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Abstract

Rock discontinuities are fundamentally important to most rock engineering

projects but predicting or measuring their properties such as roughness,

aperture, shape and extent (persistence) are fraught with difficulty. So far the

solution of how to measure or predict persistence is poorly researched partly

because the concept of how to investigate the extent of rock discontinuities

within a rock mass seems intractable, by any economical methods. In the

majority of engineering applications it is a fairly widespread practice to follow

a conventional approach, assuming a 100% persistence value. However that

is certainly incorrect even if usually a conservative assumption.

This project is a small step towards resolving this issue. A series of laboratory

and field research activities were carried out to investigate incipient nature of

rock discontinuities and the extent of rock bridges.

Uniaxial tensile strength of incipient discontinuities was quantified in the

laboratory using cylindrical rock samples. The tested samples included

incipient joints, mineral veins and bedding. It has been confirmed that such

visible yet incipient features can have high tensile strength, approaching that

of the parent rock. Factors contributing to the tensile strength of incipient rock

discontinuities have been investigated. It is concluded that the degree of

incipiency of rock discontinuities is an important factor that should be

differentiated as part of the process of rock mass classification to inform more

realistic engineering design and that this might best be done with reference to

the tensile strength relative to that of the parent rock. An original methodology

has been developed in the laboratory using expansive chemical splitters in

drillholes, to quantify the tensile strength of large-scale incipient rock joints. In

these tests, smaller tensile strengths were obtained, which probably was the

result of localised stress concentration, low pressurization rate and

unavoidable variations of expansive tensile force arising from the chemical

splitter.

A technique ‘Forensic Excavation of Incipient Rock Discontinuities (FEIRD)’

was established and employed to investigate areal extent and incipient nature

of discontinuities in the field. Large rock blocks, containing incipient features,

were split using similar expansive grout techniques as developed in the

laboratory. Test results were interpreted and discussed with respect to

fracture mechanics, fractographic features (such as hackle and rib marks), as

well as geological conditions affecting the incipiency of the tested

discontinuities including degree and extent of weathering and mineralisation.



- v -

One common observation from the tests conducted is that breakage of non-

persistent sections of incipient rock joints (rock bridges) leads to the

development of rough surfaces over those freshly broken areas, and this may

have implications for rock fracture development more generally. Despite rock

bridge failure (say as part of rock slope mass movement), the freshly formed

surfaces might be expected to have relatively high strength compared to the

pre-existing persistent sections. An important conclusion from this research is

that areal extent of open rock discontinuities (persistence) can be investigated

realistically using the FEIRD technique. It has been found that estimates of

persistence from trace mapping on rock exposures can be wildly inaccurate

and it is concluded that field studies using FEIRD techniques (perhaps at a

larger scale than used for this research to date) can be used to understand

and quantify better the true nature of rock mass fracture network connectivity

and extent that are important parameters for many rock engineering

endeavours.
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Chapter 1

Introduction

1.1 Research background

Rock discontinuities are of primary importance to strength, deformability and

permeability of rock masses and overall stability of rock engineering projects.

Characterisation of discontinuity properties, such as orientation, spacing,

roughness and persistence (areal extent), is the first step to understand the

overall behaviour of rock masses. It has been nearly four decades since

awareness of the importance of discontinuity persistence on rock engineering

(Barton 1975 and Cruden 1977). Significant efforts have been made to

consider persistence during the measurement of discontinuities (e.g. Barton

1975, Priest and Hudson 1981 and Latham et al. 2006) and in the assessment

of rock mass stability (e.g. Einstein et al. 1983 and Pariseau et al. 2008).

However these endeavours are still a matter of engineering judgment as no

constructive or standard methods have been proposed to quantify real

persistence. International Society for Rock Mechanics (ISRM 1978a)

proposed the concept of termination index, with an aim to incorporate the non-

persistent nature of discontinuity into rock engineering but failed to give a

precise guidance on how to quantify persistence.

It is extremely difficult to quantify discontinuity properties especially real

persistence due to the three dimensional nature of rock discontinuities within

rock masses. Currently, in rock engineering and modelling, trace length of

discontinuities obtained from outcrop is used as an approximation of real

persistence (e.g. Kim et al. 2007a, b and Umili et al. 2013); sometimes the

persistence value of 100% is assumed for simplification purpose (e.g. Park

2005 and Jiang et al. 2015). All these approximation and assumption are

‘geological guesswork’.

1.2 Aims and structure of thesis

This research will be a small step towards the problematic issue described

above. The following questions are answered in this work, which are:

(1) How to quantify the incipiency of a geological discontinuity? What are

the factors governing discontinuity incipiency?
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(2) What is the relationship between the incipiency of a geological

discontinuity and its persistence?

(3) Is that possible to measure tensile strength of small and large scale

incipient rock discontinuities in the laboratory?

(4) Is that possible to quantify the persistence of a discontinuity, or at least

on a conceptual level?

The thesis comprises a further six chapters. A review of discontinuity

persistence with regard to its definition, implications and quantification is

discussed in Chapter 2. Tensile strength of incipient rock discontinuities is

measured in Chapter 3 and a method to quantify the incipiency of

discontinuities is presented. Chapter 4 presents a possible approach to

quantify tensile strength of large-scale incipient rock discontinuity. A new

forensic technique is proposed and described in Chapter 5 to quantify real

persistence. A synthesis of the main findings of this thesis is present in

Chapter 6. Summary, conclusions and the scope of future work are presented

in Chapter 7.
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Chapter 2

Literature Review

2.1 Introduction

The focus of this chapter is to review current knowledge of discontinuity

persistence. Its implications for rock engineering and the state-of-the-art

methodologies and techniques to quantify real persistence or its

approximation are discussed in following text. The rest of this chapter are

organized as follows. In section 2, definitions of incipient discontinuities,

persistence and surface features of discontinuities is presented. Stresses

(mode I and mode II) around fracture tips which control discontinuity

propagation and development are discussed in section 3. In section 4, the

mechanical properties including tensile and shear strength of single incipient

discontinuities are discussed, in which the actions of incipiency (persistence)

are emphasised. Rock masses containing multiple incipient discontinuities are

the focus in section 5, volume and size of rock blocks within rock masses as

well as its strength and stability are discussed. In section 6, current

methodologies for measuring or estimating discontinuity persistence are

reviewed. A summary is presented in section 7.

2.2 Definitions

2.1.1 Incipient and mechanical rock discontinuities

Rock discontinuity is normally recognised as a general term to describe any

weak mechanical breaks including most joints, weak bedding planes,

weakness zones and faults within rock masses (ISRM 1978a). Hencher

(2015a) commented the crudeness and misuse of the discontinuity definition

in engineering practice. He argued that this definition does not allow for

stronger incipient traces, however, all these traces are normally visualised as

ISRM defined discontinuities by academics as well as practitioners and are

recorded during discontinuity logging in the outcrop regardless of strength

(Hencher and Knipe 2007 and Hencher 2014, 2015a). This common practice

tends to underestimate strength of rock masses, while overestimating

permeability; which therefore can considerably increase expenditure on rock

support system and also influence reliable prediction of water, oil and gas

extraction. It is practically and theoretically important to differentiate the

degree of incipiency of discontinuities.



- 4 -

Incipient (or integral) rock discontinuities retain considerable tensile strength

as a result of partial development due to the varying stress conditions or due

to secondary mineralization or cementation processes. This conception is

illustrated by Figures 2.1 and 2.2, in which near-vertical incipient rock

discontinuities were partially developed. These incipient rock discontinuities

will develop as a response to weathering, mechanical breakage, stress

variation or precipitation into mechanical (open) discontinuities which have

zero tensile strength (see Figure 2.3). Figure 2.4 presents the different

developing stages of incipient joints on faces cut by diamond wire saw. Sets

of joints can be seen as linear traces stained with iron oxides, cutting the

granite. These joints were evidently formed from brittle fracture propagation

at a late stage during cooling/emplacement of the granite as can be

interpreted from cross-cutting relationships and the geometrical association of

some joints with mineral differentiation (as at 1 in an area washed off with

water). Note that some of the joints are poorly defined and terminate (as visible

features) as at 2. The joint pattern is a ‘blueprint’ that, given time, would

propagate as interconnecting true, mechanical discontinuities in the sense

defined by ISRM. Note at 3 that one of the shallowly dipping joints (not-

sheeting), has an open aperture locally, allowing seepage of groundwater.

Figure 2.1 Partially developed joint which is incipient, Horton-in-Ribbesdale,
Yorkshire, England.



- 5 -

Figure 2.2 A set of near vertical incipient joints at Blackhill Quarry, West
Yorkshire, UK. Note that rock materials are weathered predominately
along joint traces, person for scale.

Figure 2.3 Section of rock core, andesitic tuff, Island Road, Hong Kong.
Incipient and mechanical rock discontinuities can be noticed. Relative
tensile strength, i.e. high, moderate and weak strength relative to the
strength of the parent rock, were suggested by Hencher (2014) to
differentiate these discontinuities. After Hencher (2014).
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Figure 2.4 Face cut by diamond wire saw in dimension stone quarry near Tui,
Galicia, Spain. Joint 1 and 2 are in earlier incipient stages (which are
always poorly defined by current standards). Joint 3 is in later incipient
stage and it has a persistent area partially, allowing seepage of fluid. For
more details see text. Image courtesy of Steve Hencher.

2.1.2 Rock bridges and discontinuity persistence

In jointed rock masses, rock bridges exist because of the incipient (non-

persistent) nature of discontinuities. A rock bridge is defined as the small

intact/strong rock material separating coplanar and non-coplanar

discontinuities (Kim et al. 2007b, c). In this review, only coplanar

discontinuities along with the intervening rock bridges are considered so as to

follow the definition of persistence proposed by ISRM (1978a) and Einstein et

al. (1983).

Discontinuity persistence is areal extent of a rock discontinuity. Until now there

have been several different definitions of this parameter. Jennings’s

mechanical model (Jennings 1970), as illustrated by Figure 2.5a, firstly

incorporated joint persistence (estimation) into rock engineering.
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Figure 2.5 Definitions of rock discontinuity persistence. a Linear extent
definition (approximation of persistence) and b Areal extent of
discontinuity (real persistence)

In his model, joint persistence K was defined as a linear ratio of sum of joint

segments iJ and the total length of coplanar given line ( )i iJ B :

/ ( )  i i iK J J B (2-1)

This two-dimensional definition is an estimation of real persistence but has

been widely accepted and employed in experimental, analytical and numerical

studies for its straightforward meaning and easily obtainable nature (e.g. Lajtai

1969a, b, Zhang et al. 2006, Prudencio and Van Sint Jan. 2007, Ghazvinian

et al. 2012, Bahaaddini et al. 2013, Kim et al. 2013a, Shang et al. 2013 and

Jiang et al. 2015). Jennings's model deals only with two-dimensional coplanar

incipient joints; it cannot be extended to three dimensions. ISRM (1978a)

suggested a three dimensional discontinuity persistence which was defined

as the fraction of continuous discontinuity area which can be expressed by the

following equation (see Figure 2.5b):

  /  D Bi DK A A A (2-2)

where BiA is the total area of scattered rock bridges, DA is the reference

area (termed as weakness plane by Lajtai (1969b)) including rock bridges and

continuous discontinuity segments.

This three dimensional persistence definition can be treated as an extension

of Jennings's model on the assumption that discontinuity generates along the

predefined weakness plane. It enhances the application of three dimensional

stability analyses which takes into account the effects of incipient discontinuity

into rock engineering. For example in a recent work presented by Viviana et

al. (2015) effects of the spatially distributed rock bridges along a main sliding

plane were investigated. To author’s knowledge, ISRM (1978a) defined
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discontinuity persistence applies to various scales from small scale on

laboratory samples to large scale in field situations.

A limit of Equation (2-2) was proposed by Einstein et al. (1983) as a separate

definition of three dimensional persistence. It means persistence can

approach zero when AD approaches infinity; this scale-dependent nature has

been pointed out by Lu and Latham (1999).

The above traditional definitions mainly focus on the geometrical behaviour of

single incipient discontinuity and ignore its mechanical behaviour like stress

distribution and concentration around joint tips as stated by Kevin (1980) and

Wasantha et al. (2014). There have been some studies trying to consider the

mechanical influence on degree of discontinuity persistence. A publication by

Wasantha et al. (2014) is an example in which a new parameter was proposed

to define joint persistence considering stress distributions around joint tips.

The above persistence definitions imply that discontinuities and intervening

rock bridges are coplanar. When dealing with randomly generated rock

discontinuities, probabilistic approaches have been developed to describe

persistence. The general approaches of these methods are:

(1) Assume a measurable distribution of discontinuity trace length (an

estimation of persistence), types of discontinuity, sampling bias and

corresponding corrections (will describe in section 2.6.1) are normally

described;

(2) Statistical methodologies combining field observations with the above are

employed to estimate the distribution of parameters in the proposed equation;

(3) Artificially generated or natural data are then used to illustrate and validate

the complete distribution equation.

2.1.3 Surface features of rock discontinuity

Joint surface morphology or topography is normally decorated by some

textures such as hackle (feather) and rib markings that depict the joint

initiation, orientation and propagation (Pollard and Aydin, 1988). A discipline

named “fractography” was developed to investigate this topic (Ameen 1995),

in which fractography features including surface patterns directly observed on

exposed joint surface and fracture traces observed on a free surface were

defined. Figure 2.6 shows the classic feather (hackle) and rib markings on

surface of a discontinuity. Figure 2.7 shows conchoidal feather and rib

markings formed by impacting with hammer.
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Figure 2.6 Diagram showing the classic feather and rib markings on a fracture
surface radiating from a point formed geologically. Modified from Zhang
and Einstein (2010).

Figure 2.7 Fractography features on fracture surfaces broken by impact with
hammer. Conchoidal feather and rib markings radiating from points of
impact in micritic limestone cobble. Foot for scale. Photo courtesy of
Steve Hencher (2015).

In following section, we will discuss stresses around fracture tips which control

the incipiency of discontinuities.
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2.3 Stress field in the vicinity of fracture tips

Rock discontinuities within rock material can close, open, slide or propagate

under different loading conditions. In linear elastic fracture mechanics, all

these discontinuities can be approximately treated as cracks and fractures

defined by Kulander et al. (1990) as breaks in rock caused by stresses

exceeding the rock’s strength. Stress distributed around crack tips govern

mechanical behaviour and failure patterns (Griffith 1921). Basically two crack

patterns including wing cracks (tensile cracks) and secondary cracks (shear

cracks) can be observed around pre-existing crack tips in rocks and rock-like

materials under compression, as those simplified shown in Figure 2.8

(Ingraffea and Heuze 1980, Ingraffea 1980, Huang et al. 1990, Shen and

Stephansson 1994 and Antonio 2000). Many publications are available on the

topic of fracture initiation and propagation which will not be extensively

discussed here as beyond the scope of this review. A review recently by Hoek

(2014) is recommended to readers who are interested in this topic. In this

section, the Mode-I and mode-II stress field in the vicinity of fracture tips is

discussed which is the basis of fracture initiation, tensile and shear properties

of incipient discontinuities.

Figure 2.8 Simplified reduced tensile and shear crack patterns around pre-
existing crack tips within a rock sample under compression, modified
from Antonio (2000).
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2.3.1 Stress modes near fracture tips

Griffith (1921) inferred that the stress concentration around the tips of open

cracks leads to the failure of material when this concentration exceeds

strength of material. This original assumption was then verified and extended

to closed cracks by Murrell (1958), McClintock and Walsh (1962) and Brace

(1964).

Irwin (1957) pointed out that the stress field around fracture tip can be grouped

into three components, i.e. Mode I open fracture, Mode II shear fracture and

Mode III tearing fracture, as shown in Figure 2.9. Considering the crack tip to

be a two dimensional problem (in the xz - plane), the three stresses can be

expressed as (Sun and Jin 2012)
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(2-3)

where IK , IIK and IIIK are stress intensity factors (MPa●m1/2) corresponding

to Mode-I open fracture, Mode-II shear fracture and mode III tearing fracture.

x (m) is the distance from existing fracture tip. The capital letter O (not a zero)

is a symbolism used in mathematics to describe the asymptotic behaviour of

functions.

Figure 2.9 Schematic of one fracture tip within surrounding rock materials
under different stress modes: (a) Mode I (Tension), (b) Mode II (In-plane
shear) and (c) Mode III (Out-of-plane shear). Modified from Sun and Jin
(2012).
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It is well known that stress intensity factors (SIFs) describe the stress fields

near fracture tips in rock materials under different loading conditions in the

context of liner elastic fracture mechanics (LEFM). Whittaker et al. (1992)

concluded that SIFs were able to be measured analytically (e.g. complex

variable function (CVF), integral methods (IM)), experimentally (e.g. photo-

elastic techniques, acoustic emission (AE) and some indirect measurements

(such as ISRM-Suggested methods)) and numerically (e.g. finite element

method (FEM), finite difference method (FDM), boundary element method

(BEM), and boundary collocation method (BCM)). There have been hundreds

of publications dealing with stress field near fracture tips. In the following

section, main contributions towards mode I and mode II stress distributions

were briefly reviewed.

2.3.2 Mode-I stress distribution near fracture tips

It has been shown that the CVF method proposed by Muskelishvili (1952) was

a very marked and convenient method to deal with stresses around the two-

dimensional crack problems in anisotropic media (Savin 1961 and Lekhnitskii

1963). Sih et al. (1965) derived the general equations for stresses near

fracture tips in anisotropic bodies. The major contribution of their work was the

extension of the application of CVF in isotropic bodies into anisotropic media

in which the generalized Hooke’s law was adopted. The general Mode I stress

around crack tips in anisotropic media proposed by Sih et al. (1965) is
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where IK  is the Mode-I stress intensity factor (MPa●m1/2); r and  are in polar

coordinates, r is the radial distance from the crack tip (m) and  is the angle

between the radius vector and the extension of the crack plane (°). 1 and 2

are dimensionless coefficients.

After Sih et al. (1965), investigations about the near-tip stresses in anisotropic

materials have been undertaken by many researchers (e.g. Bogy 1972, Bowie
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and Freese 1972, Barnett and Asaro 1974, Kuo and Bogy 1974, Tupholme

1974, Rathod 1979, Ting and Chou 1981, Hoenig 1982 and Piva and Viola

1988). An alternative complex variables approach considering the non-

singular terms proposed by Caroloni et al. (2013) was employed to investigate

the Mode I stress field at an inclined crack tips within an orthotropic medium

under biaxial load.

Tweed and Das (1972) derived the solution of the Fredholm integral equation

(FIE) which was used to express SIFs of a radial crack in an elastic disc.

Following Tweed and Das (1975), modification and extension of solutions of

FIE in the use of stress analysis have been investigated by some authors

including Yarema (1979), Theotokoglou (1990) and Chen (1993). A

comprehensive review regarding this topic was provided by Chen (1995) in

which some proposals for formulating the FIE in the plane elasticity crack

problem were emphasised.

Fracture toughness (FT), the ability of rock resisting fracturing and

propagating of existing fracture, can be defined as the critical value of stress

intensity factor, when a fracture propagates (Liu 1983 and Ke et al. 2008).

Since the early 1970’s, laboratory experimental techniques have been

investigated to determine the static mode I FT, but mainly subjected to limited

rock core-based geometrical configurations including chevron notched short

rod (e.g. Barker 1977, 1983, Munz et al. 1980 and Ouchterlony 1988),

Brazilian disk-based specimen (e.g. Fowell and Xu 1993, 1994, Xu and

Fowell 1994, Iqbal and Mohanty 2006, Cigdem and Levent 2011and Sabri et

al. 2016), radial cracked ring and its modification (e.g. Bradley 1971, Amir

1989, Levemt and Cigdem 2012), single edge cracked half disc specimen

(e.g. Chong and Kuruppu 1984, Chong et al. 1987, Lim et al. 1994, Molenar

et al. 2002, Obara et al. 2007 and Kataoka et al. 2015), and notched round

bar (e.g. Swan 1980, Sun and Ouchterlony 1986 and Wang 1990 ).

Based on the earlier studies, International Society for Rock Mechanics (ISRM)

developed three standard methods for the determination of mode I static FT

(Ouchterlony 1988, Fowell 1995 and Kunruppu et al. 2014), in which four

different core-based specimens were suggested, i.e. semi-circular bend

(Figure 2.10), cracked chevron notched Brazilian disc (Figure 2.11), chevron

bend specimen (Figure 2.12) and short rod specimen (Figure 2.13). The

corresponding equations derived to calculate mode I static fracture toughness

KIC (MPa·m1/2) are
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and /a r  , K1 is the non-dimensional stress intensity factors derived using

finite element method while assuming plane-strain condition (Kunruppu et al.

2014). K2 is the critical stress intensity factor value and geometrical dependent

under linear elastic fracture mechanics, and u, v are geometrical constants

(Fowell 1995). K3 also is dimensionless (Ouchterlony 1988). Notations in

Equations (2-5) and (2-6) are defined in Figures 2.10 - 2.13.

Figure 2.10 Semi-circular bend method (SCB) to determine mode I static
fracture roughness: geometrical and loading configurations. (r radius of
the specimen, t thickness, a notch length, d distance between support
rollers, P monotonically increasing load, after and modified from
Kunruppu et al. 2014).
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Figure 2.11 Cracked chevron notched Brazilian disc method (CCNBD) to
determine mode I static fracture roughness: geometrical and loading
configurations. (r radius of disc, B thickness of disc, D diameter of disc,
rs radius of saw, a0 initial half-length of chevron notch, a1 final half-length
of chevron notch, after and modified from Fowell 1995).

Figure 2.12 Chevron bend specimen method (CB) to determine mode I static
fracture roughness: geometrical and loading configurations. (L length of
chevron bend specimen, S distance between support rollers, a0 distance
of chevron tip from specimen surface, a length of crack, D diameter of
chevron bend specimen, θ chevron angle, t width of notch, after and
modified from Ouchterlony 1988).
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Figure 2.13 Short rod specimen method (SR) to determine mode I static
fracture roughness: geometrical and loading configurations. (D diameter
of short rod specimen, W length of specimen, θ chevron angle, a0

chevron tip distance from loaded end, a crack length, a1 maximum depth
of chevron flanks, t notch width, P monotonically increasing load, after
and modified from Ouchterlony 1988).

Note that determination of the geometrical parameters for the specimens is a

key factor in obtaining accurate fracture toughness. Numerical modelling

approaches including boundary element method and finite element method

have been used to calibrate stress intensity factor (e.g. Chen 1990, Xu and

Fowell 1994, Wang et al. 2003 and Dai et al. 2015).

Analytical and experimental solutions in the determination of mode I fracture

toughness are often limited to regular geometrical specimens and simple

boundary conditions, and for irregular and complicated cases numerical

solutions are normally needed. Since 1970s, numerical solutions have been

used to investigate Mode I fracture intensity but with a focus on fractures in

materials including composite and adhesive joints (Muraakami 1976). Until

1986, a pioneer work by Thiercelin and Roegiers (1986) was reported in which

modelling technique was firstly employed to investigate fracture toughness

problem in rock. In their study, the modified ring (MR) test was proposed to

determine Mode-I FT for soft and heterogeneous rocks and displacement

discontinuity modelling was used to compute Mode I stress intensity factor. It

was found that toughness was independent of the flat loading surface length.

This geometrical effects of MR on toughness were then investigated using
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finite element method (FEM) (e.g. Thiercelin 1987, Thiercelin et al. 1986,

Thiercelin 1989, Fischer et al. 1996 and Levent and Cigdem 2012)

Distinct element method (DEM) pioneered by Cundall (1971) was used in the

study of Mode-I stress intensity factor (Potyondy and Cundall 2004). In the

numerical model, rock is represented by a dense packing of spherical particles

that are bonded together at the contact points, and the physical mechanisms

for failure of contact points under loading are illustrated by Figure 2.14. In the

work reported by Potyondy and Cundall (2004), a cubic packing of unit-

thickness (t =1) disks of radius R was bonded together and subjected to an

extension strain. Program PFC2D was used to produce patterns of bonded-

particles which are similar to the fracture initiation and propagation in rocks.

The Mode-I FT IC
K was given by equation:

/
IC t

K R  (2-7)

where t
 is the contact-bond tensile strength (in force units, MPa), R is disk

radius (m).

Figure 2.14 a and b Physical models for compression induced tensile fracture,
and c Idealization of the bonded circular particles in PFC program. After
Potyondy and Cundall (2004).

Moon et al. (2007) developed a more general approach to investigate rock

fracture mechanics problems using DEM. Two approaches, energy balance

method and collocation method, were employed to measure Mode-I FT. The

results of both methods agree well with Yarema formula (Yarema and Krestin

1966).
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2.3.3 Mode-II stress distribution near fracture tips

In contrast to Mode-I stress, Mode-II stress analysis is scarce and still no

standards are proposed to measure mode-II fracture toughness. Even though

there have been many laboratory test methods to measure Mode-II FT, and

the core-based specimens used for measuring Mode-I FT also are employed

but in those tests inclined cracks were produced relative to loading direction

(e.g. Ayatollahi and Aliha 2006, Takahiro et al. 2014 and Masoud and

Sistaninia 2015). Semi-circular bend (SCB) and Brazilian disc (BD) specimens

were employed by Masoud and Sistaninia (2015) to measure the Mode-II FT.

Compressive loading P was employed on these samples containing

appropriate inclined cracks. Four different sizes of SCB samples (R=30 mm,

50 mm 70 mm and 100 mm respectively) were manufactured to investigate

the scale effect on the Mode-II FT. It was found that the average mode-II

fracture FT values for these four different-size samples were 0.53, 0.73, 0.77,

and 0.90 MPa●m1/2 which indicated that Mode-II fracture significantly

depended on the specimen size. A saturation value exists (1.2 MPa●m 1/2)

when sample size increased to 200 mm in diameter. Rao et al. (2003)

proposed a shear-box test approach to measure Mode-II FT in which cubic

granite, marble and sandstone samples containing two different notches

(single and double) were used. Figures 2.15a, b schematically show the two

samples with two kinds of notches under loading.

The acoustic emission technique was employed to detect the fracture initiation

and energy release. Mode-II FT for the single-width sample and double-width

sample can be calculated by
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Figure 2.15 State of load of single-notched sample (a) and double-notched
sample (b). Shear stress (MPa) trajectories from finite element analysis
of a single-notched sample (c) and a double-notched sample (d).
Modified from Rao et al. (2006).

Stress distributions of single-width and double-width samples under shearing

were investigated using finite element method. Figures 2.15c, d show two

examples of stress trajectories. It can be seen that shear stress was smaller

in upper and lower areas for both samples and reached the peak strengths at

the notch tips. Peak shear stresses around tips of the double notches (45

MPa) were larger than that around the tip of single notch (30 MPa).

In addition to the laboratory experiments, there have been several analytical

solutions for assessing the Mode-II failure including the maximum tangential
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stress (MTS) criterion (Erdogan and Sih 1963), the maximum energy release

rate criteria (Hussain et al. 1974) and the minimum strain energy density

criterion (Sih 1973).

Relations between Mode-I and Mode-II fracture toughness as well as

mechanical properties of various rocks have been investigated using

experimental and analytical solutions. Previous study results showed that the

ratio of Mode-II FT and Mode-I FT (KII/KI) normally lies between 0.45 and 2.2

(Ayatollahi and Aliha 2006). Lim et al. (1994) reviewed the experimental and

theoretical KII/KI, tensile strength and Poisson’s ratio of various rock types. It

was found that no clear relation can be found between KII/KI ratio and

Poisson’s ratio from the data. Empirical relation between Mode-I FT and

tensile strength of rock also have been examined by many researchers. Zhang

(2002) summarized previous studies on this topic, and the relationship is

replotted in Figure 2.16, from which liner relationship can be obtained.

Figure 2.16 Empirical relationship between Mode-I FT and tensile strength of
various rocks. Modified from Zhang (2002). Raw date from Whittaker et
al. (1992), Zhang et al. (1998), Khan and Al-Shayea (2000), Yu (2001)
and Norlund et al. (1999).
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2.3.4 Summary

Stresses around fracture tips (Figure 2.8) control the initiation and propagation

of fractures within rock masses under loading (Griffith, 1921), therefore govern

the incipiency of geological discontinuities. Mode I and Mode II stresses

(Figures 2.9a, b) proposed by Irwin (1957) in the vicinity of fractures and their

quantitative descriptions were discussed earlier in this section. Before leaving

this topic, a brief summary of what learned from the discussion are as follows:

(1) Stresses around fracture tips were grouped into three categories including

Mode I (opening), Mode II (shearing) and Mode III (tearing) (see Figure 2.9).

Stress intensity factor was employed to describe these three stresses which

can be quantified analytically, experimentally and numerically. Fracture

toughness, the ability of rock resisting fracturing, was defined as the critical

value of stress intensity factor when a fracture propagates.

(2) There have been several standards proposed by ISRM to quantify Mode I

static fracture toughness experimentally. Four-core based samples were used

in the suggested methods, as shown in Figures 2.10-2.13. Fracture toughness

KIC can be calculated by Eqs. 2-5 and 2-6. Semi-circular bend (SCB) sample

and crack chevron notched Brazilian disc (CCNBD) are suggested for the

quantification of Mode I fracture toughness due to easier sample preparation.

(3) Quantification of the Mode II fracture toughness however is scare and still

no standards are proposed. In the limited available publications about this

topic, core-based samples also were employed with inclined pre-existing

notches (see one example shown Figure 2.15).

(4) Numerical analysis plays an important role in the quantification of the Mode

I and Mode II fracture toughness of irregular samples, but the calibration of

established numerical models is vital for a reliable result.

(5) Ratio of Mode II and Mode I fracture toughness normally lies between 0.45

and 2.2, depending on lithology.

(6) An Empirical linear relationship between Mode I fracture toughness and

tensile strength of rocks was established, as shown in Figure 2.16. The

relation is important in understating the mechanical failure of rock due to

stress concentration around fracture tips.

In section 2.4 and 2.5, we discuss engineering implications of rock joint

persistence including its mechanical properties and influence on rock block

size and mass stability.
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2.4 Mechanical properties of incipient rock discontinuities

Tensile or shear failure of incipient fractures is often the ‘final straw’ leading

to instability of rock masses. Mechanical properties including tensile (Mode I

opening) and shear (Mode II shearing) strength of incipient rock discontinuities

that significantly depend on the incipiency of discontinuities are discussed in

this section.

2.4.1 Tensile strength of incipient rock discontinuities

In exposures and tunnel roofs, many overhanging and threatening rock blocks

or slabs only remain in place because of the strength of incipient

discontinuities (see Figure 2.17). Despite its obvious importance, it has to be

acknowledged that degree of incipiency is extremely difficult to assess, predict

or quantify which is probably why it has been largely ignored in the literature.

Nevertheless there have been some attempts to define and quantify its

importance. For example, Cravero and Iabichino (2004) discussed the flexural

failure of a gneissic slab from a quarry face, which had been apparently stable

for at least 15 years prior to failing. It was concluded that instability involved

tensile failure of a single slab initiated by water pressure or seismic loading.

Paronuzzi and Serafini (2009) assessed the stress state of a collapsed

overhanging rock slab previously connected to the rock mass by an incipient

joint (see Figure 2.18). The area of rock bridge revealed after collapse was

2.82 m2 and a value of tensile strength for this area σt = 5.19 MPa was derived

from 3D numerical analysis.
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Figure 2.17 Slope with daylighting rock slabs threatening highway in central
Taiwan. The incipient nature of the discontinuities contributes tensile and
shear strength and allows temporary stability.

Although the importance of incipiency of discontinuities is well understood,

and measurement of tensile strength of incipient rock discontinuities is the first

step towards this topic. To date, however, there have been no publications

available to investigate the tensile strength of incipient rock discontinuities.

The lack of investigations into the measurement of tensile strength of incipient

rock discontinuities probably can be attributed to two reasons: (1) Insufficient

understanding of the engineering issues arising from the conservative

assumption of 100% persistence or over-simplistic of discontinuity

persistence. (2) Lack of ideas to reflect discontinuity persistence (incipiency)

in a practical way.
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Figure 2.18 General view of a collapsed overhanging limestone slab located
at northern part of Cellina Valley gorge on January 26th, 1999. A rock
bridge (red-hatched area) was exposed after failure. The average tensile
strength of this rock bridge was calculated as 5.19 MPa on back-analysis
by Paronuzzi and Serafini (2009).

2.4.2 Shear strength of incipient rock discontinuities

A large amount of investigations have been undertaken to measure shear

strength of discontinuities, but mostly focusing on mechanical (open)

discontinuities which have zero true cohesion. Generally, mechanical rock

discontinuities can be regarded as a special state or simplest case of incipient

discontinuities when fully developed. The work reported by Lajtai (1969) is a

pioneer in the investigation of shear properties of a single incipient rock joint

(termed as plane of weakness in his study) under direct shear loading. It was

shown that shear strength of incipient rock joints was determined by three

components including fundamental shear strength (true cohesion from rock

bridges), internal friction in solid bridges (after rock bridges are mobilized) and

friction from the persistent joint along the separated parts of the incipient joint

plane. Relative shear strength contributions from these three factors were

experimentally investigated. Three types of plaster samples were moulded

(Dimension: 152 mm × 76 mm × 76 mm). For the type 1 samples, joint

persistence was 100% to examine the pure joint friction. In the type 2 samples,

joint friction from the persistent sections was eliminated completely by leaving

the joints open with approximately 0.2 mm width notches. The type 3 shear

block samples contained tight interlocking joints separated by bridges. In type
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1 samples, joint persistence K were 100%; in type 2 and type 3 sample

preparation processes, joint persistence K were set to be a constant value of

50%. The test results were reproduced in Figure 2.19 and the diagrams of

tested samples were also included. Experimental data have been fitted to the

analytical derived curves (for procedures see section 2 of Lajtai (1969)) and

four zones were defined based on the available data, i.e. zone of tensile
normal stress (area left to the 0

n
  axis when normal stress below zero),

zone of primary strength (area immediately to the right of the 0
n

  axis),

transitional zone from primary to ultimate strength at intermediate values of

normal stresses and zone of ultimate strength at higher values of normal

stresses. It was also concluded that the minimum resistance (Rmin) to shear
along incipient rock joint is a function of tensile strength

t
 of rock bridges in

the form of

where K is joint persistence, A is longitudinal cross-sectional area of shear

sample (m2).

The existence of intact rock bridges significantly increased the shear strength

of single incipient rock discontinuity as they produced a strength reserve and

need to be mobilised firstly prior to failure can occur and sliding along the

incipient joint plane (Jennings 1970 and Stimpson 1978).
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Figure 2.19 a Pure frictional resistance from type 1 sample containing a fully
persistent joint (K=100%), Notice that friction angle for ultimate shear
strength was slightly lower than that of peak shear strength;
Experimental results from direct tension shear tests on type 2 sample
containing incipient joint (K=50%) (b) and type 3 sample containing tight
interlocking joints (c) .

It is however rare to see the shear testing on natural incipient rock joint as it

is near impossible to secure groups of natural rock samples containing

incipient rock discontinuities of identical strength characteristics. An example

of a natural rock bridge under direct shear loading reported by Hencher (1984)

showed the strength contribution from natural rock bridge (light area in Figure

2.20). It was found that the cohesive contribution from the light area was 750

kPa, measured during the direct shear testing.

Based on the Mohr-Coulomb (MC) failure criterion, an equivalent shear

strength calculation method of unfilled and unweathered incipient rock joints

was proposed in which strength contributions from rock bridges and persistent

joint areas were linearly combined (Lajtai 1969 and Harrison and Hudson

2000). It can be expressed by the following equation:
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where  and  are shear strength of incipient rock joints and given normal
stress,

i
c and

i
 are the equivalent cohesion and internal friction angle of

incipient rock joints, p
c and p

 are the cohesion and internal friction angle of

persistent joint,
B

c and
B

 are the cohesion and internal friction angle of intact

rock bridges. K is the joint persistence.

Figure 2.20 Intact rock bridge (light area) revealed after direct shearing. Shear
strength contribution from this bridge area was found to be 750 kPa. After
Hencher (1984)

Lajtai (1969) commented that the equation (2-12) tends to overestimate the

shear strength of incipient rock discontinuity as it assumes that rock bridges

and friction of persistent joint areas are mobilized simultaneously, that is at

the same deformation. In addition, MC criterion is only applicable to the

smooth joint surface or rough joint under lower normal stress level, thus

equation (2-12) has limited applications. For rough joint plane under higher

level normal stress, shear strength is a bi-linear function of the given normal

stress (Patton 1966) because of the shearing failure of asperities and

suppression of any expansion (Barton, 1973). Barton-Bandis (BB) failure

criterion was suggested to describe this non-linear behaviour by the following

equation (Barton, 1976)
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where JRC is the joint roughness coefficient, JCS is the joint wall compressive

strength, and b
 is the basic friction angle of a smooth and planar

discontinuity.

An extension of equivalent shear strength calculation method based on the

BB criterion under biaxial stress state was investigated by Halakatevakis and

Sofianos (2010). In this mathematical model, stress acting on rock specimen

containing a single joint was divided into shear and normal stress components

on the joint plane. Any increase in normal stress due to the dilation of joint

during shearing was assumed to be negligible. The extended equivalent shear

strength of incipient joints can be expressed by

where
1

 and
3

 are major and minor principle stresses,  is the joint

angle relative to normal loading axis.

Zhang et al. (2006) numerically investigated the shear strength of incipient

rock joints. Shear strength of planar incipient joints within rock were measured

under direct shear test. Figure 2.21 reproduced the relationship between

shear force and displacement of incipient rock joints with different geometrical

parameters. A numerical rock sample containing a horizontal incipient joint

was also included.
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Figure 2.21 Relationship between shear displacement and horizontal shear
force for various numerical models containing incipient rock joint with
different geometrical parameters. Adapted from Zhang et al. (2006).

It can be seen from Figure 2.21 that shear strength rose to a clear peak and

then reduced suddenly to a very low residual strength. This brittle failure

phenomenon can be related to the failure of intact rock bridges and the ideally

generated smooth joint in the numerical modelling. That is to say, unlike the

rock bridge segments under direct shear, the saw-cut joint surfaces have

relatively low friction. Figure 2.22 presents the relation between peak shear

load and persistence based on the raw data from Zhang (2006). It is found

that shear strength of incipient rock joints increased linearly with the

persistence and independent of number of notched joints.
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Figure 2.22 Linear relation between rock joint persistence (areal persistence)
and peak shear load. Raw data of numerical studies from Zhang (2006).

The paper reported by Ghazvinian et al. (2007) was an example of the effects

of persistence and rock bridge geometries on the shear strength of incipient

rock joints in the laboratory. Forty five three dimensional incipient rock joints

within cubic rock-like specimens (dimension: 150 mm × 150 mm × 150 mm)

were prepared and tested under direct shear strength considering three

different normal stresses (333 kPa, 555 kPa and 777 kPa). Rock bridge areas

vared from 4500 mm2, 6300 mm2 and 9000 mm2, distributed separately within

specimens in five different geometries (see Table 2.1). Main testing results

are replotted in Figure 2.23.
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Table 2.1 Geometrical specifications of modelled rock bridges. After
Ghazvinian et al. (2007)

Rock

bridge

area

(mm2)

Joint

persistence

Rock bridge

dimensions

(a X b)

(mm X mm)

Rock bridge geometries

4500 0.4 G1 (300 x1500),

G2(500 x 900),

G3(600 x 750),

G4(1000 x 450),

G5(1500 x 300)

6300 0.28 G1 (420 x 1500),

G2(700 x 900),

G3(8.40 x 750),

G4(1400 x 450),

G5(1500 x 420)

9000 0.2 G1 (300 x 1500),

G2(500 x 900),

G3(600 x 750),

G4(1000 x 450),

G5(1500 x 300)

It was found that peak shear strength varied slightly with five different rock

bridge geometries under the same discontinuity persistence. Incipient rock

joints with G5 rock bridge geometries gave highest shear strength values for

all the situations, while shear strength of incipient rock joints containing G1

rock bridges were the smallest. The different stress distributions around joint

tips (because of the different rock bridge geometries) may result in this

phenomenon, however more in-depth investigation towards this phenomenon

is worthy to be emphasised.
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Figure 2.23 Shear strength of incipient rock joints against rock bridge
geometries. a Joint persistence K is 0.2; b Joint persistence K is 0.28
and c Joint persistence K is 0.4. Replotted from Ghazvinian (2007).

Particle flow code 2D (PFC 2D) was adopted to simulate the shear behaviour

of incipient rock joints within rock-like materials (Ghazvinian et al. 2012) but

the main findings are essentially similar to those by Zhang et al. (2006) and

Ghazvinian et al. (2007).

Hencher and Richards (2015) extensively reviewed the shearing test of rock

discontinuities at laboratory scale and proposed an approach to assessing

shear strength of rock discontinuity at project scale in the light of laboratory

and analytical results. They pointed out that shear strength of incipient rock

discontinuities is contributed to factors including local rock bridges, roughness

at a relatively large-scale in the field and smaller asperity at a scale of core

samples in the laboratory, but essentially agree with the findings by Lajtai

(1969).
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2.5 Implications of discontinuity persistence for rock mass

strength and stability

Incipient rock discontinuities often have a controlling influence on rock mass

strength and stability in rock engineering projects as well as on other

properties such as deformability and hydraulic conductivity. The effects of

incipient joints in various contexts on rock mass strength and stability are

explored in the following sections

2.5.1 Block size and volume for rock masses with incipient

discontinuities

Intersection of rock discontinuities within a rock mass leads to individual rock

blocks (Maukdib 1994). Block size and volume are among the important

factors in rock mass behaviour and classification (Barton 1990 and Goodman

1993). Assessing rock block size and volume has long been appreciated by

lots of methods which can be roughly categorized into three groups such as

index evaluation (e.g. ISRM 1978 and Sen et al. 1992), image-based

measurement (e.g. Panek 1981 and Maerz 1996), and model dissection (e.g.

Goodman and Shi 1985).

Generally rock block size and volume are determined by discontinuity

geometrical parameters such as discontinuity spacing, discontinuity

orientation, number of discontinuity sets and discontinuity persistence.

Considering the scope of this review, publications accounting for discontinuity

persistence were reviewed and the influence of discontinuity persistence to

the rock block size and volume are discussed in this section.

For the rock masses containing several fully-persistent rock joint sets, the rock

block volume within a representative rock mass can be empirically calculated

by (Cai et al. 2004 and Palmstrom 2005)

1 2 3

1 2 3
sin sin sin sin

i
p

i

S S S S
V

   

    


    
(2-15)

where Si and
i

 are joint spacing and angle of inclination for each joint set,

respectively.

Rock bridges along incipient rock joint planes lead to irregular rock block

shapes and larger rock block size. In this case an equivalent spacing Si’ for

incipient rock joint is defined as (Cai and Horri 1992)

'

3

i
i
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S
S

K
 (2-16)
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where Ki is joint persistence for each joint set.

Thus the equivalent rock block volume can be expressed by the following

equation:

' 1 2 3

3
1 2 3 1 2 3

sin sin sin sin

i
p

i i

S S S S
V

K K K K    

  


      
(2-17)

Probability analysis techniques are adopted to investigate rock block size and

volume distributions considering every incipient rock discontinuity within rock

masses rather than solely emphasis on representative ones by the

aforementioned analytical solution.

Wang et al. (1991) presented an algorithm to predict block size distribution

based on the real data collected from quarry. Although the difference between

two block size distributions determined from incipient discontinuities as well

as fully persistent discontinuities was presented, the algorithm they provided

failed to consider the influence of incipiency on block size. Intersection

probabilities of incipient discontinuities, related to occurrence probabilities of

rock blocks that comprise the rock mass, was investigated by Mauldon (1996).

Analytical solution was found concerning the probabilities of intersection of

incipient discontinuities within a jointed rock mass. This solution has potential

to be implemented into numerical modelling.

Wang et al. (2003) proposed another new algorithm accounting for

persistence (linear extent) to predict size distribution of ore blocks after

blasting in block caving. A synthetic database of field discontinuities measured

in shafts and other underground engineering structures was established by

using Monte Carlo Simulation. This algorithm was able to pick discontinuities

from the database to form polyhedral blocks. It was found that ore

fragmentation varied significantly when discontinuity persistence varies from

0.6 to 1.0. The work by Rogers et al. (2007) also demonstrated that in situ 2D

and 3D fragmentation (block size and volume) of rock blocks were critically

sensitive to the discontinuity intensity and persistence (expressed as fracture

size). Kim et al. (2007) statistically examined how the rock bridge distributions

(represented by the combination of joint orientation, spacing and persistence)

affected the block size distribution by orthogonal arrays and experimental

design. UDEC code (Itasca 2004b) and 3DEC code (Itasca 2004a) were

employed in the parametric analysis to find the correlation of each parameter

to the rock block size. The relations between discontinuity persistence and

rock block size (including 294 cases examined by UDEC) as well as volume

(including 144 cases examined by 3DEC) are reproduced in Figure 2.24. In
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Figure 2.24a, groups 1 to 3 represents all simulation cases that the standard

deviation of angle between each joint set is 5◦ and the standards deviation of

spacing and trace length are 10, 20 and 30% of the mean values, respectively;

groups 4 to 6 refer to all remaining cases that the standard deviations of the

angle between each joint set is 10◦ and standard deviations of joint spacing

and trace length are 10, 20 and 30% of the mean values, respectively. In

Figure 2.24b, S represents simulation cases that the standard deviations of

joint spacing and angle are 30% of the mean value. S is shown as 0, 10, 20

and 30%.

General trends can be seen from Figure 2.24 that the normalized rock block

size (Figure 2.24a) as well as normalized rock block volume (Figure 2.24b)

moves towards 1 when discontinuity persistence approaches 1. The

regression equations for scattered dots in Figures 2.24a, b have been

obtained

where A0 is the calculated block size considering joint spacing, joint angle,

and 100% persistence, V0 is the calculated block volume considering joint

spacing, joint angle, and 100% persistence; Ab and Vb are equivalent rock

block size and volume, respectively; KA and KV are joint persistence which

are calculated by equations:
1 2

K K and 3
1 2 3

K K K , respectively. Note that

two joint sets were consider in UDEC model (Figure 2.24a) and three joint

sets were involved in 3DEC model (Figure 2.24b). The analysis results by

3DEC regarding the relation of persistence and rock block volume agreed

well with Cai et al. (2004).

Longoni et al. (2012) analysed the geometrical features of rock discontinuities

including spacing, persistence in rock masses (sedimentary Triassic rocks

including limestones, marls and dolomites) based on the data collected during

surface and subsurface investigations. Three dimensional distinct element

code was applied to generate rock mass structures. In their model,

persistence was considered as the probability that any discontinuity cuts a

block (through which rock block volume was correlated with persistence). The

relationship between persistence and block volume found in this study, which
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is essentially similar to that presented by Wang et al. (1991), was reproduced

in Figure 2.25.

The full line depicts the volume distribution under conservative persistence

(100%), while the dashed line depicts the volume distribution from the real

persistence calculated from ground penetrating radar (GPR). It clearly

demonstrates how discontinuity persistence changes the block size

distribution, particularly for larger sizes.

A new technique based on Monte Carlo Simulations was proposed by

Elmouttie and Poropat (2012) to estimate in situ rock block size distribution

(BSD) in a jointed rock mass. More specific geometrical properties of

discontinuities (represented as either polygons or triangulated surfaces) were

used as input parameters. Discontinuity persistence was modelled realistically

by utilizing a discrete fracture network (DFN). Three discontinuity persistence

values (60%, 80% and 100%) were selected in the simulation. It was found

that BSD is sensitive to persistence, especially when K=60%, rock blocks as

large as 20 m were obtained which is not agree with the result (no block is

larger than 4.5 m was predicted) presented by Wang et al. (2003). FrackMan

code was used by Palleske et al. (2014) to examine the influence of

discontinuity persistence (termed as fracture size in this study) to the mean

block size determination for a given rock masses.
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Figure 2.24 Relationship between joint persistence and normalized block size
(a) and block volume (b). Replotted from Kim et al. (2007).
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Figure 2.25 Rock block volume distribution for 100% persistence and real
persistence. Modified from Longoni et al. (2012).

2.5.2 Mechanical properties and deformability of non-persistently

jointed rock masses

2.5.2.1 Influence of persistence on rock mass behaviour

Jointed rock masses, in nature, inevitably contain discontinuities with various

orientation, shapes, sizes and persistence. A great number of factors including

intact rock matrix strength, discontinuity properties (including shear, tensile

strength and any other geometrical properties), discontinuity interactions

(stress distribution varies with the number and arrangement of discontinuities

(Mughieda 1997)) and the interactions between discontinuities and rock matrix

(such as block interlocking) will influence the overall mechanical properties of

rock mass. One of these factors, the importance of incipiency of discontinuities

(represented as persistence), in the determining of rock block size and volume

has been appreciated and investigated, as discussed in section 2.5.1. The

incipiency will also influence the overall rock mass behaviour.
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There has been several classic mass classification schemes for example

RMR (Bieniawski 1973, 1976), Q system (Barton et al. 1974) and GSI (Hoek

et al. 1995). Generally these classification schemes are empirically produced

to provide a guidance for engineering support (except for GSI, semi-

empirically designed for rock mass strength estimation) based on engineering

projects or laboratory data. A specific value considering different influential

factors is assessed and calculated to reflect the quality of rock masses. But

they fail to consider the influence of persistence in the mass strength

determination. For example, in GSI system, the discontinuity persistence is

only indirectly considered by the interlocking description (Cai et al. 2004) but

on a very low level as discontinuities are assumed to be persistent. Bahrani

and Kaiser (2013) pointed out that GSI underestimates the overall strength of

non-persistently jointed rock mass based on a comparison of intact and non-

persistently jointed rocks using the laboratory test results, especially at high

confinement when a rapid increase in strength can be seen arising from the

interlocking effect.

Rock quality designation (RQD), originally devised by Deere (1968) for use in

core logging, is one of the key parameters used in RMR and Q system. Sound

core pieces greater than 100 mm in length are summed and expressed as a

percentage of total core run. RQD however does not consider and differentiate

incipiency of discontinuities involved and often incipient joints are also

included in the assessment (which will underestimate rock mass strength)

(Hencher 2013, 2015).

Prudencio and Van Sint Jan (2007) conducted laboratory tests on physical

models of non-persistently jointed rock mass under biaxial loading condition.

In laboratory tests, the influence of discontinuity persistence was considered

and non-persistent rock joints were made by inserting steel sheets into the

mortar mixture in the sample preparation. It was found that the rock mass

failure modes and maximum compressive strength depended on geometrical

parameters of discontinuity, loading stresses, ratios of principle and

intermediate stresses. Three basic failure modes were found: failure thorough

incipient joint plane, stepped failure and rotational failure of rock blocks. But

unfortunately no single parametric influence, such as persistence, on overall

rock mass has been reported quantitatively as it is difficult to control other

parameters to be constant in the laboratory.

Numerical modelling has been effectively used to investigate the influence of

persistence on overall mechanical properties of jointed rock masses. Kim et

al. (2007a, b) statistically examined how the incipient discontinuities with
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varying persistence values affect the mechanical response, represented by

shear strength, compressive strength and GSI value, of jointed rock mass.

UDEC and 3DEC codes combined with experimental approaches were used

in their study. Shear strengths of jointed rock mass with and without

considering persistence (represented as 0
,  respectively) and compressive

strengths with and without considering persistence (represented as 0
,

c c
 

respectively) were simulated, while GSI values considering persistence were

calculated using the quantitative approach proposed by Cai et al. (2004), in

which the equivalent block volume was derived for non-persistently jointed

rock mass. Strength ratios including 0
/  , 0

/
c c

  and GSI/GSI0 against

discontinuity persistence from these investigations are assembled and plotted

in Figure 2.26. It can been seen that shear strength ratio (red curve) of jointed

rock masses dramatically decreased when persistence increased, and the

ratio approached 4 when persistence approached 0. This finding means that

the shear strength of rocks will be underestimated (around 1/4 from real shear

strength) if persistence is ignored in the rock mass strength assessment. For

the compressive strength ratio (blue curve) and GSI value ratio (green curve)

against persistence, the underestimation rule also can been observed but with

smaller influences, i.e. within 1.5 time underestimation from the real

compressive and GSI value. Note that the variations of compressive strengths

ratio ( 0
/

c c
  ) as well as GSI values ratio (GSI/GSI0) for the same

persistence value arise from the different joint spacing parameters adopted in

the simulation. That is, upper ratio values corresponded to wider joint spacing,

and vice versa. If a strength underestimation (SU) parameter is defined,

similar to the definition of strength degradation parameter used by Bahrani

and Kaiser (2013), as the reduction in the strength (or GSI value) of full-

persistently jointed rock mass from that of non-persistently jointed rock mass.

SU of shear strength can reach up to 300%, while SU of compressive strength

and GSI can reach 50% according to the findings by Kim et al. (2007a, b).

This provides a general and quantitative understanding of the effect of

persistence on the strength of non-persistently jointed rock mass.
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Figure 2.26 Relationship between relative rock mass strengths and
persistence. Modified from Kim et al. (2007a, b).

Following the discontinuity geometrical distributions in the laboratory tests

conducted by Prudencio and Van Sint Jan (2007), PFC3D code was used by

Bahaaddini et al. (2013) as an extension to investigate the effect of

discontinuity persistence on the failure mechanism, compressive strength and

elastic modulus of rock mass in which multiple layers of coplanar non-

persistently discontinuities were arranged while varying geometric parameters

(see Figure 2.27).
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Figure 2.27 Discontinuity geometrical parameters used in the numerical
modelling by Bahaaddini et al. (2013). Reproduced from Bahaaddini et
al. (2013).

In their study, persistence varied from 0.5 to 0.8 while other geometrical

parameters were set to be constant except for  which varied from 0° to 90°.

Numerical results were reproduced in Figure 2.28, corresponding failure

modes of samples when K=0.5 were also included in Figure 2.28a. Note that

yellow represents rock matrix in PFC model, green indicates incipient rock

joint traces, red indicates tension cracks and blue stands for shear cracks (but

rarely can be seen). It was found that compressive strength and elastic

modulus of rock mass decreased when persistence increased for the same

joint angle relative to loading axis. In addition, strength and modulus varied

significantly when  varied from 0° to 90° for the same discontinuity

persistence, for all persistence values, these two mechanical parameter all

approached the lowest values when 6 0   . They also found that jointed

rock mass containing multiple layers of incipient discontinuities experienced

several failure patterns under compression, dependent on discontinuity

orientation. For example when K=0.5, failure mode changed sequentially from

intact rock failure ( 0   ), planar failure ( 1 5 , 3 0    ), block rotational failure

( 4 5 , 6 0 , 7 5     ) to intact rock failure again ( 9 0   ). It is also worth noting

that tensile cracks dominated and decreased dramatically when persistence

increased from 0.5 to 0.8 at a constant joint orientation 9 0   . This

phenomenon can be attributed to the reduction of the number of joint tips. A

further investigation considering more discontinuity values was reported by

Bahaaddini et al. (2016), the same methodology was employed and the similar
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results were arrived at to those plotted in Figure 2.28. All these quantitative

study results validated the qualitative results originally proposed by Prudencio

and Van Sint Jan (2007).

Figure 2.28 Effects of discontinuity persistence on relative compressive
strength of rock masses (a) and on relative elastic modulus of rock
masses (b). After and adapted from Bahaaddini et al. (2013).
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2.5.2.2 Rock slope stability considering incipient discontinuities

It is agreed that incipient rock discontinuities have significant influence on the

mechanical properties and deformability of rock mass thus therefore on the

rock slope stability. Compared with local-scale rock mass, large-scale mass

(if it is larger compared with joint spacing) can contain more sets of

discontinuities therefore much more complex stress distributions, especially

where discontinuities appear random. A more challenging difficulty

confronting practical rock engineers is that how to consider the incipiency of

discontinuities in large scale stability analysis. In addition, the gradual

development and coalescence of incipient discontinuities over engineering

time may have profound effects on stability. An illustrating engineering

example was presented by Hencher (2006), in which movement and

development (over many years) of sheeting joints were observed prior to the

detachment of a large landslide in Hong Kong.

Einstein et al. (1983) proposed a probabilistic criterion for failure that was

related to discontinuity data so as to examine the effect of discontinuity

persistence on rock slope stability. Only one set of parallel discontinuities with

varying persistence was examined in their study. The “critical path” for a given

discontinuity geometry (including coplanar and non-coplanar joint plane, such

as en enchelon) was defined to consider strength contributions from

discontinuity and intervening rock bridges as well as the spatial variability of

discontinuity geometry. For this “critical path” there is a minimum safety

margin SM=resisting force-driving force. SLOPESIM code was utilized to find

the paths of the minimum SM and achieve probabilistic failure analysis of

jointed rock slope. In addition, the effect of the probability distribution of

persistence was investigated using the parametric study method.

The notion of representative volume element (RVE) of jointed rock masses

was proposed by Pariseau et al. (2007) with an aim to enhance the reliability

of large-scale rock mass stability analysis and dramatically reduce computer

run time, from hundreds hours to several hours, simultaneously. RVE of a non-

persistently jointed rock mass stands for an element that is so large that any

other discontinuities contribute little (can be ignored) to the equivalent rock

mass properties for the targeted mass volume. Stability of engineered open

pit slopes was investigated by utilizing a more practical finite element

modelling technique in which RVE was recognised for a given discontinuity

geometry. Equivalent discontinuity properties (Pariseau 2003) were

calculated for a given persistence for each set of discontinuity evolved in the

RVE and then employed in the slope stability analysis. The main benefit of the
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RVE approach is that the numerous non-persistent discontinuities within a

rock mass at project scale can be effectively dealt with.

Viviana et al. (2015) proposed a method, combining probabilistic technique

(mean uniform distribution law) and Yade Open DEM code, to investigate

translational sliding failure along an incipient discontinuity within rock slopes.

Three different sliding block geometries were investigated, that is, centres of

gravity were located in the upper part (Figure 2.29a), lower part (Figure 2.29b)

and middle of sliding block (Figure 2.29c), respectively. For each situation,

three different dip angles (30°, 50°, and 70°) were used. The relation of slope

failure modes (stress distributions) were found to be dependent on the slope

geometry and discontinuity persistence. For all situations, tensile and shear

stress increased dramatically when persistence decreased which confirms the

finding by Bahaaddini et al. (2013) that higher tensile cracking arises from

lower discontinuity persistence. For configurations where centres of gravity

were located in the upper part (Figure 2.29a) and middle of sliding block

(Figure 2.29b), shear cracks predominate, especially for a small dip angle at

30° pure mode II failure can be found. For higher dip angles, rock slope failure

was in both mode I and mode II, especially for configuration where centre of

gravity is located in the lower part (Figure 2.29b).
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Figure 2.29 Relationship between numbers of tensile and shear cracks
occurrences and areal persistence. The dashed lines correspond to
tensile crack while continuous lines represent shear crack. Slope dip
varied from 30◦, 50◦ to 70◦. After and adapted from Viviana et al. (2015)
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2.5.3 Summary

In this section, the implication of discontinuity persistence on size and volume

of rock blocks, mechanical properties (including shear strength, compressive

strength and GSI strength index) of rock masses and deformability of non-

persistently jointed rock masses are reviewed. The key findings from this

discussion are summarized as follows:

(1) The equivalent volumes of rock blocks within a rock mass can be

calculated by Eq. (2-17) on condition that only several sets of parallel joint are

interested within the rock mass.

(2) Size and volume of rock blocks within a rock mass are sensitive to

discontinuity persistence. Exponential relation (Figure 2.24a) is found about

the ratio of rock block size within a non-persistent rock mass and block size

within the same rock mass but containing persistent discontinuities. Similar

trend is also found about the ratio of block volume (Figure 2.24b).

(3) The results from the research conducted by Longoni et al. (2012) indicate

that block volume distribution varied not only with discontinuity persistence but

also with lithology and specific geological conditions. These factors should be

considered in the assessment of rock block volume and size distribution in the

field.

(4) As can be anticipated that strengths of a rock mass will be underestimated

if persistence is ignored in the rock mass strength assessment. Shear strength

of a non-persistent rock mass will be underestimated to approximately 75% of

the real shear strength, while the underestimations of compressive strength

and GSI index are both around 33% from real compressive strength and GSI

index value, respectively.

(5) Failure mode of a rock mass under compression is mainly affected by the

geometrical parameters including joint persistence, orientation and number of

joint tips.

(6) For the sliding failure of a rock slope along an incipient discontinuity,

persistence of this incipient discontinuity as well as dip angle of the

discontinuity plane dominate the failure mode. For a small dip angle (less

than 30◦), pure mode II failure occurs; while for higher dip angles, slope failure

is in both mode I and mode II.
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2.6 Quantification of rock discontinuity persistence

The influence of persistence on overall rock mass behaviour has long been

known (Hencher 2014; 2015). In practical rock engineering projects, a

conservative discontinuity persistence (100% persistence) was adopted or

even worse persistence was neglected. This can be attributed to difficulty in

the measurement of real persistence. Traditional surveys on exposed rock

faces are two-dimensional, thus true persistence inside the rock mass is

extremely difficult to determine. Poisson planes and circular discs have been

proposed as models for joints by Bridges (1976) and Baecher et al. (1977), on

assumption that joint length are approximately equal in strike and dip

directions (Robertson 1970). Rawnsley (1990) found that persistence – even

as seen in surface exposures - was not predictable on the basis of geological

factors or through other observations. As was pointed out by Hencher (2015),

the area and extent of a single discontinuity away from an exposure or

borehole is difficult to measure. In reality, it is assumed that a rock mass can

be regarded as a continuum if there is no particular structural anisotropy

relevant to project.

Currently, there are still no recommended methods to measure or predict

discontinuity persistence. Trace length of discontinuities obtained from rock

exposures was normally used as an approximation of persistence and

sometimes 100% persistence was assumed for simplification purpose.

2.6.1 Discontinuity size estimation

An approximation to real discontinuity size can be derived from measured

trace length from rock exposures after correcting the sampling bias (e.g.

Barcher and Lanney 1978, Einstein et al. 1979, Priest and Hudson 1981,

Mauldon 1997, Zhang and Einstein 1998, Zhang et al. 2002, Latham 2006,

Zhang et al. 2016). Data acquisition of discontinuities from exposed rock

faces, the first step to obtain real trace length, can be grouped into two

categories: manual methods (such as scanline sampling (SS) and window

sampling (WS)) and computer-aided methods.

(1) Scanline and window sampling methods

At planar or nearly planar rock exposures, statistical sampling methods

including scanline and window approaches have been widely used to measure

the extent of discontinuities intersected.

Straight scanline, normally a tape laid along rock face, samples the joint traces

intersecting the line. Although it has been widely employed in application,
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there is still no commonly accepted survey standards. In practice, a typical

sample area which contains between 150 and 350 discontinuities is better to

be selected. Colour photos of exposed rock faces, setting up of scanline, and

scale makers are recommended (Hudson and Priest 1979). Wang (1992)

grouped scanline survey into two categories: quick scanline and detailed

scanline. For a quick scanline survey, only location of each intersection,

plunge and azimuth are recorded. Detailed scanline survey normally

comprises chainage of each intersected discontinuity from starting point,

discontinuity orientation (dip and dip direction) measured by a compass

clinometer, discontinuity types (e.g. joints, bedding, foliation, lamination,

cleavage), trace length, aperture and infilling condition, planarity, waviness,

termination and water condition(any evidence of seepage). A good example

sheet of detailed discontinuity survey was produced and provided by Hencher

Associate Limited (HAL, 2015), in which relative strength to parent rock was

additionally suggested to be considered.

The scanline survey is subject to some drawbacks, i.e. sampling biases, which

have been noted by many researchers since 1970s (e.g. Cruden 1977). Figure

2.30 diagrammatically shows a scanline survey on a planar rock face of limited

extent, sampling biases including size bias, orientation bias and censoring

bias are illustrated.

Figure 2.30 Diagrammatic representation of discontinuity traces intersecting
a scanline set up on a planar exposure of limited extent. For small size
discontinuities or those that are roughly parallel to scanline or concealed,
bias will occur when sampling. After and modified from Latham et al.
(2006).
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These biases are summarised in the following:

(1) Size bias. Scanline will preferentially inserted those discontinuities with

a longer trace length and small traces (see Figure 2.30) as low as

10mm on exposures are tend to be neglected. Priest and Hudson

(1981) however commented that smaller joint traces will have small

effect when mean trace length is in the order of meters.

(2) Orientation bias. Discontinuity striking roughly parallel to the scanline

(see Figure 2.30) will be under-represented or excluded from the

sampling results. This will lead to a serious misinterpretation of

discontinuity extent as some critical information is omitted. Kulatilake

(1990) chose seven scanline directions to analysis trace length to

eliminate the orientation bias. Priest (1993) suggested that at least

three scanlines should be measured at each direction. Park and West

(2002) verified and emphasised the orientation bias based on the

examination of the differences in results from vertical borehole fracture

mapping method and horizontal scanline sampling. In practical rock

engineering, three orthogonal line scans are normally recommended to

reduce the orientation bias (Hencher 2015)

(3) Censoring bias. Rock exposures are limited and relatively small

compared with the persistent joints. Inevitably large discontinuities, one

end or both ends (see Figure 2.30), may extend beyond the visible

exposure, therefore they are censored at some degree depending on

discontinuity size (Cruden 1977). Baecher (1980) pointed out that

censoring bias (often related to the geometric variables and shape

assumptions) should be considered in size inference.

Window sampling, another manual data acquisition technique, has also been

used for sampling the discontinuities exposed at a given rock face. The

preliminaries and measurement techniques are similar to scanline survey

except that all discontinuities are measured in a finite area, rather than the

intersection of the scanline. For setting up window sampling, usually, a

rectangle or circular of measuring tapes will be placed on the outcrop. The

window should be large enough to reduce the sampling bias, with each side

intersecting between 30 and 100 discontinuities. Then the number of

discontinuities will be counted and classified into three classes (Pahl 1981 and

Zhang and Einstein 2000):
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(1) Discontinuities contained in the window: both ends of discontinuities

are visible in the sampling domain.

(2) Discontinuities that transect the window: both ends of discontinuities

are invisible in the sampling domain, this is, ends beyond the limits of

window.

(3) Discontinuities intersect the window: only one end is visible in the

window and another one beyond the limits of sampling area.

Although window sampling still confronts the censoring issue, this method

normally is able to comprise more and larger discontinuities sets thus will

eliminate size bias and orientation bias (Mauldon et al. 2001). In addition,

discontinuity termination characteristics can also be logged by using windows

sampling (e.g. Dershowitz and Einstein 1988), but it does not provide any

information about discontinuity orientation and surface geometry (Priest

1993).

Manual data acquisition methods suffer from some limitations. The first is that

it is labour intensive and time consuming. In order to minimise the sampling

bias, sampling should be conducted at many different representative spots. It

takes long time to obtain discontinuity data one by one from exposed rock

faces, and operator’s safety during sampling is another issue. The second is

that unbiased discontinuity characterisation requires a skilled interpretation by

a rock engineer or geologist. The third, and more serious, manual methods

cannot be approved to collect data from the rock exposures that are not

accessible. So researchers have paid a lot attention on producing other

alternative ways to obtain discontinuity data from outcrop.

(2) Computer aided sampling

Computer aided sampling (automatic or semi-automatic) methods, compared

with the manual sampling methods above, are more effective. The image

analysis technique, perhaps the pioneer work towards this topic, was

proposed by Ord and Cheung (1991) to describe discontinuities on outcrop

automatically. Afterwards, computer-aided techniques were increasingly to be

studied and have been developed. Roberts (2000) proposed a digital

photogrammetric technique to investigate three dimensional models of rock

faces. Feng et al. (2001) proposed a portal system, in which a laser range

finder was firstly used, to measure discontinuities in outcrops. Several

computed aided techniques including digital photogrammetry (Tuckey and

Stead 2016), ground-based LiDAR, and digital trace mapping have been
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involved in the project at Simon Fraser University aiming to develop a

standardized and adaptable methodology for assessing discontinuity

persistence (trace length). An example of their work was reproduced in Figure

2.31(Tuckey et al. 2012). The open-source image processing code ImageJ

was used to trace discontinuities and infer rock bridges, obtained results were

used to supplement field window sampling. Umili et al. (2013) developed an

automatic method to map and identify discontinuity traces based on digital

surface model (DSM), which consists of a triangulated point cloud that

approximates the true surface. Terrestrial Laser Scanner (TLS) and

Terrestrial digital photogrammetry (TDP), by contrast, are more popular and

have been widely used in characterising discontinuities and rock face

morphology (e.g. Rosser et al. 2005, Sturzenegger and Stread 2009 a, b ,

Slob 2010, Sturzenegger et al. 2011 and Lato and Voge 2012). Antonio et al.

(2014) comprehensively reviewed the application of TLS technique to rock

exposure characterization. These methods are generally based on the

segmentation of the rock exposures, and discontinuity traces are obtained as

the boundaries of the identified planes (Umili et al. 2013). Collected data are

statistically examined and used for rock discontinuity or mass

characterisation. Geological exposures however are usually complex thus

sometimes will frustrate these statistical sampling approaches (Hencher

2015).
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Figure 2.31 a Digital trace mapping of incipient discontinuities and blast-
induced fractures over photographs; b Discontinuity traces were
analysed after tracing. Green and blue lines correspond to incipient
discontinuities (two sets), red lines stand for blast induced fractures and
orange lines correspond to rock bridges. From Tuckey et al. (2012).

(3) Discontinuity size estimation from censored measurements

Discontinuity size estimation has received extensive attention in rock

mechanics literature. This work is based on the censored sampling

measurements above. Probability distributions have been used to study the

sampling bias thus provide analytical methods to estimate the discontinuity

size (or trace length) distribution. Well formulated probability sampling planes

should be used otherwise errors will occur (Baecher and Lanney 1978). Table

2.2 presents a selection of publications on this topic.

2.6.2 Subsurface geological discontinuity persistence

All of the above sampling methods are only limited to surface, thus internal

discontinuity geometric parameters such as aperture, spacing and

persistence cannot be obtained, extrapolation data of surface to subsurface

has to be employed. Bieniawski (1989) pointed out that the use of traditional
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surface geological sampling was not sufficient to collect accurate discontinuity

geometry characteristics thus affecting the reliability of fractured rock mass

model. A rock cliff examined by Hencher (2014) demonstrated that it might not

be reasonable to carry out discontinuity survey in one area and extrapolate

data to elsewhere.

Geophysical techniques perhaps can only be able to provide an approach to

investigate internal structure of discontinuities (e.g. Grandjean and Gourry

1996 and Heike et al. 2008). Work by Longoni et al. (2012) provided illustrating

insights into the reliable application of radar in the investigation of subsurface

real discontinuity persistence. In their work, ground penetrating radar surveys

were conducted to image the 3D discontinuity planes inside sedimentary

Triassic rocks (limestones, marls and dolomites), thereafter real discontinuity

persistence was calculated according to the ISRM (1978) defined persistence

shown by Eq. (2-2). Figure 2.32 presents GPR data and interpretation process

of real discontinuity persistence. The geophysical approach requires a high

resolution thus be able to sample data in deep targets, an experienced

operator also is needed to process and interpret discontinuities within radar

datasets.
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Table 2.2 Selection of typical contributions into the discontinuity size (trace length) estimation from censored measurements.

Methods Major contributions Remarks Sampling

methods

References

Censored

exponential

distribution

Field procedure was set out to provide a

method for characterizing and estimating trace

length. The number of data collection was

dramatically reduced bases this procedure.

The analysis does not consider

type of discontinuity

termination. The method tends

to overestimate larger trace

length.

Scanline

sampling

Cruden 1977

Moment estimate Moment estimation of unconditional radius

distribution of joints was presented.

Reliable results depend on the

probability function assumed.

Scanline

sampling

Baecher and

Lanney (1978)

Probability

distribution

analysis

Four simple probability distributions were used

to study bias in scanline sampling. The

relations between these distributions provide

analytical methods of estimating mean

discontinuity trace length.

Reliable results depend on the

probability function assumed.

Scanline

sampling

Priest and

Hudson (1981)
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Table 2.2 Continued.

Methods Major contributions Remarks Sampling

methods

References

Probability

distribution

function

A technique was proposed for estimating mean

trace length on infinite exposures. The method

did not require lengths and density function of

observed traces.

This method is only applicable

discontinuities whose orientation

is described by a probability

distribution function.

Window

sampling

Kulatilake and

Wu (1984)

Distribution-free

methods

The three simple estimator including end-point

estimator, an end-point estimator and

stereological estimator were developed for the

estimation of variably oriented fracture trace

length as well as trace density.

Reliable results depend on the

probability function assumed,

and underlying distribution of

trace length is generally

unknown.

Window

sampling

Mauldon

(1998)

Probability

analysis, numerical

and analytical

methods

Joint trace length distribution was estimated for

the Poisson disc joint model. Joint diameter

distribution was also numerically and

analytically investigated

Relying on the assumption that

joint length are similar in strike

and dip directions. However,

may not real in some cases.

Window

sampling

Song and Lee

(2001)



- 59 -

Table 2.2 Continued.

Methods Major contributions Remarks Sampling

methods

References

Stereological

relation analysis

Expressions were derived using stereological

analysis to estimate size distributions of

elliptical discontinuity from true trace length

distribution.

Discontinuity should be planar

and elliptical in shape. In some

cases these assumptions may

not be valid

Sampling

and

windows

sampling

Zhang and

Einstein

(2002)

Maximum

likelihood method

Providing Derived results only apply for

joint traces normal to top and

bottom window.

Window

sampling

Lyman

(2003)

Statistical

graphical approach

A flexible method for inference of trace length

was formulated using statistical graphical

model based on observations at rock outcrops.

Window

sampling

Jimenez-

Rodriguez

and Sitar

(2006)

Probability

weighted moments

(PWM) and L-

moments

A distribution-free method was developed to

estimate fracture trace length distributions in

the light of the estimation of PWM and L-

moments of truce trace length.

Window

sampling

Li et al.

(2014)
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Figure 2.32 Example of GPR data and processing scheme. Raw profile of
study area was collected first (top left), and processed profile (top right)
was made after picking discontinuities encountered, six interpolated
persistent joint areas (bottom right) were obtained and reference planes
were fitted respectively(bottom left). Persistence values were then
calculated according to Eq. (2-2) and orientations of incipient joint planes
were also measured (shown in bottom left). After Longoni et al. (2012).

2.7 Summary

This chapter presented fundamentals of geological discontinuity persistence

from general definitions (incipient and mechanical discontinuities and

persistence) to stress fields which govern the incipiency of discontinuities.

Mechanical properties of single incipient rock discontinuity as well as rock

masses containing incipient rock joints were discussed. State-of-the-art

methodologies in the quantification of persistence or its approximation were

examined.

The review should facilitate rock practitioners and researchers in realising this

problematic issue in rock engineering and in applying the current available

and most applicable methods to measure or predict persistence in rock

engineering projects. Most importantly, it is clear that more research in the

development of real persistence quantification standards is needed as well as
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better characterisation of incipient discontinuities individually. The study in the

following text will be a small step towards this achievement.
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Chapter 3

Uniaxial tensile strength of incipient rock discontinuities

It is evident that incipient rock discontinuities (sometimes termed as non-

persistent discontinuities in past literature) often have a controlling influence

on rock mass strength (e.g. Kim 2013 and Bahaaddini et al. 2013) and stability

in rock engineering projects (e.g. Viviana et al. 2015) as well as on other mass

properties including deformability and hydraulic conductivity but the degree of

incipiency is often very difficult to assess or quantify. Tensile failure of incipient

fractures is often the ‘final straw’ leading to the instability of rock masses

(Paronuzzi and Serafini 2009). The recognised relatively low tensile strength

value, combined with the conservative assumption of fully persistent of

discontinuities in engineering practice lead to the common neglect of tensile

strength of discontinuities (Diederichs and Kaiser, 1999). In real situations,

for example, there are many stable overhanging rock blocks or slabs due to a

sound linking of pre-existing incipient joints which fully demonstrates the

supporting capability of incipient rock discontinuities. Unfortunately, in the

field, it is extremely difficult to quantify the contribution of the natural defects

to the overall strength of rock masses because the information about rock

bridges (size, shape and distribution) or filling conditions is never rigorously

known in advance(Tuckey and Stead 2016).

In this chapter, a laboratory investigation is presented on the tensile strength

of incipient geological discontinuities including incipient bedding, mineral

veins and joints. Indirect ‘Brazilian’ tests were conducted on some intact rock

samples but for other samples of both intact rock and containing incipient

discontinuities a uniaxial pulling arrangement has been adopted. Meanwhile,

the strength origin of different kinds of rock discontinuities were examined by

analysis of the mineralogy, nature of the infill and rock bridges. Degree of

incipiency was quantified based on the relative tensile strength of

discontinuities to that of parent rock.

3.1 Geology and sites description

Figure 3.1 depicts geology of two study areas and shows the locations and

overviews of Dry Rigg Quarry (DRQ) and Blackhill Quarry (BQ). DRQ is

located in Horton-in-Ribblesdale, north Yorkshire, producing a stone with

exceptional wearing and skid-resistant properties used for road

improvements.
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The quarried rock at DRQ is from Horton Formation siltstone formed

approximately 421 to 423 million years ago in the Silurian period and are

typically medium to dark grey siltstone. The study area is within the Lower

Palaeozoic rock of Ribblesdale, where folding is complex and includes a lot of

minor arches, bedding planes, slickensides, and joints (see Figures 3.2, 3.3

and 3.4). These complex geological structures can be viewed on the quarry

exposures; bedding in this region is dipping between 65 and 80 degrees to

the north north east. Inversion of pre-existing Dinantian extensional faults

occurred, accompanied by folding and erosion of the Carboniferous strata

(Smedley et al. 2005). Evidence for the late-Namurian tectonics can be seen

in the DRQ where there is an irregular morphology including a fold (see Figure

3.3). Incipient rock discontinuities are wide spread in the quarry and some of

them are filled with calcite.

Blackhill quarry is in Bramhope (on the edge of Golden Acre Park, near Kings

Road), Leeds, West Yorkshire, UK. Quarrying has taken place for over a

century and stone products are in a wide range from sand, grit to dimensional

stone etc.
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Figure 3.1 Geological maps and locations of Blackhill quarry and Dry Rigg
quarry in Yorkshire, United Kingdom. Quarry overviews are also
included. Geological maps were produced by sketching and simplifying
selected site areas on the complex geological map from the British
Geological Survey website.
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Figure 3.2 North rock face of DRQ showing predominantly orthogonal
discontinuities (horizontal incipient joints and near vertical beds).

Figure 3.3 West exposure of DRQ showing a fold structure and incipient
discontinuities including inclined beds and joints.
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Figure 3.4 A slickenside surface at DRQ, Yorkshire, England. Seepage can
be noticed on the right part of surface.

The sedimentary bedrock at BQ is Midgley Grit Sandstone formed

approximately 314 to 315 million years ago in the Upper Carboniferous period.

Thick sands laid down at this time formed a sequence of massive sandstones

and gritstones. The sandstone is normally well cemented and groundwater

transport is controlled mainly by fractures. These rocks form the building

blocks of most of the Pennines (Bobbie et al. 2006). The depositional

environment was dominated by rivers. The deposit is between 20 and 30

metres in thickness and is made up of a sequence of loosely consolidated

sands. The Midgley Grit generally comprises coarse-grained sandstone,

commonly with a significantly shaly mudstone parting up to 6 m in thickness.

Iron oxides occurs as pore linings and pore fillings and replace

ferromagnesian grains such as biotite (Smedley et al. 2005)

3.2 Experimental preparation and preliminary research

3.2.1 Sample preparation

Rock samples containing “simple” incipient discontinuities which are

orthogonal to loading axis were prepared for extensive laboratory test. They

were prepared from large rock block samples containing a single incipient

discontinuity. Block samples and samples containing incipient discontinuities
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were collected from two locations. Samples of siltstone with incipient mineral

veins were taken from DRQ, Horton-in-Ribblesdale, North Yorkshire, United

Kingdom. Samples of medium-grained sandstone containing incipient

bedding planes and joints were collected from BQ, West Yorkshire, United

Kingdom.

Intact samples as well as samples with incipient discontinuities were prepared.

Three sets of samples were tested. The first comprised intact samples (50 mm

and 70 mm in diameter). The second sets comprised siltstone samples (50

mm and 70 mm in diameter) containing mineral veins. The third set comprised

sandstone samples (70 mm in diameter) containing incipient bedding planes

and incipient joints. Figure 3.5 presents diagrammatic illustration of tested

samples containing incipient discontinuities.
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Figure 3.5 Diagrammatic illustration of tested samples containing horizontal
incipient discontinuities: (a) Horton Formation siltstone sample contains
a filled vein with a diameter of 70 mm; (b) Horton Formation sample
contains a filled vein with a diameter of 50 mm; (c) Midgley Grit
Sandstone contains horizontal bedding planes and (d) Midgley Grit
Sandstone contains a horizontal incipient joint.
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(1) Intact sample preparation

Intact rock samples used for uniaxial tension tests and indirect ‘Brazilian’ tests

were obtained in accordance with ISRM standard. Figure 3.6 presents parts

of prepared intact rock samples.

Figure 3.6 Intact rock samples. (a) Midgley Grit Sandstone with diameter of
50 mm; (b) Midgley Grit Sandstone discs with diameter of 70 mm; (c)
Horton Formation discs with diameter of 50 mm and (d) Midgley Grit
Sandstone discs with diameter of 50 mm.
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(2) Samples containing incipient rock discontinuities

Figure 3.7a presents a Midgley Grit Sandstone block containing a large

incipient joint. The trace of this joint is intermittent as can be seen from

surface. Block sample was trimmed firstly then samples were cored

perpendicular to the incipient joint as illustrated in Figure 3.7b.

Figure 3.7 Midgley Grit Formation samples cored from a large rock block
containing a large incipient joint. (a) A Midgley Grit Sandstone sample
containing an incipient joint with aperture ranging from about 0.2 mm to
3.0 mm; (b) Samples drilled perpendicular to the incipient rock joint.
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Sample ends were ground flat. In order to minimise stress concentration

epoxy resin (araldite) with tensile strength of more than 20 MPa, was

employed to cement metal caps to the sample ends (See Figure 3.8).

Prepared samples were left more than 5 hours to allow the adhesive to reach

full strength.

Figure 3.8 Araldite was used to cement metal caps to rock sample ends. (a)
Araldite with tensile strength of more than 20 MPa which is higher than
tensile strength of most rocks; (b) A prepared sandstone sample with an
incipient rock joint for direct tension test.

Similarly, rock samples containing incipient bedding planes and mineral veins

were prepared, as shown in Figure 3.9.

Figure 3.9 Part of prepared rock samples containing incipient rock
discontinuities.(a) Horton Formation samples containing mineral veins;
(b) Midgley Grit with horizontal incipient bedding.
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3.2.2 Testing apparatus set up and verification

A servo-controlled loading machine (MAND), with a capacity of 250 kN, was

used for the uniaxial tensile testing as illustrated schematically in Figure 3.10.

Figure 3.10 (a) Photo of the experimental setup on a sample containing a
single incipient mineral vein and (b) schematic diagram of set up for
uniaxial tension test (not to scale).

Steel chains were employed as connectors to minimise bending and torsion.

In each test, the sample was loaded uniformly at the loading rate of 40 N/s

until failure. Strain was calculated by dividing the displacement of the loading

platens by sample length, while elongation of chains was deducted for the

calculation.

In this test, alignment and gripping of samples are the main problems but, in

addition, minor sample inhomogeneity can result in bending and stress

concentration (Pells, 1993). High-strength adhesive has been employed to

connect samples and connectors together with steel chains as linkage

systems to minimise the effect of bending and torsion following the

methodologies of Liao et al. (1997), Kwasniewski (2009), Wang (2009) and
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Mier and Shi (2002). Note that adhesive should be placed equally and kept to

a minimum thickness to obtain an acceptable result.

To validate the test set-up, a preliminary test was carried out on ostensibly

homogeneous sample of Midgley Grit Sandstone (lacking visible fabric), using

a similar set up to that of Okubo (1996) and Hashiba (2014). Four strain

gauges (10 mm in length) were attached to the middle of the samples to

measure the macrostrains of samples under tension. Figure 3.11 shows the

nature of failure for one sample.

Figure 3.11 Ostensibly homogeneous Midgley Grit Sandstone sample before
and after uniaxial tensile test.

Micro-strain curves plotted against time (Figure 3.12) for this test confirm

similar strain at the four measurement locations, which provides some

confidence in the alignment of the testing set-up as used for the subsequent

uniaxial tension tests on incipient discontinuities. Brazilian tests were also

conducted on a series of similar homogeneous samples of the sandstone.

Data presented in Table 3.1 show that the average measured tensile strength

for samples tested uniaxially was 2.08 MPa; the Brazilian test results were

generally slightly higher with an average of 2.44 MPa. This finding agrees well

with the conclusion in the work by Perras and Diederichs (2014) in which

Brazilian tensile strength of sedimentary rock consistently showed a higher

value (10% to 30% higher) than uniaxial tensile strength. The differences

perhaps reflect aspects of the process of fracture initiation and propagation in
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the different testing methods and the way that strength is calculated but further

work would be necessary to establish whether there is some consistent

explanation. For the purposes of this current work, it is sufficient to observe

that the uniaxial test setup gave results that are broadly consistent with the

Brazilian test.

Figure 3.12 Micro-strain vs. time curves for verification tests for uniaxial
tension set-up. Four strain gauges were affixed as shown on the
diagram.

3.3 Tensile test on intact sandstone and siltstone

3.3.1 Tensile strength of intact rocks

Direct and indirect tensile (Brazilian) tests were undertaken on intact Midgley

Grit Sandstone and Horton Formation siltstone samples. The principal

properties of samples and uniaxial tensile strength are listed in Table 3.1.
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Table 3.1 Principal properties and tensile strength of intact rock samples

Samples
Diameter

(mm)

Height

(mm)

Weight

(g)

Thickness

(mm)

Tensile

strength

(MPa)

Test

method

Sandstone

1_1 70 145 1480 2.1

2.1

±0.2

Uniaxial

tension
1_2 70 142 1402 2.3

1_3 70 135 1359 2.0

1_4 70 139 1385 1.9

1_5 70 149 1520 2.2

Sandstone

BH1 48 96 24 2.5

2.4

±0.1

Brazilian

tension
BH2 48 94 22 2.3

BH3 49 97 24 2.4

BH4 47 95 23 2.5

BH5 50 99 25 2.5

Siltstone

DR1 50 124 25 12.7

12.5

±0.3

Brazilian

tension
DR2 50 118 23 12.2

DR3 50 126 26 12.2

DR4 50 130 27 12.9

3.3.2 Fracture initiation and propagation of Midgley Grit

Sandstone under Brazilian tension

During the Brazilian tension tests, a high speed camera (Figure 3.13 top) with

was used to log the initiation and development of fractures. The development

of fracture of samples BH1, BH2 and BH3 in the Brazilian tension test is

presented in Figure 3.14.



- 76 -

Figure 3.13 A high speed camera was used for logging the fracture initiation
and propagation of sample under Brazilian tension.
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Figure 3.14 Fracture initiation and propagation within intact sandstone
samples during a Brazilian tension test. a Sample BH1, b sample BH2
and c sample BH3. Loading was applied vertically relative to the photos,
which were taken using a high-speed camera (numbers on the right
corners are sequences of frames from test initiation). Note that fracture
generally initiated at 70%-80% of ultimate failure load in this test.

It can be noted that all induced fractures initiated approximately from the disc

centre and then propagated along loading direction (except for sample BH3)

until sample failed. This phenomenon agrees with the conventional

assumption about the crack initiation and propagation in Brazilian testing

(Wang et al. 2004). For a special case (sample BH3) reported in Figure 3.14,
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induced macro-fracture was slightly inclined relative to the loading axis. This

probably can be attributed to the local stress concentration or the existing of

non-visible pre-existing weakness plane, like bedding lamination.

3.4 Uniaxial tension tests on incipient rock discontinuities

3.4.1 Samples with incipient rock bedding planes

A series of uniaxial tension tests were conducted on sandstone samples with

incipient bedding planes approximately perpendicular to the loading axis.

Figure 3.15 presents set-up of the uniaxial tension test on a Midgley Grit

Sandstone sample containing bedding planes.

Figure 3.15 Set-up of uniaxial tension test on a Midgley Grit Sandstone
sample containing bedding planes.

In some cases, after testing, sample were glued together again by adhesive

(generally much stronger than the rock bedding) and the sample retested. In

others, where the failure occurred close to a platen, the sample was cut flat

and ground prior to gluing the platen on the fresh surface. Following this

experimental technique, in each subsequent test run, the samples failed along
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progressively stronger discontinuities. It is assumed that few micro-fractures

were induced at earlier tests and they do not influence later test results.

Table 3.2 lists tensile strengths for failures on incipient bedding planes and

these strengths are expressed as a proportion of the strength of the

homogeneous parent rock tested in the same manner (Table 3.1).

Table 3.2 Tensile strength of incipient bedding planes.

Sample
Height

(mm)

Tensile

strength

(MPa)

Percentage to

UTS of intact rock

(%)

Average

tensile

strength

(MPa)

BH1-1 149 0.67 32.2

1.45

BH1-2 132 1.22 58.7

BH1-3 112 1.69 81.3

BH1-4 110 1.82 87.5

BH2-1 152 1.51 72.6

BH2-2 150 1.79 86.1

The UTS of the weakest bedding plane tested in this way was 0.67 MPa, which

is approximately 32% that of the parent rock. The strength of the strongest

incipient bedding plane on which failure occurred was 1.82 MPa, which is

about 88% the tensile strength of the intact sandstone. Average UTS of

incipient bedding planes from these tests on Midgley Grit sandstone was1.45

MPa with a standard deviation of 0.4 MPa, i.e. about 70% of the intact rock

UTS. The listed data show that measured tensile strengths increased

progressively with reducing sample height as samples were trimmed and

reset. For example, sample BH1-1 with an original height of 149 mm failed at

0.67 MPa. For the 2nd test on this same sample (but now lacking the weakest

incipient discontinuity) the UTS was 1.22 MPa and then progressively 1.69

and 1.82 MPa. The weakest link failed first, followed by progressively stronger

surfaces though the same sample.

Stress-strain relationships of sample BH1 are shown in Figure 3.16. The

stress-axial strain curves represent the full sample length, rather than locally

at the strain gauges. These curves are essentially linear up to failure. Figure



- 82 -

3.17 presents photographs of the failure patterns. It can be seen that samples

break along stronger bedding planes each time.

Figure 3.16 Stress vs. axial strain curves of a single sample containing
incipient bedding planes, tested under uniaxial tension. Following each
test run, the sample was re-cemented using araldite or, where
necessary, the sample recut and new platens attached prior to further
testing. Note that peak strength increases with decreasing length of the
sample. This reflects the progressive exposure of the ‘weakest link’
bedding planes as the test progressed.
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Figure 3.17 Failure patterns of incipient rock beddings under direct tension
test.

3.4.2 Samples with incipient joints

Direct tension tests were conducted on samples of ostensibly homogeneous

Midgley Grit Sandstone containing incipient joints, with the samples drilled so

that the joints were approximately orthogonal to the tensile force. Setup and

failure of a sample is shown in Figure 3.18. Stress vs. axial strain curves are

presented in Figure 3.19. The inset photos illustrate that failure always

occurred along the incipient joint planes. All six samples with incipient joints

underwent brittle failure at a relatively low axial strain (0.05%-0.2%) compared

to some of the tests on incipient bedding planes (Figure 3.15). Table 3.3

shows that UTS values for these incipient joints varied from 0.48 MPa (sample

BH70J2) to 1.34 MPa (sample BH70J5).
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Figure 3.18 a Direct tension set up of Midgley Grit Sandstone containing a
nearly horizontal incipient joint; b Post tension test of the same sample,
note that sample broke along this pre-existing incipient joint plane.

The joint surfaces were described according using a four-colour classification,

i.e. fresh and light-brown, reddish-brown, greyish-brown and black-mottled as

illustrated in Figure 3.20. Visual inspection of the broken surfaces suggested

that the light-brown areas, more or less represented intact rock bridges, were

present and these ranged from approximately 23% to 70% of the total area

for different samples. The other colours represent areas with coatings of iron

oxide on persistent, open sections of discontinuity. These coatings are

associated with the general chemical weathering process (including

propagation and opening up of incipient joints). Such portions of the joint

surfaces would not be expected to offer much tensile resistance. In the final

column of Table 3.3, assuming that all tensile strength was derived from the

rock bridges (light-brown segments), the UTS of these rock bridges were

calculated based on their visible areas; the calculated values (2.07 – 2.14

MPa) are very close to that measured for the intact homogeneous sandstone

(Table 3.1). This result confirms that the variability in strength between

different incipient joints results from variations in the rock bridge area as might

be anticipated. The other mineral coatings contributed very little to the

measured tensile strength although it is acknowledged that precipitation of
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iron oxides in some joints can sometimes lead to significantly increased tensile

and shear strength (Tating et al., 2015).

Figure 3.19 Stress vs. axial strain curves for different samples, each
containing a single, visible incipient joint, under uniaxial tension. Note
that elastic moduli (stress/strain gradient) varied as well as ultimate
strength for the different incipient joints.

Four thin section samples were produced by cutting locally from different

coloured areas on joint surfaces to investigate their optical properties. Figure

3.21 presents photomicrographs from an essentially unweathered joint

surface (probably part of a rock bridge) in Figure 3.21a to a heavily discoloured

part of the surface in Figure 21d. Clear grains are quartz; cloudy grains are

feldspar (KAlSi3O8). A large amount of iron oxides (Haematite) are also

present in Figures 3.21c, 3.21d. Although it is difficult to quantify the rate at

which weathering proceeds (Turkington and Paradise, 2005), the progressive

increase in quantity of iron oxide minerals from images 3.21a – d may indicate

how degree of weathering gives varying colours to joint surfaces.
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Table 3.3 Tensile strength of incipient rock joints.

Sample
Diameter

(mm)

Tensile

strength

(MPa)

Percentage to UTS

of intact rock

(%)

UTS of rock

bridges

(MPa)

BH70J1 70 0.63 30.3 2.10

BH70J2 70 0.48 23.1 2.09

BH70J3 70 0.90 42.3 2.14

BH70J4 70 0.55 26.4 2.12

BH70J5 70 1.34 64.4 2.09

BH70J6 70 0.60 28.8 2.07

Note: Rock bridge areas are approximately measured as are in Figure 3.20.

Figure 3.20 Photograph of incipient joint surfaces after failure in uniaxial
tension (top images); classification of surfaces according to colour (lower
images) which may reflect the degrees of weathering. More details see
text.
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Figure 3.21 Photomicrographs of thin sections from different coloured areas
on incipient joint surfaces. Thin section samples were produced by
cutting locally from each area (approximately parallel to joint surface),
i.e., a light brown area representing a rock bridge, i.e. essentially fresh
rock; b reddish brown area; c and d greyish brown and black mottled
areas. Clear grains are quartz (Q); cloudy grains are feldspar (KAlSi3O8)
(F). Mottled light brown areas present in a and b are Clay (Cl). A small
amount of biotite (Bi) exhibiting pleochrosim is also present in b. Iron
oxides (Haematite) is present in increasing quantities in a and b, c and
d respectively, perhaps indicating that this represents a weathering
product on the discontinuity surface.

3.4.3 Samples containing mineral veins

For veined rocks, fracturing and strength are controlled by veins. Mineral veins

often have complex geological histories and therefore their geometries,

thicknesses, terminations and compositions are similarly complex, even at a

small scale (Turichshev and Hadjigeorgou, 2014). In this set of tests, samples

were cored with diameters of 50 mm and 70 mm and incipient predominantly

calcite vein thicknesses typically 0.5-1.0 mm (see Figures 3.5a, b). For this

test series all samples failed at the vein walls. Figure 3.22 shows the setup

of direct tension test on a sample containing mineral vein and its failure state
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and Table 3.4 provides a summary of test results, which varied between 0.11

to 7.13 MPa.

Figure 3.22 Direct tension setup of a sample of Horton Formation siltstone
containing mineral vein.
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Table 3.4 Tensile strength of incipient filled veins.

Samples
Diameter

(mm)

Tensile

strength

(MPa)

Average

strength

(MPa)

DR50C1 50 0.49

0.84 ± 0.29

DR50C2 50 0.62

DR50C3 50 1.15

DR50C4 50 1.09

DR50C5 50 7.13

DR70C1 70 0.29

0.28 ± 0.19

DR70C2 70 0.44

DR70C3 70 0.11

DR70C4 70 6.68

Note: Samples DR50C5 and DR70C4 are not included in the process of

average strength calculation
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Figure 3.23 Stress vs. axial strain curves of samples with mineral veins under
uniaxial tension. a sample with a diameter of 50 mm. b Sample with a
diameter of 70 mm. Each sample failed at the incipient mineral vein.

Figure 3.23a presents the stress vs. strain curves for the 50 mm diameter

samples together with photographs of each test; Figure 3.23b presents data

from the 70 mm diameter specimens. As for the tests on incipient bedding

planes presented in Figure 3.16, stress-strain curves are essentially linear

before failure for all samples.
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Figure 3.24 Photographs of profiles of filled veins after uniaxial tension tests.
a vein profile with a diameter of 50 mm. b vein profile with a diameter of
70 mm. Samples failed at one of the walls of the incipient veins. Rock
bridges along veins were revealed in sample DR50C5 (scattered fresh
dark areas indicated by arrows) and in sample DR70C4 (Small scattered
bridges cannot be indicated individually). A small pyritised area was
revealed on sample DR50C1.

Figure 3.24 shows the surfaces exposed after failure. The data in Table 3.4

show that for two tests, much higher strengths were measured (6.68 and 7.13

MPa) than for all others, for which the measured UTS was typically less than

1 MPa. The feature that distinguishes these two samples is the presence of

rock bridges of intact rock (with no mineral infill or coating). For sample

DR50C5 the broken rock bridges are the discrete dark areas indicated by

arrows in Figure 3.24a. For sample DR70C4 there is one main rock bridge

accompanying by many discrete smaller rock bridges (Figure 3.24b).
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X-Ray Diffraction analysis was used to identify the mineral composition of the

veins, as shown in Figure 3.25. Three samples were prepared by scraping

from pyritised and white vein segments respectively from sample DR50C1

(see Figure 3.24a) and from the orange-tinted coating from sample DR70C1

(Figure 3.24b).
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Figure 3.25 X-ray diffraction diagrams of mineral compounds of infill and
pyrite area: a Pyrite segment on specimen DR50C1, b White segments
on specimen DR50C1 and c Orange segments on sample DR70C1.
Samples used for XRD analysis were scraped from veins. C=calcite,
D=dolomite, P=pyrite and Q=quartz.

Test results confirmed that calcite is the major mineral infill for all samples.

The orange discolouration on the 70 mm diameter samples is probably from

iron oxide staining. The pyritised area from Sample DR50C1 was confirmed

as pyrite but there is also calcite and a small amount of dolomite and quartz.

For samples DR50C1, DR50C2, DR50C3 and DR50C4, failure surfaces were

completely coated by calcite. As can be seen, samples DR50C5 and DR70C4

had rock bridges of intact siltstone with no mineral coating. Evidently these

rock bridges have survived intact and unchanged from the original

propagation of a fracture around them, leaving them as remnant intact rock,

and the mineral infilling. The fracturing and mineralisation probably

accompanied a mountain building episode in the late Silurian to early

Devonian (Soper and Dunning, 2005) as evident from the observed

relationships between mineralization, folding and faulting within the quarry.

3.5 Discussion

It has been found that all tested bedding planes have UTS less than the

homogeneous sections of the rock and it can be concluded that the incipiency

of different bedding planes can be roughly characterised by percentage of

UTS to that of the parent rock. For an individual bedding plane, UTS is likely

to reduce with geological time from original stronger state to weaker and
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eventually, fully persistent bedding-parallel discontinuity. As can be seen in

Figure 3.16, axial strain reduced markedly with measured UTS for equivalent

stress levels; i.e. the tangent elastic modulus increased progressively as

stronger bedding planes (and adjacent relatively weak rock) were removed. It

follows that the modulus must be extremely variable locally within a sample

containing incipient discontinuities of differing strength. The cohesion of an

incipient joint can be caused by mineral bonding over areas of distinct rock

bridge and by secondary cementation (Hoek, 2007; Hencher, 2012). For

intermediate unfilled incipient joints (the type of incipient joints tested in the

sandstone samples reported in this paper), joint planes can be broadly divided

into the discrete rock bridges segments and the persistent fracture segments

(persistent areas). Hencher and Richards (2014) reported shear test data from

an intact rock bridge, revealed after shearing an incipient joint, with a cohesive

strength of around 750 kPa for the rock bridge area; persistent sections of joint

contribute to shear strength but only in terms of friction and roughness

interactions.

Figure 3.26 Elastic modulus vs. uniaxial tensile strength of geological
discontinuities.
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In relation to the UTS and modulus of incipient joints (Figure 3.26), moduli of

tested samples scattered from 0.5 to 5 GPa where UTS varied from 0.5 to 2

MPa. Moduli of samples containing incipient mineral veins, similarly to that of

incipient joints, scattered between 0.5 and 2 MPa, expect two cases (samples

DR50C5 and sample DR70C4) which rock bridges exist.

Different sections of incipient discontinuity in the field may have different

characteristics with some areas characterised by discrete rock bridges

elsewhere, mineral infill or precipitated weathering products and some

sections open and with zero tensile strength. A methodology is thereby

anticipated whereby strength contributions from different segments of the

discontinuity can be used to predict the overall strength of the feature. This

would be supported by geological analysis as to the origin and geological

history that have resulted in the discontinuity characteristics in conjunction

with strength tests. This subsequently might allow the predication of overall

UTS of incipient joints with the same lithology and geological history based on

visual inspection. In the tests reported here, colour variations of joint surfaces

were associated with different weathering degrees and/or mineral alteration

products and hence potentially different tensile strengths. In this particular

case (for the tests on joints), the strengths of rock bridges overshadowed

contributions from coatings on persistent sections but there will be situations

where contributions will come from various factors and sources.

Brzovic and Villaescusa (2007) produced a classification of mineral infill based

on strength, and calcite (the major component of vein infill tested here) was

graded as ‘soft’ This is supported by the results of vein tests from this paper

(Table 3.4) which show that the tensile strength is much lower for samples

with calcite veins than the intact rock. Where veins were non-persistent so that

there were rock bridges of intact rock then the strength was higher and in one

case apparently much higher even than might be anticipated based on the

main rock bridge area (DR70C4). For this case, the rock bridge areas are

approximately 1555 mm2 (about 42 % of the total cross section area). The

tensile strength of these rock bridges of intact rock was calculated as 17.8

MPa assuming zero strength elsewhere. This compares to the Brazilian

tensile strength (12.5 MPa) for the intact rock. This might reflect some internal

cementation and strengthening within the rock bridge area compared to the

parent rock.
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3.6 Summary

In this chapter, a series of uniaxial tension tests were carried on incipient

geological discontinuities in cylindrical samples at laboratory scale including

incipient bedding, mineral veins and incipient rock joints. Natural rock samples

were cored perpendicular to the incipient rock discontinuities in large rock

block samples (Figure 3.7). Tensile strength of these incipient features was

identified.

Average UTS of incipient bedding planes from the tests on Midgley Grit

Sandstone was 1.45 MPa. The UTS of the weakest bedding plane tested in

this chapter was 0.67 MPa, which is approximately 32% that of the parent rock

(2.08 MPa). The strength of the strongest incipient bedding plane on which

failure occurred was 1.82 MPa, which is about 88% the tensile strength of the

intact sandstone.

Tensile strength of incipient joints varied between 0.48 MPa and 1.34 MPa.

UTS of rock bridges on joint surfaces were calculated (2.07 – 2.14 MPa) which

are very close to that of intact rock (2.08 MPa).

For mineral veins under direct tension, all samples failed along vein walls.

Tensile strength of these veins varied between 0.11 and 7.13 MPa. Two cases

with much higher tensile strength measured (6.68 MPa and 7.13 MPa) were

due to the presence of rock bridges.
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Chapter 4

Development of the original methodology to quantify the

tensile strength of large-scale incipient rock discontinuities

4.1 Introduction

Uniaxial tensile strength of incipient discontinuities has been measured using

natural rock samples (70 mm in diameter) in the laboratory (see Chapter 3).

Some incipient discontinuities/joints which are partially developed indeed

have tensile strength mainly arising from residual rock bridges.

Like the traditional mechanical tests in the laboratory, in the uniaxial tension

test, a servo-controlled loading machine was used to apply tensile force to

small regular cylinder samples. To investigate the tensile strength of larger-

scale samples with irregular incipient joints, an original methodology has been

developed in the laboratory which uses an expansive compound to develop

the tensile force is described in this chapter.

4.2 Experimental apparatus

(1) Cordless drill

A set of 36V cordless drill (Model: Makita, see Figure 4.1) with three operation

modes (rotation, hammering and rotation plus hammering) was used to drill

holes in rock material as well as along incipient rock joint planes. The drill has

a vibration absorbing handle and a soft grip; drill bits with varying diameters

up to 26 mm can be used to drill in rock or concrete materials. Four 18V-2.6Ah

Li-ion batteries BL3626 and two 36V battery chargers were employed so that

the drill can work continuously for a test run.
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Figure 4.1 36V cordless drill (Makita) was employed to drill holes for the tests
described in this chapter.

(2) Chemical splitter

In the test, an expansive chemical splitter was used to apply pressure to the

sample instead of a traditional servo-controlled loading machine. The

expansive grout is a mixture of Dexpan power (Non-toxic material generally

comprising SiO2, Al2O3, Fe2O3, CaO, MgO and SO3 (Huynh and Laefer 2009)

and water with a recommended ratio of 3.3 kg/L.

Dexpan is a commercial product used to crack rocks and concrete in

engineering projects where no vibrations or blasting are allowed. According to

the manufacturer, the expansive strength can reach 124 MPa arising from the

chemical reaction when mixed with common water. The strength capacity

depends on various factors including grout concentration, working/rock

temperature and the amount of grout used. Three different types of Dexpan

are available according to varying temperatures (type 1 from -5 °C to 10°C,

type 2 from 10 °C to 25°C and type 3 from 25 °C to 40°C). For these tests,

type 2 Dexpan has been used in the laboratory. Generally, it takes 24 hours

for Dexpan to generate its full force and the rock or concrete will break within

that period depending on their strength.

(3) Proving ring and its calibration
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A 50 kN proving ring (PR) was used to install LVDT in the lab test. A servo-

controlled compression testing machine (MAND) with a capacity of 250 kN

was used to calibrate the PR, as shown in Figure 4.2. The tensile loading rate

of 33 N/s was adopted to apply tensile force gradually. The relationship of

tensile force to displacement of the PR was found, as shown in Figure 4.3.

The stiffness constant of the 50 kN PR used in the tests is 0.06 (mm / kN) with

a R2 of 0.999. It can be noted that the PR works well as there is no initial

resistance force.

Figure 4.2 Calibration of a 50 kN proving ring (PR) using the 250 kN
compression machine under a loading rate of 33 N/s. LVDT was installed
in the middle of PR. Applied tensile force and corresponding
displacement were logged by a laptop.
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Figure 4.3 Relationship between the applied tensile force and displacement
of the 50 kN proving ring used in the tests. The measured stiffness of the
PR used is 0.06 (mm / kN).

(4) Other equipment

Other accessories used in the test include button-compression load cells (0 -

50 kN), heavy duty adjustable clamps, a linear variable differential transformer

(LVDT) (0 - 30 mm), spectrum plasticine, manufactured metal connectors,

threaded rods and nuts suitable for the test, wood pieces and a base for the

test.

Three button-compression load cells and compatible instrumentation were

used in the tension tests. One is a readily available small button style load cell

with a capacity of 50 kN that was used to measure the force generated from

the chemical splitter. Two other large button style load cells with the same

capacity were specially manufactured by Nova tech Measurements Ltd to the

size suitable for the tests. The tensile force arising from chemical splitter was

re-measured using the twin load cells as a verification.
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A linear variable differential transformer (LVDT) with a high accuracy of ±0.1%

up to 0-5 mm was used with the PR for the accurate measurement of

displacement of PR under tension.

Two 600 mm heavy duty adjustable clamps, manufactured metal connectors

suitable for the PR, 15 mm threaded rods and nuts were used to install load

cells and the PR in the test. Grey spectrum plasticine, an excellent modelling

material which is soft and pliable, was used to seal open edges and bottoms

of holes to prevent expansive grout from leaking.

4.3 Experimental model: schemes and concepts

4.3.1 Abbreviations

The abbreviations used in the test are as follows:

FD(t): Applied radial force (kN) from chemical splitter, which varies time, grout

concentration, room temperature, and grout amount involved, see Figure 4.4a.

Fr: Resisting force (kN) of intact rock material / incipient joint to be split.

Fi: Resisting force (kN) of rock material / incipient joint at the point of fracture

initiation.

Fm: Maximum resisting force (kN) of rock material / incipient joint at sample

failure, i.e. the tensile strength of the large-scale rock material or incipient joint

(espressed in force units).

FLC: Measured force (kN) using load cell.

FLCA and FLCB: Measured force (kN) using load cell A and load cell B,

respectively.

FPR: Measured force (kN) using PR.

ETF(t): The total expansive tensile force (kN) perpendicular to the splitting

plane from chemical splitter (as a function of time t, see Figure 4.4c)

Figure 4.4 schematically shows the ETF arising from chemical splitter.
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Figure 4.4 Diagram of expanding force from chemical splitter and its
resolution and expansive tensile force. Figure not to scale.

4.3.2 Experimental scheme and conceptual model

In this section, a conceptual test model of the proposed methodology is

described (see Figure 4.5). Each test comprises two phases: Phase i test and

Phase ii test. The Phase i test reports the actual test on the sample i.e. either

intact rock or incipient discontinuity. The Phase ii test is done on the broken

sample to establish the ETF generated by the splitter. Two parameters

including the failure time of sample under tension (measured in the Phase i

test) and the ETF(t) (measured in the Phase ii test) at this time are measured.

It is assumed that ETF measured in the Phase ii test represents the ETF at

the same time in the Phase i test.

Simplified experimental graphs at some key points in each phase of test are

presented in Figure 4.5. Schematic curves measured in each phase of test

are also included. The Phase i test was conducted on an ostensibly

homogeneous block sample with or without an incipient joint to find the time

of sample failure. An LVDT together with a PR was installed at the top of

sample, and there was no constraint at the base. Chemical splitter was

employed to apply tensile force parallel to the LVDT in the middle. For the

purpose of analysis, the whole test is assumed to occur under a state of static

equilibrium due to the slow chemical reaction of splitter.

Figure 4.6 presents simplified force diagrams in the Phase i test. At the

initiation of test (t0 in Figure 4.6), there will be no forces as chemical splitter

takes time to generate force.
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After initiation of the Phase i test, chemical splitter expanded gradually to

apply tensile force acting on the plane through the chemical splitter filled

holes. LVDT measured essentially zero displacement until at the time when

sample failured (see Figure 4.5i).

At the point when sample failed in the Phase i test, EFT equalled to Fm (at t2

in Figure 4.5(ii)). A fracture plane shown in the second image in the Phase i

test in Figure 4.5 was induced along the plane through chemical splitter filled

holes. At this time LDVT started to measure displacement (under

compression) as schematically shown in Figure 4.5i. A gap was generated at

the base of sample once the sample failed, because of the unconfined

condition of the sample bottom.

The broken sample containing the open fracture was re-employed in the

Phase ii test (see right column in Figure 4.5). Two load cells were installed

parallel and ETF generated by chemical splitter was measured. Figure 4.5 (ii)

schematically shows the measured force vs. time. ETF at the time t2 (sample

failure time in the Phase i test) was identified at which time it was assumed

ETF was equal to Fm the maximum resisting force of rock material. Figure 4.6

shows the progressive development of the ETF, which is opposite by Fr when

the sample fail at t2. Figure 4.7 presents the relationship between forces

measured by load cells and ETF in the Phase ii test.
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Figure 4.5 Phase i and Phase ii setup. The Phase i test: experimental
schematic of tension test on intact rock sample with or without incipient
joint (left column). The Phase ii test is conducted to measure ETF (right
column). Simplified graphs at particular time are presented. Schematic
diagrams of displacement of LVDT vs. time measured in the Phase i test
and force vs. time measured in the Phase ii test are also included. For
details see text.
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Figure 4.6 Schematic force diagrams during different procedures in the Phase
i test.

Figure 4.7 Simplified force diagram for the Phase ii test.

4.3.3 Tensile strength calculation

Tensile strength of the plane through the chemical splitter filled holes was

calculated by dividing the ETF(t) when sample failed by the area (A) of failure

plane, which can be expressed by the following equation:

( t )

t

ETF

A
  (4.1)

Note that tensile force is negative in this study.
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4.4 Experimental setup

In this section, detailed experimental setups on intact rock sample without

incipient joints, sample containing single incipient joint (Phase i test) and

broken sample containing the induced fracture in phase 1 test (Phase ii test)

were described.

4.4.1 Experimental setup on intact block without incipient joints

(the Phase i test)

Figure 4.8 shows experimental setup on intact block sample without incipient

joint. Apart from the chemical splitter filled holes, two additional holes with the

same diameter as the threaded rods were drilled to install the PR, nuts were

used to make sure the rigid connection between PR and sample. A LVDT was

employed to measure displacement and hence identify the point of sample

failure as stated in the conceptual model.

Figure 4.8 Diagram of experimental setup on intact rock block without
incipient joint. For details see text. 1 - intact rock sample without incipient
joints, 2 - proving ring (50 kN), 3 - LVDT, 4 - LVDT holder, 5 - chemical
splitter, 6 - threaded rods, 7 - nuts, 8 - spectrum plasticine on the bottom.
Figure not to scale.
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4.4.2 Experimental setup on intact block containing single

incipient joint (the Phase i test)

Figure 4.9 shows experimental setup on intact rock block containing a vertical

incipient joint. The setup procedure is similar to that described in Figure 4.8.

The main difference is that two holes were drilled along incipient joint plane in

this test (assuming that the joint surface is planar). Similarly, the point of failure

of incipient joint under tension can be logged during this test.

Figure 4.9 Diagram of experimental setup on intact rock block sample
containing single vertical incipient joint. For details see text. Figure not
to scale.

4.4.3 Experimental setup on intact block containing single

induced fracture (the Phase ii test)

Experimental setups shown in Figure 4.8 and 4.9 were employed in the Phase

i test to identify the failure point of intact rock or an incipient joint under tension.

Subsequently the Phase ii test was conducted on same samples tested in

Figure 4.8 and 4.9 but containing the fracture opened in the Phase i test (to

measure ETF). Figure 4.10 shows two different experimental setups on the

rock samples containing mechanical joints.

Prior to testing, spectrum plasticine was used to seal the broken edges of

holes and bottom of holes to prevent chemical splitter from leaking. The PR

(stiffness: k1) and load cell (stiffness: k2) described in section 4.2 were

installed parallel on the top and base of sample separately (see Figure 4.10a).



- 108 -

ETF(t) can be calculated by adding up two readings of forces from the PR

(F(PR)) and load cell (F(LC)). In a second arrangement, in order to eliminate the

influence of stiffness difference between the PR and load cell in the

measurement of ETF(t) (see Figure 4.10a), Load cell A and load cell B with

the same stiffness were employed in this test specially manufactured by the

Novatech Measurements Ltd. The twin load cells were installed symmetrically

as shown in Figure 4.10b. ETF(t) was then obtained by adding up two readings

from twin load cells (F(LCA) and F(LCB)).

Figure 4.10 Diagram of experimental setups on rock block samples containing
the fractures opened in the Phase i test (to measure ETF). a The PR and
load cell were installed to measure ETF; b Load cell A and B with same
stiffness were installed to measure ETF. For details see text. Figure not
to scale.
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4.5 Tensile tests on large-scale intact sandstone sample

without incipient joint

Experimental schemes on ostensibly homogeneous rock samples and

samples containing an incipient joint were the same. Tension tests on intact

Thornhill Rock Sandstone and Midgley Grit Sandstone samples without

incipient joints were firstly conducted to establish this methodology.

4.5.1 Tensile tests on intact Thornhill Rock Sandstone without

incipient joint

(1) Sample description

Suitable samples of Thornhill Rock Sandstone with a pale greyish colour and

uniform texture were collected. Sample ends were trimmed parallel and flat.

The prepared sample (see Figure 4.11a) with approximate dimensions of 150

mm (H) X 280 mm (L) X 170 mm (W) was used in the test. The block sample

was stored in air dry condition in engineering geology laboratory, University of

Leeds. Some physical and mechanical properties including water content

(3.8%), Schmidt hammer rebound hardness (43 ± 2), uniaxial compressive

strength (49 ± 2.8 MPa) and point load strength Is(50) (1.9 ± 0.1 MPa) were

measured according to ISRM standards (ISRM 2007 and 2014). The

procedures for measuring these properties were briefly summarised below.

a) Water content

Small irregular samples were weighed using an electronic precision balance

and drying oven setting at around 105 °C was used to dry samples for 24

hours. The weight difference of specimen prior to and after drying was used

to find the water content.

b) Schmidt hammer rebound hardness

A saw-cut intact air-dried Thornhill Rock Sandstone sample with a thickness

of 120 mm at point of impact was used for the measurement of Schmidt

hammer rebound hardness (ISRM 2014). In this test, the block was placed on

the ground and was clamped by another two larger rock blocks to prevent the

sample from sliding or moving during testing. A L-type hammer was impacted

roughly normal to the rock surface. Mean rebound value of 43 with a standard

deviation of 2 was obtained in this test.

c) Uniaxial compressive strength

http://www.thefreedictionary.com/%C2%B0C
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Five 25 mm-diameter core samples were prepared for the uniaxial

compression test. In this test, a servo-controlled loading machine was used to

apply load continuously at a constant loading rate of 1 MPa/s until sample

failure.

d) Point load strength

Ten core-based samples (25 mm in diameter) with length / diameter ratio

ranging from 0.8 to 1.0 were prepared for point load testing. The size

correction factor was 0.75 during the strength calculation, and the mean point

load strength values were calculated by deleting two highest and lowest

values.

(2) Testing procedures

a) The Phase i test

Figure 4.11 presents the experimental setup on intact Thornhill Rock

Sandstone (without incipient joint). Two symmetrical holes with diameter of 25

mm were drilled through rock material vertically at a spacing of 30 mm.

Spectrum plasticine was used to seal the bottoms of pre-drilled holes to

prevent the expansive grout (chemical splitter) from leaking. A LVDT together

with a 50 kN PR was installed on the top of sample. The measuring jug,

syringe and soft drink bottle were used to measure Dexpan power and water

to the suggested ratio (3.3 kg / L). A metal stick was employed to mix the

Dexpan power and water in a plastic bucket. Personal protective equipment

(PPE) including goggles, FFP3 masks, rubber gloves and protective clothing

were worn all the time when handling chemical splitter. A measuring jug and

syringe were used to fill and measure the amount of chemical splitter involved

in the pre-drilled holes. The metal stick was also used to agitate the expansive

grout in the holes making sure no air was trapped in holes. A laptop was used

to log the displacement of the LVDT during this test.
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Figure 4.11 Experimental setup of the Phase i test on an intact Thornhill Rock
Sandstone sample. Rule for scale is 350 mm in length.

b) The Phase ii test

The ETF arising from expansive grout was measured in the Phase ii test in

which same sample used in the Phase i test but containing induced fracture

was employed, as illustrated in Figure 4.12. In the test, the open fractures

were placed together but had no cohesion (true tensile strength). Spectrum

plasticine was used to seal the open hole edges and bottoms of holes. The

Phase ii test was conducted and repeated on the same sample; the ETF was

measured several times and average value was calculated.

It should be noted that two different methods of setup were employed in the

Phase ii test. The first comprised the PR and load cell, as shown by Figure

4.12a. One cylinder load cell (150 mm x 50 mm) was installed at the base of

sample using a clamp, other setup procedures were similar to those in Figure

4.11. Wood wedges were placed on the bottom of load cells so as to make

sure the alignment of the long axis of load cell and horizontal reference axis.

The initial reading of load cell was set to be 0 kN in such a manner as to

ensure same initial confinement of the load cell and PR. Amount and
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concentration of chemical splitter (3.3 Kg/L) was controlled to be the same as

in the Phase i test. In terms of the second method (Figure 4.12b), two same

load cells with same stiffness were employed to verify the validity of the ETF

measured by the first method described above.

Figure 4.12 Experimental setups of the Phase ii test on an intact Thornhill
Rock Sandstone sample containing open joint. a Type 1 re-setup
method: The PR and load cell were employed in the measurement of
ETF and b Type 2 re-setup method: Twin load cells with same stiffness
were employed instead. Rule for scale is 350 mm in length.

(3) Sample failure patterns in the Phase i test

The induced fractures were irregular as can be seen in Figure 4.13a. Two

fracture planes were induced on one side of the sample (Figure 4.13b), while

only one fracture plane was generated on the other side (Figure 4.13c). The

irregular failure pattern can be attributed to the inhomogeneity of rock sample

tested. Although an irregular failure plane was induced, the plane

perpendicular to the direction of ETF shown in Figure 4.13d was treated as

the failure plane under tension, and its projected area was used in the
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calculation of tensile strength. A gap was observed at the base of sample (see

Figure 4.13c, image captured after 24 hours), the explanation for this has been

made in the conceptual model (is due to confinement of the sample at the top

only, by the proving ring).

Figure 4.13 Failure patterns of the Thornhill Rock Sandstone sample under
tension in the Phase i test described in Figure 4.11. a Front view, b left
side view and c right side view. One failure surface was presented in d.
Rule for scale is 350 mm in length, coin for scale is 29 mm in diameter

(4) Test results and tensile strength calculation

Figure 4.14 (i) shows the measured displacement of LVDT against time in the

phase 1 test shown in Figure 4.11. The Phase ii tests were conducted three

times and all forces measured using PR and load cell were presented in Figure

4.14 (ii).

Two turning points (point b and c) were observed in Figure 4.14 (i). At point b,

LVDT (in tension state) started to measure displacement of sample. This point

can be treated as the initiation of macro-fracture. At point c, LVDT started to

decompress which indicates the complete failure of the sample under tension,
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i.e. this is when the crack at the base of the sample opened causing the

proving ring started to decompress. Thus point c corresponds to the time t2

described in the conceptual model.

Figure 4.14 (i) Displacement of LVDT vs. time measured in the Phase i test
on the intact Thornhill Rock Sandstone sample shown in Figure 4.11. (ii)
Measured forces vs. time in the Phase ii test using the type 1 re-setup
shown in Figure 4.12a. Forces were measured three times and average
values were calculated in the calculation of tensile strength.

According to Figure 4.14 (i), the time at point b when macro-fracture initiated

was 51514s after test initiation while it was 58417s at the point c when sample

failure (as the PR started to decompress). Table 4.1 lists the parameters and

forces measured at point c in the Phase ii test. ETF(58417s) was calculated by

adding up the values of forces measured by the PR and load cell. And average

ETF of -33.4 kN for this sample setup (last column in Table 4.1) was

calculated.
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Table 4.1 Parameters and forces measured in the Phase ii test on the
Thornhill Rock Sandstone sample shown in Figure 4.11 (Hole diameter
is 25 mm).

Time
(s)

Test
number

Amount of
expansive
grout
(ml)

T
(°C)

FPR
(kN)

FLC
(kN)

ETF
(kN)

58417
1 65.6 23 -19.8 -17.4 -37.2

-33.4 ± 3.32 71 20 -17.4 -14.3 -31.7
3 72.6 19 -15.8 -15.4 -31.2

The tensile strength of the tested large-scale rock sample was calculated

according to Eq 4.1. The area of failure plane (18,192 mm2) was measured by

AutoCAD. Thus, tensile strength of the tested large-scale intact Thornhill Rock

Sandstone sample was -1.8 ± 0.2 MPa.

For comparision, Brazilian discs of Thornhill Rock Sandstone were prepared

according to the ISRM standard. Average Brazilian tensile strength was

obtained (3.5 ± 0.7) as shown in the last column in Table 4.2. It can be seen

that the tensile strength of large-scale sample measured in this test (1.8 ± 0.2

MPa) was approximately half of that obtained from Brazilian test (3.5 ± 0.5

MPa).

Table 4.2 Brazilian tensile strength of the Thornhill Rock Sandstone.

Sample D
(mm)

L
(mm)

Maximum
load
(kN)

Stress
(MPa)

Average
stress
(MPa)

1 54 28 7.8 3.3

3.5 ± 0.5

2 54 29 6.9 2.8
3 54 27.5 8.7 3.7
4 54 23 7.1 3.6
5 54 24 8.5 4.2
6 54 28.5 7.4 3.1

Figure 4.15 (ii) presents the measured forces vs. time using the type 2 re-

setup method described in Figure 4.12b (i.e. two load cells rather than one LC

and PR). Results (LVDT displacement vs. time) in the Phase i test was also

included (Figure 4.15 (i)).

It can be seen from Figure 4.15 (ii) that the ETF was -33.9 kN at the time of

58417s. The type 2 result was in the range of ETF values (7th column in Table
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4.1) obtained by the type 1 re-setup method (proving ring + load cell). It is also

interesting to note that this value (-33.9 kN) was very close to the average

ETF (-33.4 kN). This gave some evidence that the ETF results obtained by

type 1 re-setup test using proving ring and load cell are acceptable, despite

the difference in stiffness between the PR and LC.

Figure 4.15 (i) Displacement of LVDT vs. time measured in the Phase i test
on the intact Thornhill Rock Sandstone sample shown in Figure 4.11. (ii)
Measured forces vs. time in the Phase ii test using the type 2 re-setup
shown in Figure 4.12b.

4.5.2 Tensile tests on intact Midgley Grit Sandstone without

incipient joint

This section describes the second preliminary tension test on a block of intact

Midgley Grit Sandstone (dimensions: 100 mm (H) X 380 mm (L) X 170 mm

(W)). The rock type was the same as those samples described in Chapter 3.

The sample was stored in the engineering geology lab in Leeds University

prior to testing. Some physical and mechanical properties including water

content (3.2%), Schmidt hammer rebound hardness (20.8 ± 4.2), uniaxial

compressive strength (25 ± 3.1 MPa) and point load strength Is(50) (1.4 ± 0.3

MPa) were measured according to ISRM standards. The test procedures are

the same to those described in the section 4.5.1.
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(1) Test procedure and sample failure pattern

The test comprised two phases: the Phase i test on the intact Midgley Grit

Sandstone sample without incipient joint and the Phase ii test on the same

sample but containing the induced fracture.

a) The Phase i test

The test procedures are similar to those described in the tension test on the

Thornhill Rock Sandstone sample in section 4.5.1. The major difference of

setup to the previous test is that two cuts with aperture of approximately 2 mm

were produced using a diamond wheel saw from the edge of block sample to

the holes for chemical splitter, as shown in Figure 4.16a, so as to get a regular

failure plane at the edge. Figure 4.16b presents the photo at the completion

of the Phase i test. A larger gap (see Figure 16b1) was created at the base of

sample. One induced fracture approximately perpendicular to the direction of

ETF can be seen on the top of sample (see Figure 16b2). The areas of failure

surfaces presented in Figure 4.16c1, c2 were measured by AutoCAD which

were 8105 mm2 and 8596 mm2, respectively.

Figure 4.16 Experimental setup of the Phase i tension test on a block of intact
Midgley Grit Sandstone. a The initiation of test and b The completion of
test. The induced fractures were presented in b1 and b2. c1, c2 Failure
surfaces between chemical splitter filled holes (areas enclosed by black
lines). More details see text.
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b) The Phase ii test

Again, two different types of re-setup methods (Figure 4.17a and 4.17c) were

employed in the Phase ii test to measure the force from chemical splitter used.

The procedures were the same as those described in Figure 4.12.

The fracture induced in the Phase i test was re-opened again to an aperture

of around 1.5 mm shown in Figure 17b1 and Figure 4.17d1 (images were taken

after 24 hours).

Figure 4.17 The Phase ii test conducted on the broken sample of Midgley Grit
Sandstone after the Phase i test shown in Figure 4.16. a and b Photos
of the initiation and completion of the type 1 re-setup test. c and d Photos
of the initiation and completion of the type 2 re-setup test. More details
see text.

(2) Test results and tensile strength calculation

Figure 4.18 (i) shows the displacement of LVDT vs. time measured using the

setup shown in Figure 4.16a. The Phase i test curve demonstrated the time
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(20339s) for initination of failure (at point b) and the time (34724s) for complete

failure (at point c). Figure 4.18 (ii) presents the force vs. time of the chemical

splitter measured in the Phase ii test shown in Figure 4.17. The parameters

and forces meraured in the Phase ii test were listed in Table 4.3 and 4.4.

Figure 4.18 (i) Displacement of LVDT vs. time during the Phase i test on the
Midgley Grit Sandstone sample using the setup shown in Figure 4.16.
(ii) ETF from chemical splitter poured into the drilled holes (17 mm in
diameter) were measured in the Phase ii test using two different re-setup
methods shown in Figure 4.17.

The average ETF value was calculated (-16.7 ± 3.9 kN, i.e. average of (FLCA

+ FLCB) and (FPR1 + FLC1)) at the time of 34724s corresponding to sample

failure in the Phase i test. The failed area between the two drill holes was 8351

mm2 (because of the saw cuts at the sides, see Figure 4.17). So the tensile

strength of the Midgley Grit Sandstone sample tested was 2.0 ± 0.2 MPa. The

implied tensile strength of large-scale Midgley Grit Sandstone is less than the

average value measured by Brazilian test (2.4 MPa), but it lies below the range

of tested values ( 2.29 - 2.52 MPa). It is however worth to be noting that the

strength (2.0 ± 0.2 MPa) measured in this test lies in the strength range (2.08



- 120 -

± 0.22) values measured using uniaxial tensile method on smaller cylinder

samples and reported in Chapter 3 (Table 3.1).

Table 4.3 Parameters and forces measured by the type 1 re-setup method in
the Phase ii test on the Midgley Grit Sandstone sample shown in Figure
4.17a (hole diameter is 17 mm).

Time

(s)

Expansive grout
volume (ml)

Temperature
(°C)

FPR

(kN)
FLC

(kN)
ETF
(kN)

20339 42.6 20 -2.69 -3.56 -6.25
34724 42.6 20 -9.57 -9.79 -19.36

Table 4.4 Parameters and forces measured by the type 2 re-setup method in
the Phase ii test on the Midgley Grit Sandstone sample shown in Figure
4.17a (hole diameter is 17 mm).

Time

(s)

Expansive grout
volume

(ml)

Temperature
(°C)

FLCA

(kN)
FLCB

(kN)
ETF
(kN)

20339 43.5 20 -1.72 -2.01 -3.73
34724 43.5 20 -6.32 -7.52 -13.84

4.6 Tensile tests on large-scale sandstone sample containing

single incipient joint

The results of Tests undertaken on intact sandstone blocks without incipient

joints indicate that a smaller tensile strength was measured using the

proposed method than standard methods. Discussion of this will be given in

section 4.7. Below, tensile strength of block-scale and irregular incipient joints

was measured using the new approach.

4.6.1 Sample description

Midgley Grit Sandstone samples containing incipient rock joint were collected

in the BQ, UK. Figure 4.19 shows two samples selected for testing containing

incipient joints. It can be seen that these two samples are irregular in shape,

but containing apparently continuous joint traces. It is evident that the two

incipient joints retain some strength. It should be noted that incipient joint 1 in

block BHQ7 inclined at about 40 degree to ground, while incipient joint 2 in

sample BHQ5 was nearly vertical with respect to ground. Two holes with

diameter of 17mm were drilled along the plane of incipient joint 2.

The sample BHQ 5 was stained brown due to the presence of the FeO. As

can be seen in Figure 4.19, the stained bedding laminations were nearly
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perpendicular to incipient joint planes. Again, some physical and mechanical

properties including water content (3.3%), Schmidt hammer rebound

hardness (22.8 ± 2.9), uniaxial compressive strength (24.2 ± 5.1 MPa) and

point load index Is(50) (1.2 ± 0.1 MPa) were measured according to ISRM

standards. The test procedures were the same to those used in the section

4.5.1.

Figure 4.19 Irregular Blackhill sandstone blocks (BHQ 5 and BHQ 7)
containing incipient joints. a An inclined incipient joint 1 that is expressed
at a certain trace around the block. b An nearly vertical incipient joint 2
with a continuous trace at the surface of the block.

4.6.2 Experimental setup and failure surfaces

Figure 4.20 shows the experimental setup on sample BHQ 7 which is similar

to that used for the tests on intact rocks described earlier. During drilling, care

needs to be taken to drill exactly along the joint plane as far as possible

assuming that the joint is planar in shape and follows the trace as exposed at
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the surface. Unlike the test carried out on intact Midgley Grit Sandstone, no

cuts were made in the sample.

Figure 4.20 b and c illustrate the failure modes of the incipient joint 1 after

testing. As anticipated the sample broke along this joint plane. As in tests on

intact blocks, the aperture at the bottom of the fracture was larger than that at

the top (see Figure 4.20c).

Figure 4.20 Experimental setup of the Phase i tension test on a block of the
Midgley Grit Sandstone with the incipient joint 1. a Initiation of test and b
Completion of test. The sample broke exactly along the pre-existing
incipient joint and aperture (c)

Figure 4.21 Two surfaces of incipient joint 1 after the tension test. The
persistent areas (dark brown mottled black) have been weathered. The
slightly stained or fresh areas representing rock bridges, as enclosed by
red curves. 2p coins for scale are 25.9 mm in diameter.
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Figure 4.21 shows the failure surfaces of the incipient joint 1. As for incipient

joint surfaces of core samples (Figure 3.20), revealed after uniaxial tension

and discussed in Chapter 3, the exposed areas show staining to a variable

degree across their surfaces. It can be seen that the incipient joint 1 was not

fully persistent in contrast to the continuity shown by the exposed trace on the

block (BHQ 5) selected for testing. The persistent areas (dark brown and black

mottled) have been highly weathered. If it is assumed that the areas enclosed

by red lines were non-persistent, a persistence of 75% of the incpient joint 1

was calculated according to the definition of areal persistence in Chapter 2

(ratio of persistent area to the total area).

Figure 4.22 shows the experimental setup on incipient joint 2 within BHQ5

which is the same to that setup on incipient joint 1. Two failure surfaces after

testing are shown in Figure 4.23. An areal persistence of 63% was calculated.

Figure 4.22 Experimental setup of the Phase i tension test on a block of the
Midgley Grit Sandstone with the incipient joint 2.
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Figure 4.23 Two surfaces of incipient joint 2 after the tension test. The
persistent areas (dark brown and black mottled) have been weathered.
The slightly stained areas representing rock bridges, as enclosed by red
curves. 2p coins for scale are 25.9 mm in diameter.

4.6.3 Tensile strength of large-scale incipient rock joints

Phase ii tests were conducted on the borken open joints to measure the ETF

from the chemical splitter. Again, two different methods were employed which

is similar to the tests on intact rocks described earlier. Figure 4.24 presents

the test results of both Phase i and Phase ii tests. Table 4.5 and 4.6 list the

parameters and forces measured in the Phase ii tests.

Figure 4.24 (i) Displacement of LVDT vs. time measured in the Phase i test
on the BHQ 7 containing incipient joint 1. (ii) Measured forces vs. time in
the Phase ii test.
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It can be seen from Figure 4.24 that It took 49642s for incipient joint 1 to break

(at point c). And average EFT measured by the type 1 and type 2 methods at

the same time in the phase 2 test was -10 ± 0.5 kN.

The irregular surface areas of incipient joint 1 (Figure 4.21) were traced and

the projected areas were measured by AutoCAD and the value was 19475

mm2. Then the tensile strength of incipient joint 1 was 0.5 ± 0.03 MPa.

Similarly, it takes 34876s for incipient joint 2 to break (at point c in Figure 4.25).

The average ETF at the time of 34876s was 12.3 ± 2.3 (8 kN / sin40.05◦) kN.

The measured surface areas of incipit joint 2 (see Figure 4.23) was 15899

mm2. Thus the tensile strength of incipient joint 2 was 0.77 ± 0.1 MPa

Table 4.5 Parameters and forces measured by the type 1 setup method in the
Phase ii tests on incipient joints (hole diameter is 17mm).

Sample
Time

(s)

Expansive
grout volume

(ml)

T
(°C)

FPR

(kN)
FLC

(kN)
ETF
(kN)

Incipient
joint 1

42884
35.6 19 -5.4 -4.8 -10.2
31 20 -4.6 -4.1 -8.7

49642
35.6 19 -5.4 -5.1 -10.5
31 20 -5.1 -5.0 -9.6

Incipient
joint 2

19797 28.5 20 -2.6 -1.5 -4.1
34876 28.5 20 -4.7 -5.0 -9.7

Table 4.6 Parameters and forces measured by the type 2 setup method in the
Phase ii tests on incipient joints (hole diameter is 17mm).

Time
(s)

Expansive
grout

volume
(ml)

T
(°C)

FLCA

(kN)
FLCB

(Kn)
ETF
(kN)

Incipient joint 1
42884 35.6 20 -4.02 -4.03 -8.05
49642 35.6 20 -4.82 -4.88 -9.70

Incipient joint 2
19797 28.5 21 -0.43 -0.43 -0.86
34876 28.5 21 -2.85 -3.54 -6.39
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Figure 4.25 (1) Displacement of LVDT vs. time measured in the Phase i test
on the BHQ 5 containing incipient joint 2. (2) Measured forces vs. time in
the Phase ii test.

4.7 Discussion

4.7.1 ETF arising from the chemical splitter

The tensile strength calculation relies on the assumption that ETF measured

in the Phase ii test represent the ETF at the same time in the Phase i test.

Three main parameters including grout concentration, room/rock temperature

and amount of grout will potentially influence the magnitude of ETF from

chemical splitter in the test. Same samples containing the fractures that

induced in the Phase i test were employed in the Phase ii test to measure

ETF, so as to keep the amount of chemical splitter evolved in Phase ii and

Phase ii tests to be the same. All tests were conducted at the recommended

grout concentration of 3.3 kg/L and in the engineering geology lab (room

temperature at 20 ± 1°C), University of Leeds. The ETF normal to the failure

plane was measured using two different setup methods in the Phase ii test.

The PR and 50 kN load cell were employed in the type 1 setup method (Figure

4.10a) and twin load cells with same stiffness were used in the type 2 setup
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method (Figure 4.10b). The ETF were calculated by adding up the readings

of PR and LC in the type 1 method, and of twin load cells in the type 2 method.

It was found that ETF measured by the type 2 method lay between values

measured by the type 1 method (Figure 4.14ii and 4.15ii). This indicates that

the measured ETF gives a reasonable and acceptable result in the two

different setup methods. For some tests (Figure 4.14ii and 4.25ii), however,

there were some differences at earlier stage of testing but similar ultimate ETF

values at the end of each test run. For example, the curve labelled as FPR1 in

Figure 4.14ii, much larger force was measured before 50000s compared with

other test results. This probably be attributed to the higher working

temperature (see the fourth column in Figure 4.1) during this test which

quicken the chemical reaction of splitter. Average ETF therefore is suggested

to be used in the tensile strength calculation.

4.7.2 Effects of scale on the strength of rock materials

The scale effect on the strength of rock and discontinuities has been

investigated by many researchers (e.g. Thuro et al. 2001, Zhang et al. 2011,

Fredrik 2016, Manuchehr et al. 2015, Sheshede and Cheshomi 2015). The

common agreement about scale effect is that increase in strength values

corresponds with decrease in sample size. This phenomenon can be

attributed to the anisotropic nature of rock materials. Besides, material with a

larger volume is able to contain more defects, thus it is easier to break under

external loading.

The failed rock surface areas of the large-scale block of samples reported in

this chapter were about 5 times larger than that of the cylindrical sample with

a diameter of 50 mm. It is interesting however to note that the measured

tensile strength (2.0 MPa) of the large-scale Midgley Grit Sandstone sample

was larger than the lowest value (1.86 MPa) of measured tensile strength of

intact sample using the uniaxial tension method. This means that tension test

carried out on this large-scale intact Midgley Grit Sandstone sample give a

reasonable result. The slightly difference in the setup of tension method (two

cuts were made in the intact Midgley Grit Sandstone sample, see Figure

4.16a) as well as failure patterns of the two samples may give a possible

explanation. It can be seen that two regular failure planes (Figure 4.16c1, c2)

were obtained at the end of test run. Failure planes however were irregular in

the tension test on the Thornhill Rock Sandstone sample (Figure 4.13). Two

induced fractures were produced on one side of sample and only one fracture

was induced on the other side. The irregular failure plane will influence the

tensile strength calculation process because it will influence the projected
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areas used in the strength calculation. In addition, the force acting the irregular

plane is complex which also influence the strength calculation. As is reported

by Gholamreza et al. 2015, failure patterns (reflected by the fracture length)

of sandstone samples under Brazilian indirect tension were related to the

average tensile strength.

Tension tests for the large-scale incipient rock joints which give two strength

values of 0.5 MPa and 0.77 MPa, respectively. Although It is diffcult to verify

the validity the the two values but a back calculation of the strength of non-

persistent areas may give some clue, as is the same approach adopted in

Chapter 3. For the tested incipient rock joints, the non-persistent areas(red

envelopes in Figure 4.21 and 4.23) were clearly not intact rocks but have been

stained to some degree. The enveloped areas on incipient joint plane 1 and 2

were measured (4927 mm2 and 5914 mm2) approximately using AutoCAD.

The calculated tensile strength of these non-persistent areas were 1.8 MPa

and 1.6 MPa which were smaller than the intact rock uniaxial tensile strength

(2.08 MPa). This means that the slightly stained segments on the non-

persistent areas on failure surfaces have strength somewhat less than the

intact rock strength.

In Chapter 3, uniaxial tension tests were carried out on incipient rock joints

within smaller cylindrical samples with diameter of 70 mm. Two areal extent

values (72% and 62%) of samples BH70J1 and BH70J3 are quite close to that

(74.7% and 62.8%) of the samples tested in this chapter. The tensile strength

(0.63 MPa and 0.90 MPa) of sample BH70J1 and BH70J3, however, were

somewhat larger than the tensile strength (0.5 MPa and 0.77 MPa) of the

large-scale incipient joints. The larger failed incipient joint surface area

(compared to the failed areas of samller cylinder samples tested in Chapter 3)

may be responsible, although distributions (location) and shapes of rock

bridge can also influence the strength (Ghazvinian 2007).

4.7.3 Stress concentration during the tension test

Laboratory methods including direct and indirect tensile tests were employed

to measure the tensile strength of rock materials (e.g. Hobbs 1965, Baela and

Innaurato 1973, Luong 1988, Liao et al. 1997, Li et al. 2013). In those tests,

uniformly distributed stresses along failure planes are the basis of valid

results. Efforts have been made to reduce the anomalous concentrated

stresses within rocks during testing (e.g. Wuerker 1955 and Hoke 1964).

In order to understand the stress distribution on the failure plane in the

proposed test, the lineral elastic fracture mechanics analysis was employed
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under the assumption that rock material is elastic-plastic. Analytical models

were constructed as shown by Figures A 4.1, A 4.2 and A 4.2. Figures A 4.4

and A 4.5 (see appendix A) present the stresses along and perpendicular to

the failure plane along chemical splitter filled holes. The analytical stress

distribution results were based on a ratio of d / ri = 5, with ri = 20 mm, and

when the internal pressure of chemical splitter was 50 MPa. It is found that

the maximum stress concentrated around hole edges and tensile stresses

normal to the plane between two holes were not equally distributed, but

decreased from 59.5 MPa in the edge by the holes to 20.8 MPa in the middle

of the holes. Thus it is resonable to expect that, in the tension test, fracture

will initiate at the hole edges and propagate progressively to the centre. This

is not the same to the situation for the stress distribution in Brazilian tensile

test in which fracture theoretically initiates at the exact center of discs (Li et al.

2015). Fracture initiation in Brazilian discs were observed in Chapter 3 (Figure

3.10).

The anomalous concentrated stress distributions in the block tests give an

explanation to the smaller laboratory test results compared with those

measued by the Brazilian test. Another consideration is that for tension tests

carried out on incipient rock joints, stress would also concentrated around rock

bridge tips. This may actually represent the field situation or insitu stress

condition because of the intrinsic nature of incipient rock joints.

4.7.4 Effects of Pressurization rate and water on strength of rock

material

Strength of rock materials varies with the loading rate(Kumar 1968, Sangha

and Dhir 1972, Kittitep and Numchok 2010, Kittitep et al. 2012, Sopon et al.

2015, Zhou et al. 2015 and Chang and Jo 2015). It was found that the tensile

strength of rock materials can also vary depending on test method as well as

the loading rate, leading to uncertainty (Chang and Jo 2015). In this study,

chemical splitter (a kind of expansive grout made from mixturing Dexpan

power and pure water with a recommended ratio of 3.3 Kg/L) was employed

to apply ETF. As can be expected that the influential factors including working

temperature, concentration and amount of chemical splitter evolved in each

test will influence the pressurization rate of chemical splitter. As can be seen

from the test results, it took several hours for chemical splitter to break intact

rock as well as incipient rock joints. Obviously, that is much longer than

conventional tensile tests, i.e., a very small loading rate was applied on the

rock materials in the test. We suspect that the smaller strength obtained is

may be attributed to the small loading rate. It agrees with the findings by Mellor
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and Hawkes (1971) that tensile stength of rock will decrease with decresing

of loading rate.

In addition, water in the chemical splitter can infitrate and diffuse into the rock

matrix in the test, which in turn will probably degrade the rock strength (Chang

and Jo, 2015).

4.8 Summary

An original methodology to quantify the tensile strength of large-scale incipient

joints was trying to be developed in this chapter. In this method, chemical

splitter was employed to generate tensile forces normal to incipient joint

planes. Each test comprised of two phases: Phase i test and Phase ii test (see

the conceptual model in Figure 4.5). Failure time of sample (with or without an

incipient joint) under tension was measured in the Phase i test. Expansive

tensile force (ETF) arising from chemical splitter was measured in the Phase

ii test using the same sample broken in the Phase i test. The magnitude of

ETF (measured in the Phase ii test) at the time of sample failure (measured

in the Phase i test) was employed to calculate the tensile strength of the plane

through chemical splitter filled holes (see Eq. 4.1).

Preliminary tensile tests were conducted first on an large-scale intact Thornhill

Rock Sandstone sample (Figure 4.11) and a Midgley Grit Sandstone sample

(Figrue 4.16a) to establish the methodology. The measured tensile strength

of these two large-scale samples were 1.8 MPa and 2.0 MPa, respectively. It

was found that the results were less than average strength values measured

from Brazilian tests which were 3.5 ± 0.7 MPa (Table 4.2) and 2.08 ± 0.22

MPa (Table 3.1), respectively.

Tensile strength of large-scale incipient joints were then measured using this

new approach. As anticipated sample failured exactly along incipient joint

traces and areal extent of persistent areas along incipient joint planes were

revealed (see Figures 4.21, 4.23). The tensile strength of incipient joints

measured were 0.5 ± 0.03 MPa. and 0.51 ± 0.1 MPa. The calculated tensile

strength of non-persistent areas (red envelopes in Figure 4.21 and 4.23) along

incipient joint planes were 1.8 MPa and 1.3 MPa. These two values were

somewhat smaller than the tensile strength (2.1 ± 0.2 MPa) of intact rock

measured in the Chapter 3. The smaller tensile strengths measured using the

proposed method may be due to the stress concentration around chemical

splitter filled hole edges (see Figure A 4.4 and A 4.5) and low pressurization

rate of chemical splliter. Besides, the unavoidable variations of ETF measued
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in the Phase ii test may also influence the strength calculation results, even

though average ETF was employed in the tensile strength calculation process.
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Chapter 5

Investigation into the persistence (areal extent) of incipient

rock discontinuities

5.1 Introduction

Persistence is defined as the areal extent of a rock discontinuity (ISRM 1978,

see Figure 2.5b in Chapter 2). Its profound implications for rock mechanics

and rock engineering projects have been well understood (e.g., Kevin 1980;

Einstein et al. 1983; Park 2005; Kim et al. 2007; William et al. 2008; Wasantha

et al. 2011; Sarfarazi et al. 2014; Zhang et al. 2015; Viviana et al. 2015), which

has been discussed in Chapter 2.

Owing to its three dimensional nature and the limitations of measurement, we

know very little about real discontinuity persistence and few publications are

available. Rawnsley (1990) found that persistence, even as seen in surface

exposures, was not predictable on the basis of geological factors or through

other observations. Park (2005) concluded that it was impossible in practice

to measure discontinuity area based on field investigation. Norbury (2010)

pointed out that quantification of persistence normally requires the extent of

rock discontinuity surface to be measured both down dip and across dip.

Some researchers have attempted to quantify this parameter but all restricted

to exposed rock faces (e.g. Sturzenegger and Stead 2009 and Ferrero et al.

2009). Currently, in rock engineering and modelling, trace length of

discontinuities obtained from outcrop is used as an approximation of real

persistence (e.g. Kim et al. 2007, Umili et al. 2013 and Han et al. 2015);

sometimes the persistence value of 100% is assumed for simplification

purpose (e.g. Park 2005; Jiang et al. 2015). All these approximations and

assumptions are geological guesswork. Field observation of the extent of

incipient rock discontinuities combining the geological origin and interpreted

geomorphological history of site will be a realistic approach towards this

difficult topic (Hencher 2015).

In this chapter, a technique, “forensic excavation of incipient rock

discontinuities (FEIRD)”, was used to examine the extent of incipient rock

discontinuities, therefore providing a small step in quantifying real persistence.

Laboratory and field tests were carried out on incipient rock discontinuities

within Horton Formation blocks and Midgley Grit Sandstone blocks as

application examples. Apparently planar discontinuities were focused in this

study primarily due to two reasons. The first is that it is a common practice in
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rock engineering to assume that discontinuities are planar in shape (e.g. Priest

and Hudson, 1976, Baecher et al., 1977 and Zhang and Einstein 2002). The

second is because the persistence definition by ISRM (1978) (see Chapter 2,

Eq. (2.2)) used in this study implies a planar discontinuity.

5.3 Methodology: Forensic excavation of incipient rock

discontinuity

The term “forensic excavation of incipient rock discontinuity (FEIRD)” in this

study refers to the process of non-explosive splitting along a planar or near-

planar incipient rock discontinuity; thereafter the three dimensional nature of

discontinuity such as areal extent (persistence), roughness as well as

fractographic features (if present) can be observed and investigated. There

have been some rock splitting methodologies used in rock engineering for

example hydraulic rock splitter (Figure 5.1), chemical rock splitter (expansive

grout) and rock splitter based on shape memory alloys (Benafan et al. 2016).

Chemical rock splitter was used for FEIRD in this study considering its

portability and operation simplicity.

5.3.1 Chemical splitter and operation principle

The chemical splitter used in this study is a commercially available powder

named Dexpan (generally comprising SiO2, Al2O3, Fe2O3, CaO, MgO and SO3

(Huynh and Laefer 2009)). Mixing with pure water the grout expands

considerably through chemical reaction and hydration. The production of the

powder can be dated back to 1930’s and it was first commercially available in

1970 (Gani 1997; Huynh and Laefer 2009). Because of major benefits, i.e. no

ground vibration and fly rock, chemical splitters have been employed in rock

engineering projects where blasting was not allowed (Natanzi and Laefer

2014).

5.3.2 FEIRD testing procedure

FEIRD testing has been carried out in the field on large discrete blocks of rock.

The procedures used are generally similar to that presented in Chapter 4

(laboratory test) but there are some differences. Testing generally comprise

the following sequential phases (see Figure 5.2):

● Phase 1 - Drilling holes along discontinuities. A battery drill (Makita) was 

employed to drill holes with diameter of 27 mm and spacing of around 200 mm

(larger diameter holes can be used when forensic excavating large-scale rock
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masses but not more than 100 mm as blow out may occur). Holes were not

drilled through so as to preven.t chemical splitter from leaking. Dust in holes

was cleaned after drilling as much as possible for a good result.

● Phase 2 - Chemical splitter preparation: mixing expansive powder with pure 

water. The recommended ratio of expansive powder /kg to water /L is 3.3 kg/L.

A measuring jug, syringe and a soft drink bottle were used to measure the

expansive powder and water to the recommended ratio. A metal stick was

used to mix the expansive powder and water in a plastic bucket to make sure

that the powder was completely dissolved in water. Personal protective

equipment (PPE) including goggles, FFP3 masks, rubber gloves and

protective clothing were worn all the time when handling the chemical splitter.

● Phase 3 - Filling the pre-drilled holes with the chemical splitter. The 

measuring jug and syringe were used to fill and measure the amount of

chemical splitter injected into each hole. A metal stick was used to agitate the

chemical splitter in the holes to make sure no air was trapped. After filling the

holes with chemical splitter, a plastic cover was placed over the holes and

warning signs were attached. Care must be taken not to look directly into holes

as explosive blow out may occur.

● Phase 4 - Opening up of the incipient rock discontinuity.  It normally took 

several hours (up to 24 hours) for the chemical splitter to harden gradually,

expand and open up the incipient discontinuity. The actual time varies with

temperature, rock lithology and amount of the chemical splitter used.

Secondary prising off tools (an excavator, forklift and chisels) were used in the

field test.

● Phase 5 - Failure description. After the large blocks had been split, the 

exposed surfaces were described and interpreted.
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Figure 5.1 Construction of Mass Transit Railway (MTR) - Admiralty section in
Hong Kong. A hydraulic rock splitter (model PRS-95) was employed in
the excavation of an underground tunnel where blasting was not allowed
because of adjacent engineering works. a Predrilled holes with diameter
of 100 mm on the free face; b Holes were drilled along several parallel
incipient joints, note that irregular fractures were induced by the upper
power cylinder; c A small rock block was broken from the free face and
an induced fracture can be seen. It took around 2-4 mins for this PRS-
95 rock splitter to break rock for each run.
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Figure 5.2 Schematic diagram of the FEIRD testing procedure
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As for the laboratory tests described in Chapter 4, areal extent (persistence)

and roughness were quantified based on examination of the discontinuity

surfaces. Factors relating to incipient nature of each discontinuity were

investigated. In addition, relationships between roughness and persistence

were considered. Interpretations made in knowledge of the geo-histories of

incipient discontinuity structures at the specific field sites as deduced by field

examination and on the basis of literature review.

5.3.3 Dye technique, a preliminary investigation

A new experimental method was devised using the injection of dye, prior to

splitting, in an attempt to identify persistent portions of incipient discontinuities.

A preliminary dye test was performed in the laboratory on an irregular Midgley

Grit Sandstone block approximately 514 mm long, 400 mm wide and 150 mm

depth.

(1) Apparatus and experimental procedure

Figure 5.3 presents the test preparations and apparatus used. An incipient

joint (boxed area in Figure 5.3a) within the block sample. Two holes with

diameter of 7 mm were drilled either on the top surface or on the side of block

sample along the joint trace (see Figure 5.4). A plastic tube containing some

pre-drilled small holes was then introduced to each hole in turn which permits

the dye penetrant flow through the joint in a uniform inlet pressure (see Figure

5.3b). A metal cap (Figures 5.3b and 5.3c) was attached on the top by using

an adhesive (Araldite) to prevent dye from leaking when introduced under

pressure.

Fluorescein (C20H12O5), a synthetic organic compound soluble in water, was

used in the test (termed as florescent dye here after). It has been used

elsewhere for crack detection and non-destructive testing (NDT). Figure 5.3d

shows some of the prepared florescent dye.

An advanced Pressure / Volume Controller (ADVDPC) was employed to pump

fluorescent dye into the holes drilled to follow the predicted geometry of the

incipient discontinuity. The ADVDPC is microprocessor-controlled screw

pump for the precise regulation and measurement of fluid, oil or air pressure

and volume change.

https://en.wikipedia.org/wiki/Organic_compound
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Figure 5.3 a Midgley Grit Sandstone block containing an incipient joint; joint
trace (boxed area) is persistent observed at surface. b A metal cap and
plastic tube containing some pre-drilled holes were used as the conduit
of dye penetrant, c The tube was inserted into a pre-drilled hole along
this incipient joint and the metal cap was glued on the top by Araldite to
seal the hole. d Fluorescent dye penetrant that was used to colour the
persistent areas along incipient joint. e, f The GDS advanced pressure /
volume controller was used to pump fluorescent dye into the incipient
joint plane. Rule for scale is 314 mm in length.

Figures 5.3e, f show the ADVDPC used in this preliminary test. Fluorescent

dye was firstly introduced to the pressure cylinder (e) and then pumped into

the rock block down holes drilled into the incipient joint (f). Several runs were
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performed due to the limited volume of the pressure cylinder. A constant

pressure control mode (3 MPa) was used for injection. Dye was injected into

two holes and this process was stopped when the dye from two holes met as

observed from the block surface (see Figure 5.4).

(2) Results and discussion

Figure 5.4 shows the extent of the dye exposed at the surfaces and dye

transportation (with time) around the hole 1, dye volumes introduced to the

hole 1 are also indicated for steps from (a) to (g). No single fracture flow was

achieved at the surfaces as the dye travelled in sub-circular shape, which not

only flowed along the expected preferential path (incipient joint plane) but also

penetrated into the rock matrix. The high permeability of Midgely Grit

Sandstone appears to have first order control of how the fluid behaved,

although rough joint surface of course can sometimes give rise to a tortuous

flow due to spatially varied aperture (Thomposon and Brown 1991, David et

al. 2006). The inhomogeneous nature of Midgley Grit Sandstone can be

demonstrated by the scattered transportation of dye, especially along the

depth of sample (Figures 5.4e, f).

Figure 5.4 Observed dye at the top and back surfaces after the injection
process. (a) to (g) show the dye transportation with time around hole 1
observed at the top surface. Rule for scale is 314 mm.

The block sample was left at room temperature around one month and then

split. Four holes with diameters of 27 mm were drilled along the joint

(assuming planar in shape). Exposed joint surfaces after splitting are

presented in Figure 5.5. Both weathered areas (persistent areas) and rock
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bridge areas have been stained by dye, which can be attributed to the high

rock material permeability. The main mineral on the dark areas is Haematite.

It is assumed that incipient joint structure remained the same during the dye

pumping procedure although persistent area of joint surface can increase with

the applied stress yet at a high pressure up to 20 MPa (Duncan and Hancock

1966, Namdos et al. 1983). According to Eq. (2.2), based on the areal extent

of the weathered surfaces, persistence of this planar incipient joint was

calculated (approximately 86% assuming all persistent areas have been

stained).

From this preliminary test as conducted, it is conclude that the dye technique

is not applicable for the high permeability rock such as Midgley Grit Sandstone

tested in this study.

Figure 5.5 Exposed incipient joint surfaces after the FEIRD test conducted on
a Midgley Grit Sandstone block sample. Joint surfaces have been
coloured entirely including rock bridges (light yellow areas). Coin for
scale is 25.9 mm in diameter, rule for scale is 314 mm in length.

5.4 Areal extent of incipient rock discontinuities within

Midgley Grit Sandstone: A laboratory FEIRD experiment

5.4.1 Block sample description

A Midgley Grit Sandstone block sample (Figure 5.6) was collected from BQ,

West Yorkshire, UK. The irregular shaped sample shown in Figure 5.6

contains six visible traces, labelled from ①-⑥. Incipient joint traces ①, ②

and ③ intersected by one another (see Figure 5.6 top view). Incipient bedding

is also present. Relative orientations of these discontinuity traces including
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exposed surfaces are plotted in Figure 5.7 assuming the north direction was

as shown in the top view. Incipient joint ① appears as a trace on all free

surfaces, whereas other joints appear to be less well developed.

Figure 5.6 View of large block of Midgley Grit Sandstone with incipient
bedding and six visible joint traces. Relative orientations are measured
taking bedding as horizontal and north as indicated in the top view. The
rule for scale is 314 mm.
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Figure 5.7 Stereographic representative of six incipient joint traces and
exposed surfaces shown in Figure 5.6. Bedding is taken as horizontal.

5.4.2 Testing procedure and failure patterns

Figure 5.8 shows how the rock was split. Holes with diameter of 27 mm were

drilled only along incipient joint traces ①, ② and ③.

The drilling geometry was adopted assuming that the joints were planar in

shape. The chemical splitter was prepared in a measurable bucket and then

was injected into the pre-drilled holes (Figures 5.8a, b). Hole spacing was

between 100 mm and 120 mm, hole depth 150 mm and injected volumes

about 88 ml.
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Figure 5.8 FEIRD testing procedure along incipient rock discontinuities ①,
② and ③. a Six holes with diameter of 27 mm were drilled along these
incipient joints to a depth of 150 mm; b The chemical splitter was injected
into the pre-drilled holes; c Induced fractures along pre-existing incipient
joint traces, image was taken after 24 hours; Note that two horizontal
parallel fractures were induced along the direction bedding planes as
shown in d. The rule for scale is 314 mm.

Figure 5.8c and d show the failure patterns after 24 hours. As anticipated, the

block sample was split exactly along the pre-existing discontinuity traces. Two

horizontal bedding planes were also mobilised because of the expanding

forces. It is also interesting to note that the induced fracture along incipient

rock joint ③ changed from nearly vertical to incline at below one of the opened

bedding plane (Figure 5.8d). The incipient joint ④ was also broken during this

test but not deliberately.

5.4.3 Result interpretation and discussion

The split rock block pieces were removed with care and the failure surfaces

examined as shown in Figure 5.9. From the revealed joint planes, it can be

see that all incipient joints terminated at bedding planes (indicated by red

lines).
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Generally the persistent joint segments (outlined by white dashed lines)

exhibited different degrees of weathering in a similar manner to the samples

described in Chapter 3. Intervening rock bridge areas can be distinguished

and quantified approximately by using AutoCAD. Persistence values of

incipient rock joints ①, ②, ③, and ④ were calculated (85%, 37%, 32% and

90%, respectively). However there has little evidence for the areal extent prior

to the FEIRD testing. Scattered weathering areas on incipient joint plane ③

shows some clues that weathering might be expected to the main factor

affecting joint incipiency. Residual rock bridges shown on the plane ③ gives

some evidences for joint development influenced by weathering, as discussed

by Hencher and Knipe (2007).

Figure 5.9 Incipient joint surfaces exposed after testing. Red lines correspond
to an opened bedding plane. The rule for scale is 314 mm.

Uncertainties and errors in jointing measurements and geological data

acquisitions mainly arising from spatial variability of geological formations

have long been recognised (e.g. Merritt and Baecher 1981 and Palmstrom

2001), but no recommended methods have been proposed to resolve this

issue (Einstein and Baecher 1982). This uncertainty was well demonstrated

by the unpredictable areal extent of incipient joints within this small block

sample.
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Interactions between incipient discontinuities and rock matrix (such as

interlocking effects) will influence the overall strength of the rock mass

(Mughieda 1997). The incipient nature of joints (existing rock bridges) within

this block sample clearly contributes a great deal to the strong interlocking

effects. The strong capacity of rock bridges in strength contribution to a rock

mass (UCS>200 MPa) was also examined and quantified by Diederichs and

Kaiser (1999).

5.5 Areal extent of incipient rock discontinuities: Field FEIRD

experiment

5.5.1 Field FEIRD test on Midgley Grit Sandstone Block 1

As can be seen from the overview of Blackhill Quarry in Figure 5.10a, Many

large rock blocks were produced unpredictably after blasting due to the

existing of incipient rock discontinuities. A hydraulic secondary breaker has to

be used to break these large blocks into smaller pieces. Some of these blocks

have been broken along incipient joint planes, and an example is shown in

Figure 5.10b.

Figure 5.10 a Overview of BQ, West Yorkshire, UK; b A Midgley Grit
Sandstone block showing one extensive exposed joint surface after
blasting in the quarry. Note that light top surface of the block is a feshly
exposed bedding plane.

As can be seen in Figure 5.10b, a set of incipient rock joints containing four

parallel joints were broken partially along joint planes. It shows that revealed

joint surfaces have been weathered significantly (almost no rock bridges can
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be seen in the exposed portions) thus expected to have lower strength

compared with those segments that were surviving.

Among these blast-induced rock blocks, an irregular Midgley Grit Sandstone

block containing a complete incipient rock joint was identified in the BQ. It was

removed with care to a spare place in the quarry for FEIRD testing (see Figure

5.11).

Figure 5.11 Midgley Grit Sandstone Block 1 with irregular dimensions in
Blackhill Quarry, West Yorkshire, United Kingdom. An incipient rock joint
survived the blasting process. The profile meter for scale is 270 mm.

It can be seen from top surface that the nearly vertical incipient rock joint

terminated at rock material (indicated by the black dot), bedding planes

approximately perpendicular to this joint plane.

(1) Testing procedures and failure patterns

The rock surface of sample was cleaned to remove any loose sand prior to

FEIRD testing. Figure 5.12 illustrates the testing procedure adopted and the

failure patterns that were created. All the images were captured after 24 hours.
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Four the holes with diameter of 27 mm were drilled with separation of around

200 mm along joint trace on the top surface (Figure 5.12a). Joint trace

termination point at hole 4 was indicated by a black rectangular dot. Another

two holes with same diameters (27 mm) and spacing of around 230 mm were

drilled along the extension line of the persistent joint trace. All holes were

drilled to a depth of approximately 280 mm, more than 50% of the block depth.

The expansive chemical splitter was prepared according to the specification

in section 5.3.2 and injected into holes. The parameters of drilled holes and

chemical splitter used in this test are shown in Table 5.2. Block sample was

then protected by a plastic cover and warning signs placed to prevent quarry

staff from approaching the experiment. Figures 5.12c, d and e show the failure

patterns captured after 24 hours. It can be seen clearly that, only single mode

I fracture exactly along the persistent joint trace was induced before hole 4

(joint termination point) (Figures 5.12c, e). While beyond the termination point,

irregular (mode I opening and mode II shearing) fractures were produced.

From Figure 5.12d, it can be noticed that mode II shearing fracture propagated

approximately horizontally along weak bedding plane, while another mode II

shearing fracture with smaller aperture propagated perpendicular to the

bedding. The two separated blocks were removed with care by using a forklift

(see Figures 5.12f, g). Two incipient joint surfaces were exposed and

examined (see Figures 5.13).
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Figure 5.12 Procedures and failure patterns of the FEIRD testing performed
on Midgley Grit Sandstone Block 1 in the Blackhill Quarry, West
Yorkshire, United Kingdom. a Single near-vertical incipient joint
terminated at rock matrix, six holes were drilled. b Chemical splitter was
injected into pre-drilled holes. c, d and e Failure patterns and fractures
induced after 24 hours. See text for more details. g Two separated
blocks. f One smaller block was detached. Black rectangular dot shows
the joint trace termination point. The profile meter for scale is 270 mm.
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Table 5.1 Parameters of pre-drilled holes and chemical splitter used in the
FEIRD testing on Midgley Grit Sandstone Blocks 1 and 2 in the field.

Sample Hole

numbers

Hole

depth

(mm)

Hole

diameter

(mm)

Hole

spacing

(mm)

Approximate

amount of

chemical

splitter(ml)

Midelgy

Grit

Sandstone

Block 1

1 280 27

Ranging

from 200

to 230

162

2 280 27 165

3 280 27 160

4 280 27 164

5 280 27 165

6 280 27 168

Midelgy

Grit

Sandstone

Block 2

1 430 27

Around

240

251

2 430 27 260

3 430 27 253

4 430 27 259

5 430 27 255

6 430 27 256

7 430 27 264

(2) Testing results and discussion

The fracturing along the incipient joint plane shown in Figure 5.12

demonstrates that it propagated in a straight and near-planar way. Incipient

joint is of interest within this block sample terminated at rock matrix. This can

be attributed to the stress relief and stress around the incipient joint tips being

transferred to the adjacent rock material during the initial joint development

geologically (Hencher 2015). Notice that the irregular fracturing patterns

(mode I and mode II) occurred partly through intact rock materials, probably

due to the lithological heterogeneity. These induced fracture planes were

opened. Two conditions are necessary for this fracturing in rocks (Fairhurst
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1972). The two are: a “stress” condition that is the true cohesive strength

(described by tensile strength) should be exceeded when the solid ruptures;

and an “energy” condition, i.e. enough energy to form two distinct joint

surfaces and to allow the fracture to extend and propagate. Hoek and Martin

(2014) concluded that this brittle fracturing process, including fracture initiation

and propagation, is predominately controlled by tensile strength of the intact

rock including its component grains.

Figure 5.13 presents the exposed joint surfaces and joint roughness profiles.

Two fresh scratches (Figure 5.13a) produced by a forklift provide a good

reference for identifying the colour changes of the material. Fresh rock bridge

(RB) areas on the incipient joint surfaces were distinguished by eye and are

enclosed by the dashed lines (see Figures 5.13a, b). Feather markings can

also be clearly identified visually. For the exposed joint surface shown in

Figure 5.13a, the persistent joint areas (on the left) have been stained slightly

indicated by colour changes. Discolouration of rock material on this surface

varied gradually from the left part to the edges of rock bridge, i.e. from light

grey (slightly stained), through a grey mottled brown transition zone to light

brown for the relatively fresh rock bridges. No identifiable feather markings

occurred on persistent areas. Apart from this, there are some heavily stained

areas (black areas) on the bottom. It also can be seen that the areal extent of

the persistent joint segment does not correspond with the termination point of

joint trace (indicated by rectangular dot in Figures 5.13a, b) observed from

surface.

Roughness profiles of the joint surface in Figure 5.13a were measured by a

profile meter. The relative amplitude of eight roughness profiles were

quantified with a reference value of 7 cm. This means that real roughness

amplitude of any points on profile lines can be obtained by subtracting 7 cm

using the each relative amplitude value. Positive corresponds to convex points

while negative indicates the concave point. Linear extent values along these

eight profile lines were also included correspondingly in Figure 5.13a1. The

terms for medium-scale roughness at centimetres were used to describe the

profile according to the definitions by Barton and Choubey (1997) and Norbury

(2010). Joint profiles 1-2 were planar, profiles 3-4 were undulating and profiles

5-8 were stepped. There is a general trend between linear extent values and

profiles, i.e. linear extent values were changing from 100% for planar and

undulating profiles to 20% and 0% for stepped profiles. This illustrates that the

induced fracture segment along the persistent incipient joint area was flat,



- 151 -

while in areas of new fracturing the fracture was more variable and rough with

high asperities.

Similar observations were made on the opposite exposed joint surface

(Figures 5.13b, b1). Feather markings were seen on the rock bridge areas.

Profiles on this surface changed from planar at profile lines 1-3 to undulating

at profile lines 4-5 and finally to stepped at profile lines 6-11. Note that rock

bridge area on this joint surface (outlined with a white dashed line in Figure

5.13b) contained clear signs of tensile failure, in the form of high level

asperities. The rock bridge area on the joint surface was quantified by using

AutoCAD, and the areal extent (persistence) of this incipient joint was

calculated as 48%. While the linear extent of joint trace from surface is

approximately 55% (Figure 5.13a). It is larger than the real persistence (48%)

demonstrating that the traditional approximation of real persistence using

trace length from rock outcrop may be not reliable, at least for the case in this

study, even though the areal extent depends greatly on the geometrical

properties of sample and is scale dependent (Lu and Latham 1999, Wasantha

et al. 2014).

Linear extent and relative amplitude of each 2D profile are shown in Figure

5.13b1. A reference value of 9 cm was employed to calculate the variation.

Linear extent varied abruptly from 100% for profiles 1-5 to 0% for profiles 6-

11.

Schmidt hammer (L-type) tests (SH) were performed on the two joint wall

surfaces (Figures 5.13a, b) according to the ISRM standard (1981, 2014) to

measure the wall strength. Joint walls were cleaned to eliminate effects from

loose thin layers prior to SH testing. Each point was tested two times

perpendicular to the surface. Red and green dots on two exposed surfaces

(Figures 5.13a, b) correspond to the SH testing points on persistent joint area

and rock bridges, separately. For the heavily stained areas on the bottom of

failure surfaces, rebound values range from 18 to 24, while the values range

from 21 to 34 for slightly and moderately weathered area. The value range 28-

45 is higher for the testing points on rock bridge areas.
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Figure 5.13 Opposite exposed incipient joint surfaces, areal extent and roughness profiles of the incipient joint within the Midgley
Grit Sandstone Block 1. Persistent joint areas can be distinguished by discolouration, fresh and relatively fresh rock bridge (RB)
areas were enveloped by black dashed line in a and white dashed line in b. Red and green dots correspond to the L-type
Schmidt hammer testing points on persistent joint area and rock bridge area. The ball pen for scale is 140 mm.
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5.5.2 Field FEIRD test on Midgley Grit Sandstone Block 2

Figure 5.14 presents another irregular Midgley Grit Sandstone Block sample

2, in Blackhill Quarry, UK. It contained a single vertical incipient joint with

visible termination at the black dot shown on surface. The linear extent of the

joint trace on the exposed surface is around 56% of the block dimension. No

other joint traces within this block sample were identified. Block volume was

estimated to be approximately 4 m3. Sample surface shows different degree

of weathering.

Figure 5.14 Midgley Grit Sandstone Block 2 with irregular dimensions in
Blackhill Quarry, West Yorkshire, United Kingdom. A vertical incipient
rock joint, surviving after blasting, terminated at rock matrix (black dot on
surface). The profile meter for scale is 270 mm and van can be another
scale.

(1) Testing procedures and failure patterns

FEIRD testing procedures (Figure 5.15) were the same as those used for the

Midgley Grit Sandstone Block 1. Seven holes with diameter of 27 mm were

drilled along the incipient joint plane (Figure 5.15a), and chemical splitter

(Figure 5.15b) was poured into the pre-drilled holes according to the

preparation requirements described in section 5.3.2. Sample was then

protected by a plastic cover for 24 hours. Figures 5.18c and d show the failure

patterns. It can been seen that an induced fracture with aperture of around 3.3
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cm was produced exactly along the pre-existing incipient joint trace on the top

surface. Mode I and mode II fractures appeared (Figures 5.15c, d); beyond

the termination point, a stepped induced fracture occurred (Figure 5.15d). A

forklift was used to prise off one broken part to expose the incipient joint

surfaces, shown in Figure 5.15e.

Figure 5.15 a and b Procedures of forensic excavation of incipient rock
discontinuity within the Midgley Grit Sandstone Block 2. Failure patterns
were shown in c and d. The two blocks were separated by a forklift and
the exposed joint surfaces are shown in e. The profile meter for scale is
270 mm, ballpoint pen for scale is 140 mm in length. Black dot indicates
the joint trace termination point at top free surface.
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(2) Testing results and discussion

As can be seen in Figures 5.15 c and d, induced fracture predominately

occurred in mode I opening and near planar in shape along pre-existing

incipient joint trace, except for a small stepped mode II shearing fracture

(Figure 5.15d). Stresses around joint tips control the joint-propagation path

(see discussion in Chapter 2, section 2.3). Once fracture naturally initiates

under mode I loading, it tends to propagate in a plane if the principal stress

remains consistent along the extension of joint plane (Pollard and Aydin

1988). This is evident from the planar incipient joint plane. It can be seen that

the failure pattern in this test is different to the situation in previous FEIRD test

shown in Figure 5.12c, in which induced non-planar fractures with mode I and

mode II passed through the matrix. This might can be related to, except for

principal stress orientation, the large increment of dimension of Midgley Grit

Sandstone Block 2 (compared with that of Block 1). Chemical weathering

process left a clear morphological signatures (stained sections) on surfaces

due to redox reactions, i.e. oxidation (Figure 5.15e).

Figure 5.16 presents the exposed incipient joint surfaces and roughness

profiles. A general trend of degree of weathering was clear. The persistent

area was stained heavily to black at the bottom and it varied gradually to

reddish brown and grey towards the top of the block. Similarly degree of

weathering decreased gradually from the edges to inner areas. This

demonstrates, in the medium scale, the progressively development of

discontinuity with time from incipient state to finally mechanical state due to

weathering (see further discussion in Hencher and Knipe (2007)).

As for the Block 1, feather markings were not identifiable on the persistent

joint areas; while they appeared in the relatively fresh rock bridge areas.

Stained feather markings were noticed at the transition zones from persistent

joint area to rock bridge area (Figures 5.16a, b). Note that weathering

(discolouration) was along feather markings, primarily due to the water flow

along or parallel to the marks. The feather markings on the non-persistent

areas were traced by white dashed lines (Figures 5.16a, b). Similarly fresh

scratches were left because of the action of the forklift.

The joint trace termination point on the top free surface was indicated by black

dots in Figures 5.16a, b. Again, the rock bridge area was distinguished by

discolouration to the persistent joint surfaces. Unlike the situations in relation

to joint trace termination point and areal extent within Block 1, the joint trace
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terminated beyond the edge of areal extent of stained area, i.e. the areal

extent value (persistence) might be smaller than its approximation from the

trace length observed at surface. Areal extent values of the two opposite joint

surfaces were calculated as 28% and 33%, respectively, thus average areal

extent of this incipient joint was 31%; while the trace length (approximation of

persistence) of the incipient joint was 56%, approximately 74% larger than the

real persistence. This is based on the assumption that persistent areas have

been stained. The large difference cannot be neglected. This means that the

traditional approximation of areal extent (persistent) using trace length on

outcrop may not be reliable, at least for the case in this test.

Again, L-type SH tests were carried out on the exposed joint surfaces to

measure the wall strength according to ISRM standards. Testing points were

indicated by red dots and green dots separately on the rock bridge areas and

persistent stained areas (Figures 5.16a, b). Rebound values ranged from 25

to 46 for rock bridge area while for persistent stained areas, the values varied

from 12 to 32.

Medium scale roughness profiles and corresponding relative amplitude of two

exposed joint surfaces were quantified. It should be noted that amplitude,

shown in Figures 5.16 a1, b1, compared to a reference value of 7 cm. For

roughness profiles shown in Figure 5.16a1, it changed from planar (① and

②) in persistent area to undulating (③ and ④) in transition zone, and finally

to stepped (⑤-⑩) in the rock bridge area. Linear extent values of these three

areas varied from 100% (persistent area), 52% and 56% (transition zone), and

approximately approaching to 0% (rock bridge). While for the roughness of

the opposite joint surface (Figure 5.16b1), a similar trend can be seen.

Roughness profiles varied from planar (①-③) in the stained persistent area

to undulating in the transition zone (④), and eventually to stepped in rock

bridge area (⑤-⑩). Linear extent changed from 100%, 50% and 0% for these

three zones separately. Note that the stepped roughness profiles in the rock

bridge areas were closely related to the stepped failure of rock material shown

in Figures 5.16a, b.
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Figure 5.16 a and b Opposite exposed incipient joint surfaces and areal extent of the incipient joint after FEIRD testing. Stained
areas were enveloped by black dashed lines; Feather markings were traced by white dashed lines. SH testing (L-type) on joint
walls were carried out and testing points were indicated by red and green dots on rock bridge areas and persistent stained
areas, respectively. Medium scale roughness was quantified and shown in a1 and b1.
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5.5.3 Field FEIRD tests on Horton Formation siltstone block

FEIRD testing was conducted on a fractured Horton Formation siltstone block

at Dry Rigg Quarry, North Yorkshire, United Kingdom. Figure 5.17 presents

the tested rock block containing various incipient rock discontinuities from

different views. This block has been removed and placed at the edge of car

park area by the quarry staff. Seven incipient joint traces were identified from

top free surface; bedding plane slightly inclined as was indicated by black

dashed line in the front view image. Incipient joint traces on the back exposed

surface were traced by white chalk. Note that parts of exposed surfaces on

the front and left view surfaces have been coated by quartz.

This jointed rock block was going to be forensic excavated slab by slab along

planar or near-planar incipient joint traces on the top surface to investigate the

areal extent of incipient rock discontinuities. Prior to the forensic excavations,

dye was injected considering the low-permeability of siltstone interested (dye

will preferentially flow along persistent joint segments instead of matrix).

Figure 5.17 Horton Formation siltstone block at Dry Rigg Quarry, North
Yorkshire, United Kingdom. The rule for scale is 314 mm, geological
hammer for scale is 310 mm.
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(1) Relative orientation of discontinuities

Seven visible incipient traces can be seen from the top view in Figure 5.17.

Note that the top view image only shows the left part of the original block after

splitting of a slab along joint ①. A bedding plane, indicated by the black

dashed line in the front view, was inclined relative to the ground and

perpendicular to the front exposed block surface. Parts of a closed and non-

infilled incipient joint ① can be seen from the left view, while another partially

exposed joint surface enclosed by black line in this joint set was coated by

quartz (left view). From the back view of this block, many planar and non-

planar incipient joint traces appear which have been traced by white chalk in

the field. Bedding traces were also clearly displayed. Relative orientation of

these incipient discontinuity traces (only consider planar or near-planar traces)

including exposed free surfaces are plotted in Figure 5.18 assuming a North

direction towards to the strike of bedding plane (see front view in Figure 5.17).

Figure 5.18 Relative orientations of planar incipient discontinuities and
exposed free surfaces on the Horton Formation siltstone block in Figure
5.17.
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(2) First run of FEIRD testing

a) Testing procedures and failure patterns

Five holes with depth of approximately 450 mm were drilled along incipient

rock joint trace ①. Note that, because of the high strength of the siltstone in

this site (UCS approaching 200 MPa Duckering (2015).) and the limitation of

the hand drill used, only the first drilled hole was 27 mm in diameter; the other

four holes were drilled at 17 mm in diameter (see Table 5.3). Prior to the

forensic excavation, dye was injected in an attempt to colour the persistent

joint segments. The block was then protected by a plastic cover and left for 24

hours for dye to penetrate over gravity. Figure 5.19 shows the procedures and

dye flow results after 24 hours.

Figure 5.20 shows the procedures of the first run of FEIRD testing. There was

a slight difference between the procedure tested here and that described in

section 5.3.2. Secondary prise-off tools included steel and wood chisels and

an excavator. These were needed because after splitting, the block remained

partially intact. This was probably because the insufficient depth of holes

drilled leaving remnant intact rock bridges towards the bottom of the incipient

joint plane. A fracture with an aperture of around 2 mm was induced after 24

hours (Figure 5.20b). It is interesting to see that the induced fracture exactly

followed the joint trace ① which terminated at hole 2 and then followed a

zigzag pattern between hole 2 and hole 3. Unexpectedly, it did not pass

through hole 3. Secondary prise-off work was conducted, as shown in Figures

5.20 c-g. A zigzag induced fracture shape was also noticed in Figure 5.20d

for a crack through intact rock material. A high tensile strength contribution

(true cohesion) arising from rock bridges along this incipient rock joint was

evident as the slab was still intact even though the fracture aperture at the top

approaches 130 mm (Figure 5.20f). This slab was eventually detached by an

excavator (Figure 5.23g), and the exposed joint surfaces are presented in

Figure 5.20h.
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Figure 5.19 Dye technique used to colour persistent joint areas. a Fluorescent
dye (C20H12O5) was poured into holes using a syringe prior to the first run
of forensic excavation. b and c Dye flowed out along persistent joint
segments after 24 hours. Red dot indicates the termination point of
incipient joint trace ①.
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Table 5.2 Parameters of pre-drilled holes and chemical splitter used in FEIRD
testing on Horton Formation siltstone in the field.

Hole

numbers

Hole

depth

(mm)

Hole

diameter

(mm)

Hole

spacing

(mm)

Amount of

chemical

splitter

(ml)

First run

of testing

1 450 27

Ranging

from 200

to 230

260

2 450 19 131

3 450 19 130

4 450 19 128

5 450 19 127

Second

run of

testing

1 450 19

Ranging

from 200

to 230

131

2 450 19 135

3 450 19 125

4 450 19 126

5 450 19 125

6 450 19 130

b) Results and discussion

It is interesting that seepage appeared from one incipient joint trace on the

front exposed surface (Figure 5.19c) and from the left part of incipient joint

trace ① (Figure 5.19b). This can be related to the fluid flows along persistent

joints within rock masses. Persistent joint segments in turn might be coloured.

Figure 5.21 presents the exposed joint surfaces and medium scale roughness

profiles. It can be seen that persistent areas on the exposed surfaces have

been contaminated (however no clear colour traces from the dye can be

noticed). The seepage phenomenon observed in Figures 5.19b, c can be

explained and verified by the persistent nature of joint areas on the left part of

exposed surfaces as well as the joint trace indicated by red line in Figures

5.21a, b. Fresh rock bridge areas were embraced by black dashed line in

Figure 5.21a and the white dashed line in Figure 5.21b. Areal extent

(projected) of this incipient joint was calculated (62%) by averaging the areal

extent values (59% and 64%) from the two exposed surfaces. The real
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persistent value (62%) calculated from exposed incipient joint surface is about

two times larger than its approximation (32.4%) traditionally from joint trace

from the exposure.

Figure 5.20 Procedures of the first run of FEIRD testing along incipient joint
① within a Horton Formation siltstone block. a Chemical splitter was
poured into pre-drilled holes, and one fracture with an aperture of about
2 mm was induced after around 24 hours in b. c-f Metal and wood chisels
were employed to prise off the pre-split rock slab, it is however still stable
even though the aperture on the top exceeded 130 mm as seen in f. An
excavator eventually helped to prise off the slab in g and the exposed
incipient joint surfaces were shown in h. Red dot indicates the
termination point of the incipient joint trace ①. The rule for scale is 314
mm, and geological hammer for scale is 310 mm.
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As is evident from this study, fractography features including hackles and rib

marks were observed. The hackles (indicated by white lines in Figures 5.21a,

b) were noticed on two exposed joint surfaces, which was first described and

named “feather structure” by Woodworth (1896), and later named “plumose”

by Hodgson (1961). In this study, the hackles radiated from the edges of

persistent joint rather than from a point (which is often observed in the field

(Pollard and Aydin 1988) or on the rock surface broken by impact with hammer

(Hencher 2015)). This different feature may be due to the different way of

fracture propagation in the FERID testing, demonstrating the local joint

propagation orientation. Rib marks, curvilinear ridges structures indicating

incremental interrupted growth, are normally oriented at right angles to

hackles (Woodworth 1896 and Bankwitz 1965). This is evident from this study

that ribs profiles (white dashed line in Figure 5.21a and black line in Figure

5.21b) occurred on the exposed joint surface were parabolic and were normal

to the hackles, which are similar to those reported (e.g. Engelder, 1987 and

Ameen 1995) and the classic surface structures described in Chapter 2.

The randomly distributed joint traces on both exposed surfaces were traced

by black lines, and for a special case (allowing seepage seen in Figure 5.19c),

traced by red lines. The persistent joint areas shown on exposed surfaces

combining the conjugated red-traced joints on both surfaces worked as the

conduits for fluid flow.
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Figure 5.21 Exposed incipient joint surfaces and roughness profiles. The main rock bridge (RB) areas were enveloped by black
dashed line in a and by white dashed line in b; Incipient joint traces on exposed surfaces were indicated by black lines. a1 and
b1 Linear extent of 2D roughness profiles on both exposed surfaces varied from 0% to 100%. Red dot indicates the termination
point of incipient joint trace ①. The rule for scale is 314 mm, and geological hammer for scale is 310 mm.
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Medium scale roughness profiles were measured by a profile meter, the

relative amplitude of roughness profiles were quantified with a reference to a

plane of height of 7 cm. Rock bridges (RB) were indicated on the 2D profiles.

It is interesting to note that most of the rock bridge areas correspond to a

higher profile amplitude. This can be explained by the nature of fracture

propagation in the test, thus generally irregular fractures were tend to be

reduced when cracking intact rock (rock bridge areas in this test). This is

similar to situations observed in the FEIRD in Midgley Girt Sandstone. In

addition, unlike surface profile shown in Figure 5.13 and Figure 5.16, no clear

changing trend in profile shape can be noticed. Linear extent of 2D profiles

are scattered between 0% and 100% with no abrupt changes.

(3) Second run of FEIRD testing

a) Testing procedures and failure pattern

The second run of FEIRD testing was carried out on the same block along

incipient joint trace ④. Note that dye technique was not employed in the

second run of testing as the text (using gravity seepage) was unsuccessful for

the first test run. Figure 5.22 illustrates the testing procedures and failure

patterns. Four holes were drilled along the joint trace ④ while another two

holes were drilled along the extension of the straight line of trace, so as to

produce a slab. Table 5.3 shows the parameters of holes and chemical splitter

used in each hole. The fracture induced on the top surface (Figure 5.25b)

followed the pre-existing joint trace ④ as anticipated. It also followed on

induced joint traces on one of the exposed joint surfaces after the first run of

FEIRD testing (Figures 5.22b, c). Steel chisels were used to prise off the rock

block which was not fully broken using the chemical splitter. Unlike the

situation in the first FEIRD (a whole slab was produced), two blocks were

mobilized rather than a whole rock slab.

b) Testing results and discussion

Figure 5.23 shows the exposed joint surfaces after the second run of FEIRD

testing on Horton Formation siltstone. Not as expected, several irregular

blocks were produced rather than a whole single slab from the first run of

testing. From the exposed surface in Figure 5.23f, it can be seen that incipient

joint plane ④ was non-planar in shape (curved and dipping into rock masses

indicated by arrow). This give an explanation for the irregular failure patterns

obtained. No areal extent (persistence) value of the incipient joint ④ was
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obtained because of the unsuitability of the persistence definition in this study

based on the assumption that discontinuities are planar in shape.

Figure 5.22 Procedures of the second run of FEIRD testing along the incipient
joint trace ④. a Four holes were drilled along the joint trace while another
two holes were drilled into intact rock material aiming to produce a rock
slab as for the first run of FEIRD testing. Induced fractures were
produced after 24 hours (b and c). Two blocks were eased off by a chisel
(e-f). It was found that incipient joint ④ dipping into rock mass and was
non-planar. Rule for scale is 314 mm, and geological hammer for scale
is 310 mm.
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Figure 5.23 Irregular exposures after second run of FEIRD testing. Two main
irregular rock blocks were produced rather that a whole slab. a Two
wedge planes and intervening rock bridge (enveloped by white line). b
A mobilized wedge-shaped block was produced. c A larger irregular
block prised off showing the rock bridges (white enveloped areas) and
calcite coating on joint planes (red dashed areas). Steel rule for scale is
300 mm, and geological hammer for scale is 310 mm.

Two wedge planes and intervening rock bridges are shown in Figure 5.23a,

giving rise to a wedge-shaped block (Figure 5.23b). Only the exposed parts

of these two wedge planes can be seen, there are no clue about how far they

persist into this rock block. Another larger block was produced because of the

intersection of curved incipient joint plane ④ and a near horizontal incipient

joint. Fresh rock bridges on these exposed incipient joint planes were
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identified visually and enclosed by white lines. It was observed that calcite

coating areas (red enclosed areas) were exposed partially on joint surfaces

(Figure 5.23c). All the exposed fracture surfaces lacked visible surface

patterns, but exposed surfaces through rock bridges showed some hackle

markings (see Figure 5.23c).

Large block volumes tend to be produced due to the incipient nature of rock

discontinuities (Wang et al. 1991 and Longoni et al. 2012), this is

demonstrated by the second run of testing. The large rock bridge areas (white

enveloped areas) provide a considerable strength contribution to rock

masses.

5.6 Summary and conclusions

In this chapter, a technique “Forensic excavation of incipient rock discontinuity

(FEIRD)” has been developed to investigate discontinuity persistence (areal

extent). Laboratory and field based FEIRD testing on different rocks of

lithology were performed as application examples. A preliminary investigation

into using dye technique to permeate persistent areas along incipient

discontinuity plane was conducted in the lab. Main conclusions are drawn as

follows:

(1) FEIRD is useful in the investigation of areal extent (persistence) of

planar discontinuity. It was found that traditional approximation of

persistence from trace mapping on rock exposures is not reliable and

this might have major consequences for rock mass classification.

(2) The dye technique was attempt in the laboratory to colour the persistent

sections of incipient discontinuities. It was found that this technique did

not allow the persistent segments along incipient discontinuities to be

fully identified, especially for permeable rocks (such as Midgley Grit

Sandstone). For the Midgley Grit Sandstone tested in this study, natural

discolouration of failed surfaces provided a much better clue to quantify

persistence, assuming that persistent areas have been stained or

weathered at the time of testing.

(3) Persistent sections of natural incipient rock joints were often near-

planar in shape with low level of asperities during splitting in the FEIRD.

While a high level of asperities on failed rock surface appeared when

breaking rock bridges.
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(4) Feather markings on the split rock surfaces in the FEIRD testing

radiated around edges of rock bridges rather than from a point (which

is often the case in the field), this relates to the specific test

methodology and fracture propagation.
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Chapter 6

Synthesis

6.1 Fundamental understanding of discontinuity

development

Geological discontinuities can develop from incipient states into mechanical

fractures in response to a number of triggers including gradual processes such

as weathering and unloading and more rapid processes including seismic

shaking and human activities (e.g. blasting). Discontinuities can be found in

nature at different stages of geological development. Examples of

discontinuities at early incipient stages are joints 1 and 2 in Figure 2.4, Chapter

2; an example of a joint at a later incipient stage is joint 3 in Figure 2.4, Chapter

2. Figure 2.1 (in Chapter 2) illustrates how an incipient joint, given time, will

develop into a mechanical fracture lacking tensile strength.

Assessment of rock engineering project regarding stability and engineering

performance should consider the development of discontinuities encountered

with respect to the specific geological history in the site, as discussed by

Hencher and Knipe (2007). In-situ monitoring of the long-term creep behaviour

of a specific discontinuity over many years can improve our understanding of

how incipient discontinuities develop (e.g. Collins and Stock, 2016).

6.2 Characterisation of incipiency

The term ‘incipiency’ relates to geological discontinuities that are only partially

developed. Incipient discontinuities may be observed as visible traces or

simply discerned as a mechanical anisotropy when rock is tested or in

engineering performance (such as rift and grain weakness directions in

quarrying). Investigation of tensile and shear strength of incipient

discontinuities has been addressed in Chapter 2. It has been noted that rock

bridges along incipient discontinuities will contribute to increased shear

strength as discussed previously by Lajtai (1969). As can be anticipated,

shear strength of incipient rock discontinuities will vary with the spatial

distributions and geometries of rock bridges (Ghazvinian, 2007). Strength

variation will relate in part to stress conditions at leading and developing fronts

of persistent sections of fractures, as discussed in Chapter 2.
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The degree of incipiency of discontinuities can be characterised and quantified

relative to the tensile strength of the parent rock (see Chapter 3). Different

discontinuities have different characteristics and it follows that the factors

contributing to their incipiency are also different. For incipient bedding, as in

the sample tests reported in Chapter 3, the nature of incipiency mainly varies

with the geological formation of each bedding surface (including subsequent

diagenetic history) and thereby the mineral bonding strength across the

bedding surface (grain bonding and secondary cementation). Partially

developed fracturing leads to the presence of incipient joints (that may

themselves be weathered or even locally re-cemented, for example by iron

oxides) separated by residual bridges of intact rock (see Chapter 3, Figure

3.20 and Figure 3.24). Another class of incipient discontinuity is where they

are infilled unevenly with minerals such as quartz and calcite along previously

persistent sections of incipient joint (see Chapter 3, Figure 3.24).

For natural incipient discontinuities, stress distributions around tips of rock

bridges (if present) are complex which in turn will affect their tensile strengths.

A proportional linear relationship has been found between mode-I fracture

toughness (a description of tensile stresses near fracture tips) and tensile

strength of rock (see Chapter 2, Figure 2.16).

It is self-evident that natural discontinuities in later stages (more fully

developed) will be comparatively sensitive to disturbance from external

triggers (and may open up during ground investigation). For example, weak

incipient joints tend to break in the process of blasting. Stronger incipient

features may survive the blasting. From the data presented in Chapter 3, it is

asserted that only those geological discontinuities that are in the later incipient

states (very weak) should be assumed as fully persistent for rock engineering,

as distinct from current practice of treating all discontinuities as having little

tensile strength.

6.3 Scale effect of incipiency

The scale effect of properties of rock materials and discontinuities has been a

subject of interest for many decades. Mechanical properties such as

compressive or shear strength are normally obtained in the laboratory based

on small-scale samples. Strength of large-scale rock masses is then

estimated empirically using the factors derived from laboratory studies (e.g.

Hoek & Brown, 1997) or on the basis of other reasoning (e.g. Hencher &

Richards, 2015).
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It is postulated that there may well be a scale effect for tensile strength of

incipient discontinuities but no scale effect can be discerned for the limited

number of samples tested in the laboratory during this study.

Tensile strength of block-scale incipient joints was investigated using the

methodology described in Chapter 4. Lower tensile strengths were measured

than for smaller samples and the possible reasons have been discussed in

section 4.7 in Chapter 4. It is suspected that stress concentration around

chemical splitter filled hole edges (see the analysis in Appendix A) led to the

propagation of the fractures along the lines of incipient joints (proto-joints) and

progressive failure (see Figures A 4.4 and A 4.5) and that this was related to

specific geometry and test set up rather than any fundamental scale effect.

6.4 Scale effect of persistence

The alternative definitions for persistence of planar incipient rock

discontinuities have been addressed in section 2.2 of Chapter 2. Areal extent

of discontinuity defined by Eq. (2-2) is recommended for the quantification of

persistence allowing for the three dimensional nature of real discontinuities.

Discontinuity persistence should be treated relative to the problem size as

discussed by Sainsbury et al. (2008). Areal extent (persistence) of incipient

discontinuities calculated in this thesis, either at laboratory sample scale

(Chapter 3) or at a larger block-scale in the field (Chapters 4 and 5), was

treated relative to sample dimension.

A limiting aspect in defining a scale effect of persistence is that the persistence

value calculated is a percentage (ranging from 0 to 100%) according to the

definition by Eq. (2-2) (in Chapter 2). Figure 5.24 schematically shows three

scales of incipient joint planes ordered from small-scale (laboratory scale),

through medium-scale (block scale, such as samples tested in Chapter 5) to

large-scale (project scale). Shaded areas delineate rock bridges. Values of

persistence of these three incipient joint planes are the same (50%).
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Figure 6.1 Three scales (laboratory small scale, block medium-scale and
project large scale) of incipient joint planes with same persistence (50%).
No scale effect of persistence (in terms of strength or conductivity) would
be anticipated for these cases.

6.5 Practical strength of rock masses

As discussed in Chapter 2, current widely used rock mass classification

schemes such as RMR (Bieniawski 1973, 1976), Q system (Barton et al.

1974) and GSI (Hoek et al. 1995) fail to consider the influence of persistence

in the mass strength determination. This no doubt relates to the difficulty in

determining persistence in any practical manner in geotechnical investigation.

It is a matter of practical limitation. It is self-evident that a rock mass where

the contained (and visible) fracture network is incipient will have completely

different mass behaviour to one in which the discontinuities are either open or

may be opened readily due to some stress change.

Studies regarding the implications of discontinuity persistence for rock mass

strength have been reviewed in section 2.5 in Chapter 2. Previous work

indicates that strengths of rock mass will be underestimated if persistence is

underestimated or ignored in the rock mass strength assessment. Size and

volume of rock blocks within rock masses are sensitive to discontinuity

persistence. It is found that distributions of block size and volume are

exponentially related to persistence (see Chapter 2, Figure 2.24). For some

cases, shear strength of a non-persistent rock mass can be underestimated

to approximately 75% of the real shear strength, while the underestimations

of compressive strength and GSI index are both around 33% from real

compressive strength and GSI index value, respectively (see Chapter 2,

Figure 2.26).

As stated earlier in this section, a number of factors (rock bridges, infill and

mineral bonding) may contribute to the strength of incipient discontinuities. Yet

in many cases, rock bridges overshadow the efficacy of other factors, as much

more energy and strength are expected to reserve within intact rock bridge.



- 175 -

For example, the cases tested on incipient joints in Chapter 2 in which rock

bridges dominated the magnitude of tensile strength. Similarly this also can

be seen in the field tests reported in Chapter 5, incipient joints terminated at

rock matrix (see Chapter 5, Figures 5.11 and 5.14) which should be mobilized

first prior to the rupture of incipient joints. The shearing test reported by

Hencher (1984) revealed a rock bridge with a strength contribution of 750 kPa

(see Chapter 2, Figure 2.20). It has been noted that the capacity of 1% rock

bridge areas (equivalent to 100 cm2 per 1m2) in a strong rock (for example

fresh granite) can be equivalent to the capacity of at least a cablebolt. Rock

bridges along incipient discontinuity plane will also enhance the efficacy of the

interlocking effect (see chapter, Figure 5.9), especially under a high confining

stress as in some underground excavations.

It can be concluded that a more realistic rock mass strength assessment can

be achieved when strength contribution of rock bridges is considered in the

classification schemes but this will require considerable effort to achieve.

Potentially however, this approach towards the assessment of practical rock

mass strength would be much better than the current practice (which often

assume a 100% persistence - even though in practice most discontinuities are

actually only incipient). To make this next step, the database on underground

opening stability would need to be revisited, taking better account of actual

geological conditions and discontinuity incipiency - no mean task, but with

considerable imagined benefit. Two areas where the cost-effectiveness of

such consideration might be realised is in nuclear waste studies and

petroleum reservoir engineering.

6.6 Implement of incipiency/persistence in numerical

simulations

Numerical simulations provide an innovative approach that can be used to

further our understanding of rock engineering performance. In the current

numerical modelling codes like FLAC, UDEC, RFPA, discontinuities (mainly

joints) are often treated as fully persistent lacking any tensile strength. The

incipiency or areal extent of modelled joints are often ignored with a tacit

acknowledgement that it is a simplification of the actual situation. In fact, the

incipient nature of many discontinuities within the rock mass will significantly

affect mechanical behaviour of rock masses and stability of rock project. Any

correlation between such modelling and field performance must be tempered

with a realisation that the models are inherently flawed (and that correlations

are strictly empirical rather than deterministic or scientific).
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In the future it is anticipated that more realistic numerical codes, accounting

for the incipiency of discontinuities should improve the development of

numerical simulation study, and further our understanding of rock mass

behaviours.
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Chapter 7

Summary and conclusions

The chapter summarises the works presented in Chapters 3 to Chapter 5 and

presents the main findings from this research. The implications of these

findings and scope for future research are addressed at the end of this

chapter.

7.1 Tensile strength of incipient discontinuities in cylindrical

rock samples

A series of uniaxial tension tests were carried on incipient geological

discontinuities in cylindrical samples at laboratory scale including incipient

bedding (bedding laminations), mineral veins and incipient rock joints. Natural

rock samples were cored perpendicular to incipient rock discontinuities in

large rock block samples. Tensile strength of these incipient features was

quantified. Main conclusions drawn from these tests are as follows:

 The direct tension test is useful to measure and research the UTS of

visible and discrete incipient geological discontinuities. Incipient

discontinuities can indeed have high tensile strength. In this series of

experiments some discontinuities had tensile strength approaching that

of the parent rock. For examples, the tensile strengths (see Table 3.2)

of the incipient bedding in Midgley Grit Sandstone samples BH1-3,

BH1-4 and BH2-2 (1.69 MPa, 1.82 MPa and 1.79 MPa) were of the

order of 80% of that of the parent rock (2.08 MPa). Tensile strength of

some incipient joints within Midgley Grit Sandstone samples were far

weaker. Example tensile strengths are of samples BH1-1 (0.67 MPa),

BH70J1 (0.63 MPa), BH70J2 (0.48 MPa) and BH70J6 (0.60 MPa) and

that were about 30% that of parent rock (2.08 MPa).

 Tests on weathered but incipient rock joints (with rock bridges) showed

a clear relationship between UTS and the area of rock bridges exposed

after the tests. Mineralogy was investigated using an optical

microscope (Figure 3.21). Quartz, feldspar and haematite were present

on the exposed joint surfaces. The pre-existing open and mineral

coated sections of the joints contributed little to the tensile strength.

 For tests on mineral veins within Horton Formation siltstone samples

the UTS was considerably lower than that of the intact rock. Where rock
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bridges were present as well as mineral infill, then the rock bridge

strength dominated behaviour. XRD analysis was used to investigate

mineral composition of veins (see Figure 3.25) and calcite was found

to the major mineral infill for all samples, although a small amount of

dolomite and quartz were also found.

 Midgley Grit Sandstone samples containing incipient bedding and

joints and Horton Formation siltstone samples containing mineral veins

always broke along these weaker planes under direct tension. These

geological discontinuities tested all underwent brittle failure after direct

tension at a low axial strain (within 0.5%).

 In relation to the elastic modulus vs. UTS. The tangent elastic modulus

increases as weaker bedding planes are progressively removed, i.e.

the higher tensile strength, the higher the tensile modulus. For mineral

veins and incipient joints, the measured moduli were vary variable,

ranging from 0.5 to 5 GPa.

7.2 Tensile strength of incipient discontinuities in large-scale

rock blocks

An original approach has been employed to quantify tensile strength of large-

scale incipient rock joints in rock blocks. In this method, an expansive

compound was used to exert a tensile force normal to incipient joint planes.

Preliminary tests were firstly conducted on intact Thornhill Rock Sandstone

and Midgley Grit Sandstone samples, lacking visible incipient joints, to

establish the methodology. Tensile strength of large-scale and irregular

incipient joints was then measured using the new approach. Conclusions

drawn from the preliminary tension tests are as follows:

 The proposed method allowed measurement of the tensile strength of

large-scale rock blocks as well as incipient rock joints, despite

limitations as explained in Section 4.7 (Chapter 4).

 Tensile strength of intact rock as well as incipient joints measured using

the expansive grout method were somewhat smaller than determined

from either direct tensile tests or Brazilian methods. Some factors may

contribute to this:
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(1) Stresses arising from the chemical compound expansion were likely

concentrated around edges of drillholes (Figures A 4.4 and A 4.5),

and this focus for crack propagation contributed to the smaller

tensile strengths measured. It is noted that similar stress

concentration around joint tips within incipient joint plane in natural

conditions may also contribute to relatively low tensile strength

being developed for rock bridges than might be otherwise

theoretically possible.

(2) Variations (even small) of the expansive tensile force (ETF) (normal

to failure plane)arising from the chemical splitter between tests will

influence the calculated tensile strengths which rely on the ETF

developing at the same rate in tests on broken and unbroken

blocks.

(3) The low pressurization rate of chemical splitter on rock samples is

likely to lead to a relatively smaller tensile strength being mobilised

in these tests as discussed in Section 4.7.4 (Chapter 4).

(4) It is speculated that diffusion of water from chemical grout splitter

into rock matrix will, to a certain degree, degrade the strength of

incipient rock joints or intact rock.

7.3 Factors contributing to tensile strength of incipient rock

discontinuities

Based on the samples tested for this study, factors contributing to the tensile

strength of incipient rock discontinuities have been investigated and

characterised, which include:

(1) Partially developed discontinuities with localised residual rock bridges,

which contribute significantly to tensile strength (for laboratory-scale,

see Figure 3.24 and for block scale see Figure 5.21).

(2) Weathering variations of the open sections along the incipient

discontinuity plane (see Figures 3.20, 4.21 and 4.23) result in variable

strength contributions to the magnitude of overall tensile strength. A

methodology has been proposed whereby strength contributions from

different segments can be used to predict tensile strength of incipient

discontinuities.
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(3) Secondary cementation of opened (or partially opened) discontinuities

by minerals as veins or partial cementation (see Figure 3.24), which

provides tensile strength (real cohesion). Tensile strength will vary with

vein structure including type of fill mineral, vein thickness, wall contact

conditions and spatial variations. XRD results show that calcite was the

major component of mineral in the veins within Horton Formation

siltstone samples tests reported in Chapter 3.

7.4 Persistence (areal extent) of incipient discontinuities

Forensic Excavation of Incipient Rock Discontinuities (FEIRD) has been

proposed and developed to investigate the areal extent of planar incipient rock

discontinuities. Details for this technique have been described (see Section

5.3.2). Applications of FEIRD in the quantification of areal extent have been

presented from laboratory and field studies. One finding is that estimation of

persistence from trace length in exposures can lead to large errors and this

might have major consequences for rock mass characterisation.

Natural incipient rock joints exposed in these studies were often approximately

planar in shape. Flat and straight mode I fractures normally followed the pre-

existing planar sections of incipient joint planes, while fresh fractures induced

within rock bridges were more irregular in surface characteristics due to the

complex stress distributions and lithological heterogeneity (see Figure 5.12c).

Amplitude of surface roughness of the broken discontinuity surfaces within

rock bridges was normally larger than that of the sections of pre-existing,

persistent sections of incipient joint planes. Failure patterns of rock in the field

are influenced by various factors including principal stress orientations,

dimensions of rock as well as the heterogeneity of rock matrix at the time that

the fracturing was induced (e.g. diagenetic, cooling, tectonic, unloading). For

strong rocks, like the Horton Formation siltstone samples tested (UCS

approaching 200 MPa), zigzag fracture shapes were often induced within the

intact rock bridges under these strictly tensile and unconfined conditions.

Investigation of the fractography features (such as rib and hackle marks) of

such failed surface helps to understand the fracture initiation and propagation,

especially for hard rock materials.

Spatial variability of geological formations and geological uncertainties is

paralleled by the unpredictable areal extent of failed incipient joints (Figure

5.16), even in a small block sample (see Figure 5.9). This is one area where

future studies might make considerable progress from a fuller study of the
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linkage between rock bridge areal extent and geological history at a site

including formation, tectonics, unloading and weathering.

A dye injection technique was attempted in the laboratory to colour persistent

segments of an incipient joint within Midgley Grit Sandstone sample. It was

found that this technique (preliminary) did not allow the persistent areas of

incipient joint to be uniquely identified because, for a permeable rock such as

that used in the experiment the dye penetrated the rock matrix at the adopted

pressures. The methodology however has scope for improvement and

potential as a useful tool. For the Midgley Grit Sandstone tested here, natural

discolouration of failed surfaces provided a much better clue to quantify

persistence, assuming that all persistent segments have been weathered.

7.5 Implications of findings

In rock mass and engineering projects, discontinuities are normally

considered as weak features, lacking tensile strength, regardless of actual

strength. For conservative purposes or safety in excavation, discontinuities

are assumed as fully persistent (lacking any tensile strength) which is not true

in real situations and sometimes may cause problems for rock engineering.

Based on the tests in Chapters 3 and 4 in this thesis, it is concluded that

discontinuities encountered in rock engineering can be differentiated on the

degree of incipiency and that this can best be done with reference to the

tensile strength relative to that of parent rock. The approach proposed in

Chapter 3 is advised to quantify tensile strength of incipient discontinuities,

which would bridge the gap of current knowledge. Potential benefits of

differentiating incipient discontinuities in rock engineering are as follows:

 More accurate estimation of overall rock mass strength. The relative

strength of discontinuities to parent rock can be used to improve the

current rock mass classification schemes such as RMR or the Q

system which do not account for the variable tensile strength of

incipient rock discontinuities (visible traces).

 Development of numerical codes that would achieve more realistic

modelling of rock engineering projects that could then be related to

performance on a more scientific basis.

 Better practical rock engineering design, for example in selection of

equipment like cutters in TBM or diaphragm walling; more accurate
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estimation of the progress of engineering project which can avoid

contractual problems.

 Potential to reduce additional rock support, which would lower the

budget.

The methodology established in Chapter 4 demonstrated lower tensile

strengths than standard tensile methods. Stress concentrations at the edges

of drillholes filled with expansive grout probably contributed to this. Even

despite this perceived limitation, the proposed method is considered be a step

towards the quantification of the tensile strength of large-scale incipient

discontinuities, thereafter linking the incipiency (relative tensile strength to that

of parent rock) and persistence in the field scale.

The study shows that the traditional approximation of persistence from the

trace length from exposures is not reliable, even resulting in large errors. As

can be seen from smaller block samples in the lab (Figure 4.19), even where

joint traces are apparently persistent on exposed surfaces, true areal extent

(persistence) is not as full as anticipated (see Figure 4.21 and 4.23). The non-

persistent areas (red envelopes in Figure 4.21 and 4.23) contribute some

tensile strength. Such studies and experiments further our understanding

about the strength contributions arising from residual rock bridges.

The technique of FEIRD was established which can be used to investigate

areal extent of incipient discontinuities either in the laboratory or in the field.

Discolouration (if present) of persistent areas exposed following testing gives

some indication of the areal extent of incipient discontinuity planes and this

can help us to quantify persistence of discontinuity in the field with due regard

to the geological factors at a site. FEIRD may also be useful for the

investigation of geological uncertainty regarding the spatial variability of rock

bridges and roughness of discontinuity surface. Rock bridge areas after

breaking in tension were found to be much rougher than pre-existing areas of

persistent joints (of those tested) and this observation may be useful for

understanding the areal extent (persistence) of incipient joints in field studies

and rock mass characterisation.

Rock masses preferentially break along planar incipient joint planes subjecting

to external loads. Mixed modes of fractures (mode I and mode II) occur in the

failure of rock bridges. This failure mode observed in the process of FEIRD

testing in the field may further our understanding of the rupture of rock

engineering at the field scale.



- 183 -

7.6 Recommendations for future research

This project has improved our understanding of the implications of persistence

of geological discontinuities. It has also allowed identification of some

research gaps for current knowledge. Differentiation of geological

discontinuities (weakly incipient through to fully persistent and open) as a

useful tool for rock engineering is highlighted as an important study area and

a practical method to achieve this has been proposed in Chapters 3 and 4. A

technique for the investigation of persistence has been established and

discussed in Chapter 5. This method allows the observation of real

persistence of planar incipient geological discontinuities.

Below are several topics that might be taken up for future research.

(i) The current definitions of persistence imply that discontinuities are

planar in shape. Research and applications based on this

assumption will unavoidably have some limitations as many

discontinuities observed in the field are non-planar. Thus there is a

need to define persistence for non-planar discontinuities, thereafter

to achieve a more reliable application and to further our

understanding of implications of persistence.

(ii) Tensile strength of incipient rock discontinuities has been

investigated, but limited ranges of natural rock samples have been

investigated. Scale effects regarding tensile strength can be

investigated further if additional data were available.

(iii) Quantification of incipiency of discontinuities has been achieved,

and differentiation of discontinuities according to

incipiency/persistence is advised in rock engineering. The difficulty

is then how to implement this notion into practical applications.

Better representation of persistence within numerical modelling

codes would allow a more realistic estimation of overall rock mass

strength as well as further our understanding of rock mass

behaviour, like stability and permeability.

(iv) Further study of the degree of persistence (enabled by the FIERD

approach) should be linked to basic geological studies of those

factors responsible for the condition (persistence and openness) of

discontinuities. Factors include geological formation, later tectonics,

unloading and weathering.
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(v) The proposed FIERD method in this thesis to quantify persistence

only applies to single incipient rock discontinuity. Discontinuities

have to be broken first to achieve this goal. Non-invasive

quantification of persistence might well be investigated by using

geophysics, which if successful will greatly improve the advanced

prediction of rock mass properties and to provide a fruitful

opportunity for the future advance of rock mechanics.
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Appendix A

Analytical solution of stress distributions in rock subjected to

symmetrical concaved pressure

Assuming two symmetrical pre-drilled holes with same radius of ri in elastic-

plastic rock mediums. The internal pressure p(t) generated from expansive

grout acts on the inside wall of holes. The problem could be treated as the

interactions of two thick-walled cylinders internally pressurised. Figure A 4.1

presents the front view of symmetrical holes internally pressurized and stress

acting on element arising from hole 2. The inner radius is ri and outer radius

r0 equals to two hole distance d. This problem can be simplified to plane strain

problem under the assumptions.

The pre-drilled hole 1 and surrounding rock material in Figure A 4.1 can be

treated as a thick-walled cylinder (2ri / (d-ri) ≤ 40) like a pipe under hydraulic 

pressure, in polar coordinates, the general stress equations of equilibrium

without body force can be given as (Mendelson 1968 and Chakrabarty 1987)

Figure A 4.1 Sketch of front view of symmetrical holes internally pressurized.
Stresses acting on element solely arising from one hole is presented in
polar coordinate. r is the radius and  is the azimuth in polar
coordinates
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where r is the radius in polar coordinates and  is the azimuth in polar

coordinates. x-axis direction is along the line of hole spacing.

In the plane strain situation, the free expand of hole ends 0x  , thus the

general equations can be rewritten as
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This problem is asymmetry about x-axis 0

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
, and uniform radial

deformation, Eq. (11) reduces to
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A standard solution for equation (A - 3) is n
r c r  (c and n are constants), and

the boundary conditions for a thick cylinder with internal pressure p(t) is:

at  ,i r t
r r p  and at

0 , 0rdr r   . Substituting this in equation (A - 3),

we can obtain the radial and circumferential stresses:
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In order to obtain the stresses on element generated by two symmetrical

internally pressurised holes, the stresses in polar coordinates need to be

transformed into Cartesian coordinates. Assuming the y-axis direction along

the spacing line of two holes, and z-axis direction normal to the line of spacing,

as is shown in Figure A 4.1. The equations transforming from polar to

Cartesian coordinates can be written as



- 187 -

2 2

2 2

cos sin

sin cos

yy r

zz r

  

  

  

  

 

 
(A - 5)

where
yy is the principle stress along the spacing line of two pre-drilled holes

in Cartesian coordinate system,
zz is the principle stress perpendicular to the

spacing line. Note that if
yy and

zz work out to be positive, it is tensile and if it

is negative, it is compressive.

Now from Eq. (A - 4) and (A - 5), we can find out the stress distribution in rocks

subjected to two symmetrical concaved pressure p(t) :

For the stress at any point perpendicular to hole spacing,
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where
1r and

2r are the distance from any point to centres of hole 1 and hole

2 respectively.
1 and

2 are illustrated in Figure A 4.2. From the geometrical

relation,
1 1 2 2s in s inr r  .

Two symmetrical holes with diameters of 20 mm ( 20
i

r m m ) are assumed be

placed in a distance of 100mm from centre ( 100d mm , / 5
i

d r  ). Because

of the symmetrical nature, stresses distributed around two holes are only

investigated in three areas, i.e. area A ( 1 2
0 12 ,0 78       

), area B (

2 1
15 60 ,15 60       

) and area C ( 2
90 180  

), respectively, as is

shown in Figure A 4.2 and Figure A 4.3. Stresses distributed in the other areas

can be symmetrically obtained.

At the time when internal pressure from expansive grout arrives at 50 MPa,

the distribution of stress perpendicular to spacing line is shown in Figure A

4.4. Figure A 4.4 a indicates that stress in not equally distributed in the area

when 1 2
0 12 ,0 78       

. Specially, tensile stresses distribute at the

majority of this area except for a small part (when 1
12 11.1and   

) where

stresses are compressive. The maximum tensile stress (59.5 MPa) appears

at the hole edges on the spacing line and decreases to 20.8 MPa in the middle.

This phenomenon agrees well with the progressive failure of large-scale rock

specimen under tension which has been observed in the previous laboratory
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test. It also can be seen that the tensile stresses on the middle line in this area

are the same (20.8 MPa), i.e.,
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Figure A 4.2 Element within the red hatched area A when
2

 decreases from

78◦ to 0◦ with an interval of 2◦, while
1

 correspondingly decreases from

12◦, 11.1◦, 9.6◦, 8.9◦, 8◦, 7.2◦, 6.1◦, 5◦, 3.8◦, to 0◦ with varying intervals (

1 2
0 12 ,0 78 ,       

).

Stresses also are not equally distributed when 2 1
15 60 ,15 90 ,       

as is shown by the left part in Figure A 4.4b. Tensile stress along the middle

line in this area decreases from 17.6 MPa when 1 2
15   

to 2.1 MPa when

1 2
60   

.
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Figure A 4.3 Element within the red hatched area B when
2

 increases from

15◦ to 60◦ with intervals from 5◦ to 10◦, while
1

 correspondingly increases

from 15◦ to 90◦ with varying intervals ( 2 1
15 60 ,15 90       

).

Element within the red hatched area C when
2

 increases from 90◦ to

180◦ with an interval of 10◦, assuming stresses arising from hole 1 acting
on element in this area can be neglected according to the Saint-Venant’s
Principle.

It also can be noticed that stresses far from the pressurised holes tend to be

zero as can be anticipated. Stresses distributed in the edge of hole 2 (when
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2
90 180  

) is presented in Figure A 4.4 c assuming stress generated from

hole 1 acting on element in this area can be neglected according to Saint-

Venant’s Principle. Stresses in this area transfers from compression (when

2
90 130  

) to tension(when 2
130 180  

). In addition, it can be seen

that stresses tend to be zero far from the centre of hole 2.

(a)

(b)
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(c)

Figure A 4.4 Principle stress along Z-axis in Cartesian coordinate system. a
Stress distributed in the middle part of two symmetrical holes when 0◦ ≤

1
 ≤ 12◦,0 ◦≤

2
 ≤ 78◦ (the right part) and 0◦ ≤

2
 ≤ 12◦,0◦ ≤

1
 ≤ 78◦ (the left

part); b Stress distributed in the middle part of two symmetrical holes
when 15◦≤

1
 ≤ 60◦, 15◦ ≤

2
 ≤ 90◦( (the right part), 15◦ ≤

2
 ≤ 60◦, 15◦≤

1


≤90◦, (the left part); c Stress distributed in the edge of hole 2 where 90◦≤

2
 ≤180◦. Assuming p(t)=50 MPa, ri=20 mm and d/ri=5. Note that positive

stress is tensile and negative stress is compressive.

Stress equation at any point along hole spacing line is

1 1 1 1 2 2 2 2

1 1 2 2

1 2

2 2 2 2 2
( ) 2 2 2 2 2 2 2 2

2 2 2 2 2 2

1 1 2 2

2 2 2
( ) 2 2 2 2

2 2 2 2

1 2

2 22

( ) 2

2 2 2 2

1 2

( cos cos sin sin cos cos sin sin )

[2 ( sin cos ) ( sin cos ) ]

2sin 1 2sin 1
[2 ( ]

i t
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i t

i

i t

i

r p d d d d
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r p
d

d r r r
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  



(A - 7)

Figure A 4.5 presents the distribution of principle stress along Y-axis in

Cartesian coordinate system. Similarly to the stresses along Z-axis, the stress

along the spacing line is not equally distributed. The compressive stress

dominates in the area A and stresses acting on the element on the middle line

in this area are the same (See Figure A 4.3a, the right part), i.e.

2

( )

2 2

6
i t

i

r p

d r




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when
1 2 1 2

,
2

d
and r r    . It also can be seen that the compressive stress

concentration appears around the hole edge and the largest compressive

stress is 49.5 MPa on the middle edge which is quite close to the assumed

internal pressure 50 MPA.

(a)

(b)
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(c)

Figure A 4.5 Principle stress along Y-axis (spacing of two cylinders) in
Cartesian coordinate system. a Stress distributed in the middle part of
two symmetrical holes when 0◦≤

1
 ≤12◦,0◦≤

2
 ≤78◦(the right part) and 0◦≤

2
 ≤12◦,0◦≤

1
 ≤78◦ (the left part); b Stress distributed in the middle part of

two symmetrical holes when 15◦≤
1

 ≤60◦, 15◦≤
2

 ≤90◦( (the right part),

15◦≤
2

 ≤60◦, 15◦≤
1

 ≤90◦, (the left part); c Stress distributed in the edge

of hole 2 where 90◦≤
2

 ≤180◦. Assuming p(t)=50 MPa, ri=20 mm and

d/ri=5. Note that positive stress is tensile where negative stress is
compressive.
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