex degree

is unbounded. Hence, the size of the histogram can become large and it can become

populated by a large number of empty bins. This renders the analysis of the feature vector

unstable. In order to keep the vector length constant for graphs with a large variance in

vertex degree, we use the vertex degree probability distribution to construct the cumulative

distribution function (CDF), from which we can determine the m-quantiles, which divide

the ordered vertex degree data into m essentially equal-sized parts. This allows us to

relabel each vertex with a specific quantile point label 1, 2, · · · ,m. As a result, the length

of our proposed feature vector is not affected by the variance of the degree distribution.

We recall that for an undirected graph G = (V, E), the approximate von Neumann

entropy expression that computed from the second-order Taylor series approximation for

the Shannon entropy, which is given in Eq. (3.4)

HU
T = ln |V| − 1

2|V|
∑

(u,v)∈E

1

dudv
.

This approximation clearly contains two measures of graph structure, one is the graph size

while the second is related to the degree statistics of vertices connected by edges. Specifi-

cally, the second term of this formula simply calculates the sum of each edge’s degree-based

entropy contribution in a graph, leading to the possibility of defining a normalized local

entropic measure for a single edge in the graph.

To this end, we normalize this approximate entropy with respect to the total number

of edges contained in the graph and thus obtain the expression of the normalized local

entropic measure for an edge (u, v),

γ′Uuv =
ln |V|
|E|

− 1

2|E||V|dudv
. (4.7)

This local measure represents precisely the von Neumann entropy contribution of each

single edge in the graph, since the sum of these measures over all edges leads to the value

of the approximate von Neumann entropy in Eq. (3.4)

∑
(u,v)∈E

γ′Uuv = HU
T .
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Moreover, this normalized local entropic measure avoids the graph size bias, which means

that for an arbitrary graph, it is the degree-based edge entropic measure, not the vertex

number or edge number of the graph that distinguishes the entropy contribution of a single

edge.

Our graph embedding method is based on the statistical information of edges in the

graph. In other words, we compute the sum of the normalized local entropic measures of

edges with the same degree status, i.e., the degrees of two vertices of an edge, and thus

obtain a two-dimensional histogram which represents the edge-based entropy distribution

of the graph. Since our idea heavily relies on the vertex degree statistics of graphs, it

is natural to realize that different degree distributions may lead to completely different

histogram bin numbers, rendering the instability of our proposed feature vectors.

In order to overcome such problem, here we introduce the definitions of cumulative

distribution function and quantiles. Suppose a graph G = (V, E) has |V| vertices with an

ordered degree sequence d1 ≤ d2 ≤ · · · ≤ d|V|, then the degree distribution is the proba-

bility distribution of these degrees over the entire graph. The corresponding cumulative

distribution function is then given by

Fx(di) = p(x ≤ di),

where i = 1, 2, · · · , |V|. This function describes the probability that a given degree x takes

on a number less than or equal to degree di.

Broadly speaking, quantiles are the points taken at regular intervals from the cumu-

lative distribution function of vertex degrees. Specifically, they divide the ordered degree

data d1, d2, · · · , d|V | into a number of essentially equal-sized data subsets. Since the ver-

tex degree is always a non-negative integer, these quantiles are thus can be viewed as new

degree labels. In our analysis, we let the number of subsets be m, so the m-quantiles can

be obtained as follows

QUj = argmin
di

{
FQUj

(di)−
j

m

}
,

where i = 1, 2, · · · , |V| and j = 1, 2, · · · ,m. These new degrees satisfy QU1 ≤ QU2 ≤ · · · ≤

QUm and in fact, QUm = d|V|.

With these ingredients, we can give each vertex in the graph a new degree label. To

do this, for a given vertex u, we first examine its original degree du, if du satisfies that

QUk−1 < du ≤ QUk , then vertex u is labelled with qu = k (here we define QU0 = 0).

With all the vertices in the graph having new degree labels from 1 to m, we then can
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simply construct a two-dimensional edge-based entropy histogram whose bin number in

each dimension is fixed to m.

We construct a m×m zero matrix MU whose elements are the histogram bin contents,

and where the row and column indices represent the new degree labels of vertices and run

from 1 to m. For instance, the entry MU
12 accumulates the entropy contribution for all the

edges that connect vertices with relabeled degree labels 1 and 2.

To compute the bin contents we proceed as follows. First, we calculate the normalized

local contribution to the entropy from each edge in Eq. (4.7), then we accumulate the sum

over all edges that have the same degree combinations. We store this accumulated sum

in the corresponding element of the matrix M . The elementwise accumulation is formally

given as

MU
ij =

∑
qu=i,qv=j
i≤j,(u,v)∈E

{
ln |V|
|E|

− 1

2|E||V|dudv

}
,

where i, j = 1, 2, · · · ,m and qu = i denotes that vertex u, with original degree du is

assigned a new degree label i. It is worth noting that since we consider only undirected

graphs here, there is no direction information on each edge. As a result the matrix

is symmetric since there is no difference between the elements MU
ij and MU

ji . So for

convenience, we do not store the elements in the lower triangle below the main diagonal

i.e., the matrix MU is upper triangular. To extract a feature vector from MU , as all

the entries below the main diagonal of MU are zeros, we can simply list all the upper

triangular elements row by row, with the result that

V U = (MU
11,M

U
12, · · · ,MU

1m,M
U
22,M

U
23, · · · ,MU

mm)T .

Clearly, this feature vector has length

m+ (m− 1) + (m− 2) + · · ·+ 1 = m(m+ 1)/2.

To summarize, our graph embedding method is based on the bivariate distribution

of von Neumann entropy contribution with vertex degree for edges in a graph. More-

over, since the von Neumann entropy quantifies the structural complexity of a graph, our

proposed feature vector represents statistical information concerning the local structural

properties in the graph.
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4.2.2 Directed Graph Embedding via Von Neumann Entropy

Distribution

We proceed to explore whether we can extract multi-dimensional structural features from

directed graphs, and hence apply standard techniques from pattern recognition and ma-

chine learning to embed, cluster and classify data in the form of samples of directed graphs.

We commence by computing the von Neumann entropy associated with each edge in a

directed graph. This leads us to a four-dimensional characterization of directed graph

structure, which depends on the distribution of entropy with the in and out-degrees of

pairs of vertices connected by directed edges. We represent this distribution by a four-

dimensional histogram, which can be encoded as a long-vector for the analysis purposes.

To curb the size of the histogram, we show how to requantize the bin-contents using

quantiles of the four cumulative degree distributions.

We recall the approximate von Neumann entropy expression for strongly directed

graphs

HSD
V N = 1− 1

|V|
− 1

2|V|2
∑

(u,v)∈E

{
dinu

dinv d
out2
u

}
.

which is given in Eq. (3.12).

In the previous section, we have shown how the von Neumann entropy contribution for

each edge in a graph can be derived. Specifically, for an edge (u, v) in graph G = (V, E),

we compute

γDuv =
dinu

|E||V|dinv dout
2

u

(4.8)

as the entropy contribution. If this edge is bidirectional, i.e., (u, v) ∈ E2, then we add an

addition entropy contribution to γDuv

γ′uv =
1

|E2||V|doutu doutv

.

This local measure represents the entropy associated with each directed edge since for

arbitrary directed graphs, we have
∑

(u,v)∈E γ
D
uv +

∑
(u,v)∈E2 γ

′
uv = HD

VN and for strongly

directed graphs, we also have
∑

(u,v)∈E γ
D
uv = HSD

V N . Moreover, this measure avoids the bias

caused by graph size, which means that it is the edge entropy contribution determined by

the in and out-degree statistics, and neither the vertex number nor edge number of the

graph that distinguishes a directed edge.

The directed graph characterization is based on the statistical information converged

by the distribution of directed edge entropy with the in and out-degrees of the starting and
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end vertices. We represent this distribution of entropy using a four-dimensional histogram

over the in and out-degrees of the two vertices.

As noted above, one potential problem is that the bin-contents can become sparse in

a high-dimensional histogram. To overcome this problem we again use the cumulative

distribution function. Suppose a directed graph G = (V, E) has |V| vertices which have

been sorted according to in-degree (or out-degree) in the sequence din1 ≤ din2 ≤ · · · ≤ din|V|.

Let p(x = dini ) be the in-degree probability distribution of the graph. The corresponding

cumulative distribution function for the in-degree is given by

Fx(dini ) = p(x ≤ dini ),

where i = 1, 2, · · · , |V|. This function describes the probability that a given in-degree x

takes on a number less than or equal to dini .

Quantiles are intervals of equal size over the cumulative distribution function. They

divide the ordered data din1 , d
in
2 , · · · , din|V | into a number of equal-sized data subsets. Since

vertex degree is always a non-negative integer, the quantiles can thus be viewed as new

quantization of the degree based on its statistical distribution. We define the degree quan-

tiles over the cumulative distribution of degree for the entire sample of graphs under study,

and produce requantized versions of the individual entropy histograms for each individual

graph. Suppose the number of quantiles in each dimension of the degree distribution is

fixed to be m. Then, for example, the m-quantiles of the in-degree distribution can be

obtained as follows

QDj = argmin
dini

{
FQDj

(dini )− j

m

}
,

where i = 1, 2, · · · , |V| and j = 1, 2, · · · ,m. Clearly, these degree quantiles satisfy QD1 ≤

QD2 ≤ · · · ≤ QDm and in fact, QDm = din|V|.

With the sample degree quantiles to hand, we assign each vertex degree quantile labels.

We first examine the original in-degree dinu of a vertex u, if dinu satisfies the condition that

QDk−1 < dinu ≤ QDk ( hereQD0 = 0), then its in-degree quantile is qinu = k. The corresponding

out-degree quantile labels can also be obtained in the same manner. Since all the vertices

in the graph have in-degree and out-degree quantile labels ranging from 1 to m, we can

then simply construct the directed edge entropy histogram whose size in each dimension

is fixed to m. The histogram is stored as a four-dimensional array.

To do this, we first construct a m ×m ×m ×m array MD whose elements represent

the histogram bin-contents, and whose indices represent the degree quantile labels of the
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vertices. For instance, the element MD
1234 accumulates the entropy contribution for all the

directed edges starting from vertices with out-degree quantile label 1 and in-degree quantile

label 2, pointing to vertices with out-degree quantile label 3 and in-degree quantile label

4. We then compute the bin-contents by summing the directed edge entropy contributions

over the sample graph. The histogram bins contain all directed edges having the same

quantile label combinations. We store the accumulated sum in the corresponding element

of array MD. The elementwise accumulation is formally given as

MD
ijkl =

∑
qoutu =i,qinu =j
qoutv =k,qinv =l

(u,v)∈E

{
dinu

|E||V|dinv dout
2

u

}
.

If the graph contains bidirectional edges, we additionally accumulate the following quantity

M ′ijkl =
∑

qoutu =i,qinu =j
qoutv =k,qinv =l

(u,v)∈E2

{
1

|E2||V|doutu doutv

}
,

where i, j, k, l = 1, 2, · · · ,m. To extract a feature vector from MD, we can simply list all

the elements in the array, with the result that

V D = (MD
1111,M

D
1112, · · · ,MD

111m,M
D
1121,M

D
1122, · · · ,MD

mmmm)T

Clearly, this feature vector has length m4.

It is worth pausing to consider the case of strongly directed graphs. For such graphs,

from Eq. (3.12) the directed edge entropy does not depend on doutv . As a result the dimen-

sionality of the corresponding histogram can be reduced from four to three by ignoring

the third index k in MD
ijkl. This leads to a new feature vector with length m3. In the

following discussion, to distinguish between these two types of feature vectors, we name

the former full-form (FF) while the latter strongly-directed (SD).

When accumulated in this way we effectively count directed edges with the same

configurations of degree quantile labels, and weight them according to their entropy. If

the different quantile labels were independent, we would expect a uniform histogram.

However, structure in the individual sample graphs due to preferred combinations of vertex

in-degree and out-degree will give rise to a non-uniform distribution. To some extent, the

quantization of the distribution of entropy with degree according to quantile labels, may

dilute this structure due to merging adjacent degree bins. However, the directed edge

entropy contribution is based on the original vertex in and out-degree statistics, and the
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m-quantiles play a role in diminishing the bias caused by different populations of directed

graphs. Therefore the entropic representation can still be effective in capturing statistical

information concerning the local structural properties in the graph. By embedding graphs

into a space spanned by feature vectors, it provides a theoretically principled and efficient

tool for graph characterization tasks, which captures the graph characteristics at both the

statistical and structural levels.

4.3 Experiments

In this chapter, we have proposed a novel edge assortativity characterization for quan-

tifying the assortative mixing properties for both undirected and directed graphs based

on the von Neumann entropy associated with edges. We have also developed an entropic

graph embedding method that can be applied to both undirected and directed graphs.

To evaluate these methods and analyze their properties, in this section we employ them

to solve a number of classification problems and compare their performance with several

state-of-the-art methods.

4.3.1 Entropic Edge Assortativity

We first explore whether the entropic edge assortativity measure can reveal more useful

features of the graph structure than the traditional degree-based ones. To this end, we

confine our attention to two main tasks. We first apply the entropic edge assortativity

measure to a number of real-world complex networks to show that it can effectively reflect

to what extent the vertices are connected preferentially in a network. We then demonstrate

one advantage of this novel assortativity characterization, namely that it is more efficient

in distinguishing between different classes of complex networks than the traditional degree-

based measures.

We commence by comparing the performance of traditional degree assortativity co-

efficients and our novel entropic edge assortativity measure on real-world collaboration

citation networks. These include the Arxiv Astro Physics, Condensed Matter, General

Relativity, High Energy Physics and High Energy Physics Theory networks [81]. Table

4.1 gives the network size, edge number and value of both the degree and edge assortativity

measures. From the table, all the coauthership networks have positive degree assortativ-

ity coefficients. This is a reasonable result since productive authors prefer to collaborate.
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Datasets HepTh HepPh GrQc CondMat AstroPh

Network size 9877 12008 5242 23133 18772

Edge number 51971 237010 28980 186936 396160

Degree assort. 0.2674 0.6322 0.6592 0.1339 0.2051

Edge entropy assort. 0.2012 0.6035 0.3910 0.3435 0.5458

Table 4.1: Degree assortativity coefficients and entropic edge assortativity measures of

real-world undirected complex networks.

However, the traditional assortativity coefficient has difficultly in distinguishing between

CA-HepPh and CA-GrQc networks as their values are similar. The entropic edge assor-

tativity coefficient, on the other hand, is able to characterize these two networks. One of

the reasons for this is that the edge assortativity measure can capture not only the degree

properties of vertices, but also the underlying entropic structural complexity associated

with the edges in a network.

Next we show that the edge assortativity measure is more efficient than the traditional

degree-based measure in classifying graphs that belong to different random graph mod-

els. To do this we employ both assortativity measures to the Random Undirected Graph

Dataset, which contains a large number of undirected random graphs that are generated

according to one of three graph models, namely a) the Erdős-Rényi model [43], b) the

“small-world” model [124], and c) the Barabási-Albert model [13]. The different graphs

in the database are generated using a variety of model parameters, e.g., the graph size

and the connection probability in the Erdős-Rényi model, the edge rewiring probability

in the “small-world” model and the number of added connections at each time step in the

Barabási-Albert model.

In Fig. 4.3 we plot the mean value of the degree assortativity coefficients computed

from Eq. (4.3) and the entropic edge assortativity measures computed using Eq. (4.5) as

a function of graph size (standard deviation as an error bar). In the left panel, all three

classes of graphs tend to have zero assortative mixing when the graph size becomes very

large, and it is difficult to separate the “small-world” and Barabási-Albert graphs. Turning

our attention to the right panel, the difference in mean edge assortativity coefficients for

different models is much larger than the standard deviation of the coefficients for the

different models, even when the graph size is large. This suggests that the variance in

the edge assortativity measure due to different parameter settings is much smaller than
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(a) Degree assortativity coefficients
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(b) Entropic edge assortativity measures

Figure 4.3: Mean and standard deviation of degree and entropic edge assortativity mea-

sures for different models of undirected graphs.

that due to differences in structure. This indicates that different network models have

different values of edge assortativity coefficients for a given size. This accords with our

expectations since the entropy itself is sensitive to the different graph models.

For directed graphs, we first provide a comparison of our entropic directed edge assor-

tativity measure, and the four degree assortativity coefficients that can be computed from

the four combinations of in and out-degree on the two vertices of an edge. We commence

with a study on some real-world networks, and these include the Wikipedia vote network,

provided by Leskovec et al. [79], the Gnutella peer-to-peer networks from August 5 to

9, 2002, which are a sequence of snapshots of the Gnutella peer-to-peer file sharing net-

work [110] and the Arxiv HEP-TH citation network [80]. Table 4.2 gives the network size,

edge number and the values of in/in-degree, in/out-degree, out/in-degree, out/out-degree

and edge assortativity measures.

There are a number of observations to note concerning this data. In the Wikipedia

vote network, a person who receives many votes is more likely to vote for a person who

also obtains a large number of votes, rather than voting for individuals who vote many

times. In the file sharing networks, computers that receive a great number of documents

preferentially share files with one-another. Computers that send many files are unlikely

to share files with computers that receive many documents. For the citation network,

important papers are those cited most heavily and this can be reflected accurately by

the degree assortativity measures. Although when taken in combination the four types of

directed degree assortativity coefficients are useful in characterizing different networks, it
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Datasets Wiki-Vote p2p-G05 p2p-G06 p2p-G08 p2p-G09 Arxiv HEP-TH

Network size 7115 8846 8717 6301 8114 27751

Edge number 103689 31839 31525 20777 26013 352807

In/in deg. assort. 0.0051 0.0312 0.0880 0.1079 0.1042 0.0405

In/out deg. assort. 0.0071 -0.0002 0.0322 0.0315 0.0190 0.0055

Out/in deg. assort. -0.0832 -0.0034 -0.0032 -0.0285 -0.0327 0.0016

Out/out deg. assort. -0.0161 -0.0017 0.0082 -0.0157 -0.0062 0.0951

Edge entropy assort. 0.0006 0.0053 -0.0092 -0.0038 -0.0055 0.1126

Table 4.2: Degree assortativity coefficients and entropic edge assortativity measures of

real-world directed complex networks.

is difficult to use a single measure alone to do this. However, when using the entropic edge

assortativity measure developed for directed graphs, networks with different structure are

efficiently characterized.

In Fig. 4.4 we plot the values of the entropic edge assortativity coefficients, and

compare them to the degree assortativity coefficients obtained with the four different

combinations of vertex in and out-degree on an edge computed from Eq. (4.4). Here

we use randomly generated data for three different directed graph models contained in

the Random Directed Graph Dataset, which has been described in Chapter 3. The figure

shows the assortativity measures versus graph size, and shows the mean value and standard

deviation. The most important feature in the figure is that although the Barabási-Albert

networks are easily separated, the Erdős-Rényi and “small-world” networks are overlapped

significantly, for each of the four degree assortativity coefficients. However, Fig. 4.4(e)

suggests that as the graph size increases, for all three models the mean values of the edge

assortativity measures grow slowly and approach zero, with clear separations between

them. The result obtained here demonstrates that the edge assortativity measure provides

a powerful tool for capturing both the degree properties and the entropic information on

edges in a directed network.

4.3.2 Undirected Graph Embedding

In this subsection we provide a comprehensive experimental evaluation of the feature-

vector-based graph embedding method suggested. We perform PCA over a set of feature

vectors extracted from graphs. This allows us to identify a new basis associated with
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(a) Out-out degree assortativity coefficients
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(b) In-in degree assortativity coefficients
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(c) Out-in degree assortativity coefficients
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(d) In-out degree assortativity coefficients
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(e) Entropic edge assortativity measures

Figure 4.4: Mean and standard deviation of degree and entropic edge assortativity mea-

sures for different models of directed graphs.
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Datasets MUTAG NCI1 NCI109 D&D

Maximal vertices # 28 111 111 5748

Minimal vertices # 10 3 4 30

Average vertices # 17.9 29.9 29.7 284.3

Graph # 188 4110 4127 1178

Table 4.3: Detailed information of the bioinformatics graph database used in the experi-

ments.

maximum variation in entropy contribution with vertex degree. This is an effective form

of ECA since the directions of maximum entropy contribution variation correspond to

those where there is maximum variation in degree structure for the edges. Specifically,

we apply our method to some real-world bioinformatics database in order to extract the

corresponding feature vectors and thus obtain the graph classification results, using the

support vector machine (SVM) classifier. We compare the performance with that of several

other alternative state-of-the-art approaches proposed in recent literature.

In this subsection, we use the following datasets: MUTAG Dataset, NCI1 and NCI109

Dataset and D&D Dataset, which are extracted from chemical compounds and protein

data. Table 4.3 gives detailed information of each dataset, including the number of graphs,

the maximal and minimal number of vertices in a graph.

We first investigate how the choice of the number of quantiles m affects the classifica-

tion performance and the computational complexity of our proposed embedding method

on the graphs extracted from the real-world bioinformatics database. To this end, we vary

the quantile number m, and for each m, we use our embedding method to extract the cor-

responding feature vectors. We then report the corresponding classification accuracy and

the computation time on the data, using standard vector-based classification algorithms.

In the following evaluation, for our embedding method and all other alternative state of

the art approaches, we perform the 10-fold cross-validation using support vector machine

classifier associated with the sequential minimal optimization (SMO) [102] and the Pearson

VII universal kernel (PUK). All the SMO-SVM parameters are optimized on a Weka

platform, and all the experiments are performed on an Intel(R) Core(TM) i7-3770 CPU

@ 3.40 GHz processor, with 8 GB memory.

In Fig. 4.5(a) we report the average classification rates of 10 runs for SMO-SVM

classifier as a function of quantile number m on the NCI1 and NCI109 Dataset, while Fig.
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Figure 4.5: Graph classification performance using entropic graph embedding on the NCI1

and NCI109 Dataset as a function of quantile number.

4.5(b) gives the relationship between the average computation runtime of the experiments

and the number of quantiles on these datasets.

From Fig. 4.5(b), the experimental runtime for both datasets basically has a growing

trend as the quantile number m increases, which is as expected since greater quantile

number leads to greater size of the feature vector, resulting in the greater computational

complexity. Moreover, the entropic embedding method is computationally tractable as

the runtime does not increase rapidly even when the size of the feature vector becomes

particularly large.

Turning attention to the classication results reported in Fig. 4.5(a), the performance

is good on the two subsets in the NCI1 and NCI109 Dataset, with the highest classication

accuracy over 68% and 67% respectively. Moreover, as the increase of the quantile number,

the classication rates on both datasets witness a slight growth, reaching a peak when the

quantile number reaches 3, then they drop signicantly. This shows that our method gives

the best classication performance when m = 3. Furthermore, with this choice of quantile

number, the experimental runtime is relatively low, which suggests that our method can

achieve a sufficient accuracy without causing expensive computation.

We then fix the number of quantiles to m = 3 and show the comparison results between

our method and several alternative state of the art learning methods. These methods

include three feature-vector-based graph embedding methods, namely a) the coefficient

feature vector from Ihara zeta function for graphs (CI) [106], b) graph features from

topological and label attributes (GF) [82], and c) the discriminative prototype selection
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Datasets MUTAG NCI1 NCI109 D&D

CI 80.85 60.05 62.79 DNF

GF 86.57 65.81 65.30 69.92

DP 75.61 60.93 60.23 63.19

RW 87.01 DNF DNF DNF

WL 84.57 73.00 73.28 75.63

GC 84.04 67.71 67.32 77.33

ED 86.18 68.05 67.04 75.39

Table 4.4: Comparison of graph classification results on bioinformatics graph database

(accuracy unit is %).

embedding method (DP) [24] and three graph kernel methods, namely a) the random walk

graph kernel (RW) [71], b) the Weisfeiler-Lehman subtree graph kernel (WL) [115] and c)

the graphlet count graph kernel (GC) [116].

In the following analysis, the entropic embedding method is denoted as ED (entropy

distribution). For the graph embedding methods CI, GF, DP and ED we perform PCA on

their corresponding feature vectors to obtain graph features. On the other hand, for graph

kernel methods RW, WL and GC, we first compute their kernel matrix, then perform kernel

PCA on this matrix in order to embed a graph into a principal component feature space.

This allows us to employ any standard machine learning algorithm for graph classification.

For performance comparison, we report the average classification accuracy for each

method over the 10-fold cross-validation run 10 times. We also give an evaluation of the

runtime of each method, which exclude the time for SVM training since all methods employ

the same SMO-SVM classifier. Moreover, In Table 4.5, the accuracy unit is percentage

while in Table 4.5, the runtime unit is second and minute, in both tables, the “DNF”

in any cell indicates that the computation did not finish (DNF) within a sufficient long

time (12 hours, in this experiment) due to the large computational complexity, so the

experiment run is aborted.

Table 4.4 shows the accuracy comparison for our proposed method (ED) versus other

alternative graph embedding methods and graph kernel methods. The corresponding

runtime results are shown in Table 4.5. Comparing to graph embedding methods (CI, GF

and DP), the entropic embedding method ED gives the best classification performance.

Specifically, on the NCI1 and NCI109 Dataset and D&D Dataset, ED has the highest
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Datasets MUTAG NCI1 NCI109 D&D

CI < 1 s 23 s 23 s DNF

GF < 1 s 30 s 30 s ≈ 40 m

DP < 1 s 55 s 56 s ≈ 60 m

RW 5 s DNF DNF DNF

WL < 1 s ≈ 2 m ≈ 2 m ≈ 10 m

GC 2 s ≈ 1 m ≈ 1 m ≈ 20 m

ED <1 s 13 s 13 s ≈8 m

Table 4.5: Comparison of experimental runtime on bioinformatics graph database (time

unit is minute and second).

classification rates among all graph embedding methods. On the MUTAG Dataset, ED

also gives the second highest classification rate, only slightly lower than that of GF.

For graph kernel methods, although their classification rates are significantly high

on the NCI1 and NCI109 Dataset, our embedding method still gives a competitive per-

formance. Furthermore, we note that the random walk graph kernel (RW) did not finish

experiments on three datasets, due to one of the main drawbacks of graph kernel methods,

namely they tend to have a high computational overhead.

From Table 4.5, we see in general, the graph embedding methods have faster runtime

than graph kernel methods. Another interesting feature is that two of the methods did

not finish computation within a sufficiently long time on the D&D Dataset, this is mainly

because some graphs in this dataset have more than 5000 vertices (according to Table 4.3).

As a result, the graph embedding and graph kernel methods which rely on the computation

over the number of vertices and edges have a significant amount of computational com-

plexity, leading to the infinite experimental runtime. However, the entropic embedding

method ED shows a good runtime performance as it finished experimental computation

on all four datasets with lower runtime, especially on the D&D Dataset. Therefore, from

the experimental evaluation, the graph embedding method associated with the entropy

distribution has proved to outperform some state of the art methods, as it gives both

accurate and computationally efficient graph classification performance.

102



4.3 Experiments

4.3.3 Directed Graph Embedding

Next we evaluate the experimental performance of the entropic directed graph character-

ization. Specifically, we first explore the graph clustering performance of the method on

a set of random graphs generated from three classical random graph models, which is the

Random Directed Graph Dataset we have used in Chapter 3. Then we apply our method

to some real-world data and report the graph classification results, including the Protein

Dataset that we have studied in Chapter 3, and the COIL Dataset.

To investigate the classification performance of our proposed directed graph charac-

terization, we perform PCA on both FF feature vectors and SD feature vectors extracted

from the randomly generated graphs in the Random Directed Graph Dataset. These fea-

ture vectors are long-vectors formed by concatenating the elements of the four and three-

dimensional histograms respectively. Here we select different parameter settings to gen-

erate 500 normal directed graphs and 500 additional strongly directed graphs for each of

the three random graph models, with graph size ranged between 100 and 150. Moreover,

in all the experiments in this section, we choose the number of quantiles m = 3, giving all

the FF feature vectors with a constant length m4 = 81, while for SD feature vectors, the

length is m3 = 27.

Figures 4.6(a), 4.6(c) and 4.6(d) each show that by embedding different random graphs

into a feature space spanned by the first three principal components constructed from the

feature vectors, the three classes of random graphs display some clear separation between

each other. However in Fig. 4.6(b), which is the plot of SD feature vectors extracted

from normal directed graphs, the “small-world” graphs and the Barabási-Albert graphs

show some overlap. This suggests the FF feature vectors are efficient in distinguishing

any normal directed graphs while the SD feature vectors are effective only for strongly

directed graphs, which is an expected result. Therefore in the following experiments we

use the FF feature vectors in our analysis.

To take this analysis a step further, we evaluate the classification performance of en en-

tropic graph embedding method on the graphs in the COIL Dataset and Protein Dataset,

using standard vector-based clustering and classification algorithms. In the following eval-

uation, we perform the 10-fold cross-validation using two classifiers, namely support vector

machine (SVM) classifier associated with the sequential minimal optimization (SMO) [102]

and the Pearson VII universal kernel (PUK), and k-nearest neighbour (k-NN) classifier.

All the SMO-SVM and k-NN parameters are optimized for each method on a Weka plat-
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Figure 4.6: PCA plots of graph classification performance using entropic graph embedding

on different models of directed graphs.
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Figure 4.7: Average graph classification rates of entropic graph embedding with both SVM

and k-NN classifiers on different datasets as a function of quantile number.

form, and all experiments are performed on an Intel(R) Core(TM) i7-3770 CPU @ 3.40

GHz processor, with 8 GB memory.

In Fig. 4.7 we report the average classification rates of 10 runs for both SVM and

k-NN classifiers as a function of quantile number m on three different datasets, including

the 4-object data and 8-object data in the COIL Dataset and Protein Dataset. Figure

4.8 gives the relationship between the average runtime and the quantile number of the

experiments on these datasets.

From Fig. 4.8, the experimental runtime for all three classification problems grows as

the quantile number increases, which is as expected since greater quantile number leads

to greater size of the feature vector, resulting in the greater computational complexity.

Moreover, the entropic directed graph characterization is computationally tractable as

the runtime does not increase rapidly even when the size of the feature vector becomes
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Figure 4.8: Average experimental runtime of entropic graph embedding with both SVM

and k-NN classifiers as a function of quantile number.

particularly large.

Turning attention to the classification results reported in Fig. 4.7, the performance is

particularly good on 4-object data, with a classification accuracy over 98%, and on 8-object

data and 6-class protein database, the accuracy is still acceptable (50% to 60%). Moreover,

as the increase of the quantile number, the classification rates for both classifiers on all

three datasets witness a slight growth, reaching a peak when the quantile number reaches

3, then they drop significantly. This is because in the graphs of these datasets, all vertices

have the same out-degree 3, therefore when m = 3 the corresponding feature vectors

can precisely preserve the information of the vertex in and out-degree statistics, which

guarantees that m = 3 gives the best classification performance and any greater quantile

number will lead to a decrease of classification accuracy. Furthermore, with this choice

of quantile number, the experimental runtime is relatively low, which suggests that our

method can achieve a sufficient accuracy without causing expensive computation. Overall,

based on these observations we claim that that our directed graph characterization can be

both accurate and computationally efficient in clustering and classifying directed graphs

when the appropriate parameters are selected.
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4.4 Summary

It is interesting to note that the network von Neumann entropy analysis is posed at the

global level, and does not consider in detail how the entropy is distributed across edges

or other network substructures. The aim in this chapter is to provide a number of new

characterization of network structure, which captures the distribution of entropy across

the edges of a network.

First, we commence from the simplified approximations to the von Neumann entropy

for both undirected and directed graphs, which are dependent on the graph size and

degree statistics of vertices that are connected. From these approximations we then derive

a local measure for quantifying the von Neumann entropy contribution for each edge in

the undirected and directed graph respectively. This leads to the possibility of designing a

correlation coefficient that measures the average assortative properties of how the entropy

contributions that reside in edges are connected in a network, which we name the entropic

edge assortativity measure. The resulting expressions for such measures of both undirected

and directed graphs are simply related to some graph invariants, including the graph size,

number of edges and the vertex degree.

The second contribution we have made in this chapter is to use von Neumann edge

entropy distribution to perform network similarity comparisons and also to embed samples

of networks into a low-dimensional space using PCA. Since our entropy is defined in terms

of the two vertex degree values defining an undirected edge, and the two in-degree and

out-degree combinations defining a directed edges, we can use histogram the edge entropy

using a two-dimensional degree array for undirected networks and a four-dimensional array

for directed networks. Each edge in a network increments the contents of the appropriate

bin in the histogram, according to the degree pair in an undirected graph or the degree

quadruple for a directed graph. We normalize the resulting histograms and vectorize them

to give network feature vectors reflecting the distribution of entropy across the edges of

the network. This provides a complexity level characterization of graph structure based

on the statistical information residing edge degree distribution.

The work reported in this chapter can be extended in a number of ways. First, it

would be interesting to explore how the distribution of the edge entropy contributions in

a network can contribute to the development of novel information theoretic divergences,

distance measures and relative entropies. Another interesting line of investigation would

be to investigate whether this measure can be applied further to weighted graphs and
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hypergraphs. In the future, we also intend to explore novel and effective graph kernels

defined over the inner products of our entropy distribution feature vectors.
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Chapter 5

Thermodynamic Characterization

of Time Evolving Networks

In this chapter we present a novel method for characterizing the evolution of time-varying

complex networks by adopting a thermodynamic representation of network structure com-

puted from a polynomial (or algebraic) characterization of graph structure. Commencing

from a representation of graph structure based on a characteristic polynomial computed

from the normalized Laplacian matrix, we show how the polynomial is linked to the Boltz-

mann partition function of a network. This allows us to compute a number of thermo-

dynamic quantities for the network, including the average energy and entropy. Assuming

that the system does not change volume, we can also compute the temperature, defined

as the rate of change of entropy with energy. All these thermodynamic variables can be

approximated using low-order Taylor series that can be computed using the traces of pow-

ers of the normalized Laplacian matrix, avoiding explicit computation of the normalized

Laplacian spectrum. These polynomial approximations allow a smoothed representation

of the evolution of networks to be constructed in the thermodynamic space spanned by

entropy, energy and temperature. We show how these thermodynamic variables can be

computed in terms of simple network characteristics, e.g., the total number of vertices and

vertex degree statistics for vertices connected by edges.

Another contribution we will make in this chapter is the development of a statistical

thermodynamical framework for analyzing the time-varying networks, using ideas from

statistical mechanics. To do this, we first explore whether the approximate von Neumann

entropy can be used as a thermodynamic entropy of a network, when we associate the

network microscopic configurations with the eigenstates of the normalized Laplacian spec-
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trum. Then, we derive expressions for additional thermodynamic variables of networks,

including the internal energy and temperature. In the experiments, we apply the resulting

thermodynamic characterizations to real-world time-varying networks representing com-

plex systems in the financial and biological domains. The study demonstrates that the

methods provide an efficient tool for detecting abrupt changes and characterizing different

time stages in network evolution.

5.1 Thermodynamic Characterization Using Graph

Polynomials

The aim in this section is to establish a link between the characteristic polynomials from

algebraic graph theory, and the thermodynamical analysis of networks. For an undirected

graph G = (V, E), our characterization commences from the Boltzmann partition function

Z(β) = Tr[exp{−βĤ}] where Ĥ is the Hamiltonian associated with the graph and β =

1/kT with k the Boltzmann constant and T the temperature. The Hamiltonian is the total

energy operator, which can be defined in a number of ways. For instance, in quantum

mechanics the choice dictated by the Schrödinger equation is Ĥ = −∇2 +U, where −∇2 is

the Laplacian and U the potential energy operator. For a graph, if we specify the vertex

potential energy as the negative degree matrix, i.e., U = −D and replace the Laplacian

by its combinatorial counterpart L = D − A, where A is the adjacency matrix, then

Ĥ = −A. This choice of Hamiltonian is often used in the Hückel molecular orbital (HMO)

method [36]. An alternative is to assume a graph is immersed in a heat bath with the

eigenvalues of its normalized Laplacian matrix as the energy eigenstates. In this case,

we set the potential energy operator U(r, t) to zero, and can identify ∇2 with the graph

normalized Laplacian, i.e., Ĥ = −L̃ = −D−1/2(D −A)D−1/2.

With this choice of Hamiltonian and hence partition function, the energy associated

with the graph is E = −∂ lnZ(β)/∂β = −
∑

i piλ̃i, where λ̃i denote the eigenvalues of

L̃ and pi = exp{βλ̃i}/
∑

i exp{βλ̃i}, i.e., a weighted average of the normalized Laplacian

eigenvalues, where the weights associated with the individual eigenvalues are determined

by the Boltzmann occupation probabilities. The entropy is given by S = k{lnZ(β)+βE}.

We characterize the graph using the quasi polynomial R(β) = det(I−βL̃). We show in

our analysis that Z(β) ≈ − lnR(β) + |V|, where |V| is the graph size and as a result both

the energy and entropy can be expanded as power series in β. The leading coefficients
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of the two series are determined by the sum of the reciprocal of the degree products for

vertices forming edges and triangles in the graph. The coefficients of the increasing powers

of β depend on the frequencies of increasingly large substructure. The higher the degrees

of the vertices forming these structures, the smaller the associated weight. Hence high

degree structures are energetically more favourable than low degree ones (because they

have lower reciprocal of the degree product). Also larger structures are energetically more

favourable.

The expressions derived for energy and entropy of the network depend only on the as-

sumed model for Hamiltonian of the system, and the approximations needed to express the

partition function in terms of the characteristic polynomial associated with the normalized

Laplacian of the network. Hence the energy and entropy can be used as a characteriza-

tion of structure for any set of networks. However, in our experiments we study the time

evolution of networks with fixed numbers of vertices. This is not an entirely uncommon

situation, and arises where networks are used to abstract systems with a known set of

states or components. In the financial network example, the vertices are stock traded over

a 6000-day period, and in the second example the vertices represent genes expressed by

fruit flies at different stages in their development. In this set-up we require a natural way

of measuring fluctuations in network structure with time.

For a thermodynamic system with freedom to vary its volume, temperature and pres-

sure, the change in internal energy is given by dE = TdS − PrdVo +mdN where T is the

temperature, Pr the pressure, dVo the change in volume, m the particle mass and dN the

change in the number of particles. When the number of particles and volume are fixed, we

have an isochoric process, and the temperature is the rate of change of energy with entropy.

With the expressions for these two quantities derived from the partition function, the iso-

choric temperature is also determined by a simple expression involving the frequencies of

edges and triangles of different degree configurations. One way to picture this system is a

thermal distribution across the energy states corresponding to the normalized Laplacian

eigenvalues. Large changes in temperature are hence associated with a) large changes in

the number of triangles compared to the number of edges, and b) when the average degree

of the vertices changes significantly. Hence the temperature fluctuation between graphs in

a sequence is sensitive to changes in internal structure of the network. We show that our

method in fact smooths the time dependence of the thermodynamic characterization, so

we present the global thermodynamic analysis in a computationally efficient and tractable
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way.

So, to summarize we present a method motivated by thermodynamics for characterizing

time sequences of networks. Although it is not a model of network evolution, it may

provide the building blocks for such model. The approach has some similarities to that

reported by Javarone and Armano [67] who use the classical limits of quantum models of

gases as analogues to analyze complex networks. However, rather than using the classical

Boltzmann distribution and the normalized Laplacian characteristic polynomial as the

basis of their model, they base their model on a fermionic system. Finally, we note that

the notion of temperature used in our work is not the physical temperature of the system,

but a means of gauging fluctuations in network structure with time.

In this section, we provide a detailed development of how we compute thermodynamic

quantities for a network, including the thermodynamic entropy, average energy and tem-

perature, commencing from a characteristic polynomial representation of network struc-

ture. First, we provide some preliminaries on how graphs can be represented using the

normalized Laplacian matrix. We then explain how the Boltzmann partition function can

be used to describe the thermalization of the population of the energy microstates of net-

work as represented by its Hamiltonian. The key step in establishing our thermodynamic

characterization of network evolution, is to show a relationship between the partition

function and the characteristic polynomial for the network. Normally, the thermalization

process arises via the analogy of emersing the network in heat bath, with the adjacency

matrix eigenvalues playing the role of energy eigenstates and the thermal population of the

energy levels being controlled by the Boltzmann distribution. Here we aim to make a con-

nection between the heat bath analogy and an alternative graph representation based on a

characteristic polynomial. This is a powerful approach since there are several alternative

matrix representations of graphs, and their characteristic polynomials together with the

closely related zeta function representations have been extensively studied in graph the-

ory [113] [106] [105]. Our approach therefore allows these potentially rich representations

to be investigated from the thermodynamic perspective. Specifically, we show how the

partition function can be approximated by the characteristic polynomial associated with

the normalized Laplacian matrix for the network. This picture of the heat bath emerges

when the Hamiltonian is the negative normalized Laplacian. From this starting point and

using the network partition function approximation, we derive the expressions for the net-

work average energy and entropy, and under the assumption of constant volume determine
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the network temperature by measuring fluctuations in entropy and average energy. We

show for networks of approximately constant size, each of these thermodynamic quantities

can be computed using simple network statistics, including the number of vertices and

vertex degree statistics.

5.1.1 Boltzmann Partition Function

In statistical mechanics, the canonical partition function associated with the Boltzmann

factor of a system is

Z =
∑
i

e−βEi ,

where β = 1/kT is proportional to the reciprocal of the temperature T with k the Boltz-

mann constant, and Ei denotes the total energy of the system when it is in microstate i.

Moreover, the partition function can be formalized as a trace over the state space:

Z(β) = Tr[exp{−βĤ}],

where Ĥ is the Hamiltonian operator and exp{· · · } represents the matrix exponential.

The Hamiltonian operator of a graph may be defined in a number of ways. In quantum

mechanics, one choice dictated by the Schrödinger equation is

Ĥ = −∇2 + U.

If we set the potential energy operator U to zero, we can identify −∇2 with the graph

Laplacian in either its combinatorial or normalized form. With this choice we obtain

Ĥ = L

or

Ĥ = L̃. (5.1)

Alternatively, we can specify the vertex potential energy operator as the negative degree

matrix, i.e., U = −D, with the result that

Ĥ = −A.

This choice of Hamiltonian is often used in Hückel molecular orbital (HMO) method

[36]. Generally, in this case Ĥ = c1I + c2A where A is the adjacency matrix of a graph

representing the carbon skeleton of the molecule and c1, c2 are constants.
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In our analysis we let the Hamiltonian operator Ĥ = −L̃, which is the opposite as

shown in Eq. (5.1). As a result, the Boltzmann partition function takes the form

Z(β) = Tr[exp{βL̃}]. (5.2)

Although most of the aggregate thermodynamic variables of the system, such as the aver-

age energy and entropy, can be expressed in terms of the partition function or its deriva-

tives, deriving expressions for these variables directly from Eq. (5.2) can be computa-

tionally difficult. A more convenient route is to adopt an alternative graph representation

based on a characteristic polynomial. In this way we approximate the Boltzmann partition

function, so that the computation for thermodynamic variables can be simplified.

It is important to stress that making use of the statistical mechanical analysis usually

requires a specification of the microscopic configurations of a thermodynamic system to-

gether with a clear physical interpretation of their meaning. In this section, we do not

dwell on the microstates of the thermodynamic system arise or how they are populated.

Briefly, our Hamiltonian is the negative of the normalized Laplacian, and one physical

interpretation of our model would be of a graph immersed in a heat bath with the normal-

ized Laplacian eigenvalues as energy eigenstates. The graph is subject to thermalization

via the Boltzmann distribution. Our main concern is though to understand how to ap-

proximate the partition function of the resulting system so as to render thermodynamic

analysis tractable. Although we do define a Hamiltonian for the system, our basic rep-

resentation of the graph is in terms of the characteristic polynomial. We show how the

characteristic polynomial can be used to approximate the Boltzmann partition function

when the graph is immersed in a heat bath. Here the polynomial coefficients are them-

selves symmetric polynomials of the normalized Laplacian eigenvalues, and the polynomial

variable is linked to the temperature of the heat bath. As we will show in our experiments,

this approximation effectively smooths the time dependence of the network evolution, by

allowing the thermodynamic variables to be approximated by low-order polynomials.

5.1.2 Characteristic Polynomial of Normalized Laplacian Matrix

The characteristic polynomial of the normalized Laplacian matrix L̃ of a graph, denoted

by fc(x), is the polynomial defined by

fc(x) = det(xI − L̃),

where I indicates the identity matrix and x is the polynomial variable.
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At this point it is worth noting that polynomial characterizations are also central to

the definition of various types of zeta function of a graph. For instance, the determinant

expression for the reciprocal of the Ihara zeta functions of a graph [106] is

ζ−1(x) = det(I − xB)

where B is the Hashimoto’s edge adjacency operator on the oriented line graph of graph

G = (V, E). By replacing the Hashimoto operator with the normalized Laplacian operator

B = L̃, we immediately obtain

ζ−1(x) = det(I − xL̃).

Therefore the characteristic polynomial of the normalized Laplacian matrix and the above

zeta function of graph G are related by

fc(x) = x|V| det(I − 1

x
L̃) = x|V|ζ−1(

1

x
)

where |V| is the number of vertices in the graph.

Here we use R(x) to denote the inverse zeta function determinant det(I − 1
x L̃) and

refer to it as the quasi characteristic polynomial of the normalized Laplacian matrix. To

show that R(x) can be employed as an efficient tool for approximating the Boltzmann

partition function in Eq. (5.2), we first note that for a square matrix M , the determinant

can be calculated by

det(M) = exp{Tr[lnM ]}.

Thus, we have

R(x) = exp{Tr[ln(I − 1

x
L̃)]}.

Recalling the classical Mercator series for the matrix logarithm of I +M

ln(I +M) = M − M2

2
+
M3

3
− · · · , ρ(M) < 1,

where ρ(M) indicates the spectral radius of M , which is equal to the largest absolute value

of the eigenvalues of M . Since the normalized Laplacian matrix has eigenvalues between

0 and 2 [30], the matrix Mercator series holds if and only if ρ( 1x L̃) < 1, i.e., | 1x | <
1
2 .

To develop these ideas a step further, if we let 1
x = β, the quasi characteristic polyno-

mial of the normalized Laplacian matrix can then be expressed as

R(β) = exp{Tr[−βL̃− 1

2
β2L̃2 − 1

3
β3L̃3 − · · · ]}. (5.3)
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Moreover, using the first-order MacLaurin formula to expand the matrix exponential, i.e.,

expM = I +M +
M2

2!
+
M3

3!
+ · · · ,

where M is an arbitrary square matrix, we can immediately re-write the Boltzmann par-

tition function Eq. (5.2) in the following way:

Z(β) = Tr[I + βL̃+
1

2!
β2L̃2 +

1

3!
β3L̃3 + · · · ]. (5.4)

By comparing the expressions in Eq. (5.3) and Eq. (5.4), the Boltzmann partition

function can then be calculated from the quasi characteristic polynomial of the normalized

Laplacian matrix as follows:

Z(β) = Tr[I] + Tr[βL̃+
1

2!
β2L̃2 + · · · ]

= |V| − lnR(β) + ε(β),

where ε(β) denotes the residual. More explicitly, the residual is computed by

ε(β) =
∞∑
n=3

(
1

n!
− 1

n
)βnTr[L̃n]

= −
∞∑
n=3

βn

n

[
1− 1

(n− 1)!

]
Tr[L̃n]

= −β
3

6
Tr[L̃3]− 5β4

24
Tr[L̃4]− · · · .

As a result, when |β| takes on a small value, we have

lim
β→0

ε(β)

lnR(β)
= 0,

i.e., r(β) = o[lnR(β)]. This implies that the partition function is approximately equal to

the negative of natural logarithm of the quasi characteristic polynomial plus a constant:

Z(β) ≈ − lnR(β) + |V|. (5.5)

To conclude this subsection, it is worth discussing the validity of the above approx-

imation. We have shown that the requirements a) |β| < 1
2 and b) ε(β) = o[lnR(β)] are

essential to making this approximation valid, which implies that the value of β must be

small. Later we will provide an empirical analysis showing that this condition is well

satisfied for a number of real-world complex networks.
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5.1.3 Thermodynamic Variables of Complex Networks

For thermodynamics, a thermodynamic state of a system can be fully described by an

appropriate set of principal parameters known as thermodynamic variables. These in-

clude the average energy, entropy and temperature. In this subsection, we give a detailed

development showing how these thermodynamic state variables are derived from the ap-

proximate partition function and how they can be computed via simple network statistics.

To commence, we recall that given a partition function Z(β), the average energy E of

a system G = (V, E) is obtained by taking the partial derivative of the logarithm of the

partition function with respect to β, i.e.,

E(G) = −∂ lnZ(β)

∂β
. (5.6)

Moreover, the thermodynamic entropy S is obtained by

S(G) = k{lnZ(β) + βE(G)}, (5.7)

where k denotes the Boltzmann constant.

The thermodynamic temperature T , measures fluctuations in network structure with

time. More specifically, suppose that G1 and G2 represent the structure of a time-varying

system at two consecutive epochs t1 and t2 respectively. For a thermodynamic system of

constant number of particles, we recall the fundamental thermodynamic relation dE =

TdS − PrdVo, where Pr and Vo denote the pressure and volume respectively. The volume

is a concept generally considered in the context of ideal gases and many thermodynamic

processes could result in a change in volume. Here we consider the network under study

G as a closed system and from G1 to G2 it undergoes a constant-volume process (isochoric

process) during which the system volume remains constant.

It is important to stress that this equation holds and is valid for both reversible and

irreversible processes for a closed system, since E, T , S, Pr and Vo are all state functions

and are independent of thermodynamic path. As a result, for the path from G1 to G2 we

have dVo = 0 and dE = TdS. For example, when an ideal gas undergoes an isochoric pro-

cess, and the quantity of gas remains constant, then the energy increment is proportional

to the increase in temperature and pressure. As a result, the reciprocal of the temperature

T is the rate of change of entropy with average energy, subject to the condition that the

volume and number of particles are held constant, i.e.,

1

T (G1,G2)
=
dS

dE
=
S1 − S2
E1 − E2

. (5.8)
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This definition can be applied to evolving complex networks which do not change signifi-

cantly in size during their evolution.

To further develop the temperature expression, we first compute the change in entropy

S1 − S2 = k{lnZ1(β) + βE1(G)} − k{lnZ2(β) + βE2(G)}

= k{ln Z1

Z2
+ β(E1 − E2)}.

Note, that in our development, the partition function is approximated by Z(β) ≈ − lnR(β)+

|V|. Therefore, we have

ln
Z1

Z2
≈ ln

|V| − lnR1

|V| − lnR2

= ln |V|+ ln(1− 1

|V|
lnR1)− ln |V| − ln(1− 1

|V|
lnR2)

= ln(1− 1

|V|
lnR1)− ln(1− 1

|V|
lnR2).

The term 1
|V| lnR is close to zero since we assume that |β| is small. As a result, using the

Mercator series, we obtain ln(1− 1
|V| lnR) ≈ − 1

|V| lnR, leading to the result that

ln
Z1

Z2
≈ − 1

|V|
lnR1 +

1

|V|
lnR2

=
1

|V|
ln
R2

R1
=

1

|V|
ln(1 +

R2 −R1

R1
)

≈ 1

|V|
· R2 −R1

R1
,

where R2−R1 is the difference between the values for the quasi characteristic polynomial

R(β) at times t1 and t2.

Next, we calculate the energy

E(G) ≈ −∂ ln(|V| − lnR)

∂β

= − 1

|V| − lnR
· ∂(|V| − lnR)

∂β

=
1

|V| − lnR
· ∂ lnR

∂β

= − 1

|V| − lnR
·
∞∑
n=1

βn−1Tr[L̃n].

Since the value for β is always small, then lnR(β) � |V|, and as a result the average

energy expression is

E(G) = − 1

|V|

∞∑
n=1

βn−1Tr[L̃n]. (5.9)
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As a result, the difference between network energy E at times t1 and t2, is

E(G1)− E(G2) = E1 − E2 = − 1

|V|
[fp,1(β)− fp,2(β)] (5.10)

where the polynomial function fp(β) =
∑∞

n=1 β
n−1Tr[L̃n].

Then, we compute the temperature using Eq. (5.8), with the result that

1

T (G1,G2)
=

k{ln Z1
Z2

+ β(E1 − E2)}
E1 − E2

≈ kβ − k ·
R2
R1
− 1

fp,1 − fp,2
.

Both the quasi characteristic polynomial R(β) and the polynomial fp(β) can be expanded

as power series, expressed as sums of traces of the powers of the normalized Laplacian

matrix of the network. Expanding the two polynomials to third order requires the following

traces:

Tr[L̃] = |V|,

T r[L̃2] = |V|+ J,

Tr[L̃3] = |V|+ 3J −K

where

J =
∑
u,v

Auv
dudv

and

K =
∑
u,v,w

AuvAvwAwu
dudvdw

respectively [59] [128]. Expanding R(β) to third order, we find

R2

R1
=

exp{Tr[−βL̃2 − β2

2 L̃2
2 − β3

3 L̃2
3
]}

exp{Tr[−βL̃1 − β2

2 L̃1
2 − β3

3 L̃1
3
]}

= exp

{
β(Tr[L̃1]− Tr[L̃2]) +

β2

2
(Tr[L̃1

2
]− Tr[L̃2

2
]) +

β3

3
(Tr[L̃1

3
]− Tr[L̃2

3
])

}
= exp

{
β2

2
(J1 − J2) +

β3

3
[3(J1 − J2)− (K1 −K2)]

}
.

Similarly, for fp(β) we obtain

fp,1 − fp,2 = β(J1 − J2) + β2[3(J1 − J2)− (K1 −K2)].

As a result, the reciprocal of the temperature is given by

1

T (G1,G2)
= kβ + k ·

1− exp

{
β2

2 (J1 − J2) + β3

3 [3(J1 − J2)− (K1 −K2)]

}
β(J1 − J2) + β2[3(J1 − J2)− (K1 −K2)]

.
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Since T = 1/kβ, the second term on the right-hand side must vanish. As a consequence,

we have that

β2

2
(J1 − J2) +

β3

3
[3(J1 − J2)− (K1 −K2)] = 0.

First, when J1 − J2 = K1 −K2 = 0, i.e., graphs G1 and G2 are identical, T = 1/kβ holds.

In other words, there are no structural differences between graphs G1 and G2. The second

trivial solution is obtained by β = 0, implying that the temperature T = 1/kβ goes to

infinity. Finally, the nontrivial solution is

β = − 3(J1 − J2)
6(J1 − J2)− 2(K1 −K2)

,

which leads to the following expression for the temperature

T (G1,G2) =
1

kβ
= −2

k
+

2

3k
· K1 −K2

J1 − J2
. (5.11)

Here J1 − J2 and K1 − K2 represent the change in quantities J and K when graph G1

evolves to G2 respectively:

J1 − J2 =
∑

u1,v1∈V1

Au1v1
du1dv1

−
∑

u2,v2∈V2

Au2v2
du2dv2

K1 −K2 =
∑

u1,v1,w1∈V1

Au1v1Av1w1Aw1u1

du1dv1dw1

−
∑

u2,v2,w2∈V2

Au2v2Av2w2Aw2u2

du2dv2dw2

.

The temperature measures fluctuations in the internal structure of the time-evolving

network, and depends on the ratio of total change of degree statistics for vertices that form

triangles and for vertices connected by edges in the network. This is a direct consequence

of the fact that we have truncated our series expansion of the partition function with

third order. If we had continued the expansion to higher order, then the temperature

would reflect this and contain terms in the numerator and denominator corresponding to

changes in the number of cliques of size larger than three. By adjusting temperature in this

way, we take account of fluctuations from the expected value of temperature T = 1/kβ.

When combined with the polynomial approach, this has the effect of smoothing the time

dependence of the thermodynamic representation.

Finally, in order to calculate the network average energy, we substitute the obtained β

into Eq. (5.9) and again remove the terms that have powers larger than 3, with the result

that

E(G) = − 1

|V|
[|V|+ β(|V|+ J) + β2(|V|+ 3J −K)]. (5.12)
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Similarly, for the thermodynamic entropy, we have

S(G) = k{lnZ(β) + βE(G)}

≈ k{ln(|V| − lnR) + βE}

≈ k

{
ln |V| − 1

|V|
lnR+ βE

}
= k

{
ln |V| − 1

|V|

∞∑
n=1

(1− 1

n
)βnTr[L̃n]

}
,

and expanding to third order,

S(G) = k ln |V| − k

|V|

[
β2

2
(|V|+ J) +

2β3

3
(|V|+ 3J −K)

]
. (5.13)

In order to obtain a better understanding of these network thermodynamic measures,

it is interesting to explore how the average energy and entropy are bounded for graphs

of a particular size, and in particular which topologies give the maximum and minimum

values of the energy and entropy (we consider connected graphs only).

From Eq. (5.12) and Eq. (5.13), when the quantity J is minimal and quantity K

reaches its maximum value, both the energy and the entropy reach their maximum values.

This occurs when each pair of graph vertices is connected by an edge, and this means

that the graph is complete. On the other hand, when J and K respectively take on their

maximum and minimum values, the energy and entropy reach their minimum values. This

occurs when the structure is a string.

The maximum and minimum average energies and entropies corresponding to these

cases are as follows. For a complete graph Kn, in which each vertex has degree n− 1, we

have that

E(Kn) = −
[
1 +

n

n− 1
β +

n2

(n− 1)2
β2
]

and

S(Kn) = k lnn− k
[

n

2(n− 1)
β2 +

2n2

3(n− 1)2
β3
]
.

Turning our attention to the case of a string Pn (n ≥ 2), in which the two terminal vertices

have degree 1 while the remainder have degree 2, we have that

E(Pn) = −
[
1 +

3n+ 1

2n
β +

5n+ 3

2n
β2
]

and

S(Pn) = k lnn− k
[

(3n+ 1)

4n
β2 +

(5n+ 3)

3n
β3
]
.
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As a result, the average energy and entropy of graphs with N vertices are bounded as

follows:

−
[
1 +

3N + 1

2N
β +

5N + 3

2N
β2
]
≤ E(G) ≤ −

[
1 +

N

N − 1
β +

N2

(N − 1)2
β2
]

k lnN − k
[

(3N + 1)β2

4N
+

(5N + 3)β3

3N

]
≤ S(G) ≤ k lnN − k

[
Nβ2

2(N − 1)
+

2N2β3

3(N − 1)2

]
where the lower bounds are achieved by strings, while the upper bounds are obtained for

complete graphs.

There are a number of points to note concerning the development above. One of the

most fundamental aspects of the presented thermodynamic measurements is the interplay

between quantities J and K. The first represents the direct connections of vertices (also

known as generalized Randić indices [29]), while the second is related to the number of

triangles. Both measurements are weighted by their joint degrees.

To provide a deeper intuition concerning the physical meaning of our thermodynamic

analysis in terms of changes in graph structure, we provide some examples. We commence

by considering a regular graph with n vertices in which each vertex has the same degree

m (n ·m must be an even number). In this case, the quantity J is the sum of existing

edges weighted by the network average degree m:

Jreg =
n

m
.

This result holds for both trees and cyclic multi-dimensional lattices. On the other hand,

the calculation of K depends on the nature of the connections for the regular networks.

For lattices connecting vertices at distance δ = 1 (first neighbourhood) and for all trees,

Kreg = 0 (since there are no triangles). For other regular networks the value of K depends

on the number of triangles in the network ν, i.e.,

Kreg =
6ν

m3
.

The multiplicative factor 6 is needed as the summation in the equation of K considers each

edge (u, v) two times, also because the summation is taken over all edges, and each triangle

is counted three times. Moreover, when the regular network is a lattice of neighbourhood

distance δ ≥ 2,

Kreg(δ) =
2Nν(δ)

m3
,

where ν(δ) is the number of triangles of each repeated element. Finally, for the cyclic

1D-lattice with connection distance δ, the number of triangles each vertex participates is
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given by ν(δ) = 3(δ − 1)[(δ − 1) + 1]/2 = 3δ(δ − 1)/2, the average degree is m = 2δ, thus

the quantity K is evaluated as follows:

Klat−1D(δ) =
3(δ − 1)

8δ3
.

As noted earlier, this analysis is based on a power series expansion of the partition

function up to the third order. Clearly, to develop a realistic thermodynamic model for

structures in which triangles are absent by reason of construction, then the expansion

should be taken to higher order. Unfortunately, this renders analysis of the traces ap-

pearing in the partition function in terms of degree statistics intractable [59] [128]. An

alternative would be to use the Ihara zeta function [113] as a network characterization.

Here the underlying characteristic is computed from the adjacency matrix of the oriented

line graph for a network. The polynomial coefficients are related to the numbers of prime

cycles of varying length in a network [106].

To summarize, in this section we have proposed a novel method for characterizing the

evolution of complex networks by employing thermodynamic variables. Specifically, we

commence from a quasi characteristic polynomial of the normalized Laplacian matrix

of a network and show this polynomial can be used as a tool for approximating the

Boltzmann partition function on the network, when we identify Hamiltonian operator

with the normalized Laplacian operator. Then, using the approximate network partition

function, we develop the expressions for the network average energy and entropy. The

thermodynamic temperature measures fluctuations via the changes in the connectivity

pattern of the network, and is determined by the distribution of vertex degree. We show

that these thermodynamic variables are expressed in terms of simple network features,

including the number of vertices and the degree statistics for connected vertices.

5.2 Thermodynamic Characterization Using Statistical

Mechanics

In this section, we provide a detailed development of expressions for network thermody-

namic variables, including the entropy, internal energy and temperature. To do this, we

first show that the approximate von Neumann entropy can be interpreted as the ther-

modynamic entropy of a network, when we associate the microscopic configurations of a

network with the eigenstates of the normalized Laplacian spectrum. We then develop an
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expression for network internal energy and determine the network temperature by mea-

suring fluctuations in entropy and internal energy. Each of these thermodynamic variables

can be computed using simple graph statistics, including the number of vertices and edges

together with vertex degree statistics.

5.2.1 Thermodynamic Variables of Complex Networks

This section aims at developing a thermodynamic characterization of network structure.

We commence by assuming that at any instant in time a network G = (V, E), is statistically

distributed across an ensemble of |V|microstates. The probability that the system occupies

a microstate indexed s is given by ps = λ̃s/
∑|V|

s=1 λ̃s, where λ̃s, s = 1, 2, · · · , |V| are the

eigenvalues of the normalized Laplacian matrix of graph G. Noting that the trace of a

matrix is the sum of its eigenvalues, we have
∑|V|

s=1 λ̃s = Tr[L̃] = |V|, so the microstate

occupation probability is simply ps = λ̃s/|V|.

We define the thermodynamic entropy of a network using the Shannon formula that

is exclusively dependent on the probabilities of the microstates:

S = −k
|V|∑
s=1

ps ln ps = −k
|V|∑
s=1

λ̃s
|V|

ln
λ̃s
|V|

, (5.14)

where k is the Boltzmann constant and is set to be 1 to simplify matters.

It is clear that the thermodynamic entropy Eq. (5.14) and the undirected von Neumann

entropy we have introduced in Eq. (3.1) take the same form. Both depend on the graph

size and the eigenvalues of the normalized Laplacian matrix. It is reasonable to suggest

that the von Neumann entropy can be interpreted as the thermodynamic entropy of a

complex network. Therefore we use the approximate von Neumann entropy formula of

undirected graphs as the network entropy:

S = 1− 1

|V|
− 1

|V|2
∑

(u,v)∈E

1

dudv
.

The internal energy of a network is defined as the mean value of the total energy, i.e.,

the sum of all microstate energies, each weighted by its occupation probability:

E =

|V|∑
s=1

psEs, (5.15)

where Es is the energy of microstate s. Here we take the internal energy to be the total

number of edges in the graph i.e., E = |E|. From the properties of the Laplacian and
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normalized Laplacian matrices, we have |E| = Tr[L] = Tr[D1/2L̃D1/2] = Tr[DL̃]. This

can be achieved if we set the microstate energies to be Es = |V| · λ̃−1s ·ds, i.e., proportional

to the vertex degrees.

Suppose that graphs G1 = (V1, E1) and G2 = (V2, E2) represent the structure of a time-

varying complex network at two consecutive epochs t1 and t2 respectively. The reciprocal

of the thermodynamic temperature T is the rate of change of entropy with internal energy,

subject to the condition that the volume and number of particles are held constant, i.e.,

1/T = dS/dE. This definition can be applied to evolving complex networks which do not

change size during their evolution.

We write the change of the entropy S between graphs G1 and G2 as

dS = S(G2)− S(G1) ≈
∑

(u,v)∈E1,E2

du∆v + dv∆u + ∆u∆v

du(du + ∆u)dv(dv + ∆v)
,

where ∆u is defined as the difference between degree of vertex u in graphs G2 and G1; ∆v is

similarly defined. The change in internal energy, is equal to the change in the total number

of edges: dE = E(G2) − E(G1) = |E2| − |E1| = ∆|E|. Hence the reciprocal temperature T

is:

1

T (G1,G2)
=

∑
(u,v)∈E1,E2

du∆v + dv∆u + ∆u∆v

∆|E|du(du + ∆u)dv(dv + ∆v)
. (5.16)

The temperature measures fluctuations in the internal structure of the time evolving net-

work, and depends on two properties of the network. The first is the overall or global

change of the number of edges, while the second property is a local one which measures

the change in degree for pairs of vertices connected by edges. Both quantities measure

fluctuations in network structure, but at different levels of detail. The temperature is

greatest when there are significant differences in the global number of edges, and smallest

when there are large local variations in edge structure which do not result in an overall

change in the number of edges.

To summarize, in this section we have proposed a novel method for characterizing the

evolution of complex networks by employing thermodynamic variables. Specifically, we

show that the network von Neumann entropy can be used as a thermodynamic charac-

terization, provided that the eigenstates of the normalized Laplacian matrix define the

network’s microstates together with their occupation probabilities. Moreover, the internal

energy depends on the number of edges in the network. The thermodynamic temperature

measures fluctuations via the change in the number of edges and vertex degree changes.
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5.2.2 Comparative Study of Evolving Network Analysis Methods

Finally, it is interesting to have a comparative analysis of our network thermodynam-

ics methods and other state-of-the-art network evolution analysis approaches. Generally

speaking, most existing methods for analyzing time evolution of complex networks have

centered on studying structural measures of static networks, and then applying these quan-

tities to each snapshot of the time-varying network in order to understand the evolutionary

patterns. For instance, Holme et al. [63] have analyzed the time evolution of a number of

well-known network features, including clustering coefficient, degree-degree correlations,

average geodesic length and reciprocity of a large-scale online social network. Moreover,

in the work [78], the authors have analyzed how the social networks of Flickr and Ya-

hoo!360 evolve over different time periods using measures such as network density and

average distance between vertices in the network components. Although such methods

have proved to be efficient in reflecting the time evolution of some structural properties of

evolving networks, they have a significant drawback, namely the lacking use of structure

information between temporal networks at two consecutive time steps, e.g., the vertex

degree change and edge number change.

In order to overcome this problem and to incorporate the missing structure information,

a number of alternative techniques to capture the structure and evolution of networks have

been proposed. For instance, Palla et al. [98] have developed a method for investigating

the time dependence of the overlapping communities on a social network, using clique

percolation method. Specifically, they take into consideration both the group size and

age, and propose a measure for quantifying the relative overlap between two states of

the same community at different time steps. Also they have developed a new network

indicator called stationarity in order to quantify the changing rate of communities based

on their size and age. In this way the authors have managed to exploit the community

structure information between subsequent states of a time-evolving network.

Comparing to the existing evolving network analysis approaches, our thermodynamics

analysis provides an advantageous approach in that the thermodynamic quantities, es-

pecailly the temperature, fully exploit the information related to the structural changes of

networks at subsequent time steps. More importantly, our approach only uses a number

of simple but important network characteristics, i.e., vertex degree statistics, edge number

and degree information of some simple substructures such as triangles. This yields a low

computational complexity to our thermodynamic analysis.
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5.3 Experiments

We have derived two sets of expressions for the thermodynamic entropy, energy and tem-

perature of time-evolving complex networks. In this section, we explore whether the

resulting characterizations can be employed to provide a useful tool for better under-

standing the evolution of dynamic networks. Specifically, we aim at applying the novel

thermodynamic method to a number of real-world time-evolving networks in order to an-

alyze whether abrupt changes in structure or different stages in network evolution can be

efficiently characterized. In this section, to simplify the calculation, we let the Boltzmann

constant k = 1.

5.3.1 Thermodynamic Characterization From Graph Polynomial

We use two different datasets, NYSE Stock Market Network Dataset and Drosophila

Melanogaster Gene Network Dataset, both of which are extracted from real-world complex

systems.

We commence by examining whether the network Boltzmann partition function given

in Eq. (5.2) is well approximated by the normalized Laplacian quasi characteristic poly-

nomial Eq. (5.3), as expected from Eq. (5.5). To this end, we first create a large number

of random graphs distributed according to two different models, namely a) the classical

Erdős-Rényi model [43] and b) the Barabási-Albert model [13]. We randomly generate

500 graphs for each of the two models using a variety of model parameters. For instance,

for the Erdős-Rényi model, the graph size is between 30 and 1000 and the connection

probability is p ∈ [0.1, 0.9]; for the Barabási-Albert model, the graph size has the same

range and the average vertex degree is bounded between 1 and 20. Then, for each random

graph, we compute both the partition function Z(β) and the quasi characteristic polyno-

mial − lnR(β) +N for three different values of β. The result is shown as the scatter plot

in Fig. 5.1.

The most striking feature in this figure is that although β takes on different values,

the vast majority of the corresponding data points are close to the diagonal line y = x.

This result empirically proves that the partition function Z(β) is always very accurately

approximated by the characteristic polynomial − lnR(β)+|V| for different types of random

graphs, as shown in Eq. (5.5).

Next, we investigate the relationship between the thermodynamic variables developed

and the structural changes of networks. Specifically, we aim at exploring how the temper-
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Figure 5.1: Scatter plot of Boltzmann partition function associated with normalized Lapla-

cian operator and the normalized Laplacian quasi characteristic polynomial for different

β for Erdős-Rényi and Barabási-Albert random graphs.

ature fluctuates when a graph experiences various degrees of evolutionary change. To this

end, we commence by constructing a complete graph with 80 vertices, and randomly delet-

ing its edges with a probability p ∈ [0, 0.2]. Then, we start from the same complete graph,

and with probability p + ∆p, we again delete edges in the graph randomly. Using these

two random graphs, we compute the temperature according to Eq. (5.11). We repeat the

process for different values of ∆p ∈ [0.1, 0.6] (100 realizations each), which indicate the

different degrees of structural change during graph evolution. We then repeat the analysis

for graphs with 150 vertices and 300 vertices respectively and produce a plot showing the

mean and standard deviation (shown as error bar) of the temperature against ∆p for a

large number of random graphs with different sizes.

The most important feature in Fig. 5.2(a) is that as ∆p increases, the mean values

of the temperature for all three graph sizes grow. Moreover, the variance of temperature

also increases gradually with the increase of ∆p. This is because the variance of the

ratio (K1 − K2)/(J1 − J2) becomes large when there is a dramatic structural change in

the time-evolving network, resulting in a significant change of the value of temperature.

Moreover, when ∆p remains small, the temperature remains relatively stable. This result

agrees with expression for temperature in Eq. (5.11). Slight evolutionary changes lead to
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Figure 5.2: Mean and standard deviation of temperature as a function of model parameters

for random graphs with different graph sizes.

a small value of (K1 −K2)/(J1 − J2), the value of temperature then stabilizes at −2.

In order to demonstrate that fluctuations in temperature are caused by structural

changes in the arrangement of edges in a network, rather than by difference in edge

number between two networks, we provide the following empirical analysis. We first create

a regular graph of 80 vertices with degree m = 10, and create a second regular graph that

has the same graph size, but with a greater degree m+∆m. Thus, the temperature due to

fluctuations between these two networks can be computed. For each ∆m = 12, 14, . . . , 50,

we again produce 100 realizations of the graphs. We then plot the mean and standard

deviation of temperature against ∆m for different graph sizes in Fig. 5.2(b). For random

graphs with various vertex number, although there are some fluctuations, the temperature

is almost constant despite the fact that the degree difference varies significantly. This is

because there is no significant change in the internal structure of the network during such

an evolution. This result confirms that the thermodynamic characterizations are effective

in capturing the changes in internal structure of time evolving networks.

The value of the temperature deserves further comment. In this experiment T is always

negative, this is because the first term in the temperature expression Eq. (5.11) has a

minus sign. It is worth stressing that this sign appears naturally from the temperature

development and it does not mean the temperature is negative physically.

We explore whether the thermodynamic measures can be used as an effective tool for

better understanding the evolution of realistic complex networks. To commence, we ex-

plore the evolutionary behaviour of the financial network by applying our thermodynamic
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Figure 5.3: Scatter plot of the time-evolving financial network in the thermodynamic space

spanned by temperature, average energy and entropy.

characterization method to the dynamic networks in the NYSE Stock Market Network

Dataset. At each time step, we compute the average energy, entropy and temperature

according to Eq. (5.12), Eq. (5.13), and Eq. (5.11) respectively. This allows us to inves-

tigate how these network thermodynamic variables evolve with time and whether critical

events can be detected in the network evolution.

Figure 5.3 is a 3D scatter plot showing the thermodynamic variables for the time-

evolving stock correlation network. It represents a thermodynamic space spanned by

average energy, entropy and temperature. The thermodynamic distribution of networks

clearly shows a strong manifold structure. The outliers, on the other hand, indicate

singular global events. Examples include Black Monday (black downward-pointing trian-

gles) [26], the Persian Gulf War and Iraq War (green circles and blue diamonds respec-

tively), and the subprime mortgage crisis (red upward-pointing triangles) together with

the bankruptcy of Lehman Brothers (magenta squares).

The individual time-series for different thermodynamic variables, i.e., temperature,

energy and entropy are shown in Fig. 5.4. There are a number of important observations.

First, most of the significant fluctuations in the individual time-series of thermodynamic

variables successfully correspond to some realistic serious financial crises, e.g., Black Mon-

day [26], Friday the 13th mini-crash [68], September 11 attacks and the bankruptcy of

130



5.3 Experiments

06/1987 05/1991 05/1995 04/1999 04/2003 04/2007 02/2011
0

0.2

0.4

0.6

0.8

1

lo
g
1
0
(T

em
p
er
at
u
re
)

Black Monday (10.1987−01.1988)

Friday the 13th mini−crash (10.1989)

1998 Russian financial crisis (08.1998)

Early 1990s recession (07.1990−02.1991)

September 11 attacks (09.2001)

1997 Asian financial crisis (07.1997−10.1997)

Downturn of 2002−2003 (07.2002−03.2003)

Financial crisis of 2007−2008 (08.2007−10.2008)

Dot−com bubble (03.2000)

(a) Temperature

06/1987 05/1991 05/1995 04/1999 04/2003 04/2007 02/2011

−0.1

−0.05

0

0.05

lo
g
1
0
(E

n
er
gy

)

06/1987 05/1991 05/1995 04/1999 04/2003 04/2007 02/2011
0.765

0.77

0.775

0.78

0.785

0.79

lo
g
1
0
(E

n
tr
op

y
)

(b) Energy and entropy

Figure 5.4: Thermodynamic characterizations as a function of time for the time-evolving

financial network.
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Lehman Brothers [90]. The reason for this is that the stock market network experiences

dramatic structural changes when a financial crisis occurs. For instance, during the dot-

com bubble period [7], a significant number of Internet-based companies were founded,

leading to a rapid increase of both stock prices and market confidence. This considerably

modified both the inter-relationships between stocks and the resulting structure of the

entire market, which can be captured by the thermodynamic characterization. Another

interesting feature in the figure is that the stock correlation network structure becomes

considerably unstable after entering the 21st century, compared to that before year 2000.

Particularly, there are a great number of significant fluctuations in all three time-series in

recent years, which is due to the outbreak of the global recession and financial crisis that

began in 2007.

To see more clearly the detail of how the thermodynamic variables change over time

during the different financial crises, in Fig. 5.5 we show all three thermodynamic variable

time-series for the nine global events identified in Fig. 5.4. From Fig. 5.5(a), the most

striking observation is that almost all of the largest peaks and troughs can find their

realistic financial crisis correspondences, which shows the thermodynamic characterization

is sensitive to network structural changes. Also, different global events exhibit different

detailed behaviours. For example, both wars (Persian Gulf and Iraq) dramatically change

the network structure in a short time, which are shown as a sharp trough and a peak

respectively in the corresponding time-series. Moreover, the September 11 attacks clearly

have a persistent influence on the stock market since the network temperature fluctuates

significantly after the attack. The reason for this is that different financial crises affect the

stock network structure in different ways. Specifically, some crises lead the degree-products

for both triangles K and edges J increase or decrease simultaneously (Black Monday, Iraq

War, the subprime mortgage crisis, etc.), and as a result (K1 −K2)/(J1 − J2) is positive

and the temperature increases. In contrast, some events lead to the result that K and J

change in a different direction, which means that (K1−K2)/(J1− J2) is negative and the

temperature decreases accordingly, such as Persian Gulf War, the minicrash on October

27, 1997 and the dot-com bubble climax.

We now compare our thermodynamic representation with a number of methods from

the spectral analysis of graphs, namely the heat kernel signature [120] and the wave kernel

signature [10]. Figure 5.6 shows 3D scatter plots obtained from the PCA of network

characterizations delivered by these two methods respectively. Both plots show a compact
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Figure 5.5: Individual time-series of thermodynamic characterizations for nine different

global events that have been identified in Fig. 5.4.
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Figure 5.6: PCA plots of the time-evolving financial network characterization delivered

by different kernel signature methods.

manifold structure. However, only the Black Monday (black triangles) can be identified.

The critical points representing other financial events such as the subprime mortgage crisis

and the bankruptcy of Lehman Brothers, do not deviate from the manifold structure, which

means that these events cannot be detected. This illustrates that the thermodynamic

characterization provides an effective method for analyzing financial network evolution,

which smooths the manifold structure while preserving information concerning significant

changes in network structure.

We now focus on two different financial crises in more detail, and explore how the stock

market network structure changes with time according to the thermodynamic variables.

In Fig. 5.7 we show a set of points indicating the path of the stock network in the entropy-

energy space with time during a) Black Monday and b) the Lehman Brothers bankruptcy.

The colour bar beside each plot represents the date in the time-series. The top panel shows

that before Black Monday (blue and green triangles), the network structure remains stable.

Neither the network entropy nor the average energy change significantly. However, during

Black Monday (from day 116), the network undergoes a considerable change in structure

since the entropy decreases dramatically and energy increases significantly. After the crisis,

the stock correlation network gradually returns to its normal state. A different behaviour

can be observed concerning the Lehman Brothers bankruptcy which is shown in the bottom

panel. The stock network undergoes a significant crash in which the network structure

undergoes a significant change, as signalled by a large increase in both network energy

and entropy. More importantly, the crash is followed by a quick recovery. Hence, our
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Figure 5.7: Path of the time-evolving financial network in the entropy-energy-time space

during different financial crises.

thermodynamic representation can be used to both characterize and distinguish between

different financial crises.

In Fig. 5.8 we provide a normalized histogram of β for this time-evolving stock cor-

relation network. The most striking feature is that the vast majority of this parameter is

between -0.6 and -0.4. This result shows empirically, that for real-world complex networks,

the approximation between the Boltzmann partition function and the quasi characteristic

polynomial of normalized Laplacian matrix Eq. (5.5) is valid.

We now turn our attention to the fruit fly network, i.e., the Drosophila gene regulatory

network contained in the Drosophila Melanogaster Gene Network Dataset. In Fig. 5.9, we

again show a 3D scatter plot of the time-varying thermodynamic variable space. Unlike

the NYSE data for the stock, here the data points do not display a clear manifold in

the thermodynamic space. This is because there are only 66 time epochs in the time-

series of the gene regulatory network. Nevertheless, some critical morphological changes

can still be identified, such as the egg hatching (black triangle), molt (magenta circle)

and pupation (blue diamond). More importantly, the red triangle, representing the most

significant morphological change, namely the emergence of the adult is separated by the

greatest distance from the remainder of the developmental samples. This indicates that

the thermodynamic characterization successfully captures the evolutionary changes in the

underlying dynamic network.

Figure 5.10 shows the separate time-series of temperature, energy and entropy for

the fruit fly network. Also shown in this figure are a number of critical evolutionary
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Figure 5.8: Normalized histogram of β = 1/kT , for the time-evolving financial network.
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Figure 5.10: Temperature, average energy and entropy as a function of time for the time-

evolving gene network.

events, which are indicated by arrows and four developmental stages, which are shown in

different colours. In the plot, the early development of embryo, which is represented using

the red line (embryonic period) shows some significant fluctuations. This is attributable

to strong and rapidly changing gene interactions, because of the need for rapid organism

development. Moreover, in the pupal stage, there are also considerable fluctuations. This is

attributable to the fact that during this period, the pupa undergoes a number of significant

pupal-adult transformations. As the organism evolves into an adult, the gene interactions

which control its growth begin to slow down. Hence the green line (adulthood) remains

stable (after the adult emerges).

We again provide a comparison between our thermodynamic representation and the

heat kernel signature together with the wave kernel signature analyses on this biological

data. To this end, we apply PCA to the network characterizations delivered by these

two methods and obtain the 3D scatter plots in Fig. 5.11. Comparing to Fig. 5.9, it is

difficult to distinguish the time points when significant morphological changes take place

between those representing steady evolutionary development. This observation confirms

that the thermodynamic characterization is not only effective in the financial domain, but

also provides some useful insights to analyze the biological data.

Finally, in Fig. 5.12 we show a normalized histogram of β for the Drosophila gene
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Figure 5.11: PCA plots of the time-evolving gene network characterization delivered by

different kernel signature methods.
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Figure 5.12: Normalized histogram of β = 1/kT , for the time-evolving gene network.
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Figure 5.13: Scatter plot of the time-evolving financial network in the thermodynamic

space spanned by temperature, average energy and entropy.

regulatory network. The main conclusion from the plot is that result β is most densely

distributed over the interval [−0.6,−0.45], empirically showing that |β| takes on a small

value such that r(β) = o[lnR(β)], which again confirms the validity of the approximation

obtained in Eq. (5.5).

5.3.2 Thermodynamic Characterization Using Statistical Mechanics

We apply our thermodynamic characterization method obtained from statistical mechanics

to the dynamic networks in the NYSE Stock Market Network Dataset and Drosophila

Melanogaster Gene Network Dataset. At each time step we compute the entropy, internal

energy and temperature according to Eq. (3.3), Eq. (5.15) and Eq. (5.16) respectively.

This allows us to investigate how these network thermodynamic variables evolve with

time and whether some critical events can be detected in the network evolution. These

include financial crises or crashes in the stock market, and the essential morphological

transformations that occur in the development of the Drosophila.

The plot in Fig. 5.13 is a 3D scatter plot showing the thermodynamic variables for the

time-evolving stock correlation network. It represents a thermodynamic space spanned by

entropy, internal energy and temperature. The plots shown in Fig. 5.14 are the individual

times series for the different thermodynamic variables. The most important feature here
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time of the time-evolving financial network.
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is that the thermodynamic distribution of networks in Fig. 5.13 shows a strong manifold

structure with different phases of network evolution occupying different volumes of the

thermodynamic space. There are though outliers, and these appear as peaks and troughs

in the individual time series (in Figs. 5.14(a), 5.14(b) and 5.14(c)). The outliers indicate

significant global events. Examples include Black Monday, the outbreak of the Persian

Gulf War (17 January 1991) and the 24 October 2008 stock market crash. Another

interesting feature in Fig. 5.13 is that the dot-com bubble period (approximately from

1997 to 2000) which is represented by red dots, is separated from the background data

points and occupies a distinct region in the thermodynamic space. The reason for this is

that during the dot-com bubble period, a significant number of Internet-based companies

were founded, leading to a rapid increase of both stock prices and market confidence.

This considerably changed both the inter-relationships between stocks and the resulting

structure of the entire market.

In Fig. 5.15 we show the trace of the stock network on the entropy-energy plane during

Black Monday, the Asian Financial Crisis and the Lehman Brothers bankruptcy respec-

tively. The number beside each data point represents the day number in the time-series.

From the left-hand panel we observe that before Black Monday, the network structure

remains stable, neither the network entropy nor the internal energy change significantly.

However, during Black Monday (day 115 and 116), the network experiences a considerable

change in structure since the entropy increases dramatically. After the crisis, the network

entropy slowly decreases, and the stock correlation network gradually returns to its normal

state. A similar observation can also be made concerning the 1997 Asian Financial Crisis

which is shown in the middle panel. The stock network again undergoes a significant crash

in which the network structure undergoes a significant change, as signalled by a large drop

in network entropy. The crash is followed by a slow recovery. For the Lehman Brothers

bankruptcy in the right-hand panel, it is interesting to note that as the time-series evolves,

both the network entropy and the internal energy continue to grow gradually. This illus-

trates a very different pattern. Hence, our thermodynamic representation can be used to

both characterize and distinguish between different financial crises.

We now turn our attention to the fruit fly network, i.e., the Drosophila gene regulatory

network contained in Drosophila Melanogaster Gene Network Dataset. In Fig. 5.16, we

again show the 3D scatter plot of the time-varying thermodynamic variables space. Figure

5.17 shows the entropy, energy and temperature time-series. The four developmental stages
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Figure 5.15: Path of the time-evolving financial network in the entropy-energy plane during

different financial crises.

142



5.3 Experiments

−150
−100

−50
0

50

3000

3500

4000

4500

0.998

0.998

0.9981

 

TemperatureEnergy
 

V
on

 N
eu

m
an

n 
en

tr
op

y

embryonic
larval
pupal
adult
adult ready to emerge

Figure 5.16: Scatter plot of the time-evolving gene network in the thermodynamic space

spanned by temperature, average energy and entropy.

are shown in different colours. The different stages of evolution are easily distinguished by

the thermodynamic variables. For instance from Fig. 5.17(a), since the early development

of an embryo, the red dots (embryonic period) show significant fluctuations. This is

attributable to strong and rapidly changing gene interactions, because of the need for rapid

development. Moreover, in the pupal stage, the data are relatively sparsely distributed

in the thermodynamic space. This is attributable to the fact that during this period, the

pupa undergoes a number of significant pupal-adult transformations. As the organism

evolves into an adult, the gene interactions which control its growth begin to slow down.

Hence the green points (adulthood) remain stable. Finally, the black data points are well

separated from the remainder of the developmental samples, and correspond to the time

when the adult emerges.

In this section we have undertaken experiments on a number of realistic time-varying

complex systems in order to analyze whether the thermodynamic characterizations we

have developed are efficient in studying the evolution of dynamic networks. The exper-

imental results of both the stock correlation network of NYSE and the Drosophila gene

regulatory network demonstrate that the thermodynamic entropy, internal energy together

with temperature provide a powerful tool for detecting abrupt events and characterizing

different stages in the network evolution.
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Figure 5.17: Individual time-series of thermodynamic characterizations as a function of

time of the time-evolving gene network.
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5.4 Summary

5.4 Summary

In this chapter, we have adopted two different thermodynamic representations of network

structure in order to visualize and understand the evolution of time-varying networks. We

first show how a characteristic polynomial can be used to approximate the Boltzmann

partition function of a network. We commence from a quasi characteristic polynomial

computed from the normalized Laplacian matrix of a graph and show how this polynomial

is linked to the Boltzmann partition function of the graph, when the graph Hamiltonian is

defined by the normalized Laplacian operator. This allows us to derive a thermodynamic

representation of network structure which can be used to visualize and understand the

evolution of time-varying networks. Under the assumption that the network is of constant

volume, we provide approximate expressions for a number of thermodynamic network

variables, including the entropy, average energy and temperature.

Moreover, based on statistical thermodynamics and commencing from the fact that

the microscopic configurations of a network can be defined as the normalized Laplacian

eigenstates, the approximate von Neumann entropy can be interpreted as the thermo-

dynamic entropy of a network. The internal energy depends on the number of edges in

the network. The thermodynamic temperature measures fluctuations via changes in the

number of edges and individual vertex degree changes.

We evaluate both thermodynamic characterizations experimentally using data repre-

senting a variety of real-world complex systems, taken from the financial and biological

domains. The experimental results demonstrate that the thermodynamic variables are

efficient in analyzing the evolutionary properties of dynamic networks, including the de-

tection of abrupt changes and phase transitions in structure or other distinctive periods

in the evolution of time-varying complex networks.

The method we have suggested in this chapter does though appear to have some limi-

tations. For instance it does appear sensitive to random fluctuations in network structure,

not associated with identifiable events in the time-series studied. Also critical events do

not necessarily give rise to unique patterns.

In the future, it would be interesting to see what features the network thermody-

namic variables reveal in additional domains, such as human functional magnetic reso-

nance imaging data. Another interesting line of investigation would be to explore if the

thermodynamic framework can be extended to the domains of dynamic directed networks,

edge-weighted networks, labeled networks and hypergraphs. Finally, it would be intrigu-
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Chapter 5: Thermodynamic Characterization of Time Evolving Networks

ing to investigate whether partition functions from different quantum statistics, such as

Bose-Einstein partition function and Fermi-Dirac partition function, together with Ihara

zeta function can be applied to network science to provide a way to probe larger structure.
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Chapter 6

Analyzing Graph Time Series

Using a Generative Model

In this chapter, we present a novel method for constructing a generative model to analyze

the structure of labeled data. Given a set of sample graphs, which is a graph time-

series in our analysis, we aim to learn a so-called “supergraph” that best describes the

underlying average connectivity structure present in the data. In the samples the vertex set

is fixed and labeled and the set of possible connections between vertices change with time.

The supergraph represents these changes with a Gaussian probability distribution for the

connection weights on each individual edge. This structure is fitted to the sample data by

minimizing a description length criterion, with the von Neumann entropy controlling the

complexity of the fitted model structure and the Gaussian log-likelihood controlling the

mean edge weights and variances. We further show this fitting process can be optimized

by using a new fixed-point iteration scheme which locates the elements of the optimal

weighted adjacency matrix of the supergraph. We show the iteration process is in fact

governed by the partial derivative of the von Neumann entropy. In the experiments, by

applying the proposed method to graph time-series data, we show the resulting generative

model provides an effective tool for analyzing the underlying connectivity structure of

time-evolving networks in the financial domain, and in particular for locating critical

events and distinct time epochs in their evolution.
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Chapter 6: Analyzing Graph Time Series Using a Generative Model

6.1 Probabilistic Framework

This chapter focuses on the challenge of learning a generative model which best captures

the underlying edge connectivity in a set of labeled graphs. Broadly speaking, there have

been two main approaches to characterizing edge structure variations in graphs, namely

a) graph spectral methods and b) probabilistic methods. Although the spectral approach

is simple and effective in developing generative models based on the Laplacian eigenvec-

tors, the method has a serious weakness, namely the lack of stability of the Laplacian

spectrum under perturbations in graph structure [60]. The probabilistic approach, on the

other hand, is potentially more robust, but the method requires that the accurate cor-

respondence information which can be inferred from the available graph structure is to

hand [85]. It is important to stress that the graph under study is an ordered collection

consisting of a vertex set, an edge set and a vertex label set which maps the vertices to

a set of labels. The vertex labels of the graphs give important information on the ver-

tex correspondences between data, which plays a central role in problems such as graph

matching. In our analysis, we focus on a simpler case where the vertex number and vertex

label information do not change between sample graphs. In other words, we are dealing

with graphs whose vertex correspondences are to hand, and particularly are concentrating

on the edge patterns present in those graphs.

In this section, we develop a likelihood function of the observed data given the avail-

able model. To commence the development, we define some notations that will be used

throughout this chapter. Let G = {G1,G2, · · · ,Gt, · · · ,GN} represent the sample graph

dataset under study, and Gt is used to denote the t-th sample graph in the dataset. The

generative model, or the supergraph, which we aim to learn from the sample data is

denoted by G̃ = (Ṽ, Ẽ), with vertex set Ṽ and edge set Ẽ .

We are dealing with labeled graphs. Each vertex in a graph has a unique label. In our

application involving the NYSE Stock Market Network Dataset, there are stocks trading

in the New York Stock Exchange market, which are represented by labeled vertices in the

network. The vertex indices are denoted by lower-case letters including u, v, a, b, α and

β, and we will interchange these vertex indices with the vertex labels.

We represent the connectivity structure of the sample graph Gt using a weighted ad-

jacency matrix tW whose (u, v)-th entry tWuv indicates the connectivity between vertices

u and v in the graph, and clearly, we have tWuv ∈ [0, 1]. Similarly, we use the matrix W̃

to represent the structure of the supergraph G̃.
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6.1 Probabilistic Framework

Having introduced the necessary formalism, we then develop the probabilistic frame-

work for the generative model learning method. To commence, we require the posterior

probability of the observed sample graphs given the structure of the generative model

p(G|Ĝ). Then, the problem of finding the optimal supergraph can be posed in terms of

seeking the structure G̃ that satisfies the condition

G̃ = argmax
Ĝ

p(G|Ĝ).

We follow the standard approach to constructing the likelihood function, which has been

previously used in the work [85] and [60]. This involves factorizing the likelihood function

over the observed data graphs and making use of the assumption that each individual edge

in the sample graph is conditionally independent of each other, given the structure of the

supergraph. As a result, we have

p(G|G̃) =
∏
t

p(Gt|G̃) =
∏
t

∏
u

∏
v

p(tWuv|W̃uv), (6.1)

where t = 1, 2, · · · , N , and u and v represent vertex indices. Moreover, p(tWuv|W̃uv) is

the probability that the connectivity between u and v in the sample graph Gt is equal to

tWuv, given that the edge (u, v) in the supergraph G̃ has connectivity W̃uv.

To proceed, a model for the observation density p(tWuv|W̃uv) is required. Luo and

Hancock [85] have shown that when dealing with the unweighted case where the individual

edge connectivity of both the supergraph Ãuv and the sample graph tAuv is either 0 or 1,

the probability distribution p(tAuv|Ãuv) can be modeled by a Bernoulli distribution. The

idea behind this model is that the connectivity of a particular edge in the data graph is

derived from that of the same edge in the supergraph through a Bernoulli distribution.

In their work, such model has proved to be useful in solving inexact graph matching

problems. Recently, Martin et al. [88] have used a similar model to develop methods

for inferring structure for uncertain networks and particularly, for solving community

detection problems. Han et al. [60] also adopt this model for the purpose of constructing

a generative prototype for a set of graphs, and show that the prototype is effective in

implementing tasks of graph classification, graph clustering and generating new sample

graphs.

Since we are dealing with graphs whose edge connectivity is weighted, i.e., takes on a

value between 0 and 1. As a result the Bernoulli distribution is not appropriate to model

the observation density in our analysis. To overcome this problem, we note that according
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Chapter 6: Analyzing Graph Time Series Using a Generative Model

to the central limit theorem, the distribution of the arithmetic mean of a large number

of independent random variables is approximately a Gaussian distribution, regardless of

the underlying distribution. Therefore, to simplify matters, here we model the distribu-

tion p(tWuv|W̃uv) by adopting a Gaussian distribution N (µ, σ2) of the connection weights

whose mean is the weight for the edge (u, v) in the supergraph, i.e., µ = W̃uv and whose

variance is σ2. It is worth noting that the choice of σ does not make a significant difference

in our development (we will show this later). Even if we choose an inappropriate σ which

makes the generated edge connectivity exceed the valid weight interval from 0 to 1, we

could use data re-normalization techniques to guarantee that the connectivity is on a scale

of 0 to 1.

Finally, with the observation density model to hand, we write

p(tWuv|W̃uv) =
1√
2πσ

e−(
tWuv−W̃uv)2/2σ2

.

With these ingredients, the likelihood function given in Eq. (6.1) then becomes

p(G|G̃) =
∏
t

∏
u

∏
v

1√
2πσ

e−(
tWuv−W̃uv)2/2σ2

. (6.2)

To optimize the supergraph G̃, we maximize this likelihood function with respect to the

elements of the weighted adjacency matrix W̃uv. This can be accomplished by straightfor-

wardly employing a maximum-likelihood estimation (MLE) method. However, this leads

to the result that the generative structure of the graph data is simply the mean of the data

graphs, i.e., the weighted adjacency matrix of the supergraph W̃ is obtained by taking

the average of the data graph adjacency matrices tWuv. Clearly, such structure does not

capture sufficient structural properties of the observed data graphs and thus cannot rep-

resent the underlying connectivity structure of the sample graphs. So a more meaningful

and effective method for estimating the generative model is required.

6.2 Minimum Description Length Coding

To locate the optimal supergraph. we adopt an information theoretic approach and use a

two-part minimum description length (MDL) criterion. Underpinning MDL is the principle

that the best and most probable explanation of the data is the one that gives the shortest

code length of the observed data. To formalize this idea, we encode and transmit the data

Gt together with the hypothesis G̃, leading to a two-part message whose total length is
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6.2 Minimum Description Length Coding

given by

L(G, G̃) = L(G|G̃) + L(G̃),

where L(G|G̃) is the code length of the data graphs given the supergraph and L(G̃) is

the code length of the estimated supergraph. Determining the most likely supergraph

structure can be viewed as seeking the one that minimizes the total code length of the

likelihood function. To this end, we take into account the total code length and apply the

MDL principle to the model, this allows us to construct a supergraph representation that

trades off goodness-of-fit with the sample graphs against the complexity of the model.

To apply the two-part MDL principle, we commence by computing the code length of

the data graphs given the supergraph. This can be achieved by simply using the average

of the negative logarithm of the likelihood function given in Eq. (6.2), with the result that

L(G|G̃) = − 1

N
ln p(G|G̃)

= − 1

N

∑
t

∑
u

∑
v

{
ln

1√
2πσ

− (tWuv − W̃uv)
2

2σ2

}
, (6.3)

where N is the length of the observed sample data G.

Next, we compute the code length of the supergraph structure. Traditionally, the com-

plexity of a model is closely related to the number of parameters in the model. However,

this quantity does not provide a good complexity measure for graphs since the true graph

complexity cannot be accurately reflected by information such as the vertex number or

edge number in the graph. To overcome such problem, we adopt a more meaningful mea-

sure of graph complexity, namely the von Neumann entropy which we have thoroughly

studied in Chapter 3, to encode the complexity of the supergraph structure.

Recall that the approximate von Neumann entropy expression of an undirected graph

G = (V, E) with an unweighted adjacency matrix, which is given in Eq. (3.3)

HU
V N = 1− 1

|V|
− 1

|V|2
∑

(u,v)∈E

1

dudv
.

Clearly, this approximation can be simply extended to weighted graphs. As a result, for

the supergraph G̃ with weighted adjacency matrix W̃ , we have the supergraph complexity

code length as follows,

L(G̃) = 1− 1

|Ṽ|
− 1

|Ṽ|2
∑

(u,v)∈Ẽ

W̃uv

wuwv
, (6.4)

where wu =
∑

(u,v)∈Ẽ W̃uv is the weighted degree of vertex u, which is defined as the sum

of the connectivity weights of the edges connected to u and wv is similarly defined. In
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effect, the complexity of the supergraph depends on two factors. The first is the order of

the supergraph, i.e., the number of the vertices while the second is based on the degree

statistics of the vertices in the supergraph.

Finally, by adding together the two contributions to the total code length, the overall

code length of the likelihood function is

L(G, G̃) = L(G|G̃) + L(G̃)

= − 1

N

∑
t

∑
u

∑
v

{
ln

1√
2πσ

− (tWuv − W̃uv)
2

2σ2

}
+1− 1

|Ṽ|
− 1

|Ṽ|2
∑

(u,v)∈Ẽ

W̃uv

wuwv
. (6.5)

To recover the supergraph we must optimize the above code length criterion with

respect to the weighted adjacency matrix W̃ . This can be done in a number of ways.

These include gradient descent and soft assign [56]. However here we use a simple fixed-

point iteration scheme. To proceed with the development of a useful optimization scheme

we must compute the partial derivative of the code length criterion L(G|G̃) given in Eq.

(6.3) with respect to the elements of the weighted adjacency matrix W̃ab. First, we compute

the partial derivative of the code length of the sample graphs,

∂L(G|G̃)

∂W̃ab

=
∂

∂W̃ab

(
− 1

N

∑
t

∑
u

∑
v

{
ln

1√
2πσ

− (tWuv − W̃uv)
2

2σ2

})
=

1

Nσ2

∑
t

(W̃ab −tWab).

Then, we need to compute the partial derivative of the code length of the supergraph

complexity, which is given in Eq. (6.4), with respect to W̃ab. This is not a straightforward

task, and requires that we distinguish between different terms that contain the elements

W̃ab in the summation
∑

(u,v)∈Ẽ
W̃uv
wuwv

.

Specifically, the connectivity of an edge (a, b) in the supergraph W̃ab contributes both

to the degrees wa and wb. Hence, the partial derivative is determined by three categories

of edges in the summation term. The first is the edge (a, b) itself as both wa and wb in

W̃ab
wawb

contain the element W̃ab. The second category is the edges connected to a, excluding

the edge (a, b), i.e., (a, β) and β 6= b. This is because wa is needed in the computation of

the terms
W̃aβ

wawβ
, which further contribute to the summation

∑
(u,v)∈Ẽ

W̃uv
wuwv

. Similarly, the
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6.3 Fixed-point Iteration Scheme

third category is the edges connected to b, excluding the edge (a, b). As a result, we write,

∂

∂W̃ab

( ∑
(u,v)∈Ẽ

W̃uv

wuwv

)
=

∂

∂W̃ab

(
W̃ab

wawb
+

∑
(a,β)∈Ẽ,
β 6=b

W̃aβ

wawβ
+

∑
(α,b)∈Ẽ,
α 6=a

W̃αb

wαwb

)

=
wawb − (wa + wb)W̃ab

w2
aw

2
b

− 1

w2
a

∑
(a,β)∈Ẽ,
β 6=b

W̃aβ

wβ
− 1

w2
b

∑
(α,b)∈Ẽ,
α 6=a

W̃αb

wα

=
1

wawb
− 1

w2
a

∑
(a,β)∈Ẽ

W̃aβ

wβ
− 1

w2
b

∑
(α,b)∈Ẽ

W̃αb

wα
,

where β denote the neighbour vertices of a and α are the neighbours of b.

With these ingredients to hand, we finally have the result of the partial derivative

of the total code length of the likelihood function with respect to the structure of the

supergraph,

∂L(G, G̃)

∂W̃ab

=
1

Nσ2

∑
t

(W̃ab −tWab)−
1

|Ṽ|2

{
1

wawb
− 1

w2
a

∑
(a,β)∈Ẽ

W̃aβ

wβ
− 1

w2
b

∑
(α,b)∈Ẽ

W̃αb

wα

}
.

(6.6)

Determining the optimal generative model requires us to find the values of W̃ab that make

Eq. (6.6) equal to zero. However, this leads to an implicit equation that has no easy

solution.

6.3 Fixed-point Iteration Scheme

An alternative technique is to use a fixed-point iteration scheme to find the approximation

to the solution W̃ab. To set up this scheme, we set the above derivative to zero, and

re-organize the resulting equation to obtain an update equation of the form W̃
(n+1)
ab =

g(W̃
(n)
ab ), where g(· · · ) is the iteration function and n is iteration number. There is of

course no unique way of doing this, and for convergence the iteration function g(W̃ab)

must have a derivative of magnitude less than unity at the fixed point corresponding to

the required solution. One such scheme is

W̃
(n+1)
ab =

1

Nσ2

∑
t

tWab+
1

|Ṽ|2

{
1

w
(n)
a w

(n)
b

− 1

w
(n)
a

2

∑
(a,β)∈Ẽ(n)

W̃
(n)
aβ

w
(n)
β

− 1

w
(n)
b

2

∑
(α,b)∈Ẽ(n)

W̃
(n)
αb

w
(n)
α

}
.

(6.7)

The update process is governed by two terms. The first is computed from the local

windowed mean of the sample structures 1
Nσ2

∑
t
tWab, while the second term is a step away
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Chapter 6: Analyzing Graph Time Series Using a Generative Model

from the local windowed mean determined by the partial derivative of the von Neumann

entropy. This latter update term depends on the local pattern of vertex degrees.

The convergence properties of the above fixed-point scheme are clearly critical. In

general, a fixed-point iteration process xn+1 = g(xn), n = 0, 1, 2, · · · , will converge to

the fixed point x? = g(x?) provided that |g′(x?)| < 1, and g(x) has exactly one fixed point

in [a, b] and the sequence xn is initialized with x0 ∈ [a, b]. In our case, from Eq. (6.7), we

have

W̃
(n+1)
ab = g(W̃

(n)
ab ),

where

g(W̃
(n)
ab ) =

1

Nσ2

∑
t
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α

}
.

Computing the derivative of g(W̃ab) gives

g′(W̃ab) =
1

|Ṽ|2

{
∂ 1
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}
.

Since W̃ab ≤ wa and W̃ab ≤ wb, and the vertex weighted degree is normally not small, the

derivative satisfies the condition g′(W̃ab) ∈ [−1, 0] for all W̃ab ∈ [0, 1], and we are assured

convergence of the fixed-point iteration scheme. Since the derivative of g(W̃ab) is negative

in sign, the convergence pattern is cobweb, i.e., from alternating sides of the fixed point.

There are a number of important points to note concerning the above analysis. First,

our goal is to develop a generative model (or supergraph) that can be used to best explain

the structural variations present in a set of sample graphs. To this end, we commence from

a probabilistic framework which describes the likelihood of the observed data given the

model structure. We then pose the problem of determining the optimal model structure as

one of minimizing a code length criterion. To solve this problem numerically, we develop

a simple fixed-point iteration scheme for optimizing the weighted adjacency matrix of the

supergraph. The supergraph is initialized using the mean weighted adjacency matrix for
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the sample graphs, and then optimized at each time step to best fit the data in a window,

the adjustment is determined by the von Neumann entropy.

6.4 Experiments

It is interesting to note that the generative model provides a number of new directions to

the study of time-varying complex networks. When applying this method to the graph

time-series data, the resulting generative model can be used as a more efficient structure

representation of the time-varying network as it captures more structural information

present in the time-series data. Moreover, the observed data graphs in the time-series

can be viewed as the samples generated from the model, so the graphs with significantly

different structural patterns are expected to be the outliers that are generated with a

relatively low probability from the model. This allows us to detect abrupt structural

changes in the network evolution by measuring the similarity between the sample graph

at each time point and the model graph.

To evaluate the properties of the generative model and explore its practical utilities on

real-world data, in this section we report experimental results on time-evolving financial

networks representing stock trading in the NYSE Stock Market Network Dataset. We first

examine the validity of the proposed model learning method by exploring its convergence

properties. Then, we compare the data graph structure with the supergraph learned from

a time window of fixed length for a number of financial crisis time-series, and the result

shows the supergraph is able to smooth the time-series data and more importantly, is more

effective in locating critical events and distinct time epochs in financial crises. Also shown

in the experiments is that by comparing the generative structure learned from different

time-series data, we can better visualize and understand the structural difference of the

stock market network in different time periods.

6.4.1 Convergence

The first part of our experimental investigation aims to explore the convergence properties

of the fixed-point iteration scheme. To this end, we first investigate whether the choice of

Gaussian distribution adopted for modeling the observation density p(tWuv|W̃uv) is valid.

Figure 6.1 gives the normalized histogram of the edge connectivity of two randomly selected

edges in the time-evolving financial network and the probability density function curve of
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Figure 6.1: Normalized histogram of the connectivity of two randomly selected edges (u, v)

in the time-evolving financial network and the Gaussian distribution fitting.

a Gaussian distribution whose mean is equal to the mean value of the corresponding edge

connectivity and whose standard deviation is set to be a small value (0.1 here). Clearly,

both plots show the normal “bell curve” or Gaussian distribution curve fits the data well,

which means that using Gaussian distribution to model the probability of the observed

data graph edge connectivity given the corresponding supergraph edge connectivity is

effective.

In Fig. 6.2 we show the histogram of both mean and standard deviation of the con-

nectivity of each edge in the time-evolving stock correlation network. We see the mean

connectivity of most edges in the evolving network take values between 0.4 and 0.5, and

the standard deviation of edge connectivity is densely populated around 0.1. This again

shows that the use of Gaussian distribution is empirically valid.

To better visualize how the fixed-point iteration converges, we test the iteration process

on a number of time-series graph data of different financial crises, including the Black

Monday, Friday the 13th mini-crash and September 11 attacks. For each financial crisis

time-series, we initialize the supergraph W̃0 with the mean data graph, which is obtained

by taking the average of the structure of the sample graphs in the time-series. Then we

process the iteration scheme W̃
(n+1)
ab = g(W̃

(n)
ab ), n = 0, 1, 2, · · · , which is given in Eq.

(6.7) and observe how the complexity of the supergraph, the average log-likelihood of the

sample graphs and the total code length of the likelihood function vary with the iteration

number. Here, the standard deviation of the Gaussian distribution is set to be σ = 0.1,

and at each iteration step, we perform a feature scaling normalization method to guarantee
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Figure 6.2: Histogram of the mean and standard deviation of the edge connectivity in the

time-evolving financial network.

that the elements of the weighted adjacency matrix of the updated supergraph W̃
(n)
ab is in

the interval [0, 1].

Figure 6.3 shows how various properties of the fixed-point iteration scheme for a num-

ber of financial crisis time-series data change during updating. From the plots in the

first column, as the iteration processes, the supergraph entropy of all three time-series

fluctuates and gradually converges to a value that is lower than the initial entropy. This

observation indicates that the structure of the generative model becomes less complex as

the iteration scheme processes. The reason for this is that the supergraph is being opti-

mized to best summarize the structural variations present in the time-series data during

updating. Then, some negligible structural information contained in the data is discarded

from the generative structure, which makes the supergraph less complex. Another inter-

esting feature to note in the plots is that the entropy convergence of three time-series

differs from each other, which is a reasonable result as the supergraph is a structure rep-

resentation that best explains the data graphs, then different financial crisis time-series

yield different generative structures. In the second and third columns, the plots show the

average log-likelihood function gradually increases as the increase of the number of itera-

tion, while the total code length reduces. This is an expected observation since the goal

of the proposed method is to maximize the probability of the observed data graphs given

the model structure and also to minimize the total code length of the likelihood function.

Another interesting feature to note in the figure is that in both cases, the convergence

of the fixed-point iteration process is oscillating from side-to-side of the fixed point. This
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Figure 6.3: Convergence properties of fixed-point iteration process as a function of iteration

number for data graphs of different financial crises.
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Figure 6.4: Histogram of the derivative of the iteration function for all three iteration

processes.

cobweb pattern is a consequence of the fact that g′(W̃ab) ∈ [−1, 0]. To verify this, in

Fig. 6.4 we show a histogram of the values of the derivative function g′(W̃ab) for all the

elements W̃ab obtained during the iteration processes. The result clearly conforms to our

expectation as most derivative function values lie in the interval [−1, 0]. In particular, the

values for the derivative function are close to zero, which means that the iteration process

converges close to quadratically to the fixed point.

6.4.2 Event Detection

The second experimental goal is to explore whether the generative model can be used

to provide a more efficient representation of the network structure in terms of capturing

and detecting the structural changes during network evolution. To this end, for each

time epoch t in the time-series data, we view the graphs from t − N
2 to t + N

2 as the

observed sample graphs, where N + 1 is the length of the time-series data. We then learn

a generative model from this set of sample graphs, which can be viewed as a new network

representation at t. We compare this new structure representation with the original data

graph at each time epoch in the financial crisis time-series, by using the graph approximate

von Neumann entropy.

In Fig. 6.5 we plot the approximate von Neumann entropy of both the data graph and
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Figure 6.5: Von Neumann entropy of supergraph and data graph as a function of time for

different financial crises.
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the supergraph for a number of different financial events time-series, including the Black

Monday, Friday the 13th mini-crash and the September 11 attacks. It is worth pointing

out that, to construct the generative structure at each t, we use the sample graphs from

t− 5 to t+ 5 as the data. This is because two weeks (10 trading days) is assumed to be a

proper time length that can be used to effectively represent how long the effects of stock

correlations last in the stock market. Moreover, the supergraph structure at each time

point is obtained after 15 iterations since we have observed from Fig. 6.3 that generally,

the structure of the supergraph converges after 15 steps of updating.

From the three plots, the von Neumann entropy of the supergraph generally follows the

trend of that of the data graph in the time-series, implying that the supergraph is effective

in capturing the graph structural properties in the data. More importantly, the generative

model clearly gives a better graph structure representation than the sample graph since

the supergraph entropy curve eliminates some of the random fluctuations observed in that

of the sample graph. For example, from the inset plot in Fig. 6.5(a), at the day when

Black Monday takes place, i.e., 19th October, 1987, the von Neumann entropy of the

data graph clearly shows some unexpected fluctuations. However, the supergraph entropy

reaches its minimum with a significant decrease, precisely representing that the stock

correlation network experiences significant structural changes at that day. The similar

behaviours can be observed in Figs. 6.5(b) and 6.5(c) as well. Although the entropy

of the sample graph can be used to locate the approximate time period of the financial

crises, the supergraph entropy identifies the critical dates (13th October, 1989 and 11th

September, 2001 respectively) more precisely. Overall, Fig. 6.5 shows that the supergraph

we have learned using the generative model can be used as an efficient tool for summarizing

a time-series of sample graphs and more importantly, for identifying significant structural

changes during the network evolution.

Next we investigate how the time-series data length N influences the properties of

the generative model. To this end, we select the time-series data of the dot-com bubble

financial crisis, and repeat the above experimental process to build a set of supergraphs

using various choices of data length. We again compare the von Neumann entropy of

the data graph and the supergraph and report the result in Fig. 6.6. From the upper-

left plot, when the data length N is particularly small (4 days), the supergraph entropy

curve basically has the identical trend with that of the data graph. In contrast, when

N is large (50 days and 100 days), we see from the bottom plots that the supergraph
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Figure 6.6: Von Neumann entropy of supergraph and data graph as a function of time for

various choices of data length for the dot-com bubble financial crisis.
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entropy curve does not show fluctuations when critical event occurs, so it is difficult to

represent the underlying network structure using the generative model. However, when

choosing an appropriate data length, such as 10 days (upper-right plot), the supergraph

entropy removes some of the random fluctuations and precisely identifies the dot-com

bubble peak time, i.e., 10th March, 2000. This observation shows that an appropriate

data length N plays a central role in the effectiveness of the generative model. On the one

hand, a short data length would result in some unexpected fluctuations in the structure

of the supergraph, which means the generative structure over-summarizes the structural

information contained in the time-series data. On the other hand, a large data length

could lose a great amount of structural information during the generative model learning,

so the resulting supergraph does not appear to be sensitive to structural changes during

network evolution.

6.4.3 Time Series Structure

From our development of the generative model, the supergraph represents a generative

structure over a time-series of sample graphs. So it is expected that the graph whose

structure significantly differs from that of the supergraph, can be viewed as a sample

generated from the generative model with a relatively low probability. In contrast, graphs

that have similar structure with the supergraph are the samples generated from the model

with higher probabilities. In other words, the graphs corresponding to critical events and

periods in the financial time-series should be highly dissimilar to the generative structure

computed from the time-series data. To verify this expectation, in Fig. 6.7 we plot

the shortest path kernel [23] and the Jensen-Shannon divergence kernel [11] between the

sample graph at each time epoch and the supergraph for the entire time period in the

financial data. Unlike the experiments shown above, here the supergraph is constructed

over the whole collection of the financial data graphs.

The shortest path kernel compares graphs based on the shortest path length of all pairs

of vertices. Mathematically, given a pair of graphs G1 and G2 that are Floyd-transformed

into S1 = (V1, E1) and S2 = (V2, E2). Borgwardt and Kriegel [23] define the shortest-path

graph kernel on S1 and S2 as

kSP (S1,S2) =
∑

(u1,v1)∈E1

∑
(u2,v2)∈E2

k
(1)
walk[(u1, v1), (u2, v2)],

where k
(1)
walk is a positive definite kernel on edge walks of length 1.
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The Jensen-Shannon divergence kernel is a non-extensive information theoretic kernel,

which is defined using the von Neumann entropy and mutual information computed from

the structures being compared. In the work [11], the Jensen-Shannon divergence between

graphs G1 and G2 is expressed as

DJS(G1,G2) = HU
V N (GU )−

HU
V N (G1) +HU

V N (G2)
2

,

where GU denotes the disjoint union graph of G1 and G2. Then, the Jensen-Shannon

divergence kernel is computed as

kJSD(G1,G2) = exp{−DJS(G1,G2)}.

It is interesting to note that the Jensen-Shannon divergence kernel is dependent on the

individual von Neumann entropies of graphs G1 and G2 as the composite entropy HU
V N (GU )

can be computed from HU
V N (G1) and HU

V N (G2).

The most important feature in the figure is that most of the significant troughs can be

used to identify serious real-world financial crises. For instance, the Black Monday is the

deepest one in both plots and the September 11 attacks also gives a sharp drop in the kernel

curve. The reason for this is that during financial crisis, the stock correlation network

undergoes significant structural changes, making the graph structure different from that

of the generative model, which is a summarized structure over the entire financial time-

series. Such difference in graph topology can be efficiently captured by the shortest path

kernel and the information theoretic kernel. Then, the similarity between the financial-

crisis graph and the generative model becomes extremely low.

Another interesting observation to note in Fig. 6.7 is that both similarity measures

exhibit very different patterns before and after a so-called “critical point” time epoch,

which is around July and August, 2002. In particular, before the critical point, the kernels

generally remain stable with time, except for a small number of fluctuations indicating

the financial crises. This implies that the stock correlation network is able to return to its

normal state in a short time after each financial crisis from 1987 to 2002. In contrast, after

the critical point, the kernels become extremely unstable, which means that the network

structure fluctuates significantly and becomes difficult to recover from the crises over the

last decade.

To better visualize and study the difference between the stock correlation network

structure before and after the critical point, in Fig. 6.8 we show the communities (sym-

bolized by different colours) in the generative model network constructed from the financial
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Figure 6.7: Kernels between sample graph and supergraph as a function of time for the

time-evolving financial network.
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Figure 6.8: Network representation of the communities (symbolized by different colours)

in the generative structure constructed from the time-evolving financial network before

and after the critical point.

time-series data before and after the critical point respectively. Moreover, Fig. 6.9 gives

the adjacency matrix representation of the communities (indicated by squares) found in

the generative model. Specifically, the community detection technique adopted here is the

Louvain method, whose aim is to optimize the value for network modularity, which is a

measurement of the density of connections inside communities compared to that between

communities in a network. Moreover, in order to simplify the computation, the genera-

tive models before and after the critical point are represented by unweighted adjacency

matrices, which are obtained by performing the same thresholding method we have used

in the experiments in Chapter 5.

Both figures show before the critical point, the underlying connectivity structure of the

stock correlation network contains a small number of large communities, and the network

is almost strongly connected as the number of disconnected components is particularly

small. In contrast, after the critical point, we see the generative structure becomes sig-

nificantly different as the number of disconnected components in the network becomes

significantly greater. These observations can be mathematically verified by computing the

modularity of these two structure, which are 0.3311 and 0.1860 respectively. In effect, the

network modularity is bounded between -1 and 1, and a network with a high modularity

has modules in which the vertices are densely connected between each other but sparse

connections between vertices in different modules. Based on these observations, we draw

the conclusion that during 1987 to 2002, most stocks in the market have the tendency

to merge into larger-sized groups in which the stocks are densely correlated internally.
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Figure 6.9: Matrix representation of the communities (indicated by squares) in the gener-

ative structure constructed from the time-evolving financial network before and after the

critical point.

After 2002, some stocks in the market are more likely to remove the connections with the

large-sized stock groups, which may be related to the fact that such structure could lower

the risk of stock price falling caused by the crash of the important stocks, i.e., core vertices

in the network.

6.5 Summary

To conclude, this chapter is motivated by the need to develop efficient tools for analyzing

time-evolving network data. To this end, we have suggested a novel method for learning

a generative model from a set of sample graphs in which the weights of the connectivity

between vertices in the graph change between samples while the vertex number and label

do not. We concentrate on the edge patterns present in those graphs and represent the

connectivity changes on each individual edge with a Gaussian probability distribution,

which is characterized by the structure of the generative model (or supergraph). This

chapter then explores how this structure can be fitted to the sample graph data using an

information theoretic approach with an MDL criterion, whose model complexity is encoded

by the graph von Neumann entropy. To solve the data-fitting problem, we present a new

fixed-point iteration scheme which optimizes the structure of the generative model. In the

experiments, we show our proposed method provides a number of new directions to the

time-evolving network analysis.
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Chapter 6: Analyzing Graph Time Series Using a Generative Model

There are a number of ways in which the work reported here can be extended. First,

in our analysis the edge connectivity between vertices is essentially the cross-correlation

coefficient. It would be interesting to explore whether the Granger causality, which has

been widely used to quantify the causal relationships between economic entities in the

literature of econometrics, can reveal more information of the connections between stocks

and provide better understanding of the connectivity structure. Moreover, it would be

natural to consider that whether the method proposed for analyzing time-series data can

contribute to modeling the dynamic of time-evolving networks. To do this, we could apply

a Markov chain model to our generative model and investigate whether we can seek the

evolutionary rules that govern the network dynamics.
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Chapter 7

Conclusion

This chapter summarizes the main contributions in this thesis and analyzes the limitations

of the methods we have developed. Also discussed in this chapter are the possible solutions

for those limitations and potential future research directions.

7.1 Contributions

In this thesis, the overall research goal is to develop effective methods for characterizing

the structural properties of complex networks and analyzing the time evolution of time-

evolving networks. To this end, we have suggested a von Neumann entropy measure for

directed graphs, and have explored its uses and applications for solving network analysis

and machine learning problems such as graph classification and pattern recognition. In

the second part of this thesis, we have proposed a novel thermodynamic framework for

studying the properties of time-evolving complex networks. We have also developed a

novel method for learning a generative model to capture the structure of a set of labeled

graphs, which can be used to analyze graph time-series data.

The first substantial contribution in this thesis is the extension of the recently de-

fined von Neumann entropy measure from undirected graphs to the domain of directed

graphs. Graph-based entropy measures, such as Shannon entropy, von Neumann entropy

and Körner’s entropy, have proved to be an efficient tool for characterizing the graph

structural complexity. However, despite that many entropy measures have been developed

for the purpose of quantifying the complexity of undirected graphs, their corresponding

methods in the directed graph domain have been less explored. This is due to the fact

that graph theory underpinning directed graphs is less developed than that for undirected
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graphs. Motivated by the need to overcome this problem, we have shown how to compute

the approximate von Neumann entropy for directed graphs, by making use of some recent

spectral graph theory results. We have also explored how the entropy expression can be

further simplified on both weakly directed graphs, where most edges are bidirectional, and

strongly directed graphs in which most edges are unidirectional. The resulting expressions

are dependent on the vertex number as well as the degree statistics of connected vertices

in the graph. We have shown the computational complexity of the approximate entropy

is quadratic in graph size, which is lower than that of the original entropy computation.

We have also extended Estrada’s heterogeneity index to directed graphs in order to

quantify the vertex degree heterogeneous characteristics of directed graphs. The normal-

ized version of this measure is bounded between 0 and 1, where the lower bound is reached

for regular graphs and the upper bound is obtained for star graphs. We have demonstrated

experimentally that both the entropy measure and the heterogeneity index are useful in

characterizing directed graphs with different structure and detecting structural changes in

evolving graphs.

The second substantial contribution in this thesis is to explore a number of uses and

applications based on the development of the approximate von Neumann entropy. It is

interesting to note that the entropy approximation can be expressed in terms of a sum

of edge-dependent entropic contributions. As a result, a local measure that quantifies the

von Neumann entropy associated with each edge in a graph can be defined. Combining

this definition with the traditional degree assortativity measure, we have suggested a

novel edge assortativity measure which quantifies the entropic preference of edges to form

connections between similar vertices in both undirected and directed graphs. We have

shown that this entropic edge assortativity measure is more effective in distinguishing the

structural characteristics of graphs than the traditional degree-based analogue.

Another useful entropy application also commences from the approximation of the

von Neumann entropy, whose expression gives the information of how the von Neumann

entropy is distributed over edges in a graph. Such distribution of edge-based entropy

contributions clearly encodes a number of properties of the intrinsic structural properties

of a graph, allowing us to obtain a simple entropic characterization of graph structure,

based on a histogram whose bins are indexed by vertex degree and whose bin-contents is

the sum of entropy contributions associated with edges connecting vertices with specified

degrees. We have shown how such histogram can further be encoded as a feature vector,
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which captures the structural information of a graph in an entropic manner. In effect,

we have proposed a graph embedding method that embeds both undirected and directed

graphs into a low-dimensional feature space. This allows us to employ standard machine

learning techniques to implement the tasks of graph classification and pattern recogni-

tion. The experiments have demonstrated that comparing to a number of state-of-the-art

graph embedding methods, our method is more effective in terms of classification accuracy.

Moreover, comparing to kernel methods, our method is particularly computationally fast

with a competitive classification performance.

The third substantial contribution in this thesis is the development of a novel ther-

modynamic framework for visualizing and analyzing the structural changes during the

evolution of time-evolving complex networks. The starting point of the idea is the link

between a characteristic polynomial computed from the Laplacian matrix and the Boltz-

mann partition function of a graph. We have shown that when the graph Hamiltonian is

equal to the negative Laplacian, the characteristic polynomial can be used to approximate

the partition function, and a number of graph thermodynamic functions, such as average

energy, entropy can be obtained. We have further investigated that assume the dynamic

graph undergoes a constant-volume process, the expression for the temperature can also

be obtained, which is defined as the change of energy with entropy. It is important to

stress that all the thermodynamic variables are dependent on simple graph characteristics

such as the number of vertices and degree statistics.

Turning attention to statistical mechanics, we note that the von Neumann entropy

can be interpreted as a thermodynamic entropy when we associate the microscopic con-

figurations of a network with the eigenstates of the normalized Laplacian spectrum. Fur-

thermore, if we define that the microstate energy is proportional to the vertex degree, the

internal energy of a network can be simply expressed as the number of edges. Moreover,

the thermodynamic temperature is again the rate of change of energy with entropy, subject

to the condition that the volume and number of particles are held constant. In the exper-

iments, we have applied both thermodynamic representations to empirical network data

in financial and biological areas. The results have suggested that both thermodynamic

characterizations are useful in analyzing the structural evolutionary properties of dynamic

networks. In particular, abrupt structural changes caused by critical events, such as finan-

cial crises in the financial data and morphological transformations in the biological data,

can be well identified. Also different time stages in the time-varying networks are well
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characterized in the thermodynamic space spanned by energy, entropy and temperature.

The final substantial contribution in this thesis aims at developing a novel method for

constructing a generative model to analyze labeled graph data where the vertex set is fixed

and the edge set changes between samples. This is accomplished by two steps. The first

step is to propose a probabilistic framework for modeling the probability distribution of the

observed sample graphs given the model structure, with a Gaussian distribution capturing

the change of connection weights on each individual edge. The second step is then to fit the

model structure to the sample graph data by adopting an information theoretic approach

with a two-part MDL criterion in which the model complexity is reflected by the von

Neumann entropy. This allows us to pose the problem of determining the optimal model

structure as one of minimizing the code length criterion. To solve this problem numerically,

we have developed a new fixed-point iteration scheme which gives an updating mechanism

for locating the elements of the optimal weighted adjacency matrix of the model structure.

Experimental evaluations have shown that by employing our proposed method to graph

time-series data, the generative model provides a number of new directions to the study

of the time-evolving complex networks.

7.2 Limitations

Although the methods we have developed in this thesis have proved to be effective in

analyzing the structural characteristics of complex networks, and have outperformed some

of the state-of-the-art graph characterization measures, there are a number of limitations

with the methods proposed.

First, from the development of the graph von Neumann entropy measure, we note that

the analysis commences from the definition that the von Neumann entropy of a graph is es-

sentially the Shannon entropy associated with the normalized Laplacian eigenvalues. This

clearly leads to a disadvantage of the resulting entropy measure, namely it is less powerful

in characterizing cospectral graphs. In other words, it is difficult to use the approximate

von Neumann entropy alone to distinguish cospectral graphs with different structural pat-

terns. This shortcoming clearly suppresses the utility of this entropic characterization in

a number of applications such as pattern recognition and object classification.

Another limitation with the development of the directed graph von Neumann entropy

is that a sink vertex, which has no out-going edges connected to it, will make the entropy

approximation formula of the weakly directed graphs singular. In our development, we
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have discussed that in a weakly directed graph, the number of unidirectional edges is small,

so the likelihood of the existence of sink vertices is also small. However, the possibility

cannot be completely avoided, and it may diminish the applicability of the proposed

entropy measure on a large number of networks. One way to avoid this problem, which

we have addressed in the development of the von Neumann entropy, is to demand that the

graph under study must satisfy the strong connectivity property, thus it can be guaranteed

that there are no sinks in the graph. This requirement may seem to be a limiting constraint,

however, we have stated that by summing up the entropy for each strongly connected

component in a graph, the suggested entropy approximation is applicable to directed

graphs that are not strongly connected.

Turning attention to the time-evolving network analysis, we have shown experimen-

tally that, the thermodynamic characterizations, including the energy, entropy and tem-

perature, which are computed from the approximate Boltzmann partition function, are

efficient in identifying abrupt changes and phase transitions in structure and detecting

other distinctive periods in the evolution of time-varying financial and biological net-

works. However, these thermodynamic functions do appear to have some limitations. For

example, from the individual time-series of the thermodynamic variables, there exist some

unexpected random fluctuations, which are not associated with any identifiable events in

the time-series studied. Another limitation is that various critical events in the time-series

do not necessarily give rise to unique patterns, which means that it is difficult to identify

these events on the thermodynamic variable plots.

Finally, one limitation with the development of the generative model for the financial

time-series analysis is that we have used the cross-correlation coefficients to measure the

similarity of the stock returns as a function of the time shift between pairs of stock return

time-series. The use of the cross-correlation is based on the fact that in realistic economics,

the evolution of stock prices can be driven by common economic factors. However, it should

be noted that such analysis can only be applied to measure the pairwise correlation between

time-series. More generally, the causal relationship between a pair of time-series could be

directed, or indirect, mediated by a third set of variables, or a combination of both. In

this case, the pairwise analysis would lead to spurious results as it does not capture the

whole covariance structure for multivariate data.
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7.3 Future Work

In this section we point out the possible solutions to the limitations we have discussed and

also provide some potential future research directions.

First, to solve the problem that the graph von Neumann entropy measure is less effi-

cient in characterizing cospectral graphs, we turn to the probabilistic kernel methods based

on the information divergence. Graph kernels have recently evolved into a rapidly devel-

oping branch of pattern recognition. Broadly speaking, there are two main advantages

of the kernel methods, namely a) kernel methods can bypass the need for constructing

an explicit high-dimension feature space when dealing with high-dimensional data and

b) kernel methods allow standard machine learning techniques to be applied to complex

data, which bridges the gap between structural and statistical pattern recognition. In

particular, a kernel function is a symmetric and a positive definite function that maps two

patterns to a real value, which is used to quantify the similarity between patterns.

On the other hand, an information divergence measures the dissimilarity between a pair

of probabilistic distributions. Thus, it is natural to construct a link between kernels and

information divergences, and define novel kernel functions based on particular information

divergence accordingly. It is interesting to note that from the development of the entropic

graph embedding method in the thesis, a local edge entropic measure which quantifies

the von Neumann entropy contribution associated with each edge in the graph has been

defined. Therefore, the information of the local measure of all edges in a graph can be

viewed as a distribution of the von Neumann entropy on the graph. Such distribution can

further be used to compute the information divergence between structures, which provides

a new direction to the development of graph kernels. For instance, we could adopt the

Jensen-Shannon divergence, which is a mutual information dissimilarity measure between

probability distributions in terms of the difference between their associated entropies. In

effect, the Jensen-Shannon divergence between a pair of graphs can be simply defined as

the von Neumann entropy of the graph union minus the average of the two individual

graph entropies. This allows us to define the Jensen-Shannon divergence graph kernel and

diffusion kernel respectively, for both undirected and directed graphs. These graph kernels

clearly provide a more powerful tool for characterizing graphs with various structural

patterns.

Then, to further reduce the problem caused by the existence of the sink vertices in

the development of the directed graph von Neumann entropy, i.e., to relax the strong
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requirement of strong connectivity of directed graphs, it is worth in the future looking at

the PageRank matrix instead of the Laplacian matrix. Specifically, the PageRank matrix

allows a random walk to “teleport” or “dangle” on a directed graph, so it does not suffer

from the problem of sink vertex and strong connectivity. Hence, it would be promising

to explore whether a number of novel directed graph complexity measures can be defined

and computed from the PageRank matrix of directed graphs.

Next, in order to improve the thermodynamic characterizations so that they can be-

come more effective in identifying critical events and significant time stages in the evolution

of time-varying networks, in the future we could turn our attention to the quantum physics.

In particular, we would be interested in exploring whether partition functions from differ-

ent quantum statistics, such as Bose-Einstein partition function and Fermi-Dirac partition

function, can be used to replace the Maxwell-Boltzmann partition function which we have

adopted in this thesis, for the purpose of providing a more efficient way to probe dynamic

network structure.

In the future, it would also be intriguing to explore whether the Granger causality can

reveal more causal information between time-series than the cross-correlation coefficients

in the dynamic graph analysis. Put simply, a time-series is said to Granger-cause another

one if the prediction of the latter time-series can be improved by containing the knowledge

of the first one. A main advantage of Granger causality over the cross-correlation methods

is that it can be used to measure not only the direct correlation, but also the indirect causal

relationship (through a mediator variable) between a pair of time-series. Specifically, to

efficiently identify the indirect causality between pairs of time-series, we could adopt the

conditional Granger causality method, in which the mediator variable can either be an

individual time-series or a set of time-series. Applying the Granger causality method

to the financial and biological data, we would be interested in investigating whether the

thermodynamic representations and the generative model could provide a more powerful

tool for analyzing the time evolution of these dynamical systems.

In this thesis, although we have suggested a number of novel methods for characteriz-

ing and understanding the dynamics of time-evolving complex networks, the method for

modeling such dynamics is lacking. One possible way to do this in the future would be to

commence from the generative structure which is learned from a time-series of graphs and

then to apply an appropriate Markov chain on this structure so as to control the evolution

of the dynamic graph. The idea behind this suggestion is that since the generative model
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is the underlying structure of a graph time-series, then the sample graphs in the time-

series can be viewed as a sequence of outcomes which are generated from the generative

model using some time-dependent rules that best describe the graph dynamics. Then,

the problem is to propose a method for learning these evolutionary rules, which could be

modeled by non-stochastic or stochastic processes. It would be particularly interesting to

explore whether the model parameters learned from the time-series graph data are related

to some graph characteristics, such as degree statistics and entropy measures, etc.

Finally, we acknowledge that we have explored a relatively limited quantity of empiri-

cal data. The methodologies reported in this thesis can clearly be extended to additional

domains, such as human functional magnetic resonance imaging data and online social

network data, to explore what features can be revealed in these complex systems. Fur-

thermore, most graph characterization measures we have suggested in this thesis are based

on unweighted graphs. In the future, it would be interesting to see whether these mea-

sures, can be generalized to the domains of weighted graphs (undirected and directed),

labeled graphs and hypergraphs.
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List of Symbols

G Graph

V Vertex set of a graph

E Edge set of a graph

u Vertex index

A Adjacency matrix of a graph

du Degree of vertex u

dinu In-degree of vertex u

doutu Out-degree of vertex u

L (Combinatorial) Laplacian matrix of a directed/undirected graph

D Degree matrix of a graph

L̃ Normalized Laplacian matrix of a directed/undirected graph

λ̃ Eigenvalue of normalized Laplacian matrix

HV N Von Neumann entropy of a graph

ru Local average degree ratio of vertex u

I Identity matrix

ωuv Heterogeneity measure of edge (u, v)

Ω Heterogeneity index of a graph

Ω̃ Normalized heterogeneity index of a graph

γuv Entropic contribution of edge (u, v)

Γuv Sum of entropic contributions associated with edge (u, v)

CD Degree assortativity measure

CE Entropic edge assortativity measure
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Qj Quantile index

V Feature vector

Z Boltzmann partition function

Ĥ Hamiltonian operator of a graph

E Thermodynamic energy

S Thermodynamic entropy

T Thermodynamic temperature

R Quasi characteristic polynomial

ζ Ihara zeta function of a graph

k Boltzmann constant

ε Residual

K Complete graph

P String graph

∆u Degree change at vertex u

G Graph time series dataset

G̃ Generative model structure

W̃ Weighted adjacency matrix of G̃

wu Weighted degree of vertex u

N Gaussian distribution

L Code length
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Abbreviations

PCA Principal component analysis

PPI Protein-protein interaction

MST Minimum spanning tree

SL Single linkage

PMFG Planar maximally filtered graph

WD Weakly directed

SD Strongly directed

ECA Entropy component analysis

CDF Cumulative distribution function

SVM Support vector machine

MUTAG Mutagenicity

NCI National Cancer Institute

SMO Sequential minimal optimization

PUK Pearson VII universal kernel

k-NN k-nearest neighbour

COIL Columbia object image library

HMO Hückel molecular orbital
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NYSE New York Stock Exchange

MDL Minimum description length

MLE Maximum-likelihood estimation
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