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A B S T R A C T

Swarm robotic systems comprise many individual robots, and exhibit
a degree of innate fault tolerance due to this built-in redundancy.
They are robust in the sense that the complete failure of individual
robots will have little detrimental effect on a swarm’s overall collec-
tive behaviour. However, it has recently been shown that partially
failed individuals may be harmful, and cause problems that cannot
be solved by simply adding more robots to the swarm. Instead, an
active approach to dealing with failed individuals is required for a
swarm to continue operation in the face of partial failures.

This thesis presents a novel method of exogenous fault detection
that allows robots to detect the presence of faults in each other, via the
comparison of expected and observed behaviour. Each robot predicts
the expected behaviour of its neighbours by simulating them online
in an internal replica of the real world. This expected behaviour is
then compared against observations of their true behaviour, and any
significant discrepancy is detected as a fault.

This work represents the first step towards a distributed fault detec-
tion, diagnosis, and recovery process that would afford robot swarms
a high degree of fault tolerance, and facilitate long-term autonomy.
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Part I

I N T R O D U C T I O N





1 I N T R O D U C T I O N

Swarm robotic systems comprise many individual robots, and exhibit
a degree of innate fault tolerance due to this built-in redundancy.
They are robust in the sense that the complete failure of individual
robots (mechanical or behavioural) will have little detrimental effect
on the collective behaviour [5]. However, recent work [6, 7, 8] has
shown that partially failed individuals can adversely affect swarm
behaviour. Overall system reliability may even decrease with increas-
ing swarm size [7], so this is a problem that cannot simply be solved
by adding more robots to the swarm. Instead, swarm robotic systems
must take an active approach to dealing with failed individuals if
they are to achieve a high degree of fault tolerance.

Despite the fact that recovery mechanisms can only be initiated
once a fault has been detected, the problem of fault detection in robot
swarms has received little attention. It is often assumed that robots
are able to proprioceptively detect faults in themselves (referred to
as endogenous fault detection), and then signal this to the rest of the
swarm. Unfortunately, it may be impossible for a robot to do so in
certain situations, such as those where its communications hardware
has failed. There has been some recent interest in developing methods
of exogenous fault detection [9, 10, 11, 12] (where robots attempt to
detect the presence of faults in each other), but existing approaches
are often only capable of detecting pre-specified faults, or a small
number of failed individuals relative to the size of the swarm.

This thesis attempts to address these problems by presenting a
novel method of exogenous fault detection for swarm robotic sys-
tems, which is based on the comparison of expected and observed
behaviours. This approach allows individual robots to detect when
other robots in the swarm are behaving in an unexpected manner,
and to use this information to determine whether those robots have
developed faults. This is an important first step towards engineering
fault-tolerant robot swarms, and is necessary if swarm robotic sys-
tems capable of long-term autonomy are ever to become a reality.
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22 introduction

Figure 1.1: (A) Kilobot robot, with a U.S. penny for scale. (B) Each Kilobot
is able to move around using vibration motors attached to rigid legs, and
can communicate with neighbouring robots by reflecting infra-red light off
the ground. (C) 1,024 Kilobot swarm. Taken from [13].

This chapter first outlines the field of swarm robotics, before dis-
cussing claims of robustness and how fault tolerance can truly be
achieved. The proposed exogenous fault detection approach is then
explained at an abstract level, and positioned within the field based
on the imposed constraints. Finally, the research hypothesis is given,
followed by an overview of the thesis structure and contributions.

1.1 swarm robotics

Swarm robotics is an approach to the coordination of robot collec-
tives comprising a large number of relatively simple individuals, in-
spired by the principles of swarm intelligence [5]. It has become an
increasingly popular field of research in recent years [14], in part due
to advances in miniaturisation that have facilitated the mass produc-
tion of simple robots at relatively low cost (compared to single-robot
systems). The Kilobot robot platform [15] shown in Figure 1.1 is a
prime example — it is not much larger than a coin, and the total cost
of parts is under $15. This has allowed a record-breaking swarm of
1,024 robots to be built [13], albeit with quite limited capabilities.

In contrast to multi-robot systems, which typically employ hierar-
chical or centralised control for coordinating the behaviour of robots,
swarm robotics adopts a decentralised approach in which the desired
collective behaviours are an emergent consequence of self-organisation
and local interactions between robots and their environment [16].
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Figure 1.2: (A) Three termite-inspired TERMES robots [18] autonomously
building a 3D structure as a collective. (B) Sequence of overhead views show-
ing the progress of collective construction. Taken from [19].

In order to help distinguish swarm robotics research from that fo-
cused on multi-robot systems, various different criteria have been
proposed to characterise swarm robotic systems [5, 17, 14]. Although
each definition differs slightly, the following criteria are generally
agreed upon:

– Each robot must act autonomously, rather than under the influ-
ence of centralised control. Coordination between robots should
be distributed and decentralised.

– The robots should only have local sensing and communication
capabilities, with no access to global knowledge.

– The robots must be physically embodied in the environment,
and able to interact with it.

– Individual robots should be relatively incapable or inefficient
with respect to the task at hand, thus necessitating cooperation.

– The swarm must either consist of a large number of robots, or
the swarm behaviour must scale with increasing swarm size.

Complex collective behaviours may emerge from robot systems con-
forming to this definition, including aggregation, flocking, foraging,
cooperative transport, and collective decision-making [20, 21]. Decen-
tralised systems are not without their limitations though, and may
lead to sub-optimal solutions due to a lack of global perspective.

Various domains of application have been identified for swarm
robotic systems, including environmental monitoring, search and res-
cue, automated construction (see Figure 1.2), mine clearance, and
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deep-sea/space exploration [5]. However, such real-world applica-
tions are still a long way off — the majority of swarm robotics re-
search to date has been carried out in controlled laboratory environ-
ments, and the verification and validation of the emergent and self-
organising behaviour of robot swarms remains an open problem [22].

1.1.1 Robustness

“

”

Bayındır and Şahin [23] argue that any swarm robotic system should,
by definition, exhibit three desirable qualities — robustness, flexibility,
and scalability, which they define as:

robustness : the degree to which a system can still function in the
presence of partial failures or other abnormal conditions.

flexibility : the capability to adapt to new, different, or changing
requirements of the environment.

scalability : the ability to expand a self-organised mechanism to
support larger or smaller numbers of individuals without im-
pacting performance considerably.

While it may be true that swarm robotic systems are flexible and
scalable, Winfield and Nembrini [6] criticise the general swarm intel-
ligence literature for often claiming that swarms exhibit a high de-
gree of robustness, despite a lack of supporting empirical evidence
or theoretical analysis. They also raise questions about what robust-
ness really means, and how it can be quantified and measured, such
that the fault tolerance of a swarm robotic system may be assessed.
It is important that these questions are answered if robot swarms are
ever to make the transition from laboratory experiments to real-world
safety-critical applications.

“

Winfield and Nembrini [6] argue that the term ‘robust’ is often casu-
ally used in the context of swarm robotics without explicitly defining
it, and in cases where it is defined, there is some confusion over its
meaning. They state that a robot swarm may exhibit all of the follow-
ing forms of robustness, and more:

1. it is a completely distributed system and therefore has no com-
mon-mode failure point

2. it is comprised of simple and hence functionally and mechani-
cally reliable individual robots
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3. it may be tolerant to noise and uncertainties in the operational
environment

4. it may be tolerant to the failure of one or more robots without
compromising the desired overall swarm behaviours

5. it may be tolerant to individual robots who fail in such a way
as to thwart the overall desired swarm behaviour ”The fourth form of robustness — tolerance to the failure of individual

robots — is particularly relevant to this thesis. Winfield and Nembrini
[6], and later Bjerknes [7, 8], have shown that this form of robustness
does not come for free just by using local communication and decen-
tralised control, and that partially failed individuals can compromise
collective swarm behaviours. Therefore, additional mechanisms are
required if swarm robotic systems are to become truly fault-tolerant.

1.1.2 Fault tolerance

Fault tolerance is defined as a system’s ability to continue operation,
perhaps at a degraded level of performance, despite the presence of
faults [24]. In the context of swarm robotic systems this refers to the
swarm’s ability to cope with failed robots, which is a desirable trait,
especially if a robot swarm is required to operate autonomously for
extended periods of time without human intervention.

While robot swarms may be tolerant to certain types of faults due
to inherent redundancy in the system, Christensen et al. [9] argue
that an implicit approach is generally infeasible. Instead an explicit
process of fault detection, diagnosis, and recovery is required to make
a swarm robotic system tolerant to a wide range of faults. Once the
presence of a fault has been detected, diagnosis aims to determine
the cause and location of the failure so that appropriate action can be
taken to remove, isolate, or mitigate the effect of the fault [25]. This
may involve physically removing a faulty robot from the swarm or
repairing its failed hardware components, so that the swarm is able
to continue unhindered.
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1.2 fault detection via internal models

Fault detection is a critical first step in this explicit approach to fault
tolerance, as diagnosis and recovery can only proceed once a fault
has been detected. This thesis proposes a novel method of exogenous
fault detection that allows robots to detect the presence of faults in
each other, via the comparison of expected and observed behaviour.
Each robot predicts the expected behaviour of its neighbours by sim-
ulating them online in an internal replica of the real world. This ex-
pected behaviour is then compared against observations of their true
behaviour, and any significant discrepancy is detected as a fault.

Although beyond the scope of this thesis, the proposed internal
simulation approach could also be used for fault diagnosis and pre-
dicting the outcome of possible recovery actions, thus providing an
architecture for every stage in an explicit approach to fault tolerance.

1.2.1 Swarm robotics and minimalism

The use of an internal simulation may seem like a heavyweight ap-
proach to fault detection, particularly in the context of swarm robotic
systems, where individual robots are typically assumed to be sim-
plistic. However, Sharkey [26] argues that during its short history, the
field of swarm robotics has developed beyond its roots in swarm intel-
ligence, and questions whether biological constraints are still relevant,
and whether it is still important to strive for minimalism. Various
constraints have been adopted by different researchers for a variety
reasons, and it is no longer clear when it is appropriate to enforce
minimalism and/or biological constraints [26]. In an attempt to re-
solve this confusion, Sharkey [26] proposes a simple categorisation of
swarm robotics studies into sub-areas, as shown in Table 1.1.

A distinction is made between Scalable Swarm Robotics and Mini-
malist Swarm Robotics. Scalable Swarm Robotics corresponds to ap-
proaches that place emphasis on local communication and decen-
tralised control, to ensure the scalability of the methods developed,
but that ignore minimalism and individual simplicity. There are no
biological constraints imposed on the ability of individuals, which
can be as sophisticated as necessary, provided that their interactions
with other robots remain local and decentralised.

Similarly, Minimalist Swarm Robotics enforces constraints on local
communication and control, and so too benefits from scalability. How-
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Sub-area Scalable Minimalist Natural

Scalable SR 3 7 7

Practical Minimalist SR 3 3 7

Nature-inspired Minimalist SR 3 3 3

Table 1.1: Sharkey’s taxonomy of swarm robotics (SR) research [26].

ever, unlike Scalable Swarm Robotics, a commitment is made to the
use of simple robots [26]. The motivation for individual simplicity
may either come from practical or nature-inspired standpoint. Prac-
tical Minimalist Swarm Robotics practitioners are interested in using
simple robots, because they are cheap, efficient, expendable, and their
simple design (software and hardware) affords them inherent robust-
ness. Nature-inspired Minimalist Swarm Robotics researchers impose
biological constraints on individual robots, based on those found in
natural self-organising systems such as social insect colonies [26].

When designing a swarm robotic system, it is therefore only neces-
sary to impose constraints that are relevant to the research question
being answered. Over-constraining the system unnecessarily may pre-
clude the discovery of otherwise valid solutions. Conversely, it is nec-
essary to ensure that sufficient constraints are imposed such that the
developed system is fit for purpose.

Under Sharkey’s taxonomy [26], the concepts presented in this the-
sis fall into the category of Scalable Swarm Robotics, as the cognitive
capabilities of robots are not limited, but decentralised control and lo-
cal communication are still enforced to ensure scalability. This allows
the potential of robots with internal models to be explored, free from
the shackles of minimalist constraints.

1.3 research hypothesis

The aim of this thesis is to investigate the problem of exogenous fault
detection in swarm robotic systems, with a focus on the use of inter-
nal models. The general research hypothesis is as follows:

Individual robots in a swarm robotic system can use internal
simulations to predict the behaviour of their neighbours, and
through the comparison of expected and observed behaviour, can
exogenously detect the presence of faults in those robots.
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Although the prediction of robot behaviour is tackled quite differ-
ently in Parts II and III of this thesis, the same overarching hypothesis
guides the research presented.

1.4 thesis structure

The remainder of this thesis is structured as follows:

Part I - Introduction

chapter 2 - background & related work :

This chapter begins with a review of the fault tolerance and
reliability of robot swarms, or lack thereof, that motivates this
thesis. Approaches to engineering fault tolerance are then dis-
cussed in the context of natural/artificial immunity, and the
more traditional process of explicit fault detection, diagnosis,
and recovery. The chapter concludes with a review of endoge-
nous and exogenous fault detection approaches, with a focus
on swarm robotic systems.

Part II - Fault detection via prediction of future behaviour

chapter 3 - predicting future behaviour :

This chapter outlines the proposed exogenous fault detection
system, which is based on the prediction of future behaviour.
Related work concerning the use of internal models for predict-
ing behaviour is reviewed, and the experimental infrastructure
required to implement the fault detection system is discussed.

chapter 4 - single robot fault detection :

This chapter presents the results of initial experimental work
carried out to investigate the viability of fault detection based
on simulated predictions of a single robot’s future behaviour, as
an intermediate step towards implementing the exogenous fault
detection system proposed in Chapter 3 in a swarm context.
The chapter concludes with a discussion of open problems with
fault detection based on the prediction of future behaviour, and
their proposed solutions.
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Part III - Fault detection via analysis of past behaviour

chapter 5 - analysing past behaviour :

This chapter presents a variation on the exogenous fault detec-
tion system originally proposed in Chapter 3, which is instead
based on the analysis of past behaviour. Details of the imple-
mentation are given, and failure modes designed to test the
fault detector’s performance are defined.

chapter 6 - fault detection performance :

This chapter presents the results of experimental work carried
out to assess the performance of the fault detection system pro-
posed in Chapter 5. The fault detector’s ability to detect various
failure modes is tested, as well as its tolerance to multiple faults
of random types. The results of scalability and global sensitivity
analyses are also presented.

Part IV - Evaluation and conclusions

chapter 7 - evaluation and conclusions :

This chapter summarises the work presented in this thesis, and
discusses its limitations. Various potential avenues of future
work are suggested, and concluding remarks are made.

1.5 thesis contributions

The main contributions of this thesis are as follows:

chapter 3 - predicting future behaviour :

The fault detection system proposed in this chapter is the first
known example of predicting future behaviour via internal sim-
ulation for the purpose of exogenous fault detection in swarm
robotic systems. This work brings together existing research
concerning robots with internal models, and anomaly detection
techniques, to produce a novel fault detection system that rep-
resents a step towards engineering fault tolerant swarms. This
chapter also includes a discussion of key issues that must be
considered when attempting to implement embedded simula-
tions on physical robot hardware with the aim of predicting fu-
ture behaviour. These ideas were published at TAROS 2013 [2].
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chapter 4 - single robot fault detection :

The experimental results presented in this chapter show that
simulation can be used to successfully predict real robot be-
haviour, however drift between simulation and reality occurs
over time due to the reality gap. This necessitates periodic reini-
tialisation of the simulation to reduce false positives. It is shown
that selecting the length of this reinitialisation time period is
non-trivial, and that there exists a trade-off between minimis-
ing drift and the ability to detect the presence of faults. The
open problems discussed at the end of this chapter also apply to
other researchers interested in predicting the future behaviour
of individual robots in a swarm. This work was published at
IROS 2014 [1].

chapter 5 - analysing past behaviour :

The revised fault detection system presented in this chapter is
the main contribution of this thesis. This chapter details an ar-
chitecture for exogenous fault detection based on the internal
simulation of past behaviour that builds on the novel contribu-
tions of Chapter 3, and reduces uncertainty in the predictions
of robot behaviour. This architecture could also potentially be
used to perform fault diagnosis once a fault has been detected,
thus solving the first two stages of an explicit fault detection, di-
agnosis, and recovery process that would afford swarm robotic
systems a high degree of fault tolerance.

chapter 6 - fault detection performance :

The experimental results presented in this chapter show that
the revised fault detection system proposed in Chapter 5 is able
to reliably detect multiple different failure modes, and can cope
with multiple simultaneously failed robots. It is also shown that
the fault detection performance scales with increasing swarm
size, and that the true positive rate is robust to changes in pa-
rameter values. This work also represents the first known appli-
cation of consistency analysis to swarm robotics research, which
provides greater confidence in the results obtained.
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chapter 7 - evaluation and conclusions :

This thesis exemplifies what can be achieved by robots that use
internal simulations to reason about their surroundings, within
a fault tolerance context. However, there is still plenty of scope
for further work. This chapter suggests potential avenues for
future research that extend far beyond the work presented in
this thesis.

appendix a - tracking infrastructure :

A tracking infrastructure is a useful tool for swarm robotics
research, and has many potential applications. Unfortunately,
for many research laboratories, constructing one may be pro-
hibitively expensive. This appendix presents a low-cost infras-
tructure for tracking ground-based robot swarms in real-time,
which has many applications beyond the research presented in
this thesis. The information provided in this appendix may be of
use to others in the wider swarm robotics research community
who are interested in building a similar tracking infrastructure.
This work was published at ANTS 2014 [3], and as a technical
report [4].
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This chapter begins with a review of the fault tolerance and relia-
bility of swarm robotic systems, and the potential problems caused
by partially failed robots, which motivate this thesis. Approaches to
engineering fault tolerance are then discussed in the context of natu-
ral/artificial immunity, and how concepts from these natural systems
map to the traditional process of explicit fault detection, diagnosis,
and recovery. Finally, endogenous and exogenous approaches to fault
detection are reviewed, with a focus on swarm robotic systems.

2.1 fault tolerance and reliability

In order to investigate the fault tolerance of swarm robotic systems,
Winfield and Nembrini [6] carried out qualitative Failure Mode and
Effects Analysis (FMEA) [28] on a collective containment behaviour
that causes a swarm to physically surround a beacon in the envi-
ronment, encapsulating it as shown in Figure 2.1. This section first
describes the swarm algorithm used by Winfield and Nembrini [6],
before discussing the results of their FMEA.

The robots are able to send messages via range-limited wireless
communication, and are considered ‘connected’ when they are within
communication range of each other. Each robot broadcasts its own
ID, plus the IDs of neighbouring robots that it is connected to, which
allows other robots to determine which of their own neighbours are
shared neighbours of the sender [6]. Whenever a connection is lost,
a robot checks how many of its remaining neighbours still have the
lost neighbour in their own neighbourhoods. If this number is less
than or equal to a predefined threshold β (usually set to 2 or 3), then
the robot assumes it is moving away from the swarm, and reacts by
turning 180

◦. When a new connection to a neighbour is formed, the
robot chooses a random heading. These simple rules give rise to an
emergent swarm aggregation behaviour, which allows the robots to
maintain a stable ad hoc wireless network [6].

Each robot also has a long-range beacon sensor, which only pro-
vides binary information — whether or not the robot is illuminated
by the beacon. This beacon sensor is deliberately minimal, as it en-
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Figure 2.1: A swarm of 30 simulated robots performing beacon encapsula-
tion using the β-algorithm. The beacon is shown in black. Robots illumi-
nated by the beacon are shown in grey. Taken from [27].

sures that a single robot is incapable of completing the task alone,
necessitating the use of emergent collective behaviours [6]. When a
robot senses that it is illuminated by the beacon, it sets its β threshold
value to ∞. If a robot’s connection to an illuminated neighbour is lost,
then the robot will react (by turning 180

◦), ignoring the value of the
β parameter. This additional mechanism results in the emergence of
phototaxis and beacon encapsulation behaviours [6].

The FMEA begins with the identification of all possible hazard con-
ditions. Winfield and Nembrini [6] only consider internal hazards
(faults in the robots) in their analysis, as external hazards (environ-
mental disturbances) have already been investigated by Nembrini
[27]. The following internal hazards were identified for the emergent
beacon encapsulation behaviour:

– H1: Motor failure

– H2: Communications failure

– H3: Avoidance sensor(s) failure

– H4: Beacon sensor failure

– H5: Control systems failure

– H6: All systems failure

For each of these hazards in turn, the effect on the collective swarm
behaviour was considered, under the assumption that the hazard
would only occur in a small number of individual robots [6]. Many
of the hazards were determined to have a similar effect on behaviour
of the swarm, and only three distinct effects were identified:

– E1: Motor failure anchoring the swarm (serious)

– e2: Lost robot(s) loose in the environment (non-serious)

– e3: Robot collisions with obstacles or target (non-serious)
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Swarm behaviour H1 H2 H3 H4 H5 H6

Aggregation – e2 – – e2 –
Ad hoc network – e2 – – e2 –
Beacon taxis E1 e2 – – E1 –
Obstacle avoidance E1 e2 e3 – E1 –
Encapsulation E1 e2 e3 – E1 –

Table 2.1: Summary of the FMEA carried out by Winfield and Nembrini [6].

The full results of the FMEA are reproduced in Table 2.1. It was
found that hazard H1 (motor failure) would have the most detrimen-
tal effect on the collective behaviour, causing the swarm to become
anchored around a faulty robot, thus preventing the beacon encap-
sulation task from being completed [6]. This is because the robots
collectively attempt to move towards the beacon, but may turn back
when connections to a stationary robot are lost (depending on the β

threshold). Motor failure itself does not inherently cause problems,
it is the fact that the failed robot is unaware that it has developed a
fault, and continues to communicate with other robots [6].

Every other hazard analysed was shown to have non-serious effects,
apart from hazard H5 (control systems failure). This may also have an
anchoring effect on the swarm if it causes the robot to become station-
ary, or to turn on the spot, however this is unlikely to happen given
the simplicity of the robot controller, and that the default behaviour
is just to move forward [6].

A surprising conclusion from the work of Winfield and Nembrini
[6] is that despite their initial criticism of the swarm robotics litera-
ture for unsubstantiated claims of robustness, their study has shown
that swarms are indeed generally quite robust, with only 6 out of
30 the hazard scenarios considered having a serious effect. Counter-
intuitively, while hazard H6 (complete failure) is the most serious
failure that can occur in an individual robot, it is the most benign in
terms of its effect upon the swarm’s collective behaviours [6].

In summary, this FMEA shows that while swarm robotic systems
are remarkably tolerant to the complete failure of individual robots,
they may be vulnerable to partially failed robots that continue to oper-
ate in some limited capacity. Furthermore, the effect of these partially
failed individuals may be so severe that they prevent the swarm from
completing its task.
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(a) (b)

Figure 2.2: (a) Swarm of 10 e-puck robots using the ω-algorithm to perform
emergent phototaxis towards an IR beacon on the right hand side of the
arena. (b) e-puck robot fitted with a ‘skirt’ designed to prevent IR light from
passing through its transparent body. Taken from [8].

2.1.1 Swarms of real robots

Bjerknes [7, 8] extended the work of Winfield and Nembrini [6] by val-
idating their FMEA of the β-algorithm using empirical data from ex-
periments with real robot swarms. Unfortunately, the β-algorithm de-
pends on range-limited wireless communication with a well-defined
boundary, which is difficult to achieve in physical hardware. To over-
come this, Bjerknes [7] developed the ω-algorithm, which allows a
swarm of real e-puck robots [29] to aggregate and perform phototaxis
towards an infra-red (IR) beacon (as shown in Figure 2.2), through the
combination of IR sensing and a simple timer. The ω-algorithm is ex-
plained in detail here, as it is used as a case study for testing the
exogenous fault detection approach proposed later in Chapter 5.

Each robot in the swarm constantly emits IR light, allowing neigh-
bouring robots to sense their presence. The robots are able to dis-
tinguish between IR light received from other robots, and IR light
from the beacon, through the use of on-board signal processing [7].
Although the e-puck robots are actually capable of determining the
distance and angle to the beacon, this information is deliberately dis-
carded. As with the β-algorithm, each robot is only allowed to sense
whether or not it is illuminated by the beacon, thus ensuring that the
phototaxis behaviour is the result of emergent self-organisation [7].

The default behaviour of each robot is simply to move forward in a
straight line. Each robot uses an aggregation timer to time the duration
since it last avoided another robot, resetting its timer to zero when-
ever it makes an avoidance manoeuvre [7]. If the aggregation timer



2.1 fault tolerance and reliability 37

3.2. Experimental setup

sets its avoid radius somewhat larger. This symmetry breaking mechanism is shown in

figure 3.7.

Figure 3.7: In the α and ω algorithms the symmetry breaking comes from different avoid

radii for illuminated and occluded robots. Beacon shown on the right.

In figure 3.7 robot D is illuminated and it has a large avoid radius. So large, in

fact, that it will attempt to avoid robot C, which is occluded. Robot C, on the other

hand, cannot detect robot D and will not make a change in direction. This symmetry

breaking mechanism have proven very stable for beacon taxis, for the α-algorithm in

simulation[REF BJERKNES 2007] and for the ω-algorithm in real hardware.

3.2 Experimental setup

All experiments in this thesis were conducted using the e-puck robot developed at EPFL

[56]. This section will describe the relevant sensors on the e-puck and the challenges of

implementing stable and reliable swarm taxis algorithm using them. As sensors in the

real world often have less than ideal performance compared to simulated sensors, there is

a difference in simulating a swarm vs. implementing one in hardware; this section will go

into quite a few details about sensors.

One canonical problem with real hardware robot swarms is sensor interference. All

robots have active sensors for detecting each other and their environment, and these

sensors can interfere and cause misreading. This must be explicitly dealt with in an

implementation. This section offers a solution to the problem of sensor interference, even

when the robots interact as tightly as they do in the algorithms presented in this thesis.

The next section will describe the experimental setup, that is the robot arena and the

beacon. The following section will describe the robots used in the experiments and their

sensors. The same section will describe in detail all the signal processing and algorithms

for robot behaviour in the ω-algorithm.
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Figure 2.3: Illustration of symmetry breaking in the ω-algorithm. The robots
illuminated by the beacon on the far right use a larger avoidance radius than
occluded robots. Taken from [7].

ever exceeds a predefined threshold value ω, then the robot assumes
it is moving away from the swarm and should turn back. When this
happens the robot resets its aggregation timer to zero and turns to
face its perceived centre of the swarm. This is only an estimate of the
swarm’s true centroid, calculated based on which of the IR sensors
situated around the robot’s body are activated [7]. If the robot travels
beyond sensor range before attempting a coherence manoeuvre, there
will be no sensory information to help it determine the direction back
to the swarm. This should only ever occur if the value of ω is set too
high, however to cope with borderline cases, the robot will simply
turn 180

◦ in the hope that it will eventually rejoin the swarm [7].
These two attraction and repulsion mechanisms are sufficient for

the swarm to maintain stable aggregation, given an appropriate value
for ω. However, in order for the behaviour of phototaxis to emerge,
an additional symmetry breaking mechanism is required — robots al-
ter their own avoidance radius according to illumination status, with
robots illuminated by the beacon using a larger avoidance radius than
those in shadow [7], as shown in Figure 2.3. In this example, robot C
is occluded, so uses a smaller avoidance radius that allows it to move
closer to other robots before an avoidance manoeuvre is triggered.
Robot D is illuminated by the beacon, and its larger avoidance radius
causes robot C to trigger the avoidance behaviour. This simple sym-
metry breaking mechanism results in the emergence of phototaxis at
the collective level, despite individual robots being unaware of the
distance or angle to the beacon [7].
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Failure Mode and Effects Analysis

As with the work of Winfield and Nembrini [6], Bjerknes [7] only con-
sidered internal hazards for the emergent aggregation and phototaxis
behaviours of the ω-algorithm, when implemented on real robots:

– H1: Complete failure (equivalent to a total loss of battery power)

– H2: Sensor failure (one IR sensor on one or many robots fails)

– H3: Motor failure (IR sensors and emitters remain operational)

Consistent with the FMEA carried out by Winfield and Nembrini
[6], Bjerknes [7] determined that complete failure and sensor failure
would have little impact on the collective swarm behaviour, while
motor failure could potentially be very harmful — again, having an
anchoring effect on the swarm. This anchoring effect is due to the
method that the robots use for estimating the centroid of the swarm,
based on local IR sensing. When non-faulty robots perform a co-
herence manoeuvre and turn towards their perceived centre of the
swarm, the IR light emitted by the stationary robot afflicted with mo-
tor failure contributes to the calculation of this estimate, as it is still
considered part of the swarm [7]. This causes the swarm to remain
tethered by the partially failed robot, preventing the non-faulty robots
from making progress towards the beacon.

Bjerknes [7] validated this analysis by carrying out experimental
trials with a swarm of 10 real e-puck robots. It was found that even
in the case of a single robot experiencing motor failure, the swarm
would often break apart due to the influence of the partially failed
robot. The tracking data from an experiment shown in Figure 2.4 mer-
its special attention. At time t = 300 a motor failure was introduced
into the robot marked with a star. This has the effect of anchoring
the swarm, causing two robots to break away. These robots partially
occlude the rest of the swarm, making the symmetry breaking mech-
anism less effective, and hampering their escape from the partially
failed robot [7]. At t = 600 the swarm remains anchored, but the
two runaway robots have drifted slightly to one side, such that the
swarm is now properly illuminated. This allows the symmetry break-
ing mechanism to work properly, and the rest of the swarm breaks
free of the partially failed robot. At t = 1100 the swarm has managed
to break away (leaving one anchored robot behind), and rejoins the
two that initially broke away at the beacon [7].
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Figure 2.4: Tracking data from an experiment with real robots, demonstrat-
ing the effect of a partially failed robot on ω-algorithm phototaxis. A single
robot with failed motors causes the swarm to become anchored and break
apart. Taken from [7].

Bjerknes [7] refers to the ability of the swarm to eventually escape
the influence of failed robots as ‘self-repair’, in the sense that the col-
lective behaviour has recovered and is no longer affected. In order
for the swarm to break away, the ‘force’ of phototaxis must overcome
the anchoring force of the partially failed robots [8]. This is some-
what misleading terminology, since the partially failed robots have
not been actually repaired — the swarm has simply left them behind.
This behaviour is therefore a form of implicit fault tolerance that is
inherent in the design of the ω-algorithm.

Unfortunately, the situation worsens when two robots simultane-
ously suffer motor failure — the swarm only reached the beacon in 6

out of 10 experiments conducted, and in those cases where the swarm
succeeded, their progress was slowed significantly [7]. This demon-
strates that implicit approaches to fault tolerance may be unable to
cope with increased numbers of faulty individuals, thus necessitat-
ing an explicit approach to detecting and dealing with failed robots.
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Fig. 2 Top: The reliability of a robot swarm modelled as a k-out-of-N system, with k = 5,
swarm size N = 10 robots and MTBF = 480 m. Bottom: Reliability of the same swarm
as a function of distance travelled, based on a measured mean swarm velocity of 12.4 cm.
per min. for a swarm of 10 robots.

working in order for the emergent swarm taxis behaviour to work properly.
Thus, we can model our swarm as a 5-out-of-N system. Consider now the
individual robots’ MTBF. Carlson et al. tracked failure data for 13 robots
by three different manufacturers over a period of two years. They found the
MTBF to be eight hours [6]. Experiments with the e-pucks used in our experi-
mental trials might suggest that their failure rate might be higher (because of
the design of the e-puck battery connector). However, as no systematic data
is available, the value reported by Carlson et al. will be used here. Fig. 2 (top)
plots Eq. 1 for a swarm of ten robots, and shows that the swarm reliability
starts to decline rapidly after 100 minutes of operation.

Fig. 2 (bottom) plots the reliability of the same swarm of ten robots, with
the same values for k and MTBF, against the distance the swarm will travel
(the emergent swarm taxis behaviour) based on a measured mean swarm
velocity of 12.4 cm per minute for a swarm of 10 robots.

Although providing some insight, the reliability assessments based on the
k-out-of-N model here fail to take into account two important factors. Firstly,
each robot that fails is likely – depending on the exact nature of that failure
– to slow down the swarm; if the failed robot(s) are immobile then the swarm
will slow down until it ‘escapes’ from the failed robots, leaving them behind.
Secondly, the swarm velocity might then change after the failed robot(s) have

Figure 2.5: Top: Reliability as a function of time for a robot swarm modelled
as a k-out-of-N system, where k = 5, N = 10, and a MTBF of 8 hours (480

minutes). Bottom: Reliability of the same swarm of 10 robots as a function
of distance travelled, based on a mean phototaxis velocity of 12.42 cm per
minute. Taken from [7].

Reliability analysis

In addition to performing experimental trials with swarms of real
robots, Bjerknes [7] used reliability analysis to investigate the theoret-
ical fault tolerance of swarm robotic systems. In the context of the ω-
algorithm the reliability of the system is defined as the probability that
the swarm will remain operational despite the failure of individual
robots. Carlson and Murphy [30] collected failure type and frequency
data from thirteen robots, representing three different manufactur-
ers and seven robot models over a period of two years, and found
that the mean time between failures (MTBF) was 8 hours. Although
a follow-up study [31] with more recent data showed that the MTBF
had improved to 24 hours, this still suggests that the reliability of
mobile robots is concerningly low, and is especially problematic if a
swarm robotic system is to be left unattended for several days.

Bjerknes [7] used a k-out-of-N reliability model to assess how the
reliability of a swarm running the ω-algorithm will vary as a func-
tion of time. The swarm was mathematically modelled as a parallel
system, where at least k robots must be operational for the swarm of
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N robots to complete its task. Although partially failed robots were
shown to have the most detrimental effect on the swarm behaviour,
only completely failed robots were considered in this initial model. A
value of k = 5 was used, as this was the minimum number of robots
with which phototaxis was observed to be reliable during experimen-
tation [7].

It was shown by Bjerknes [7] that with a MTBF of 8 hours, the re-
liability of a swarm of N = 10 robots declines rapidly after its first
100 minutes of operation, as shown in Figure 2.5. This figure also
shows the reliability of the swarm as a function of the distance trav-
elled, based on the mean velocity of phototaxis measured during ex-
perimental trials. The projected reliability shows that the swarm will
only be able to travel just over 100 metres before completely failing,
due to there being an insufficient number of functional robots left for
phototaxis to emerge [7].

This is an important result, as it shows that even if partially failed
robots could be detected by other robots in the swarm, leaving failed
robots behind is not a scalable strategy. Instead, an explicit approach
of fault detection, diagnosis, and recovery may allow partially failed
robots to be repaired in some way, such that they may continue to
contribute to collective behaviours that rely on emergence.

Scalability

Based on the results of this simple k-out-of-N reliability model, it
seems as though the swarm could be made reliable (in the sense that
it will still reach the beacon) for an arbitrarily long period of time
simply by adding more robots, due to increased redundancy. Unfor-
tunately, as shown by Bjerknes [7], this is not the case.

When partial failures are considered, the notion of swarm ‘self-
repair time’ becomes important — defined as the time between the oc-
currence of a robot failure, and the time when the trailing non-faulty
robot in the swarm escapes the influence of the failed robot. Bjerknes
[7] argues that larger swarms will take longer to self-repair, because
the velocity of phototaxis is inversely proportional to swarm size, and
a larger swarm must move a greater distance before it self-repairs.
Therefore, the rate of self-repair remains constant regardless of swarm
size. However, although the MTBF for each individual robot also re-
mains constant, the probability of failures occurring in the swarm will
increase as the size of the swarm increases. Above a certain swarm
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that remains constant with increasing swarm size), together with experimen-
tally estimated constants. Notwithstanding these assumptions and estimates,
the main idea that the self-repair-time increases with larger swarms is well
argued based on the experiments presented here. Even though the actual re-
liability for a given swarm size may be a somewhat higher or lower than the
k-out-of-N model suggests, it is undoubtedly true that our case study swarm
will eventually become non-functioning with increasing size, and that this

Figure 2.6: Reliability as a function of the number of robots in the swarm,
based on a k-out-of-N model with k = 0.9N, a self-repair rate of 87.9 seconds,
and a MTBF of 8 hours. Taken from [7].

size, the failure rate will overtake the self-repair rate, and the swarm
will grind to a halt before it makes progress towards the beacon [7].

Bjerknes [7] demonstrates this analytically, by extending the k-out-
of-N model to estimate how reliability would vary as a function of
the number of robots in the swarm. The experimental trials with real
e-pucks showed that a swarm of 10 robots could only self-repair with
at most one partially failed robot, so k was set to 90% of N in the ex-
tended model. The average self-repair time during experiments with
a swarm of 10 robots and a single robot experiencing motor failure
was found to be 879 seconds, so the self-repair rate was set to 87.9
seconds. Figure 2.6 shows the projections of the extended reliability
model. This analysis suggests that the reliability of the swarm would
rapidly decrease as the number of robots increases, and that a swarm
comprising as few as 100 robots would completely fail to operate.

As noted by Bjerknes [7], a number of assumptions are made in
these reliability models, so the exact values will likely be different in
practice. However, the general trend is that as the number of robots
increases, the longer it will take the swarm to escape the anchoring
effect of partially failed robots, to the point that it will be completely
non-functional if the swarm is too large. Although the measure of self-
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repair time is specific to the emergent swarm phototaxis case study,
the results generalise to other swarm robotic systems where the fail-
ure rate may overtake some notion of swarm ‘self-repair time’ as the
number of robots increase [8]. The use of high reliability hardware
components will result in a longer MTFB, thus improving the overall
reliability of the swarm, but the system will eventually fail without
an explicit approach to fault tolerance.

2.1.2 Summary

The work of Winfield and Nembrini [6] and Bjerknes [7] show that it
is not safe to assume that fault tolerance and scalability are inherent
properties of all swarm robotic systems, simply by virtue of local sens-
ing and decentralised control, as is often claimed by swarm robotics
researchers. However, such assertions are perhaps due to a common
assumption that ‘failure’ only means complete failure, which has
been shown to have little influence on swarm behaviour. When par-
tial failures are considered, such as motor failure, problems may arise
that cannot simply be solved by adding more robots.

Bjerknes and Winfield [8] argue that by demonstrating assumptions
of swarm robustness and scalability are false in one specific case, it
casts their general validity into doubt. It is important to note, however,
that the effect of partial failures will be more severe in swarms whose
behaviours rely on self-organisation and emergence. In swarm robotic
systems where individual robots work independently in parallel to
increase the speed of task completion, the effect of partial failures may
be less extreme [8]. Nevertheless, aggregation and collective motion
are fundamental swarm behaviours [20], therefore partial failures are
likely to cause serious problems for many robot swarms. Winfield
and Nembrini [6] conclude that:

1. analysis of fault-tolerance in swarms critically needs to consider
the consequence of partial robot failures.

2. future safety-critical swarms would need designed-in measures
to counter the effect of such partial failures.

“
”
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2.2 immune-inspired fault tolerance

Bjerknes and Winfield [8] suggest that implementing some kind of
distributed Artificial Immune System (AIS) [32] may be an appropri-
ate and systematic approach to solving the problem of partially failed
robots harmfully influencing a swarm, citing initial work in this direc-
tion by Timmis et al. [33]. Winfield and Nembrini [6] also encourage
the development of immune response models, as a method of afford-
ing swarms increased fault tolerance. Bjerknes and Winfield [8] argue
that this is an important new direction in the field of swarm robotics,
and that any large-scale self-organising system must have an active
approach to dealing with failed or rogue units.

2.2.1 Natural immunity

Before discussing the application of AIS to robot swarms, it is instruc-
tive to first examine immunity in natural systems. This section will
begin with a brief overview of individual immunity, before discussing
social/collective immunity in social insect colonies, and how general
principles might be extracted from these natural systems that can be
applied in an engineering context.

Individual immunity

The vertebrate immune system comprises a variety of biological com-
ponents and mechanisms that fight against harmful microorganisms
to protect the body from disease [34]. The immune system can broadly
be split into two components — innate and adaptive — with respect
to the ability of each to respond and react to invading pathogens. The
innate immune system acts as the body’s first line of defence, and is
able to provide a fast response to invading pathogens. However, its
immune repertoire is limited because it is coded into the organism’s
genome at birth via heredity [34].

In contrast, the adaptive immune system offers what is often re-
ferred to as acquired immunity — it is able to learn and adapt over
the lifetime of the individual, to protect the body against pathogens
not known about at the organism’s birth, which the innate immune
system is unable to detect [34]. However, the response time of the
adaptive immune system is much slower than that of the innate im-
mune system, due to the way in which it detects pathogens. It is
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therefore necessary for the innate and adaptive immune systems to
work together, to provide a proper defence against disease [34].

Cohen [35] gives a dynamical systems perspective of the vertebrate
immune system, describing it as a cognitive system that not only fights
infection, but also performs maintenance, helping an organism main-
tain homeostasis. Cohen [35] argues that the immune system provides
three properties that allow it to carry out maintenance:

1. Recognition - see what is right and what is wrong

2. Cognition - interpret signs, evaluate results, and make decisions

3. Action - actually do the job
“ ”These three properties of the immune system map closely to an

explicit fault tolerance approach of fault detection, diagnosis, and re-
covery. If similar properties could be replicated for a robot swarm,
then it should be possible to achieve swarm-level homeostasis, and
thus fault-tolerant behaviour. A homeostatic swarm would maintain
a stable state until perturbed by a faulty robot, then attempt to return
to a stable, functioning state.

A swarm robotic system could therefore be considered as a multi-
cellular ‘organism’, that requires an ‘immune system’ to maintain
fault tolerance at the collective level. Innate immune defences would
correspond to pre-programmed fault tolerance mechanisms that are
based on prior knowledge of possible failure modes and effective re-
covery actions, whereas adaptive immunity would allow the swarm
to recover from failure modes not anticipated before deployment.

Social/collective immunity

Cremer et al. [36] were the first to describe collective immunity in
swarms of social insects, instead of focusing on individual immunity.
Over millions of years, social insect colonies have evolved collective
immune defences against parasites. These ‘social immune systems’
result from the cooperation of the individual group members to com-
bat the increased risk of disease transmission that arises from social-
ity and group living. Collective defences may be both prophylactic
(preventative measures) and activated on demand, and consist of be-
havioural, physiological and organisational adaptations of the colony
that prevent parasite entrance, establishment and spread [36].

Cremer et al. [36] explain that the colony must select an appropriate
response based on external information about the parasite (type, dose,
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diversity are also seen in studies finding that inbreed-
ing might increase parasite loads [99] (but see also
[100,101]). Comparative studies on the recombination
rates of social and non-social insects indicate a higher
recombination rate in the social insects [102,103],
which also increases genetic heterogeneity. It is worth
noting, however, that the effects of genetic diversity are
not always so simple [104] and that a high genetic
heterogeneity, whilst reducing the damage of single
parasite infections, can at the same time increase the
susceptibility of the colony to a greater range of para-
sites, which is why this strategy might not be beneficial
under all conditions [105–107]. Susceptibility of nest-
mates may additionally be reduced by the ‘social trans-
fer of immunity’ found in some termites, where social
contact with an infected individual promotes immunity
of previously naı̈ve nestmates [108].

Step 5: Reducing Vertical and Horizontal
Parasite Transmission
Once a parasite has proliferated within a colony, it can
be passed on to other groups, be they independent
neighbouring colonies or daughter colonies. Vertical
transmission to daughter colonies can occur when re-
producing queens lay infected brood, or when the
daughter queens or accompanying workers, in the
case of nest budding, acquire an infection by either
horizontal or vertical transmission before leaving the
parental colony. Although there may not be strong se-
lection against the avoidance of horizontal between-
colony infections, selection pressures to prevent ver-
tical transmission to daughter colonies should be
strong, because the colony fitness depends heavily
on the production of successful offspring colonies.
Therefore, infected honeybee workers that stop tend-
ing the queen [109] and wasps that protect their

juvenile stages by rearing them in brood cells impreg-
nated with antimicrobial secretions [110] could be in-
terpreted as strategies to avoid infection of daughter
colonies. Whilst laying eggs, ant queens sometimes
coat their eggs with venom, and workers can spray
venom over the brood, which apparently reduces fun-
gal infections [51]. Protective substances can also be
directly fed to the brood, such as royalisin and other
antimicrobial peptides in honey in the honeybee
[111]. In addition, a ‘transgenerational transfer of
immunity’ to the offspring, similar to that found in other
organisms [112], is known for social insects [113,114].
By contrast, avoidance of horizontal infection of neigh-
bouring colonies is rarely expected, only if neighbours
are related and/or if this might directly reduce the
re-infection risk of their own colony.

Regulation of Collective Immune Defences
As illustrated above, a profusion of defence strategies
is available to a social insect colony, and it is important
to find the appropriate response, given both the exter-
nal parasite pressure and the internal status of the col-
ony (Figure 3). The colony members will not only have
to decide which defence mechanism to employ, but
whether or not to start a response at all, when and
where to start it, and who should be responsible for
the defence mechanism and who should be protected
by it. When several individuals are infected and help
cannot immediately be given to everyone, a ‘triage’
may be required involving some knowledge about
the differences of the future value of the respective
individuals, so that the queen, for example, would
receive preferential treatment when compared with
a garbage worker.

To make these decisions and to find the appropri-
ate response — as both an over-reaction and an
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Figure 3. Regulation of the social immune response.

The response of a social insect colony (large circle) to a parasite (small circle) should take into account both the external information
about the parasite (e.g. its type, dose and virulence) and internal information on the status of the colony. The colony state is determined
by the social organisation of the colony members, the degree of prophylactic defence, and also by potential constraints on anti-parasite
defence, such as limited recognition or handling capacities. Details of how the decision-making process occurs (black box) are still not
understood; the outcome is either (–) no action, i.e. the colony relies solely on its prophylactic defence, or (+) take action, i.e. an acti-
vated response is triggered. In the short term, the outcome of these actions affects the infection risk and efficiency of parasite control of
the colony, and in the long term, colony fitness. Natural selection can then lead to the evolution of e.g. an optimised colony structure or
a better parasite recognition ability, and lastly can shape the decision-making process itself.
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Figure 2.7: Regulation of the social immune response. Taken from [36].

virulence), and internal status of the colony (prophylaxis status, social
organisation, defence constraints):

The colony member will not only have to decide which defence
mechanism to employ, but whether or not to start a response at
all, when and where to start it, and who should be responsible
for the defence mechanism and who should be protected by it.

It is important that an appropriate response is selected, as both under-
reacting or over-reacting could be costly. Cremer et al. [36] also de-
scribe ‘triage’ behaviour, where the value of colony members is taken
into account when deciding who to help first in the event of several
infected individuals. This social immune response is illustrated in
Figure 2.7, which shows collective decision-making at its core.

“
”

Unfortunately, how these collective decisions are made is not well-
understood [36]. This is a shame, as there is a clear analogy between
robot swarms and social insect colonies, and concepts from social
immunity could potentially be applied in a swarm robotics context.
In particular, reasoning about failed robots via collective decision-
making would be a robust approach to distributed fault recovery.

Taking inspiration from biology

Stepney et al. [37] propose a conceptual framework that offers an ap-
proach to understanding natural systems, such that inspiration can
be taken from them in a principled manner. The framework takes an
interdisciplinary approach, which begins by probing the biological
system to be used as inspiration, through observations and experi-
ments, as shown in Figure 2.8. This allows a partial view of the sys-
tem to be obtained, which is then used to build abstract mathematical
or computational models of the biology. Through the execution and
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FIGURE 1
An outline conceptual framework for a bio-inspired computational domain

these two fathers of computing are now more associated with the standard,
distinctly non-biological computational models.

Computation is rife with bio-inspired models (neural nets, evolutionary
algorithms, artificial immune systems, swarm algorithms, ant colony algo-
rithms, L-systems, . . . ). However, many of these models are naive with re-
spect to biology. Even though these models can work extremely well, their
naivety often blocks understanding, development, and analysis of the compu-
tations, as well as possible feedback into biology.

2 A CONCEPTUAL FRAMEWORK

The next steps in bio-inspired computation should be to develop more sophis-
ticated biological models as sources of computational inspiration, and to use
a conceptual framework to develop and analyse the computational metaphors
and algorithms.

We propose that bio-inspired algorithms are best developed and analysed
in the context of a multidisciplinary conceptual framework that provides for
sophisticated biological models and well-founded analytical principles.

Figure 1 illustrates a possible structure for such a conceptual framework.
Here probes (observations and experiments) are used to provide a (partial and
noisy) view of the complex biological system. From this limited view, we
build and validate simplifying abstract representations, models, of the biol-
ogy. From these biological models we build and validate analytical com-
putational frameworks. Validation may use mathematical analysis, bench-
mark problems, and engineering demonstrators. These frameworks provide

2

Figure 2.8: Conceptual framework that allows a principled approach to be
taken when designing bio-inspired algorithms. Taken from [37].

validation of these models, insight may be gained into the underly-
ing biological processes, which can then be used in the construction
of bio-inspired algorithms [38].

It is important to note that applying the conceptual framework pro-
posed by Stepney et al. [37] in a swarm robotics context does not
necessarily mean that the bio-inspired system produced would fall
into the category of Nature-inspired Minimalist Swarm Robotics pro-
posed by Sharkey [26]. It is entirely possible to be inspired by biology
without being constrained by it — the conceptual framework simply
ensures that the inspiration is sound, and is grounded in a proper
understanding of the underlying biological system.

This conceptual framework could be used to take inspiration from
natural systems that exhibit individual and/or collective immunity, in
a principled manner, to engineer fault tolerant swarm robotic systems.
For example, it may be possible to model social insect colonies and
extract general principles about their behaviour during a parasitic
infection, which could then be used as inspiration when developing
an artificial analogue of social immunity for robot swarms.

However, Trianni [39] argues that there may be cases where it is
not possible to take inspiration from natural systems. This is because
the physical embodiment of individuals, or the type of possible in-
teractions between them, may be so different from the target swarm
robotic system that the required individual behaviours cannot be im-
plemented in an artificial context [39]. For example, in social insect
colonies, odour likely plays an important role in the detection of par-
asitic infections [40], for which there is no direct artificial analogue.
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2.2.2 Artificial Immune Systems

“ ”

Artificial Immune Systems are computational techniques that attempt
to bridge the gap between immunology and engineering [38], defined
by de Castro and Timmis [32] as:

adaptive systems, inspired by theoretical immunology and ob-
served immune functions, principles and models, which are ap-
plied to problem solving.

In the past few years, AIS have found applications in various areas, in-
cluding pattern recognition [41], optimisation [42], computer security
[43], and intrusion detection [44]. A recent survey by Bayar et al. [45]
also shows that AIS have been used extensively for fault diagnosis,
detection, and recovery in the context of manufacturing systems.

Timmis et al. [46] suggest that AIS could be applied to solving prob-
lems associated with long-term autonomy in robot swarms, using the
SYMBRION/REPLICATOR projects [47] as a case study. In particular,
the grand challenge proposed by Kernbach et al. [48], in which a col-
lective of 100 robots, would be left unattended in a room containing
various power sources, for 100 days, with the aim of surviving for as
long as possible. Specifically, Timmis et al. [46] argue that AIS tech-
niques could be used to detect faults in individual robots, and even
predict errors before they occur, in order to improve swarm longevity.

Indeed, as part of the SYMBRION project, Mokhtar et al. [49] take
an AIS approach to the endogenous detection of faulty sensors, using
a modified version of the Dendritic Cell Algorithm [50], and show
that it is able to provide on-line error detection in robotic systems.

Ismail et al. [51] have also developed a collective behaviour inspired
by granuloma formation in the innate immune system, which affords
a swarm robotic system the ability to contain and repair partially
failed robots. This algorithm is reviewed in detail in the following
sections, as it provides a direct solution to the anchoring problem
highlighted by Winfield and Nembrini [6] and Bjerknes [7].

Granuloma formation

Granulomas are structures that form in response to the pathogenic in-
fection of individual cells, particularly infections by tuberculosis and
Leishmaniasis. Immune cells called T-cells attempt to contain the in-
fected cell, and prevent the pathogen spreading and infecting other
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Figure 2.9: Illustration of granuloma formation initiated by the innate im-
mune system in response to a tuberculosis infection. Taken from [53].

cells [52]. There are three types of cells primarily involved in granu-
loma formation: macrophages, T-cells and cytokines. Ismail et al. [51]
describe the three main stages of granuloma formation as:

1. T-cells are primed by antigen presenting cells.

2. Cytokines and chemokines are released by macrophages, acti-
vated T-cells and dendritic cells. The released cytokines and
chemokines attract and retain specific cell populations.

3. The stable and dynamic accumulation of cells and the formation
of the organised structure of the granuloma.

“

”As shown in Figure 2.9, macrophages engulf the pathogen and ‘eat’
it in a process referred to as phagocytosis, in an attempt to prevent the
spread of the disease. However, the macrophage may become infected
by the pathogen, and it will duplicate within the cell. This in turn
leads to cell lysis — where the structure of the cell breaks down —
allowing the pathogen to spread to other cells.

When a macrophage becomes infected, it will release a signal that
attracts other macrophages and T-cells to the site of infection. These
form a wall around the infected macrophages, encasing them and
isolating them from uninfected cells, leading to the formation of the
granuloma. The cells inside the granuloma will eventually die, re-
sulting in the removal of the pathogenic material. The isolation of
infected cells in this way allows the robustness of the immune system
to be maintained [51].
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Immuno-engineering

“
”

Ismail et al. [51] argue that there exists a natural analogy between the
early stages of granuloma formation, for the removal of pathogenic
material, and the potential repair of failed robots in a swarm. This
is explored in the context of immuno-engineering, a new discipline de-
fined by Timmis et al. [54] as:

the abstraction of immuno-ecological and immuno-informatics
principles, and their adaptation and application to engineered
artefacts (comprising hardware and software), so as to provide
these artefacts with properties analogous to those provided to
organisms by their natural immune systems.

This offers a principled approach to understanding the problem do-
main and the immune processes under study, adopting the concep-
tual framework proposed by Stepney et al. [37] (discussed in Sec-
tion 2.2.1). Following this process, Ismail et al. [51] used Agent Based
Modelling to simulate the process of granuloma formation, so that
the core principles could be formalised and applied in an engineer-
ing context. The four principles that were extracted are:

1. Communication between agents in the system is indirect, con-
sisting of a number of signals to facilitate coordination of agents

2. Agents in the system react to defined failure modes in a self-
organising manner

3. Agents must be able to learn and adapt by changing their role
dynamically

4. Agents can initiate a self-healing process dependent on their
ability and location

Granuloma formation algorithm

“

”
Using these four principles, Ismail et al. [51] develop the granuloma
formation algorithm (illustrated in Figure 2.10) in an attempt to cre-
ate a ‘self-healing’ swarm robotic system. Under the assumption that
robots are able to proprioceptively detect faults in themselves, and
communicate their distress to other robots, Ismail et al. [51] focus
on collective self-repair mechanisms that address the anchoring issue
highlighted by Winfield and Nembrini [6] and Bjerknes [7].

Following on from the work of Bjerknes [7], Ismail et al. [51] simu-
late a swarm of robots performing phototaxis using the ω-algorithm
(described in Section 2.1.1), considering a specific type of failure in
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a robot’s power unit that causes a sudden loss of stored energy. The
amount of remaining energy is sufficient for communication, but in-
sufficient to power the robot’s motors, resulting in a loss of mobility.

This failure mode allows the anchoring issues due to motor fail-
ure observed by Bjerknes [7] to be reproduced, whilst also allowing
the robot to be ‘repaired’ by recharging its battery. In order for a
faulty robot to be repaired, non-faulty robots must dock with it at
predefined points around its body and donate energy from their own
batteries, until it has enough energy to resume normal operation.

Once a robot has detected that it has suffered a power failure, it
sends a distress signal to neighbouring robots. Those that receive this
distress signal will negotiate with the faulty robot, to decide which
of them should donate their energy. The amount of energy required
to repair a failed robot is predefined, and functional robots will only
donate energy if they have more than a minimum threshold level, so
it may be necessary to recruit multiple donors to share the burden.

The donors will then be attracted to the faulty robot, analogously
to the way T-cells are attracted to an infected macrophage emitting
cytokines during granuloma formation, and surround it to ‘isolate’
it from the rest of the swarm. After repairing the failed robot, the
donors resume phototaxis and continue towards the beacon.

Ismail et al. [51] show that this granuloma formation algorithm al-
lows the swarm to reach the beacon despite the simultaneous partial
failure of up to five robots. The algorithm provides the swarm with
an active ‘self-healing’ ability in addition to the inherent ‘self-repair’
property of the ω-algorithm demonstrated by Bjerknes [7]. As dis-
cussed in Section 2.1.1, leaving failed robots behind is not a scalable
strategy, and partially failed robots that adversely affect swarm be-
haviour must be dealt with explicitly. This immune-inspired recovery
mechanism facilitates the repair of partially failed robots, allowing
them to contribute to the emergent behaviour of phototaxis, therefore
improving the overall reliability of the swarm robotic system.

2.2.3 Summary

The granuloma formation algorithm developed by Ismail et al. [51]
represents a useful application of AIS to improving the fault tolerance
of robot swarms, and provides an effective solution to the anchoring
problem highlighted by Bjerknes [7]. Unfortunately, the generalisabil-
ity of the algorithm is limited as it deals with a very specific failure
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Figure 2.10: Illustration of a swarm robotic system executing the granuloma
formation algorithm to repair a faulty robot. Taken from [55].

mode, and is restricted to implementation on robotic platforms that
are able to share their stored energy with other robots in the swarm.

The algorithm could perhaps be used as part of an ‘artificial im-
mune repertoire’ that a robot swarm may call upon once a fault has
been detected. With an entire suite of self-repair mechanisms at their
disposal, robot swarms may be afforded artificial ‘immunity’ at the
collective level, by instantiating the appropriate ‘immune response’
depending upon the type of failure detected. The granuloma forma-
tion algorithm constitutes a suitable immune response to power fail-
ures, but some other recovery mechanism would be required for the
repair of sensor, or motor failures. Some of the general concepts from
the algorithm may still be applicable though, such as the recruitment
strategy, when recovering from other types of failure.

Before any fault recovery mechanisms can even be initiated, it is
first necessary to detect the presence of a fault and diagnose the
cause of the failure. In a first step towards developing some form
of distributed swarm immunity, this thesis proposes a solution to the
problem of exogenous fault detection in robot swarms — the output
of which would feed into diagnosis and recovery mechanisms.
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AIS have recently been applied to the problem of fault detection
in swarm robotic systems, taking both endogenous [56] and exoge-
nous [12] approaches (reviewed in detail in Section 2.3). However, the
research presented in this thesis does not take an immune-inspired
approach. Nevertheless, in principle, it could be combined with di-
agnosis/recovery mechanisms based on AIS techniques (such as the
granuloma formation algorithm) once a fault has been detected.

2.3 fault detection

Fault detection is the process of determining whether or not a fault
has occurred in a system. This is typically achieved by detecting de-
viations from normal behaviour, which are assumed to be due to the
presence of a fault [57]. Christensen [58] broadly categorises fault de-
tection in the context of collective robotic systems into endogenous and
exogenous approaches (discussed in Sections 2.3.1 and 2.3.2). Endoge-
nous fault detection refers to the ability of robots to proprioceptively
detect faults in themselves, whereas exogenous fault detection allows
robots to detect the presence of faults in each other.

Regardless of whether an endogenous or exogenous approach is
taken, some method of distinguishing between normal and abnormal
system behaviour is required in order to detect the presence of faults.
This can be achieved using anomaly detection techniques [59], which
detect observations of behaviour that do not conform to an expected
pattern. These techniques take three different forms that assume vary-
ing levels of prior knowledge:

1. Supervised: Examples of both normal and abnormal behaviour
are available

2. Semi-supervised: Examples of normal behaviour are available

3. Unsupervised: No examples of normal or abnormal behaviour
are available

Supervised approaches essentially solve a binary classification prob-
lem, whereas semi-supervised and unsupervised approaches perform
outlier detection [60].

While supervised approaches may initially seem attractive, the num-
ber of potential faults in robotic systems is very large [24], which
makes it difficult to obtain a comprehensive set of examples of abnor-
mal behaviour. This is exacerbated by compound effects of multiple
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simultaneous faults on a system’s behaviour, so accounting for ev-
ery possible permutation of failure scenarios is often infeasible. Semi-
supervised or unsupervised approaches are therefore more commonly
used, as they only require examples of normal system behaviour.

Examples of normal and/or abnormal system behaviour may be ob-
tained using either model-based (analytical) or data-driven (model-free)
methods [58]. In model-based approaches, a model of the system’s ex-
pected behaviour is constructed, which the system’s actual behaviour
during operation can then be compared against. If a significant dis-
crepancy between the expected and observed behaviour is detected,
this may indicate the presence of a fault.

In contrast, data-driven approaches do not require the explicit con-
struction of a model representing the system’s expected behaviour.
Instead, a system’s normal behaviour is learnt using data collected
during its operation, which can then be used to detect faults [58].

Whichever method is used, the misclassification of a system’s be-
haviour can be costly. For example, if a non-faulty robot is erroneously
classified as faulty this may result in the instigation of unnecessary
collective recovery mechanisms, thus wasting time and energy. Con-
versely, partially failed robots left undetected may have a detrimental
effect on swarm behaviour, as discussed in Section 2.1. Therefore, it
is important that any fault detection system is designed such that the
desired trade-off between these two cases can be tuned based on their
relative importance.

2.3.1 Endogenous fault detection approaches

Endogenous fault detection is often self-contained to an individual
robot, therefore many examples can be found for single-robot sys-
tems. A common approach is to use special-purpose hardware to
detect component faults, such as rotary encoders for determining
whether a robot’s wheels are turning in response to control signals.
However, as argued by Christensen [58], adding special-purpose fault
detection hardware increases the cost, weight, and complexity of a
robotic platform, which is undesirable.

This is especially problematic in the context of swarm robotic sys-
tems, as each individual robot must be cheap to manufacture, oth-
erwise the production of large swarms will be prohibitively expen-
sive. Furthermore, an increase in the size, weight, or power consump-
tion of each individual robot may limit the flexibility of the swarm.
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3.1 The Platform
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Figure 2.11: The s-bot robot platform. Taken from Christensen [58].

In addition, the fault detection hardware itself would be subject to
faults [58]. Instead of using additional hardware to aid the detection
of faults, there are a number of software-based approaches that can
be used, a couple of which are reviewed in detail in this section.

Automatic synthesis of fault detection modules

Christensen et al. [61] use Time-Delay Neural Networks (TDNNs) [62]
to automatically synthesise task-dependent fault detection modules
for s-bot robots [63] (shown in Figure 2.11). This robot platform has
been used in a significant body of swarm robotics research, so the
work in [61] provides an example of endogenous fault detection that
can be performed in real-time on swarm robotic hardware.

The fault detector is a separate software module that passively mon-
itors information that flows in and out of the robot controller, and de-
tects whether the robot is performing the pre-specified task correctly,
or if a fault is affecting its behaviour. The robot controller is treated
as a black box, and the TDDN learns to approximate the function
that maps current and past sensory inputs, and control signals to the
actuators, to a faulty or non-faulty classification.

The TDNN is trained using a supervised approach, based on data
collected from experimental runs while the robots are operating nor-
mally, and after faults have been injected. Sensor readings, control sig-
nals, and whether or not the robot is faulty, are recorded at each con-
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trol cycle. The sensor readings and control signals are used as input
to the TDNN, which outputs a continuous value in the interval (0, 1).
Output values above a certain threshold result in a faulty classifica-
tion, otherwise the robot is classified as non-faulty. Back-propagation
is used to train the TDNN such that it minimises the error between
the predicted and true classification of the robot.

Three different robot tasks are considered, to test the performance
of endogenous fault detection:

find perimeter : An s-bot must use its ground sensors to find the
perimeter of a dark patch on the arena floor, and then follow
this perimeter. A light source is placed in the centre of the floor
patch, which the robot can sense with its on-board light sensors,
providing the robot with a frame of reference.

follow the leader : One s-bot (the leader) performs a random
walk while another s-bot (the follower) follows at a short dis-
tance. If the follower falls behind, the leader will wait for it
to catch up. The s-bots perceive each other using their omni-
directional cameras, and their IR sensors are used for obstacle
avoidance. Faults are only injected into the follower.

connect to s-bot : One s-bot must connect to another s-bot that is
stationary, using its gripper. After making a successful connec-
tion, the connecting s-bot must wait 10 seconds before discon-
necting, reversing, and attempting to connect to the stationary
s-bot again. The connecting s-bot uses its camera to determine
the location of the other s-bot. Only the connecting s-bot is in-
jected with faults.

Faults are injected (via software) into the s-bot’s treels (combined
tracks and wheels). There is a 50% chance that both treels will be
affected, instead of just one of them. Two types of faults are consid-
ered: stuck-at-zero and stuck-at-constant, and have an equal probability
of being injected. A stuck-at-zero fault causes the motor driving an
affected treel to stop working. For stuck-at-constant faults, the motor
speed of an affected treel is set to a random value, and remains fixed
regardless of any control signals received. The TDNN learns to recog-
nise sensor readings and actuator control signals that correspond to
these kinds of faults, and will output a faulty classification if they are
detected at run-time.

Christensen et al. [61] show that their TDNN fault detector is able
to reliably detect the injected faults across all three tasks, with varying
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levels of latency (in the order of seconds) and false positives. However,
stuck-at-zero faults cannot be detected during the waiting phase of the
connect to s-bot task, because no signals are sent to the motors by the
control program, so there is no way to tell that the treels have stopped
working. In general, this approach is unable to detect faults that have
no effect on a robot’s behaviour.

Christensen et al. [64] extend this work to consider sensor faults in
the find perimeter task. Faults are either injected into the s-bot’s front
ground sensor, or two of the robot’s front light sensors. Christensen
et al. [64] demonstrate that TDNN fault detectors can be synthesised
to reliably detect these sensor failures. It is also shown that a single
TDNN fault detector can be trained to recognise faults in both the
sensors and actuators. In addition, Christensen et al. [64] trained a
single fault detector on three variations of the connect to s-bot task
— the original task, plus one where the s-bot being connected to is
moving, and another where three s-bots are already connected in a
line. It is shown that the TDNN is still able to reliably detect the
faults, and Christensen et al. [64] conclude that it is possible to train
fault detectors that are robust to variations in the task.

The main issue with this endogenous fault detection approach,
is that the TDNN learns to discriminate between faulty and non-
faulty information flow using supervised learning — both normal
and faulty behaviour of the s-bot robots must be recorded and used
to train the fault detector prior to deployment. The synthesised fault
detectors are therefore entirely task-dependent, and any new tasks
would have to be trained for offline. This precludes the possibility
of the robots adapting their behaviour online, as any behaviour not
learned during the training phase may be detected as a fault. Every
fault to be detected must also be known a priori, so that the TDNN
can be trained to recognise the faults at run-time. Given that the
TDNN is solving a binary classification problem rather than perform-
ing anomaly detection, any faults not trained for may be confused
with normal behaviour.

Another problem is that unexpected sensor readings and control
signals may be caused by other robots in the environment. For exam-
ple, in the follow the leader task, the follower s-bot may endogenously
misclassify itself as faulty if the leader s-bot develops a fault. Similarly,
encountering a third robot during this task, the occurrence of which
has not been trained for, may also result in erroneous endogenous
fault detection. Therefore, its seem that this approach may not work
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Figure 2.12: Screenshot of the foraging simulation, containing a swarm of 10

robots. Robots at the base are white, those searching for objects (represented
by squares) are light blue, those with an object in their grippers are green,
and the faulty robot is red. Taken from Lau [65].

well in a swarm context, as it would be infeasible to train for every
possible scenario that a robot may find itself in, especially if it is to be
deployed in an environment that is unknown ahead of time.

Adaptivity to dynamic environments

Most endogenous fault detection approaches only make use of the
data gathered from a single individual — the robot attempting to
detect the presence faults in itself. Lau [65] argues that this is an
under-utilisation of the data available in a swarm robotic system, and
that data from other robots within the local neighbourhood could be
used to make endogenous fault detection more efficient.

Using a foraging task as a case study (shown in Figure 2.12), Lau
et al. [56] define metrics that can be used to measure the performance
of a robot with respect to the task: objects collected, energy used,
and distance travelled. An individual robot could attempt to detect
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anomalies in its own performance based on these metrics, which may
indicate the presence of a fault. However, the spatial distribution of
the objects, and their availability, is influenced by the performance of
the other robots in the swarm. Therefore, differences in performance
due to faults in the individual, and those due to changes in the envi-
ronment must be distinguished [56]. For example, a robot may collect
fewer objects than usual either because it is faulty, or because the
other robots in the swarm have already collected most of the avail-
able objects in the local area.

Lau et al. [56] develop a data-driven approach that allows each
individual to cross-reference its performance against that of neigh-
bouring robots in the swarm, to determine whether it is operating
correctly. Under the assumption that the swarm is homogeneous, the
performance of any given robot should be similar to that of other
robots in the same local area of the environment. Therefore, if a robot
detects that its own performance is significantly different to that of
its neighbours, then it may have developed a fault.

To perform endogenous fault detection, an individual robot re-
ceives foraging performance data from its immediate neighbours, and
models the distribution of values using the Receptor Density Algo-
rithm (RDA) [66] — an anomaly detection algorithm inspired by the
T-cell signalling mechanism in the immune system. Based on the as-
sumption that the majority of neighbouring robots are non-faulty, the
robot will classify itself as faulty if its own performance does not fit
the distribution of ‘normal’ performance.

Lau et al. [56] considered three different types of motor failure, and
demonstrated that their approach allows partially failed robots to en-
dogenously detect the presence of faults in themselves. Lau et al. [67]
later extended this work to improve performance when faced with
multiple simultaneously faulty robots in the swarm, by only consid-
ering data from control cycles where performance data for at least
two neighbouring robots was available, thus increasing the probabil-
ity that the majority of neighbouring robots will be non-faulty. Per-
formance was also shown to improve with swarm size, as more non-
faulty robots are available for social comparison [67].

Despite the assumption that data from neighbouring robots will
represent non-faulty performance, this approach is essentially unsu-
pervised because no labelled examples of normal behaviour are avail-
able to the classifier. Although this allows the model of ‘normal’ be-
haviour to continuously adapt to dynamic environments, if the ma-
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jority of an individual’s neighbours are faulty, then it will misclassify
itself as non-faulty based on the similarity of foraging performance.

Problems with endogenous fault detection

“
”

It may seem as though the problems associated with partial failures
discussed in Section 2.1 could be solved by the incorporation of en-
dogenous fault detection mechanisms. If individual robots can pro-
prioceptively detect when they have developed a fault, they could
then alert neighbouring robots so that recovery mechanisms can be
initiated. However, in some cases, it may not even be possible for the
robot to identify failure in itself. Christensen [58] provides examples
of faults that cannot be detected by the robot in which they occur:

– a dead battery

– a short-circuit on the main board

– a bug that causes the on-board software to hang

Even if a robot is able to detect that it has developed a fault, it may
be unable to signal this to the rest of the swarm if there is a fault in
its communications hardware. Consequently, endogenous methods
alone are not sufficient to ensure that all faults are reliably detected.

2.3.2 Exogenous fault detection approaches

Christensen et al. [10] argues that the robustness of swarm robotic
systems can be improved through the use of exogenous fault detec-
tion, as it does not rely on potentially faulty robots being able to de-
tect faults in themselves and alerting nearby robots. Exogenous fault
detection in a swarm robotics context is particularly attractive, as it
leverages the swarm’s ability to perform many independent classi-
fications in parallel, which could then be combined to arrive at a
collective consensus about which robots are truly faulty.

In comparison to endogenous fault detection, exogenous fault de-
tection is a much harder engineering problem, because the fault itself
may not be outwardly observable — only its effect on a robot’s be-
haviour may be detectable. It may only be possible to detect fault in
a robot’s sensors once the robot has been observed to collide with an
obstacle, for instance. This is exacerbated by the fact for some faults
there may be a delay between the occurrence of the fault and observ-
able symptoms [61]. For example, a motor fault that causes a robot’s
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Fig. 2. The software architecture.

at 400 MHz and several sensors including an omni-directional camera and in-
frared proximity sensors. Each s-bot also has a number of actuators. These in-
clude differential treels (combined tracks and wheels) and 8 sets of RGB colored
LEDs distributed around the circumference of the s-bot body. Using the omni-
directional camera, one s-bot can see the colored LEDs on other s-bots up to
50 cm away depending on the light conditions.

We have chosen a simple follow the leader task in which two robots are placed
in a 180 cm by 180 cm walled arena. One of the robots has been preassigned the
leader role, while the other has been preassigned the follower role. The leader
moves around in the environment. The follower tails the leader and tries to stay
at a distance of 35 cm. If the follower falls behind, the leader waits. During
experiments, we inject faults in the follower robot.

4 Software Architecture

An overview of the software architectures is shown in Fig. 2. The Control Pro-
grams are responsible for steering the robots. They read sensory inputs and send
control signals to the robots’ actuators. The Fault Detectors passively monitor
the flow of sensory inputs and control signals that passes to and from the Control
Programs. Faults are simulated by the SWIFI Module in the follower. When the
follower ’s Control Program sends actuator control signals, these commands pass
through the SWIFI Module. If no fault is currently being simulated the SWIFI
Module forwards all actuator control signals to the robot hardware. If a fault has
been injected, control signals to the hardware affected by the fault are discarded.

Figure 2.13: Exogenous fault detection architecture for the follow the leader
task. The Software Implemented Fault Injection (SWIFI) module is used to
inject faults in the follower’s treels. Taken from Christensen et al. [9].

wheels to stop can only be detected if enough time has passed for an
absence of movement to be detected. Furthermore, the method of ob-
serving another robot’s behaviour is likely to be prone to sensor noise,
which can be difficult to distinguish from erroneous behaviour.

Another major problem is that a robot’s ‘normal’ behaviour is an
emergent product of its controller code and interactions with other
robots and the environment in which it is situated. Even if a robot
is programmed to perform a simple task such as obstacle avoidance,
its behaviour will be quite different in an empty arena compared to
one cluttered with obstacles. Similarly, a particular fault will have a
different effect on a robot’s behaviour depending on the context. This
makes it very difficult to provide examples of normal and abnormal
behaviour a priori, as the definition of each changes at run-time.

Despite these challenges, solving the problem of exogenous fault
detection in swarm robotic systems is a worthy pursuit, as it has
great potential to improve their fault tolerance and reliability. Sur-
prisingly, this it has not received much attention from swarm robotics
researchers, perhaps due to the difficulty of the problem. This section
reviews what little research exists on exogenous fault detection in a
swarm robotics context, which represents the current state-of-the-art.

Exogenous fault detection in a collective robotic task

Christensen et al. [9] build on their previous TDNN-based endoge-
nous fault detection approach [61, 64] (described in Section 2.3.1) and
extend it to automatically synthesise exogenous fault detection mod-
ules for the follow the leader task (shown in Figure 2.13). This approach
only considers collective robotic systems comprising two robots, how-
ever their work is still quite relevant as s-bot robots are used, which
are designed for use in swarm robotic systems.
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Figure 2.14: A swarm of 10 s-bot robots flashing their LEDs in synchrony,
using the firefly-inspired exogenous fault detection algorithm. Taken from
Christensen [58].

Again, stuck-at-zero and stuck-at-constant motor faults are consid-
ered, and are only injected into the follower. The leader s-bot uses a
TDNN for exogenous fault detection in the same way as the follower
uses one for endogenous fault detection, except that the sensor read-
ings and control signals of the leader are correlated with the fault
state of the follower. This allows the leader s-bot to recognise partic-
ular inputs and outputs to its controller program that correspond to
faults in the follower s-bot.

An attractive feature of this exogenous fault detection approach,
is that it does not require any explicit communication between the
leader and follower s-bots. This is especially important in the context
of exogenous fault detection, as relying on information from a poten-
tially faulty robot may affect the robustness of fault detection.

Although faults are detected successfully in the scenario consid-
ered, this approach suffers from the same problems due to super-
vised learning as the endogenous approach based on the same ar-
chitecture [61] (discussed in Section 2.3.1). Unfortunately, this means
that this method of exogenous fault detection a poor candidate for
use in swarm robotic systems.

From fireflies to fault-tolerant swarms of robots

As discussed in Section 2.2, Winfield and Nembrini [6] envisage the
ability of robots to identify failures in neighbouring robots, so that
they may be ‘isolated’ from the rest of the swarm. In a step towards
the realisation of this vision, Christensen et al. [10] have developed
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a method of exogenous fault detection for swarm robotic systems,
taking inspiration from the synchronised flashing behaviour seen in
some species of fireflies.

Each s-bot flashes its on-board LEDs periodically, which can be
sensed by other s-bots with their own on-board omnidirectional cam-
eras. Christensen et al. [10] show that a group of s-bots is able to syn-
chronise themselves through only local interactions, such that they
flash their LEDs in unison, as shown in Figure 2.14. Once synchroni-
sation has been achieved, the absence of flashes allows faults in other
s-bots to be detected, as failed robots will cease to flash. These peri-
odic flashes function as a ‘heart-beat’ mechanism [10], removing the
need for a failed s-bot to explicitly signal to others in the swarm that
it requires assistance.

When non-faulty s-bots detect failure in another robot, they move
over to it and physically attach themselves via their gripper, simu-
lating ‘repair’. After 15 seconds the faulty robot detects that it has
been ‘repaired’, and resumes normal operation. Christensen et al. [10]
show that this approach is robust to multiple faults, and that a self-
repairing swarm of robots is able to survive a relatively high failure
rate. Bjerknes [7] likens this to an immune response, which affords a
level of fault tolerance above that of simple redundancy.

However, Christensen et al. [10] only consider the case of com-
pletely failed robots, the effect of which on collective behaviour has
been shown to be relatively benign by Winfield and Nembrini [6] and
Bjerknes [7]. The occurrence of partial failures, such as motor failure
during collective locomotion, is of far greater concern. For instance, if
this fault detection mechanism were to be implemented on a swarm
of robots performing phototaxis using the ω-algorithm, the anchoring
issues would still manifest. A motor failure will not affect the robot’s
ability to synchronise the flashing of its on-board LEDs with other
robot, thus preventing the fault from being detected exogenously.

Although Christensen et al. [10] demonstrate their approach to be
successful, its usefulness is somewhat limited by the fact that it is un-
able to detect the partial failure of individuals. There is clearly scope
here to develop a more robust method of exogenous fault detection,
which would allow individuals to detect when other robots in the
swarm are deviating from their expected behaviour, rather than only
when complete failure occurs.
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Model-based exogenous fault detection

Khadidos et al. [11] take a model-based approach to exogenous fault
detection in swarm robotic systems, which allows faults in a robot’s
controller to be detected. Given a copy of the robot controller, along
with a particular set of input values (sensor readings), the expected
outputs (motor speeds) can be determined. Each robot in the swarm
broadcasts its sensor readings and motor speeds to neighbouring
robots. Receiving robots can then use a copy of the robot controller
to check whether the reported motor speeds are consistent with the
corresponding sensory input. If there is a significant discrepancy be-
tween the expected and reported output, then it may be inferred that
a fault has occurred in the sending robot’s controller.

This model-based approach is shown to be able to detect a sin-
gle type of fault — noise added to a robot’s navigation system. This
causes the robot controller to produce unexpected motor outputs,
given a particular sensory input. The main disadvantage of this ap-
proach, is that it only allows the internal workings of the robot con-
troller to be validated. In the event of sensor failure, the faulty robot’s
controller would still produce the expected outputs given the reported
sensory inputs, so the fault would not be detected.

Immune-inspired abnormality detection

Tarapore et al. [12] propose an exogenous fault detection approach
based on a model of the adaptive immune system, which represents
the current state-of-the-art in the literature. The adaptive immune
system must be able to discriminate between self and non-self, so
that the body’s own cells and tissues are tolerated and allowed to
function normally, whilst also detecting and attacking abnormal cells.
This tolerance is achieved without any hard-coded notion of what
constitutes normal cells — instead it is believed to be the result of the
dynamics of regulatory and effector T-cell populations [12].

Their exogenous fault detection system is based on a simplified
version of the crossregulation model (CRM) developed by Leon et al.
[68]. This leverages the immune system’s ability to tolerate self cells,
which are abundant, and attack pathogens, which are not abundant
[69]. The CRM works by modelling the population dynamics and
interactions of cells present in the adaptive immune system (antigen
presenting cells, effector cells, and regulatory cells), to capture the
principles of immune tolerance.
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Each robot in the swarm executes its own internal instance of the
CRM to determine whether or not the observed behaviour of nearby
robots should be tolerated. Distinct robot behaviours are encoded
as antigens within the CRM, which the T-cell population is able to
discriminate between based on their abundance [12]. This allows ab-
normal behaviours (those exhibited by the minority of neighbouring
robots) to be detected, whilst tolerating normal robot behaviours.

Tarapore et al. [12] test their fault detection system on four different
case study swarm behaviours: aggregation, dispersion, flocking, and
homing. This is performed in a custom simulation with a toroidal
environment, which allows robots to continue to interact with each
other, even if the swarm becomes disaggregated. The following fault-
simulating behaviours are tested:

1. Move in a straight line

2. Random walk

3. Circle around a fixed point

4. Stop completely

These behaviours are designed to mimic bugs in the robot controller
code, as well as sensor, motor, and battery faults.

Each neighbouring robot is observed over a sliding time window
of 45 seconds, and its behaviour is encoded as a set of boolean values
that are concatenated to form a binary feature vector. Six features are
defined that capture three different aspects of a robot’s behaviour:
(i) the robot’s proximity to other robots, (ii) the robot’s actions, and
(iii) the robot’s behavioural response to neighbouring robots:

1. Has there been at least one neighbour in the range [0, 30 cm],
for the majority of the past time window?

2. Has there been at least one neighbour in the range [30, 60 cm],
for the majority of the past time window?

3. Have they exceeded 5% of the maximum distance they can
travel in a time window?

4. Have they exceeded 5% of their maximum speed in the past
time window?

5. Has their angular acceleration exceeded 3% of its maximum,
while there has been at least one neighbour in the range [0, 60 cm],
at least once in the past time window?

6. Has their angular acceleration exceeded 3% of its maximum,
while there have been no neighbours in the range [0, 60 cm], at
least once in the past time window?
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An observing robot calculates how many of its ten nearest neigh-
bours are assigned to each feature vector, and generates a propor-
tional number of antigen presenting cells for each within its internal
CRM instance. The cell dynamics of the CRM are configured such
that the observer will tolerate a particular behaviour if it is observed
in more than one neighbouring robot. A particular robot’s behaviour
will also be tolerated if it differs by less then 1/3 of its features from
any behaviours being expressed by two or more neighbouring robots,
allowing for a degree of fuzzy matching. In any other case, the ob-
served robot’s behaviour will be classified as faulty.

This unsupervised data-driven approach allows the characterisa-
tion of normal robot behaviour to change online, based on the be-
haviour of nearby robots, and is therefore task-independent. No prior
knowledge of possible failure modes is required — rather, abnormal
behaviour (that which is different from the majority of nearby robots)
is detected, under the assumption that deviations from normal be-
haviour is due to the presence of a fault.

Tarapore et al. [12] show that their exogenous fault detection ap-
proach exhibits high tolerance to robots behaving normally, and is
able to reliably detect the fault-simulating behaviours, provided that
they do not appear too similar (in terms of feature vector compari-
son) to the normal swarm behaviour (as illustrated in Figure 2.15).
Furthermore, due to the fluid definition of normal behaviour, non-
faulty robots will still be tolerated if the entire swarm switches to a
different behaviour (for example, from aggregation to flocking). Tara-
pore et al. [12] also demonstrate that their approach is scalable, and
performs well with swarms of up to 100 simulated robots.

Tarapore et al. [69] later extended their approach to work with
swarms of robots exhibiting heterogeneous behaviours, which would
previously have been detected as abnormal. In this extended approach,
if an abnormal behaviour has been classified as normal in the past, or
has not been encountered before, then it will only be classified as sus-
picious. When the level of suspicion exceeds some threshold, the be-
haviour will be classified as abnormal. Tarapore et al. [69] show that
this incorporation of memory into the system allows heterogeneous
behaviours to be tolerated, at the expense of detection latency.

The main weakness of this immune-inspired approach to exoge-
nous fault detection is that, like the work of Lau et al. [56], ‘nor-
mal’ behaviour is defined by the majority behaviour of neighbouring
robots. Therefore, if the number of faulty robots in the local neigh-
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Table 2: Boolean features encoding robot behaviour (param-
eters in Table 3).
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*The Boolean feature is set if the condition is satisfied, else 0. Function U [x] is
1 if x > 0, and 0 otherwise.

ual robot’s internal CRM instance, APCs are then generated
corresponding to each of the feature vectors perceived. Each
APC presents an individual feature vector to the T-cells. The
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(linear distribution weighted on total T-cell density in the
CRM instance) another robot, from one of its 10 nearest
neighbours. Following the selection, each robot sends and
receives d of its effector and regulatory cells. Finally, the
robot decides the nature of each feature vector FV

j
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by first computing the following quantities:
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i
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and tolerating the feature vector if R > E. By contrast, if
E > R, the feature vector is classified as faulty by the robot.

Figure 1: Example of a robot (left) unable to join an ag-
gregate (right) due to faulty sensors. This robot is detected
as behaving abnormally (coloured red) by its neighbours,
whereas the rest of the swarm is behaving normally and tol-
erated (coloured green).

The CRM deployed in the MRS is passive and does not al-
ter the behaviour of the robots. Rather, the individual robots
merely report the outcome of the classification for the differ-
ent behaviors observed in their vicinity, at each simulation
time step. At the end of each time step, a robot’s behaviour
is considered normal, if a simple majority of the robot’s 10
nearest neighbours tolerate it. Similarly, the behaviour is
treated abnormal, if a simple majority of these neighbours
interpret it as faulty.

Extending fault-detection to heterogeneously

behaving robots

The CRM-based abnormality detection system classifies be-
haviours solely based on their abundance in the MRS. Be-
haviours exhibited by many, or the majority of the robots of
the MRS are considered as normal. By contrast, rare be-
haviours exhibited by one of few robots are considered as
abnormal, and assumed to be resulting from a fault on the
robot. While such an approach is capable of robustly tol-
erating normal behaviours, and reliably detecting faults in
homogeneously behaving robots, it is not designed to de-
tect faults in robots executing complex (or composite) be-
haviours, or in which behaviour transitions propagate grad-
ually across the MRS. In such scenarios, normal behaviour
exhibited by a minority of robots of the MRS trigger false
positive incidents.

In order to extend our CRM-based model to scenarios in
which robots independently perform different behaviours at
different times, behaviour classification must be based on
observations made over a period of time. In accounting for
past observations, we may ask if a behaviour detected as
abnormal in the current time step, has always been abnor-
mal? Considering the behaviour was also abnormal in the
previous contexts that it was observed (context is the be-
haviours of the rest of the MRS), than it may indeed be ab-
normal. However, if the behaviour was treated as normal
in the past, or if a new behaviour has just emerged in the

Danesh Tarapore, Anders Lyhne Christensen, Jon Timmis (2015) Abnormality Detection in Robots Exhibiting Composite
Swarm Behaviours. Proceedings of the European Conference on Artificial Life 2015, pp. 406-413

Figure 2.15: Illustration of immune-inspired abnormality detection. The
green robots on the right are behaving in a similar manner, so they are
tolerated, whereas the faulty red robot on the left is detected as abnormal,
due to its inconsistent behaviour. Taken from Tarapore et al. [69].

bourhood outweighs the number of non-faulty robots, the model of
normal behaviour will become distorted, resulting in misclassifica-
tions. Unfortunately, this means that the approach will not cope well
when the swarm contains a large proportion of faulty robots.

Another problem is that certain failure modes cannot be detected if
the faulty robot’s behaviour is similar to that of the rest of the swarm.
Taking the circle fault-simulating behaviour as an example: the fea-
ture vectors essentially encode “is the robot close to other robots?”, “is
the robot moving?”, and “is the robot turning in response to neighbouring
robots?”. If the circling robot is surrounded by other robots perform-
ing aggregation, then these features are insufficient to distinguish be-
tween faulty and non-faulty robot behaviour, so the fault will remain
undetected. This is problematic, as partially failed robots can have a
detrimental effect on swarm behaviour (see Section 2.1).

Despite these limitations, the immune-inspired approach presented
by Tarapore et al. [12], and its extension to cope with heterogeneous
behaviours [69], seems to be a promising data-driven method of ex-
ogenous fault detection, and should enhance the fault tolerance and
reliability of the swarm robotic system when combined with fault
diagnosis and recovery mechanisms.
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2.3.3 Summary

This section has reviewed the latest advances in both endogenous
and exogenous fault detection, in the context of swarm robotic sys-
tems. These studies represent the first step in an explicit process of
fault detection, diagnosis, and recovery, which can be used improve
the fault tolerance of individual robots as well as the entire swarm.
Although endogenous approaches are useful and can increase over-
all swarm reliability, they cannot be solely relied upon to guarantee
fault tolerance. Instead, exogenous fault detection methods must also
be used to ensure long-term autonomy of swarm robotic systems.

2.4 summary

This chapter has reviewed the fault tolerance and reliability of swarm
robotic systems, and highlighted the problems that can be caused by
partially failed robots, motivating the need for an explicit approach
to fault tolerance. Potential solutions to this problem were then re-
viewed in the context of natural/artificial immunity, with a focus on
immune-inspired fault recovery mechanisms. Finally, both endoge-
nous and exogenous fault detection approaches were examined, in
the context of swarm robotic systems.

The swarm robotic exogenous fault detection methods reviewed in
this chapter represent the extent of existing literature on the subject,
of which there is very little. Clearly, there is scope for the develop-
ment of other approaches, particularly those which may be able to
cope with a large proportion of partially failed robots, as this feature
is lacking in existing work. Without a robust and generalisable solu-
tion to the problem of exogenous fault detection, research into fault
diagnosis and recovery mechanisms is unlikely to progress beyond
task/environment/platform-specific solutions.
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As discussed in Section 2.3.2, a robot’s ‘normal’ behaviour is an emer-
gent product of its controller code, and interactions with other robots
and the environment in which it is situated. This makes it difficult to
provide examples of normal and abnormal behaviour a priori, as the
definition of each changes depending on the context.

These issues make unsupervised data-driven approaches to fault
detection more attractive, as they do not require examples of nor-
mal or abnormal behaviour to be encoded into the system before de-
ployment. The fault detection systems proposed by Lau et al. [56]
and Tarapore et al. [12] overcome the problem of context-sensitive
behaviour by using neighbouring robots as a model of normal be-
haviour. However, this assumes that the majority of neighbouring
robots will be non-faulty, which may not always be the case.

The exogenous fault detection approach proposed in this thesis
aims to overcome the problem of context-sensitive behaviour with-
out relying on the assumption that most neighbouring robots will be
non-faulty. This is achieved by providing each robot with an internal
model that can generate examples of normal behaviour at run-time,
based on the current context. The true behaviour of neighbouring
robots can be compared against these examples of normal behaviour,
to perform fault detection in a semi-supervised manner.

This chapter provides an overview of the proposed fault detection
system at an abstract level, and reviews related work concerning the
use of internal models. The experimental infrastructure required to
implement this approach is also summarised, part of which is covered
in greater detail in Appendix A. The remaining chapter in this part of
the thesis (Chapter 4) presents the results of initial experimental work
with a single robot, as an intermediate step towards implementing the
proposed exogenous fault detection system in a swarm context.

3.1 exogenous fault detection system

It is proposed that each robot is provided with an embedded sim-
ulator, which can be used to make predictions about the behaviour
of other robots based on a model of their expected behaviour. It is
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assumed each robot possesses a copy of neighbouring robots’ con-
troller code, which they can instantiate within their own internal sim-
ulation. The model of expected behaviour therefore comprises a copy
of another robot’s controller, and a simulator that is able to run the
controller code in a simulated environment. Given that individuals
are able to internally simulate the behaviour of other robots in the
swarm, this can be used to compare expected behaviours against ob-
served behaviours.

The motivation for using an internal simulation to predict robot
behaviour is that the controller code provides an executable model
of the robot’s expected behaviour. If the real world scenario can be
reproduced in simulation, then assuming that the simulation is able
to mimic the real world controller’s sensory inputs and actuator out-
puts, the simulated robot should behave like the real robot, thus al-
lowing its behaviour to be predicted. This means that the proposed
method would be independent of robot controller architecture, and
could therefore even be used in heterogeneous swarms. However, the
simplifying assumption is made initially that the swarm is homoge-
neous, so each robot has an identical controller. It is also assumed
that the controllers will be static, in the sense that the robots do not
learn new behaviours online.

An observing robot would initialise its internal simulation such
that the relative positions and orientations of the other robots in re-
ality are reproduced within the simulation. The simulation can then
be executed for a short period of time, and the final position of each
robot recorded. Real robot sensors and actuators are afflicted with
noise, which should be modelled in the internal simulation. There-
fore, the behaviour of each simulated robot will be stochastic. This
means that from any particular initialisation, the predicted endpoint
of a robot will differ between repeat runs of the simulation. The inter-
nal simulation must therefore be executed multiple times, to sample
from the underlying probability distribution of possible endpoints.
These endpoint distributions may then be compared against actual
observed positions of the robots in reality. If there is a significant
discrepancy between the predicted and observed behaviour for a par-
ticular robot, then this may indicate that it has developed a fault. An
example scenario is illustrated in Figure 3.1.
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Figure 3.1: Illustration to show the discrepancy between observed and ex-
pected behaviours. Top: Situation in reality. Robot A has a fault in its right
wheel motor, causing it to veer to the right. Bottom: Observer’s internal sim-
ulation of its neighbours. The crosses denote the predicted endpoints of the
robots. The predicted regions of non-faulty endpoints are shown in grey.
Robots B and C are non-faulty, so behave as expected and will be classified
as non-faulty. There is a significant discrepancy between the expected and
observed behaviour of robot A, so it will be classified as faulty.
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A major benefit of this approach is that it preserves context. If a
robot’s programming and the context of its embodiment are known,
then it is possible to determine whether its behaviour is to be ex-
pected given the current scenario. By contrast, data-driven approaches
reduce a robot’s behaviour to summary statistics, causing this context
to be lost, along with valuable information that can be utilised to per-
form fault detection.

This method of exogenous fault detection should also be robust, as
each robot will independently monitor the behaviour of every other
robot within its own range of perception, and will draw their own
conclusions about which robots might be faulty. It is therefore com-
pletely distributed, allowing it to scale with increasing swarm size.

3.2 robots with internal models

Related work that concerns the use of simulation-based internal mod-
els (as opposed to abstract mathematical models) for predicting robot
behaviour exists in contexts other than fault detection. These stud-
ies are briefly reviewed here, as they are particularly relevant to the
research presented in this part of the thesis.

3.2.1 Embodied evolution

O’Dowd et al. [71, 72, 73] use an embedded simulator to develop an
online, on-board, distributed evolutionary algorithm for a swarm of
robots, which allows the robots to adapt their behaviour in an open-
ended manner. Each robot instantiates multiple model robots execut-
ing the same evolved controller within its internal simulator. It then
monitors the simulated robots interacting with each other and their
environment, so that the fitness of the evolved behaviour can be eval-
uated. The internal simulator executes faster than real-time, which
allows several generations of evolution to occur before the fittest so-
lution is selected to replace the real robot’s current controller. This
accelerates the speed of evolution, as each candidate solution does
not need to be executed on a real robot to assess its fitness.

Although their use of an internal simulator is atypical of swarm
robotics research, O’Dowd et al. [71] argue that their approach is jus-
tified because the cognitive ability of individual robots in a swarm
need not be constrained, and that their solution is still scalable due to
the use of local communication and decentralised control. Their work
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Figure 3.2: Visualisation for the minimal e-puck simulator developed by
O’Dowd [70]. Four simulated e-puck robots are shown, along with their past
trajectories and IR sensor ranges. The black circles represent fixed obstacles
that the robots can detect with their simulated IR sensors, in addition to the
circular arena wall. Taken from [70].

can therefore be categorised as a Scalable Swarm Robotics approach,
according to Sharkey’s taxonomy [26].

O’Dowd et al. [71] demonstrate the use of the embedded simula-
tor on real e-puck robots, each augmented with a Linux extension
board [74] that improves processing and memory resources. The sim-
ulator was written in C and is deliberately minimal, because it was
designed to run on the Linux extension board as fast as possible. Ev-
ery object in the simulator is represented as a point on a 2D plane
with a fixed radius, and the e-puck movement is simulated using
simple two-wheel differential kinematics. The robots’ IR sensors are
modelled as range-limited cones, and distances are converted to sen-
sor readings using a look-up table of raw sensor data collected from a
real robot, with uniform noise added at run-time. Efficient simulation
is made possible by assuming that physical properties such as mass,
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Fig. 1. Internal-model based architecture. Robot control data flows are shown in red
(darker shaded); the Internal Model data flows in blue (lighter shaded).

3.1 Towards an Ethical Robot

Consider the scenario illustrated in Fig. 2. Here there are two actors: our self-
aware robot and a human. The environment also contains a hole in the ground,
of sufficient size and depth that it poses a serious hazard to both the robot
and the human. For simplicity let us assume the robot has four possible next
actions, each of which is simulated. Let us output all safety outcomes, and in the
AE assign to these a numerical value which represents the estimated degree of
danger. Thus 0 indicates ‘safe’ and (say) 10 ‘fatal’. An intermediate value, say 4,
might be given for a low-speed collision: unsafe but probably low-risk, whereas
‘likely to fall into a hole’ would merit the highest danger rating of 10. Secondly,

Fig. 2. A scenario with both safety and ethical consequences

Figure 3.3: Consequence Engine architecture. Internal model data flow is
shown in blue. Robot control data flow is shown in red. Taken from [75].

inertia, and momentum need not be modelled, as the e-puck robots
have high motor torque relative to their weight, so are able to stop al-
most immediately. This allows for fine-grained simulation, with each
simulation step representing 40 ms of real-time, which corresponds
to 25 discrete iterations for every simulated second. A visualisation
of the embedded simulator is shown in Figure 3.2.

Although O’Dowd et al. [71] do not use the internal simulator to
predict the future behaviour of individual robots from specific start-
ing positions and orientations, there is no reason why it could not be
used for this purpose. When used in an evolutionary swarm robotics
context, a high level of noise is added to the simulation to prevent
the evolutionary process from exploiting modelling inaccuracies [71].
However, if precise prediction of future behaviour is required, this
noise can be omitted to improve simulation accuracy.

3.2.2 Consequence Engine

Recently, Winfield [76] proposed an architecture based on internal
models, dubbed the Consequence Engine (shown in Figure 3.3), which
allows a robot to predict the consequences of its own actions. The
robot may then make an informed decision about which future ac-
tion to take, based on whether each action is considered safe and/or
ethical. The internal model is a simulator that comprises a model of
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(a) Trial 1 (b) Trial 2

Fig. 4. Superimposed trajectories of robots for trials 1 and 2. Robot A is shown in red,
with start position on the left and goal on the upper right; robot H is shown in blue
with start position in the lower centre of the arena. Note in trial 2 the near collisions
between A and H cause H to be deflected away from the hole.

The run starts with robot A following the same trajectory as in the first trial,
but as soon as its CE for robot H shows that H would fall into the hole if not
intercepted, A diverts from its normal trajectory to intercept and thus ‘rescues’
robot H. A then continues back onto its original trajectory and reaches its goal.

Fig. 4(b) shows trajectories for a number of experiments. In all cases robot
A succeeds in rescuing robot H by intercepting and hence diverting H. The
beginning and end of A’s trajectories are exactly the same as in the first trial.

5.3 Trial 3: Robots A’s Dilemma

Here a third robot H2 is introduced, presenting robot A with the dilemma of
having to decide which of H and H2 to rescue. Both H and H2 start pointing
towards, and equidistant from, the virtual hole (see Fig. 6(a)), while the initial
and goal positions for robot A remain unchanged.

Fig. 6 shows successive snapshots for one experimental run. Robot A is unable
to resolve its dilemma in this particular run since its CE does not favour either
H or H2, which results in A trying to rescue both at the same time and failing
to rescue either.

Trajectories over a series of 33 runs are shown in Fig. 7(a). The number
of robots A actually rescued are shown in Fig. 7(b). Surprisingly and perhaps
counter-intuitively, A is able to rescue at least one robot in about 58% of runs,
and both robots in 9%. The reason for this is noise. The robots don’t start at
exactly the same position every time, nor do they start at precisely the same
time in every run. Thus, sometimes A’s CE for one robot indicates danger first

Figure 3.4: Results of robot ethics experiment conducted by Winfield et al.
[75]. Robot A starts on the left of the arena and moves towards its goal in
the upper right. Robot H starts towards the bottom of the arena, and moves
towards the virtual hole. Robot A intercepts robot H, so that it performs
obstacle avoidance and its trajectory is deflected to safety. Taken from [75].

the world, and a model of the robot situated within it. The world
model represents the robot’s real-world environment, which may in-
clude static objects (environmental obstacles) as well as dynamic ob-
jects, such as other agents. The robot model represents the real robot’s
morphology, sensors, and actuators. Its behaviour within the simu-
lated world is dictated by a copy of the real robot’s controller code.

This Consequence Engine’s internal model is initialised using the
real robot’s sensory data such that the simulated world, and the lo-
cation and state of the robot model within it, is consistent with the
current real-world scenario. The internal model is then executed to
predict the consequence of a given action, for some time period into
the future. The outcome is recorded, then the internal model is reset
to the same initial state, so that it can be executed again to predict the
consequence of another possible action. By predicting the outcome
of various possible actions, the Consequence Engine is able to deter-
mine the set of actions that is considered safe and/or ethical. This
architecture continuously operates alongside the real robot controller,
acting as an advisor that suggests which actions to take next. The
result is a robot with some degree of self-awareness, that can make
better decisions by ‘imagining’ their outcome.
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Figure 3.5: Two e-puck robots fitted with yellow 3D-printed hats that pro-
vide a matrix of pins for reflective markers, which are used by a Vicon
tracking system to uniquely identify the robots. Each robot has a Linux ex-
tension board connected to the motherboard, and a USB Wi-Fi adapter that
slots underneath the 3D-printed hat. Taken from [77].

Ethical robots

Winfield et al. [75] use the Consequence Engine architecture to demon-
strate ‘ethical’ behaviour of real robots, in the toy example scenario
shown in Figure 3.4. Robots A and H are placed in an arena with a vir-
tual hole in the ground, which can only be sensed by robot A. Robot
H does not have a Consequence Engine, and simply executes an ob-
stacle avoidance controller, so will ‘fall’ into the virtual hole if left to
its own devices. Robot A internally models the real world, containing
itself and robot H. Using the Consequence Engine, robot A is able to
predict the future trajectory of robot H, and determines that it will fall
into the hole unless action is taken to intercept its trajectory. Robot A
therefore changes its planned course of action, such that robot H is
forced to avoid it and move to safety. It is important to note that robot
A has a priori knowledge of robot H’s controller code (in addition to
its own). This is necessary to predict the behaviour of robot H in the
internal model. The robot controllers are also stateless, which makes
initialisation of the internal model much easier, as only the position
and orientation of each robot must be known.

The infrastructure required to implement this simple experiment
is quite extensive, as the physical e-puck robots used by Winfield
et al. [75] (shown in Figure 3.5) have neither the sensing capability
nor the computational resources required to implement an embedded
Consequence Engine architecture. Object localisation and tracking is



3.2 robots with internal models 79

Figure 3.6: Vicon tracking system at the Bristol Robotics Laboratory, used by
Winfield et al. [75] to implement their experimental work. Taken from [77].

achieved via a Vicon1 tracking system (shown in Figure 3.6) and a
network infrastructure. This virtual sensing capability is mainly used
for the initialisation of the internal model — the robots’ on-board IR
sensors are still used for short-range obstacle avoidance. The internal
model is implemented using the Stage [78] robot simulator, which
runs on a separate server in a service-oriented architecture, accepting
requests from robots over a network connection. The e-puck robots
are able to communicate with these networked components via the
use of a Linux extension board and a USB Wi-Fi adapter. Conceptu-
ally, the Consequence Engine runs on-board one of the robots, despite
the use of remote processing and virtual sensing.

The Consequence Engine architecture is only useful in practice if a
robot is able to predict the consequences of its actions in real-time, so
that it has time to act accordingly. The experimental framework de-
veloped by Winfield et al. [75] allows the Consequence Engine to up-
date at a speed of 2 Hz, providing 0.5 seconds of real-time to predict
and analyse the consequence of future actions before its next invoca-
tion. The Stage simulator can simulate the simple example scenario
shown in Figure 3.4 600 times faster than real-time, allowing a budget
of 300 seconds to perform the necessary predictions. Winfield et al.
[75] chose to predict the next 10 seconds of future behaviour, thus

1 http://www.vicon.com

http://www.vicon.com
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allowing around 30 possible actions to be simulated before the Con-
sequence Engine next updates. The e-puck robots move at 10 cm/s,
so this corresponds to 1 metre of distance travelled for each action.

Safer robots

Blum [77] presents another experiment with the Consequence Engine
that focuses on safety, rather than ethics. A single ‘intelligent’ robot
(that implements the Consequence Engine architecture) must navi-
gate from one end of arena to the other, whilst avoiding five other
robots performing simple obstacle avoidance. The intelligent robot
achieves this by predicting the trajectories of the other robots, to de-
termine whether they will come within some unsafe radius around
its location, and takes action to prevent this from occurring in reality.
Figure 3.7 shows an example experimental run, which demonstrates
that the intelligent robot is able to safely reach its goal without risking
collisions with the other robots.

In the ethical robot experiment devised by Winfield et al. [75], the
intelligent robot only simulated the outcome of its own interactions
with another robot. In Blum’s robot safety experiment [77], the intel-
ligent robot internally simulates the outcome of other robots not only
interacting with the environment (in the form of wall avoidance), but
also interacting with each other. The virtual sensor range of the intel-
ligent robot is also restricted, so it can only predict the trajectories of
other robots that are currently visible (as shown in Figure 3.7). This
experiment is therefore typical of a swarm scenario, where robots
frequently interact with each other and their environment, and are
limited to local sensing.

3.3 experimental infrastructure

The Consequence Engine architecture is very similar to that of the
exogenous fault detection system proposed in Section 3.1, just ap-
plied in a different context — particularly with respect to the internal
model, which predicts the behaviour of robots situated in a simu-
lated model of the world. This internal model runs alongside the
robot controller, and must be initialised in the same way, such that it
reproduces the real-world scenario. The recent work of Blum [77] is
particularly relevant, as it provides an example of predicting future
trajectories of robots in a swarm context. In order to implement the
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Chapter 12. Internal Model Based Safety

Figure 12.2.: Trajectories for one experiment with an intelligent robot in simulation. The
intelligent robot is blue and the dumb ones red. Solid lines are real trajectories
while dotted ones represent predicted trajectories. Only the simulation result
for the best action is shown.

136

Figure 3.7: Time-lapse of an example run from the robot safety experiment
conducted by Blum [77]. The intelligent robot is shown in blue, and the
other robots are shown in red. Solid lines represent true trajectories, while
dotted lines represent predicted trajectories. Virtual sensor range and safety
zone around the intelligent robot are also shown in blue. Taken from [77].
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exogenous fault detection system, a similar experimental infrastruc-
ture was therefore required. The development of this experimental
infrastructure is discussed in the following sections.

3.3.1 The e-puck robot platform

Like O’Dowd et al. [71] and Winfield et al. [75], the e-puck robot
platform (shown in Figure 3.8a) was used for the experimental work
presented in this thesis. The e-puck uses differential drive stepper
motors to move around, which afford the robot precise movement
with virtually no inertia, making its behaviour easier to predict in
simulation. Eight active IR transceivers are distributed around the e-
puck’s body, which allow it to sense its proximity to obstacles and
communicate with nearby robots. The robot also has a colour camera
that can be used to implement basic vision.

The e-puck robot has very limited hardware resources, which lim-
its its usefulness as a research platform. In order to enhance its utility,
it is augmented with a Linux extension board [74] (shown in Fig-
ure 3.8b). This improves the computation, memory, and networking
performance of the e-puck, and is comparable to the Gumstix Overo
COM turret2, which offers similar functionality. The board features
an ARM processor that runs in parallel with the dsPIC microcon-
troller on the e-puck motherboard, and communication between the
two is achieved via an SPI bus. The dsPIC handles low-level motor
control, data processing and sensor interfacing, while the extension
board may be used for high-level control algorithms, wireless com-
munication, and computationally expensive operations such as im-
age processing [74]. The Linux board also provides the robot with
networked communication via the use of a USB Wi-Fi adapter.

3.3.2 Internal simulator

The eventual goal of this research was to embed the proposed ex-
ogenous fault detection system on the Linux extension board, so the
simulator developed by O’Dowd [70] was chosen to implement the
internal model. This was chosen over more general purpose robot
simulators (such as Stage) due to its minimal nature, which facilitates
a fully-embedded a solution that does not require remote processing.
However, the simulator was originally designed for the embedded on-

2 http://www.gctronic.com/doc/index.php/Overo_Extension

http://www.gctronic.com/doc/index.php/Overo_Extension
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(a) Basic e-puck robot. Taken from [79]. (b) Linux extension board with USB Wi-Fi
adapter. Taken from [74].

Figure 3.8: Extended e-puck robot platform.

line evolution of robot controllers, not for accurately predicting robot
behaviour. A significant problem with predicting behaviour is that
there will always be some discrepancy between simulation and the
real world, referred to as the reality gap [80]. Closing this reality gap
is important when attempting to accurately predict robot behaviour
for the purpose of exogenous fault detection, as the future position
of each robot must be precisely predicted to minimise false positives.

“
”

In the field of swarm robotics, simulators are typically only used to
develop robot controllers offline for later deployment on real robots.
This application is not specifically geared towards accurately predict-
ing the behaviour of a real robot so a crude model of robot behaviour,
and therefore a significant reality gap, is often sufficient. Similarly,
the Consequence Engine architecture employed by Winfield et al. [75]
and Blum [77] only requires predictions of future behaviour that are
accurate enough to determine the most favourable course of action. In
an ideal world, the reality gap would be entirely eliminated. However,
as argued by Jakobi [81], it is impossible to create an exact model of a
robot and its environment — the simulation will inevitably remain an
approximation of reality. To explain why, O’Dowd et al. [72] decom-
pose the reality gap into three categories of correspondence between
simulation and reality:

robot-robot : differences in physical robot aspects, such as their
morphology.

robot-environment : differences in the dynamic interactions be-
tween robots and their environment.

environment-environment : representation of salient features
of the environment.
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In order to accurately predict robot behaviour, all three categories
must be modelled with sufficient fidelity. There is a trade-off be-
tween the fidelity of the simulation and the speed at which it can
be executed. A high fidelity simulation may model the robot’s be-
haviour very well, but will run slowly. Conversely, a low fidelity sim-
ulation may run very quickly, but provide poor predictions of robot
behaviour. The simulation must run faster than real-time for it to be
useful for predicting robot behaviour, while also providing predic-
tions accurate enough to achieve good fault detection performance.
After making some modifications for the research in this thesis, to
ensure that each category of correspondence was modelled with suf-
ficient fidelity, the minimal e-puck simulator developed by O’Dowd
[70] was found to produce adequate predictions of robot behaviour.

Robot-robot correspondence is satisfied quite easily, as the e-puck
robots can simply be modelled as a circles with the same circumfer-
ence as a real e-puck. Their positions are updated using two-wheel
differential drive kinematics, with wheel speeds calculated from mea-
surements of a real robot’s movement. In O’Dowd’s original imple-
mentation, each step of the simulation represented 40 ms of real-time.
For this research, this was reduced to 10 ms, to increase the fidelity of
simulating the robots’ movement to 100 updates per second. Robot-
environment correspondence is harder to achieve, as it relies upon
the use of an accurate IR sensor model. It has been shown that the
response of active IR sensors depends not only on the distance from
an obstacle, but also the angle, and the proportion of the beam that
is reflected [82]. However, in this minimal simulator the IR sensor
readings depend only on the distance from an obstacle, and are emu-
lated using raw data obtained from the real robot’s sensors, with the
addition of uniform noise [72]. It was decided that this sensor model
should remain simplistic, to investigate the effect of imprecise simula-
tion on fault detection performance. Environment-environment corre-
spondence was side-stepped somewhat by limiting scope to include
only empty environments free of obstacles, for the sake of simplicity.
With only arena walls to model with simple 2D geometry, this form
of correspondence is easily satisfied.

For the experimental work in this thesis, the parameters of the sim-
ulation were calibrated manually to produce a sufficiently faithful re-
production of real robot behaviour. The focus was not upon obtaining
perfect predictions of the real robot’s future behaviour, rather predic-
tions accurate enough that reliable fault detection could be achieved.
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3.3.3 Functionally equivalent robot controllers

In order to facilitate meaningful comparisons of expected and ob-
served behaviours, the real and simulated robots must both be pro-
grammed with functionally equivalent controller code. This should
ensure that any deviation between the expected and observed be-
haviour of a non-faulty robot is due solely to the reality gap and
sensing inaccuracies.

Player/Stage

The initial intention was to develop the robot controllers using soft-
ware freely available from the Player/Stage project [83]. This open
source project provides two main pieces of software: the Player robot
device server [84], and the Stage multi-robot simulator [85]. These
tools are widely used by robotics researchers, and allow for the im-
plementation of a robot controller on real robots and simulated coun-
terparts. The Player server provides a network interface to a variety
of robot sensors and actuators via TCP sockets, allowing control pro-
grams to be written in any language that supports sockets [83]. Stage
may be used as a plug-in to Player, allowing client programs to con-
trol simulated versions of real robots through a common interface.

The Player server can be executed on the Linux extension board
[74], providing a network interface to the e-puck’s sensors and actua-
tors. Robot controller code also running on the Linux board is able to
control the robot via this interface, by communicating with the local
Player server over TCP sockets. Actuator commands are sent to, and
sensor data received from, the dsPIC on the e-puck motherboard via
the SPI bus. There should be no perceivable difference between real
or simulated robots from the perspective of a client program written
for use with Player/Stage. This is attractive from the perspective of
developing functionally equivalent controller code, as it enables the
development of identical code for robot controllers that are to be de-
ployed on both simulated and real robots, giving confidence that their
control logic is equivalent.

Unfortunately, despite these benefits, Stage is too heavy-weight to
be executed on the Linux extension board. It is for this reason that
Winfield et al. [75] resorted to running Stage remotely on a sepa-
rate server for their experiments with the Consequence Engine. As
discussed in Section 3.3.2, a minimal e-puck simulator was chosen
for the research presented in this thesis instead, with the aim of de-
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veloping a fully embedded solution. This necessitated an alternative
method of developing functionally equivalent controller code.

Minimal e-puck simulator

The main challenge with the chosen hardware platform, is that the
robot’s control logic may be split across the ARM processor on the
Linux extension board and the dsPIC microcontroller on the e-puck
motherboard. To avoid simulating the interaction of these two com-
ponents, a higher level of abstraction is required. A simple solution is
to enforce a master-slave relationship, such that the dsPIC only per-
forms low-level interfacing with sensors and actuators. This ensures
that all of the control logic is implemented on the Linux extension
board, thus removing the need to separately simulate code running
on the dsPIC.

This is especially important given that the dsPIC is programmed
using low-level C code, while the control logic running on the ARM
processor may be written in any language that can interface with the
Linux device that represents the SPI bus. Attempting to achieve func-
tional equivalence when simulating a robot controller that is split
across two different programming languages would be particularly
challenging, especially if the robot simulator is written in yet another
programming language. Fortunately, the minimal e-puck simulator
developed by O’Dowd [70] is written in C++, so it was possible to
write controller code in the same language for both the Linux exten-
sion board and the internal simulator.

The remaining challenge was that of developing an API that pro-
vided a common interface to the robot’s sensors and actuators, al-
lowing identical controller code to be used for both the real and sim-
ulated robots. For the physical hardware, the back-end of this API
allows controller code running on the Linux extension board to re-
trieve sensor readings and send actuator commands to the dsPIC via
the SPI bus. For a simulated robot, the API back-end translates wheel
speeds into differential kinematics, and returns emulated IR sensor
values based on distances to simulated obstacles.

3.3.4 Observing neighbouring robots

In order for an observing robot to make comparisons between the ex-
pected and observed behaviour of its neighbours, the e-puck robots
must have a method of observing each other’s behaviour. For this re-
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search, it is sufficient to define the observed behaviour of a real robot
as its position and orientation over time. Thus, only (x, y) position
coordinates and the angle representing the robot’s orientation need to
be recorded. Ideally, this data would be obtained using on-board sen-
sor hardware. However, in order to simplify the problem initially each
robot is provided with local information about the position/orienta-
tion of other robots, collected using a tracking infrastructure (like that
used by Winfield et al. [75]) that observes the swarm from a bird’s-eye
view. This is described in more detail in Appendix A.

In terms of collecting equivalent observation data using on-board
sensors, there are a number of options available. Winfield and Erbas
[86] demonstrate that e-puck robots are able to track the relative di-
rection of movement, and distance, of another robot by tracking its
position and size in its camera field of view. However, the e-puck
robot would only be able to observe neighbours directly in front of
it. In order to observe the behaviour of every neighbour, the e-puck
omnidirectional vision turret may be more useful [29], although this
depends on the frame rate of the camera.

An alternative approach might be to use the e-puck range and bear-
ing board [87]. Each board comprises 12 IR emitters and receivers
spaced 30

◦ apart, which allow e-puck robots to determine the relative
range and bearing to their neighbours, at a distance of up to 80 cm.
Range and bearing data can be used to calculate the relative posi-
tion coordinates of another robot using simple trigonometry, how-
ever another method would be required to sense the orientation of
a robot. For example, robots could proprioceptively sense their own
orientation via an on-board compass, and broadcast this information
to neighbouring robots. Unfortunately, no e-puck range and bearing
boards were available for this research, but similar virtual sensing
capabilities can be implemented using a tracking system.

3.4 summary

This chapter has outlined the proposed exogenous fault detection sys-
tem, which is based on the comparison of expected and observed
robot behaviours. Related work on robots with internal models has
been reviewed, including embedded simulations for online evolution,
and predicting consequences of future behaviour for engineering safe
and/or ethical robots. Ideas from these publications have contributed
to the development of an experimental infrastructure for embedded
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predictions of future robot behaviour, which integrates the minimal
e-puck simulator developed by O’Dowd [70] and virtual sensing via
a tracking infrastructure like that used by Winfield et al. [75]. Ap-
pendix A describes this tracking infrastructure in more detail, which
was used for the purpose of detecting faulty robot behaviour during
the experimental work presented in the next chapter.



4 S I N G L E R O B O T FA U LT D E T E C T I O N

As an intermediate step towards implementing the proposed exoge-
nous fault detection system in a swarm context, experimental work
was carried out to investigate the viability of fault detection based on
simulated predictions of a single robot’s behaviour. Although this is a
simpler task than predicting the behaviour of a robot in a swarm, it is
still non-trivial. This chapter presents the results of this initial exper-
imental work, which shows that simulation can be used to success-
fully predict real robot behaviour. However drift between simulation
and reality occurs over time due to the reality gap, thus necessitat-
ing periodic reinitialisation of the simulation to reduce false positives.
Using a simple obstacle avoidance controller afflicted with partial mo-
tor failure, it is shown that selecting the length of this reinitialisation
time period is non-trivial, and that there exists a trade-off between
minimising drift and the ability to detect the presence of faults. Fol-
lowing this is a discussion of open problems with this fault detection
approach, and proposed solutions.

4.1 fault detection

As discussed in Section 3.1, assuming that a simulation can provide
sufficiently accurate predictions of real robot behaviour, it should be
possible to use it for the purpose of fault detection. The robot con-
troller can be instantiated within the simulation, embodied in a simu-
lated model of the real robot, and used to generate predictions of non-
faulty behaviour. A significant discrepancy between these simulated
predictions and the real robot’s observed behaviour may indicate the
presence of a fault.

Bjerknes and Winfield [8] demonstrated that motor failure had the
most detrimental affect on a swarm’s ability to carry out its task. For
this reason, motor failure is used here as a case study. However, in-
stead of testing complete motor failure, which would be very easy
to detect due to rapid divergence of non-faulty and faulty behaviour,
partial motor failure is investigated. The particular fault considered
here is a permanently slow left wheel. Over time, this fault will cause

89
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Figure 4.1: The e-puck robot with Linux Extension Board and tracking hat,
inside an enclosed circular arena with a diameter of 80 cm.

the robot to veer gently to the left. This is a minor fault, and therefore
quite difficult to detect.

The focus of this experimental work was not upon finding an opti-
mal solution for the case study considered here, rather to investigate
the fundamental issues inherent in the proposed fault detection ap-
proach, primarily as an indication of whether similar issues might
exist in other scenarios.

4.2 experimental setup

The task of obstacle avoidance was chosen as a case study, because it
is well-understood, and relatively simple to model in simulation. The
e-puck robot performs obstacle avoidance in an enclosed 80 cm diam-
eter circular arena free of obstructions, as shown in Figure 4.1. This
particular arena shape was chosen because it can be easily modelled
in the minimal simulator as a simple radius from the world origin.

4.2.1 Robot controller

The robot controller implements a simple obstacle avoidance behaviour
that sets the wheel speeds based on IR sensor readings. The IR sen-
sors are the only input to the robot controller, and the readings ob-
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Figure 4.2: Simulation of the e-puck in the circular arena shown in Figure 4.1.
The lines protruding from the robot’s body represent the range of each IR
sensor. The arrows represent a typical trajectory resulting from the obstacle
avoidance controller.

tained from them are directly translated into left and right motor
speeds using a vector of weights. This tight coupling of the sensors
and actuators effectively results in a Braitenberg vehicle [88]. IR sen-
sor values below a certain threshold are ignored, so the robot’s be-
haviour is insensitive to IR interference. Unless any of the IR sensor
values are above this threshold, the robot will move in a straight line
at 2.6 cm/s.

As with the work of Winfield et al. [75], the robot controller is de-
liberately stateless. This is because from the perspective of an outside
observer, given only a snapshot of the system at a particular instant
in time, it would not be possible to determine the internal state of the
robot controller. It may be possible to infer the internal state given a
history of the robot’s behaviour, however this was beyond the scope
of this initial work.
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4.2.2 External observer

The minimal e-puck simulator was executed on a separate machine
that acts as an external observer. As with the work of Winfield et al.
[75], a model of the arena is known a priori, and a global view of
the world is available to the observer. Figure 4.2 shows the simulated
e-puck robot situated within a model of the arena.

In order to perform the comparison of expected and observed be-
haviour, a method of observing the real robot’s behaviour was re-
quired. The motion capture system described in Appendix A was
used to monitor the position and orientation (or pose) of the robot
over time, by tracking the pattern of retro-reflective markers placed
on the ‘hat’ that the robot wears (see Figure 4.1). The tracking data
was also used for post-experiment analysis, and transmitted to the
robot over Wi-Fi so that it could be instructed to drive to a desired
initial pose at the start of each experimental run.

4.3 problem analysis

This section presents the results of initial experiments that were car-
ried out to investigate the issues inherent in using simulated predic-
tions of robot behaviour for fault detection.

4.3.1 Real robot behaviour

For any particular initial pose, the robot’s endpoint after a certain
time period may be recorded. However, even with deterministic con-
troller code, a real robot’s behaviour is stochastic. This is because the
sensory inputs to the controller are often prone to noise, particularly
in the case of active IR sensors. There may also be a small discrep-
ancy between the wheel speeds output by the controller and the ac-
tual speed of the robot, due to variations in the surface that the robot
is driving on. Therefore, for any particular initial pose, there will in
fact be a probability distribution of possible endpoints that the robot
may reach after a given time period.

To demonstrate this, the tracking system was used to instruct the
robot to drive to the coordinates (200, -200), and turn to an angle of
45
◦, such that it is facing the arena wall as shown in Figure 4.2. Once

in position, the robot executes the obstacle avoidance controller for
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Figure 4.3: Real robot non-faulty and faulty class distributions, and the pre-
dicted non-faulty class distribution over time. The robot begins at the coor-
dinates (200, -200) facing the wall at 45

◦, as shown in Figure 4.2.

20 seconds. Throughout the duration of the run, the robot’s position
is recorded using the tracking system. The robot then drives back to
the same initial pose, and repeats the run. The experiment was first
carried out using a non-faulty robot, and then repeated with a perma-
nently ‘faulty’ robot that used a modified controller which reduced
the left wheel speed output. For each robot, 15 repeat runs were car-
ried out. This sampled from the underlying probability distribution
of possible endpoints for each class of behaviour.

Figure 4.3 shows the results from the experiment. Initially, there is
little variation in the robot’s behaviour. However, over time the spread
of the probability distribution increases. This is because the robot’s



94 single robot fault detection

True class Classification Outcome

Faulty Faulty True Positive (TP)
Faulty Non-faulty False Negative (FN)
Non-faulty Faulty False Positive (FP)
Non-faulty Non-faulty True Negative (TN)

Table 4.1: Possible classifications and their outcomes

trajectory after detecting the arena wall varies due to differences in
the IR sensor readings between runs. It can be seen that the spread of
the faulty robot’s endpoint distribution similarly increases over time.

4.3.2 Simulated prediction of future behaviour

In order to predict the behaviour of the non-faulty robot, the simu-
lation is initialised with the same initial pose. The simulated robot’s
behaviour is similarly stochastic, due to noise added to the simulated
IR sensor readings, and a small amount of noise added to the motor
speeds. The simulation executes significantly faster than reality, so
the same run is repeated 100 times to sample from the distribution of
endpoints.

It can be seen from Figure 4.3 that the simulated predictions of the
real robot’s non-faulty behaviour are not perfect, and the difference
between the classes increases over time. This drift occurs due to the
reality gap — specifically due to imperfect robot-environment corre-
spondence resulting from the simplified model of the IR sensors.

4.3.3 Behaviour classification

Distinguishing between non-faulty and faulty real robot behaviour
is essentially a classification problem. It would be possible to simu-
late multiple different classes of fault, and train a classifier to detect
them. However, this would require a priori knowledge of all possible
failure modes. Instead, it is assumed that only non-faulty behaviour
is known from the robot controller, and that any significant devia-
tion from this should indicate the presence of a fault. If a fault is so
subtle that it is indistinguishable from the non-faulty class, then it is
assumed to be benign and not worth detecting. This approach is an
example of one-class anomaly detection [59].
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Figure 4.4: TPR and FPR vs time period in unbounded space.

The real robot’s position is classified based on a simple uniform
distance threshold from the mean of the predicted distribution. This
implicitly defines a circular 2D spatial decision boundary. Any test
point within this region will be classified as non-faulty, and any point
outside it as faulty. From Figure 4.3 it can be seen that the classes
could be modelled better using an ellipse, especially after a longer
time period, but a circular boundary is sufficient for this initial work.

Table 4.1 enumerates the four possible outcomes of the classifica-
tion. For any time period after initialisation, each real robot endpoint
shown in Figure 4.3 can be classified based on its distance from the
mean of the predicted distribution. The classification outcomes are
aggregated to produce the total number of true positives, false nega-
tives, false positives, and true negatives at a specific time. The True
Positive Rate and False Positive Rate can then be calculated using the
following equations.

True Positive Rate (TPR) =
TP

TP + FN
(4.1)

False Positive Rate (FPR) =
FP

FP + TN
(4.2)
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Figure 4.5: TPR and FPR vs time from one particular initial pose. The robot
detects the arena wall 9 seconds after initialisation.

Figure 4.4 shows how the TPR and FPR vary over time when the
robot traverses unbounded (and empty) space. The arena wall is re-
moved, and the non-faulty robot simply moves in a straight line due
to a lack of sensory input. The TPR begins at zero, and quickly in-
creases to 1 between 7 and 9 seconds. This is due to the non-faulty
and faulty classes becoming more easily separable as time passes. The
TPR will remain at 1 forever, because the classes will simply separate
further with time. The FPR remains at zero throughout. This is be-
cause the simulator is able to predict the straight line movement of
the real robot accurately, so drift is minimal and the non-faulty class
remains contained within the decision boundary.

Figure 4.5 shows how the TPR and FPR vary over time when the
robot traverses bounded space, starting in the same initial pose as in
Figure 4.3. Initially the robot behaves as if it is traversing unbounded
space, because the arena walls are beyond the range of its IR sensors.
Immediately after initialisation, faulty behaviour is indistinguishable
from non-faulty behaviour so the TPR is zero, but quickly increases
to 1 after 7 seconds as the classes separate and the faulty class moves
outside the decision boundary.

The non-faulty robot starts to detect the arena wall after approx-
imately 9 seconds, and it turns away. This causes its trajectory to
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intersect that of the faulty robot, and the once-separable classes begin
to overlap again. This results in a temporary drop in the TPR due to
an increase in the number of false negatives. This short drop in the
TPR is relatively benign, as it only briefly reduces the likelihood of
detecting a fault when the robot is near the arena wall. If the fault is
persistent, then it will be detected once the robot starts moving away
from the wall and the TPR recovers as the classes diverge again.

Of greater concern, is the effect of drift on the FPR over time. Fig-
ure 4.5 shows that shortly after the robot detects the wall, the FPR
beings to increase. This is caused by increasing drift between the sim-
ulation and reality, which results in the non-faulty class moving out-
side the decision boundary that encircles the predicted class, and a
rise in false positives. It is desirable to minimise false positives, as
they may result in action being taken against a non-faulty robot mis-
takenly suspected of being faulty, which could be costly.

It is important to note that this increase in the FPR is not observed
in unbounded space, and is due to poor robot-environment corre-
spondence. The effect could be reduced by improving the simulated
model of robot behaviour, but there will always be some amount of
drift, because a simulation cannot hope to model the complexity of
the real world in its entirety. Therefore, it is necessary to periodically
reinitialise the simulation after a certain time period, to enforce an
upper bound on the amount of drift. Without this, it is difficult to
determine whether discrepancies between simulation and reality are
caused by drift, or by a fault in the real robot.

4.3.4 Reinitialisation time period

Selecting an appropriate reinitialisation time period is non-trivial. A
long time period allows the non-faulty and faulty classes to sepa-
rate, making them easier to differentiate, and improves the ability
to detect minor faults. Unfortunately, a long time period increases
the likelihood of the robot encountering an obstacle before reinitiali-
sation, and therefore runs the risk of increased drift and potentially
false positives. A shorter time period is desirable because it minimises
drift, and reduces the latency of fault detection, but may only allow
major faults to be detected.

Clearly, selection of the reinitialisation time period must trade off
multiple objectives. Furthermore, the optimal time period for the mo-
tor fault considered here may not be optimal for another class of fault.
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The focus here is not on finding the optimal time period, but rather
to illustrate that a trade-off exists.

It seems reasonable to suggest that the time period should be cho-
sen under the assumption that the robot is always traversing un-
bounded space. From Figure 4.4 it can be seen that after a time period
of 10 seconds it should be possible to reliably detect the fault. How-
ever, there is little benefit in using a time period much longer than
this, as the classes are already be separable.

4.4 fault detection at runtime

In the previous analysis, the TPR and FPR were calculated by classi-
fying endpoints generated from repeated non-faulty and faulty real
robot runs from the same initial pose. When performing fault de-
tection at run-time, these distributions of data are unavailable. In-
stead, the simulation is initialised using tracking data and then pre-
dicts non-faulty behaviour over the specified time period. The real
robot’s observed position after the same time period (now a single
test point, rather than a distribution) is then classified according to
its distance from the predicted mean. Once the classification is com-
plete, the process repeats, and the simulation is initialised with new
tracking data. The correctness of the classification is highly depen-
dent on the robot’s initial pose relative to the arena wall. Figure 4.6
shows how the distance between the real robot’s endpoint and the
predicted mean varies with time, with a reinitialisation time period
of 10 seconds. Initially, the robot is non-faulty, but a fault is injected
after 60 seconds.

When the simulation is first initialised, the robot does not encounter
the arena wall within the 10 second time period, so drift is minimal.
As it approaches the wall, drift begins to increase because the robot
interacts with the wall before the simulation is reinitialised. The level
of drift peaks when the simulation is initialised at the point where the
robot first detects the wall, as this maximises the amount of post-wall
drift that can occur within the time period. As soon as the robot’s
initial pose advances past the interaction with the wall, drift immedi-
ately drops back to minimal levels, as the robot is effectively moving
through unbounded space again.

After the fault is injected, the robot’s baseline distance from the pre-
dicted mean increases. This appears more stable because the circular
arena causes the faulty robot’s curved trajectory to remain at more
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Figure 4.6: Raw and smoothed classifier output (distance between the real
robot endpoint and the predicted mean) over time. The reinitialisation time
period is 10 seconds. A fault is injected after 60 seconds.

consistent distance from the predicted mean. The brief drop after 80

seconds is caused by an overlap in the classes when the robot reaches
the wall. If it were not for the spikes in the classifier output caused by
drift when the robot is non-faulty, the non-faulty and faulty classes
could be quite easily differentiated. For example, a decision bound-
ary at 40 mm would maximise the TPR, but the spikes in the output
would result in many false positives.

Christensen et al. [61] demonstrated that by thresholding a moving
average of the output of a fault detector, the number of false posi-
tives could be reduced by filtering out spikes in the data. Here, the
same technique has been applied to the raw classifier output to pro-
duce the smoothed output shown in Figure 4.6. This allows the fault
detector to ignore brief anomalies in the data, so that it will only de-
tect persistently faulty behaviour. The smoothing not only helps to
prevent increases in the FPR, but also decreases in the TPR. This is
because short drops in the classifier output caused by overlapping
classes are smoothed out when the robot is persistently faulty. With
smoothing applied, the classes can now be differentiated using the
decision boundary shown in Figure 4.6. However, note that this ap-
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Figure 4.7: ROC curves for reinitialisation time periods of 5 seconds, 10

seconds, and 15 seconds. The analysis is performed on the smoothed output
of the classifier.

proach increases the latency of fault detection, and may prevent some
intermittent faults from being detected.

4.4.1 ROC analysis

Finally, Receiver Operating Characteristics (ROC) analysis was car-
ried out to assess the performance of the classifier. This was achieved
by calculating the TPR and FPR for a range of decision boundary
sizes. ROC curves for three different time periods are shown in Fig-
ure 4.7. Each point on a curve represents a particular TPR/FPR trade-
off produced by some decision boundary size. The diagonal line rep-
resents the performance of a random classifier.

When a reinitialisation time period of 5 seconds is used, the clas-
sifier’s performance is clearly much better than a random classifier.
However, the time period is too short as it does not allow the non-
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faulty and faulty classes to fully separate before reinitialisation. Using
a time period of 10 seconds produces almost perfect results for this
particular case study, as shown by the larger area under the curve.
The decision boundary that gives the highest TPR with no false posi-
tives is a threshold of 57 mm from the mean, as shown in Figure 4.6.
A time period of 15 seconds causes the classifier to perform much
worse, because the longer time period results in a large amount of
drift, causing an increase in the FPR.

4.5 open problems

Despite the encouraging results from this initial experimental work
with a single robot, there are a number of open problems with the
proposed fault detection approach when applied in a swarm context.

4.5.1 Modelling active IR sensors

The robot’s active IR sensors each comprise an emitter and receiver.
In order to detect nearby objects, each sensor emits a beam of IR
light, and measures the amount of light that is reflected. It is usu-
ally assumed that a high sensor reading therefore corresponds to the
detection of an obstacle. However, as explained by Quinn et al. [82],
referring to active IR sensors as proximity sensors is somewhat mis-
leading, as their raw readings are inherently ambiguous. This is be-
cause the amount of reflected IR light is not only a function of the
distance to an object, but also the angle at which the IR beam strikes
the object, and the proportion of the beam that is reflected.

In a swarm scenario the problem is exacerbated by the fact that IR
light emitted by each robot can be directly sensed by its neighbours.
The amount of directly sensed IR light will similarly be a function of
not only the distance between the robots, but also the angle of the
beam and how much of it strikes the receiver. Unfortunately, an IR
sensor cannot distinguish between reflected and directly received IR
light, nor how many robots or obstacles contributed to the sensed
value [82]. Ambient IR light will also be directly received by the sen-
sors, and will affect the robot’s behaviour. This effect can be mitigated
somewhat by programming the robots to measure ambient IR light
levels during initialisation, and then offsetting their sensor readings
thereafter. However, this relies on ambient IR levels remaining con-
stant after initialisation, which may not always be the case.
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This inherent ambiguity in the IR sensor readings makes the sen-
sors very difficult to model faithfully in simulation, which, in turn,
makes accurate prediction of robot behaviour in a swarm context
problematic. Robot simulators typically naively model IR sensors as
simple proximity sensors, and just return the distance between the
sensor and the nearest obstacle. If identical controller code is to be
used for both real and simulated robots, then these distances must be
translated into raw IR sensor values, which is typically achieved via
the use of a look-up-table or mathematical function fitted to sensor
readings from a real robot. Unfortunately, as argued by Quinn et al.
[82], the assumption that the IR sensor values will only be affected by
the distance to obstacles is too simplistic.

As mentioned in Appendix A, a tracking infrastructure could po-
tentially be used to close this reality gap via automated calibration of
the simulation. The position and orientation of each robot in a swarm
can be recorded while they carry out a particular behaviour. By fusing
this data with IR sensor data simultaneously recorded by each robot,
the relationship between the sensor readings and the distance/angle
to neighbouring robots and obstacles could be determined. However,
automated calibration of simulation was not the focus of this research,
so was not pursued further.

4.5.2 Uncertainty of predictions

A significant issue with predicting future behaviour, is that the be-
haviour of all neighbouring robots must be predicted simultaneously.
Each time a robot avoids an obstacle, or another robot, there is un-
certainty in the outcome, thus increasing the spread of predicted end-
points. This is not only a problem in simulation due to the reality gap
— real robot behaviour also varies due to noisy sensors and actuators,
as shown in Figure 4.3. The illustration in Figure 4.8 shows how the
predicted region of endpoints would vary between robots, depending
on whether they interacted with other robots.

In a swarm scenario, the number of interactions between other
robots and the environment means that the cumulative uncertainty
will quickly become unmanageable. This will make it difficult to pre-
dict behaviour with the degree of accuracy required to detect faulty
behaviour, thus necessitating even more frequent reinitialisation of
the internal simulation. As discussed in Section 4.3.4, if the reinitiali-
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sation time period is too short, then it will become difficult to detect
subtle faults.

4.5.3 Influence of robots beyond sensor range

Perhaps even more problematic, is that due to a lack of global perspec-
tive, an observing robot cannot simulate the behaviour of robots be-
yond their sensor range. This is an issue because the future behaviour
of their neighbours may depend on the behaviour of robots that are
not simulated. For example, consider the scenario in Figure 4.8. In
reality, the behaviour of robot A is affected by that of robot D, which
was beyond sensor range of the observer, so was not internally simu-
lated. This will result in the misclassification of non-faulty robots, as
their predicted and observed behaviours will be inconsistent.

If the local sensing range were long enough, a potential solution
might be to only test robots within some inner radius for faults. This
is based on the idea that robots may physically ‘insulate’ each other
from the influence of robots far away. It may then be possible to ac-
curately predict the behaviour of robots close to the observer without
requiring global knowledge of the swarm, provided that a sufficient
outer ring of other robots are also simulated.

4.5.4 Incorrect prediction due to faulty robots

Another significant problem with fault detection via the prediction
of future behaviour, is that faulty robots may influence the classifi-
cation of non-faulty robots. This is because the observing robot can
only predict the behaviour of faulty robots by simulating their non-
faulty controller code. As an example, consider again the situation in
Figure 4.8. If the observer’s sensor range were extended to include
robot D, and robot D were afflicted with complete motor failure, then
the future behaviour of robot A would be predicted incorrectly. This
is because robots A and D would be predicted to avoid each other as
shown in the top panel of Figure 4.8, despite robot D remaining sta-
tionary in reality due to motor failure, allowing robot A to continue
moving in a straight line. Therefore, although the proposed fault de-
tection method may succeed in detecting faulty robots, non-faulty
robots may be incorrectly classified if their behaviour is predicted
incorrectly as the result of another robot suffering a fault.
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Figure 4.8: Illustration to show the influence of robots beyond sensor range.
Top: Situation in reality. Robot D is beyond sensor range of observer, so
cannot be internally simulated. Bottom: Observer’s internal simulation of its
neighbours. The crosses denote the predicted endpoints of the robots. The
predicted regions of non-faulty endpoints are shown in grey.
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4.6 summary

This chapter has presented work undertaken to test the proposed
fault detection system on a single robot. It was shown that an impor-
tant choice with such an approach is the selection of an appropriate
reinitialisation time period for the internal simulation. This is a non-
trivial consideration, as a trade-off exists between minimising drift
caused by the reality gap, and detecting faulty behaviour. The exper-
imental results show that there exists an optimal time period that
provides the best trade-off characteristic between the TPR and FPR
for the partial motor failure used as a case study. However, it is im-
portant to note that the optimal time period is likely to be different
for each failure mode and robot task.

Unfortunately, predicting future behaviour in a swarm context is
much more difficult, and there are a number of open problems with
this approach. Although the work of Blum [77] (see Section 3.2.2)
demonstrates that predicting future swarm behaviour is possible for
the purpose of engineering safer robot controllers, higher precision
predictions of behaviour are required to avoid false positives when
performing fault detection. This level of precision is difficult to achieve
due to the issues outlined in Section 4.5. Consequently, prediction
of future behaviour was abandoned in favour of analysing past be-
haviour, which sidesteps many of these issues, as will be discussed in
the next part of this thesis.





Part III

FA U LT D E T E C T I O N V I A

A N A LY S I S O F PA S T B E H AV I O U R





5 A N A LY S I N G PA S T B E H AV I O U R

The exogenous fault detection system proposed in Chapter 3 was
based on the assumption that it would be possible to accurately pre-
dict the future behaviour of individual robots in a swarm. Although
the work of Blum [77] shows promise in this direction, behavioural
predictions must be very accurate to avoid misclassifying non-faulty
robots. The required level of accuracy is difficult to achieve given only
a single snapshot of the current real-world scenario, due to the inher-
ent uncertainty in the behaviour of each robot. In an attempt to reduce
uncertainty, this chapter proposes a variation on the fault detection
system presented in the previous chapter, which is instead based on
the analysis of past behaviour. This allows concrete observations of
neighbouring robots to be collected over a past time window before
attempting to discriminate between normal and abnormal behaviour.
This chapter also details the experimental infrastructure implemented
to carry out fault detection via the analysis of past behaviour. The per-
formance of the fault detector is later assessed in Chapter 6.

5.1 revised fault detection system

Predicting future behaviour is certainly important in the context of
the Consequence Engine architecture [76], as robots must be able to
evaluate the consequences of their possible future actions so that ap-
propriate choices can be made to avoid catastrophe. However, in the
context of fault detection, predicting future behaviour is unnecessary.
As shown in Chapter 4, a certain period of real-time must pass be-
fore the real robot’s true behaviour can be compared to its predicted
behaviour. In principle, it does not matter whether the internal sim-
ulation is used to predict behaviour at the start or end of this time
period. If prediction is performed at the start of the time period, as
proposed in Chapter 3, only an initial snapshot of the real-world sce-
nario is available. The advantage of performing prediction at the end,
is that the true behaviour of other robots during the time period can
also be taken into account to reduce uncertainty in the predictions.

Figure 5.1 illustrates how the analysis of past behaviour can be used
to perform exogenous fault detection. In contrast to fault detection via
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the prediction of future behaviour (described in Chapter 3), where a
single internal simulation is used to predict the behaviour of every
neighbouring robot simultaneously, a separate internal simulation is
used to classify each neighbouring robot. The scenario shown in Fig-
ure 5.1 only considers the observer’s internal simulation of robot A.
Once the internal simulation has been initialised, the behaviour of
every robot other than robot A is ‘replayed’ based on observations
recorded over a past time window. The behaviour of robot A is pre-
dicted as usual by executing its simulated robot controller, but now
the behaviour of the other robots will be identical for each repeat
execution of the internal simulator. By predicting the behaviour of
robot A in isolation, the uncertainty of multiple robots’ behaviour is
no longer compounded, resulting in more accurate predictions.

An important requirement of this new approach is that each robot
shares observation data with its neighbours. As shown in Figure 5.1,
the observer’s local sensor range only includes robot A and two other
robots. This is insufficient information to reliably reproduce the be-
haviour of robot A, which will also be influenced by the two robots
beyond the observer’s sensor range. However, if robot A broadcasts
its own observations, this allows the observing robot to internally
simulate every robot that may have influenced the behaviour of robot
A during the past time window. Note that although observation data
is shared, the approach still remains local and decentralised, because
each observer only uses data from its immediate neighbours.

This revised approach overcomes many of the problems associated
with predicting future behaviour that were discussed in Section 4.5.
By classifying each robot separately using known past observations
of the rest of the robots, uncertainty in the predicted behaviour is
greatly reduced, albeit at increased computational expense. In addi-
tion, robots beyond the shared sensor range are no longer a problem,
because any influence they may have had during the past time win-
dow has already been observed, therefore they will not affect the
predicted behaviour. Similarly, faulty robots will not cause the be-
haviour of non-faulty robots to be incorrectly predicted, as their past
behaviour is known and can be internally simulated. The main draw-
back of this approach is that separate internal simulations must be
executed for each robot to be classified, thus consuming more time
and computational resources.
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Figure 5.1: Illustration to show how the internal simulation is used to clas-
sify robot behaviour. Top: External simulation when the fault detection cycle
is initiated, showing the true endpoint of robot A. Bottom: Observer’s inter-
nal simulation of robot A (the focal robot). The replayed behaviour of the
non-focal robots over the course of the past time window is indicated by
the arrows. The crosses denote the predicted endpoints of robot A from 10

repeat runs. The predicted region of non-faulty endpoints is shown in grey.
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5.2 argos simulator

Instead of continuing to work with physical hardware, the decision
was made to carry out the remaining experimental work entirely in
simulation. This sidestepped the difficulties of accurately modelling
real robots in simulation (as discussed in Section 4.5), and removed
the constraints of working with dated robot hardware. Implementing
the proposed exogenous fault detection system on real robots will
ultimately be necessary to demonstrate its value. However, it must
first be shown to work in principle, and simulation was a useful tool
for rapidly prototyping the ideas presented in this thesis.

The revised fault detection system was implemented in a well-
established open-source multi-robot simulator written in C++, called
Autonomous Robots Go Swarming (ARGoS) [89, 90], which is specif-
ically designed for the simulation of robot swarms. ARGoS was de-
veloped as part of the Swarmanoid project [91], and is still actively
maintained by its creator Carlo Pinciroli. It has gained traction in the
swarm robotics community in recent years and is currently on version
3.0.0 (used here), which is freely available online1.

So that the revised exogenous fault detection system could be tested
on robot swarms, it was first necessary to select a swarm behaviour
as a case study. An aggregation behaviour was chosen, as it provided
ample opportunity for the robots to observe and classify each other,
allowing fault detection performance to be thoroughly tested. In par-
ticular, the ω-algorithm developed by Bjerknes [7] (described in Sec-
tion 2.1.1) was reimplemented in ARGoS to produce an aggregation
behaviour. Bjerknes’ original implementation of the ω-algorithm [7]
included a symmetry breaking mechanism that allowed the swarm to
perform emergent phototaxis towards a beacon placed in the environ-
ment. This symmetry breaking mechanism was not required for the
aggregation behaviour, therefore it was omitted for this research.

5.2.1 The e-puck robot model

In addition to the Swarmanoid robot models (foot-bot, hand-bot, eye-
bot), ARGoS has built-in support for the e-puck robot platform. Given
that the ω-algorithm was originally implemented on real e-puck robots,
the same robot platform was used simulation.

1 http://www.argos-sim.info

http://www.argos-sim.info
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Although an experimental infrastructure was built with the inten-
tion of embedding the exogenous fault detection system on real e-
puck robots (see Chapter 3 and Appendix A), the primary aim of
this research was not to develop a fault detector that could run on e-
puck hardware. Despite the popularity of the e-puck robot platform
in swarm robotics research, it was first produced in 2004 and is now
over 11 years old, so is no longer representative of the state-of-the-art
in physical hardware.

Instead, the aim of this research was to develop a fault detection
system that would adhere to the Scalable Swarm Robotics principles
of decentralised control and local sensing [26], without being con-
strained to a particular hardware platform. The cognitive and sensing
capabilities of the robots simulated in this research are beyond what
can currently be achieved with a real e-puck robot, so the ARGoS
model merely serves as a platform to test the fault detector with em-
bodied local sensing and decentralised control.

5.2.2 External simulation

In order to gather observation data to test the fault detector with,
an artificial analogue of reality was required. This is referred to as
the external simulation, to distinguish it from the internal simulation
each robot uses for the purpose of fault detection. For both the exter-
nal and internal simulations, each simulation step represents 100 ms
of real time. This is the ARGoS default value, and provides enough
granularity without incurring unnecessary computational expense.

The external simulation is initialised by randomly placing ten sim-
ulated e-puck robots within a 0.8×0.8 m region in the centre of a
3×3 m walled arena, with random initial orientations, as shown in
Figure 5.2. Their initial positions and orientations are drawn from
uniform distributions. The robots in the external simulation simply
perform ω-algorithm aggregation, and carry out fault detection in
the background. The exogenous fault detection system is passive, so
it has no effect on their behaviour.
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Figure 5.2: Screenshot of the experimental setup in ARGoS for ω-algorithm
aggregation. Ten simulated e-puck robots are randomly placed within a
0.8×0.8 m region in the centre of the 3×3 m arena, with random initial
orientations. The 40 cm (radius) sensor range of one of the robots is shown.

5.2.3 Observation data

As mentioned in Section 4.2.1, the internal state of a robot cannot be
determined by an outside observer, given only a snapshot of the sys-
tem at a particular instant in time. Consequently a stateless controller
was used for the experimental work in Chapter 4. However, the ω-
algorithm controller uses a finite state machine, so the internal state
of a robot must be known in order to initialise the internal simulator.
Although it may be possible to infer this from recent observations,
it is assumed that each robot broadcasts the full internal state of its
controller. For the ω-algorithm aggregation controller, this includes:

– Current state (forward/avoidance/coherence)

– Aggregation timer value (in seconds)

– Desired heading (in degrees)

– Distance turned (in centimetres)
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Knowing that a robot is in the forward, avoidance, or coherence
state is insufficient to initialise the internally simulated robot con-
troller. A robot executing the ω-algorithm will attempt to perform a
coherence manoeuvre when the aggregation timer exceeds its thresh-
old, thus the timer value must be broadcast so that an observer knows
when the robot will next attempt to aggregate with its neighbours.
Similarly, the observed robot may be in the process of turning on-the-
spot towards a desired heading when it is observed. It must therefore
also broadcast the heading it is attempting to turn to, and how far it
has already turned, so that the turn can be internally simulated by an
observer.

At every simulation tick, each robot in the external simulation
records data about any neighbouring robots that it observed during
that tick. Each observation includes the following:

– Robot ID

– Position

– Orientation

– Controller state

In addition to observations of neighbouring robots, the observing
robot records the same details about its own behaviour at each tick.
This is necessary for it to instantiate a model of itself in its internal
simulation. Without this, its model of the world would be incomplete.
It is assumed that the observer proprioceptively senses its own posi-
tion and orientation (via odometry and an on-board compass), which
is subject to the same noise that applies to sensing the position and
orientation of other robots (see Sections 5.2.7 and 5.2.8).

This observation data is stored in a circular buffer, the capacity of
which is limited to the size of the fault detection time window. The
use of a circular buffer means that stale observation data is discarded
as new data is collected, ensuring that the memory resources required
by each observer is bounded. The amount of memory required for
observation data within each slot of the circular buffer (representing
a single point in time) is determined by the sensor range of the robot,
and the dynamics of the swarm behaviour. The observing robot uses
this observation data itself for detecting faults in other robots, but it
also shares its observations with neighbouring robots.
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5.2.4 Range and bearing sensor/actuator

As discussed in Chapter 3, the original intention was to use a track-
ing infrastructure to implement a virtual sensor for each real e-puck
robot, which would allow the robot to observe the behaviour of its
neighbours. Given that the experimental work presented in the re-
mainder of this thesis is carried out entirely in simulation, there is no
longer any need for a tracking infrastructure, as robot pose data can
be recorded directly from ARGoS. However, to make the robot sensor
model slightly more realistic, a generic range and bearing sensor/ac-
tuator pair was used instead. This allowed the use of features built-in
to ARGoS, such as simulating line-of-sight occlusion, and packet loss.

Garattoni et al. [92] recently published a more detailed e-puck
model than the one built into ARGoS, which includes a model of
the e-puck range and bearing hardware designed by Gutiérrez et al.
[87]. The simulation model developed by Garattoni et al. [92] was not
used for this research project, as the amount of noise introduced into
the simulated sensor readings is very high, rendering the sensor data
unusable for the proposed fault detection method. Figure 5.3 shows a
comparison of the sensed and actual distance between two simulated
robots using the ARGoS model developed by Garattoni et al. [92].
The error at each distance is much higher than originally reported by
Gutiérrez et al. [87] for the real hardware — an average of 2.39 cm,
and 6.87 cm in the worst case. It remains unclear why there is such a
discrepancy between the results, especially given that the simulated
noise model developed by Garattoni et al. [92] is based on sensor
readings collected from real e-puck robots.

Given the range and bearing of another robot, an observer can cal-
culate that robot’s coordinates using simple trigonometry. However,
this will be in a coordinate system relative to the observer. Whenever
the observing robot moves, its relative coordinate system changes.
Thus, in order to track the trajectory of a neighbouring robot over
time, it would be necessary to transform each observed pose into
the same coordinate system. This transformation would have to ac-
count for the observer’s own movement, in addition to any move-
ment of the observed robot. For the sake of convenience, it is instead
assumed that the robots share a global coordinate system, removing
the need to transform observation data between relative coordinate
systems. This is especially useful when robots share observation data
with each other, which would otherwise need to be transformed.
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(a) (b)

Figure 5: In 5a the log-normal distributions for 9 fixed distances. In 5b, boxplot
distributions of sensed distance against actual distance when real-range noise is
active

The behavior of the sensor is instead more complex and configurable. If the
user does not specify any additional parameter, the behavior of the sensor will
be ideal: it will receive any message sent by robots in its range at a given time-
step and it will be able to measure precisely the value of distance and bearing of
each message. To simulate more accurately the behavior of the physical range
and bearing device, several parameters are available. The number of messages
that can be received in a single control cycle can be limited to the value of
the max_packets parameter. Gaussian noise can be added to the values of
range and bearing, with a standard deviation specified by the noise_std_dev

parameter. The loss of packets can be simulated, by setting the loss probability
to loss_probability. Finally, given the very noisy nature of distance measure
when using physical robots, it is possible to specify whether to reproduce this
noise in simulation by activating real_range_noise.

When real_range_noise is activated, the measures performed on physi-
cal robots are used to produce noise on the value of distance. The procedure
adopted was as follows:

1. The distribution of signal strength values was calculated for several fixed
distances on physical robots. The distribution of these values was approx-
imated by a log-normal distribution for each distance. In the sensor, a
look-up table contains the µ and � parameters for the log-normal distri-
bution corresponding to each distance. Figure 5a shows the log-normal
distributions for the 9 distances.

2. The parameters µ and � are calculated by interpolating the actual distance
measured in ARGoS with the physical-robot data stored in the look-up
table.

3. The simulated value of signal strength is calculated by drawing a number
from the log-normal distribution obtained from the previous point.

4. The value of signal strength is converted in distance with Equation 1.
The boxplots in Figure 5b show the distribution of final sensed distance
in function of the actual distance between the robots in the simulation.

9

Figure 5.3: Comparison of sensed and actual distance between two simu-
lated robots using the ARGoS model of the e-puck range and bearing board
developed by Garattoni et al. [92]. Taken from [92].

Consequently, relative range and bearing data is not used to calcu-
late an observed robot’s pose. Instead, the observer senses the abso-
lute coordinates and orientations of neighbouring robots in the global
coordinate system. This is similar to the proposed tracking system vir-
tual sensor approach, except that the observations are subject to local
sensing restrictions such as line-of-sight and packet loss, as the pose
data is only made available if a range and bearing packet is received.

Although the maximum range of the real e-puck range and bearing
board is 80 cm [87], the simulated range and bearing sensors/actua-
tors were limited to a range of 40 cm, as shown in Figure 5.2. This
range was chosen because it was found to produce stable aggrega-
tion with, whilst also ensuring that sensing remained local.

5.2.5 Range and bearing packets

The range and bearing sensor/actuator is not only used for localisa-
tion — each packet also contains a message payload that can be used
to send data between robots. This is a particularly useful feature for
the proposed fault detection approach, as it allows robots to broad-
cast their own ID in each range and bearing packet. An observing
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robot can then uniquely identify the source of each packet, and use
this information to associate each observation with the correct robot
across multiple instants in time.

Although not explicitly implemented, it is assumed that the robots
broadcast their own orientation (sensed via an on-board compass), as
it is not possible to sense the orientation of a robot from range and
bearing values alone. If an observer successfully receives a packet
from another robot, that robot’s absolute orientation in the global
coordinate system is made available to the observer.

As mentioned in Section 5.2.3, each robot broadcasts its internal
controller state. It also sends its own observations of neighbouring
robots in the range and bearing packet. This is necessary for sharing
local perspectives, as described in Section 5.1.

5.2.6 Packet drop probability

Every time a robot should have received a packet, there is some
chance that the packet will be dropped. This may occur in reality
due to IR interference, or if multiple robots send data at the same
time, resulting in collisions. If a packet is dropped, then the sending
robot essentially becomes invisible until another packet that it sends
is successfully received, resulting in discontinuous observations. The
effect of discontinuous observations on the fault detector is discussed
in detail in Section 5.4.3.

The default value chosen for this parameter is a packet drop prob-
ability of 1%. This is relatively low, as the fault detector requires
mostly continuous observations of neighbouring robots to work effec-
tively. The effect of varying the packet drop probability is analysed in
greater detail in Section 6.7.

5.2.7 Position noise

As explained in Section 5.2.4, the positions of neighbouring robots
in the global coordinate system are made available to each observer
(subject to local sensing restrictions). In order to simulate imperfect
sensing, noise is added to the sensed position of each robot. This is
achieved by generating a noise vector with a length that is randomly
sampled from a normal distribution with zero mean, and a standard
deviation of σposition. The angle of the noise vector is randomly from a
uniform distribution over the interval [0◦, 360

◦]. This vector is added
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to the true position of a robot, and the resulting coordinates are made
available to the observer.

This is equivalent to generating a noisy position by sampling from
a bivariate normal distribution that is centred on the robot’s true posi-
tion. This noise model is identical to that built into the generic range
and bearing sensor ARGoS model, but is somewhat unrealistic. In re-
ality, the error in the range data would differ from the error in the
bearing data, as shown by Gutiérrez et al. [87]. The error in the range
data will depend on the reliability of mapping IR signal strength to
distances, while the error in the bearing data would depend on the
number of IR transceivers used on the range and bearing board. This
would result in an ‘arc’ of noise, rather than noise that is uniformly
distributed around the robot’s true position. The amount of noise in
the sensor readings would also increase with distance from the ob-
server, but this is not modelled in the default ARGoS implementation
— the level of noise is constant irrespective of the distance between
observer and observee.

Although modelling the error in the range readings and bearing
readings separately would theoretically produce a more realistic noise
model, any attempt to do so would be arbitrary if it is not based on
real sensor data. Unfortunately, as explained in Section 5.2.4 the e-
puck range and bearing sensor model developed by Garattoni et al.
[92] could not be used for this research project, because the amount
of noise they introduce into the sensor readings is too high. In terms
of the research question this thesis attempts to answer, the focus is
not upon creating an accurate noise model for the simulated sen-
sors. Rather, it is to investigate how well the fault detector copes
with slightly unreliable sensor data, and therefore internally simu-
lated robot poses that are inconsistent with ‘reality’.

The default value chosen for σposition is 1 mm, so 95% of sensed
positions will be within a 2 mm radius of a robot’s true position (2
standard deviations from the mean). This is a somewhat unrealisti-
cally low level of noise when compared to existing range and bearing
sensor hardware, however the proposed fault detection approach re-
quires relatively accurate observations of robot behaviour. The effect
of varying σposition is analysed in more detail in Section 6.7.
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Parameter Value

Experiment duration 400 s (6 m 40 s)
External/internal simulation step 100 ms
Range and bearing sensor range 40 cm
Range and bearing packet drop probability 1%
Position noise standard deviation (σposition) 1 mm
Orientation noise standard deviation (σorientation) 1

◦

Motor noise standard deviation (σmotor) 0.1

Table 5.1: ARGoS simulation default parameter values.

5.2.8 Orientation noise

As discussed in Section 5.2.5, it is assumed that each robot broadcasts
its current orientation, which would be sensed via an on-board com-
pass. In reality, this orientation data would be subject to error, so a
simple noise model is used to simulate the error. The noise is gener-
ated by sampling a single value from a normal distribution with zero
mean, and a standard deviation of σorientation. This noise value, which
may be positive or negative, is added to the true orientation before it
is broadcast by the robot.

The default value chosen for σorientation is 1
◦, so 95% of sensed ori-

entations will be within ±2
◦ of a robot’s true orientation (2 standard

deviations from the mean). Again, perhaps this is an unrealistically
low level of noise, but the fault detector requires accurate observa-
tion data to perform well. The effect of varying σorientation is analysed
in more detail in Section 6.7.

5.2.9 Motor noise

The default ARGoS noise model is used to generate noise for the sim-
ulated e-puck’s differential drive motors (separately for each wheel).
The noise is generated by sampling a single value from a normal
distribution with zero mean and a standard deviation of σmotor, and
multiplying it by the desired wheel velocity. This noise value, which
may be positive or negative, is added to the desired wheel velocity.
This model causes the level of noise to increase as the robot’s speed
increases.

The default value chosen for σmotor is 0.1. Given that the maximum
straight-line speed allowed by the ω-algorithm controller is 3.22 cm/s,
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in the worst case, 95% of wheel velocities will be within ±0.64 cm/s
of a robot’s desired wheel velocities (2 standard deviations from the
mean). The amount of noise applied to the wheel velocities should
have no effect on the fault detector, assuming that noise is modelled
accurately in the internal simulator.

5.3 reimplementing the ω -algorithm

As mentioned in Section 5.2, the ω-algorithm was implemented in
ARGoS to serve as a case study swarm behaviour to test the fault de-
tector on. The goal was not to exactly reproduce the ω-algorithm in
simulation, so long as the ARGoS implementation exhibited a reliable
emergent aggregation behaviour. Consequently, there are some differ-
ences between Bjerknes’ original implementation on real e-pucks [7]
and the ARGoS implementation, which are detailed in this section.

5.3.1 Departures from the original implementation

In Bjerknes’ original implementation [7], the real e-puck robots emit-
ted IR light to signal their presence to neighbouring robots. This al-
lowed a robot to infer the location of its neighbours based on which
of its IR sensors could detect the emitted IR light. This served a dual
purpose — when performing a coherence manoeuvre a robot could
estimate the centroid of its neighbours; and, if another robot was de-
tected close by, it would trigger an avoidance manoeuvre.

Unfortunately, in ARGoS it is difficult to simulate this particular
use of the IR transceivers. ARGoS assumes that they will simply be
used as active proximity sensors, whereby the IR receivers only de-
tect reflected IR light that has been emitted by the sensing robot. IR
light directly received from other emitting robots is not simulated by
ARGoS. It is notoriously difficult to model active IR sensors in simula-
tion, particularly when they are used for something other than a stan-
dard proximity sensor. Rather than attempting to create an accurate
model of Bjerknes’ IR-based communication in ARGoS, range and
bearing sensor data was used to implement coherence and avoidance
behaviours instead. Given that this data is required for the proposed
fault detection method, it was also used for the ω-algorithm aggrega-
tion swarm behaviour. Relative range and bearing data was used by
the ω-algorithm controller, as it does not require observations to be
correlated over time.
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Parameter Value

Aggregation timer threshold ω 3 s
Avoidance radius 20 cm
Coherence sensor range 40 cm
Maximum motor speed 3.22 cm/s

Table 5.2: Parameter values used for the reimplementation of the ω-
algorithm aggregation in ARGoS.

Despite the different source of sensor data, the ARGoS reimple-
mentation of the ω-algorithm is conceptually the same as the original.
When a robot performs a coherence manoeuvre, it uses the range and
bearing of other robots within sensor range to calculate a vector to
the centroid of its neighbours, then turns to the angle of this vector.
Similarly, when performing an avoidance manoeuvre, a robot turns
such that it faces 180

◦ away from the centroid vector angle. As is con-
sistent with the original ω-algorithm implementation, the simulated
e-pucks do not perform obstacle avoidance using proximity sensors.
Thus, they will not react to environmental obstacles. The size of the
simulated arena is large enough that the swarm aggregates within
effectively unbounded space, so no robot will ever reach the walls.

It is important to note that position/orientation noise and packet
loss only applies to range and bearing data used by the fault detector.
Although this is somewhat artificial, it is critical that the aggregation
behaviour is unaffected by this noise, otherwise the effect of noise on
the fault detector cannot be isolated during sensitivity analysis.

5.3.2 ω-algorithm parameters

The parameter values used for the ARGoS reimplementation of the
ω-algorithm are slightly different to those originally used by Bjerknes
[7]. This is because Bjerknes tuned the parameter values to produce
stable phototaxis behaviour, which requires the swarm to be more
tightly aggregated in order for the symmetry breaking mechanism to
work properly. Since only aggregation was required for this research
project, a set of parameter values were chosen that allowed the robots
more space to move around, whilst ensuring stable aggregation. The
parameter values that were used are shown in Table 5.2.



5.4 fault detector 123

5.4 fault detector

Fault detection is performed in cycles. In each fault detection cycle, the
observing robot uses observation data (direct and secondary) from
the past fault detection time window to internally simulate neigh-
bouring robots, and classify their behaviour as either faulty or non-
faulty. The fault detector has no memory of past classifications —
each fault detection cycle is entirely independent of any preceding
cycles and their classification results.

Only robots directly observed at both the very start and end of the
time window will be classified. This ensures that the chosen fault de-
tection time window length is adhered to. If this is found to be too
restrictive (robots not being classified often enough), then some toler-
ance could be built in to allow more robots to be classified. Provided
that the time difference between the earliest and latest observations
of a particular robot is above a certain threshold, classification could
be allowed. However, this threshold would need to be set relatively
high (e.g. 90% of the time window) to ensure that the chosen time
window length is respected.

5.4.1 Internal simulations

For each neighbouring robot that will be classified, a separate internal
simulation is executed to detect faults in its behaviour. In this internal
simulation, the robot being classified is referred to as the focal robot.
The other robots in the internal simulation are referred to as non-focal
robots. Although these internal simulations are executed by the same
observer, the robots present in each simulation will differ, depending
on secondary observation data available from the focal robot.

Figure 5.4 illustrates the differences between these internal simula-
tions. In the observer’s internal simulation of robot A, the observer
uses direct observations of itself, and robots A, B, and C. Secondary
observations obtained from robot A are used to simulate robots D
and E. Similarly, in the observer’s internal simulation of robot B, the
observer uses direct observations of itself, and robots A, B, and C.
Secondary observations obtained from robot B are used to simulate
robots E, F, and G. Robots H and I are beyond the sensor range of the
observer and robots A and B, so they are not included in any of the
observer’s internal simulations.
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Figure 5.4: Illustration to show the differences between internal simulations.
The sensor ranges of the observer, and robots A and B are shown (solid,
dashed, and dotted, respectively). Top: External simulation. Middle: Final
state of observer’s internal simulation of robot A. Bottom: Final state of ob-
server’s internal simulation of robot B.
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No longer constrained by the aim of embedding the internal simu-
lator on real robot hardware, an instance of ARGoS is also used for
each observer’s internal simulator. This sidesteps issues with devel-
oping functionally equivalent code (discussed in Section 3.3.3), as the
robot controller code for the external and internal simulations is iden-
tical. Note that no attempt is made to create an artificial ‘reality gap’
between the external and internal simulations, as any discrepancies
introduced would be arbitrary. Separate parallel instances of ARGoS
can be used for each robot’s internal simulation, or a single instance
can be shared between all robots sequentially, depending on the com-
putational resources available. Interprocess communication between
multiple instances of ARGoS is achieved via shared memory.

5.4.2 Predicting non-faulty robot behaviour

The internal simulation is used to predict the bounded region where
the focal robot should have ended up, under the assumption that it
is non-faulty. If the true endpoint of the focal robot is within this
bounded region, then it will be classified as non-faulty. Otherwise, it
will be classified as faulty. Figure 5.1 shows how the internal simu-
lation is used to predict non-faulty robot behaviour. First, the posi-
tion and orientation of each robot, and the internal state of the focal
robot’s controller, is initialised using observation data from the start
of the time window. There is no need to initialise the internal state of
the non-focal robots, as their behaviour is predetermined.

At each step of the internal simulation, the position and orienta-
tion of each non-focal robot is updated according to the observation
data, such that their past behaviour over the past time window is
essentially ‘replayed’. If direct observation data from the observer is
not available for a particular non-focal robot at any simulation tick,
then secondary observation data from the focal robot will be used.
If no observation data is available from either the observer or the
focal robot, the non-focal robot will be removed from the internal
simulation. However, it may reappear later in the simulation if more
observations of it become available.

The focal robot’s non-faulty behaviour is predicted by executing its
ω-algorithm controller code, and allowing it to be influenced by the
predetermined behaviour of the non-focal robots. Range and bearing
packets that would have been received by the focal robot during the
time window are also simulated. This ensures that any input that the
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focal robot’s controller would have received in ‘reality’ is reproduced,
so that its non-faulty behaviour can be accurately predicted.

The observation data used to initialise the internal simulation (and
to replay the behaviour of non-focal robots) is a combination of direct
observations from the observer, and secondary observations received
from the focal robot. The internal simulation will therefore include
robots that may not have been directly observable by the observer.
The observer’s observations of itself are included in this observation
data. Therefore, the observer’s behaviour will also be replayed, in the
same way as other non-focal robots. Note that observation data for
the focal robot other than its start and end point is ignored — its be-
haviour is purely determined by running the ω-algorithm controller,
and only its true endpoint is required to perform the classification.
Any intermediate observations would only be useful if trajectory data
were to be taken into account during classification.

5.4.3 Discontinuous observation data

In order to reliably replay the behaviour of non-focal robots in the in-
ternal simulation, continuous observation data for those robots must
be available. However, there are a number of reasons why observation
data may be discontinuous. Firstly, line-of-sight is required for robots
to observe each other via the range and bearing sensor, so robots may
occlude each other. Secondly, even if line-of-sight is established, range
and bearing sensing is subject to packet loss, essentially making the
observed robot temporarily invisible. Finally, robots on the boundary
of sensor range may move in/out of sight multiple times over the
course of a fault detection time window.

In the event of discontinuous observations, no interpolation be-
tween available data points is performed. Instead, robots simply dis-
appear from the internal simulation when they cannot be observed,
and reappear if observed again within the fault detection time win-
dow. Discontinuous observation data makes it difficult to reproduce
the focal robot’s behaviour accurately, and will therefore impact fault
detection performance.
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5.4.4 Sampling multiple endpoints

Due to the stochastic nature of robot behaviour, the internal simula-
tion must be run multiple times to sample from the underlying proba-
bility distribution of focal robot’s possible endpoints. For each repeat
run, the focal robot’s behaviour is predicted until the time window
of observation data comes to an end. The endpoint of the focal robot
is then recorded, and the internal simulation is reinitialised with a
different random seed. The resulting sample of endpoints is used to
estimate the probability distribution of possible endpoints.

The default number of repeat runs was chosen to be 30. This was
found empirically to produce satisfactory results without incurring
unnecessary computational expense. A higher number of repeat runs
would be necessary if there were greater uncertainty in the predicted
behaviour, due to more sensor noise, for example. The effect of this
parameter value on the fault detector’s performance is analysed in
detail in Section 6.7.

5.4.5 Classification

In the experimental work presented in Chapter 4, the robot’s true
position was classified using a simple uniform distance threshold
from the mean of the sampled endpoint distribution. This is quite
naive, as it implicitly defines a circular 2D spatial decision boundary,
which does not take into account the shape of the endpoint distribu-
tion. Now that fault detection is being performed in a swarm context,
the focal robot’s predicted endpoints may be split into multiple dis-
joint regions, due to interactions with other robots. This necessitates
a more sophisticated approach for modelling the (potentially disjoint)
region of expected non-faulty robot behaviour.

Given the set of predicted non-faulty endpoints for the focal robot,
the aim is to classify the focal robot’s true endpoint as faulty or
non-faulty. Kernel density estimation (KDE) [93] is a non-parametric
method for estimating a probability density function. It is used here
to model the shape of the underlying probability distribution of possi-
ble non-faulty endpoints, because the shape of the distribution cannot
be assumed to be parametric. This is achieved by estimating the prob-
ability density function p̂(x) from the sampled endpoints e1, e2, . . . , en

as follows:
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Figure 5.5: Univariate KDE example for 5 data points. The dashed lines
represent the Gaussian kernels (described by Equation 5.2) placed over each
data point, and the solid line represents the estimated probability density
function created by summing over the kernels (described by Equation 5.1).

p̂(x) =
1
n

n

∑
i=1

KH(x− ei); KH(x) = |H|−1/2 K(H−1/2 x) (5.1)

where x = (x, y)T and ei = (xi, yi)
T are vectors that represent points

in 2D space, H is a 2×2 bandwidth matrix used to apply smoothing,
and K is the bivariate Gaussian kernel function [94]:

K(x) =
1

2π
exp

(
−xTx

2

)
(5.2)

These equations essentially describe the process of modelling the
underlying probability distribution by summing over Gaussian ker-
nels placed over each of the predicted endpoints. Figure 5.5 presents
a visual example for univariate data, which generalises to 2 dimen-
sions when a bivariate kernel function is used.

It is very important to select an appropriate bandwidth matrix, in
order to correctly model the underlying distribution. An amount of
smoothing must be applied that strikes a compromise between the
model being too jagged, and being over-smoothed [94]. The band-
width matrix is therefore calculated automatically from the endpoint
data using a plug-in bandwidth selector.

Defining a decision boundary

Kernel density estimation allows the underlying probability distribu-
tion of non-faulty endpoints to be modelled non-parametrically, but
this alone does not provide any way of discriminating between faulty
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Figure 5.6: Bayesian formalism for determining whether the focal robot’s
true endpoint v is anomalous. The input space is divided into regions R1
and R2 such that v is classified as an anomaly if it falls within region R2.
The threshold α defines the anomalous distribution. Taken from [66].

and non-faulty behaviour. In order to use this estimated probability
density function for binary classification, a boundary must be set to
produce a region within which the focal robot is expected to end up
if it is non-faulty. Ideally, the area under the probability density func-
tion would be integrated to define a boundary within which a certain
percentage of the area (and therefore probability of being non-faulty)
is contained. Unfortunately, this is a computationally expensive op-
eration, and is difficult to implement for multi-modal distributions.
Owens et al. [66] propose the following simple method of applying
a threshold to the estimated probability density function, to create a
decision boundary for the purpose of anomaly detection.

Given the predicted non-faulty endpoints e1, e2, . . . , en, the focal
robot’s true endpoint v should be classified as non-faulty (class C1)
if it is thought to come from the same distribution as the sampled
endpoints. Otherwise, it should be classified as faulty (class C2) [66].
Every sampled endpoint represents non-faulty behaviour, so belongs
to class C1. The focal robot’s true endpoint v belongs to class C1 with
probability P(C1) and class C2 with probability P(C2), and P(C1) +

P(C2) = 1. To minimise the probability of misclassification, the true
endpoint v is assigned to the class with the largest posterior proba-
bility, so v is assigned to C1 if P(C1|v) > P(C2|v) [66]. It is stated by
Bayes’ theorem [95] that:

P(Ci|v) =
p(v|Ci)P(Ci)

p(v)
(5.3)

Thus, v is assigned to class C1 when:

p(v|C1)P(C1) > p(v|C2)P(C2) (5.4)
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The quantities involving class C1 are modelled using kernel den-
sity estimation on the predicted endpoints. Since only predicted non-
faulty endpoints are available, the distribution of faulty endpoints is
unknown, so it is simply assumed to be a uniform distribution with
probability density α. Given this assumption, Equation 5.4 is equiv-
alent to applying a threshold to the estimated probability density of
the predicted non-faulty endpoints [66]. This is illustrated with an
orthographic projection in Figure 5.6. Therefore, the classification de-
cision for the focal robot’s true endpoint v is as follows:

Classification(v) =

 Faulty if 1
n ∑n

i=1 KH (v− ei) < α

Non-faulty otherwise
(5.5)

Setting the α threshold

The α threshold cannot simply be set to a fixed probability density,
as the height of the probability density function estimated via KDE
will vary greatly depending on the distribution of sampled endpoints.
Instead, the density estimate at the coordinates of each endpoint is
calculated, then the α threshold is set to the minimum of these densi-
ties. This ensures that all of the predicted endpoints will be contained
within the thresholded region. The result is a non-linear 2D decision
boundary, as shown in Figure 5.7.

The fault detector is parametrised with an α threshold scale factor,
to allow a buffer region to be added around the endpoints, to prevent
overfitting. A value less than 1 will result in a lower α threshold, and
therefore a larger region of predicted non-faulty behaviour. By de-
fault, this is set to 1 (no scaling). The effect of varying this parameter
value is investigated in Section 6.7.

To perform the classification, the probability density estimate at
the focal robot’s true endpoint (obtained from the final observation
in the time window) is calculated. If this is less than α, then the true
endpoint is outside the predicted region of non-faulty behaviour, so
the focal robot is classified as faulty. Otherwise, the true endpoint is
within the thresholded region, so the robot is classified as non-faulty.
This KDE-based classification method was implemented using the ks

R package [96], which was integrated into the ARGoS controller code
using the RInside library [97], allowing direct execution of R [98] code
from C++.
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Figure 5.7: Example of classification using a non-linear decision boundary,
created by thresholding the kernel density estimate of the predicted end-
point distribution. The crosses represent sampled endpoints, and the grey
region delineates the area within which a non-faulty robot is expected to
end up. The true trajectory of the focal robot is shown, starting at the square
and ending at the circle. In this instance the robot was non-faulty, and was
classified correctly (true negative).

5.4.6 Fault detection time window

The length of the fault detection time window is an important consid-
eration, as it affects the performance of the fault detector. The time
window length is a similar concept to the reinitialisation time period
used in the work presented in Chapter 4, except that it applies to
the analysis of past behaviour, rather than the prediction of future
behaviour. It was shown in Section 4.4.1 that a reinitialisation time
period of 10 seconds resulted in the best fault detection performance,
however the case study task is now quite different, so this time win-
dow length may no longer be the best choice — especially given that
fault detection is now being performed in a swarm context.

As discussed in Section 4.3.4, a long time window allows faulty
and non-faulty classes of behaviour to separate, making them easier
to differentiate, therefore improving the chances of detecting subtle
faults. However, a long time window would also suffer from drift
due to the reality gap, if implemented on real robots. Although the
behaviour of non-focal robots is replayed based on fixed observations,
there will still be drift in the focal robot’s simulated behaviour, due
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Parameter Value

Internal simulation repeat runs 30

Fault detection time window 5 s
Fault detection cycle interval 5 s
Kernel density estimation α threshold scale factor 1.0

Table 5.3: Fault detector default parameter values.

to the reality gap (if implemented on physical hardware). This must
be taken into consideration, even though no reality gap is simulated.

Furthermore, a long time window increases the probability that the
focal robot will interact with other robots during the internal simula-
tion. Every interaction with another robot causes uncertainty in the
predicted behaviour, which accumulates over time and increases the
spread of the predicted endpoints. This, in turn, will necessitate more
repeat runs of the internal simulator, to produce a representative sam-
pling of the underlying probability distribution of endpoints.

A short time window will mitigate this cumulative uncertainty, and
would limit drift due to the reality gap, but will only allow obvious
faults to be detected. The optimal time window length will be dif-
ferent for detecting each type of fault, and will also depend on the
swarm behaviour, so there may not be a window length that guar-
antees good performance in all scenarios. A short time window also
increases the chance of a robot being observable at both the start and
end of the window, and therefore allowing it to be classified.

A further consideration is that the time window length affects the
amount of memory required by each robot, as it controls the number
of observations that must be stored. It also affects the computational
expense of the internal simulation, because it defines the duration of
each internal simulation repeat run. In terms of resource usage, it is
therefore desirable to use a short time window.

The default length chosen for the fault detection time window is
5 seconds. Given that the ω-algorithm aggregation timer threshold
ω is set to 3 seconds, each robot is guaranteed to either perform a
coherence manoeuvre or avoid another robot within this 5 second
time window. The effect of different time window lengths on fault
detection performance is analysed in Section 6.7.
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Figure 5.8: Fault detection cycles when each robot in the swarm was classi-
fied by observing robot with ID 0, during a single example run.

5.4.7 Fault detection cycle interval

In an ideal world, fault detection would be performed at every control
cycle. Unfortunately, this would be very computationally expensive,
so a larger interval between fault detection cycles is required. The first
fault detection cycle begins as soon as a full time window’s worth of
observations have been collected, and fault detection is performed
at regular intervals thereafter. It is important this interval does not
exceed the length of the fault detection time window, otherwise there
will be times when an observer does not monitor the behaviour of its
neighbours, which may result in faulty behaviour being missed.

The default cycle interval was set to 5 seconds, to match the default
fault detection time window length, allowing robots to constantly
monitor the behaviour of their neighbours with the least computa-
tional expense. The trade-off being that the latency of fault detection
will be at least the length of this interval. If lower latency were re-
quired, then the interval could be reduced (at additional computa-
tional expense), such that the time windows overlap. A shorter cy-
cle interval will also increase the likelihood of observing a particular
robot at both the start and end of a time window, and therefore being
able to classify it.
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Figure 5.9: Number of robots classified in each fault detection cycle, from
the perspective of any observer, across 100 repeat runs.

5.5 experiment duration

In order to thoroughly test the fault detector’s performance, the ex-
ternal simulation must be run for long enough that any faulty robots
are classified by their neighbours several times. The required exper-
iment duration will depend on the swarm algorithm, the speed of
the robots, their sensing range, the fault detection time window, and
fault detection cycle interval. Figure 5.8 shows an example of how
often an observing robot is able to classify the other robots in the
swarm. The robots that were classified often remained adjacent to
the observer throughout the experiment. Those that were classified
relatively infrequently changed positions in the swarm, and drifted
in and out of the observer’s sensor range. Although some robots are
rarely classified by this observer, they will likely be classified by an-
other observer with a different perspective. Figure 5.9 shows that, on
average, an observing robot will classify 3 neighbours in each fault
detection cycle. Depending on a robot’s location in the swarm, it may
be able to observe more robots, but the sensing remains local.

An appropriate experiment duration was determined empirically
by running the external simulation 100 times with different random
seeds, for 6,000 ticks (10 minutes of real time), and calculating the
cumulative number of classifications of each robot at every tick. Fig-
ure 5.10 shows that an experiment duration of 400 seconds (6 minutes
and 40 seconds) is sufficient for any given robot to be classified at
least 100 times by its neighbours, in the worst case, regardless of the
initial position/orientation of the robots. This provides enough clas-
sification data to evaluate the fault detector’s performance, so using
a longer experiment duration would not have much benefit. With an
experiment duration of 400 seconds and a fault detection interval of
5 seconds, each observing robot will perform 80 fault detection cycles
before the experiment terminates.
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Figure 5.10: Cumulative classifications of any particular robot over time. A
robot is only classified if it was observed both at the start and end of a fault
detection cycle. The solid black line represents the median of 100 repeat
runs (every robot in the swarm is analysed). The grey region represents the
minimum and maximum values.

5.6 fault injection

Faults must be injected into robots in the external simulation, so that
the fault detector’s performance can be tested. However, it is impor-
tant that these faults do not cause any robots to become lost from
the swarm, as an absence of neighbouring robots would mean that
behaviour cannot be classified.

5.6.1 Failure modes

The following 7 failure modes were devised to test the fault detector:

Motor (complete)

In the event of complete motor failure, both of the robot’s wheel
motors become completely unresponsive, and the robot is unable to
move. The robot will continue to communicate with neighbouring
robots via its range and bearing sensor/actuator. This failure mode
is implemented by intercepting the desired wheel velocities set by
the robot controller, and setting them both to zero before the motor
speeds are updated.
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Motor (partial)

A partial motor failure causes the robot’s right wheel motor to oper-
ate at only 50% of its intended speed. This is implemented by inter-
cepting the desired right wheel velocity set by the robot controller,
and scaling it by half before the motor speeds are updated. This fail-
ure mode will cause the faulty robot to veer off to the right when
attempting to move in a straight line.

Sensor (complete)

Complete sensor failure causes the robot’s range and bearing sensor
to stop working, such that it cannot receive packets from other robots
— effectively making the faulty robot completely blind and unable
to avoid neighbouring robots that come too close. In the absence of
sensor data, the ω-algorithm controller will cause the robot to simply
turn 180

◦ whenever it attempts to perform a coherence manoeuvre, as
it will not be able to determine the centroid of its neighbours. There-
fore, this failure mode will cause the robot to simply move back and
forth with a period of ω, ignoring neighbouring robots.

Sensor (partial)

In the event of partial sensor failure, the robot’s range and bearing
sensor will have a blind-spot in its field of sensing. The robot will be
unable to sense neighbouring robots between -45

◦ and 45
◦, where 0

◦

is the robot’s current heading. In terms of the effect on ω-algorithm
aggregation, this means that the robot will perform coherence ma-
noeuvres with erroneous centroid calculations, and will fail to avoid
robots directly in front of it.

Communication failure

Communication failure corrupts the internal state data broadcast in
the range and bearing packet. Each internal state variable (listed in
Section 5.2.3) is set to a random value, uniformly selected from the
range of possible values that variable can take. The rest of the data
broadcast by the robot is unaffected. This is perhaps a little contrived,
but it allows the effect of random state data on the fault detector
to be tested. Note that this failure mode will not affect the robot’s
behaviour, as internal state data is only used for fault detection.
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Controller failure

When a robot suffers controller failure, there is a 10% chance at every
control step (100 ms) that the robot controller will instantaneously
transition to a random state (forward/avoidance/coherence). This
failure mode will cause the robot to sometimes behave erratically, as
its current intended behaviour may be interrupted.

Power failure

At every control step there is a 5% chance that a power failure will oc-
cur, which will cause both of the robot’s motors to stop working for 2

seconds, then resume normal operation. This failure mode is typical
of the behaviour observed in real e-puck robots when their battery
power is low. There will be enough power to allow inter-robot com-
munication, but not enough to power the motors reliably, resulting in
a start-stop behaviour.

5.6.2 Injecting faults

The faults to be injected during a particular experiment are specified
via the ARGoS configuration file. Each fault is listed separately, and
must either specify a particular failure mode, or that the failure mode
should be selected at random. The robot that the fault will be injected
into is randomly selected from the pool of non-faulty robots. This
means that a single robot will never suffer multiple simultaneous
failure modes. Following Tarapore et al. [12], faults are injected from
the outset of the experiment and persist throughout, providing the
most opportunity for the faults to be detected by neighbouring robots.

5.7 summary

This chapter introduced a revised version of the exogenous fault de-
tection system first proposed in Chapter 3. Instead of using an inter-
nal simulation to predict future behaviour, each observing robot now
uses it to analyse the past behaviour of neighbouring robots. This new
approach reduces uncertainty by reproducing the behaviour of each
robot in isolation, in the context of known past events. Although com-
putationally more expensive, this technique allows non-faulty end-
points to be predicted with greater accuracy, thus affording more re-
liable fault detection.
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This chapter has also detailed the implementation of the fault de-
tection system in simulation, and the experimental infrastructure re-
quired to test its performance. The failure modes defined in Sec-
tion 5.6.1 are used in the next chapter, to analyse the fault detector’s
performance and sensitivity to certain parameters.



6 FA U LT D E T E C T I O N P E R F O R M A N C E

This chapter presents the results of experiments designed to assess
the performance of the fault detection system described in Chapter 5.
The fault detector’s ability to detect each failure mode listed in Sec-
tion 5.6.1 is tested, as well as its tolerance to multiple faults of ran-
dom types. The results of scalability and global sensitivity analyses
are also presented.

6.1 quantifying performance

The efficacy of a fault detection system should be judged not only
on its ability to correctly detect faulty robots, but also its ability to
avoid misclassifying non-faulty robots. It may be costly, in terms of
both time and energy resources, to initiate a recovery mechanism in
response to the detection of a fault. If a robot is genuinely faulty,
then this cost may be justified. However, if recovery mechanisms are
triggered due to the misclassification of non-faulty robots, this may
prove more costly than not performing fault detection at all.

The fault detector’s performance is measured in terms its True
Positive Rate (TPR) and False Positive Rate (FPR), as defined in Sec-
tion 4.3.3. The TPR concerns only classifications of faulty robots (true
positives and false negatives), while the FPR pertains only to classifi-
cations of non-faulty robots (false positives and true negatives). Ran-
dom classification will result in average TPR and FPR values of 0.5.
Therefore, a TPR value higher than 0.5 indicates better than random
performance when classifying faulty robots. Similarly, a FPR value
lower than 0.5 indicates better than random performance when clas-
sifying non-faulty robots. A perfect classifier would have a TPR of 1

and an FPR of 0, however this is unrealistic to expect in practice.
Each observing robot carries out exogenous fault detection inde-

pendently of its neighbours, therefore the fault detection performance
will be different for each robot in the swarm, and will depend on their
own unique perspective. As discussed in Section 5.5, a particular ob-
server may have little opportunity to classify faulty robots before the
experiment terminates. This means that insufficient classification data
(true positives and false negatives) will be available to properly as-
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Figure 6.1: Variation in the TPR distributions when a sample size of 10 is
used, and 3 faults of random types are injected. Every box represents 10

repeat runs of the simulation, each executed with a different random seed.

sess the TPR for some observers. With a different random seed, they
might classify many faulty robots over the course of the experiment,
however it makes little sense to aggregate the performance of a par-
ticular observer over multiple repeat runs, as every robot is identical,
and will start from a random initial position and orientation every
time. Instead, the overall performance of the fault detection system
is assessed by collating classification data from all of the non-faulty
robots in the swarm, across multiple repeat runs, and calculating the
TPR and FPR from this aggregated data. This provides a performance
measure that is independent of any particular observer’s perspective.

6.2 consistency analysis

Both the external and internal simulations are stochastic, due to the
noise applied to the robots’ sensors and actuators. Consequently, even
if the robots start with the same initial positions and orientations,
their behaviour will change when the internal simulation is initialised
with a different random seed. In addition to this variation due to
noise, the initial positions and orientations of the robots in the exter-
nal simulation are randomised for every repeat run, to ensure that the
results obtained are not an artefact of a particular initial configuration.
Furthermore, faults are injected into robots selected at random, and
may even be of a random type. All of these random effects mean that
even if the same set of parameter values are used, any two executions
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Effect size Large Medium Small None Small Medium Large
A test score < 0.29 < 0.36 < 0.44 0.5 > 0.56 > 0.64 > 0.71

Table 6.1: Relationship between A test score and effect size [101].

of the external simulation (with different random seeds) may result
in very different fault detection performance. It is therefore necessary
to perform several repeat runs, in order to obtain a representative
measure of the system’s performance.

To determine an appropriate number of repeat runs, a technique
called consistency analysis was used. This technique was originally de-
veloped by Read et al. [99] in the context of agent-based simulations
of biological systems, however the concepts generalise to the swarm
robotics experiments carried out for this research project. Consistency
analysis works by first generating several distributions of experimen-
tal results, each containing the same number of repeat runs, which
use the same set of parameter values. The analysis then compares
these distributions to assess how similar they are. By varying the
sample size that is used to generate each distribution, the number of
repeat runs required to produce statistically consistent distributions
may be determined [100]. This ensures that the experimental results
can be attributed to the to the fault detection system, and its particular
parametrisation, rather than any random aspects of the simulation.

Following the recommendation of Read et al. [99], 20 different dis-
tributions were generated to assess each sample size. As an example,
Figure 6.1 shows the amount of variation in the TPR distributions
when a sample size of 10 is used, and 3 faults of random types are
injected. Each repeat run was executed with the default parameter
values summarised in Tables 5.1, 5.2, and 5.3 (see Chapter 5). Given
that the same parameter values were used for each repeat run, the
differences in the fault detection performance are attributable to the
different fault detection scenarios that were generated by each ran-
dom seed. Larger sample sizes result in greater similarity between
the distributions, thus mitigating the influence of random effects.

The consistency analysis proceeds by comparing the first distribu-
tion to distributions 2-20, using the Vargha-Delaney A test [101]. This
is a non-parametric effect magnitude test that compares two distri-
butions and returns the probability that a randomly selected sample
from one distribution will be larger than a sample randomly selected
from the other. A probability of 0.5 indicates that there is no differ-
ence between the two distributions, while values above/below cer-
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Figure 6.2: Consistency analysis results for the TPR and FPR of the fault
detection system. Only absolute A test scores are plotted, as the sign is
irrelevant - only the magnitude of the effect is important. Small, medium,
and large effect size thresholds are shown.

tain thresholds (listed in Table 6.1) indicate either a small, medium,
or large difference. A sample size should be selected that minimises
the maximum absolute difference between the first distribution and
the remaining 19 distributions.

The analysis was carried out with the Spartan R package [100],
which implements the statistical techniques first proposed by Read
et al. [99]. The results presented in Figure 6.2 show the relationship
between sample size and the effect of simulation stochasticity on the
fault detection performance. A sample size of 100 repeat runs was
chosen, as it strikes an appropriate balance between computational
expense and consistency in the results.

It is worth noting that the consistency of the results will vary de-
pending on the type and number of faults injected, and the parameter
values used for a particular experiment. The analysis presented here
is specific to 3 faults of random types, and the default set of param-
eter values. Ideally, consistency analysis would be re-run for every
experimental condition, to determine an appropriate sample size. Un-
fortunately, this would be infeasible, as testing sample sizes of up to
300 requires 6,000 repeat runs, each of which take at least an hour
to complete. Even when run on a high performance computing clus-
ter, this is prohibitively computationally expensive. Consequently, it
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cannot be guaranteed that a sample size of 100 will always produce
results as consistent as those presented here if the experimental con-
ditions are changed. However, it should be sufficient for the analyses
carried out in this chapter.

6.3 single faults

To assess the fault detector’s ability to detect each failure mode de-
fined in Section 5.6.1, a single fault of each type was tested in isolation.
Based on the results of consistency analysis, 100 repeat runs were per-
formed for each failure mode, with the fault injected into a random
robot in each run. Figure 6.3 shows the resulting TPR and FPR for
each failure mode.

The FPR is unaffected by the type of fault injected, because false
positives and true negatives can only come from classifications of non-
faulty robots. When a non-faulty robot is being classified, it will be
the focal robot of an observer’s internal simulation. Thus, any faulty
robot that could affect the classification of the focal robot will be a
non-focal robot. Only inconsistencies in the observed position or ori-
entation of the faulty robot could therefore influence the classification.
If a robot were to fail in such a way that its range and bearing actu-
ator completely stopped working, then it would become invisible to
neighbouring robots. This would affect the classification of non-faulty
robots, and consequently the FPR, as the faulty robot would not be
modelled in any internal simulations.

The rest of this section will discuss the effect of each failure mode
on the fault detection system, and the resulting influence on the TPR.

Motor (complete)

Winfield and Nembrini [6] and Bjerknes [7] have shown that this fail-
ure mode is the most detrimental to overall collective behaviour when
translation of the swarm is required, in the context of the β-algorithm
and ω-algorithm. Yet, it is reliably detected by the proposed fault de-
tection system with a median TPR of 0.99, because the discrepancy
between the expected and observed behaviours is quite extreme. The
faulty robot will remain completely stationary, but its predicted non-
faulty behaviour will be to move away from its starting point. How-
ever, note that this is specific to the ω-algorithm. In a different swarm
behaviour, where the robots perhaps do not move as much, it may
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Figure 6.3: TPR (white) and FPR (grey) for a single fault of each type.

be more difficult to distinguish between motor failure and non-faulty
behaviour.

Although the faulty robot is immobile, its internal state will still
update according to the ω-algorithm controller’s reaction to sensory
inputs. Therefore, when an observer attempts to internally simulate
the faulty robot, the internal state may indicate that it is supposed
to be turning on the spot. If the fault detection time window is too
short, then there may not be time for the predicted region of non-
faulty behaviour to move far enough from the starting point, resulting
in false negatives, which will drag the TPR down. False negatives
will also occur if the internally simulated focal robot doubles back
on itself, and ends near its starting position at the end of the time
window. For the default parametrisation of the fault detector, these
are rare occurrences, so the TPR remains high.
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Motor (partial)

Figure 6.3 shows that partial motor failures can be detected reliably
with a median TPR of 0.99. This fault strongly affects the robot’s be-
haviour, making it easy to distinguish from the expected non-faulty
behaviour. The faulty robot’s trajectory will veer off to the right, caus-
ing it to fall outside the region of predicted non-faulty endpoints,
resulting in a high proportion of true positive classifications. Due to
interactions with neighbouring robots throughout the fault detection
time window, there may be times when the true endpoint of the faulty
robot falls within the region of expected non-faulty behaviour. How-
ever this is a rare occurrence, so the overall TPR is high.

Sensor (complete)

Complete sensor failure is detected with a lower median TPR of
0.80. This is partly because the resulting faulty behaviour of the ω-
algorithm controller is similar to that of the expected non-faulty ag-
gregation behaviour, resulting in many false negatives. However, this
failure mode is also difficult to detect because it affects the observing
robot’s internal simulation.

Normally, the focal robot would be able to share its own observa-
tions with the observer, to ensure that the internal simulation con-
tains the necessary information to reproduce its behaviour. However,
given that the faulty robot is essentially blind, this secondary observa-
tion data is unavailable. Consequently, the observing robot must rely
solely upon its own local observations of its neighbours to internally
simulate the faulty robot’s expected non-faulty behaviour. The inter-
nal simulation assumes that the focal robot can sense other robots, so
it cannot distinguish between the absence of observations of a par-
ticular robot due to faulty sensors, or because there was actually no
robot within sensor range to be observed. The expected and observed
behaviours of the faulty robot will therefore be very similar, result-
ing in false negatives, unless there are robots within the observer’s
own sensor range that influence the internally simulated expected be-
haviour. However, the focal robot should at least react to the observer,
as they must be within sensor range of each other for classification
to be initiated. This means that the faulty behaviour can often still be
distinguished from non-faulty behaviour.



146 fault detection performance

Sensor (partial)

As shown in Figure 6.3, partial sensor failure is only detected with
a median TPR of 0.56. This is primarily because only a quarter of
the robot’s field of sensing is affected by the fault, so the effect on
the robot’s behaviour is subtle, which makes it difficult to distinguish
from non-faulty behaviour.

As with complete sensor failure, this fault will affect the availabil-
ity of secondary observation data. The faulty robot will be unable to
sense some of its neighbours, so these robots will not be present in
the observer’s internal simulation, unless they have been directly ob-
served. This means that the expected non-faulty behaviour may be
consistent with the observed faulty behaviour, resulting in false neg-
atives, and therefore a low TPR.

Communication failure

This is perhaps the most interesting failure mode, as it does not affect
the faulty robot’s behaviour, yet it is detected with a median TPR of
0.97. This is because when an observing robot initialises its internal
simulation, although the initial position and orientation of the faulty
robot may be correct, its internal state will be completely random due
to corrupted packet data. This means that the simulation of expected
non-faulty behaviour will be incorrect, and the predicted region of
endpoints will be in the wrong place. The true endpoint of the faulty
robot is therefore likely to lie outside this region, resulting in a true
positive, despite the fact that the robot’s behaviour is unaffected by
the fault.

Controller failure

The results presented in Figure 6.3 show that this failure mode is
detected with a median TPR of 0.93, as the faulty robot will behave
normally most of the time, so the effect on the robot’s behaviour is
subtle.

Although the internal simulation will begin with the predicted be-
haviour being consistent with the faulty robot’s true behaviour, the
‘real’ robot’s internal state may randomly change during the time
window, resulting in an endpoint outside of the predicted region.
Depending on when this occurs within the time window determines
whether there is enough time left for the faulty and non-faulty classes
to separate sufficiently for the fault to be detected.
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Figure 6.4: TPR (white) and FPR (grey) for increasing numbers of faults of
random types.

Power failure

This failure mode is essentially equivalent to intermittent complete
motor failure, so is detected with a median TPR of 0.95. The faulty
robot will behave mostly as expected, except that it will suddenly stop
moving occasionally. Like controller failures, the success of detecting
this fault will depend on when it occurs within the time window. If
it occurs right at the end of a time window, then it may be difficult to
distinguish from non-faulty behaviour, resulting in a false negative.

6.4 multiple random faults

Next, the fault detector’s ability to cope with multiple simultaneous
faults was tested. Rather than injecting faults of a specific type, the
failure modes were selected at random in each of the 100 repeat runs.
This provides an overall assessment of the fault detector’s perfor-
mance, irrespective of the failure modes present in the swarm.
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Figure 6.4 shows the effect on the TPR and FPR for increasing num-
bers of faults. Unlike data-driven methods that use the behaviour of
neighbouring robots as a model of normal behaviour, the exogenous
fault detection approach proposed here is relatively unaffected by
multiple faults. This is because fixed observations of neighbouring
robots are replayed in the internal simulation, so the behaviour of
faulty robots will simply be replayed in the same way as non-faulty
robots. The results show that the fault detector is still able to achieve
a high median TPR (0.9 or greater), even when over half of the swarm
of 10 robots is faulty.

The outliers present in the TPR for a single fault are due to sensor
failures that only represent 2/7 of the possible failure modes. When
two or more faults are injected, enough sensor failures are injected
that they are no longer considered outliers. The decreasing spread of
the TPR and increasing spread of the FPR as more faults are injected
is attributable to the change in the ratio of faulty to non-faulty robots.

6.5 scalability

All of the results presented so far have been based on a swarm size of
10 robots. To demonstrate that the results observed are not simply an
artefact of a particular swarm size, a comparison of results for differ-
ent swarm sizes are presented here. Only swarms of up to 25 robots
were tested, due to the computational expense of running internal
simulations for every observer on the same machine.

The number of faults injected is proportional to the size of the
swarm, to ensure fair comparisons. For each swarm size, 1/5 of the
robots were injected with faults of random types. For example, 4

faults were injected into a swarm of 20 robots. The area of the re-
gion within which the swarm is initialised was also scaled, such that
the density of robots per square metre remained constant, regardless
of the swarm size.

As shown in Figure 6.5, the median TPR remains high across all
swarm sizes tested (0.9 or greater). The spread of the TPR decreases,
as there are more observing robots performing more classifications.
Again, the FPR is largely unaffected. This consistency in the results
is to be expected, as local sensing and decentralised control are en-
forced, thus ensuring scalability.
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Figure 6.5: TPR (white) and FPR (grey) for swarms of increasing size.

6.6 latency

Although not explicitly analysed, it is worth discussing the latency
of fault detection. In all the experiments carried out to test the fault
detector, faults were injected from the outset, and persisted through-
out each experiment. However, if faults were to be injected during an
experiment, there would be some delay before the fault is detected.

The main cause of latency is the fault detection cycle interval (see
Section 5.4.7). If there is a long delay between fault detection cycles,
then there may be a long delay before a fault is detected. However,
even if the cycle interval is short enough that fault detection is per-
formed at every time step, some latency will still be present. This is
because once a fault occurs, a certain amount of time must pass (de-
pending on the failure mode) before the fault is even detectable, as the
faulty and non-faulty classes of behaviour must separate enough to
become distinguishable. Even then, the faulty robot must have been
observed at both the start and end of a time window for an observer
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to even consider classifying them. Beyond this initial minimum de-
lay, the latency of the fault detector should be quite low, as a fault
will potentially be detected as soon as the next fault detection cycle
is complete.

6.7 global sensitivity analysis

In order to determine the influence of various parameters on the per-
formance of the fault detection system, sensitivity analysis [102] was
carried out. One-at-a-time sensitivity analysis, whereby each param-
eter is perturbed independently of the rest (which remain at their
baseline values), is relatively naive as it ignores interactions and de-
pendencies between parameters. Instead, global sensitivity analysis
[103] was performed, which varies the values of every parameter un-
der consideration simultaneously. This reveals whether a particular
parameter has a strong influence on the fault detection performance,
even when the values of other parameters are also changing.

The focus here is not on finding parameter values that result in op-
timal performance, rather to show how sensitive the proposed exoge-
nous fault detection system is to various parameters. Robustness to
parameter perturbations indicates that the system should generalise
to scenarios other than the case study presented in this thesis. Sensi-
tivity to particular parameters highlights areas where efforts should
be focused in order to improve the robustness of the fault detector.

The parameters analysed via global sensitivity analysis, and the
minimum and maximum values considered for each one are listed in
Table 6.2. In addition to parameters of the fault detector, simulation
parameters concerning the accuracy and reliability of the robots’ sen-
sors were analysed. The rest of the parameters remained fixed at their
default values listed in Tables 5.1, 5.2 and 5.3.

6.7.1 Latin hypercube sampling

As with consistency analysis, the global sensitivity analysis presented
here was carried out using the Spartan R package [100]. The approach
employs Latin hypercube sampling [104], which is a technique that
allows the space of possible parameter values to be sampled whilst
ensuring good coverage, even with a relatively small sample size.

Figure 6.6 shows an example of Latin hypercube sampling. The
range of values between the upper and lower limit for each parame-
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Parameter Min Max

Internal simulation repeat runs 10 50

Fault detection time window (seconds) 1 10

Kernel density estimation α threshold scale factor 0 1

Position noise standard deviation (mm) 0 5

Orientation noise standard deviation (degrees) 0 5

Range and bearing packet drop probability 0 0.25

Table 6.2: Parameters analysed via global sensitivity analysis, and the mini-
mum and maximum values considered for each.

ter is divided into N intervals. The Latin hypercube design ensures
that the each of these N intervals is sampled exactly once for every pa-
rameter [105]. Although the example shown in Figure 6.6 comprises
only two dimensions, Latin hypercube sampling generalises to an ar-
bitrary number of dimensions. This technique was used to generate
100 sets of parameter values, within the specified upper and lower
bounds, across the 6 parameters listed in Table 6.2.

Latin hypercube sampling produces continuous parameter values,
but the number of internal simulation repeat runs and the fault detec-
tion time window length (actually specified as a number of simula-
tion ticks) are both discrete-valued parameters. Therefore, after gener-
ating the Latin hypercube design, the sampled parameter values for
these discrete parameters had to be rounded to the nearest integer.
This affects the distribution of sampled values across the parameter
space slightly, however the Latin hypercube design does not need to
be perfect for the global sensitivity analysis to be effective.

For each of the 100 sets of parameter values generated via Latin
hypercube sampling, 100 repeat runs were conducted to produce a
consistent result (totalling 10,000 runs), in accordance with the con-
sistency analysis presented in Section 6.2. In every repeat run, 3 faults
of random types were injected to test the fault detector. The external
simulation was executed with the same 100 random seeds for every
set of parameter values, to mitigate some of the random effects of
the simulation (particularly the initial positions and orientations of
the robots) This gives greater confidence that observed differences in
fault detection performance are actually attributable to the changes
in parameter values.

The median performance of the 100 repeat runs was calculated for
each sample in the Latin hypercube design, and plotted against each
parameter separately to visually reveal any correlations present. The
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6.4. Determining influence of parameters

Figure 6.17: An example latin hypercube design, obtaining ten samples across two parameters.

maintained, but falls between 0.0 and 1.0. For example, CD8Treg cd8TregToCD4T-
helperSpecificityDropO↵, which dictates the probability of a CD8Treg cell apoptosing
an e↵ector Qa-1 expressing CD4Th1 cell upon binding, is ordinarily set to 1.0. The
perturbation range over which the latin hypercube design will assign values hence falls
between 0.9 and 1.1. Owing to the probabilistic domain of this variable, the perturba-
tion range would be adjusted to fall within the boundaries of 0.8 to 1.0.

Simulation parameters that take as values only natural numbers, such as Simula-
tion numCNS, which dictates the number of neurons in the CNS compartment, must be
rounded to the nearest natural number before the simulation may be executed. Hence,
the perturbation range for these parameters will be approximately 10% above and be-
low the baseline value, but may not fall exactly on those bounds. For parameters which
may take only even values, values are rounded to the nearest even natural number.

The latin hypercube design employed here creates 500 samples of simulation pa-
rameter space. Due to the stochastic nature of the simulation, acquiring representative
simulation responses for each sample requires obtaining averaged simulation results.
500 simulation executions are attempted at each sample point in the latin hypercube
design, in accordance with the analysis of section 6.3 above. However, it is possible
that the latin hypercube design selects points in parameter space at which simulation
execution is computationally intractable. There exists finite space within the compart-
ments of the simulation, were the latin hypercube design to select parameters such that
T cells proliferate (divide) quickly for extended periods of time, going on to exist as
e↵ector cells for extended periods of time, it is possible that simulation execution will
stall as there are more cells than space to contain them. In such extreme cases where it
is not possible to obtain a full set of 500 simulation executions for a particular sample
point in parameter space, that sample is excluded from the analysis.

For all the remaining sample points, response distributions are calculated from the
500 simulation executions, based on the responses outlined in section 6.2 above. For
the present analysis, averaged results are obtained from each response distribution.
This is the median value for all T cell related responses, but mean values are used
for the two EAE based responses. The T cell responses may adopt a very large range
of values, however the two EAE based responses can assume only values of 0 to 5.
Although the underlying distributions are known to be non-normal, employing mean

135

Figure 6.6: An example of Latin hypercube sampling. Ten sets of parameter
values are sampled across two parameters. Taken from Read et al. [99].

Spartan [100] package also calculates the partial rank correlation co-
efficient (PRCC) [105], which was included in each scatter plot to aid
interpretation of the results. The PRCC provides a quantitative mea-
sure of any correlation between a parameter and the fault detector’s
performance, after the effects of every other parameter have been sta-
tistically removed.

At first glance of the scatter plots, there may or may not appear to
be a visible correlation, however they can be misleading so should
be read with caution. Instead, the PRCC value should be trusted to
provide a true measure of any correlation, which may not be apparent
from the scatter plot alone.

6.7.2 Sensitivity to each parameter

The sensitivity of the fault detector with respect to each of the pa-
rameters analysed is discussed in this section. Only plots of strong
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Figure 6.7: Summary of the results of global sensitivity analysis. This box-
plot shows the effect of parameter variation on the TPR (white) and FPR
(grey) over the 100 sets of parameter values tested.

correlations between a parameter and fault detection performance
are presented here — the full results of global sensitivity analysis can
be found in Appendix B.

A summary of the effect of parameter variation on the TPR and FPR
over the 100 sets of parameter values tested is presented in Figure 6.7.
This shows that the parameter values have a much greater influence
over the FPR than the TPR. This is to be expected, as faulty robots
will be correctly classified so long as the internal simulation does
not predict something similar to their faulty behaviour, whereas the
behaviour of non-faulty robots must be predicted very accurately to
prevent the occurrence of false positives.

Figure 6.8 shows an overview of the absolute PRCC between each
parameter and the TPR and FPR. The correlations between the fault
detection time window length and packet drop probability on the
TPR were not statistically significant. It is important to note that the
PRCC is a measure of correlation only — it reveals the strength of in-
fluence of each parameter, regardless of the range of the data values.
Although this figure may initially seem to indicate that some param-
eters have a strong influence on the TPR, when read in conjunction
with the scatter plots and the overview presented in Figure 6.7, it can
be seen that there is actually little overall influence on the TPR.

Internal simulation repeat runs

By default the number of internal simulation repeat runs is set to
30, which should produce a reasonable estimate of the region of non-
faulty endpoints. The lower and upper limits were set to 10 and 50

repeat runs, respectively, to see whether values above or below the
default would affect the fault detection performance.

It was found that the TPR of the fault detector is robust to changes
in the number of repeat runs of the internal simulation (see Fig-
ure B.1 in Appendix B). There is a moderate negative correlation,
which shows that the TPR actually decreases slightly when the in-
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Figure 6.8: Overview of the absolute PRCC between each parameter and
the TPR and FPR. The correlations between the fault detection time win-
dow length and packet drop probability on the TPR were not statistically
significant.

ternal simulation samples a greater number of endpoints. This is be-
cause a greater number of internal simulation repeat runs increases
the likelihood of the predicted region of non-faulty endpoints grow-
ing and engulfing the true endpoint of the faulty robot, resulting in
more false negatives. There is also a slight negative correlation be-
tween the FPR and the number of internal simulation repeat runs,
indicating that the FPR improves slightly with a higher number of
repeat runs (see Figure B.2 in Appendix B). Again, this is due to the
growth of the region of predicted non-faulty endpoints, which in-
creases the likelihood of a non-faulty robot being classified correctly
(true negative).

Clearly, there is a trade-off to be made here, as a greater number
of repeat runs will lower the FPR at the cost of a lower TPR. Overall,
this parameter does not have a strong influence on the fault detector’s
performance. Achieving good performance largely depends on the
other parameters being set to favourable values.

Fault detection time window

The default fault detection time window is 5 seconds, so this param-
eter was analysed over the range of 1 to 10 seconds. As discussed
in Section 5.4.6, the length of this time window is an important con-
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sideration. The results of global sensitivity analysis confirm that this
parameter has a strong influence on fault detection performance.

As shown in Figure 6.9, the TPR suffers if the time window length
is too short. This is because there is not enough time for the faulty
and non-faulty classes of behaviour to separate, causing faulty robots
to be incorrectly classified as non-faulty (false negatives). Longer time
windows allow enough time for the classes to separate, resulting in a
higher TPR. The time window length has a much stronger influence
on the FPR, as can be seen in Figure 6.10. The strong negative correla-
tion shows that the FPR rapidly decreases as the time window length
increases. This is because a longer time window causes more uncer-
tainty in the predicted endpoints, thus causing the expected region
of non-faulty endpoints to grow, and increasing the chance that the
focal robot’s true endpoint will fall within this region.

Although the sensitivity analysis suggests that increasing the fault
detection time window further might produce even better perfor-
mance, this is a somewhat artificial result because there is no ‘real-
ity gap’ between the external and internal simulations. If the pro-
posed fault detection system were to be implemented on real robots,
it would suffer the effects of drift due to the reality gap, as discussed
in Chapter 4. Therefore, fault detection performance would deterio-
rate if the time window length is too long.

Kernel density estimation α threshold scale factor

By default, the α threshold scale factor is set to 1. Any value greater
than 1 would reduce the size of the region of expected non-faulty
endpoints, and could result in some of the sampled endpoints falling
outside the region. Therefore, only values between 0 and 1 are con-
sidered, which will increase the size of the region.

The fault detection performance is not particularly sensitive to this
parameter. The TPR is slightly worse for low α scale factors (see Fig-
ure B.5 in Appendix B), as this increases the size of the predicted
region of non-faulty endpoints, thus increasing the likelihood of false
negatives. There is a moderate positive correlation between the FPR
and the scale factor, showing that the FPR generally improves as the
scale factor decreases (see Figure B.6 in Appendix B). This is to be
expected, because it causes an increase in the size of the predicted
non-faulty endpoint region, resulting in fewer false positives.
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Figure 6.9: Influence of the fault detection time window length on the TPR.
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Figure 6.10: Influence of the fault detection time window length on the FPR.
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Figure 6.11: Influence of the position noise standard deviation (σposition) on
the TPR.
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Figure 6.12: Influence of the position noise standard deviation (σposition) on
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There is a trade-off to be made here, as a scale factor less than 1 can
be used to improve the FPR by adding a ‘buffer region’ that prevents
overfitting the sampled endpoints, at the cost of a lower TPR.

Position noise standard deviation

The default value used for the position noise standard deviation,
σposition, is 1 mm. The fault detector requires accurate sensor readings
to work properly, so only standard deviations up to 5 mm were anal-
ysed. The global sensitivity analysis results reveal that this parameter
has a strong influence on the performance of the fault detector.

Figure 6.11 shows that the TPR improves as the amount of noise
in the sensed position increases. This is because sensor noise will
not only affect the initialisation of the internal simulation, but also
the replaying of non-focal robot behaviour, as every observation of
a robot’s position/orientation will suffer from error. Consequently,
high sensor noise results in internal simulations that are inconsistent
with reality, and a predicted non-faulty endpoint region that is in
the wrong place. Therefore, the true endpoint of a faulty robot is
even less likely to fall within this region, and be misclassified. For
similar reasons, the FPR is very sensitive to position noise standard
deviation, as evidenced by the strong correlation in Figure 6.12. If the
predicted region of non-faulty endpoints is in the wrong place due
to a noisy internal simulation, then non-faulty robots will fall outside
this region and be misclassified. Even with a σposition of only 5 mm,
the FPR is too high for the fault detector to be useful.

There is a trade-off to be made here, although in general, low sensor
noise should be preferred, as the impact on the TPR is much lower
than the FPR. It is worth noting that the effect of sensor noise would
likely be even more extreme if relative coordinate systems were used,
as error would accumulate over time, rather than being constrained
to each independent observation.

Orientation noise standard deviation

The default value used for the orientation noise standard deviation,
σorientation, is 1 degree. Standard deviations up to 5 degrees were anal-
ysed, to see whether the fault detector was sensitive to a small amount
of error in the sensed orientation of a robot.

The results show that the fault detector is more tolerant to noise
in the sensed orientation of a robot than the sensed position. The
TPR is quite robust to changes in this parameter (see Figure B.9 in
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Appendix B), and the FPR is only slightly affected — higher levels of
noise result in a higher FPR (see Figure B.9 in Appendix B).

Range and bearing packet drop probability

The packet drop probability was set to 0.01 by default, which is very
low. To increase realism, packet drop probabilities up to 0.25 were
analysed. The results of global sensitivity analysis showed that the
fault detector is quite robust to changes in this parameter (see Fig-
ure B.11 and Figure B.12 in Appendix B). As the amount of packet
loss increases, the FPR increases only slightly. Despite observation
data being lost due to dropped packets, there is clearly still enough in-
formation to produce a reasonably accurate internal simulation, and
achieve good fault detection performance.

6.8 summary

The experimental results presented in this chapter have shown that
the proposed fault detection system is able to reliably detect various
different types of fault, when tested on a robot swarm performing
ω-algorithm aggregation in simulation. It performs particularly well
when a fault results in behaviour that is dissimilar to the expected
non-faulty behaviour, such as motor failure. The fault detector does
not perform as well when the change in behaviour is relatively subtle
(for example, partial sensor failure).

It was also shown that the fault detection system is relatively unaf-
fected by multiple simultaneous faults, or an increase in swarm size.
Global sensitivity analysis revealed that the fault detector is quite ro-
bust to most of the parameters analysed, but is sensitive to the length
of the fault detection time window and sensor noise, particularly with
respect to the FPR. In terms of future improvements or optimisations,
these are the parameters that are worth focusing efforts on.
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This chapter concludes the thesis by summarising the main contribu-
tions of the research presented, before discussing its limitations and
suggesting potential avenues of future work. Finally, the general re-
search hypothesis defined in Chapter 1 is revisited, which the success
of the thesis is evaluated against.

7.1 summary and contributions

This section provides a summary of each chapter in this thesis, along
with their main contributions.

Part I - Introduction

chapter 2 - background & related work :

This chapter reviewed the fault tolerance and reliability of robot
swarms, and highlighted problems that can be caused by par-
tially failed robots, motivating the need for an explicit approach
to fault tolerance. Potential solutions to this problem were then
reviewed in the context of natural/artificial immunity, with a
focus on immune-inspired fault recovery mechanisms. Finally,
endogenous and exogenous fault detection approaches were ex-
amined, in the context of swarm robotic systems.

Contribution: A review of fault tolerance and fault detection in
swarm robotic systems, and a critique of existing approaches.
The final section of this chapter draws together all known ap-
proaches to exogenous fault detection in the context of robot
swarms, and discusses their limitations.

Part II - Fault detection via prediction of future behaviour

chapter 3 - predicting future behaviour :

This chapter proposed an exogenous fault detection system that
is based on the comparison of expected and observed robot
behaviours, specifically with a focus on predicting future be-
haviour. Related work on robots with internal models was re-
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viewed, including embedded simulations for online evolution,
and predicting consequences of future behaviour for engineer-
ing safe and/or ethical robots. The experimental infrastructure
required to implement the proposed fault detection approach
was also discussed.

Contribution: A novel fault detection approach, which repre-
sents the first known example of predicting future behaviour
via internal simulation for the purpose of exogenous fault de-
tection in swarm robotic systems. This work brings together
existing research concerning robots with internal models, and
anomaly detection techniques, to produce a novel fault detec-
tion system that represents a first step towards engineering fault
tolerant swarms. This chapter also includes a discussion of key
issues that must be considered when attempting to implement
embedded simulations on physical robot hardware, with the
aim of precisely predicting future behaviour.

chapter 4 - single robot fault detection :

This chapter presented the results of initial experimental work
carried out to investigate the viability of fault detection based
on simulated predictions of a single robot’s future behaviour,
as an intermediate step towards implementing the exogenous
fault detection system proposed in Chapter 3 in a swarm con-
text. The chapter also discussed open problems with fault detec-
tion based on the prediction of future behaviour, and proposed
potential solutions.

Contribution: The experimental results presented in this chap-
ter showed that simulation can be used to successfully predict
real robot behaviour, however drift between simulation and re-
ality occurs over time due to the reality gap. This necessitates
periodic reinitialisation of the simulation to reduce false posi-
tives. It was shown that selecting the length of this reinitialisa-
tion time period is non-trivial, and that there exists a trade-off
between minimising drift and the ability to detect the presence
of faults. The open problems discussed at the end of this chap-
ter also apply to other researchers interested in predicting the
future behaviour of individual robots in a swarm.
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Part III - Fault detection via analysis of past behaviour

chapter 5 - analysing past behaviour :

This chapter presented a variation on the exogenous fault detec-
tion system originally proposed in Chapter 3, which is instead
based on the analysis of past behaviour. This allows concrete
observations of neighbouring robots to be collected over a past
time window before attempting to discriminate between nor-
mal and abnormal behaviour, which can be used to mitigate
uncertainty. This chapter also detailed the implementation of
the fault detection system in simulation, and the experimental
infrastructure required to test its performance.

Contribution: The revised exogenous fault detection system
presented in this chapter builds on the novel contributions of
Chapter 3, and is the main contribution of this thesis. This new
approach reduces uncertainty by reproducing the behaviour of
each robot in isolation, in the context of known past events. Al-
though computationally more expensive, this technique allows
non-faulty behaviour to be predicted with greater accuracy, thus
affording more reliable fault detection. This architecture could
also potentially be used to perform fault diagnosis once a fault
has been detected, thus solving the first two stages of an explicit
fault detection, diagnosis, and recovery process that would af-
ford swarm robotic systems a high degree of fault tolerance.

chapter 6 - fault detection performance :

This chapter presented the results of experimental work carried
out to assess the performance of the fault detection system pro-
posed in Chapter 5. The fault detector’s ability to detect various
failure modes was tested, as well as its tolerance to multiple
faults of random types. The results of scalability and global sen-
sitivity analyses were also presented.

Contribution: The experimental results presented in this chap-
ter showed that the revised fault detection system proposed in
Chapter 5 is able to reliably detect various different types of
fault, and can cope with multiple simultaneously failed robots.
It was also shown that the fault detection performance scales
with increasing swarm size, and that the true positive rate is ro-
bust to changes in parameter values. This work also represents
the first known application of consistency analysis to swarm
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robotics research, which provides greater confidence in the re-
sults obtained.

7.2 limitations

This section discusses the limitations of the work presented in this
thesis, along with proposed solutions.

7.2.1 Reliance on prior knowledge of robot controller

The primary limitation of the exogenous fault detection approach pro-
posed in this thesis is that the controller code of neighbouring robots
being classified must be known a priori. This means that the model
of normal behaviour is unable to change online at run-time, thus pre-
cluding its use with swarms of robots that adapt and learn during
their lifetime.

Learning a model of robot behaviour online

This limitation could perhaps be overcome by learning the model
of normal behaviour online via observations of neighbouring robots.
If the structure of the robot controller is fixed, and available before
deployment, then this problem reduces to discovering the parameters
of each robot’s controller.

Blum [77] presents initial work in this direction, in the context of
the Consequence Engine architecture. A simple optimisation algo-
rithm is used to estimate the parameter values of robot controllers
with a known structure. Six robots perform obstacle avoidance, each
with a different straight line speed, which must be learned in order to
accurately predict their behaviour. Simulation is used to predict the
behaviour of each robot using estimated parameter values, and the
error between the predicted and observed behaviour is minimised by
the optimisation algorithm.

If the structure of the robot controller is not known a priori, then
learning a model of normal behaviour online is much more challeng-
ing. This could perhaps be achieved by training an Artificial Neural
Network (ANN) to learn the input/output function encoded by a
robot’s controller. This would certainly be possible for simple Braiten-
berg vehicles, but it may be difficult to rediscover complex behaviour-
based controllers.
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Unfortunately, if the learning process assumes that neighbouring
robots are non-faulty, then the model of normal behaviour will be sus-
ceptible to distortion by faulty robots. This may result in erroneous
classifications after the model has been learnt. One potential solution
might be to allow an initial bootstrapping phase where the behaviour
of the robots can be guaranteed to be non-faulty, and thereafter only
allow gradual changes in normal behaviour to be learned online.

Broadcasting robot controller information

Instead of attempting to learn the model of behaviour online, a sim-
pler solution might be to have robots broadcast information about
their robot controller to each other. For example, O’Dowd et al. [71]
program e-puck robots to broadcast ANN controller information to
their neighbours in the form of the synaptic weights. This assumes an
ANN controller with a fixed topology, however the structure of the
controller could also potentially be communicated.

If a robot is adapting its behaviour online, then constantly broad-
casting the current version of its controller to neighbouring robots
would be one way of ensuring that it is internally simulated correctly.
This would allow the proposed fault detection system to be used with
swarms of robots that change their behaviour after deployment.

7.2.2 Reliance on data from potentially faulty robots

Part of the motivation for pursuing exogenous fault detection is that it
can mitigate reliance on trusting information from potentially faulty
robots. However, the approach presented in this thesis is currently
highly dependent on data received from neighbouring robots.

This may not be a serious issue, as the fault detection performance
results for communication failure presented in Figure 6.3 demon-
strate that erroneous data is unlikely to result in misclassifications
— it may even help matters. If a faulty robot fails to reliably commu-
nicate the data required to internally simulate its behaviour, then it
will likely be correctly classified as faulty anyway. Regardless of this
result, reducing communication between robots is desirable.

Ideally, exogenous fault detection would be based solely on the
outwardly observable behaviour of neighbouring robots. This section
discusses what could potentially be achieved using the observer’s on-
board sensor hardware alone.
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Position and orientation

The revised fault detection system proposed in Chapter 5 uses a sim-
ulated model of a range and bearing sensor to observe the position
of neighbouring robots. This is an active IR sensor, in the sense that
the position of neighbouring robots can only be calculated if they are
actively emitting IR light. Unfortunately, this means that completely
failed robots become invisible, and therefore cannot be classified.

One potential alternative might be to fit each robot with a passive
sensor, such as an omnidirectional camera, which does not rely on
actively emitted signals to detect neighbouring robots. The main dis-
advantage with the use of a camera, is that uniquely identifying each
observed robot is much more difficult — in the proposed approach
robots transmit their unique IDs via the range and bearing sensor/ac-
tuator. However, Olson et al. [106] showed that it was possible for a
team of 14 autonomous robots to uniquely identify each other using
AprilTag fiducial markers [107] and on-board cameras.

Neither range and bearing sensors, nor cameras can directly sense
the orientation of a particular robot (unless sophisticated image pro-
cessing were to be used). The approach presented in this thesis in-
stead assumes that the robots are able to proprioceptively sense their
current orientation using an on-board compass, and broadcast this
information to neighbouring robots. In order to remove this depen-
dency of communicated orientation data, an observer could infer the
orientation of neighbouring robots by calculating their direction of
travel from consecutive observations.

Internal controller state

As mentioned in Section 5.2.3, the internal state of a robot’s controller
must be known in order to initialise the internal simulator. In the
approach proposed in Chapter 5, each robot simply broadcasts this
data to neighbouring robots.

To remove this dependency on communicated internal state data,
an observing robot could potentially infer the internal state of a neigh-
bouring robot based on observations of its behaviour. This could be
achieved by using the internal simulator to execute multiple ‘what
if?’ scenarios, to test several estimated internal states from the same
initial conditions. The error between the predicted and observed be-
haviour could then be used as feedback to an optimisation algorithm,
which would allow the true internal state of a robot to be determined.
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Secondary observation data

Removing the dependency on broadcast secondary observation data
would be much more difficult. As explained in Section 5.1, each robot
broadcasts its observations of neighbouring robots, which allows an
observer to internally simulate every individual that may have influ-
enced the behaviour of that robot during the past time window.

Without this information, the observer would be strictly limited
to its own local observations, which would often be insufficient to
accurately reproduce the behaviour of neighbouring robots within
its internal simulation. This would therefore result in more frequent
misclassification of robot behaviour — particularly an increase in the
number of false positives due to unexplained deviations from ex-
pected behaviour. Nevertheless, exogenous fault detection would still
be possible, albeit at a degraded level of performance.

7.2.3 Sensitivity to sensor noise

As shown in Section 6.7, the FPR of the fault detection system is
highly dependent on accurate observations of robot behaviour, so is
very sensitive to even low levels of noise in both the sensed position
and orientation of neighbouring robots. If the focal robot is initialised
in the internal simulation with an incorrect pose, then the predictions
of its behaviour will be incorrect. Therefore, noisy observation data
will significantly affect the false positive rate of the classifier.

Consequently, either high accuracy sensor hardware must be used,
or some method of mitigating the effects of noise is required. One
possible solution might be for each observing robot to cross-reference
the secondary observation data broadcast by its neighbours, to find
duplicate observations of each neighbouring robot. For any particular
robot, duplicate observations of its position and orientation could be
averaged, to provide a better estimate of its true location.

7.2.4 Problems with detecting certain failure modes

As mentioned in Section 7.2.2, the use of active range and bearing
sensors precludes the detection completely failed individuals. This
is not a major concern, as it has been shown by Winfield and Nem-
brini [6] and Bjerknes [7] that the effect of completely failed robots
on swarm behaviour is relatively benign. That being said, unless
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the failed robots are modelled as environmental obstacles within the
internal simulation, then the observed behaviour of neighbouring
robots will not be fully accounted for.

Robots that suffer a failure in their range and bearing actuators,
such that they stop emitting IR light, will similarly become unde-
tectable. In this case, the partially failed robot may have some neg-
ative influence on swarm behaviour, while remaining invisible to
neighbouring robots. As discussed in Section 7.2.2, this problem could
potentially be solved through the use of passive sensors, such as cam-
eras, so that the position/orientation of robots suffering these failure
modes can still be detected.

Like the work of Tarapore et al. [12], the exogenous fault detection
system presented in this thesis also struggles to detect faults which
result in behaviour that is similar to non-faulty behaviour. Therefore,
the detectable failure modes will very much depend on the definition
of normal behaviour.

The results presented in Chapter 6 are specific to ω-algorithm ag-
gregation, for which it is easy to detect motor failures, because the
default behaviour of each robot is to be constantly moving. However,
if the expected non-faulty behaviour were for a robot stop moving for
extended periods of time (to manipulate objects in the environment,
for example), it would be more difficult to detect motor failures — at
least until the robot is expected to move again.

The results in Chapter 6 also show that sensor failures (both com-
plete and partial) are more difficult to detect than other failure modes,
due to their subtle affect on robot behaviour. Sensor failures could
perhaps be detected more easily by simply checking for inconsisten-
cies between secondary and direct observation data. For example, if
robot A does not report observations of robot B, but robot C can see
both robots A and B, and can tell that robot A should be able to see
robot B, then it may infer that robot A has faulty sensors. However,
this would only work if there was some overlap in the observation
data. To increase the chance of overlap, data could be pooled from
neighbouring robots, and cross-referenced for inconsistencies.
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7.2.5 Computational expense

As discussed in Section 5.1, the revised exogenous fault detection
approach trades-off mitigation of uncertainty for computational ex-
pense. This is because the behaviour of each neighbouring robot must
be predicted in isolation, thus increasing the number of internal sim-
ulation executions per fault detection cycle.

There is a theoretical upper bound on the maximum computational
expense incurred by neighbouring robots, based on how many could
physically fit within an observer’s shared sensor range, and only
those directly observable would be classified. Beyond this limit, an ob-
server’s internal simulation will not consume further computational
resources, regardless of the number of robots in the swarm. The av-
erage computational expense will be significantly lower in practice,
provided that the swarm is not very densely aggregated.

If the hardware resources available are unable to cope with the
computational demand of the proposed exogenous fault detection
approach, then a low fidelity simulation, such as the minimal e-puck
simulator developed by O’Dowd [70] (used in Chapter 4), could be
used instead of a general purpose robot simulator like ARGoS. In the
event that even a low fidelity simulation is too demanding, then vari-
ous optimisations could be made to reduce computational expense.

Given that most of the robots in a swarm robotic system will be
non-faulty for the vast majority of the time, constantly running inter-
nal simulations to verify normal behaviour is probably unnecessary.
Instead, it may be more appropriate to use a lighter-weight anomaly
detection system in the first instance, to detect whether anomalous
behaviour has occurred in the observer’s immediate neighbourhood,
without necessarily indicating which robot is specifically at fault. This
could then trigger execution of the exogenous fault detection system
proposed in this thesis, to perform fine-grained fault detection.

Each observing robot does not necessarily even need to classify ev-
ery single one of its neighbours at each fault detection cycle. Instead,
it could classify a random sample of its neighbours each time, to re-
duce computational load. The disadvantage of this approach, is that
faulty robots may go unnoticed until they are randomly selected for
classification, thus increasing the latency of fault detection. Similarly,
the fault detection cycle interval could also be increased, to achieve a
similar trade-off of computational expense and latency.
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7.2.6 Generalisability

It is important to note that the experimental results presented in
Chapter 6 are limited to simulations of ω-algorithm aggregation. The
fault detection performance is expected to differ when tested on other
swarm behaviours, due to the fact that the performance depends on
how easily faulty behaviour can be distinguished from non-faulty be-
haviour. For example, it would be difficult to detect motor failures
in swarm behaviours where the individual robots do not move very
often. This is because the predicted non-faulty behaviour may be for
a robot to remain stationary, which is indistinguishable from faulty
behaviour due to motor failure, resulting in false negatives until the
robot attempts to move again.

Furthermore, poorer performance would be expected when applied
to probabilistic robot behaviour such as a random walk. This is be-
cause non-deterministic behaviours are more difficult to predict, and
the increased uncertainty will result in a larger region of predicted
non-faulty endpoints. This, in turn, will cause an increase in the num-
ber of false negatives, and consequently a lower TPR.

However, the importance of reliably detecting faults will also vary
depending on the swarm behaviour, as each will be affected by faulty
robots in different ways. Collective behaviours that critically depend
on self-organisation to achieve locomotion, such as β-algorithm and
ω-algorithm phototaxis, are highly susceptible to motor failures in
individual robots (as discussed in Section 2.1). Whereas, swarm be-
haviours that do not rely on co-operation, such as foraging algorithms
where individual robots act independently, are unlikely to be signifi-
cantly affected by motor failure in a single robot.

Without further testing, it is difficult to speculate about the gener-
alisability of the results to other swarm behaviours. However, at least
for deterministic behaviours, the fault detector should perform well
on other swarm algorithms, provided that the faults to be detected re-
sult in significant deviations from the expected non-faulty behaviour.
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7.3 future work

This section suggests potential avenues of future work.

7.3.1 Improving fault detection performance

The research presented in this thesis has focused on demonstrating
a proof of principle, rather than tuning the fault detector to produce
optimal performance. The experimental results presented in Chap-
ter 6 could potentially be improved in a number of ways, as will be
discussed throughout this section.

Trajectory analysis

The implemented approach only compares the endpoints of the pre-
dicted and observed behaviour, completely ignoring the trajectories
of the robots. Performance could perhaps be improved by taking this
trajectory data into consideration. This is especially important if the
fault detection time window is long enough for a robot to double
back on itself, such that it ends up very close to where it started. This
kind of scenario is difficult to distinguish from a lack of movement
due to motor failure, based on endpoint data alone.

Without even performing sophisticated trajectory analysis, simply
comparing the expected and observed distance travelled by a robot
over the time window would allow the number of false negatives
to be reduced. Performance improvements could also be gained by
comparing the predicted and observed orientations of a robot during
the fault detection time window, as this provides further information
that can be used to discriminate between borderline cases. It may
even be sufficient to compare only the final orientations.

Discontinuous observation data

As mentioned in Section 5.4.3, in the event of discontinuous obser-
vations, no interpolation between available data points is performed.
Instead, non-focal robots simply disappear from the internal simula-
tion when they cannot be observed, and reappear if observed again
within the fault detection time window. This makes it difficult to re-
produce the focal robot’s behaviour accurately, because predictions
must be performed using incomplete information.
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The main cause of discontinuous observation data is packet loss,
which has been shown to cause an increase in the false positive rate
of the classifier (see Section 6.7). It is therefore desirable to mitigate
the effects of this discontinuous data in some way.

One solution might be to use interpolation to fill in the gaps in the
data, by estimating the missing positions/orientations. This would
prevent non-focal robots from disappearing and reappearing in the
internal simulation, which should result in more reliable prediction
of behaviour. Simple linear interpolation may be sufficient, however
the copy of the robot controller may even prove useful for filling in
the blanks, as it should be able to predict the missing behaviour.

An alternative approach might be to collate secondary observation
data from neighbouring robots, in the hope that at least one of the
robots will have made the missing observations themselves.

Lowering the false positive rate

The fault detection performance results presented in Chapter 6 show
that the default FPR is relatively high — around 25%. As discussed in
Section 2.3, the misclassification of robot behaviour can be costly. For
example, if a non-faulty robot is erroneously classified as faulty this
may result in the instigation of unnecessary collective recovery mech-
anisms, thus wasting time and energy. Conversely, partially failed
robots left undetected may have a detrimental effect on swarm be-
haviour. Therefore, parameter values must be selected such that these
two cases are traded-off based on their relative importance.

For situations where a low FPR is more important, the number of
false positives can be reduced in a few different ways, at the expense
of a lower TPR. Firstly, the fault detection performance presented in
this thesis is based on the raw output of the classifier — each fault
detection cycle is completely independent of those that came before
it, so the classifier essentially has no memory. As demonstrated by
Christensen et al. [61], thresholding a moving average of the output
of a fault detector can reduce the number of false positives, by fil-
tering out brief anomalies in the data, so that it will only detect per-
sistently faulty behaviour. This technique was applied successfully in
Section 4.4, in the context of predicting future behaviour, and can also
be applied to the analysis of past behaviour.

Figure 7.1 shows the effect of different filtering window sizes on
smoothing out false positives. For a window size of N, an observer’s
classifications of a particular robot from the past N fault detection
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Figure 7.1: The effect of different filter window sizes on smoothing out false
positives. Classifications over time from a single observer that was observing
a non-faulty robot. Any faulty classifications are therefore false positives.

cycles are considered, and the majority classification is taken as the
filtered result. A window size of zero has no effect, so corresponds
to the raw classification data. The majority of the classifications are
correct (true negatives), but there are brief periods where the non-
faulty robot is classified as faulty (false positives). In this example,
many of the false positives can be filtered out with a window size of
three, and completely removed with a window size of six. However,
this reduction in the number of false positives comes at the cost of
increased false negatives and fault detection latency [12].

Instead of simply filtering out false positives, the root cause of
the misclassifications may be addressed. Figures C.1 and C.2 in Ap-
pendix C show that false positives are often the result of borderline
cases, which can be avoided by lowering the α threshold scale factor
to increase the size of the predicted non-faulty endpoint region (at
the expense of the TPR). The effect of this parameter on the FPR is
shown in Figure B.6 of Appendix B.

Additionally, faulty classifications could be confirmed via targeted
monitoring. For example, if an observing robot suspects that a neigh-
bouring robot is faulty, then it could ask that robot to run a series of
diagnostic tests to determine whether or not it is actually faulty. This
would reduce the likelihood of expensive recovery mechanisms being
triggered prematurely due to false positives.
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Parameter value optimisation

As demonstrated in Section 6.7, the parameters of the fault detection
system (listed in Table 5.3) dictate the level of performance attained.
The optimal values for these parameters will depend on many factors,
such as the swarm behaviour, the failure modes to be detected, the
reality gap, the amount of sensor noise, the computational resources
available, and the desired ratio of TPR to FPR.

The application of Multi-Objective Optimisation [108] would there-
fore seem appropriate, as the selected parameter values must trade-
off multiple conflicting objectives. The results of global sensitivity
analysis presented Chapter 6 may also inform parameter optimisa-
tion, as they indicate which parameters have the most influence on
fault detection performance, and which will therefore benefit from
optimisation more than others.

Given enough computational power, an ensemble of fault detectors
could perhaps be used, each tuned to detect different types of fault
under varying conditions. The results of each could even be combined
via some form of majority voting mechanism to improve overall fault
detection performance.

7.3.2 Modelling the environment

As mentioned in Section 5.2, the experimental work presented in
Part III of this thesis was carried out in an empty simulated arena,
free from obstacles. This allowed the problem of internally modelling
the environment to be sidestepped for this proof of principle. If the
proposed fault detection approach is to be useful in a realistic appli-
cation scenario, it will be necessary for the robots to internally model
their environment, so that they are able to accurately predict the true
behaviour of their neighbours in response to obstacles.

This is a particularly challenging problem, and the accuracy of the
environmental modelling largely depends upon the robots’ sensing
capabilities. Well-established techniques such as Simultaneous Local-
isation and Mapping (SLAM) [109] could potentially be used build
an internal model of the robot’s local environment, within which
neighbouring robots are simulated. Dynamic environments should
not present an issue, so long as the dynamic elements can be recorded
by each robot over the course of each fault detection time window.
Again, the fidelity of the modelling is an important consideration, as
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it must trade off accuracy of behavioural prediction with computa-
tional expense.

It may even be possible to achieve satisfactory fault detection per-
formance without internally modelling every aspect of the environ-
ment. Taking phototaxis in the ω-algorithm as an example (described
in Section 2.1.1), given that individual robots cannot sense the di-
rection or angle to the beacon, it follows that they will not be able
to internally simulate its presence or predict its effect on robot be-
haviour. Given that the exogenous fault detection approach proposed
in Chapter 5 is based on the analysis of past behaviour, fixed observa-
tions of robots are available, so any influence the beacon had on their
behaviour over the past time window is already known.

Only the beacon’s influence on the focal robot’s predicted behaviour
will be unaccounted for, which will be relatively minor as it only con-
trols the avoidance radius of the robot. Fault detection despite incom-
plete internal models may therefore be entirely possible. Given suf-
ficient computational resources the internal simulator could perhaps
also be used the run many ‘what if?’ scenarios in order to infer the
location of environmental features that cannot be locally observed.

7.3.3 Implementation on physical hardware

Although the experimental work presented in Chapter 4 was carried
out on a physical e-puck robot, the revised exogenous fault detec-
tion system proposed in Chapter 5 has not yet been implemented
and tested on real robots. This is an important next step, in order to
validate the results observed in simulation.

Experimental infrastructure required

Instead of immediately attempting to implement a fully-embedded
solution (as envisaged in Chapter 3), the use of an experimental in-
frastructure like that used by Winfield et al. [75] to implement the
Consequence Engine architecture [76] on real robots would initially
more feasible. This would enhance both the sensing capabilities and
computational resources of the e-puck robots, beyond that which can
be achieved with the current hardware platform.

The tracking infrastructure presented in Appendix A could be used
to implement a range-limited virtual sensor that allows the e-puck
robots to observe the position and orientation of their neighbours,
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which would otherwise only be possible with a range and bearing
extension board [87] or an omnidirectional camera [29].

Also, as mentioned in Chapter 3, Winfield et al. [75] implement
each robot’s internal model using the Stage robot simulator, which
runs on a separate server in a service-oriented architecture, accepting
requests from robots over a network connection. The revised exoge-
nous fault detection system presented in Chapter 5 could be imple-
mented in the same way, using instances of ARGoS for each robot’s
internal simulation.

Conceptually, the exogenous fault detection system would run on-
board each robot, despite the use of remote processing and virtual
sensing. This would be permitted under Sharkey’s definition of Scal-
able Swarm Robotics [26], as local sensing and decentralised control
would still be enforced.

The reality gap

As discussed in Section 3.3.2, if the proposed exogenous fault detec-
tion system were to be implemented on physical robots, there would
be a reality gap between the internal simulation and the real world.
It was shown in Chapter 4 that this reality gap causes drift, thus ne-
cessitating periodic reinitialisation of the simulator. The experimental
work presented in Part III of this thesis does not suffer from this prob-
lem, due to the use of nested identical instances of ARGoS.

Although the results presented in Chapter 6 seem to indicate that
a longer fault detection time window will result in improved perfor-
mance, this does not take into account the effects of drift due to the re-
ality gap. Once implemented on real robots, this drift will mean that
performance gains obtained by increasing the time window length
will eventually fall off, as shown in Section 4.4.1.

The effects of drift could be mitigated with better calibration of
the internal simulation. If the three categories of correspondence be-
tween simulation and reality enumerated by O’Dowd et al. [72] can
be improved, then this will close the reality gap further, thus allowing
more accurate predictions of robot behaviour. However, there exists a
trade-off between simulation fidelity and computational expense.

Rather than increasing fidelity, automated methods could be used
to optimise parameters of the simulator, to reduce the error between
predicted and observed behaviour. As mentioned in Appendix A, the
ground-truth data required for these comparisons could be obtained
via a tracking infrastructure.
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Fully-embedded solution

Once the exogenous fault detection system has been demonstrated
to work on physical hardware using remote processing and virtual
sensing, the implementation of a fully-embedded solution could then
be attempted. This may be quite challenging due to the computational
expense of predicting the behaviour of each robot in isolation.

In order for the proposed fault detection approach to be useful in
practice, each fault detection cycle must complete in real-time before
the next cycle is executed. If this presents problems, then the fault
detection cycle interval can be tuned to accommodate for longer pro-
cessing times, at the expense of fault detection latency.

As mentioned in Section 5.2, the aim of this research was to develop
a fault detection system that would adhere to the Scalable Swarm
Robotics principles of decentralised control and local sensing [26],
without being constrained to a particular hardware platform. There-
fore, the target platform chosen for a fully-embedded solution may
not be an e-puck robot, especially given the age of the hardware.

General-purpose computing on graphics processing units (GPGPU)

The fault detection method presented in this thesis is ‘embarrassingly
parallel’, in the sense that each repeat run of the internal simulation
is entirely independent and could therefore be executed concurrently.
The minimal e-puck simulator developed by O’Dowd [70] was re-
cently rewritten by Poulding [110] using the CUDA parallel program-
ming architecture [111], for the purpose of GPU-accelerated testing of
robot controllers. This allows whole instances of the simulator to be
executed in parallel, so could be used to analyse the past behaviour
of every neighbouring robot simultaneously.

If a higher-fidelity simulation is required, an alternative approach
would be to accelerate some aspect of the simulator using GPGPU.
Jones et al. [112] investigated the use of GPGPU on autonomous mo-
bile robots, for the acceleration of parallel ‘what if?’ scenarios, specifi-
cally motivated by the ethical robot work of Winfield [76]. They show
that the time consuming ray tracing operation of the Stage robot sim-
ulator can be GPU-accelerated using OpenCL [113], and executed on
System-on-Chip devices that incorporate powerful GPUs with low
power consumption. Jones et al. [112] tested the concept on laptops,
but state that they intend to equip e-puck robots with mobile GPU
hardware in future, to enable accelerated embodied simulation for
the Consequence Engine architecture.
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7.3.4 Acting upon classifier output

As mentioned in Chapter 5, the exogenous fault detection method im-
plemented for this thesis is entirely passive — the robots do act upon
their classifications of neighbouring robots. An appropriate method
of acting upon this information must be determined, and whether it
should be shared within the swarm to make collective decisions.

Collective consensus

Collective consensus could be achieved either implicitly or explicitly.
In the implicit case, each robot would independently decide what
to do in response to its own faulty classifications of neighbouring
robots. Again, taking ω-algorithm phototaxis as an example, if each
observing robot chooses to ignore neighbouring robots that it has de-
termined to be faulty, this would result in partially failed robots being
left behind. This would represent a form of emergent collective con-
sensus, as it does not require explicit communication of classification
results within the swarm.

Alternatively, an explicit collective consensus could be achieved via
some form of majority voting mechanism amongst robots in the local
neighbourhood. This could potentially help to filter out false posi-
tives, because each classification would be performed from a different
perspective. However, it remains to be seen whether cross-referencing
classification data with that of neighbouring robots would improve
the reliability of classifications. If multiple robots independently ar-
rive at the same incorrect answer, then this may be reinforced by a
majority vote — the effect of which could be costly. This issue would
be exacerbated by faulty robots broadcasting erroneous classification
data — depending on the failure mode, faults in an observing robot
may prevent it from classifying neighbouring robots correctly.

Nested and recursive internal simulations

A significant open problem with the proposed exogenous fault de-
tection system, is that of nested and recursive internal simulations.
For example, robot A internally simulates robot B, who is internally
simulating robot C. Robot B determines that robot C is faulty, and
initiates a fault recovery behaviour. The behaviour of robot B will not
be anticipated by the internal simulation of robot A, unless it also
internally simulates robot B internally simulating robot C. Therefore,
robot A will classify robot B as faulty.
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This issue of nested internal simulations becomes recursive when
robot A internally simulates robot B, who is internally simulating
robot A. Without accounting for the internal simulations of other
robots, any fault recovery behaviour will be unexpected, and there-
fore every robot will end up classifying each other as faulty.

One potential solution to this problem might be to program the
robots to explicitly signal when a fault recovery action is going to be
taken, so that fault detection based on internal simulation can be tem-
porarily disabled, before returning to the task at hand. However, this
will not allow faults that occur during fault recovery to be detected.

An alternative approach might be to allow a certain depth of nested
internal simulations, as sufficient prediction accuracy may be achieved
with only shallow nesting. Unfortunately, this would again increase
the computational complexity of the solution. This remains an open
problem, as the best solution is not immediately clear.

Fault diagnosis and recovery

The output of the classifier should feed into fault diagnosis and re-
covery mechanisms, in order to complete the explicit process of fault
tolerance. The architecture based on internal models presented in this
thesis could potentially be used to implement both fault diagnosis,
and to predict the outcome of various fault recovery mechanisms to
assess their cost/viability.

In terms of fault diagnosis, the internal simulator could be used to
simulate the injection of various different types of fault into the focal
robot, to predict their effect on its behaviour from the same initial con-
ditions. This would result in a separate set of predicted endpoints for
each failure mode considered. Rather than semi-supervised anomaly
detection used for fault detection, the observer is now faced with a
multi-class classification problem, where each fault has its own class.

Each of these classes of behaviour could still be modelled using
KDE, but rather than using a threshold to define a bounded region of
normal behaviour, non-linear decision boundaries would implicitly
be defined where the probability density of each estimated distribu-
tion overlaps. The region of this pattern space that the focal robot’s
true endpoint falls into would determine which fault is diagnosed.

Following fault diagnosis, the internal simulation architecture may
be used for the purpose of determining the most appropriate fault re-
cover mechanism to use. However, it would would not be possible to
do this via the analysis of past behaviour — instead the prediction of
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future behaviour would be required, as the outcome must be imagined.
The preceding fault diagnosis should have determined the cause of
the failure, and therefore whether the fault is likely to be repairable.

Like the Consequence Engine architecture [76], the internal simula-
tion could be used to predict the consequences of various actions, so
that the cost of repairing a particular fault is worth the time/energy
investment can be assessed. The success of various different options
could also be weighed against each other, allowing the most appro-
priate course of future action to be taken.

7.4 conclusion

Chapter 1 defined the following general research hypothesis that
guided the research presented in this thesis:

Individual robots in a swarm robotic system can use internal
simulations to predict the behaviour of their neighbours, and
through the comparison of expected and observed behaviour, can
exogenously detect the presence of faults in those robots.

It was shown that this behavioural prediction can be achieved in two
different ways — via the prediction of future behaviour in Part II, and
via the analysis of past behaviour in Part III of this thesis. For both
approaches, it was demonstrated that faults can be detected via the
comparison of expected and observed robot behaviours. Although
the work in Part II was only tested on a single robot, the work in
Part III was demonstrated to allow exogenous fault detection in a
swarm robotics context, albeit only in simulation.

The initial aims of this thesis have been met, and the research pre-
sented has demonstrated a valuable new approach to exogenous fault
detection based on the use of internal models. This is in line with a re-
cently emerging trend towards internal modelling, which is believed
to be required for the field of swarm robotics to make a leap forward.

The use of an internal simulation may seem heavyweight in com-
parison to existing data-driven approaches, however the same archi-
tecture could also be used by a robot throughout both fault diagnosis
and recovery. The research presented in this thesis therefore repre-
sents a significant step towards a novel integrated solution for explicit
fault tolerance in swarm robotic systems.
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A T R A C K I N G I N F R A S T R U C T U R E

This appendix presents a low-cost tracking infrastructure that was
built for the purpose of implementing the exogenous fault detection
system proposed in Chapter 3. Considerations that were taken when
building and configuring the system are highlighted, using a swarm
of e-puck robots as a case study. Potential applications of the sys-
tem are discussed, the cost of the equipment is documented, and its
known limitations are addressed.

a.1 optical tracking systems

Optical tracking systems are used in many research laboratories for
monitoring and recording the movements of mobile robots. The data
gathered by these systems is invaluable for offline post-experiment
analysis, such as measuring the area coverage of a robot swarm. These
systems can also be used to provide robots with online feedback
about their current position and orientation, for the purpose of in-
door localisation. Unfortunately, obtaining precise and reliable track-
ing data often comes at the cost of expensive equipment.

Commercial motion capture systems typically work by attaching
retroreflective markers to the robots, and using special cameras that
illuminate the scene with IR light. These cameras observe the light
reflected from the markers through an IR filter, allowing them to ef-
ficiently locate the markers in the scene using simple image process-
ing algorithms. A pattern of markers is recognised by the tracking
system, allowing the position and orientation (or pose) of a robot to
be detected. Vicon motion capture systems take such an approach,
and are able to track robots precisely and reliably. The Vicon-based
experimental infrastructure built at the Bristol Robotics Laboratory
(BRL) [74] is of particular relevance, as it has been used successfully in
a number of swarm robotics studies [72, 114, 8, 75]. Unfortunately, for
many research laboratories, Vicon systems comprising even a small
number of cameras are prohibitively expensive.

In contrast, IRIDIA’s Arena Tracking System [115] does not use
retroreflective markers to detect robots. Instead, an overhead array
of 16 visible-light cameras is used to decode printed markers placed

185
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on top of each robot, in order to determine their pose. Although this
system is cheaper to build than a Vicon system, the high-resolution
cameras used are still expensive, and many man-hours would be re-
quired to develop the custom software necessary to drive the system.
Alternatively, an open-source vision-based tracking software solution
could be used, such as SwisTrack [116] or AprilTag [107], which were
developed as cost-effective alternatives to expensive motion capture
systems like Vicon. However, the precision of the tracking data ob-
tained using visible-light cameras is often inferior to that acquired
from commercial motion capture systems that use retroreflective mark-
ers.

OptiTrack1 is a recent competitor in the motion capture market, and
offers a cost-effective alternative to Vicon systems, whilst still deliv-
ering precise and reliable tracking data. This potentially provides an
affordable solution for many research laboratories. An OptiTrack sys-
tem for real-time tracking of ground-based robot swarms was built
for this research at the York Robotics Laboratory (YRL), which is de-
scribed in the following sections.

a.2 system overview

Figure A.1 shows the tracking infrastructure built at YRL. This is
similar to the Vicon-based experimental infrastructure constructed at
BRL [74]. The OptiTrack motion capture system provides high pre-
cision tracking of the robots. This consists of three cameras that are
mounted on a 3.5 m × 3.5 m × 2.5 m truss rig, and are angled down
to face the arena below. A swarm of robots can be tracked anywhere
within the boundaries of the 2.5 m square arena. OptiTrack offer a
wide range of different cameras, with varying levels of performance.
Flex 13 cameras were chosen, as they are designed to provide medium
volume motion capture at a reasonable cost. These cameras have a res-
olution of 1.3 megapixels, a maximum frame rate of 120 frames per
second, and a horizontal field of view of 56

◦. In order to track the
robots, the cameras have a ring of 28 IR LEDs that emit light with a
wavelength of 850 nm. This light bounces off retroreflective markers
mounted on the robots, and returns to the cameras. IR filters and im-
age processing algorithms on-board the cameras are used to detect
these markers.

1 https://www.optitrack.com

https://www.optitrack.com
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Figure A.1: Tracking infrastructure monitoring a swarm of six e-puck robots.
The three OptiTrack cameras are circled. The arrows indicate the angle of
each camera.

At least two cameras are required for the tracking software to tri-
angulate marker coordinates, but a greater number of cameras is
typically used to improve coverage. This is especially important if
a swarm needs to be tracked over a large area. Using more cam-
eras also allows robots to be tracked reliably even in the presence
of marker occlusion — where line of sight between a camera and a
marker is obstructed. However, when tracking ground-based robots
on a 2D plane, the likelihood of marker occlusion is relatively low.
For this research, three cameras arranged in a triangular layout was
found to provide adequate coverage at a low cost. The positioning of
the cameras is important — they are set up such that their fields of
view overlap with each other, and are placed overhead to reduce the
chance of marker occlusion. The cameras are mounted on a perma-
nent truss rig so that the cameras do not move, removing the need
for repeated recalibration of the system.

The e-puck robots move at a relatively low maximum speed of 13

cm/s, which is easy for the tracking system to handle. Figure A.2 pro-
vides an overview of the experimental infrastructure, and illustrates
data flow between system components. The three Flex 13 cameras are
connected via USB to an OptiHub 2 — a custom USB hub that al-
lows up to six cameras to synchronise with each other. This, in turn,
connects via USB to the OptiTrack server (a Windows machine with
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Figure A.2: Overview of the tracking infrastructure, showing data flow be-
tween system components.

tracking software installed), allowing tracking data to be obtained
from the cameras. The server processes the tracking data, logs it for
post-experiment analysis, and makes it available to e-pucks and users
in real-time via the wireless LAN. Each robot is assigned a static IP
address, and connects to the LAN via a wireless router. This allows
networked computers to connect to any robot using the SSH protocol.

a.3 tracking hats

Retroreflective markers must be attached to the robots so that they
can be tracked by the OptiTrack cameras. Liu and Winfield [74] solved
this problem for the Vicon system installed at BRL by fitting e-pucks
with 3D-printed hats (shown in Figure A.3), upon which the markers
were mounted. The markers have a hole in their underside, allowing
them to be placed on pins protruding from the top of the hat. The 3D-
printed hats have a 4×6 matrix of pins, providing 24 possible marker
positions. This allows each e-puck to be assigned a unique pattern of
markers, so that it can be identified by the tracking system.

Initially, the same hat design was tested with the OptiTrack system
at YRL. Unfortunately, this was unsuccessful for a number of rea-
sons. Firstly, OptiTrack markers are slightly larger than Vicon mark-
ers. Secondly, the OptiTrack cameras are lower resolution than the
Vicon MX40 cameras used at BRL (1.3 megapixels vs 4 megapixels).
The result is that the 3D-printed hats place the markers too closely to-
gether for the OptiTrack cameras to distinguish between them. It was
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Figure A.3: Left: 3D-printed hat design with Vicon markers. Centre: Laser-cut
hat design with OptiTrack markers. Right: Six example marker patterns.

therefore necessary to design a new tracking hat that would allow the
markers to be spaced farther apart.

a.3.1 Laser-cut hat design

The new tracking hat design2 is shown in Figure A.3. It is made from
a single laser-cut piece of plastic 74 mm in diameter, to match the size
of the e-puck so that it does not affect the robot’s behaviour. The hat
has 21 holes in it, horizontally/vertically separated by 14 mm. The
number of holes was chosen as a compromise between maximising
the number of marker positions, and maximising the separation be-
tween markers. The spacing is sufficient that the tracking system is
able to distinguish between diagonally adjacent markers when the
cameras are mounted 2.5 m from the ground as shown in Figure A.1.

The original 3D-printed design is quite fragile, and the marker
mounting pins are prone to snapping off. The new design overcomes
this by instead using bolts pushed upwards through the holes and
secured with nuts. The OptiTrack markers are 7/16" (11.11 mm) in
diameter and have a hole in their underside, so they rest on the bolts.
This method of mounting markers is slightly less convenient, as the
bolts must be repositioned when a new pattern is chosen. However,
once a set of patterns have been decided upon, it is unlikely that they
will need to be changed. This method also has the advantage that
the patterns are retained if the markers fall off the hat (a common
problem when picking up the robots).

In contrast to the original 3D-printed design, the holes are not laid
out in a rectangular grid constrained by the diameter of the hat. In-
stead they are positioned such that they maximise the available space
on the hat. Another difference is that the 3D-printed hat has a slot on

2 Designed by James Hilder — York Robotics Laboratory technician
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the underside for mounting a USB Wi-Fi adapter, which connects to
the Linux extension board. This slot is not required in the laser-cut de-
sign, because an Edimax EW-7811UN nano USB Wi-Fi adapter is used
instead, which is small enough to fit under the hat. The new laser-cut
design is also cheaper, and faster to produce. The hat is attached to
the e-puck with 3 pairs of 15 mm PCB standoffs. It is important to
provide sufficient clearance for the Wi-Fi adapter, but the hat should
not be mounted too high, otherwise the e-puck will be top-heavy and
rock back and forth as it moves.

a.3.2 Marker patterns

The tracking software requires that each marker pattern comprises
between 3 and 7 markers. Due to the low resolution of the Flex 13

cameras, the tracking system is unable to reliably distinguish be-
tween 3 or 4-marker patterns at a distance of 2.5 m from the ground,
as the shapes that the markers form appear too similar. Instead, 5-
marker patterns were used, which are more easily differentiated at
this distance. Due to constraints on the physical size of the hat, and
therefore the distance between marker positions, patterns with hori-
zontally/vertically adjacent markers are prohibited. Only diagonally
adjacent markers can be resolved by the cameras at this distance. This
constraint reduces the number of possible unique marker patterns.

Creating marker patterns is non-trivial, as there are certain situa-
tions that must be avoided to prevent ambiguity. Initially, consider a
single marker pattern in isolation. If it is is rotationally symmetric,
then the tracking software will be unable to determine the true ori-
entation of the robot. Similarly, if the pattern looks identical when
flipped, the tracking software may become confused and think that
the robot is upside down. For example, a 4-marker pattern that forms
a square is symmetrical in both the horizontal and vertical axes, and
self-similar under every possible rotation, which is very confusing for
the tracking software. When considering a set of marker patterns for
tracking a swarm of robots, it is then also necessary to ensure that the
patterns appear as distinct as possible, otherwise the robots may be
incorrectly identified by the tracking system. It is therefore important
to check whether a marker pattern looks similar to another under any
possible transformation.



A.3 tracking hats 191

a.3.3 Evolving marker patterns

It is infeasible to solve this problem by hand, especially for larger
swarm sizes. Instead, Evolutionary Search [117] was used to auto-
matically generate sets of marker patterns that are distinct from each
other under any transformation. Each individual in the population
comprises a set of marker patterns — one for each robot in the swarm.
Each pattern is represented as a vector of integers between 1 and 21,
corresponding to the position of the marker holes on the hat. The size
of the genome is therefore a product of the number of patterns and
the number of markers. For example, for 6 patterns each comprising
5 markers, the genome will be of length 30. Individuals are initialised
by randomly generating marker positions for each pattern, with the
constraint that a candidate marker position is not already in use, and
is not horizontally/vertically adjacent to another marker that has al-
ready been placed.

The crossover operator only allows whole marker patterns to be
exchanged between individuals, to prevent invalid patterns from be-
ing created. The mutation operator iterates over the set of patterns
in an individual, and probabilistically decides whether or not to mu-
tate each pattern. If a pattern is chosen for mutation, a single marker
within the pattern is selected at random, and a new marker posi-
tion is randomly generated whilst ensuring that it conforms to occu-
pancy and adjacency constraints. The Multi-Objective Optimisation
algorithm NSGA-II [118] was used to maximise the following objec-
tive functions:

worst case shortest distance : The shortest distance between
any pair of markers in a pattern, over all patterns in the indi-
vidual. Maximising this distance ensures that the markers are
spread as far apart as possible, making it easier for the tracking
system to distinguish between them. The worst case (smallest)
value is used, so that the fitness of an individual is limited by
the pattern with the most tightly packed markers.

worst case self similarity : Similarity between two marker pat-
terns under a particular transformation is defined as follows:
For every marker in pattern A, find the shortest distance to
another marker in pattern B. The distance calculated for each
marker is then summed. The minimum value of zero is obtained
if patterns A and B are identical. The more dissimilar they are,
the larger the sum will be. Similarity is calculated under all pos-
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sible translations, rotations, and reflections, and the worst case
value is recorded. Again, the worst case is maximised to ensure
that the fitness of an individual is limited by the most self simi-
lar pattern it contains.

overall worst case similarity : This objective is calculated in
the same way as self similarity, except that the similarity of each
pattern is checked against every other pattern in the individual,
and the worst case similarity is recorded. It is desirable to max-
imise this value, to ensure that each pattern in an individual is
as dissimilar to others as possible.

Figure A.3 shows an example set of six marker patterns that were
evolved using this approach, and can be reliably differentiated by the
tracking system. Due to the problem constraints, and the necessity
for patterns to appear distinct from each other under any transfor-
mation, only around 10 unique patterns can be evolved. Beyond this
number, the evolved patterns begin to look similar, which can result
in the tracking system incorrectly identifying robots. This limitation
is influenced by the size of the hats, and therefore the separation
between markers, as well as the distance, angle, and number of cam-
eras. For a smaller arena, with the cameras closer to the ground, any
placement of markers on the hats could be used without enforcing
adjacency constraints, which would allow for more unique patterns
to be evolved.

Although the focus here is on e-puck robots, it is important to note
that the tracking system is robot platform agnostic. Any robot can be
tracked provided that a pattern of markers can be mounted on it. The
only limitation is that there must be sufficient spacing between the
markers, so that the tracking system can distinguish between them.
In order to track robots smaller than the e-puck, it may be necessary
to use smaller markers that OptiTrack offer for tracking facial expres-
sions, either 3 or 4 mm in diameter, and to position the cameras closer
to the ground. For significantly larger robots, 5/8" or 3/4" diameter
markers are available, which can be tracked at a greater distance.



A.4 tracking software 193

Figure A.4: Screenshot of the Motive:Tracker software that shows the posi-
tion and orientation of six rigid bodies (one for each e-puck) being tracked.
Each rigid body comprises 5 markers. The pivot point of each rigid body is
also displayed.

a.4 tracking software

The tracking software (Motive:Tracker3) is capable of tracking ob-
jects in six degrees of freedom. Figure A.4 shows a screenshot of the
graphical user interface (GUI) when tracking six e-puck robots. The
minimum system requirements to run software version 1.5 are a 2.5
GHz i5 processor and 4 GB of memory. This section provides a brief
overview of the workflow when working with the tracking software.

The tracking system must be calibrated before it is first used. This is
achieved using an OptiWand and Calibration Square (see Figure A.5).
First, the OptiWand is waved through the entire capture volume while
the cameras observe its movement by detecting the three retroreflec-
tive markers mounted on it. Once sufficient coverage is achieved, the
wanding data is used to automatically calculate the physical posi-
tion, orientation, and lens characteristics of the cameras. Projecting
the Motive:Tracker GUI onto the wall as shown in Figure A.1 makes
calibration significantly easier, as the user can easily observe the ex-
tent of capture volume coverage during the wanding process. This is

3 http://optitrack.com/products/motive/tracker

http://optitrack.com/products/motive/tracker
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Figure A.5: Left: Flex 13 camera. Centre: OptiWand. Right: Calibration
Square4.

more difficult when the GUI is displayed on a monitor, as it is too
small to see from a distance.

After the cameras have been calibrated, the Calibration Square is
placed on the floor to align the 3D coordinate system with the phys-
ical capture volume. The calibration process is then complete, and
the calibration tools are removed from the capture volume so that
rigid bodies can be defined. Note that if the cameras are moved af-
ter calibration, then the system must be recalibrated. This is why the
cameras are mounted on a permanent truss rig. The initial calibration
results can be saved and reused for each subsequent capture session.

Following calibration, the GUI is used to select markers belonging
to a robot in the software and create rigid body from it. This allows
the tracking software to calculate the position and orientation of the
robot based on the coordinates of individual markers in each frame.
Figure A.4 shows the rigid bodies corresponding to the marker pat-
terns shown in Figure A.3. After creating a rigid body, it is then nec-
essary to adjust the orientation and pivot point of each rigid body to
match that of the real robot. The Motive:Tracker GUI can be used to
record tracking data for post-experiment analysis, but the true poten-
tial of the tracking system is realised through integration with custom
code via the API. The API is written in C++, and provides direct real-
time access to rigid body tracking data. However, it is first necessary
to perform calibration, create rigid bodies, and adjust any parameters
via the GUI, then save the project to a file which can be loaded using
the API. The tracking data can then be used in various applications,
as detailed in the next section.

4 Images taken from https://www.optitrack.com

https://www.optitrack.com
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a.5 applications

Tracking infrastructures have many potential applications in swarm
robotics research beyond the fault detection approach proposed in
this thesis, a few of which are described below. Although similar
tracking systems have already been used in most of these application
areas, the system presented in this thesis offers comparable function-
ality at a relatively low cost.

Post-experiment analysis

The most obvious application of the tracking infrastructure is record-
ing the behaviour of a robot swarm over time. If desired, the robots
can additionally transmit data about their current state to the Opti-
Track server, which can be aggregated with tracking data. The data
can then be used for post-experiment analysis, and to verify the suc-
cess of an experiment using statistical hypothesis testing. For exam-
ple, Bjerknes and Winfield [8] used the Vicon system at BRL to anal-
yse the fault tolerance of a robot swarm.

Validation

The tracking infrastructure can be used to carry out repeated experi-
ments, by commanding robots to move to specific starting positions
to initialise each test run. This is particularly important for validat-
ing swarm algorithms that rely on self-organisation, as they must be
analysed over repeated experimental runs, to check that undesirable
behaviours do not emerge. Indeed, Winfield et al. [22] argue that the
ability to repeatably test real robot swarm systems is important if
dependable swarms are ever to be developed.

Localisation

The tracking system can be used to provide real-time feedback to
the robots about their current position and orientation. This gives
the robots awareness of their location within their environment. The
Vicon-based system at the GRASP Laboratory at the University of
Pennsylvania has been for localisation with a swarm of 16 quadro-
copters, to implement centralised formation control [119].
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Rapid prototyping

Tracking data can be used to initially provide robots in a swarm with
global information, to quickly test new concepts. This approach to
development could similarly be carried out purely in simulation, but
using a tracking infrastructure makes the system more grounded in
reality, due to the use of real robot sensors and actuators. The Fly-
ing Machine Arena [120] built at ETH Zurich uses Vicon cameras to
track quadrocopters, for rapid-prototyping and performance valida-
tion and evaluation.

Virtual sensors

The tracking infrastructure can be used to implement virtual sensors
for the robots. This is particularly useful if the robot platform used
has limited sensing capabilities. For example, an omnidirectional cam-
era could be emulated, allowing a robot to determine the relative
position of other robots. This can be limited to local sensing, by cal-
culating the distance between pairs of robots, and transmitting a lim-
ited view of the world to each robot in the swarm. The Vicon system
at BRL has been used successfully to implement virtual sensors for
swarms of e-puck robots, allowing for online evolution of collective
behaviours [72, 114].

Automated calibration of simulation

Tracking data could also potentially be used for the validation and
calibration of robot simulators. This would be of great benefit, as the
reality gap of existing simulators is often large, and swarm algorithms
developed in simulation often do not work without significant modi-
fication when deployed on real robots.

a.6 cost

Table A.1 shows the cost of the OptiTrack hardware and software re-
quired to build a tracking infrastructure similar to the one presented
here. The only difference is that the cost of 10 ft (3 m) stands to mount
the cameras on have been included, as these are significantly cheaper
than a truss rig. There are some overhead costs associated with the
calibration tools and the tracking software. The hardware key is re-
quired for licensing — the Motive:Tracker software may be installed
on multiple machines at no cost, but can only be used when a licensed
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Item Unit Cost Quantity Subtotal

Flex 13 camera $1098 3 $3294

OptiHub 2 $299 1 $299

Hardware Key $99 1 $99

Motive:Tracker Software $999 1 $999

Calibration Square $99 1 $99

OptiWand Kit $249 1 $249

Reflective Markers $20 10 $200

Camera Stand: 10 ft $99 3 $297

SLIK Clamp Head 38 mm $69 3 $207

USB Cable: 5 m $10 3 $30

USB Uplink Cable: 16 ft $5 1 $5

Total: $5778

Table A.1: Cost of OptiTrack hardware and software for a three camera
system, with enough markers for tracking 10 robots. All prices quoted are
in USD.

hardware key is connected via USB. To extend the system after these
initial overheads, it would only be at the expense of additional cam-
eras, hubs, and cables. The cost of tracking swarms of larger sizes is
dictated only by the cost of extra markers.

a.7 limitations

While it has many benefits, the tracking infrastructure presented in
this thesis has some limitations. Firstly, the tracking software will only
run under the Windows operating system, and the API is written in
C++. This is not a major issue for this research, as the tracking data
can be transmitted to Linux systems via network sockets, but it is
something worth considering when planning to build an OptiTrack
system. Secondly, a maximum of 32 rigid bodies can be defined in
Motive:Tracker. This imposes an upper limit on the size of swarms
that can be tracked.

Finally, the IR light from the cameras can interfere with a robot’s IR
sensors, potentially resulting in erratic behaviour. This is one major
disadvantage that OptiTrack systems have in comparison to Vicon sys-
tems, which offer cameras with ‘visible red light’ and ‘near-infrared’
modes of operation that do not cause IR interference. Despite this lim-
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itation, strobing the Flex 13 cameras much lower than their maximum
frame rate of 120 fps greatly alleviates these issues.

The Motive:Tracker software imposes a minimum frame rate of 30

fps, but the cameras can be strobed at an even lower frame rate if
desired, by connecting an external signal generator to the OptiHub
2. Another potential solution might be to use the Flex 13 cameras
in passive mode, where instead of emitting IR light themselves, they
sense light from active IR LED markers mounted on the robots. How-
ever, the tracking infrastructure presented in this appendix has been
able to successfully track the behaviour of an e-puck swarm running
the ω-algorithm algorithm (described in Section 2.1.1), which relies
entirely on IR sensing and communication. This was achieved with
minimal IR interference by strobing the cameras at 30 fps, although
the ω-algorithm does perform filtering on the raw IR sensor read-
ings. An external signal generator could potentially also be used to
synchronise the strobing of the cameras with the IR sensing of the
e-pucks, to ensure that they are mutually exclusive, and therefore do
not interfere with each other.

a.8 summary

This appendix has given details of the tracking infrastructure built for
the research presented in this thesis, and the challenges encountered
when constructing and configuring the system. The tracking infras-
tructure has many potential uses beyond the research presented in
this thesis, and provides a cost-effective alternative to more expen-
sive commercial motion capture systems on the market.

In the context of exogenous fault detection, the tracking system
allows the true behaviour of a robot to be recorded, and compared
against its expected behaviour predicted in simulation. The observa-
tion data made available to each robot can also be range-limited by
implementing virtual sensors, thus enabling decentralised and scal-
able fault detection.
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This appendix presents the full results of the global sensitivity analy-
sis that was carried out on the fault detector. For a detailed discussion
of the results, see Section 6.7 of Chapter 6.
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Figure B.1: Influence of the number of internal simulation repeat runs on
the TPR.
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Figure B.2: Influence of the number of internal simulation repeat runs on
the FPR.
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Figure B.3: Influence of the fault detection time window length on the TPR.
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Figure B.4: Influence of the fault detection time window length on the FPR.
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Figure B.5: Influence of the α threshold scale factor on the TPR.
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Figure B.6: Influence of the α threshold scale factor on the FPR.
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Figure B.7: Influence of the position noise standard deviation (σposition) on
the TPR.
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Figure B.8: Influence of the position noise standard deviation (σposition) on
the FPR.
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Figure B.9: Influence of the orientation noise standard deviation (σorientation)
on the TPR.
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Figure B.10: Influence of the orientation noise standard deviation (σorientation)
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Figure B.11: Influence of the packet drop probability on the TPR.
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C FA L S E P O S I T I V E A N A LY S I S

This appendix presents example scenarios that resulted in false pos-
itive classifications. Each scenario visualises the output of a single
observer’s internal simulation of a non-faulty robot. The square rep-
resents the focal robot’s starting point, and its predicted endpoints are
shown with crosses. The grey region indicates the area within which
the focal robot was expected to end up, under the assumption that
was non-faulty. The true endpoint of the focal robot is represented by
the circle.

In each of these scenarios, the focal robot’s true endpoint lies out-
side the non-linear decision boundary that is created by thresholding
the kernel density estimate of the predicted endpoint distribution —
suggesting that the robot is faulty. The focal robot was actually non-
faulty in every scenario, therefore each classification is incorrect (a
false positive). However, note that the focal robot’s true endpoint is
often very close to the edge of the expected non-faulty region. These
borderline cases could be avoided by lowering the α threshold scale
factor to increase the size of the predicted non-faulty endpoint region
(at the expense of the TPR), as shown in Figure B.6 of Appendix B.
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Figure C.1: False positive analysis — example scenarios 1–6.
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