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Abstract

Computer-based systems are becoming more and more complex. It is really a grand chal-
lenge to assure the dependability of these systems with the growing complexity, especially
for high integrity and safety critical systems that require extremely high dependability.
Circus, as a formal language, is designed to tackle this problem by providing precision
preservation and correctness assurance. It is a combination of Z, CSP, refinement calculus
and Dijkstra’s guarded commands. A main objective of Circus is to provide calculational
style refinement that differentiates itself from other integrated formal methods.

Looseness, which is introduced from constants and uninitialised state space in Circus,
and nondeterminism, which is introduced from disjunctive operations and CSP operators,
make model checking of Circus more difficult than that of sole CSP or Z. Current approaches
have a number of disadvantages like nondeterminism and divergence information loss,
abstraction deterioration, and no appropriate tools to support automation. In this thesis,
we present a new approach to model-check state-rich formalisms by linking them to a
combination of a state-based formalism and a process algebra. Specifically, the approach
illustrated in this thesis is to model-check Circus by linking to CSP ‖ B . Eventually, we
can use ProB, a model checker for B, Event-B, and CSP ‖ B etc., to check the resultant
CSP ‖ B model.

A formal link from Circus to CSP ‖ B is defined in our work. Our link solution is
to rewrite Circus models first to make all interactions between the state part and the
behavioural part of Circus only through schema expressions, then translate the state part
and the behavioural part to B and CSP respectively. In addition, since the semantics of
Circus is based on Hoare and He’s Unifying Theories of Programming (UTP), in order to
prove the soundness of our link, we also give UTP semantics to CSP ‖ B . Finally, because
both ends of the link have their semantics defined in UTP, they are comparable.

Furthermore, in order to support an automatic translation process, a translator is
developed. It has supported almost all constructs defined in the link though with some
limitations.

Finally, three case studies are illustrated to show the usability of our model checking
solution as well as limitations. The bounded reactive buffer is a typical Circus example.
By our model checking approach, basic properties like deadlock freedom and divergence
freedom for both the specification and the implementation with a small buffer size have
been verified. In addition, the implementation has been verified to be a refinement of
the specification in terms of traces and failures. Afterwards, in the Electronic Shelf Edge
Label (ESEL) case study, we demonstrate how to use Circus to model different development
stages of systems from the specification to two more specific systems. We have verified
basic properties and sequential refinements of three models as well as three application
related properties. Similarly, only the systems with a limited number of ESELs are verified.
Finally, we present the steam boiler case study. It is a real and industrial control system
problem. Though our solution cannot model check the steam boiler model completely due
to its large state space, our solution still proves its benefits. Through our model checking
approach, we have found a substantial number of errors from the original Circus solution.
Then with counterexamples during animation and model checking, we have corrected all
these found errors.
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Chapter 1

Introduction

This chapter gives a brief context of our work presented in this thesis. To begin with,
the specific research problems and our motivations of this work are provided. Then we
present objectives and contributions of this research. In the end, the document structure
is outlined.

1.1 Formal Methods and Circus

Computer systems, or computer-based systems, are becoming more and more complex
during evolution, not only for individual physical systems but also for systems of systems.
Computer systems have evolved from early generations (vacuum tube, transistor, IC, mi-
croprocessor) to desktop computers with internet, systems with ubiquitous computing [2],
and recently cyber physical systems [3]. The growth of complexity in systems is due to 1)
powerful and complex computers, 2) increasing functionality, 3) growing integration and
interoperability, and 4) dynamic system and increasing dependability requirements.

Formal methods is a mathematically based technique to specify, develop, and finally
verify systems. Because of its underlying mathematical theory, it can reason about sys-
tems from specification to implementation without ambiguity, which makes it particularly
suitable to address this growing complexity issue.

Traditional researches in formal methods often focus on two schools: state-based,
model-oriented specification languages such as Z [4], B [5] and VDM [6]; and behaviour-
oriented process algebras such as CSP [7, 8], CCS [9] and ACP [10]. However, due to
the growing requirements of integration, heterogeneity and interoperability, these formal
methods have their inability to model increasingly complex systems. Therefore, in recent
decades, there is rising research interest in specification languages that integrate both state
and behavioural aspects.

Early solutions aim to combine them together, such as CSP-OZ [11], ZCCS [12], CSP-
Z [13, 14], and CSP ‖ B [15]. Fischer [16] gave a summary of combination solutions
of Z and process algebras. These approaches provide the capability to specify systems
from both state and behavioural parts and possibly verify them as well. For CSP-OZ, a
translation [17] has been proposed to transform CSP-OZ specification into CSP, and then
model check by FDR [18], a model checker for CSP. To verify the specification in CSP-Z, a
similar solution [19] is presented to model the Z part as a CSP process and finally transform
the CSP-Z specification fully to the CSP specification. Eventually, the CSP specification
is model checked by FDR too. Particularly, CSP ‖ B does not use the same method for
verification. It is able to be model checked by ProB [20], a model checker and animator
originally developed for the B method.

Though they have specification and verification capabilities, one gap between them is
that there is no straight development strategy. According to the description above, a formal
language needs the capabilities to specify, develop, and verify systems, and at the same time
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consistency between each stage should be preserved. The development method, well known
as refinement, is a process to refine abstract specification into concrete implementation.
In each step, it tends to eliminate non-determinism and give more specific details. This is
a very important feature for formal methods to be applied to real industry. It is also one
of main objectives of the development of Concurrent Integrated Refinement CalculUS (or,
Circus for short) [21].

1.1.1 Circus

The objectives of Circus are manifold. First of all, as a formalism, it has very abstract
constructs, which makes it capable of specifying and modelling systems at the level close
to users’ perception. Secondly, it can be very specific and detailed too to record the
development and design decisions, which enables it to model systems at the level close
to the final code. Then in order to bridge the gap between these two ends, it is very
necessary to support refinement. The refinement notation makes Circus very useful to
support the step-wise development of systems from the high-level specification to the low-
level implementation. Particularly, Circus defines refinement in a calculational style [22].
Actually the integrated formal methods’ refinement deficiency has motivated the creation
of Circus [23]. Furthermore, its capability to specify systems not only from the state
aspect but also from the behavioural part enables it to model large scale complex systems.
Last but not least, to address the heterogeneity challenge, Circus bases its semantics on
Hoare and He’s Unifying Theories of Programming (UTP) [24], a common framework for
the unification of programs from different paradigms. And Circus has extended to support
time [25], object-orientation [26], mobility, etc.

To achieve these objectives, Circus is naturally designed to be a state-rich formalism
and to specify systems from both state and behavioural aspects. It is a combination of Z,
CSP, refinement calculus [22] and Dijkstra’s guarded commands [27]. Z notation is used to
specify the data part of Circus specification at a high level of abstraction, while CSP is to
specify reactive and concurrent behaviour. In order to model the implementation of sys-
tems, the syntax constructs introduced in Circus include guarded commands, assignment,
and variable block, etc.

Since Circus is a combination of several different languages with different semantics,
there arises an issue about how to unify its semantics into one. The solution of CSP-
OZ [28] is to introduce the failures-divergences model [8] to Object-Z [29] classes and
then integrate CSP processes with Object-Z classes based on the same failures-divergences
semantics. The solution of CSP ‖ B is to treat a B machine as a CSP process and give
CSP traces, stable failures and failures-divergences semantics to B machines [15]. Circus
needs to combine not only the state-based language Z with the process algebra CSP, but
also the refinement calculus with CSP and Z. Thus the solution for Circus is to formalise
its model in UTP.

1.2 Formal Verification

In the last two decades, formal verification, the process to check if systems specified in
formal languages satisfy their requirements, has been widely used in both academia and
industry, especially in safety critical systems. And it has been becoming increasingly
important due to the growth of complexity in these systems. Theorem proving [30], a
technique to prove mathematical theorems using logic deduction, and model checking [31],
another technique to check whether the system model in formal languages satisfies a desired
specification by exhaustively searching the system’s state space automatically, are two
commonly used techniques for formal verification.

One major advantage of theorem proving over model checking is its capability to prove
the correctness of systems regardless of their state space size. However it is a major
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challenge for model checking, known as the state explosion problem [32, 33]. Despite this
advantage, theorem proving has its disadvantages as well. The expertise requirement for
users of theorem prover is very high, and learning curve to use these tools could be very
steep. Additionally, the users must know any details of the systems in proving. These two
factors make theorem proving hard to apply in the very early stage of development when
system requirements might be not all defined and clear. Comparatively, model checking
could be easily used to separate modules as well as final systems. Its automated check-
ing procedure, potential animation, counterexamples for debugging, and possible temporal
logic checking, can help users to gain better understanding of systems and finally improve
system requirements even in the early stage of development. It also can find errors in the
design and give clues at the same time through counterexamples. Furthermore, refine-
ment checking and properties checking, including safety, liveness, and others described in
temporal logic, are beneficial to systems in design by providing guarantees that one im-
plementation is a correct refinement of the specification and these properties hold. Hence,
it is very important for a formalism to support both model checking and theorem prov-
ing in a complementary way. Finally, systems that are specified by this formalism could
benefit from model checking and theorem proving together. To some extent, it proves the
correctness of designed systems because the systems have been checked before being made.

1.3 Problems and Motivations

When it comes to formal verification for Circus, a number of approaches or tools have been
developed from both theorem proving and model checking aspects.

1.3.1 Theorem Proving

From the theorem proving perspective, Oliveira et al. [34–36] present the mechanisation
of UTP theories in a theorem prover, ProofPower-Z [37], which forms the basis of the
mechanisation of Circus and its refinement calculus into this theorem prover as well. Then
Zeyda et al. [38,39] present a semantic embedding of the UTP framework in ProofPower-Z,
extends the existing mechanisation work by Oliveira, and encodes a Fib process [39] into
ProofPower-Z.

Furthermore, Feliachi et al. [40] have developed a machine-checked, formal semantics
based on a shallow embedding of Circus in Isabelle/Circus, and the semantic theory of the
UTP is also based on Isabelle/HOL [41]. Additionally, Foster et.al [42,43] has introduced
Isabelle/UTP, a novel mechanisation of Hoare and He’s UTP in Isabelle/HOL as well.
Isabelle/UTP is a deep embedding of the semantic model of UTP’s alphabetised predi-
cates. It differentiates itself from Isabelle/Circus in three principle ways: a unified type of
alphabetised predicates, highly flexible encoding of predicates, and meta-level reasoning.

1.3.2 Model Checking

Since Circus is a combination of Z, CSP, refinement calculus and Dijkstra’s guarded com-
mands, its model checking is intrinsically more complicated and difficult than that of
individual Z and CSP. The complexity of model checking Circus is increased due to two
main factors. The first one is state space explosion challenge. Basically, the state of a
system specified by Circus is the state of its processes. However, for each process it may
contain state and behaviour, and consequently its state is a combination of both variable
state and action state. In addition, the process’s variable and action states are dynam-
ically constructed and destroyed along with invocation and termination of the process.
It possibly has an infinite number of distinct states as well. Because of this hierarchical
structure of Circus and possible infinite states, how to represent and search its state space
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including infinite state space and infinite data type efficiently is really a challenge. An-
other factor is Circus’s very rich notations from Z, CSP and guarded commands. Along
with its powerful expressiveness and high-level abstraction, all make the development of
its model checker—to parse and type check Circus programs, check deadlock and live-
lock, check refinement in terms of Circus action refinement and data refinement, and CSP
failure-divergence refinement—difficult.

From the model checking perspective, a number of approaches are proposed. We de-
scribe them briefly in this section and will give a review in depth in Chapter 3.

The first solution presented by Freitas [44] in his PhD thesis is a refinement model
checker based on automata theory [45] and operational semantics of Circus. The operational
semantics and the underlying automata theory have been formalised in Z/Eves [46], a
theorem prover. A model checker architecture is also presented and a prototype has been
developed in Java. Another operational semantics based model checker [47,48] is built on
the Microsoft FORMULA framework [49].

Apart from operational semantics based solutions, as far as we know, there are three
other related work in addition to our approach [1]: JCircus [35,50,51], the link from Circus
to CSP [52, 53], and the map of Circus processes and refinement to CSP processes and
refinement [54, 55]. JCircus, as well as its extension JCircus 2.0 [56], translates a concrete
Circus program to a Java program with JCSP [57], an implementation of CSP in Java.
And the link is based on JCircus. Instead of JCSP, it links Circus to CSPM [58], a machine-
readable CSP on a functional language. The key point of the map is to transform stateful
Circus programs to stateless Circus programs by introducing the memory model [59], and
then convert stateless Circus to CSPM . Both the link and the map use the refinement
checker FDR [60] to model-check the resultant CSP.

From a theoretical point of view, the refinement model checker proposed by Freitas
obviously is the ideal solution. It is originally designed for the Circus language, and all
constructs are expected to be supported. Its architectural capability to integrate with a
theorem prover is also a major advantage. However, the critical problems are the issues
about the difficulties of developing a model checker for Circus as described above. How to
run the model checking algorithms in parallel to achieve high performance and efficiency
is a real challenge. Consequently, the prototype has not got further development. Other
solutions as well as our approach actually are a compromise between idealism and realism.
The model checker on FORMULA intends to check basic properties as well as temporal
logic formulas, but it is not capable of refinement checking and animation. JCircus actually
is not a model checking solution but an implementation instead, and it is restricted to
executable Circus programs because Java is an imperative programming language and not
a high-level specification language. Therefore, before supplying Circus programs to JCircus,
it has to be refined to concrete programs. The link and the map are similar to transform
both state and behavioural parts of Circus to CSP, which means all states are maintained
in CSP. It is restricted to divergence-free Circus and the abstraction of Circus is sacrificed
because the data part in Circus is modeled by Z which supports abstract data type but in
CSP it is concrete. Furthermore, it is not convenient and capable in CSP to maintain very
complex states, and rather difficult to understand the final CSP specification if it contains
a lot of state operations. Finally, a lack of practicable translators for the link and the map
is another obstacle. Though a prototype translator [53] has been developed for the link,
only a small subset of Circus constructs is supported.

1.3.3 Our Approach

Circus is a formal language naturally suitable for the formal development of state-rich
reactive systems because of its intrinsical basis on the rich notation Z, CSP, refinement in
a calculational style, and guarded commands. In these reactive systems, the state is rich
and actually plays a very important role across the development. As a result, one of our
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expectation to the model checker is to maintain the consistency of the state representation
and refinement along the refinement from the specification. And our vision is to model-
check all levels of Circus developments, from abstract specification, to each refinement, and
to the final concrete implementation in a practicable way. Though current solutions of
model checking Circus have some advantages, they do not meet our expectation very well.

Our approach as presented in the paper [1], as well as in this document, is motivated
by current problems and expectations. Our solution is to link a Circus program, no matter
what it is — a specification, refinement or implementation, to the combination of a state-
based formalism and a process algebra. By this way, the state part of Circus is still modelled
in a formal language which is capable of specifying systems from both abstract and concrete
aspects. To be more specific, the integrated formal language we choose is the combination
of B and CSP , CSP ‖ B . Finally, the resultant CSP ‖ B program is model-checked by
ProB.

The main difference of our approach from other solutions above is the representation
of the state part of Circus. We use the B method, instead of Java in JCircus and CSP in
the link and the map, to maintain the high-level abstraction in Circus.

Though our solution defined in this document is highly specific for the link between
state-rich Circus and CSP ‖ B , its underlying principles are also applicable for other state-
rich formalisms, such as Compass Model Language (or, CML for short) [61]. And the
target language can be other combinations of state-based formalism and process algebra
and not restricted to CSP ‖ B .

1.4 Objectives and Contributions of this work

According to our expectations and motivations of this work, our final goal is to have a
model checking solution which is able to verify the Circus programs in different stages
of development. For each individual program, such as a specification, a refinement, or
an implementation, the model checker can verify some properties: deadlock free, livelock
free, and other properties in the temporal logic, etc. Then for the development, it is
capable of verifying the correctness of refinements. Obviously, there are always problems
or errors in design. Thus an explicit and efficient way to give clues, for example counter
examples, to the problems found during model checking is extremely helpful. Additionally,
the capability to animate a Circus program is also very important, especially in the early
stage of development. Both debugging and animation are beneficial to better understanding
of the systems and, in turn, improvement of the design.

Our first contribution is to define a formal link from Circus to CSP ‖ B and the sound-
ness of the link is based on the UTP semantics. As the denotational semantics of Circus is
based on UTP, we give the UTP semantics to CSP ‖ B as well. As far as we know, this
is original. This link is decomposed into several stages or functions, namely the rewrite
of the Circus program to separate the state part from the behavioural part, the transfor-
mation of the state part to B, and the transformation of the behavioural part to CSP.
To the best of our knowledge, separation of state and behaviour from Circus by rewriting,
and the quite complete conversion of Circus expressions, predicates, and operators (even
schema and free type) to CSPM are the first. The rewrite or transformation of Circus in
the first stage can be useful for the development of other tools in the future to facilitate
syntactic and semantic transformations to reduce substantial constructs. Some of rewrite
rules could be used directly, and others might give insights into the considerations when
transforming them. And the conversion of Circus expressions, predicates, and operators
in Z and implementation of them in CSPM as additional libraries could be helpful even
for the other solutions (the link and the map) because they face the similar challenge to
implement all counterparts in CSPM as well.

The second contribution of this work is a translator, developed to link Circus programs
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to CSP ‖ B , which supports nearly all constructs that are defined in our link. The
translator is written in Java and based on Community Z Tools (or, CZT for short) [62], a
open framework to support a number of Z extensions. Our implementation decisions made
for a number of Circus constructs and their transformations, and lessons learned during
development could be very helpful for other Circus tool developers in the future. Especially,
the solutions and decisions listed below could be very interesting to other developers.

Inheriting sections a solution is used to resolve and include all parent sections.

Schema as predicate a method is designed to convert schemas as predicate in Circus
to equivalent predicates without normalisation [63] (normalisation is not expected
when converted into CSP because it results in very basic types, such as Z, which are
difficult to be modelled in CSPM and checked on ProB).

Schema declaration list a scheme is developed to expand schemas to get a list of vari-
ables declared along with their type without normalisation.

Global definitions reduction an algorithm is applied to resolve global and local schema
definitions—global definitions are duplicated into each basic process in which they
are referred, and no reference of global definitions are removed.

Construct references resolving an algorithm is delicately designed to maintain a ref-
erence map of all definitions and schemas in Circus to determine which should be
converted to CSPM and which should not.

Genericity in a nongeneric way there is a method to transform all generic constructs
into nongeneric counterparts.

Furthermore, our translator Circus2ZCSP is bigger than other translators, such as Z2B and
Z2Alloy, in CZT project. Therefore, it might be helpful for other CZT developers.

The third contribution of this work is three case studies which are formalised or partially
formalised, which demonstrates the usability of our approach. The distributed reactive
buffer case presented in the paper [64] is developed using the refinement strategy of Circus
and regarded as verified. Our work has checked it again using model checking and proved
its deadlock free and livelock free in terms of failures mode, and the refinement between the
original specification and the final distributed buffer with specific constants configuration.
The Electronic Shelf Edge Label (or, ESEL for short) is another case we present originally.
The specification is illustrated in Section 2.3 of the background chapter. This aims to give
audiences a straight sense of what a Circus specification looks like, just following the Circus
syntax introduction. This case shows how a Circus program can be developed and verified
using our approach in different levels of refinement. The last case is the Circus solution
to the steam boiler control system [65]. The original Circus is proposed by Woodcock and
Cavalcanti in the report [66] and the paper [67]. Our work has corrected and improved the
steam boiler solution in Circus, and finally it could be regarded as a benchmark of Circus.

The last but not the least is the lessons we learned and experience we got during the
development of this work. This gives insights into the design and development of similar
tools for Circus or other state-rich formalisms.

1.5 Thesis Structure

Our work is to link Circus to CSP ‖ B . Therefore, a basic knowledge of Circus’s underlying
semantics—UTP, and CSP ‖ B , is necessarily given in Chapter 2. Then in Chapter 3,
we review current model checking solutions, explain our approach in depth, and give the
considerations of decision made for our approach.
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After that, our formal link of Circus to CSP ‖ B is defined in Chapter 4. In the
beginning of this chapter, the link strategies and decomposition are presented. Then
individual rules for each decomposed function are defined. It is worth nothing that these
rules are individually based and the composed relation of the link is given in Appendix E.

The soundness of our link is explained in Chapter 5. Our principle is to give the UTP
semantics to both Circus constructs and the linked CSP ‖ B constructs, then a comparison
of their semantics is taken to determine if the rule is sound or not.

Chapter 6 presents a translator we develop for this work. Its architecture and a number
of algorithms are described in details.

In Chapter 7, we describe three case studies of the application of our approach in
ascending complexity order. The first case, a bounded buffer, is the simplest one and has
been developed as a typical example for Circus. And the second one, a ESEL system, is
our original work. Then the third one, the steam boiler control system, is an industrial
classic example and a benchmark for formal languages. We also illustrate model checking
experiment results of these cases in the chapter.

Finally, we conclude this document in Chapter 8 and give perspectives.
Apart from all these chapters in the body of the document, there is also an important

appendices part. In Appendix A, the Circus syntax is illustrated. Appendix B lists all
definitions in the document. In Appendix C, some auxiliary theorems, laws, and lemmas
are illustrated along with their proofs. Then the maps of all expressions, predicates, and
operators in Circus to CSPM , as well as their implementation in CSP libraries, is listed in
Appendix D. Appendix E composes the individual rules defined in Chapter 4 and gives
direct links from Circus constructs to the combination of CSP and Z, which are used to
reason about the soundness of the link in Chapter 5. After that, we present the Circus
models of three case studies in Appendix G, Appendix H, and Appendix I.
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Chapter 2

Background

This chapter presents the background of our work. Since Circus is a combination of Z,
CSP, refinement calculus and guarded commands, in order to combine these languages
together, Circus bases its semantic model on the Unifying Theories of Programming (UTP).
Therefore, Section 2.1 first briefly introduces UTP including the alphabetised relational
calculus, and the theories of designs, reactive processes, and CSP processes. And after
that in Section 2.2, we give an introduction of Circus in detail from its syntax to semantics,
then present the Circus specification of an ESEL system as an example in Section 2.3 to
illustrate the basic structure of a Circus model. Finally, the basic knowledge of CSP ‖ B
is presented in Section 2.4.

2.1 Unifying Theories of Programming

UTP is a unified framework and theoretical basis for describing and specifying computer
languages across different paradigms such as imperative, functional, declarative, nondeter-
ministic, concurrent, reactive and high-order. A theory in UTP is described from three
parts: alphabet, signature and healthiness conditions. alphabet denotes a set of variable
names that gives the vocabulary of the theory to be studied; signature gives the rules of
primitive statements of the theory and how to combine them together to get more com-
plex programs; and healthiness conditions are a set of mathematically provable laws or
equations to characterise the theory.

2.1.1 Alphabetised Relational Calculus

The alphabetised relational calculus [68] is the most basic theory in UTP. The denota-
tional semantics of programs are given as relations between an initial observation and a
subsequent observation, which might be either an intermediate observation or a final obser-
vation. A relation is defined as a predicate P with undecorated variables (v) and decorated
variables (v ′) as its alphabet, abbreviated as αP . v denotes the observation made initially
and v ′ denotes the observation made at the intermediate or final state. αP consists of an
input alphabet inαP (v) and an output alphabet outαP (v ′).

Standard predicate operators can be used to combine alphabetised predicates together
to construct more complicated programs. In UTP, a condition is a predicate without an
output alpha. The infix conditional operator is defined as propositional logic operators

P � b � Q =̂ (b ∧ P) ∨ (¬b ∧ Q)

Sequence is defined as relational composition

P
(
v ′
)

; Q (v) = ∃ v0 • P (v0) ∧ Q (v0)
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provided outαP = inαQ ′ = {v ′}. For sequence P ; Q , its intermediate state cannot be
directly observed. Therefore, the definition of composition above uses existential quantifi-
cation to hide the intermediate observation.

Assignment upon an alphabet A, where A = {x , y , z}, is defined as a conjunction of
equalities which states only the value of the variable x is changed.

x :=Ae =̂
(
x ′ = e

)
∧
(
y ′ = y

)
∧
(
z ′ = z

)
Nondeterminism is defined as choice, a disjunction

P u Q =̂ P ∨ Q

where αP = αQ .
Variable block below introduces x and x ′ into Q

var x ; Q ; end x =̂
(
∃ x , x ′ •Q

)
Recursion (X = F (X )) is defined as the weakest fixed point F , µF .

µF =̂
d
{X | F (X ) v X }

where v is defined below.

2.1.2 Refinement Calculus

Furthermore, refinement calculus is another important concept in UTP concerned with
program development to achieve program correctness. In UTP, the notation for program
correctness is the same for every paradigm: in each state, the implementation P implies its
specification S , which is denoted by S v P . And v is defined as the universal closure of
P ⇒ S as follows. The universal closure of P , [P ] is an abbreviation for (∀ x , x ′, y , y ′ • P)
provided the alphabet of P is equal to {x , x ′, y , y ′}.

S v P iff [P ⇒ S ]

This definition means that the observation of the program P must be a subset of the
observation permitted by the specification S . A refinement sequence is shown as follows.

true v S1 v S2 v P1 v P2 v false

S1 is more general and abstract specification than S2 and thus more easier to implement.
The predicate true, abortion, is the easiest one and can be implemented by anything. P2
is more specific and determinate program than P1 and thus P2 is more useful in general.
false, miracle, is the strongest predicate and it is impossible to implement in practice.

An important law about refinement is that if a specification S can be refined by a
program either P or Q , then it can be refined by the choice of them.

S v P ∨ Q iff S v P and S v Q

2.1.3 Designs

Designs in UTP are a subclass of relations that deals with the non-termination problem of
programs, which states that the composition of P with a true (a non-terminated program,
X = X ) in either order shall result in a non-terminated program, except if the program P
is a false (a miraculous predicate).

true ; P = true = P ; true
true ; false = false = false ; true
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In a design, two additional boolean variables are introduced into the alphabet of programs:
okay , the observation that the program has been started, and okay ′, the observation that
the program has terminated. If okay is false, then the program has not started yet and the
initial state is not observable. If okay ′ is false, the program has not terminated yet and
the final state is not observable.

A design (written as P `Q [24, 69]) is defined as follows.

P `Q =̂
(
okay ∧ P ⇒ okay ′ ∧ Q

)
If a program starts in a state where P holds, then it will terminate, and on termination Q
is established.

For designs, there are four healthiness conditions listed in Table 2.1 where P [false/okay ′]
is the result of substituting false for the variable okay ′ in P .

2.1.4 Reactive Processes

The behaviour of a design is observed at the initial state and the final state of a program
by relating its precondition to its postcondition. But a reactive process cannot be charac-
terised from the final observation alone, because it interacts with its environment (other
programs and users). It must take intermediate states into account. Therefore, three extra
variables: tr , ref , and wait , and their dashed counterparts, in addition to okay and okay ′,
are introduced. tr and tr ′ are finite sequences and record the traces. ref and ref ′ records
a set of events that might be refused. Boolean variables wait and wait ′ records whether
a process has terminated or in an intermediate state awaiting further interaction with the
environment. A number of interesting combinations of these variables are listed below.

• okay ∧ ¬wait - started in a stable state

• okay ∧ wait - not started but in a stable state

• ¬okay - not started but in an unstable state

• okay ′ ∧ ¬wait ′ - terminated

• okay ′ ∧ wait ′ - in an intermediate state

• ¬okay ′ - in an unstable state

Three healthiness conditions of reactive processes, R1 , R2 , and R3 , are displayed in
Table 2.1. They can be composed into R.

R =̂ R1 ◦ R2 ◦ R3

A reactive process is defined as a relation that has okay , tr , ref , and wait , and their
dashed counterparts in its alphabet, and satisfies the three healthiness conditions.

2.1.5 CSP Processes

CSP processes are defined as reactive processes with additional two healthiness conditions:
CSP1 and CSP2 in Table 2.1. According to Definition 8.2.1 [24], a reactive process is a
CSP process if it satisfies CSP1 and CSP2 . However, to characterise a subset of UTP
relations that are processes written in CSP notations, those two healthiness conditions are
not strong enough. Three extra healthiness conditions: CSP3 , CSP4 , and CSP5 , are
introduced in CSP.

The relationship between relations, designs, reactive processes and CSP processes are
given in the tutorial [68], “CSP processes are reactive; moreover they are the R-image
of designs” [68, Figure 1, p.257]. An important theorem [68, Theorem 4.2] defines CSP
processes as reactive designs.
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Table 2.1: Healthiness Conditions

Name Definition Description
Designs

H1 P = (okay ⇒ P)
Unpredictability. No prediction about
the initial or final state of P before it
has started

H2
[

P [false/okay ′]
⇒ P [true/okay ′]

] Termination always possible. If a
program P allows non-termination
under certain conditions, then it also
allows termination under the same
conditions

H3 P = P ;II D
Dischargeable assumption. A design is
H3 if its precondition is a condition

H4 P ; true = true Feasibility. A design is H4 if it is
feasible to establish a final state

Reactive Processes

R1 P = P ∧ (tr ≤ tr ′)
Traces can be extended but never
undo

R2 P (tr , tr ′) =
P (〈〉, tr ′ − tr)

The behaviour is unrelated to the past

R3 P = (II rea � wait � P)
A process starts only after its
predecessor has terminated

CSP Processes

CSP1 P =
P ∨
(¬okay ∧ tr ≤ tr ′)

In case of divergence, the only
guaranteed property is extension of
the trace

CSP2 P = P ;


(okay ⇒ okay ′) ∧
(v ′ = v) ∧
(tr ′ = tr) ∧
(ref ′ = ref ) ∧
(wait ′ = wait)

 A process may not require
non-termination

CSP3 P = SKIP ; P
The behaviour of P does not depend
on the initial value of ref

CSP4 P = P ; SKIP
In case of termination or divergence,
the final value of ref ′ is irrelevant

CSP5 P = P ||| SKIP

A deadlocked process which refuses
some set of events offered by its
environment will be still deadlocked in
an environment which offers even
fewer events

Circus Actions

C1 A = A ; Skip
On termination or divergence, the
value of ref ′ has no relevance

C2 A = A ||[ v | ∅ ]|| Skip

A deadlocked action which refuses
some set of events offered by its
environment will be still deadlocked in
an environment which offers even
fewer events

C3 A = R
(
¬Af

f ; true `At
f

) No dashed variables in the
precondition of the reactive design
form of a Circus action
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Theorem 2.1.1. For every CSP process P , P = R
(
¬P f

f `P t
f

)
.

In the theorem, P t
f is an abbreviation of P [false, true/wait , okay ′] that denotes P has

started but does not diverge, and P f
f is an abbreviation of P [false, false/wait , okay ′] that

denotes P has started but diverges. This theorem states that every CSP process can be
defined in terms of a reactive design through R.

2.1.6 Various Semantics

UTP is capable of presenting the mathematical theory from various styles, including deno-
tational semantics, operational semantics and algebraic semantics [24]. The denotational
theory characterises the program language from its observable aspects through mathe-
matical definitions; the operational semantics of a programming language just takes into
account a set of individual steps in execution, other than the overall observable effects of
the program like denotational semantics; while the algebraic semantics provides a collec-
tion of algebraic laws in terms of equations and inequations which are used for comparison
and transformation of designs, and optimisation of programs.

2.2 Circus

This section gives an introduction to Circus from its syntax to its semantics and refinement
calculus. Finally, a specification example is illustrated.

2.2.1 Circus Syntax

The complete syntax of Circus is composed of two parts. The first part is the syntax of
Z in the ISO Standard dialect(ISO Standard Z [70] or ISO Z for short). The concrete
syntax of ISO Standard Z can be found in [70, clause 8]. It is omitted in this document for
brevity. And the second part is the syntax introduced for the combined behaviour (CSP
and guarded commands), and for the overall structure of a Circus specification. Its complete
BNF syntax is illustrated in Figure A.1 in Appendix A, where N∗ and N+ stand for the
repetition of N zero or more times, and one or more times respectively. They are different
from the syntactic metalanguage used in ISO Standard Z. In ISO Standard Z, it uses { N
} to represent the repeat of N zero or more times. In the syntax, the syntactic category
N is a valid Z identifier defined in the standard, while categories Par, SchemaExp, Exp,
Pred and Decl represent Z paragraphs, schema expressions, expressions, predicates and
declarations defined in the standard too. The syntax of Circus is a free mixture of CSP
and Z. Particularly, for the behavioural part in CSP, its syntax is different from CSPM .
Unlike CSPM which is defined upon a functional language, CSP in Circus is defined using
Z syntax as well.

Generally, a Circus specification consists of a sequence of paragraphs: Z paragraphs,
channel declarations, channel set declarations or process declarations.

Program ::= CircusPar∗

CircusPar ::= Par | channel CDecl | chanset N == CSExp | ProcDecl

2.2.1.1 Channel Declarations

All channels used in a Circus specification must be declared. Channels in Circus can be
declared in several ways.

CDecl ::= SimpleCDecl | SimpleCDecl;CDecl
SimpleCDecl ::= N+ | N+ : Exp | [N+]N+ : Exp | SchemaExp
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To begin with, channels can be declared in the same way as that in CSP. A synchroni-
sation channel declaration only gives the name of events and no value is communicated on
the channels. While a typed channel declaration specifies not only the name of events but
also the type of values on the channels. And all events in this declaration have the same
type.

Additionally, a family of channels can be introduced by the generic channel declara-
tion, in which specified types are provided as parameters to the channels. For instance,
channel[T ]c : T declares a family of channels c with the formal parameter T . For a
channel c with a specific type S of its value, it is instantiated by c[S ]. It is worth noting
that multiple instantiations of generic channels with the same name c and type S actu-
ally refers to the same channel. It means for a parallel composition PJ | CS | KQ , if the
instantiation c[S ] occurs in the P , Q , and CS , the parallel composition must synchronise
on the c[S ] event.

Finally, apart from the declarations above that multiple channels with the same type
can be declared in one declaration, channels with different types can be grouped in a
schema SchemaExp without the predicate part.

2.2.1.2 Channel Set Declarations

A channel set declaration relates a channel set name to a channel set expression CSExp
which basically is a set of declared channels.

CSExp ::= {| |} | {|N+ |} | N | CSExp ∪ CSExp | CSExp ∩ CSExp
| CSExp \ CSExp

It can be the empty channel set {| |}, channel set extensions like {| c, d , · · · |}, references to
other CSExp, or expressions defined upon other Z set operators, such as CSExp ∪CSExp,
CSExp ∩ CSExp, and CSExp \ CSExp.

2.2.1.3 Process Declarations

Processes can be declared in several different ways.

ProcDecl ::= process N =̂ ProcDef | process [N+]N =̂ ProcDef
ProcDef ::= Decl • ProcDef | Decl� ProcDef | Proc

They can be parametrised processes, indexed processes, explicitly defined processes, com-
pound processes defined in terms of CSP operators, or renamed processes by substituting
new channels for old channels in the name list.

For a parametrised process (PP =̂ x : Tx ; y : Ty ; · · · • P), the parameters (x , y , . . . )
are free in P . The parametrised process can be instantiated by supplying real expressions
for their parameters like P (e1, e2, · · · ). Particularly, the indexed process definition (IP =̂
i : T � P where i does not occur in P and only one parameter i is allowed) and its
instantiation (IPbec) are new to Circus. The only difference between indexed processes
and parametrised processes is that for each channel c (with the type Tc) in the indexed
processes, it is renamed to c i .e, where the new channels c i are implicitly declared in
this definition like the declaration

channel c i : T × Tc

The messages that are communicated on these implicit channels include two fields: the
first one is the index element i with the type T , and the second one is the field from
the original channel c with the type Tc . Furthermore, both parametrised processes and
indexed processes can be defined anonymously and instantiated together:

(x : Tx ; y : Ty ; · · · • P) (e1, e2, · · · )
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and

(i : T � P) bec

Explicitly defined processes, or basic processes, are the basic unit in a Circus specifica-
tion.

Proc ::= begin PPar∗ state N =̂ SchemaExp PPar∗ •Action end

Basically, an explicitly defined process consists of a state paragraph, name set paragraphs,
Z paragraphs, action definitions, and a main action. Among them, the main action is
mandatory, and others are optional. They all together form the data part (the state
paragraph and Z paragraphs) and the behavioural part (action definitions and the main
action) of the process. All state components of this process are given in the state paragraph
marked by state. And the predicate of the state schema puts extra constraint on state
components like an invariant that must be always held within this process. The overall
behaviour of this process is characterised by its main action. In addition, a name set
paragraph within the process relates the name to a name set expression NSExp which
means a set of variables. Similar to channel set expressions, name set expressions, used
in parallel composition and interleaving of actions, can be the empty name set {}, set
extensions like {s, l , · · · }, references to other NSExp, or expressions defined upon other Z
set operators, such as NSExp ∪NSExp, NSExp ∩NSExp, and NSExp \NSExp.

Proc ::= · · ·
| Proc ; Proc | Proc 2 Proc | Proc u Proc | Proc J CSExp K Proc
| Proc ||| Proc | Proc \ CSExp | Proc[N+ := N+] | N[Exp+] | N
| (Decl • ProcDef)

(
Exp+

)
| N

(
Exp+

)
| (Decl� ProcDef) bExp+c

| NbExp+c | ;Decl • Proc | 2Decl • Proc | uDecl • Proc
| JCSExp K Decl • Proc | |||Decl • Proc

Processes can also be defined by combining declared processes in terms of CSP operators,
such as sequential composition ;, external choice 2, internal choice u, parallel composition
JK, interleaving |||, hiding \, and relative finite iterated operators (;, 2, u, JK, and |||).
All these composition operators are the same as those in CSP. But it is worth noting that
the parallel composition operator of processes follows the generalised or interface parallel
operator [71, Section 4.3] in CSP. Therefore, when it comes to P J cs K Q , for all events
in cs, they must be synchronised between P and Q ; and for all events outside of cs, they
proceed independently.

A declared process can be referred in other processes by process invocation P which is
just the name of the process.

Finally, processes can be declared to be generic as well like process[T ]GP =̂ P and
instantiated like GP [S ] where S is a specific type.

2.2.1.4 Actions

In Circus, an action definition in an explicitly defined process links the name of the action
to its body. As with processes, actions can be parametrised as well and afterwards they
are instantiated. But unlike processes, actions cannot be defined as generics.

PPar ::= Par | N =̂ ParAction | nameset N == NSExp
ParAction ::= Action | Decl • ParAction

An action can be a schema expression as action (SchExp), a command, an action
invocation, a CSP action, or an action renaming.

Action ::= (SchemaExp) | Command | N | CSPAction | Action[N+ := Exp+]
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The variables in actions, including state variables and local variables, can be renamed
through the action renaming. However, unlike the process renaming, channels in the action
will not be changed.

An action invocation is a reference to the name of the action defined and actually it is
equal to its body.

Schema Expressions as Action The schema expression as action is very important in
Circus. It provides a way for the behavioural part of the process to interact with its state
part. It behaves like an execution of the same name operational schema if the precondition
of the schema holds and at the same time the postcondition of the operational schema is
established. Or if its precondition does not hold, the action diverges. It is worth noting
that the input and output variables of the schema must be in scope in the context of this
action.

CSP Actions In Circus, actions can be defined in terms of CSP as well. Skip, Stop
and Chaos are three primitive CSP actions for termination, deadlock and divergence.

CSPAction ::= Skip | Stop | Chaos | Comm → Action | Pred & Action
| Action ; Action | Action 2 Action | Action u Action
| Action J NSExp | CSExp | NSExp K Action
| Action ||[ NSExp | NSExp ]||Action
| Action \ CSExp | ParAction

(
Exp+

)
| µ N •Action

| ;Decl •Action | 2Decl •Action | uDecl •Action
| JCSExp K Decl • JNSExp K Action | |||Decl • ||[NSExp ]||Action

Comm ::= N CParameter∗ | N [Exp+] CParameter∗

CParameter ::= ?N | ?N : Pred | !Exp | .Exp

A prefixing action Comm → A provides its environment with the communication
Comm at first, and after that, it behaves like the action A. A communication is an
event that is a pair from the channel name to the value of messages. In Circus, the event
name can be a defined channel or an instantiation of a defined generic channel like c[T ].
And the message part of communication can be composed of several fields: input ?x , con-
strained input ?x : P where P is a predicate, and output .x or !x . And these fields can be
combined together to form a complicated communication, such as c?x !y?z : (z > 10) .u, to
pass multiple objects at the same time. In particular, the constrained input ?x : P places
extra constraint on the value that can be passed on the channel in additional to its type in
the channel declaration. Therefore, the overall constraint on the field is like {x : T | P}.
Nonetheless, there is different syntax in CSP for the constrained input. In CSP, its syntax
is like ?x : S where S is a set expression. And the overall constraint is the intersection of
its type T and the extra constraint S : T ∩ S

An action can be guarded by a condition, a predicate without after-state variables.
This construct is named guarded action, such as (g) N A where g is a guarded condition.
If the condition is evaluated to true, it behaves exactly the same as A. Otherwise, if the
condition does not hold, it deadlocks.

As with processes, actions can be composed in terms of CSP operators as well. For the
sequence composition of two actions such as A1 ; A2, A2 is hidden from its environment
initially and available only after A1 terminates. For internal choice and hiding of actions,
they are similar to those in CSP. However, for external choice of actions, though it has
the same syntax A1 2 A2 as that in CSP, the resolution of the external choice in Circus is
different. An external choice of actions are only resolved by events or termination. And
a state change such as assignment and schema expression as action will not resolve the
choice. For instance, the external choice(

(Sch) ; c → Skip
)
2 (x := 1)
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can only be resolved by the events c, or the termination of the action x := 1. Recursions
definition (µ) is also provided for actions though it is not the case for processes.

And especially parallel composition of actions (A1 J ns1 | cs | ns2 K A2) and interleaving
of actions (A1 ||[ ns1 | ns2 ]||A2) in Circus are slightly different from those in CSP. Generally,
the parallel composition of actions follow the generalised or interface parallel operator [71,
Section 4.3] in CSP as well. Both actions synchronise on the events in cs. But two name
set expressions, ns1 and ns2, are introduced. They are disjoint state partitions. For the
parallel composition, all variables in scope of A1 and A2 are accessible for both actions,
but only changes made to the variables in ns1 by A1 and the variables in ns2 by A2 have
final effect, that is, these variables might be possibly updated. Other variables not in both
ns1 and ns2 remain unchanged. For interleaving, it is similar.

Similar to processes, iterated operators such as iterated sequential composition, iter-
ated external choice, iterated internal choice, iterated parallel composition, and iterated
interleaving are provided for actions as well.

Commands A command can be an assignment, an alternation, a guarded command, a
variable block, a parametrisation by value, a parametrisation by result, a parametrisation
by value-result, a specification state, an assumption, or a coercion.

Command ::= N+ := Exp+ | if GActions fi | var Decl •Action
| N+ : [Pred,Pred] | {Pred} | [Pred]
| val Decl •Action | res Decl •Action | vres Decl •Action

GActions ::= Pred → Action | Pred → Action 2 GActions

An assignment action may assign one or more variables simultaneously. For instance,
x , y := 1, x will update the variable x to 1 and y to the before-state x at the same time,
and the updated after-state x (equal to 1) is impossible to be seen in the assignment of y .

Alternation provides a way from branching in Circus. If none of their guarded conditions
hold, the alternation diverges. If there is only one condition holds, then the alternation
behaves like the action guarded by this condition. Or if more than one condition hold, the
alternation is a nondeterministic choice of those actions whose conditions are true. For
instance, the alternation, if g1−→A1 8g2−→A2 fi, diverges if both g1 and g2 are not true;
or it behaves like A1 if only g1 is true; or similarly, A2 if only g2 is true; or A1 u A2 if both
g1 and g2 are true.

A variable block (var x : T • A) declares local variables, in its declaration part, that
will be used in its action. Particularly, the initial value of x is arbitrarily chosen. And sub-
stitution by value, result and value-result from [22] are also introduced in Circus and they
have the similar syntax with the variable block. But they are defined as parametrised ac-
tions and need invocations. The invocation of substitution by value, (val x : T • A) (e), de-
clares a local variable x like the variable block but the initial value of x is assigned to e where
e contains no x . Similarly, the invocation of substitution by result, (res x : T • A) (e), and
the invocation of substitution by value-result also declares a local variable x like the vari-
able block respectively. But for substitution by result, the initial value of x is arbitrarily
chosen and the final value of x after A is assigned e where e must be a variable name.
Especially substitution by value-result has the combined behaviour of substitution by value
and substitution by result, and the initial value of x is assigned to e, and finally the final
value of x is assigned to e.

Apart from substitutions, the specification statement [22] is introduced to Circus as
well to write the Circus specification in an abstract way. A specification statement such
as w : [ pre, post ] means if the initial state of variables satisfies pre, then only variables
in the frame w might be changed to form the final state of variables that satisfies post .
Two additional simplified constructs, assumption {pre} and coercion [ post ], are simply
abbreviations of :[ pre, true ] and :[ true, post ] separately.
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2.2.2 Circus Semantics and Healthiness Conditions

The denotational semantics of Circus is presented in [21] at first, then improved in [72], and
finalized in [73]. In addition, the semantics of Circus has been mechanised in ProofPower-Z
and Isabelle.

Initially the shallow embedding of Circus in Z is introduced. The model of a Circus
program is a Z specification, the model of a process is a Z specification, and the model
of an action is a schema. However, this semantics fails to prove the properties about
Circus itself such as the refinement laws [73]. In order to overcome this limitation, a deep
embedding of Circus in Z is proposed in [72] and [73]. With this new denotational semantics,
it is able to describe the properties about Circus itself. Furthermore, based on this new
semantics, the syntax and the semantics of Circus are mechanised in Z, as well as the Circus
refinement laws.

The semantics of actions in Circus is characterised by three theorems from the paper [73]:
Theorem 4.1, Theorem 4.2, and Theorem 4.3. They state that every Circus action is

• R healthy,

• CSP1 , CSP2 , and CSP3 healthy,

• C1 , C2 , and C3 healthy,

where C1 , C2 , and C3 are given in Table 2.1. Actually C1 and C2 are corresponding
maps of CSP4 and CSP5 in CSP to Circus respectively.

Furthermore, the operational semantics of Circus is defined in [44], [74] and [75], and
it is also based on the alphabetised relations of UTP and expressed as Plotkin’s SOS, or
Structured Operational Semantics [76], style for the imperative and behavioural features
of Circus. Frietas [44] has formalised the underlying automata theory and its properties in
the theorem prover, Z/Eves.

2.2.3 Refinement Calculus of Circus

The support of refinement calculus is a key aspect which differentiates Circus from other
combined formal languages. It is based on the UTP’s correctness by logical implication
to introduce the program from the specification. In the refinement strategy [64] of Circus,
action refinement is the basic notion of refinement and covers behavioural aspects only. For
processes, it must consider both data and behavioural aspects. Data refinement techniques,
forward simulation and backward simulation [63], are used to refine the data aspect of a
process. And then the refinement of the behavioural aspect of a process is based on the
refinement of its main action. A simple reactive buffer [64] and a more complex industrial
scale fire control system [35] are two typical cases that use the refinement calculus for
development.

2.3 A Circus Example

In this section, a Circus model of the ESEL specification is shown below as an example
to illustrate the basic structure and syntax of Circus. The detailed requirements of the
ESEL system are given in Section 7.2.1. Particularly, the Circus model described below is
also given in Appendix H.2. However, the only difference is the display of the model. In
this section, the process Controller is displayed in multiple environment, therefore easily
explained, while Controller in Appendix H.2 is displayed in a single environment without
any description.
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2.3.1 ESELHeader

The ESELHeader section is common for the three models of ESEL: Specification, System
one (Section 7.2.3), and System two (Section 7.2.4). It is a parent section of each model
to introduce all basic definitions.

ESELHeader includes the standard Circus toolkit, that will recursively include other Z
toolkits, as its parent.

section ESELHeader parents circus toolkit

At first, two constants are defined. MAX ESEL and MAX PID stand for maximum
number of displays and maximum number of product categories (or, products for short) in
the system separately.

MAX ESEL : N
MAX PID : N

Then all displays and products are identified by a tag plus a unique number which are
defined in the free types ESID and PID below where the constructors ES and PD are the
tags for displays and products. For instance, number ten of the display is given ES 10 or
ES (10).

ESID ::= ES 〈〈1 . .MAX ESEL〉〉
PID ::= PD〈〈1 . .MAX PID〉〉

The type of product price is defined as an abbreviation to natural numbers N.

Price == N

The unit response is defined as a free type with two constants: uok and ufail .

UStatus ::= uok | ufail

The response from this program to the environment is a set of product identities of
which the price is not updated successfully due to 1) no linked ESEL ID to the product or
2) failed update to its linked ESEL. The first reason is given the status constant NA and
the second is provided with the constructor fail〈〈ESID〉〉.

FStatus ::= fail〈〈ESID〉〉 | NA

Two channels are provided to update the map from ESEL ID to product ID. updateallmap
will clear all stored map and use the input map as new map, while updatemap just updates
a partial map. In this map, one ESEL can be linked to up to one product. However, one
product may associate with multiple ESELs.

channel updateallmap : ESID 7→ PID
channel updatemap : ESID 7→ PID

Similarly, two channels are provided to update the price information. updateallprice
will clear all price information and use the input price information as new price, while
updateprice just updates price partially.

channel updateallprice : PID 7→ Price
channel updateprice : PID 7→ Price

The update channel gives a signal to the program to start update process.

channel update
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The failures channel returns all products, which fail to update, and related error reasons
after update. Since one product may associate with multiple displays, the return status is
a power set of FStatus to denote which specific displays that the product links are updated
unsuccessfully. But it is worth noting that NA and fail must not occur in a product’s return
set at the same time because they cannot be both no associate display and associate display
update fail.

channel failures : PID 7→P FStatus

The internal resp event is used to collect update responses from all displays and
terminate event is for completing the collection.

channel resp : PID × FStatus
channel terminate
channelset RespInterface == {| resp, terminate |}

This uupdate event is to update one ESEL to the specific price, and ures for updating
response from this ESEL. And udisplay is used to synchronise the show of price on all ES-
ELs at the same time and finishdisplay is used to wait for display completion of all ESELs.
That is the similar case for uinit and ufinishinit that are for initialisation synchronisation.

channel uupdate : ESID × Price
channel ures : ESID ×UStatus
channel uinit ,finishuinit
channel udisplay ,finishudisplay

And display is used to synchronise the show of price on all gateways (or ESELs) at
the same time and finishdisplay is used to wait for display completion of all gateways
(or ESELs). That is the similar case for init and finishinit that are for initialisation
synchronisation.

channel init ,finishinit
channel display ,finishdisplay

The channels below are for communication between the ESEL system and displays.
The write event writes price to a display, and the read event reads price from the display.
ondisplay turns on the related display and offdisplay turns off it conversely.

channel write : ESID × Price
channel read : ESID × Price
channel ondisplay : ESID
channel offdisplay : ESID

2.3.2 ESEL Specification

For the specification, the ESEL system is implemented by a central controller which consists
of data modules, update modules, and response collection module as shown in Figure 2.1.
Top three elements—ESEL map, Price map, and Response—keep the map between ESELs
and products, the map between products and price, and the response respectively. Bottom
n elements from U1 to Un are interleaved together, and each unit is responsible for the
update of one corresponding display. Furthermore, each unit can read ESEL map and
Price map but will not update them, and the update result from each unit is sent to the
response collection module, Collector, which collects all responses and updates Response.
With this architecture, all displays can be updated at the same time because of interleaved
update units (U1, ..,Un), and Response can be updated only by Collector and therefore it
is not necessary to introduce a lock.
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Figure 2.1: ESEL Specification Diagram

The Circus model of the specification is displayed below.
At first, ESELSpec, the name of the specification section, has ESELHeader as its

parent. Consequently, it can use all definitions from ESELHeader , as well as the parents
of ESELHeader , standard toolkits.

section ESELSpec parents ESELHeader

2.3.2.1 Controller Process

The process for overall control of the system, named Controller , is defined as an explicitly
defined process.

process Controller =̂ begin

Controller has three state components: pumap for mapping from displays to products,
ppmap for mapping from products to their price, and response for the response of one
update to the environment.

state State == [ pumap : ESID 7→ PID ; ppmap : PID 7→ Price;
response : PID 7→ (P FStatus) ]

Initially, these three state components all are empty.

Init == [ (State)′ | pumap′ = ∅ ∧ ppmap′ = ∅ ∧ response ′ = ∅ ]

The UpdateMap schema partially updates the map between displays and products accord-
ing to the input map, while the UpdateAllMap schema discards stored map and uses new
input map as pumap.

UpdateMap == [ ∆State ; map? : ESID 7→ PID |
pumap′ = pumap ⊕map? ∧ ppmap′ = ppmap ∧ response ′ = response ]

UpdateAllMap == [ ∆State ; map? : ESID 7→ PID |
pumap′ = map? ∧ ppmap′ = ppmap ∧ response ′ = response ]

The NewPrice updates a part of price information stored, while the AllNewPrice discards
all price information stored and uses input price as ppmap.

NewPrice == [ ∆State ; price? : PID 7→ Price |
ppmap′ = ppmap ⊕ price? ∧ pumap′ = pumap ∧ response ′ = response ]

AllNewPrice == [ ∆State ; price? : PID 7→ Price |
ppmap′ = price? ∧ pumap′ = pumap ∧ response ′ = response ]
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AUpdatemap is an action defined to update the map from displays to products: either
partially by updatemap or completely by updateallmap event.

AUpdatemap =̂ updatemap?map → (UpdateMap)
2 updateallmap?map → (UpdateAllMap)

Similarly, ANewPrice is an action defined to update the map from products to price: either
a partial update by updateprice or a complete update by updateallprice.

ANewPrice =̂ updateprice?price → (NewPrice)
2 updateallprice?price → (AllNewPrice)

A parametrised action, AUpdateUnitPrice, is given to update the price (specified indirectly
by the formal pid parameter) to a display (given by the formal uid parameter). It sends
the price to the specified display by the write event, and then read back the price from the
display by the read event. If the write price matchs with the read price, then the update is
successful. Otherwise, it fails (ufail) and sends the result to the response collection action
CollectResp, then terminates.

AUpdateUnitPrice =̂ uid : ESID ; pid : PID •
write.uid .(ppmap pid)→ read .uid?y →
((y = (ppmap pid)) N Skip
2 (y 6= (ppmap pid)) N resp.pid .(fail uid)→ Skip)

The parametrised action AUpdateProductUnits aims to update one product’s price spec-
ified by the formal pid parameter in case the product has associated displays. Since one
product may have more than one associated displays, this action updates the product’s
price to all associated displays. Furthermore, the update to each display is independent.
Therefore, they are combined together into an interleaving. It is worth noting that each
AUpdateUnitPrice action will not update state and local variables and thus its name set
is empty.

AUpdateProductUnits =̂ pid : PID •
(||| uid : (dom (pumap B {pid})) ||[ ∅]|| • AUpdateUnitPrice(uid , pid))

Otherwise, if the product has not been allocated the corresponding displays, it sends back
a response to state this error NA. The behaviour is defined in the AUpdateNoUnit action.

AUpdateNoUnit =̂ pid : PID • resp.pid .NA→ Skip

The behaviour of the price update for a product given in pid is the update of product
either with associated displays, in the guarded AUpdateProductUnits, or without associated
displays, in the guarded AUpdateNoUnit .

AUpdateProduct =̂ pid : PID •
(pid ∈ ran pumap) N AUpdateProductUnits(pid)

2 (pid 6∈ ran pumap) N AUpdateNoUnit(pid)

Then the update of all products is given in the action AUpdateProducts. At first, it
is an interleave of all updates of the products which have associated price, then follows a
terminate event to finish the update.

AUpdateProducts =̂ ((||| pid : (dom ppmap) ||[ ∅]|| • AUpdateProduct(pid))

;terminate → Skip)
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The AddOneFailure schema adds one failure (either update failure or no associate
failure) for a product to the state component response.

AddOneFailure == [ ∆State ; pid? : PID ; fst? : FStatus |
(pid? ∈ dom response ⇒

response ′ = response ⊕ {pid? 7→ (response(pid?) ∪ {fst?})}) ∧
(pid? 6∈ dom response ⇒

response ′ = response ∪ {pid? 7→ {fst?}}) ∧
ppmap′ = ppmap ∧ pumap′ = pumap ]

The CollectResp action is to collect responses from all units and write them into the
response variable by the AddOneFailure schema expression. It recursively waits for the
response from the units, or terminates if required.

CollectResp =̂ µX •
((resp?pid?fst → (AddOneFailure) ; X ) 2 terminate → Skip)

Then update of all products and response collection behaviours are put together into
AUpdateResp action. It is a parallel composition of AUpdateProducts and CollectResp
actions and they are synchronised on resp and terminate events. Furthermore, the left
action AUpdateProducts will not update state variables (its name set is empty set) while
the right action CollectResp will update response (its name set has only one variable
response). Finally, these internal events are hidden.

AUpdateResp =̂
(AUpdateProducts J ∅ | RespInterface | {response} K CollectResp)
\RespInterface

All displays will synchronise on the display event to show the price at the same time,
which is defined in ADisplay . Whether a display should be turned on or off is decided
based on the logic below.

• If the display is not mapped to a product, then turn it off.

• Otherwise, if the display linked product is not to be updated, then turn it off.

• Otherwise, if the display has been written the price successfully, then turn it on.

• Otherwise, then turn it off.

ADisplay =̂
(J{| display |} K uid : ESID • J∅ K display → (

if uid 6∈ dom pumap −→ offdisplay .uid → Skip
8 uid ∈ dom pumap−→

if pumap(uid) 6∈ dom ppmap −→ offdisplay .uid → Skip
8 pumap(uid) ∈ dom ppmap−→

if pumap(uid) 6∈ dom response−→
ondisplay .uid → Skip

8 pumap(uid) ∈ dom response−→
if (fail uid) 6∈ response(pumap(uid))−→

ondisplay .uid → Skip
8 (fail uid) ∈ response(pumap(uid))−→

offdisplay .uid → Skip
fi

fi
fi

fi
)) \ {| display |}
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The overall price update action is given in AUpdatePrice, which accepts an update
event from its environment, then clears response, updates the price, sends the display
event to make all ESELs show their price at the same time, then feeds back the response
to the environment.

AUpdatePrice =̂ update → response := ∅;
AUpdateResp ; ADisplay ; failures.response → Skip

Initially, state components are cleared and all displays are turned off.

AInit =̂ (Init) ; (||| u : ESID ||[ ∅]|| • offdisplay .u → Skip)

The overall behaviour of the Controller process is given by its main action. It initializes
at first, then repeatedly provides the update of stored maps, or the update of price to its
environment.

• AInit ; (µX • (AUpdatemap 2 ANewPrice 2 AUpdatePrice) ; X )

end

2.3.2.2 System

The ESEL Specification is simply the Controller process.

process ESELSpec =̂ Controller

2.4 Combination of CSP and B

CSP ‖ B is a combination of CSP and B which adds behavioural specification to the state-
based B machine. The B method characterises abstract state, operations with respect to
their enabling conditions, and their effect on abstract state, while CSP specifies overall
system behaviour. But different from Circus, the CSP specification and the B machine in
CSP ‖ B are always orthogonal. They are individually complete specifications and can be
checked separately.

Semantically, the combination of CSP and B works in such ways in terms of CSP: the
B machine, which has operations Ops ({Op1, . . . ,Opn}) and variables Vars ({v1, . . . , vm}),
is regarded as a process in CSP with events ops ({op1, op2, . . . , opn}, the event name is
the same as the operation name) available for its environment; CSP and B are composed
together by a generalised parallel composition in CSP. B and CSP synchronise on these
common events ops. For an event opi in common events ops, if it is allowed at the same
time by both the B machine and the CSP specification, then it can make progress. After
that, the state Vars of B machine is updated or accessed by opi related operation Opi .
Otherwise, if it is not allowed by either B machine or CSP, neither of them can progress.
In addition, for the event only specified in CSP and not having a corresponding operation
in B, it engages independently. But for the operation only specified in B and not in CSP,
it is prevented from executing.

For example, a B machine, named Bmach , has the state Bstate and a set of operations
OPs = {Op1,Op2, . . .Opn}. The behaviour of this B machine is treated as a CSP process
Bproc shown in Equation 2.1 with the corresponding events ops = {op1, op2, . . . opn}, and
the name of event op1 is the same as the name of the operation Op1. (Notes: the upper
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case Op denotes operation name in B and the lower case op for corresponding event name
in CSP.)

Bproc =̂ µX •

 ((op1 → X )<I enabled (Op1)>I STOP )
2 . . .
2 ((opn → X )<I enabled (Opn)>I STOP )

 (2.1)

An additional restriction is that Bproc cannot always engage in parallel and it only hap-
pens when the precondition of the operation is met or the operation is enabled (enabled(Op)
is true). If the operation is enabled, the corresponding event op is available to synchronise
with CSP process, and after synchronisation the state may be updated or accessed by the
corresponding operation Op. After that, the enable condition for each operation will be
calculated again, since the state may be changed. If the operation is not enabled, then
the corresponding event is not available for the environment. It’s impossible for this oper-
ation to be executed. If none of the operations are enabled, then the whole B machine is
deadlocked. Consequently no state can be changed and accessed.

The overall combination of CSP and B specification is regarded as the parallel compo-
sition of Bproc and CSP plus further hiding of the events between them, which is shown
in 2.2:

CSP ‖ B =̂

(
CSP ‖C B

ops
Bproc

)
\ ops (2.2)

where ‖C B is a new defined parallel operation for the CSP ‖ B model only.

Definition 2.4.1 (Parallel Composition for the combination of CSP and B). ‖C B

is a parallel composition in terms of CSP. The only difference from the general parallel
composition ‖ is that the process P in the C part is a controller and gives the whole
behaviour of the parallel composition. The events in the B part are only available to its
environment if P allows them. From other aspects, ‖C B is exactly the same.

‖B C is a similar parallel composition but B ‖B C P = P ‖C B B .

A number of laws are defined below to facilitate the reasoning of CSP ‖ B programs.
It is worth noting that basic processes in CSP denote SKIP , STOP , and div. However,
in Circus, a basic process denotes an explicitly defined process. In addition, we use the
equation

(P) ‖C B
ops

(
Bproc

v ′

v

)
to represent a CSP ‖ B program that has before state v and after state v ′, where v denotes
a set of all undashed state variables and v ′ for a set of all dashed state variables. This
equation means that the program has input state v and after P terminates the state has
been changed to v ′.

Another notation is introduced in the RHS of laws is

P ∧R pred =̂ R3 (P ∧ pred)

where P is a process in terms of CSP ‖ B , pred is a predicate, and R in ∧R denotes the
composed healthy condition R for the reactive processes theory in UTP. The reason why
R3 is introduced into RHS is that 1) CSP ‖ B is defined in terms of CSP and every CSP
process is reactive and the R-image of design according to Theorem 2.1.1, 2) however pred
in RHS alone is an alphabetised relation and is not reactive, and it will cause a sequential
composition problem illustrated below.
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Provided P and Q are processes in CSP ‖ B , therefore both of them are R3 -healthy.
Sequence composition will result in

(P ∧ pred1) ; (Q ∧ pred2)

=

 ∃ okay0,wait0, tr0, ref0, v0 •
(P ∧ pred1) [okay0,wait0, tr0, ref0, v0/okay ′,wait ′, tr ′, ref ′, v ′]
∧ (Q ∧ pred2) [okay0,wait0, tr0, ref0, v0/okay ,wait , tr , ref , v ]


[Sequence as relational composition]

=

 ∃ okay0,wait0, tr0, ref0, v0 •
(P [okay0,wait0, tr0, ref0, v0/okay ′,wait ′, tr ′, ref ′, v ′] ∧ pred1[v0/v ′])
∧ (Q [okay0,wait0, tr0, ref0, v0/okay ,wait , tr , ref , v ] ∧ pred2[v0/v ])


[Substitution and pred only has state variables v ]

=


∃ okay0,wait0, tr0, ref0, v0 •

(P [okay0,wait0, tr0, ref0, v0/okay ′,wait ′, tr ′, ref ′, v ′])
∧ (Q [okay0,wait0, tr0, ref0, v0/okay ,wait , tr , ref , v ])
∧ (pred1[v0/v ′] ∧ pred2[v0/v ])


[Predicate Calculus]

=


∃ okay0,wait0, tr0, ref0, v0 •

(P [okay0,wait0, tr0, ref0, v0/okay ′,wait ′, tr ′, ref ′, v ′])
∧ (II rea � wait � Q [okay0,wait0, tr0, ref0, v0/okay ,wait , tr , ref , v ])
∧ (pred1[v0/v ′] ∧ pred2[v0/v ])


[Q is R3 -healthy]

=



∃ okay0,wait0, tr0, ref0, v0 •(
P [okay0,wait0, tr0, ref0, v0/okay ′,wait ′, tr ′, ref ′, v ′]
∧II rea ∧ (pred1[v0/v ′] ∧ pred2[v0/v ])

)
�wait� P [okay0,wait0, tr0, ref0, v0/okay ′,wait ′, tr ′, ref ′, v ′]
∧ Q [okay0,wait0, tr0, ref0, v0/okay ,wait , tr , ref , v ]
∧ (pred1[v0/v ′] ∧ pred2[v0/v ])




[Conditional and Predicate Calculus]

So this result states that even Q has not started (wait = false), the predicate pred2 has
been established and state might be changed. It is opposite to what we expect: pred2 is
established only after Q has terminated. In order to overcome this problem, we introduce
R3 . Finally,

(P ∧R pred1) ; (Q ∧R pred2)

=

 ∃ okay0,wait0, tr0, ref0, v0 •
(P ∧R pred1) [okay0,wait0, tr0, ref0, v0/okay ′,wait ′, tr ′, ref ′, v ′]
∧ (Q ∧R pred2) [okay0,wait0, tr0, ref0, v0/okay ,wait , tr , ref , v ]


[Sequence as relational composition]

=

 ∃ okay0,wait0, tr0, ref0, v0 •
(P [okay0,wait0, tr0, ref0, v0/okay ′,wait ′, tr ′, ref ′, v ′] ∧R pred1[v0/v ′])
∧ (Q [okay0,wait0, tr0, ref0, v0/okay ,wait , tr , ref , v ] ∧R pred2[v0/v ])


[Substitution and pred only has state variables v ]

=


∃ okay0,wait0, tr0, ref0, v0 •

(P [okay0,wait0, tr0, ref0, v0/okay ′,wait ′, tr ′, ref ′, v ′] ∧R pred1[v0/v ′]) ∧ II rea

�wait�
(Q [okay0,wait0, tr0, ref0, v0/okay ,wait , tr , ref , v ] ∧ pred2[v0/v ])




[Defintion of ∧R: R3 -healthy]
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=



∃ okay0,wait0, tr0, ref0, v0 • (
P [okay0,wait0, tr0, ref0, v0/okay ′,wait ′, tr ′, ref ′, v ′]
∧R pred1[v0/v ′]

)
∧II rea


�wait�
(

P [okay0,wait0, tr0, ref0, v0/okay ′,wait ′, tr ′, ref ′, v ′]
∧R pred1[v0/v ′]

)
∧
(

Q [okay0,wait0, tr0, ref0, v0/okay ,wait , tr , ref , v ]
∧ pred2[v0/v ]

)



[Conditional and Predicate Calculus]

Therefore, the sequence problem is overcome.
Furthermore, for (P ∧R pred), it is simply both R1 and R2 healthy. Finally, it is

R-healthy and we can say the RHS of the laws below is also reactive.

Law 2.4.1 (Basic Processes).

(SKIP ) ‖C B
ops

(
Bproc

v ′

v

)
= SKIP ∧R

(
v ′ = v

)
(STOP ) ‖C B

ops

(
Bproc

v ′

v

)
= STOP ∧R

(
v ′ = v

)
(div) ‖C B

ops

(
Bproc

v ′

v

)
= div ∧R true

This law states that the behaviour is the same as that in CSP and the state in B remains
unchanged for termination and deadlock, but unconstrained for divergence.

Law 2.4.2 (Prefix (Independent Event)). For the channel c that is in CSP only, it
can engage independently and the state in B remains unchanged.

(c → P) ‖C B
ops

(
Bproc

v ′

v

)
= ∃ v0 •

(
c →

(
P ‖C B

ops

(
Bproc

v ′

v0

)))
∧R (v0 = v)

Law 2.4.3 (Prefix (Synchronisation Event)). Provided the precondition of the opera-
tion op, pre (op), in B holds or the operation op is enabled, then the op event is available
to its environment.

(op → P) ‖C B
ops

(
µX •

(
((op → X )<I enabled (Op)>I STOP )
. . .

) )v ′

v

= ∃ v0 •




op →

P ‖C B
ops(
µX •

(
((op → X )<I enabled (Op)>I STOP )
. . .

) )v ′

v0




∧R post (Op) [v0/v ′]


After the engagement of the op event, the postcondition of the op operation, post (op), is
established. post (op) [v0/v ′] means all free occurrences of dashed variables v ′ in post (op)
are substituted by v0 and sequentially v0 is the input state of the following parallel compo-
sition of the process P and the B machine with newly updated state. Therefore the state
is changed. It is worth noting that the two occurrences of v ′ in the equation above have
different scope. The first v ′ denotes the after state of the parallel composition, while the
second one represents the dashed variables in the post condition of op.
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Otherwise, if the precondition of the operation op in B does not hold or the operation
op is not enabled, then the op event is not available to its environment. The state is not
changed.

(op → P) ‖C B
ops

(
µX •

(
((op → X )<I enabled (Op)>I STOP )
. . .

) )v ′

v

= STOP ∧R
(
v ′ = v

)
Law 2.4.4 (Sequential Composition).

(P ; Q) ‖C B
ops

(
Bproc

v ′

v

)
= ∃ v0 •

((
P ‖C B

ops

(
Bproc

v0
v

))
;

(
Q ‖C B

ops

(
Bproc

v ′

v0

)))

2.4.1 Semantic Considerations

Various semantics have been presented for combinations of CSP and B.
One approach, as presented along with csp2B [77], is to combine CSP-like descriptions

with standards B machines together to allow CSP notations to put constraints on the order
in which the operations in B machines can occur. Using csp2B, a model in a pure CSP
specification or a combination of CSP-like descriptions and B machines can be translated
to a model in pure B machines. Butler [77] uses an operational approach to giving the
semantics to the CSP and B combination and justifying the translation as well.

Schneider and Treharne [15] extended Morgan’s CSP semantics for event systems [78],
which uses weakest precondition notations over action systems to express traces, failures
and divergences of CSP, to B machines and introduced an additional stable failures se-
mantics to B machines. Since both CSP and B have the traces model, the stable failures
model, and the failures-divergences model now, the semantics of the combination of CSP
and B, CSP ‖ B , can be analysed by using these models together.

Another approach to combining CSP and B, which is the approach used in ProB, is
through the combination of operational semantics of both CSP and B [79]. The state of a
combined CSP and B specification is a pair from the state of the B machine to the state of
the CSP process. The transition from an old state to a new state in the combined model
is labelled with channel events which link CSP events to B operations. The CSP events
and the B operations are the labelled transitions in the transition systems of CSP and B
respectively.

Since the denotational semantics of Circus is based on UTP, our treatment of the
semantics of CSP ‖ B is also specified in UTP. The other semantics of combining CSP
and B facilitate our understanding of CSP ‖ B in ProB as well as our definition of UTP
semantics for CSP ‖ B .



Chapter 3

Model Checking Approaches

In the beginning of this chapter, we discuss the difficulties of developing a model checker for
Circus from scratch. Then Section 3.2 gives a brief introduction of current model checking
approaches for Circus. After that, Section 3.3 presents our solution in detail. Particularly,
the differences from other solutions and the considerations of our approach are given in
the end.

3.1 Difficulties

The difficulties of developing a model checker for state-rich Circus language lie in several
factors.

Model checking is a technique to use an exhaustive search of the system’s state space
to check whether the system model in a formal language satisfies a desired specification.

The state explosion problem [32,33,71] is the biggest challenge for model checkers and
well-known to model checking communities. The problem originates from the fact that the
size of the state space grows exponentially with the number of processes if it is explicitly
enumerated. For instance, if a system is composed of m processes and each process has n
states, then the whole system has nm states. Even for a small system, it is still hard or
impossible to represent and search this state space explicitly.

Roscoe [71, Chapter 17] views the problems as two sorts. The first one is a concrete
system with large data-types, many parallel processes, or both of them. These concrete
systems may have large finite state spaces or infinite state spaces due to infinite types
or unlimited number of parallel processes. And the second one is a family of systems,
usually infinitely many, by parametrisation. The main challenge for concrete systems is
the growing state space, while for the parametrised systems there rises another problem
about the proof of an infinite number of concrete systems at the same time. This is known
as the parametrised verification problem.

Circus is a language designed for the state-rich concurrent systems. For these systems,
the size of their state spaces is intrinsically huge. This may be due to infinite data types,
nondeterminism (from disjunction of state operations and internal choice), and unbounded
number of parallel processes, which is the first sort of problem as described above. Or the
family of concrete systems introduced by parametrisation and loose constants in Circus,
which is the second sort of problem. A loose specification [63, p. 367] has a number of
constants introduced with a range of values (maybe infinite like N). Uninitialised state
variables also results in this looseness. Finally, these loose constants are regards as the
parameters to the specification, and consequently the model specifies a family of systems.
Therefore, to cope with the state explosion problem for the systems specified in Circus, it
is even harder.

Additionally, expressiveness power of Circus, such as rich notations and flexible user
defined operators, makes the development of model checker for Circus very difficult in
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practice.

3.2 Current Approaches

A number of solutions have been proposed to model-check Circus models. Some of them are
developed based on the operational semantics of Circus while others are merely transformed
models to other formal languages and then use currently applicable model checkers for these
languages to check translated models, which indirectly checks the original Circus models.

3.2.1 Operational Semantics Based

3.2.1.1 Model Checker Prototype By Freitas

Freitas proposed a model checker architecture in his PhD thesis [44, Figure 4.1]. The basic
idea is similar to that of FDR to use refinement checking. Firstly, the syntax of a model
is transformed into internal transition system by a compiler. The transition system used
for Circus is a predicate transition system (PTS) [44, p. 84] which is a variation of the
labelled transition system (LTS). Then the specification side of refinement is normalised
to eliminate nondeterminism and internal transitions. Finally, an algorithm is used to
check the transition system of the implementation against the normalised specification to
determine if the implementation is a correct refinement of the specification. Additionally,
a theorem prover is integrated into the proposed model checker. The work finally results in
a parser and type checker for Circus in CZT [80] project and a prototype model checker [44,
Chapter 5] developed in Java.

3.2.1.2 Model Checker on FORMULA

Another operational semantics based model checker [47, 48] is built on Microsoft FOR-
MULA framework [49] which is based on constraint logic programming (CLP) and satis-
fiability modulo theories (SMT) solving introduced from the Z3 solver [81]. This model
checker can support both state-rich Circus and CML languages. Its rapid prototyping is
very interesting. It takes 72 hours to build a semantically well founded model checker for
Circus, following two months to learn FORMULA and eight months to build a reusable
framework [47,48].

The methodology of this work is to 1) use abstraction to get a semantically equal
description in logic (FORMULA) from the input Circus or CML model, 2) convert the
properties to be checked into this logic at the same time, then 3) combine them together
to form a logic representation, and 4) finally feed it to the SMT solver to check if the
desired properties hold in the input model. The goal of this model checker is to preserve
the semantics and give correctness by construction instead of the optimal performance.

Based on this methodology, this model checker is able to check some basic properties,
such as deadlock, divergence, and determinism for a Circus model, or application specific
properties in the temporal logic. However, it is not capable of checking whether one Circus
program is a correct refinement of another specification, that is, the lack of refinement
model checking.

3.2.2 CSPM and FDR

As we know, two model checking solutions: the link [52, 53] and the map [54, 55], are
proposed to link or map Circus to CSP (CSPM ) and then finally use FDR to model check
the linked or mapped CSP specifications.

The link is based on the translation rules given in the work [35, Chapter 5] which
translates Circus to Java with JCSP. Instead of Java and JCSP, the link translates both
state and behavioural aspects of Circus to CSPM . In addition, a translator prototype [53],
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which is an extension based on JCircus source code, is developed. The basic methodology
behind this solution is to translate the state components of a process in Circus to the
parameters list of a process in CSP. Obviously, the type information of state variables are
lost after translation. In addition, it is not clear how to cope with schema expressions in
this solution because schema expressions are natural in Circus.

The map, however, takes a different approach. It first transforms the state-rich Circus
model into a stateless model using the memory model [59]. For each basic process, its
state variables are modelled and kept in a Circus action Memory , which provides access
and update of each state variable through internal events mget and mset . Then this
Memory action is put in parallel with the main action of the process. By this way, the
state schema is eliminated and consequently the process becomes stateless. Then after
that, in its second step, the stateless Circus model is transformed to CSPM . Finally, the
CSP model is model-checked by FDR.

Both solutions have their main advantages to use the powerful model checker FDR that
could work on an industry scale.

3.2.3 Refinement Calculus

CRefine [82] is a refinement tool and not a model checker. Its methodology to preserve
correctness between refinements and the specification is through its well-proven refinement
strategy and laws [35,64]. So from the specification, CRefine can guide the step-wise refine-
ment according to the laws integrated. However, it cannot check properties for individual
Circus model or refinement between different Circus models.

3.2.4 Implementation

There is one solution, JCircus [35, 50, 51, 56], that translates a concrete Circus model into
Java. Fundamentally, it is not a model checker solution. Instead, it is an implementation
of Circus in the programming language. By JCircus, the concrete and executable Circus
model is translated to Java. The basic strategy is to translate the data part of Circus into
Java directly and the behavioural part in CSP to JCSP which is an implementation of CSP
in Java. Therefore, this tool requires the Circus models should be refined to an executable
model before translation. To be integrated with CRefine, this tool obviously has its value.

3.3 Our Approach

Our approach, model checking of Circus by linking to a combination of a state-based
formalism and a process algebra, is proposed based on our understanding of the difficulties
to develop a model checker for Circus from scratch, and the review of current tools.

Similar to the map and the link, our solution is based on the translation of Circus
to another formal language too. But the main difference of our approach is to preserve
the state part of Circus, which is described in Z, still in a state-based language instead of
CSPM . Therefore, the majority of the data-rich aspect of Circus will be kept.

Since Circus is a combination of Z and CSP, the translation of Circus to an integrated
formal language which is composed of Z and CSP is obviously our first consideration.
CSP-OZ [11] and CSP-Z [13,14] are two examples. However, both of them use the similar
strategy [14, 17, 19] to model-check their specifications: transformed to CSPM and then
checked by FDR. Therefore, compared to the direct translation of Circus to CSPM , this
method does not have any advantages. Finally, we choose CSP ‖ B [15] as one of integrated
formalisms to which Circus models are translated. CSP ‖ B has its own model checker
ProB [20] which supports the checking of deadlock and divergence as well as temporal
logics formulas.
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Table 3.1: Comparison of Various Tools in Model Checking Aspect

Item FORMULA CRefine CSPM

(FDR) Our Approach

Overall
Abstraction Yes Yes No Partial loss
Looseness Yes Yes No Partial support

Nondetermin-
ism Yes Yes Partially

support Yes

Performance - - Good Not good
Properties

Refinement No Yes Yes Yes (Traces and
Failures)

Deadlock Yes - Yes Yes
Divergence Yes - No Yes

Deterministic Yes - Yes Yes
Temporal
Logic Yes - No Yes

Syntax and Semantics
External
Choice Yes Yes Partially Yes (Extension)

Parallel
Composition

and
Interleaving

Yes Yes Yes Yes (Extension)

Miscellaneous
Animation No No Yes Yes

Counterexam-
ple - - Yes Yes

Development
of Translator - - Complex Less complex

3.4 Final Considerations

In this section we compare our approach with other solutions, and present our considera-
tions to use this approach in detail.

The comparison of these solutions from model checking aspect is illustrated in Table 3.1.
In the table, not all tools reviewed in Section 3.2 are listed. The reason to exclude Freitas’s
model checker prototype is because it does not get further development and consequently
no applicable tool. And because JCircus is not a model checker solution, it is omitted as
well. In the table, FORMULA denotes the model checker on FORMULA and CSPM (FDR)
denotes both the link and the map solutions. Since the FORMULA solution and CRefine
are not a refinement model checker — however refinement checking is very important in
our objectives, they are just displayed in the table but no many details given. Finally, the
main solutions to be compared are the link and the map.

3.4.1 Overall

Abstraction is very important to Circus, which makes it suitable for modelling the state-
rich systems in its specifications. For example, abstract data type in Circus, similar to Z,
comprises a state schema to describe the state space, and a number of operations, each
of them gives the relation between input and output variables, the state before operation,
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and the state after operation. Since CSP does not support abstract types such as N, the
translation of an abstract Circus specification into a concrete CSP specification will result
in information loss. Our solution finally still uses a B machine to represent the state part,
and consequently preserve the abstraction. However, if these abstract types are used in the
behavioural part, our solution has the same issue as the translation to CSP. Eventually,
our solution may have partial loss of abstraction.

Loose specifications, the specifications with global constants (may have uninitialized
state variables too) to define a family of systems, are natural in Circus. But CSP does not
support looseness. For our solution, if these constants are only used in the state part, they
will be converted to B which supports loose constants. However, if they are used in the
behavioural part too, we have to give a specific instantiation of all constants that are used
in CSP. Finally, our solution partially supports looseness.

Nondeterminism in Circus is introduced by the disjunction of operations or internal
choice. When it is translated into CSP, the nondeterminism from the disjunction of op-
erations will be lost. Our solution translates the disjunction of operations into B and
consequently keeps this nondeterminism.

In the end, ProB’s performance and scalability are not as good as FDR because its
underlying logic language (SICStus Prolog [83]) cannot support multithreading. This is
the major advantage of the solutions that translate Circus to CSP when compared to our
solution.

3.4.2 Properties

Refinement checking obviously is the most desired feature for a Circus model checker be-
cause Circus is characterised by its refinement calculus. For the solutions relying on FDR,
they can use all refinement models in FDR, such as the traces model, the failures model,
and the failures-divergences model. Our solution can check refinement in only two models:
traces model and failures model.

For other typical properties (deadlock, divergence, and deterministic), the divergence
checking of our solution is different. In Circus, in addition to divergence arising from the
behavioural part in CSP notations, divergence may arise from the unsatisfied precondition
of a schema expression as action, a specification statement, or an assumption, or from an
alternation in which all guard conditions does not hold. The map restricts to divergence-
free Circus models. In our solution, this divergence information is also captured (see Link
Rule 31, 53, 55, and 56) in an explicit process div and it is checkable.

Furthermore, our solution is able to check other application specific properties specified
in temporal logics: LTL and CTL [31]. Particularly, ProB supports formulas to specify
past states and transitions in its extension of LTL, LTL[e] [84].

3.4.3 Syntax and Semantics

In Circus, external choice, parallel composition, and interleaving of actions have non-trivial
difference from those in CSP.

For external choice, it could only be resolved by external events or termination, but
not internal state changes. For instance,

(s := 1 ; c.s → Skip) 2 (s := 2 ; d .s → Skip)

provides its environment with two events (c.1 and d .2). Only after the environment has
made a choice, then the external choice is resolved. Upon resolution, the state variable
s is updated correspondingly: if c.1 is engaged, then s is equal to 1; otherwise, it is 2.
This semantics make it hard to be related to CSP notations. Due to this, the map limits
the actions in an external choice to prefixed actions. That is the similar case as used in
our solution in this document. We also restrict the actions to prefixed actions AA (see
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Definition B.3.1) in Rwrt Rule 30. However, this limitation could be eliminated in our
solution by introducing an extra notation in CSP ‖ B to represent the corresponding
external choice in Circus, then extending the ProB’s kernel to support this lazy resolution
of the external choice.

As to parallel composition and interleaving of actions, such as

(A1 J ns1 | cs | ns2 K A2)

(A1 ||[ ns1 | ns2 ]||A2)

Circus introduces two disjoint name sets ns1 and ns2. Both A1 and A2 are allowed to access
or modify all variables in scope, but only the changes made in A1 to ns1 and in A2 to ns2

will be kept after termination. The map rewrites parallel composition or interleaving
to have an additional copy of local memory MemoryMerge for each action, then use a
Merge process to merge two local memories into the main memory. In this thesis, we limit
it to two situations: “Disjoint Variables in Scope" (Φ Rule 30) and “Disjoint Variables
in Updating” (Φ Rule 31). It is also possible to support them fully by using a similar
strategy. We can rewrite parallel composition and interleaving at first to declare two copies
of temporary variables by variable block, and in each copy, every temporary variable has
a corresponding variable in scpV , where scpV is a function to get a set of all variables in
scope in an action. Initially, these temporary variables are initialised to the values of their
corresponding variables in scpV . Then in A1 and A2, instead of updating variables in scpV
directly, we update its temporary copy. After that, int the end of parallel composition and
interleaving, only variables in ns1 and ns2 will be assigned with new values from their
corresponding copies of temporal variables. However, it is difficult to verify this solution
and implement it in the translator. Finally, we do not support this solution in this work.

3.4.4 Miscellaneous

Debugging plays a significant role in model checking. When an error arises during model
checking, it is essential to provide a counterexample to give enough hints about the trace
which leads to this error. In addition, the capability to animate Circus models is also very
useful. It helps users or engineers to get a good understanding of systems in design in
its early stage or demonstrate systems before being made. The animator of ProB is very
straightforward and user-friendly.

Compared to the link and the map that translate Circus to CSP, our solution uses a
different approach to CSP ‖ B . Therefore, the complexity of the translator development
is different. Comparatively, our translator would be less complex because it does not need
to translate all constructs in a state-rich Circus to CSPM and most of them are still kept
in the final resultant B machine.

3.4.5 Summary

Our approach to model-check Circus is presented based on an analysis of all these aspects.
The major drawback of our approach is the performance concern which really relies on
the possible improvement of ProB in the future. In case of performance improvement, our
approach will be significantly valuable.



Chapter 4

Link

In this chapter, the link from Circus to CSP ‖ B of our approach is defined. Our link
definition is based on the semantics of both Circus and CSP ‖ B . The main objective of
the link definition is to preserve the semantics of each construct in Circus after it is linked
to CSP ‖ B . Its soundness is given in Chapter 5.

This chapter first shows overall definition of the link, its strategies, and decompositions.
The link mainly consists of three decomposed functions: the rewrite function - Rwrt , the
state part translation function - Ω, and the behavioural part translation function - Φ. The
Ω function is decomposed further into three sub-functions — Ω1, Ω2, and Ω3 — for different
stages of the state translation. In the second part of this chapter, these functions are defined
by a collection of rules for constructs from their domain. Basically, we give the rules to the
general constructs at first, then to sections, expressions, given type paragraphs, axiomatic
definition paragraphs, channel declarations, processes, and finally to actions. All these rules
are defined individually for each construct of one function. To link a construct in Circus to
the final CSP ‖ B program, according to our link definition and decompositions, actually
it is an application of multiple rules from different functions sequentially. Therefore, to link
a specification by application of individual rules would be long and tedious. Eventually, we
present the Link Rules in Appendix E, which link from Circus to the combination of CSP
and Z by combining several individual rules in this chapter together for each construct
in Circus. Consequently, when linking a Circus specification or construct, we can use Link
Rules directly regardless of all internally individual rules.

4.1 Link Strategies and Functions

4.1.1 Overall Link Strategies

Our link from a Circus program to a CSP ‖ B program is defined as a function Υ (pro-
nounced “upsilon”).

Circus Υ
===⇒ CSP ‖ B

The overall link strategies of our approach are illustrated in Figure 4.1 and Figure 4.2,
which are seen from the language view and the structural view respectively.

From the language view, Circus is a combination of Z, CSP, and guarded commands.
The syntax of Circus is a free mixture of Z and CSP. The interaction between the state part
and the behavioural part is not limited to schema expression as action, and it includes other
actions, such as communications capable of accessing state variables directly, assignments
to update or access state variables, specification statements to specify the state part,
and guarded commands to evaluate state variables. The overall strategies of Υ from the
language view are given below.
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Figure 4.1: Link Relation from Language View

• Fundamentally, the state part of Circus is linked to a B machine and the behavioural
part to a CSP specification. Some constructs such as command actions, which specify
both state and behaviour, are mapped to constructs in both B and CSP.

• Since in CSP ‖ B , the only intersection between a CSP program and a B machine is
through the parallel of operations in B with operational events in CSP. Therefore, our
link transforms all interactions in Circus between the state part and the behavioural
part to schema expressions as action, which are finally linked to operations in B and
operational events in CSP.

And from the structural view, a Circus specification is composed of several sections:
global definitions, channel declarations, a set of explicitly defined processes, and compound
processes. And in CSP ‖ B , a B machine has a definition part, a state part and an operation
part, while a CSP specification consists of definitions, channel declarations, and processes.
The overall strategies of Υ from the structural view are given below.

• The definitions, such as type definitions, abbreviation and axiomatic definitions, are
mapped to the counterparts in B and possibly in CSP if they are referred in the
behavioural part of Circus.

• Channel declarations are mapped to channel declarations in CSP.

• State components in Circus are mapped to variables in B. However, since state com-
ponents are encapsulated in explicitly defined processes, they are merged to form
variables in B when mapped.

• Operational schemas within an explicitly defined process, which includes the state
schema in its declaration and is not included by other schemas, are mapped to op-
erations in B. However, these operations are restricted to manipulate variables that
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Figure 4.2: Link Relation from Structural View

are mapped from state components of the same process in Circus, and never change
variables that are mapped from state components of different processes.

• The main action of an explicitly defined process is mapped to a same name process
in CSP.

• Compound processes are linked to the same name processes in CSP.

4.1.2 Υ Function Decomposition

Because a Circus program is linked to a CSP ‖ B program with a complete B machine
and a CSP specification, we decompose the Υ function into two functions: Ω (pronounced
“omega”) function and Φ (pronounced “phi”) function. The Ω function is responsible for
the translation of the state part in Circus to B, while the Φ function is for that of the
behavioural part to CSP.

However, Circus itself is not a simple combination of CSP and Z languages but a free
mixture of CSP and Z with additional guarded commands. An example is the assignment
command that may specify both state and behaviour. For instance, the action

c?x → (s := x + l)

inputs a value x over the channel c, then the assignment command updates the state
variable s to x plus the local variable l . In this action, state and behaviour are mixed
together. The state part states that s will be updated and after that it is equal to the
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addition of x and l , while the behavioural part specifies that this update only happens
after receiving message on the channel c. As a result, Ω and Φ functions cannot apply to
the original Circus program directly.

Thus, another function, named Rwrt , is defined. It aims to rewrite a Circus program to
separate the state and behavioural parts into Z and CSP. The action above is rewritten to
an action

c?x → (AssOp)

and a schema

AssOp == [ ∆P StPar ; l? : Tl? ; x? : Tc | s ′ = x? + l? ∧ u ′ = u ]

according to Rwrt Rule 39 which is defined later. Finally, Ω and Φ can be easily applied
to this rewritten Circus program.

The relation of Υ function decomposition is displayed in Figure 4.3. In a rewritten
Circus program, state and behaviour are separate. No construct will specify both state
and behaviour at the same time. The interaction between them highly depends on schema
expressions. The original schemas and schema expressions in Z and behaviour respectively
are still kept in the rewritten program. In addition, it is worth noting that additional
operational schemas are added in Z, and any direct access and update of state components
in Circus actions will rely on schema expressions. For instance, provided s is a state
component in the action c!s → Skip, according to Rwrt Rule 27, an extra schema Op s
(where Op s == [ ΞStPar ;s! : Ts | s! = s ]) is added in the Z part and a schema expression
(OP s) is added in the beginning of this action to get the value of s in the behavioural
part. Furthermore, for other constructs such as commands, they are rewritten to additional
schemas and their schema expressions as well. Finally we state that the rewritten Circus
program has the same structure as the original program, which means state components
of each process are still encapsulated in its own process.

4.1.2.1 Ω Function Decomposition

For the Ω function, our strategy is to reuse the currently available solution [85] in ProB
to translate Z in ZRM [4] , or ZRM Z for short, to B. Considering this strategy, we map
the state part of a Circus program to ISO Standard Z first because Circus itself is written
in ISO Standard Z, then to Z in ZRM, and finally from ZRM to B by ProB. Accordingly,
the Ω function is decomposed as well: the Ω1 function translates the state part in Z in a
rewritten Circus specification to a complete specification in ISO Standard Z by merging all
state components and schemas from all processes; the Ω2 function syntactically transforms
Z in ISO Standard Z to that in ZRM; the Ω3 function, translation function from ZRM to
B, is implemented in ProB and stated in Daniel Plagge et al.’s work [85]. Therefore, the
link rules or definitions given in the rest of this paper mainly focus on the link from the
original Circus specification to a combination of CSP and Z in ZRM. And the link from Z
to B is done by ProB and will not be given in this thesis. Finally, an additional notation
‖B is introduced to the combination of CSP and Z in ZRM, and CSP ‖B Z denotes the
combination of CSP and Z in ZRM in terms of CSP ‖ B and it is eventually translated by
ProB to CSP ‖ B .

4.1.3 Link Strategies

In addition to the overall strategies and link functions, some other strategies are defined.

• Every rule defined for Υ is sound unless stated otherwise. The soundness of the map
is based on UTP semantics. If the corresponding linked constructs in CSP ‖ B have
the same semantics as the original constructs in Circus, then the link is sound.
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Figure 4.3: Translation Function (Υ) Decomposition

– From the design perspective, a design P1 `Q1 is equal to another design P2 `Q2

if, and only if, (P1 = P2) ∧ (P1 ⇒ (Q1 = Q2)). If both designs have the same
alphabets (ok , v , and their dashed counterparts), the same preconditions that
imply the equal postcondition, we say they are semantically equal.

– From the reactive process (R(P `Q)) perspective, if both reactive processes
have the same alphabets (ok , wait , tr , ref , v , and their dashed counterparts),
the same preconditions that imply the equal postcondition and the same other
observation variables, we say two reactive processes are semantically equal.

– For state-based specification languages such as Z and B, their semantics are
specified in the design theory of UTP. But for CSP and the behavioural part of
Circus, their semantics are specified in the reactive theory of UTP.

• State components of Circus are maintained in a Z specification and finally a B ma-
chine. Thus we require they are updated only in the B machine but can be accessed
in both B and CSP programs. The CSP specification will not maintain states. If
a process in the CSP specification needs to get the value of variables in B, it shall
retrieve them through a communication between CSP and B.

4.2 Circus Common Constructs Translation

4.2.1 Identifiers

In ISO Z Standard, an identifier is a decorated word, DECORWORD, composed of WORD
and STROKE. A WORD can be a keyword, an operator or a NAME.

A STROKE (’, !, and ?) can be used in three contexts [70, 8.4].

• NAME, such as q ′ .

• binding construction expression if it can be interpreted, such as θ S ′ provided S is a
schema.

• schema decoration expression, such as S ′ provided S is a schema.

In addition to LETTER, DIGITAL and underscore ( ,\_), a NAME may have other
special symbols, such as
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• stroke (’, !, and ?)

• subscript x1 (x_1)

• superscript x 1 (x^1)

• . . .

4.2.1.1 Identifiers in CSPM and B

The pattern of an identifier or name in CSPM and B: [a-zA-Z][a-zA-Z0-9_] [60] [86].
It begins with an alphabetic character ([a-zA-Z]) and are followed by any number of
alphanumeric characters or underscores. Particularly, for CSPM , it can be optionally
followed by a prime character (’).

4.2.1.2 Consideration

Because a name in CSPM and B has limited patterns but in Circus it has more, our
translation needs to cope with name translation as well. Two potential solutions are
immediately presented.

• Replace special symbols with specific combination of characters in CSPM and B. For
example, x1 may be translated to x_1 to map a subscript to an underscore;

• Restrict symbols used in Circus to make translation easy. For example, x1 is not
allowed.

We use the second solution because for the first solution we still need to cope with
naming conflict—x 1 may have been used before translating a x1 to x_1. Furthermore,
usually the common naming pattern is frequently used when writing Circus program, such
as x 1 instead of x1.

However, some special symbols like stroke (’, !, and ?) in a name are very important
parts of Z: x ′ within a schema or a specification statement means after-state of the variable
x ; x? and x ! within a schema mean input and output variables of the schema. Thus these
symbols have to be kept. By our rules, they are translated to ZRM and B finally. In B
machine, the after-state of a variable is specified by substitution and occurs in RHS of
substitution, such as x := x + 1. Therefore, prime (′, ’) in x ′ will be removed. For input
and output variables, a B operation, ( o1, o2, ... <-- Op(i1, i2, ...) = ...), has
specific position for input and output variables in the definition of an operation. Thus ?
and ! strokes are removed as well.

In sum, our rule is to restrict the name pattern in Circus to have the pattern below.

[a-zA-Z][a-zA-Z0-9_][’!?]

The end prime strokes are only used in the schema and specification statement contexts
while input stroke and output stroke are only used in the schema context.

4.3 Circus Rewriting Function - Rwrt

The Rwrt function aims for the separation of the state part and the behavioural part in
explicitly defined processes. Consequently, all interactions between the state part and the
behavioural part are through schema expressions only.

Among a large number of rewrite rules, most of them are straightforward while only
some of them, listed as follows, are not.

• Inheriting Sections: Rwrt Rule 2
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• Axiomatic Definitions: Rwrt Rule 5

• Parametrised Processes: Rwrt Rule 11

• Indexed Processes: Rwrt Rule 14

• Renaming Operator: Rwrt Rule 19

• Explicitly Defined Processes with Renaming: Rwrt Rule 20

• Indexed Processes with Renaming: Rwrt Rule 21

• External choice of processes in Rwrt Rule 22

• Additional State Components Retrieve Schemas: Rwrt Rule 23

• Prefixing Action: Rwrt Rule 27

• Guarded Action: Rwrt Rule 28

• External Choice: Rwrt Rule 30

• Recursion: Rwrt Rule 34

• Assignment: Rwrt Rule 39

• Alternation: Rwrt Rule 40

• Parametrisation by Value, by Result, and by Value-Result: Rwrt Rule 42

• Specification Statement: Rwrt Rule 43

4.3.1 General Rule

Rwrt Rule 1 (General Rule). For all constructs of which rewrite rules are not specifically
defined in this section, their rewrites will not change anything.

4.3.2 Inheriting Sections

In addition to the syntax of Circus briefed in Section 2.2.1, a Circus program can be orga-
nized and reused in the same mechanism as in ISO Standard Z by inheriting sections. For
example, the section header below has standard circus toolkit as its parent and it inherits
and reuses all definitions in circus toolkit easily.

section a parents circus toolkit

And another example is shown below. If a section b has a as its parent, then b can
reuse all definitions in a including all from circus toolkit .

section b parents a

Rwrt Rule 2 (Inheriting Sections). For a section with n parent sections,

section this section parents psec1, psec2, . . . , psecn

it is rewritten to a new section with the same section name but all definitions from its
parent sections recursively included except standard toolkits. Finally, it results in the new
section below.

section this section parents standard toolkit , . . .
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AllDef (psec1)
AllDef (psec2)
...
AllDef (psecn)

where AllDef (sec) denotes all definitions from the section sec, and all its parent sections
only include standard toolkits.

The definition of AllDef is given below.

Step 1 If sec only has standard toolkits as its parent sections, then AllDef (sec) returns
all definitions in this section. Otherwise,

Step 2 If sec has other parent sections, it includes all definitions from these sections
by AllDef according to the order of these sections’ name in its section header. In
addition, all definitions from parent sections are put in the front of this section.

Step 3 For AllDef of its parent sections, repeat “Step 1” and “Step 2” above to include
all definitions.

Step 4 If its parent sections have the same sections as their parent sections, include only
one copy of these grandparent sections before these parent sections.

4.3.3 Expressions, Predicates and Operators

Rwrt Rule 3 (Expressions, Predicates and Operators). Rewriting an expression, a
predicate or an operator by Rwrt results in the same construct.

4.3.4 Given Set Definitions

Given sets, or basic types, are a way to introduce types into the specification. For a
given set, only its name matters and its internal structure is of no interest—these elements
cannot be identified and compared. However, there is no corresponding set notation in
CSP. Therefore, given sets are rewritten.

Rwrt Rule 4 (Given Sets). For each given set defined below,

[GSet1, . . . ,GSetn ]

it is rewritten to a free type

GSeti ::= CGSeti〈〈1 . .MAX GSET INTS 〉〉

where MAX GSET INTS is a constant introduced to denote maximum elements in the
given set.

4.3.5 Axiomatic Definitions

An axiomatic definition introduces a set of global variables with a constraint on them.
When these constants are linked to constants in CSP finally, they must be instantiated
because constants in CSP are concrete. In addition, the instances in CSP must match their
values in Z. Thus in this stage, axiomatic definitions in Circus are rewritten by appending
additional constraints into the predicate of the definition to choose only one instance of the
constants. Then the rewritten axiomatic definitions are mapped to the same axiomatics in
Z by the Ω function and constants in CSP by Φ Rule 3. The consistency of constants in Z
and CSP is therefore preserved.
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Rwrt Rule 5 (Axiomatic Definitions). If the global constants defined in an axiomatic
definition are used in the behavioural part—which finally is linked to CSP, additional
constraints are added to its predicate to choose only one instance of all defined constants.
For example, the axiomatic definition

size,max size : N

size < max size

is rewritten to

size,max size : N

size < max size
size = 5
max size = 15

where 5 and 15 for size and max size are just one valid instance.

4.3.6 Channel Declarations

Rwrt Rule 6 (Channel Declarations). A schema grouped channel declaration is ex-
panded to one or more typed channel declarations that depend on the number of variable
declarations in the schema.

Rwrt (channel c1, · · · , cn) = channel c1, · · · , cn
Rwrt (channel c1, · · · , cn : T ) = channel c1, · · · , cn : T

Rwrt (channelfrom S ) =

{
channel c1, c2, . . . , cn : Tc

channel d1, d2, . . . , dm : Td

provided S is a schema defined below and pred is omitted because only restriction imposed
on communication is its type.

S
c1, c2, . . . , cn : Tc

d1, d2, . . . , dn : Td

pred

4.3.7 Channel Set Declarations

Rwrt Rule 7 (Channel Set Declarations). Rewrite of channel set declarations is the
rewrite of their channel set expressions.

Rwrt (channelset N == CSExp) = channelset N == Rwrt (CSExp)

4.3.8 Channel Set Expressions

Rwrt Rule 8 (Channel Set Expressions). Rewrite of channel set expressions remains
the same.

Rwrt ({| |}) = {| |}
Rwrt ({| c1, c2, · · · , cn |}) = {| c1, c2, · · · , cn |}
Rwrt (CSExp) = CSExp
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4.3.9 Name Set Declarations

Rwrt Rule 9 (Name Set Declarations). Rewrite of name set declarations is the rewrite
of their name set expressions.

Rwrt (nameset n == NSExp) = nameset n == Rwrt (NSExp)

4.3.10 Name Set Expressions

Rwrt Rule 10 (Name Set Expressions). Rewrite of name set expressions remains the
same.

Rwrt ({ }) = { }
Rwrt ({ x }) = { x }
Rwrt (NSExp) = NSExp

4.3.11 Parametrised Processes

Rwrt Rule 11 (Parametrised Processes). For a parametrised process, it is expanded
to a number of explicitly defined processes. Provided that a parametrised process with
m parameters, named x1, x2, · · · , xm , and they have corresponding types T1,T2, · · · ,Tm .
And for each type Ti , it has ni elements. Finally, the notion xij is used to represent the
j th element of the ith parameter. The number of explicitly defined processes is equal to
the multiplication of the cardinality of all types: card(T1) × card(T2) × · · · × card(Tm).
For each combination of parameters (x1, x2, · · · , xn), it is mapped to an explicitly defined
process whose name is given by the strcat function.

Rwrt (process PP =̂ x1 : T1 ; x2 : T2 ; · · · ; xm : Tm • P)

=



Rwrt

(
process strcat (PP , , [x11, x21, · · · , xm1])

=̂ P [x11/x1, x21/x2, · · · , xm1/xm ]

)
Rwrt

(
process strcat(PP , , [x11, x21, · · · , xm2])

=̂ P [x11/x1, x21/x2, · · · , xm2/xm ]

)
...

Rwrt

(
process strcat(PP , , [x11, x21, · · · , xmnm ])

=̂ P [x11/x1, x21/x2, · · · , xmnm/xm ]

)
...

Rwrt

(
process strcat(PP , , [x1n1 , x2n2 , · · · , xmnm ])

=̂ P [x1n1/x1, x2n2/x2, · · · , xmnm/xm ]

)


where

• P is an explicitly defined process definition (begin · · · end). If P is a reference to
an explicitly defined process, then P in the rule should be replaced by the body of
P : B(P) where B is a function to get the body of the process P

• the substitution notation P [x1/x ] denotes the expression x1 consistently substituted
for free occurrences of the variable x in P

• strcat is a string concatenation function defined in Definition B.2.16
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For a parametrised process with only one formal parameter,

Rwrt (process PP =̂ x : T • P) =

 Rwrt (process PP x1 =̂ P [x1/x ])
...
Rwrt (process PP xn =̂ P [xn/x ])



Rwrt Rule 12 (Parametrised Process Invocation). The rewrite of a parametrised
process invocation is to find the corresponding mapped basic process

Rwrt (PP(e1, e2, · · · , em))

=



(e1 = x11 ∧ e2 = x21 ∧ · · · ∧ em = xm1)
&strcat (PP , , [x11, x21, · · · , xm1])

2 (e1 = x11 ∧ e2 = x21 ∧ · · · ∧ em = xm2)
&strcat (PP , , [x11, x21, · · · , xm2])

...
2 (e1 = x11 ∧ e2 = x21 ∧ · · · ∧ em = xmnm )

&strcat (PP , , [x11, x21, · · · , xmnm ])
...
2 (e1 = x1n1 ∧ e2 = x2n2 ∧ · · · ∧ em = xmnm )

&strcat (PP , , [x1n1 , x2n2 , · · · , xmnm ])


This resultant guarded processes are not valid syntax in Circus. They are just intermediate
representations and will be linked to CSP in the later stage. Finally their corresponding
constructs in CSP are valid.

If the parametrised process only has one formal parameter, then its invocation is sim-
plified.

Rwrt (PP(e)) =


(e = x1) & PP x1

2 (e = x2) &PP x2
...

2 (e = xn) &PP xn



Rwrt Rule 13 (Anonymous Parametrised Process and its Invocation). The invoca-
tion of the parametrised process can be an anonymous parametrised process. It is rewritten
to a named parametrised process and its invocation with the same actual parameters.

Rwrt ((x : T • P) (e)) =

{
Rwrt (process UPP =̂ x : T • P)
Rwrt (UPP(e))

After that, they are rewritten by Rwrt Rule 11 and Rwrt Rule 12.

4.3.12 Indexed Processes

Rwrt Rule 14 (Indexed Processes). An indexed process is rewritten to a parametrised
process with all its channels renamed at first, then it is expanded to a number of explicitly
defined processes by the parametrised process rule.

Rwrt (process IP =̂ i : T � P)

= Rwrt (process IP =̂ i : T • P [c := c i .i ]) [Definition of indexed processes]
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=

 Rwrt (process IP i1 =̂ (P [c := c i .i ])[i1/i ])
...
Rwrt (process IP in =̂ (P [c := c i .i ])[in/i ])

 [Rwrt Rule 11]

=

 Rwrt (process IP i1 =̂ P [c := c i .i1])
...
Rwrt (process IP in =̂ P [c := c i .in ])


[Substitution and i does not occur in P ]

where

• P is an explicitly defined process definition (begin · · · end). If P is a reference to
an explicitly defined process, then P in the rule should be replaced by the body of
P : B(P)

• P [c := c i .i ] denotes the renaming of each channel c in P to c i .i , and T =
{i1, · · · , in}.

Rwrt Rule 15 (Indexed Process Invoication).

Rwrt (IPbec) =


(e = i1) & IP i1

2 (e = i2) &IP i2
...

2 (e = in) &IP in



Rwrt Rule 16 (Anonymous Indexed Process and its Invocation). The invocation
of an indexed process can be an anonymous indexed process. It is rewritten to a named
indexed process and its invocation with the same actual parameters.

Rwrt ((x : T � P) bec) =

{
Rwrt (process UIP =̂ x : T � P)
Rwrt (UIPbec)

After that, they are rewritten be the Rwrt Rule 14 and Rwrt Rule 15.

4.3.13 Process Definition

Rwrt Rule 17 (Process Definition). The rewrite of a process definition except the
parametrised process, the indexed process and the renamed process, is a same name process
with its body rewritten.

Rwrt (process P =̂ B(P)) = process P =̂ Rwrt (B(P))

4.3.14 Process Invocation

Rwrt Rule 18 (Process Invocation). The rewrite of a process invocation except the
parametrised process and the indexed process is the name of the process.

Rwrt (P) = P
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4.3.15 Renaming Operator

The renaming operator P [cold := cnew ] defines a new process like P , except that all channels
in cold of P are renamed to the corresponding channels in cnew . It is worth noting that all
channels in cnew are implicitly declared, if needed.

Rwrt Rule 19 (Renaming Operator). In this rule, only process definitions by the re-
naming operator are taken into account and processes that are defined having the renaming
operator in the middle of their definitions are excluded. Therefore, this rule is eligible for
the process RP

process RP =̂ P [cold := cnew ]

but not eligible for the process PQ below because the renaming operator is used in the
middle of the definition of PQ .

process PQ =̂ (P [cold := cnew ]) ; Q

And additionally, provided P is only an explicitly defined process or an indexed process,
then

Rwrt (process RP =̂ P [cold := cnew ])

= Rwrt (process RP =̂ FRen (P , {(cold , cnew )}))

where

• P is an explicitly defined process definition (begin · · · end). If P is a reference to
an explicitly defined process, then P in the rule should be replaced by the body of
P : B(P)

• FRen(P , {(x , y)}), defined in Definition B.2.14, is a renaming function that replaces
occurrences of the term x in P to the term y

If P is a reference to an explicitly defined process, then P in the rule above should be
replaced by B(P). Therefore,

Rwrt (process RP =̂ P [cold := cnew ])

= Rwrt (process RP =̂ FRen (B(P), {(cold , cnew )}))

This rule states that the rewrite of a process RP , defined by the renaming of a basic
process or an index process P , is equal to the rewrite of a process with P expanded to its
body B(P) and all channels in cold are additionally renamed to the corresponding channels
in cnew .

Rwrt Rule 20 (Explicitly Defined Processes with Renaming). If P in Rwrt Rule 19
is an explicitly defined process,

process P =̂ begin
state StPar == [ s1 : TP1 ; · · · sn : TPn | p ]
Init == [ (StPar)′ | pi ]
Pars == [ · · · ]
APars =̂ B(APars)
• A

end



72 Chapter 4: Link

then

Rwrt (process RP =̂ P [cold := cnew ])

= Rwrt



process RP =̂

FRen





begin
state StPar == [ s1 : TP1 ; · · · sn : TPn | p ]
Init == [ (StPar)′ | pi ]
Pars == [ · · · ]
APars =̂ B(APars)
• A

end


,

{(cold , cnew )}




[Rwrt Rule 19]

= Rwrt



process RP =̂

begin
state StPar == [ s1 : TP1 ; · · · sn : TPn | p ]
Init == [ (StPar)′ | pi ]
Pars == [ · · · ]
APars =̂ FRen (B(APars), {(cold , cnew )})
• FRen (A, {(cold , cnew )})

end




[Only action definitions and the main action are renamed]

=



process RP =̂

Rwrt



begin
state StPar == [ s1 : TP1 ; · · · sn : TPn | p ]
Init == [ (StPar)′ | pi ]
Pars == [ · · · ]
APars =̂ FRen (B(APars), {(cold , cnew )})
• FRen (A, {(cold , cnew )})

end




[Rwrt Rule 17]

Eventually, it is a rewrite of the renamed process body in which the channels, which are in
cold , in action definitions and the main action are renamed to the corresponding channels
in cnew .

Rwrt Rule 21 (Indexed Processes with Renaming). In Circus, the indexed process
notation is commonly used with the renaming operator together to define more expressive
processes. Therefore, if the process to be renamed in Rwrt Rule 19 is an indexed process
IP ,

process IP =̂ i : T � P

where P is a reference to an explicitly defined process. Then

Rwrt (process RP =̂ IP [c i := d ])

= Rwrt (process RP =̂ FRen ((i : T � P) , {(c i , d)})) [Rwrt Rule 19]

= Rwrt (process RP =̂ FRen ((i : T • P [c := c i .i ]) , {(c i , d)}))
[Definition of indexed processes and Rwrt Rule 14]

= Rwrt (process RP =̂ i : T • FRen (P [c := c i .i ], {(c i , d)}))
[FRen only renames channels here]
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= Rwrt (process RP =̂ i : T • FRen (FRen (B(P), {(c, c i .i)}) , {(c i , d)}))
[Rwrt Rule 19 and P is a reference to an explicitly defined process]

= Rwrt (process RP =̂ i : T • FRen (B(P), {(c, d .i)}))
[FRen Transitivity Lemma C.2.2]

=

 Rwrt (process RP i1 =̂ FRen (B(P), {(c, d .i)}) [i1/i ])
...
Rwrt (process RP in =̂ FRen (B(P), {(c, d .i)}) [in/i ])

 [Rwrt Rule 11]

=

 Rwrt (process RP i1 =̂ FRen (B(P), {(c, d .i1)}))
...
Rwrt (process RP in =̂ FRen (B(P), {(c, d .in)}))


[Definition of indexed processes that the parameter i does not occur in P ]

=

 process RP i1 =̂ Rwrt (FRen (B(P), {(c, d .i1)}))
...
process RP in =̂ Rwrt (FRen (B(P), {(c, d .in)}))

 [Rwrt Rule 17]

Finally, it results in a set of explicitly defined processes like the rewrite of an indexed
process, but for each channel c in P , it is renamed to d .ij (where j is an index within
1 . . n) for each individual explicitly defined process RP ij .

4.3.16 Compound Processes

Rwrt Rule 22 (Compound Processes). For compound processes defined in term of
CSP operators, their rewrites are straightforward. The only exception is external choice
of two processes, where PA, a prefixed process given in Definition B.4.1, is like the process
P but its main action is a prefixed action AA (Definition B.3.1).

Rwrt (P1 ; P2) = Rwrt (P1) ; Rwrt (P2)
Rwrt (PA1 2 PA2) = Rwrt (PA1) 2 Rwrt (PA2)
Rwrt (P1 u P2) = Rwrt (P1) u Rwrt (P2)
Rwrt (P1 J cs K P2) = Rwrt (P1) J cs K Rwrt (P2)
Rwrt (P1 ||| P2) = Rwrt (P1) ||| Rwrt (P2)
Rwrt

(
P \ cs

)
= Rwrt (P) \ cs

Rwrt

(
; x : T • P(x )

)
= ; x : T • Rwrt (P(x ))

Rwrt

(
2 x : T • PA(x )

)
= 2 x : T • Rwrt (PA(x ))

Rwrt

(u x : T • P(x )
)

= u x : T • Rwrt (P(x ))

Rwrt (JCS K x : T • P(x )) = JCS K x : T • Rwrt (P(x ))

Rwrt

(||| x : T • P(x )
)

= ||| x : T • Rwrt (P(x ))

4.3.17 Explicitly Defined Processes

The rewrite of explicitly defined processes is to separate the state part and the behavioural
part as well as rename state components, schema paragraphs and action paragraphs. Con-
sequently, all interactions between the state part and the behavioural part are through
schema expressions only.

Basically, the rewrite of basic processes consists of several steps.

• Firstly, state components retrieve schemas are added in the process for actions to get
their values through schema expressions as action.
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• Then, all state components, schema paragraphs, and action paragraphs in the process
are renamed to avoid name conflicts when this process is merged with other processes
in the later stage by Ω1 Rule 1.

• Finally, the main action is rewritten.

4.3.17.1 Additional State Components Retrieve Schemas

Rwrt Rule 23 (Additional State Components Retrieve Schemas). The rule for
state components retrieve schemas is shown below, where the B function denotes the body
of the action. For each state component si in an explicitly defined process, one schema
OP si is added to retrieve the value of this state component. The name of the output
variable in this schema is composed of the state component name and !. And its type is
the same as the type of the state component.

Rwrt



process P =̂ begin
state StPar == [ s1 : T1 ; · · · sn : Tn | p ]
Pars == [ · · · ]
APars =̂ B(APars)
• A

end



=



process P =̂ begin
state StPar == [ s1 : T1 ; · · · sn : Tn | p ]
Pars == [ · · · ]
Op s1 == [ ΞStPar ; s1! : T1 | s1! = s1 ]
...
Op sn == [ ΞStPar ; sn ! : Tn | sn ! = sn ]
APars =̂ B(APars)
• A

end



4.3.17.2 Renaming

Rwrt Rule 24 (Renaming of State Components, Schemas, Actions and their
Refereneces). State components, schema paragraphs, action paragraphs, and each ref-
erence to them within an explicitly defined process are renamed by prefixing the process’s
name. The only exception is that the reference to state components in action is not
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changed.

Rwrt



process P =̂ begin
state StPar == [ s1 : T1 ; · · · sn : Tn | p ]
Pars == [ · · · ]
Op s1 == [ ΞStPar ; s1! : T1 | s1! = s1 ]
· · ·
Op sn == [ ΞStPar ; sn ! : Tn | sn ! = sn ]
APars =̂ B(APars)
• A

end



=



process P =̂ begin
state P StPar == [ P s1 : T1 ; · · ·P sn : Tn | p ]
P Pars == [ · · · ]
P Op s1 == [ ΞP StPar ; s1! : T1 | s1! = P s1 ]
· · ·
P Op sn == [ ΞP StPar ; sn ! : Tn | sn ! = P sn ]
P APars =̂ B(P APars)
• Rwrt(A)

end



4.3.17.3 Action Rewriting

Rpre and Rpost

Definition 4.3.1 (Rpre and Rpost). Rewriting an action to get the value of state compo-
nents in its first construct, Rwrt(A), is composed of Rpre(A) and Rpost(A) which denotes
the prefix (state components retrieve schema expressions) and the remaining respectively:

• Rwrt(A) = Rpre(A)→ Rpost(A), if Rpre (A) is not empty

• Rwrt(A) = Rpost(A), if Rpre (A) is empty

For example,

Constructs Rpre Rpost

Skip Skip
Stop Stop

c!si ! . . .!sj → A (OP si)→ · · · → (OP sj ) c!si ! . . .!sj → Rwrt(A)

g (OP si)→ · · · → (OP sj ) g
¬g1 Rpre(g1) ¬g1

g1 ∧ g2 Rpre(g1)→ Rpre(g2) g1 ∧ g2

g1 ∨ g2 Rpre(g1)→ Rpre(g2) g1 ∨ g2

(g) N A Rpre(g)→ Rpre(A) (g) N Rpost(A)

provided the condition g evaluates state components si ,. . . ,sj , and OP si is the schema
name for the state component si .

Rmrg

Definition 4.3.2 (Rmrg). A Rmrg (Rpre(A1),Rpre(A2)) function is defined to merge the
rewriting prefixes of A1 and A2 into one final prefix. Basically, it is equal to Rpre(A1) →
Rpre(A2) if each state component retrieve schema expression in Rpre(A2), (OP si), is
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different from any in Rpre(A1). However, for any state component retrieve schema expres-
sion in Rpre(A2), if it is the same as that in Rpre(A1), it is removed from Rpre(A2) before
combination. For example,

Rmrg

(
(OP x), (OP y)

)
= (OP x)→ (OP y)

Rmrg

(
(OP x), (OP y)→ (OP x)

)
= (OP x)→ (OP y)

The Rmrg is easily extended to have multiple parameters but still keeps the similar
definition.

Rmrg

(
(OP x), (OP y), (OP z)

)
= (OP x)→ (OP y)→ (OP z)

Rmrg

(
(OP x), (OP y), (OP x)

)
= (OP x)→ (OP y)

Schema Expression as Action

Rwrt Rule 25 (Schema Expression as Action). In Circus, the schema which has
the same name as a schema expression as action should be an operational schema. In
other words, the schema shall include all state variables after operation v ′ (usually before
operation v as well, but not strictly required because the initial schema may only include v ′

and exclude v) and possibly input and output variables (ins? and outs!), and it specifies a
relationship between input and output variables, the state before operation, and the state
after operation. The straight way to turn a schema into an operation is to include both
the state schema (State) and its dashed version (State ′) into its declarations by ∆ and Ξ.

The rewrite of a schema expression as action is simply itself.

Rwrt

(
SExp = [decl ; ins? : Ti ; outs! : To | pred ]

(SExp)

)
=

{
SExp = [decl ; ins? : Ti ; outs! : To | pred ]

(SExp)

Basic Actions

Rwrt Rule 26 (Basic Actions).

Rwrt (Skip) = Skip
Rwrt (Stop) = Stop
Rwrt (Chaos) = Chaos

Prefixing Action

Rwrt Rule 27 (Prefixing Action). For the communication without messages,

Rwrt (c → A) = c → Rwrt (A)

For the communication with output messages, if its expressions e does not evaluate
state variables

Rwrt (c.e → A) = c.e → Rwrt (A)
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If its expressions e evaluate state components si , · · · , sj , then

Rwrt (c.e → A) = (Op si)→ · · · → (Op sj )→ c.e → Rwrt (A)

For the communication with input variables only,

Rwrt (c?x → A(x )) = c?x → Rwrt (A(x ))

Rwrt (c?x : P → A) = c?x : P → Rwrt (A(x ))

For the communication with multiple fields, provided e1 and e2 evaluate state variable
si , · · · , sj , then

Rwrt (c!e1?x !e2?y → A(x , y))

= (Op si)→ · · · → (Op sj )→ c!e1?x !e2?y → Rwrt (A(x , y))

Guarded Action

Rwrt Rule 28 (Guarded Action). The definitions of Rpre and Rpost are given in Defini-
tion 4.3.1, and that of Rmrg is given in Definition 4.3.2.

Rwrt

(
(g) N A

)
= Rmrg (Rpre (g) ,Rpre (A))→

(
(g) N Rpost (A)

)
For example, if x and y are state variables,

Rwrt

(
(x > 0 ∧ y < 5) N c!x?z → Skip

)
= Rmrg

(
(OP x)→ (OP y), (OP x)

)
→
(
(x > 0 ∧ y < 5) N c!x?z → Skip

)
= (OP x)→ (OP y)→

(
(x > 0 ∧ y < 5) N c!x?z → Skip

)

Sequential Composition

Rwrt Rule 29 (Sequential Composition). A sequential composition of two actions is
rewritten by rewriting both actions individually but taking the prefix of the rewrite of the
first action Rpre (A1), out of the sequential composition.

Rwrt (A1 ; A2) = Rpre (A1)→ (Rpost (A1) ; Rwrt (A2))

External Choice

Rwrt Rule 30 (External Choice).

Rwrt (AA1 2 AA2) = Rmrg (Rpre(AA1),Rpre(AA2))→ (Rpost (AA1) 2 Rpost (AA2))

where AA is a prefixed action defined in Definition B.3.1, or AA1 and AA2 are mutually
exclusive guarded actions (see Φ Rule 28).
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Internal Choice

Rwrt Rule 31 (Internal Choice).

Rwrt (A1 u A2) = Rmrg (Rpre(A1),Rpre(A2))→ (Rpost (A1) u Rpost (A2))

Parallel Composition and Interleaving

Rwrt Rule 32 (Parallel Composition and Interleaving). Parallel composition and
interleaving have the similar rule.

Rwrt (A1 J ns1 | cs | ns2 K A2)

= Rmrg (Rpre(A1),Rpre(A2))→ (Rpost (A1) J ns1 | cs | ns2 K Rpost (A2))

Rwrt (A1 ||[ ns1 | ns2 ]||A2)

= Rmrg (Rpre(A1),Rpre(A2))→ (Rpost (A1) ||[ ns1 | ns2 ]|| Rpost (A2))

Hiding

Rwrt Rule 33 (Hiding).

Rwrt

(
A \ cs

)
= Rpre (A)→

(
Rpost (A) \ cs

)

Recursion

Rwrt Rule 34 (Recursion). The rewrite of a recursion µX • A (X ) is the rewrite of
its action part A(X ) and for each reference to X in A, it remains the same X (that
is different from the action invocation rule Rwrt Rule 35). In addition, the recursion is
partially restricted to appear as one of actions in an external choice, which is given in
Definition B.3.1. The restriction states that if a recursion is one action in an external
choice, the action of the recursion should be a prefixed action and its initial events shall
not evaluate state variables.

Rwrt (µX • A (X )) = µX • Rwrt (A(X )) and Rwrt(X ) = X

The reason for the restriction of recursion as one action in the external choice is because
the additional state retrieve schema expressions added before the action may cause inap-
propriate resolution of the external choice. We have considered three possible solutions as
presented below. Finally, this restriction makes it easy to be rewritten and still with the
same behaviour.

In order to explain the potential problems of these solutions, the external choice below
is a good example.

(µX • (c!s1 → X )) 2 (d !s2 → Skip)
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Possible solution one If we define the rule for the recursion as

Rwrt (µX • A (X )) = Rpre (A(x ))→ (µX • Rpost (A(X )))

then

Rwrt ((µX • (c!s1 → X )) 2 (d !s2 → Skip))

= Rmrg (Rpre (c!s1 → X ) ,Rpre (d !s2 → Skip))→
((µX • Rpost (c!s1 → X )) 2 Rpost (d !s2 → Skip))

[Rewriting rules for external choice and recursion]

= Rmrg

(
(OP s1), (OP s2)

)
→ ((µX • (c!s1 → X )) 2 (d !s2 → Skip))

[Rewriting rules for prefixing]

= (OP s1)→ (OP s2)→ ((µX • (c!s1 → X )) 2 (d !s2 → Skip))
[Rmrg definition]

Then the recursion might be expanded to (c!s1 → (µX • c!s1 → X )). Therefore, the first
s1 has got the up-to-date value of s1 by (OP s1), but the second s1 within the recursion
still uses the value from (OP s1) and cannot see the latest update to s1 (which may be
caused by other actions). That is a problem.

Possible solution two If we define the rule for the recursion as

Rwrt (µX • A (X )) = µX • Rwrt (A(x ))

then

Rwrt ((µX • (c!s1 → X )) 2 (d !s2 → Skip))

= Rpre (d !s2 → Skip)→ ((µX • Rwrt (c!s1 → X )) 2 Rpost (d !s2 → Skip))
[Rewriting rules for external choice and recursion]

= (OP s2)→
((

µX •
(
(OP s1)→ c!s1 → X

))
2 (d !s2 → Skip)

)
[Rewriting rules for prefixing]

Then the first construct in the action of the recursion is (OP s1) which is linked to an
event in CSP and might resolve the external choice. However, it is not what we expect
that the external choice is only resolved by the event c or d .

Possible solution three If we expand the recursion one more step and lead to
A(A(x )), then use the solution one

Rwrt (µX • A (X )) = Rpre (A (A(x )))→ (µX • Rpost (A (A(X ))))

then

Rwrt ((µX • (c!s1 → X )) 2 (d !s2 → Skip))

= Rmrg (Rpre (c!s1 → c!s1 → X ) ,Rpre (d !s2 → Skip))→
((µX • Rpost (c!s1 → c!s1 → X )) 2 Rpost (d !s2 → Skip))

[Rewriting rules for external choice and recursion]

= Rmrg

(
(OP s1), (OP s2)

)
→((

µX •
(

c!s1 → (OP s1)→ c!s1 → X
))

2 (d !s2 → Skip)
)

[Rewriting rules for prefixing]
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= (OP s1)→ (OP s2)→((
µX •

(
c!s1 → (OP s1)→ c!s1 → X

))
2 (d !s2 → Skip)

)
[Rmrg definition]

This has the similar problem as the possible solution one due to the fact that a step further
unroll of the recursion will still result in consecutive c!s1 events without (OP s1) between
them.

Action Invocation

Rwrt Rule 35 (Action Invocation). The rewrite of an action invocation is the rewrite
of the body of this action if the action name does not occur in its body.

Rwrt (A) = Rwrt (B(A))

Where B is a function given in Definition B.2.15.
However, if the action name appears in its action body, then it is an implicit recursion.

The application of the rewrite rule above will lead to infinite loop. Therefore, the rule is
revised for this case.

Rwrt (A) = Rwrt (µA • (B(A)))

According to Rwrt Rule 34, the action invocation A in B(A) is rewritten to A and will not
be expanded further.

Unnamed Parametrised Action Invocation

Rwrt Rule 36 (Unnamed Parametrised Action Invocation). The rewrite of an
unnamed parametrised action invocation is the rewrite of the body of the action with
substituting e for each free occurrence of x in A.

Rwrt ((x : T • A) (e)) = Rwrt (A[e/x ])

Parametrised Action Invocation

Rwrt Rule 37 (Parametrised Action Invocation). Provided A is a parametrised action
defined below,

PA =̂ x : T • A

then the rewrite of the invocation of PA is the rewrite of its body with substituting e for
each free occurrence of x in A.

Rwrt (PA(e)) = Rwrt ((B(PA)) (e)) = Rwrt (A[e/x ])

Iterated Operators

Rwrt Rule 38 (Iterated Operators). The rewrite of iterated operators is simple.

Rwrt

(
; x : T • A(x )

)
= Rpre (A(x ))→

(
; x : T • Rpost (A(x ))

)
Rwrt

(
2 x : T • AA(x )

)
= Rpre (AA(x ))→

(
2 x : T • Rpost (AA(x ))

)
Rwrt

(u x : T • A(x )
)

= Rpre (A(x ))→
(u x : T • Rpost (A(x ))

)
Rwrt (Jcs K x : T J nsK • A(x )) = Rpre (A(x ))→ (Jcs K x : T J nsK • Rpost (A(x )))

Rwrt

(||| x : T ||[ ns]|| • A(x )
)

= Rpre (A(x ))→
(||| x : T ||[ ns]|| • Rpost (A(x ))

)
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Assignment

Rwrt Rule 39 (Assignment). A set of state variables sl and local variables ll can be
updated simultaneously by an assignment. It is rewritten to an extra schema expression
action

Rwrt (sl , ll := es , el ) = Rwrt

(
(P assOp)

)
and a corresponding schema in Z, that has before-state local variables as input and after-
state local variables as output, to specify after-state state and local variables in its predi-
cate.

P assOp ==[ ∆P StPar ; lr? : Tlr? ; ll ! : Tll ! |
P s ′r = (es [lr?/lr ]) ∧ ll ! = (el [lr?/lr ]) ∧ u ′ = u ]

where sl and ll in the left hand side of the assignment are renamed to dashed state variables
s ′l and output variables ll ! in the schema respectively, and local variables lr that appear in
the right hand side of the assignment in expressions es and el are renamed to lr?; P is the
name of the process; u denotes a set of all state variables that are not included in sl .

By this rule, the state and local variables in the assignment are specified in Z. Therefore,
Rpre (x := e) is empty and Rpost (x := e) = Rwrt (x := e).

Alternation

Rwrt Rule 40 (Alternation). For an alternation, provided it has n guarded actions, then
it is rewritten to an external choice of 2n guarded actions which can be further rewritten
by the external choice Rwrt Rule 31 and the guarded action Rwrt Rule 28.

Rwrt


if g1 −→A1

8 g2 −→A2

8 . . .
8 gn −→An

fi



= Rwrt



(¬g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) N Chaos
2 (g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) N A1

2 (g1 ∧ g2 ∧ · · · ∧ ¬gn) N (A1 u A2)
2 . . .
2 (· · · ∧ gi · · · ∧ gj ∧ · · · ∧ gk ∧ · · ·) N (Ai u Aj u Ak )
2 . . .
2 (g1 ∧ g2 ∧ · · · ∧ gn) N (A1 u A2 u · · · u An)


Among these guarded actions, their guarded conditions are all possible combination of
original guarded conditions g1, · · · , gn , and

• if all original guarded conditions are false, then it diverges,

• if only one original guarded condition is true and others are false, then it behaves
like the guarded action, of which the guarded condition is true,

• if more than one guarded condition is true, then it behaves like an internal choice of
all guarded actions of which the guarded conditions are true.
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Table 4.1: Comparison of Alternation and Three Attempts

g1 g2 Alternation Att1 Att2 Att3
true true A1 u A2 A1 u A2 A1 2 A2 A1 u A2

true false A1 A1 u Stop A1 A1

false true A2 A2 u Stop A2 A2

false false Chaos Chaos Chaos Chaos

For example,

Rwrt

 if x > y −→ c.y → Skip
8 x < y −→ c.x → Skip
fi



= Rwrt


(¬(x > y) ∧ ¬(x < y)) N Chaos

2 ((x > y) ∧ ¬(x < y)) N c.y → Skip
2 (¬(x > y) ∧ (x < y)) N c.x → Skip
2 ((x > y) ∧ (x < y)) N (c.y → Skip u c.x → Skip)


[Rwrt Rule 40]

Considerations Three solutions have been attempted to rewrite the alternation.
The informal description of each solution is shown as follows, where informal means not all
notations used are valid Circus syntax. For instance, �� is a UTP notation but it is used
here merely to simplify the description, though it can be converted to the Circus notation.

The first solution is

Chaos � ¬g1 ∧ ¬g2 �

(
(g1) N A1

u (g2) N A2

)
The second one is

Chaos � ¬g1 ∧ ¬g2 �

(
(g1) N A1

2 (g2) N A2

)
The third one is

(¬g1 ∧ ¬g2) N Chaos
2 (g1 ∧ ¬g2) N A1

2 (¬g1 ∧ g2) N A2

2 (g1 ∧ g2) N A1 u A2


A comparison of all these attempts with the original alternation is displayed in Ta-

ble 4.1. From this table, we conclude that only the Att3 (the third solution) preserves
the semantics after rewrite. This is also the reason we choose the third solution in our
rewriting rule.

Variable Block

Rwrt Rule 41 (Variable Block).

Rwrt (var x : T • A) = Rpre (A)→ (var x : T • Rpost (A))
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Parametrisation by Value, by Result, and by Value-Result

Rwrt Rule 42 (Parametrisation by Value, by Result, and by Value-Result). The
invocation of a parametrisation by value is rewritten to a variable block in which its
declared variables x are initialised to the value of its actual parameters e in its action,
while the invocation of parametrisation by result is rewritten to a variable block in which
the actual parameters y are set to the value of its declared variables x in its action.
Finally the invocation of a parametrisation by value-result, which has the combined effect
of parametrisation by value and parametrisation by result, is rewritten to a variable block
in which its declared variables x are initialised to the value of its actual parameters y and
in the end y are set to the value of x in its action.

Rwrt ((val x : T • A) (e)) = Rwrt (var x : T • (x := e ; A))

Rwrt ((res x : T • A) (y)) = Rwrt (var x : T • (A ; y := x ))

Rwrt ((vres x : T • A) (y)) = Rwrt (var x : T • (x := y ; A ; y := x ))

Specification Statement, Assumption, and Coercion

Rwrt Rule 43 (Specification Statement). For a specification statement like w :
[ pre, post ], provided the frame w is composed of state variables sw and local variables
lw , pre and post contain free occurrences of before-state local variables lb , and post con-
tains free occurrences of after-state local variables l ′a , it is rewritten to a schema expression
as action

Rwrt (w : [ pre, post ]) = Rwrt

(
(specOp)

)
and an additional schema

specOp ==[ ∆P StPar ; lb? : Tlb ; la ! : Tla |(
pre[lb?/lb ] ∧ ∃ u ′ : Tu • post [lb?/lb , la !/l ′a ]

)
∧ s ′u = su ]

in Z, where u denotes the variables in post but not in the frame, and su denotes all state
variables that are not in the sw .

For instance, if a process has three state components: s1, s2, and s3, and a specification
statement(

s1, l1 : [ s2 > 0 ∧ l1 < 5, s ′1 = s2 + 3 ∧ l ′1 = s3 ∧ s ′2 = 0 ∧ l ′2 = l1 + 1 ]
)

where l1 and l2 are two local variables in scope, is rewritten to a schema expression action

Rwrt

(
s1, l1 : [ s2 > 0 ∧ l1 < 5, s ′1 = s2 + 3 ∧ l ′1 = s3 ∧ s ′2 = 0 ∧ l ′2 = l1 + 1 ]

)
= Rwrt

(
(specOp)

)
[Rwrt Rule 43]

and specOp is a schema added to Z part

specOp ==[ ∆P StPar ; l1? : Tl1 ; l1! : Tl1 |
(s2 > 0 ∧ l1? < 5) ∧(
∃ s ′2 : Ts2 ; l ′2 : Tl2 • s ′1 = s2 + 3 ∧ l1! = s3 ∧ s ′2 = 0 ∧ l ′2 = l1? + 1

)
∧

s ′2 = s2 ∧ s ′3 = s3 ]
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Rwrt Rule 44 (Assumption). An assumption {pre} is an abbreviation for the specifica-
tion statement :[ pre, true ]. Therefore, it is rewritten to

Rwrt ({pre}) = Rwrt

(
(assmpOp)

)
and an additional schema

assmpOp ==[ ΞP StPar ; lb? : Tlb | pre[lb?/lb ] ]

in Z.

Rwrt Rule 45 (Coercion). A coercion [ post ] is an abbreviation for the specification
statement :[ true, post ]. Therefore, it is rewritten to

Rwrt ([ post ]) = Rwrt

(
(coerOp)

)
and an additional schema

coerOp ==[ ΞP StPar ; lb? : Tlb | ∃ u ′ : Tu • post [lb?/lb ] ]

in Z.

Renaming

Rwrt Rule 46 (Renaming). An action renaming gives new names to the variables in the
list and is rewritten to

Rwrt (A[vold := vnew ]) = Rwrt (A[vnew/vold ])

where all free occurrences of variables in vold of A are substituted by corresponding variables
in vnew .

4.3.18 Generic Definitions

Generic definitions in Circus introduce a family of similar constructors. Our strategy for
genericity in Circus is to rewrite generic constructors and finally without genericity after-
wards. Generally, an instantiation of a generic definition is rewritten to a reference to a
new definition which is obtained by substituting the actual parameters in the instantiation
by the formal parameters. Finally the generic definition is removed.

The uniqueness of instantiations for different generic constructors is stated below.

• For generic axiomatic definitions, all instantiations, that have the same actual param-
eters and are from the same generic axiomatic definition, are regarded as constants
that are from the same definition.

• For generic schemas, all instantiations, though that have the same schema name and
actual parameters, are regarded as individually different schemas.

• For generic channels, all instantiations, that have the same channel name and actual
parameters, are regarded as the same channel.

• For generic processes, all instantiations, though that have the same process name
and actual parameters, are still regarded as individually different processes.
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4.3.18.1 Generic Axiomatic Definitions

Generic axiomatic definitions are removed from the program but the instantiation of the
axiomatic variables is rewritten.

Rwrt Rule 47 (Generic Axiomatic Definitions). For each instantiation of generic
constants defined in a generic axiomatic definition, a corresponding axiomatic definition
is added. This axiomatic definition is got from the generic axiomatic definition by substi-
tuting the actual parameters in the instantiation for the formal parameters in the generic
definition. In addition, the generic constants are renamed in this new axiomatic defini-
tion as well. Consequently, the instantiations of all constants from this generic axiomatic
definition with the same actual parameters become the reference to these new renamed
constants. Finally, the original generic axiomatic definition is removed.

For example, provided there is a generic axiomatic definition below, which defines two
constants a and c.

[X ]
a : X ; c : P X

a ∈ c

And three instantiations: a[T1], c[T1], and c[T2], are in the Circus program. According
to Rwrt Rule 47, for the first and second instantiation, because they have the same actual
parameter T1, one axiomatic definition shown below is added by replacing X in the generic
axiomatic definition above by T1, and both a and c are renamed as well. At the same
time, the instantiations a[T1] and c[T1] are rewritten to anew1 and cnew1 .

anew1 : T1 ; cnew1 : P T1

anew1 ∈ cnew1

Then for the third instantiation c[T2], similarly an additional axiomatic definition is
added and the instantiation is rewritten to cnew2 .

anew2 : T2 ; cnew2 : P T2

anew2 ∈ cnew2

Additionally, the generic axiomatic definition is removed.

4.3.18.2 Generic Boxed and Horizontal Schemas

Rwrt Rule 48 (Generic Schemas). For each instantiation of generic schemas, a corre-
sponding schema is added. This schema is got from the generic schema by substituting the
actual parameters in the instantiation for the formal parameters in the generic schema. In
addition, this schema is renamed and given a unique name. Consequently, the instantiation
becomes the reference to this new renamed schema. Finally, the original generic schema is
removed.

For example, provided there is a generic schema defined below

GenSch[X ]
a : X ; c : P X

a ∈ c
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and one of its instantiation GenSch[T ]. According to Rwrt Rule 48, one schema Schnew is
added by replacing X in GenSch by T , and the instantiation GenSch[T ] becomes Schnew .

Schnew
a : T ; c : P T

a ∈ c

Furthermore, the generic schema is removed.

4.3.18.3 Generic Channel Declarations

A generic channel declaration introduces a family of channels.

Rwrt Rule 49 (Generic Channel Declarations). For the instantiations of channels
from a generic channel declaration, if they have the same actual parameters, a corre-
sponding channel declaration is added. This channel declaration is got from the generic
channel declaration by substituting the actual parameters in the instantiations for the for-
mal parameters in the generic channel declaration. In addition, the channels defined in
this generic channel declaration are renamed and given a unique name. Consequently, the
instantiations are rewritten to the references to these new renamed channels. Finally, the
original generic channel declaration is removed.

For example, there is a generic channel declaration below

channel[X ]gin, gout : X ×X

and three instantiations: gin[T1], gou[T1] and gou[T2]. For the first and second instan-
tiation with the same actual parameter T1, a corresponding channel declaration below is
added. Additionally, the instantiations become the references to the new channels: ginnew1

and goutnew1 .

channel ginnew1 , goutnew1 : T1 × T1

And for the third instantiation, since it has the different actual parameter, another
corresponding channel declaration below is added. Additionally, the instantiation becomes
the reference to the new channel: goutnew2 .

channel ginnew2 , goutnew2 : T2 × T2

Eventually, the generic channel declaration is removed.

4.3.18.4 Generic Processes

Rwrt Rule 50 (Generic Processes). For each instantiation of generic processes, a corre-
sponding process is added. This process is got from the generic process by substituting the
actual parameters in the instantiation for the formal parameters in the generic process. In
addition, this process is renamed and given a unique name. Consequently, the instantiation
becomes the reference to this new renamed process. Finally, the original generic process is
removed.

For instance, suppose a generic process is declared below

process [X ]GProc =̂ begin
state State == [ s : P X | # s < 5 ]
Init == [ State ′ | s ′ = ∅ ]
• Skip

end
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and its instantiation GProc[N]. According to Rwrt Rule 50, one process below is added
and its instantiation becomes the reference to this new process: GProcnew .

process GProcnew =̂ begin
state State == [ s : P N | # s < 5 ]
Init == [ State ′ | s ′ = ∅ ]
• Skip

end

Note: The instantiation of GProc[N] in different processes may refer to different pro-
cesses and not the same one. But for the instantiation of generic channel declaration, it
refers to the same channel.

4.4 Circus State Part to B - Ω

4.4.1 Circus State Part to ISO Standard Z - Ω1

The function Ω1 translates the state part in a rewritten Circus program to a Z specification
in ISO Standard Z. Because the state part of Circus is also written in ISO Standard Z,
for most constructs they are just a direct map without changes. However, a rewritten
Circus program still has the same structure as the original program—all state components
and schemas are encapsulated within the processes—but the state and schemas in a ISO
Standard Z specification are flat. Therefore, we need to merge all state components and
schemas into one global and flat specification in ISO Standard Z.

Definition 4.4.1 (Initialisation Schema). In an explicitly defined process of Circus,
there is a special notation state to mark the state schema of this process. However, there
is no notation to identify the initialisation schema—it is no necessary too because the
behaviour of this process is given by its main action. When all these basic processes are
merged together to form an individually complete Z specification, the fact of no initialisation
schemas will make all state variables in this new Z specification under no specific constraints
except their types, which inevitably makes animation and model checking more difficult. To
ease this problem, it is necessary to identify all initialisation schemas and finally initial
state will be more specific. A schema Sch in a basic process is regarded as an initialisation
schema if it complies with the rules defined below.

• The declaration part of the schema includes only all dashed state variables (v ′), no
before-state variables (v), and no other variables.

• The first action in the process’s main action is a schema expression as action (Sch).

• If there is one schema which meets two rules above, it is regarded as the initialisation
schema. Otherwise, the initialisation schema will be like

Init == [ (StPar)′ | true ]

where the predicate on the dashed state variables is true.

Ω1 Rule 1 (States and Schemas Merge). If there are more than one explicitly defined
process, their states and operations are merged in the resultant Z specification. Assume
there are n explicitly defined processes, named P1,P2, . . . ,Pn , in a Circus specification.
Their states and schemas are merged as shown in Figure 4.4. The state schema is a
conjunction of state schemas from all processes, as well as the Init schema, which is a
conjunction of all initialisation schemas from all processes. All other schemas from each
process will be translated to corresponding schemas with their own declaration and pred-
icate. Additionally they shall keep state components from other processes unchanged by
including Ξ of all other state paragraphs into their declaration.
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Ω1(Rewritten Circus Program)

= Ω1





process P1 =̂ begin
state P1 StPar == [ P1 s1 : T11 ; · · ·

P1 sm1 : T1m1 | ps1 ]
P1 Init == [ (P1 StPar)′ | pi1 ]
P1 Pars == [ decl1 | p1 ]
• A

end


· · ·

process Pn =̂ begin
state Pn StPar == [ Pn s1 : Tn1 ; · · ·

Pn smn : Tnmn | psn ]
Pn Init == [ (Pn StPar)′ | pin ]
Pn Pars == [ decln | pn ]
• A

end





=



P1 StPar == [ P1 s1 : T11 ; · · ·P1 sm1 : T1m1 | ps1 ]
. . .
Pn StPar == [ Pn s1 : Tn1 ; · · ·Pn smn : Tnmn | psn ]
State == P1 StPar ∧ · · · ∧ Pn StPar
Init == [ (State)′ | pi1 ∧ · · · ∧ pin ]

P1 Pars ==

[
P1 Pars.decl1 ; ΞP2 StPar ; . . . ; ΞPn StPar

| P1 Pars.p1

]
. . .

Pn Pars ==

[
Pn Pars.decln ; ΞP1 StPar ; . . . ; ΞPn−1 StPar

| Pn Pars.pn

]



Figure 4.4: Ω1 Function

4.4.2 ISO Standard Z to ZRM - Ω2

The function Ω2 takes the constructs in ISO Standard Z as input and outputs the corre-
sponding constructs in ZRM. It is only syntactical transformation. The differences between
them are investigated in CADiZ [87].

4.4.2.1 Specification Structure

The specification in ISO Standard Z is grouped by sections, however it is not the case in
ZRM. A specification in ZRM is a LATEX document as a whole. Thus it shall include basic
structure of a LATEX document.

Ω2 Rule 1 (Structure). When translating a ISO Standard Z specification to ZRM, it
adds the following lines in the beginning of document,

\documentclass{article}
\usepackage{fuzz}

\begin{document}

and appends the line below in the end of document.

\end{document}
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4.4.2.2 Sections

In ZRM, if one specification tends to use existing libraries or specifications, it has to
copy all of them into its specification, which makes it every difficult to reuse them and
maintain the updates. ISO Standard Z introduces a section notation to address this toolkit
reuse problem in ZRM. One section can reuse other sections by references to them very
conveniently in its section header. Below is an example of a section header that declares a
section named csection reusing circus toolkit.

section csection parents circus toolkit

We only consider one section for each rewritten Circus specification because the original
multiple sections have been rewritten by Rwrt Rule 2 and our rule is very simple by removing
the section header declaration.

Ω2 Rule 2 (Sections). A section declaration in ISO Z Standard

\begin{zsection}
\SECTION\ secname \parents\ parentsecname

\end{zsection}

is simply removed or commented when translated to ZRM.

%\begin{zsection}
% \SECTION\ secname \parents\ parentsecname
%\end{zsection}

4.4.2.3 Mutually Recursive Free Types

Mutually recursive free type is introduced in ISO Standard Z but not supported in ZRM.
We restrict its usage in Circus to facilitate the translation though it can semantically
transform to type definition, membership, total functionality, injectivity, disjointness and
induction constraints [70, D.8.1].

Ω2 Rule 3 (Mutually recursive free type). It is restricted to use in Circus.

4.4.2.4 Horizontal Schema Definition

Ω2 Rule 4 (Horizontal Definition). In ISO Standard Z, horizontal schema definition
uses ==, while in ZRM it is =̂. Therefore, our rule is

Ω2 (Sch == [ decl | pred ])

= Sch =̂ [ decl | pred ]

4.4.2.5 Schema Decoration

Ω2 Rule 5 (Schema Decoration). Schema decoration is different: S~’ or (S)’ in ISO
Standard Z and S ′ in ZRM.

Ω2(S~’) = S’
Ω2(S ’) = S’
Ω2((S)’) = S’
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4.4.2.6 Arithmetic Negation and Subtraction

Ω2 Rule 6 (Arithmetic Negation). In ISO Standard Z, arithmetic negation and sub-
traction uses the different notations: \negate and - respectively. However, in ZRM, the
same notation - is used for both. Thus we translate \negate to -.

Ω2(\negate) = -

4.4.2.7 Singleton Set of Schema

Ω2 Rule 7 (Singleton Set of Schema). {sch}, provided sch is a schema, is parsed
differently as singleton set and set comprehension in ISO Standard Z and ZRM respectively.
ZRM uses parenthesized expression {(sch)}.

Ω2({sch}) = {(sch)}

provided sch is a schema.

4.4.2.8 Lambda-expression, Mu-expression, and Local Definition

Ω2 Rule 8 (Lambda-expression and Mu-expression). For lambda-expression, mu-
expression, and local definition, ZRM requires they are parenthesized but parentheses in
ISO Standard Z can be omitted. When they are translated, we add parentheses for them.

Ω2(µ x : T | P • E ) = (µ x : T | P • E )
Ω2(λ x : T | P • E ) = (λ x : T | P • E )
Ω2(let x == y • E ) = (let x == y • E )

4.4.2.9 Segment Relation or Infix of sequence

Ω2 Rule 9 (Segment Relation or Infix). In ISO standard Z, infix is used instead of in
in ZRM.

Ω2(infix) = in

4.4.2.10 Set Symmetric Difference

Ω2 Rule 10 (Set Symmetric Difference). In ISO standard Z, 	 is an operator for
symmetric difference of set however no counterpart exists in ZRM. We define it based on
current operators: set union and set difference.

Ω2(s1	 s2) = (s1 \ s2) ∪ (s2 \ s1)

4.4.2.11 Boolean Type

Circus defines the boolean type B and two values: True and False in its prelude of
circus_toolkit—actually they are defined as free type. However, they are not a valid
syntax of both ISO Standard Z and ZRM dialects.

Ω2 Rule 11 (Boolean Type). One free type below is added once in the header of the
program when translated to ZRM.

B ::= True | False
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4.4.3 ZRM to B Machine - Ω3

The target language of the link in our approach of model checking Circus is CSP ‖ B and
the soundness of the link, which is proved in Chapter 5, is also based on CSP ‖ B . Though
CSP ‖B Z is used previously for the combination of CSP and ZRM, its semantics is still
defined on CSP ‖ B . Therefore, Z in ZRM is merely an intermediate representation of
the final B specification. To translate Z in ZRM to B, the Ω3 function is defined to link
constructs in ZRM to their counterparts in B. The general principles of this translation
are listed below.

• The state components, their types, and their predates in the state schema in Z is
translated to variables in the VARIABLES clause, basic types in the INVARIANT clause,
and constraints in the corresponding operations (that refer to this state schema)
respectively.

• The Init schema in Z is translated to the INITIALISATION clause in which the con-
straints are a conjunction of the corresponding predicate in the Init schema and the
predicate from the state schema.

• Each operational schema in Z is translated to an operation in which the constraints
are a conjunction of the corresponding predicate in the operational schema and the
predicate from the state schema.

In order to give the soundness of this translation from abstract data type in Z to that in
B, we can reason it from three perspectives as follows.

• The state space in Z and that in B should be the same: the same number of state
variables, the same types, and the same constraints applied.

• The initial state specified by the Init schema in Z and that by the INITIALISATION
and INVARIANT clauses in B should be the same: the same constraints on the state
space.

• Each operational schema in Z has a corresponding operation in B. They should have
the same semantics in terms of the design theory of UTP: the same precondition and
postcondition.

If all three rules are complied in the translation, we can conclude it is sound. To some
extent, these rules also imply implementation of the translator.

Finally, an implementation of the Ω3 function, which is adopted in this thesis, is the
ProZ [88] in ProB. For brevity, the details of ProZ are not given in this thesis.

4.5 Circus Behaviour to CSPM and Z - Φ

The function Φ takes the behavioural part of a Circus specification as input and output
the corresponding structures in CSPM .

Most of rules given in this section are easily understood while only some of them which
are shown below are not obvious.

• Schema Expression as Action: Φ Rule 21

• Simplified Schema Expression as Action: Φ Rule 22

• External Choice: Φ Rule 27

• External Choice (Mutual Exclusively Guarded Actions): Φ Rule 28

• Parallel Composition and Interleaving (Disjoint Variables in Scope): Φ Rule 30
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• Parallel Composition and Interleaving (Disjoint Variables in Updating): Φ Rule 31

• Iterated External Choice: Φ Rule 36

• Variable Block: Φ Rule 38

4.5.1 Types, Expressions and Operators

Φ Rule 1 (Types, Expressions and Operators). The map of types, expressions and
operators in Circus to CSP is displayed in Appendix D.2.

4.5.2 Abbreviation Definitions

Φ Rule 2 (Abbreviation Definitions).

Φ(AbbrDef == exp) = AbbrDef = Φ(exp)

4.5.3 Axiomatic Definitions

Φ Rule 3 (Axiomatic Definitions). According to Rwrt Rule 5, axiomatic definitions
have been rewritten to only have one instance. These rewritten axiomatic definitions are
linked to CSP by removing original predicate in Circus and keeping the instances. For
example,

size,max size : N

size < max size
size = 5
max size = 15

is rewritten to

size = 5

max size = 15

4.5.4 Channel Declarations

Φ Rule 4 (Channel Declarations).

Φ (channel c1, · · · , cn) = channel c1, · · · , cn
Φ (channel c1, · · · , cn : T ) = channel c1, · · · , cn : Φ(T )

4.5.5 Channel Set Declarations

Φ Rule 5 (Channel Set Declarations). A channel set paragraph in Circus links a
channel set name and a channel set expression. This is similar to the construct in CSP.

Φ(channelset N == CSExp) = N = Φ(CSExp)
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4.5.6 Channel Set Expressions

Φ Rule 6 (Channel Set Expressions). There are three types of channel set expres-
sions: empty channel set ({| |}), channel enumeration (enclosed between {| and |}), and
other expressions by set union, set intersection, set difference, set extension, reference and
application expressions.

Basic channel set expressions, including empty channel set and channel enumeration,
declare a set of all events associated with channels inside. For example, {| c, d |} means all
events associated with channels c and d , such as c.1, c.2, c.3 and d if c is declared as
channel c : 1..3 and d as channel d . That is the exactly same as that in CSP. So the
translation rule is straightforward.

Φ({| |}) = {||}
Φ({| c1, c2, · · · , cn |}) = {|c1, c2, · · · , cn |}

For other channel set expressions, they are translated as Circus expressions to CSP by
Φ Rule 1. Additionally, a reference to a channel set expression is the reference itself.

Φ(CSExp1 ∪ CSExp2) = union(Φ(CSExp1),Φ(CSExp2))
Φ(CSExp1 ∩ CSExp2) = inter(Φ(CSExp1),Φ(CSExp2))
Φ(CSExp1 \ CSExp2) = diff(Φ(CSExp1),Φ(CSExp2))
Φ(CSRef ) = CSRef

4.5.7 Name Set

Φ Rule 7 (Name Set). A name set paragraph in Circus declares the name of the name
set and its expression. The name set is used in parallel composition and interleaving of
actions, but there is no corresponding construct in CSP. Therefore no translation rule is
given. According to Φ Rule 30 and Φ Rule 32, name sets are used to rewrite parallel
composition and interleaving.

4.5.8 Explicitly Defined Processes

Φ Rule 8 (Explicitly Defined Processes). For an explicitly defined process P , its main
action is linked to a CSP process with the same name as this process. Its state schema
and other Z paragraphs are linked to Z and finally to B by the Ω function.

Φ


process P =̂ begin

state StPar == [ decl | pred ]
Pars == [ · · · ]
• A

end

 = P = Φ(A)

where StPar , Pars, and A denote the state paragraph, Z paragraphs and the main action
respectively.

4.5.9 Compound Processes

4.5.9.1 Sequential Composition

Φ Rule 9 (Sequential Composition).

Φ (P1 ; P2) = Φ (P1) ; Φ (P2)
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4.5.9.2 External Choice

Φ Rule 10 (External Choice).

Φ (P1 2 P2) = Φ (P1) 2 Φ (P2)

4.5.9.3 Internal Choice

Φ Rule 11 (Internal Choice).

Φ (P1 u P2) = Φ (P1) u Φ (P2)

4.5.9.4 Parallel Composition

Φ Rule 12 (Parallel Composition).

Φ (P1 J cs K P2) = Φ (P1) ‖
Φ(cs)

Φ (P2)

4.5.9.5 Interleaving

Φ Rule 13 (Interleaving).

Φ (P1 ||| P2) = Φ (P1) ||| Φ (P2)

4.5.9.6 Hiding

Φ Rule 14 (Hiding).

Φ
(
P \ cs

)
= Φ (P) \ Φ(cs)

4.5.9.7 Process Invocation

Φ Rule 15 (Process Invocation).

Φ(P) = P

A reference to a process is given by the copy rule and it is the body of the process.

4.5.9.8 Iterated Sequential Composition

Φ Rule 16 (Iterated Sequential Composition).

Φ(; x : T • P(x )) = ;x :Φ(T ) • Φ(P(x ))

provided T is a finite sequence. Here P(x ) actually is the rewriting of the parametrised
process by Rwrt Rule 22.
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4.5.9.9 Iterated External Choice

Φ Rule 17 (Iterated External Choice).

Φ(2 x : T • P(x )) = 2
x :Φ(T )

• Φ(P(x ))

provided T is a finite set. Here P(x ) actually is the rewriting of the parametrised process
by Rwrt Rule 22.

4.5.9.10 Iterated Internal Choice

Φ Rule 18 (Iterated Internal Choice).

Φ(u x : T • P(x )) = u
x :Φ(T )

• Φ(P(x ))

provided T is a finite set and must not be empty. Here P(x ) actually is the rewriting of
the parametrised process by Rwrt Rule 22.

4.5.9.11 Iterated Parallel Composition

Φ Rule 19 (Iterated Paralllel Composition).

Φ(JCS K x : T • P(x )) = ‖
CS x :Φ(T )

• Φ(P(x ))

provided T is a finite set. Here P(x ) actually is the rewriting of the parametrised process
by Rwrt Rule 22.

4.5.9.12 Iterated Interleaving

Φ Rule 20 (Iterated Interleaving).

Φ(||| x : T • P(x )) = |||
x :Φ(T )

• Φ(P(x ))

provided T is a finite set. Here P(x ) actually is the rewriting of the parametrised process
by Rwrt Rule 22.

4.5.10 Actions

4.5.10.1 Schema Expression as Action

Schema expression as action is declared as an event and finally hidden. An additional
SExp fOp schema is enabled only if the precondition of SExp does not hold.

Φ Rule 21 (Schema Expression as Action). A schema expression as action (SExp) is
linked to an external choice of the same name event SExp with input and output variables,
and another event SExp fOp whose precondition is the negation of the precondition of
SExp. Therefore, if the precondition of SExp holds, it engages SExp event; otherwise, it
engages SExp fOp event and consequently diverges as div. Finally, these events are hidden
from communication by adding both events to HIDE CSPB. That makes it semantically
equal to the schema expression as action in Circus.

Φ
(
(SExp)

)

=


channel SExp : Φ (Ti) .Φ (To)
channel SExp fOp : Φ (Ti)
HIDE CSPB = {|SExp,SExp fOp|}
(SExp!ins?outs → SKIP 2 SExp fOp!ins → div)
SExp fOp = [ΞStPar ; ins? : Ti | ¬pre SExp]
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provided SExp is a schema in Z with input variables ins? and output variables outs!;
SExp fOp is an additional schema in Z; particularly, its predicate is the negation of the
precondition of SExp.

If ins and outs in SExp schema are empty, the rule is simplified to

Φ
(
(SExp)

)
=


channel SExp,SExp fOp
HIDE CSPB={|SExp,SExp fOp|}
(SExp → SKIP 2 SExp fOp → div)
SExp fOp = [ΞStPar | ¬pre SExp]

Φ Rule 22 (Simplified Schema Expression as Action). If the precondition of SExp
always holds such as state component retrieve schema expressions and assignments, Φ
Rule 21 is simplified because it is not possible to make its precondition be evaluated to
false.

Φ
(
(SExp)

)

=


channel SExp : Φ (Ti) .Φ (To)
HIDE CSPB={|SExp|}{

(SExp!ins?outs → SKIP ) if (SExp) as process
(SExp!ins?outs) if (SExp) as communication

If ins and outs in the SExp schema are empty, the rule is simplified to

Φ
(
(SExp)

)

=


channel SExp
HIDE CSPB={|SExp|}{

(SExp → SKIP ) if (SExp) as process
(SExp) if (SExp) as communication

4.5.10.2 CSP Actions

Basic Actions

Φ Rule 23 (Basic Actions).

Φ (Stop) = STOP
Φ (Skip) = SKIP
Φ (Chaos) = div

Prefixing

Φ Rule 24 (Prefixing).

Φ (c → A) = c → Φ (A)
Φ (c.e → A) = c.Φ (e)→ Φ (A)
Φ (c!e → A) = c!Φ (e)→ Φ (A)
Φ (c?x → A (x )) = c?x → Φ (A(x ))
Φ (c?x : pred → A(x )) = c?x : {y | y <- Φ (Tc) ,Φ (pred)} → Φ (A(x ))

Φ
(
(SExp)→ A

)
= Φ

(
(SExp)

)
→ Φ (A)

provided Tc is the type of channel c, and pred is the input restriction predicate of x .
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Guarded Action

Φ Rule 25 (Guarded Action).

Φ
(
(g) N A

)
= Φ (g) & Φ (A)

Sequential Composition

Φ Rule 26 (Sequential Composition).

Φ (A1 ; A2) = Φ (A1) ; Φ (A2)

External Choice

Φ Rule 27 (External Choice). External choice of actions in Circus is only resolved by
external events of the process or termination. Internal state changes of the process, such
as schema expression as action and assignment, would not resolve it. Thus we restrict the
actions that can occur in external choice to AA.

Φ (AA1 2 AA2) = Φ (AA1) 2 Φ (AA2)

Φ Rule 28 (External Choice (Mutual Exclusively Guarded Actions)). Provided
both actions are guarded action and their conditions (g1 and g2) are mutually exclusive,
that is, g1 = ¬g2, then their guarded actions are not restricted to prefixed actions.

Φ
(
(g1) N A1 2 (g2) N A2

)
= Φ

(
(g1) N A1

)
2 Φ

(
(g2) N A2

)

Internal Choice

Φ Rule 29 (Internal Choice).

Φ (A1 u A2) = Φ (A1) u Φ (A2)

Parallel Composition and Interleaving

Φ Rule 30 (Parallel Composition and Interleaving (Disjoint Variables in Scope)).

Φ (A1 J ns1 | cs | ns2 K A2) = Φ (A1) ‖
Φ(cs)

Φ (A2)

Φ (A1 ||[ ns1 | ns2 ]||A2) = Φ (A1) ||| Φ (A2)

provided

ns1 = scpV (A1)

ns2 = scpV (A2)

where scpV (Definition B.2.9) is a function to get a set of all variables in scope in an
action.
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Φ Rule 31 (Parallel Composition and Interleaving (Disjoint Variables in Up-
dating)).

Φ (A1 J ns1 | cs | ns2 K A2) = Φ (A1) ‖
Φ(cs)

Φ (A2)

Φ (A1 ||[ ns1 | ns2 ]||A2) = Φ (A1) ||| Φ (A2)

provided

wrtV (A1) = ns1

wrtV (A2) = ns2

wrtV (A1) ∩ scpV (A2) = ∅
wrtV (A2) ∩ scpV (A1) = ∅

where wrtV (Definition B.2.5) is a function to get a set of variables written in an action.
The assumption states that 1) all variables to be written in A1 and A2 are in its own

partition and consequently it is not necessary to discard any variables after termination,
and 2) all variables to be written in one action are not seen by another action which makes
it safe to update these variables.

Φ Rule 32 (Parallel Composition and Interleaving). Except Φ Rule 30 and Φ
Rule 31, the general parallel composition and interleaving of actions are not supported.

Hiding

Φ Rule 33 (Hiding).

Φ
(
A \ cs

)
= Φ(A) \ Φ(cs)

Recursion

Φ Rule 34 (Recursion).

Φ (µX • A(X )) = let X = Φ (A(X )) within X and Φ (X ) = X

Iterated Sequential Composition

Φ Rule 35 (Iterated Sequential Composition).

Φ
(
; x : T • A(x )

)
= ;x :Φ(T ) • Φ (A(x ))

provided T is a finite sequence.

Iterated External Choice

Φ Rule 36 (Iterated External Choice).

Φ
(
2 x : T • AA(x )

)
= 2

x :Φ(T )
• Φ (AA(x ))

Where the action is limited to the prefixed action AA in Φ Rule 27.
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Iterated Internal Choice

Φ Rule 37 (Iterated Internal Choice).

Φ
(u x : T • A(x )

)
= u

x :Φ(T )
• Φ(A(x ))

Iterated Parallel Composition The iterated parallel composition of actions is not
supported yet.

Iterated Interleaving The iterated interleaving of actions is not supported yet.

4.5.10.3 Command

Variable Block

Φ Rule 38 (Variable Block). Variable block is transformed to replicated internal choice
in CSPM to declare local variables x , and its body is a memory model of process Φ(A)
defined in Definition B.1.5.

Φ (var x : T • A) = u
x :Φ(T )

• FMem (Φ(A), {x})

4.6 Final Considerations

4.6.1 Parallel Composition and Interleaving of Actions

Parallel composition and interleaving of actions in Circus are different from CSP in its two
state partitions as stated in Section 2.2.1. In Φ Rule 32, the general rule is not supported.
Actually, we have a solution. Our solution is to declare two sets of temporary variables
tpv1 and tpv2 which are initialized to the values of all corresponding variables in scope pv1

and pv2 for A1 and A2. Instead of updating pv1 and pv2 in A1 and A2, we update tpv1 and
tpv2. Eventually, only variables in ns1 and ns2 are updated to the values of corresponding
variables in tpv1 and tpv2, and others are discarded.

Rwrt (A1 J ns1 | cs | ns2 K A2)

=



var tpv1 •

 tpv1 := pv1;
(A1[tpv1/pv1]) ;
ns1 := tpns1


Jns1 | cs | ns2Kvar tpv2 •

 tpv2 := pv2;
(A2[tpv2/pv2]) ;
ns2 := tpns2




However, it is difficult to reason about the solution and even more difficult to implement
it in the translator (but easy for manual translation). Finally, we exclude this general
solution in our current work.

4.6.2 Tractability of Model Checking by linking to the combination of
CSP and B

Generally, a model in Circus is composed of processes in the similar way to that of CSP,
in that the nodes in their transition systems do not have a visible state. In other words,
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state variables are local to processes in Circus. Furthermore, for an individual process,
its transition relation is defined in terms of the transition relation of its main action [75,
Table 1].

Comparatively, our approach to link a Circus model to a model in CSP ‖ B may result
in a bigger state space than its original state space in Circus. That can be seen from the
following perspectives: the state part in Z or B, the behavioural part in CSP, and the
combined state in CSP ‖ B . Since state variables in Circus are local to processes and
hidden from other processes, internally a process can be regarded as a local transition
system. For a composition of processes, only the transition relations in the main action
of processes, instead of local state variables, are used to form a new transition system for
composed processes. However, on the one hand, in the linked counterpart in CSP ‖ B ,
state variables from different processes are merged in the B machine to form a new big
set of state variables. Therefore, from the state aspect, the model checker of CSP ‖ B
is harder to explore the state space than that of Circus. For example, if a Circus model
has two processes, one with m state variables and another with n state variables, the
model checker of CSP ‖ B needs to explore a state space with m + n variables. But the
model checker of Circus only needs to explore a state space with m variables and a state
space with n variables separately. On the other hand, from the behavioural part, the CSP
specification in CSP ‖ B also has a bigger state space than that in Circus. The main reason
is due to the requirements of additional communication for interaction between CSP and
B, such as operational events and additional events which are required in CSP to retrieve
the values of state variables from B. Link Rule 35 is an example that illustrates additional
events Op si , · · · ,Op sj are necessary. Finally, the state space of CSP ‖ B , which is a
combination of the state space in B and the state space in CSP, is bigger than that of Circus
in which only behavioural part is explored globally and the state part is explored locally.
In sum, our approach may result in the difficulty to explore the state space of systems.

4.6.3 Circus versus Plain CSP and Z

As stated in Section 4.6.2, our approach to linking Circus to CSP ‖ B (or CSP ‖B Z in
terms of CSP ‖ B) may cause a bigger state space and eventually harder to be checked.
Then there is another question arising from this perspective. Is this difficulty due to
our automatic translation approach or just because of CSP ‖ B? Is it possible to use a
delicately designed plain CSP ‖B Z model (here we mean the modelling by CSP ‖B Z
directly) to achieve a state space with the similar size to that of Circus? To answer this
question, we need to analyse it from the specification style first and then from impact of
the state space on performance.

Circus and CSP ‖B Z use different styles in their specifications. Circus has modular and
hierarchical structure while CSP ‖B Z is flat. In a Circus model, the state part is local to
processes and not visible from outside of individual processes. Only the behavioural part
of processes in their main action is visible. By this way, information hiding is achieved.
In addition, this local state part and global behaviour part facilitate compositionality and
modularity like object oriented design. However CSP ‖ B in ProB uses a different style.
In CSP ‖ B , the state part is in a B machine and the behavioural part is given in CSP.
Basically, it does not support encapsulation. All state variables are mixed in a same
machine and they can be accessed by all CSP processes. Furthermore, Circus has another
advantage over CSP ‖B Z in its refinement calculus.

Compared to the resultant CSP ‖B Z by our link rules, a well designed model by plain
CSP ‖B Z may have less additional events, for retrieving the values of state variables,
than our linked CSP ‖B Z . However, fundamentally they are the same language. As
analysed in Section 4.6.2, a system modelled in Circus has a smaller state space than the
same system modelled in CSP ‖B Z . This is because the CSP ‖B Z model has larger
state spaces in terms of the state part, the behavioural part (due to the fact that more
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communication is required between CSP and Z), and the combination of them. Thus
inevitably the performance of model checking in CSP ‖B Z will not be as good as that of
model checking in Circus directly.

4.7 Summary

This chapter defines the link from Circus to CSP ‖ B , namely Υ. In the first section of this
chapter, the link strategies and function decompositions are present. Υ is composed of a
Rwrt function, a Ω function, and a Φ function. The Rwrt function transforms the original
Circus model into an intermediate model in which all interactions between the state part
and the behavioural part are only through schema expressions. Then the state part of
this rewritten model is translated to B by the Ω function which is decomposed into three
sub-functions: Ω1, Ω2, and Ω3. Particularly, our Ω3 function relies on the translator in
ProB to translate a Z specification in ZRM to a B machine. The behavioural part of the
rewritten model is translated to CSP by the Φ function.

Then in the rest of the chapter, we give individual rules for each function. These rules
can be composed together to link a construct in Circus to a construct in CSP ‖B Z . This
is illustrated in Appendix E. In this part, not all constructs in Circus are supported and
they are listed below.

Identifier identifiers are limited to the pattern below [a-zA-Z][a-zA-Z0-9_][’!?] as
shown in Section 4.2.1

External Choice of Processes both processes should be prefixed processes (Rwrt Rule 22)

External Choice of Actions both actions should be prefixed actions (Rwrt Rule 30) or
mutually exclusive guarded actions (Φ Rule 28)

Recursion recursion is partially restricted to be an action of external choice (Rwrt Rule 34)

Parallel Composition and Interleaving of Actions only “Disjoint Variables in Scope”
(Φ Rule 30) and “Disjoint Variables in Updating” (Φ Rule 31) are supported and the
general one is not supported (Φ Rule 32)
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Chapter 5

Soundness

This chapter demonstrates the soundness of our defined link from Circus to CSP ‖B Z .
In the beginning of this chapter, the strategies of how to prove soundness is provided in
Section 5.1. Then two important theorems about the semantics of a typical construct
in the combination of CSP and Z in terms of CSP ‖ B are presented and proved in
Section 5.2. They facilitate the soundness proof of the link for schema expression as action
in Section 5.10.1. Finally, the soundness for each individual link rule is illustrated in the
remaining sections.

5.1 Strategies

5.1.1 Overall Strategies

Our overall strategies to prove the soundness of the defined link from Circus to CSP ‖B Z
is given in Theorem 5.1.1.

Theorem 5.1.1. If the link rules, defined in Chapter 4 and summarised in Appendix E,
are sound for all constructs given, then the link from Circus to CSP ‖B Z is sound.

Proof. To prove the soundness of the link from Circus to CSP ‖B Z , it is difficult to reason
about the semantics of Circus and CSP ‖B Z programs as a whole simply. In other words,
we cannot give UTP semantics to a Circus model and a CSP ‖B Z model and then conclude
their semantics are equal. Our solution is to treat a Circus model as a combination of a
collection of constructs defined in our link. Then in order to prove the link from Circus to
CSP ‖B Z is sound, our strategy is to prove our link rules given in Appendix E are sound
for each construct. Finally, if the link rules for all constructs defined are sound, then we
can conclude the link from Circus to CSP ‖B Z is sound.

The soundness of link rules for individual construct is given in sections from Section 5.3
to Section 5.10 and in lemmas from Lemma 5.3.1 to Lemma 5.10.38.

5.1.2 Individual Strategies

In order to prove the soundness of each individual link rule for a construct, we use UTP to
establish the relation between a construct in Circus and the linked counterpart in CSP ‖B Z
because the semantics of Circus is given in UTP. The denotational semantics of Circus is
given in Oliveira’s PhD thesis [35] and the paper [73].

Furthermore, for the constructs that specify the state part in Circus—actually it is Z
in ISO Standard dialect, their semantics are defined in the design theory of UTP. While
for the constructs that specify the behavioural part in Circus, their semantics are given in
the reactive design theory of UTP.
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5.1.2.1 Steps to Prove

The proof of the soundness of an individual link rule is composed of several steps as follows.

Step 1 at first, the semantics of the original construct in Circus is given according to
Oliveira’s thesis [35] and the paper [73].

Step 2 the semantics of the resultant construct in CSP ‖B Z , which is obtained by the
application of link rules in Appendix E to the original construct, is given.

Step 3 a comparison of the semantics of the original construct in Circus, given in Step
1, and the semantics of the resultant construct in CSP ‖B Z , given in Step 2, is
undertaken. If they have the same semantics, therefore the link rule defined for the
syntax in Circus is sound.

Step 4 Otherwise, if their semantics are not equal, we modify the link rule to partially
support the construct by adding limitations or completely exclude it from our link
definition.

In addition, with respect to each individual link rule, its proof is based on the assump-
tion that the link rules for all other constructs is sound. For instance, Link Rule 39 links
a Circus construct

(g) N A

to the construct in CSP ‖B Z

Φ (Rmrg (Rpre (g) ,Rpre (A)))→ Φ (g) & Φ (Rpost (A))

When proving the soundness of this link rule, we assume Φ (g) and Φ (Rwrt (A)) are sound
links of g and A in Circus to CSP ‖B Z . Particularly, the soundness of link rules for Φ (g)
and Φ (Rwrt (A)) will be proved in their own proofs and not in the proof of this guarded
action link rule.

5.2 UTP Semantics of the Combination of CSP and Z Pro-
grams

Two theorems below give the semantics to a typical CSP ‖B Z construct that is the only
way of interaction between the state part in Z and the behavioural part in CSP through
operations. These theorems characterise the interaction. Therefore, they are important in
CSP ‖B Z . In addition, actually in our link definition, this typical construct in CSP ‖B Z
is a counterpart of schema expression as action in Circus. Since our rewrite rules transform
all interactions between the state part and the behavioural part in Circus into schema
expressions as action. Sequentially they will be linked to the typical construct in CSP ‖B Z .
Therefore, when we reason about the semantics of constructs like specification statement
and assignment in Circus, we also need these theorems because specification statement and
assignment are rewritten to schema expressions. Finally, we put these theorems in early
section of this chapter.

5.2.1 Theorem 1

Theorem 5.2.1. The UTP semantics of the CSP ‖B Z program below,

channel SExp : Φ (Ti) .Φ (To)
channel SExp fOp : Φ (Ti)
HIDE CSPB = {|P SExp,P SExp fOp, · · · |}
P SExp!lo?li → SKIP 2 P SExp fOp!lo → div

CSP
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P SExp == [ decl ; ΞQ1 StPar ; · · ·ΞQn StPar ;
ins? : Ti ; outs! : To | pred ]

P SExp fOp == [ ΞP StPar ; ΞQ1 StPar ; · · ·ΞQn StPar ;
ins? : Ti | ¬pre P SExp]

Z

is

R
(
pre [lo/ins?]` post [lo , li/ins?, outs!] ∧ ¬wait ′ ∧ tr ′ = tr

)
where

• ins and outs denotes input and output variables of the P SExp schema, and Ti and
To are their corresponding types in Circus.

• Correspondingly, lo and li denotes output and input local variables on the same name
channel P SExp in CSP.

• pre and post are the precondition and postcondition of the P SExp operation, and
pre ∧ post = pred . Since P SExp is an operation, it shall include all dashed state
variables. Finally, post in the postcondition of R actually characterises the state part
of CSP ‖B Z .

• Q1, · · · ,Qn are all processes other than P .

It states that if the precondition of P SExp holds (pre is true), it terminates suc-
cessfully leaving the trace unchanged and the postcondition established. In addition, for
the variables not in the frame, they remain unchanged. Conversely, if the precondition of
P SExp does not hold, it diverges.

Proof. (1). According to CSP ‖ B model 2.2, this CSP ‖B Z program is modelled as
below.


µX •



((P SExp?ins!outs → X )<I enabled (P SExp)>I STOP )
2

((P SExp fOp?ins → X )<I enabled (P SExp fOp)>I STOP )
2 (((op1 → X )<I enabled (Op1)>I STOP )
2 . . .

2 ((opn → X )<I enabled (Opn)>I STOP )
...





v ′

v
‖B C

{|P SExp,P SExp fOp,···|}
(P SExp!lo?li → SKIP 2 P SExp fOp!lo → div)


\ {|P SExp,P SExp fOp, · · · |}

Provided enabled (P SExp[lo/ins?]) = true, then enabled (P SExp fOp[lo/ins?]) =
false. Hence, the equation above is simplified to

 µX •


(P SExp?ins!outs → X )
2

(STOP )
...




v ′

v
‖B C

{|P SExp,P SExp fOp,···|}
(P SExp!lo?li → SKIP 2 P SExp fOp!lo → div)


\ {|P SExp,P SExp fOp, · · · |}

[enabled (P SExp) = true]
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=



∃ v0 •

P SExp!lo?li →


µX •



(
(P SExp?ins!outs → X )

<I enabled (P SExp)>I STOP

)
2(

(P SExp fOp?ins → X )
<I enabled (P SExp fOp)>I STOP

)
...





v ′

v0
‖B C

{|P SExp,P SExp fOp,···|}
(SKIP )




\ {|P SExp,P SExp fOp, · · · |}
∧R (post (P SExp)) [lo , li , v0/ins?, outs!, v ′]

[Law 2.4.3]

=


∃ v0 •
(P SExp!lo?li → SKIP ) \ {|P SExp,P SExp fOp, · · · |}
∧R (v ′ = v0)
∧R (post (P SExp)) [lo , li , v0/ins?, outs!, v ′]

[Law 2.4.1]

=


∃ v0 •
SKIP \ {|P SExp,P SExp fOp, · · · |}
∧R (v ′ = v0)
∧R (post (P SExp)) [lo , li , v0/ins?, outs!, v ′]

[Hiding [7, Section 3.5.1, L5]]

=


∃ v0 •
SKIP
∧R (v ′ = v0)
∧R (post (P SExp)) [lo , li , v0/ins?, outs!, v ′]

[Hiding [7, Section 3.5.1, L5]]

=

{
SKIP
∧R (post (P SExp)) [lo , li , v0/ins?, outs!, v ′][v ′/v0]

[Predicate Calculus and R3 - ∧ -closure [68]]

=

{
SKIP
∧R (post (P SExp)) [lo , li , v

′/ins?, outs!, v ′]
[Substitution]

=

{
SKIP
∧R (post (P SExp)) [lo , li/ins?, outs!]

The result shows that this program terminates successfully as the behaviour is the same
as SKIP and the postcondition of P SExp is established from the state perspective. At
the same time, the variables not in the frame remain unchanged.

However, if enabled (P SExp[lo/ins?]) = false, then enabled (P SExp fOp[lo/ins?]) =
true. As a result, the equation can be simplified to

 µX •


(STOP )
2

(P SExp fOp?ins → X )
...




v ′

v
‖B C

{|P SExp,P SExp fOp,···|}
(P SExp!lo?li → SKIP 2 P SExp fOp!lo → div)


\ {|P SExp,P SExp fOp, · · · |}

[enabled (P SExp) = false]
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=

∃ v0 •

P SExp fOp!lo →


µX •



(
(P SExp?ins!outs → X )

<I enabled (P SExp)>I STOP

)
2(

(P SExp fOp?ins → X )
<I enabled (P SExp fOp)>I STOP

)
...





v ′

v0
‖B C

{|P SExp,P SExp fOp,···|}
(div)




\ {|P SExp,P SExp fOp, · · · |}
∧R post (P SExp fOp) [v0/v ′]

[Law 2.4.3]

=


∃ v0 •
(P SExp fOp?ins → div) \ {|P SExp,P SExp fOp, · · · |}
∧R true
∧R post (P SExp fOp) [v0/v ′]

[Law 2.4.1]

=


∃ v0 •
(div)
∧R true
∧R (v0 = v)

[Hiding [7, Section 3.5.1, L5] and postcondition of P SExp fOp is true]

=

{
(div)
∧R true[v/v0]

[Predicate Calculus and R3 - ∧ -closure [68]]

=

{
(div)
∧R true

[Substitution]

= (div) [Predicate Calculus]

Since the predicate of P SExp fOp only includes the negation of the precondition of
P SExp, it will not change the state and v ′ = v . But after that, the program diverges and
makes v ′ unconstrained.

(2). The UTP semantics of this CSP ‖B Z program is given as

R
(
pre[lo/ins?]` post [lo , li/ins?, outs!] ∧ ¬wait ′ ∧ tr ′ = tr

)
This semantics states that if pre[lo/ins?] is true (the precondition of P SExp holds

when its input variables ins? get the value from the local variables lo in CSP, or the P SExp
operation is enabled), it terminates successfully leaving the trace unchanged and the post-
condition of P SExp, post [lo , li/ins?, outs!], is established. Otherwise, if pre[lo/ins?] is
false, it diverges.

This statement is exactly the same as the behaviour and the state for both situations
in (1). Accordingly, this semantics for the program is proved.

5.2.2 Theorem 2

Theorem 5.2.2. The UTP semantics of the CSP ‖B Z program below

channel P SExp:Φ (Ti) .Φ (To)
HIDE CSPB={|P SExp, · · · |}
P SExp!lo?li → SKIP

CSP

P SExp == [ decl ; ΞQ1 StPar ; · · ·ΞQn StPar ;
ins? : Ti ; outs! : To | pred ]

}
Z
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is

R


(pre[lo/ins?]⇒ true)̀ (pre[lo/ins?] ∧ post [lo , li/ins?, outs!] ∧ ¬wait ′ ∧ tr ′ = tr)
∨
(¬pre[lo/ins?] ∧ tr ′ = tr ∧ wait ′)




It states that if the precondition of P SExp holds, it terminates successfully leaving
trace unchanged and the postcondition is established. Conversely, if the precondition of
P SExp does not hold, it blocks like STOP as

STOP =̂ R
(
true ` tr ′ = tr ∧ wait ′

)
[Cavalcanti & Woodcock [68, Section 6.3]]

Proof. (1). According to CSP ‖ B model 2.2, this CSP ‖B Z program is modelled as
below.

µX •


((P SExp?ins!outs → X )<I enabled (P SExp)>I STOP )
2

2 (((op1 → X )<I enabled (Op1)>I STOP )
2 . . .
2 ((opn → X )<I enabled (Opn)>I STOP )




v ′

v
‖B C

{|P SExp,···|}
(P SExp!lo?li → SKIP )


\ {|P SExp, · · · |}

Provided enabled (P SExp[lo/ins?]) = true, the equation above can be simplified to

 µX •

 (P SExp?ins!outs → X )
2
...




v ′

v
‖B C

{|P SExp,···|}
(P SExp!lo?li → SKIP )


\ {|P SExp, · · · |}

[enabled (P SExp) = true]

=



∃ v0 •

P SExp!lo?li →

 µX •


(

(P SExp?ins!outs → X )
<I enabled (P SExp)>I STOP

)
2
...




v ′

v0
‖B C

{|P SExp,···|}
(SKIP )




\ {|P SExp, · · · |}
∧R (post (P SExp)) [lo , li , v0/ins?, outs!, v ′]

[Law 2.4.3]

=


∃ v0 •
(P SExp!lo?li → SKIP ) \ {|P SExp, · · · |}
∧R (v ′ = v0)
∧R post (P SExp) [lo , li , v0/ins?, outs!, v ′]

[Law 2.4.1]
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=


∃ v0 •
(SKIP )
∧R (v ′ = v0)
∧R post (P SExp) [lo , li , v0/ins?, outs!, v ′]

[Hiding [7, Section 3.5.1, L5]]

=

{
(SKIP )
∧R (post (P SExp)) [lo , li , v

′/ins?, outs!, v ′]

[Predicate Calculus and Substitution]

=

{
(SKIP )
∧R (post (P SExp)) [lo , li/ins?, outs!]

Provided enabled (P SExp[lo/ins?]) = false, the equation can be simplified to

 µX •

 (STOP )
2
...




v ′

v
‖B C

{|P SExp,···|}
(P SExp!ins?outs → SKIP )


\ {|P SExp, · · · |}

[enabled (P SExp) = false]

=STOP ∧R
(
v ′ = v

)
[Law 2.4.3]

Finally, if P SExp is not enabled, the program deadlocks and no state will be changed.
(2). The UTP semantics of this CSP ‖B Z program is given as

R


(pre[lo/ins?]⇒ true)̀ (pre[lo/ins?] ∧ post [lo , li/ins?, outs!] ∧ ¬wait ′ ∧ tr ′ = tr)
∨
(¬pre[lo/ins?] ∧ tr ′ = tr ∧ wait ′)




This semantics states that if pre[lo/ins?] is true (the precondition of P SExp holds
when its input variables ins? get the value from the local variables lo in CSP, or the P SExp
operation is enabled), it terminates successfully leaving the trace unchanged and the post-
condition of P SExp, post [lo , li/ins?, outs!], is established. Otherwise, if pre[lo/ins?] is
false, it deadlocks.

This statement is exactly the same as the behaviour and the state for both situations
in (1). Accordingly, this semantics for the program is proved.

5.3 Channel Declaration

From this section, we will prove the soundness of a link rule (given in Appendix E) for
each construct that is defined in the link.

5.3.1 Synchronisation Channel

Lemma 5.3.1 (Synchronisation Channel). Link Rule 1 for synchronisation channel dec-
laration is sound.

Proof. A synchronisation channel declaration in Circus is linked to a synchronisation chan-
nel declaration in CSP as well according to Link Rule 1. It declares a set of channels by
their name but without type in Circus which is the same as that in CSP.
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5.3.2 Typed Channel

Lemma 5.3.2 (Typed Channel). Link Rule 2 for typed channel declaration is sound.

Proof. A typed channel declaration in Circus is linked to a typed channel declaration in
CSP as well according to Link Rule 2. Both of them declare a set of channels by their
name and type but the type T in Circus is linked to Φ(T ) in CSP. According to Φ Rule 1,
it is the same representation of T .

5.3.3 Schema Typed Channel

Lemma 5.3.3 (Schema Typed Channel). Link Rule 3 for schema typed channel declaration
is sound.

Proof. A schema typed channel declaration itself is just a syntactical group of typed channel
declarations. It is linked to a set of typed channel declarations by Link Rule 3.

5.4 Channel Set Declaration

Lemma 5.4.1 (Channel Set Declaration). Link Rule 4 for channel set declaration is sound.

Proof. A channel set paragraph associates a channel set name N to a channel set expression
CSExp, which is the same as the linked construct

N = Φ (CSExp)

in CSP by Link Rule 4. Additionally, Φ (CSExp) is a sound link of CSExp according to
Section 5.5.

5.5 Channel Set Expressions

Lemma 5.5.1 (Channel Set Expressions). Link Rule 5, 6, and 7 for channel set expressions
are sound.

Proof. An empty channel set in Circus is linked to an empty channel set in CSP by Link
Rule 5.

A channel enumeration expression declares a set of all events associated with channels
inside and its semantics is given by extensions and productions closure operations [58]. The
{||} operator in CSP is defined by productions operation as well. Therefore Link Rule 6
preserves the semantics.

A reference to a channel set expression is the name of the channel set by Link Rule 7.
And channel set expressions by set union ∪, set intersection ∩, and set difference \

are linked by Link Rule 7 to corresponding operators union, inter, and diff in CSP. Since
these operators are directly mapped from the counterparts in Circus and the map is given
in Table D.5, the channel set expressions in CSP have the same semantics as those in
Circus.

5.6 Explicitly Defined Processes

5.6.1 Single Explicitly Defined Process

Lemma 5.6.1 (Single Explicitly Defined Process). Link Rule 8 for a single explicitly
defined process is sound.
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Proof. (1). An explicitly defined process P in Circus declares state components (s1, · · · , sn)
by Circus variable block and behaves like its main action A.

process P =̂ begin
state StPar == [ s1 : T1 ; · · · sn : Tn | pred ]
Pars == [ · · · ]
• A

end


=̂ var s1 : T1 ; · · · sn : Tn • A [Oliveira [35, Definition B.41]]

(2). An explicitly defined process P is linked to a CSP ‖B Z program by Link Rule 8.
The State schema in Z declares a set of state components which is the same as that in Circus
(though each state component is renamed), and its behaviour is given by the CSP process,
that is, P = Φ (Rwrt(A)). According to our soundness proof strategies, Φ (Rwrt(A)) is a
semantically equal link of A in Circus to CSP. Therefore, the linked CSP ‖B Z program
has the same semantics as the explicitly defined process in Circus and the rule is sound.

5.6.2 Multiple Explicitly Defined Processes

Lemma 5.6.2 (Multiple Explicitly Defined Processes). Link Rule 9 for multiple explicitly
defined processes is sound.

Proof. (1). According to Definition B.42 to Definition B.45 in Oliveira’s thesis [35], for
the composition of multiple explicitly defined processes, the final state is a conjunction
of states from all these processes, and each schema from one process, which specifies an
operation on its own state, is lifted to an operation on the global state by conjoining with all
other processes’ state paragraphs (ΞPi .State). And the composition operator on multiple
processes accordingly becomes the corresponding action operator on the main actions of
these processes. For instance,

P opp Q =̂


begin state State == P .StPar ∧ Q .StPar

P .Pars ∧Ξ Q .StPar
Q .Pars ∧Ξ P .StPar
• P .A opa Q .A

end


[Oliveira [35, Definition B.42 to B.45]]

where P .Pars ∧Ξ Q .StPar means for each schema Par in P to conjunct with ΞQ .StPar
which further indicates the state components in Q will not be updated in P .Pars. opp is
the composition operator on processes and opa is the corresponding operator on actions.

(2). Explicitly defined processes are linked to a CSP ‖B Z program by Link Rule 9.
The final state

State =̂ P1 StPar ∧ · · · ∧ Pn StPar

is a conjunction of states from all processes. And for each schema from one process

Pn Pars =̂ [Pn Pars.decln ; ΞP1 StPar ; . . . ; ΞPn−1 StPar | Pn Pars.pn ]

it is transformed to a new schema operating on the global state and the new schema
includes the original declarations and predicate as well as all other processes’ decorated
state paragraphs, ΞPi StPar , in its declaration part. Furthermore, the main action of each
process Pi has been linked to a same name process, Pi = Φ (Rwrt (Pi .A)), in CSP. However,
for the process operator and its corresponding action operator, they are not linked in this
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rule. They are linked in the link rule of each individual process operator, such as Link
Rule 10.

(3). Finally, we can conclude that the link rule for explicitly defined processes to
merge states and schemas and link the main actions actually results in the same semantics
construct in CSP ‖B Z as that in Circus, and the link is sound.

5.7 Compound Processes

5.7.1 Sequential Composition

Lemma 5.7.1 (Sequential Composition of Processes). Link Rule 10 for sequential compo-
sition of processes is sound.

Proof. (1). The sequential composition of two processes in Circus is defined below

P ; Q =̂


begin state State == P .StPar ∧ Q .StPar

P .Pars ∧Ξ Q .StPar
Q .Pars ∧Ξ P .StPar
• P .A ; Q .A

end


[Oliveira [35, Definition B.42]]

where the main action of a sequential composition of two processes P and Q is a sequential
composition of the main action of P and the main action of Q .

(2). A sequential composition of two processes is linked to a CSP ‖B Z program P ; Q
by Link Rule 10.

Since the states, the schemas and the main actions of P and Q have been linked by
Link Rule 9, this rule only links sequential composition. And

P ; Q = Φ (Rwrt (P .A)) ; Φ (Rwrt (Q .A))

because

P = Φ (Rwrt (P .A))

Q = Φ (Rwrt (Q .A)) [Link Rule 9]

(3). Additionally, according to Link Rule 40,

a) provided this sequential composition of processes, P ; Q , is not a process in external
choice, then

Φ (Rwrt (P .A ; Q .A))

= Φ (Rpre (P .A))→ (Φ (Rpost (P .A)) ; Φ (Rwrt (Q .A))) [Link Rule 40]

= (Φ (Rpre (P .A))→ Φ (Rpost (P .A)) ; Φ (Rwrt (Q .A)))
[Hoare [7, Section 5.2, L3]]

= (Φ (Rwrt (P .A)) ; Φ (Rwrt (Q .A))) [Definition 4.3.1]

b) provided this sequential composition of processes, P ; Q , is a process in external choice,
then P has to be a PA, a prefixed process given in Definition B.4.1, according to Rwrt

Rule 22 and Rpre (P .A) is empty according to Definition 4.3.1 and Definition B.4.1
where the first event of A does not evaluate state variables. Then

Φ (Rwrt (P .A ; Q .A))

= Φ (Rpre (P .A))→ (Φ (Rpost (P .A)) ; Φ (Rwrt (Q .A))) [Link Rule 40]

= (Φ (Rpost (P .A)) ; Φ (Rwrt (Q .A))) [Rpre is empty]

= (Φ (Rwrt (P .A)) ; Φ (Rwrt (Q .A))) [Definition 4.3.1]
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Thus, sequential composition ; in CSP is the linked counterpart of sequential composi-
tion ; of actions in Circus.

Therefore, the linked sequential composition of two processes in CSP has the same
behaviour as the original sequential composition in Circus as well as the same state part
which is stated in Section 5.6. In sum, the CSP ‖B Z program got according to Link
Rule 10 has the same semantics as sequential composition in Circus and the rule is sound.

5.7.2 External Choice

Lemma 5.7.2 (External Choice of Processes). Link Rule 11 for external choice of processes
is sound.

Proof. (1). The external choice of two prefixed processes (PA in Definition B.4.1) in Circus
is defined below

PA1 2 PA2 =̂


begin state State == PA1.StPar ∧ PA2.StPar

PA1.Pars ∧Ξ PA1.StPar
PA2.Pars ∧Ξ PA2.StPar
• PA1.A 2 PA2.A

end


[Oliveira [35, Definition B.42]]

where the main action of external choice of two prefixed processes is an external choice of
the main action of PA1 and the main action of PA2.

(2). The external choice of two processes is linked to a CSP ‖B Z program PA1 2 PA2

by Link Rule 11.
Since the states, the schemas and the main actions of PA1 and PA2 have been linked

by Link Rule 9, this rule only links external choice. And

PA1 2 PA2 = Φ (Rwrt (PA1.A)) 2 Φ (Rwrt (PA2.A))

because

PA1 = Φ (Rwrt (PA1.A))

PA2 = Φ (Rwrt (PA2.A)) [Link Rule 9]

(3). Additionally, according to Link Rule 41,

Φ (Rwrt (PA1.A 2 PA2.A))

= Φ (Rmrg (Rpre (PA1.A) ,Rpre (PA2.A)))→ (Φ (Rpost (PA1.A)) 2 Φ (Rpost (PA2.A)))
[Link Rule 41]

= (Φ (Rpost (PA1.A)) 2 Φ (Rpost (PA2.A)))
[Rpre (PA1.A) and Rpre (PA2.A) are empty, see Definition B.4.1]

= (Φ (Rwrt (PA1.A)) 2 Φ (Rwrt (PA2.A))) [Definition 4.3.1]

thus external choice in CSP is the linked counterpart of external choice of actions in Circus.
Therefore, the linked external choice of two processes in CSP has the same behaviour

as the original external choice in Circus as well as the same state part which is stated in
Section 5.6. In sum, the CSP ‖B Z program got according to Link Rule 11 has the same
semantics as external choice in Circus and the rule is sound.
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5.7.3 Internal Choice

Lemma 5.7.3 (Internal Choice of Processes). Link Rule 12 for internal choice of processes
is sound.

Proof. (1). The internal choice of two processes in Circus is defined below

P u Q =̂


begin state State == P .StPar ∧ Q .StPar

P .Pars ∧Ξ Q .StPar
Q .Pars ∧Ξ P .StPar
• P .A u Q .A

end


[Oliveira [35, Definition B.42]]

where the main action of internal choice of two processes is an internal choice of the main
action of P and the main action of Q .

(2). The internal choice of two processes is linked to a CSP ‖B Z program P u Q by
Link Rule 12.

Since the states, the schemas and the main actions of P and Q have been linked by
Link Rule 9, this rule only links internal choice. And

P u Q = Φ (Rwrt (P .A)) u Φ (Rwrt (Q .A))

because

P = Φ (Rwrt (P .A))

Q = Φ (Rwrt (Q .A)) [Link Rule 9]

(3). Additionally, according to Link Rule 42,

a) provided this internal choice of processes, P u Q , is not a process in external choice,
then

Φ (Rwrt (P .A u Q .A))

= Φ (Rmrg (Rpre (P .A) ,Rpre (Q .A)))→ (Φ (Rpost (P .A)) u Φ (Rpost (Q .A)))
[Link Rule 42]

= (Φ (Rpre (P .A))→ Φ (Rpost (P .A))) u (Φ (Rpre (Q .A))→ Φ (Rpost (Q .A)))
[Hoare [7, Section 3.2.1, L5], Definition 4.3.1 and Definition 4.3.2]

= (Φ (Rwrt (P .A)) u Φ (Rwrt (Q .A))) [Definition 4.3.1]

b) provided this internal choice of processes, P u Q , is a process in external choice, then
P and Q have to be PA according to Rwrt Rule 22 and both Rpre (P .A) and Rpre (Q .A)
are empty because of Definition B.4.1. Then

Φ (Rwrt (P .A u Q .A))

= Φ (Rmrg (Rpre (P .A) ,Rpre (Q .A)))→ (Φ (Rpost (P .A)) u Φ (Rpost (Q .A)))
[Link Rule 42]

= (Φ (Rpost (P .A)) u Φ (Rpost (Q .A))) [Both Rpre are empty]
= (Φ (Rwrt (P .A)) u Φ (Rwrt (Q .A))) [Definition 4.3.1]

thus internal choice in CSP is the linked counterpart of internal choice of actions in Circus.
Therefore, the linked internal choice of two processes in CSP has the same behaviour

as the original internal choice in Circus as well as the same state part which is stated in
Section 5.6. In sum, the CSP ‖B Z program got according to Link Rule 12 has the same
semantics as internal choice in Circus and the rule is sound.
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5.7.4 Parallel Composition

Lemma 5.7.4 (Parallel Composition of Processes). Link Rule 13 for parallel composition
of processes is sound.

Proof. (1). The parallel composition of two processes in Circus is defined below

P J cs K Q =̂


begin state State == P .StPar ∧ Q .StPar

P .Pars ∧Ξ Q .StPar
Q .Pars ∧Ξ P .StPar
• P .A J α(P .StPar) | cs | α(Q .StPar) K Q .A

end


[Oliveira [35, Definition B.43]]

where the main action of parallel composition of two processes in cs is a parallel composition
of the main action of P and the main action of Q in cs.

(2). The parallel composition of two processes is linked to a CSP ‖B Z program
P ‖

Φ(cs)

Q by Link Rule 13.

Since the states, the schemas and the main actions of P and Q have been linked by
Link Rule 9, this rule only links parallel composition. And

P ‖
Φ(cs)

Q = Φ (Rwrt (P .A)) ‖
Φ(cs)

Φ (Rwrt (Q .A))

because

P = Φ (Rwrt (P .A))

Q = Φ (Rwrt (Q .A)) [Link Rule 9]

(3). Additionally, according to Link Rule 43,

a) provided this parallel composition of processes, (P J cs K Q), is not a process in external
choice, then

Φ (Rwrt (P .A J α(P .StPar) | cs | α(Q .StPar) K Q .A))

= Φ (Rmrg (Rpre (P .A) ,Rpre (Q .A)))→

 Φ (Rpost (P .A))
‖

Φ(cs)

Φ (Rpost (Q .A))

 [Link Rule 43]

=

 (Φ (Rpre (P .A))→ Φ (Rpost (P .A)))
‖

Φ(cs)

(Φ (Rpre (Q .A))→ Φ (Rpost (Q .A)))


[Hoare [7, Section 2.2.1, L4], Definition 4.3.1 and Definition 4.3.2]

=

 (Φ (Rwrt (P .A)))
‖

Φ(cs)

(Φ (Rwrt (Q .A)))

 [Definition 4.3.1]

b) provided this parallel composition of processes, (P J cs K Q), is a process in external
choice, then P and Q have to be PA according to Rwrt Rule 22 and both Rpre (P .A)
and Rpre (Q .A) are empty because of Definition B.4.1. Then

Φ (Rwrt (P .A J α(P .StPar) | cs | α(Q .StPar) K Q .A))
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= Φ (Rmrg (Rpre (P .A) ,Rpre (Q .A)))→

 Φ (Rpost (P .A))
‖

Φ(cs)

Φ (Rpost (Q .A))

 [Link Rule 43]

=

 Φ (Rpost (P .A))
‖

Φ(cs)

Φ (Rpost (Q .A))

 [Both Rpre are empty]

=

 Φ (Rwrt (P .A))
‖

Φ(cs)

Φ (Rwrt (Q .A))

 [Definition 4.3.1]

thus parallel composition in CSP is the linked counterpart of parallel composition of actions
in Circus.

Therefore, the linked parallel composition of two processes in CSP has the same be-
haviour as the original parallel composition in Circus as well as the same state part which
is stated in Section 5.6. In sum, the CSP ‖B Z program got according to Link Rule 13
has the same semantics as parallel composition in Circus and the rule is sound.

5.7.5 Interleaving

Lemma 5.7.5 (Interleaving of Processes). Link Rule 14 for interleaving of processes is
sound.

Proof. (1). The interleaving of two processes in Circus is defined below

P ||| Q =̂


begin state State == P .StPar ∧ Q .StPar

P .Pars ∧Ξ Q .StPar
Q .Pars ∧Ξ P .StPar
• P .A ||[ α(P .StPar) | α(Q .StPar) ]||Q .A

end


[Oliveira [35, Definition B.44]]

where the main action of interleave of two processes is an interleave of the main action of
P and the main action of Q .

(2). The interleave of two processes is linked to a CSP ‖B Z program P ||| Q by Link
Rule 14.

Since the states, the schemas and the main actions of P and Q have been linked by
Link Rule 9, this rule only links parallel composition. And

P ||| Q = Φ (Rwrt (P .A)) ||| Φ (Rwrt (Q .A))

because

P = Φ (Rwrt (P .A))

Q = Φ (Rwrt (Q .A)) [Link Rule 9]

(3). Additionally, according to Link Rule 45,

a) provided this interleave of processes, (P ||| Q), is not a process in external choice, then

Φ (Rwrt (P .A ||[ α(P .StPar) | α(Q .StPar) ]||Q .A))

= Φ (Rmrg (Rpre (P .A) ,Rpre (Q .A)))→

 Φ (Rpost (P .A))
|||
Φ (Rpost (Q .A))

 [Φ Rule 45]
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=

 (Φ (Rpre (P .A))→ Φ (Rpost (P .A)))
|||
(Φ (Rpre (Q .A))→ Φ (Rpost (Q .A)))


[Hoare [7, Section 3.6.1, L7], Definition 4.3.1 and Definition 4.3.2]

=

 (Φ (Rwrt (P .A)))
|||
(Φ (Rwrt (Q .A)))

 [Definition 4.3.1]

b) provided this interleave of processes, (P ||| Q), is a process in external choice, then P
and Q have to be PA according to Rwrt Rule 22 and both Rpre (P .A) and Rpre (Q .A)
are empty because of Definition B.4.1. Then

Φ (Rwrt (P .A ||[ α(P .StPar) | α(Q .StPar) ]||Q .A))

= Φ (Rmrg (Rpre (P .A) ,Rpre (Q .A)))→

 Φ (Rpost (P .A))
|||
Φ (Rpost (Q .A))

 [Φ Rule 45]

=

 Φ (Rpost (P .A))
|||
Φ (Rpost (Q .A))

 [Both Rpre are empty]

=

 Φ (Rwrt (P .A))
|||
Φ (Rwrt (Q .A))

 [Definition 4.3.1]

thus interleave in CSP is the linked counterpart of interleave of actions in Circus.
Therefore, the linked interleave of two processes in CSP has the same behaviour as the

original interleave in Circus as well as the same state part which is stated in Section 5.6.
In sum, the CSP ‖B Z program got according to Link Rule 14 has the same semantics as
interleave in Circus and the rule is sound.

5.7.6 Hiding

Lemma 5.7.6 (Hiding of Processes). Link Rule 15 for hiding of a process is sound.

Proof. (1). The event hiding from a process in Circus is defined below

(P) \ cs =


begin state State == P .StPar

P .Pars == [ · · · ]
• P .A \ cs

end

 [Oliveira [35, Definition B.45]]

where the main action of hiding events cs from a process is an action like its main action
but from which all events in cs are hidden.

(2). The event hiding from a processes is linked to a CSP ‖B Z program P \ Φ(cs) by
Link Rule 15.

Since the states, the schemas and the main action of P have been linked by Link Rule 9,
this rule only links event hiding. And

P \ Φ(cs) = Φ (Rwrt (P .A)) \ Φ (cs)

because

P = Φ (Rwrt (P .A)) [Link Rule 9]

(3). Additionally, according to Link Rule 47,
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a) provided this event hiding operator of a process, P \ cs, is not a process in external
choice, then

Φ
(
Rwrt

(
P .A \ cs

))
= Φ (RPre (P .A))→ (Φ (RPost (P .A)) \ Φ (cs)) [Link Rule 47]

= (Φ (RPre (P .A))→ Φ (RPost (P .A))) \ Φ (cs)
[Hoare [7, Section 3.5.1, L5] and Definition 4.3.1]

= Φ (Rwrt (P .A)) \ Φ (cs) [Definition 4.3.1]

b) provided this event hiding operator of a process, P \ cs, is a process in external choice,
then P has to be PA according to Rwrt Rule 22 and Rpre (P .A) is empty because of
Definition B.4.1. Then

Φ
(
Rwrt

(
P .A \ cs

))
= Φ (RPre (P .A))→ (Φ (RPost (P .A)) \ Φ (cs)) [Link Rule 47]

= (Φ (RPost (P .A)) \ Φ (cs)) [Rpre is empty]

= (Φ (Rwrt (P .A)) \ Φ (cs)) [Definition 4.3.1]

thus the event hiding in CSP is the linked counterpart of the event hiding from an action
in Circus.

Therefore, the linked event hiding from a process in CSP has the same behaviour as
the original event hiding from a process in Circus as well as the same state part which is
stated in Section 5.6. In sum, the CSP ‖B Z program got according to Link Rule 15 has
the same semantics as the event hiding from a process in Circus and the rule is sound.

5.7.7 Unnamed Parametrised Process Invocation

Lemma 5.7.7 (Unnamed Parametrised Process Invocation). Link Rule 16 for unnamed
parametrised process invocation is sound.

Proof. An unnamed parametrised process invocation is rewritten to a named parametrised
process and its invocation by Link Rule 16. Then they are linked by the rules of the para-
metrised process and its invocation. Its soundness is the same as that of the parametrised
process and its invocation (Section 5.8).

5.7.8 Parametrised Process Invocation

Lemma 5.7.8 (Parametrised Process Invocation). Link Rule 17 for parametrised process
invocation is sound.

Proof. Refer to Section 5.8.

5.7.9 Process Invocation

Lemma 5.7.9 (Process Invocation). Link Rule 18 for process invocation is sound.

Proof. (1). The semantics of a process invocation, that is, a reference to a process name,
is given by the copy rule: it is the body of the process.

P =



begin
state StPar == [ s1 : T1 ; · · · sn : Tn | p ]
Init == [ (StPar)′ | pi ]
Pars == [ · · · ]
• A

end
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where the main action of a process invocation is the main action of this process.
(2). A process invocation in Circus is linked to a CSP ‖B Z program P by Link Rule 18.
Since the states, the schemas and the main action of P have been linked by Link Rule 9,

this rule only links the reference to the process. And

P = Φ (Rwrt (P .A))

because

P = Φ (Rwrt (P .A)) [Link Rule 9]

(3). Therefore, the linked process P in CSP has the same behaviour as the original
process invocation in Circus as well as the same state part which is stated in Section 5.6.
In sum, the CSP ‖B Z program got according to Link Rule 18 has the same semantics as
the process invocation in Circus and the rule is sound.

5.7.10 Unnamed Indexed Process Invocation

Lemma 5.7.10 (Unnamed Indexed Process Invocation). Link Rule 19 for unnamed in-
dexed process invocation is sound.

Proof. An unnamed indexed process invocation is rewritten to a named indexed process
and its invocation by Link Rule 19. Then they are linked by the rules of the indexed
process and its invocation. Its soundness is the same as that of the indexed process and
its invocation (Section 5.9).

5.7.11 Indexed Process Invocation

Lemma 5.7.11 (Indexed Process Invocation). Link Rule 20 for indexed process invocation
is sound.

Proof. Refer to Section 5.9.

5.7.12 Renaming Operator

Lemma 5.7.12 (Renaming Operator). Link Rule 21 for process renaming operator is
sound.

Proof. The renaming operator P [cold := cnew ] is simply the syntactic renaming of the old
channels to the new channels in a process.

5.7.13 Iterated Sequential Composition

Lemma 5.7.13 (Iterated Sequential Composition). Link Rule 24 for iterated sequential
composition of processes is sound.

Proof. (1). The semantics of the iterated operators in Circus is given by the expansion of
the operators. Therefore,

; x : T • P(x ) =̂ P(x1) ; · · · ; P(xn)

where T is a set with n elements: x1, . . . , xn .
(2). The iterated sequential composition is linked to a CSP ‖B Z program

;x :Φ(T ) • Φ (Rwrt (P(x )))

by Link Rule 24.
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The replicated operator in CSP denotes the expansion of the operator as well. Thus,

;x :Φ(T ) • Φ (Rwrt (P(x ))) =̂ Φ (Rwrt (P(x1))) ; · · · ; Φ (Rwrt (P(xn)))

(3). Since (Φ (Rwrt (P)) ; Φ (Rwrt (Q))) is a sound link of (P ; Q) in Circus to CSP
(see Section 5.7.1), the expanded sequential composition of processes in CSP in (2) has
the same semantics as the corresponding expanded sequential composition of processes in
Circus in (1). Finally, the replicated sequential composition in CSP is a sound link of the
iterated sequential composition in Circus, and the rule is sound.

5.7.14 Iterated External Choice

Lemma 5.7.14 (Iterated External Choice). Link Rule 25 for iterated external choice of
processes is sound.

Proof. (1). The semantics of the iterated operators in Circus is given by the expansion of
the operators. Therefore,

2 x : T • PA(x ) =̂ PA(x1) 2 · · · 2 PA(xn)

where PA is a prefixed process.
(2). The iterated external choice is linked to a CSP ‖B Z program

2
x :Φ(T )

• Φ (Rwrt (PA(x )))

by Link Rule 25.
The replicated operator in CSP denotes the expansion of the operator as well. Thus,

2
x :Φ(T )

• Φ (Rwrt (PA(x ))) =̂ Φ (Rwrt (PA(x1))) 2 · · · 2 Φ (Rwrt (PA(xn)))

(3). Since (Φ (Rwrt (PA1)) 2 Φ (Rwrt (PA2))) is a sound link of (PA1 2 PA2) in Circus
to CSP (see Section 5.7.2), the expanded external choice of processes in CSP in (2) has
the same semantics as the corresponding expanded external choice of processes in Circus in
(1). Finally, the replicated external choice in CSP is a sound link of the iterated external
choice in Circus if the process is a PA, and the rule is sound.

5.7.15 Iterated Internal Choice

Lemma 5.7.15 (Iterated Internal Choice). Link Rule 26 for iterated internal choice of
processes is sound.

Proof. (1). The semantics of the iterated operators in Circus is given by the expansion of
the operators. Therefore,

u x : T • P(x ) =̂ P(x1) u · · · u P(xn)

(2). The iterated internal choice is linked to a CSP ‖B Z program

u
x :Φ(T )

• Φ (Rwrt (P(x )))

by Link Rule 26.
The replicated operator in CSP denotes the expansion of the operator as well. Thus,

u
x :Φ(T )

• Φ (Rwrt (P(x ))) =̂ Φ (Rwrt (P(x1))) u · · · u Φ (Rwrt (P(xn)))

(3). Since (Φ (Rwrt (P)) u Φ (Rwrt (Q))) is a sound link of (P 2 Q) in Circus to CSP
(see Section 5.7.3), the expanded internal choice of processes in CSP in (2) has the same
semantics as the corresponding expanded internal choice of processes in Circus in (1).
Finally, the replicated internal choice in CSP is a sound link of the iterated internal choice
in Circus, and the rule is sound.
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5.7.16 Iterated Parallel Composition

Lemma 5.7.16 (Iterated Parallel Composition). Link Rule 27 for iterated parallel com-
position of processes is sound.

Proof. (1). The semantics of the iterated operators in Circus is given by the expansion of
the operators. Therefore,

J CS K x : T • P(x ) =̂ P(x1) J CS K (P(x2) J CS K · · · J CS K P(xn))

(2). The iterated parallel composition is linked to a CSP ‖B Z program

‖
Φ(CS) x :Φ(T )

• Φ (Rwrt (P(x )))

by Link Rule 27.
The replicated operator in CSP denotes the expansion of the operator as well. Thus,

‖
Φ(CS) x :Φ(T )

• Φ (Rwrt (P(x )))

=̂ Φ (Rwrt (P(x1))) ‖
Φ(CS)

(
Φ (Rwrt (P(x2))) ‖

Φ(CS)

· · · ‖
Φ(CS)

Φ (Rwrt (P(xn)))

)

(3). Since

(
Φ (Rwrt (P)) ‖

Φ(CS)

Φ (Rwrt (Q))

)
is a sound link of (P J CS K Q) in Circus

to CSP (see Section 5.7.4), the expanded parallel composition of processes in CSP in (2)
has the same semantics as the corresponding expanded parallel composition of processes
in Circus in (1). Finally, the replicated parallel composition in CSP is a sound link of the
iterated parallel composition in Circus, and the rule is sound.

5.7.17 Iterated Interleaving

Lemma 5.7.17 (Iterated Interleaving). Link Rule 28 for iterated interleaving of processes
is sound.

Proof. (1). The semantics of the iterated operators in Circus is given by the expansion of
the operators. Therefore,

||| x : T • P(x ) =̂ P(x1) ||| (P(x2) ||| · · · |||P(xn)
)

(2). The iterated interleaving is linked to a CSP ‖B Z program

|||
x :Φ(T )

• Φ (Rwrt (P(x )))

by Link Rule 28.
The replicated operator in CSP denotes the expansion of the operator as well. Thus,

|||
x :Φ(T )

• Φ (Rwrt (P(x )))

=̂ Φ (Rwrt (P(x1))) ||| (Φ (Rwrt (P(x2))) ||| · · · ||| Φ (Rwrt (P(xn))))

(3). Since (Φ (Rwrt (P)) ||| Φ (Rwrt (Q))) is a sound link of (P ||| Q) in Circus to CSP
(see Section 5.7.5), the expanded interleaving of processes in CSP in (2) has the same
semantics as the corresponding expanded interleaving of processes in Circus in (1). Finally,
the replicated interleaving in CSP is a sound link of the iterated interleaving in Circus, and
the rule is sound.
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5.8 Parametrised Process and its Invocation

Lemma 5.8.1 (Parametrised Process and its Invocation). Link Rule 29 and 17 for para-
metrised process and its invocation are sound.

Proof. (1). The semantics of a parametrised process in Circus is given by the semantics of
parametrised procedure in UTP.

(process PP =̂ x : T • P)

=̂ (PP = {[λ x : var(T ) • P ]}) [Hoare & He [24, Section 9.2]]

= (PP = {[λ x : val(T ) • P ]}) [The parameter x is not allowed to be changed]

Therefore, the parametrised process invocation PP(ax ) becomes

PP(ax )

= PP(x )[ax , ax ′/x , x ′] [Hoare & He [24, Theorem 9.2.7]]
= {[P ]}[ax , ax ′/x , x ′]

= P [ax/x ] [For a value parameter having val , x ′ = x ]

If ax is xi , it becomes a process invocation P [xi/x ].
(2). A parametrised process PP and its invocation are linked to a CSP ‖B Z program

by Link Rule 29 and Link Rule 17 respectively. For an invocation PP(xi), it is linked to
Φ (P [xi/x ]) by Link Rule 17.

(3). By comparing the parametrised process invocation in (1) and (2), we conclude the
rules for the parametrised process and its invocation are sound.

5.9 Indexed Process and its Invocation

Lemma 5.9.1 (Indexed Process and its Invocation). Link Rule 30 and 20 for indexed
process and its invocation are sound.

Proof. (1). The semantics of an indexed process in Circus is given by the semantics of the
parametrised process.

(2). An indexed process IP and its invocation are linked to a CSP ‖B Z program by
Link Rule 30 and Link Rule 20.

(3). The semantics of the indexed process and its invocation is the same as the para-
metrised process and its invocation except that all channels are renamed in the indexed
process. Since the rules defined for the parametrised (Section 5.8) processes are sound,
those rules are sound as well.

5.10 Actions

5.10.1 Schema Expression as Action

Lemma 5.10.1 (Schema Expression as Action). Link Rule 31 for schema expression as
action is sound.

Proof. (1). Schema expressions actually are transformed into specification statements by
the basic conversion rule bC [89]. The precondition of this rule requires the schema shall
specify an operation. Provided an operational schema Op

Op == [ decl ; ins? : Ti ; outs! : To | pred0 ]

has a decl , ins? and outs! in its declaration part and pred0 in its predicate part. In order
to convert it into a specification statement, it should be normalised in advance using the
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normalisation technique [63, p. 159]. In addition, input and output variables are simply
the syntactic sugar for undashed and dashed variables respectively. Therefore, the schema
Op is normalised and transformed to

Opnorm == [ udecl ; ddecl ′ | pred ]

where

• udecl stands for undashed variables, including undashed state variables and input
variables;

• ddecl ′ stands for dashed variables, including dashed state variables and output vari-
ables.

Then this normalised schema is easily converted into a specification statement and,
finally, the semantics of the schema expressions is embedded into the specification state-
ments.[

udecl ; ddecl ′ | pred
]

=̂ ddecl : [∃ ddecl ′ • pred , pred ] [Oliveira [35, Definition B.40]]
= R(∃ ddecl ′ • pred ` pred ∧ ¬wait ′ ∧ tr ′ = tr) [Oliveira [35, Definition B.32]]
= R(pre ` post ∧ ¬wait ′ ∧ tr ′ = tr)

where

• ddecl stands for a comma-separated list of undashed variables which are introduced
as dashed variables in ddecl ′;

• pre is an abbreviation for (∃ ddecl ′ • pred);

• post is for pred .

In sum, the schema expression action is successfully terminated with the postcondition
is established only if the precondition holds. On termination, only the variables in the
frame — introduced in ddecl ′ — are changed and others are not changed. Furthermore,
the trace is left unchanged. If the precondition does not hold, it is diverged like the reactive
abortion Chaos .

(2). A schema expression in Circus is linked to a CSP ‖B Z program

Ω3


P SExp =̂ [ decl ; ΞQ1 StPar ; · · ·ΞQn StPar ;

ins? : Ti ; outs! : To | p ]
P SExp fOp =̂ [ ΞP StPar ; ΞQ1 StPar ; · · ·ΞQn StPar ;

ins? : Ti | ¬pre P SExp]




channel P SExp : Φ(Ti).Φ(To)
channel P SExp fOp : Φ(Ti)
HIDE CSPB = {|P SExp,P SExp fOp|}
P SExp!ins?outs → SKIP 2 P SExp fOp!ins → div


by Link Rule 31.

According to Theorem 5.2.1, its semantics is

R
(
pre ` post ∧ ¬wait ′ ∧ tr ′ = tr

)
(3). Since the P SExp schema in Link Rule 31 is a linked counterpart of the corre-

sponding schema in Circus and only transformed by the renaming rule (Rwrt Rule 24) and
the state merge rule (Ω1 Rule 1). Therefore, the precondition and postcondition of this
transformed schema are the same as their counterparts in Circus. Finally, compared to
the semantics of schema expressions in (1), the linked CSP ‖B Z programs have the same
semantics in (2), and the rule is sound.
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5.10.2 CSP Actions

5.10.2.1 Basic Actions

Lemma 5.10.2 (Basic Actions). Link Rule 32 for basic actions is sound.

Proof. According to Lemma 5.10.3, Lemma 5.10.4, and Lemma 5.10.5, Link Rule 32 is
sound for Skip, Stop, and Chaos. That is, Link Rule 32 for basic actions is sound.

Lemma 5.10.3 (Skip). Link Rule 32 for Skip is sound.

Proof. (1). The semantics of the Skip action in Circus is defined as

Skip =̂ R(true` tr′ = tr ∧ ¬wait′ ∧ v ′ = v) [Oliveira [35, Definition B.3]]

(2). The Skip action in Circus is linked to the SKIP process in CSP by Link Rule 32.
The semantics of the SKIP process in CSP is defined as

SKIP =̂ R(true` tr′ = tr ∧ ¬wait′) [Cavalcanti & Woodcock [68, Law 134]]

When considering this SKIP process is in the CSP ‖ B model (Equation 2.2), accord-
ing to Law 2.4.1, the semantics of the SKIP process in CSP ‖ B model is

SKIP =̂ R(true` tr′ = tr ∧ ¬wait′ ∧ v ′ = v)
[Cavalcanti & Woodcock [68, Law 134] and Law 2.4.1]

(3). Therefore, both Skip in Circus has the same semantics as SKIP in CSP ‖ B .
Finally, the link is sound.

Lemma 5.10.4 (Stop). Link Rule 32 for Stop is sound.

Proof. (1). The semantics of the Stop action in Circus is defined as

Stop =̂ R(true` tr′ = tr ∧ wait′) [Oliveira [35, Definition B.2]]

It is worth noting that Stop leaves the state variables unconstrained or loose in order to
be in the unit for the external choice of actions due to the semantics of external choice
that state changes would not resolve it. That is explained in Section 3.5 of [35].

(2). The Stop action in Circus is linked to the STOP process in CSP by Link Rule 32.
The semantics of the STOP process in CSP is defined as

STOP = R(true` tr′ = tr ∧ wait′) [Cavalcanti & Woodcock [68, Section 6.3]]

When considering this STOP process is in the CSP ‖ B model (Equation 2.2), accord-
ing to Law 2.4.1, the semantics of the STOP process in CSP ‖ B model is

STOP =̂ R(true` tr′ = tr ∧ wait′ ∧ v ′ = v)
[Cavalcanti & Woodcock [68, Section 6.3] and Law 2.4.1]

(3). From the behavioural aspect, Stop and STOP have the same semantics. But from
the state aspect, STOP is different from Stop which leaves state unconstrained. However
in the real situation, deadlock is always not what the system engineer expects. When it
deadlocks, a counterexample is generated and model checking fails.

Lemma 5.10.5 (Chaos). Link Rule 32 for Chaos is sound.

Proof. (1). The semantics of the Chaos action is shown as below.

Chaos = R(false` true) [Oliveira [35, Definition B.2]]

(2). The Chaos action in Circus is linked to the div process in CSP by Link Rule 32.
The div [71] in CSP is the worst process that does nothing but diverges. It is equal to
CHAOS in [68] and [24]. The semantics is

div = R(false` true) [Cavalcanti & Woodcock [68]]

(3). Therefore, Chaos and div have the same semantics and the link is sound.
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5.10.2.2 Prefixing

Synchronisation Channel

Lemma 5.10.6 (Synchronisation Channel). Link Rule 33 for prefixing with synchronisa-
tion channel, only having a channel name and no message communicated, is sound.

For a prefixing process with a channel name only and without message communicated:
c → Skip,

Proof. (1). A prefixing c → Skip in Circus is defined as a reactive design

c → Skip =̂ R(true` doC(c,Sync) ∧ v ′ = v) [Oliveira [35, Definition B.10]]

where

doC(c, e) =̂
((

tr ′ = tr
)
∧ (c, e) 6∈ ref ′

)
� wait ′ �

(
tr ′ = tr_〈(c, e)〉

)
[Oliveira [35, Definition B.9]]

c is the channel name and e is the value communicated in channel c. Sync is a special
case of communication value for synchronization and the communication pair (c,Sync)
represents the communication c without value only.

(2). The prefixing c → Skip in Circus is linked to the CSP ‖B Z program

c → Φ (Rwrt (Skip)) = c → SKIP [Link Rule 32]

by Link Rule 33.
The prefixing c → SKIP in CSP is defined by UTP semantics.

c → SKIP

=̂ CSP1
(
ok ′ ∧ doA(c)

)
[Hoare & He [24, p. 209]]

= CSP1
(
ok ′ ∧ R

(
true`

(
tr ′ = tr ∧ c 6∈ ref ′

)
� wait ′ �

(
tr ′ = tr_〈c〉

)))
[Equation 5.1]

= R
(
true`

(
tr ′ = tr ∧ c 6∈ ref ′

)
� wait ′ �

(
tr ′ = tr_〈c〉

))
[Reactive-Design-CSP1 [68, Law 121]]

= R
(
true`

((
tr ′ = tr ∧ c 6∈ ref ′

)
� wait ′ �

((
tr ′ = tr_〈c〉

))
∧ v ′ = v

))
[State variables in B are not changed and Law 2.4.2]

where

doA(c) =̂ Φ(c 6∈ ref ′ � wait ′ � tr ′ = tr_〈c〉) [Hoare & He [24, p. 200]]
= R(((tr ′ = tr) ∧ wait ′ ∨ (tr < tr ′)) ∧ (c 6∈ ref ′ � wait ′ � tr ′ = tr_〈c〉))

[Hoare & He [24, p. 199]]

= R(tr ′ = tr ∧ c 6∈ ref ′ � wait ′ � tr ′ = tr_〈c〉) (5.1)
= R(true` tr ′ = tr ∧ c 6∈ ref ′ � wait ′ � tr ′ = tr_〈c〉) [Reactive Design]

Note that Φ [24, p. 199] in the equation is different from our Φ link function.
(3). Therefore, the semantics of the prefixing c → Skip is the same as that of the

prefixing c → SKIP in CSP ‖B Z . The rule is sound for c → Skip.

For a prefixing process with a channel name only and without message communicated:
c → A,
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Proof. (1). The prefixing c → A in Circus is defined as

c → A =̂ (c → Skip) ; A [Oliveira [35, Definition B.13]]

(2). The prefixing c → A in Circus is linked to the CSP ‖B Z program

c → Φ (Rwrt (A))

by Link Rule 33. It is equal to

(c → SKIP ) ; Φ (Rwrt (A)) [Hoare & He [24, Definition 8.2.5]]

(3). Since ; and Φ (Rwrt (A)) are the linked counterparts of ; and A in Circus and
c → SKIP has the same semantics as c → Skip as proven above, finally, the rule for the
prefixing c → A is sound.

Output Channel

Lemma 5.10.7 (Output Channel without State Components evaluated). Link Rule 34
for prefixing with output channel is sound.

For the prefixing c.e → Skip or c!e → Skip in Circus, provided e does not evaluate
state variables,

Proof. The prefixing is linked to c.e → SKIP or c!e → SKIP by Link Rule 34. c.e or
c!e can be treated as the synchronization channel c.e without value or the channel c with
the value e. In both cases, they have the same semantics in Circus and CSP.

Lemma 5.10.8 (Output Channel with State Components evaluated). Link Rule 35 for
prefixing with output channel is sound.

For the prefixing c.e → Skip or c!e → Skip in Circus, provided e does evaluate state
variables si , · · · , sj ,

Proof. (1). For the prefixing c.e(si , · · · , sj ) → Skip in Circus, its semantics defined be-
low outputs the value of the expression e(si , · · · , sj ) on the channel c and after that it
terminates.

c.e(si , · · · , sj )→ Skip =̂ R(true` doC(c, e(si , · · · , sj )) ∧ v ′ = v)
[Oliveira [35, Definition B.10]]

(2). For the prefixing c.e(si , · · · , sj )→ Skip, it is linked to the CSP ‖B Z program
channel P Op si : Φ(Tsi )
· · ·
channel P Op sj : Φ(Tsj )
HIDE CSPB = {|P Op si , · · · ,P Op sj , · · · |}
P Op si?si → · · · → P Op sj ?sj → c.Φ (e(si , · · · , sj ))→ SKIP

by Link Rule 35.
As a CSP ‖ B program, it is given by Definition 2.4.1.

(Op si?si → · · · → Op sj ?sj → c.Φ (e(si , · · · , sj ))→ SKIP ) ‖C B
ops

(B)v
′

v
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=



∃ v0 •
Op si?si → (· · · → Op sj ?sj → c.Φ (e(si , · · · , sj ))→ SKIP ) Vsi/siW

‖C B
ops

(B)v
′

v0




∧R pred(Op si)[v0/v ′]

[Law 2.4.3]

=

Op si?si →

 (· · · → Op sj ?sj → c.Φ (e(si , · · · , sj )) Vsi/siW→ SKIP )

‖C B
ops

(B)v
′

v


[v0 = v because v ′ = v for Op si in Rwrt Rule 23]

=

 Op si?si → · · · → Op sj ?sj →(
(c.Φ (e(si , · · · , sj )) Vsi , · · · , sj /si , · · · , sjW→ SKIP ) ‖C B

ops
(B)v

′

v

) 
[Further application of the same law]

=

 Op si?si → · · · → Op sj ?sj →

c.Φ (e(si , · · · , sj )) Vsi , · · · , sj /si , · · · , sjW→

(
SKIP ‖C B

ops
(B)v

′

v

) 
[Law 2.4.2]

=


(

Op si?si → · · · → Op sj ?sj →
c.Φ (e(si , · · · , sj )) Vsi , · · · , sj /si , · · · , sjW→ SKIP

)
∧R (v ′ = v)

[Law 2.4.1]

where VW, such as eVsi/siW or PVsi/siW, is a special notation introduced to denote the
substitution of the variable si in the expression e or the variable si to be evaluated in the
first construct of P by its value (the same name si). For example, the current value of the
variable s1 is 1, then

(s1 + s1 ∗ 2) Vs1/s1W = 1 + 1 ∗ 2

(c.s1 → SKIP ) Vs1/s1W = c.1→ SKIP

(c?s1.s1 → SKIP ) Vs1/s1W = c?s1.1→ SKIP
[The first input variable s1 is not to be evaluated]

In addition, this notation is only used in CSP and not in Circus. Therefore, AVsi/siW is
not correct and Φ (Rwrt (A)) Vsi/siW is correct. And the notation is introduced just for
reasoning only and will not be used in other places.

When taking HIDE CSPB = {|Op si , · · · ,Op sj , . . . |} into account, it is simplified
further.(

Op si?si → · · · → Op sj ?sj →
c.Φ (e(si , · · · , sj )) Vsi , · · · , sj /si , · · · , sjW→ SKIP

)
\ {|Op si , · · · ,Op sj |}

= (c.Φ (e(si , · · · , sj )) Vsi , · · · , sj /si , · · · , sjW→ SKIP )
[Hiding [7, Section 3.5.1, L5]]

Finally, in the linked expression Φ (e), each occurrence of si ,. . . , or sj is substituted by
its current value, then this linked expression is outputted from the channel c. Furthermore,
all state variables still remain unchanged.

(3). Φ (e) is a linked counterpart of e in Circus. Therefore, the output pattern of
communication, c.e, can be regarded as a synchronisation channel d which is equal to c.e.
Then according to the proof above about the link rules for the synchronisation Channel,
(c.e(si , · · · , sj )→ Skip) has the same semantics as

(c.Φ (e(si , · · · , sj )) Vsi , · · · , sj /si , · · · , sjW→ SKIP )
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Finally, the rule is sound.

Proof. c.e → A is the similar case to c → A.

Input Channel

Lemma 5.10.9 (Input Channel with Constrained Input). Link Rule 36 for prefixing with
input channel is sound.

Proof. (1). The constrained input prefixing c?x : P → A(x ) in Circus is defined as a
reactive design

c?x : P → A(x ) =̂ var x • R(true` doI(c, x ,P) ∧ v ′ = v) ; A(x )
[Oliveira [35, Definition B.15]]

where

doI(c, x ,P)

=̂

 (tr ′ = tr) ∧ ({e : δ(c) | P • (c, e)} ∩ ref ′ 6= ∅)
�wait ′�
(tr ′ − tr ∈ {e : δ(c) | P • 〈(c, e)〉}) ∧ x ′ = snd(last(tr ′))


[Oliveira [35, Definition B.14]]

• c is the channel name.

• δ(c) is the type of the channel c.

• P is a predicate which the value communicated on the channel c shall satisfy.

This semantics states that before the communication, it cannot refuse the communi-
cation of any value, which has the type δ(c) but satisfies P , on the channel c. After the
engagement of the communication, the trace is extended by one event with the channel c
and a value e, and the final value of x is exactly the same as the value communicated on
the channel c. The behaviour will be like the action A with x replaced by e.

In addition, the input prefixing can be expressed as an external external choice in Circus
as well.

c?x : P → A(x ) =̂2x :{e:δ(c)|P} c.x → A(x )

[Oliveira, Cavalcanti & Woodcock [73]]

provided {e : δ(c) | P} is finite.
(2). A constrained input prefixing c?x : P → A(x ) in Circus is linked to a CSP ‖B Z

program

c?x : {y | y<-Φ(Tc),Φ(P)} → Φ (Rwrt (A(x )))

by Link Rule 36.
In CSP, the prefixing with the constrained input c?x : B → P(x ) denotes a guarded

choice [24].

c?x : B → P(x ) =2x :B c.x → P(x ) Roscoe [ [71]]

where B is a set.
Therefore,

c?x : {y | y<-Φ(Tc),Φ(P)} → Φ (Rwrt (A(x )))

=2 x :{y|y<-Φ(Tc),Φ(P)}c.x → Φ (Rwrt (A(x )))
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(3). The set comprehension

{y | y<-Φ(Tc),Φ(P)}

actually is the linked counterpart of the set comprehension (according to the characteristic
set comprehension in Table D.5)

{e : δ(c) | P}

because Φ (Tc) and Φ (P) are the linked counterparts of Tc and P . Additionally, according
to Link Rule 50, if the action A is a prefixed action AA, the rule is valid. Actually
c.x → A(x ) is a prefixed action and x will not evaluate state variables, therefore

2 x :{y|y<-Φ(Tc),Φ(P)}c.x → Φ (Rwrt (A(x )))

in CSP is a sound link of

2x :{e:δ(c)|P}

from Circus.
Finally, the rule for constrained input prefixing is sound.

Lemma 5.10.10 (Input Channel without Constrained Input). Link Rule 37 for prefixing
with input channel is sound.

Proof. For the simplified input prefixing (c?x → A(x )), it is linked by Link Rule 37. It
is equal to constrained input prefixing with the predicate P = true [35, Definition B.16].
Therefore, the rule is sound.

Multiple Data Transfer Channel

Lemma 5.10.11 (Multiple Data Transfer Channel). Link Rule 38 for prefixing with
multiple-part communication is sound.

Proof. For the channel with multiple inputs, or outputs, or the combination of them, the
proof is very similar to that of the individual channel pattern.

5.10.2.3 Guarded Action

Lemma 5.10.12 (Guarded Action). Link Rule 39 for guarded action is sound.

Proof. (1). The semantics of guarded actions in Circus is defined as

(g) N A =̂ R((g ⇒ ¬Af
f )`((g ∧ At

f ) ∨ (¬g ∧ tr′ = tr ∧ wait′)))
[Oliveira [35, Definition B.6]]

It states that if the guard condition g is true, it is the action A itself. Otherwise, it
deadlocks as Stop.

(2). The guarded action in Circus is linked to the CSP ‖B Z program
channel P Op si : Φ(Tsi )
· · ·
channel P Op sj : Φ(Tsj )
HIDE CSPB = {|P Op si , · · · ,P Op sj |}
P Op si?si → · · · → P Op sj ?sj → Φ (g) & Φ (Rpost (A))

by Link Rule 39.
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As a CSP ‖ B program, it is defined by Definition 2.4.1. In addition, when taking
HIDE CSPB into account, it is simplified further.

(
P Op si?si → · · · → P Op sj ?sj →

Φ (g) & Φ (Rpost (A))

)
‖C B

ops
(B)v

′

v


\ {|Op si , · · · ,Op sj |}

=

∃ v0 •
P Op si?si → · · · → P Op sj ?sj →

(
Φ (g) Vsgi , · · · , sgj /sgi , · · · , sgjW

& Φ (Rpost (A)) Vsai , · · · , saj /sai , · · · , sajW

)
‖C B

ops
(B)v

′

v0




\ {|Op si , · · · ,Op sj |}
∧R (v = v0)

[Law 2.4.3]

=

 (Φ (g) Vsgi , · · · , sgj /sgi , · · · , sgjW & Φ (Rpost (A)) Vsai , · · · , saj /sai , · · · , sajW)

‖C B
ops

(B)v
′

v


[Hiding [7, Section 3.5.1, L5]]

The b & P construct in CSP is equal to

b & P =̂ if b then P else STOP

Therefore,( (
Φ (g) Vsgi , · · · , sgj /sgi , · · · , sgjW

& Φ (Rpost (A)) Vsai , · · · , saj /sai , · · · , sajW

)
‖C B

ops
(B)v

′

v

)

=


 Φ (Rpost (A)) Vsai , · · · , saj /sai , · · · , sajW

‖C B
ops

(B)v
′

v

 if Φ (g) Vsgi/sgi , · · ·W = true

STOP ‖C B
ops

(B)v
′

v if Φ (g) Vsgi/sgi , · · ·W = false

=


 Φ (Rpost (A)) Vsai , · · · , saj /sai , · · · , sajW

‖C B
ops

(B)v
′

v

 if Φ (g) Vsgi/sgi , · · ·W = true

STOP if Φ (g) Vsgi/sgi , · · ·W = false

[Law 2.4.1]

(3). Φ (g) Vsgi , · · · , sgj /sgi , · · · , sgjW is a linked counterpart of g . Since Φ (g) is a
linked counterpart of g , the value of the guard condition to be evaluated in both Cir-
cus and CSP ‖B Z is equal. In other words, if g is evaluated to be true, Φ (g) will
be true. And if g is evaluated to be false, Φ (g) will be false. Furthermore, since
Φ (Rpost (A)) Vsai , · · · , saj /sai , · · · , sajW is a linked counterpart of the action A, and

Φ (Rpost (A)) ‖C B
ops

(B)v
′

v

behaves like A. Eventually, the semantics of the CSP ‖B Z program in (2) is the same as
that of the Circus guarded action in (1). The rule is sound.
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5.10.2.4 Sequential Composition

Lemma 5.10.13 (Sequential Composition of Actions). Link Rule 40 for sequential com-
position of actions is sound.

Proof. (1). The semantics of the sequential composition in Circus is not defined as a reactive
design and instead as a relational sequence in UTP.

A1 ; A2 =̂ ∃ v0 •A1[v0/v ′] ∧ A2[v0/v ] [Oliveira, Cavalcanti & Woodcock [73]]

(2). The sequential composition of actions in Circus is linked to the CSP ‖B Z program

Φ (Rpre (A1))→ (Φ (Rpost (A1)) ; Φ (Rwrt (A2)))

by Link Rule 40.
As a CSP ‖ B program, it is defined by Definition 2.4.1. In addition, when taking

HIDE CSPB into account, it is simplified further.
(

P Op si?si → · · · → P Op sj ?sj →
(Φ (Rpost (A1)) ; Φ (Rwrt (A2)))

)
‖C B

ops
(B)v

′

v


\ {|Op si , · · · ,Op sj |}

=

(
(Φ (Rpost (A1)) Vsi , · · · , sj /si , · · · , sjW ; Φ (Rwrt (A2))) ‖C B

ops
(B)v

′

v

)
[Law 2.4.3 and Hiding [7, Section 3.5.1, L5]]

The semantics of the sequential composition is defined as a relational sequence as well.

P1(v ′) ; P2(v) =̂ ∃ v0 • P1(v0) ∧ P2(v0) [Cavalcanti & Woodcock [68]]

(3). Since Φ (Rpost (A1)) Vsi , · · · , sj /si , · · · , sjW and Φ (Rwrt (A2)) are the linked coun-
terparts of actions A1 and A2 in Circus, then we can conclude the semantics of the linked
sequential composition in CSP is the same as that in Circus. The rule is sound.

5.10.2.5 External Choice

Lemma 5.10.14 (External Choice of Actions). Link Rule 41 for external choice of actions
AA is sound.

Proof. (1). The semantics of the external choice in Circus is defined as

A1 2 A2 = R


(
¬A1

t
f ∧ ¬A2

t
f

)
(̀
A1

t
f ∧ A2

t
f

)
� tr′ = tr ∧ wait′ �

(
A1

t
f ∨ A2

t
f

)


[Oliveira [35, Definition B.7]]

The precondition states that the external choice will not diverge only if both actions will
not diverge. The postcondition establishes that if the trace has not changed and the choice
has not terminated, the behaviour of external choice is given by the conjunction of both
actions; otherwise, the choice is made and the behaviour is either of actions. Additionally,
it shows that state change will not resolve the choice because it is not constrained in the
condition, and the choice is only made if an event of actions is executed or it has terminated.
For example, in the following choice, SExp1 and SExp2 will not resolve the choice but c
and d events will.

(SExp1 ; c → Skip) 2 (SExp2 ; d → Skip)
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(2). The external choice in Circus is linked to the CSP ‖B Z program

Φ (Rmrg (Rpre (A1) ,Rpre (A2)))→ (Φ (Rpost (A1)) 2 Φ (Rpost (A2)))

by Link Rule 41 where A1 and A2 should be AA.
As a CSP ‖B Z program, it is defined by Definition 2.4.1. In addition, when taking

HIDE CSPB into account, it is simplified further provided the initial construct of A1

evaluates sa1 = sa1i , · · · , sa1j and the initial construct of A2 evaluates sa2 = sa2i , · · · , sa2j .
All state variables evaluated in the initial construct of A1 and A2 are the union of sa1 and
sa2, denoted as si , · · · , sj . Then (

P Op si?si → · · · → P Op sj ?sj → (Φ (Rpost (A1)) 2 Φ (Rpost (A2)))
)

‖C B
ops

(B)v
′

v


\ {|Op si , · · · ,Op sj |}

=

 Φ (Rpost (A1)) Vsa1i , · · · , sa1j /sa1i , · · · , sa1jW
2

Φ (Rpost (A2)) Vsa2i , · · · , sa2j /sa2i , · · · , sa2jW

 ‖C B
ops

(B)v
′

v


[Law 2.4.3 and Hiding [7, Section 3.5.1, L5]]

The semantics of external choice in CSP is defined as

P1 2 P2 = R


(
¬P1

t
f ∧ ¬P2

t
f

)
(̀
P1

t
f ∧ P2

t
f

)
� tr′ = tr ∧ wait′ �

(
P1

t
f ∨ P2

t
f

)


[Cavalcanti & Woodcock [68, Law 137]]

(3). Because

Φ (Rpost (A1)) Vsa1i , · · · , sa1j /sa1i , · · · , sa1jW

and

Φ (Rpost (A2)) Vsa2i , · · · , sa2j /sa2i , · · · , sa2jW

are the linked counterparts of A1 and A2, the linked external choice in (2) has the same
semantics as that in Circus in (1). Therefore, the rule is sound.

5.10.2.6 External Choice (Mutually Exclusive Guarded Actions)

Lemma 5.10.15 (External Choice of Actions (Mutually Exclusive Guarded Actions)).
Link Rule 41 for external choice of actions with mutually exclusive guards is sound.

Proof. For external choice, if its two actions are guarded by mutually exclusive guards, its
guarded actions do not need to be AA. If g1 is evaluated to be true and consequently g2

is false, then(
(g1) N A1 2 (g2) N A2

)
=
(
(g1) N A1 2 Stop

)
[Oliveira [35, Definition B.6]]

=
(
(g1) N A1

)
[Oliveira [35, Law C.114]]

Otherwise, if g2 is evaluated to be true and consequently g1 is false, then(
(g1) N A1 2 (g2) N A2

)
=
(
Stop 2 (g2) N A2

)
[Oliveira [35, Definition B.6]]

=
(
(g2) N A2

)
[Oliveira [35, Law C.114]]
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So the external choice does not provide its environment a choice of both actions. Ac-
tually, it just evaluates both guarded conditions and provides the environment with the
guarded action. Therefore, it is not necessary to cope with the state changes in normal
external choice because there is only one action available. In the end, the guarded actions
are not required to be prefixed actions AA.

5.10.2.7 Internal Choice

Lemma 5.10.16 (Internal Choice of Actions). Link Rule 42 for internal choice of actions
is sound.

Proof. (1). The semantics of the internal choice in Circus is not defined as a reactive design
and instead simply as the disjunction of both actions.

A1 u A2 = A1 ∨ A2 [Oliveira [35, Definition B.8]]

(2). The internal choice of actions in Circus is linked to the CSP ‖B Z program

Φ (Rmrg (Rpre (A1) ,Rpre (A2)))→ (Φ (Rpost (A1)) u Φ (Rpost (A2)))

by Link Rule 42.
As a CSP ‖B Z program, it is defined by Definition 2.4.1. In addition, when taking

HIDE CSPB into account, it is simplified further provided the initial construct of A1

evaluates sa1 = sa1i , · · · , sa1j and the initial construct of A2 evaluates sa2 = sa2i , · · · , sa2j .
All state variables evaluated in the initial construct of A1 and A2 are the union of sa1 and
sa2, denoted as si , · · · , sj . Then (

P Op si?si → · · · → P Op sj ?sj → (Φ (Rpost (A1)) u Φ (Rpost (A2)))
)

‖C B
ops

(B)v
′

v


\ {|Op si , · · · ,Op sj |}

=

 Φ (Rpost (A1)) Vsa1i , · · · , sa1j /sa1i , · · · , sa1jW
u
Φ (Rpost (A2)) Vsa2i , · · · , sa2j /sa2i , · · · , sa2jW

 ‖C B
ops

(B)v
′

v


[Law 2.4.3 and Hiding [7, Section 3.5.1, L5]]

The semantics of the internal choice in CSP is defined as

P1 u P2 =̂ P1 ∨ P2 [Cavalcanti & Woodcock [68]]

(3). Because

Φ (Rpost (A1)) Vsa1i , · · · , sa1j /sa1i , · · · , sa1jW

and

Φ (Rpost (A2)) Vsa2i , · · · , sa2j /sa2i , · · · , sa2jW

are the linked counterparts of A1 and A2, the linked internal choice in (2) has the same
semantics as that in Circus in (1). Therefore, the rule is sound.

5.10.2.8 Parallel Composition (Disjoint Variables in Scope)

Lemma 5.10.17 (Parallel Composition (Disjoint Variables in Scope)). Link Rule 43 for
parallel composition of actions with disjoint variables in scope is sound.
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Proof. (1). In Circus, the semantics of the parallel composition is defined as

A1 J ns1 | cs | ns2 K A2 =̂

R



¬∃ 1.tr ′, 2.tr ′ •


(

A1
f
f ; (1.tr ′ = tr)

)
∧(

A2f ; (2.tr ′ = tr)
)
∧

1.tr ′ � cs = 2.tr ′ � cs


∧ ¬∃ 1.tr ′, 2.tr ′ •


(
A1f ; (1.tr ′ = tr)

)
∧(

A2
f
f ; (2.tr ′ = tr)

)
∧

1.tr ′ � cs = 2.tr ′ � cs


(̀(

A1
t
f ; U 1 (outαA1)

)
∧
(
A2

t
f ; U 2 (outαA2)

))
+{v ,tr} ; M‖(cs)


[Oliveira [35, Definition B.18]]

where

M‖(cs) =̂tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr) ∧ 1.tr � cs = 2.tr � cs

∧


(

(1.wait ∨ 2.wait) ∧
ref ′ ⊆ ((1.ref ∪ 2.ref ) ∩ cs) ∪ ((1.ref ∩ 2.ref ) \ cs)

)
�wait ′�
(¬1.wait ∧ ¬2.wait ∧ MSt)


[Oliveira, Cavalcanti & Woodcock [73]]

MSt =̂∀ v •

 (v ∈ ns1 ⇒ v ′ = 1.v) ∧
(v ∈ ns2 ⇒ v ′ = 2.v) ∧
(v 6∈ ns1 ∪ ns2 ⇒ v ′ = v)


[Oliveira, Cavalcanti & Woodcock [73]]

ns1 and ns2 are the partitions of the variables including state variables and local variables.

• The precondition states that if it is possible for either of A1 and A2 to diverge, the
parallel composition will diverge. Otherwise, both A1 and A2 do not diverge, and
the postcondition is the parallel by merge.

• The postcondition is defined as the parallel by merge technique [24]. To begin
with, two actions run independently. And then the results are merged afterwards
by M‖(cs).

– It merges the trace first. The new extended trace is a merge of new events of
two actions by the ‖cs function [35, Definition B.18] with the restriction that
the trace of both actions shall agree on events from cs.

– If either of actions have not terminated, the parallel composition will not termi-
nate, and refuses all events in cs that are refused by any actions and all events
not in cs that are refused by both actions.

– If either of actions have terminated, the parallel composition has terminated
and the state is merged by MSt .

• According to MSt , both A1 and A2 can access variables in their scope, but only
the variables in their partitions ns1 and ns2 can have an effect on the final value
of these variables. The variables which are not in their partitions remain the same.
In addition, it is impossible for one variable in both ns1 and ns2 because they are
partitions of variables.
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• According to the assumption of this rule

ns1 = scpV (A1)

ns2 = scpV (A2)

ns1 ∩ ns2 = ∅

therefore from the state aspect, A1 and A2 access and update variables independently.

(2). The parallel composition of actions with disjoint variables in scope in Circus is
linked to the CSP ‖B Z program

Φ (Rmrg (Rpre (A1) ,Rpre (A2)))→

 Φ (Rpost (A1))
‖

Φ(cs)

Φ (Rpost (A2))


by Link Rule 43.

As a CSP ‖B Z program, it is defined by Definition 2.4.1. In addition, when taking
HIDE CSPB into account, it is simplified further provided the initial construct of A1

evaluates sa1 = sa1i , · · · , sa1j and the initial construct of A2 evaluates sa2 = sa2i , · · · , sa2j .
All state variables evaluated in the initial construct of A1 and A2 are the union of sa1 and
sa2, denoted as si , · · · , sj . Then

 P Op si?si → · · · → P Op sj ?sj →

 Φ (Rpost (A1))
‖

Φ(cs)

Φ (Rpost (A2))




‖C B
ops

(B)v
′

v


\ {|Op si , · · · ,Op sj |}

=


 Φ (Rpost (A1)) Vsa1i , · · · , sa1j /sa1i , · · · , sa1jW

‖
Φ(cs)

Φ (Rpost (A2)) Vsa2i , · · · , sa2j /sa2i , · · · , sa2jW

 ‖C B
ops

(B)v
′

v


[Law 2.4.3 and Hiding [7, Section 3.5.1, L5]]

Provided

P1 = Φ (Rpost (A1)) Vsa1i , · · · , sa1j /sa1i , · · · , sa1jW
P2 = Φ (Rpost (A2)) Vsa2i , · · · , sa2j /sa2i , · · · , sa2jW

then the parallel composition in CSP is defined by the parallel by merge in UTP.(
P1 ‖

Φ(cs)

P2

)
=̂ ((P1 ; U 1(outαP1)) ∧ (P2 ; U 2(outαP2)))+{v ,tr} ; N

[Hoare & He [24, Paralle by Merge]]

where

N =̂


okay ′ = (P1.okay ∧ P2.okay) ∧
wait ′ = (P1.wait ∨ P2.wait) ∧
ref ′ = ((P1.ref ∪ P2.ref ) ∩ Φ(cs)) ∪ ((P1.ref ∩ P2.ref ) \ Φ(cs)) ∧
(tr ′ − tr) ∈ (P1.tr − tr ‖Φ(cs) P2.tr − tr) ∧
P1.tr � Φ(cs) = P2.tr � Φ(cs)


; SKIP
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• If one of actions (A1 or A2) diverges, namely either A1.okay or A2.okay is false, thus
the parallel composition diverges because okay ′ = (A1.okay ∧ A2.okay) = false.

• If not both of A1 and A2 have terminated, that is to say at least one of A1.wait and
A2.wait is true, the parallel composition has not terminated because wait ′ = true. In
this case, it refuses all events in cs that are refused by any actions and all events not
in cs that are refused by both actions. If both of A1 and A2 have terminated, that is
to say both A1.wait and A2.wait are false, the parallel composition has terminated
because of wait ′ = false.

• The trace is merged by the operator, ‖Φ(cs), defined in [71]. It is the same as ‖cs
in [35, Definition B.18].

• From the state aspect, P1 and P2 update variables independently.

(3). Because

Φ (Rpost (A1)) Vsa1i , · · · , sa1j /sa1i , · · · , sa1jW

and

Φ (Rpost (A2)) Vsa2i , · · · , sa2j /sa2i , · · · , sa2jW

are the linked counterparts of A1 and A2, as a result, the linked CSP ‖B Z program
in (2) has the same semantics as the parallel composition of actions in Circus from both
behavioural and state aspects. Therefore, the rule is sound.

5.10.2.9 Parallel Composition (Disjoint Variables in Updating)

Lemma 5.10.18 (Parallel Composition (Disjoint Variables in Updating)). Link Rule 44
for parallel composition of actions with disjoint variables in updating is sound.

Proof. This rule has the different condition. Its assumption

wrtV (A1) = ns1

wrtV (A2) = ns2

wrtV (A1) ∩ scpV (A2) = ∅
wrtV (A2) ∩ scpV (A1) = ∅

states that 1) all variables to be written in A1 and A2 are in its own partition and conse-
quentially it is not necessary to discard any variables after termination, and 2) all variables
to be written in one action are not seen by another action which makes it safe to update
these variables.

The behaviour of the parallel composition (Disjoint Variables in Updating) is the same
as the reasoning of the parallel composition (Disjoint Variables in Scope) above. Since the
precondition of this rule establishes that the update of each variable in one action will not
have impact on another action, and all these updates will not be discarded. From the state
aspect, it is the same as the reasoning of the parallel composition above too. Finally, this
rule is sound.

5.10.2.10 Interleaving (Disjoint Variables in Scope)

Lemma 5.10.19 (Interleaving (Disjoint Variables in Updating)). Link Rule 45 for inter-
leaving of actions with disjoint variables in scope is sound.
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Proof. Since an interleaving is equal to a parallel composition on an empty synchronization
channel for both Circus and CSP,

A1 ||[ ns1 | ns2 ]||A2 = A1 J ns1 | ∅ | ns2 K A2 [Oliveira [35, Law C.98]]
P1 ‖

∅
P2 = P1 ||| P2 Roscoe [ [71]]

according to the soundness of parallel composition in Section 5.10.2.8, then the rule is
sound.

5.10.2.11 Interleaving (Disjoint Variables in Updating)

Lemma 5.10.20 (Interleaving (Disjoint Variables in Updating)). Link Rule 46 for inter-
leaving of actions with disjoint variables in updating is sound.

Proof. Since an interleaving is equal to a parallel composition on an empty synchronization
channel for both Circus and CSP,

A1 ||[ ns1 | ns2 ]||A2 = A1 J ns1 | ∅ | ns2 K A2 [Oliveira [35, Law C.98]]
P1 ‖

∅
P2 = P1 ||| P2 Roscoe [ [71]]

according to the soundness of parallel composition in Section 5.10.2.9, then the rule is
sound.

5.10.2.12 Hiding

Lemma 5.10.21 (Hiding of Action). Link Rule 47 for hiding of action is sound.

Proof. (1). The semantics of hiding in Circus is defined as

A \ cs =̂ R
(
∃ s •

(
A[s, cs ∪ ref ′/tr ′, ref ′] ∧
(tr ′ − tr) = (s − tr) � (EVENT − cs)

))
; Skip

[Oliveira [35, Definition B.20]]

where EVENT denotes a universal set of events. For the action A, it is the alphabet of A.
(2). The action hiding in Circus is linked to the CSP ‖B Z program

Φ (RPre (A))→ (Φ (RPost (A)) \ Φ (cs))

by Link Rule 47.
As a CSP ‖ B program, it is defined by Definition 2.4.1. In addition, when taking

HIDE CSPB into account, it is simplified further.
(

P Op si?si → · · · → P Op sj ?sj →
(Φ (RPost (A)) \ Φ (cs))

)
‖C B

ops
(B)v

′

v


\ {|Op si , · · · ,Op sj |}

=

(
(Φ (RPost (A)) Vsi , · · · , sj /si , · · · , sjW \ Φ (cs)) ‖C B

ops
(B)v

′

v

)
[Law 2.4.3 and Hiding [7, Section 3.5.1, L5]]

Provided P = (Φ (RPost (A)) Vsi , · · · , sj /si , · · · , sjW), the semantics of hiding in CSP is
also defined as

P \ cs =̂ R
(
∃ s •

(
P [s, cs ∪ ref ′/tr ′, ref ′] ∧
(tr ′ − tr) = (s − tr) � (αP − cs)

))
; SKIP

[Hoare & He [24, Definition 8.2.14]]

(3). Because (Φ (RPost (A)) Vsi , · · · , sj /si , · · · , sjW), Φ (cs), and SKIP are the linked
counterparts of A, cs and Skip in Circus respectively, the linked hiding in CSP has the
same semantics as that in Circus. Therefore, the rule is sound.
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5.10.2.13 Recursion

Lemma 5.10.22 (Recursion of Action). Link Rule 48 for recursion of action is sound.

Proof. (1). The semantics of the explicit recursion definition is defined as

µ X • A(X )

=̂
d
{X | A(X ) vA X } [Oliveira [35, Definition B.18]]

=
d
{X | [X ⇒ A(X )]} [vA [35, Definition 3.1]]

which is the weakest fixed point of the equation (X = A(X )).
(2). The recursion in Circus is linked to the CSP ‖B Z program

let X = Φ (Rwrt (A(X ))) within X

by Link Rule 48. This local definition defines a recursion, X = Φ (Rwrt (A(X ))) and its
semantics is given by the weakest fixed point as well.

d
{X | [X ⇒ Φ (Rwrt (A(X )))]} [Cavalcanti & Woodcock [68]]

(3). Because Φ (Rwrt (A(X ))) is the linked counterpart of A(X ), the local definition in
(2) has the same semantics as the recursion in (1). The rule is sound.

5.10.2.14 Iterated Sequential Composition

Lemma 5.10.23 (Iterated Sequential Composition of Actions). Link Rule 49 for iterated
sequential composition of actions is sound.

Proof. (1). The semantics of iterated operators is an expansion of the related operator in
actions. For the sequential composition, its semantics is defined as

; x : T • A(x ) =̂ A(x1) ; A(x2) ; · · · ; A(xn) [Oliveira [35, Definition B.22]]

provided T is a finite sequence and

T = 〈x1, x2, · · · , xn〉

(2). The iterated sequential composition in Circus is linked to the CSP ‖B Z program

Φ (Rpre (A(x )))→ ;x :Φ(T ) • Φ (Rpost (A(x )))

by Link Rule 49.
As a CSP ‖ B program, it is defined by Definition 2.4.1. In addition, when taking

HIDE CSPB into account, it is simplified further.
(

P Op si?si → · · · → P Op sj ?sj →(
;x :Φ(T ) • Φ (Rpost (A(x )))

) )
‖C B

ops
(B)v

′

v


\ {|Op si , · · · ,Op sj |}

=

((
;x :Φ(T ) • Φ (Rpost (A(x ))) Vsi , · · · , sj /si , · · · , sjW

)
‖C B

ops
(B)v

′

v

)
[Law 2.4.3 and Hiding [7, Section 3.5.1, L5]]
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The iterated sequential composition in CSP is an expansion of the sequential composi-
tion as well.

;x :Φ(T ) • Φ (Rpost (A(x ))) Vsi , · · · , sj /si , · · · , sjW

=


Φ (Rpost (A (Φ (x1)))) Vsi , · · · , sj /si , · · · , sjW;
Φ (Rpost (A (Φ (x2)))) Vsi , · · · , sj /si , · · · , sjW;
. . . ;
Φ (Rpost (A (Φ (xn)))) Vsi , · · · , sj /si , · · · , sjW


(3). Since Φ (Rpost (A)) Vsi , · · · , sj /si , · · · , sjW and Φ (xi) are the linked counterparts of

the action A and the expression xi in Circus, and additionally the ; is the linked counterpart
of ; in Circus, then we can conclude the semantics of the linked sequential composition in
CSP is the same as that in Circus. The rule is sound.

5.10.2.15 Iterated External Choice

Lemma 5.10.24 (Iterated External Choice of Actions). Link Rule 50 for iterated external
choice of actions is sound.

Proof. (1). The semantics of iterated operators is an expansion of the related operator in
actions. For the external choice, its semantics is defined as

2 x : T • A(x ) =̂ A(x1) 2 A(x2) 2 · · · 2 A(xn) [Oliveira [35, Definition B.22]]

provided T is a finite set

T = {x1, x2, · · · , xn}

(2). The iterated external choice in Circus is linked to the CSP ‖B Z program

Φ (Rpre (A(x )))→2
x :Φ(T )

• Φ (Rpost (A(x )))

by Link Rule 50.
As a CSP ‖ B program, it is defined by Definition 2.4.1. In addition, when taking

HIDE CSPB into account, it is simplified further.
(

P Op si?si → · · · → P Op sj ?sj →
2

x :Φ(T )
• Φ (Rpost (A(x )))

)
‖C B

ops
(B)v

′

v


\ {|Op si , · · · ,Op sj |}

=

((
2

x :Φ(T )
• Φ (Rpost (A(x ))) Vsi , · · · , sj /si , · · · , sjW

)
‖C B

ops
(B)v

′

v

)
[Law 2.4.3 and Hiding [7, Section 3.5.1, L5]]

The iterated external choice in CSP is an expansion of the external choice operation
as well.

2
x :Φ(T )

• Φ (Rpost (A(x ))) Vsi , · · · , sj /si , · · · , sjW

=


Φ (Rpost (A (Φ (x1)))) Vsi , · · · , sj /si , · · · , sjW 2

Φ (Rpost (A (Φ (x2)))) Vsi , · · · , sj /si , · · · , sjW 2

. . . 2
Φ (Rpost (A (Φ (xn)))) Vsi , · · · , sj /si , · · · , sjW


(3). Since Φ (Rpost (A)) Vsi , · · · , sj /si , · · · , sjW and Φ (xi) are the linked counterparts of

the action A and the expression xi in Circus, and additionally the 2 is the linked counterpart
of 2 in Circus, then we can conclude the semantics of the linked external choice in CSP is
the same as that in Circus. The rule is sound.
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5.10.2.16 Iterated Internal Choice

Lemma 5.10.25 (Iterated Internal Choice of Actions). Link Rule 51 for iterated internal
choice of actions is sound.

Proof. (1). The semantics of iterated operators is an expansion of the related operator in
actions. For the external choice, its semantics is defined as

u x : T • A(x ) =̂ A(x1) u A(x2) u · · · u A(xn) [Oliveira [35, Definition B.22]]

provided T is a finite set

T = {x1, x2, · · · , xn}

(2). The iterated external choice in Circus is linked to the CSP ‖B Z program

Φ (Rpre (A(x )))→ u
x :Φ(T )

• Φ (Rpost (A(x )))

by Link Rule 51.
As a CSP ‖ B program, it is defined by Definition 2.4.1. In addition, when taking

HIDE CSPB into account, it is simplified further.
(

P Op si?si → · · · → P Op sj ?sj →
u

x :Φ(T )
• Φ (Rpost (A(x )))

)
‖C B

ops
(B)v

′

v


\ {|Op si , · · · ,Op sj |}

=

((
u

x :Φ(T )
• Φ (Rpost (A(x ))) Vsi , · · · , sj /si , · · · , sjW

)
‖C B

ops
(B)v

′

v

)
[Law 2.4.3 and Hiding [7, Section 3.5.1, L5]]

The iterated external choice in CSP is an expansion of the internal choice operation as
well.

u
x :Φ(T )

• Φ (Rpost (A(x ))) Vsi , · · · , sj /si , · · · , sjW

=


Φ (Rpost (A (Φ (x1)))) Vsi , · · · , sj /si , · · · , sjW u
Φ (Rpost (A (Φ (x2)))) Vsi , · · · , sj /si , · · · , sjW u
. . . u
Φ (Rpost (A (Φ (xn)))) Vsi , · · · , sj /si , · · · , sjW


(3). Since Φ (Rpost (A)) Vsi , · · · , sj /si , · · · , sjW and Φ (xi) are the linked counterparts of

the action A and the expression xi in Circus, and additionally the u is the linked counterpart
of u in Circus, then we can conclude the semantics of the linked internal choice in CSP is
the same as that in Circus. The rule is sound.

5.10.3 Command

5.10.3.1 Assignment

Lemma 5.10.26 (Assignment). Link Rule 52 for assignment is sound.

Proof. (1). The semantics of assignments in Circus is defined as

si , · · · , sj , lk , · · · , lm := esi , · · · , esj , elk , · · · , elm

=̂ R

true`

 tr ′ = tr ∧ ¬wait ′ ∧
s ′i = esi ∧ · · · ∧ s ′j = esj ∧
l ′k = elk ∧ · · · ∧ l ′m = elm ∧ u ′ = u


[Oliveira [35, Definition B.31]]
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It will not diverge, terminate successfully and leave the trace unchanged. In addition,
it updates the variables in its RHS (si , · · · , sj and lk , · · · , lm) and leaves others (u =
v\{si , . . . , sj , lk , . . . , lm}) remain the same. Furthermore, the assignment in Circus has an
assumption that expressions in RHS of the assignment are defined.

(2). The assignment in Circus is linked to the CSP ‖B Z program

Ω3



P assOp =̂

∆P StPar ; lp? : Tlp ; · · · ; lq? : Tlq ;
lk ! : Tlk ; · · · ; lm ! : Tlm ;
ΞQ1 StPar ; · · ·ΞQn StPar ; |

P s ′i = esi [lp?, · · · , lq?/lp , · · · , lq ] ∧ · · · ∧
P s ′j = esj [lp?, · · · , lq?/lp , · · · , lq ] ∧

lk ! = elk [lp?, · · · , lq?/lp , · · · , lq ] ∧ · · · ∧
lm ! = elm [lp?, · · · , lq?/lp , · · · , lq ] ∧ u ′ = u




State Part


channel P assOp :

Φ
(
Tlp

)
. · · · .Φ

(
Tlq

)
.Φ (Tlk ) . · · · .Φ (Tlm )

HIDE CSPB = {|P assOp|}
(P assOp!lp ! · · ·!lq?lk? · · ·?lm → SKIP )

 Behaviour Part

[Ω2 Rule 4]

by Link Rule 52.
According to Theorem 5.2.2, the semantics of this CSP ‖B Z program is

R


(pre[lo/ins?]⇒ true)̀ (pre[lo/ins?] ∧ post [lo , li/ins?, outs!] ∧ ¬wait ′ ∧ tr ′ = tr)
∨
(¬pre[lo/ins?] ∧ tr ′ = tr ∧ wait ′)




=R

true `


P s ′i = esi [lp?, · · · , lq?/lp , · · · , lq ] ∧ · · · ∧

P s ′j = esj [lp?, · · · , lq?/lp , · · · , lq ] ∧
l ′k = elk [lp?, · · · , lq?/lp , · · · , lq ] ∧ · · · ∧

l ′m = elm [lp?, · · · , lq?/lp , · · · , lq ] ∧
¬wait ′ ∧ tr ′ = tr ∧ u ′ = u


 [pre = true]

where u denotes the variables apart from the variables (si , · · · , sj and lk , · · · , lm).
(3). Finally, compared to the semantics of the assignment in Circus, the linked program

in CSP ‖B Z updates the same state variables (si , · · · , sj ) and local variables (lk , · · · , lm)
by the same corresponding expressions (esi , · · · , esj and elk , · · · , elm ). Furthermore, apart
from these variables, all other variables u are left unchanged. Therefore, the semantics of
assignments is the same as that of the linked program and the rule is sound.

5.10.3.2 Alternation

Lemma 5.10.27 (Alternation). Link Rule 53 for alternation is sound.

Proof. (1). The semantics of alternations in Circus is defined as

if 8i • gi → Ai fi =̂ R
((∨

i • gi

)
∧ (
∧

i • gi ⇒ ¬Ai
f
f )`

∨
i • (gi ∧ Ai

t
f )
)

[Oliveira [35, Definition B.35]]

The precondition specifies the condition of divergence: all guarded conditions are false, or
any action guarded by a true guard diverges. Otherwise, any action guarded by a true
guard is chosen from execution. And if more than one guard is true, then the behaviour
is an arbitrary choice of an action from these guarded actions, exactly like internal choice.
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(2). The alternation in Circus is linked to the CSP ‖B Z program



Op si?si → · · · → Op sj ?sj →

Φ (¬g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) & div
2 Φ (g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) & Φ (Rpost (A1))
2 Φ (g1 ∧ g2 ∧ · · · ∧ ¬gn) & (Φ (Rpost (A1)) u Φ (Rpost (A2)))
2 . . .

2 Φ (· · · ∧ gi · · · ∧ gj ∧ · · · ∧ gk ∧ · · · ) &

 Φ (Rpost (Ai))
u Φ (Rpost (Aj ))
u Φ (Rpost (Ak ))


2 . . .

2 Φ (g1 ∧ g2 ∧ · · · ∧ gn) &


Φ (Rpost (A1))

u Φ (Rpost (A2))
u · · ·
u Φ (Rpost (An))







by Link Rule 53.

As a CSP ‖B Z program, it is defined by Definition 2.4.1. In addition, when taking
HIDE CSPB into account, it is simplified further.





Op si?si → · · · → Op sj ?sj →

Φ (¬g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) & div
2 Φ (g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) & Φ (Rpost (A1))
2 Φ (g1 ∧ g2 ∧ · · · ∧ ¬gn) & (Φ (Rpost (A1)) u Φ (Rpost (A2)))
2 . . .
2 Φ (· · · ∧ gi · · · ∧ gj ∧ · · · ∧ gk ∧ · · · )

&

 Φ (Rpost (Ai))
u Φ (Rpost (Aj ))
u Φ (Rpost (Ak ))


2 . . .

2 Φ (g1 ∧ g2 ∧ · · · ∧ gn) &


Φ (Rpost (A1))

u Φ (Rpost (A2))
u · · ·
u Φ (Rpost (An))






‖C B

ops
(B)v

′

v


\ {|Op si , · · · ,Op sj |}
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Table 5.1: Comparison of Alternation and its Translation Specification

CSP ‖B Z
g1 g2 Circus Behaviour Condition Behaviour

true true A1 u A2 Φ (g1 ∧ g2)
Φ (Rpost (A1)) u

Φ (Rpost (A2))

true false A1 Φ (g1 ∧ ¬g2) Φ (Rpost (A1))

false true A2 Φ (¬g1 ∧ g2) Φ (Rpost (A2))

false false Chaos Φ (¬g1 ∧ ¬g2) div

=





Φ (¬g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) Vsi , · · · , sj /si , · · · , sjW & div

2

(
Φ (g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) Vsi , · · · , sj /si , · · · , sjW

& Φ (Rpost (A1)) Vsi , · · · , sj /si , · · · , sjW

)
2

 Φ (g1 ∧ g2 ∧ · · · ∧ ¬gn) Vsi , · · · , sj /si , · · · , sjW

&
(

Φ (Rpost (A1)) Vsi , · · · , sj /si , · · · , sjW
u Φ (Rpost (A2)) Vsi , · · · , sj /si , · · · , sjW

) 
2 . . .

2


Φ (· · · ∧ gi · · · ∧ gj ∧ · · · ∧ gk ∧ · · · ) Vsi , · · · , sj /si , · · · , sjW

&

 Φ (Rpost (Ai)) Vsi , · · · , sj /si , · · · , sjW
u Φ (Rpost (Aj )) Vsi , · · · , sj /si , · · · , sjW
u Φ (Rpost (Ak )) Vsi , · · · , sj /si , · · · , sjW




2 . . .

2


Φ (g1 ∧ g2 ∧ · · · ∧ gn) Vsi , · · · , sj /si , · · · , sjW

&


Φ (Rpost (A1)) Vsi , · · · , sj /si , · · · , sjW

u Φ (Rpost (A2)) Vsi , · · · , sj /si , · · · , sjW
u · · ·
u Φ (Rpost (An)) Vsi , · · · , sj /si , · · · , sjW





‖C B

ops
(B)v

′

v


[Law 2.4.3 and Hiding [7, Section 3.5.1, L5]]

(3). Compared to the alternation in Circus, the linked counterpart in CSP ‖B Z has
the same semantics. This is demonstrated in Table 5.1. In the table, two guarded actions,
which are guarded by g1 and g2 respectively, are taken into account.

Since

Φ (g1 ∧ g2) Vsi , · · · , sj /si , · · · , sjW
· · ·

and

Φ (Rpost (A)) Vsi , · · · , sj /si , · · · , sjW

are linked counterparts of (g1 ∧ g2, . . . ) and A in Circus to CSP ‖B Z , and div and u
correspond to Chaos and u in Circus, from the table we can conclude that the semantics
of the alternation and its linked program is the same for two guarded actions in the
alternation. We can use induction to easily get that the semantics of the alternation
and its linked program is the same for any number of guarded actions. Therefore, the rule
is sound.

5.10.3.3 Variable Block

Lemma 5.10.28 (Variable Block). Link Rule 54 for variable block is sound.
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Proof. (1). The semantics of variable block is defined as variable declarations in UTP. The
initial value of variable x is chosen from T but arbitrary non-deterministic. The scope of
variable x is between var and end.

var x : T • A

=̂ var x : T ; A ; end x : T [Oliveira, Cavalcanti & Woodcock [72]]

= u{var x ; x := k | k ∈ T} ; A ; end x : T

[Hoare & He [24, Variable Declaration L4]]

(2). The variable block in Circus is linked to the CSP ‖B Z program

Φ (Rpre (A))→ u
x :Φ(T )

• FMem (Φ (Rpost(A)) , {x})

by Link Rule 54.
As a CSP ‖B Z program, it is defined by Definition 2.4.1. In addition, when taking

HIDE CSPB into account, it is simplified further.
(

Op si?si → · · · → Op sj ?sj →
u

x :Φ(T )
• FMem (Φ (Rpost(A)) , {x})

)
‖C B

ops
(B)v

′

v


\ {|Op si , · · · ,Op sj |}

=

(
u

x :Φ(T )
• FMem (Φ (Rpost(A)) Vsi , · · · , sj /si , · · · , sjW, {x}) ‖C B

ops
(B)v

′

v

)
[Law 2.4.3 and Hiding [7, Section 3.5.1, L5]]

(3) The replicated internal choice in (2) introduces a variable x whose initial value is
arbitrarily chosen from Φ(T ) and the variable x is only valid within the scope of memory
model process Φ (Rpost(A)). It is the same as the variable block.

Furthermore, the memory model of process Φ (Rwrt(A)) (Definition B.1.5) just main-
tains the variables x in additional Mem processes, and the update and access of each
variable in x within Φ (Rwrt(A)) are performed by set and get events provided by the
Mem processes. According to Theorem C.1.28, FMem(Φ (Rwrt(A)) , {x}) has the same
effect on variables x and the same behaviour as A in Circus. Additionally,

Φ (Rpost(A)) Vsi , · · · , sj /si , · · · , sjW

in CSP ‖B Z is equal to Φ (Rwrt(A)). Therefore, the variable block in (1) has the same
semantics as the linked counterpart in (2). Then the rule is sound.

5.10.3.4 Specification Statement

Lemma 5.10.29 (Specification Statement). Link Rule 55 for specification statement is
sound.

Proof. (1). The semantics of specification statements in Circus is defined as

w : [ pre, post ] =̂ R(pre ` post ∧ ¬wait ′ ∧ tr ′ = tr ∧ u ′ = u)
[Oliveira [35, Definition B.32]]
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(2). The specification statement in Circus is linked to the CSP ‖B Z program

Ω3


P specOp =̂


∆P StPar ; ΞQ1 StPar ; · · · ; ΞQn StPar ;
lb? : Tlb ; la ! : Tla |
(pre[lb?/lb ] ∧ ∃ u ′ : Tu • post [lb?, la !/lb , l

′
a ])

∧ s ′u = su


P specOp fOp =̂

[
ΞP StPar ; ΞQ1 StPar ; · · · ; ΞQn StPar ;
lb? : Tlb | ¬pre P specOp

]




channel P specOp : Φ (Tlb ) .Φ (Tla )
channel P fspecOp : Φ (Tlb )
HIDE CSPB = {|P specOp,P fspecOp|}
P specOp!lb?la → SKIP 2 P specOp fOp!lb → div


by Link Rule 55.

According to Theorem 5.2.1, its semantics is

R
(
pre `

(
∃ u ′ : Tu • post

)
∧ ¬wait ′ ∧ tr ′ = tr

)
= R

(
pre ` post ∧ ¬wait ′ ∧ tr ′ = tr ∧ u ′ = u

)
[u ′ is localised by ∃ and they are not able to be changed]

(3). Therefore, we conclude the linked CSP ‖B Z program in (2) has the same semantics
to the original Circus specification statement. Hence the rule is sound.

5.10.3.5 Assumption

Lemma 5.10.30 (Assumption). Link Rule 56 for assumption is sound.

Proof. The assumption { pre } is simply syntactic sugar for the specification statement:
:[pre, true]. Its proof is similar to the specification statement. For brevity, it is omitted.

5.10.3.6 Coercion

Lemma 5.10.31 (Coercion). Link Rule 57 for coercion is sound.

Proof. The coercion [ post ] is simply syntactic sugar for the specification statement in
which its precondition always holds: :[true, post ]. Its proof is similar to the specification
statement. For brevity, it is omitted.

5.10.3.7 Parametrisation By Value

Lemma 5.10.32 (Parametrisation By Value). Link Rule 58 for parametrisation by value
is sound.

Proof. The parametrisation by value is defined in terms of the variable block, the assign-
ment and the sequential composition.

(val x : T • A) (e) =̂ var x : T • x := e ; A [Oliveira [35, Definition B.37]]

where x 6∈ FV (e).
Therefore, its semantics can be derived from the semantics of these constructs. Because

its link rule (Link Rule 58) is based on this transformation, the soundness of this rule
relies on link rules for the variable block, the assignment and the sequential composition.
According to the soundness of these constructs in Section 5.10.3.3, Section 5.10.3.1 and
Section 5.10.2.4, this rule is sound.
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5.10.3.8 Parametrisation By Result

Lemma 5.10.33 (Parametrisation By Result). Link Rule 59 for parametrisation by result
is sound.

Proof. Similarly, the parametrisation by result is defined in terms of the variable block,
the assignment and the sequential composition as well.

(res x : T • A) (y) =̂ var x : T • A ; y := x [Oliveira [35]]

Therefore, its semantics can be derived from the semantics of these constructs. Because
its link rule (Link Rule 59) is based on this transformation, the soundness of this rule
relies on link rules for the variable block, the assignment and the sequential composition.
According to the soundness of these constructs in Section 5.10.3.3, Section 5.10.3.1 and
Section 5.10.2.4, this rule is sound.

5.10.3.9 Parametrisation By Value-Result

Lemma 5.10.34 (Parametrisation By Value-Result). Link Rule 60 for parametrisation by
value-result is sound.

Proof. Similarly, the parametrisation by value-result is defined in terms of the variable
block, the assignment and the sequential composition as well.

(vres x : T • A) (y) =̂ var x : T • x := y ; A ; y := x [Oliveira [35]]

Therefore, its semantics can be derived from the semantics of these constructs. Because
its link rule (Link Rule 60) is based on this transformation, the soundness of this rule
relies on link rules for the variable block, the assignment and the sequential composition.
According to the soundness of these constructs in Section 5.10.3.3, Section 5.10.3.1 and
Section 5.10.2.4, this rule is sound.

5.10.4 Renaming

Lemma 5.10.35 (Renaming). Link Rule 61 for renaming is sound.

Proof. (1). The semantics of renaming in Circus is just a syntactic substitution of the name
of new variables for the old variables.

(2). The renaming of action in Circus is linked to the CSP ‖B Z program by Link
Rule 61. It is just a syntactic substitution of variables.

(3). Therefore, the rule is sound.

5.10.5 Action Invocation

Lemma 5.10.36 (Action Invocation). Link Rule 62 for action invocation is sound.

Proof. (1). The semantics of action invocations, namely reference to actions, is defined by
the copy rule: it is the body of action.

(2). The action invocation in Circus is linked to the CSP ‖B Z program

Φ (Rwrt (B(A)))

by Link Rule 62.
(3). According to Definition B.2.15, B(A) denotes the body of the action A. Addition-

ally, Φ (Rwrt (B(A))) in CSP is the link counterpart of B(A) in Circus. Thus the rule is
sound.
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5.10.6 Parametrised Action

5.10.6.1 Parametrised Action

Lemma 5.10.37 (Parametrised Action). Link Rule 65 for parametrised action is sound.

Proof. (1). The semantics of a parametrised action invocation A(e) is defined as an action
invocation with the parameters substituted by expressions e.

A(e) =̂ B(A)[e/x ] [Oliveira [35, Definition B.29]]

provided

A =̂ x : T • B(A)

(2). The parametrised action A(e) in Circus is linked to the CSP ‖B Z program

Φ (Rwrt (B(A)[e/x ]))

by Link Rule 65.
(3). Because Φ (Rwrt (B(A)[e/x ])) in CSP is the linked counterpart of B(A)[e/x ] in

Circus, the semantics of the linked counterpart is the same as that of the parametrised
action. Therefore, the rule is sound.

5.10.6.2 Unnamed Parametrised Action

Lemma 5.10.38 (Unnamed Parametrised Action). Link Rule 64 for unnamed parametri-
sed action is sound.

Proof. (1). The semantics of unnamed parametrised action is defined as with the parameter
substituted by expression e.

(x : T • A)(e) =̂ A[e/x ] [Oliveira [35, Definition B.29]]

(2). The unnamed parametrised action in Circus is linked to the CSP ‖B Z program

Φ (Rwrt (A[e/x ]))

by Link Rule 64.
(3). Because Φ (Rwrt (A[e/x ])) in CSP is the linked counterpart of A[e/x ] in Circus,

the semantics of the linked counterpart is the same as that of the unnamed parametrised
action. Therefore, the rule is sound.

5.11 Summary

This chapter gives the soundness of our link from Circus to CSP ‖B Z . The reason to
exclude Ω3, which translates Z in ZRM to B, is because the Ω3 relies on the translator
in ProB. In order to prove each link rule in Appendix E is sound, our strategy is to give
the UTP semantics to the original Circus construct, then give the UTP semantics to the
linked counterpart in CSP ‖B Z , and finally compare their semantics. If they have the
same semantics, then we say the rule is sound.

Then two important theorems (Theorem 5.2.1 and Theorem 5.2.2 about the semantics
of the linked counterpart of schema expressions) are given. Finally, we give the soundness
to each construct in Circus.
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Chapter 6

Translator

To facilitate the translation of Circus models to the final resultant CSP ‖B Z according to
the link defined in Chapter 4, a translator is developed. In this chapter, we present our
considerations of the translator development, the procedure of the translation, a number
of challenges and the corresponding solutions, and finally the limitations. The source code
information is given in Appendix F.

6.1 Overall Translation Procedure

Basically, the Circus to CSP ‖B Z translator, namely Circus2ZCSP, is supposed to translate
a Circus model in Unicode or the LATEX markup to a model in CSP ‖B Z . And a CSP ‖B Z
model actually consists of two files: one Z specification and one CSP specification. In
order to manipulate constructs of a Circus model by our link definition, the first step of
the translator is to parse and typecheck the model to find syntax and type errors, and
sequentially turn the model in Unicode or LATEX into an internal abstract syntax tree
(AST) if there is no error detected. Then the translator manipulates the internal AST and
converts it into internal representations of the target Z model in ZRM and the target CSP
model. In the end, these internal Z and CSP models are output from the translator, which
results in a final Z model in LATEX and a CSP model in CSPM . Then they are able to be
model-checked by ProB.

The overall translation procedure is illustrated in detail in Figure 6.1. Since the parser
and typechecker for Circus have been integrated into the CZT project, in order to reuse
them, our translator is written in Java and based on CZT as well. In the figure, we use
different node shapes to denote input and output files (rectangle with shadow), existing
modules in CZT (rectangle with round corners), and newly developed modules (rectangle
with round corners and double lines). Each step is described as follows.

• Markups of input Circus models, that the translator can support, rely on the parser
and typechecker in CZT. The LATEX markup is normally used for the input model.

• Then the Circus parser is responsible for the generation of AST from the input LATEX
model.

• Afterwards, the Circus typechecker checks type, scope or naming errors in the AST
according to type inference rules, and additionally annotates that AST with section
and type environments. The new AST is abbreviated to AST+.

• The new Rwrt module rewrites an AST+, according to our rewrite rules defined in
Section 4.3, to an AST+R, a rewritten AST+. The internal implementation of the
Rwrt module is displayed in Section 6.2.

• After the rewrite, the AST+R is translated to Z and CSP by Ω and Φ separately.
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• For the Φ function, it generates the final CSP model from AST+R. Because CZT
is not capable of parsing and typechecking CSP, the output of Φ is a CSP model
(“a csp.csp”) directly. The detail of the Φ module is given in Section 6.3.

• For the Ω function,

– it merges the state part of Circus from the input AST+R to form an ASTZ which
is an AST for a Z model in ISO Standard Z dialect,

– this ASTZ is converted to its corresponding LATEX markup by the Z Pretty
Printer in CZT,

– then the LATEX markup is fed to the Z Parser and TypeChecker in CZT to check
if the translated Z model is correct and free of errors, and at the same time an
annotated AST, ASTZ+, is generated if no error is found,

– finally the ASTZ+ along with the LATEX markup of the Z model from the
Pretty Printer are input to Ω2 which transforms them into a Z model in ZRM
(“a z.tex”).

– The Ω modules are described in Section 6.4.

• Eventually, a resultant CSP ‖B Z model, which is composed of one CSP model and
one Z model, is obtained.
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Figure 6.1: Overall Translation Procedure

6.2 Rewrite (Rwrt) Module

The rewrite procedure is shown in Figure 6.2. In addition to implementation of the Rwrt

rules defined in Section 4.3, the rewrite module Rwrt has other practical considerations,
such as identifier naming pattern checking, global schemas localisation, and schemas as
predicates to predicates in the behavioural part. These are discussed as follows.

The input to the rewrite module is AST+ from the Circus typechecker. Since inheriting
sections are new to ISO Z but not in ZRM Z, our first step of rewrite is to combine them
together into one big section.
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Figure 6.2: Rewrite Procedure

6.2.1 Sections Resolving

According to inheriting sections in ISO Z, one section and its parent sections might refer
to the same sections. In order to include them all into a big section in the right order, an
algorithm is designed to include one section’s parent sections and is described as follows.

Step 1, declare a String stack, section stack , to denote visited parent sections, and a map
from section names to their paragraph lists, sections paralist map

Step 2, get a list of one section’s parent sections. If one section’s parent section is one of
standard toolkits, then just skip it since the standard toolkits have their counter-
parts in ZRM. Otherwise, the parent section is added to the list. The standard
toolkits include

• "standard_toolkit"

• "number_toolkit"

• "set_toolkit"

• "relation_toolkit"

• "function_toolkit"

• "sequence_toolkit"
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• "circus_toolkit"

Step 3, check the parent sections list and if one section’s parent sections are empty or all
have been visited (all in section stack ), then just push the current section’s name
to section stack and add its paragraphs list to sections paralist map . Then go
to Step 7.

Step 4, for each parent section, if it has been visited (its name in section stack ), continue
to check next parent section in the list.

Step 5, otherwise, if this parent section has not been visited, mark this parent section as
the current section and repeat Step 2 to Step 6 to recursively include its parent
section’s parent sections. Finally include this parent section’s paragraph list into
sections paralist map .

Step 6, push the current section’s name to section stack and add its paragraphs list to
sections paralist map .

Step 7, all sections have now been visited. Create a new empty paragraph list paralist .

Step 8, for each section in section stack , according to its order, get its corresponding
paragraph list from sections paralist map , and then add it to paralist .

Step 9, finally paralist is the new paragraphs list that includes all paragraphs from the sec-
tion and all its parent sections. The final step just simply replaces the paragraphs
list of the section by this new big paragraphs list paralist .

6.2.2 Identifier Pattern Checking

According to Section 4.2.1, the identifier naming pattern allowed in our solution is re-
stricted, therefore this step is to check whether all names in the model comply with the
pattern. If there are any names that are not allowed,the translator quits with an error to
show these names.

6.2.3 Schema Localisation

Because Ω1 Rule 1 needs to merge Z parts from multiple processes into one Z model,
Rwrt Rule 24 is defined in the early stage to rename all state components, schemas and
actions within processes. However, an issue arises due to renaming. If a schema is defined
globally—it is not within a process, it might be referred to in more than two processes.
Consequently, in one process its declared variables and the schema name are renamed by
prefixing with the process’s name. Then in another process its declared variables and the
schema name are renamed by prefixing with this process’s name. Since the names of two
processes are different, it is impossible for a schema to be renamed to two different names.
In order to address this issue, our solution is to make a copy of the schema in the processes
that refer to the schema. Finally, if a global schema is not referred globally, it is removed
since it has been duplicated within the processes.

The algorithm is described below. Firstly, we define Node to be a pair from schema
name to process name

Node = String × String

and Entry to be a quadruple from the node, to a set of nodes that the node refers to,
global reference number, and local reference number.

Entry = Node × PNode × N× N
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In this module, we use a map (ref map : Node 7� Entry) to keep cross-references of
all global schema definitions. The global axiomatic definitions are excluded because they
are always global. The detailed algorithm is presented as follows.

Step 1, for each global definition, repeat Step 2 to Step 4.

Step 2, for the paragraph of a global definition, traverse its body to get a set of nodes
(setNodes) that the paragraph refers to.

Step 3, then for each node in this set, if they are schemas, then get its corresponding entry
from the map ref map and increment its global reference number by one.

Step 4, if this global definition is a schema, then create a new one

(Node(pname,null),Entry (Node(pname,null), setNodes, 0, 0))

in the map, where pname denotes the paragraph name and null means it is global.

Step 5, all global schemas now have their reference information in the map. Now start to
visit all basic processes.

Step 6, for each basic process, traverse all its paragraphs. If a reference to a global schema
is found, then copy this schema to the beginning of this process and increment
this schema’s local reference number in the map by one. At the same time, copy
all schemas, that are referred by this schema, to the beginning of this process and
increment their local reference number by one as well.

Step 7, now start to remove all schemas of which the global reference number is 0.

Step 8, for each node in the map, if its global reference number is 0, then remove its
corresponding paragraph from the section. At the same time, get a set of referred
nodes in its entry and decrease their global reference number by one.

Step 9, if all nodes in the map have the global reference number larger than zero, then
complete and quit this module. Otherwise, go back to Step 7.

Finally, all global schemas are copied into the processes if they are referred to in these
processes, and some global schemas that are not referred to globally any more are removed.

An example is given below.

1 Add [(Unit, null)]: []<0, 0>
2 Update [(Unit, null)]: []<1, 0>
3 Add [(QSensor, null)]: [(Unit, null)]<0, 0>
4 Update [(QSensor, null)]: [(Unit, null)]<1, 0>
5 Add [(InitQSensor, null)]: [(QSensor, null)]<0, 0>
6 Update [(Unit, null)]: []<2, 0>
7 Add [(VSensor, null)]: [(Unit, null)]<0, 0>
8 Update [(Unit, null)]: []<3, 0>
9 Add [(Sensor, null)]: [(Unit, null)]<0, 0>
10 ...
11 Decrease reference from (QSensor, null)
12 Update [(Unit, null)]: []<2, 0>
13 Decrease reference from (Sensor, null)
14 Update [(Unit, null)]: []<1, 0>
15 Decrease reference from (VSensor, null)
16 Update [(Unit, null)]: []<0, 0>
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In the first line line#1, a new node Unit is added to the map with no reference, and both
global and local reference numbers equal to zero. Then in line#2, its global reference
number is increased by one because it is referred to in QSensor . Sequentially, its global
reference number becomes 2 (line#6) and 3 (line#8) because it is further referred to in
VSensor and Sensor . Afterwards, in line#11, QSensor is going to be removed and then
the global reference number of Unit is decreased by one and becomes 2 (line#12). It
continues to be reduced to 1 (line#14) and 0 (line#16). Finally, Unit is going to be
removed since it is not referred to globally any more.

6.2.4 Rewrite Stage One

In this stage, global definitions, except basic processes, are rewritten by Rwrt Rule 4 to 22.
It also includes the rewrite of generic constructs by Rwrt Rule 47 to 50.

6.2.5 Schemas as Predicates to Predicates

Schemas can be used in the behavioural part of Circus as predicates. c.IsZero, where the
type of c is boolean and IsZero is a schema reference, is an example. Unlike schemas as
predicates in the Z part which can be evaluated by ProB easily, schemas as predicates in
the CSP part have to be transformed into predicates to remove schemas.

In order to extract the predicate part from a schema, the direct way is through nor-
malisation. However, the normalisation in CZT does not work as expected. For example,
the schema[

AnalyserState |
(

stops ≥ 3 ∨ DangerZone ∨
emergencyCond = 1 ∨ transmissionFailure ∈ signals

)]
is normalised to[

. . . | AnalyserState ∧
(

stops ≥ 3 ∨ DangerZone ∨
emergencyCond = 1 ∨ transmissionFailure ∈ signals

)]
The declaration part is skipped and it is correct. However, the predicate part is obviously
not what we expect since two schemas AnalyserState and DangerZone are not further
expanded. Finally, we decide to implement a class, PredicateListExpansionVisitor, to
extract the predicate part from a schema directly instead of the pattern match used in
normalisation. The reason for having this step after Rewrite Stage One is that generic
constructs have been resolved and this step does not need to cope with them.

Our solution is to traverse the declaration part and the predicate part of the schema
separately to get their corresponding predicates, then the overall predicate of this schema
is a conjunction of the predicate from the declaration part and the predicate from the
predicate part. For example, the predicate of the schema

IsZero == [x : 0 . . 3 | x = 0]

is a conjunction of the predicate, x ∈ 0 . . 3, from x : 0 . . 3, and the predicate, x = 0, from
x = 0.

x ∈ 0 . . 3 ∧ x = 0

For schema expressions as predicates, they are recursively expanded in this way. By
this, negating an expression as a predicate would get the right result. For instance, the
predicate of a negation expression ¬IsZero where

IsZero == [[x : 0 . . 3 | x < 2] | x = 0]
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becomes

¬ ((x ∈ 0 . . 3) ∧ (x < 2) ∧ (x = 0))

One inconvenience from our solution is duplicate constraints, from declaration parts,
in the final predicate. An example below illustrates this inconvenience. According to our
solution, the predicate of IsZero ∨ NotZero where

IsZero == [x : 0 . . 3 | x = 0]

NotZero == [x : 0 . . 3 | x 6= 0]

is

(x ∈ 0 . . 3 ∧ x = 0) ∨ (x ∈ 0 . . 3 ∧ x 6= 0)

In the predicate, there are two duplicate x ∈ 0 . .3 though we can manually rewrite to only
one

x ∈ 0 . . 3 ∧ (x = 0 ∨ x 6= 0)

Most significantly, duplicate predicates only make the final CSP model bigger but will not
cause semantic problems. Therefore, we just keep duplicate predicates.

6.2.6 Rewrite Stage Two

This stage implements Rwrt Rule 23 by adding operation schemas in each explicitly defined
process to retrieve the values of state components. The rule is very simple and clear. But
one issue that arises from it is how to get a list of state components and their corresponding
types. Though the state paragraph of a basic process is marked by the state keyword,
the paragraph might be an abbreviation or a schema with complex schema expressions.
Therefore, to get a list of state components in the state paragraph, it is necessary to expand
its schema expressions to a schema of which all state variables are in the declaration part.
However, normalisation is not expected. For instance, a state schema State below has a
schema reference StateA in its declaration.

StateA == [ a : 0 . . 3 ]

state State == [ StateA ; b : {1, 3} | a < b ]

Normalisation will result in

state State == [ a : A ; b : A | a ∈ 0 . . 3 ∧ b ∈ {1, 3} ∧ a < b ]

Obviously the names of state components a and b are identified but the problem is their
types. A is a carrier set, a set of all values in the number system, that makes it hard to
animate and model-check a CSP specification when A is linked to CSP, compared to the
restricted set 0 . . 3. Therefore, it is better to identify the types of a and b as 0 . . 3 and
{1, 3}.

To accomplish this identification, we implement DeclListExpansionVisitor, a new
class, in our translator to get a list of variables declared, including input and output
variables, and their corresponding types.

Expansion of the declaration list by recursively traversing schema expressions without
normalisation may cause problems, especially for schema negation expression. For the
negation of a schema, ¬IsZero, where

IsZero == [x : 0 . . 3 | x = 0]
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is equal to

¬IsZero == [x : A | ¬ (x ∈ 0 . . 3 ∧ x = 0)]

by normalisation. Its declaration part only has a unique and canonical form. This is
correct. However our solution with DeclListExpansionVisitor for ¬IsZero will return
the variable x and its type as a set 0 . .3, which is different from the normalisation solution.

By our solution, according to the state schema State given above, this rewrite stage
will result in two additional operation schemas below.

Op a == [ ΞState ; a! : 0 . . 3 | a! = a ]
Op b == [ ΞState ; b! : {1, 3} | b! = b ]

Since the types of state components a and b are 0 . . 3 and {1, 3} respectively, Op a and
Op b having their output variables a! and b! with the same types will not cause problems.
When their corresponding schema expressions as actions are linked to CSP by Φ Rule 8,
two channels are declared.

channel Op a : {0..3}
channel Op b : {1, 3}

Instead, the normalisation will result in two operation schemas

Op a ′ == [ ΞState ; a! : A | a! = a ]
Op b′ == [ ΞState ; b! : A | b! = b ]

and their channel declaration will be

channel Op a : Int
channel Op b : Int

If the type of a state component is complicated such as P (A× A× A), it is hard to load
and animate in ProB. However, our solution keeps types of state components as small as
possible. Comparatively, it is easier to model-check and animate the CSP model.

6.2.7 Rewrite Stage Three

This stage simply renames all state components, schemas, and actions within a basic
process by prefixing the name of this process according to Rwrt Rule 24.

6.2.8 Rewrite Stage Four

In this stage, the main action of each basic process is rewritten by Rwrt Rule 25 to 46.
After this stage,

• all accesses of state components in actions are through their corresponding schema
expressions,

• all implicit recursions have been made explicitly,

• action definitions, except the main action, are removed because their references in
the main action have been rewritten by the action invocation rule, Rwrt Rule 35.
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6.3 Φ Module

According to Figure 6.1, after the rewrite stage, the rewritten Circus AST+R is translated
to the final CSP by Φ. Since most of constructs in Circus are linked to Z according to
our solution, it is not necessary to translate all these constructs in Circus to CSP. The
translation of the full Circus model to CSP may cause additional problems as well because
some constructs might not be supported. Therefore, the best way is to translate only those
constructs that are needed in the final CSP.

In order to overcome this problem, we introduce a similar cross-reference mechanism
in Schema Localisation. A map (refmap : Node 7→ PNode), from a node to a set of nodes
that it refers to, is introduced in the beginning of this module. We recursively traverse
AST+R to build up this map. For example, for a free type

SState ::= sokay | sfailed

three entries are added to the map

Put [sokay, null]: [(SState, null) ]
Put [sfailed, null]: [(SState, null) ]
Put [SState, null]: []

These entries in the map mean that if sokay or sfailed is used in CSP, it has to include
the SState definition which would not include further definitions. And another example is
the channel declaration

channel pumps : (PumpIndex → InputPState)×VAction

the entries listed below are added to the map

Put [PumpIndex, null]: []
Put [VAction, null]: []
Put [popen, null]: [(PState, null) ]
Put [pclosed, null]: [(PState, null) ]
Put [InputPState, null]: [(pclosed, null) (popen, null) ]
Put [pumps, null]: [(PumpIndex, null) (VAction, null)

(InputPState, null) ]

They denote that if the pumps channel is used in CSP, it has to include the definition
of PumpIndex , VAction, and InputPState. Then to include InputPState it shall also link
pclosed and popen. Since both constants are from the PState definition, PState should be
linked to CSP as well.

Therefore, after we get the cross-reference map, our translation begins at the be-
havioural part from channel declarations and channel set declarations to the main actions
of basic processes and other processes declarations. Finally, these behavioural constructs
along with other definitions used in them (according to the map) will be translated to the
final CSP by Φ Rule 1 to 38.

6.4 Ω Module

According to Figure 6.1, after the rewrite stage, the rewritten Circus AST+R is translated
to the final Z by Ω1 and Ω2.

Step 1, merge state paragraphs from all basic processes into one final state paragraph
State, identify all initial schemas and merge them into one final initial paragraph
Init , and merge other schemas as well by Ω1 Rule 1.
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Step 2, these new state paragraph, initial paragraph, and other schemas form a new ISO
Standard Z model which is an AST in ISO Z format, ASTZ.

Step 3, then use the Z Pretty Printer in CZT to output this model in the LATEX markup.

Step 4, after that, the Z LATEX markup is fed into the Z parser and typechecker in CZT to
check whether the model is free of syntax and type errors. If errors are detected,
then we need to check the input Circus model and the translation rules to find out
the causes.

Step 5, if no error is found, then a ASTZ+ in Z is output from the Z typechecker.

Step 6, finally the Ω2 module translates the inputs—ASTZ+ and the Z LATEX markup—to
the final Z in ZRM LATEX markup by Ω2 Rule 1 to 11.

6.5 Other Considerations

6.5.1 Configuration File

A configuration file, named config.properties, is introduced in our translator to keep
configuration constants, the main process, the path to CSP libraries, and other axiomatic
definitions in the model. These information facilitates the translator to output the right Z
and CSP models finally. One example of a configuration file is shown as follows.

# Configuration for Circus2ZCSP
CONF_MININT = 0
CONF_MAXINT = 70
CONF_MAXINS = 3
CONF_GIVEN_SET_INST_NO = 3
MAIN = SteamBoiler
CSPLIBSPATH =
MAX_NUM = 70
# capacity of boiler in litre
C = 70
# capacity of boiler in litre
M_1 = 7
N_1 = 14
N_2 = 56
M_2 = 63
# capacity of pump [litre/second]
P = 1
# litre/sec
W = 10
# litre/sec^2
U_1 = 1
# litre/sec^2
U_2 = 1

In a configuration file, the line starting with # is regarded as a comment line. This configu-
ration file is used in the steam boiler case. It contains several basic configuration constants
starting with CONF\_, MAIN for the main process, CSPLIBSPATH for the path to CSP li-
braries, and other constants only used in a specific model. The section below illustrates
how these other constants are used in the translator.
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6.5.2 Axiomatic Definitions

An axiomatic definition introduces a set of global variables with a constraint on them. For
example, the definition below used in the steam boiler case defines four constants (M 1,
N 1, N 2, and M 2) with a constraint (the previous constant is less than or equal to the
next one).

M 1 ,N 1 ,N 2 ,M 2 : N

M 1 ≤ N 1 ≤ N 2 ≤ M 2

When the definition is linked to constants in CSP, they must be instantiated because
constants in CSP are concrete. In addition, the instances in CSP must match their values
in Z. Thus our approach is designed to model-check only one instance of all constants. We
introduce a configuration file (Figure 6.3a), that stores the specific values for all constants,
into our translator. At first, the axiomatic definition in Circus is rewritten by appending
additional constraints from the configuration file into its predicate part, which results in the
axiomatic definition in Figure 6.3b. Then the definition is mapped to the same axiomatics
in Z by the Ω function and constants in CSP shown in Figure 6.3c by Φ Rule 3. The
consistency of constants in Z and CSP is therefore preserved.

M_1 = 7
N_1 = 14
N_2 = 56
M_2 = 63

(a) Configura-
tion File

M 1 ,N 1 ,N 2 ,M 2 : N

M 1 ≤ N 1 ≤ N 2 ≤ M 2
M 1 = 7 ∧ N 1 = 14
N 2 = 56 ∧ M 2 = 63

(b) Axiomatic Definition in Z

M_1 = 7
N_1 = 14
N_2 = 56
M_2 = 63

(c) Constants in
CSP

Figure 6.3: Translation of Axiomatic Definition

6.6 Limitations

• For schemas as predicates in the behavioural part of Circus, it has been translated only
in two constructs: predicate as boolean expressions in channel output expressions and
predicate as conditions in guarded actions.

• Operator templates are not supported.

• Iterated sequential composition of actions is not supported because T in its declara-
tion x : T is regarded as a set in CZT and actually it should be a sequence.

• For axiomatic definitions, if they are used in CSP, they have to be instantiated
to become concrete and specific in advance. Our solution cannot cope with loose
constants.

6.7 Summary

A translator, Circus2ZCSP, is developed to translate Circus models to CSP ‖B Z models
automatically. This translator has been used in three case studies in Section 7. In this
chapter, we present its translation procedure and give a description of each stage in detail.
A number of challenges we encountered in the development of the translator, along with
their solutions, are illustrated as well. In the end, the limitations of this translator are also
listed.
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Chapter 7

Case Studies

After the link defined in Chapter 4, its soundness given in Chapter 5, and a translator
presented in Chapter 6, in order to illustrate the usability of our approach, three case
studies are shown in this chapter. We introduce case studies from a simple and typical
Circus example, the reactive buffer [64], to a more complicated Electronic Shelf Edge Label
(ESEL) system that is an abstraction of real systems, and finally to the steam boiler
control system [65], a real industry control system. Basically, the complete Circus models
and the resultant final CSP ‖B Z models of all three cases are given in Appendix G,
Appendix H, and Appendix I. These models are displayed without additional description,
therefore readers can focus on models themselves and will not be distracted by description.

Individually, for the buffer, since its specification and implementation models are simple
and easy to be understood, Section 7.1 gives more about the stepwise application of our
link rules, and model checking considerations and results. While the ESEL system is new
and original in this document, therefore Section 7.2 provides a description of the system
in depth, and along with its model checking results. Finally, since the steam boiler control
system is well known and there has been a Circus solution [66, 67] for the system, in
Section 7.3 we mainly emphasize on explanation of how our model checking solution can
help to find the problems in the original design, correct them, and describe the problems
and challenges of its model checking and animation.

7.1 Bounded Reactive Buffer

The bounded buffer is a typical example used in Z and Circus. A development of the
bounded buffer module from specification, design, implementation to the final executable
code is shown in the book [63, Chapter 22]. A similar example of a bounded reactive
buffer [64] is a case study to illustrate the refinement strategy of Circus. It has been
developed from its specification [64, Figure 1] to the final distributed cached-head ring
buffer [64, Section 7.5 and 7.6]. Our buffer case in this section is based on the specification
and the final ring buffer of this example. Furthermore, the map solution [55] of model
checking Circus by mapping to CSP also uses this example as a case study.

7.1.1 Buffer Specification

The specification, BufferSpec, in Circus is shown in Appendix G. The size of the buffer is
bounded by maxbuff . Its behaviour is specified by the main action: buff is initialized to
be empty and its size is equal to zero; after that, it provides input (in case the buffer is not
full) and output (in case the buffer is not empty) events to its environment continuously.
Accordingly, it buffers the input message in its end and increments its size by one, or
outputs its head and decreases its size by one.

The stepwise application of our rules to this model is displayed as follows. Provided
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that the configuration file has the following content (see Section 7.1.3.3 for details about
guidance on how to choose concrete values for constants in the configuration file).

# Configuration for Circus2ZCSP
CONF_MININT = 0
CONF_MAXINT = 3
CONF_MAXINS = 5
CONF_GIVEN_SET_INST_NO = 3
maxbuff = 5
MAIN = Buffer
CSPLIBSPATH =

According to the translation procedure in Figure 6.1, after parsing and typechecking,
the first step is to rewrite it by Rwrt rules.

7.1.1.1 Rewrite by Rwrt

The rewrite procedure is shown in Figure 6.2.

• Since this specification only has standard toolkit circus_toolkit as its parent sec-
tion, the section resolving stage just keeps it unchanged.

• And all identifiers comply with the pattern required, so this check succeeds.

• There are no global schemas, and therefore schema localisation will not change any-
thing.

• The maxbuff is an axiomatic definition. According to Rwrt Rule 5, since it is referred
to in the behavioural part, such as the definition of the action Input , it has to be
instantiated to 5, the value from maxbuff in the configuration file. Finally, the
axiomatic definition becomes

maxbuff : N1

maxbuff = 5

• The rewrite of the channel declarations for input and output keeps them unchanged
according to Rwrt Rule 6.

• After that, since there are no schemas as predicates, the Schemas as Predicates to
Predicates stage also has no effect on the model.

• According to Rwrt Rule 17, the rewrite of a process definition is defined as the rewrite
of its body. Therefore, the rewrite of the Buffer process is equal to rewrite its body:
an explicitly defined process.

• In order to apply Rwrt Rule 23 to add extra operation schemas to retrieve the values
of state components, firstly we need to get a list of state variables and their corre-
sponding types: buff and size with the types seq N and 0 . .maxbuff separately. Thus
two operation schemas below are added within the process.

Op buff == [ ΞBufferState ; buff ! : seq N | buff ! = buff ]
Op size == [ ΞBufferState ; size! : 0 . .maxbuff | size! = size ]

• Then state components, schema paragraphs, action paragraphs, and all their ref-
erences are renamed by Rwrt Rule 24. After being renamed, the Buffer process is
shown in Figure 7.1.
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• After that, the main action is rewritten by Rwrt Rules in Section 4.3.17.3. The
stepwise application of action rewrite rules is demonstrated in Equation 7.1 to Equa-
tion 7.3.

• Action definitions of Buffer Input and Buffer Output are removed according to
Rewrite Stage Four .

• Finally, the Buffer process after rewrite is illustrated in Figure 7.2.

process Buffer =̂ begin
state Buffer BufferState == [ Buffer buff : seq N;

Buffer size : 0 . .maxbuff | Buffer size = # Buffer buff ≤ maxbuff ]
Buffer BufferInit == [ (Buffer BufferState)′ |

Buffer buff ′ = 〈〉 ∧ Buffer size ′ = 0 ]
Buffer InputCmd == [ ∆Buffer BufferState ; x? : N |

Buffer size < maxbuff ∧ Buffer buff ′ = Buffer buff 〈̂x?〉 ∧
Buffer size ′ = Buffer size + 1 ]

Buffer Input =̂ (size < maxbuff ) N input?x → (Buffer InputCmd)
Buffer OutputCmd == [ ∆Buffer BufferState | Buffer size > 0 ∧

Buffer buff ′ = tail Buffer buff ∧ Buffer size ′ = Buffer size − 1 ]
Buffer Output =̂

(size > 0) N output !(head Buffer buff )→ (Buffer OutputCmd)
Buffer Op buff == [ ΞBuffer BufferState ; buff ! : seq N | buff ! = Buffer buff ]
Buffer Op size == [ ΞBuffer BufferState ; size! : 0 . .maxbuff |

size! = Buffer size ]

• (Buffer BufferInit) ; (µX • (Buffer Input 2 Buffer Output) ; X )
end

Figure 7.1: Renamed buffer specification

The rewrite of its main action

Rwrt

(
(Buffer BufferInit) ; (µX • (Buffer Input 2 Buffer Output) ; X )

)
= (Buffer BufferInit) ; Rwrt (µX • (Buffer Input 2 Buffer Output) ; X )

[Rwrt Rule 29 and 25]

= (Buffer BufferInit) ; (µX • Rwrt ((Buffer Input 2 Buffer Output) ; X ))
[Rwrt Rule 34]

= (Buffer BufferInit) ; µX •

 Rpre (Buffer Input 2 Buffer Output)→(
Rpost (Buffer Input 2 Buffer Output)
;Rwrt (X )

) 
[Rwrt Rule 29]

= (Buffer BufferInit) ; µX •
(

Rpre (Buffer Input 2 Buffer Output)→
(Rpost (Buffer Input 2 Buffer Output) ; X )

)
[Rwrt Rule 34]
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=



(Buffer BufferInit) ; µX •
(Buffer Op size)→ (Buffer Op buff )→


(size < maxbuff ) N input?x → (Buffer InputCmd)
2

(size > 0) N output !(head Buffer buff )→
(Buffer OutputCmd)

 ; X





[Equation 7.1]

The rewrite of the external choice in the main action

Rwrt (Buffer Input 2 Buffer Output)

=

(
Rmrg (Rpre (Buffer Input) ,Rpre (Buffer Output))→
(Rpost (Buffer Input) 2 Rpost (Buffer Output))

)
[Rwrt Rule 30]

=


Rmrg

(
(Buffer Op size), (Buffer Op size)→ (Buffer Op buff )

)
→

(
(size < maxbuff ) N input?x → (Buffer InputCmd)

)
2(

(size > 0) N output !(head Buffer buff )→ (Buffer OutputCmd)
)



[Equation 7.2 and 7.3]

=


(Buffer Op size)→ (Buffer Op buff )→
(

(size < maxbuff ) N input?x → (Buffer InputCmd)
)

2(
(size > 0) N output !(head Buffer buff )→ (Buffer OutputCmd)

)



[Definition 4.3.2]

(7.1)

The rewrite of the action Buffer Input

Rwrt (Buffer Input)

= Rwrt

(
(size < maxbuff ) N input?x → (Buffer InputCmd)

)
[Rwrt Rule 35]

=

 Rmrg

(
Rpre (size < maxbuff ) ,Rpre

(
input?x → (Buffer InputCmd)

))
→(

(size < maxbuff ) N Rpost

(
input?x → (Buffer InputCmd)

)) 
[Rwrt Rule 28]

=

(
Rpre (size < maxbuff )→(

(size < maxbuff ) N input?x → Rwrt

(
(Buffer InputCmd)

)) )
[Rwrt Rule 27 and Definition 4.3.2]

=

(
(Buffer Op size)→(

(size < maxbuff ) N input?x → (Buffer InputCmd)
) )

[Definition 4.3.1 and Rwrt Rule 25]

(7.2)

The rewrite of the action Buffer Output

Rwrt (Buffer Output)
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= Rwrt

(
(size > 0) N output !(head Buffer buff )→ (Buffer OutputCmd)

)
[Rwrt Rule 35]

=

 Rmrg

(
Rpre (size > 0) ,Rpre

(
output !(head Buffer buff )→
(Buffer OutputCmd)

))
→(

(size > 0) N Rpost

(
output !(head Buffer buff )→ (Buffer OutputCmd)

))


[Rwrt Rule 28]

=

(
(Buffer Op size)→ (Buffer Op buff )→(

(size > 0) N output !(head Buffer buff )→ Rwrt

(
(Buffer OutputCmd)

)) )
[Rwrt Rule 27, Definition 4.3.1, and Definition 4.3.2]

=

(
(Buffer Op size)→ (Buffer Op buff )→(

(size > 0) N output !(head Buffer buff )→ (Buffer OutputCmd)
) )

[Rwrt Rule 25]

(7.3)

process Buffer =̂ begin
state Buffer BufferState == [ Buffer buff : seq N;

Buffer size : 0 . .maxbuff | Buffer size = # Buffer buff ≤ maxbuff ]
Buffer BufferInit == [ (Buffer BufferState)′ |

Buffer buff ′ = 〈〉 ∧ Buffer size ′ = 0 ]
Buffer InputCmd == [ ∆Buffer BufferState ; x? : N |

Buffer size < maxbuff ∧ Buffer buff ′ = Buffer buff 〈̂x?〉 ∧
Buffer size ′ = Buffer size + 1 ]

Buffer OutputCmd == [ ∆Buffer BufferState | Buffer size > 0 ∧
Buffer buff ′ = tail Buffer buff ∧ Buffer size ′ = Buffer size − 1 ]

Buffer Op buff == [ ΞBuffer BufferState ; buff ! : seq N | buff ! = Buffer buff ]
Buffer Op size == [ ΞBuffer BufferState ; size! : 0 . .maxbuff |

size! = Buffer size ]

•



(Buffer BufferInit) ; µX •
(Buffer Op size)→ (Buffer Op buff )→


(size < maxbuff ) N input?x → (Buffer InputCmd)
2

(size > 0) N output !(head Buffer buff )→
(Buffer OutputCmd)

 ; X





end

Figure 7.2: Buffer specification after action rewrite

After rewriting, the rewritten buffer specification is to be translated to Z and CSP
separately by Ω and Φ.

7.1.1.2 The Behavioural Part

Then the behavioural part of the rewritten model in Figure 7.2 is translated by the Φ
function to get a CSP specification.

The first step is to decide which constructs should be linked to CSP. Obviously, the
constant maxbuff and the channel declaration should be translated.
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The translation of

maxbuff : N1

maxbuff = 5

results in maxbuff = 5 according to Φ Rule 3. And the translation of the channel declaration
is displayed as follows.

Φ (channel input , output : N)

= channelinput , output : Φ (N) [Φ Rule 4]
= channelinput , output : Nat [Φ Rule 1 and Table D.4]

Then the process Buffer is linked.

Φ (Buffer)

=



Buffer =

Φ



(Buffer BufferInit) ; µX •

(Buffer Op size)→ (Buffer Op buff )→


(size < maxbuff ) N input?x →
(Buffer InputCmd)

2

(size > 0) N output !(head Buffer buff )→
(Buffer OutputCmd)

 ; X








[Φ Rule 8]

=



Buffer = Φ
(
(Buffer BufferInit)

)
;

Φ



µX •

(Buffer Op size)→ (Buffer Op buff )→


(size < maxbuff ) N input?x

→ (Buffer InputCmd)
2

(size > 0) N output !(head Buffer buff )→
(Buffer OutputCmd)

 ; X








[Φ Rule 26]

=



channel Buffer BufferInit
channel Buffer BufferInit fOp
HIDE CSPB = {|Buffer BufferInit ,Buffer BufferInit fOp|}
Buffer = (Buffer BufferInit → SKIP 2 Buffer BufferInit fOp → div) ;

Φ



µX •

(Buffer Op size)→ (Buffer Op buff )→


(size < maxbuff ) N input?x →
(Buffer InputCmd)

2

(size > 0) N output !(head Buffer buff )→
(Buffer OutputCmd)

 ; X








[Φ Rule 21]
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=



channel Buffer BufferInit
channel Buffer BufferInit fOp
channel Buffer Op size : {0..maxbuff }
channel Buffer Op buff : fseq (Nat)
channel Buffer InputCmd : Nat
channel Buffer InputCmd fOp : Nat
channel Buffer OutputCmd
channel Buffer OutputCmd fOp

HIDE CSPB = {|


Buffer BufferInit ,Buffer BufferInit fOp,
Buffer Op size,Buffer Op buff ,
Buffer InputCmd ,Buffer InputCmd fOp,
Buffer OutputCmd ,Buffer OutputCmd fOp

 |}
Buffer = (Buffer BufferInit → SKIP 2 Buffer BufferInit fOp → div) ;
let X = Buffer Op size?size → Buffer Op buff ?buff →




(size < maxbuff ) &input?x →

 Buffer InputCmd !x → SKIP
2

Buffer InputCmd fOp!x → div




2
(size > 0) & output !(head(Buffer buff ))→ Buffer OutputCmd → SKIP

2

Buffer OuputCmd fOp → div





; X


within X


[Equation 7.5]

(7.4)

And another schema Buffer BufferInit fOp

Buffer BufferInit fOp = [ΞBuffer BufferState | ¬pre Buffer BufferInit ]

is added within the process Buffer according to Φ Rule 21. Now we continue to apply rules
to the recursion.

Φ



µX •
(Buffer Op size)→ (Buffer Op buff )→

(size < maxbuff ) N input?x → (Buffer InputCmd)
2

(size > 0) N output !(head Buffer buff )→
(Buffer OutputCmd)

 ; X





=



let X =

Φ



(Buffer Op size)→ (Buffer Op buff )→


(size < maxbuff ) N input?x →
(Buffer InputCmd)

2

(size > 0) N output !(head Buffer buff )→
(Buffer OutputCmd)

 ; X




within X


[Φ Rule 34]
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=



let X =

Φ
(
(Buffer Op size)

)
→ Φ

(
(Buffer Op buff )

)
→

Φ




(size < maxbuff ) N input?x →
(Buffer InputCmd)

2

(size > 0) N output !(head Buffer buff )→
(Buffer OutputCmd)

 ; X


within X


[Φ Rule 24]

=



channel Buffer Op size : Φ (0 . .maxbuff )
channel Buffer Op buff : Φ (seq N)
HIDE CSPB = {| · · · ,Buffer Op size,Buffer Op buff |}
let X =
Buffer Op size?size → Buffer Op buff ?buff →

Φ




(size < maxbuff ) N input?x →
(Buffer InputCmd)

2

(size > 0) N output !(head Buffer buff )→
(Buffer OutputCmd)

 ; X


within X



[Φ Rule 22]

=



channel Buffer Op size : {0..maxbuff }
channel Buffer Op buff : fseq (Nat)
HIDE CSPB = {| · · · ,Buffer Op size,Buffer Op buff |}
let X =
Buffer Op size?size → Buffer Op buff ?buff →Φ


(size < maxbuff ) N input?x →

(Buffer InputCmd)
2

(size > 0) N output !(head Buffer buff )→
(Buffer OutputCmd)

 ; Φ (X )


within X


[Φ Rule 1, Table D.5, Table D.8, and Φ Rule 26]

=



channel Buffer Op size : {0..maxbuff }
channel Buffer Op buff : fseq (Nat)
HIDE CSPB = {| · · · ,Buffer Op size,Buffer Op buff |}
let X =
Buffer Op size?size → Buffer Op buff ?buff →


Φ

(
(size < maxbuff ) N input?x →

(Buffer InputCmd)

)
2

Φ

(
(size > 0) N output !(head Buffer buff )→

(Buffer OutputCmd)

)
 ; X


within X


[Φ Rule 27 and 34]
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=



channel Buffer Op size : {0..maxbuff }
channel Buffer Op buff : fseq (Nat)
HIDE CSPB = {| · · · ,Buffer Op size,Buffer Op buff |}
let X =
Buffer Op size?size → Buffer Op buff ?buff →



(
Φ (size < maxbuff ) &
Φ
(

input?x → (Buffer InputCmd)
) )

2 Φ (size > 0) &

Φ

(
output !(head Buffer buff )→
(Buffer OutputCmd)

) 


; X


within X



[Φ Rule 25]

=



channel Buffer Op size : {0..maxbuff }
channel Buffer Op buff : fseq (Nat)
HIDE CSPB = {| · · · ,Buffer Op size,Buffer Op buff |}
let X =
Buffer Op size?size → Buffer Op buff ?buff →



(
(size < maxbuff ) &(

input?x → Φ
(
(Buffer InputCmd)

)) )
2 (size > 0) &(

output !(head(Buffer buff ))→
Φ
(
(Buffer OutputCmd)

) ) 


; X


within X


[Φ Rule 24, Table D.4, and Table D.8]

=



channel Buffer Op size : {0..maxbuff }
channel Buffer Op buff : fseq (Nat)
channel Buffer InputCmd : Nat
channel Buffer InputCmd fOp : Nat
channel Buffer OutputCmd
channel Buffer OutputCmd fOp

HIDE CSPB = {|

 · · · ,Buffer Op size,Buffer Op buff ,
Buffer InputCmd ,Buffer InputCmd fOp,
Buffer OutputCmd ,Buffer OutputCmd fOp

 |}
let X =
Buffer Op size?size → Buffer Op buff ?buff →




(size < maxbuff ) &input?x →

 Buffer InputCmd !x → SKIP
2

Buffer InputCmd fOp!x → div




2
(size > 0) & output !(head(Buffer buff ))→ Buffer OutputCmd → SKIP

2

Buffer OuputCmd fOp → div





; X


within X


[Φ Rule 21 and Table D.4]

(7.5)

There are other schemas added within the Buffer process according to Φ Rule 21 and Φ
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Rule 22.

Buffer InputCmd fOp = [ΞBuffer BufferState ; x? : N | ¬pre Buffer InputCmd ]
Buffer OutputCmd fOp = [ΞBuffer BufferState | ¬pre Buffer OutputCmd ]

Finally, we get the CSP specification: the maxbuff constant, the channel declaration,
and the Equation 7.4. The complete CSP model is shown in Appendix G.1.2. In addition,
three additional schemas are within the process Buffer , and the updated Buffer process
is displayed in Figure 7.3. In the figure, since the main action has been translated, it is
omitted.

process Buffer =̂ begin
state Buffer BufferState == [ Buffer buff : seq N;

Buffer size : 0 . .maxbuff | Buffer size = # Buffer buff ≤ maxbuff ]
Buffer BufferInit == [ (Buffer BufferState)′ |

Buffer buff ′ = 〈〉 ∧ Buffer size ′ = 0 ]
Buffer InputCmd == [ ∆Buffer BufferState ; x? : N |

Buffer size < maxbuff ∧ Buffer buff ′ = Buffer buff 〈̂x?〉 ∧
Buffer size ′ = Buffer size + 1 ]

Buffer OutputCmd == [ ∆Buffer BufferState | Buffer size > 0 ∧
Buffer buff ′ = tail Buffer buff ∧ Buffer size ′ = Buffer size − 1 ]

Buffer Op buff == [ ΞBuffer BufferState ; buff ! : seq N | buff ! = Buffer buff ]
Buffer Op size == [ ΞBuffer BufferState ; size! : 0 . .maxbuff |

size! = Buffer size ]
Buffer BufferInit fOp = [ΞBuffer BufferState | ¬pre Buffer BufferInit ]
Buffer InputCmd fOp = [ΞBuffer BufferState ; x? : N |
¬pre Buffer InputCmd ]

Buffer OutputCmd fOp = [ΞBuffer BufferState | ¬pre Buffer OutputCmd ]
• . . .

end

Figure 7.3: Buffer specification after translation of behaviour

7.1.1.3 The State Part

After translation of the behavioural part, the state part is translated to Z by Ω. The
procedure is given in Section 6.4. The first step is to merge states and schemas by Ω1

Rule 1. The specification only has one process Buffer , so the merge is straightforward.
Additionally, the initialisation schema, Buffer BufferInit , is identified according to our
Definition 4.4.1. Then we get the translated Z specification in ISO Standard Z as shown in
Figure 7.4. It is parsed and typechecked, and finally translated to Z in ZRM by Ω2 Rule 1
to 11. The final Z model is displayed in Appendix G.1.2.

7.1.2 Distributed Reactive Buffer

The distributed cached-head ring buffer [64], an implementation of the buffer specification,
is a result of the refinement strategy development in that paper. Its complete Circus model
is shown in Appendix G.2.1. It is composed of the process Controller , the process RingCell ,
the indexed ring cell process IRCell , and the process Ring . Finally the process Buffer is a
parallel composition of the process Ring and the process Controller . In addition, there are
two constants maxbuff and maxring , an abbreviation RingIndex , and a number of channel
declarations.
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section BufferSpec parents standard toolkit

maxbuff : N1

maxbuff = 5

Buffer BufferState == [Buffer buff : seqN ; Buffer size : 0 . .maxbuff |
Buffer size = # Buffer buff ≤ maxbuff ]

State == Buffer BufferState
Init == [State ′ | Buffer buff ′ = 〈〉 ∧ Buffer size ′ = 0]
Buffer BufferInit == [(Buffer BufferState)′ | Buffer buff ′ = 〈〉 ∧ Buffer size ′ = 0]
Buffer InputCmd == [∆Buffer BufferState ; x? : N | Buffer size < maxbuff ∧

Buffer buff ′ = Buffer buff 〈̂x?〉 ∧ Buffer size ′ = Buffer size + 1]
Buffer OutputCmd == [∆Buffer BufferState | Buffer size > 0 ∧

Buffer buff ′ = tail Buffer buff ∧ Buffer size ′ = Buffer size − 1]
Buffer OP buff == [ΞBuffer BufferState ; Buffer buff ! : seqN |

Buffer buff ! = Buffer buff ]
Buffer OP size == [ΞBuffer BufferState ; Buffer size! : 0 . .maxbuff |

Buffer size! = Buffer size]
Buffer BufferInit fOp == [ΞBuffer BufferState | ¬pre Buffer BufferInit ]
Buffer InputCmd fOp == [ΞBuffer BufferState ; x? : N | ¬pre Buffer InputCmd ]
Buffer OutputCmd fOp == [ΞBuffer BufferState | ¬pre Buffer OutputCmd ]

Figure 7.4: Buffer Z specification in ISO Standard Z

This section will not give all details of the stepwise application of our rules to this
model like that to the buffer specification, but more focus on the differences between both
models.

Provided that the configuration file has the following content.

# Configuration for Circus2ZCSP
CONF_MININT = 0
CONF_MAXINT = 3
CONF_MAXINS = 5
CONF_GIVEN_SET_INST_NO = 3
maxring = 4
maxbuff = 5
MAIN = Buffer
CSPLIBSPATH =

According to the translation procedure in Figure 6.1, after parsing and typechecking,
the first step is to rewrite it by Rwrt rules.

7.1.2.1 Rewriting by Rwrt

The rewrite procedure is shown in Figure 6.2.

• Since this specification only has standard toolkit circus_toolkit as its parent sec-
tion, the section resolving stage just keeps it unchanged.

• And all identifiers comply with the pattern required, so this check succeeds.
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• There are no global schemas, and therefore schema localisation will not change any-
thing.

• Two constants maxbuff and maxring are given in the axiomatic definition. Accord-
ing to Rwrt Rule 5, since they are referred to in the behavioural part, such as the
definitions of the action InputController and the process IRCell , they have to be
instantiated to 5 and 4, the values from maxbuff and maxring in the configuration
file. Finally, the axiomatic definition becomes

maxbuff : N1

maxring : N1

maxring = maxbuff − 1
maxbuff = 5
maxring = 4

• The rewrite of the channel declarations keeps them unchanged according to Rwrt

Rule 6.

• Since the process IRCell is a renamed and indexed process, according to Rwrt Rule 21,
it should be rewritten by the rule. The application of this rule is illustrated in
Equation 7.6, where RingIndex is expanded to 1 . .maxring = {1, 2, 3, 4}.

• And the indexed process invocation in the process Ring is rewritten by Rwrt Rule 15.
This is illustrated in Equation 7.7.

• For other processes except basic processes, the rewrite will leave them unchanged.

• After that, since there are no schemas as predicates, the Schemas as Predicates to
Predicates stage also has no effect on the model.

• Then the rewrite of basic processes is to rewrite its body according to Rwrt Rule 17. It
is very similar to the write of the process Buffer in the buffer specification. Therefore,
for brevity, it is omitted.

• Finally, the model has been rewritten.

Rwrt

 process IRCell =̂
( i : RingIndex � RingCell )

[rd i ,wrt i := read ,write]



=


(

process IRCell 1 =̂
Rwrt (FRen (B (RingCell) , {(rd , read .1) , (wrt ,write.1)}))

)
· · ·(

process IRCell 4 =̂
Rwrt (FRen (B (RingCell) , {(rd , read .4) , (wrt ,write.4)}))

)


[Rwrt Rule 21]
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=





process IRCell 1 =̂

Rwrt



begin
state CellState == [ v : N | true ]
CellWrite == [ ∆CellState ; x? : N | v ′ = x? ]
Read =̂ read .1!v → Skip

Write =̂ write.1?x → (CellWrite)
• (µX • (Read 2 Write) ; X )

end




· · ·

process IRCell 4 =̂

Rwrt



begin
state CellState == [ v : N | true ]
CellWrite == [ ∆CellState ; x? : N | v ′ = x? ]
Read =̂ read .4!v → Skip

Write =̂ write.4?x → (CellWrite)
• (µX • (Read 2 Write) ; X )

end






[B Definition B.2.15 and FRen Definition B.2.14]

(7.6)

Rwrt

(
process Ring =̂

( ||| i : RingIndex • IRCellbic
))

= process Ring =̂ Rwrt

( ||| i : RingIndex • IRCellbic
)

[Rwrt Rule 17]

= process Ring =̂
( ||| i : RingIndex • Rwrt (IRCellbic)

)
[Rwrt Rule 22]

= process Ring =̂

 ||| i : RingIndex •


(i = 1) & IRCell 1

2 (i = 2) &IRCell 2
2 (i = 3) &IRCell 3
2 (i = 4) &IRCell 4




[Rwrt Rule 15]

(7.7)

7.1.2.2 The Behavioural Part

Then the behavioural part of the rewritten model is translated by the Φ function to get a
CSP specification. The processes including Controller , RingCell , IRCell 1, . . . , IRCell 4,
Ring , and Buffer should be translated. For basic processes, it is equal to translate their
main actions. And for Ring and Buffer , Φ Rule 20 and 12 are used. The final CSP model
is shown in Appendix G.2.2.

7.1.2.3 The State Part

After the translation of the behavioural part, the state part is translated to Z by Ω. The
procedure is given in Section 6.4.

The first step is to merge states and schemas by Ω1 Rule 1. Since the model has a
number of processes, the merge is not straightforward. The state after merge is shown in
Figure 7.5, where the final state space consists of state components from all basic processes.

Additionally, the initialisation schemas are identified according to our Definition 4.4.1.
For the Controller process, Controller ControllerInit is its initialisation schema. And for
other basic processes RingCell , IRCell 1, . . . , and IRCell 4, they do not have initialisation
schemas and are regarded as having the predicate true for their initial states. Finally, the
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Controller ControllerState == [Controller size : 0 . .maxbuff ;
Controller ringsize : 0 . .maxring ; Controller cache : N;
Controller top,Controller bot : RingIndex |
Controller ringsize mod maxring =

(Controller top − Controller bot) mod maxring ∧
Controller ringsize = max{0,Controller size − 1}]

RingCell CellState == [RingCell v : N | true]
RCell 1 CellState == [IRCell 1 v : N | true]
RCell 2 CellState == [IRCell 2 v : N | true]
RCell 3 CellState == [IRCell 3 v : N | true]
RCell 4 CellState == [IRCell 4 v : N | true]
State == Controller ControllerState ∧ RingCell CellState ∧

IRCell 1 CellState ∧ IRCell 2 CellState ∧
IRCell 3 CellState ∧ IRCell 4 CellState

Figure 7.5: State schema after merge

initial schema is a conjunction of predicates from all basic processes’ initialisation schemas,
which is shown as follows.

Init == [State ′ | Controller top′ = 1 ∧
Controller bot ′ = 1 ∧ Controller size ′ = 0 ∧ true]

For other operation schemas, such as Controller CacheInput , their declaration part
includes Ξ of other basic processes’ state schemas to make sure it will not change the
state components from other processes, and their predicates are the same as the original
predicates before merge. The Controller CacheInput after merge is displayed below.

Controller CacheInput == [∆Controller ControllerState ; x? : N;
ΞRingCell CellState ; ΞIRCell 1 CellState;
ΞIRCell 2 CellState ; ΞIRCell 3 CellState;
ΞIRCell 4 CellState | Controller size = 0 ∧
Controller size ′ = 1 ∧ Controller cache ′ = x? ∧
Controller bot ′ = Controller bot ∧ Controller top′ = Controller top]

After merge, we get the translated Z specification in ISO Standard Z. Then it is parsed
and typechecked, and finally translated to Z in ZRM by Ω2 Rule 1 to 11. The final Z
model is displayed in Appendix G.2.2.

7.1.3 Model Checking Results

Now we have got the final CSP ‖B Z models for both the buffer specification and the
implementation. Both of them can be model-checked by ProB. But before performing
model checking, the value of the constants MAXINT , MAXINS and maxbuff should be
considered at first.

7.1.3.1 Maximum Instances MAXINS and Maximum Size of Buffer maxbuff

For the buffer specification, the type of buff is seq N. When linked to CSP ‖B Z , we use
fseq (Appendix D.3) that introduces the bound constant MAXINS . Finally the size of the
set of finite sequences by fseq highly relies on the value of MAXINS as well as the data set
s. The defined fseq computes the result relied on several intermediate functions (squash,
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pfun, rel and cross) which are defined in the functional language as well. The consumption
of resources during resolution is still high. If the size of s is big and MAXINT is large,
ProB will take longer time to compute all possible finite sequences. For an instance, on
the system having 2GB RAM and 2.5 GHz CPU, and running Ubuntu 12.04, it takes
approximately thirty minutes for ProB to load the CSP program when the size of s is 4
(MAXINT is set to 3) and MAXINS is 5. However if the size of s is reduced to 2, we
can increase MAXINS to 9 to make ProB load the CSP program still in a shorter time.
Alternatively, instead of using the functional language to resolve fseq , we can compute all
finite sequences in advance by another language, let’s say Perl, then include them explicitly
into a set and replace fseq in CSP programs by this set. For example, if s is {0, 1} and
MAXINT is 2, then we can get this set as {〈〉, 〈0〉, 〈1〉, 〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉}. By this
way, it can reduce the program load time tremendously. But the loss of flexibility is a side
effect because we have to compute this set in advance and externally (out of ProB).

For the buffer specification the value of maxbuff should be less than or equal to
MAXINS .

7.1.3.2 Data Independence and MAXINT

Informally speaking, a reactive program is data independent if the input data of the pro-
gram is changed, the behaviour of the program will not change and the only change is the
values of the output data. The precise definition of data independence [90, Definition 4.1]
is given: for all data domain D , available data sets Σ over D , and functions f : D → D ′,
σ is a possible behaviour of a simple reactive program P for Σ if and only if f (σ) is also
a possible behaviour of P for f (Σ). In other words, if a data domain D is changed to
another D ′, the behaviour of P (the sequence of in and out events) is still the same except
that the output value is changed to a function on D ′.

But how to tell if a reactive program is data independent or not. A semantic study
of data independence [91, Section 2.7] has established it as a simple syntactic property of
terms. Lazić [91, Section 2.7] and Roscoe [8, Section 15.3.2] gave the criteria of data inde-
pendence of a concurrent system P with respect to a data type T for a language combined
from CSP and λ-calculus, and CSPM respectively. A program is data independent with
respect to a data type T if it only does the following things with values from T :

• input them along its input channels,

• store them and copy them for later use,

– Operations which only pass members of T around without look inside of them,
such as basic polymorphic operations (tupling, list formation, etc.), are regarded
as suitable operations to preserve data independence. Other functions which
rely on the type of T or the size of T may not be used.

– If a concrete value from T appears in the program text of P , it will not be data
independent.

– For CSP, if the indexing set of replicated constructs depends on T , then only
replicated internal choice can appear in the program text.

• output them along its output channel without performing any ’interesting’ compu-
tations to constrain what T might be, and

– If two members of T are added to each other, this is regarded as an interesting
computation because it puts a constraint on the type of T in which all members
must be numbers.

• perform equality and inequality tests between them.
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In addition, these criteria are not only valid for CSP but also for other typed languages.
However, for different languages these criteria may have different syntactic restrictions.
An example of using data independence criteria in another language is the compositional
abstraction of systems modelled in CSPZ [92], a combination of CSP and Z, by partitioning
the Z part into a data independent part and a data dependent part, then converting both
parts to pure CSP, finally using data independence and data abstraction to analyse the
data independent part and the data dependent part of resultant CSP processes.

In this case study, the type of data (T ) in both the buffer specification and the buffer
implementation is N. Through syntactic checking of both the linked buffer models in
CSP ‖B Z , we conclude that they are data-independent with respect to the type of data
N in the buffer because they input values of N along their input channels, store them in a
sequence or a set of ring cells, and then output values in order along their output channels
without any computations. And they do not perform any explicit and implicit equality
tests over T , therefore they satisfy NoEqT [71, 91]. In addition, the Buffer process in
the linked buffer specification satisfies Norm [71,91]. According to Theorem 17.2 [71], the
threshold of the size of T such that the implementation is a refinement of the specification
in terms of traces, failures and failures-divergences is 2. There is a similar conclusion in
the book [71, p.397] that the threshold of an N -bounded buffer for any N is 2. So for
the refinement check, we can set MAXINT to 1 as there are two elements {0, 1} and set
maxbuff to 3. Actually, we also checked the refinement when MAXINT is increased to 3.

7.1.3.3 Guidance on Constants in Configuration File

An example of the configuration file for this buffer case is shown in Section 7.1.1. In the
file, there are several configuration items defined. Among them, the items beginning with
CONF_ denote axiomatic definitions or constants used in the CSP ‖B Z model.

CONF_MININT and CONF_MAXINT define the minimum integer and the maximum integer
for the model checking. They make Z and N be finite. In this case, N is the type for
elements in the buffer. Therefore, CONF_MININT is assigned to 0. For CONF_MAXINT, thanks
to the previous conclusion that both the linked specification and implementation models
are data independent and their thresholds of the size of N are 2, this constant should be
at least larger than or equal to 1. In the configuration file illustrated in Section 7.1.1, we
choose CONF_MAXINT as 3.

CONF_MAXINS and maxbuff define the maximum size of the finite sequence in a set of
finite sequences given by fseq . The value of CONF_MAXINS should be larger than or equal
to maxbuff. There is no optimal value for CONF_MAXINS and its choice depends on the
capability of the model checker and the maximum size of the buffers to be checked. In the
configuration file illustrated, both of them are set to 5, which indicates only the models
for a buffer to store up to 5 elements are verified. It is possible to modify ProB to make it
automatically check the models whose size is equal to 1, 2, · · · and maxbuff individually. In
other words, maxbuff=3 indicates the models for up to 1, 2, and 3 elements are all verified.
This new feature is left as future work.

7.1.3.4 Model Checking of Buffer Specification

When model-checking this case by ProB, we notice ProB kernel treats seq T as

set(couple(integer ,T ))

in Z and B. But it fails to match the sequence type in CSP. Therefore, it generates
an incompatible type error. We change the implementation of predicate type_ok and
is_csp_set_type in specfile.pl of ProB kernel source code to make

set(couple(integer ,T ))
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Table 7.1: Model Checking Performance Comparison (Buffer Specification)

MAXINT MAXINS maxbuff Time (ms) Memory (MB)
3 3 1 122 38
3 3 2 538 38
3 3 3 2,152 39
3 4 4 28,022 40
3 5 5 443,306 78
1 9 9 16,802 68

match the sequence type in CSP. This modification has been accepted by the ProB team
and merged into the source code of ProB.

Additionally, div, the most divergent process, is explicitly used in our link rules, such
as Link Rule 31, Link Rule 53, Link Rule 55, and Link Rule 56, to capture the behaviour if
the precondition of the schema in a schema expression as action is not satisfied, or none of
guarded conditions in an alternation hold, or the precondition in a specification statement
or an assumption does not hold. However div is not available in CSPM as well as ProB.
Instead of defining an explicit process div via hiding, we define a non-divergent process
DIV to correspond to div. The process DIV is defined as follows,

DIV = div → STOP

where div is a special event in CSP. For example, div in Equation 7.5 becomes DIV .
Though DIV is not a divergent process, we can check deadlock of combination of CSP and
Z specifications to achieve divergence checking. We use the deadlock checking to find this
kind of divergence because it is a more direct checking in ProB. In case that a deadlock is
found, we check the counterexample to see if the last event is div or not. If the last event
is div , it means the original Circus specification can lead to divergence. Alternatively, LTL
formula checking can be used to check deadlock as well. For example, the LTL formula
(not F e(div)), which denotes the statement that finally div event is enabled, is not
true. When it comes to this case, if we remove guarded conditions in Input or Output
action, the specification diverges because the precondition of InputCmd and OutputCmd
may not hold. In the final CSP specification, the corresponding boolean guard is removed
as well. Using ProB, we can easily find the deadlock and the last event is div , therefore
it finds divergence. It is worth noting that with this deadlock checking of the div event
we can only check divergences captured in our link rules. For other divergences such as
the divergence caused by hiding events, they can be checked using CSP assertions like
assert Buffer :[ livelock free ].

Deadlock and Invariant Violation Checking Finally, we can model-check the com-
bination of CSP and Z specifications and there is no deadlock found. A comparison of the
model checking performance for different configuration of constants is shown in Table 7.1.
This experiment was undertaken on ProB Linux version, which is modified based on ProB
1.5.0-Beta, on Ubuntu.

Deadlock and Divergence Checking by CSP Assertions ProB is capable of dead-
lock and divergence checking through CSP assertions as well. By adding the following
three asserts to the CSP model, we checked the deadlock free and divergence free of the
Buffer process with the combination of constants in Table 7.1 successfully.

assert Buffer :[ deadlock [F] ]
assert Buffer :[ deadlock [FD] ]
assert Buffer :[ livelock free ]
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Table 7.2: Model Checking Performance Comparison (Buffer Implementation)

MAXINT maxbuff maxring Time (ms) Memory (MB)
3 2 1 38,039 53
3 3 2 2,582,944 837
1 4 3 951,593 913
1 4 3 236,532 318 a

aThis row is the result with substituted initialisation schema.

7.1.3.5 Model Checking of Distributed Reactive Buffer

One issue we found is about the well-definedness of the modulo operation in Z when
it is translated to the counterpart in B. In Z, the modulo operation is defined on the
integer dividend and the non-zero integer divisor [4]. However it is defined on the natural
number dividend and the non-zero natural number divisor in B machine. Therefore, when
model-checking this case by ProB that translates the modulo to the modulo operation in
B, it triggers an error about the well-definedness of the modulo because the dividend of
the modulo in Z is possibly less than 0. Thus, we modified the implementation of the
modulo operation in ProB to use the modulo operation mod in SICStus Prolog, and this
modification has been accepted by the ProB team and merged into the latest source code
of ProB. Because the modulo operation in Z uses truncation towards minus infinity [4] and
in Prolog it is the integer remainder after floored division [93], they use the same definition
of modulo—floored division [94]. Hence, the well-definedness of mod in Z is retained.

In addition, ProB uses the built-in command time in Tcl to measure the elapsed time
for the model checking task. It can count up to 4,294,967,295 microseconds, approximately
72 minutes, for a task in a 32-bit machine, otherwise it will cause the overflow. For the
model checking of this case with the maxbuff larger than 3, it requires longer time and
causes the overflow. Therefore, the output result about the time is not useful. We record
the timestamp before the task execution and the timestamp after the completion of the
task by clock milliseconds in Tcl, then calculate the difference between two timestamps.
This is the model checking time. This modification made to ProB is only for temporary
test purpose.

Deadlock and Invariant Violation Checking There is no deadlock or divergence
found. A comparison of the model checking performance is shown in Table 7.2. Note that
due to the state space exploration and resource limitation, we are not able to model check
this case if maxbuff is larger than 3 and MAXINT is 3 because ProB runs out of memory
on Linux with 3 GB memory. We can set the MAXINT to 1 to reduce the state space. The
result is shown in the third row. Further methods like more specific initialisation can be
used to tremendously decrease the size of the state space. For an instance, if we substitute
by the initialisation schema (7.8), the model checking result is displayed in the fourth row.

Init =̂[ State ′ | Controller top′ = 1 ∧ Controller bot ′ = 1

∧ Controller size ′ = 0 ∧ Controller ringsize ′ = 0

∧ Controller cache ′ = 0 ∧ RingCell v ′ = 0

∧ IRCell 1 v ′ = 0 ∧ IRCell 2 v ′ = 0

∧ IRCell 3 v ′ = 0 ∧ IRCell 4 v ′ = 0 ] (7.8)

Deadlock and Divergence Checking by CSP Assertions By adding the following
three asserts to the CSP model, we checked the deadlock free and divergence free of the
Buffer process with the combination of constants in Table 7.2 successfully.
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Table 7.3: Refinement Checking Performance

Model MAXINT maxbuff maxring Time (ms)
Traces 1 3 2 109,180
Failures 1 3 2 122,440
Traces 3 3 2 342,440
Failures 3 3 2 355,320

assert Buffer :[ deadlock [F] ]
assert Buffer :[ deadlock [FD] ]
assert Buffer :[ livelock free ]

7.1.3.6 Refinement Checking

In addition, ProB can check if an implementation in CSP ‖ B is a trace refinement of a
specification in CSP ‖ B [95]. When checking the trace refinement, an issue we got in
ProB for our case, after inspecting source code, is that ProB refinement checker compares
the traces of both the specification and the implementation according to their transitions
in the same state space. That works for the refinement of two processes in the same CSP
program for the CSP model, or the refinement of two processes in the same CSP program
for the CSP ‖ B model. But for our case, the specification and the implementation have
the different Z programs and it is impossible to put their CSP programs into one CSP
file. Thus we modified the refinement_checker.pl of ProB to search the traces by the
transitions from their own separate state space. This change works for the buffer case and
the ESEL case. However it has not been adopted by the ProB team yet. After model-
checking the buffer specification, we save its state space for later refinement check to a
file. Then we load the buffer implementation to ProB, and select “trace refinement check”
function, open the saved state space file for the specification. Finally ProB will show
the result: the implementation is a trace refinement of the specification; or if not a trace
refinement, a counter example is provided.

We checked the trace refinement between the buffer specification and the buffer imple-
mentation, and finally got the result the distributed reactive buffer is a trace refinement of
the buffer specification for MAXINT and maxbuff equal to 3 and 3 separately. Further-
more, ProB has an option to check failures. We checked the failure refinement between
the specification and the implementation as well, and finally found the distributed reactive
buffer is also a failure refinement of the buffer specification with the same constants. The
refinement checking performance is shown in Table 7.3. According to Section 7.1.3.2, we
can conclude the buffer implementation is a failure refinement of the buffer specification.

However, if maxbuff between the specification and the implementation is not equal,
ProB gives an error with a counterexample provided.

7.2 ESEL

7.2.1 Requirement

Electronic Shelf Edge Label (ESEL), a technology to allow retailer stores to use digital
price tags to manage the price update of products, has been widely used to facilitate store
management. The requirement of this example is to design a ESEL system which receives
price information from the server and then automatically updates the price of all products
to associated ESEL tags.

Furthermore, the problem described in this section is an abstract and simplified ESEL
system.
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• Firstly, only information showed on the display of tags is the price of products and
the unit of price is natural number.

• Secondly, the communication to update tags is abstract regardless of specific net-
work and media. Therefore, the communication problems such as package lose and
unreachable tags because of out of communication range, are not considered.

• Thirdly, the map between products and tags has been determined in advance. The
system just receives this map information.

7.2.1.1 Environment and Physical Units

The environment and physical units that interact with this system are displayed in Fig-
ure 7.6.

ESEL System

Between Server

£ 888

Tag 1

£ 888

Tag 2

£ 888

Tag 3

. . . £ 888

Tag n

Figure 7.6: Environment of ESEL System

Server The system gets price information and the map between products and tags from
the server, and after update it returns feedbacks to the server.

Tags or Displays Additionally, there are many tags or displays in the store to show
the price of products and for each tag it is linked to up to one product. Here a tag is
equal to a display and therefore the display will be used afterwards to denote a tag. Its
functionalities are listed below.

• It does not support a communications network and is not able to communicate with
other displays.

• It provides an interface to read or write the price data from or to the display. The
data written to the display will be stored and shown on the screen if it is on. Even
after the display is turned off, the data is still kept in its memory unless there is
another write to override it. The read operation will return the stored value.

• It also provides another interface to turn on or off the screen of the display.

7.2.1.2 Functionalities of ESEL System

The ESEL system is designed to update the price of products to their corresponding
displays.
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• It receives the map between products and displays from the server and keeps it for
further usage. It is capable of receiving either a partial or a full map. In a partial
map, for all displays not in the new map, they are still the same—either map to
existing products or not assigned. And for all displays in the new map, finally they
override the stored map. In a full map, the stored map is discarded and the new
map will be stored. In both modes, the new updated map will be kept and used in
update cycles until there is another update of the map.

• The price map between products and price is very similar to the display map between
displays and products. It provides partial or full update as well.

• An update command from the server initiates a price update cycle. The price in-
formation stored will be shown to associated displays. If the displays have problems
that are identified through comparison of the data read from the displays with the
data written to the displays, or the products do not have associated displays, error
information will be returned to the server.

• In the initialisation stage, all displays are turned off.

• Each update cycle is a complete update and all displays are involved. For the displays
that are not linked to any products or the displays whose associated products are
not in the update list, they should be turned off.

7.2.2 Specification

The specification has been illustrated in Section 2.3.2, and the ESELHeader is given in
Section 2.3.1. The complete Circus model is shown in Appendix H.2.1 and its linked CSP
and Z models are in Appendix H.2.2.

7.2.3 System One

For the system displayed in Figure 2.1, considering the fact that all displays are scattered
throughout the store, it is not wise to connect each display to the central controller directly
through wires. A better solution is to have each display updated remotely without wire.
Then they can be moved from one location to another easily. To support this remote
update, displays should support wireless communication. Though data rich networks such
as WiFi can make the communication between displays and the central controller easy,
the cost of this solution with WiFi chips in displays is comparatively higher because of
the large amount of displays. As a result, data-less communications such as ZigBee and
RFID are commonly used for communication between the central controller and displays.
Finally, the cost is highly reduced.

After this situation is taken into account, an additional controller is added to each
display. The display and its controller together form an ESEL which is identified by an
ESEL ID and this controller is consequently named the ESEL controller. In addition, this
controller supports wireless connection and finally the ESELs can be updated remotely
through the system controller. The solution is illustrated in Figure 7.7. Each unit Ui in
the system controller is responsible for the update of one ESEL by communicating with
the corresponding ESEL controller.

In the System Controller, the top three elements—ESEL map, Price map, and Re-
sponse—keep the map between ESELs and products, the map between products and price,
and the response respectively. The bottom n elements from U1 to Un are interleaved to-
gether, and each unit is responsible for the update of one ESEL by communicating with
the corresponding ESEL controller. Furthermore, each unit can read the ESEL map and
the Price map but will not update them, and the responses from the ESEL controllers are
sent to the Collector which collects all responses and then updates the Response. With
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Figure 7.7: ESEL System One

this architecture, all ESELs can be updated at the same time because of interleaved update
units (U1, ..,Un), and the Response can be updated only by the Collector and therefore it
is not necessary to introduce a lock.

7.2.3.1 Circus Model

This Circus model can also be found in Appendix H.3.1.

section ESELSystem1 parents ESELHeader

Controller Process The process for the central controller, named Controller1, is defined
as an explicitly defined process.

process Controller1 =̂ begin

Controller1 has three state components: pumap for the map from ESELs to products,
ppmap for the map from products to their price, and response for the response of one
update cycle to the environment.

state State == [ pumap : ESID 7→ PID ; ppmap : PID 7→ Price;
response : PID 7→ (P FStatus) ]

Initially, these three state components all are empty.

Init == [ (State)′ | pumap′ = ∅ ∧ ppmap′ = ∅ ∧ response ′ = ∅ ]

The UpdateMap schema updates part of the map from ESELs to products according to
the input map, while the UpdateAllMap schema discards stored map and uses new input
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map as pumap.

UpdateMap == [ ∆State ; map? : ESID 7→ PID |
pumap′ = pumap ⊕map? ∧ ppmap′ = ppmap ∧ response ′ = response ]

UpdateAllMap == [ ∆State ; map? : ESID 7→ PID |
pumap′ = map? ∧ ppmap′ = ppmap ∧ response ′ = response ]

The NewPrice updates part of the stored map from products to price, while the AllNewPrice
discards all price information stored and uses input price as ppmap.

NewPrice == [ ∆State ; price? : PID 7→ Price |
ppmap′ = ppmap ⊕ price? ∧ pumap′ = pumap ∧ response ′ = response ]

AllNewPrice == [ ∆State ; price? : PID 7→ Price |
ppmap′ = price? ∧ pumap′ = pumap ∧ response ′ = response ]

AUpdatemap is an action defined to update the map from ESELs to products: either
partially by the updatemap event or completely by the updateallmap event.

AUpdatemap =̂ updatemap?map → (UpdateMap)
2 updateallmap?map → (UpdateAllMap)

Similarly, ANewPrice is an action defined to update the map from products to price: either
partially by the updateprice event or completely by the updateallprice event.

ANewPrice =̂ updateprice?price → (NewPrice)
2 updateallprice?price → (AllNewPrice)

A parametrised action, AUpdateUnitPrice, is given to update the price (specified by the
formal pid parameter) to an ESEL (given by the formal uid parameter). It sends the price
to the specified ESEL by the uupdate event, and then waits for the response from the ESEL.
If the return status is not successful (ufail), it sends the result to the response collection
action CollectResp below, then terminates. Otherwise, it terminates immediately.

AUpdateUnitPrice =̂ uid : ESID ; pid : PID •
uupdate.uid .(ppmap pid)→ ures.uid?rst →
((rst = ufail) N resp.pid .(fail uid)→ Skip
2 (rst = uok) N Skip)

The parametrised action AUpdateProductUnits aims to update one product’s price specified
by the formal pid parameter in case the product has associated ESELs. Since one product
may have more than one associated ESELs, this action updates the product’s price to all
associated ESELs. Furthermore, the update to each ESEL is independent. Therefore, they
are combined together into an interleave. It is worth noting that each AUpdateUnitPrice
action will not update state or local variables and thus its name set is empty.

AUpdateProductUnits =̂ pid : PID •
(||| uid : (dom (pumap B {pid})) ||[ ∅]|| • AUpdateUnitPrice(uid , pid))

Otherwise, if the product has not been allocated with the corresponding ESELs, it sends
back a response to state this error NA. The behaviour is defined in the AUpdateNoUnit
action.

AUpdateNoUnit =̂ pid : PID • resp.pid .NA→ Skip
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The behaviour of the price update for a product given in pid is the update of the prod-
uct either with associated ESELs, guarded AUpdateProductUnits, or without associated
ESELs, guarded AUpdateNoUnit .

AUpdateProduct =̂ pid : PID •
(pid ∈ ran pumap) N AUpdateProductUnits(pid)

2 (pid 6∈ ran pumap) N AUpdateNoUnit(pid)

Then the update of all products is given in the action AUpdateProducts. Firstly, it
is an interleave of all updates of the products which have associated price, then follows a
terminate event to finish the update.

AUpdateProducts =̂ ((||| pid : (dom ppmap) ||[ ∅]|| • AUpdateProduct(pid))

;terminate → Skip)

The AddOneFailure schema below is used to add one product’s failure status to response.

AddOneFailure == [ ∆State ; pid? : PID ; fst? : FStatus |
(pid? ∈ dom response ⇒

response ′ = response ⊕ {pid? 7→ (response(pid?) ∪ {fst?})}) ∧
(pid? 6∈ dom response ⇒

response ′ = response ∪ {pid? 7→ {fst?}}) ∧
ppmap′ = ppmap ∧ pumap′ = pumap ]

The CollectResp action is to collect responses from all units and write them into the
response variable. It recursively waits for the response from the units, or terminates if
required.

CollectResp =̂ µX •
((resp?pid?fst → (AddOneFailure) ; X ) 2 terminate → Skip)

Then the behaviour of the update of all products and the behaviour of response col-
lection are put together into a AUpdateResp action. It is a parallel composition of the
AUpdateProducts and CollectResp actions and they are synchronised on resp and terminate
events. Finally, these internal events are hidden.

AUpdateResp =̂
(AUpdateProducts J ∅ | RespInterface | {response} K CollectResp)
\RespInterface

The overall price update action is given in AUpdatePrice, which accepts an update
event from its environment, then clears the response, updates the price, sends the display
event to make all ESELs show their price at the same time, then returns the response back
to the environment.

AUpdatePrice =̂ update → response := ∅;
AUpdateResp ; display → finishdisplay → failures.response → Skip

The overall behaviour of the Controller process is given by its main action. It is
initialised first, then repeatedly provides the ESEL map update, the price map update, or
the price update to its environment.

• (Init) ; init → Skip;
(µX • (AUpdatemap 2 ANewPrice 2 AUpdatePrice) ; X )

end
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ESEL Process Each ESEL is defined as a parametrised process with the formal param-
eter eid .

process ESEL1 =̂ eid : ESID • begin

The process has two state components: price for the price to display, and status for
the status of ESEL.

state State == [ price : Price ; status : UStatus ]

Initially, the price is equal to 0 and the status is uok .

Init == [ (State)′ | price ′ = 0 ∧ status ′ = uok ]

The Update action provides its environment (the Controller) the update of price for
the associated product. It accepts the uupdate event with the price, then writes the price
to the price variable. After that, it writes the price to the display unit, and reads back the
value to be compared with the original price. If they are equal, it sends back status uok by
the ures event. Otherwise, it sends back status ufail . Accordingly, the status is updated.

Update =̂ uupdate.eid?x → price := x ; write.eid .price → read .eid?y
→ ((y = price) N ures.eid .uok → status := uok

2 (y 6= price) N ures.eid .ufail → status := ufail)

The Display action accepts the display event. If the status is uok , then the associated
display is turned on. Otherwise, the display is turned off.

Display =̂ display → (
(status = uok) N ondisplay .eid → Skip

2 (status = ufail) N offdisplay .eid → Skip)
;finishdisplay → Skip

NotUpdateDisplay is an action to turn off this ESEL’s display if it is not going to be
updated.

NotUpdateDisplay =̂ display → offdisplay .eid → finishdisplay → Skip

The initial behaviour of the process is given in the action AInit which initialises the state
first, and then turns off the display.

AInit =̂ (Init) ; offdisplay .eid → init → Skip

The overall behaviour of the process is given by its main action. It specifies that after
initialisation the process repeatedly provides the update or the display to its environment.

• AInit ; (µX • ((Update ; Display) 2 NotUpdateDisplay) ; X )

end

The behaviour of all ESELs together is formed by iterated parallel composition of
the ESEL process. The communication between them is to synchronise on the events for
initialisation and display.

channelset InterESELInterface1 == {| init , display ,finishdisplay |}
process ESELS1 =̂‖ eid : ESID J InterESELInterface1K • ESEL1(eid)
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System Finally, the whole system is defined as the parallel composition between the
Controller process and the ESELS1 process. They synchronise on the uupdate, ures, init ,
display , and finishdisplay events.

channelset ESELInterface1 == {| uupdate, ures, init , display ,finishdisplay |}
process ESELSystem1 =̂ (Controller1 J ESELInterface1 K ESELS1) \ ESELInterface1

7.2.3.2 CSP and Z Model

The result CSP ‖B Z model is displayed in Appendix H.3.2.

7.2.4 System Two

For the system illustrated in Figure 7.7, considering a large store that has a big space
and many ESELs, the usage of this central system controller has some disadvantages.
Firstly, it is difficult to have full coverage of the wireless communication network from
the central controller to each ESEL when the area is large. Secondly, a large amount of
ESELs requires many units in the central control updating at the same time to maintain a
reasonable overall update time. However, since all these updates are by wireless and these
units in central controller are close to each other, then many units in the central controller
working together will cause the wireless interfere problem.

To address these issues, our solution is to add several gateways between the central
controller and ESELs. And each gateway is responsible for the update of registered ESELs
in one area of the store. The main work of the gateways is to get the price information
from the central controller, update all prices to their registered ESELs, collect update
results, and finally send back these results to the central controller. And each gateway is
individually not close in location and works independently. Therefore, the wireless interfere
problem is alleviated, and update efficiency is improved because all gateways can update
ESELs at the same time. This solution has relieved the central controller because the
controller will not update ESELs directly. Instead, it only sends the price information to
gateways and waits for the result. Consequently, the central controller is renamed to the
ESEL server. The solution is illustrated in Figure 7.8.

7.2.4.1 Circus Model

This Circus model can also be found in Appendix H.4.1.

section ESELSystem2 parents ESELHeader

An additional constant is defined. MAX GATEWAY stands for maximum number of
gateways in the system.

MAX GATEWAY : N

Then all gateways are identified by GID . For instance, the number two is given GW 2
or GW (2).

GID ::= GW 〈〈1 . .MAX GATEWAY 〉〉

The map from ESELs to gateways, gwmap, is defined as a total function. One ESEL
is linked to up to one gateway. However, one gateway may associate with multiple ESELs.
For example,

gwmap : ESID →GID

gwmap = {(ES 1,GW 1), (ES 2,GW 1), (ES 3,GW 2)}
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Figure 7.8: ESEL System Two

The channels below are used to communicate between the server and gateways, or
within gateway internals. The server uses gupdateprice to send price information with
ESEL IDs to the corresponding gateway, while gfailure is used to get back the update
result from the gateway.

channel gupdateprice : GID × (ESID 7→ Price)
channel gfailure : GID ×P ESID

gresp and gterminate are used in the internal of gateways to collect update results from
each ESEL and terminate after collection.

channel gresp : ESID
channel gterminate
channelset GRespInterface == {| gresp, gterminate |}

ESEL Server Process The process for the ESEL server, named ESELServer , is defined
as an explicitly defined process.

process ESELServer =̂ begin
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The following definitions are the same as those in the Controller1. So their description
is omitted.

state State == [ pumap : ESID 7→ PID ; ppmap : PID 7→ Price;
response : PID 7→ (P FStatus) ]

Init == [ (State)′ | pumap′ = ∅ ∧ ppmap′ = ∅ ∧ response ′ = ∅ ]

UpdateMap == [ ∆State ; map? : ESID 7→ PID |
pumap′ = pumap ⊕map? ∧ ppmap′ = ppmap ∧ response ′ = response ]

UpdateAllMap == [ ∆State ; map? : ESID 7→ PID |
pumap′ = map? ∧ ppmap′ = ppmap ∧ response ′ = response ]

NewPrice == [ ∆State ; price? : PID 7→ Price |
ppmap′ = ppmap ⊕ price? ∧ pumap′ = pumap ∧ response ′ = response ]

AllNewPrice == [ ∆State ; price? : PID 7→ Price |
ppmap′ = price? ∧ pumap′ = pumap ∧ response ′ = response ]

AUpdatemap =̂ updatemap?map → (UpdateMap)
2 updateallmap?map → (UpdateAllMap)

ANewPrice =̂ updateprice?price → (NewPrice)
2 updateallprice?price → (AllNewPrice)

AUpdateUnitFail =̂ eid : ESID • resp.(pumap(eid)).(fail eid)→ Skip

AUpdateNoUnit =̂ pid : PID • resp.pid .NA→ Skip

ARespNoUnit =̂ ||| pid : (dom ppmap \ ran pumap) ||[ ∅]|| •
AUpdateNoUnit(pid)

For each gateway, AUpdateGateways sends all price for the ESELs which are linked to
the gateway and gets back update result. Then for each failure, the action passes it to
AUpdateUnitFail , and finally writes to the response.

AUpdateGateway =̂ gid : GID •
gupdateprice.gid !((dom (gwmap B {gid}))C (pumap # ppmap))→
gfailure.gid?uids → (||| uid : uids ||[ ∅]|| • AUpdateUnitFail(uid))

The update of price to ESELs is an interleave of AUpdateGateway for all gateways.

AUpdateGateways =̂ ||| gid : GID ||[ ∅]|| • AUpdateGateway(gid)

Then the update of all products, given in the action AUpdateProducts, is the interleave
of the update of price to ESELs through gateways and the action for the case without
associate ESELs. Then it follows a terminate event to finish the update.

AUpdateProducts =̂ (AUpdateGateways ||[ ∅ | ∅ ]||ARespNoUnit);
terminate → Skip
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AddOneFailure == [ ∆State ; pid? : PID ; fst? : FStatus |
(pid? ∈ dom response ⇒

response ′ = response ⊕ {pid? 7→ (response(pid?) ∪ {fst?})}) ∧
(pid? 6∈ dom response ⇒

response ′ = response ∪ {pid? 7→ {fst?}}) ∧
ppmap′ = ppmap ∧ pumap′ = pumap ]

ACollectResp =̂ µX •
((resp?pid?fst → (AddOneFailure) ; X ) 2 terminate → Skip)

Then the update of all products and the response collection behaviours are put together
into the AUpdateResp action. It is a parallel composition of the AUpdateProducts and
CollectResp actions and they are synchronised with resp and terminate events. Finally,
these internal events are hidden.

AUpdateResp =̂
(AUpdateProducts J ∅ | RespInterface | {response} K ACollectResp)
\RespInterface

The overall price update action is given in AUpdatePrice, which accepts an update event
from its environment, then clears response, updates the price, sends the display event to
make all ESELs show their price at the same time, then feeds back the response to the
environment.

AUpdatePrice =̂ update → response := ∅;
AUpdateResp ; display → finishdisplay → failures.response → Skip

The overall behaviour of the ESELServer process is given by its main action. It initializes
first, then repeatedly provides the ESEL map update, the price map, or the price update
to its environment.

• (Init) ; init → finishinit → Skip;
(µX • (AUpdatemap 2 ANewPrice 2 AUpdatePrice) ; X )

end

Gateway Process The Gateway process is defined as a parametrised process.

process Gateway =̂ gid : GID • begin

It has two state components: pumap for the map from ESELs to price, and failed for a set
of ESELs which update unsuccessfully.

state State == [ pumap : ESID 7→ Price ; failed : P ESID ]

Initially, both are empty.

Init == [ (State)′ | pumap′ = ∅ ∧ failed ′ = ∅ ]

The map can be updated only completely and cannot be updated partially.

UpdateAllMap == [ ∆State ; map? : ESID 7→ Price |
pumap′ = map? ∧ failed ′ = failed ]
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The map is updated after the input from ESELServer through the gupdateprice channel.

AUpdateallmap =̂ gupdateprice.gid?map → (UpdateAllMap)

A parametrised action, AUpdateUnitPrice, is given to update the price to an ESEL (given
by the formal uid parameter). It sends the price to the specific ESEL by the uupdate event,
and then waits for the response from the ESEL. If the return status is not successful (ufail),
it sends the result to the response collection action CollectResp below, then terminates.
Otherwise, it terminates immediately.

AUpdateUnitPrice =̂ uid : ESID •
uupdate.uid .(pumap uid)→ ures.uid?rst →
((rst = ufail) N gresp!uid → Skip
2 (rst = uok) N Skip)

The updates of all ESELs in this gateway are put in an iterated interleave, then followed
a gterminate event to finish the updates.

AUpdateAllUnits =̂ ((||| eid : (dom pumap) ||[ ∅]|| • AUpdateUnitPrice(eid))

;gterminate → Skip)

The CollectResp action is to collect responses from all units and write them into the
response variable. It recursively waits for the response from the units, or terminates if
required.

AGCollectResp =̂ µX •
((gresp?uid → failed := failed ∪ {uid} ; X ) 2 gterminate → Skip)

Then the updates of all products and the response collection are put together into the
AUpdateResp action. It is a parallel composition of the AUpdateProducts and CollectResp
actions and they are synchronised on the resp and terminate events. Finally, these internal
events are hidden.

AGUpdateResp =̂
(AUpdateAllUnits J ∅ | GRespInterface | {failed} K AGCollectResp)
\GRespInterface

The overall price update action is given in AUpdatePrice, which accepts a gupdateprice
event from its environment, then clears failed , updates the price, sends update results to
the server, and waits for the display event to make all ESELs in this gateway show their
price at the same time.

AGUpdatePrice =̂ AUpdateallmap ; failed := ∅;
AGUpdateResp ; gfailure.gid !failed → display → udisplay →
finishudisplay → finishdisplay → Skip

The overall behaviour of the Gateway process is given by its main action. It is initialised
first, then repeatedly provides price update to its environment.

• (Init) ; init → uinit → finishuinit → finishinit → Skip;
(µX • (AGUpdatePrice) ; X )

end
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ESEL Process Each ESEL is defined as a parametrised process with the formal param-
eter eid .

process ESEL2 =̂ eid : ESID • begin

The process has two state components: price for the price to display, and status for the
status of ESEL.

state State == [ price : Price ; status : UStatus ]

Initially, the price is equal to 0 and the status is uok .

Init == [ (State)′ | price ′ = 0 ∧ status ′ = uok ]

The Update action provides its environment (Gateway) the update of price for the associ-
ated product. It accepts the uupdate event with the price, then writes the price to price.
After that, it writes the price to the display unit, and reads back the value to be compared
with the original price. If they are equal, it sends back status uok by the ures event.
Otherwise, it sends back status ufail . Accordingly, status is updated.

Update =̂ uupdate.eid?x → price := x ; write.eid .price → read .eid?y
→ ((y = price) N ures.eid .uok → status := uok

2 (y 6= price) N ures.eid .ufail → status := ufail)

The Display action accepts the udisplay event. If the status is uok , then the associated
display is turned on. Otherwise, the display is turned off.

Display =̂ udisplay → (
(status = uok) N ondisplay .eid → Skip

2 (status = ufail) N offdisplay .eid → Skip)
;finishudisplay → Skip

NotUpdateDisplay =̂ udisplay → offdisplay .eid → finishudisplay → Skip

The initial behaviour of the process is given in the action AInit which initialises the state
at first, and then turns off the display.

AInit =̂ (Init) ; uinit → offdisplay .eid → finishuinit → Skip

The overall behaviour of the process is given by its main action. It specifies that after
initialisation the process repeatedly provides the update or the display to its environment.

• AInit ; (µX • ((Update ; Display) 2 NotUpdateDisplay) ; X )

end

System All ESELS which are registered with the same gateway synchronise on the unit
initialisation and display events.

channelset InterESELInterface2 == {| uinit ,finishuinit ,
udisplay ,finishudisplay |}

process ESELS2 =̂ gid : GID •
(‖ eid : (dom (gwmap B {gid})) J InterESELInterface2K • ESEL2(eid))
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Each gateway is put in parallel with its linked ESELs and all gateways synchronise on the
gateway initialisation and display events.

channelset InterGWInterface2 == {| init ,finishinit , display ,finishdisplay |}
channelset GWESELInterface2 == {| uinit ,finishuinit , uupdate, ures,

udisplay ,finishudisplay |}
process Gateways =̂‖ gid : GID J InterGWInterface2K •

(Gateway(gid) J GWESELInterface2 K ESELS2(gid)) \GWESELInterface2

Finally, the ESEL System Two is simply the parallel composition of the ESELServer and
the Gateways, and communications between them are hidden.

channelset ServerGWInterface == {| init ,finishinit , gupdateprice, gfailure,
display ,finishdisplay |}

process ESELSystem2 =̂
(ESELServer J ServerGWInterface K Gateways) \ ServerGWInterface

7.2.4.2 CSP and Z Model

The result CSP ‖B Z model is displayed in Appendix H.4.2.

7.2.5 Model Checking Results

7.2.5.1 Deadlock and Livelock Checking

According to Section 6.5.2, our approach can model-check only one instance of all constants
each time. Table 7.4 shows the model-checking results for some configurations of constants.
The first four columns denote the specific configuration, followed by resources consumption
(time and memory), and the last three columns give the number of states and transitions
checked and corresponding percentages. To obtain these checking results, ProB runs on a
server having 512GB RAM, 32-core CPU, and running Ubuntu 14.04.4 OS. That only small
constants have been checked (and some are not completely checked) is due to the fact that
ProB runs on only one process, or is not able to support multiple threads and processes
currently because of the limitations of SICStus Prolog [83], the logic programming language
for the kernel of ProB. In the table, if the percentage of checked states is 100, it means the
configuration is checked to be deadlock free and livelock free. Otherwise, if the percentage
is less than 100, then it states that the configuration has been partially checked and no
deadlock and livelock found.

7.2.5.2 Refinement Checking

With ProB, we can check refinement in terms of the traces model and the failures model
for CSP ‖ B . For a configuration of constants, we have checked the System One is a
refinement of the Specification and the System Two is a refinement of the System One in
terms of both models. The results are shown in Table 7.4.

7.2.5.3 Properties Checked

P1: All ESELs are displayed together In case of the display events (ondisplay or
offdisplay), all ESELs should be engaged. To check this property, we add one Circus process
AllDisplayChecker to simulate the system’s environment.

section ESELAllDisplayChecker parents ESELHeader

process AllDisplayChecker =̂ begin
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Table 7.4: ESEL Model Checking Results

S 1 P 2 W 3 INT 4 Time
(mins)

Memory
(GB) States Transitions % Checked

ESEL Specification
2 2 - 1 7 0.26 61,968 127,232 100
2 2 - 2 25 0.73 151,872 312,896 100
3 2 - 1 644 9.50 1,021,793 2,133,145 100
3 3 - 1 6,856 149.10 55,024,795 110,063,861 100

ESEL System One
2 2 - 1 100 3.07 565,194 1,166,765 100
2 2 - 2 511 13.98 2,735,905 5,546,214 100
3 2 - 1 1,399 64.90 5,795,002 19,283,900 53.6
3 3 - 1 809 36.80 1,487,002 8,777,035 23.6

ESEL System Two
2 2 2 1 969 31.10 2,061,913 8,940,728 100
2 2 2 2 2,200 95.90 9,928,002 27,005,867 100
3 2 2 1 2,075 121.30 6,918,002 19,756,749 62.0
3 3 2 1 5,057 224.14 9,126,505 50,793,610 34.2

Refinement Checking
2 2 2 1 Spec vT SystemOne vT SystemTwo
2 2 2 1 Spec vF SystemOne vF SystemTwo

Properties Checking
2 2 2 1 P1, P2, and P3 checked for three models
3 3 2 1 P2 and P3 checked for three models

1 MAX ESEL 2 MAX PID 3 MAX GATEWAY 4 MAXINT

state State == [ dummy : {0} ]
Init == [ (State)′ | dummy ′ = 0 ]

ADisplay =̂ eid : ESID •
(offdisplay .eid → Skip 2 ondisplay .eid → Skip)

AAllDisplay =̂ (||| e : ESID • ADisplay(e))

ACheck =̂ (AAllDisplay 2 updateprice?x → Skip 2

updateprice?x → Skip 2 updatemap?x → Skip 2

updatemap?x → Skip 2 update → Skip 2

write?x → Skip 2 read?x → Skip 2 failures?x → Skip)

• (Init) ; µX • (ACheck ; X )

end

channelset ESELSystemInterface == {| updateallprice, updateprice,
updatemap, updateallmap, update, ondisplay , offdisplay ,
write, read , failures |}

This process actually is an external choice of all system’s external events except displays
events. For the displays events, all ESELs are interleaved together and finally put in the
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external choice of other events. Eventually this process is in parallel with the model under
test.

For the ESEL specification,

section ESELSpecAllDisplayChecker parents ESELAllDisplayChecker ,ESELSpec

process ESELSpecAllDisplayChecker =̂
(AllDisplayChecker J ESELSystemInterface K ESELSpec)

For the System One,

section ESELSystem1AllDisplayChecker parents
ESELAllDisplayChecker ,ESELSystem1

process ESELSystem1AllDisplayChecker =̂
(AllDisplayChecker J ESELSystemInterface K ESELSystem1)

For the System Two,

section ESELSystem2AllDisplayChecker parents
ESELAllDisplayChecker ,ESELSystem2

process ESELSystem2AllDisplayChecker =̂
(AllDisplayChecker J ESELSystemInterface K ESELSystem2)

These new processes ESELSpecAllDisplayChecker , ESELSystem1AllDisplayChecker ,
and ESELSystem2AllDisplayChecker state that for displays events all ESELs shall engage
together. And we use deadlock checking of ProB to check if this property holds for three
models. The results are shown in Table 7.4.

P2: Price update only available after initialisation The update event is enabled
only after initialisation and all displays are turned off as well. Our solution is to add an
InitChecker process in Circus to simulate the system’s environment.

section ESELInitChecker parents ESELHeader

process InitChecker =̂ begin
state State == [ dummy : {0} ]
Init == [ (State)′ | dummy ′ = 0 ]

AOffDisplay =̂ (||| e : ESID • (offdisplay .e → Skip))

• (Init) ; AOffDisplay ; update → Skip
end

channelset ESELSystemInterface == {| updateallprice, updateprice,
updatemap, updateallmap, update, ondisplay , offdisplay ,
write, read , failures |}

This process begins with an interleave of the offdisplay event for all ESELs and after that
it is engaged in an update event. Then this process is in parallel with the model under test
on all external events of the system.
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For the Specification,

section ESELSpecInitChecker parents ESELInitChecker ,ESELSpec

process ESELSpecInitChecker =̂
(InitChecker J ESELSystemInterface K ESELSpec)

For the System One,

section ESELSystem1InitChecker parents ESELInitChecker ,ESELSystem1

process ESELSystem1InitChecker =̂
(InitChecker J ESELSystemInterface K ESELSystem1)

For the System Two,

section ESELSystem2InitChecker parents ESELInitChecker ,ESELSystem2

process ESELSystem2InitChecker =̂
(InitChecker J ESELSystemInterface K ESELSystem2)

Finally, we use ProB’s temporal logic checking of this formula (F e(update)) which
means update is eventually enabled. The results are shown in Table 7.4.

P3: Right price displays or errors If the maps from ESELs to products and from
products to price are given to the ESEL system, the right price should be displayed on the
linked ESELs for each product, or errors should be reported in case of problems. For this
property, it is hard to model in LTL or CTL formula because of its logic. Our solution is to
write a PriceChecker process in Circus to simulate the environment of the ESEL system.

section ESELPriceChecker parents ESELHeader

process PriceChecker =̂ begin
state State == [ dummy : {0} ]
Init == [ (State)′ | dummy ′ = 0 ]
AOnDisplay =̂ eid : ESID • ondisplay .eid →

(||| e : (ESID \ ({eid})) ||[ ∅]|| • (offdisplay .e → Skip))

AOffDisplay =̂ (||| e : ESID ||[ ∅]|| • (offdisplay .e → Skip))

ACheckMap =̂ p : Price ; eid : ESID ; pid : PID •
(updateallmap.({eid 7→ pid})→ updateallprice.({pid 7→ p})→
update → write.eid .p → (

(read .eid .p → AOnDisplay(eid) ; failures.({})→ Skip)
2 (read .eid?x : (x 6= p)→ AOffDisplay;

failures.({pid 7→ {(fail eid)}})→ Skip)
)

)
ACheckNoMap =̂ p : Price ; eid : ESID ; pid : PID •

(updateallmap.({})→ updateallprice.({pid 7→ p})→ update →
AOffDisplay ; failures.({pid 7→ {NA}})→ Skip)

ACheck =̂ var p : Price ; eid : ESID ; pid : PID •
ACheckMap(p, eid , pid) 2 ACheckNoMap(p, eid , pid)

• (Init) ; AOffDisplay ; (µX • (ACheck) ; X )
end
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channelset ESELSystemInterface == {| updateallprice, updateprice,
updatemap, updateallmap, update, ondisplay , offdisplay ,
write, read , failures |}

This process PriceChecker implements a price update and provides an external choice of
all possible expected results: successful if write and read values to the display are equal;
failed if they are not equal; or NA if no ESEL links to the product. Then PriceChecker is
put in parallel with each Circus model to get a new test model.

For the Specification,

section ESELSpecChecker parents ESELPriceChecker ,ESELSpec

process ESELSpecChecker =̂
(PriceChecker J ESELSystemInterface K ESELSpec)

For the System One,

section ESELSystem1Checker parents ESELPriceChecker ,ESELSystem1

process ESELSystem1Checker =̂
(PriceChecker J ESELSystemInterface K ESELSystem1)

For the System Two,

section ESELSystem2Checker parents ESELPriceChecker ,ESELSystem2

process ESELSystem2Checker =̂
(PriceChecker J ESELSystemInterface K ESELSystem2)

Using model checking of ProB, if a test model is deadlock free, then we conclude this
property holds in the corresponding Circus model. The property check results are illustrated
in Table 7.4.

7.3 Steam Boiler Control System

The motivation for this case study is that the steam boiler control specification prob-
lem [65] actually has become the standard benchmark for formalisms. The original text
of the problem was written by Bauer [96]. Then it was modified and published in the
Dagstuhl workshop by Abrial [65] as a competition for formal specifications and develop-
ment methods [97]. Subsequently, twenty-two solutions, along with the description of the
problem, are published in the book [98] while Abrial’s own solution is included in the B
book [5]. In particular, Woodcock and Cavalcanti [67] proposed a solution using Circus.
The original specification in Circus was published in the report [66] and afterwards Fre-
itas [50] updated it and took it as a test case for the development of CZT. Our study is
based on this modified version, and eventually this work corrects and improves the steam
boiler solution in Circus.
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7.3.1 The Problem

The problem aims to design a control system to keep the steam boiler safe because the
boiler would be in danger if the water level is too low or too high. The system includes
several physical units: the steam boiler, a sensor to measure the quantity of water, four
pumps, four pump controllers (one for each pump), a sensor to measure the quantity of
steam, an operator, and a message transmission system. In addition, there is a valve
in the boiler used in the initialisation stage only to empty the boiler. And all units are
characterised by the following constants:

• capacity of the boiler (C in litres),

• water lower and upper limits (M1 and M2 in litres),

• maximum and minimum normal working levels (N1 and N2 in litres),

• maximum quantity of steam (W in litre/sec),

• capacity of pump (P in litre/sec),

• and maximum increase and decrease gradient of quantity of steam (U1 and U2 in
litre/sec/sec).

The system has five operation modes:

• initialisation: the initial mode,

• normal : the standard operating mode (and all physical units operate correctly),

• degraded : the degraded mode (some physical units are defective but the water level
measuring unit operates correctly),

• rescue: the mode in which the system is still working by estimating the water level
from the quantity of steam coming out (the water level measuring unit is defective
but the steam quantity measuring unit is working),

• emergencyStop: the mode that could be reached from any mode if there is a vital
unit failure, or the reach of water level to its limits, or a transmission error.

The detailed requirements are described in the paper [65].

7.3.2 Circus Solution

The Circus solution proposed for the steam boiler control problem consists of four processes:
Timer , Analyser , Controller and Reporter . The Timer process guarantees that each
cycle of the control program starts every five seconds. The Analyser process takes input
from the physical environment, analyses them, and then supplies analysed results to the
Controller and Reporter . The Controller is used to manage the switch of different system
modes according to analysed results and then report corresponding actions and current
mode to the Reporter . Finally the Reporter gathers information, packages them, sends
them to physical units, and notifies the Analyser with expected pump states in this cycle.
The interaction between these processes is presented in Figure 7.9 from the diagram [66,
Figure 1].

After introducing our model checking solution in this thesis to the original Circus model,
we have made some changes to the model as described in Section 7.3.3 and a number of
corrections as stated in Section 7.3.4. The corrected and updated model is shown in
Appendix I.1.
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Figure 7.9: Message Sequence Chart [66]

7.3.3 Practical Considerations

7.3.3.1 Input and Output Channels

The input channel is originally of the schema type InputMsg which encapsulates all input
messages (signals, pumpState, pumpCtrState, q , v , failureacks, and repairs) from the
physical environment. When animating the specification using ProB, it takes a very long
time to calculate all possible values and load them on ProB. It is the same case as the
output channel. To mitigate it, we break the input messages into seven small messages
and each for one variable in InputMsg . Consequently, all input messages are considered
to arrive in serial instead of simultaneously. Eventually, the input channel declaration
becomes seven channel declarations

channel input1 : (P InputSignal)

channel input2 : (PumpIndex → InputPState)

channel input3 : (PumpIndex → InputPCState)

channel input4 : (NUMS )

channel input5 : (NUMS )

channel input6 : (P UnitFailure)

channel input7 : (P UnitFailure)

and the input communication in Analyser becomes seven channel events.

startcycle → input1?signals → input2?pumpState → input3?pumpCtrState →
input4?q → input5?v → input6?failureacks → input7?repairs → · · ·

The output channel is analogous to the input channel.
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7.3.3.2 Loose Constants

The specification has nine constants: C , P , U1, U2, W , M1, M2, N1, and N2. They
are all of type N and loosely related. The loose constants really complicate model check-
ing. Together with the limitation—only one instance of constants can be model-checked at
once—stated in Section 6.5.2, we choose one configuration of all constants for model check-
ing. Additionally, we change the type N, that is for most of variables, to the type NUMS
(NUMS = 0..MAX NUM , where MAX NUM is a constant as well), consequently, from
infinite type to finite.

7.3.3.3 Specific Initialisation

Not all initial values of state components matters, and the state variables in InputMsg are
among them. This initialisation is completely correct. However, practically it makes model
checking harder because the state space becomes much larger, which is very similar to loose
constants. Thus, we add specific initialisation to these variables for model checking pur-
pose. Regarding InputMsg , we add a predicate (θ InputMsg ′ = · · · ) in InitAnalyserState
to specify its initial state.

The Timer process and the Reporter process are similar. We add a InitTimer and a
InitReporter in Timer and Reporter respectively.

7.3.4 Errors Found and Corrections Made

Taking advantage of rich syntax and expressiveness in Circus, the specification of the steam
boiler is well designed and structured. However, at the time of writing the report [23],
the Circus language itself is in the very early stage of development, and no parser and
type checker are available. Afterwards, its syntax, semantics and tools are continuously
developed. As a result, there are some inconsistent and incorrect constructs found by
current parser and typechecker in CZT. Additionally, after introducing animation and
model checking into Circus, more errors are found and corrected.

7.3.4.1 During Parsing and Type-Checking

• The input channel is not declared.

• The name of the channel failures conflicts with that of the failures variable in the
Failures schema. Hence, the channel is renamed to cfailures.

• To eliminate the confusion of pa 1 and pa 2 in Pump0 and PumpCtrSystem schemas,
the variables in PumpCtrSystem are renamed to pta 1 and pta 2 that mean the
lower-bound and upper-bound total adjusted pump volumes.

• There is no state schema in the Reporter process. So the schema ReporterState,
having OutputMsg as state component, is added in Reporter .

• No definition of the FailuresRepairs schema is found in Reporter and thus it is added
as well to update output messages according to (noacks, repairs) from the Analyser
process.

7.3.4.2 During Animation

Animation plays a significant role in writing, understanding, and correcting the specifica-
tion. Using ProB, we can animate the specification manually or automatically to check
if it works as expected. It is the first step, after parsing and type-checking, in verify-
ing the specification. We use two methods to explore the system via animation: manual
animation by selecting tests to enter each operation mode of the system, and automatic
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random animation for a comparatively long time. However, animation cannot guarantee
the correctness of the system. Thus we shall not rely heavily on it. Finally, the errors
found during animation are listed below.

• The time operation in Timer , ( time := time +1modcycletime ), should be ( time :=
(time+1)modcycletime ) because the modulo operator (mod) has a higher precedence
than the addition (+) operator.

• The computation of vc 2 in VUpperBound should be + instead of −.

• The check of x? in the Expect schema should compare to calculated values (c 1 and
c 2).

• The quantifiers in SetPumpCtr is corrected to

SetPumpCtr == ∀ i : PumpIndex • ∃PumpCtr ; PumpCtr ′;

pst?, exppst : PState ; pcst?, exppcst : PCState • (· · · )

• The comparison of qa 2 in DangerZone should be with N 2, instead of N 1.

• The expected pump state expectedp and pump control state expectedpc are not up-
dated. Therefore, a schema CalcExpectedPumpState is added to set expectedp and
expectedpc according to the pump state which is sent by the control system to the
physical unites.

• The state valve is assessed in QLowerBoundValveOpen and QLowerBoundValveClosed ,
but it is not assigned and updated. Thus a free type VStateAct and a schema
SetValveState are added to update valve, and a state component valveSt is appended
in Reporter . Furthermore, the pumps channel is extended to accommodate valveSt
information for Reporter to update Analyser with valve information.

• The failures is calculated based on the comparison of input states with expected
states in each cycle, and the noacks is updated in AcceptFailureAcks and AcceptRepairs.
However, noacks is not assigned and failures is not repaired in the specification.
Eventually, we refine the requirements of failures as below.

– The life cycle of a failure consists of several stages. To begin with, a new failure
is detected if the input state of an equipment is not the same as its expected
state, and at the same time the failure is added in noacks. Then the failure
is sent to the physical unit by the control program. Afterwards, it might be
acknowledged or repaired by the physical unit, and subsequently it is taken out
of noacks or failures respectively.

– A failed equipment will turn back to its normal state only after it is acknowl-
edged and repaired.

According to the requirements, the schema UpdateFailuresAck is added to assign
and update noacks, and the schema CheckAndAdjustPump is updated to comply the
requirement that if a pump fails, its state will not be changed in this schema. Fur-
thermore, a schema RepairEquipments, that includes RepairPumps, RepairVSensor ,
and RepairQSensor , is added accordingly to repair equipments.

• In the EmergencyStopCond , the predicate (¬RepairsExpected or ¬FailuresExpected)
is used to check if the input repairs and failureacks are expected. However, since this
schema is evaluated in the InfoService action which is in the later stage of Analyser ,
the failures and noacks that are assessed in RepairsExpected and FailuresExpected
respectively are not the original values in the beginning of cycle. Instead, they
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are modified in the Analyse schema. Therefore, it is not correct to check repairs
and failureacks against updated failures and noacks. To fix it, an additional state
component named emergencyCond is added, and it is assigned in the early stage of
cycle (HandleRepair) and used in EmergencyStopCond later.

7.3.4.3 During Deadlock Checking

Though problems have been found during parsing, type-checking, and animation, there are
some hidden issues that might not be found easily by them. Using deadlock checking, we
found additional problems in the specification.

• One deadlock occurs and the counterexample shows the precondition of Analyse does
not hold. Actually, it diverges instead of deadlocks according to the semantics of the
schema expression in Circus —if the precondition does not hold, it diverges. However,
we define DIV as div → STOP and use the deadlock checking of ProB to find
divergence of the schema expression. Finally we found the cause of the problem. It
is because the pump’s state pst in CheckAndAdjustPump is unexpectedly updated to
popen even its current state is pfailed . That is against our requirement that a failed
equipment is only back to normal state by a repair. Consequently, the predicate
noacks ⊆ failures in Failures is not satisfied, and the precondition of Analyse does
not hold. Our solution is to correct the predicate in CheckAndAdjustPump.

• A deadlock occurs when Controller enters emergencyStop mode and it is waiting for
synchronisation of AdjustLevel from Analyser . However, at that time, Reporter has
been in TidyUp and is waiting for synchronisation of endreporter from Controller .
We modified AdjustLevel in ControllerCycle to make it only adjust levels when it is
not in the emergencyStop mode.(

(mode 6∈Nonemergency) N AdjustLevel 2 (mode = emergencyStop) N Skip
)

• A deadlock occurs when the precondition of Analyser Analyse does not hold. Using
“Debug operation PRE” function of ProB, we found calculated qc 2 in QUpperBound
is less than 0, and it is against its declaration—it must be natural numbers. There-
fore, we modified the predicate of QUpperBound to

QUpperBound == [ CValues ; QSensor ; VSensor ; PumpCtrSystem |
qc 2 = max{0,min{C , qa 2− 5 ∗ va 1 + 12 ∗U 2 + 5 ∗ pta 2}} ]

7.3.4.4 During Property Checking

Apart from the deadlock checking—safety property, other properties can be derived from
the requirements and expressed by LTL or CTL. Then they are verified on ProB by tem-
poral logic checking. We have attempted to check properties below.

P1 The signal openValve and closeValve are mutually exclusive and shall not be sent to
the physical units at the same time.

We use the CTL formula below.

AG(not({openValve ∈ Reporter signals ∧ closeValve ∈ Reporter signals}))

The formula is checked to be false and the counterexample shows the problem. It is because
the OutputMsg in Reporter is kept to the next cycle and it should be cleared for each cycle.
Therefore, we correct the main action of Reporter to

• µX • startreport → (InitReporter) ; ReportService ; X
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Table 7.5: Deadlock Checking Performance

No NP 1 SoC 2 C
M1 M2 N1 N2 P W U1 U2

Time
(min) Mem

(GB)
Checked

1 1 2 12 2 10 4 8 1 2 1 1 1,158 180 32%
2 1 1 12 2 10 4 8 1 2 1 1 2,413 147 38%

1 Number of Pumps
2 Seconds in one cycle [sec]

7.3.5 Performance and Results

The control system has rich states and its state space is too large to be solved by ProB. Our
attempt to model-check this system on ProB on a server having 128GB RAM and 32-core
CPU, and running Ubuntu 14.04.4, does not achieve the result after five days. In addition,
we tried to simplify the system by reducing the number of pumps from four to one, changed
to smaller constants and cycle time, and tested on another server with high specification
(512GB RAM). Nevertheless, the system is still not model-checked completely and the
intermediate result is displayed in Table 7.5. Note that 2,186,002 states and 8,272,654
transitions are checked in the first row, and 3,855,002 states and 12,339,468 transitions are
checked in the second row.

7.3.6 Experiences and Lessons Learned

• For schema expressions, if designed without extra cautions, it is highly possible that
the system will diverge due to the preconditions that is not satisfied. However the
divergence is not always what we want. Therefore, it is helpful to consider all cases
in their preconditions and make them hold always.

• Compared to a schema expression that specifies all state components in its predicate,
it might be simpler in design to decompose the schema expression into multiple
schema expressions and make each one update a part of the state components. Finally
the system can benefit from this simplification in design as well as verification.

• For state-rich reactive systems, their model checking is more complicated than that
of state-based or behaviour-oriented systems. To address the state space exploration
problem, it is essential for model checkers to support multiprocessors and distributed
system, as well as some optimisations to reduce the state space.

7.4 Summary

In this chapter, three case studies have been presented.
In the reactive buffer case, we demonstrate the stepwise application of our link rules

to Circus models. Both the buffer specification and the buffer implementation are linked
to two corresponding CSP ‖B Z models. Using ProB, we have checked deadlock free
and livelock free for both models with a number of constants configurations as shown in
Table 7.1 and Table 7.2. In addition, we also have checked the implementation is a correct
refinement of the specification in terms of traces and failures models as shown in Table 7.3
and the reasoning of data independence in Section 7.1.3.2.

Then the development of a system from requirements, to specification, then to more
specific systems by Circus is illustrated in the ESEL case. That results in three Circus
models: the ESEL Specification, the System One, and the System Two. All of them are
translated to CSP ‖B Z and using ProB we have checked they are deadlock free and
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livelock free as shown in Table 7.4 when MAX ESEL is equal to 2 and 3. Furthermore,
both the System One and the System Two are checked to be traces and failures refinements
of the Specification when both MAX ESEL and MAX GATEWAY are equal to 2. In the
end, three application related properties have been checked as well. This is shown in the
table too.

For the steam boiler case, though it is not completely checked due to its large state
space, the case study still shows our model checking approach is beneficial to the system
in design. With animation and model checking in ProB, many errors are identified and
corrected, and finally the design has been improved dramatically. With animation, it also
helps users to understand how the steam boiler system works.

Among three cases, the bounded buffer is popular as it has been studied in [64] for
refinement strategies and in the map solution [55] for its model checking solution. However,
no performance metrics are presented. In addition, since the ESEL case is first presented
in this thesis and for the steam boiler solution in Circus, it is the first attempt to verify it,
comparison of performance with other model checking solutions is also not possible.

In sum, the three case studies presented in this chapter illustrate the usability of our
solution as well as the limitations. From another angle, they indicate the direction of future
improvement.
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Chapter 8

Conclusion

In this chapter, a summary of the thesis is given first. Then we summarise contributions
of our work as well as limitations of our solution. In the end, a discussion of future work
is presented.

8.1 Thesis Summary

Computer-based systems are becoming more and more complex, from both individual
systems and systems of systems due to increasing interaction. To address the growing
complexity issue, interest in the use of formal methods has increased rapidly because of its
main advantage, elimination of ambiguity. It is extremely important especially for safety
critical systems that require a high level of assurance.

Circus is a state-rich formal language designed to address this issue. It is a combina-
tion of Z, CSP, refinement calculus and Dijkstra’s guarded commands. Thanks to its rich
notations, it can model not only very abstract specifications, but also very specific imple-
mentations of systems. Most importantly, its calculational-style refinement distinguishes
itself from other integrated formal methods. In addition, Circus has its semantics defined
on UTP, which makes it extendable to support heterogeneous systems. Due to these fea-
tures of Circus, it is very difficult to develop tools to support its formal verification from
both theorem proving and model checking. There are some existing tools developed as
discussed in Chapter 1. Especially for model checking, we discuss it in depth in Chap-
ter 3. In the chapter, a survey of current verification tools is provided and then we analyse
their advantages and disadvantages. The review of current tools motivated our approach
to model-check state-rich formalisms (specifically Circus) as presented in this thesis. Our
approach is to link Circus to CSP ‖ B formally and then use ProB to model-check CSP ‖ B .

Since our approach is to establish the link from Circus to CSP ‖ B , and soundness of the
link is based on UTP, a basic knowledge of UTP, Circus, and CSP ‖ B is given in Chapter 2.
For UTP, the theories about alphabetised relational calculus, refinement, designs, reactive
processes, and CSP processes are introduced. These are the theoretical aspect of Circus
denotational semantics. Particularly, we give a detailed description of Circus syntax because
our later link definition and soundness highly rely on the understanding of its rich notations.
Furthermore, in order to get a quick understanding of these notations and their usage, an
example of a Circus model, the ESEL specification, is presented in the chapter. Actually,
the example is a part of the ESEL case study in Chapter 7. By moving it to this early
chapter, we intend to give readers a first impression of a Circus model. In the end, the
introduction of CSP ‖ B mainly focuses on the understanding of its model in terms of
CSP. We define a new notation ‖C B to denote it and a number of laws to facilitate the
semantic reasoning of CSP ‖ B models.

The link of our solution is formally defined in Chapter 4. A function Υ is defined to
denote the link from Circus to CSP ‖ B . In order to support separation of the state part
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and the behaviour part from Circus, Υ is decomposed into three sub-functions:

• Rwrt to rewrite original Circus models to the written models in which all interactions
between the state part and the behaviour part are reduced to schema expressions as
action. After that, the written models are ready to be separated.

• Ω to link the state part of written models to B. Since the Z dialect in Circus is ISO
Standard Z and the final language is B, in order to reuse the translator in ProB to
translate Z in ZRM to B, Ω is also further decomposed into three sub-functions:

– Ω1 is used to extract the state part from a written model, and eventually form a
Z model in ISO Standard Z. And this new model will be parsed and typechecked
before moving to the next sub-function.

– Ω2 is defined to syntactically transform the Z model in ISO Standard Z to the
Z model in ZRM.

– Ω3 is for the translation of the Z model in ZRM to B. In our solution, we rely
on the translator in ProB for this function.

• Φ to link the behaviour part of the written models to CSP.

Then in the rest of the chapter, for each sub-function we present individual rules for each
construct in Circus from global definitions, to processes definitions, and finally to actions.
Particularly, the Φ rule for Circus expressions, predicates, and operators has its map listed
in Appendix D. Furthermore, Appendix E summarises the link rules from each construct
in Circus to CSP ‖B Z by the combination of these sub-functions. These link rules are
very useful in the proof of soundness afterwards.

After presentation of the link definition, we reason about it in Chapter 5. Our strategy
is to present the denotational semantics of a Circus construct, use link rules in Appendix E
to link it to CSP ‖B Z , then give the semantics to the result CSP ‖B Z construct, and
finally compare the semantics of both constructs. If they have the same semantics, we
conclude the link rules used for this construct in Circus are sound. If the link rules for
all constructs defined in our link are sound, then our link is sound. In particular, the
soundness of variable block is based on Theorem C.1.28 which is defined and proved in
Appendix C.

In order to make the translation automatic, we developed a translator, Circus2ZCSP,
based on CZT. The overall translation procedure and a number of key algorithms, along
with practical considerations, are presented in Chapter 6.

Finally, three case studies are presented in Chapter 7 to demonstrate the usability of
our solution. Three case studies are illustrated in order of ascending complexity. In the
reactive buffer case, we demonstrate the stepwise application of our link rules to Circus
models. Then the development of a system from requirements, to specification, then to
more specific systems by Circus is illustrated in the ESEL case. Finally, for the real
industrial steam boiler case, though it is not completely checked due to its large state
space, the case study still shows our model checking approach is beneficial to the system
in design. With animation and model checking in ProB, many errors are identified and
corrected, and finally the design has been improved dramatically. Three case studies
presented in this chapter also show current limitations of our solution.

8.2 Contributions

We propose a solution to model-check Circus by linking it to CSP ‖ B . Our contributions
of this work are summarized as follows.

1) We define a formal link from Circus to CSP ‖ B and its soundness is based on the UTP
semantics. Therefore, we also give the UTP semantics to CSP ‖ B .
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2) We developed a translator to link Circus to CSP ‖ B automatically. The translator
supports nearly all constructs that are defined in our link.

3) Three case studies with different complexity have demonstrated the usability of our
approach.

4) Our lessons learned and experience we got during this work would be helpful to develop
similar solutions for Circus.

Furthermore, the modifications that we made to ProB, no matter whether they are
merged in ProB releases or not, provide improvements to ProB or valuable insights into
the possible solutions and implementations for ProB to better support CSP ‖ Z in terms
of CSP ‖ B . These modifications are listed as below.

1) Unification of sequence types between CSP and Z is supported as stated in Section 7.1.3.4.
It has been adopted by the ProB team and merged into ProB releases.

2) Support of free types in CSP is added to ProB. In addition, unification of free types be-
tween CSP and Z is supported as well. This modification is described in Section D.2.1.1.
It implements our solution only and has not been adopted by the ProB team yet.

3) Support of schema types in CSP is added to ProB. In addition, unification of schema
types between CSP and Z is supported as well. This modification is described in
Section D.2.1.2. It implements our solution only and has not been adopted by the
ProB team yet.

4) The well-definedness of the modulo operator in Z, as described in Section 7.1.3.5, has
been corrected in ProB and this change has been merged into current ProB release.

5) Refinement checking in ProB has been updated to support CSP ‖ B as stated in
Section 7.1.3.6. This change has not been adopted by the ProB team yet.

8.3 Limitations

Throughout the thesis, we mention the limitations of our solution in different chapters. In
this section, we summarise our solution’s limitations as follows.

8.3.1 Mutual Recursive Freetype

It is not supported because it is defined only in ISO Standard Z and not in ZRM. See Ω2

Rule 3.

8.3.2 Operator Template and User Defined Operators

It is not supported by the translator of Z to B in ProB.

8.3.3 Parallel Composition and Interleaving of actions

As stated in Φ Rule 32, general parallel composition and interleaving of actions are not
supported in our link. But two special cases are supported. One is “Disjoint Variables
in Scope” in Φ Rule 30 and another is “Disjoint Variables in Updating” in Φ Rule 31.
Additionally, iterated parallel composition and interleaving of actions are not supported.
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8.3.4 External Choice of Actions

Our link restricts actions in an external choice to be prefixed actions given in Defini-
tion B.3.1. Particularly, recursion has an additional restriction to be an action in the
external choice in addition to prefixed actions. We require initial events of the action in
a recursion do not evaluate state variables. Otherwise, it will cause problems as stated in
Rwrt Rule 34. Though it is a restriction to be prefixed actions in external choice, it would
not reduce expressive power of Circus. We can rewrite the external choice to avoid state
changes before initial events of actions. One possible way is to add guards before each
action to make it an external choice of guarded actions and at the same time only one
guard is true.

8.3.5 External Choice of Processes

Our link requires both processes in an external choice of processes are prefixed processes
defined in Definition B.4.1 as described in Rwrt Rule 22. The reason of this limitation is
because the limitation of external choice of actions above because the external choice of
processes is semantically equal to the external choice of their main actions.

8.3.6 Schemas as Predicates

For schemas as predicates in the behavioural part of Circus, they have been translated only
in two constructs: predicates as boolean expressions in channel output expressions and
predicates as conditions in guarded actions.

For a schema as predicate, when it is rewritten to a predicate, our translator takes all
predicates from the declaration part and the predicate part, and combines them together
according to schema operators. It may result in duplicate predicates from the declaration
part. It will not cause problems but make the final CSP model larger if there are many
schema references in the schema as predicate.

Both limitations are due to implementation of the translator.

8.3.7 Recursion in Variable Block

The recursion cannot be an action of variable block according to Theorem C.1.28.

8.3.8 Partial Looseness Loss

For axiomatic definitions, if they are used in CSP, they have to be instantiated to become
concrete and specific in advance. Our solution cannot cope with loose constants in the
behavioural part of Circus. The behavioural model checker FDR does not support loose
constants too.

Furthermore, looseness may come from uninitialised state space which also increases
the complexity of model checking. Our solution has limited support of this looseness if the
state space is relatively small.

8.3.9 Partial Abstraction Loss

Since CSP does not support abstract types such as N, the translation of an abstract Circus
specification into a concrete CSP specification will result in information loss. Our solution
uses a B machine to represent the state part, and consequently preserve the abstraction.
However, if these abstract types are used in the behavioural part, our solution has the
same issue as the translation from Circus to CSP directly. Eventually, our solution may
have partial loss of abstraction.
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8.3.10 Model Checking Performance

Our solution highly relies on ProB to model-check the final CSP ‖ B model. Since ProB
cannot support multithreading or multiprocessing, and only one process per ProB instance
is allowed, the size of state space that can be model-checked is limited. Our case studies
have shown this issue.

8.4 Future Work

The limitations above indicate the direction of our future work.

8.4.1 Automatic Checking of Multiple Models

Section 7.1.3.3 describes the feature which enables ProB to check multiple models at once
automatically.

8.4.2 Operator Template and User Defined Operators

Operator templates that are frequently used in Circus have only syntactic significance.
They notify readers or their parser to treat all occurrences of the words in the templates
as specific operators, such as function, relation, or generic. They also give particular
information about prefix, postfix, infix, or nofix of the operators defined. To support
operator template, we can transform syntactically in our rewrite rules or leave them in the
later stage in ProB and then extend ProB to support them.

8.4.3 Parallel Composition and Interleaving of Actions

It is not too difficult to define the link rule for general parallel composition and interleaving
of actions. The solution is to declare two copies of current variables in scope, make each
action only update its own copy, and then finally merge updates of variables, that corre-
spond to variables in each action’s name set, in temporary copies. However, the difficulty
arises from its implementation in the translator. The main problem is how to update all
variables in temporary copies instead of original variables in both actions. It is still possible
by rewriting both actions but left as future work.

8.4.4 External Choice of Actions

Similar to parallel composition and interleaving of actions, for external choice of actions, in
order to preserve its semantics that state change will not resolve it, one possible solution
is to declare two copies of variables in scope of both actions, and then discard another
one only after its resolution by events or termination. This can be implemented in ProB
by extending its kernel to support this new external choice. The lazy evaluation and
backtracking of Prolog would be helpful to implement it.

8.4.5 Performance Improvement

The most important and also hardest aspect is to improve the performance of model check-
ing. On the one hand, as an extension of our work in this thesis, we could collaborate with
the ProB team together to introduce the optimisations, such as symmetry reduction [99],
partial order reduction, and partial guard evaluation [100], into CSP ‖ B . To some extent,
for some specific cases, it might be useful to shrink the state space. But it might be im-
probable to improve performance dramatically for industrial scale cases. However, if ProB
could support multithreading and multiprocessing in the future, it would be very useful
and helpful to our solution.
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On the other hand, we may look at other model checkers in addition to ProB. Since
the main objectives of our solution are to maintain abstraction and looseness, the solution
of translating Circus specifications into CSP is not what we expect from this aspect. For
state-rich systems, we could assume their models in Circus are largely composed of the
state part and have simple behavioural specification. From this point of view, a possible
solution is to translate Circus to TLA+ [101] and then use TLC [102], a model checker
for TLA+, to model-check the resultant TLA+ models. We still can use the similar link
defined in this thesis. But instead of the translation of Z to B by Ω3, we need a translation
from Z to TLA+. Additionally, a translation from CSP to the temporal logic formula in
TLA+ is another extra work to replace our Φ function.
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Circus Syntax

Program ::= CircusPar∗

CircusPar ::= Par | channel CDecl | chanset N == CSExp | ProcDecl
CDecl ::= SimpleCDecl | SimpleCDecl;CDecl
SimpleCDecl ::= N+ | N+ : Exp | [N+]N+ : Exp | SchemaExp
CSExp ::= {| |} | {|N+ |} | N | CSExp ∪ CSExp | CSExp ∩ CSExp

| CSExp \ CSExp
ProcDecl ::= process N =̂ ProcDef | process [N+]N =̂ ProcDef
ProcDef ::= Decl • ProcDef | Decl� ProcDef | Proc
Proc ::= begin PPar∗ state N =̂ SchemaExp PPar∗ •Action end

| Proc ; Proc | Proc 2 Proc | Proc u Proc | Proc J CSExp K Proc
| Proc ||| Proc | Proc \ CSExp | Proc[N+ := N+] | N[Exp+] | N
| (Decl • ProcDef)

(
Exp+

)
| N

(
Exp+

)
| (Decl� ProcDef) bExp+c

| NbExp+c | ;Decl • Proc | 2Decl • Proc | uDecl • Proc
| JCSExp K Decl • Proc | |||Decl • Proc

PPar ::= Par | N =̂ ParAction | nameset N == NSExp
ParAction ::= Action | Decl • ParAction
Action ::= (SchemaExp) | Command | N | CSPAction | Action[N+ := Exp+]
CSPAction ::= Skip | Stop | Chaos | Comm → Action | Pred & Action

| Action ; Action | Action 2 Action | Action u Action
| Action J NSExp | CSExp | NSExp K Action
| Action ||[ NSExp | NSExp ]||Action
| Action \ CSExp | ParAction(Exp+) | µ N •Action
| ;Decl •Action | 2Decl •Action | uDecl •Action
| JCSExp K Decl • JNSExp K Action | |||Decl • ||[NSExp ]||Action

Comm ::= N CParameter∗ | N [Exp+] CParameter∗

CParameter ::= ?N | ?N : Pred | !Exp | .Exp
Command ::= N+ := Exp+ | if GActions fi | var Decl •Action

| N+ : [Pred,Pred] | {Pred} | [Pred]
| val Decl •Action | res Decl •Action | vres Decl •Action

GActions ::= Pred → Action | Pred → Action 2 GActions

Figure A.1: Syntax of Circus
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Appendix B

Definitions

Some definitions that are used in this thesis are listed in this appendix.

B.1 Memory Model in CSP

In Circus, local variables in an action, such as variable block, can be updated and retrieved
very easily because it is a mixture of Z and CSP. However, when the action is transformed
to the counterpart in CSP, the variables in CSP process cannot be updated directly. We
use the memory model [54,103] to save and retrieve the value of local variables.

B.1.1 MemCell Process

B.1.1.1 Definition

Definition B.1.1 (MemCell Process). A MemCell process defined below is the mecha-
nism in CSP to store the value of a local variable.

MemCelli = seti?x → MCelli(x )
MCelli(x ) = seti?y → MCelli(y)

2 geti !x → MCelli(x )
2 end → SKIP

For each local variable, it shall have a MemCell process. Therefore, the process is distin-
guished by a number i which is a unique number for each variable. The MemCell process is
initialized by seti at first, and after that it will continuously provide update and retrieve of
the variable by seti and geti channels respectively. Additionally, it is capable of terminating
successfully through end event.

B.1.2 FVar Function

Definition B.1.2 (FVar function). The FVar (P , v) function has a CSP process P and
a set of local variables v in this process as inputs, and outputs a CSP process by making
every access to each local variable l in v by geti?l and every update to local variable l by
seti !l . For example,

FVar (c?x !y !z → P , {x , y , z})
= geti?y → getj ?z → c?x !y !z → setk !x → FVar (P , {x , y , z})

FVar (c?x !y !z → P , {y , z})
= geti?y → getj ?z → c?x !y !z → FVar (P , {y , z})

FVar (P , {}) = P

FVar (P , v) = P if lclV (P) ∩ v = ∅

provided x , y and z are local variables.
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B.1.2.1 FVarPre and FVarPost Function

Definition B.1.3 (FVarPre and FVarPost function). The FVarPre (P , v) function gives
the prefixing of P in FVar (P , v) (only geti events in this prefixing) while the FVarPost

function gives the remaining of FVar (P , v). FVar (P , v) is composed of FVarPre (P , v) and
FVarPost (P , v). For example,

FVarPre (c?x !y !z → P , {x , y , z}) = geti?y → getj ?z

FVarPost (c?x !y !z → P , {x , y , z}) = c?x !y !z → setk !x → FVar (P , {x , y , z})
FVar (P , v) = FVarPre (P , v)→ FVarPost (P , v)

initials (FVarPost) ∩ vs = ∅

provided

x , y , z ∈ v

vs = {|get1, · · · , getm , set1, · · · , setm , end |}

B.1.2.2 Fmrg

Definition B.1.4 (Fmrg). A Fmrg (FVarPre(P1),FVarPre(P2)) function is defined to merge
the prefixes of FVar (P1) and FVar (P2) into one final prefix.

• Basically, it is equal to FVarPre(P1) → FVarPre(P2) if both FVar (P1) and FVar (P2)
are not empty and do not share any local variables in its get event list. However, if
FVar (P2) returns the same variables which have been returned by FVar (P1), then the
get events to return these same variables are removed from FVar (P2).

• If exact one of FVar (P1) and FVar (P2) is empty, then it is equal to the non-empty
one.

• If both FVar (P1) and FVar (P2) are empty, then it is equal to empty.

For example,

Fmrg (geti?li , getj ?lj ) = geti?li → getj ?lj
Fmrg (geti?li , getj ?lj → geti?li) = geti?li → getj ?lj
Fmrg (, getj ?lj → geti?li) = getj ?lj → geti?li
Fmrg (geti?li , ) = geti?li
Fmrg (, ) =

B.1.2.3 FVar Rules

FVar Rule 1 (Unit). If all variables in v do not occur in P , then it is the same as P .

FVar (P , v) = P

provided

scpV (P) ∩ v = ∅

FVar Rule 2 (Basic).

FVar (SKIP , v) = SKIP

FVar (STOP, v) = STOP

FVar (div, v) = div
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FVar Rule 3 (Prefix).

FVar (c → P , {}) = c → FVar (P)

FVar (c?x → P , {x}) = c?x → seti !x → FVar (P)

FVar (c?x → P , {}) = c?x → FVar (P)

FVar (c!x → P , {x}) = geti?x → c!x → FVar (P)

FVar (c.x → P , {x}) = geti?x → c.x → FVar (P)

FVar (c?x?y : a!z → P , {x , z}) = geti?z → c?x?y : a!z → setj !x → FVar (P)

FVar Rule 4 (Sequential Composition).

FVar (P ; Q , v) = FVarPre (P , v)→ (FVarPost (P , v) ; FVar (Q , v))

FVar Rule 5 (Hiding).

FVar (P \ a, v) = FVarPre (P , v)→ (FVarPost (P , v) \ a)

FVar Rule 6 (External Choice).

FVar (P 2 Q , v)

= Fmrg (FVarPre (P , v) ,FVarPre (Q , v))→ (FVarPost (P , v) 2 FVarPost (Q , v))

If the first construct of P and Q does not evaluate any variables in v , or both FVarPre

(P , v) and FVarPre (Q , v) are empty,

initRdLclV (P) ∩ v = ∅
initRdLclV (Q) ∩ v = ∅

then it is simplified to

FVar (P 2 Q , v) = FVar (P , v) 2 FVar (Q , v)

FVar Rule 7 (Internal Choice).

FVar (P u Q , v)

= Fmrg (FVarPre (P , v) ,FVarPre (Q , v))→ (FVarPost (P , v) u FVarPost (Q , v))

FVar Rule 8 (Boolean Guard).

FVar (b & P , v) = Fmrg (FVarPre (b, v) ,FVarPre (P , v))→ (b & FVarPost (P , v))

FVarPre (b & P , v) = Fmrg (FVarPre (b, v) ,FVarPre (P , v))

FVarPost (b & P , v) = (b & FVarPost (P , v))
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For example,

FVar (lp > 0 & c!lq → SKIP , {lp , lq})
= getp?lp → getq?lq → (lp > 0 & c!lq → SKIP )

FVar Rule 9 (Parallel Composition).

FVar

(
P ‖

cs
Q , v

)
= Fmrg (FVarPre (P , v) ,FVarPre (Q , v))→

(
FVarPost (P , v) ‖

cs
FVarPost (Q , v)

)

FVar Rule 10 (Interleave).

FVar (P ||| Q , v)

= Fmrg (FVarPre (P , v) ,FVarPre (Q , v))→ (FVarPost (P , v) ||| FVarPost (Q , v))

FVar Rule 11 (Recursion).

FVar (let X = P (X ) within X , v) = let X = FVar (P (X ) , v) within X

FVar Rule 12 (Replicated Sequential Composition).

FVar (;x : a • P , v) = FVarPre (P , v)→ (;x : a • FVarPost (P , v))

FVar Rule 13 (Replicated External Choice).

FVar

(
2 x : a • P , v

)
= FVarPre (P , v)→

(
2 x : a • FVarPost (P , v)

)

FVar Rule 14 (Replicated Internal Choice).

FVar

(u x : a • P , v
)

= FVarPre (P , v)→
(u x : a • FVarPost (P , v)

)

FVar Rule 15 (Replicated Interleave).

FVar

(||| x : a • P , v
)

= FVarPre (P , v)→
(||| x : a • FVarPost (P , v)

)

FVar Rule 16 (Replicated Parallel Composition).

FVar

(
‖
cs

x : a • P , v

)
= FVarPre (P , v)→

(
‖
cs

x : a • FVarPost (P , v)

)
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B.1.3 Memory Mode of Process

Definition B.1.5 (FMem). The function FMem gives a memory model for a CSP process P
to store and retrieve local variables, which are shown in a set v with m elements: l1, · · · , lm .
FMem is only used in the translation of variable block in Φ Rule 38 and local variables v
are introduced by replicated internal choice u

v :Tv
.

FMem (P , v) =
(

(Us ; FVar (P , v) ; end → SKIP ) ‖
vs

RepMem

)
\ vs

= ((Us ; FVar (P , v) ; end → SKIP ) //vs RepMem)

where

Us = set1!l1 → · · · → setm !lm → SKIP

vs = {|set1, get1, set2, get2, · · · , setm , getm , end |}

RepMem = ‖
{|end |}

{MemCelli | i ∈ {1..m}}

RepMem is a replicated parallel composition of a set of MemCell processes

{MemCell1, · · · ,MemCellm}

that synchronise on the end event. It is equal to

‖
{|end |}

i : 1 . .m • MemCelli

According to Definition B.1.1 and Definition B.1.2, we can easily get

α (Us ; FVar (P , v) ; end → SKIP ) = α (P) ∪ vs

α (RepMem) = vs

therefore

α (RepMem) ⊆ α (Us ; FVar (P , v) ; end → SKIP )

Finally, the memory model can be rewritten to a process defined on the subordination [7]
or enslavement [71] operator //.

Actually, in MemCelli the i is a part of its name and not the parameter. So it should
be like strcat (MemCell , , [1]), strcat (MemCell , , [2]), . . . , and strcat (MemCell , , [m]).
However, in order to simplify the typing in the formula, we still use MemCelli to represent
it has a parameter i .

The FMem function has two input parameters: a CSP process P and a set of local vari-
ables v . Then it returns a process in which each variable (m variables) in P to be updated
and retrieved by putting them in parallel with a set of MemCelli processes (RepMem ), and
finally these additional communications are hidden from its environment.

Us is a process to update all m variables in v to their arbitrary values. vs is a set of
all events that are used to set and get m variables in P as well as the end event. RepMem

is a replicated parallel composition of all MemCelli processes with the end event, which
provides a way for all these processes along with P to terminate successfully.
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B.2 Functions

B.2.1 α Function

Definition B.2.1 (α function). The α function gives the alphabet of a theory or an object
being studied.

For an alphabetised predicate P in UTP, αP denotes a set of variable names to be
studied, such as okay, wait , tr , ref and their dashed counterparts for reactive processes.

For a CSP process, αP denotes the alphabet of the process P , a set of names of events
that are relevant for P . For example, α (c → SKIP 2 d → STOP ) = {c, d}.

And for a schema in Circus or Z, α (Schema) gives a set of components of the schema.
For example,

α (St) = {s1, s2}
α
(
St ′
)

= {s ′1, s ′2}

provided

St =̂ [ s1, s2 : N | true ]

B.2.2 FV

Definition B.2.2 (FV function). The FV function returns a set of free variables in a
predicate or expression. For example,

FV (∀ x : N • y > x ) = {y}

B.2.3 DFV

Definition B.2.3 (DFV function). The DFV function returns a set of dashed free
variables in a predicate or expression. For example,

DFV
(
x ′ > 0 ∧ y = 0

)
= {x ′}

DFV (∀ x : N • y > x ) = {}

B.2.4 UDFV

Definition B.2.4 (UDFV function). The UDFV function returns a set of undashed free
variables in a predicate or expression. For example,

UDFV
(
x ′ > 0 ∧ y = 0

)
= {y}

UDFV (∀ x : N • y > x ) = {y}

B.2.5 wrtV

Definition B.2.5 (wrtV function). The wrtV function gives a set of variables written
by an action or a CSP process. And if it is a CSP process, it denotes a set of local variables
that have corresponding memory processes as defined in Definition B.1.1. For example,

wrtV (SExp) = {s2}
wrtV (x , y := 1, z ) = {x , y}

provided

St =̂ [ s1, s2 : N | true ]
SExp =̂ [ ∆St | s ′2 = s1 ]
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B.2.6 usedV

Definition B.2.6 (usedV function). The usedV function returns a set of read-only
variables, either state and local variables, in an action or a CSP process. And if it is a
CSP process, it denotes a set of local variables that have corresponding memory processes
as defined in Definition B.1.1. For example,

usedV (SExp) = {s1}
usedV (x , y := 1, z ) = {z}

provided

St =̂ [ s1, s2 : N | true ]
SExp =̂ [ ∆St | s ′2 = s1 ]

B.2.7 usedC

Definition B.2.7 (usedC function). The usedC function returns a set of channels in an
action or a process. For example,

usedC (Skip) = ∅
usedC (c → Skip) = {c}

usedC (c → d → Skip) = {c, d}

B.2.8 initials

Definition B.2.8 (initials function). The initials function gives a set of channels which
an action may communicate first.

initials (c → Skip) = {c}
initials (c → Skip 2 d → Skip) = {c, d}

B.2.9 scpV

Definition B.2.9 (scpV function). The scpV function gives a set of free variables in
scope in an action or a CSP process. It is equal to the union of wrtV and usedV .

scpV (c?x !y → Skip) = {x , y}

B.2.10 stV

Definition B.2.10 (stV function). The stV function gives a set of state components in
an action. For example,

stV (SExp) = {s1, s2}
stV (s1, l1 := 1, s2) = {s1, s2}

provided

SExp = [∆StPar ; in? : Ti ; out ! : To | s ′1 = in? ∧ out ! = s ′2]
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B.2.11 lclV

Definition B.2.11 (lclV function). The lclV function gives a set of local variables in
an action or a CSP process or an expression. In a CSP process, it denotes the variables
that have corresponding memory processes as defined in Definition B.1.1.

lclV (SExp) = {in, out}
lclV (s1, l1 := l2, s2) = {l1, l2}

provided

SExp = [∆StPar ; in? : Ti ; out ! : To | s ′1 = in? ∧ out ! = s ′2]

B.2.12 initStV , initRdStV , and initWrtStV

Definition B.2.12 (initStV , initRdStV , and initWrtStV functions). The initStV func-
tion gives a set of state components in the first construct of an action. And the initRdStV
and initWrtStV are a set of state components to be read and written respectively in the
first construct of an action. Particularly,

initStV (A) = initRdStV (A) ∪ initWrtStV (A)

For example,

initStV (SExp) = ∅
initRdStV (s1, l1 := 1, s2) = {s2}
initWrtStV (s1, l1 := 1, s2) = {s1}
initStV (s1, l1 := 1, s2) = {s1, s2}
initRdStV (c. (s1 + s2)) = {s1, s2}
initWrtStV (c. (s1 + s2)) = ∅
initStV (c. (s1 + s2)) = {s1, s2}

B.2.13 initLclV , initRdLclV , and initWrtLclV

Definition B.2.13 (initLclV , initRdLclV , and initWrtLclV functions). The initLclV
function gives a set of local variables in the first construct of an action or a CSP process.
For a CSP process, it denotes the variables that have corresponding memory processes
as defined in Definition B.1.1. And the initRdLclV and initWrtLclV are a set of local
variables to be read and written respectively in the first construct of an action. Particularly,

initLclV (A) = initRdLclV (A) ∪ initWrtLclV (A)

For example,

initRdLclV (SExp) = {in}
initWrtLclV (SExp) = {out}
initLclV (SExp) = {in, out}
initRdLclV (s1, l1 := l2, s2) = {l2}
initWrtLclV (s1, l1 := l2, s2) = {l1}
initLclV (s1, l1 := l2, s2) = {l1, l2}
initRdLclV (c. (l1 + s2)?l2) = {l1}
initWrtLclV (c. (l1 + s2)?l2) = {l2}
initLclV (c. (l1 + s2)?l2) = {l1, l2}

provided

SExp = [∆StPar ; in? : Ti ; out ! : To | s ′1 = in? ∧ out ! = s ′2]
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B.2.14 Renaming Function FRen

Definition B.2.14 (FRen). The FRen (term, {(vold , vnew )}) function renames every free
occurrence of variables in vold in the term (such as action, expression or predicate) to the
corresponding names in vnew . It is equal to the definition of the rule of substitution in
First-Order Logic: t [e/x ] denotes the result of replacing all free occurrences of the variable
x in the formula t by the term e; t [e, f /x , y ] is a multiple substitution of terms e and f
for variables x and y in t . For example,

FRen(x := y , {(x , x1), (y , y1)}) = x1 := y1

FRen(x := y , {(y , y1)}) = x := y1

FRen (∃ x : Tx • (x := y) , {(y , y1) , (x , x1)}) = x := y1

FRen (x := y , {(y , y1) , (x , x1)}) = x1 := y1

B.2.15 Body Function - B

Definition B.2.15 (Body Function B). The function B gives the body of an action or
a process.

B.2.16 Text/String Concatenation - strcat

Definition B.2.16 (Text/String Concatenation - strcat). The strcat(a, b, c) func-
tion is for string or text concatenation of a, b and c to form a new text abc. And
strcat(a, b, [c1, c2, · · · , cn ] is for string concatenation to form abc1bc2b · · · bcn . For example,

strcat(c, , 1) = c1

strcat(c, , 1) = c 1

strcat(c,−, 1) = c − 1

strcat(c, , [x , y , z ]) = c x y z

B.3 Prefixed Actions

Definition B.3.1 (Prefixed Actions). A Circus action A is a prefixed action AA if
its first construct is an event regardless of whether the event is external or internal. The
reason to define prefixed actions is because external choice of actions can be resolved only
by events or termination, and state changes will not resolve it according to its semantics.
Fundamentally, basic actions are not prefixed actions. However, to simplify the actions
occurred in external choice of actions, the prefixed actions are extended to include basic
actions and finally basic actions are regarded as AA as well. Therefore, a prefixed action
is safe to be an action in external choice when the external choice is linked to CSP by Φ.
This definition is very similar to [54, Definition C.1] except basic actions.

AA can be one of actions below.

• Basic actions: Skip, Stop, or Chaos.

• Prefixing: c → A where c denotes all communication patterns allowed in Circus.

• Guarded action: (g) N AA.

• Sequential composition: AA ; A.

• External choice: AA1 2 AA2.

• Internal choice: AA1 u AA2.
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• Parallel composition: AA1 J ns1 | cs | ns2 K AA2.

• Interleaving: AA1 ||[ ns1 | ns2 ]||AA2.

• Hiding: AA \ cs provided initials(AA) ∩ cs = ∅.

• Recursion: µX • AA(X ). Particularly, the first channel event of AA(X ) does not
evaluate state variables. That is, initRdStV (AA) = ∅.

• Action invocation A: A =̂ AA.

• Parametrised action: A =̂ x : T • AA(x ).

• Iterated sequential composition: ; x : T • AA(x ).

• Iterated external choice: 2 x : T • AA(x ).

• Iterated internal choice: u x : T • AA(x ).

• Iterated parallel composition:Jcs K x : T J nsK • AA(x ).

• Iterated interleaving: ||| x : T ||[ ns]|| • AA(x ).

• Alternation: if g1 −→AA1 8 · · · 8 gn −→AAn fi provided all actions are AA.

• Alternation (mutual exclusive guards): if g1−→A18 · · ·8gn−→An fi provided exactly
one guard is evaluated to be true and others to be false at the same time.

• Variable block: var x : T • AA(x ).

• Renaming: AA[vold := vnew ].

B.4 Prefixed Processes

Definition B.4.1 (Prefixed Processes). A Circus process P is a prefixed process PA if
its main action is a AA and the first event of AA does not evaluate state variables of P .
That is, initRdStV (PA.A) = ∅. Therefore, Rpre (PA.A) is empty. Finally,

Rwrt (PA.A) = Rpost (PA.A) [Definition 4.3.1]

PA can be one of process below.

• Explicitly defined process with its main action AA

process PA =̂ begin
state StPar == · · ·
Pars == [ · · · ]
• AA

end

• Sequential composition: PA ; P

• Internal choice: PA1 u PA2.

• External choice: PA1 2 PA2.

• Parallel composition: PA1 J cs K PA2

• Interleaving: PA1 ||| PA2
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• Hiding: PA \ cs

• Iterated sequential composition: ; x : T • PA(x )

• Iterated external choice: 2 x : T • PA(x ).

• Iterated internal choice: u x : T • PA(x ).

• Iterated parallel composition:JCS K x : T • PA(x )

• Iterated interleaving: ||| x : T • PA(x ).

• Parametrised process: x : T • PA.

• Indexed process: x : T � PA.

• Process invocation: PA or PA (e)

• Process renaming: PA[cold := cnew ]
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Appendix C

Theorems, Lemmas and Laws

This appendix lists lemmas, laws, and theorems that are used in Chapter 5.

C.1 FMem

This section aims to prove Theorem C.1.28 which is based on a collection of lemmas in
Section C.1.2. In order to prove these lemmas, firstly a number of laws are given and
proved.

In this section, we use a number of abbreviations given below.

Definition C.1.1 (Abbreviations).

RepMem =

(
‖

{|end |}
i : 1..m • MemCelli

)

RepMCell =

(
‖

{|end |}
i : 1..m • (MCelli (xi))

)

P //vs Q =

(
P ‖

vs
Q

)
\ vs

C.1.1 Laws

C.1.1.1 CP and Proof Strategies

A number of laws about the memory model of a CSP process are presented and proved in
this section. For some laws, they are applied to general processes. And but for others, in
order to prove them, we only take into account CSP processes that are the target processes
of our link rules. According to Appendix E, all CSP processes considered are listed below
and denoted as CP .

• Basic processes: SKIP , STOP , and div

• Prefixing: c → CP

• Sequential composition: CP1 ; CP2

• Boolean guard: b & CP

• External choice: CP1 2 CP2, and both actions are not SKIP

• Internal choice: CP1 u CP2

• Hiding: CP \ cs
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• Recursion: let X = CP(X ) within X

• Parallel composition: CP1 ‖
cs

CP2

• Interleaving: CP1 ||| CP2

• Replicated sequential composition: ;x : a • CP

• Replicated external choice: 2 x : a • CP

• Replicated internal choice: u x : a • CP

• Replicated parallel composition: ‖
cs

x : a • CP

• Replicated interleaving: ||| x : a • CP

And afterwards, we use P and Q to denote general CSP processes and CP to denote
the processes above.

Furthermore, it is difficult to prove a law for all combinations of CP . For example,
if a law about the memory model of external choice is to be proved, it is very hard to
prove this law valid for all combinations of CP1 and CP2 since there are a large number of
combinations. In order to simplify the proof, our solution is to abstract all CP processes
through a Abs function according to their initial events. This abstraction is applied mainly
due to the step law of each process. For example, a parallel composition can be turned into
a sequential process since they do not have fundamental distinction in CSP [71, p. 46]. And
the Abs function defined for each CP is shown below. It is worth noting that recursion is
not supported in the memory model. And replicated operations are just the expansion of
the corresponding operators. Therefore they are omitted.

Abs (SKIP ) = SKIP

Abs (STOP ) = STOP

Abs (div) = div

Abs (c → CP) = c → CP

Abs (CP1 ; CP2) =

{
Abs (CP2) CP1 = SKIP

Abs (CP1) CP1 6= SKIP

Abs (b & CP) =

{
Abs (CP) b = true

STOP b = false

Abs (CP1 2 CP2) =



div CP1 = div ∨ CP2 = div

Abs (CP1) CP2 = STOP

Abs (CP2) CP1 = STOP

Abs

 (CP11 2 CP2)

u
(CP12 2 CP2)

 CP1 = CP11 u CP12

Abs

 (CP21 2 CP1)

u
(CP22 2 CP1)

 CP2 = CP21 u CP22

?x : A→ CP

 initials (CP1) 6= ∅
∨
initials (CP2) 6= ∅
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Abs (CP1 u CP2) =

{
div CP1 = div ∨ CP2 = div

Abs (CP1) u Abs (CP2) CP1 6= div ∧ CP2 6= div

Abs (CP \ cs) =



Abs (CP) initials (CP) ∩ cs = ∅

Abs

 (CP1 \ cs)

u
(CP2 \ cs)

 CP = CP1 u CP2

Abs (CP1) (CP =?x : A→ CP1) ∧ (A ⊆ cs)

Abs

(
CP1 ‖

cs
CP2

)
=



div CP1 = div ∨ CP2 = div

SKIP CP1 = SKIP ∧ CP2 = SKIP

Abs


(

CP11 ‖
cs

CP2

)
u(

CP12 ‖
cs

CP2

)
 CP1 = CP11 u CP12

Abs


(

CP21 ‖
cs

CP1

)
u(

CP22 ‖
cs

CP1

)
 CP2 = CP21 u CP22

?x : A→ CP

 initials (CP1) 6= ∅
∨
initials (CP2) 6= ∅



Abs (CP1 ||| CP2) =



div CP1 = div ∨ CP2 = div

SKIP CP1 = SKIP ∧ CP2 = SKIP

Abs

 (CP11 ||| CP2)

u
(CP12 ||| CP2)

 CP1 = CP11 u CP12

Abs

 (CP21 ||| CP1)

u
(CP22 ||| CP1)

 CP2 = CP21 u CP22

?x : A→ CP

 initials (CP1) 6= ∅
∨
initials (CP2) 6= ∅



From abstraction, we can conclude that the processes after reduction have the following
forms.

• Basic processes: SKIP , STOP , and div

• Prefixing: ?x : A→ CP

• Internal choice: CP1 u CP2

Therefore, in order to prove a law is valid for all CP processes, we only consider the
combinations of these reduced processes, instead of all CP processes. Eventually, the
proof is simplified.
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C.1.1.2 Deadlock

Law C.1.1 (Deadlock).

(STOP //vs RepMCell ) = STOP

Proof.

(STOP //vs RepMCell )

=


STOP
‖
vs(
‖

{|end |}
i : 1..m • (MCelli (xi))

)
 \ vs [Abbreviations C.1.1]

= (STOP ) \ vs [Hoare [7, Section 2.3.1, L3A]]

= STOP [Hoare [7, Section 3.5.1, L4]]

C.1.1.3 Divergence

Law C.1.2 (Divergent Process).

(div //vs RepMCell ) = div

Proof.

(div //vs RepMCell )

=


div
‖
vs(
‖

{|end |}
i : 1..m • (MCelli (xi))

)
 \ vs [Abbreviations C.1.1]

= (div) \ vs [Hoare [7, Section 3.8.1, L2]]

= div [Hoare [7, Section 3.8.1, L2]]

C.1.1.4 Get the value of a local variable

Law C.1.3 (Get the value of a local variable). Provided the current values of local
variables l1, · · · , lm are x1, · · · , xm , then getp will return the current value xp of lp.

((getp?lp → P (lp)) //vs RepMCell )

= (P (xp) //vs RepMCell )

Therefore, after one-step of parallel, the value of lp in the memory has been returned in P .

Proof.

((getp?lp → P (lp)) //vs RepMCell )
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=


(getp?lp → P(lp))
‖
vs(
‖

{|end |}
i : 1..m • (MCelli (xi))

)
 \ vs [Abbreviations C.1.1]

=


(P(xp))
‖
vs(
‖

{|end |}
i : 1..m • (MCelli (xi))

)
 \ vs [Hoare [7, Section 4.5.1, L1B]]

= (P (xp) //vs RepMCell ) [Abbreviations C.1.1]

C.1.1.5 Set the value of a local variable

Law C.1.4 (Set the value of a local variable).

((setp !lp → P) //vs RepMCell )

=

(
P (xp) //vs

(
‖

{|end |}
i : 1..m •

{
MCelli (xi) i 6= p

MCellp (lp) i = p

))

For the memory cell of a local variable lp, its value has been updated to lp from the process.

Proof.

((setp !lp → P) //vs RepMCell )
(setp !lp → P)
‖
vs(
‖

{|end |}
i : 1..m • (MCelli (xi))

)
 \ vs [Abbreviations C.1.1]

=


(P)
‖
vs(
‖

{|end |}
i : 1..m •

{
MCelli (xi) i 6= p

MCellp (lp) i = p

)
 \ vs

[Hoare [7, Section 4.5.1, L1A]]

=

(
P (xp) //vs

(
‖

{|end |}
i : 1..m •

{
MCelli (xi) i 6= p

MCellp (lp) i = p

))
[Abbreviations C.1.1]

C.1.1.6 External choice - distribution (1)

Law C.1.5 (External choice - distribution (1)).

((c → P 2 d → Q) //vs RepMCell )

= (c → (P //vs RepMCell )) 2 (d → (Q //vs RepMCell ))

provided
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• c 6∈ vs

• d 6∈ vs

Proof. According to [71, Section 1.2.1], the external choice of processes (c → P 2 d → Q)
is exactly the same as the guarded alternative (c → P | d → Q) which can be rewritten as
the prefix-choice ?x : {c, d} → PP(x ) where

PP(x ) =

{
P if x = c

Q if x = d

Then

((c → P 2 d → Q) //vs RepMCell )

=?x : {c, d} → (PP(x ) //vs RepMCell )
[Roscoe [71, 〈‖ -step〉(3.10)] and c 6∈ vs ∧ d 6∈ vs ]

= (c → (P //vs RepMCell )) 2 (d → (Q //vs RepMCell ))
[Roscoe [71, Prefix-choice to External choice]]

This law is also valid if c is the same event as d .

C.1.1.7 External choice - distribution

Law C.1.6 (External choice - distribution).

(CP1 2 CP2) //vs RepMCell

= (CP1 //vs RepMCell ) 2 (CP2 //vs RepMCell )

provided both CP1 and CP2 are not SKIP , and

initials (CP1) ∩ vs = ∅
initials (CP2) ∩ vs = ∅

The side conditions are reasonable for the memory model because all events from vs have
been moved out of external choice by FVar Rule 6.

Proof. CP denotes CSP processes that are used in our link rules and are given in Sec-
tion C.1.1.1. To prove this law is valid, we need to consider all combinations of ab-
stracted CP processes that are described in Section C.1.1.1. However, according to [71,
〈2 -dist〉(2.7)], external choice 2 is symmetric. Therefore, the combination of CP1 as a
form F1 and CP2 as another form F2 has similar proof to the combination of CP1 as a
form F2 and CP2 as another form F1. Finally, we only need to consider one of them.

(1) If CP1 is STOP , then the LHS of the law

(CP1 2 CP2) //vs RepMCell

= (STOP 2 CP2) //vs RepMCell

= (CP2) //vs RepMCell [Hoare [7, Section 3.3.1, L4]]

and the RHS of the law

(CP1 //vs RepMCell ) 2 (CP2 //vs RepMCell )

= (STOP //vs RepMCell ) 2 (CP2 //vs RepMCell )

= STOP 2 (CP2 //vs RepMCell ) [Law C.1.1]
= (CP2) //vs RepMCell [Hoare [7, Section 3.3.1, L4]]
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therefore, the law is valid.
(2) If CP1 is div, then the LHS of the law

(CP1 2 CP2) //vs RepMCell

= (div 2 CP2) //vs RepMCell

= (div) //vs RepMCell [Hoare [7, Section 3.8.1, L2]]
= div [Law C.1.2]

and the RHS of the law

(CP1 //vs RepMCell ) 2 (CP2 //vs RepMCell )

= (div //vs RepMCell ) 2 (CP2 //vs RepMCell )

= div 2 (CP2 //vs RepMCell ) [Law C.1.2]
= div [Hoare [7, Section 3.8.1, L2]]

therefore, the law is valid.
(3) If CP1 is internal choice, assume

(CP11 2 CP2) //vs RepMCell = (CP11 //vs RepMCell ) 2 (CP2 //vs RepMCell )

and

(CP12 2 CP2) //vs RepMCell = (CP12 //vs RepMCell ) 2 (CP2 //vs RepMCell )

then the LHS of the law

((CP11 u CP12) 2 CP2) //vs RepMCell

= ((CP11 2 CP2) u (CP12 2 CP2)) //vs RepMCell [Roscoe [71, 〈2 -dist〉(2.7)]]

=

 (CP11 2 CP2) //vs RepMCell

u
(CP12 2 CP2) //vs RepMCell

 [Law C.1.9]

the RHS of the law,

((CP11 u CP12) //vs RepMCell ) 2 (CP2 //vs RepMCell )

= ((CP11 //vs RepMCell ) u (CP2 //vs RepMCell )) 2 (CP2 //vs RepMCell ) [Law C.1.9]

=

 (CP11 //vs RepMCell ) 2 (CP2 //vs RepMCell )
u
(CP12 //vs RepMCell ) 2 (CP2 //vs RepMCell )

 [Roscoe [71, 〈2 -dist〉(2.7)]]

=

 (CP11 2 CP2) //vs RepMCell

u
(CP12 2 CP2) //vs RepMCell

 [Assumption]

therefore, the law is valid for the situation that one of processes is internal choice. In
other words, that one of process in the external choice is an internal choice preserves the
distribution of external choice in the memory model.

(4) If CP1 is a prefixing and CP2 is a prefixing as well, according to Law C.1.5 and
conditions that initial events of CP1 and CP2 do not contain events from vs, this law is
also valid.

Since this law is valid for all combinations of abstracted CP processes, this law is valid
for all CP processes.
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C.1.1.8 External choice and Sequential composition - distribution (1)

Law C.1.7 (External choice and Sequential composition - distribution (1)).(
((c → P 2 d → Q) ; end → SKIP ) //vs RepMCell

)
=

 (c → ((P ; end → SKIP ) //vs RepMCell ))
2

(d → ((Q ; end → SKIP ) //vs RepMCell ))


provided

• c 6∈ vs

• d 6∈ vs

Proof.(
((c → P 2 d → Q) ; end → SKIP ) //vs RepMCell

)
=
(

((?x : {c, d} → PP(x )) ; end → SKIP ) //vs RepMCell

)
[PP(x ) definition in the proof of Law C.1.6]

=
(

(?x : {c, d} → (PP(x ) ; end → SKIP )) //vs RepMCell

)
[Roscoe [71, 〈;-step〉(7.4)] where c and d are not free in (end → SKIP )]

=

 (c → ((P ; end → SKIP ) //vs RepMCell ))
2

(d → ((Q ; end → SKIP ) //vs RepMCell ))

 [Law C.1.6]

C.1.1.9 External choice and Sequential composition - distribution

Law C.1.8 (External choice and Sequential composition - distribution).(
((CP1 2 CP2) ; end → SKIP ) //vs RepMCell

)
=

 ((CP1 ; end → SKIP ) //vs RepMCell )
2

((CP2 ; end → SKIP ) //vs RepMCell )


provided both CP1 and CP2 are not SKIP , and

initials (CP1) ∩ vs = ∅
initials (CP2) ∩ vs = ∅

The side conditions are reasonable for the memory model because all events from vs have
been moved out of external choice by FVar Rule 6.

Proof. The proof of this law is very similar to that of Law C.1.6.
(1) If CP1 is STOP , then the LHS of the law

((CP1 2 CP2) ; end → SKIP ) //vs RepMCell

= ((STOP 2 CP2) ; end → SKIP ) //vs RepMCell

= (CP2 ; end → SKIP ) //vs RepMCell [Hoare [7, Section 3.3.1, L4]]
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and the RHS of the law ((CP1 ; end → SKIP ) //vs RepMCell )
2

((CP2 ; end → SKIP ) //vs RepMCell )


=

 ((STOP ; end → SKIP ) //vs RepMCell )
2

((CP2 ; end → SKIP ) //vs RepMCell )


=

 (STOP //vs RepMCell )
2

((CP2 ; end → SKIP ) //vs RepMCell )

 [Hoare [7, Section 5.2, L5]]

=

(
STOP 2

((CP2 ; end → SKIP ) //vs RepMCell )

)
[Law C.1.1]

= (CP2 ; end → SKIP ) //vs RepMCell [Hoare [7, Section 3.3.1, L4]]

therefore, the law is valid.
(2) If CP1 is div, then the LHS of the law

((CP1 2 CP2) ; end → SKIP ) //vs RepMCell

= ((div 2 CP2) ; end → SKIP ) //vs RepMCell

= (div ; end → SKIP ) //vs RepMCell [Hoare [7, Section 3.8.1, L2]]
= (div) //vs RepMCell [Hoare [7, Section 5.3.2, L1]]
= div [Law C.1.2]

and the RHS of the law ((CP1 ; end → SKIP ) //vs RepMCell )
2

((CP2 ; end → SKIP ) //vs RepMCell )


=

 ((div ; end → SKIP ) //vs RepMCell )
2

((CP2 ; end → SKIP ) //vs RepMCell )


=

 (div //vs RepMCell )
2

((CP2 ; end → SKIP ) //vs RepMCell )

 [Hoare [7, Section 5.3.2, L1]]

=

(
div 2

((CP2 ; end → SKIP ) //vs RepMCell )

)
[Law C.1.2]

= div [Hoare [7, Section 3.8.1, L2]]

therefore, the law is valid.
(3) If CP1 is an internal choice, assume(

((CP11 2 CP2) ; end → SKIP ) //vs RepMCell

)
=

 ((CP11 ; end → SKIP ) //vs RepMCell )
2

((CP2 ; end → SKIP ) //vs RepMCell )


and (

((CP12 2 CP2) ; end → SKIP ) //vs RepMCell

)
=

 ((CP12 ; end → SKIP ) //vs RepMCell )
2

((CP2 ; end → SKIP ) //vs RepMCell )
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then the LHS of the law

(((CP11 u CP12) 2 CP2) ; end → SKIP ) //vs RepMCell

=

 (CP11 2 CP2)
u
(CP12 2 CP2)

 ; end → SKIP

 //vs RepMCell

[Roscoe [71, 〈2 -dist〉(2.7)]]

=

 ((CP11 2 CP2) ; end → SKIP ) //vs RepMCell

u
((CP12 2 CP2) ; end → SKIP ) //vs RepMCell

 [Law C.1.10]

the RHS of the law, (((CP11 u CP12) ; end → SKIP ) //vs RepMCell )
2

((CP2 ; end → SKIP ) //vs RepMCell )



=


 ((CP11 ; end → SKIP ) //vs RepMCell )
u
((CP12 ; end → SKIP ) //vs RepMCell )


2

((CP2 ; end → SKIP ) //vs RepMCell )

 [Law C.1.10]

=



 ((CP11 ; end → SKIP ) //vs RepMCell )
2

((CP2 ; end → SKIP ) //vs RepMCell )


u ((CP12 ; end → SKIP ) //vs RepMCell )

2

((CP2 ; end → SKIP ) //vs RepMCell )




[Roscoe [71, 〈2 -dist〉(2.7)]]

=

 ((CP11 2 CP2) ; end → SKIP ) //vs RepMCell

u
((CP12 2 CP2) ; end → SKIP ) //vs RepMCell

 [Assumption]

therefore, the law is valid for the situation that one of processes is internal choice. In
other words, that one of process in the external choice is an internal choice preserves the
distribution of external choice and sequential composition in the memory model.

(4) If CP1 is a prefixing and CP2 is a prefixing as well, according to Law C.1.7 and
conditions that initial events of CP1 and CP2 do not contain events from vs, this law is
also valid.

Since this law is valid for all combinations of abstracted CP processes, this law is valid
for all CP processes.

C.1.1.10 Internal choice - distribution

Law C.1.9 (Internal choice - distribution).

((P u Q) //vs RepMem)

=

 (P //vs RepMem)
u
(Q //vs RepMem)


Proof.

((P u Q) //vs RepMem)
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=

 (P //vs RepMem)
u
(Q //vs RepMem)

 [Roscoe [71, 〈‖ -dist〉(3.12)]

C.1.1.11 Internal choice and Sequential composition - distribution

Law C.1.10 (Internal choice and Sequential composition - distribution).

(((P u Q) ; end → SKIP ) //vs RepMem)

=

 ((P ; end → SKIP ) //vs RepMem)
u
((Q ; end → SKIP ) //vs RepMem)


Proof.

(((P u Q) ; end → SKIP ) //vs RepMem)

= (((P ; end → SKIP ) u (Q ; end → SKIP )) //vs RepMem)
[Hoare [7, Section 5.3.2, L2A]]

=

 ((P ; end → SKIP ) //vs RepMem)
u
((Q ; end → SKIP ) //vs RepMem)

 [Law C.1.9]

C.1.1.12 Boolean guard - step

Law C.1.11 (Boolean guard - step).

(g &P) //vs RepMCell

= g & (P //vs RepMCell )

Proof. The LHS of the law

(g &P) //vs RepMCell

=

{
P //vs RepMCell g = true

STOP //vs RepMCell g = false
[Boolean guard is a shorthand [71, p. 14]]

=

{
P //vs RepMCell g = true

STOP g = false
[Law C.1.1]

and the RHS of the law

g & (P //vs RepMCell )

=

{
P //vs RepMCell g = true

STOP g = false
[Boolean guard is a shorthand [71, p. 14]]

therefore the law is proved.

C.1.1.13 Boolean guard and Sequential composition - step

Law C.1.12 (Boolean guard and Sequential composition - step).

(g &P ; end → SKIP ) = g & (P ; end → SKIP )
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Proof. The LHS of the law

(g &P ; end → SKIP )

=

{
P ; end → SKIP g = true

STOP ; end → SKIP g = false
[Boolean guard is a shorthand [71, p. 14]]

=

{
P ; end → SKIP g = true

STOP g = false
[Hoare [7, Section 5.2, L5]]

and the RHS of the law

g & (P ; end → SKIP )

=

{
P ; end → SKIP g = true

STOP g = false
[Boolean guard is a shorthand [71, p. 14]]

therefore, the LHS is equal to the RHS. The law is proved.

C.1.1.14 Boolean guard and Sequential composition - distribution

Law C.1.13 (Boolean guard and Sequential composition - distribution).

(g &P ; end → SKIP ) //vs RepMCell = g & ((P ; end → SKIP ) //vs RepMCell )

Proof.

(g &P ; end → SKIP ) //vs RepMCell

= (g & (P ; end → SKIP )) //vs RepMCell [Law C.1.12]
= g & ((P ; end → SKIP ) //vs RepMCell ) [Law C.1.11]

C.1.1.15 Sequential composition - distribution

Law C.1.14 (Sequential composition - distribution). The memory model of a se-
quential composition P ; Q is equal to a sequential composition of the memory model of P
and finally terminated, and the memory model of Q with another copy of memory but all
updates from P are kept.(

(P ; Q) //vs RepMCell

)

=


(

(P ; end → SKIP ) //vs RepMCell

)
;(

Q //vs

(
‖

{|end |}
i : 1..m •

({
MCelli (xi) i 6∈ j ..k

MCelli (li) i ∈ j ..k

)) )


provided P is a translated process from another process P ′ by FVar and

wrtV (P) ∧ l = {lj , · · · , lk}

which denotes that all local variables to be updated in P are lj , . . . , and lk .

Proof. This law is proved from two aspects: the local variables aspect and the behavioural
aspect.

(1) The LHS of the law has P ; Q in a same memory, thus the memory that Q sees
is the one after the update from P . And in the RHS of the law, P still starts with the



C.1 FMem 237

same memory as that in the LHS, but for Q its memory is another copy of the original
memory but all updates from P are seen. Therefore, Q in the RHS also starts with the
same memory as that in the LHS. Finally, from the local variables aspect, both LHS and
RHS are the same.

(2) From the LHS of the law, if P terminates, then Q will begin to execute. From the
RHS of the law, if P terminates, according to Lemma C.1.2 its memory model

(P ; end → SKIP ) //vs RepMCell

terminates as well and finally the memory model of Q begins to execute. And if P does not
terminate, both LHS and RHS will not terminate. Finally, from the behavioural aspect,
both LHS and RHS are the same.

In sum, the law is valid.

C.1.1.16 Hiding - combination

Law C.1.15 (Hiding - combination).

(
(P \ cs) //vs RepMCell

)
=

(
P ‖

vs

(
‖

{|end |}
i : 1..m • (MCelli (xi))

) )
\ (vs ∪ cs)

=
(

P //vs RepMCell

)
\ cs

provided

• cs ∩ vs = ∅

Proof. Provided cs ∩ vs = ∅, then

(
(P \ cs) //vs RepMCell

)

=


P \ cs
‖
vs(
‖

{|end |}
i : 1..m • (MCelli (xi))

)
\ cs

 \ vs

[cs ∩ vs = ∅ and [7, Section 3.5.1, L12]]

=




P
‖
vs(
‖

{|end |}
i : 1..m • (MCelli (xi))

)
 \ cs

 \ vs

[Roscoe [71, 〈hide- ‖ -dist〉(5.8)]]

=


P
‖
vs(
‖

{|end |}
i : 1..m • (MCelli (xi))

)
 \ (vs ∪ cs)

[Roscoe [71, 〈hide-combine〉(5.3)]]
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=




P
‖
vs(
‖

{|end |}
i : 1..m • (MCelli (xi))

)
 \ vs

 \ cs

[Roscoe [71, 〈hide-combine〉(5.3)]]

=
(

P //vs RepMCell

)
\ cs [Abbreviations C.1.1]

C.1.1.17 Hiding and Sequential composition - distribution

Law C.1.16 (Hiding and Sequential composition - distribution).

(CP \ cs) ; end → SKIP = (CP ; end → SKIP ) \ cs

provided

end 6∈ cs ∧ end 6∈ usedC (CP)

Proof. The proof of this law is very similar to that of Law C.1.6.
(1) If CP is STOP , then the LHS of the law

(CP \ cs) ; end → SKIP

= (STOP \ cs) ; end → SKIP

= STOP ; end → SKIP [Hoare [7, Section 3.5.1, L4]]
= STOP [Hoare [7, Section 5.2, L5]]

and the RHS of the law

(CP ; end → SKIP ) \ cs

= (STOP ; end → SKIP ) \ cs

= (STOP ) \ cs [Hoare [7, Section 5.2, L5]]
= STOP [Hoare [7, Section 3.5.1, L4]]

therefore the law is valid.
(2) If CP is SKIP , then the LHS of the law

(CP \ cs) ; end → SKIP

= (SKIP \ cs) ; end → SKIP

= SKIP ; end → SKIP [Roscoe [71, 〈SKIPhide-Id〉(13.1)]]
= end → SKIP [Roscoe [71, 〈;-unit-l〉(7.2)]]

and the RHS of the law

(CP ; end → SKIP ) \ cs

= (SKIP ; end → SKIP ) \ cs

= (end → SKIP ) \ cs [Roscoe [71, 〈;-unit-l〉(7.2)]]
= end → SKIP [Roscoe [71, 〈hide-step 1〉(5.5)] and [71, 〈SKIPhide-Id〉(13.1)]]

therefore the law is valid.
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(3) If CP is div, then the LHS of the law

(CP \ cs) ; end → SKIP

= (div \ cs) ; end → SKIP

= div ; end → SKIP [Hoare [7, Section 3.8.1, L2]]
= div [Hoare [7, Section 5.3.2, L1]]

and the RHS of the law

(CP ; end → SKIP ) \ cs

= (div ; end → SKIP ) \ cs

= div \ cs [Hoare [7, Section 5.3.2, L1]]
= div [Hoare [7, Section 3.8.1, L2]]

therefore the law is valid.
(4) If CP is an internal choice CP1 u CP2, assume

(CP1 \ cs) ; end → SKIP = (CP1 ; end → SKIP ) \ cs

and

(CP2 \ cs) ; end → SKIP = (CP2 ; end → SKIP ) \ cs

then the LHS of the law

(CP \ cs) ; end → SKIP

= ((CP1 u CP2) \ cs) ; end → SKIP

= ((CP1 \ cs) u (CP2 \ cs)) ; end → SKIP [Hoare [7, Section 3.5.1, L3]]
= ((CP1 \ cs) ; end → SKIP ) u ((CP2 \ cs) ; end → SKIP )

[Hoare [7, Section 5.3.2, L2A]]

and the RHS of the law

(CP ; end → SKIP ) \ cs

= ((CP1 u CP2) ; end → SKIP ) \ cs

= ((CP1 ; end → SKIP ) u (CP2 ; end → SKIP )) \ cs
[Hoare [7, Section 5.3.2, L2A]]

= ((CP1 ; end → SKIP ) \ cs) u ((CP2 ; end → SKIP ) \ cs)
[Hoare [7, Section 3.5.1, L3]]

= ((CP1 \ cs) ; end → SKIP ) u ((CP2 \ cs) ; end → SKIP ) [Assumption]

therefore the law is valid for the situation that the process is internal choice. In other
words, that the process in the hiding is an internal choice preserves the distribution of
hiding and sequential composition in the memory model.

(4) If CP is a prefixing, provided CP =?x : A → CP ′, and A = Ao ∪ Acs where Acs

denotes a set of events from cs and Ao for other events, and assume(
CP ′ \ cs

)
; end → SKIP =

(
CP ′ ; end → SKIP

)
\ cs

then the LHS of the law

(CP \ cs) ; end → SKIP
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=

{
(CP ′ \ cs) ; end → SKIP if x ∈ Acs

?x : Ao → (CP ′ \ cs) ; end → SKIP if x ∈ Ao

[Roscoe [71, 〈hide-step 1〉(5.5)]]

=

{
((CP ′ \ cs) ; end → SKIP ) if x ∈ Acs

?x : Ao → ((CP ′ \ cs) ; end → SKIP ) if x ∈ Ao

[Roscoe [71, 〈;-step〉(7.4)]]

And the RHS of the law

(CP ; end → SKIP ) \ cs

=
(
?x : A→

(
CP ′ ; end → SKIP

))
\ cs [Roscoe [71, 〈;-step〉(7.4)]]

=

{
(CP ′ ; end → SKIP ) \ cs if x ∈ Acs

?x : Ao → ((CP ′ ; end → SKIP ) \ cs) if x ∈ Ao

[Roscoe [71, 〈hide-step 1〉(5.5)]]

=

{
((CP ′ \ cs) ; end → SKIP ) if x ∈ Acs

?x : Ao → ((CP ′ \ cs) ; end → SKIP ) if x ∈ Ao

[Assumption]

therefore the law is valid for the situation that the process is prefixing. In other words, that
the process in the hiding is a prefixing preserves the distribution of hiding and sequential
composition in the memory model.

Since this law is valid for all combinations of abstracted CP processes, this law is valid
for all CP processes.

C.1.1.18 Parallel composition (disjoint variables) and Sequential composition
- distribution

Law C.1.17 (Parallel composition (disjoint variables) and Sequential composi-
tion - distribution).( ((

CP1 ‖
cs

CP2

)
; end → SKIP

)
//vs RepMCell

)

=


(

(CP1 ; end → SKIP ) //vs1 RepMCell1

)
‖
cs(

(CP2 ; end → SKIP ) //vs2 RepMCell2

)


provided

cs ∩ vs = ∅

scpV (CP1) ∩ scpV (CP2) = ∅

lCP1 = lclV (CP1) = {l1, . . . , lp}

lCP2 = lclV (CP2) = {lp+1, . . . , lm}

vs1 ∪ vs2 = vs

RepMCell1 =

(
‖

{|end |}
i : 1..p • (MCelli (xi))

)

RepMCell2 =

(
‖

{|end |}
i : (p + 1)..m • (MCelli (xi))

)
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Proof. The proof of this law is very similar to that of Law C.1.6.
(1) If both CP1 and CP2 are STOP , it can be easily proved that both LHS and RHS

will result in STOP too. Therefore, the law is valid.
(2) If CP1 is div, it can be easily proved that both LHS and RHS will result in div

too. Therefore, the law is valid.
(3) If both CP1 and CP2 are SKIP , it can be easily proved that both LHS and RHS

will result in SKIP too. Therefore, the law is valid.
(4) If CP1 is an internal choice CP11 u CP12, and assume( ((

CP11 ‖
cs

CP2

)
; end → SKIP

)
//vs RepMCell

)

=


(

(CP11 ; end → SKIP ) //vs RepMCell1

)
‖
cs(

(CP2 ; end → SKIP ) //vs RepMCell2

)


and ( ((
CP12 ‖

cs
CP2

)
; end → SKIP

)
//vs RepMCell

)

=


(

(CP12 ; end → SKIP ) //vs RepMCell1

)
‖
cs(

(CP2 ; end → SKIP ) //vs RepMCell2

)


then the LHS of the law( ((
CP1 ‖

cs
CP2

)
; end → SKIP

)
//vs RepMCell

)
=

( ((
(CP11 u CP12) ‖

cs
CP2

)
; end → SKIP

)
//vs RepMCell

)

=




(

CP11 ‖
cs

CP2

)
u(

CP12 ‖
cs

CP2

)
 ; end → SKIP

 //vs RepMCell


[Hoare [7, Section 3.2.1, L7]]

=


((

CP11 ‖
cs

CP2

)
; end → SKIP

)
//vs RepMCell

u((
CP12 ‖

cs
CP2

)
; end → SKIP

)
//vs RepMCell

 [Law C.1.10]

and the RHS of the law
(

(CP1 ; end → SKIP ) //vs1 RepMCell1

)
‖
cs(

(CP2 ; end → SKIP ) //vs2 RepMCell2

)


=


(

((CP11 u CP12) ; end → SKIP ) //vs1 RepMCell1

)
‖
cs(

(CP2 ; end → SKIP ) //vs2 RepMCell2

)


=


 (CP11 ; end → SKIP ) //vs1 RepMCell1

u
(CP12 ; end → SKIP ) //vs1 RepMCell1


‖
cs

(
(CP2 ; end → SKIP ) //vs2 RepMCell2

)
 [Law C.1.10]
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=



 (CP11 ; end → SKIP ) //vs1 RepMCell1

‖
cs

(CP2 ; end → SKIP ) //vs2 RepMCell2


u (CP12 ; end → SKIP ) //vs1 RepMCell1

‖
cs

(CP2 ; end → SKIP ) //vs2 RepMCell2




[Hoare [7, Section 3.2.1, L7]]

=


((

CP11 ‖
cs

CP2

)
; end → SKIP

)
//vs RepMCell

u((
CP12 ‖

cs
CP2

)
; end → SKIP

)
//vs RepMCell

 [Assumption]

therefore, the law is valid for the situation that one of processes is internal choice. In
other words, that one of process in the external choice is an internal choice preserves the
distribution of parallel composition and sequential composition in the memory model.

(4) If CP1 is a prefixing, and CP2 is a prefixing as well, assume CP1 =?e : A → CP ′1
and CP2 =?e : B → CP ′2 where A (A = Avs ∪ Acs ∪ Ao , in which Avs for events in vs,
Acs for evens in cs, and Ao for independent events) and B (B = Bvs ∪ Bcs ∪ Bo) denote
a set of initially available events for CP1 and CP2 respectively. Since CP1 and CP2 have
disjoint variables in scope, Avs ∩ Bvs = ∅.

The LHS of the law( ((
CP1 ‖

cs
CP2

)
; end → SKIP

)
//vs RepMCell

)
=

( ((
(?e : A→ CP ′1) ‖

cs
(?e : B → CP ′2)

)
; end → SKIP

)
//vs RepMCell

)

=







?e : Avs →
(

CP ′1 ‖
cs

CP2

)
2?e : Ao →

(
CP ′1 ‖

cs
CP2

)
2?e : (Acs ∩ Bcs)→

(
CP ′1 ‖

cs
CP ′2

)
2?e : Bvs →

(
CP1 ‖

cs
CP ′2

)
2?e : Bo →

(
CP1 ‖

cs
CP ′2

)


;end → SKIP


//vs RepMCell


[Roscoe [71, 〈‖ -step〉(3.10)]]

=



( ((
CP ′1 ‖

cs
CP2

)
; end → SKIP

)
//vs RepMCell

)
2?e : Ao →

( ((
CP ′1 ‖

cs
CP2

)
; end → SKIP

)
//vs RepMCell

)
2?e : (Acs ∩ Bcs)→

( ((
CP ′1 ‖

cs
CP ′2

)
; end → SKIP

)
//vs RepMCell

)
2?e : Bo →

( ((
CP1 ‖

cs
CP ′2

)
; end → SKIP

)
//vs RepMCell

)
2

( ((
CP1 ‖

cs
CP ′2

)
; end → SKIP

)
//vs RepMCell

)


[Law C.1.8]
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and the RHS of the law
(

(CP1 ; end → SKIP ) //vs1 RepMCell1

)
‖
cs(

(CP2 ; end → SKIP ) //vs2 RepMCell2

)


=


(

(?e : A→ (CP ′1 ; end → SKIP )) //vs1 RepMCell1

)
‖
cs(

(?e : B → (CP ′2 ; end → SKIP )) //vs2 RepMCell2

)

[Roscoe [71, 〈;-step〉(7.4)]]

=



 (CP ′1 ; end → SKIP ) //vs1 RepMCell1

2

?e : (Ao ∪Acs)→ ((CP ′1 ; end → SKIP ) //vs1 RepMCell1)


‖
cs (CP ′2 ; end → SKIP ) //vs1 RepMCell1

2

?e : (Bo ∪ Bcs)→ ((CP ′2 ; end → SKIP ) //vs1 RepMCell1)




[Roscoe [71, 〈‖ -step〉(3.10)]]

=



 (CP ′1 ; end → SKIP ) //vs1 RepMCell1

‖
cs

(CP2 ; end → SKIP ) //vs2 RepMCell2


2?e : Ao →

 (CP ′1 ; end → SKIP ) //vs1 RepMCell1

‖
cs

(CP2 ; end → SKIP ) //vs2 RepMCell2


2?e : (Acs ∩ Bcs)→

 (CP ′1 ; end → SKIP ) //vs1 RepMCell1

‖
cs

(CP ′2 ; end → SKIP ) //vs2 RepMCell2


2?e : Bo →

 (CP1 ; end → SKIP ) //vs1 RepMCell1

‖
cs

(CP ′2 ; end → SKIP ) //vs2 RepMCell2


2

 (CP1 ; end → SKIP ) //vs1 RepMCell1

‖
cs

(CP ′2 ; end → SKIP ) //vs2 RepMCell2




[Roscoe [71, 〈‖ -step〉(3.10)]]

The parallel composition is rewritten to external choice and prefixing by its step rule. The
one-step application of the rule for both LHS and RHS is shown above. And we can find
that both LHS and RHS result in the external choices having the same initial events. The
same result can be got by further applications of the step rule. Therefore the law is valid
for the situation that both processes are prefixing.

(5) In addition, if CP1 ‖
cs

CP2 terminates, then both CP1 and CP2 will terminate, and

the LHS terminates according Lemma C.1.2. And the RHS will terminate as well because
both the memory model of CP1 and the memory model of CP2 terminate according to
Lemma C.1.2. If P ‖

cs
Q does not terminate, then at least one of P and Q does not

terminate. Thus both LHS and RHS will not terminate.
Since this law is valid for all combinations of abstracted CP processes, this law is valid

for all CP processes.
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C.1.1.19 Interleaving (disjoint variables) and Sequential composition - distri-
bution

Law C.1.18 (Interleaving (disjoint variables) and Sequential composition - dis-
tribution).(

((CP1 ||| CP2) ; end → SKIP ) //vs RepMCell

)
=

 (
(CP1 ; end → SKIP ) //vs1 RepMCell1

)
|||(

(CP2 ; end → SKIP ) //vs2 RepMCell2

)


provided

cs ∩ vs = ∅

scpV (CP1) ∩ scpV (CP2) = ∅

lCP1 = lclV (CP1) = {l1, . . . , lp}

lCP2 = lclV (CP2) = {lp+1, . . . , lm}

vs1 ∪ vs2 = vs

RepMCell1 =

(
‖

{|end |}
i : 1..p • (MCelli (xi))

)

RepMCell2 =

(
‖

{|end |}
i : (p + 1)..m • (MCelli (xi))

)

Proof. It is omitted for brevity because its proof is very similar to the proof of Law C.1.17.

C.1.1.20 Memory model - combination

Law C.1.19 (Memory model - combination).

FMem

((
u

y:Ty
• FMem (CP , {y})

)
, {x}

)
= uy:Ty

• FMem (CP , {x , y})

Proof. (1) For a basic process CP (STOP , SKIP , or div), the LHS of the law

FMem

((
u

y:Ty
• FMem (CP , {y})

)
, {x}

)
= FMem

((
u

y:Ty
• CP

)
, {x}

)
[FVar Rule 2, and Definition B.1.5]

= FMem (CP , {x}) [Roscoe [71, 〈u -idem〉(2.2)]]

= CP [FVar Rule 2, and Definition B.1.5]

And the RHS of the law

u
y:Ty
• FMem (CP , {x , y})

= uy:Ty
• CP [FVar Rule 2, and Definition B.1.5]

= CP [Roscoe [71, 〈u -idem〉(2.2)]]

Therefore, for basic processes the law is proved.



C.1 FMem 245

(2) If CP is an internal choice CP1 u CP2, since internal choice distributes through
u and the memory model (Law C.1.10), we can easily prove the law is valid. Finally, its
proof is omitted for brevity.

(3) If CP is a prefixing, and assume

FMem

((
u

y:Ty
• FMem (CP , {y})

)
, {x}

)
= uy:Ty

• FMem (CP , {x , y})

then we need to prove

FMem

((
u

y:Ty
• FMem (c!e(x , y)?x?y → CP , {y})

)
, {x}

)
= uy:Ty

• FMem (c!e(x , y)?x?y → CP , {x , y})

where the communication c!e(x , y)?x?y is an abstraction that means both x and y are
evaluated and updated in the communication. Then

FMem

((
u

y:Ty
• FMem (c!e(x , y)?x?y → CP , {y})

)
, {x}

)

= FMem


uy:Ty

•


 sety !yi → SKIP ;

FVar (c!e(x , y)?x?y → CP , {y})
;end → SKIP


‖
vsy

MemCelly

 \ vsy

 , {x}


[Definition B.1.5]

= FMem


uy:Ty

•


(

FVar (c!e(x , y)?x?y → CP , {y})
;end → SKIP

)
‖
vsy

MCelly (yi)

 \ vsy

 , {x}


[Lemma C.1.1]

= FMem


uy:Ty

•


 gety?y → c!e(x , y)?x?y →

sety !y → FVar (CP , {y})
;end → SKIP


‖
vsy

MCelly (yi)

 \ vsy

 , {x}


[FVar Rule 3]

= FMem


uy:Ty

•


 c!e (x , yi)?x?y → sety !y →

FVar (CP , {y})
;end → SKIP


‖
vsy

MCelly (yi)

 \ vsy

 , {x}


[Law C.1.3]

= FMem


uy:Ty

•


 c!e (x , yi)?x?yj → sety !yj →

FVar (CP , {y})
;end → SKIP


‖
vsy

MCelly (yi)

 \ vsy

 , {x}


[Replace bounded variable name where yj ∈ Ty ]

= FMem


uy:Ty

•


(

c!e (x , yi)?x?yj → sety !yj →
(FVar (CP , {y}) ; end → SKIP )

)
‖
vsy

MCelly (yi)

 \ vsy

 , {x}


[Roscoe [71, 〈;-step〉(7.4)]]
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= FMem



u

y:Ty
• c!e (x , yi)?x?yj →
(

sety !yj →
(FVar (CP , {y}) ; end → SKIP )

)
‖
vsy

MCelly (yi)

 \ vsy

 , {x}


[Roscoe [71, 〈‖ -step〉(3.10)] and hiding]

= FMem



u

y:Ty
• c!e (x , yi)?x?yj →(
(FVar (CP , {y}) ; end → SKIP )
‖
vsy

MCelly (yj )

)
\ vsy

 , {x}


[Law C.1.4]

=





setx !xi → SKIP ;

FVar




u

y:Ty
• c!e (x , yi)?x?yj →
(

FVar (CP , {y}) ;
end → SKIP

)
‖
vsy

MCelly (yj )

 \ vsy


, {x}


;end → SKIP


‖
vsx

MemCellx


\ vsx

[Definition B.1.5]

=




FVar




u

y:Ty
• c!e (x , yi)?x?yj →
(

FVar (CP , {y}) ;
end → SKIP

)
‖
vsy

MCelly (yj )

 \ vsy


, {x}


;end → SKIP


‖
vsx

MCellx (xi)


\ vsx

[Lemma C.1.1]

=






getx?x →
u

y:Ty
• c!e (x , yi)?x?yj → setx !x →

FVar



(

FVar (CP , {y}) ;
end → SKIP

)
‖
vsy

MCelly (yj )

 \ vsy , {x}




;end → SKIP


‖
vsx

MCellx (xi)


\ vsx

[FVar Rule 14 and 3]
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=






u

y:Ty
• c!e (xi , yi)?xj ?yj → setx !xj →

FVar



(

FVar (CP , {y}) ;
end → SKIP

)
‖
vsy

MCelly (yj )

 \ vsy , {x}




;end → SKIP


‖
vsx

MCellx (xi)


\ vsx

[Law C.1.3 and replace bounded variable name where xj ∈ Tx ]

=


u

y:Ty
•





c!e (xi , yi)?xj ?yj → setx !xj →

FVar



(

FVar (CP , {y}) ;
end → SKIP

)
‖
vsy

MCelly (yj )

 \ vsy

, {x}


;end → SKIP


‖
vsx

MCellx (xi)




\ vsx

[Law C.1.10]

= u
y:Ty
•





c!e (xi , yi)?xj ?yj → setx !xj →

FVar



(

FVar (CP , {y}) ;
end → SKIP

)
‖
vsy

MCelly (yj )

 \ vsy

, {x}


;end → SKIP


‖
vsx

MCellx (xi)


\ vsx

[Roscoe [71, 〈hide-dist〉(5.1)]]

=

u
y:Ty
• c!e (xi , yi)?xj ?yj →





setx !xj →

FVar



(

FVar (CP , {y}) ;
end → SKIP

)
‖
vsy

MCelly (yj )

 \ vsy

, {x}


;end → SKIP


‖
vsx

MCellx (xi)


\ vsx


[Roscoe [71, 〈‖ -step〉(3.10)]]

=

u
y:Ty
• c!e (xi , yi)?xj ?yj →




FVar



(

FVar (CP , {y}) ;
end → SKIP

)
‖
vsy

MCelly (yj )

 \ vsy

, {x}


;end → SKIP


‖
vsx

MCellx (xj )


\ vsx


[Law C.1.4]
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And the RHS of the law to be proved(
u

y:Ty
• FMem (c!e(x , y)?x?y → CP , {x , y})

)

=


u

y:Ty
•



 setx !xi → sety !yi → SKIP ;
FVar (c!e(x , y)?x?y → CP , {x , y})
;end → SKIP


‖
vs(
‖

{|end |}
{MemCellx ,MemCelly}

)


\ vs


[Definition B.1.5]

=

uy:Ty
•



(
FVar (c!e(x , y)?x?y → CP , {x , y})
;end → SKIP

)
‖
vs(
‖

{|end |}
{MCellx (xi) ,MCelly (yi)}

)
 \ vs


[Lemma C.1.1]

=


u

y:Ty
•



 getx?x → gety?y → c!e(x , y)?x?y →
setx !x → sety !y →
FVar (CP , {x , y}) ; end → SKIP


‖
vs(
‖

{|end |}
{MCellx (xi) ,MCelly (yi)}

)


\ vs


[FVar Rule 3]

=

uy:Ty
•



(
c!e(xi , yi)?x?y → setx !x → sety !y →
FVar (CP , {x , y}) ; end → SKIP

)
‖
vs(
‖

{|end |}
{MCellx (xi) ,MCelly (yi)}

)
 \ vs


[Law C.1.3]

=

uy:Ty
•



(
c!e(xi , yi)?xj ?yj → setx !xj → sety !yj →
FVar (CP , {x , y}) ; end → SKIP

)
‖
vs(
‖

{|end |}
{MCellx (xi) ,MCelly (yi)}

)
 \ vs


[Replace bounded variable name where xj ∈ Tx ∧ yj ∈ Ty ]

=



u
y:Ty
• c!e(xi , yi)?xj ?yj →

(
setx !xj → sety !yj →
FVar (CP , {x , y}) ; end → SKIP

)
‖
vs(
‖

{|end |}
{MCellx (xi) ,MCelly (yi)}

)
 \ vs


[Roscoe [71, 〈‖ -step〉(3.10)]]
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=



u
y:Ty
• c!e(xi , yi)?xj ?yj →
(

FVar (CP , {x , y}) ; end → SKIP
)

‖
vs(
‖

{|end |}
{MCellx (xj ) ,MCelly (yj )}

)
 \ vs


[Law C.1.4]

Compared to the LHS, then we need to prove



 FVar


(

(FVar (CP , {y}) ; end → SKIP )
‖
vsy

MCelly (yj )

)
\ vsy

, {x}


;end → SKIP


‖
vsx

MCellx (xj )

 \ vsx



=




FVar (CP , {x , y}) ; end → SKIP ‖
vs(

‖
{|end |}

{MCellx (xj ) ,MCelly (yj )}

)  \ vs


where vs = vsx ∪ vsy .

By the similar rules, the equation can be easily derived from the assumption

FMem

((
u

y:Ty
• FMem (CP , {y})

)
, {x}

)
= uy:Ty

• FMem (CP , {x , y})

Finally, the law is valid if CP is a prefixing.
Since this law is valid for all combinations of abstracted CP processes, this law is valid

for all CP processes.

C.1.1.21 Memory model - termination

Law C.1.20 (Memory model - termination).

(end → SKIP ) //vs RepMCell = SKIP

Proof.

(end → SKIP ) //vs RepMCell

=

(
(end → SKIP ) ‖

vs

(
‖

{|end |}
i : 1..m • (MCelli (li))

))
\ vs

[Abbreviations C.1.1]

=


(end → SKIP )
‖
vs ‖
{|end |}

i : 1..m •

 seti?y → MCelli (y)
2 geti !li → MCelli (li)
2 end → SKIP



 \ vs

[Definition B.1.1]

=

(
SKIP ‖

vs

(
‖

{|end |}
i : 1..m • (SKIP )

))
\ vs [Roscoe [71, 〈‖ -step〉(3.10)]]

= (SKIP ) \ vs [Roscoe [71, Distributed Termination]]

= SKIP [Roscoe [8, 〈SKIP -hide-Id〉(6.9)]]
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C.1.2 Lemmas

C.1.2.1 Memory Initialisation

Lemma C.1.1 (Memory Initialisation). A set of MemCell processes for m local variables
are initialised by a sequence of set events (set1!l1, · · · , setm !lm).

(set1!l1 → · · · → setm !lm → SKIP ; P) //vs RepMem

=

(
P //vs

(
‖

{|end |}
i : 1..m • (MCelli (li))

))

The states of all memory processes have been switched from MemCell to MCell , and the
value of each li in its corresponding memory process MCelli is the message li from the seti
event.

Proof.

(set1!l1 → · · · → setm !lm → SKIP ; P) //vs RepMem

=


(set1!l1 → · · · → setm !lm → SKIP ; P)
//vs(
‖

{|end |}
i : 1..m • (MemCelli)

)
 [Abbreviations C.1.1]

=


(set2!l2 → · · · → setm !lm → SKIP ; P)
//vs(
‖

{|end |}
i : 1..m •

{
MemCelli (xi) i 6= 1

MCell1 (l1) i = 1

)
 [Law C.1.4]

=


(set3!l3 → · · · → setm !lm → SKIP ; P)
//vs ‖
{|end |}

i : 1..m •


MemCelli (xi) i 6= 1 ∧ i 6= 2

MCell1 (l1) i = 1

MCell2 (l2) i = 2



 [Law C.1.4]

=

(
(SKIP ; P) //vs

(
‖

{|end |}
i : 1..m • (MCelli (li))

))
[Applied Law C.1.4 n times]

=

(
P //vs

(
‖

{|end |}
i : 1..m • (MCelli (li))

))
[Roscoe [71, 〈;-unit-l〉(7.2)]]

C.1.2.2 Memory Model of Linked Actions

In this section, we aim to prove that the memory model of a CSP process Φ (Rwrt (A)),
that are linked from an action A in Circus by the link rule defined in our solution, preserves
the same state and behaviour as the original action A. To prove the conclusion applied to
each action, we assume that
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• before the action and the memory model, the state variables and local variables in
Circus have the same values as their counterparts (state variables in Z and memory
processes in CSP) in the linked CSP ‖B Z ,

and then to prove

• after the action and its linked memory model process in CSP ‖B Z , they get the
same state and local variables as well as the same behaviour.

Our strategies are listed below.

• For an action A, we construct the memory model of its linked process in CSP by its
corresponding link rule in Appendix E,

(Us ; FVar (Φ (Rwrt (A)) , l) ; end → SKIP )
‖
vs(
‖

{|end |}
i : 1..m • (seti?x → MCelli (x ))

)
 \ vs [Definition B.1.5]

• Then the memory model is transformed to a format that is syntactically similar to
the linked process. For example, if the linked process is like P ; Q , then the memory
model is transformed to a sequential composition ; of the memory model of P and
the memory model of Q. Since they have the same syntax and both are in CSP, we
conclude they have the same behaviour.

• After that, we need to prove that the transformed process has the same state part as
the original action A. That is, they have the same effect on state and local variables,
where

– state variables in Circus are within a basic process which the action belongs to,
and state variables in CSP ‖B Z are a part of global state space, (if the action
does not update state variables, this step is omitted)

– local variables in Circus are declared in variable blocks, and local variables in
CSP actually denote their corresponding memory processes.

• Finally, if both the state and behavioural parts are kept, then we conclude the mem-
ory model of the linked process has the same semantics as the original action.

Furthermore, for the state variables evaluated in the first construct of an action, ac-
cording to our link rules, Rwrt Rules will prefix the action with a number of P OP si
schema expressions to get the values of these state variables. Then they are translated to
prefixing in CSP. Link Rule 39 is an example. These prefixing events are not a part of get
and set events in the memory model. Therefore, they are regarded as normal events. To
simplify the proof, we skip these additional events.

Termination of Memory Model

Lemma C.1.2 (Termination of Memory Model). The memory model of a process P ter-
minates if and only if P terminates and is not a recursion.

Proof. The memory model of a process P is

((Us ; FVar (P , v) ; end → SKIP ) //vs RepMem) [Definition B.1.5]
= (FVar (P , v) ; end → SKIP ) //vs RepMCell [Lemma C.1.1]
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Now considering FVar rules, we tend to prove for each rule, if P terminates, FVar (P , v)
also terminates

(1) If scpV (P) ∩ v = ∅, then

(FVar (P , v) ; end → SKIP ) //vs RepMCell

= (P ; end → SKIP ) //vs RepMCell [FVar Rule 1]

Since P terminates, according to Law C.1.20, then the process above also terminates
(2) If P is the basic process SKIP ,

(FVar (SKIP , v) ; end → SKIP ) //vs RepMCell

= (SKIP ; end → SKIP ) //vs RepMCell [FVar Rule 2]
= (end → SKIP ) //vs RepMCell [Roscoe [71, 〈;-unit-l〉(7.2)]]
= SKIP [Law C.1.20]

there the memory model of P also terminates.
(3) If P is a prefixing like c!e (lp , · · · , lq)?li → P ′, assume the memory model of P ′

terminates, then(
FVar

(
c!e (lp , · · · , lq)?li → P ′, v

)
; end → SKIP

)
//vs RepMCell

=

(
getp?lp → · · · → getq?lq → c!e (lp , · · · , lq)?li → seti !li →
FVar (P ′, v) ; end → SKIP

)
//vs RepMCell

[FVar Rule 3]

=

(
c!e (xp , · · · , xq)?li → seti !li →
FVar (P ′, v) ; end → SKIP

)
//vs RepMCell [Law C.1.3]

= c!e (xp , · · · , xq)?li →
((

seti !li → FVar (P ′, v) ; end → SKIP
)
//vs RepMCell

)
[Hoare [7, Section 4.5.1, L2]]

= c!e (xp , · · · , xq)?li →
((

FVar (P ′, v) ; end → SKIP
)
//vs RepMCell

)
[Law C.1.4]

According to assumption, the memory model of this prefixing also terminates. In other
words, prefixing c → P will not cause non-termination if P terminates.

(4) If P is a sequential composition like P1 ; P2, assume

initRdLclV (P1) = {lp , · · · , lq}

and the memory models of both P1 and P2 terminate, then

(FVar (P1 ; P2, v) ; end → SKIP ) //vs RepMCell

=

(
getp?lp → · · · → getq?lq → (FVarPost (P1, v) ; FVar (P2, v))
;end → SKIP

)
//vs RepMCell

[FVar Rule 4]

=

(
(FVarPost (P1Vxap , · · · , xaq/lap , · · · , laqW, v) ; FVar (P2, v))
;end → SKIP

)
//vs RepMCell

[Law C.1.3]

=

(
FVarPost (P1Vxap , · · · , xaq/lap , · · · , laqW, v) ;
(FVar (P2, v) ; end → SKIP )

)
//vs RepMCell

[Hoare [7, Section 5.2, L2]]

=

(
(FVarPost (P1Vxap , · · · , xaq/lap , · · · , laqW, v) ; end → SKIP ) //vs RepMCell1

; (FVar (P2, v) ; end → SKIP ) //vs RepMCell2

)
[Law C.1.14]
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where RepMCell1 = RepMCell 6= RepMCell2 , and RepMCell2 is very similar to RepMCell1 except
that some local variables are updated by P1.

According to assumption, the memory models of both P1 and P2 terminate. That is, the
process before ; terminates and the process after ; terminates. And finally the sequential
composition terminates. In other words, the memory model of sequential composition
P1 ; P2 will not cause non-termination if the memory models of P1 and P2 terminate.

(5) If P is a process hiding like P \ cs, assume

initRdLclV (P) = {lp , · · · , lq}
cs ∩ vs = ∅

and the memory model of P terminates, then

(FVar (P \ cs, v) ; end → SKIP ) //vs RepMCell

=

(
getp?lp → · · · → getq?lq → (FVarPost (P , v) \ cs)
;end → SKIP

)
//vs RepMCell

[FVar Rule 5]

=

(
(FVarPost (PVxap , · · · , xaq/lap , · · · , laqW, v) \ cs)
;end → SKIP

)
//vs RepMCell [Law C.1.3]

=

( (
FVarPost (PVxap , · · · , xaq/lap , · · · , laqW, v)
;end → SKIP

)
\ cs

)
//vs RepMCell

[Law C.1.16]

=

( (
FVarPost (PVxap , · · · , xaq/lap , · · · , laqW, v)
;end → SKIP

)
//vs RepMCell

)
\ cs

[Law C.1.15]

According to assumption, the memory model of P terminates, then the hiding of cs from
it terminates as well. In other words, the memory model of process hiding P \ cs will not
cause non-termination if the memory model of P terminates.

(6) If P is an external choice like P1 2 P2, assume

initRdLclV (P1) = {lp1, · · · , lq1}
initRdLclV (P2) = {lp2, · · · , lq2}
initRdLclV (P1) ∪ initRdLclV (P2) = {lp , · · · , lq}

and the memory models of both P1 and P2 terminate, then

(FVar (P1 2 P2, v) ; end → SKIP ) //vs RepMCell

=

(
getp?lp → · · · → getq?lq → (FVarPost (P1, v) 2 FVarPost (P2, v))
;end → SKIP

)
//vs RepMCell

[FVar Rule 6]

=

 (
FVarPost (P1Vxp1, · · · , xq1/lp1, · · · , lq1W, v)
2 FVarPost (P2Vxp2, · · · , xq2/lp2, · · · , lq2W, v)

)
;end → SKIP

 //vs RepMCell

[Law C.1.3]

=

 (FVarPost (P1Vxp1, · · · , xq1/lp1, · · · , lq1W, v) ; end → SKIP ) //vs RepMCell

2

(FVarPost (P2Vxp2, · · · , xq2/lp2, · · · , lq2W, v) ; end → SKIP ) //vs RepMCell


[Law C.1.8]

According to assumption, the memory models of both P1 and P2 terminate. Therefore,
the external choice of them also terminates. In other words, the memory model of exter-
nal choice P1 2 P2 will not cause non-termination if the memory models of P1 and P2

terminate.
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(7) If P is an internal choice like P1 u P2, assume

initRdLclV (P1) = {lp1, · · · , lq1}
initRdLclV (P2) = {lp2, · · · , lq2}
initRdLclV (P1) ∪ initRdLclV (P2) = {lp , · · · , lq}

and the memory models of both P1 and P2 terminate, then

(FVar (P1 u P2, v) ; end → SKIP ) //vs RepMCell

=

(
getp?lp → · · · → getq?lq → (FVarPost (P1, v) u FVarPost (P2, v))
;end → SKIP

)
//vs RepMCell

[FVar Rule 7]

=

 (
FVarPost (P1Vxp1, · · · , xq1/lp1, · · · , lq1W, v)
u FVarPost (P2Vxp2, · · · , xq2/lp2, · · · , lq2W, v)

)
;end → SKIP

 //vs RepMCell

[Law C.1.3]

=

 (FVarPost (P1Vxp1, · · · , xq1/lp1, · · · , lq1W, v) ; end → SKIP ) //vs RepMCell

u
(FVarPost (P2Vxp2, · · · , xq2/lp2, · · · , lq2W, v) ; end → SKIP ) //vs RepMCell


[Law C.1.10]

According to assumption, the memory models of both P1 and P2 terminate. Therefore,
the internal choice of them also terminates. In other words, the memory model of inter-
nal choice P1 u P2 will not cause non-termination if the memory models of P1 and P2

terminate.
(8) If P is a boolean guard like b & P , assume

lclV (b) = {lp1, · · · , lq1}
initRdLclV (P) = {lp2, · · · , lq2}
lclV (b) ∪ initRdLclV (P) = {lp , · · · , lq}

and the memory model of P terminates, then

(FVar (b & P , v) ; end → SKIP ) //vs RepMCell

=

(
getp?lp → · · · → getq?lq → (b & FVarPost (P , v))
;end → SKIP

)
//vs RepMCell

[FVar Rule 8]

=

 (
bVxp1, · · · , xq1/lp1, · · · , lq1W
& FVarPost (PVxp2, · · · , xq2/lp2, · · · , lq2W, v)

)
;end → SKIP

 //vs RepMCell

[Law C.1.3]

=

(
bVxp1, · · · , xq1/lp1, · · · , lq1W &
((FVarPost (PVxp2, · · · , xq2/lp2, · · · , lq2W, v) ; end → SKIP ) //vs RepMCell )

)
[Law C.1.13]

According to assumption, the memory model of P terminates. Therefore, the boolean
guard of it also terminates. In other words, the memory model of boolean guard b & P
will not cause non-termination if the memory model of P terminate.

(10) If P is a parallel composition like P1 ‖
cs

P2, assume

scpV (P1) ∩ scpV (P2) = ∅
initRdLclV (P1) = {lp1, · · · , lq1}
initRdLclV (P2) = {lp2, · · · , lq2}
initRdLclV (P1) ∪ initRdLclV (P2) = {lp , · · · , lq}
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and the memory models of both P1 and P2 terminate, then(
FVar

(
P1 ‖

cs
P2, v

)
; end → SKIP

)
//vs RepMCell

=

 getp?lp → · · · → getq?lq →
(

FVarPost (P1, v) ‖
cs

FVarPost (P2, v)

)
;end → SKIP

 //vs RepMCell

[FVar Rule 9]

=


(

FVarPost (P1Vxp1, · · · , xq1/lp1, · · · , lq1W)
‖
vs

FVarPost (P2Vxp2, · · · , xq2/lp2, · · · , lq2W)

)
;end → SKIP

 //vs RepMCell

[Law C.1.3]

=

 (FVarPost (P1Vxp1, · · · , xq1/lp1, · · · , lq1W) ; end → SKIP ) //vs RepMCell1..p

‖
cs

(FVarPost (P2Vxp2, · · · , xq2/lp2, · · · , lq2W) ; end → SKIP ) //vs RepMCell(p+1)..m


[Law C.1.10]

where RepMCell1..p and RepMCell(p+1)..m
are partitioned memory processes.

According to assumption, the memory models of both P1 and P2 terminate. Therefore,
the parallel composition of them also terminates. In other words, the memory model of
parallel composition P1 ‖

cs
P2 will not cause non-termination if the memory models of P1

and P2 terminate.
(11) If P is an interleaving like P1 ||| P2, the proof is omitted since it is very similar to

the proof for parallel composition in 10).
(12) If P is a recursion, it is not supported.
(13) If P is a replicated process, since replicated operators are just the expansion

of corresponding operators, their proofs are very similar to corresponding operators and
consequently omitted.

Finally, all FVar rules except recursion will not result in non-termination if P termi-
nates. Therefore,

(FVar (P , v) ; end → SKIP ) //vs RepMCell [Lemma C.1.1]

terminates as well according to Law C.1.20, and the lemma is proved.

Basic CSP Actions

Lemma C.1.3 (Basic CSP Actions). The memory model of linked basic actions in CSP
preserves the state and behaviour of basic actions in Circus.

Proof. (1). The memory model of linked Skip is(
(Us ; FVar (Φ (Rwrt (Skip)) , l) ; end → SKIP )
//vs RepMem

)
[Definition B.1.5]

=

(
(FVar (Φ (Rwrt (Skip)) , l) ; end → SKIP )
//vs RepMCell

)
[Lemma C.1.1]

=
(

(FVar (SKIP , l) ; end → SKIP ) //vs RepMCell

)
[Link Rule 32]

=
(

(SKIP ; end → SKIP ) //vs RepMCell

)
[FVar Rule 2]

=
(

(end → SKIP ) //vs RepMCell

)
[Roscoe [71, 〈;-unit-l〉(7.2)]]
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=

(
SKIP ‖

vs

(
‖

{|end |}
i : 1..m • (SKIP )

))
\ vs

[Roscoe [71, 〈‖ -step〉(3.10)] and hiding]

= (SKIP ) \ vs [Roscoe [71, Distributed Termination]]

= SKIP

Therefore, the memory model of the linked Skip is SKIP . According to Section 5.10.2.1,
they have the same semantics.

(2). The memory model of linked Stop is(
(Us ; FVar (Φ (Rwrt (Stop)) , l) ; end → SKIP )
//vs RepMem

)
[Definition B.1.5]

=
(

(FVar (STOP, l) ; end → SKIP ) //vs RepMCell

)
[Link Rule 32]

=
(

(STOP ; end → SKIP ) //vs RepMCell

)
[FVar Rule 2]

=
(

(STOP ) //vs RepMCell

)
[Hoare [7, Section 5.2, L2]]

= STOP [Law C.1.1]

Therefore, the memory model of the linked Stop is STOP . According to Section 5.10.2.1,
they have the same semantics.

(3). The memory model of linked Chaos is(
(Us ; FVar (Φ (Rwrt (Chaos)) , l) ; end → SKIP )
//vs RepMem

)
[Definition B.1.5]

=
(

(FVar (div, l) ; end → SKIP ) //vs RepMCell

)
[Link Rule 32]

=
(

(div ; end → SKIP ) //vs RepMCell

)
[FVar Rule 2]

=
(

(div) //vs RepMCell

)
[Roscoe [71, 〈;-zero-l〉(13.7)]]

= div [Law C.1.2]

Therefore, the memory model of the linked Chaos is div. According to Section 5.10.2.1,
they have the same semantics.

Prefixing

Lemma C.1.4 (Prefixing). The memory model of linked prefixing in CSP preserves the
state and behaviour of prefixing in Circus.

Proof. (1). Provided a prefixing action

A =̂ c!e (lp , · · · , lq)?lk? · · ·?ln → A′

where the message expression e evaluates local variables lp , · · · , lq , and local variables
lk , · · · , ln are input variables of c, then(

(Us ; FVar (Φ (Rwrt (A)) , l) ; end → SKIP )
//vs RepMem

)
[Definition B.1.5]

=

(
(FVar (Φ (Rwrt (c!e (lp , · · · , lq)?lk? · · ·?ln → A′)) , l) ; end → SKIP )
//vs RepMCell

)
[Lemma C.1.1]

=

(
(FVar (c!Φ (e (lp , · · · , lq))?lk? · · ·?ln → Φ (Rwrt (A′)) , l) ; end → SKIP )
//vs RepMCell

)
[Link Rule 33 to 38]
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=



(
getp?lp → · · · → getq?lq → c!Φ (e (lp , · · · , lq))?lk? · · ·?ln →
setk !lk → · · · → setn !ln → FVar (Φ (Rwrt (A′)) , l)

)
;end → SKIP

‖
vs ‖
{|end |}

i : 1..m •

 seti?y → MCelli (y)
2 geti !xi → MCelli (xi)
2 end → SKIP




\ vs

[FVar Rule 3]

=



(
c!Φ (e (xp , · · · , xq))?lk? · · ·?ln →
setk !lk → · · · → setn !ln → FVar (Φ (Rwrt (A′)) , l)

)
;end → SKIP

‖
vs ‖
{|end |}

i : 1..m •

 seti?y → MCelli (y)
2 geti !xi → MCelli (xi)
2 end → SKIP




\ vs [Law C.1.3]

=



c!Φ (e (xp , · · · , xq))?lk? · · ·?ln →

(setk !lk → · · · → setn !ln → FVar (Φ (Rwrt (A′)) , l))
;end → SKIP

‖
vs ‖
{|end |}

i : 1..m •

 seti?y → MCelli (y)
2 geti !xi → MCelli (xi)
2 end → SKIP






\ vs

[Roscoe [71, 〈‖ -step〉(3.10)]]

=



c!Φ (e (xp , · · · , xq))?lk? · · ·?ln →
(FVar (Φ (Rwrt (A′)) , l)) ; end → SKIP
‖
vs(
‖

{|end |}
i : 1..m •

({
MCelli (xi) i 6∈ k ..n

MCelli (li) i ∈ k ..n

))


 \ vs [Law C.1.4]

=



c!Φ (e (xp , · · · , xq))?lk? · · ·?ln →
(FVar (Φ (Rwrt (A′)) , l)) ; end → SKIP
‖
vs(
‖

{|end |}
i : 1..m •

({
MCelli (xi) i 6∈ k ..n

MCelli (li) i ∈ k ..n

))
 \ vs

 [Hiding]

Therefore,

• from the behavioural aspect, the transformed process above has the same syntax as
the linked process, and both are prefixing.

• from the state aspect,

– the local variables evaluated in the expression e of the communication c are
substituted by their corresponding values in the memory. According to our
assumptions, these values are equal to those in Circus. In addition, Φ (e) is
a linked counterpart in CSP. Therefore, the Φ (e (xp , · · · , xq)) is equal to e in
Circus. Finally, the communication c in the transformed process above is equal
to the communication c in Circus.
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– then for A′, it is eventually transformed to the memory model of a linked process
Φ (Rwrt (A′)) and the local variables that correspond to the input variables of c
are updated to their input values in the memory, which is the same as that in
Circus (the values of the input variables of c are seen by A′).

• Eventually, the memory model of the linked process from a prefixing preserves the
semantics of the prefixing in Circus.

Guarded Action

Lemma C.1.5 (Guarded Action). The memory model of linked guarded action in CSP
preserves the state and behaviour of the guarded action in Circus.

Proof. Provided g evaluates local variables lgp , · · · , lgq , and the first construct of A eval-
uates local variables lap , · · · , laq . Furthermore, they together form a set of local variables
lp , · · · , lq .( (

Us ; FVar

(
Φ
(
Rwrt

(
(g) N A

))
, l
)

; end → SKIP
)

//vs RepMem

)
[Definition B.1.5]

=

( ((
FVar

(
Φ
(
Rwrt

(
(g) N A

))
, l
))

; end → SKIP
)

//vs RepMCell

)
[Lemma C.1.1]

=

( (
FVar

((
Φ (g) & Φ (Rpost (A))

)
, l
)

; end → SKIP
)

//vs RepMCell

)
[Link Rule 39]

=

 (
Fmrg (FVarPre (Φ (g) , l) ,FVarPre (Φ (Rpost (A)) , l))→
(Φ (g) & FVarPost (Φ (Rpost (A))) , l) ; end → SKIP

)
//vs RepMCell


[FVar Rule 3 and FVar Rule 8]

=

  (
getp?lp → · · · → getq?lq →
(Φ (g) & FVarPost (Φ (Rpost (A))) , l) ; end → SKIP

)
//vs RepMCell

 
[g and the first construct of A evaluate lp , · · · , lq ]

=



 (

Φ (g [xgp , · · · , xgq/lgp , · · · , lgq ]) &
FVarPost (Φ (Rpost (AVxap , · · · , xaq/lap , · · · , laqW))) , l

)
;end → SKIP


//vs RepMCell




[Law C.1.1.4]

=


Φ (g [xgp , · · · , xgq/lgp , · · · , lgq ]) & ( (

FVarPost (Φ (Rpost (AVxap , · · · , xaq/lap , · · · , laqW))) , l
)

;end → SKIP

)
//vs RepMCell




[g does not evaluate local variables since they have been substituted, and Law C.1.11]

Therefore,

• from the behavioural aspect, the transformed process above has the same syntax as
the linked process, and both are boolean guards.

• from the state aspect,

– the local variables evaluated in the condition g are substituted by their cor-
responding values in the memory. According to our assumptions, these values
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are equal to those in Circus. In addition, Φ (g) is a linked counterpart in CSP.
Therefore, the Φ (g [xgp , · · · , xgq/lgp , · · · , lgq ]) is equal to g in Circus. Finally, the
condition g in the transformed process above is equal to the g in Circus.

– then for A, it is eventually transformed to the memory model of a linked process
and the local variables in the memory are left unchanged, which is the same as
that in Circus (the action A evaluates the same values of local variables as the
condition g).

• Eventually, the memory model of the linked process from a guarded action preserves
the semantics of that in Circus.

Sequential Composition

Lemma C.1.6 (Sequential Composition). The memory model of linked sequential compo-
sition preserves the state and behaviour.

Proof. Provided the local variables lp , · · · , lq are evaluated in the first construct of the first
action A1,

(
(Us ; FVar (Φ (Rwrt (A1 ; A2)) , l) ; end → SKIP )
//vs RepMem

)
[Definition B.1.5]

=

(
(FVar (Φ (Rwrt (A1 ; A2)) , l) ; end → SKIP )
//vs RepMCell

)
[Lemma C.1.1]

=

(
(FVar ((Φ (Rpost (A1)) ; Φ (Rwrt (A2))) , l) ; end → SKIP )
//vs RepMCell

)
[Link Rule 40]

=


 FVarPre (Φ (Rpost (A1)) , l)→

(FVarPost (Φ (Rpost (A1)) , l) ; FVar (Φ (Rwrt (A2)) , l))
;end → SKIP


//vs RepMCell

 [FVar Rule 4]

=



 getp?lp → · · · → getq?lq →
(FVarPost (Φ (Rpost (A1)) , l) ; FVar (Φ (Rwrt (A2)) , l))
;end → SKIP


‖
vs(
‖

{|end |}
i : 1..m • MCelli (xi)

)


\ vs

[Definition B.1.3]

=



 (
FVarPost (Φ (Rpost (A1Vxp , · · · , xq/lp , · · · , lqW)) , l)
;FVar (Φ (Rwrt (A2)) , l)

)
;end → SKIP


‖
vs(
‖

{|end |}
i : 1..m • MCelli (xi)

)


\ vs

[Law C.1.1.4]
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=



(
FVarPost (Φ (Rpost (A1Vxp , · · · , xq/lp , · · · , lqW)) , l)
; (FVar (Φ (Rwrt (A2)) , l) ; end → SKIP )

)
‖
vs(
‖

{|end |}
i : 1..m • MCelli (xi)

)
 \ vs

[Roscoe [71, 〈;-assoc〉(7.3)]]

=





(
FVarPost (Φ (Rwrt (A1Vxp , · · · , xq/lp , · · · , lqW)) , l)
;end → SKIP

)
‖
vs(
‖

{|end |}
i : 1..m • (MCelli (xi))

)
 \ vs

;
(FVar (Φ (Rwrt (A2)) , l) ; end → SKIP )
‖
vs(
‖

{|end |}
i : 1..m •

({
MCelli (xi) i 6∈ j ..k

MCelli (li) i ∈ j ..k

))
 \ vs


[Law C.1.14]

Therefore,

• from the behavioural aspect, the transformed process above has the same syntax as
the linked process, and both are sequential composition.

• from the state aspect,

– the local variables evaluated in the first construct of the first action A1 are
substituted by their corresponding values in the memory. According to our
assumptions, these values are equal to those in Circus. In addition, the first
process in the transformed sequential composition is a memory model of the
linked process from A1 in Circus, and its memory is initially equal to the local
variables in Circus.

– then the second process in the transformed sequential composition is a memory
model of the linked process from A2 in Circus, and its memory is another copy
of the initial memory but all updates by the first process are seen. That is the
same as the sequential composition in Circus.

• Eventually, the memory model of the linked process from a sequential composition
preserves the semantics of that in Circus.

External Choice

Lemma C.1.7 (External Choice). The memory model of linked external choice of actions
preserves the state and behaviour.

Proof. Provided the local variables lp1 , · · · , lq1 are evaluated in the first construct of the
first action AA1, and the local variables lp2 , · · · , lq2 are evaluated in the first construct of
the second action AA2.

initRdLclV (AA1) = {lp1 , · · · , lq1}
initRdLclV (AA2) = {lp2 , · · · , lq2}
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Then (
(Us ; FVar (Φ (Rwrt (AA1 2 AA2)) , l) ; end → SKIP )
//vs RepMem

)
[Definition B.1.5]

=

(
(FVar (Φ (Rwrt (AA1 2 AA2)) , l) ; end → SKIP )
//vs RepMCell

)
[Lemma C.1.1]

=

(
(FVar (Φ (Rpost (AA1)) 2 Φ (Rpost (AA2)) , l) ; end → SKIP )
//vs RepMCell

)
[Link Rule 41]

=




Fmrg

(
FVarPre (Φ (Rpost (AA1 (lp1 , · · · , lq1))) , l)
FVarPre (Φ (Rpost (AA2 (lp2 , · · · , lq2))) , l)

)
→

 FVarPost (Φ (Rpost (AA1 (lp1 , · · · , lq1))) , l)
2

FVarPost (Φ (Rpost (AA2 (lp2 , · · · , lq2))) , l)


;end → SKIP


‖
vs(
‖

{|end |}
i : 1..m • MCelli (xi)

)


\ vs

[FVar Rule 6]

=



 FVarPost (Φ (Rpost (AA1Vxp1 , · · · , xq1/lp1 , · · · , lq1W)) , l)

2

FVarPost (Φ (Rpost (AA2Vxp2 , · · · , xq2/lp2 , · · · , lq2W)) , l)


;end → Skip


//vs RepMCell


[Defintion B.1.3, Definition B.1.4, and Law C.1.3]

=



 (
FVarPost (Φ (Rpost (AA1Vxp1 , · · · , xq1/lp1 , · · · , lq1W)) , l)
;end → SKIP

)
//vs RepMCell


2 (

FVarPost (Φ (Rpost (AA2Vxp2 , · · · , xq2/lp2 , · · · , lq2W)) , l)
;end → SKIP

)
//vs RepMCell




[Law C.1.8]

Therefore,

• from the behavioural aspect, the transformed process above has the same syntax as
the linked process, and both are external choice.

• from the state aspect,

– both the memory model of the linked process from AA1 and the memory model
of the linked process from AA2 in the transformed external choice are based on
the same memory. That is the same as external choice of actions in Circus where
AA1 and AA2 see a same copy of local variables. And these local variables are
equal to local variables in the memory of CSP.

• Eventually, the memory model of the linked process from an external choice preserves
the semantics of that in Circus.
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Internal Choice

Lemma C.1.8 (Internal Choice). The memory model of linked internal choice of actions
preserves the state and behaviour.

Proof. Provided the local variables lp1 , · · · , lq1 are evaluated in the first construct of the
first action A1, and the local variables lp2 , · · · , lq2 are evaluated in the first construct of
the second action A2. Then(

(Us ; FVar (Φ (Rwrt (A1 u A2)) , l) ; end → SKIP )
//vs RepMem

)
[Definition B.1.5]

=

(
((FVar (Φ (Rwrt (A1 u A2)) , l)) ; end → SKIP )
//vs RepMCell

)
[Lemma C.1.1]

=

(
(FVar (Φ (Rpost (A1)) u Φ (Rpost (A2)) , l) ; end → SKIP )
//vs RepMCell

)
[Link Rule 42]

=




Fmrg

(
FVarPre (Φ (Rpost (A1 (lp1 , · · · , lq1))) , l)
FVarPre (Φ (Rpost (A2 (lp2 , · · · , lq2))) , l)

)
→

 FVarPost (Φ (Rpost (A1 (lp1 , · · · , lq1))) , l)
u
FVarPost (Φ (Rpost (A2 (lp2 , · · · , lq2))) , l)


;end → SKIP


‖
vs(
‖

{|end |}
i : 1..m • MCelli (xi)

)


\ vs

[FVar Rule 7]

=



 FVarPost (Φ (Rpost (A1Vxp1 , · · · , xq1/lp1 , · · · , lq1W)) , l)
u
FVarPost (Φ (Rpost (A2Vxp2 , · · · , xq2/lp2 , · · · , lq2W)) , l)


;end → Skip


//vs RepMCell


[Defintion B.1.3, Definition B.1.4, and Law C.1.3]

=



 (
FVarPost (Φ (Rpost (A1Vxp1 , · · · , xq1/lp1 , · · · , lq1W)) , l)
;end → SKIP

)
//vs RepMCell


u (

FVarPost (Φ (Rpost (A2Vxp2 , · · · , xq2/lp2 , · · · , lq2W)) , l)
;end → SKIP

)
//vs RepMCell




[Law C.1.10]

Therefore,

• from the behavioural aspect, the transformed process above has the same syntax as
the linked process, and both are internal choice.

• from the state aspect,

– both the memory model of the linked process from A1 and the memory model of
the linked process from A2 in the transformed internal choice are based on the
same memory. That is the same as internal choice of actions in Circus where A1

and A2 see a same copy of local variables. And these local variables are equal
to local variables in the memory of CSP.
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• Eventually, the memory model of the linked process from an internal choice preserves
the semantics of that in Circus.

Schema Expression

Lemma C.1.9 (Schema Expression). The memory model of linked schema expression as
action preserves the state and behaviour.

Proof.

(
(Us ; FVar (Φ (Rwrt (SExp)) , l) ; end → SKIP )
//vs RepMem

)
[Definition B.1.5]

=

(
(FVar (Φ (Rwrt (SExp)) , l) ; end → SKIP )
//vs RepMCell

)
[Lemma C.1.1]

=


 FVar

 P SExp!lp ! · · ·!lq?lk? · · ·?ln → SKIP
2

P SExp fOp!lp ! · · ·!lq → div

 , l


;end → SKIP


//vs RepMCell


[Link Rule 31]

=




Fmrg

(
FVarPre (P SExp!lp ! · · ·!lq?lk? · · ·?ln → SKIP , l) ,
FVarPre (P SExp fOp!lp ! · · ·!lq → div, l)

)
→

 FVarPost (P SExp!lp ! · · ·!lq?lk? · · ·?ln → SKIP , l)
2

FVarPost (P fSExp!lp ! · · ·!lq → div, l)


;end → SKIP


‖
vs(
‖

{|end |}
i : 1..m • (MCelli (xi))

)


\ vs

[FVar Rule 6]

=





getp?lp → · · · → getq?lq →
P SExp!lp ! · · ·!lq?lk? · · ·?ln →

setk !lk → · · · → setn !ln → SKIP
2

P fSExp!lp ! · · ·!lq → div


;end → SKIP


//vs RepMCell


[Definition B.1.4, and FVar Rule 3]

=






P SExp!xp ! · · ·!xq?lk? · · ·?ln →
setk !lk → · · · → setn !ln → SKIP

2

P SExp fOp!xp ! · · ·!xq → div


;end → SKIP


//vs RepMCell

 [Law C.1.3]
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=



 P SExp!xp ! · · ·!xq?lk? · · ·?ln →(
setk !lk → · · · → setn !ln → SKIP ; end → SKIP
//vs RepMCell

) 
2 P fSExp!xp ! · · ·!xq →(

div ; end → SKIP
//vs RepMCell

) 


[Law C.1.8]

=





P SExp!xp ! · · ·!xq?lk? · · ·?ln →
end → SKIP
‖
vs(
‖

{|end |}
i : 1..m •

({
MCelli (xi) i 6∈ k ..n

MCelli (li) i ∈ k ..n

))
 \ vs


2(

P SExp fOp!xp ! · · ·!xq → div
)


[Law C.1.4, [71, 〈;-zero-l〉(13.7)] and Law C.1.2]

=

 P SExp!xp ! · · ·!xq?lk? · · ·?ln → SKIP
2

P SExp fOp!xp ! · · ·!xq → div

 [Lemma C.1.2]

Therefore,

• from the behavioural aspect, the transformed process above has the same syntax as
the linked process, and both are external choice.

• from the state aspect,

– the local variables evaluated in the first construct of both prefixing processes in
the transformed external choice are substituted by their corresponding values
in the memory. According to our assumptions, these values are equal to those
in Circus.

• Eventually, the memory model of the linked process from a schema expression pre-
serves the semantics of that in Circus.

Parallel Composition (Disjoint Variables in Scope)

Lemma C.1.10 (Parallel Composition (Disjoint Variables in Scope)). The memory model
of linked parallel composition of actions (in case of disjoint variables in scope) preserves
the state and behaviour.

Proof. Provided

scpV (A1) ∩ scpV (A2) = ∅
lclV (A1) = {l1, . . . , lp}
lclV (A2) = {lp+1, . . . , lm}

and the local variables lp1 , · · · , lq1 are evaluated in the first construct of the first action A1,
and the local variables lp2 , · · · , lq2 are evaluated in the first construct of the second action



C.1 FMem 265

A2. Then (
Us ; FVar (Φ (Rwrt (A1 J ns1 | cs | ns2 K A2)) , l)
;end → SKIP

)
//vs RepMem

 [Definition B.1.5]

=

(
(FVar (Φ (Rwrt (A1 J ns1 | cs | ns2 K A2)) , l) ; end → SKIP )
//vs RepMCell

)
[Lemma C.1.1]

=


(

FVar

(
Φ (Rpost (A1)) ‖

Φ(cs)

Φ (Rpost (A2)) , l

)
; end → SKIP

)
//vs RepMCell


[Link Rule 43]

=





Fmrg

(
FVarPre (Φ (Rpost (A1 (lp1 , · · · , lq1))) , l)
FVarPre (Φ (Rpost (A2 (lp2 , · · · , lq2))) , l)

)

→

 FVarPost (Φ (Rpost (A1 (lp1 , · · · , lq1))) , l)
‖

Φ(cs)

FVarPost (Φ (Rpost (A2 (lp2 , · · · , lq2))) , l)


;end → SKIP


‖
vs(
‖

{|end |}
i : 1..m • MCelli (xi)

)


\ vs

[FVar Rule 9]

=




 FVarPost (Φ (Rpost (A1Vxp1 , · · · , xq1/lp1 , · · · , lq1W)) , l)

‖
Φ(cs)

FVarPost (Φ (Rpost (A2Vxp2 , · · · , xq2/lp2 , · · · , lq2W)) , l)


;end → Skip


//vs RepMCell


[Defintion B.1.3, Definition B.1.4, and Law C.1.3]

=



 (
FVarPost (Φ (Rpost (A1Vxp1 , · · · , xq1/lp1 , · · · , lq1W)) , l)
;end → SKIP

)
//vs RepMCell1


‖

Φ(cs) (
FVarPost (Φ (Rpost (A2Vxp2 , · · · , xq2/lp2 , · · · , lq2W)) , l)
;end → SKIP

)
//vs RepMCell2




[Law C.1.17]

Therefore,

• from the behavioural aspect, the transformed process above has the same syntax as
the linked process, and both are parallel composition on φ (cs).

• from the state aspect,

– the memory model of the linked process from A1 is based on one partition of
the memory (from l1 to lp) and the memory model of the linked process from
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A2 is based on another partition of the memory (from lp+1, to lm). That is the
same as parallel composition of actions in Circus (in case of disjoint variables in
scope) where A1 and A2 have disjoint local variables.

• Eventually, the memory model of the linked process from a parallel composition
preserves the semantics of that in Circus.

Interleaving (Disjoint Variables in Scope)

Lemma C.1.11 (Inteleaving (Disjoint Variables in Scope)). The memory model of linked
interleaving of actions (in case of disjoint variables in scope) preserves the state and be-
haviour.

Proof. The interleaving of actions is very similar to the parallel composition of actions and
its proof is omitted.

Hiding

Lemma C.1.12 (Hiding). The memory model of linked hiding of action preserves the state
and behaviour.

Proof. Provided the local variables lp , · · · , lq are evaluated in the first construct of the
action A, then( (

Us ; FVar

(
Φ
(
Rwrt

(
A \ cs

))
, l
)

; end → SKIP
)

//vs RepMem

)
[Definition B.1.5]

=

( (
FVar

(
Φ
(
Rwrt

(
A \ cs

))
, l
)

; end → SKIP
)

//vs RepMCell

)
[Lemma C.1.1]

=

(
(FVar ((Φ (Rpost (A)) \ Φ (cs)) , l) ; end → SKIP )
//vs RepMCell

)
[Link Rule 47]

=


 FVarPre (Φ (Rpost (A)))→

(FVarPost (Φ (Rpost (A)) , l) \ Φ (cs))
;end → SKIP


//vs RepMCell

 [FVar Rule 5]

=



 getp?lp → · · · → getq?lq →
(FVarPost (Φ (Rpost (A)) , l) \ Φ (cs))
;end → SKIP


‖
vs(
‖

{|end |}
i : 1..m • MCelli (xi)

)


\ vs

[Definition B.1.4, and FVar Rule 3]

=

 (
(FVarPost (Φ (Rpost (AVxp , · · · , xq/lp , · · · , lqW)) , l) \ Φ (cs))
;end → SKIP

)
//vs RepMCell


[Law C.1.3]

=

 ( (
FVarPost (Φ (Rpost (AVxp , · · · , xq/lp , · · · , lqW)) , l)
;end → SKIP

)
\ Φ (cs)

)
//vs RepMCell


[Law C.1.16]
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=

 (
FVarPost (Φ (Rpost (AVxp , · · · , xq/lp , · · · , lqW)) , l)
;end → SKIP

)
//vs RepMCell

 \ Φ (cs)

[Law C.1.15]

Therefore,

• from the behavioural aspect, the transformed process above has the same syntax as
the linked process, and both are hiding from φ (cs).

• from the state aspect,

– the memory model of the linked process from A is based on the same memory
as the local variables l in Circus,

• Eventually, the memory model of the linked process from a hiding preserves the
semantics of that in Circus.

Recursion The memory model of linked recursion of an action has not been proved
to preserve the state and behaviour. Finally, we exclude it from the memory model, or
recursion is not supported within a variable block in Circus.

Iterated Sequential Composition

Lemma C.1.13 (Iterated Sequential Composition). The memory model of linked iterated
sequential composition preserves the state and behaviour.

Proof. Since the iterated sequential composition ; is just an expansion of the corresponding
replicated operator ;, the proof of this lemma is very similar to Lemma C.1.6 and therefore
omitted here.

Iterated External Choice

Lemma C.1.14 (Iterated External Choice). The memory model of linked iterated external
choice preserves the state and behaviour.

Proof. Since the iterated sequential composition2 is just an expansion of the correspond-
ing replicated operator 2, the proof of this lemma is very similar to Lemma C.1.7 and
therefore omitted here.

Iterated Internal Choice

Lemma C.1.15 (Iterated Internal Choice). The memory model of linked iterated internal
choice preserves the state and behaviour.

Proof. Since the iterated sequential composition u is just an expansion of the correspond-
ing replicated link u, the proof of this lemma is very similar to Lemma C.1.8 and therefore
omitted here.

Assignment

Lemma C.1.16 (Assignment). The memory model of linked assignment preserves the
state and behaviour.

Proof. According to Link Rule 52, an assignment is rewritten to a schema expression
as action which is linked to the resultant CSP ‖B Z . Since the memory model of the
linked process from a schema expression as action preserves the state and behaviour by
Lemma C.1.9, the memory model of the linked process from assignment also preserves the
state and behaviour.
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Alternation

Lemma C.1.17 (Alternation). The memory model of linked alternation preserves the state
and behaviour.

Proof. According to Link Rule 53, an alternation is rewritten to an external choice of
guarded actions which is linked to the resultant CSP ‖B Z . Since the memory models
of the linked processes from external choice, guarded action, and internal choice preserve
the state and behaviour by Lemma C.1.7, Lemma C.1.5, and Lemma C.1.8, the memory
model of the linked process from alternation also preserves the state and behaviour.

Variable Block

Lemma C.1.18 (Variable Block). The memory model of linked variable block preserves
the state and behaviour.

Proof.

FMem (Φ (Rwrt (var y : T • A)) , l)

= FMem

(
u

y:Φ(T )
• FMem (Φ (RPost(A)) , {y}), l

)
[Link Rule 54]

= u
y:Φ(T )

• FMem (Φ (RPost(A)) , {y} ∪ l) [Law C.1.19]

Therefore, the memory model of the linked process from an embedded variable block is
equal to the memory model of the same process but with combined memory (combination
of current memory with the memory from the variable block). Therefore, the memory
model of linked variable block preserves the state and behaviour.

Specification Statement

Lemma C.1.19 (Specification Statement). The memory model of linked specification
statement preserves the state and behaviour.

Proof. According to Link Rule 55, a specification w : [ pre, post ] is rewritten to a schema
expression as action which is linked to the CSP ‖B Z . In particular, the dashed variables in
post but not in w are hidden by additional existential quantification. Because the semantics
of the schema expression is given by the specification statement ( [35, Definition B.40])
and the linked schema expression preserves the state and behaviour (Lemma C.1.9), the
linked specification statement preserves the state and behaviour.

Assumption

Lemma C.1.20 (Assumption). The memory model of linked assumption preserves the
state and behaviour.

Proof. An assumption {pre} is equal to a specification w : [ pre, true ] in which w is empty
and post is true. Therefore according to Lemma C.1.19, the memory model of linked
assumption preserves the state and behaviour.

Coercion

Lemma C.1.21 (Coercion). The memory model of linked coercion preserves the state and
behaviour.

Proof. A coercion [ post ] is equal to a specification w :[ true, post ] in which w is empty, that
means no variables changed, and pre is true. In particular, the dashed variables in post
are hidden by additional existential quantification. Therefore according to Lemma C.1.19,
the memory model of linked coercion preserves the state and behaviour.
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Parametrisation By Value

Lemma C.1.22 (Parametrisation By Value). The memory model of linked parametrisation
by value preserves the state and behaviour.

Proof. A parametrisation by value, ((val x : T • A) (e)), is written to a variable block
with x initialized to e before the action A indeed according to Link Rule 58. Since vari-
able block, sequential composition and assignment preserve the state and behaviour by
Lemma C.1.18, C.1.6, and C.1.16, the memory model of linked parametrisation by value
preserves the state and behaviour.

Parametrisation By Result

Lemma C.1.23 (Parametrisation By Result). The memory model of linked parametrisa-
tion by result preserves the state and behaviour.

Proof. A parametrisation by result, ((res x : T • A) (y)), is written to a variable block
with y set to the value of x after the action A indeed according to Link Rule 59. Since
variable block, sequential composition and assignment preserve the state and behaviour by
Lemma C.1.18, C.1.6, and C.1.16, the memory model of linked parametrisation by result
preserves the state and behaviour.

Parametrisation By Value-Result

Lemma C.1.24 (Parametrisation By Value-Result). The memory model of linked para-
metrisation by value-result preserves the state and behaviour.

Proof. A parametrisation by value-result, ((vres x : T • A) (y)), is written to a variable
block with x initialized to the value of y before the action A and y set to the value of
x after the action A indeed according to Link Rule 60. Since variable block, sequential
composition and assignment preserve the state and behaviour by Lemma C.1.18, C.1.6
and C.1.16, the memory model of linked parametrisation by value-result preserves the
state and behaviour.

Renaming

Lemma C.1.25 (Renaming). The memory model of linked renaming preserves the state
and behaviour.

Proof. The action renaming is just a syntactical replacement of the name of variables.

Action Invocation

Lemma C.1.26 (Action Invocation). The memory model of linked action invocation pre-
serves the state and behaviour.

Proof. The semantics of an action invocation is given by the copy rule and is simply equal
to its body according to Link Rule 62. So the memory model of linked action invocation
is the same as the memory model of its linked action body. Therefore, the memory model
of linked action invocation preserves the state and behaviour.
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Parametrised Action

Lemma C.1.27 (Parametrised Action). The memory model of linked parametrised action
invocation preserves the state and behaviour.

Proof. The parametrised action invocation is defined by the copy rule and the substitution
rule, and it is simply equal to its action body with parameters substituted by expres-
sions according to Link Rule 65. So the memory model of the linked parametrised action
invocation is the same as the memory model of its linked and substituted action body.
Therefore, the memory model of linked parametrised action invocation preserves the state
and behaviour.

C.1.3 Theorems

C.1.3.1 Memory Model

Theorem C.1.28. The memory model of the CSP process Φ (Rwrt(A)) which is linked
from the action A,

FMem (Φ (Rwrt(A)) , l)

where A is a Circus action that is defined in our link rules but not recursion, has the same
effect on state and local variables, and the same behaviour as the action A. In other words,
the semantics is preserved.

Proof. According to Lemma C.1.1 to C.1.27, the memory model of the link process from
each action which is defined in our link rules preserves the semantics except recursion.
Therefore, we conclude that the memory model of linked actions preserves the semantics
of the actions.

C.2 FRen

Theorem C.2.1. The FRen(A, {(vold , vnew )}) function preserves the behaviour of A and
has the same effect on variables vnew as on vold .

Proof. Because FRen is just a syntactical replacement of variables vold in A, it preserves
the behaviour of A and has the same effect on variables vnew as on vold .

Lemma C.2.2 (FRen Transitivity).

FRen (FRen (t , {(vold , vmid )}) , {(vmid , vnew )})
=FRen (t , {(vold , vnew )})

C.3 External Choice Elimination

Lemma C.3.1. Provided the type of x is a set Tx which has n elements x1, · · · , xn , and
Pi is a process. The construct below is not syntactically correct in Circus. It is introduced
only for intermediate usage.

(x == x1) N P1

2 (x == x2) N P2

2 · · ·
2 (x == xn) N Pn


, if x is xi , it is simplified to Pi .



Appendix D

Circus Expressions, Operators and
Predicates to B and CSPM

In this Appendix D, the map from Circus expressions, operators, and predicates to their
corresponding counterparts in CSPM are listed. They are categorized into eight groups:
type, logic, basic and boolean, number, set, relation, function and sequence as shown in
Section D.2. In the beginning of this chapter, a list of notations is presented in Section D.1
and will be used later in the map tables.

It is worth noting that the data structures in Circus can be very abstract. However
the data structures in CSP are comparatively concrete. For instance, a given set in Circus
only gives the name of the set and does not include the details about its elements. But
this is not the case in CSP. Therefore, a configuration named MAXINS is introduced to
indicate how many elements the new set would have when concretising the given set in
CSP. Furthermore, for some expressions, operators and predicates it is easy to find their
counterparts in CSPM such as ∪ (union in CSPM ). But for others like 7→, we have to
implement a corresponding one in CSPM . All these new functions are provided as CSP
libraries displayed in Section D.3.

D.1 Notations

See Table D.1.

D.2 Map of Circus Types, Expressions, Operators and Predi-
cates to CSP

In this section, a map of Circus types, expressions, operators, and predicates to CSPM is
listed. For some of them, there are direct counterparts in CSPM . But for others, they are
not the case. Therefore, we define these functions in CSPM as a library and include them
by include lib_file.csp as required. All libraries defined are included in Section D.3.

D.2.1 Type

D.2.1.1 Free Type

Constants Only

FT ::= c1 | . . . | cn

is transformed to

datatype FT = c1 | ... | cn
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Constants and Constructors without Recursion

FT ::= c1 | · · · | cm | d1〈〈E1〉〉 | · · · | dn〈〈En〉〉

is transformed to

datatype FT = c1 | ... | cm | d1.E1c | ... | dn.Enc

Then the instance di(e) is translated to di.ec.
For example,

Status ::= ok | err〈〈1 . . 5〉〉

is transformed to

datatype Status = ok | err.{1..5}

Additionally, err(1) is translated to err.1 in CSP.

Constants and Constructors with Recursion

FT ::= c1 | · · · | cm | d1〈〈E1[FT ]〉〉 | · · · | dn〈〈En[FT ]〉〉

is transformed to

datatype FT = c1 | ... | cm | d1.E1c | ... | dn.Enc

For instance [63, Example 10.4],

Tree ::= leaf 〈〈N〉〉 | Branch〈〈Tree × Tree〉〉

is transformed to

Table D.1: Notations

Circus CSP Description
x , y x,y General variables
T Tc Type of variable
P Pc Logic formula
Q Qc Logic formula
p pc Predicate

p[y/x ] pc[y/x]
A replacement of each
occurrence of x by y

e, e1, e2 ec, e1c, e2c Expression
Te Tec Type of expression e

s, s1, s2 s, s1, s2 Set variables
t t Tuple variable

S ,S1,S2 Sc, S1c, S2c Set
SS SSc Set over Set

r , r1, r2 r, r1, r2 Relation variables
f , f 1, f 2 f, f1, f2 Function variables

sq , sq1, sq2 sq, sq1, sq2 Sequence variables

sqsq sqsq
Sequence over sequence

variable
sqs sqs Sequence over set variable

sch, sch1, sch2 schc, sch1c, sch2c Schema variable/reference
se sec Schema expression
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datatype Tree = leaf.Nat | branch.(Tree, Tree)

Additionally, branch(branch(leaf 3, leaf 5), leaf 9) is translated to

branch.(branch.((leaf.3), (leaf.5)), (leaf.9))

in CSP.
In order to support unification of free types between CSP and Z, we modified the

specfile.pl file in ProB, especially the type_ok2 and check_type predicates, to make
free types compatible between CSP and Z. This change is an implementation of our solution
to treat free types in CSP and it is not implemented in the general ProB.

D.2.1.2 Schema

Schema as Type A schema as type is linked to a set comprehension of an ordered pair.
And for each element in the pair it is given a tag name to identify its field in the schema.
For example, Sch rec x means the field x in the schema Sch.

Φ(Sch == [ x : Tx ; y : Ty | pred(x , y) ])

= Sch = {(Sch rec x .x ,Sch rec y .y) | x ← Φ(Tx ), y ← Φ(Ty),Φ(pred(x , y))}

The field tag is defined as a data type.

datatype Sch rec field = Sch rec x .Φ(Tx ) | Sch rec y .Φ(Ty)

And the selection operation of the object with the schema type is linked as well.

Φ(obj .x ) = select field Sch(obj ,Sch rec x )

where the select field Sch is a function defined in CSP to get the value of a specified field.

select field Sch((Sch rec x .x , ),Sch rec x ) = x

select field Sch(( ,Sch rec y .y),Sch rec y) = y

By this conversion, a schema is translated to a set of ordered pairs. At the same time,
we modified the implementation of ProB to identify the element with a tag having the
rec pattern as an element in a schema, and its pair (Sch rec x .x , Sch rec y .y) as a
binding of the schema 〈|x ; x , y ; y |〉. This modification is to implement our solution of
schema types support in CSP and it is not supported in the general ProB as well, which is
similar to the change made for free types. Finally, a variable with the Sch type in Z can
synchronise with a variable with the Sch type in CSP. The translation of PumpCtr is an
example.

For instance, PumpCtr is normalised and finally linked to the implementation below
in CSP. Note that the prefix Analyser is the name of the process.

datatype PumpCtr_rec_field = PumpCtr_rec_pa_1.{0, P}
| PumpCtr_rec_pa_2.{0, P} | PumpCtr_rec_pcst.PCState
| PumpCtr_rec_pst.PState

PumpCtr = {(PumpCtr_rec_pa_1.pa_1, PumpCtr_rec_pa_2.pa_2,
PumpCtr_rec_pcst.pcst, PumpCtr_rec_pst.pst) | pa_1 <- {0, P},
pa_2 <- {0, P}, pcst <- PCState, pst <- PState, ...}

select_field_PumpCtr((PumpCtr_rec_pa_1.x, _, _, _),
PumpCtr_rec_pa_1) = x

select_field_PumpCtr((_, PumpCtr_rec_pa_2.x, _, _),
PumpCtr_rec_pa_2) = x

select_field_PumpCtr((_, _, PumpCtr_rec_pcst.x, _),
PumpCtr_rec_pcst) = x

select_field_PumpCtr((_, _, _, PumpCtr_rec_pst.x),
PumpCtr_rec_pst) = x
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And the selection (pumpctr).pst is translated to

select_field_PumpCtr(pumpctr, PumpCtr_rec_pst)

Schema as Predicate Schemas are frequently used as predicates in the behavioural
part, such as (vzero.RateZero → Skip), where RateZero is a schema, in the Analyser
process.

RateZero == [ VSensor | va1 = 0 ∧ va2 = 0 ]

For a schema as predicate, we assume all variables in the schema are declared and
the schema is normalised, and therefore it is equal to this schema’s predicate, such as
Φ(SchAsPred) = Φ(pred).

D.2.2 Logic

See Table D.2.

Table D.2: Logic

Circus
Operator Symbol LATEX CSPM Description

Logical and P ∧ Q P \land Q Pc and Qc
Logical or P ∨ Q P \lor Q Pc or Qc
Logical

implication P ⇒ Q
P \implies

Q
implies(Pc, Qc)

implies(x, y) =
not x or y

Logical
equivalence P ⇔ Q P \iff Q iff(Pc, Qc)

iff(x, y) =
implies(x,y)

and
implies(y,x)

Logical
negation ¬P \lnot P not Pc

Universal
quantifica-

tion
∀ x : T • p

\forall
x:T \spot

p

forall(Tc, (\ x
@ pc))

Existential
quantifica-

tion
∃ x : T • p

\exists
x:T \spot

p

exists(Tc, (\ x
@ pc))

Unique
existence ∃1 x : T • p

\exists_1
x:T \spot

p

exists_1(Tc, (\
x @ pc))

D.2.3 Basic and Boolean

See Table D.3.

D.2.3.1 lambda

λ x : Tx ; y : Ty • e is mapped to

\ x,y @ if member((x,y), {x,y | x<-Txc, y<-Tyc})
then ec
else undefined({})
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λ x : Tx ; y : Ty | p • e is mapped to

\ x,y @ if member((x,y), {vx,vy | vx<-Txc, vy<-Tyc, p(vx,vy)})
then ec
else undefined({})

D.2.3.2 mu

If the existence and uniqueness properties of mu-expression does not hold, then the mu
function defined below will trigger an error during model checking because pick function
is only defined for a set with exactly one element.

mu(s, P, e) =
let

pick({x}) = x
r = pick({e(x) | x <- s, P(x)})

within r

Table D.3: Basic and Boolean

Circus
Operator Symbol LATEX CSPM Description
Equality e1 = e2 e1 = e2 e1c == e2c
Inequality e1 6= e2 e1 \neq e2 e1c != e2c

Conditional if p then
e1 else e2

\IF p \THEN
e1 \ELSE e2

if pc then e1c else
e2c

Lambda-
expression

λ x : T |
p • e

\lambda x:T
| p @ e

\ x @ ec
Sec-

tion D.2.3.1.
Mu-

expression
µ x : T |

p • e
\mu x:T | p

@ e
mu(Tc, pc, ec)

True True \true true
False False \false false

Boolean B \boolean Bool

D.2.4 Number

See Table D.4.

D.2.5 Set

See Table D.5.

D.2.6 Relation

See Table D.6.

D.2.7 Function

See Table D.7.

D.2.8 Sequence

See Table D.8.
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D.3 CSPM Library Functions

The libraries are also available either in accompanying CD-ROM or online at GitHub [104].

D.3.1 lib basic.csp

-- lib_basic.csp

-- lambda
undefined({}) = {}

-- mu
-- \mu x:T | p @ e
-- there exists exactly one x which makes p hold, and return the expression
mu(s, P, e) =

let
pick({x}) = x
r = pick({e(x) | x <- s, P(x)})

within r

D.3.2 lib num.csp

-- natural number
Nat={0..MAXINT}
Nat1={1..MAXINT}

-- succ

Table D.4: Number

Circus
Operator Symbol LATEX CSPM Description

Natural numbers N \nat Nat Nat={0..MAXINT}
Strictly positive

integers N1 \nat_1 Nat_1 Nat_1={1..MAXINT}

Successor succ x succ~x succ(x) succ(x)=x+1
Integers Z \num Int

Non empty
integers Z1 \num_1 num_1

Negation − \negate -
Subtraction − - -
Summation + + +

Multiplication ∗ * *
Integer devision div \div /
Integer modulus mod \mod %
Less than equal ≤ \leq <=

Less than < < <
Greater than

equal ≥ \geq >=

Greater than > > >
Minimum min s min~s min(s)
Maximum max s max~s max(s)
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Table D.5: Set

Circus

Operator Symbol LATEX CSPM

De-
scrip-
tion

Number range x ..y x \upto y {x .. y}

Given set [NAME ] [NAME]
datatype NAME =

NAME_GS.{0..MAXINS}
Set

enumeration {x , y , dots} {x, y, ...} {x, y, ...}

Set
comprehension

{x : T | p •
e} { x:T | p @ e } {ec | x<-Tc, pc}

Characteristic
set

comprehension
{x : T | p} { x:T | p } {x | x<-Tc, pc}

Simple set
comprehension {x : T • e} { x:T @ e } {ec | x<-Tc}

Set
membership x ∈ S x \in S member(x, Sc)

Not in x 6∈ S x \notin S not member(x, Sc)
Cartesian
product S1× S2 S1 \cross S2 cross(S1c, S2c)

Cartesian
product

S1× S2×
· · · × Sn

S1 \cross S2
\cross ...
\cross Sn

(S1c, S2c, ...,
Snc)

Empty Set ∅ \emptyset {}
Subset S1 ⊆ S2 S1 \subseteq S2 leq(S1c, S2c)

Proper subset S1 ⊂ S2 S1 \subset S2 le(S1c, S2c)
Power sets P S \power~S Set(Sc)
Non-empty
subsets P1 S \power_1~S diff(Set(Sc),{{}})

Set union S1 ∪ S2 S1 \cup S2 union(S1c, S2c)
Set

intersection S1 ∩ S2 S1 \cap S2 inter(S1c, S2c)

Set difference S1 \ S2 S1 \setminus S2 diff(S1c, S2c)
Set symmetric

difference S1	 S2 S1 \symdiff S2 symdiff(S1c,S2c)

Generalised
union

⋃
SS \bigcup SS Union(SSc)

Generalised
intersection

⋂
SS \bigcap SS Inter(SSc)

Finite sets F S \finset S Set(Sc)

only
con-
sider
finite
set S .

Non empty
finite sets F1 S \finset_1 S finset_1

cardinality # S \#~S len(Sc)
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Table D.6: Relation

Circus

Operator Symbol LATEX CSPM
Descrip-
tion

Relation S1↔ S2 S1 \rel S2 rel(S1c, S2c)
Maplet x 7→ y x \mapsto y (x, y)
Domain dom r \dom r dom(r)
Range ran r \ran r ran(r)
Identity id S \id S id(Sc)

Relational
composition r1 # r2 r1 \comp r2 comp(r1, r2)

Functional
composition r1 ◦ r2 r1 \circ r2 circ(r1,r2)

Domain
restriction s C r s \dres r dres(s, r)

Range restriction r B s r \rres s rres(r, s)
Domain

subtraction s −C r s \ndres r ndres(s, r)

Range
subtraction r −B s r \nrres s nrres(r, s)

Relational
inversion r ∼ r\inv inv(r)

Relational image r L s M r \limg s \rimg img(s,r)
Overriding r1⊕ r2 r1 \oplus r2 oplus(r1, r2)

First projection
function first t first~t first(t)

Second projection
function second t second~t second(t)

Iteration iter n r iter~n~r itern(r,n)
Iteration (r n ) (r~^{~n~}) itern(r,n)

Transitive closure r + r \plus
Not imple-
mented

Reflexive
transitive closure r ∗ r \star

Not imple-
mented
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succ(n)=n+1

-- define them for num1
-- MAXINT=1000
-- MININT=-1000

-- num1
num1={x | x <- {MININT..MAXINT}, x != 0}

-- min and max
min(<x>) = x
min(<x>^s^<y>) = if x <= y then min(<x>^s) else min(<y>^s)

min(s) = min(seq(s))

max(<x>) = x
max(<x>^s^<y>) = if x >= y then max(<x>^s) else max(<y>^s)

max(s) = max(seq(s))

D.3.3 lib card.csp

-- lib_card

-- calculate cardinality of set and sequence using the same function "len"
len(<>) = 0
len(<x>) = 1

Table D.7: Function

Circus

Operator Symbol LATEX CSPM
Descrip-
tion

Function
application f (x ) f(x) fa(f, x)

Partial
function S1 7→ S2 S1 \pfun S2 pfun(S1c, S2c)

Total
function S1→ S2 S1 \fun S2 tfun(S1c, S2c)

Partial
injection S1 7� S2 S1 \pinj S2 pifun(S1c, S2c)

Injection S1� S2 S1 \inj S2 tifun(S1c, S2c)
Partial

surjection S1→→ S2 S1 \psurj S2 psfun(S1c, S2c)

Surjection S1→→ S2 S1 \surj S2 tsfun(S1c, S2c)
Bijection S1�→ S2 S1 \bij S2 bjfun(S1c, S2c)
Finite
partial
function

S1 7 7→ S2 S1 \ffun S2 pfun(S1c, S2c)

Finite
partial
injection

S1 7 7� S2 S1 \finj S2 pifun(S1c, S2c)
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Table D.8: Sequence

Circus
Operator Symbol LATEX CSPM Description
Cardinality # sq \#~sq len(sq)
Finite seq seq S \seq S fseq(Sc)
Non empty

seq seq1 S \seq_1 S seq1(Sc)

Injective
seq iseq S \iseq S iseq(Sc)

Sequence
brackets 〈, ,〉

\langle
\listarg
\rangle

< , , >

Concatena-
tion sq 1̂ sq2 sq1 \cat sq2 sq1^sq2

Reverse rev sq rev~sq reverse(sq)
Head head sq head~sq head(sq)
Last last sq last~sq last(sq)
Tail tail sq tail~sq tail(sq)
Front front sq front~sq front(sq)

Re-indexing squash sq squash~sq squash(sq)
Extraction S � sq S \extract sq extract(Sc, sq)
Filtering sq � S sq \filter S filter(Sc, sq)

Prefix sq1 ≤ sq2 sq1 \prefix sq2
prefix(sq1,

sq2)

Suffix sq1 ≥ sq2 sq1 \suffix sq2
suffix(sq1,

sq2)
Infix sq1 infix sq2 sq1 \infix sq2 infix(sq1, sq2)

Distributed
Concatena-

tion
a/ sqsq \dcat~sqsq concat(sqsq)

Disjoint
sets disjoint sqs \disjoint~sqs disjoint(sqs)

Set
partitioning

sqspartition
S

sqs \partition
S

partition(sqs,
Sc)
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len(<x>^s) = len(s) + 1
len(s) = len(seq(s))

D.3.4 lib log.csp

-- lib_log.csp

-- implies
implies(p1, p2) = ((not p1) or p2)

-- iff
iff(p1, p2) = implies(p1, p2) and implies(p2, p1)

-- forall
-- example: forall x:N @ x + 1 > x => forall(N, \ x @ x + 1 > x)
-- there doesn’t exist a x from s such that P(x) is false
forall(s,P) = empty({x | x<-s, not P(x)})

-- exist
-- example: exist x:N @ x*x=25
-- there does exist at least one x from s such that P(x) is true
exists(s,P) = not empty({x | x<-s, P(x)})

-- exist_1
exists_1(s,P) = card({x | x<-s, P(x)}) == 1

D.3.5 lib set.csp

-- lib_set.csp

-- MAXINS for given set, should be defined in the beginning of
-- specification
-- MAXINS = 3

-- compare of two sets: equal(s1,s2) or "=="
equal(s1,s2) = empty({x | x <- s1, not member(x, s2)}) and

empty({x | x <- s2, not member(x, s1)})

-- compare of two sets: less than or equal
-- CSPM (<=) can compare the subset but not supported in ProB by now
leq(s1,s2)=empty({x | x <- s1, not member(x,s2)})

-- compare of two sets: less than or equal
-- CSPM (<) can compare the subset but not supported in ProB by now
le(s1,s2)=leq(s1,s2) and not empty({x | x <- s2, not member(x, s1)})

-- \power_1
power_1(s) = diff(Set(s), {{}})

-- \symdiff
symdiff(s1, s2) = union(diff(s1,s2), diff(s2,s1))
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-- Cartesian Product
cross(X, Y) = {(x,y) | x <- X, y <- Y}

-- finset_1
finset_1(s) = {x | x <- s, x != {}}

D.3.6 lib rel.csp

-- lib_rel.csp

--rel(X, Y) = { (x,y) | x<-X, y<-Y }
rel(X, Y) = Set(cross(X, Y))

-- id
id(s) = {(x,x) | x <- s}

-- first and second
first((x,y)) = x
second((x,y)) = y

-- domain and range
dom(s) = { x | (x,y)<-s }
ran(s) = { y | (x,y)<-s }

-- comp
comp(s1,s2) = {(x,v) | (x,y)<-s1, (u,v)<-s2, y==u}

-- circ (functional composition or backward relation composition)
circ(s1,s2) = comp(s2,s1)

-- domain restriction
dres(rs,s) = {(x,y) | (x,y)<-s, member(x,rs)}

-- range restriction
rres(s,rs) = {(x,y) | (x,y)<-s, member(y,rs)}

-- domain subtraction
ndres(rs,s) = {(x,y) | (x,y)<-s, not member(x,rs)}

-- range subtraction
nrres(s,rs) = {(x,y) | (x,y)<-s, not member(y,rs)}

-- inv
inv(s) = {(y,x) | (x,y)<-s}

-- image
-- relational image
--img(A,s) = ran(dres(A,s))
img(s,r) = {y | (x,y)<-r, member(x,s)}

-- overriding
oplus(s1,s2) = union(
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{(x,y) | (x,y) <- s1, not member(x,dom(s2))},
{(u,v) | (u,v) <- s2, member(u,dom(s1))} )

-- iter (s is a homogeneous relation X <--> X -
-- source and target have the same type)
iter(s,0) = id(dom(s))
iter(s,1) = s
iter(s,n) = comp(s,iter(s,n-1))
-- negative number is not supported in pattern match
-- iter(s, -1) = iter(inv(s), 1)
-- iter(s,n) = comp(inv(s),iter(s,n+1))
itern(s,n) = if n < 0 then iter(inv(s), 0 - n) else iter(s,n)
-- iter(s,n) = if n < 0 then comp(inv(s), iter(s, n+1)) else iterr(s,n)

-- _+ and _*: transitive closure and reflexive-transitive closure
iters(s,1) = iter(s,1)
iters(s,n) = Union({iters(s,n-1), iter(s,n)})
star(s) = iters(s,10)

--iterp(s,0) = iter(s,0)
--iterp(s,1) = Union({iterp(s,0), iter(s,1)})
--iterp(s,n) = Union({iterp(s,n-1), iter(s,n)})
--plus(s) = iterp(s,10)
plus(s) = union(star(s), iter(s,0))

D.3.7 lib fun.csp

-- lib_fun.csp

-- function means there’s no element which can map to two different values
fun(X, Y) = { s | s<-rel(X, Y),

empty({x1 | (x1,y1)<-s, (x2,y2)<-s, x1 == x2 and y1 != y2})}

-- partial function: not every element in X has the corresponding value
-- in Y
-- implement 1: by its definition
-- pfun(X, Y) = { s | s<-rel(X,Y),
-- empty({x1 | (x1,y1)<-s, (x2,y2)<-s, x1 == x2 and y1 != y2})}

-- implement 2: efficient
---------------------------- pfun [START] ---------------------------------
-- a partial function pfun(X, Y) finally is a set of (set of pairs)
-- {{(x1,y1), (x2, y2) ... }, {(x1, y2)...}, {()}}
-- in its subset, the source of each pair (X) shall not be unique,
-- therefore {(x1, y1), (x1, y2)} is not allowed
-- however the destination of each pair (y) don’t have to be unique,
-- therefore {(x1, y1), (x2, y2)} is valid
--
-- the algorithms to calculate a partial function of X and Y, shown below
-- 1. generally it is a union of
-- a) taking zero item from X, => {}
-- b) taking one item from X, => {{(x1,y1)}, {(x1,y2)},...{(x2,y1)}, ...}
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-- c) taking two items from X, => {{(x1,y1), (x2, y1)}, ...}
-- i) ...
-- n) taking n items from X, => {{(x1,y1), (x2, y1), ..., (xn, y1)}, ...}
-- 2. for each small step a), b), ..., n), use pcomb(X, Y, n)
-- pcomb(X, Y, n) is used to compute all possible pairs which size is n.
-- for example, pcomp({1,2},{3},1) gets {{(1,3)},{(2,3)}}
-- and the cardinality is one
-- 3. for pcomp,
-- a) at first, calculate all possible subset of X and its cardinality
-- is n (by select2)
-- for example, select2({1,2,3}, 2) = {<1,2>,<1,3>,<2,3>}
-- b) then calculate all possible combination of elements from Y and
-- its size is n as well.
-- for example, select1({1,2}, 2) = {<1,1>, <1,2>, <2,1>, <2,2>}
-- c) join the sequences from select2 and select1 together to get pcomp

-- select n items from x, order matters and duplicate items are allowed
-- select1({1,2}, 2) = {<1,1>, <1,2>, <2,1>, <2,2>}
select1(Y, 0) = { <> }
select1(Y, 1) = { <y> | y <- Y}
select1(Y, n) = { <y>^ss | y <- Y, ss <- select1(Y, n-1) }

-- select n items from x, order doesn’t matter and duplicate items are
-- not allowed
-- select({1,2}, 1) = {<1>,<2>}
-- select({1,2}, 2) = {<1,2>}
select2_1(X, 0) = {}
-- choose more than 1 from <x> leads to emptyset
select2_1(<x>, n) = if n > 1 then {} else { <x> }
select2_1(X, 1) = { <x> | x <- set(X) }
select2_1(<x>^s, n) = union({ <x> ^ ss | ss <- select2_1(s, n-1)},

select2_1(s, n))

select2(X, n) = select2_1(seq(X), n)

-- join(s1, s2) to form a {(s11, s21), (s12, s22), ..., (s1n, s2n)}
-- s1 and s2 are the same size sequences
-- s1 = <s11, s12, ..., s1n>
-- s2 = <s21, s22, ..., s2n>
pjoin(<x>, <y>) = {(x,y)}
pjoin(<x>^s1, <y>^s2) = union({(x,y)}, pjoin(s1, s2))

--
pcomb(X, Y, n) = { pjoin(s1, s2) | s1 <- select2(X, n),

s2 <- select1(Y, n)}

pfun1(X, Y, 1) = {{(x,y)} | x <- X, y <- Y}
pfun1(X, Y, n) = union(pfun1(X, Y, n-1), pcomb(X, Y, n))

pfun(X, Y) = union(pfun1(X, Y, card(X)), {{}})
------------------------------ pfun [END] ---------------------------------
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-- total function: every element in X has the corresponding value in Y
-- implementation 1:
-- tfun(X, Y) = { s | s<-pfun(X, Y), dom(s) == X}

-- implementation 2:
tfun1(<>, Y) = {}
--tfun(X, {}) = {}
tfun1(<x>, Y) = {{(x, y)} | y <- Y}
tfun1(<x>^s, Y) = { union(sx, ss) | sx <- tfun1(<x>, Y), ss <- tfun1(s, Y)}

tfun(X, Y) = tfun1(seq(X), Y)

-- Partial injections: every value in Y is mapped to
-- up to one element in X
pifun(X, Y) = { s | s<-pfun(X, Y),

empty({x1 | (x1,y1)<-s, (x2,y2)<-s, y1 == y2 and x1 != x2})}

-- Total injections: Partial injections and total function
tifun(X, Y) = inter(pifun(X, Y), tfun(X, Y))

-- Partial surjections: every value in Y is mapped to
-- at least one element in X
psfun(X, Y) = { s | s<-pfun(X, Y), ran(s) == Y}

-- Total surjections: Partial surjections and total function
tsfun(X, Y) = inter(psfun(X, Y), tfun(X, Y))

-- Bijections: total surjections and total injections
bjfun(X, Y) = inter(tsfun(X, Y), tifun(X, Y))

-- function application: f(x)
-- fa(f, x)
-- fa(f)(x) is not supported in ProB
fa(f, a) =

let
pick({x}) = x
y = pick({yy | (x, yy)<-f, x == a})

within y

D.3.8 lib seq.csp

-- lib_seq.csp

-- reverse(s) = if null(s) then <> else reverse(tail(s)) ^ <head(s)>
reverse(<>) = <>
reverse(<x>^s) = reverse(s)^<x>

-- last
last(s) = if null(s) then <> else head(reverse(s))

-- front
front(s) = reverse(tail(reverse(s)))
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-- Injective sequence
--unique(s) = < x | x<-s, y<-s, x==y>
unique(<>) = true
unique(<x>) = true
unique(<x>^s) = if not elem(x,s) then unique(s) else false

-- for seq
fseq(s) = {squash(ss) | ss <- pfun({1..MAXINS}, s) }

-- seq_1
seq1(s) = diff(Seq(s), {<>})

-- iseq: injective sequence. No duplicate elements in the sequence
-- perm(s): calculate all permutation of set s
-- perm({1,2,3}) = {<1,2,3>, <1,3,2>, <2,1,3>, <2,3,1>, <3,1,2>, <3,2,1>}
perm({}) = {<>}
perm({x}) = {<x>}
perm(s) = { <x>^z | x <- s, y <- Set(s), y == diff(s, {x}), z <- perm(y)}

iseq(s) = { y | ss <- Set(s), y <- perm(ss)}

-- squash
-- such as Z:squash({1 |-> a, 5 |-> b, 3 |-> c}) = <a, c, b>
-- such as csp:squash({(1,a), (5,b),(3,c)}) = <a, c, b>
-- limitation: the elements in s cannot have the same x value.
-- For example, for {(1,a), (1,b)}, squash will fail
squash(s) =

let
pick({x}) = x
-- how many items which 1st item x are below b
below(b) = card({ x | (x,y)<-s, x <= b })
-- get all pairs, such as {(a,1),(b,3),(c,2)}
pairs = { (y, below(x)) | (x,y)<-s }
-- return the y value of a x below which there are i number of items
select(i)= pick({ y | (y,n)<-pairs, i==n })

within < select(i) | i <- <1..card(s)> >

-- A is a subset of domain of s (sequence)
--extract(A,s)
extract(A, s) = squash(dres(A, s))

-- filter(s,A)
filter(s, A) = squash(rres(A, s))

-- prefix
-- prefix
prefix(<>,<>) = true
prefix(<>,t) = true
prefix(<x>^s, <>) = false
prefix(<x>^s, <y>^t) = if x==y then prefix(s,t) else false
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-- suffix
suffix(<>,<>) = true
suffix(<>,t) = true
suffix(s^<x>, <>) = false
suffix(s^<x>, t^<y>) = if x==y then suffix(s,t) else false

-- infix(s,t)
infix(_, <>) = false -- tested
infix(s, <x>) = if s==<x> then true else false
infix(s, <x>^t) = if prefix(s,<x>^t) then true else infix(s,t)

-- distributed concatenation
-- distributed concatenation
-- \dcat(s) and s is a sequence of sequence
dconcat(<>) = <>
dconcat(<s>) = s
dconcat(<x>^s) = x^dconcat(s)
dconcat(<x>^s^<y>) = x^dconcat(s)^y

-- disjoint(s)
-- - s is a sequence of set
disjoint(<>) = true
disjoint(<x>) = true
disjoint(<sx>^<sy>) = empty(inter(sx, sy))
disjoint(<sx>^ss^<sy>) =

if disjoint(<sx>^<sy>) then
disjoint(<sx>^ss) and disjoint(ss^<sy>)

else false

-- partition(s, S)
-- - s is a sequence of set
-- - S is a set
partition(<>,{}) = true
partition(<sx>, C) =

if equal(sx,C) then true
else false

partition(<sx>^<sy>, C) =
if disjoint(<sx>^<sy>) and equal(union(sx, sy), C) then true
else false

partition(<sx>^ss^<sy>, C) =
if disjoint(<sx>^ss^<sy>) and leq(union(sx, sy), C) then

partition(ss, diff(C, union(sx, sy)))
else false
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Appendix E

Link from Circus to the combination
of CSP and Z

Link Rules, which link constructs in Circus to the combination of CSP and Z, CSP ‖B Z ,
by applying individual rules defined in Chapter 4, are presented in this appendix.

E.1 Channel Declarations

E.1.1 Synchronisation Channel

Link Rule 1 (Synchronisation Channel).

Υ (channel c1, · · · , cn)

= Φ (Rwrt (channel c1, · · · , cn)) [Link Definition]
= Φ (channel c1, · · · , cn) [Rwrt Rule 6]
= channel c1, · · · , cn [Φ Rule 4]

E.1.2 Typed Channel

Link Rule 2 (Typed Channel).

Υ (channel c1, · · · , cn : T )

= Φ (Rwrt (channel c1, · · · , cn : T )) [Link Definition]
= Φ (channel c1, · · · , cn : T ) [Rwrt Rule 6]
= channel c1, · · · , cn : Φ(T ) [Φ Rule 4]

E.1.3 Schema Typed Channel

Link Rule 3 (Schema Typed Channel).

Υ (channelfrom S )

= Φ (Rwrt (channelfrom S )) [Link Definition]

= Φ

(
channel c1, c2, . . . , cn : Tc

channel d1, d2, . . . , dm : Td

)
[Rwrt Rule 6]

=

{
channel c1, c2, . . . , cn : Φ(Tc)
channel d1, d2, . . . , dm : Φ(Td )

[Φ Rule 4]
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provided

S
c1, c2, . . . , cn : Tc

d1, d2, . . . , dm : Td

E.2 Channel Set Declarations

Link Rule 4 (Channel Set Declarations).

Υ (channelset N == CSExp)

= Φ (Rwrt (channelset N == CSExp)) [Link Definition]
= Φ (channelset N == CSExp) [Rwrt Rule 7]
= N = Φ(CSExp) [Φ Rule 5]

E.3 Channel Set Expressions

Link Rule 5 (Empty Channel Set).

Υ ({| |})
= Φ (Rwrt ({| |})) [Link Definition]
= Φ ({| |}) [Rwrt Rule 8]
= {||} [Φ Rule 6]

Link Rule 6 (Channel Set Extension).

Υ ({| c1, c2, · · · , cn |})
= Φ (Rwrt ({| c1, c2, · · · , cn |})) [Link Definition]
= Φ ({| c1, c2, · · · , cn |}) [Rwrt Rule 8]
= {|c1, c2, · · · , cn |} [Φ Rule 6]

Link Rule 7 (Channel Set Reference and Expressions).

Υ (CSRef )

= Φ (Rwrt (CSRef )) [Link Definition]
= Φ (CSRef ) [Rwrt Rule 8]
= CSRef [Φ Rule 6]

In addition, channel set expressions by set union, set intersection, and set difference
are linked similarly.

Υ (CSExp1 ∪ CSExp2)

= Φ (Rwrt (CSExp1 ∪ CSExp2)) [Link Definition]
= Φ (CSExp1 ∪ CSExp2) [Rwrt Rule 8]
= union(Φ(CSExp1),Φ(CSExp2)) [Φ Rule 6]
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Υ (CSExp1 ∩ CSExp2)

= Φ (Rwrt (CSExp1 ∩ CSExp2)) [Link Definition]
= Φ (CSExp1 ∩ CSExp2) [Rwrt Rule 8]
= inter(Φ(CSExp1),Φ(CSExp2)) [Φ Rule 6]

Υ (CSExp1 \ CSExp2)

= Φ (Rwrt (CSExp1 \ CSExp2)) [Link Definition]
= Φ (CSExp1 \ CSExp2) [Rwrt Rule 8]
= diff(Φ(CSExp1),Φ(CSExp2)) [Φ Rule 6]

E.4 Explicitly Defined Processes

Link Rule 8 (Single Explicitly Defined Process).

Υ



process P =̂ begin
state StPar == [ s1 : T1 ; · · · sn : Tn | p ]
Init == [ (StPar)′ | pi ]
Pars == [ · · · ]
• A

end


=


Ω
(
Rwrt

(
process P =̂ begin · · · end

))
State Part

Φ
(
Rwrt

(
process P =̂ begin · · · end

))
Behaviour Part

[Link Definition]

=



Ω


Rwrt



process P =̂ begin
state StPar == [ s1 : T1 ; · · · sn : Tn | p ]
Init == [ (StPar)′ | pi ]
Pars == [ · · · ]
Op s1 == [ ΞStPar ; s1! : T1 | s1! = s1 ]
· · ·
Op sn == [ ΞStPar ; sn ! : Tn | sn ! = sn ]
• A

end





Φ


Rwrt



process P =̂ begin
state StPar == [ s1 : T1 ; · · · sn : Tn | p ]
Init == [ (StPar)′ | pi ]
Pars == [ · · · ]
Op s1 == [ ΞStPar ; s1! : T1 | s1! = s1 ]
· · ·
Op sn == [ ΞStPar ; sn ! : Tn | sn ! = sn ]
• A

end




[Additional Schemas Rwrt Rule 23]
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=



Ω



process P =̂ begin
state P StPar == [ P s1 : T1 ; · · ·P sn : Tn | p ]
P Init == [ (P StPar)′ | pi ]
P Pars == [ · · · ]
P Op s1 == [ ΞP StPar ; s1! : T1 | s1! = P s1 ]
· · ·
P Op sn == [ ΞP StPar ; sn ! : Tn | sn ! = P sn ]
• Rwrt(A)

end



Φ



process P =̂ begin
state P StPar == [ P s1 : T1 ; · · ·P sn : Tn | p ]
P Init == [ (P StPar)′ | pi ]
P Pars == [ · · · ]
P Op s1 == [ ΞP StPar ; s1! : T1 | s1! = P s1 ]
· · ·
P Op sn == [ ΞP StPar ; sn ! : Tn | sn ! = P sn ]
• Rwrt(A)

end


[Renaming Rwrt Rule 24]

=



Ω3


Ω2



P StPar == [ P s1 : T1 ; · · ·P sn : Tn | p ]
State == P StPar
Init == [ (State)′ | pi ]
P Pars == [P Pars.decl | P Pars.p]
P Op s1 == [ ΞP StPar ; s1! : T1 | s1! = P s1 ]
· · ·
P Op sn == [ ΞP StPar ; sn ! : Tn | sn ! = P sn ]




P=Φ (Rwrt(A))

[Ω1 Rule 1 and Φ Rule 8]

=



Ω3



P StPar =̂ [ P s1 : T1 ; · · ·P sn : Tn | p ]
State =̂ P StPar
Init =̂ [ State ′ | pi ]
P Pars =̂ [P Pars.decl | P Pars.p]
P Op s1 =̂ [ ΞP StPar ; s1! : T1 | s1! = P s1 ]
· · ·
P Op sn =̂ [ ΞP StPar ; sn ! : Tn | sn ! = P sn ]


P=Φ (Rwrt(A))

[Ω2 Rule 4 and Ω2 Rule 5]

Link Rule 9 (Explicitly Defined Processes). Provided there are n explicitly defined
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processes, then they are linked below.

Υ





process P1 =̂ begin
state StPar == [ s11 : T11 ; · · · s1m1 : T1m1 | ps1 ]
Init == [ (StPar)′ | pi1 ]
Pars == [ decl1 | p1 ]
• A

end


· · ·

process Pn =̂ begin
state StPar == [ sn1 : Tn1 ; · · · snmn : Tnmn | psn ]
Init == [ (StPar)′ | pin ]
Pars == [ decln | pn ]
• A

end





=



Ω

Rwrt

 process P1 =̂ begin · · · end
· · ·
process Pn =̂ begin · · · end

 State Part

Φ

Rwrt

 process P1 =̂ begin · · · end
· · ·
process Pn =̂ begin · · · end

 Behaviour Part

[Link Definition]
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=



Ω



Rwrt





process P1 =̂ begin
state StPar == [ s11 : T11 ; · · · s1m1 : T1m1 | ps1 ]
Init == [ (StPar)′ | pi1 ]
Pars == [ decl1 | p1 ]
Op s11 == [ ΞStPar ; s11! : T11 | s11! = s11 ]
· · ·
Op s1m1 == [ ΞStPar ; s1m1 ! : T1m1 | s1m1 ! = s1m1 ]
• A

end


· · ·

process Pn =̂ begin
state StPar == [ sn1 : Tn1 ; · · · snmn : Tnmn | psn ]
Init == [ (StPar)′ | pin ]
Pars == [ decln | pn ]
Op sn1 == [ ΞStPar ; sn1! : Tn1 | sn1! = sn1 ]
· · ·
Op snmn == [ ΞStPar ; snmn ! : Tnmn | snmn ! = snmn ]
• A

end







Φ



Rwrt





process P1 =̂ begin
state StPar == [ s11 : T11 ; · · · s1m1 : T1m1 | ps1 ]
Init == [ (StPar)′ | pi1 ]
Pars == [ decl1 | p1 ]
Op s11 == [ ΞStPar ; s11! : T11 | s11! = s11 ]
· · ·
Op s1m1 == [ ΞStPar ; s1m1 ! : T1m1 | s1m1 ! = s1m1 ]
• A

end


· · ·

process Pn =̂ begin
state StPar == [ sn1 : Tn1 ; · · · snmn : Tnmn | psn ]
Init == [ (StPar)′ | pin ]
Pars == [ decln | pn ]
Op sn1 == [ ΞStPar ; sn1! : Tn1 | sn1! = sn1 ]
· · ·
Op snmn == [ ΞStPar ; snmn ! : Tnmn | snmn ! = snmn ]
• A

end






[Additional Schemas Rwrt Rule 23]
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=



Ω





process P1 =̂ begin
state P1 StPar == [ P1 s11 : T11 ; · · ·P1 s1m1 : T1m1 | ps1 ]
P1 Init == [ (P1 StPar)′ | pi1 ]
P1 Pars == [ decl1 | p1 ]
P1 Op s11 == [ ΞP1 StPar ; P1 s11! : T11 |

P1 s11! = P1 s11 ]
· · ·
P1 Op s1m1 == [ ΞP1 StPar ; P1 s1m1 ! : T1m1 |

P1 s1m1 ! = P1 s1m1 ]
• Rwrt(A)

end


· · ·

process Pn =̂ begin
state Pn StPar == [ Pn sn1 : Tn1 ; · · ·Pn snmn : Tnmn |

psn ]
Pn Init == [ (Pn StPar)′ | pin ]
Pn Pars == [ decln | pn ]
Pn Op sn1 == [ ΞPn StPar ; Pn sn1! : Tn1 |

Pn sn1! = Pn sn1 ]
· · ·
Pn Op snmn == [ ΞPn StPar ; Pn snmn ! : Tnmn |

Pn snmn ! = Pn snmn ]
• Rwrt(A)

end





Φ





process P1 =̂ begin
state P1 StPar == [ P1 s11 : T11 ; · · ·P1 s1m1 : T1m1 | ps1 ]
P1 Init == [ (P1 StPar)′ | pi1 ]
P1 Pars == [ decl1 | p1 ]
P1 Op s11 == [ ΞP1 StPar ; P1 s11! : T11 |

P1 s11! = P1 s11 ]
· · ·
P1 Op s1m1 == [ ΞP1 StPar ; P1 s1m1 ! : T1m1 |

P1 s1m1 ! = P1 s1m1 ]
• Rwrt(A)

end


· · ·

process Pn =̂ begin
state Pn StPar == [ Pn sn1 : Tn1 ; · · ·Pn snmn : Tnmn |

psn ]
Pn Init == [ (Pn StPar)′ | pin ]
Pn Pars == [ decln | pn ]
Pn Op sn1 == [ ΞPn StPar ; Pn sn1! : Tn1 |

Pn sn1! = Pn sn1 ]
· · ·
Pn Op snmn == [ ΞPn StPar ; Pn snmn ! : Tnmn |

Pn snmn ! = Pn snmn ]
• Rwrt(A)

end




[Renaming Rwrt Rule 24]
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=



Ω3



Ω2



P1 StPar == [ P1 s11 : T11 ; · · ·P1 s1m1 : T1m1 | ps1 ]
. . .
Pn StPar == [ Pn sn1 : Tn1 ; · · ·Pn snmn : Tnmn | psn ]
State == P1 StPar ∧ · · · ∧ Pn StPar
Init == [ (State)′ | pi1 ∧ · · · ∧ pin ]
P1 Pars == [P1 Pars.decl1 ; ΞP2 StPar ; . . . ; ΞPn StPar |

P1 Pars.p1]
. . .
Pn Pars == [Pn Pars.decln ; ΞP1 StPar ; . . . ;

ΞPn−1 StPar | Pn Pars.pn ]
P1 Op s11 == [ ΞState ; P1 s11! : T11 | P1 s11! = P1 s11 ]
· · ·
P1 Op s1m1 == [ ΞState ; P1 s1m1 ! : T1m1 |

P1 s1m1 ! = P1 s1m1 ]
· · ·
Pn Op sn1 == [ ΞState ; Pn sn1! : Tn1 | Pn sn1! = Pn sn1 ]
· · ·
Pn Op snmn == [ ΞState ; Pn snmn ! : Tnmn |

Pn snmn ! = Pn snmn ]






P1 = Φ (Rwrt (P1.A))
· · ·
Pn = Φ (Rwrt (Pn .A))

[Ω1 Rule 1 and Φ Rule 8]

=



Ω3



P1 StPar =̂ [ P1 s11 : T11 ; · · ·P1 s1m1 : T1m1 | ps1 ]
. . .
Pn StPar =̂ [ Pn sn1 : Tn1 ; · · ·Pn snmn : Tnmn | psn ]
State =̂ P1 StPar ∧ · · · ∧ Pn StPar
Init =̂ [ State ′ | pi1 ∧ · · · ∧ pin ]
P1 Pars =̂ [P1 Pars.decl1 ; ΞP2 StPar ; . . . ; ΞPn StPar |

P1 Pars.p1]
. . .
Pn Pars =̂ [Pn Pars.decln ; ΞP1 StPar ; . . . ; ΞPn−1 StPar |

Pn Pars.pn ]
P1 Op s11 =̂ [ ΞState ; P1 s11! : T11 | P1 s11! = P1 s11 ]
· · ·
P1 Op s1m1 =̂ [ ΞState ; P1 s1m1 ! : T1m1 | P1 s1m1 ! = P1 s1m1 ]
· · ·
Pn Op sn1 =̂ [ ΞState ; Pn sn1! : Tn1 | Pn sn1! = Pn sn1 ]
· · ·
Pn Op snmn =̂ [ ΞState ; Pn snmn ! : Tnmn | Pn snmn ! = Pn snmn ]




P1 = Φ (Rwrt (P1.A))
· · ·
Pn = Φ (Rwrt (Pn .A))

[Ω2 Rule 4 and Ω2 Rule 5]
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E.5 Compound Processes

The state part of explicitly defined processes is linked to Z by Link Rule 8 and 9. There-
fore, when linking compound processes, the link of the state part is omitted and only the
behavioural part is linked in this section.

E.5.1 Sequential Composition

Link Rule 10 (Sequential Composition).

Υ (P ; Q)

=


Ω (Rwrt (P ; Q)) State Part

Φ (Rwrt (P ; Q)) Behaviour Part
[Link Definition]

=


Ω (Rwrt (P) ; Rwrt (Q))

Φ (Rwrt (P) ; Rwrt (Q))
[Rwrt Rule 22]

=


Ω3 (Ω2 (Ω1 (Rwrt (P) ; Rwrt (Q))))

Φ (Rwrt (P)) ; Φ (Rwrt (Q))
[Ω Definition and Φ Rule 9]

= Φ (Rwrt (P)) ; Φ (Rwrt (Q)) [The link of the state part by Ω is omitted.]

= Φ (P) ; Φ (Q) [Rwrt Rule 18]

= P ; Q [Φ Rule 15]

E.5.2 External Choice

Link Rule 11 (External Choice).

Υ (PA1 2 PA2)

=


Ω (Rwrt (PA1 2 PA2)) State Part

Φ (Rwrt (PA1 2 PA2)) Behaviour Part
[Link Definition]

=


Ω (Rwrt (PA1) 2 Rwrt (PA2))

Φ (Rwrt (PA1) 2 Rwrt (PA2))
[Rwrt Rule 22]

=


Ω3 (Ω2 (Ω1 (Rwrt (PA1) 2 Rwrt (PA2))))

Φ (Rwrt (PA1)) 2 Φ (Rwrt (PA2))
[Ω Definition and Φ Rule 9]

= Φ (PA1) 2 Φ (PA2) [Rwrt Rule 18]
= PA1 2 PA2 [Φ Rule 15]

E.5.3 Internal Choice

Link Rule 12 (Internal Choice).

Υ (P u Q)
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=


Ω (Rwrt (P u Q)) State Part

Φ (Rwrt (P u Q)) Behaviour Part
[Link Definition]

=


Ω (Rwrt (P) u Rwrt (Q))

Φ (Rwrt (P) u Rwrt (Q))
[Rwrt Rule 22]

=


Ω3 (Ω2 (Ω1 (Rwrt (P) u Rwrt (Q))))

Φ (Rwrt (P)) u Φ (Rwrt (Q))
[Ω Definition and Φ Rule 9]

= Φ (P) u Φ (Q) [Rwrt Rule 18]
= P u Q [Φ Rule 15]

E.5.4 Parallel Composition

Link Rule 13 (Parallel Composition).

Υ (P J cs K Q)

=


Ω (Rwrt (P J cs K Q)) State Part

Φ (Rwrt (P J cs K Q)) Behaviour Part
[Link Definition]

=


Ω (Rwrt (P) J cs K Rwrt (Q))

Φ (Rwrt (P) J cs K Rwrt (Q))
[Rwrt Rule 22]

=


Ω3 (Ω2 (Ω1 (Rwrt (P) J cs K Rwrt (Q))))

Φ (Rwrt (P)) ‖
Φ(cs)

Φ (Rwrt (Q))
[Ω Definition and Φ Rule 12]

= Φ (P) ‖
Φ(cs)

Φ (Q) [Rwrt Rule 18]

= P ‖
Φ(cs)

Q [Φ Rule 15]

E.5.5 Interleaving

Link Rule 14 (Interleaving).

Υ (P ||| Q)

=


Ω (Rwrt (P ||| Q)) State Part

Φ (Rwrt (P ||| Q)) Behaviour Part
[Link Definition]

=


Ω (Rwrt (P) ||| Rwrt (Q))

Φ (Rwrt (P) ||| Rwrt (Q))
[Rwrt Rule 22]

=


Ω3 (Ω2 (Ω1 (Rwrt (P) ||| Rwrt (Q))))

Φ (Rwrt (P)) ||| Φ (Rwrt (Q))
[Ω Definition and Φ Rule 13]
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= Φ (P) ||| Φ (Q) [Rwrt Rule 18]
= P ||| Q [Φ Rule 15]

E.5.6 Hiding

Link Rule 15 (Hiding).

Υ
(
P \ cs

)
=


Ω
(
Rwrt

(
P \ cs

))
State Part

Φ
(
Rwrt

(
P \ cs

))
Behaviour Part

[Link Definition]

=


Ω
(
Rwrt (P) \ cs

)
Φ
(
Rwrt (P) \ cs

) [Rwrt Rule 22]

= Φ (Rwrt (P)) \ Φ(cs) [Φ Rule 14]

= Φ (P) \ Φ(cs) [Rwrt Rule 18]

= P \ Φ(cs) [Φ Rule 15]

E.5.7 Unnamed Parametrised Process Invocation

Link Rule 16 (Unnamed Parametrised Process Invocation). An unnamed parame-
trised process invocation is rewritten to a named parametrised process and its invocation.
Then they are linked by the rules of the parametrised process and its invocation.

Υ ((x : T • P) (e))

=


Ω (Rwrt ((x : T • P) (e))) State Part

Φ (Rwrt ((x : T • P) (e))) Behaviour Part
[Link Definition]

=


Ω

(
Rwrt (process UPP =̂ x : T • P)
Rwrt (UPP(e))

)
State Part

Φ

(
Rwrt (process UPP =̂ x : T • P)
Rwrt (UPP(e))

)
Behaviour Part

[Rwrt Rule 13]

Then Rwrt (process UPP =̂ x : T • P) is linked by Link Rule 29 and Rwrt (UPP(e)) is
linked by Link Rule 17.

It is worth noting that this link rule finally results in a set of new explicitly defined
processes and they should be linked to the state part as well by Link Rule 9 in the later
stage.

E.5.8 Parametrised Process Invocation

Link Rule 17 (Parametrised Process Invocation). For the parametrised process
invocation PP(ax ) (where ax is a variable name or an expression) in Circus, it is linked
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below.

Υ (PP(ax ))

=


Ω (Rwrt (PP(ax ))) State Part

Φ (Rwrt (PP(ax ))) Behaviour Part
[Link Definition]

=



Ω


(ax == x1) & PP x1

2 (ax == x2) &PP x2

· · ·
2 (ax == xn) &PP xn



Φ


(ax == x1) & PP x1

2 (ax == x2) &PP x2

· · ·
2 (ax == xn) &PP xn


[Rwrt Rule 12]

= Φ


(ax == x1) & PP x1

2 (ax == x2) &PP x2

· · ·
2 (ax == xn) &PP xn

 [No state part]

Thus, for a specific value of ax (assume ax = xi), the invocation PP(ax ) becomes

Υ (PP(xi))

= Φ


(ax == x1) & PP x1

2 (ax == x2) &PP x2

· · ·
2 (ax == xn) &PP xn


= Φ (PP xi) [External choice elimination Lemma C.3.1]
= Φ (P [xi/x ]) [P xi definition in Rwrt Rule 11]

Finally, the invocation of PP(xi) is the invocation of an explicitly defined process that is
got by substituting xi for x in P .

E.5.9 Process Invocation

Link Rule 18 (Process Invocation).

Υ(P)

=


Ω (Rwrt (P)) State Part

Φ (Rwrt (P)) Behaviour Part
[Link Definition]

=


Ω (P)

Φ (P)
[Process invocation Rwrt Rule 22]

= Φ (P) [No state part]
= P [Φ Rule 15]



E.5 Compound Processes 301

E.5.10 Unnamed Indexed Process Invocation

Link Rule 19 (Unnamed Indexed Process Invocation). An unnamed indexed pro-
cess invocation is rewritten to a named indexed process and its invocation. Then they are
linked by the rules of the indexed process and its invocation.

Υ ((x : T � P) bec)

=


Ω (Rwrt ((x : T � P) bec)) State Part

Φ (Rwrt ((x : T � P) bec)) Behaviour Part
[Link Definition]

=


Ω

(
Rwrt (process UIP =̂ x : T � P)
Rwrt (UIPbec)

)
State Part

Φ

(
Rwrt (process UIP =̂ x : T � P)
Rwrt (UIPbec)

)
Behaviour Part

[Rwrt Rule 16]

Then Rwrt (process UIP =̂ x : T � P) is linked by Link Rule 30 and Rwrt (UIPbec) is
linked by Link Rule 20.

E.5.11 Indexed Process Invocation

Link Rule 20 (Indexed Process Invocation). For the indexed process invocation
IPbaxc (where ax is a variable name or an expression) in Circus, it is linked below.

Υ (IPbaxc)

=


Ω (Rwrt (IPbaxc)) State Part

Φ (Rwrt (IPbaxc)) Behaviour Part
[Link Definition]

=



Ω


(ax == x1) & IP x1

2 (ax == x2) &IP x2

· · ·
2 (ax == xn) &IP xn



Φ


(ax == x1) & IP x1

2 (ax == x2) &IP x2

· · ·
2 (ax == xn) &IP xn


[Rwrt Rule 15]

= Φ


(ax == x1) & IP x1

2 (ax == x2) &IP x2

· · ·
2 (ax == xn) &IP xn

 [No state part]

Thus, for a specific value of ax (assume ax = xi), the invocation IPbaxc becomes

Υ (IPbaxc)

= Φ


(ax == x1) & IP x1

2 (ax == x2) &IP x2

· · ·
2 (ax == xn) &IP xn

 [No state part]

= Φ (IP xi) [External choice elimination Lemma C.3.1]
= Φ (P [xi/x ]) [P xi definition in Rwrt Rule 14]
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Finally, the invocation of IPbxic is the invocation of an explicitly defined process that is
got by substituting xi for x in IP .

E.5.12 Renaming Operator

Link Rule 21 (Renaming Operator). Provided P is a reference to an explicitly defined
process or an indexed process, then

Υ (process RP =̂ P [cold := cnew ])

=


Ω (Rwrt (process RP =̂ P [cold := cnew ])) State Part

Φ (Rwrt (process RP =̂ P [cold := cnew ])) Behaviour Part
[Link Definition]

=


Ω (Rwrt (process RP =̂ FRen (B(P), {(cold , cnew )}))) State Part

Φ (Rwrt (process RP =̂ FRen (B(P), {(cold , cnew )}))) Behaviour Part
[Rwrt Rule 19]

By this rule, the original RP defined as a renamed process has become an explicitly defined
process (if P is an explicitly process) or a set of explicitly defined processes (if P is an
indexed process). And therefore it can be linked further by Link Rule 9.

Link Rule 22 (Explicitly Defined Processes with Renaming). Provided P is a
reference to an explicitly defined process, then

Υ (process RP =̂ P [cold := cnew ])

=


Ω (Rwrt (process RP =̂ FRen (B(P), {(cold , cnew )}))) State Part

Φ (Rwrt (process RP =̂ FRen (B(P), {(cold , cnew )}))) Behaviour Part
[Link Rule 21]

=


Ω (process RP =̂ Rwrt (FRen (B(P), {(cold , cnew )}))) State Part

Φ (process RP =̂ Rwrt (FRen (B(P), {(cold , cnew )}))) Behaviour Part
[Link Rule 20]

Then it can be linked further by Link Rule 9.

Link Rule 23 (Indexed Processes with Renaming). Provided IP is a reference to
an index process, then

Υ (process RP =̂ IP [c i := d ])

=


Ω (Rwrt (process RP =̂ FRen (B(IP), {(c i , d)}))) State Part

Φ (Rwrt (process RP =̂ FRen (B(IP), {(c i , d)}))) Behaviour Part
[Link Rule 21]
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=



Ω

 process RP i1 =̂ Rwrt (FRen (B(P), {(c, d .i1)}))
...
process RP in =̂ Rwrt (FRen (B(P), {(c, d .in)}))

 State Part

Φ

 process RP i1 =̂ Rwrt (FRen (B(P), {(c, d .i1)}))
...
process RP in =̂ Rwrt (FRen (B(P), {(c, d .in)}))

 Behaviour Part

[Rwrt Rule 21]

Then these explicitly defined processes can be linked further by Link Rule 9.

E.5.13 Iterated Sequential Composition

Link Rule 24 (Iterated Sequential Composition).

Υ
(
; x : T • P(x )

)
=


Ω
(
Rwrt

(
; x : T • P(x )

))
State Part

Φ
(
Rwrt

(
; x : T • P(x )

))
Behaviour Part

[Link Definition]

=


Ω
(
; x : T • Rwrt (P(x ))

)
Φ
(
; x : T • Rwrt (P(x ))

) [Iterated sequential composition Rwrt Rule 22]

= Φ
(
; x : T • Rwrt (P(x ))

)
[Only behavioural part in this construct]

= ;x :Φ(T ) • Φ (Rwrt (P(x ))) [Φ Rule 16]

E.5.14 Iterated External Choice

Link Rule 25 (Iterated External Choice).

Υ
(
2 x : T • P(x )

)
=


Ω
(
Rwrt

(
2 x : T • P(x )

))
State Part

Φ
(
Rwrt

(
2 x : T • P(x )

))
Behaviour Part

[Link Definition]

=


Ω
(
2 x : T • Rwrt (P(x ))

)
Φ
(
2 x : T • Rwrt (P(x ))

) [Iterated external choice Rwrt Rule 22]

= Φ
(
2 x : T • Rwrt (P(x ))

)
[Only behavioural part in this construct]

= 2
x :Φ(T )

• Φ (Rwrt (P(x ))) [Φ Rule 17]

E.5.15 Iterated Internal Choice

Link Rule 26 (Iterated Internal Choice).

Υ
(u x : T • P(x )

)
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=


Ω
(
Rwrt

(u x : T • P(x )
))

State Part

Φ
(
Rwrt

(u x : T • P(x )
))

Behaviour Part
[Link Definition]

=


Ω
(u x : T • Rwrt (P(x ))

)
Φ
(u x : T • Rwrt (P(x ))

) [Iterated internal choice Rwrt Rule 22]

= Φ
(u x : T • Rwrt (P(x ))

)
[Only behavioural part in this construct]

= u
x :Φ(T )

• Φ (Rwrt (P(x ))) [Φ Rule 18]

E.5.16 Iterated Parallel Composition

Link Rule 27 (Iterated Parallel Composition).

Υ (JCS K x : T • P(x ))

=


Ω (Rwrt (JCS K x : T • P(x ))) State Part

Φ (Rwrt (JCS K x : T • P(x ))) Behaviour Part
[Link Definition]

=


Ω (JCS K x : T • Rwrt (P(x )))

Φ (JCS K x : T • Rwrt (P(x )))

[Iterated parallel composition Rwrt Rule 22]

= Φ (JCS K x : T • Rwrt (P(x ))) [Only behavioural part in this construct]

= ‖
CS x :Φ(T )

• Φ (Rwrt (P(x ))) [Φ Rule 19]

E.5.17 Iterated Interleaving

Link Rule 28 (Iterated Interleaving).

Υ
(||| x : T • P(x )

)
=


Ω
(
Rwrt

(||| x : T • P(x )
))

State Part

Φ
(
Rwrt

(||| x : T • P(x )
))

Behaviour Part
[Link Definition]

=


Ω
(||| x : T • Rwrt (P(x ))

)
Φ
(||| x : T • Rwrt (P(x ))

) [Iterated parallel composition Rwrt Rule 22]

= Φ
(||| x : T • Rwrt (P(x ))

)
[Only behavioural part in this construct]

= |||
x :Φ(T )

• Φ (Rwrt (P(x ))) [Φ Rule 19]
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E.6 Parametrised Processes

Link Rule 29 (Parametrised Processes).

Υ (process PP =̂ x : T • P)

=


Ω (Rwrt (process PP =̂ x : T • P)) State Part

Φ (Rwrt (process PP =̂ x : T • P)) Behaviour Part
[Link Definition]

=



Ω

 Rwrt (process PP x1 =̂ P [x1/x ])
. . .
Rwrt (process PP xn =̂ P [xn/x ])



Φ

 Rwrt (process PP x1 =̂ P [x1/x ])
. . .
Rwrt (process PP xn =̂ P [xn/x ])


[Parametrised process Rwrt Rule 11]

The parametrised process PP is rewritten to a set of explicitly defined processes that are
linked to the CSP ‖ B program by Link Rule 9.

E.7 Indexed Processes

Link Rule 30 (Indexed Processes).

Υ (process IP =̂ i : T � P)

=


Ω (Rwrt (process IP =̂ i : T � P)) State Part

Φ (Rwrt (process IP =̂ i : T � P)) Behaviour Part
[Link Definition]

=



Ω

 Rwrt (process IP i1 =̂ P [c := c i .i1])
. . .
Rwrt (process IP in =̂ P [c := c i .in ])



Φ

 Rwrt (process IP i1 =̂ P [c := c i .i1])
. . .
Rwrt (process IP in =̂ P [c := c i .in ])


[Indexed process Rwrt Rule 14]

=



Ω

 Rwrt (process IP i1 =̂ FRen(P , {(c, c i .i1)}))
. . .
Rwrt (process IP in =̂ FRen(P , {(c, c i .in)}))



Φ

 Rwrt (process IP i1 =̂ FRen(P , {(c, c i .i1)}))
. . .
Rwrt (process IP in =̂ FRen(P , {(c, c i .in)}))


[Renaming operator Rwrt Rule 19]

The indexed process IP is rewritten to a set of explicitly defined processes that are linked
to the CSP ‖ B program by Link Rule 9.
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E.8 Actions

E.8.1 Schema Expression as Action

Link Rule 31 (Schema Expression as Action).

Υ
(
(SExp)

)
=


Ω (Rwrt (SExp == [decl ; ins? : Ti ; outs! : To | p])) State Part

Φ
(

Rwrt

(
(SExp)

))
Behaviour Part

[Link Definition and SExp schema definition ]

=


Ω (P SExp == [decl ; ins? : Ti ; outs! : To | p])

Φ
(
(P SExp)

)
[Renaming Rwrt Rule 24 and Schema expression Rwrt Rule 25]

=



Ω3

Ω2


P SExp == [ decl ; ΞQ1 StPar ; · · ·ΞQn StPar ;

ins? : Ti ; outs! : To | p ]
P SExp fOp == [ ΞP StPar ; ΞQ1 StPar ; · · ·ΞQn StPar ;

ins? : Ti | ¬pre P SExp]





channel P SExp : Φ(Ti).Φ(To)
channel P SExp fOp : Φ(Ti)
HIDE CSPB = {|P SExp,P SExp fOp|}
P SExp!ins?outs → SKIP 2 P SExp fOp!ins → div


[Ω1 Rule 1 and Φ Rule 21]

=



Ω3


P SExp =̂ [ decl ; ΞQ1 StPar ; · · ·ΞQn StPar ;

ins? : Ti ; outs! : To | p ]
P SExp fOp =̂ [ ΞP StPar ; ΞQ1 StPar ; · · ·ΞQn StPar ;

ins? : Ti | ¬pre P SExp]




channel P SExp : Φ(Ti).Φ(To)
channel P SExp fOp : Φ(Ti)
HIDE CSPB = {|P SExp,P SExp fOp|}
P SExp!ins?outs → SKIP 2 P SExp fOp!ins → div


[Ω2 Rule 4]

E.8.2 CSP Actions

E.8.2.1 Basic Actions

Link Rule 32 (Basic Actions).

Υ (Skip)

=


Ω (Rwrt (Skip)) State Part

Φ (Rwrt (Skip)) Behaviour Part
[Link Definition]

= Φ (Rwrt (Skip)) [Only behavioural part in this construct]
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= Φ (Skip) [Rwrt Rule 26]
= SKIP [Φ Rule 23]

Υ (Stop)

=


Ω (Rwrt (Stop)) State Part

Φ (Rwrt (Stop)) Behaviour Part
[Link Definition]

= Φ (Rwrt (Stop)) [Only behavioural part in this construct]
= Φ (Stop) [Rwrt Rule 26]
= STOP [Φ Rule 23]

Υ (Chaos)

=


Ω (Rwrt (Chaos)) State Part

Φ (Rwrt (Chaos)) Behaviour Part
[Link Definition]

= Φ (Rwrt (Chaos)) [Only behavioural part in this construct]
= Φ (Chaos) [Rwrt Rule 26]
= div [Φ Rule 23]

E.8.2.2 Prefixing

Synchronisation Channel

Link Rule 33 (Synchronisation Channel).

Υ (c → A)

=


Ω (Rwrt (c → A)) State Part

Φ (Rwrt (c → A)) Behaviour Part
[Link Definition]

= Φ (Rwrt (c → A)) [Only behavioural part in this construct]
= Φ (c → Rwrt (A)) [Rwrt Rule 27]
= c → Φ (Rwrt (A)) [Φ Rule 24]

Output Channel

Link Rule 34 (Output Channel). Similarly, for the prefixing c.e → A or c!e → A in
Circus, provided e does not evaluate state variables, it is linked to c.e → Φ (Rwrt (A)) or
c!e → Φ (Rwrt (A)).

Link Rule 35 (Output Channel). However for the prefixing c.e(si , · · · , sj ) → A, if e
evaluates state variables such as si , · · · , sj , it is linked below.

Υ (c.e(si , · · · , sj )→ A)
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=


Ω (Rwrt (c.e(si , · · · , sj )→ A)) State Part

Φ (Rwrt (c.e(si , · · · , sj )→ A)) Behaviour Part
[Link Definition]

= Φ
(
(P Op si)→ · · · → (P Op sj )→ c.e(si , · · · , sj )→ Rwrt (A)

)
[Only behavioural part, Rwrt Rule 24 and Rwrt Rule 27]

= Φ
(
(P Op si)

)
→ . . .→ Φ

(
(P Op sj )

)
→ c.Φ (e(si , · · · , sj ))→ Φ (Rwrt (A))

[Φ Rule 24]

=


channel P Op si : Φ(Tsi )
· · ·
channel P Op sj : Φ(Tsj )
HIDE CSPB = {|P Op si , · · · ,P Op sj |}
P Op si?si → · · · → P Op sj ?sj → c.Φ (e(si , · · · , sj ))→ Φ (Rwrt (A))

[Φ Rule 22]

Input Channel

Link Rule 36 (Input Channel). A restricted input prefixing c?x : P → A(x ) in Circus
is linked below.

Υ (c?x : P → A(x ))

=


Ω (Rwrt (c?x : P → A(x ))) State Part

Φ (Rwrt (c?x : P → A(x ))) Behaviour Part
[Link Definition]

= Φ (Rwrt (c?x : P → A(x ))) [Only behavioural part in this construct]

= Φ (c?x : P → Rwrt (A(x ))) [Input Prefix Rwrt Rule 27]

= c?x : {y | y<-Φ(Tc),Φ(P)} → Φ (Rwrt (A(x ))) [Φ Rule 24]

where Tc is the type of channel c.

Link Rule 37 (Input Channel). For the simplified input prefixing c?x → A(x ), it is
equal to restricted input prefixing with the predicate P = True [35, Definition B.16].

Υ (c?x → A(x ))

Υ (c?x : True→ A(x ))

= c?x : {y | y<-Φ(Tc),Φ (True)} → Φ (Rwrt (A(x ))) [Link Rule 36]

= c?x : {y | y<-Φ(Tc), true} → Φ (Rwrt (A(x ))) [Φ Rule 1 and Table D.3]

= c?x : {y | y<-Φ(Tc)} → Φ (Rwrt (A(x ))) [Simplified set comprehension]

= c?x : Φ(Tc)→ Φ (Rwrt (A(x )))
[Taking all elements from one set to form a new set is equal to this set itself]

= c?x → Φ (Rwrt (A(x ))) [Tc is the type of c and Link Rule 2]

Multiple Data Transfer Channel

Link Rule 38 (Multiple Data Transfer Channel). For the channel with multiple
inputs, or outputs, or the combination of them, the rule is a combination of corresponding
rules as well.
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E.8.2.3 Guarded Action

Link Rule 39 (Guarded Action).

Υ
(
(g) N A

)
=


Ω
(
Rwrt

(
(g) N A

))
State Part

Φ
(
Rwrt

(
(g) N A

))
Behaviour Part

[Link Definition]

= Φ
(
Rwrt

(
(g) N A

))
[Only behavioural part]

= Φ
(
Rmrg (Rpre (g) ,Rpre (A))→

(
(g) N Rpost (A)

))
[Rwrt Rule 28]

= Φ (Rmrg (Rpre (g) ,Rpre (A)))→ Φ
(
(g) N Rpost (A)

)
[Φ Rule 24]

= Φ (Rmrg (Rpre (g) ,Rpre (A)))→ Φ (g) & Φ (Rpost (A)) [Φ Rule 25]

Provided g evaluates the state variables sg = sgi , · · · , sgj and the initial construct of A
evaluates sa = sai , · · · , saj . All state variables evaluated in either g or the initial construct
of A are the union of sg and sa , denoted as si , · · · , sj . Then

Υ
(
(g) N A

)
= Φ (Rmrg (Rpre (g) ,Rpre (A)))→ Φ (g) & Φ (Rpost (A)) []

= Φ

(
Rmrg

(
(P Op sgi)→ · · · → (P Op sgj ),
(P Op sai)→ · · · → (P Op saj )

))
→ Φ (g) & Φ (Rpost (A))

[Definition 4.3.1]

= Φ
(
(P Op si)→ · · · → (P Op sj )

)
→ Φ (g) & Φ (Rpost (A))

[Definition 4.3.2]

= Φ
(
(P Op si)

)
→ · · · → Φ

(
(P Op sj )

)
→ Φ (g) & Φ (Rpost (A))

[Φ Rule 24]

=


channel P Op si : Φ(Tsi )
· · ·
channel P Op sj : Φ(Tsj )
HIDE CSPB = {|P Op si , · · · ,P Op sj |}
P Op si?si → · · · → P Op sj ?sj → Φ (g) & Φ (Rpost (A))

[Φ Rule 22]

E.8.2.4 Sequential Composition

Link Rule 40 (Sequential Composition).

Υ (A1 ; A2)

=


Ω (Rwrt (A1 ; A2)) State Part

Φ (Rwrt (A1 ; A2)) Behaviour Part
[Link Definition]

= Φ (Rwrt (A1 ; A2)) [Only behavioural part in this construct]

= Φ (Rpre (A1)→ (Rpost (A1) ; Rwrt (A2))) [Rwrt Rule 29]

= Φ (Rpre (A1))→ Φ (Rpost (A1) ; Rwrt (A2)) [Φ Rule 24]

= Φ (Rpre (A1))→ (Φ (Rpost (A1)) ; Φ (Rwrt (A2))) [Φ Rule 26]



310 Chapter E: Link from Circus to the combination of CSP and Z

E.8.2.5 External Choice

Link Rule 41 (External Choice).

Υ (A1 2 A2)

=


Ω (Rwrt (A1 2 A2)) State Part

Φ (Rwrt (A1 2 A2)) Behaviour Part
[Link Definition]

= Φ (Rwrt (A1 2 A2)) [Only behavioural part in this construct]
= Φ (Rmrg (Rpre (A1) ,Rpre (A2))→ (Rpost (A1) 2 Rpost (A2))) [Rwrt Rule 30]
= Φ (Rmrg (Rpre (A1) ,Rpre (A2)))→ Φ (Rpost (A1) 2 Rpost (A2)) [Φ Rule 24]
= Φ (Rmrg (Rpre (A1) ,Rpre (A2)))→ (Φ (Rpost (A1)) 2 Φ (Rpost (A2)))

[Φ Rule 27]

where A1 and A2 are limited to AA actions—prefixed actions defined in Definition B.3.1.

E.8.2.6 Internal Choice

Link Rule 42 (Internal Choice).

Υ (A1 u A2)

=


Ω (Rwrt (A1 u A2)) State Part

Φ (Rwrt (A1 u A2)) Behaviour Part
[Link Definition]

= Φ (Rwrt (A1 u A2)) [Only behavioural part in this construct]
= Φ (Rmrg (Rpre (A1) ,Rpre (A2))→ (Rpost (A1) u Rpost (A2))) [Rwrt Rule 31]
= Φ (Rmrg (Rpre (A1) ,Rpre (A2)))→ Φ (Rpost (A1) u Rpost (A2)) [Φ Rule 24]
= Φ (Rmrg (Rpre (A1) ,Rpre (A2)))→ (Φ (Rpost (A1)) u Φ (Rpost (A2)))

[Φ Rule 29]

E.8.2.7 Parallel Composition

Link Rule 43 (Parallel Composition (Disjoint Variables in Scope)).

Υ (A1 J ns1 | cs | ns2 K A2)

=


Ω (Rwrt (A1 J ns1 | cs | ns2 K A2)) State Part

Φ (Rwrt (A1 J ns1 | cs | ns2 K A2)) Behaviour Part
[Link Definition]

= Φ (Rwrt (A1 J ns1 | cs | ns2 K A2)) [Only behavioural part in this construct]
= Φ (Rmrg (Rpre(A1),Rpre(A2))→ (Rpost (A1) J ns1 | cs | ns2 K Rpost (A2)))

[Rwrt Rule 32]

= Φ (Rmrg (Rpre (A1) ,Rpre (A2)))→ Φ (Rpost (A1) J ns1 | cs | ns2 K Rpost (A2))
[Φ Rule 24]

= Φ (Rmrg (Rpre (A1) ,Rpre (A2)))→

 Φ (Rpost (A1))
‖

Φ(cs)

Φ (Rpost (A2))

 [Φ Rule 30]
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provided

ns1 = scpV (A1)

ns2 = scpV (A2)

Link Rule 44 (Parallel Composition (Disjoint Variables in Updating)).

Υ (A1 J ns1 | cs | ns2 K A2)

=


Ω (Rwrt (A1 J ns1 | cs | ns2 K A2)) State Part

Φ (Rwrt (A1 J ns1 | cs | ns2 K A2)) Behaviour Part
[Link Definition]

= Φ (Rwrt (A1 J ns1 | cs | ns2 K A2)) [Only behavioural part in this construct]
= Φ (Rmrg (Rpre(A1),Rpre(A2))→ (Rpost (A1) J ns1 | cs | ns2 K Rpost (A2)))

[Rwrt Rule 32]

= Φ (Rmrg (Rpre (A1) ,Rpre (A2)))→ Φ (Rpost (A1) J ns1 | cs | ns2 K Rpost (A2))
[Φ Rule 24]

= Φ (Rmrg (Rpre (A1) ,Rpre (A2)))→

 Φ (Rpost (A1))
‖

Φ(cs)

Φ (Rpost (A2))

 [Φ Rule 31]

provided

wrtV (A1) = ns1

wrtV (A2) = ns2

wrtV (A1) ∩ scpV (A2) = ∅
wrtV (A2) ∩ scpV (A1) = ∅

E.8.2.8 Interleaving

Link Rule 45 (Interleaving (Disjoint Variables in Scope)).

Υ (A1 ||[ ns1 | ns2 ]||A2)

=


Ω (Rwrt (A1 ||[ ns1 | ns2 ]||A2)) State Part

Φ (Rwrt (A1 ||[ ns1 | ns2 ]||A2)) Behaviour Part
[Link Definition]

= Φ (Rwrt (A1 ||[ ns1 | ns2 ]||A2)) [Only behavioural part in this construct]
= Φ (Rmrg (Rpre(A1),Rpre(A2))→ (Rpost (A1) ||[ ns1 | ns2 ]|| Rpost (A2)))

[Rwrt Rule 32]

= Φ (Rmrg (Rpre (A1) ,Rpre (A2)))→ Φ (Rpost (A1) ||[ ns1 | ns2 ]|| Rpost (A2))
[Φ Rule 24]

= Φ (Rmrg (Rpre (A1) ,Rpre (A2)))→

 Φ (Rpost (A1))
|||
Φ (Rpost (A2))

 [Φ Rule 30]

provided

ns1 = scpV (A1)

ns2 = scpV (A2)
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Link Rule 46 (Interleaving (Disjoint Variables in Updating)).

Υ (A1 ||[ ns1 | ns2 ]||A2)

=


Ω (Rwrt (A1 ||[ ns1 | ns2 ]||A2)) State Part

Φ (Rwrt (A1 ||[ ns1 | ns2 ]||A2)) Behaviour Part
[Link Definition]

= Φ (Rwrt (A1 ||[ ns1 | ns2 ]||A2)) [Only behavioural part in this construct]
= Φ (Rmrg (Rpre(A1),Rpre(A2))→ (Rpost (A1) ||[ ns1 | ns2 ]|| Rpost (A2)))

[Rwrt Rule 32]

= Φ (Rmrg (Rpre (A1) ,Rpre (A2)))→ Φ (Rpost (A1) ||[ ns1 | ns2 ]|| Rpost (A2))
[Φ Rule 24]

= Φ (Rmrg (Rpre (A1) ,Rpre (A2)))→

 Φ (Rpost (A1))
|||
Φ (Rpost (A2))

 [Φ Rule 30]

provided

wrtV (A1) = ns1

wrtV (A2) = ns2

wrtV (A1) ∩ scpV (A2) = ∅
wrtV (A2) ∩ scpV (A1) = ∅

E.8.2.9 Hiding

Link Rule 47 (Hiding).

Υ
(
A \ cs

)
=


Ω
(
Rwrt

(
A \ cs

))
State Part

Φ
(
Rwrt

(
A \ cs

))
Behaviour Part

[Link Definition]

= Φ
(
Rwrt

(
A \ cs

))
[Only behavioural part in this construct]

= Φ
(
RPre (A)→

(
RPost (A) \ cs

))
[Rwrt Rule 33]

= Φ (RPre (A))→ Φ
(
RPost (A) \ cs

)
[Φ Rule 24]

= Φ (RPre (A))→ (Φ (RPost (A)) \ Φ (cs)) [Φ Rule 33]

E.8.2.10 Recursion

Link Rule 48 (Recursion).

Υ (µX • A (X ))

=


Ω (Rwrt (µX • A (X ))) State Part

Φ (Rwrt (µX • A (X ))) Behaviour Part
[Link Definition]

= Φ (Rwrt (µX • A (X ))) [Only behavioural part in this construct]

= Φ (µX • Rwrt (A(X ))) [Rwrt Rule 34]

= let X = Φ (Rwrt (A(X ))) within X [Φ Rule 34]
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E.8.2.11 Iterated Sequential Composition

Link Rule 49 (Iterated Sequential Composition).

Υ
(
; x : T • A(x )

)
=


Ω
(
Rwrt

(
; x : T • A(x )

))
State Part

Φ
(
Rwrt

(
; x : T • A(x )

))
Behaviour Part

[Link Definition]

= Φ
(
Rwrt

(
; x : T • A(x )

))
[Only behavioural part in this construct]

= Φ
(
Rpre (A(x ))→

(
; x : T • Rpost (A(x ))

))
[Rwrt Rule 38]

= Φ (Rpre (A(x )))→ Φ
(
; x : T • Rpost (A(x ))

)
[Φ Rule 24]

= Φ (Rpre (A(x )))→ ;x :Φ(T ) • Φ (Rpost (A(x ))) [Φ Rule 35]

E.8.2.12 Iterated External Choice

Link Rule 50 (Iterated External Choice).

Υ
(
2 x : T • A(x )

)
=


Ω
(
Rwrt

(
2 x : T • A(x )

))
State Part

Φ
(
Rwrt

(
2 x : T • A(x )

))
Behaviour Part

[Link Definition]

= Φ
(
Rwrt

(
2 x : T • A(x )

))
[Only behavioural part in this construct]

= Φ
(
Rpre (A(x ))→

(
2 x : T • Rpost (A(x ))

))
[Rwrt Rule 38]

= Φ (Rpre (A(x )))→ Φ
(
2 x : T • Rpost (A(x ))

)
[Rwrt Rule 24]

= Φ (Rpre (A(x )))→2
x :Φ(T )

• Φ (Rpost (A(x ))) [Φ Rule 36]

where AA is a prefixed action defined in Definition B.3.1.

E.8.2.13 Iterated Internal Choice

Link Rule 51 (Iterated Internal Choice).

Υ
(u x : T • A(x )

)
=


Ω
(
Rwrt

(u x : T • A(x )
))

State Part

Φ
(
Rwrt

(u x : T • A(x )
))

Behaviour Part
[Link Definition]

= Φ
(
Rwrt

(u x : T • A(x )
))

[Only behavioural part in this construct]

= Φ
(
Rpre (A(x ))→ Φ

(u x : T • Rpost (A(x ))
))

[Rwrt Rule 38]

= Φ (Rpre (A(x )))→ Φ
(u x : T • Rpost (A(x ))

)
[Φ Rule 24]

= Φ (Rpre (A(x )))→ u
x :Φ(T )

• Φ (Rpost (A(x ))) [Φ Rule 37]

E.8.2.14 Iterated Parallel Composition

The iterated parallel composition of actions is not supported yet.
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E.8.2.15 Iterated Interleaving

The iterated interleaving of actions is not supported yet.

E.8.3 Command

E.8.3.1 Assignment

Link Rule 52 (Assignment). Provided esi , · · · , esj , elk , · · · , elm evaluate local variables
lp , · · · , lq , then

Υ
(
si , · · · , sj , lk , · · · , lm := esi , · · · , esj , elk , · · · , elm

)
=


Ω
(
Rwrt

(
si , · · · , sj , lk , · · · , lm := esi , · · · , esj , elk , · · · , elm

))
State Part

Φ
(
Rwrt

(
si , · · · , sj , lk , · · · , lm := esi , · · · , esj , elk , · · · , elm

))
Behaviour Part

[Link Definition]

=



Ω



P assOp ==

∆P StPar ; lp? : Tlp ; · · · ; lq? : Tlq ;
lk ! : Tlk ; · · · ; lm ! : Tlm |

P s ′i = esi [lp?, · · · , lq?/lp , · · · , lq ] ∧ · · · ∧
P s ′j = esj [lp?, · · · , lq?/lp , · · · , lq ] ∧

lk ! = elk [lp?, · · · , lq?/lp , · · · , lq ] ∧ · · · ∧
lm ! = elm [lp?, · · · , lq?/lp , · · · , lq ] ∧ u ′ = u




State Part

Φ
(
(P assOp)

)
Behaviour Part

[Rwrt Rule 24 and Rwrt Rule 39]

=



Ω3

(
Ω2

(
P assOp == · · ·

))
State Part

channel P assOp :
Φ
(
Tlp

)
. · · · .Φ

(
Tlq

)
.Φ (Tlk ) . · · · .Φ (Tlm )

HIDE CSPB = {|P assOp|}
(P assOp!lp ! · · ·!lq?lk? · · ·?lm → SKIP )

 Behaviour Part

[Ω1 Rule 1 and Φ Rule 22]

=



Ω3

(
P assOp =̂ · · ·

)
State Part

channel P assOp :
Φ
(
Tlp

)
. · · · .Φ

(
Tlq

)
.Φ (Tlk ) . · · · .Φ (Tlm )

HIDE CSPB = {|P assOp|}
(P assOp!lp ! · · ·!lq?lk? · · ·?lm → SKIP )

 Behaviour Part

[Ω2 Rule 4]

The precondition of P assOp is always true.

E.8.3.2 Alternation

Link Rule 53 (Alternation). Provided g1, · · · , gn and the first events of A1, · · · ,An

evaluate state variables si , · · · , sj , then

Υ


if g1 −→A1

8 g2 −→A2

8 . . .
8 gn −→An

fi
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=



Ω

Rwrt


if g1 −→A1

8 g2 −→A2

8 . . .
8 gn −→An

fi


 State Part

Φ

Rwrt


if g1 −→A1

8 g2 −→A2

8 . . .
8 gn −→An

fi


 Behaviour Part

[Link Definition]

= Φ

Rwrt


if g1 −→A1

8 g2 −→A2

8 . . .
8 gn −→An

fi


 [Only behavioural part in this construct]

= Φ


Rwrt



(¬g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) N Chaos
2 (g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) N A1

2 (g1 ∧ g2 ∧ · · · ∧ ¬gn) N (A1 u A2)
2 . . .
2 (· · · ∧ gi · · · ∧ gj ∧ · · · ∧ gk ∧ · · ·) N (Ai u Aj u Ak )
2 . . .
2 (g1 ∧ g2 ∧ · · · ∧ gn) N (A1 u A2 u · · · u gn)




[Rwrt Rule 40]

= Φ



Rmrg

 Rpre

(
(¬g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) N Chaos

)
,

· · · ,
Rpre

(
(g1 ∧ g2 ∧ · · · ∧ gn) N (A1 u A2 u · · · u An)

)
→

Rpost

(
(¬g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) N Chaos

)
2 Rpost

(
(g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) N A1

)
2 Rpost

(
(g1 ∧ g2 ∧ · · · ∧ ¬gn) N (A1 u A2)

)
2 . . .
2 Rpost

(
(· · · ∧ gi · · · ∧ gj ∧ · · · ∧ gk ∧ · · ·) N (Ai u Aj u Ak )

)
2 . . .
2 Rpost

(
(g1 ∧ g2 ∧ · · · ∧ gn) N (A1 u A2 u · · · u An)

)




[External choice Rwrt Rule 30]

= Φ



Rmrg


Rmrg

(
Rpre

(
(¬g1 ∧ ¬g2 ∧ · · · ∧ ¬gn)

)
,Rpre (Chaos)

)
,

· · · ,

Rmrg

(
Rpre

(
(g1 ∧ g2 ∧ · · · ∧ gn)

)
,

Rpre (A1 u A2 u · · · u An)

)
→



(¬g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) N Rpost (Chaos)
2 (g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) N Rpost (A1)
2 (g1 ∧ g2 ∧ · · · ∧ ¬gn) N Rpost (A1 u A2)
2 . . .
2 (· · · ∧ gi · · · ∧ gj ∧ · · · ∧ gk ∧ · · ·) N Rpost (Ai u Aj u Ak )
2 . . .
2 (g1 ∧ g2 ∧ · · · ∧ gn) N Rpost (A1 u A2 u · · · u An)




[Guarded action Rwrt Rule 28]
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= Φ



Rmrg


Rmrg

(
Rpre (g1)→ Rpre (g2)→ · · · → Rpre (gn) ,
Rpre (Chaos)

)
,

· · · ,

Rmrg

(
Rpre (g1)→ Rpre (g2)→ · · · → Rpre (gn) ,
Rpre (A1 u A2 u · · · u An)

)
→



(¬g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) N Rpost (Chaos)
2 (g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) N Rpost (A1)
2 (g1 ∧ g2 ∧ · · · ∧ ¬gn) N Rpost (A1 u A2)
2 . . .
2 (· · · ∧ gi · · · ∧ gj ∧ · · · ∧ gk ∧ · · ·) N Rpost (Ai u Aj u Ak )
2 . . .
2 (g1 ∧ g2 ∧ · · · ∧ gn) N Rpost (A1 u A2 u · · · u An)




[Definition 4.3.1]

= Φ



Rmrg


Rmrg

(
Rpre (g1)→ Rpre (g2)→ · · · → Rpre (gn) ,
Rpre (Chaos)

)
,

· · · ,

Rmrg

(
Rpre (g1)→ Rpre (g2)→ · · · ∧ Rpre (gn) ,
Rmrg (Rpre (A1) ,Rpre (A2) , · · · ,Rpre (An))

)
→



(¬g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) N Rpost (Chaos)
2 (g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) N Rpost (A1)
2 (g1 ∧ g2 ∧ · · · ∧ ¬gn) N (Rpost (A1) u Rpost (A2))
2 . . .

2 (· · · ∧ gi · · · ∧ gj ∧ · · · ∧ gk ∧ · · ·) N

 Rpost (Ai)
u Rpost (Aj )
u Rpost (Ak )


2 . . .

2 (g1 ∧ g2 ∧ · · · ∧ gn) N


Rpost (A1)

u Rpost (A2)
u · · ·
u Rpost (An)






[Internal choice Rwrt Rule 31]

= Φ



Rmrg

(
Rpre (g1) ,Rpre (g2) , · · · ,Rpre (gn) ,
Rpre (A1) ,Rpre (A2) , · · · ,Rpre (An)

)
→

(¬g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) N Chaos
2 (g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) N Rpost (A1)
2 (g1 ∧ g2 ∧ · · · ∧ ¬gn) N (Rpost (A1) u Rpost (A2))
2 . . .

2 (· · · ∧ gi · · · ∧ gj ∧ · · · ∧ gk ∧ · · ·) N

 Rpost (Ai)
u Rpost (Aj )
u Rpost (Ak )


2 . . .

2 (g1 ∧ g2 ∧ · · · ∧ gn) N


Rpost (A1)

u Rpost (A2)
u · · ·
u Rpost (An)






[Definition 4.3.2 and Rwrt Rule 26]
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= Φ



(P Op si)→ · · · → (P Op sj )→

(¬g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) N Chaos
2 (g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) N Rpost (A1)
2 (g1 ∧ g2 ∧ · · · ∧ ¬gn) N (Rpost (A1) u Rpost (A2))
2 . . .

2 (· · · ∧ gi · · · ∧ gj ∧ · · · ∧ gk ∧ · · ·) N

 Rpost (Ai)
u Rpost (Aj )
u Rpost (Ak )


2 . . .

2 (g1 ∧ g2 ∧ · · · ∧ gn) N


Rpost (A1)

u Rpost (A2)
u · · ·
u Rpost (An)






[Assumption, Definition 4.3.2 and Definition 4.3.1]

=



Op si?si → · · · → Op sj ?sj →

Φ



(¬g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) N Chaos
2 (g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) N Rpost (A1)
2 (g1 ∧ g2 ∧ · · · ∧ ¬gn) N (Rpost (A1) u Rpost (A2))
2 . . .

2 (· · · ∧ gi · · · ∧ gj ∧ · · · ∧ gk ∧ · · ·) N

 Rpost (Ai)
u Rpost (Aj )
u Rpost (Ak )


2 . . .

2 (g1 ∧ g2 ∧ · · · ∧ gn) N


Rpost (A1)

u Rpost (A2)
u · · ·
u Rpost (An)






[Φ Rule 24 and Φ Rule 22]

=



Op si?si → · · · → Op sj ?sj →

Φ (¬g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) & div
2 Φ (g1 ∧ ¬g2 ∧ · · · ∧ ¬gn) & Φ (Rpost (A1))
2 Φ (g1 ∧ g2 ∧ · · · ∧ ¬gn) & (Φ (Rpost (A1)) u Φ (Rpost (A2)))
2 . . .

2 Φ (· · · ∧ gi · · · ∧ gj ∧ · · · ∧ gk ∧ · · · ) &

 Φ (Rpost (Ai))
u Φ (Rpost (Aj ))
u Φ (Rpost (Ak ))


2 . . .

2 Φ (g1 ∧ g2 ∧ · · · ∧ gn) &


Φ (Rpost (A1))

u Φ (Rpost (A2))
u · · ·
u Φ (Rpost (An))






[Φ Rule 27, Φ Rule 25, Φ Rule 29 and Φ Rule 23]

E.8.3.3 Variable Block

Link Rule 54 (Variable Block).

Υ (var x : T • A)

=


Ω (Rwrt (var x : T • A)) State Part

Φ (Rwrt (var x : T • A)) Behaviour Part
[Link Definition]
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= Φ (Rwrt (var x : T • A)) [Only behavioural part in this construct]

= Φ (Rpre (A)→ (var x : T • Rpost (A))) [Rwrt Rule 41]

= Φ (Rpre (A))→ Φ (var x : T • Rpost (A)) [Φ Rule 24]

= Φ (Rpre (A))→ u
x :Φ(T )

• FMem (Φ (Rpost(A)) , {x}) [Φ Rule 38]

E.8.3.4 Specification Statement

Link Rule 55 (Specification Statement). Provided

• the frame w is composed of state variables sw and local variables lw

• pre and post contain free occurrences of before-state local variables lb

• post contains free occurrences of after-state local variables l ′a

• u denotes the variables whose dashed version occurs in post but the undashed version
is not in the frame

• su denotes all state variables that are not in the sw .

then

Υ (w : [ pre, post ])

=


Ω (Rwrt (w : [ pre, post ])) State Part

Φ (Rwrt (w : [ pre, post ])) Behaviour Part
[Link Definition]

=


Ω

(
specOp ==

[
∆P StPar ; lb? : Tlb ; la ! : Tla | pre[lb?/lb ] ∧

∃ u ′ : Tu • post [lb?/lb , la !/l ′a ] ∧ s ′u = su

])

Φ
(
(specOp)

)
[Rwrt Rule 43]

=



Ω3


Ω2



P specOp ==


∆P StPar ; ΞQ1 StPar ; · · · ;
ΞQn StPar ; lb? : Tlb ; la ! : Tla |
pre[lb?/lb ] ∧ s ′u = su ∧
∃ u ′ : Tu • post [lb?/lb , la !/l ′a ]



P specOp fOp ==

 ΞP StPar ; ΞQ1 StPar ; · · · ;
ΞQn StPar ; lb? : Tlb |
¬pre P specOp








channel P specOp : Φ (Tlb ) .Φ (Tla )
channel P fspecOp : Φ (Tlb )
HIDE CSPB = {|P specOp,P fspecOp|}
P specOp!lb?la → SKIP 2 P specOp fOp!lb → div


[Ω1 Rule 1 and Φ Rule 21]
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=



Ω3


P specOp =̂


∆P StPar ; ΞQ1 StPar ; · · · ; ΞQn StPar ;
lb? : Tlb ; la ! : Tla |
(pre[lb?/lb ] ∧ ∃ u ′ : Tu • post [lb?/lb , la !/l ′a ])
∧ s ′u = su


P specOp fOp =̂

[
ΞP StPar ; ΞQ1 StPar ; · · · ; ΞQn StPar ;
lb? : Tlb | ¬pre P specOp

]




channel P specOp : Φ (Tlb ) .Φ (Tla )
channel P fspecOp : Φ (Tlb )
HIDE CSPB = {|P specOp,P fspecOp|}
P specOp!lb?la → SKIP 2 P specOp fOp!lb → div


[Ω2 Rule 4]

E.8.3.5 Assumption

Link Rule 56 (Assumption).

Υ ({ pre })

=


Ω (Rwrt ({ pre })) State Part

Φ (Rwrt ({ pre })) Behaviour Part
[Link Definition]

=


Ω (assmpOp == [ ΞP StPar ; lb? : Tlb | pre[lb?/lb ] ])

Φ
(
(assmpOp)

) [Rwrt Rule 44]

=



Ω3

Ω2


P assmpOp ==

[
ΞP StPar ; ΞQ1 StPar ; · · · ;
ΞQn StPar ; lb? : Tlb | pre[lb?/lb ]

]

P assmpOp fOp ==

 ΞP StPar ; ΞQ1 StPar ; · · · ;
ΞQn StPar ; lb? : Tlb |
¬pre P assmpOp








channel P assmpOp : Φ (Tlb )
channel P assmpOp fOp : Φ (Tlb )
HIDE CSPB = {|P assmpOp,P assmpOp fOp|}
P assmpOp!lb → SKIP 2 P assmpOp fOp!lb → div


[Ω1 Rule 1 and Φ Rule 21]

=



Ω3


P assmpOp =̂

[
ΞP StPar ; ΞQ1 StPar ; · · · ; ΞQn StPar ;
lb? : Tlb | pre[lb?/lb ]

]

P assmpOp fOp =̂

[
ΞP StPar ; ΞQ1 StPar ; · · · ; ΞQn StPar ;
lb? : Tlb | ¬pre P assmpOp

]



channel P assmpOp : Φ (Tlb )
channel P assmpOp fOp : Φ (Tlb )
HIDE CSPB = {|P assmpOp,P assmpOp fOp|}
P assmpOp!lb → SKIP 2 P assmpOp fOp!lb → div


[Ω2 Rule 4]
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E.8.3.6 Coercion

Link Rule 57 (Coercion).

Υ ([ post ])

=


Ω (Rwrt ([ post ])) State Part

Φ (Rwrt ([ post ])) Behaviour Part
[Link Definition]

=


Ω
(
coerOp ==

[
ΞP StPar ; lb? : Tlb | ∃ u ′ : Tu • post [lb?/lb ]

])
Φ
(
(coerOp)

)
[Rwrt Rule 45]

=



Ω3

(
Ω2

(
P coerOp ==

[
ΞP StPar ; ΞQ1 StPar ; · · · ; ΞQn StPar ;
lb? : Tlb | ∃ u ′ : Tu • post [lb?/lb ]

] ))
 channel P coerOp : Φ (Tlb )

HIDE CSPB = {|P coerOp|}
P coerOp!lb → SKIP


[Ω1 Rule 1 and Φ Rule 21]

=



Ω3

(
P coerOp =̂

[
ΞP StPar ; ΞQ1 StPar ; · · · ; ΞQn StPar ;
lb? : Tlb | ∃ u ′ : Tu • post [lb?/lb ]

] )
 channel P coerOp : Φ (Tlb )

HIDE CSPB = {|P coerOp|}
P coerOp!lb → SKIP


[Ω2 Rule 4]

E.8.3.7 Parametrisation By Value

Link Rule 58 (Parametrisation By Value ).

Υ ((val x : T • A) (e))

=


Ω (Rwrt ((val x : T • A) (e))) State Part

Φ (Rwrt ((val x : T • A) (e))) Behaviour Part
[Link Definition]

=


Ω (Rwrt (var x : T • (x := e ; A))) State Part

Φ (Rwrt (var x : T • (x := e ; A))) Behaviour Part
[Rwt Rule 42]

= Φ (Rpre (x := e ; A))→ u
x :Φ(T )

• FMem (Φ (Rpost (x := e ; A)) , {x})
[Link Rule 54]

= Φ (Rpre (x := e))→ u
x :Φ(T )

• FMem (Φ (Rpost (x := e) ; Rwrt (A)) , {x})
[Rwrt Rule 29]

= u
x :Φ(T )

• FMem (Φ (Rpost (x := e) ; Rwrt (A)) , {x}) [Rwrt Rule 39]

= u
x :Φ(T )

• FMem (Φ (Rpost (x := e)) ; Φ (Rwrt (A)) , {x}) [Φ Rule 26]
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=



Ω3

(
P assOp =̂ · · ·

)
State Part

channel P assOp : · · ·
HIDE CSPB = {|P assOp|}

u
x :Φ(T )

• FMem

 (
(P assOp! · · · → SKIP ) ;
Φ (Rwrt (A))

)
, {x}


 Behaviour Part

[Link Rule 52]

E.8.3.8 Parametrisation By Result

Link Rule 59 (Parametrisation By Result).

Υ ((res x : T • A) (y))

=


Ω (Rwrt ((res x : T • A) (y))) State Part

Φ (Rwrt ((res x : T • A) (y))) Behaviour Part
[Link Definition]

=


Ω (Rwrt (var x : T • (A ; y := x ))) State Part

Φ (Rwrt (var x : T • (A ; y := x ))) Behaviour Part
[Rwt Rule 42]

= Φ (Rpre (A ; y := x ))→ u
x :Φ(T )

• FMem (Φ (Rpost (A ; y := x )) , {x})
[Link Rule 54]

= Φ (Rpre (A))→ u
x :Φ(T )

• FMem (Φ (Rpost (A) ; Rwrt (y := x )) , {x})
[Rwrt Rule 29]

= Φ (Rpre (A))→ u
x :Φ(T )

• FMem (Φ (Rpost (A)) ; Φ (Rwrt (y := x )) , {x})

[Φ Rule 26]

=



Ω3

(
P assOp =̂ · · ·

)
State Part

channel P assOp : · · ·
HIDE CSPB = {|P assOp|}
Φ (Rpre (A))→ u

x :Φ(T )
•

FMem

((
Φ (Rpost (A)) ;
(P assOp? · · · → SKIP )

)
, {x}

)
 Behaviour Part

[Link Rule 52]

E.8.3.9 Parametrisation By Value-Result

Link Rule 60 (Parametrisation By Value-Result).

Υ ((vres x : T • A) (y))

=


Ω (Rwrt ((vres x : T • A) (y))) State Part

Φ (Rwrt ((vres x : T • A) (y))) Behaviour Part
[Link Definition]

=


Ω (Rwrt (var x : T • (x := y ; A ; y := x ))) State Part

Φ (Rwrt (var x : T • (x := y ; A ; y := x ))) Behaviour Part
[Rwt Rule 42]
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=

(
Φ (Rpre (x := y ; A ; y := x ))→
u

x :Φ(T )
• FMem (Φ (Rpost (x := y ; A ; y := x )) , {x})

)
[Link Rule 54]

=

(
Φ (Rpre (x := y))→
u

x :Φ(T )
• FMem (Φ (Rpost (x := e) ; Rwrt (A) ; Rwrt (y := x )) , {x})

)
[Rwrt Rule 29]

= u
x :Φ(T )

• FMem (Φ (Rpost (x := e) ; Rwrt (A) ; Rwrt (y := x )) , {x})
[Rwrt Rule 39]

= u
x :Φ(T )

• FMem (Φ (Rpost (x := e)) ; Φ (Rwrt (A)) ; Φ (Rwrt (y := x )) , {x})

[Φ Rule 26]

=



Ω3

(
P assOp1 =̂ · · ·
P assOp2 =̂ · · ·

)
State Part



channel P assOp1 : · · ·
channel P assOp2 : · · ·
HIDE CSPB = {|P assOp1,P assOp2|}
u

x :Φ(T )
•

FMem


 (P assOp1! · · · → SKIP ) ;

Φ (Rwrt (A)) ;
(P assOp2! · · · → SKIP )


, {x}




Behaviour Part

[Link Rule 52]

E.8.4 Renaming

Link Rule 61 (Renaming).

Υ (A[vold := vnew ])

=


Ω (Rwrt (A[vold := vnew ])) State Part

Φ (Rwrt (A[vold := vnew ])) Behaviour Part
[Link Definition]

=


Ω (Rwrt (A[vnew/vold ])) State Part

Φ (Rwrt (A[vnew/vold ])) Behaviour Part
[Rwt Rule 46]

Then after that it is linked by other defined Link Rules in Section E.8.

E.8.5 Action Invocation

Link Rule 62 (Action Invocation (without implicit recursion)). If an action A
does not occur in its body of the definition, B(A), then

Υ (A)

=


Ω (Rwrt (A)) State Part

Φ (Rwrt (A)) Behaviour Part
[Link Definition]

= Φ (Rwrt (A)) [Only behavioural part in this construct]
= Φ (Rwrt (B(A))) [Rwrt Rule 35]
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Finally, the body of the action A is linked by other Link Rules in Section E.8.

Link Rule 63 (Action Invocation (with implicit recursion)). If an action A occurs
in its body of the definition, B(A), then

Υ (A)

=


Ω (Rwrt (A)) State Part

Φ (Rwrt (A)) Behaviour Part
[Link Definition]

= Φ (Rwrt (A)) [Only behavioural part in this construct]

= Φ (Rwrt (µA • B(A))) [Rwrt Rule 35]

= Φ (µA • Rwrt (B(A))) [Rwrt Rule 34]

= let X = Φ (Rwrt (B(A))) within X [Φ Rule 34]

Finally, the body of the action A is linked by other Link Rules in Section E.8.

E.8.6 Parametrised Action

E.8.6.1 Unnamed Parametrised Action Invocation

Link Rule 64 (Unnamed Parametrised Action Invocation).

Υ ((x : T • A) (e))

=


Ω (Rwrt ((x : T • A) (e))) State Part

Φ (Rwrt ((x : T • A) (e))) Behaviour Part
[Link Definition]

= Φ (Rwrt ((x : T • A) (e))) [Only behavioural part in this construct]

= Φ (Rwrt (A[e/x ])) [Rwrt Rule 36]

Finally, the link of an unnamed parametrised action invocation is equal to the link of
the unnamed parametrised action’s body, but all formal parameters are substituted by
corresponding expressions e, by other Link Rules in Section E.8.

E.8.6.2 Parametrised Action Invocation

Link Rule 65 (Parametrised Action Invocation). Provided A is a parametrised
action defined below,

PA =̂ x : T • A

then

Υ (PA(e))

=


Ω (Rwrt (PA(e))) State Part

Φ (Rwrt (PA(e))) Behaviour Part
[Link Definition]

= Φ (Rwrt (PA(e))) [Only behavioural part in this construct]
= Φ (Rwrt (A[e/x ])) [Rwrt Rule 37]

Finally, the link of a parametrised action invocation is equal to the link of the parametrised
action’s body, but all formal parameters are substituted by corresponding expressions e,
by other Link Rules in Section E.8.



324 Chapter E: Link from Circus to the combination of CSP and Z



Appendix F

Translator

The source code of the translator is available either in accompanying CD-ROM or online
at GitHub [105].
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Appendix G

Reactive Buffer and linked Models

The Circus models and the corresponding resultant CSP ‖B Z models for both specifi-
cation and implementation are available either in accompanying CD-ROM or online at
GitHub [106]. In this appendix, only Circus models are illustrated below.

G.1 Specification

G.1.1 Circus Model

section BufferSpec parents circus toolkit

maxbuff : N1

channel input , output : N

process Buffer =̂ begin
state BufferState == [ buff : seq N ; size : 0 . .maxbuff |

size = # buff ≤ maxbuff ]
BufferInit == [ (BufferState)′ | buff ′ = 〈〉 ∧ size ′ = 0 ]
InputCmd == [ ∆BufferState ; x? : N | size < maxbuff ∧

buff ′ = buff 〈̂x?〉 ∧ size ′ = size + 1 ]

Input =̂ (size < maxbuff ) N input?x → (InputCmd)
OutputCmd == [ ∆BufferState | size > 0 ∧ buff ′ = tail buff ∧

size ′ = size − 1 ]

Output =̂ (size > 0) N output !(head buff )→ (OutputCmd)
• (BufferInit) ; (µX • (Input 2 Output) ; X )

end

G.1.2 Resultant CSP and Z Model

Available either in accompanying CD-ROM or online at GitHub [106].

G.2 Implementation

G.2.1 Circus Model

section DisBufferSpec parents circus toolkit
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maxbuff : N1

maxring : N1

maxring = maxbuff − 1

RingIndex == 1 . .maxring

channel input , output : N
channel read ,write : (RingIndex )× N
channel rd ,wrt : N
channel rd i ,wrt i : (RingIndex )× N

process Controller =̂ begin

state ControllerState == [
size : 0 . .maxbuff ;
ringsize : 0 . .maxring ;
cache : N;
top, bot : RingIndex |
ringsize mod maxring = (top − bot) mod maxring ∧
ringsize = max { 0, size − 1 } ]

ControllerInit == [ (ControllerState)′ |
top′ = 1 ∧ bot ′ = 1 ∧ size ′ = 0 ]

CacheInput == [ ∆ControllerState ; x? : N |
size = 0 ∧ size ′ = 1 ∧
cache ′ = x? ∧ bot ′ = bot ∧ top′ = top ]

StoreInputController == [ ∆ControllerState |
0 < size ∧ size < maxbuff ∧ size ′ = size + 1 ∧
cache ′ = cache ∧ bot ′ = bot ∧ top ′ = (top mod maxring) + 1 ]

InputController =̂ (size < maxbuff ) N input?x →
((size = 0) N (CacheInput) 2

(size > 0) N write.top!x → (StoreInputController))

NoNewCache == [ ∆ControllerState |
size = 1 ∧ size ′ = 0 ∧
cache ′ = cache ∧ bot ′ = bot ∧ top ′ = top ]
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StoreNewCacheController == [ ∆ControllerState ; x? : N |
size > 1 ∧ size ′ = size − 1 ∧
cache ′ = x? ∧ bot ′ = (bot mod maxring) + 1 ∧
top′ = top ]

OutputController =̂ (size > 0) N output !(cache)→
((size > 1) N read .bot?x → (StoreNewCacheController) 2

(size = 1) N (NoNewCache))

• (ControllerInit) ; (µX • (InputController 2 OutputController) ; X )

end

process RingCell =̂ begin
state CellState == [ v : N | true ]
CellWrite == [ ∆CellState ; x? : N | v ′ = x? ]
Read =̂ rd !v → Skip

Write =̂ wrt?x → (CellWrite)
• (µX • (Read 2 Write) ; X )

end

process IRCell =̂ ( i : RingIndex � RingCell )[rd i ,wrt i := read ,write]

process Ring =̂ ( ||| i : RingIndex • IRCellbic )

process Buffer =̂ ( Controller J {| read ,write |} K Ring ) \ {| read ,write |}

G.2.2 Resultant CSP and Z Model

Available either in accompanying CD-ROM or online at GitHub [106].
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Appendix H

ESEL and linked Models

The Circus models and the corresponding resultant CSP ‖B Z models for the Specification,
the System One, and the System Two are available either in accompanying CD-ROM or
online at GitHub [107]. In this appendix, only Circus models are illustrated below.

H.1 Header

section ESELHeader parents circus toolkit

MAX ESEL : N
MAX PID : N

ESID ::= ES 〈〈1 . .MAX ESEL〉〉
PID ::= PD〈〈1 . .MAX PID〉〉

Price == N

UStatus ::= uok | ufail

FStatus ::= fail〈〈ESID〉〉 | NA

channel updateallmap : ESID 7→ PID
channel updatemap : ESID 7→ PID

channel updateallprice : PID 7→ Price
channel updateprice : PID 7→ Price

channel update

channel failures : PID 7→P FStatus

channel resp : PID × FStatus
channel terminate
channelset RespInterface == {| resp, terminate |}
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channel uupdate : ESID × Price
channel ures : ESID ×UStatus
channel uinit ,finishuinit
channel udisplay ,finishudisplay

channel init ,finishinit
channel display ,finishdisplay

channel write : ESID × Price
channel read : ESID × Price
channel ondisplay : ESID
channel offdisplay : ESID

H.2 Specification

H.2.1 Circus Model

section ESELSpec parents ESELHeader

process Controller =̂ begin
state State == [ pumap : ESID 7→ PID ; ppmap : PID 7→ Price;

response : PID 7→ (P FStatus) ]
Init == [ (State)′ | pumap′ = ∅ ∧ ppmap′ = ∅ ∧ response ′ = ∅ ]
UpdateMap == [ ∆State ; map? : ESID 7→ PID |

pumap′ = pumap ⊕map? ∧ ppmap′ = ppmap ∧ response ′ = response ]
UpdateAllMap == [ ∆State ; map? : ESID 7→ PID |

pumap′ = map? ∧ ppmap′ = ppmap ∧ response ′ = response ]
NewPrice == [ ∆State ; price? : PID 7→ Price |

ppmap′ = ppmap ⊕ price? ∧ pumap′ = pumap ∧ response ′ = response ]
AllNewPrice == [ ∆State ; price? : PID 7→ Price |

ppmap′ = price? ∧ pumap′ = pumap ∧ response ′ = response ]

AUpdatemap =̂ updatemap?map → (UpdateMap)
2 updateallmap?map → (UpdateAllMap)

ANewPrice =̂ updateprice?price → (NewPrice)
2 updateallprice?price → (AllNewPrice)

AUpdateUnitPrice =̂ uid : ESID ; pid : PID •
write.uid .(ppmap pid)→ read .uid?y →
((y = (ppmap pid)) N Skip
2 (y 6= (ppmap pid)) N resp.pid .(fail uid)→ Skip)

AUpdateProductUnits =̂ pid : PID •
(||| uid : (dom (pumap B {pid})) ||[ ∅]|| • AUpdateUnitPrice(uid , pid))

AUpdateNoUnit =̂ pid : PID • resp.pid .NA→ Skip
AUpdateProduct =̂ pid : PID •

(pid ∈ ran pumap) N AUpdateProductUnits(pid)
2 (pid 6∈ ran pumap) N AUpdateNoUnit(pid)

AUpdateProducts =̂ ((||| pid : (dom ppmap) ||[ ∅]|| • AUpdateProduct(pid))

;terminate → Skip)
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AddOneFailure == [ ∆State ; pid? : PID ; fst? : FStatus |
(pid? ∈ dom response ⇒

response ′ = response ⊕ {pid? 7→ (response(pid?) ∪ {fst?})}) ∧
(pid? 6∈ dom response ⇒

response ′ = response ∪ {pid? 7→ {fst?}}) ∧
ppmap′ = ppmap ∧ pumap′ = pumap ] CollectResp =̂ µX •
((resp?pid?fst → (AddOneFailure) ; X ) 2 terminate → Skip)

AUpdateResp =̂
(AUpdateProducts J ∅ | RespInterface | {response} K CollectResp)
\RespInterface

ADisplay =̂
(J{| display |} K uid : ESID • J∅ K display → (

if uid 6∈ dom pumap −→ offdisplay .uid → Skip
8 uid ∈ dom pumap−→

if pumap(uid) 6∈ dom ppmap −→ offdisplay .uid → Skip
8 pumap(uid) ∈ dom ppmap−→

if pumap(uid) 6∈ dom response−→
ondisplay .uid → Skip

8 pumap(uid) ∈ dom response−→
if (fail uid) 6∈ response(pumap(uid))−→

ondisplay .uid → Skip
8 (fail uid) ∈ response(pumap(uid))−→

offdisplay .uid → Skip
fi

fi
fi

fi
)) \ {| display |}

AUpdatePrice =̂ update → response := ∅;
AUpdateResp ; ADisplay ; failures.response → Skip

AInit =̂ (Init) ; (||| u : ESID ||[ ∅]|| • offdisplay .u → Skip)

• AInit ; (µX • (AUpdatemap 2 ANewPrice 2 AUpdatePrice) ; X )
end

process ESELSpec =̂ Controller

H.2.2 Resultant CSP and Z Model

Available either in accompanying CD-ROM or online at GitHub [107].

H.3 System One

H.3.1 Circus Model

section ESELSystem1 parents ESELHeader

process Controller1 =̂ begin
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state State == [ pumap : ESID 7→ PID ; ppmap : PID 7→ Price;
response : PID 7→ (P FStatus) ]

Init == [ (State)′ | pumap′ = ∅ ∧ ppmap′ = ∅ ∧ response ′ = ∅ ]

UpdateMap == [ ∆State ; map? : ESID 7→ PID |
pumap′ = pumap ⊕map? ∧ ppmap′ = ppmap ∧ response ′ = response ]

UpdateAllMap == [ ∆State ; map? : ESID 7→ PID |
pumap′ = map? ∧ ppmap′ = ppmap ∧ response ′ = response ]

NewPrice == [ ∆State ; price? : PID 7→ Price |
ppmap′ = ppmap ⊕ price? ∧ pumap′ = pumap ∧ response ′ = response ]

AllNewPrice == [ ∆State ; price? : PID 7→ Price |
ppmap′ = price? ∧ pumap′ = pumap ∧ response ′ = response ]

AUpdatemap =̂ updatemap?map → (UpdateMap)
2 updateallmap?map → (UpdateAllMap)

ANewPrice =̂ updateprice?price → (NewPrice)
2 updateallprice?price → (AllNewPrice)

AUpdateUnitPrice =̂ uid : ESID ; pid : PID •
uupdate.uid .(ppmap pid)→ ures.uid?rst →
((rst = ufail) N resp.pid .(fail uid)→ Skip
2 (rst = uok) N Skip)

AUpdateProductUnits =̂ pid : PID •
(||| uid : (dom (pumap B {pid})) ||[ ∅]|| • AUpdateUnitPrice(uid , pid))

AUpdateNoUnit =̂ pid : PID • resp.pid .NA→ Skip

AUpdateProduct =̂ pid : PID •
(pid ∈ ran pumap) N AUpdateProductUnits(pid)

2 (pid 6∈ ran pumap) N AUpdateNoUnit(pid)

AUpdateProducts =̂ ((||| pid : (dom ppmap) ||[ ∅]|| • AUpdateProduct(pid))

;terminate → Skip)
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AddOneFailure == [ ∆State ; pid? : PID ; fst? : FStatus |
(pid? ∈ dom response ⇒

response ′ = response ⊕ {pid? 7→ (response(pid?) ∪ {fst?})}) ∧
(pid? 6∈ dom response ⇒

response ′ = response ∪ {pid? 7→ {fst?}}) ∧
ppmap′ = ppmap ∧ pumap′ = pumap ]

CollectResp =̂ µX •
((resp?pid?fst → (AddOneFailure) ; X ) 2 terminate → Skip)

AUpdateResp =̂
(AUpdateProducts J ∅ | RespInterface | {response} K CollectResp)
\RespInterface

AUpdatePrice =̂ update → response := ∅;
AUpdateResp ; display → finishdisplay → failures.response → Skip

• (Init) ; init → Skip;
(µX • (AUpdatemap 2 ANewPrice 2 AUpdatePrice) ; X )

end

process ESEL1 =̂ eid : ESID • begin
state State == [ price : Price ; status : UStatus ]
Init == [ (State)′ | price ′ = 0 ∧ status ′ = uok ]
Update =̂ uupdate.eid?x → price := x ; write.eid .price → read .eid?y
→ ((y = price) N ures.eid .uok → status := uok

2 (y 6= price) N ures.eid .ufail → status := ufail)
Display =̂ display → (

(status = uok) N ondisplay .eid → Skip
2 (status = ufail) N offdisplay .eid → Skip)
;finishdisplay → Skip

NotUpdateDisplay =̂ display → offdisplay .eid → finishdisplay → Skip

AInit =̂ (Init) ; offdisplay .eid → init → Skip
• AInit ; (µX • ((Update ; Display) 2 NotUpdateDisplay) ; X )

end

channelset InterESELInterface1 == {| init , display ,finishdisplay |}
process ESELS1 =̂‖ eid : ESID J InterESELInterface1K • ESEL1(eid)

channelset ESELInterface1 == {| uupdate, ures, init , display ,finishdisplay |}
process ESELSystem1 =̂

(Controller1 J ESELInterface1 K ESELS1) \ ESELInterface1
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H.3.2 Resultant CSP and Z Model

Available either in accompanying CD-ROM or online at GitHub [107].

H.4 System Two

H.4.1 Circus Model

section ESELSystem2 parents ESELHeader

MAX GATEWAY : N

GID ::= GW 〈〈1 . .MAX GATEWAY 〉〉

gwmap : ESID →GID

gwmap = {(ES 1,GW 1), (ES 2,GW 1), (ES 3,GW 2)}

channel gupdateprice : GID × (ESID 7→ Price)
channel gfailure : GID ×P ESID

channel gresp : ESID
channel gterminate
channelset GRespInterface == {| gresp, gterminate |}

process ESELServer =̂ begin

state State == [ pumap : ESID 7→ PID ; ppmap : PID 7→ Price;
response : PID 7→ (P FStatus) ]

Init == [ (State)′ | pumap′ = ∅ ∧ ppmap′ = ∅ ∧
response ′ = ∅ ]
UpdateMap == [ ∆State ; map? : ESID 7→ PID |

pumap′ = pumap ⊕map? ∧ ppmap′ = ppmap ∧ response ′ = response ]
UpdateAllMap == [ ∆State ; map? : ESID 7→ PID |

pumap′ = map? ∧ ppmap′ = ppmap ∧ response ′ = response ]
NewPrice == [ ∆State ; price? : PID 7→ Price |

ppmap′ = ppmap ⊕ price? ∧ pumap′ = pumap ∧ response ′ = response ]
AllNewPrice == [ ∆State ; price? : PID 7→ Price |

ppmap′ = price? ∧ pumap′ = pumap ∧ response ′ = response ]

AUpdatemap =̂ updatemap?map → (UpdateMap)
2 updateallmap?map → (UpdateAllMap)

ANewPrice =̂ updateprice?price → (NewPrice)
2 updateallprice?price → (AllNewPrice)

AUpdateUnitFail =̂ eid : ESID • resp.(pumap(eid)).(fail eid)→ Skip
AUpdateNoUnit =̂ pid : PID • resp.pid .NA→ Skip
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ARespNoUnit =̂ ||| pid : (dom ppmap \ ran pumap) ||[ ∅]|| •
AUpdateNoUnit(pid)

AUpdateGateway =̂ gid : GID •
gupdateprice.gid !((dom (gwmap B {gid}))C (pumap # ppmap))→
gfailure.gid?uids → (||| uid : uids ||[ ∅]|| • AUpdateUnitFail(uid))

AUpdateGateways =̂ ||| gid : GID ||[ ∅]|| • AUpdateGateway(gid)

AUpdateProducts =̂ (AUpdateGateways ||[ ∅ | ∅ ]||ARespNoUnit);
terminate → Skip

AddOneFailure == [ ∆State ; pid? : PID ; fst? : FStatus |
(pid? ∈ dom response ⇒

response ′ = response ⊕ {pid? 7→ (response(pid?) ∪ {fst?})}) ∧
(pid? 6∈ dom response ⇒

response ′ = response ∪ {pid? 7→ {fst?}}) ∧
ppmap′ = ppmap ∧ pumap′ = pumap ]

ACollectResp =̂ µX •
((resp?pid?fst → (AddOneFailure) ; X ) 2 terminate → Skip)

AUpdateResp =̂
(AUpdateProducts J ∅ | RespInterface | {response} K ACollectResp)
\RespInterface

AUpdatePrice =̂ update → response := ∅;
AUpdateResp ; display → finishdisplay → failures.response → Skip

• (Init) ; init → finishinit → Skip;
(µX • (AUpdatemap 2 ANewPrice 2 AUpdatePrice) ; X )

end



338 Chapter H: ESEL and linked Models

process Gateway =̂ gid : GID • begin
state State == [ pumap : ESID 7→ Price ; failed : P ESID ]
Init == [ (State)′ | pumap′ = ∅ ∧ failed ′ = ∅ ]
UpdateAllMap == [ ∆State ; map? : ESID 7→ Price |

pumap′ = map? ∧ failed ′ = failed ]

AUpdateallmap =̂ gupdateprice.gid?map → (UpdateAllMap)
AUpdateUnitPrice =̂ uid : ESID •

uupdate.uid .(pumap uid)→ ures.uid?rst →
((rst = ufail) N gresp!uid → Skip
2 (rst = uok) N Skip)

AUpdateAllUnits =̂ ((||| eid : (dom pumap) ||[ ∅]|| • AUpdateUnitPrice(eid))

;gterminate → Skip)
AGCollectResp =̂ µX •

((gresp?uid → failed := failed ∪ {uid} ; X ) 2 gterminate → Skip)
AGUpdateResp =̂

(AUpdateAllUnits J ∅ | GRespInterface | {failed} K AGCollectResp)
\GRespInterface

AGUpdatePrice =̂ AUpdateallmap ; failed := ∅;
AGUpdateResp ; gfailure.gid !failed → display → udisplay →
finishudisplay → finishdisplay → Skip

• (Init) ; init → uinit → finishuinit → finishinit → Skip;
(µX • (AGUpdatePrice) ; X )

end

process ESEL2 =̂ eid : ESID • begin
state State == [ price : Price ; status : UStatus ]
Init == [ (State)′ | price ′ = 0 ∧ status ′ = uok ]
Update =̂ uupdate.eid?x → price := x ; write.eid .price → read .eid?y

→ ((y = price) N ures.eid .uok → status := uok
2 (y 6= price) N ures.eid .ufail → status := ufail)

Display =̂ udisplay → (
(status = uok) N ondisplay .eid → Skip

2 (status = ufail) N offdisplay .eid → Skip)
;finishudisplay → Skip

NotUpdateDisplay =̂ udisplay → offdisplay .eid → finishudisplay → Skip

AInit =̂ (Init) ; uinit → offdisplay .eid → finishuinit → Skip
• AInit ; (µX • ((Update ; Display) 2 NotUpdateDisplay) ; X )

end

channelset InterESELInterface2 == {| uinit ,finishuinit ,
udisplay ,finishudisplay |}

process ESELS2 =̂ gid : GID •
(‖ eid : (dom (gwmap B {gid})) J InterESELInterface2K • ESEL2(eid))

channelset InterGWInterface2 == {| init ,finishinit , display ,finishdisplay |}
channelset GWESELInterface2 == {| uinit ,finishuinit , uupdate, ures,

udisplay ,finishudisplay |}
process Gateways =̂‖ gid : GID J InterGWInterface2K •

(Gateway(gid) J GWESELInterface2 K ESELS2(gid)) \GWESELInterface2
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channelset ServerGWInterface == {| init ,finishinit , gupdateprice, gfailure,
display ,finishdisplay |}

process ESELSystem2 =̂
(ESELServer J ServerGWInterface K Gateways) \ ServerGWInterface

H.4.2 Resultant CSP and Z Model

Available either in accompanying CD-ROM or online at GitHub [107].



340 Chapter H: ESEL and linked Models



Appendix I

Steam Boiler and linked Models

The Circus model and the corresponding resultant CSP ‖B Z model are available either in
accompanying CD-ROM or online at GitHub [108]. In this appendix, only Circus models
are illustrated below.

I.1 Circus Model

section SteamBoiler parents circus toolkit

channel clocktick , startcycle

I.1.1 Timer

In the original model, the time is initialised to cyclelimit by an assignment time :=
cyclelimit . In this model, we modify it to a schema expression (InitTimer). They are
semantically equal. The reason of this modification is because, with this schema, in the
final resultant CSP ‖ Z model, time is initialised in the early stage (during “initialisation”
of the model) instead of in the later stage by the linked assignment in CSP. This will make
the model checker easier to find the initial state.

The mod operator binds more tightly than + operator (albeit, it is not the case in
mathematics), thus

( time := time + 1 mod cycletime )

will not get the expected result. It is corrected by adding additional brackets.

process Timer =̂ begin
cycletime == 5
cyclelimit == cycletime − 1
Time == 0 . . cyclelimit
state TimeState == [ time : Time ]
InitTimer == [ TimeState ′ | time ′ = cyclelimit ]
TimeOp == [ ∆TimeState | time ′ ≥ time ]
TCycle =̂ ( time := (time + 1) mod cycletime );

(if time = 0−→ startcycle → Skip 8 time 6= 0−→ Skip fi);
clocktick → TCycle

• (InitTimer) ; TCycle
end
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I.1.2 Analyser

I.1.2.1 Parameters

MAX NUM and NUMS are introduced just for facilitating the animation.

MAX NUM : N

NUMS == 0 . .MAX NUM

C ,P ,U 1 ,U 2 ,W : NUMS

M 1 ,N 1 ,N 2 ,M 2 : NUMS

M 1 ≤ N 1 ≤ N 2 ≤ M 2

I.1.2.2 Sensor

Unit [X ] == [ a 1 , a 2 : NUMS ; st : X | a 1 ≤ a 2 ]

SState ::= sokay | sfailed

QSensor == Unit [SState][qa 1 /a 1 , qa 2 /a 2 , qst/st ]

InitQSensor == [ QSensor ′ | qa 1′ = 0 ∧ qa 2′ = C ∧ qst ′ = sokay ]

VSensor == Unit [SState][va 1 /a 1 , va 2 /a 2 , vst/st ]

InitVSensor == [ VSensor ′ | va 1′ = 0 ∧ va 2′ = 0 ∧ vst ′ = sokay ]

I.1.2.3 Pump

PState ::= popen | pwaiting | pclosed | pfailed

Pump0 is rewritten to give a small size set {0,P} as pa’s type to ease model checking.
Since the values of pa 1 and pa 2 are implied from the pump state and not the input value
from environment, it is safe to reduce the size of their type.

Pump0 == [ pa 1 , pa 2 : {0,P} ; pst : PState | pa 1 ≤ pa 2 ]

PumpOpen == [ Pump0 | pst = popen ⇒ (pa 1 = P ∧ pa 2 = P) ]

PumpWaitingOrClosed == [ Pump0 |
(pst = pwaiting ∨ pst = pclosed)⇒ (pa 1 = 0 ∧ pa 2 = 0) ]

Pump == PumpOpen ∧ PumpWaitingOrClosed

InitPump == [ PumpWaitingOrClosed ′ | pst ′ = pclosed ]
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PCState ::= pcflow | pcnoflow | pcfailed
PumpCtr0 == [ Pump ; pcst : PCState ]

POpenPCFlowOrFailed == [ PumpCtr0 |
pst = popen ⇒ (pcst = pcflow ∨ pcst = pcfailed) ]

PWaitingPCNoFlowOrFailed == [ PumpCtr0 |
pst = pwaiting ⇒ (pcst = pcnoflow ∨ pcst = pcfailed) ]

PClosedPCNoFlowOrFailed == [ PumpCtr0 |
pst = pclosed ⇒ (pcst = pcnoflow ∨ pcst = pcfailed) ]

PFailedPCFlow == [ PumpCtr0 |
(pst = pfailed ∧ pcst = pcflow)⇒ (pa 1 = P ∧ pa 2 = P) ]

PFailedPCNoFlow == [ PumpCtr0 |
(pst = pfailed ∧ pcst = pcnoflow)⇒ (pa 1 = 0 ∧ pa 2 = 0) ]

PFailedPCFailed == [ PumpCtr0 |
(pst = pfailed ∧ pcst = pcfailed)⇒ (pa 1 = 0 ∧ pa 2 = P) ]

PumpCtr ==
POpenPCFlowOrFailed ∧ PWaitingPCNoFlowOrFailed ∧
PClosedPCNoFlowOrFailed ∧ PFailedPCFlow ∧ PFailedPCNoFlow ∧
PFailedPCFailed

InitPumpCtr == [ PumpCtr ′ | InitPump ∧ pcst ′ = pcnoflow ]

PumpIndex == 1 . . 4

The names of pa 1 and pa 2 are changed to pta 1 and pta 2 to avoid confusion. And
their types are changed as well due to the same reason as pa 1 and pa 2 in Pump0.

PumpCtrSystem
pumpctr : PumpIndex → PumpCtr
pta 1 , pta 2 : {0,P , 2 ∗ P , 3 ∗ P , 4 ∗ P}

pta 1 = (pumpctr 1).pa 1 + (pumpctr 2).pa 1+
(pumpctr 3).pa 1 + (pumpctr 4).pa 1

pta 2 = (pumpctr 1).pa 2 + (pumpctr 2).pa 2+
(pumpctr 3).pa 2 + (pumpctr 4).pa 2

InitPumpCtrSystem
PumpCtrSystem ′

∃ InitPumpCtr •
∀ i : PumpIndex • pumpctr ′ i = θPumpCtr ′
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I.1.2.4 Valve

A freetype VAction and a schema SetValveState are added to update valve’s state accord-
ing to the output signal sent to the physical units. If this program sends openValve (or
closeValve), then its action is openv (or closev) and its state should be vopen (or vclosed).
Otherwise, if none of openValve and closeValve is issued, then it is VNoChange and its
state is unchanged.

VState ::= vopen | vclosed

VAction ::= openv | closev | VNoChange

Valve == [ valve : VState ]

InitValve == [ Valve ′ | valve ′ = vclosed ]

SetValveState == [ ∆Valve ; vstate? : VAction |
(vstate? = VNoChange ⇒ valve ′ = valve) ∧
(vstate? = openv ⇒ valve ′ = vopen) ∧
(vstate? = closev ⇒ valve ′ = vclosed) ]

I.1.2.5 Expected values

CValues == [ qc 1 , qc 2 , vc 1 , vc 2 : NUMS ]

InitCValues == [ CValues ′ | qc 1′ = 0 ∧ qc 2′ = C ∧ vc 1′ = 0 ∧ vc 2′ = W ]

QLowerBoundValveOpen == [ CValues ; Valve | valve = vopen ∧ qc 1 = 0 ]

QLowerBoundValveClosed ==
[ CValues ; QSensor ; VSensor ; PumpCtrSystem ; Valve | valve = vclosed ∧

qc 1 = max{0, qa 1− 5 ∗ va 2− 12 ∗U 1 + 5 ∗ pta 1} ]

qc 2 must be larger than or equal to 0.

QUpperBound ==
[ CValues ; QSensor ; VSensor ; PumpCtrSystem |

qc 2 = max{0,min{C , qa 2− 5 ∗ va 1 + 12 ∗U 2 + 5 ∗ pta 2}} ]

VLowerBound == [ CValues ; VSensor | vc 1 = max{0, va 1− 5 ∗U 2} ]

vc 2 = min{W , va 2− 5 ∗U 1} should be vc 2 = min{W , va 2 + 5 ∗U 1}.

VUpperBound == [ CValues ; VSensor | (vc 2 = min{W , va 2 + 5 ∗U 1}) ]

InputPState == {popen, pclosed}

InputPCState == {pcflow , pcnoflow}

ExpectedPumpStates
expectedp : PumpIndex → InputPState
expectedpc : PumpIndex → InputPCState
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We add a schema InitExpectedPumpStates to initialise the expected pump states though
their initial states can be arbitrarily chosen. In addition, we use abnormal combination of
the pump state pclosed and the pump controller state pcflow to indicate this initial value
should not be used to check again input pump and pump controller states.

InitExpectedPumpStates
ExpectedPumpStates ′

expectedp′ = {1 7→ pclosed , 2 7→ pclosed , 3 7→ pclosed , 4 7→ pclosed}
expectedpc′ = {1 7→ pcflow , 2 7→ pcflow , 3 7→ pcflow , 4 7→ pcflow}

This schema CalcExpectedPumpState is added to update expected pump and pump con-
troller states according to output pump states to the physical units. If the output pump
state is popen, then the expected pump state is popen as well and the pump controller
state will be pcflow . Otherwise, pclosed and pcnoflow respectively. At the same time, the
pump state is changed to pwaiting in case the pump is expected to be opened from closed.

CalcExpectedPumpState
∆ExpectedPumpStates
∆PumpCtrSystem
pumpstate? : PumpIndex → InputPState

∀ i : PumpIndex •
(

(expectedp′ i = pumpstate? i) ∧
(

(pumpstate? i = popen ∧ expectedpc′ i = pcflow) ∨
(pumpstate? i = pclosed ∧ expectedpc′ i = pcnoflow)

)
) ∧
(

((pumpctr ′ i).pst =
if(expectedp i = pclosed ∧

pumpstate? i = popen ∧
(pumpctr i).pst = pclosed)

then
pwaiting

else
(pumpctr i).pst

) ∧
(pumpctr ′ i).pcst = (pumpctr i).pcst

)

Equipment0 ==
QSensor ∧ VSensor ∧ PumpCtrSystem ∧ Valve ∧
CValues ∧ ExpectedPumpStates

I.1.2.6 Failures and repairs

QFailed == [ QSensor | qst = sfailed ]

VFailed == [ VSensor | vst = sfailed ]
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PFailed == [ PumpCtrSystem |
( ∃ i : PumpIndex • (pumpctr i).pst = pfailed ) ]

PCFailed == [ PumpCtrSystem |
(∃ i : PumpIndex • (pumpctr i).pcst = pcfailed ) ]

UnitFailure ::= qfail | vfail | pfail〈〈PumpIndex 〉〉 | pcfail〈〈PumpIndex 〉〉

Failures == [ failures,noacks : P UnitFailure | noacks ⊆ failures ]

The original schema uses

( u = pfail i ∧ PFailed )

to calculate pump failures. However, since PFailed holds if at least one of pumps is failed,
the schema results in pump failures for all pumps. Finally, the schema is updated to check
pump failures against individual pump state directly by

( u = pfail i ∧ (pumpctr i).pst = pfailed )

. This is the same case as pcfail .

EquipmentFailures
Equipment0
Failures

failures =
{ u : UnitFailure ; i : PumpIndex |

( u = qfail ∧ QFailed ) ∨
( u = vfail ∧ VFailed ) ∨
( u = pfail i ∧ (pumpctr i).pst = pfailed ) ∨
( u = pcfail i ∧ (pumpctr i).pcst = pcfailed )

• u }

InitFailures == [ Failures ′ | failures ′ = ∅ ∧ noacks ′ = ∅ ]

FailuresExpected ==
[ Failures ; failureacks : P UnitFailure | failureacks ⊆ noacks ]

AcceptFailureAcks ==
[ ∆Failures ; FailuresExpected | noacks ′ = noacks \ failureacks ]

RepairsExpected ==
[ Failures ; repairs : P UnitFailure | repairs ⊆ failures ]

AcceptRepairs == [ ∆Failures ; RepairsExpected |
failures ′ = failures \ repairs ∧ noacks ′ = noacks \ repairs ]

The schema UpdateFailuresAck is added to update noacks according to input failureacks?
and repairs?.

• For the new failures identified in this cycle, we add them to noacks to state they are
not acknowledged.

• If failureacks? is accepted, that is failureacks? ⊆ noacks, we take these acknowledged
failures out of noacks.
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• If repairs? is accepted, that is repairs? ⊆ failures, we take these repaired failures out
of noacks.

UpdateFailuresAck
∆Failures
failureacks? : P UnitFailure
repairs? : P UnitFailure

∃newnoacks : P UnitFailure • (
(newnoacks = noacks ∪ (failures ′ \ failures)) ∧
(

(((failureacks? ⊆ noacks) ∧ (repairs? ⊆ failures))
⇒ (noacks ′ = newnoacks \ (failureacks? ∪ repairs?))) ∧

(((failureacks? ⊆ noacks) ∧ ¬(repairs? ⊆ failures))
⇒ (noacks ′ = newnoacks \ failureacks?)) ∧

((¬(failureacks? ⊆ noacks) ∧ (repairs? ⊆ failures))
⇒ (noacks ′ = newnoacks \ repairs?)) ∧

((¬(failureacks? ⊆ noacks) ∧ ¬(repairs? ⊆ failures))
⇒ (noacks ′ = newnoacks))

)
)

Equipment == ( QLowerBoundValveOpen ∨ QLowerBoundValveClosed ) ∧
QUpperBound ∧ VLowerBound ∧ VUpperBound ∧
ExpectedPumpStates ∧ EquipmentFailures

In InitEquipment , expected pump and pump controller states and valve state are initialised
as well.

InitEquipment == Equipment0 ′ ∧ InitQSensor ∧ InitVSensor ∧
InitPumpCtrSystem ∧ InitCValues ∧ InitFailures ∧
InitExpectedPumpStates ∧ InitValve

I.1.2.7 Repair Failed Equipments

This is a newly added section to repair equipments according to input repairs?. For
QSensor , if it is repaired, then its qst will be sokay . Otherwise it stays unchanged.

RepairQSensor
∆QSensor
repairs? : P UnitFailure

qa 1′ = qa 1
qa 2′ = qa 2
qfail ∈ repairs?⇒ qst ′ = sokay
qfail 6∈ repairs?⇒ qst ′ = qst

For VSensor , if it is repaired, then its vst will be sokay . Otherwise it stays unchanged.
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RepairVSensor
∆VSensor
repairs? : P UnitFailure

va 1′ = va 1
va 2′ = va 2
vfail ∈ repairs?⇒ vst ′ = sokay
vfail 6∈ repairs?⇒ vst ′ = vst

If a pump controller is repaired, its state will be pcflow if current pump state is popen, or
its state will be pcnoflow if current pump state is not popen.

RepairAPumpCtr
∆PumpCtr

pst ′ = pst
pst = popen ⇒ pcst ′ = pcflow
pst 6= popen ⇒ pcst ′ = pcnoflow

If a pump is repaired, its state will be pclosed and its pump controller state stays unchanged.

RepairAPump
∆PumpCtr

pst ′ = pclosed
pcst ′ = pcst

If both a pump and its controller are repaired, then the pump will be pclosed and its
controller will be pcnoflow .

RepairPumpCtrAndPump
∆PumpCtr

pst ′ = pclosed
pcst ′ = pcnoflow

The schema RepairPumps repairs all pumps and their controllers according to input
repairs?.

RepairPumps
∆PumpCtrSystem
repairs? : P UnitFailure

∀ i : PumpIndex •
∃PumpCtr ; PumpCtr ′ • (

(θPumpCtr ′ = pumpctr ′ i) ∧ (θPumpCtr = pumpctr i) ∧
((pfail i ∈ repairs? ∧ pcfail i 6∈ repairs?)

⇒ RepairAPump) ∧
((pfail i 6∈ repairs? ∧ pcfail i ∈ repairs?)

⇒ RepairAPumpCtr) ∧
((pfail i ∈ repairs? ∧ pcfail i ∈ repairs?)

⇒ RepairPumpCtrAndPump) ∧
((pfail i 6∈ repairs? ∧ pcfail i 6∈ repairs?)

⇒ θPumpCtr ′ = θPumpCtr)
)
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The RepairEquipments tries to repair all equipments according to input repairs?. If
repairs? are accepted, all equipments will be repaired. Otherwise, all equipments will
stay unchanged.

RepairEquipments ==
(RepairsExpected [repairs? /repairs ] ∧

RepairPumps ∧ RepairQSensor ∧ RepairVSensor
) ∨
((¬RepairsExpected [repairs? /repairs ]) ∧

ΞPumpCtrSystem ∧ ΞQSensor ∧ ΞVSensor
)

A emergencyCond state is introduced to indicate if both input repairs? and failureacks?
are accepted or not. It is set to 1 if there is unaccepted repairs? or failureacks?, or both.
Otherwise, it is set to 0. This update happens in the beginning of each cycle and the value
is used in the later of the cycle.

EmergenyCond == [ emergencyCond : {0, 1} ]
MarkEmergencyCond == [ ∆EmergenyCond | emergencyCond ′ = 1 ]
ClearEmergencyCond == [ ∆EmergenyCond | emergencyCond ′ = 0 ]
EvalRepairFailureAck ==

(RepairsExpected [repairs? /repairs ] ∧
FailuresExpected [ failureacks? /failureacks ] ∧
ClearEmergencyCond

) ∨
((¬RepairsExpected [repairs? /repairs ] ∨
¬FailuresExpected [ failureacks? /failureacks ])
∧ MarkEmergencyCond

)

I.1.2.8 Input messages

InputSignal ::=
stop | steamBoilerWaiting | physicalUnitsReady | transmissionFailure

UnitState
pumpState : PumpIndex → InputPState
pumpCtrState : PumpIndex → InputPCState
q , v : NUMS

InputMsg
signals : P InputSignal
UnitState
failureacks, repairs : P UnitFailure

I.1.2.9 Analysing messages

The input value x? should be checked against calculated values c 1 and c 2, instead of
adjusted values a 1 and a 2.

Expected == [ x?, c 1 , c 2 : NUMS | c 1 ≤ x? ≤ c 2 ]
Unexpected == ¬Expected
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Sensor == [ ∆Unit [SState] ; c 1 , c 2 , c 1′ , c 2′ , x? : NUMS ]

CheckAndAdjustSensor
Sensor

Expected ⇒ st ′ = st
Unexpected ⇒ st ′ = sfailed
st ′ = sokay ⇒ a 1′ = x? ∧ a 2′ = x?
st ′ = sfailed ⇒ a 1′ = c 1 ∧ a 2′ = c 2

CheckAndAdjustQ == QSensor ∧
CheckAndAdjustSensor [

q?/x?, qa 1 /a 1 , qa 2 /a 2 , qc 1 /c 1 , qc 2 /c 2 , qst/st ,
qa 1′ /a 1′ , qa 2′ /a 2′ , qc 1′ /c 1′ , qc 2′ /c 2′ , qst ′/st ′]

CheckAndAdjustV == VSensor ∧
CheckAndAdjustSensor [

v?/x?, va 1 /a 1 , va 2 /a 2 , vc 1 /c 1 , vc 2 /c 2 , vst/st ,
va 1′ /a 1′ , va 2′ /a 2′ , vc 1′ /c 1′ , vc 2′ /c 2′ , vst ′/st ′]

The ExpectedPumpStateTBD checks if the expected pumps and their controllers state
are undetermined. This happens in the initialisation stage when the expected states are
unknown. And we indicate this in InitExpectedPumpStates.

ExpectedPumpStateTBD
exppst : InputPState
exppcst : InputPCState

exppst = pclosed
exppcst = pcflow

If expected pump states are unknown, we adjust pumps and their controllers states ac-
cording to input states only and will not check expected pump states.

CheckAndAdjustPumpTBD
∆PumpCtr
pst?, exppst : InputPState
pcst?, exppcst : InputPCState

((pst? = popen ∧ pcst? = pcflow) ∨ (pst? = pclosed ∧ pcst? = pcnoflow))
⇒ (pst ′ = pst? ∧ pcst ′ = pcst?)

(pst? = popen ∧ pcst? = pcnoflow)⇒ (pst ′ = pfailed ∧ pcst ′ = pcnoflow)
(pst? = pclosed ∧ pcst? = pcflow)⇒ (pst ′ = pfailed ∧ pcst ′ = pcflow)

However, if expected pump states are valid, we adjust pumps and their controllers states
according to input and expected pump states together.
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CheckAndAdjustPump
∆PumpCtr
pst?, exppst : InputPState
pcst?, exppcst : InputPCState

((pst = pfailed ∧ pst ′ = pst) ∨
(pst 6= pfailed ∧

(pst? = exppst ⇒ pst ′ = pst?) ∧
(pst? 6= exppst ⇒ pst ′ = pfailed)

)
)
((pcst = pcfailed ∧ pcst ′ = pcst) ∨

(pcst 6= pcfailed ∧
(pcst? = exppcst ⇒ pcst ′ = pcst?) ∧
(pcst? 6= exppcst ⇒ pcst ′ = pcfailed)

)
)

PromotePumpCheck
∆PumpCtr
∆PumpCtrSystem
ExpectedPumpStates
pst?, exppst : InputPState
pcst?, exppcst : InputPCState
pumpState? : PumpIndex → InputPState
pumpCtrState? : PumpIndex → InputPCState
i : PumpIndex

θPumpCtr = pumpctr i
θPumpCtr ′ = pumpctr ′ i
pst? = pumpState? i
pcst? = pumpCtrState? i
exppst = expectedp i
exppcst = expectedpc i

SetPumpCtr == ∀ i : PumpIndex •
∃PumpCtr ; PumpCtr ′ ; pst?, exppst : PState ; pcst?, exppcst : PCState •

(PromotePumpCheck ∧
((CheckAndAdjustPumpTBD ∧ ExpectedPumpStateTBD) ∨

(CheckAndAdjustPump ∧ ¬ExpectedPumpStateTBD)
)

)

The original predicate of StopPresent is correct. Just because we introduce NUMS for
animation, the predicate of StopPresent is modified too.

StopPresent
signals? : P InputSignal
stops, stops ′ : NUMS

stop ∈ signals?
((stops + 1 > MAX NUM ∧ stops ′ = stops) ∨ (stops ′ = stops + 1))
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StopNotPresent
signals? : P InputSignal
stops, stops ′ : NUMS

stop 6∈ signals? ∧ stops < 3
stops ′ = 0

TooManyStops
signals? : P InputSignal
stops, stops ′ : NUMS

stop 6∈ signals? ∧ stops ≥ 3
stops ′ = stops

AdjustStops == StopPresent ∨ StopNotPresent ∨ TooManyStops

I.1.2.10 The Process

channel levelbelowmin, levelabovemax
channel emergencystop, cfailures, levelokay ,nonqfailure : B
channel physicalunitsready , qfailure, sbwaiting , vzero : B

For animation purpose, input has been split into seven small channels: input1, input2,
input3, input4, input5, input6, and input7.

channel input1 : (P InputSignal)
channel input2 : (PumpIndex → InputPState)
channel input3 : (PumpIndex → InputPCState)
channel input4 : (NUMS )
channel input5 : (NUMS )
channel input6 : (P UnitFailure)
channel input7 : (P UnitFailure)
channel startexec

channel failuresrepairs : (P UnitFailure)× (P UnitFailure)

channel pumps : (PumpIndex → InputPState)×VAction
channelset Information ==
{| emergencystop, cfailures, levelabovemax , levelbelowmin, levelokay ,

nonqfailure, physicalunitsready , qfailure, sbwaiting , vzero |}

process Analyser =̂ begin

state AnalyserState == [ Equipment0 ; Failures ; InputMsg ;
stops : NUMS ; signalhistory : P InputSignal ; EmergenyCond ]

StopSignalHis == [ stops : NUMS ; signalhistory : P InputSignal ]
PumpOp == ΞQSensor ∧ ΞVSensor ∧ ΞValve ∧ ΞCValues ∧

ΞFailures ∧ ΞExpectedPumpStates ∧ ΞInputMsg ∧
ΞStopSignalHis ∧ ΞEmergenyCond
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For InputMsg , its initial value can be arbitrarily chosen and it will not have impacts on
the behaviour of the program. To ease model checking, we set a specific initial value in
InitAnalyserState.

InitAnalyserState == [ AnalyserState ′ |
InitEquipment ∧ stops ′ = 0 ∧ signalhistory ′ = ∅ ∧
θ InputMsg ′ = (let signals == ∅[InputSignal ];

pumpState ==
{1 7→ pclosed , 2 7→ pclosed , 3 7→ pclosed , 4 7→ pclosed};

pumpCtrState ==
{1 7→ pcnoflow , 2 7→ pcnoflow , 3 7→ pcnoflow , 4 7→ pcnoflow};

q == 0 ; v == 0 ; failureacks == ∅[UnitFailure];
repairs == ∅[UnitFailure] •
θ InputMsg)

∧ emergencyCond ′ = 0 ]

Analyse ==
[ ∆AnalyserState ; InputMsg ? | θ InputMsg ′ = θ InputMsg ? ∧
CheckAndAdjustQ ∧ CheckAndAdjustV ∧ AdjustStops ∧
signalhistory ′ = signalhistory ∪ signals? ∧
UpdateFailuresAck ∧ ΞPumpCtrSystem ∧ ΞExpectedPumpStates ∧
ΞValve ∧ Equipment ′ ∧ ΞEmergenyCond ]

In its predicate, N 1 < qa 2 should be N 2 < qa 2.

DangerZone == [ AnalyserState | qa 1 ≥ M 1 ∧ qa 2 ≤ M 2
⇒ qa 1 < N 1 ∧ N 2 < qa 2 ]

Instead of checking ¬RepairsExpected ∨ ¬FailuresExpected , we check emergencyCond ,
because in the later stage, the failures and noacks have been updated and not original
values. Therefore, it is wrong to check repairs? and failureacks? against updated failures
and noacks.

EmergencyStopCond == [ AnalyserState |
stops ≥ 3 ∨ DangerZone ∨ emergencyCond = 1 ∨
transmissionFailure ∈ signals ]

LevelBelowMin == [ AnalyserState | M 1 ≤ qa 1 < N 1 ∧ qa 2 ≤ N 2 ]
LevelAboveMax == [ AnalyserState | N 1 ≤ qa 1 ∧ N 2 < qa 2 ≤ M 2 ]
LevelInRange == [ AnalyserState | N 1 ≤ qa 1 ∧ qa 2 ≤ N 2 ]

RateZero == [ VSensor | va 1 = 0 ∧ va 2 = 0 ]
AllPhysicalUnitsOkay ==

[ AnalyserState | ¬QFailed ∧ ¬VFailed ∧ ¬PFailed ∧ ¬PCFailed ]
OtherPhysicalUnitsFail == ¬QFailed ∧ ¬AllPhysicalUnitsOkay

SteamBoilerWaiting ==
[ AnalyserState | steamBoilerWaiting ∈ signalhistory ]

PhysicalUnitsReady ==
[ AnalyserState | physicalUnitsReady ∈ signalhistory ]
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HandleRepair , as a schema expression, is added to repair equipments.

HandleRepair == RepairEquipments ∧ EvalRepairFailureAck ∧ ΞCValues
∧ ΞFailures ∧ ΞInputMsg ∧ ΞStopSignalHis ∧
ΞValve ∧ ΞExpectedPumpStates

AnalyserCycle =̂ startcycle → input1?signals → input2?pumpState →
input3?pumpCtrState → input4?q → input5?v →
input6?failureacks → input7?repairs →
((HandleRepair) ; (SetPumpCtr ∧ PumpOp);

(Analyse) ; startexec → InfoService)

PumpOp2 == ΞQSensor ∧ ΞVSensor ∧ ΞCValues ∧
ΞFailures ∧ ΞInputMsg ∧ ΞStopSignalHis ∧
ΞEmergenyCond

SetExpectedPumpState ==
CalcExpectedPumpState ∧ SetValveState ∧ PumpOp2

InfoService =̂ (OfferInformation ; InfoService) 2
failuresrepairs !noacks!repairs → pumps ?pumpstate?vstate →
(SetExpectedPumpState) ; AnalyserCycle

OfferInformation =̂
emergencystop.EmergencyStopCond → Skip
2

sbwaiting .SteamBoilerWaiting → Skip
2

vzero.RateZero → Skip
2

(LevelBelowMin) N levelbelowmin → Skip
2

(LevelAboveMax) N levelabovemax → Skip
2

levelokay .LevelInRange → Skip
2

physicalunitsready .PhysicalUnitsReady → Skip
2

cfailures.(¬AllPhysicalUnitsOkay)→ Skip
2

qfailure.QFailed → Skip
2

nonqfailure.OtherPhysicalUnitsFail → Skip

• (InitAnalyserState) ; AnalyserCycle

end

channelset TAnalyserInterface == {| startcycle |}
process TAnalyser =̂

Timer J TAnalyserInterface K Analyser \ TAnalyserInterface
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I.1.3 Controller

Mode ::= initialisation | normal | degraded | rescue | emergencyStop
Nonemergency == {initialisation,normal , degraded , rescue}

channel startpumps, stoppumps, openvalve, closevalve, sendprogready
channel reportmode : Mode
channel startreport , endreport
channelset Reports ==
{| startpumps, stoppumps, openvalve, closevalve, sendprogready |}

channelset TAControllerInterface == {| startexec |} ∪ Information

process Controller =̂ begin

state ModeState == [ mode : Mode ]
InitController == [ ModeState ′ | mode ′ = initialisation ]
EnterMode =̂ m : Mode • reportmode !m → mode := m

In emergencyStop mode, it is not necessary to adjust level AdjustLevel and just end report
by endreport .

ControllerCycle =̂ startexec → startreport → NewModeAnalysis;
((mode 6= emergencyStop) N AdjustLevel 2
(mode = emergencyStop) N Skip);
endreport → ControllerCycle

NewModeAnalysis =̂ emergencystop.True→ EnterMode (emergencyStop)
2 emergencystop.False→ (

(mode = initialisation) N InitModeAnalysis
2 (mode = normal) N NormalModeAnalysis
2 (mode = degraded) N DegradedModeAnalysis
2 (mode = rescue) N RescueModeAnalysis
2 ((mode 6∈Mode \ {emergencyStop})) N Skip

)

InitModeAnalysis =̂
sbwaiting .True→

( vzero.True→
( qfailure.False→

( physicalunitsready .True→
( levelokay .True→

( cfailures.False→ EnterMode (normal) 2
cfailures.True→ EnterMode (degraded) ) 2

levelokay .False→ EnterMode (emergencyStop) ) 2
physicalunitsready .False→

( levelokay .True→
sendprogready → Skip 2

levelokay .False→ Skip ) ) 2
qfailure.True→ EnterMode (emergencyStop) ) 2

vzero.False→ EnterMode (emergencyStop) ) 2
sbwaiting .False→ Skip
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NormalModeAnalysis =̂
cfailures.False→ Skip 2

qfailure.True→ EnterMode (rescue) 2
nonqfailure.True→ EnterMode (degraded)

DegradedModeAnalysis =̂
qfailure.False→

(cfailures.True→ Skip 2

cfailures.False→ EnterMode (normal) )
2 qfailure.True→ EnterMode (rescue)

RescueModeAnalysis =̂
qfailure.True→ Skip 2

qfailure.False→ (
cfailures.False→ EnterMode (normal)
2 cfailures.True→ EnterMode (degraded) )

AdjustLevel =̂ levelbelowmin → RaiseLevel 2
levelabovemax → ReduceLevel 2
levelokay .True→ RetainLevel

RaiseLevel =̂ StartPumps;
if mode = initialisation −→ CloseValve
8mode 6= initialisation −→ Skip
fi

ReduceLevel =̂ StopPumps;
if mode = initialisation −→OpenValve
8mode 6= initialisation −→ Skip

fi

RetainLevel =̂ StopPumps;
if mode = initialisation −→ CloseValve
8mode 6= initialisation −→ Skip

fi

StartPumps =̂ startpumps → Skip
StopPumps =̂ stoppumps → Skip
OpenValve =̂ openvalve → Skip
CloseValve =̂ closevalve → Skip

• (InitController) ; ControllerCycle

end

process TAController =̂
(TAnalyser J TAControllerInterface K Controller) \ TAControllerInterface
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I.1.4 Reporter

OutputSignal ::= programReady | openValve | closeValve |
levelFailureDetection | steamFailureDetection |
levelRepairedAcknowledgement | steamRepairedAcknowledgement

OutputMsg
mode : Mode
signals : P OutputSignal
pumpState : PumpIndex → InputPState
pumpFailureDetection : P UnitFailure
pumpCtrFailureDetection : P UnitFailure
pumpRepairedAcknowledgement : P UnitFailure
pumpCtrRepairedAcknowledgement : P UnitFailure

Similar to the input channel, the output channel is split too.

channel output1 : Mode
channel output2 : (P OutputSignal)
channel output3 : (PumpIndex → InputPState)
channel output4 : (P UnitFailure)
channel output5 : (P UnitFailure)
channel output6 : (P UnitFailure)
channel output7 : (P UnitFailure)

process Reporter =̂ begin

state ReporterState == [ OutputMsg ; valveSt : VAction | true ]

Similar to the Timer process and initial value of InputMsg , we initialise OutputMsg as
well though its initial value can be arbitrarily chosen.

InitReporter == [ ReporterState ′ | valveSt ′ = VNoChange ∧
θOutputMsg ′ =
(let mode == initialisation ; signals == ∅[OutputSignal ];

pumpState == {1 7→ pclosed , 2 7→ pclosed ,
3 7→ pclosed , 4 7→ pclosed};

pumpFailureDetection == ∅[UnitFailure];
pumpCtrFailureDetection == ∅[UnitFailure];
pumpRepairedAcknowledgement == ∅[UnitFailure];
pumpCtrRepairedAcknowledgement == ∅[UnitFailure]
• θOutputMsg) ]

ReportService =̂ GatherReports ; ReportService 2

reportmode.emergencyStop → mode := emergencyStop ; TidyUp 2

TidyUp
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This schema is used to update OutputMsg according to the inputs noacks and repairs from
the Analyser process.

FailuresRepairs == [ ∆ReporterState ; noacks? : (P UnitFailure);
repairs? : (P UnitFailure) |
(signals ′ = signals∪

(if(qfail ∈ noacks?) then {levelFailureDetection} else ∅)∪
(if vfail ∈ noacks? then {steamFailureDetection} else ∅)∪
(if qfail ∈ repairs? then {levelRepairedAcknowledgement}

else∅)∪
(if vfail ∈ repairs? then {steamRepairedAcknowledgement}

else∅)) ∧
pumpFailureDetection ′ =

noacks? ∩ {i : PumpIndex • pfail i} ∧
pumpCtrFailureDetection ′ =

noacks? ∩ {i : PumpIndex • pcfail i} ∧
pumpRepairedAcknowledgement ′ =

repairs? ∩ {i : PumpIndex • pfail i} ∧
pumpCtrRepairedAcknowledgement ′ =

repairs? ∩ {i : PumpIndex • pcfail i} ∧
mode ′ = mode ∧ valveSt ′ = valveSt ∧ pumpState ′ = pumpState ]

TidyUp =̂ endreport → failuresrepairs ?noacks?repairs → (FailuresRepairs);
output1!mode → output2!signals → output3!pumpState →
output4!pumpFailureDetection → output5!pumpCtrFailureDetection →
output6!pumpRepairedAcknowledgement →
output7!pumpCtrRepairedAcknowledgement →
pumps !pumpState!valveSt → Skip

GatherReports =̂ 2m : Nonemergency • reportmode.m → mode := m

2

sendprogready → signals := signals ∪ {programReady}
2

startpumps → pumpState := PumpIndex × {popen}
2

stoppumps → pumpState := PumpIndex × {pclosed}
2

openvalve → signals, valveSt := signals ∪ {openValve}, openv
2

closevalve → signals, valveSt := signals ∪ {closeValve}, closev

• µX • startreport → (InitReporter) ; ReportService ; X

end

channelset TACReporterInterface ==
{| startpumps, stoppumps, openvalve, closevalve, sendprogready ,

startreport , reportmode, endreport , failuresrepairs, pumps |}
process TACReporter =̂

(TAController
JTACReporterInterfaceK

Reporter) \ TACReporterInterface
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I.1.5 Steam Boiler

process SteamBoiler =̂ TACReporter

I.2 Resultant CSP and Z Model

Available either in accompanying CD-ROM or online at GitHub [108].
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