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Abstract 

This thesis takes a stylometric approach to the measurement of social power, 
particularly hierarchical power in an organisational setting. Following the social 
constructionist view of identity, we infer that construction of identity is an ongoing 
process incorporating the full scope of human behaviour, including linguistic 
behaviour. We test the primary hypothesis that stylistic choice in language is 
indicative of power relations, and that a stylometric signal can be extracted from 
natural language to enable prediction of relationship status. Additionally, we 
consider the effect of individual variation versus interpersonal variation, and the 
effects of aggregating predictions to boost the predictive strength of the model. 
Three different datasets are used to validate the proposed approach across three 
different genres: email, spoken conversation, and online chat. We also present a 
vector space approach to modelling linguistic style accommodation, and undertake a 
preliminary examination of the correlation between linguistic accommodation and 
social power. 
  



 ix 

Publications Arising  

 
Cotterill, R. (2011) Question classification for email. Proceedings of the Ninth 
International Conference on Computational Semantics, 330-334. Association for 
Computational Linguistics. 
 
Cotterill, R. (2013) Using Stylistic Features for Social Power Modelling. 
Computación y Sistemas, 17(2), 219-227. 
 
Jones, S., Cotterill, R., Dewdney, N., Muir, K. and Joinson, A. (2014) Finding Zelig 
in text: A measure for normalising linguistic accommodation. Proceedings of 
COLING 2014, the 25th International Conference on Computational Linguistics, 
Dublin, Ireland, August 2014. 
 
Muir, K., Cotterill, R., Joinson, A. and Dewdney, N. (2015) Power and personality 
in linguistic style accommodation. British Psychological Society Developmental and 
Social Section Annual Conference, Manchester, UK, 9 - 11 September 2015. 
 
Cotterill, R., Muir, K., Joinson, A. and Dewdney, N. (2015) Identifying linguistic 
correlates of power. International Journal of Computational Linguistics and 
Applications, 6(1). 
 
Muir, K., Joinson, A., Cotterill, R. and Dewdney, N. (2016) Characterising the 
linguistic chameleon: Personal and social correlates of linguistic style 
accommodation. Human Communication Research, 42(3).  
 
Muir, K., Joinson, A., Cotterill, R. and Dewdney, N. (2016) When Communication 
Accommodation Backfires: Interpersonal Effects of Social Power and Linguistic 
Style Accommodation in Computer-Mediated-Communication. Proceedings of the 
66th Annual Conference of the International Communication Association. 
 
Muir, K., Joinson, A., Cotterill, R. and Dewdney, N. (2016) English Speed 
Networking Conversational Transcripts LDC2016T16. Linguistic Data Consortium.
 



 1 

1. Introduction 

Social identity theory posits that ‘identity’, rather than being a set of static features 
possessed by an individual, is a social construct that is constantly negotiated in the 
course of interactions with others (Tajfel & Turner 1979). Similarly, various theories 
have been proposed to account for politeness and formality in language (e.g. 
Goffman 1959; Grice 1975; Brown & Levinson 1987), but theorists generally agree 
that in order to be polite it is necessary to communicate in a manner appropriate to 
your audience, and that this changes according to circumstance (Goffman 1974). 
 
If an individual is constantly adjusting their communicative style in this way, to 
adapt to the requirements of the context in which they find themselves, it follows 
that this will result in observable phenomena. It should be possible to extract a signal 
from the individual’s changing use of language, from which we can (given sufficient 
data) infer something of the context of each communication. However this is an 
inherently noisy signal, as relationship negotiation is only one aspect of the purpose 
of any given communication, and multiple relationship categories may be 
constructed in parallel. 
 
Traditional n-gram approaches to language modelling, as originally proposed by 
Weaver (1955) for machine translation, have subsequently been adopted for use in 
other language processing tasks. While often successful, n-gram models operate at 
the surface level of the language. Influences of topic and style are conflated into a 
single model, as an n-gram model captures both semantic content (via specific 
lexical choice) and stylistic content (e.g. word order, sentence complexity, function 
word distribution). Since it is possible to discuss varied topics with the same 
audience, or the same topic with different groups, we hypothesise that it would be 
worthwhile to draw a distinction between these two aspects. You may discuss your 
work (or your weekend plans) with your boss, your colleague, or your spouse, 
therefore we predict that stylistic choices will likely be more indicative of 
relationship than the selection of a specific topic, although topic distribution may 
itself be informative. Additionally, it is easier for individuals to deliberately adjust 
their language at the level of lexical choice and word order: some stylistic features, 
such as function word distribution, are subconscious and therefore any resulting 
signal is more likely to be genuine. 
 
This thesis sets out to test the following primary hypothesis: 
 

H1: Stylistic choice is a key method of expressing relationship-building, 
therefore relationship information can be inferred from linguistic style. 

 
This depends on the assumption that it is possible to meaningfully separate topical 
from stylistic features in language. Topical features are those with explicit semantic 
content, in particular lexical choice (nouns, verbs), while stylistic features can be 
more freely varied to affect the manner of communication (punctuation, function 
word distribution). The question of whether these two aspects can be separated, or to 
what extent they are naturally correlated, is something that linguists are only 
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beginning to explore (e.g. Argamon et al. 2007; van der Wees et al. 2015); we shall 
explore this issue in more detail at a later stage. 
 
We additionally set out to test the idea that when it comes to stylistic choice, 
differences from the individual norm will be more informative than absolute values. 
If this hypothesis is true, per-author standardisation of feature scores should result in 
higher classification accuracy. We record this as a secondary hypothesis: 
 

H2: Differences from the individual’s normal behaviour will be more 
informative than absolute feature scores, for predicting relationships.  

 
When considering the classification of relationships, it is possible to operate at 
various levels: at the message level, using only a single piece of content as evidence; 
at the relationship level, using an aggregation of all messages exchanged between a 
pair; or at the community level by taking into account the shape of the resulting 
graph of power predictions. As each of these levels makes additional information 
available to the task, we might reasonably conjecture that performance will improve 
with each stage. This gives us an additional two hypotheses to test: 
 

H3: Prediction of hierarchical relationships will be more effective at the 
pairwise level than at the level of individual messages. 
 
H4: Relationship classification in a hierarchical situation will be aided by 
consideration of whole-network characteristics. 

 
Finally, we consider social power as a driver for linguistic style accommodation, and 
test the following: 
 

H5: Linguistic accommodation behaviour is partially motivated by relative 
social power, therefore greater accommodation of linguistic style will 
correlate with lower social power. 

 
In order to test our hypotheses, we use data from three sources: email data from the 
Enron corpus, and two sets of dialogues (one face-to-face, and one computer 
mediated) generated in an experimental setting by giving participants a speed 
networking task to complete, with controlled discussion topics and role-based power 
manipulation. In all cases we examine the organisational hierarchy, as this is a 
category of relationship which imparts comparatively well-defined imbalances in 
social power, and we consider the impact of hierarchical position on language 
choices. If we are able to reconstruct a graph of social hierarchy, using stylistic 
features with a minimum of interference from topical content, this will verify H1 as 
it applies to the organisational sphere. (However, a failure to do so would not 
constitute proof that H1 is false, only that our attempt has been insufficient.) 

1.1. Potential Applications 

There are a variety of reasons for taking an interest in the social structure of a group, 
whether in a virtual or physical environment. Marketing experts have become very 
interested in identifying key individuals with influence in a network, in order to 
target their products accordingly. At the opposite end of the spectrum, investigators 
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in large-scale criminal proceedings (such as the Enron scandal) need to construct 
detailed social network graphs to develop an understanding of the relationships 
within the community under investigation. 
 
As email and other online communications becomes more pervasive, and users are 
encouraged by providers such as Gmail to archive rather than delete old emails, there 
is now a considerable quantity of information to be gleaned from datasets too large 
for a human to ever read. This is not often in the form of simple statements of fact 
such as those targeted by traditional information retrieval (IR) techniques. Indeed, a 
lot of personal, interpersonal, and social information is never explicitly stated; rather 
it exists as part of the mutually understood common ground, or is negotiated via non-
explicit exchanges. 
 
By studying the way this information is encoded, we may be able to build tools that 
can present even this implicit information. Relationship information in particular 
may be of use in mailbox management applications (perhaps to automatically flag 
messages from a user’s senior colleagues), or to enable the construction of detailed 
social network graphs in police and fraud investigations. 

1.2. Structure of this Thesis 

Chapter 2 gives an overview of the theoretical background and related literature, 
while Chapter 3 outlines our methodological approach and introduces the three 
datasets. Chapters 4 gives message level classification results, Chapter 5 looks at the 
options for improving on these scores using pairwise aggregation and network-level  
techniques, and Chapter 6 sets out preliminary work on a method to measure 
linguistic accommodation using vector techniques. Chapter 7 looks at the feature 
distributions of our data in more detail, and Chapter 8 summarises our findings and 
sets out some proposals for future work. 
 
Work in Chapter 6, and the data collection described in sections 3.1.2 and 3.1.3, was 
undertaken in collaboration with Kate Muir, Adam Joinson, Simon Jones (University 
of the West of England), and Nigel Dewdney (University of Sheffield). 
 
 
 
 !
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2. Theoretical Background 

This work is grounded in the theories of socially-constructed identity (Tajfel & 
Turner 1979; Turner et al. 1987) and framing (Goffman 1974). These psychological 
and sociological theories account for social interaction as an ongoing negotiation 
between the participating parties, encompassing the participants’ self-identification, 
personal relationships, and social roles. 
 
Our approach is informed by stylometry (Lutosławski 1897), linguistic politeness 
(Grice 1975; Brown & Levinson 1987), and communication accommodation theory 
(Giles 1973). Using a tightly constrained set of stylistic features has a potential 
advantage over n-gram models, leading to much smaller models with more 
explanatory power. 
 
The task of categorising relationships and reconstructing social hierarchies also 
builds conceptually upon previous work in social network analysis (SNA) of 
communications graphs (Rowe et al. 2007; Gallagher 2010). 
 
We will now briefly explore these contributing fields. 

2.1. Social Constructs of Identity, Framing, and Politeness 

The social approach to identity proposes that, rather than being something fixed and 
personal, an ‘identity’ is flexibly and socially constructed with reference to the 
communities in which an individual is engaged (Tajfel & Turner 1979). This 
captures a lot of intuition: the same person will tend to behave differently with 
colleagues at work, with friends in the bar, or when visiting elderly relatives. The 
social identity approach also interfaces neatly with the concept of framing (Goffman 
1974): not only do people behave differently with different communities, they 
behave appropriately to the situation in which they find themselves. If you take your 
grandmother to the bar, you must negotiate a suitable path between grandma-
appropriate and bar-appropriate behaviour. 
 
Although theories of interconnectedness can be traced back through philosophy as 
far as early buddhism, Cooley (1902) is one of the first modern sociologists to 
explicitly lay out a theory of interdependence between individuals and the 
communities they comprise, noting that “a separate individual is an abstraction 
unknown to experience, and so likewise is society when regarded as something apart 
from individuals.” This theory is extended by later contributors such as Mead (1934) 
and Blumer (1986) in the literature of symbolic interaction, the fundamental premise 
of which is that people respond to their environment (including other people) 
according to the meaning they find there, and that this meaning is itself a product of 
communal negotiation. 
 
One particular source of social ‘meaning’ is that derived from individuals’ respective 
membership of social groups, an aspect which has been explored in depth by later 
theorists. Tajfel & Turner (1979) initially proposed social identity theory to 
complement Campbell’s (1965) realistic group conflict theory, which in turn was put 
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forward as an explanation of conflict between groups. Social identity theory draws a 
distinction between interpersonal and intergroup dynamics: the interpersonal 
element of an interaction is determined by two individuals and their specific 
relationship, while the intergroup element is conditioned by their respective social 
positions. It is this second component which wraps up the effects of stereotyping, in- 
and out-group behaviour, and related phenomena. In general, intergroup effects will 
be more salient between strangers, and as a relationship becomes closer, 
interpersonal elements will come to dominate. 
 
Although initially set out to account for conflict between groups, the fundamental 
tenets of social identity theory are universally applicable to the building and 
maintenance of all human relationships. One consequence is that an individual’s 
choices of presentation will vary depending on the group(s) in which she finds 
herself at the time, and whether she considers herself to be an insider or an outsider 
to this group. The theory of self-categorisation (Turner et al. 1987; Turner et al. 
1994) builds on this idea, examining the changing salience of different group 
identities in different contexts. The likelihood of a particular self-category becoming 
salient depends on the level to which the individual identifies with that group, and 
the relevance of that category to the current scenario. Experiments such as those 
conducted by Onorato & Turner (2004) have shown that this can be manipulated, 
with deliberate priming used to affect which group memberships are activated during 
a given exchange; this flexibility to immediate context is one of the major 
differentiators of social identity theory from the earlier concepts of identity theory in 
sociology (Hogg et al. 1995). 
 
It is worth noting that a ‘group’ in Turner’s sense does not have to consist of a 
specific set of individuals who regularly (if ever) interact. Take, for example, a sole 
Christian family living in a largely Muslim community, who may at times (perhaps 
at Christmas, or during Ramadan) wish to position themselves as part of the wider 
group of Christians, in contrast to their Muslim neighbours. Nor must the groups to 
which an individual ‘belongs’ be considered mutually exclusive: there will be plenty 
of other times when it is more appropriate for our imaginary Christians to position 
themselves as simply members of the local community along with their neighbours, 
irrespective of religion, and in contrast to those who live elsewhere. 
 
Along with the individual relationships between people, their respective group 
memberships — and the salience of these groups in the current interaction context — 
will impact on the way that interactions are realised linguistically. For example, 
Hogg & Reid (2006) reflect on the role of linguistic choice as used by leaders to 
cement their position within a group, and to shift group norms to better reinforce 
their own power. 
 
The social setting, however, comprises more than just people. The concept of a 
‘frame’ of interaction, as proposed by Goffman (1974), is a way of characterising the 
general context in which an interaction takes place. The idea of a frame is that 
different contexts of interaction require different things of the participants. For 
example, a restaurant frame would naturally include ordering items from a menu, 
eating food (probably served as multiple courses), conversing with one’s 
companions, and paying the eventual bill. Different phases of this scenario place 
different requirements on the participants. Similarly, within the restaurant frame, the 
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roles of diner and waiter require different typical behaviours — even though the 
same person could be a diner one day, and a waiter the next, in different contexts. 
 
The interaction between frames and social groups is a subtle one. The example of 
taking one’s grandmother to a lively bar is an extreme case which highlights some of 
the issues in a cartoon manner. But everyone will have personal examples of going 
to the pub with colleagues, or a spouse dropping in at work for a quick chat, or the 
waiter turning out to be a long-lost schoolfriend: times when a person from an 
unexpected group is involved in a frame where they are not usually seen. 
 
When encountering an individual or group, in a frame in which they do not usually 
belong, we must choose to what extent we continue to fulfil the frame’s generic 
expectations and to what extent we adapt our behaviour to the specific individuals 
concerned. To continue with the restaurant example, upon recognising our friend we 
would probably break out of the ‘restaurant’ frame to engage in a ‘reunion’ frame for 
a time. But if we are to succeed in our goals of eating a meal out, we will have to 
return to ‘restaurant’ mode to place our orders, and our waiter-friend will doubtless 
need to attend to other tables if they are to keep their job. 
 
From this we can see that framing and grouping are not independent: expected 
groups are a part of the frame’s expectation-setting. Violation of these group-related 
expectations can be jarring, just as we would be taken aback by other frame-related 
violations such as a restaurant’s failure to supply food and drinks. 
 
Selecting an appropriate level of politeness is one significant way in which language 
can be adjusted to be a more appropriate style for a given context, without materially 
affecting the topic or purpose of the communication. 
 
The literature of politeness in language starts with Goffman’s (1959) notion of 
‘face’, and the theory that everyone chooses to present a particular version of 
themselves to society. This projected image changes depending on the circumstances 
of the interaction, and we can see that the concepts of frame and face are related, as 
the face one chooses to project is affected by the requirements of the current frame. 
In an individual’s choice of language, they are determining what image to project, 
but they must also consider the face of those they interact with if communication is 
to succeed. By being more polite, the speaker reduces the face threat to her 
interlocutor. 
 
In their seminal work on politeness, Brown & Levinson (1987) build on the concept 
of face, defining a face-threatening act as a social action which imposes on the 
recipient. Making a request is the prototypical face-threatening act, but any attempt 
to communicate carries a tacit request for the audience’s attention, and therefore 
places a demand on their time and cognitive effort. The level of imposition this 
entails depends on the circumstances. Politeness strategies are used as mitigation, to 
reduce the face threat when performing such an action. 
 
Brown & Levinson identify three features which should impact on the language 
choices made when making a request or taking any other face-threatening action:  

 
— the degree of imposition 
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— the symmetric relation: the social distance between the participants 
(how well do they know one another?) 

— the asymmetric relation: the power balance in the relationship, 
derived from the relative status of the participants (whether this status 
is professional or societal in origin) 

 
The interaction of these features affects the level of politeness required to 
compensate for the threat to face. To give an example of extremes, making a 
significant request of a stranger requires more politeness than making a small request 
of a close friend. Strategies for increasing politeness include making a request 
indirectly (“off the record”), or padding it with expressions of positive politeness 
(such as saying ‘please’ or using formal address forms) or negative politeness (such 
as hedging or apologising). These strategies can be combined in a variety of ways, 
giving speakers the flexibility to express varying levels of politeness. 
 
The level of politeness appropriate to a particular communication is contextually 
dependent, and more is not always better: being excessively polite can be just as 
inappropriate as being impolite when politeness is required (Locher 2004; Watts 
2005). It sounds like a paradox to propose that it can be impolite to be too polite; it 
appears from this that we are overloading the concept of ‘politeness’. We must 
distinguish the process of “employing politeness strategies” from the end result of 
“being polite”. 
 
These various theories all express different facets of the same basic principle: that 
individuals moderate their behaviour (and, consequently, language) according to 
context. This context is comprised of various aspects including physical 
environment, social groups, social roles, and contextual expectations. It follows that 
linguistic choices will be conditioned by some combination of these factors. 

2.2. Factors Affecting Linguistic Choice 

We have briefly examined the social theory of identity, and the concept of framing. 
Having thus established that people adapt their behaviour depending on the groups to 
which they belong and with whom they interact, we then come to consider how this 
may be expressed through their linguistic selections. There is a vast literature of 
conversational analysis spanning various disciplines, most of which we will not 
repeat here; Eggins & Slade (1997) give a good overview of the contributing 
disciplines. 
 
If behaviour is generally informed by contextual factors, and language is a form of 
behaviour, it follows that the choices made in the course of linguistic production will 
likewise be influenced by a combination of contextual elements. These factors may 
be intrinsic to the speaker or extrinsic; they may be static or ever-changing; they may 
exert greater or lesser influence, independently or in combination. 
 
Briefly, the factors affecting linguistic choice can be summarised by the following 
questions: who is speaking, to whom, with what purpose, and in what context? 
 
Intrinsic aspects of the speaker which may prove salient include psychological traits, 
emotional state, gender, age, social background, native language, and level of 
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education. For the purposes of most studies, these are treated as inherent attributes of 
an individual and assumed to be, if not absolutely unchanging, at least stable for the 
duration of the study in question. In practice it is evident that very little about an 
individual is static: emotional state changes quickly, education is a lifelong process, 
and even age is changing at a constant (if slow) rate. 
 
The intended audience, and the speaker’s relationship to them, is one of the most 
important aspects of the communicative context. The closer the speaker and 
audience, the more common ground they might expect to share – contrast two 
strangers who must first work out whether they share a common language, with 
twins who have grown up together and share a thousand little inside jokes. 
 
The purpose of the conversation will determine the frame of the communication, or 
else be determined by the demands of an existing frame. Different modes and 
purposes of communication are distinguished by authors and readers alike as 
resulting in a ‘style’, defined by Karlgren (2010) as a “consistent and distinguishable 
tendency to make [certain] linguistic choices”. Casual small talk differs in 
measurable ways from the focused exchange of a meeting, and even within similar 
contexts, the content of the specific conversation may affect the tone. One 
commonly studied example of this is the case of requests: a request is an imposition, 
and therefore, requests tend to be more polite than equivalent non-requesting 
communications, and requests of higher imposition require more politeness (Duthler 
2006, Peterson et al. 2011). 
 
Linguistic choices may also be influenced by the environment in which 
communication takes place, whether this is physical or virtual (noting that even 
electronic communications are composed in a physical environment). Choosing an 
email over a phone call gives the author scope to edit their words before hitting 
‘send’, but there’s a difference between sitting down comfortably at your desk, and 
trying to fire off a quick message on your phone while running late for work. 
 
It should be obvious that these various categories are not independent. When you set 
out to communicate, you will choose who to speak with depending on what you wish 
to achieve; how you feel about them will impact your emotional state during the 
conversation; and how you contact them may depend upon the nature of your 
relationship or on your communicative goals. For simplicity, however, these aspects 
are usually studied separately. 
 
We will now take a brief look at previous research which has investigated each of 
these categories in a little more depth. 

2.2.1. The Speaker’s Personal Attributes 

Studies have considered correlations between linguistic selections and a range of 
personal attributes such as gender (Argamon et al. 2007), age (Rosenthal & 
McKeown 2011), and personality (Oberlander & Gill 2006). It should be obvious 
that different individuals tend to have different preferred styles, and that in some 
cases their stylistic choices might be attributable to a specific aspect of their 
individual circumstances: for example, a primary school teacher who has become 
adept at replacing ‘shit’ with ‘sugar’ in a work context, and who continues to do so 
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at home. More often than not, however, there are numerous linguistic communities 
exerting their influence on every speaker, at any given time, and the patterns of 
difference become apparent only when examining the data at population-level. 
 
A lot of work in this field originates in forensics (see Grant (2007) for an overview), 
with the requirement to identify or characterise individuals based on the evidence of 
their language, such as in cases where anonymous threats are made. The forensic 
scenario has the added complication that the author may be trying to obfuscate or 
disguise his style, which we assume is not relevant to non-criminal situations. 
Authorship identification has also been a topic of some interest in literary and 
historical circles, where related techniques are used to attribute (or deny) long-lost 
manuscripts to famous writers, dating back to Mosteller & Wallace’s (1963) 
undertaking to assign the contested Federalist Papers to their possible authors by 
way of function words. These techniques tend to produce reliable results only when 
approached as closed-class categorisation tasks, and as the interest is in specific 
identity rather than attributes, all features are generally taken together to model an 
individual author’s style without regard for intersecting categories of social identity 
(Stamatatos 2009). More recent work, however, has examined the linguistic 
characteristics of a number of facets of individual identity (Argamon et al. 2007; 
Nguyen et al. 2014; Rosenthal & McKeown 2011). 

Gender 

There have been numerous studies of gender differences in language use, dating 
back to the early days of sociolinguistcs; automated classification by gender begins 
with Koppel et al’s (2002) study, in which they report classification accuracy above 
80% on documents from the British National Corpus, using a combination of 
function words, part-of-speech n-grams, and punctuation features. 
 
In their blog study, Argamon et al. (2007) examine 140 million words of text and 
find that articles and prepositions are significantly associated with male language, 
while women use more personal pronouns, conjunctions, and auxiliaries. They also 
find topical distinctions, and observe a lack of independence between topical and 
stylistic features. In this corpus women use proportionally more swearwords, which 
is at odds with the general perception of swearing, as well as contrasting with 
Rayson et al.’s (1997) older study of distributions in the British National Corpus. 
Another interesting finding was the similarity between age-signifying and gender-
signifying words: in general, the words more commonly used by women were also 
the words more commonly used by younger bloggers. These observations could be 
an artefact of the way in which men and women use blogs: within this corpus, it was 
observed that women and younger bloggers tended to focus on personal topics, while 
men and older bloggers tended towards an external focus and more news-like 
writing. 
 
More recently, Twitter and Facebook have become popular sources of informal 
textual data. Nguyen et al. (2014) gathered data for their TweetGenie system by 
setting up their experiment in the form of an online tool to predict gender and age 
from Twitter streams, and encouraging the general public to provide feedback on the 
accuracy of results. Their accuracy of gender predictions for Dutch was assessed at 
94% based on the user-submitted confirmations (or corrections), and 82% based on a 
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random sample of 50 users whose profiles have been manually annotated by the 
research team. Sap et al. (2014) create a weighted lexicon of gender-signifying 
words using regression and classification models. They report classification accuracy 
of 91.7% on Facebook messages and 85.6% on Twitter data, using lexicons derived 
from Facebook data; the inverse, using a (smaller) Twitter dataset to train the 
lexicon, resulted in classification accuracy of 88.9% on Twitter data and 81.6% on 
Facebook messages. A combined lexicon derived from Facebook, blog, and Twitter 
data gave the best result overall, with accuracy of 91.9% for Facebook and 90.0% for 
Twitter. 
 
Bamman et al.’s (2012) investigation of Twitter data stands out for providing a more 
nuanced analysis than most. In particular, they identify that by looking at language 
exclusively through the lens of gender, researchers are limiting themselves to 
findings that directly support or oppose the fundamental hypothesis of binary 
gendered language. By clustering tweets according to content, and then examining 
gender distribution within the resulting clusters, they are able to shed light on the 
distribution of what would appear as ‘outliers’ in a traditional categorisation model. 
In particular, their findings regarding interactions within single-sex and mixed-sex 
groups highlight that, rather than being randomly distributed, users of less-typically-
gendered language tend to interact in more heterogenous social groups. This 
supports a social constructionist view of gender, and meshes neatly with the social 
theory of identity in general, giving rise to an interpretation where ‘gender’ is just 
another group to identify with, the salience of which may wax and wane depending 
on circumstance. For comparison with other studies, they report accuracy of 88% 
using their clusters to inform a binary classification task. 
 
Flekova et al. (2016) take a different approach to the question of classifying gender, 
undertaking an experiment to gather human judgement of gender from tweets, and 
examining the systematic biases which lead people to make the wrong judgements. 
They found that individual human performance had an overall accuracy of 75.5% 
with pairwise inter-annotator agreement of 70.0%, which is an interesting result to 
consider alongside the performance of automated systems described above. They 
examine textual features, using both unigram and topic-based models, to highlight 
those which correlate with biased judgement: annotators were shown to have given 
undue weight to topics such as household, celebration, and family (presumed 
female), and sports, technology, and politics (presumed male). 

Age 

Research into age-related language use (such as Rosenthal & McKeown 2011; 
Argamon et al. 2007) is typically muddled by a lack of distinction between features 
of current age and features of generation. For example, some topic-related lexical 
features are likely to be a function of absolute age: students are the most likely to 
talk about school, whereas discussion of marriage, mortgages, and children would 
tend to be more prevalent amongst people who are themselves buying houses or 
starting a family. These are related to the frames which are most typical for 
individuals of a given age. Other features, such as informal slang, are more likely to 
belong to a generational band and move up the age range as that generation grows 
older, while continuing to use (some proportion of) the popular vocabulary of their 
youth. Under standard unigram and n-gram models, these two aspects will be 
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conflated, unless text is taken from the same generation of individuals when they are 
at different ages. 
 
As this requires consistent data collection over a long period, such longitudinal 
studies are rare, and seldom used for linguistic research. One exception is 
Pennebaker & Stone’s (2003) study of authors and playwrights, whose progression 
of published works provides a natural (if unconventional) dataset. They report that 
with increasing age individuals tend to use more positive language, fewer negative 
words, and fewer first-person singular pronouns. 
 
Rosenthal & McKeown (2011) categorise LiveJournal blog posts according to the 
date of birth of the writer. They examine both stylistic and content (topic) features, 
finding that features such as emoticons and slang are more prevalent among younger 
writers, and also demonstrating predictive power from a bag-of-words model. 
Although they do not explicitly separate out the effects of current age versus 
generation, some stage-of-life features do come out clearly in the significant n-
grams, for example in references to housing and school. 
 
A model for language change in a somewhat generational style, exhibited over a 
shorter time period, can be seen in Danescu-Niculescu-Mizil et al.’s (2013b) study of 
language change in online forums. They find that in the case of synonyms gaining 
and losing popularity, forum users tend to prefer the terms that were standard when 
they joined the community, and gradually stop adapting to changing community 
norms. This might reasonably be extrapolated to describe linguistic development in 
general: most adults don’t continually adapt to use the latest teenage slang. 
 
Argamon et al. (2007) conduct an extensive analysis of blog posts, with factor 
analysis of the most common words, and found distinctions between age bands in 
both topic and style (function) words. 

Personality and Mental State 

Oberlander & Gill (2006) examine the correlation between linguistic choices and 
psychological traits such as extraversion and neuroticism, both of which have 
previously been shown to affect language use (Pennebaker & King, 1999; Dewaele 
& Furnham, 1999; Argamon et al, 2005) and which are assumed to be comparatively 
stable. They test a number of hypotheses relating to personality and language by 
eliciting an email corpus from 105 volunteers, who were also asked to take a three-
factor personality test (scoring for extraversion, neuroticism, and psychoticism). 
Senders were stratified according to their personality profiles, to exclude those who 
were extreme on more than one dimension, and text from each stratum was analysed 
using both lexical and part-of-speech n-grams to identify distinctive features. They 
report that “Extraversion is associated with linguistic features involving fluency, 
positivity and implicitness; Neuroticism with self-concern, negativity and 
implicitness; and Psychoticism with creativity and detachment.” 
 
Nowson & Oberlander (2007) examine the question of inferring personality traits 
from blog text, and compare the results from two corpora. Their small, ‘clean’ 
corpus is labelled with personality data based on asking participants to complete a 
full OCEAN personality inventory, while for contrast they also collected a large, 
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‘messy’ blog corpus where personality categories were based on individuals’ self-
reporting of an internet meme personality quiz. They found that, using a model 
trained on the smaller corpus, results were less reliable when tested on the large 
corpus, but that there was enough evidence of successful classification that such 
‘messy’ data could plausibly be used in future for classification tasks, thereby saving 
a lot of expense of data preparation and participant interviews. 
 
Gill et al. (2009) found links between personality type and motivation for blogging, 
which was tied to topic and sentiment, with high extravert bloggers using the 
medium to share details of their lives and express emotions, while high neurotic 
bloggers tended to write negative and cathartic posts. Iacobelli et al. (2011) found 
that word-stem bigrams outperformed LIWC dictionaries for personality 
classification on blog text, and they identified some characteristic indicators of 
openness (religion for low scorers), conscientiousness (discussion of planning and 
evaluation for high scorers), extraversion (swearing and positive emotion for high 
scorers), agreeableness (positive sentiment for high scorers), and neuroticism 
(problems and negative emotion words for high scorers). 
 
Recent work from the field of psychology has also found correlations between 
function word use and psychological state (Chung & Pennebaker, 2007) and mental 
illness (Coppersmith et al., 2014). 

Native Language 

When writing or speaking in a second language (L2), the native language (L1) of an 
author is likely to leave a mark, even if the production is generally fluent. In writing, 
this may be observed as variation in lexical choice or syntactic patterns, or as the 
appearance of various classes of ‘error’. 
 
Koppel et al. (2005) use three classes of feature: function words, character n-grams, 
and error analysis. They define various error classes including typographical 
substitution and transposition, errors of agreement, missing or repeated words, 
neologisms, and rare part-of-speech collocations. They found that including errors as 
an additional feature set improved performance of models built using n-grams, 
function words, or a combination of the two, although errors alone did not generate 
best performance. They also identified some interesting features that were more 
prevalent only for a subset of individual authors, such as the greater prevalence of 
minor spelling errors (repeated letters, single-letter substitions) in Spanish-authored 
text. 
 
L1 interference can come from a variety of sources, from phonetics to syntax. Tsur 
& Rappoport (2007) found some evidence that L1 phonology may affect L2 lexical 
selection, even in written media, with individuals avoiding words that are 
phonologically difficult for them, e.g. those containing sound combinations that do 
not exist in their native language. Wong & Dras (2011) examine syntactic variation, 
using parse trees to generate features, and demonstrate an improvement over Koppel 
et al’s classification accuracy by including context free grammar (CFG) production 
rules. In some languages there exist specific grammatical constructs for expressing 
deference and politeness; English is relatively limited in this regard. Studies of cross-
cultural and interlanguage pragmatics have found that L2 speakers will often use 
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pragmatic strategies from their native language(s), or mis-apply L2 pragmatic 
strategies that they have been taught (see Kasper & Rose (2002) for a comprehensive 
overview). 
 
The early studies of native language interference all used the International Corpus of 
Learner English (ICLE; Granger 1998) for their work. This is a collection of learner 
essays, and as such, has a number of inescapable limitations: the production 
environment is a classroom context, topics were often set by the tutors (who 
collected the data for the corpus), and the students are far from being fluent non-
native speakers so errors are particularly prevalent. 
 
Brooke & Hirst (2012) address concerns about small, single-corpus studies by 
gathering data from a popular language practice website. This data is more divergent 
than the ICLE essays, as users can write about whatever they choose, at any length; 
users also span the full range of fluency. They then combine this with ICLE essays 
and a subset of the Cambridge Learner Corpus to create a larger dataset. Brooke & 
Hirst’s features include function words, n-grams (character, word, and part-of-
speech), dependencies, and CFG production rules. They demonstrate that models 
trained on ICLE alone do not perform well on out-of-domain data, but Bykh & 
Meurers (2012) contest this claim using a combination of lexical, part-of-speech, and 
hybrid n-grams as features. 

2.2.2. Audience and Relationship 

The intended audience of a communication, and the speaker’s relationship to that 
audience, is another factor that will significantly affect their choice of language. This 
encompasses the symmetric and asymmetric relations in Brown & Levinson’s 
politeness theory: the social distance between the two participants, and how they 
stand in relation to one another in terms of status and power. The size of the 
audience, and the communities containing the communicants, are also salient here. 
 
The author may have further knowledge about the audience which impacts on their 
choice of language in specific ways. If the audience is known to have a lower 
educational level, for example, or to be specialists in a different field, then the author 
may choose to avoid technical language. There are potentially infinite dimensions to 
this, and it will not be possible to account for all of them in a systematic manner. 

Social Distance 

Social distance is what Brown & Levinson (1987) refer to as the symmetric relation. 
The ‘distance’ metaphor is firmly embedded into ordinary language: one can hardly 
talk about one’s great aunt’s second cousin without the phrase ‘distant relatives’ 
springing to mind, similarly we have ‘close friends’ and ‘immediate family’. 
 
Peterson et al. (2011) set out to investigate the applicability of Brown & Levinson’s 
politeness theory to email by looking for correlations between informal features in 
text, and the level of politeness predicted by the theory. The features which they use 
to identify informal text include informal word lists, punctuation features (such as 
use of exclamation marks, or missing sentence-final punctuation), and case features 
(such as lowercase sentences). This was a thorough, systematic study using messages 
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from the Enron email corpus, and found that informality features are distributed 
largely as predicted by politeness theory.  
 
Social distance is proxied by two distinct measures in Peterson et al’s study. First, 
they use the personal or business nature of a message, applying Jabbari et al.’s 
(2006) partitioning of the Enron corpus. Secondly, they look at the level of contact 
observed in the corpus. In both cases, they found that lower social distance (defined 
as the exchange of personal messages, or a higher degree of interaction) correlated 
with an increase in informal features, precisely as predicted. 

Social Power 

Brown & Levinson’s asymmetric relation addresses the question of which 
participant has more power in an interaction. This power may be due to 
organisational structures, subject matter expertise, social class, age, gender, or any 
number of other factors. Such power sources need not be explicitly noted by the 
participants, and often, two or more factors may be in conflict: for example, a worker 
and their much younger boss, or a technical expert who is awkward and 
‘unmanageable’ but holds power as a result of their knowledge. This fits in with our 
earlier observation that power within a social context is situational, and negotiated. 
 
French and Raven’s (1959) seminal paper sets out a taxonomy of social power. This 
is framed from the perspective of the person over whom power is being exerted, and 
is based around potential outcomes (the ability of those with power to reward and 
coerce), as well as attributes of the powerful (likeability, expertise, and legitimacy). 
Although this is by no means the only model, it provides a useful starting point for 
thinking about sources of power. 
 
Kacewitz et al. (2013) examine pronoun use across a number of datasets with known 
hierarchies. They find a consistent difference in the distribution of personal 
pronouns, with lower-status individuals using more first person singular pronouns, 
while those of higher status tended to prefer first person plural, and second person. 
The implication is that those of lower status tend to be more focused on themselves, 
while in positions of leadership a greater outward focus is required. The study 
addresses only correlation; the question of causality is left to future work. 
 
In a discourse completion test, Morand (2000) finds that more politeness strategies 
are employed when addressing individuals of higher status, when other variables are 
controlled. Negative politeness strategies such as hedging and questions are 
particularly preferred. 
 
Sexton & Helmreich (2000) examined the difference in language use between the 
members of a flight crew. Of the three roles examined (Captain, First Officer, and 
Flight Engineer), Captains were found to use ‘we’ more often than the others, and to 
use more words in general. Engineers were found to use longer words, possibly due 
to a function of their job being to describe technical information to their colleagues. 
This is a clear demonstration that, in at least one professional field, stylistic variation 
can be used to distinguish social roles. We are interested in whether this result can be 
generalised to an office-based context. 
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Panteli (2002) studied the use of email within two academic departments at the same 
university, one science department and one social science. In each case, the study 
examined the mailbox of one researcher within the department, who was recently 
appointed to a relatively junior position. Other message participants were classified 
as ‘professor,’ ‘lecturer,’ ‘researcher’ or ‘administrative’ depending on their role. 
The messages were assessed for surface features such as signatures and greetings, as 
well as a deeper analysis using ‘deconstruction’ techniques. 
 
She found that higher-ranking staff were less likely to include any form of address, 
and more likely to send messages that were short and unstructured. Within the 
science department, where email communication was more prevalent, she found that 
research assistants were likely to use ‘chat’ abbreviations and nicknames when 
talking amongst themselves, but would adopt more formal language when sending 
messages to professors. This is a clear indication of how an individual may change 
their style (consciously or otherwise) to suit the audience. 
 
Other examples are more subtle, for instance, an example is given of a response to an 
email which blatantly neglects to answer the question posed, even though the sender 
is clearly in a position to provide the answer. In this instance the question was asked 
by a junior staff member, and the (inadequate) response is from the head of the 
department: one imagines that the inverse situation is less likely to occur. In another 
message, one senior academic refers to a colleague “sending” a junior colleague to 
see someone. These behaviours show that existing office hierarchies are not erased 
by the medium of email, and may indeed be evidenced in linguistic behaviours. 
 
Peterson et al. (2011) modelled relative power in the Enron corpus by using the 
organizational ranks of participants; a subset of 3,999 messages was identified, 
consisting of one-to-one messages where the rank of both sender and recipient is 
known. In general, bigger difference in rank was correlated with less use of informal 
text, which is in line with theoretical predictions. 
 
Danescu-Niculescu-Mizil et al. (2013a) take a slightly different approach to the case 
of social power, looking at politeness as a predictor of success within a community. 
They show that politeness is a precursor to promotion, at least in a community-
approval model such as becoming a Wikipedia admin: users who employ more 
politeness strategies are more likely to succeed in their social goals. 
 
Prabhakaran et al. (2013) annotate a subset of the Enron corpus for power, based on 
human judgement. They annotate for hierarchichal power (derived from the org 
chart), situational power (having authority for a given task), influence (attempting to 
persuade others), and ‘controllers’ of the communication (those who are proactive in 
steering the conversational goals, rather than simply reactive). They then proceed to 
use these annotations to study the different behavioural manifestations of these 
power sources in email (Prabhakaran & Rambow 2013). 
 
Even in fictional scenarios such as movie scripts, linguistic choices can be seen to 
reflect power differentials (Buitkienë 2006). The fact that these effects are observed 
in created as well as natural dialogue shows that this is an important facet of human 
behaviour. 
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Audience Size 

Another feature of the audience is its size: addressing a large group is a different 
proposition to an intimate, one-to-one discussion, even if both circumstances involve 
individuals who otherwise stand in the same relation to oneself. 
 
Pérez Sabater et al. (2008) found the use of salutations was the feature which 
exhibited most variation between one-to-one and group messages in their data: group 
messages were found to almost always include a formal salutation, while one-to-one 
messages exhibited more variation. 
 
As part of their study into factors affecting use of polite and informal language, 
Peterson et al. (2011) identified a correlation between number of recipients and level 
of formality. Informality was found to decrease as the number of recipients 
increases, up to ten recipients, at which point informality increases again. This 
increased informality in large-group emails is an interesting result, worthy of further 
study, in particular to explore whether this is a result of large group emails tending to 
cover different (more social) topics such as group outings. 
 
While email can be considered an ‘electronic letter’, there are some aspects of online 
interaction which have no parallel in pre-internet communications. Skovholt & 
Svennevig (2006) examine the phenomenon of ‘CC’ use in around 700 email 
exchanges, comparing recipient roles (To and CC) to explicit named references in 
the text, and examined the different behaviours underlying the use of the ‘CC’ field. 
 
One common use was to add someone as a ‘witness’ to a communication which did 
not otherwise involve them. Although the authors do not proceed to discuss this, 
there may be implications for identifying the social roles of individuals who are 
commonly included in this way, as well as for drawing inferences about the 
circumstances in which senders feel the need to have their communications thus 
witnessed. 
 
There is also an open question of how the existence of a broadly passive, online 
audience may influence communicative style, for example in the case of ostensbily 
one-to-one communications (such as twitter ‘replies’) which nevertheless take place 
within the public sphere. Research to date has not really examined this area. 

National and Organisational Cultures 

Relationships do not only exist between pairs of unrelated individuals. Social groups 
have their own cultures, at the community, organisational, regional, or even the 
national level, which may translate into different behavioural and linguistic norms. 
Even online environments have their own virtual cultures, for example forums with 
their own shared jargon and social norms. 
 
Waldvogel (2007) examined greetings and closings in 515 emails collected from two 
organisations in New Zealand. In one organisation (SCT, an educational 
establishment), staff morale was low due to recent staff restructuring, while the other 
(Revelinu, a manufacturing plant) is described as having a close-knit and friendly 
culture. For each organisation, two corpora were collected: one data set constituting 
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a week’s worth of email from an individual at ‘senior manager’ level, and one 
exchange of messages focused on a specific topic. The study concentrated 
exclusively on messages where both sender and recipient were within the 
organisation in question, in order to focus on intra-organisational culture. 
Waldvogel’s hypothesis was that the choice of greetings and closings should reflect 
the organisational culture, as well as the individual relationships between staff 
members, and that significant differences should therefore be observable between 
these two environments. 
 
The study found that the majority of messages within SCT began without any 
greeting element at all (59%). Messages within Revelinu, on the other hand, usually 
featured a specific greeting word such as ‘hi’ or ‘dear’ (58%), and this was typically 
accompanied by the recipient’s name. Beginning a message with only the recipient’s 
name was a popular alternative in both organisations, accounting for 21% of SCT 
messages and 25% of Revelinu messages. Different patterns of message closings 
were also observed between the two organisations. In SCT the most common sign-
off was the sender’s name (38%), but 34% of messages featured neither closing 
words nor the senders name. Within Revelinu the vast majority (75%) of messages 
featured a specific closing word or phrase, usually accompanied by the sender’s 
name. Only 10% of Revelinu messages did not include any closing. 
 
Waldvogel also considered the impact of intersections with gender, hierarchy, and 
social distance. While some effects were observed, these were less significant than 
the effect of the prevailing organizational culture, and were not the main focus of the 
study. Nevertheless, the results are of interest. In both organizations, individuals of 
higher status were more likely to be addressed by name, and in SCT (where closings 
were less common), they were more likely to receive a closing of some form. 
Message senders were asked to rate their colleagues as ‘close’ or ‘distant’ which was 
used as the measure of social distance. Close colleagues were more likely to be 
addressed by first name only, while those with greater social distance were more 
likely to include a greeting word. At Revelinu, a similar effect was observed for 
closings, with distant relationships more likely to include both a closing phrase and 
the sender’s name. The results for gender were reversed between organizations: at 
SCT, women were more likely to use names, greetings, and closings, while at 
Revelinu men were more likely to do so. 
 
Waldvogel’s study contrasted two New Zealand companies; in a study crossing 
national borders, Murphy & Levy (2006) asked a group of Australian and Korean 
academics to complete a short questionnaire on their experiences of email exchanges 
with foreign colleagues. The questions asked participants to consider their own 
messages as well as messages received from overseas. Around half of the 
respondents (from both cultures) claimed to express politeness differently when 
writing to a foreign colleague. 
 
When asked about incoming mail, 27.5% of Australians and 40.0% of Koreans felt 
that they had received messages from overseas which were insufficiently polite; 
however, no comparable question was asked about email received from their own 
culture, so the significance of this result has not been established.  
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More interestingly, participants were also asked for examples of polite and impolite 
language, which provides some valuable qualitative data. Responses highlighted 
features such as incorrect use of titles, excessive brevity, and lack of expected 
greeting and closing formulations. There was some difference in emphasis between 
the two cultures, but many of the examples were cited by both nationalities, 
suggesting that this was less to do with cross-cultural differences, and more about a 
general perception of impoliteness. 
 
Another comparison of linguistic strategies between speakers of different language 
backgrounds is found in Kankaanrata’s (2005) PhD thesis, in which she considers 
English-language email in a multinational corporation, focusing on Finnish and 
Swedish staff. Emails in the corpus are categorised as ‘noticeboard’ (broadcast of 
notices for staff), ‘dialogue’ (interpersonal discussion) and ‘postman’ (sending of 
attachments, files, etc); the dialogue category is the only one of interest to us. 
Salutations with first names were found to be almost universally used by both 
nationalities. On the other hand, different politeness strategies were employed by 
Finnish and Swedish writers when making requests: Swedish writers were more 
likely to use indirect requests, while Finns were more likely to use a direct request 
with explicit politeness markers such as ‘please’. 
 
Pérez Sabater et al. (2008) examine 100 emails from an academic context, which are 
formal in general, with comparatively few non-standard features. The features 
included in their study are openings/closings, contractions, politeness indicators 
(such as ‘thanks’), and non-standard linguistic features (such as spelling mistakes or 
grammatical errors). They found that non-native speakers tended to use more 
informal language, with more contractions and fewer politeness indicators, while 
simultaneously using more formal salutations and valedictions. This may indicate a 
different preference for expressing politeness, but given the heterogeneity of non-
native speakers represented in the data, it is hard to generalise from these 
observations. 

2.2.3. Purpose of Communication 

The purpose of communication is obviously going to affect the choice of language in 
a direct manner: one cannot order a pizza by limiting one’s discussion to the 
weather. Topic is perhaps the most obvious expression of purpose, tying directly into 
the frame of the communication. 
 
Planning to meet up for coffee is more enjoyable than arranging an interview or to 
discuss a pay rise, and the overall register of language used is therefore likely to be 
less formal. It is therefore unsurprising to find that stylistic variation is not 
independent of topics under discussion (e.g. Golcher and Reznicek 2011). And we 
have already seen that topic is not independent of demographic features such as 
gender and age (Argamon et al. 2007; Rosenthal & McKeown 2011). In fact, 
Argamon et al. report that they are unable to separate topical from stylistic effects, in 
their blog corpus. 
 
An early study demonstrating register variation across different genres of text was 
undertaken by Biber (1993), who also demonstrates a high success rate for predicting 
genre of English texts based on five ‘dimensions’ of register. The paper describes in 
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detail the linguistic features used to identify these dimensions. Biber also 
summarizes key results from studies in other languages, to illustrate that his findings 
are not specific to English. Biber’s proposed dimensions are derived from examining 
linguistic features which commonly co-occur. His five categories are as follows: 
 

• Informational vs. involved production 
• Narrative vs. non-narrative concerns 
• Elaborated vs. situation-dependent reference 
• Overt expression of persuasion 
• Abstract vs. non-abstract style 

 
Topic and genre are often conflated in studies of domain adaptation; in a machine 
translation context, van der Wees et al. (2015) begin to pick apart these two 
dimensions, but this is early work. They define topic as “the general subject of a 
document”, and genre as a more complex, complementary concept encompassing 
“non-topical text properties function, style, and text type”. For their study, van der 
Wees et al. produce a benchmark corpus of parallel text Arabic-English data, 
selected from newswire and user-generated (online comment) text covering the 
topics of economy, culture, health, politics, and security. By separating these two 
dimensions, they find that they can uncover more nuance in explaining machine 
translation errors, for example colloquial expressions that appear in user-generated 
comment but not in newswire. Overall, they found that the difference in performance 
was greater between genres than between topics. 
 
In other work on genre classification, Santini (2007) proposes that web pages require 
the option of assigning multiple genres, as a single page may contain components 
with different registers and functions (e.g. articles, navigation menus, interactive 
elements, and multimedia). Santini also discusses the blending of genres that can 
occur when a specific document adheres to the conventions of more than one genre 
of text, and the phenomenon of individuals blurring genre boundaries to meet their 
personal requirements, both of which complicate the issue of genre classification. 
 
The immediate goal of a message is also likely to influence the form used. If a 
message contains a face threat, then more politeness features would be expected, in 
line with Brown & Levinson (1987). Peterson et al. (2011) demonstrate that this 
expectation is met in the case of Enron messages containing requests: the presence of 
requests in a message, as determined by an automated request classifier, reduces the 
level of informality observed in the text. Conversely, a message intended as social 
‘glue’ is more likely to display informal features, as informality can be used to build 
rapport and solidarity. 
 
A request is only one example of a class of linguistic phenomena collectively known 
as speech acts. The essential idea behind the theory of speech acts is that when two 
(or more) people converse, there is more to that interaction than a simple exchange 
of factual statements. We do things with words – whether asking a question, making 
a promise, giving advice, or any of a number of possible options. Words are spoken 
with a purpose.  
 
Searle (1969) begins his discussion of speech acts with the assumption that it is 
always possible for a speaker to put his precise meaning into words (although he 
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acknowledges that in an extreme case it may be necessary to change to a different 
language, or invent new words). However he goes on to recognise that speakers most 
often do not go to such lengths, and therefore may rely for meaning on something 
beyond the surface form of the words. An utterance will often do more than simply 
carry its surface meaning. If I comment that “it’s cold in here,” for all that the 
utterance may be a statement of fact, in reality I’m probably asking you to do 
something about it – which depending on the context may be to close the window, 
pass me my jumper, put the heating on, or simply provide an appropriate level of 
sympathy. 
 
A performative act may be considered felicitous if all the necessary external factors 
are in place, such that the intended action may indeed be performed, or infelicitous 
otherwise (for example, making a promise with no intention to keep it, or 
proclaiming an illegal marriage). There’s no assumption in the literature that 
infelicity must be deliberate, or even that the speaker need necessarily be aware of 
whether or not the necessary requirements have been met. 
 
The inauguration of Barack Obama as President of the United States gave speech act 
theorists pause for thought in 2009 when first Chief Justice Roberts (who was 
administering the oath), and then the incoming president himself, accidentally 
diverged from the constitutionally-mandated wording of the oath. This kind of oath 
is a classic example of an explicit, performative speech act. The oath begins “I do 
solemnly swear…”, and by speaking the prescribed words, the president performs 
the act of ‘swearing’. The new Obama administration was so concerned about the 
possible infelicity of the incoming president’s mistake that, in order to eliminate any 
doubts about the validity of his presidency, he re-took the oath the following day. 
 
Speech acts have come to be called ‘dialogue acts’ in the field of dialogue 
processing; we shall use the two terms interchangeably. 
 
Bracewell et al. (2012) study social intentions in the digital sphere, moving beyond 
the traditional classes of speech acts into social goals of a more pragmatic nature, 
such as establishing [one’s own] or challenging [another’s] credibility, or expressing 
solidarity. These goals can be considered as orthogonal to more traditional, surface-
level communicative goals such as asking questions or providing information. For 
example, a question can be used to cement one’s own authority by showing up gaps 
in another’s knowledge, in just the same way as a statement can convey subject-
matter knowledge. 

2.2.4. Production Environment 

The physical environment surrounding the author at the time of message production 
will likely have an impact on their writing style. An author will produce different 
text if they are in their office, comfortable and unhurried, as opposed to if they are 
rushing to meet a pressing deadline or tapping out an email on the train. Many of 
these aspects are notoriously difficult to measure after the fact, and can only be 
controlled if data is collected in experimental conditions (which itself introduces 
other limitations). 
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Most studies control for the impact of medium by limiting their scope to a single 
source (e.g. dialogue acts in email, or linguistic accommodation in web forums). 
When comparative studies have been undertaken, it has generally been a qualitative 
examination of the differences, for example Baron’s (1998) comparison of email to 
letter-writing and conversational speech, or Duthler’s (2006) study of email and 
voicemail requests. 
 
Twitter data provides a partial record of production context, as each tweet is 
accompanied by details of the device or client used to submit the message, such as 
Blackberry, iPhone, and PC (website). In a recent study of Twitter data, Gouws et al. 
(2011) show that significant differences can be identified between tweets submitted 
via different clients. Mobile users were found to use fewer out-of-vocabulary items 
than PC users, possibly due to predictive text/spelling correction, but certain 
formulations (such as ‘u’ for ‘you’) were used more often by mobile users. 
 
Duthler (2006) compared politeness strategies employed in voicemail and email 
messages, for both high- and low-imposition requests. Their work sets out to test 
three hypotheses: 
 

H1: Imposing requests will be rated higher on measures of politeness than 
unimposing requests. 
H2: Electronic mail requests will be rated higher on measures of politeness 
than voicemail requests. 
H3: Less imposing requests made via email or voicemail will not differ on 
ratings of politeness. Highly imposing requests via email will be rated higher 
on measures of politeness than voicemail requests. 

— Duthler (2006) 
 
This study elicited data by setting up an experiment in which student participants 
were required to request a meeting with a professor, using either email or voicemail. 
Participants were assigned at random to one of the four groups: low imposition by 
email, low imposition by voicemail, high imposition by email, high imposition by 
voicemail. The degree of imposition of the request was varied by changing the 
scenario: in the low-imposition case, the meeting was to be during regular office 
hours, and in the high-imposition case, the request was for a meeting outside of 
office hours. A preliminary study of 28 students showed that a meeting within office 
hours was graded as a low imposition, with a mean score of 1.36 on a scale of 1 to 7, 
while requesting a meeting outside of office hours was considered a comparatively 
high imposition (4.71). 
 
Analysis of the resulting 148 messages found that email exhibited more variation in 
line with degree of imposition, as compared to the relative stability of voicemail (in 
support of H3). The other two hypotheses were partially supported. Adjunct phrases 
(defined as supporting phrases which were not part of the key task execution, for 
example greetings, closings, and small talk) were more common in email than in 
voicemail, and more common in imposing requests than in low-imposition requests. 
However, forms of address did not vary (on average) between email and voicemail, 
and were found to be, unexpectedly, more formal in low imposition requests than in 
the case of higher imposition. Adjunct phrases are considered to be a politeness 
strategy, but the number of adjunct phrases had an inverse relationship to ‘overall 



 22 

politeness’ as graded by two expert annotators. This is a surprising result, but may 
simply indicate that students choose to use either adjunct phrases or another 
politeness strategy to achieve their goals. 
 
The greater variation observed in email messages may be due to having more time to 
think about (and edit) linguistic choices when composing an email, compared to 
leaving a voicemail. That email exhibits such variation makes it an ideal medium for 
examining politeness in relationships. 
 
Morand & Ocker (2003) consider computer-mediated communication from a 
sociolinguistic perspective, and propose a number of theories for how politeness 
strategies and their implications may transfer from their spoken origins into the 
world of email communication. This work is based on a consideration of previous 
literature, and provides a number of hypotheses which could be tested by future 
work. Central to their hypothesis is the idea that both positive and negative 
politeness strategies are required in computer-mediated communication, just as in 
face-to-face communication, and moreover that these strategies perform the same 
roles in CMC. The authors map these considerations onto various other scenarios 
which have been studied in the CMC literature. 
 
One interesting observation on the nature of computer-mediated interaction is the 
possibility that misunderstandings are more likely. Ambiguity is a common feature 
of language, and more ambiguous phrasing can often be used as a politeness strategy 
(such as hedging), but in text-based communication there is a relative dearth of 
contextual cues such as intonation and body language to assist with interpreting 
ambiguity. Without these additional cues, it can be harder to convey the pragmatic 
components of a message. 
 
There is also less chance for interlocutors to adapt their politeness level as the 
‘conversation’ progresses, due to longer turns with no possibility of interruptions. If 
you cause offence in an email, you will not know it unless the recipient chooses to 
reply, and by that stage it may be too late to mitigate the impact. This is in direct 
contrast to face-to-face communication, where it is easier to pick up non-verbal cues 
as you are speaking, allowing you to adapt your language accordingly (including 
offering up a speedy apology for any unintended insult). 

2.3. Modelling Human Language 

Our intuition, backed up by the various studies we have examined, is that language 
changes in response to a combination of contextual and environmental variables. We 
now turn our attention to the question of how best to capture the extent of these 
linguistic variations. 
 
All language modelling is essentially an approximation, reducing layers of expressed 
and implied meaning into a (hopefully) simple model. The different underlying 
assumptions and dimensions used to construct the model will have an inevitable 
impact on the findings which can be uncovered. 
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2.3.1. N-Grams 

One frequent approach in linguistic studies is to use word-level n-grams as input 
features for a model. N-grams are an extension of the ‘bag of words’ model, in 
which a document is treated simply as a collection of unrelated words, which are 
then counted. The value of n can be adjusted to capture a wider context: higher 
values of n result in models that are larger and more sparse, but which can describe 
the data more accurately. 
 
For example, consider the following sentence: 
 

“This is a short example sentence.” 
 
Represented as overlapping trigrams (n-grams where n=3), this sentence would be 
divided as follows, with each trigram having a count of 1: 
 
{this is a}, {is a short}, {a short example}, {short example sentence} 
 
Across a whole document or document set, these distributions become more 
meaningful. Common phrases accrue higher counts, while rare vocabulary may 
appear only in trigrams of count 1. These raw scores can then be transformed into 
percentages. 
 
N-grams are designed to capture elements of syntax and phrase-building, without 
requiring prior knowledge of a language or its structures. It is a brute-force approach 
to capturing the shape of a language. 
 
The initial construction of n-gram models is dependent on having a training set of 
representative data from which to build the model: in common with other supervised 
methods, if a particular phenomenon is not in evidence in the training data, there is 
no chance of accounting for it, although there are various smoothing and back-off 
techniques to give an approximation. For example, the back-off probability of a 
previously unseen trigram may be calculated based on the probabilities of its 
constituent bigrams or unigrams. Chen & Goodman (1999) provide a good overview 
of smoothing techniques in the context of machine translation models. 
 
There are many aspects of linguistic expression which are not captured by an n-gram 
model. Not least, many non-standard language features typical of informality are 
innovative forms – for example, affective lengthening, where letters are repeated for 
emphasis, such as ‘realllly’. Cases such as this where the individual author can 
choose how to vary from the standard orthography, are by definition likely to be 
rare, as different authors may choose different variations. N-gram models do not 
handle rare features well, and ‘out of vocabulary’ items (those never observed in the 
training set) will be ignored. The typical approach to an unseen phrase is to ‘back 
off’ to use the individual frequencies of the component words, but unseen words 
have no such back-off probabilities, and can only be approximated by a miniscule 
non-zero probability. 
 
Additionally, it is not invariably the case that adjacent words are the most relevant to 
one another. It is possible to increase n to use a larger window, but only at the cost of 
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a larger and sparser model. ‘The green car’ and ‘the red car’ probably have more in 
common than ‘the green car’ and ‘the green movement’, but this isn’t obvious from 
n-grams alone. Skip-grams (non-consecutive n-grams) can capture more contextual 
information for a given window size, but at the cost of increasing the model size 
(Guthrie et al. 2006). For our earlier example sentence, and allowing a skip of at 
most 1 token, the model now contains 10 rather than 4 trigrams. A hyphen is 
included here to show where each skip takes place. 
 
{this is a}, {this — a short}, {this is — short}, {is a short}, {is — short example}, 
{is a — example}, {a short example}, { a — example sentence}, {a short — 
sentence}, {short example sentence} 
 
Another alternative to word n-grams is part-of-speech n-grams. As part-of-speech 
patterns tend to be more universal (within a given language), this kind of modelling 
is less likely to encounter out-of-vocabulary issues, but with the consequence that the 
model may lack specificity. 
 
{this is a}, {is a short}, {a short example}, {short example sentence} 
{DT VBZ DT}, {VBZ DT JJ}, {DT JJ NN}, {JJ NN NN} 
 
Bramsen et al. (2011) have also used word n-grams and part-of-speech n-grams in 
combination to capture more nuances, which they call “mixed” n-grams: 
 
{this is a}, {is a short}, {a short example}, {short example sentence}, 
{this is DT }, {is a JJ}, {a short NN}, {short example NN}, 
{this VBZ a}, {is DT short}, {a JJ example}, {short NN sentence}, 
{DT is a}, {VBZ a short}, {DT short example}, {JJ example sentence}, 
{DT VBZ a}, {VBZ DT short}, {DT JJ example}, {JJ NN sentence}, 
{DT is DT}, {VBZ a JJ}, {DT short NN}, {JJ example NN}, 
{this VBZ DT}, {is DT JJ}, {a JJ NN}, {short NN NN}, 
{DT VBZ DT}, {VBZ DT JJ}, {DT JJ NN}, {JJ NN NN} 
 
Although this combined methodology generates a much larger model, it gives a 
pleasing way of capturing the similarity between green and red cars: both are {the JJ 
car}. A more compact model may be generated by first building a full model, and 
then pruning it back to retain only the most significant subset of features. 
 
These examples neatly illustrate the limitations of n-grams. To compensate for the 
naïvety of the underlying methodology additional layers of complexity (such as skip-
grams or mixed n-grams) must be added, and consequently larger models used, if 
one wishes to capture desirable features that are expressed at deeper levels of the 
language. The size of these models therefore grows exponentially. If such models are 
subsequently pruned by an automated process, retention or elimination of particular 
feature will depend on significance within a particular dataset rather than any 
extrinsic measure of relevance to the task at hand, which can lead to overfitting. 
 
Additionally, because n-gram models treat all words as equal, topic and style 
features are conflated. This can be seen in n-gram analyses such as Gilbert’s (2012) 
study of power and language in the Enron corpus: emotive language (‘shit’, 
‘tremendous’) and function word phrases (‘is really’, ‘haven’t been’) sit alongside 
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strongly business-oriented vocabulary (‘candidate’, ‘promotion’, ‘compensation’) in 
his table of significant phrases. 

2.3.2. Stylometry and Linguistic Formality Metrics 

Stylometry is the study of linguistic style, as distinct from topic. When someone 
communicates, whether in speech or in writing, they must make decisions about not 
only the information they need to convey, but also the manner in which they wish to 
convey it. Such choices may not always be made at the conscious level but it is a 
fundamental tenet of Gricean politeness theory (Grice 1975) that, in order to be 
polite, it is necessary to use an appropriate manner. This, however, is a broad 
requirement that can be fulfilled in an infinite variety of ways, leaving a lot of scope 
for individual stylistic variation. 
 
The inception of stylometry is traditionally traced back to Lutosławski’s (1897) 
studies of Plato’s dialogues, in which he identifies the importance of aggregating 
minor features into a meaningful signal. His point is crucial, and bears repeating in 
full: 
 

“Very important peculiarities are very few, while accidental coincidences 
may be found by the thousand. And their accidental character, even if fully 
recognised as accidental, does not deprive them of chronological importance, 
if sufficient numbers of such accidental coincidences are taken into 
consideration. The single occurrence is accidental, though it may be 
exceedingly significant, as, for instance, the occurrence of µεθεξις in 
Parmenides and Sophist. But if one dialogue has twice as many accidental 
coincidences with the Laws as another, this result is no more accidental than 
the difference of mortality between England and Spain.” 

— Lutosławski (1897) 
 
More recently, in computational studies, stylometry has been used in authorship 
identification tasks, for example attributing anonymous works to famous authors 
(Mosteller & Wallace 1963; Holmes 1994), or latterly in the field of forensics 
(Koppel et al. 2009, Zheng et al. 2006, Turrell 2010). These tasks tend to be closed-
class: namely, the goal is to match a piece of unknown text to one of a small subset 
of possible authors, or to verify whether a particular suspect could plausibly have 
been the author of a text. Related techniques have also been used to group 
individuals into clusters, either supervised according to some previously percieved 
class (e.g. age or gender, as discussed above, e.g. Argamon et al. 2007), or 
unsupervised as an exploratory technique (Layton et al. 2011; Akiva & Koppel 2013; 
Arefin et al. 2014). 
 
One popular framework for automating stylometric research is Linguistic Inquiry 
and Word Count (LIWC), a system designed to categorise texts along a number of 
axes, inspired by findings in the field of psychology (Pennebaker et al., 2007). The 
basic theory is simple, and sound: language is the main medium through which we 
are able to communicate, and it follows that an individual’s choice of language will 
correlate with their mental state. The actual implementation of LIWC is rather naïve, 
consisting of a dictionary of representative word stems for each category. These 
words have been hand-picked and validated by human annotators, but despite years 



 26 

of study devoted to word-sense disambiguation, it is still not possible to guarantee 
that a computer program will correctly identify the sense of a word being used. To 
generate scores for a text, the program simply examines the document word-by-word 
to count the proportion of its words that fall into each of the LIWC categories. 
 
The categories include basic parts-of-speech such as articles and function words, 
topics like ‘death’ and ‘religion’, as well as more subjective groupings such as 
‘positive emotion’, ‘anxiety’, and ‘certainty’. Although these lists have been judged 
to accord with the majority of human annotators (Tausczik & Pennebaker 2010), the 
authors themselves acknowledge that the system is not able to cope with all the 
subtleties of natural language. In particular, contextual information is disregarded, 
and there is no scope for handling irony, sarcasm, jokes, or deception. 
 
LIWC’s scores are best considered as potential inputs to a more sophisticated 
system, and a fast-growing body of work has used LIWC features along with 
machine learning to predict personal attributes including personality types 
(Pennebaker & King 1999; Mehl et al. 2006; Iacobelli et al. 2011), gender (Newman 
et al., 2008), and age (Pennebaker and Stone 2003), as well as social attributes such 
as status within a hierarchy (Sexton & Helmreich 2000; Kacewicz et al. 2013). For 
each of these use cases, it is a different subset of the core LIWC feature set that 
proves most salient. 
 
At the other end of the spectrum from function words, the origin of core vocabulary 
has also been used to analyse the formality of text, such as in DeForest & Johnson’s 
(2001) study of dialogue in Jane Austen’s work, where Latinate vocabulary was 
found to correlate with higher-status and male characters, while words of Germanic 
origins were more prevalent in the speech of women and characters of lower social 
status. Fang & Cao (2010) observe similar formality correlations in a study of the 
British National Corpus, with academic texts featuring more Latinate vocabulary. 
 
There are many other ways of capturing stylometric information, but all methods 
ultimately result in a vector of stylistic features. Details of our specific 
implementation can be found in Section 3 (Methodology); we will now take a brief 
excursion into some relevant feature categories and surrounding research. 

Common Ground and Deixis 

One key decision to be made before embarking on any communication is that of how 
much detail to provide. This derives naturally from Grice’s (1975) notion of 
implicature, and his maxim of quantity, which states that interlocutors should 
provide just the right amount of information to be correctly understood. 
 
The amount of detail that is “just right” will vary according to the shared experiences 
of those communicating. Childhood best friends with years of common experiences 
behind them may be able to convey a lot of information in few words (or wordlessly, 
sharing just a look), while strangers meeting for the first time will have to guess, 
attempting to pitch their words appropriately based on intuitions of their respective 
educational and cultural backgrounds, and assisted by the context of the 
communication, which is shared by definition. 
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This concept of common ground is the basis for Heylighen & Dewaele’s (2002) 
definition of formality, expressed in terms of the amount of contextual information 
included in a text. In brief: the more formal the document, the more detail is included 
explicitly, and the less background knowledge is taken for granted. Under this 
definition, formal language is used primarily for the avoidance of ambiguity, and 
consequently more formal language is likely to be used in circumstances where there 
is less shared knowledge, or where there is a greater requirement to avoid 
misunderstandings. 
 
From this definition, Heylighen & Dewaele proceed to define a practical and 
tractable measure of formality in language. The simplifying assumption is that 
certain parts of speech (such as verbs and pronouns) are inherently more deictic, 
which is to say, they rely on contextual interpretation for their meaning, whereas 
other classes (such as nouns) are concrete and do not depend on external context. 
These deictic words are therefore inherently more informal, by the above definition 
of formality, and F-score⁠1 is designed to be higher for more formal texts, due to the 
simple division of parts of speech into those which are inherently more and less 
deictic, as in Table 1. The F-score is calculated in the following manner from parts 
of speech: 
 

F = (non-deictic frequency – deictic frequency + 100)/2 
 
Where the frequency of each part of speech is the percentage of tokens which fall 
into the category in question. 
 

Deictic Parts of Speech Non-deictic Parts of Speech 
Verbs Nouns 
Adverbs Adjectives 
Pronouns Prepositions 
Interjections Articles 

Table 1: Heylighen & Dewaele’s (2002) division of parts of speech into deictic and non-deictic categories. 

Conjunctions are explicitly noted as the one class which does not contribute to the 
categorisation, on either side. 
 
Heylighen & Dewale applied this measure to texts from a variety of media and 
languages, both to assess its value and to see how well it transfers between 
languages. Initially, French data was collected from language students in three 
settings: an informal conversation, an oral exam, and a written essay. These sources 
produced overall F-scores of 44, 54, and 56 respectively, which ties in with our 
intuition of the relative formality of these genres. 
 
From word counts of a Dutch corpus, written text (F=62) was found to be 
significantly more formal than spoken (F=42). This data was also divided by 
medium, for example scientific texts (F=66) were shown to be more formal than 
novels (F=52). For two distinct Italian corpora, novels score 58 and 64 respectively, 

                                                
1 Heylighen & Dewaele refer to their score as ‘F-measure’ but, due to the naming 
conflict with the more commonly used F-measure in statistical analysis, I shall use 
‘F-score’ throughout. 
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and scientific papers 69 and 72. A similar pattern holds for other genres: the average 
F-score of each category in Italian is higher than the Dutch equivalent, but the 
ordering is roughly constant. As pronouns are optional in Italian, this could 
contribute to fact that Italian scores are typically higher. 
 
In the same study, differences in average F-score are also reported between certain 
groups of people. Men, introverts and the highly educated are found to use more 
formal language on average than women, extraverts, and those with lower levels of 
education, respectively. These are presented as preliminary results in need of further 
investigation, but this highlights the fact that multiple factors may contribute to an 
individual’s choice of style. 
 
Lahiri et al. (2011) calculated Heylighen & Dewale’s F-score at the sentence level, 
and compared this to human judgement of formality at the same level. They 
collected data from a variety of sources (blogs, news articles, academic papers, and 
forum threads) and calculated the F-score for each sentence. They found that they 
could distinguish these genres solely on the basis of formality, with the exception of 
blogs and news articles — a discrepancy explained by the selection of blogs from the 
Technorati list of ‘Top 100 Blogs’, many of which were news-like in style. 
 
Human annotation was restricted to sentences from 50 blog posts (7.5k sentences), 
which were labelled as ‘formal’ or ‘informal’ to give a ground truth data set. A clear 
difference in F-score was observed between these formal and informal sentences, 
which supports the intuition that F-score can be applied at the sentence level. The 
same authors also measured the degree of inter-annotator agreement between 
untrained annotators on a formality task, with a less promising result: the raw 
agreement figure was high, but kappa statistic was poor. However, the study was 
specifically designed to measure ‘inherent’ human agreement, so no definition of 
formality was provided to the annotators. It is likely that inter-annotator agreement at 
this task could be increased by the provision of guidelines. 
 
Abu Sheikha & Inkpen (2010) also studied formality at the sentence level, using 
sentences from a variety of corpora including Enron email and Reuters newswire. 
They investigated the predictivity of a number of features including formal and 
informal word lists (manually constructed), contractions, abbreviations, phrasal 
verbs, active voice, and average word length. 
 
Based on this data set, a sentence-level classifier was trained using three different 
algorithms: Naïve Bayes, Support Vector Machines, and J48 Decision Trees. 10-fold 
cross validation was used for each classifier. Results were encouragingly high, with 
similar performance across the three algorithms. Decision Trees gave the best result, 
with an F-measure of 0.985, while the Naïve Bayes performed worst at 0.970. They 
found the most significant features to be increased use of first- and second-person 
pronouns in informal text, average word length, and the use of words from their 
custom informal word list; they also reported that removing the worst-performing 
features degraded classifier performance. 
 
A major limitation of this work is that, despite conducting classification at the 
sentence level, they assumed whole data sources would be formal (newswire, 
academic texts) or informal (email, speech transcripts, personal letters). 
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Consequently there is no sentence-level ground truth, and no human judgement was 
used to produce gold standard data. The result of this is that, although the 
classification results were high, it is not obvious that the authors were exclusively 
measuring the effect (formality) which they had intended: rather, in practice, they are 
measuring their ability to correctly identify the source genre of a text. 
 
Teddiman (2009) applies Heylighen & Dewaele’s F-score to blog entries and 
comments, and compares the result to scores from other data sources. Blogs were 
collected from LiveJournal, which is generally used for personal, ‘diary’ style posts. 
Blog authors had a mean age of 24.7, and 65% were female; UK and US bloggers 
were compared, but as no significant differences were found between these two 
groups, the final corpus consists of combined data from both countries. Demographic 
data is not available for the comment authors. 
 
For both blogs and comments, the average F-score was found to be 55.5, which falls 
between ‘school essays’ and ‘biographies’ when compared to the F-scores of BNC 
categories. In other respects, however, the part of speech distribution was found to 
be non-typical, sometimes closer to that observed for speech than for other textual 
genres. For example, in both datasets, use of emphatics such as ‘just’ and ‘really’ 
was found to be higher than expected. 
 
Although the overall F-score was the same for blogs and comments, they do differ in 
other features. In particular, the distribution of second-person personal pronouns was 
much greater in the comments (again, this was closer to the values expected for 
speech). These results indicate that, while F-score is a good starting point for 
formality research, it is too much of a blunt instrument to differentiate such closely 
related genres of text.  

Hedging 

Hedging expressions such as ‘sort of’ or ‘I think’ are used to reduce the speaker’s 
responsibility for the claims they are making. Hedging is an indirect politeness 
strategy as described by Brown & Levinson (1987), allowing a speaker to save face 
if their claim turns out to be wrong; as such, we might expect those with lower status 
and power to use more hedging words. 
 
The literature of hedging begins with Lakoff’s (1972) examination of fuzzy logic 
and semantics, in which he examines the relation between hedging expressions and 
propositional truth values. 
 
Ganter & Strube (2009) observe that work to automate the identification of hedges 
had previously been limited to the biomedical domain. They proceed to examine 
topic-independent hedging strategies by use of tagged Wikipedia documents, where 
‘weasel words’ have been marked for editing across articles covering a variety of 
subjects. This is one way of identifying a set of potential hedges, incorporating both 
words and phrases, although it remains to be seen how well their models transfer to 
other data sources. 
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Linguistic Innovation and Out of Vocabulary Terms 

Linguistic innovation will often result in previously unseen tokens. As we have seen, 
n-gram models do not meaningfully handle unseen tokens, and likewise, wordlist-
based approaches will of necessity only be able to identify the most common of 
‘innovative’ forms: those which have become sufficiently standard to make it onto 
lists. Nevertheless, as we shall see, many instances of non-standard orthography can 
be mapped onto meaningful and identifiable classes. 
 
One hypothesis is that the more informal the text, the more non-standard vocabulary 
items will be observed. Non-standard tokens can consist of spelling mistakes or 
typographical errors, but in modern usage (particularly online), non-standard spelling 
may also be a deliberate choice. Out of vocabulary tokens may also arise due to 
codeswitching (informal borrowing of a word from another language), technical 
jargon, or slang. 
 
While most text-processing applications are interested in these tokens only so far as 
to normalise them (e.g. Tang et al 2005, Liu et al. 2012), we consider that the use of 
such forms conveys valuable stylistic information. As Eisenstein (2013) notes, 
information is encoded in the very choice of these innovative forms that traditional 
NLP seeks to eliminate, but text processing has traditionally taken the approach of 
either ‘normalising’ informal text to match newswire, or applying techniques for 
domain adaptation to transfer models between contexts. 
 
Most of these cases are associated with informality in some form. In the case of 
accidental errors, we note that writers are less likely to carefully proof-read and 
spell-check an informal document. Slang is more commonly used in social and 
informal situations. Non-standard abbreviations, affective lengthening, and 
alphanumeric words also fall into the category of slang, of an innovative kind. 
Codeswitching requires a common second language, which is contextual knowledge 
in Heylighen & Dewaele’s (2002) sense; the blending of languages and cultures 
online is resulting in a number of hybrid linguistic forms that did not exist in the pre-
digital era (Lam 2008). Even technical jargon, while inherently work-related (and 
therefore, one assumes, more likely to occur in more formal contexts), is indicative 
of assumed common ground between writer and audience, implying a shared 
technical language: greater shared vocabulary is likely to correlate with lower 
symmetrical social distance. 
 
Varnhagen et al. (2010) examined the interaction between ‘new language’ use and 
spelling ability in teenagers. While they found (unsurprisingly) that genuine 
misspellings were more common for those who achieved lower scores on a spelling 
test, the same was not necessarily true for abbreviations and other linguistic 
innovations. In particular, girls who were better at spelling tended to use more 
innovative forms. This indicates that misspellings and innovation may be considered 
a matter of stylistic choice, not simply a reflection of the author’s level of education. 
 
Affective lengthening is the phenomenon of repeating letters within a word, usually 
for the purposes of emphasis. This can take a variety of forms, and can typically be 
seen as a case of phonetics invading the written language. As such, it is a highly 
informal phenomenon. 
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Existing double-letters are ripe for lengthening, for example in cases such as 
‘realllllly’ or ‘coooool’. Brody & Diakopoulos’ (2011) found that ‘nice’ was the 
most commonly lengthened word in a Twitter corpus of English; swear words also 
scored highly, and in general, a correlation was observed between emotionality and 
lengthening. In line with the phonetic origins of the phenomenon, vowels and 
continuant consonants (approximates, sibilants, liquids, and fricatives) are more 
likely to be lengthened; it’s hard to lengthen a plosive without reduplication. In more 
modern usage (such as Twitter) it is also sometimes observed that non-words such as 
acronyms are lengthened, which may be less phonetic in nature, e.g. ‘lolololol’ or 
‘omggg’ (Schnoebelen 2012b). Myslín & Gries (2010) note that the phenomenon of 
lengthening is also observed in online Spanish, with similar constraints. 
 
Brody & Diakopoulos’ (2011) used a language-independent method for identifying 
the canonical form of a lengthened form. Their technique relies on grouping together 
all tokens which differ only in the number of repetitions of a given letter, and using 
the most common instance as the canonical ‘correct’ form. Cross-checking with a 
dictionary, they found that of those sets which contained any acceptable dictionary 
word, the most common observed form differed from the dictionary form in only 
2.63% of cases. 
 
Another special case of non-dictionary words, alphanumeric words are used in some 
online settings to shorten text, e.g. ‘l8r’ for ‘later’ or ‘b4’ for ‘before’. As these 
words are not a part of standard language, they can be considered inherently 
informal. Although these forms originated to save space in length-constrained 
environments such as SMS messaging, they may also be used to signify informality 
in other online environments. 
 
As they are not part of standard language, emoticons are inherently informal in 
nature. Emoticon selection is not inherently language-dependent, but the distinction 
between Eastern and Western styles should be noted, although Eastern-style 
emoticons are becoming increasingly used in English-language contexts. 
 
Eastern examples:  o_0 >.> -_- (*_*

)  

Western examples :-) ;-) :-D =) 8) 
 
Choice of emoticon style may be a valuable feature in its own right, particularly if 
someone varies from their personal norm to match the style more commonly used by 
their interlocutor. Schnoebelen (2012a) examines the range of emoticons in a dataset 
of American English tweets, and makes some interesting observations on the 
differences between nose-using and non-nose-using tweeters. For example, the 
inclusion of a nose seems to correlate with more correct spelling, fewer swear words, 
and longer messages. 
 
If emoticons are found to be sufficiently prevalent in a given data set, the proportions 
of each ‘expression’ may also be a useful feature. Derks et al. (2007) found that, 
unsurprisingly, positive emoticons were more often used in positive contexts, and 
vice versa. An early study of emoticon interpretation found that human ratings of 
emotion in a message were influenced more strongly by the verbal content than by 
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inclusion of an emoticon, but that emoticons could alter the overall sentiment of a 
message (Walther & D’Addario 2001). These aspects deserve further investigation in 
future, but in our datasets emoticons are very rarely used, and subdividing them is 
not useful. 

Expletives 

Swearing is another feature more likely to occur in informal conversation. In an 
analysis of the British National Corpus, the word ‘fuck’ appears twelve times more 
frequently in speech than writing, and it appears almost exclusively in a dialogic 
context (McEnery & Xiao 2004). Swearing has also been shown to have social 
functions, for example demonstrating solidarity between factory workers (Daly et al. 
2004) and alignment between friends (Bernardi 2012), and even contributing to 
leadership function in the high-swearing context of a rugby team (Wilson 2012). 
 
Beers Fägersten (2007) contrasts frequency studies, which demonstrate 
comparatively high occurrence of swearing, with offensiveness studies, which 
generally rate certain words as extremely offensive. They found differences between 
different words in the set under consideration, and additionally, differing perceptions 
between participants. In some cases, judgements of offensiveness differed along 
demographic lines (e.g. race or gender). Multilingual speakers have reported that in 
spontaneous production they prefer L1 swearwords, and therefore expletives may not 
match the surrounding language (Dewaele 2010). 

2.3.3. Linguistic Accommodation 

So far, we have limited our consideration of linguistic choices to absolutes: what is 
the prevalence of this or that feature? What are the linguistic correlates of a 
particular trait or context? But we may also find variation in relative linguistic 
behaviour to be informative. In particular, Communication Accommodation Theory 
suggests that individuals adapt their language to be more or less like their 
interlocutors, with predictable social outcomes (Giles et al. 1991). 
  
Linguistic accommodation is the process whereby speakers adapt to more closely 
mirror those with whom they communicate. Mimicry appears to be a universal 
human tendency, so it is natural that this would also apply to language. The original 
studies of linguistic accommodation dealt with the concept of accent mobility in 
speech (Giles 1973), encompassing shifts of speech rate, pitch, and phonology, but 
the field has subsequently expanded to include lexical and syntactic matching. In a 
recent study of existing metrics, Carrick et al. (2016) observe that the concept of 
mimicry applies at all levels of the Interactive Alignment Model, from situational 
understanding through to fine details of phonetics and phonology, although there is 
not yet any widely accepted methodology for working across these various levels. 
 
Giles et al. (1991) differentiate convergence (moving towards one’s conversational 
partner), divergence (moving away) as two distinct strategies with differing purposes 
and outcomes. A recent meta-analysis (Soliz & Giles 2014) found robust support for 
the idea that accommodation is associated with positive evaluations of the speaker 
and the communication quality, and positive outcomes such as compliance and trust. 
Meanwhile non-accommodation, reluctant accommodation, and avoidant 
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communication were all negatively correlated with positive outcomes to a significant 
degree. 
 
Convergence is used to emphasise solidarity and similarity, and is generally 
associated with positive social outcomes such as increased perceptions of warmth, 
attractiveness, and competence. In a French-English bilingual setting, Giles et al. 
(1973) found that using one’s second language as a form of accommodation was 
positively received, and frequently led to reciprocal behaviour. Perception of effort 
was also found to be a significant factor, with non-fluent second language use being 
the most rewarded by reciprocity. This effect is not limited to linguistic alignment. 
Similar results have been observed for non-verbal mimicry: Chartrand & Bargh 
(1999) found that mimicking non-verbal behaviours led to higher ratings of 
likeability, while Balienson & Yee (2005) show that even automated mimicry by a 
digital agent is effective at generating positive ratings of likeability and 
persuasiveness. 
 
By contrast, divergence tends to be used to highlight social differences, with more 
negative social outcomes. Researchers in accent mobility experiments were able to 
generate divergent behaviour by emphasising and threatening national identities, for 
example an English-accented researcher asking insensitive and critical questions 
about the Welsh language led to a broadening of Welsh accents and an increase in 
Welsh vocabulary being used in responses (Bourhis & Giles 1977). Giles & 
Gasiorek (2014) propose that listeners’ inferences about the speaker’s intentions and 
motives will affect their perception of non-accommodative behaviour: although 
divergence and over-accommodation are generally received negatively, a listener 
may be more forgiving if they believe the speaker to have had a good reason, such as 
interrupting in order to convey important information rather than out of rudeness. 
 
Bradac et al. (1988) consider the interaction of convergence and divergence with the 
status afforded to the base values of the features being studied — in this case, that of 
lexical diversity, where higher diversity is generally associated with more positive 
impressions. They generated a series of artificial dialogues, and manipulated the 
level of convergence or divergence by one of the characters. Students were asked to 
rate both their impression of the character, and their perceptions of how his language 
changed during the scenario. A positive correlation was observed between 
convergence and perceived status and competence, even when the convergence was 
to a less-prestigious norm; conversely, divergence was correlated with lower 
rankings of status and competence. 
 
Similarly, in a job interview context, Willemyns et al. (1997) manipulated 
interviewer accent and measured the language used by applicants in response. They 
found that applicants were more likely to converge towards interviewers with a 
broad Australian accent by broadening their own accents, but that convergence 
towards a more ‘cultivated’ accent was not observed. Indeed, for some male 
applicants, when the interviewer was perceived as having a more cultivated accent 
and the applicant considered himself to have a naturally broader accent, the end 
result was linguistic divergence on the applicant’s part. These findings demonstrate 
that convergence and divergence are not consistent for all individuals within a 
particular scenario, and that other factors (such as gender and social class identity) 
play a role in mediating individuals’ accommodative behaviour. 
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Job interviews are a setting with a clear power differential, and in general, power has 
been observed as an important variable affecting the way accommodation is 
exhibited in speech. In one of the earliest studies in this area, Taylor et al. (1978) 
examined linguistic accommodation in a bilingual French-English factory setting, 
finding that individuals were more likely to converge to the language of those who 
were above them in the organisational hierarchy: foremen converged towards 
managers more than towards workers, while mid-level managers converged more 
towards their management than towards foremen or ordinary staff. In a university 
setting, Jones et al. (1999) found that relative social status was the primary 
determinant of accommodative behaviour in a study of student interactions with 
faculty and peers, although gender and ethnicity were also influential factors. 
 
Legal contexts also tend towards inherent power imbalances. Gnisci (2005) 
considers the case of hostile examinations in a courtroom setting, studying a set of 
47 transcripts from a single criminal case, which was a complex financial and 
political case. This study finds that witnesses and lawyers both use accommodation 
and maintenance strategies, with lawyers using maintenance more often, which is in 
accordance with their comparatively higher status in court. A later study, looking at 
transcripts of U.S. Supreme Court arguments (Danescu-Niculescu-Mizil et al. 2012), 
found that immediate lexical co-ordination was correlated with social power, with 
lawyers co-ordinating to Justices more than the other way around. 
 
Linguistic accommodation can also have measurable economic impact. Van Baaren 
et al. (2003) conducted a study in a restaurant setting to measure the effect of 
linguistic mimicry by waitresses, where the level of tips was used as the success 
metric. Across two experiments, direct verbal mimicry (repeating the order verbatim 
back to customers) resulted in higher tips, both compared to the control (non-
mimicry) condition and compared to the tipping baseline. In a retail environment, 
Jacob et al. (2011) found that salespeople using verbal and non-verbal mimicry 
increased the sales of MP3 players from 61.8% to 78.8%, and also increased the 
chances that the buyer would select the specific model recommended to them. 
Similar results have been observed in cross-cultural contexts, such as van den Berg’s 
(1986) study of salespeople’s linguistic accommodation in Taiwan. 
 
In another experimental manipulation, Guéguen (2009) recruited young women to 
undertake verbal and non-verbal mimicry in a speed dating setting. The ranking 
given to these women by their male dating partners was then compared between the 
mimic and non-mimic conditions, with the result that women were ranked more 
highly, and rated more highly for sexual attractiveness and quality of interaction, 
when they had been deliberately mimicking their partner. Van Baaren et al. (2004) 
demonstrated that being mimicked by an experimenter led to more positive social 
behaviours, such as helping others and donating to charity. 
 
Language Style Matching (LSM) is a commonly-used metric of linguistic co-
ordination which measures the similarity (or distance) between two texts, as 
expressed through the frequency of function words (Gonzales et al. 2010). In 
contrast to experimental manipulation of mimicry by confederates, this is a measure 
of the naturalistic co-ordination occurring between two (or more) individuals. This 
technique has been applied across a variety of subject areas, from predicting the 
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success of romantic relationships (Ireland et al 2011) to understanding small group 
dynamics (Gonzales et al. 2010) to analysing police interrogations (Richardson et al. 
2014). 
 
Gonzales et al. (2010) introduce LSM as a measure for calculating linguistic 
similarity based on nine categories of function words: auxiliary verbs, articles, 
common adverbs, personal pronouns, indefinite pronouns, prepositions, negations, 
conjunctions, and quantifiers. They use this metric to study two different conditions 
of group interaction, one face-to-face and one via an online chatroom discussion, 
where participants were placed in groups of 4 to 6 people and asked to collaborate on 
a problem solving task. LSM was found to predict self-reported group cohesiveness, 
with a positive correlation between linguistic similarity and self-reported 
cohesiveness; however, for task performance (measured by the proportion of 
questions answered correctly), LSM was found to be predictive only in face-to-face 
interactions, with a statistically insignificant negative correlation observed in the 
online condition. 
 
Ireland et al. (2011) conducted two separate experiments into LSM as a predictor of 
romantic success, looking at relationship initiation and stability. In the first 
experiment, volunteers took part in a speed dating scenario, in which their 
conversations were transcribed and analysed; similarity in linguistic style was found 
to be a predictor of whether the participants in a speed-date mutually requested to 
see one another again. (Unlike in Guéguen’s (2009) study, neither party was given 
instructions or information about linguistic mimicry.) The second experiment 
focused on existing relationships, and couples were asked to provide 10 days’ worth 
of instant message chat logs for comparison. Again, LSM was found to be predictive 
of relationship success, with linguistically-similar couples proving more likely to be 
together three months after the initial data collection. 
 
Richardson et al. (2014) examined the content of 64 police interrogations, using 
LSM to measure the similarity between linguistic style of interrogator and suspect. 
Additionally, they adopt a turn-by-turn variant of LSM to gain a more nuanced 
understanding of the conversational dynamics. They did not find any significant 
relationship between LSM and interrogation success (defined as achieving a 
confession), but turn-based LSM showed that during interrogations leading to a 
confession, suspects accommodate towards the style of the interrogator, more so than 
interrogators accommodate to suspects. In cases with no confession, no such 
distinction was observed. This study used the same nine-feature set as the previous 
studies (Gonzales et al. 2010, Ireland et al. 2011), but found that matching in four of 
the features was particularly predictive: auxiliary verbs, quantifiers, prepositions, 
and personal pronouns. These features were also used more, in absolute terms, by 
interrogators in those interviews which resulted in a confession. 
 
Recently, as online media have become more prevalent, scholarly attention has 
turned towards measuring linguistic similarity in textual dialogues. The question of 
accommodation in online forums is examined by Nguyen & Rosé (2011), who look 
at the language changes over time as new users converge on forum norms. They 
measured the adoption of forum-specific slang and matching the informal, 
emotionally-involved style of the forum under consideration. They found that 
linguistic accommodation was a good predictor of whether a user would remain 
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active over the period. In particular, longer-term forum users tended to use more 
abbreviations and more inclusive language. As the forum under consideration was a 
breast cancer discussion group, this study focused on a rather limited demographic, 
but it would not be unreasonable to assume that similar phenomena would be 
observed in other online communities — just as they are in speech. 
 
Niederhoffer & Pennebaker (2002) look at linguistic similarity across a range of 
LIWC categories, in two different instant message conversation experiments (45 
minute versus 15 minute exchanges). Measuring language use turn by turn, they 
observe that participants across both experiments tended to converge in their use of 
language, that is to say, the use of a particular feature by one party led to an 
increased likelihood of the same feature being used in response. Niederhoffer & 
Pennebaker also recorded both self-reported and independent judgements of 
interaction quality, however they found that there was no correlation between level 
of linguistic similarity and level of ‘click’ — the only exception being the case of 
positive emotion words, where it is more likely that these words were noticed by 
judges and taken as evidence of a positive interaction. Based on these results, the 
authors question the link between mimicry and positive results, hypothesising that a 
poor-quality interaction may still exhibit co-ordination of negative behaviours (for 
example, two people growing increasingly short with one another). 
 
Riordan et al. (2013) conduct two studies into accommodation of message length and 
response latency in instant message conversations. In their first experiment, 
volunteer participants interacted with a stranger to debate a medical topic. A 
confederate participant was used to manipulate variables such as disagreement and 
non-verbal cues (such as innovative punctuation and capitalisation), but was unaware 
of the convergence aspect of the study. Overall, convergence was observed in both 
length and latency, although this effect grew less as more turns were exchanged, and 
there was less convergence in the disagreement condition. The second study asked 
pairs of existing friends to engage in task-based or social dialogue via instant 
message. Again, convergence was observed under both conditions, although in this 
case the rate of convergence increased as the discussions progressed, which may be a 
function of the participants being previously acquainted.  
 
Huffaker et al. (2011) study the effect of linguistic accommodation on negotiation 
outcomes in groups, using information entropy to calculate language convergence at 
the word level. Groups of three participants were given a negotiation task to 
complete in an online chat room, with an unusual setup where individual private chat 
was also possible between each pair of particpants. The authors found that greater 
language convergence was strongly predictive of agreement in the negotiations. 
Similar results are reported in Taylor & Thomas’ (2008) study of nine lengthy 
hostage negotiations, where higher linguistic similarity was found to correlate with 
successful negotiation outcomes. 
 
Bunz & Campbell (2004) examine accommodation of politeness indicators in 
particular, in the context of email. They examined 121 messages, elicited in response 
to an email request. The data was elicited from students, in response to a message 
from a fictional visiting professor, so there was a constant power differential. The 
professor was given the neutral name of Chris, to try and eliminate the effects of any 
possible gender bias (although the degree to which this is likely to be effective may 
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depend on the gender balance in the particular field of study). Four different versions 
of the original request were formulated, consisting of versions both with and without 
explicit politeness indicators, and explicit greetings/closings. The data was examined 
for any evidence of accommodation in the responses. Their results showed that 
participants accommodated in both cases: including a higher proportion of greetings 
in response to messages with greetings, as well as echoing politeness markers in the 
text. 
  
Danescu-Niculescu-Mizil et al. (2012) examine linguistic co-ordination (specifically, 
of function word frequency) within Wikipedia discussion pages. They look 
specifically at ‘immediate’ coordination, how a speaker’s function word selection 
echoes that of the immediately preceding turn. Although Wikipedia is an egalitarian 
concept, there is an innate social hierarchy between the public (who can make basic 
edits) and those with administrative power; another interesting feature of this dataset 
is that users can be promoted to admin status via a community vote, so in many cases 
there is data from both before and after a user was promoted, as well as data from 
those who asked to become admins but were refused. This study finds a correlation 
between linguistic co-ordination and social power, with lower-status individuals 
exhibiting more linguistic co-ordination towards admins than towards non-admins. 
However, administrators accommodated more than theory might predict, and there 
are also some more nuanced findings regarding promotion to an admin role. In 
particular, those who were successfully promoted exhibited the same linguistic 
convergence behaviour before and after their appointment, indicating that higher 
levels of accommodation might have been a contributing factor to their success; 
conversely, those who tried but failed to secure promotion tended to have a less 
accommodative style. 
 
Within the theoretical framework of Communcation Accommodation Theory, the 
psychological motivation for convergence is understood to be the drive for approval 
and affiliation (Giles et al. 1991). It follows that individuals with a greater need for 
social approval would be expected to exhibit greater convergence; in an early study, 
Natale (1975) found that this held true for convergence of temporal behaviour in 
spoken conversation. 
 
Despite this theoretical grounding, the relationship between different personality 
types and accommodative behaviour has received only limited experimental 
validation to date. Ireland and Pennebaker (2010) report that people who scored 
highly for neuroticism tended to exhibit less style matching behaviour, while those 
with low conscientiousness and high extraversion tended to score more highly, 
although these correlations were weak. Kurzius (2015) tests the relationship between 
the OCEAN ‘Big Five’ personality traits and speech rate convergence, finding that 
extraversion and openness were significantly correlated with convergence. Self-
monitoring is a personality trait concerned with an individual’s tendency to monitor 
their own behaviour and adapt their behaviour to different social contexts. Cheng & 
Chartrand (2003) found that high scores for self-monitoring were correlated with 
higher degrees of behavioural mimicry, and that this interacted with social position: 
in particular, those with high self-monitoring were more likely to engage in 
unconscious mimicry of a peer or someone of higher status, compared to when they 
interacted with someone of lower status. Chartrand & Bargh (1999) studied the 
impact of empathy on nonverbal mimicry, finding that the cognitive, deliberate 



 38 

aspect of empathy (perspective taking) correlated with increased mimicry, while 
there was no correlation with emotional feelings of empathic concern. These studies 
all indicate that individual personality is likely to interact with other variables of 
interest (such as social power) to affect the likelihood of accommodating within a 
conversation. 

2.4. Reconstructing Social Hierarchies: Previous Work 

Having examined some of the ways in which linguistic choice may be used to 
express group membership and social roles, we shall now go on to consider how this 
relates to the task of reconstructing social hierarchies. 
 
Social network analysis (SNA) is a well-established discipline in sociology and 
latterly computer science. Most SNA approaches use graph theory to identify the 
most ‘central’ nodes in a network, or those ‘bridge’ nodes which connect two or 
more components of a graph. It is a matter of debate the extent to which such 
structural features map onto organisational (as opposed to informal, socially-defined) 
roles, but these techniques have generated some interesting results in this area, so it 
will benefit us to briefly consider them. 
 
More recently, a small number of studies have considered the use of linguistic cues 
to social status, whether by measuring absolute feature scores (Bramsen et al. 2011) 
or relative features such as linguistic co-ordination (Danescu-Niculescu-Mizil et al. 
2012). 
 
This previous work gives a solid foundation upon which to build, and is a good 
reason for selecting a similar task. We will briefly examine some of the highlights of 
earlier work. 

2.4.1. Social Network Analysis 

Social network analysis (SNA) originated in sociology as a method of studying the 
social structure of groups using graph theory. As this attempts to solve the same 
problem that we are approaching, from a very different set of features, it will be 
valuable to consider some key results in this field to give a broader context to our 
work. From karate club friendships (Zachary 1977) to academic collaborations 
(Newman 2001), almost any form of social contact can be represented as a graph and 
studied accordingly; in communications studies, this has often taken the form of 
studying communications graphs to infer social conclusions (Gallagher 2010; 
Karagiannis & Vojnovic 2009; Rowe et al. 2007). 
 
In a typical social graph, nodes of the graph represent individuals, and the presence 
of an edge between nodes indicates a relationship between those two people. Figure 
1 gives an example of a simple graph. For example, in a graph of academic 
collaborations, a relationship of interest might be co-authoring a paper, where nodes 
would be authors and links would connect those authors who have co-authored. Co-
authorship is a common topic of study, since academic authorship data is so easy to 
acquire. 
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Figure 1: A simple example graph (unweighted, 
undirected) 

 
Figure 2: An example graph with weighted edges 
(arbitrary weights added to the edges of Figure 1). 

 

 
Figure 3: A directed graph (unweighted), generated by adding direction to the edges of Figure 1. 

 
Of course, knowing that two authors once wrote a paper together is one thing; 
knowing that they have co-authored twenty papers gives quite a different perspective 
on the relationship. Weighted graphs allow for this kind of distinction to be captured 
by adding a weight to an edge. In the collaboration network, for instance, this could 
be the number of co-authored papers. Figure 2 gives an example of a weighted 
graph. 
 
A collaboration network is undirected, which is to say that the edges simply connect 
two nodes, and the relationship is always symmetric: if A collaborates with B, then 
B collaborates with A. By contrast, consider a related academic graph, that of 
citations. The citation network is directed: A can cite B without B having even heard 
of A, let alone citing in return. Additionally, a directed graph can be weighted or 
unweighted, just the same as an undirected graph. Figure 3 provides an illustration of 
a directed graph. 
 
Once a suitable graph has been constructed, a number of common algorithms can be 
used to identify properties of the graph which map to real-world correlates. Network 
density refers to the level of interconnectedness of the nodes, measured as the ratio 
of edges to possible edges (Wasserman & Faust 1994). For directed graphs, the 
degree of reciprocity, the proportion of edges A-B which have a corresponding edge 
B-A, may also be interesting (Garlaschelli & Loffredo 2004). Nodes may be notable 
because they are highly connected (degree centrality, Freeman 1979), or central to 
the graph (closeness centrality, Sabidussi 1966), or because they form a bridge 
between otherwise disconnected components (betweenness centrality, Freeman 
1977). In the case of social networks, any of these features might reasonably equate 
to some form of social influence. Cliques, defined as sub-graphs in which every pair 
of nodes is linked by an edge, have an obvious analogue to the real-world 
phenomenon of the same name. Nodes which bridge two components of the graph 
may represent individuals with higher social mobility, or with a broader range of 
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contacts and interests. And nodes with a disproportionate number of links may 
represent particularly gregarious individuals, or those whose work involves a 
significant component of professional networking. 
 
Latterly, one common application of social network analysis has been the automated 
analysis of online communications networks on the basis of communication 
metadata: who contacts whom, with what frequency, and following what patterns? 
These are large and richly-featured graphs which have provided a productive seam 
of research (Gallagher 2010; Rowe et al. 2007). 
 
When applied to the task of hierarchy detection from communications graphs, SNA 
uses graph-based algorithms and a combination of features including strength of ties 
(e.g. number of messages sent between a pair), initiation of threads and topics, and 
time to respond. 
 
Rowe et al. (2007) infer a hierarchy over the Enron dataset using network analysis 
methods. Their algorithm includes the number of emails sent and received by a user, 
as well as the average response time for their messages, and graph features such as 
involvement in cliques (maximal complete subgraphs). Using these features, they 
generate a social importance score for each individual, by which users can be ranked. 
 
They found that their techniques were particularly good at identifying the individuals 
at the top of a hierarchy, but less effective at replicating the published structure 
further down the organizational chart. This may be because the behaviour of those in 
lower-ranked jobs is more likely to diverge depending on differing job requirements. 
 
For one example which is examined in more detail, they find that the head of a 
specific division is automatically identified as its most important member, but that 
the two next-most important are his administrative assistants. This may not reflect a 
traditional view of the organisational hierarchy, but represents a plausible model of 
information flow, if the administration staff act as gatekeepers for their head of 
division. 
 
Gallagher (2010) applied Bayesian block modelling techniques to a graph with 
weighted edges, and applied this to the Enron corpus. This method divides the nodes 
of the graph (individual email participants) into groups according to their ‘role’ 
which is defined according to their patterns of interaction. 
 
These roles are seen to group people into clusters which, at least in some instances, 
appear to correlate with their job titles or rank. The interactions between roles are 
also interesting, showing how different communities within Enron interact with one 
another in different (but often predictable) ways. As an unsupervised approach, this 
method exposes interesting structures within the network, without promising to 
group or rank staff in any particular manner. 
 
Karagiannis & Vojnovic (2009) studied the enterprise email logs of a large 
organization (over 100,000 employees) over a three month period. This gave a 
sample size of 315 million emails. They examined reply behaviour, finding that 
replies constitute only a small proportion of messages sent. It follows that most 
messages do not receive a reply. They were able to identify several factors that 
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appeared to influence whether a reply was sent. Messages with fewer recipients in 
the original message were more likely to receive a reply, as were larger messages 
(measured in bytes – so this may include attachments and quoted text). The time of 
day the message was sent was also a factor, along with whether the recipient had 
been using email recently (a proxy measure for whether they were online). Analysis 
of variance showed that best prediction of reply probability was obtained by using a 
combination of these features. Additionally, they found that if any reply was made, it 
was likely to be made quickly, but that on average recipients were likely to take 
longer to reply to someone further up the corporate hierarchy, suggesting that 
concern to send the right message outweighs the need to respond with haste when 
dealing with high-powered individuals. 
 
Inspired by studies of timing in spoken conversation, Kalman et al. (2006) examined 
response latencies in three separate online datasets: corporate email (Enron), 
university discussion groups, and a public forum (Google Answers). Although the 
average response time for each forum was different, they found an underlying 
power-law distribution of reply times with a consistent pattern. This distribution held 
across all three datasets, in cases where a reply was sent at all; messages with no 
replies were ignored for the purposes of this study. When these results were 
compared to spoken conversations, which obviously have a much lower absolute 
latency, the pattern was still shown to be broadly consistent. Kalman et al. did not 
consider the social or organisational roles of senders and recipients in their work, but 
their findings nonetheless provide some interesting background. 
 
One specific limitation of the Enron dataset is acknowledged: the differing 
timestamps on users’ computers are the only source of timing information for the 
emails, leading to strange effects such as negative latency due to messages sent and 
received in different time zones. While examples were few (and the negative 
latencies discarded), it is not clear to what extent the timestamp differences would 
impact the validity of the results more broadly. The actual difference of time zones 
might also be expected to affect the absolute response time, as one user might send a 
message during another’s non-working hours. However, the fact that the Enron 
results are broadly consistent with those from the other datasets implies that this has 
minimal impact on the overall results. 
 
The average response latency for each dataset falls at or above the 80th percentile, 
meaning that the majority of messages are sent with a below-average delay. The 
authors investigated whether this was an artefact of aggregation, by picking out a 
number of individuals’ response latencies for comparison, and found that for most 
individual users the pattern of replies also followed a similar power law distribution. 
 
This study supports Karagiannis & Vojnovic’s finding that responses are more likely 
to occur in the period shortly after the message is sent, and shows that this pattern 
holds across a variety of online settings. The authors suggest a number of possible 
explanations for this phenomenon, without proposing methods to distinguish them. 

2.4.2. Linguistically Motivated Modelling 

Automatic classification of relationships based on message content is a field in its 
infancy, in comparison to metadata-based approaches. The term ‘Social Power 
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Modelling’ was coined by Bramsen et al. (2011) to describe the task of identifying 
relative social status based on language use.  
 
Bramsen et al. (2011) trained a set of classifiers on the Enron corpus, to differentiate 
‘UpSpeak’ (messages addressed up the hierarchy) from ‘DownSpeak’ (messages 
going down the hierarchy). They experimented with a variety of n-gram models, 
using unigrams, word bigrams, and part-of-speech bigrams. They also tried a variety 
of different classifiers, obtaining best results using SVMs. Training data was 
partitioned by author to avoid picking up on features due to idiolect; without this 
partitioning, they found that accuracy was artificially inflated due to effectively 
training and testing on language from the same individuals. Their best result on the 
partitioned dataset was obtained by using n-grams binned into sets, with information 
gain (WEKA’s InfoGain implementation) used to filter out those sets which did not 
contribute much to the overall classification. This achieved an F-measure of 0.781 
using a weighted test set. Without partitioning, their F-measure for 10-fold cross 
validation was 0.830. 
 
Although Peterson et al. (2011) did not attempt to classify relationships based on 
their findings, their qualitative work provides a powerful indication that such 
classification should be possible using features related to linguistic formality. They 
found that messages going up the hierarchy are likely to be more polite than those 
going downwards. 
 
Gilbert (2012) examines the language of the Enron corpus and uses statistical 
techniques to pick out key phrases which indicate hierarchical relationships. To 
avoid any influence from the unusual circumstances of the company’s collapse, he 
uses a cut-off date of May 2001, six months before the investigation launched, and 
does not consider any later messages. 
 
Gilbert’s phrase model consists of unigrams, bigrams & trigrams. The model size is 
reduced by the deletion of any phrases which consist only of stopwords, and (to 
avoid undue influence from any one individual) deletion of any not used by at least 
three different message senders. Using penalized logistic regression and an SVM 
classifier, phrases indicative of ‘upward’ communication are identified. Of the 7,222 
phrases used to construct the model, 974 have a statistically significant contribution 
to discrimination. 
 
The paper contains a table of the hundred most discriminative phrases, 
encompassing a plethora of semantic spheres. Phrases particularly indicative of 
upwards communication include positive words (‘tremendous’, ‘excellent’, ‘sounds 
good’), lots of neutral, functional nouns (‘the report’, ‘worksheet’, ‘final draft’, 
‘candidate’), and examples of indirect politeness (‘can you get’, ‘can I get’). 
Contrasting this with the phrases more likely to be seen in downward or level 
communication, we see informality (‘cool’, ‘man’, ‘fyi’), direct requests (‘please 
send’, ‘give me’,), and negativity (‘forgot to’, ‘problem with’, ‘the confusion’). 
 
Gilbert also reports that fewer misspellings were observed in the ‘upward’ dataset, 
possibly indicating that individuals proof-read their own words more carefully when 
addressing their seniors; this is not developed more fully in the paper due to the 
limitations of n-gram language modelling. 
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Agarwal et al. (2012) contrast a content-based method with a social network analysis 
approach. For their simple SNA technique, they use degree centrality across an 
undirected, weighted graph of email contact (without distinguishing To, CC, and 
BCC fields). On their dataset, Agarwal et al. found that the graph approach 
outperformed an NLP approach based on Gilbert’s (2012) trigram phrases. 
 
However, one problem with using degree centrality, in the case of the Enron graph, 
is that degree will almost inevitably be higher for individuals from the ‘core’ group 
(those whose emails were subpoenaed) compared to others, and that the ‘core’ group 
tend to also be of higher rank. It follows that degree centrality may be expected to 
correlate with hierarchy more strongly in the Enron corpus than in a randomly 
selected email dataset. 
 
Prabhakaran & Rambow (2014) attempt to address the problem of data sparsity by 
making a social power prediction based on a single ‘thread’. They use a mixture of 
metadata and content features to predict the relationship between sender/recipient 
pairs within a thread, without concern for the total number of recipients involved in 
the conversation. 
 
Metadata features used include the number of participants in a thread, who initiated 
each thread, the number of messages in the thread, average message length (in 
words), and the ratio of sent to received messages within a pair. Dialogue features 
include requests for action, requests for information, and overt displays of power as 
identified by an automated tagger. Against baselines of 52.54% (most common 
class) and 68.56% (bigram model), they found that dialog acts and structural features 
alone gave an accuray of 62.47%, while their best result of 73.03% accuracy was 
obtained from a combination of n-grams with a subset of structural features. 
 

2.5. Discussion 

In the literature of social identity (Tajfel & Turner 1979) and self-categorisation 
(Turner et al. 1987), framing (Goffman 1974) and face threat (Goffman 1959), we 
have found no shortage of evidence that individuals are social creatures, whose 
behaviour is constantly influenced by their relationships to those with whom they 
interact. Linguistic theory has subsequently set out criteria for politeness and 
appropriateness in interactions (Grice 1975; Brown & Levinson 1987), again 
informed by the speaker’s relation to the audience. 
 
Recent experiments in computational linguistics have examined the correlations 
between (im)polite language and social status (Peterson et al. 2011; Gilbert 2012) 
and given rise to predictive models based on linguistic features (Bramsen et al. 2011; 
Agarwal et al. 2012; Prabhakaran & Rambow 2014). Our work is motivated by a 
wish to improve upon this body of work by investigating what is possible using a 
much smaller, more tightly constrained feature set to build a model with more 
explanatory power. We therefore construct our primary hypothesis around the theory 
that stylistic choice, in particular, is a key method of expressing relationship-
building, and we wish to test whether this enables us to build a predictive model 
based only on a small set of linguistic style features. 
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Our feature selection is inspired by work in authorship identification and author 
profiling (Koppel et al. 2002; Argamon et al. 2007; Rosenthal & McKeown 2011; 
Kacewitz et al. 2013), which is a field with a long history of using stylistic features 
to characterise individuals and demographic groups. We have also taken inspiration 
from qualitative studies into power-differential behaviour in email (Panteli 2002; 
Waldvogel 2007; Murphy & Levy 2006). 
 
Additionally, our work on linguistic accommodation sits within the framework of 
communication accommodation theory (Giles 1973). We have seen that 
accommodation of vocabulary can predict continued engagement with online forums 
(Nguyen & Rosé 2011), as well as correlating with social power in Wikipedia 
discussions and courtroom settings (Danescu-Niculescu-Mizil et al. 2012). Bunz & 
Campbell (2004) demonstrated that students would accommodate their use of 
politeness indicators to an email from a professor, another instance of unequal social 
power. We are inspired by the success of approaches using function word 
distributions, via language style matching (Gonzales et al 2010), to capture important 
facets of relationship negotiation behaviour across contexts as diverse as speed 
dating (Ireland et al 2011) and police interrogations (Richardson et al 2014), but we 
recognise the inherent limitations of the currently predominant LSM approach, and 
will set out a more sophisticated technique using movement in vector space to 
capture nuances of accommodation as a dynamic process. 
 
Chapter 3 lays out the details of our implementation, as informed by this prior work. 
 !
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3. Methodology 

Having considered the theoretical background, we will now turn our attention to the 
more mundane (but equally important) concerns of methodology and 
implementation. 
 
Our primary hypothesis is that stylistic choice is a key method of expressing 
relationship-building, and therefore it should be possible to infer relationship 
information on the basis of linguistic style. In order to test H1, we adopt the task of 
classifying messages based on the hierarchical relationships between sender and 
recipient. This is a subset of the generalised relationship categorisation task, with the 
advantage that some organisational ground truth data is available (such as the Enron 
corporate hierarchy). Social power is also a facet of relationship-building which is 
particularly susceptible to experimental manipulation: unlike longstanding 
friendships, romantic, or familial relationships, individuals are accustomed to finding 
themselves in new relationships of social power throughout the course of daily life, 
and continuously adapt their behaviour accordingly. 
 
Having settled upon this task, our first requirement was to identify a suitable set of 
data. The Enron corpus (Klimt & Yang 2004) was an obvious starting point, as it is 
the standard used in previous research (e.g. Bramsen et al., 2011), and some 
information on the corporate hierarchy is freely available. There are not many other 
sources of readily-available data in which both hierarchical and peer-level 
communications can be observed: in most data where there are clear power 
differentials, such as court transcripts, there are few opportunities for peer-to-peer 
communication, and conversely, in online environments where peer communication 
is common, the sources of power and authority are less well defined. We therefore 
complement the Enron corpus with two sets of transcripts gathered under 
experimental conditions, in which we deliberately manipulated social roles within 
the experimental set up (Muir et al. 2016a; Muir et al. 2016b). These consist of one 
set of transcribed speech, from face-to-face interactions, and one set of instant 
message transcripts from a computer-mediated environment. Data collection and 
preparation is described in more detail in section 3.1. 
 
Once the data has been gathered and appropriately cleaned, the next stage is to 
extract features to be used in the analysis. Appropriate features are selected from the 
literature; standard feature extraction toolkits exist for some cases (such as parts of 
speech), but for many features of linguistic innovation there are no existing open 
source libraries. Feature selection is described in section 3.2, and section 3.3 
describes the per-author standardisation we will undertake to test H2, our hypothesis 
that measuring the range of variation within an individual’s behaviour will give a 
stronger signal than utilising only the differences between people. 
 
Machine learning is used to construct the classifiers we will use to test our 
hypotheses. Assessing different machine learning methods is not a focus of this 
work, but in order to use existing tools appropriately we must understand their 
relative merits; section 3.4 describes our approach. 
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We then wish to examine some possible methods of improving our classification 
accuracy by using all of the available information in concert. We hypothesise that 
prediction of hierarchical relationships will be more effective at the pairwise level 
than at the level of individual messages (H3) and that classification will be aided by 
consideration of whole-network characteristics (H4). Sections 3.5 and 3.6 describe 
our approaches to these tasks. 
 
Finally, we wish to investigate the impact of social role on linguistic accommodation 
in order to test H5. We define a novel metric for measuring linguistic style 
accommodation using a vector space model, described in section 3.7, and present the 
results of our initial experiments using this technique. 
 
This chapter goes into more detail on these aspects of implementation. 

3.1. Data Selection and Preparation 

In selecting appropriate datasets for research, a number of factors must be 
considered. In this instance, as we will be endeavouring to use stylometric measures 
to infer hierarchies, we need to reduce the interference of other factors. 
 
External factors, including the medium being used, will have an impact on the 
construction of a message, as discussed in section 2.2. The same essential content 
may be conveyed differently in different contexts. For example, Duthler’s (2006) 
comparison of requests showed that different politeness features are exhibited in 
email and voicemail contexts, even when other variables are controlled. 
 
There are several distinct axes along which the ‘environment’ of a communication 
can be categorised, any of which may have an impact on the style used: 
 

• Is the discussion space public (e.g. a web forum) or private (e.g. email)? (Hill 
1995) 

• How many people are involved? Communications can be one-to-one 
(personal), one-to-many (broadcast), many-to-many (group discussion), or 
many-to-one (petition). (Bell 1984; Peterson et al. 2011) 

• Is the medium spoken or written? (Baron 1998; Dulther 2006) 
• Is communication real-time or asynchronous? Historically, spoken media 

have been synchronous and written media have been asynchronous, but this 
is not inevitably true: voicemail messages are asynchronous, while online, 
text-based chat can be instant. (Sotillo 2000) 

• Are participants geographically co-located or distant? (Doherty-Sneddon et 
al. 1997; Setlock et al. 2004) 

• Is the interaction method dialogic (interactive, encouraging response and 
exchange of views, such as an email, discussion forum, or conversation) or 
didactic (imparting information or opinion with no expectation of response, 
such as a poster or prepared speech)? (Tannen 1984; Kankaanrata 2005) 

• Are there any constraints on the message format or device used? For 
example, length restrictions of Twitter and SMS, errors introduced by 
predictive text. (Gouws et al. 2011) 
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To reduce the amount of interference between these various factors, it is important to 
select a broadly homogenous dataset. Additionally, in order to ensure we are not 
over-fitting our techniques to one particular circumstance, we will use three 
independent sources of data, from different production contexts and involving 
different participants. In all contexts we decided to limit our study to personal 
communications, in dialogic one-to-one settings, in order to focus on the impact of 
interpersonal relationships on language use without the complication of audience 
size or bystander effects. 
 
The Enron email corpus (Klimt & Yang 2004) is frequently used in 
communications research, which makes it a good starting point for comparison with 
earlier work. Email is always written and private, unconstrained in length, and 
generally assumed to be asynchronous. 
 
The Muir-Joinson Speed Networking Speech corpus (Muir et al. 2016a; Muir et 
al. 2016c) is a set of transcriptions from a speed networking business scenario. The 
data differs from the Enron corpus in a number of important dimensions: as well as 
being captured under experimental conditions, the data is spoken, synchronous, and 
face-to-face. 
 
The Muir-Joinson Speed Networking CMC corpus (Muir et al. 2016b; Muir et al. 
2016c) is a set of online chat transcripts, generated by re-running the same speed 
networking experiment using a computer-mediated environment. 
 
A summary of key differences and similarities is as follows: 
 

Enron Emails Muir-Joinson Speech Muir-Joinson CMC 
Textual data from emails Transcribed speech Chatroom transcripts 

Naturally occurring content Data elicited under experimental conditions 
Unknown and varied 

production environments 
Controlled, consistent production environment 

Genuine and involved 
corporate hierarchy 

Simple hierarchical condition created by role-
playing scenario 

Messages of varying length, no 
constraints 

Turns tend to be short utterances; overall time 
constraint for the exchange 

Messages subpoenaed months 
or years after creation 

Participants knew in advance that their speech 
would be recorded 

Authors from across the Enron 
community, varying in age and 

seniority 

Participants were mostly students, of similar age 
and educational level 

Varying nationalities and linguistic backgrounds 
Potential mixture of dialogic 

and didactic messages 
Dialogic setting 

 
The following sections contain more detail on the collection, cleaning, and 
preparation of each data set. 
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3.1.1. Enron Corpus Subset 

The Enron email corpus is a standard dataset for communications research, and as 
such it has been widely studied by a large number of scholars and for a variety of 
purposes. Enron email is an obvious starting point for sociolinguistic research, if 
only due to the extensive work – both qualitative and quantitative – that has already 
been conducted using this data, giving a sizeable body of earlier work for 
comparison. Although few authors have explicitly examined the interaction of style 
and power within Enron, a number (such as Bramsen et al. 2011; Gilbert 2012) have 
addressed closely related problems. 
 
We used the CMU version of the corpus (Klimt & Yang 2004), which has undergone 
some removal of duplicate messages. This corpus contains around 200,000 message 
files from the mailboxes of 158 Enron employees. We undertook further filtering and 
processing of the messages in order to produce a suitable dataset for this study, for 
example limited reconstruction of messages from quoted text, and deduplication of 
identical messages which are sometimes included twice due to the complex folder 
structures. We stripped headers, quoted text, and other non-relevant content to leave 
only the new linguistic content of each messsage, using an SVM zoning approach as 
per Lampert et al. (2009). 
 
In order to focus directly on the personal relationship between author and recipient, 
we limited our consideration to single-recipient messages. Previous work has shown 
that message formality changes in line with number of recipients (Peterson et al. 
2011), which makes it harder to infer the nature of one-to-one relationships from 
messages with multiple recipients. We therefore discarded any message with more 
than one recipient, even when these were in the CC or BCC fields. Although not a 
perfect filter, this should also increase the percentage of dialogic messages, as 
didactic use of email tends to take the form of newsletters with a wide distribution. 
 
Aside from a large volume of messages, the other crucial requirement for this study 
was some ground truth data on the underlying organisational hierarchy. Information 
on the position of individuals within the Enron hierarchy was derived from Peterson 
et al.’s (2011) work. Individuals are labelled with a rank from 0 (employee or trader) 
to 4 (CEO). Peterson et al. discarded all messages involving rank 0 individuals due 
to the diversity of roles encompassed by this label, however we chose to include 
them for the sake of retaining a larger dataset. We removed only the small number of 
individuals identified as the in-house lawyers, whose language has previously been 
shown to be atypical (Wright & Gomez 2012). 
 
In order to examine the influence of relative power on communicative style, we used 
only messages where both sender and recipient were of known rank according to 
Peterson et al. Our reduced dataset consists of messages from 175 senders, addressed 
to 140 recipients. These individuals are distributed across the hierarchy as follows: 
 
Rank 0  73 
Rank 1  17 
Rank 2  10 
Rank 3  63 
Rank 4  12 
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Rank 0 represents ‘ordinary’ employees, while rank 4 consists of CEO-level upper 
management. This distribution is clearly not representative of the true distribution of 
roles in the organisation. Sampling is biased by inclusion in the original corpus only 
of those individuals considered to be of interest to the investigation into Enron’s 
malpractice, and those with whom they directly communicate. Such persons of 
interest are more likely to be those who had more power within the organisation. 
There is consequently a significant under-representation of staff from lower levels of 
the corporation, in our dataset as in the wider Enron corpus (Shetty & Adibi 2004). 
 
As with any naturally occurring data, attempting to reduce all the complexities of 
human relationships to a single numbered scale is guaranteed to be overly simplistic. 
Actual relationships are not defined by a simple position in an org chart: the water 
may be muddied by friendships, rivalries, and romances. Even within an exclusively 
business context, the perceived status differences between different departments or 
specialisms could have an impact. However, we are not able to account for these 
various nuances in a systematic manner: we can only note their likely influence, and 
proceed with caution. 
 
Our final dataset contains 5,767 email messages. As this is only a fraction of the 
original Enron corpus, we will not be able to assume that conclusions would 
necessarily apply to the whole dataset, particularly as our selection criterion depends 
on including users whose role is known – and who are therefore likely to 
overrepresent senior roles in the organisation. However, this size of data could easily 
be all that was available in a smaller investigation. We label messages as ‘upward’ 
(addressed to a recipient of higher rank), ‘downward’ (addressed to a recipient of 
lower rank), or ‘level’ (between two individuals of the same rank). The overall 
distribution consists of 1916 upward messages, 2374 level, and 1477 downward.  
 
As the next step in our data preparation, we divide the data into 10 static partitions in 
order to perform 10-fold cross validation in a repeatable manner across a variety of 
experimental conditions. We use three different divisions of the data. Prior 
knowledge about an individual’s personal style was hypothesised as likely to be 
helpful in building a model. In order to test the impact of this variable, versions of 
the corpus were partitioned in three distinct manners: 
 
 • completely at random  
 • split by sender-recipient pair 
 • split by sender 
 
In the random case, each message was allocated to one of the ten partitions using a 
random number generator, meaning that training and test data could contain 
messages from the same sender, to the same recipient, without penalty. This was the 
easiest case for the classifier, and the results are expected to be over-optimistic. 
There are very few real-life situations in which it would be useful to predict a 
relationship using a classifier built from prior knowledge of that same relationship 
(exceptions may be found where, unbeknownst to the system, an individual is 
corresponding from more than one email address). 
 



 50 

In the case of partitioning by sender-recipient pair, the folds were engineered so as to 
avoid the training and test data sets containing any messages from the same sender, 
to the same recipient: all messages from A to B were assigned to the same fold. This 
was achieved by generating a list of all sender-recipient pairs, randomly partitioning 
the list into ten groups, and allocating all messages from A to B into the same fold. 
Ten-fold cross validation was then conducted using these partitions. This is expected 
to be the most likely analogue to real-world scenarios, representing situation where 
the some of an individual’s relationships are known, and others unknown. 
 
In the case of partitioning by sender, the most cautious partitioning, the training and 
test data were guaranteed not to contain any messages from the same sender, 
regardless of recipient identity. This was achieved by random partitioning of the list 
of senders. Since some senders are far more prolific than others, this results in highly 
unbalanced text volumes between the partitions, which was not the case for the other 
two cases. However, attempting to balance the distribution of senders by message 
volume has the potential to skew results, as prolificness may correlate with other 
factors of interest (such as status) and we do not wish to accidentally balance our 
dataset for these factors. Therefore, we accept that the training and test sets for our 
partitions are of different sizes in this case, for different folds, and anticipate greater 
variability in the results between folds on this basis; however, by keeping the 
partitions constant between different experiments, we can at least ensure that this 
imbalance is kept constant under different conditions. Results from the sender-
partitioned case are expected to be lower than a real-world scenario, as it is unlikely 
that we would have full knowledge of relationships for a closed set of senders and 
recipients, and yet wish to use this to model a disconnected-yet-comparable set. (In 
cases where there is no prior information, there is no ground truth data with which to 
build a model at all, and supervised machine learning methods are not applicable.) 

 

Figure 4: Distribution of messages in the Enron dataset.
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Figure 5: Distribution of messages in the Enron corpus, broken down by sender rank. 

It is interesting to note the different levels of productivity by sender (illustrated in 
Figure 4). Almost a quarter of senders (22.8%) have sent five or fewer messages. At 
the opposite end of the spectrum, we have a set of fourteen hyper-productive 
individuals, who have produced more than 100 messages each (up to a maximum of 
259 messages from the most prolific sender, who alone is responsible for 4.5% of all 
messages). 
 
Further, after partitioning the data by the rank of the sender (Figure 5), we are able to 
see the distribution of senders across ranks. We see that most ranks skew towards the 
lower end (as with the data overall), but there is no clear pattern explaining the role 
of high-sending individuals. The most senior individuals, those given rank 4, tend 
towards extremes: of the 12 senders of this rank, three fall into the most prolific 
bracket, while five others have sent five or fewer messages. 
 
It is important to note, when studying these distributions, that this is not necessarily 
representative of these individuals’ overall behaviour, as these numbers relate only 
to the messages in our pruned dataset (single recipient messages, between 
individuals of known rank). Additionally, as with all Enron statistics, the dataset is 
skewed by those who communicate with persons of interest to the fraud 
investigation; in this case we expect this to be particularly biased against the 
inclusion of more junior staff. We examine these numbers only to inform our later 
experiments, not to draw any conclusions about the typical message-sending 
behaviour of individuals of a given organisational rank. 

3.1.2. Muir-Joinson Speech Corpus 

The Muir-Joinson speech corpus is a collection of dyadic interactions which we 
recorded and transcribed as part of an applied psychology experiment into power-
differential behaviour (Muir et al. 2016a). This dataset consists of a series of one-to-
one interactions, with a common task focus, in either the presence or absence of a 
power imbalance. We have published an anonymised copy of this data via LDC 
(Muir 2016c) in order to allow for replicability, and for future work to build on our 
efforts. 
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We recruited a group of student volunteers and gave them a discussion task to 
complete, in a simulated business environment. In the experimental group (the 
hierarchical condition) the participants were divided into judges and workers, and 
the workers were given ideas to pitch to the judges. Following a brief discussion, the 
judges could then choose whether or not to invest in each concept. Members of the 
control group (the non-hierarchical condition) were simply asked to discuss potential 
inventions between themselves with an eye to potential collaborations, but without 
either party making an investment decision. In both conditions, participants rotated 
through multiple conversation partners using a ‘speed networking’ model to generate 
a number of independent one-to-one interactions lasting five minutes each. These 
exchanges were recorded, and the recordings were transcribed.  
 
41 participants took part in the study, and a range of supplementary information was 
collected on each participant, including demographic information and profiling of 
major personality traits. Most of the participants (82.9%) were undergraduate 
students from the University of the West of England. The remainder was made up of 
postgraduate students and non-students. Participants’ ages ranged from 18 to 25. 
Female subjects made up 70.7% of the population, and 75.6% listed their ethnic 
origin as British. 
 
The experimental group was composed of twelve participants assigned to the ‘judge’ 
role and twelve ‘workers’. The remaining 17 participants were assigned to the 
control condition, and divided arbitrarily into ‘A’ and ‘B’ groups. With a couple of 
exceptions, one interaction was recorded between each judge/worker pair in the 
hierarchical condition (142 conversations) and between each pair in the non-
hierarchical condition (72 conversations). After each interaction individuals were 
asked to score their communicative partners against a number of axes, from 
communicative fluency to level of rapport. 
 
The major disadvantage of this dataset is that it does not contain example utterances 
from the same individual participating under more than one role. A given volunteer 
was either a judge, a worker, or part of the control group, for the whole experiment. 
However, the data still exhibits significant stylistic differences between speakers in 
different roles. 
 
The recorded conversations sum to 13,266 turns. This equates to a mean of 61.99 
turns per dyad, µ=59.92 in the hierarchical condition versus µ=66.07 for non-
hierarchical condition. The distribution of turns is illustrated in Figure 6. An 
examination of the distribution of utterances by sender status (Figure 8) shows a 
tendency for judges to skew lower than workers (although two individual judges are 
also responsible for the two highest individual turn counts), and for peer exchanges 
to show lower variance. 
 
As this is a corpus of transcribed speech, it consists of more and shorter turns 
compared with the Enron corpus. The overall volume of text, however, is much 
lower (totalling 193,102 words, vs 505,086), and involves fewer individuals; we 
therefore opted to use five rather than ten folds for cross-validation. 
 
As the data was elicited under controlled circumstances, we have reliable 
information concerning which participants were assigned to which social roles. The 
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participants did not know one another in advance, so it is not necessary to account 
for existing social relationships crossing these hierarchical boundaries in unexpected 
ways. As such, the data should be cleaner than that in the Enron corpus. 
 
The potential disadvantage of the experimental setup is that the participants’ 
behaviour may have been affected by the artificial nature of the setting. However, as 
we will demonstrate, the data still exhibits significant stylistic differences between 
speakers in different roles. After the experiment, a manipulation check was 
conducted by asking participants to score the level of power they felt they had during 
the interactions: results indicated that judges felt the most powerful (µ = 3.7, σ = 
1.1), while those assigned to the worker role reported lower scores (µ = 2.8, σ = 1.1), 
which is significantly different at the 95% confidence level. Interestingly, both non-
hierarchical (control) groups rated their perceived power as less than either of the 
hierarchical groups (µ = 1.8, σ = 1.1 and µ = 2.0, σ = 1.0), which may be a 
consequence of participating in a scenario where their actions were not expected to 
change any of the outputs: they were not passing judgement on the ideas, but nor 
were they actively attempting to persuade or influence. 
 

 
Figure 6: Distribution of turns in the Muir-Joinson 
speech corpus. 

  
Figure 7: Distribution of turns in the Muir-Joinson 
chat corpus. 

 

 
Figure 8: Distributions of turns by status, in the Muir-Joinson speech corpus.  
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3.1.3. Muir-Joinson CMC Corpus 

To generate a third dataset in a different genre, we re-ran the speed networking task 
using computer-mediated communication (CMC), with participant discussions 
taking place in an online chat environment (Muir et al. 2016b). We left most of the 
experimental conditions unchanged, but instead of physically moving around the 
room, participants were allocated a computer and asked to communicate through the 
medium of an instant message chatroom, chatting with different participants in turn. 
In this way we hoped to control for the maximum number of variables, not only in 
terms of the production environment and experimental power manipulation, but also 
ensuring common conversational goals and the same topics under discussion. We 
have published an anonymised copy of this data via LDC (Muir 2016c) in order to 
allow for replicability, and for future work to build on our efforts. 
 
The volunteers were a different group of individuals to those involved in the speech 
experiments. Although there would have been certain advantages to having both 
speech and chat data from the same individuals, the chat experiment was run at a 
later date, and we could not make use of volunteers who had already been debriefed 
from the earlier experiment. 
 
A total of 54 volunteers were recruited for the CMC experiment. The participant 
ages were between 18 and 25 (mean 20.8), and the gender split was 28 male to 26 
female (51.8% male). 26 participants were placed in the hierarchical (experimental) 
condition, with roles of judges and workers randomly assigned; the remaining 28 
took part in the non-hierarchical (control) condition in two random groups. 
 
We required participants to complete an assessment of each interaction, as in the 
face-to-face experiments described above, rating the success of the interaction, and 
the level of ‘click’ or rapport with their partner. At the end of the session, a 
manipulation check was conducted to capture participants’ perceptions of personal 
power. This was highest for judges (µ = 4.5, σ = 0.7), and lowest for workers (µ = 
3.5, σ = 1.1), with the control groups reporting that they felt almost as powerful as 
the judges (µ = 4.1, σ = 0.7 for the first group, and µ = 4.4, σ = 0.7 for the second). 
Interestingly, these self-reported scores are all higher than those given by the 
respective groups in the face-to-face experiment. Personality traits were also 
recorded for the CMC participants. 
 
One early finding was that online chat generates significantly fewer turns than 
speech over the same time period: µ=107.6, σ=50.6 for chat, vs. µ=323.6, σ=90.8 for 
speech. The distribution of turns in the CMC data is illustrated in Figure 7. Typing a 
given sentence takes longer, for an average typist, than speaking the same words, 
and there is also the possibility for individuals to take additional time to self-edit in 
the written scenario. This has the unfortunate consequence that the chat data is less 
than a quarter of the size (in words) of the equivalent speech dataset, amounting to 
45,825 words in total.  
 
Although it is useful to have a short message data set for comparision, it should be 
noted that this data is not necessarily representative of other short message formats 
such as SMS and Twitter data, which have been shown to be used in different ways 
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(Munro & Manning 2012). Given the experimental scenario, our CMC corpus is 
most likely to be representative of business-focused chat channels such as Slack. 

3.2. Feature Selection 

Having identified suitable sources of data for testing our hypotheses, we next turn to 
the task of extracting stylometric features that we hope will, in some combination, 
provide a strong enough signal to enable classification of a hierarchical relationship, 
in order to support our primary hypothesis: 
 

H1: Stylistic choice is a key method of expressing relationship-building, 
therefore relationship information can be inferred from linguistic style. 

 
We reject the default n-gram model for the reasons outlined in section 2.3.1, as n-
grams conflate all aspects of language use into a single model, and do not 
meaningfully capture linguistic innovation or rare vocabulary, which are likely to be 
important for our task (Eisenstein 2013). We wish to clearly distinguish stylistic 
from topical (semantic) features, to avoid the influence of subject matter on our 
classifier; we will achieve this by selecting features that contain minimal semantic 
information, for example by generally excluding nouns and verbs from our language 
model. 
 
To enable direct comparison with the Enron and CMC results, we will use the same 
feature set for speech transcripts, although we acknowledge the theoretical problems 
with applying textual features to transcribed speech. The concept of a ‘sentence’ is 
problematic in speech, and we do not have informal features such as varying 
capitalization, or emoticons, in speech data. However, we do not have a phonetic 
transcription of pitch, emphasis, etc. from the original speech recordings: we take the 
transcriber’s choice of punctuation as a proxy, and rely on her consistency as all 
transcription was undertaken by a single professional. Because the data has been 
professionally transcribed, there is also less chance of typographical errors — and if 
such errors do exist, they are due to the transcriber rather than the participant. This 
reduces the amount of stylistic information available. However, slang terms would 
be transcribed as heard, which may still result in some out-of-vocabulary items by 
comparison to a standard dictionary. 

3.2.1. Message Length Features 

An individual makes many choices during a communication, and choices around 
language use are not limited to the words used or the syntax through which the 
message is conveyed. The length of the message itself, and how it’s structured, 
contributes to the overall style and as such may also contain valuable cues. 
 
Message length, measured by the number of characters, is perhaps the most basic of 
these metrics. More detailed structure can be observed in the number of sentences 
per paragraph (applicable only to written media), words per sentence (or utterance), 
and characters per word. Taken together, these scores give a proxy for complexity of 
language use; these are also components of popular text complexity metrics such as 
the Flesch-Kincaid readability tests (Kincaid et al. 1975) and the Gunning Fog Index 
(Gunning 1969). 
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3.2.2. Character Distribution Features 

In written English, orthographic elements such as capitalisation and punctuation can 
be varied for emphasis without impacting the semantic content of a message. These 
stylistic choices result in variations of the distribution of various character classes. 
Character-level features are trivial to compute and (in most cases) applicable to all 
written languages, and a large number of character-level features were included for 
this reason. 
 
Formal documents are likely to be in ‘sentence case’ with normal capitalization. 
What constitutes a normal distribution of capitals is language-dependent: in English, 
this equates to capitalization for the first word of a sentence, and for proper nouns.2 
As informality increases, the writer may choose to adopt a more flexible approach. 
Additional capitals may be used for emphasis (e.g. ‘REALLY’ or ‘Very Nice’), or 
capitalization may be abandoned altogether in favour of lowercase text which is 
(fractionally) quicker to type. The proportion of alphabetic characters which are in 
uppercase was determined as a suitable single metric to capture case distribution. 
  
The situation is similar for punctuation. Formal documents are likely to be 
punctuated according to the grammatical norms of the language in question: 
although this will vary by language and genre, and will also depend on individual 
style, it should be possible to identify divergence from the norm that is due to 
informality and innovation. Depending on the individual’s style, informal documents 
may contain more symbol characters (due to emoticons or strings of ‘!’s) or fewer (if 
punctuation is simply omitted). 
 
Classes of symbol characters were identified and categorised using Unicode 
categories. As well as the overall proportion of symbols in the text, the distribution 
of these types was considered. 
 
The following categories of punctuation were specifically counted: 
 
 Comma 
 Full stop 
 Question mark 
 Exclamation mark 
 Colon 
 Semicolon 
 Brackets 
 Quotation marks 
 Hyphens 
 Hash symbols 
 Percent symbols 
 Ampersands 
 Currency symbols 
 Maths symbols 

                                                
2 This does not translate directly into all languages: in German, all nouns are 
capitalized, whereas in many scripts (such as Arabic, Chinese, and Thai), the concept 
of case does not apply. 
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For each of these categories, a feature score was calculated as a proportion of symbol 
characters falling into the specified class. 

3.2.3. Lexical Distribution Features 

Lexical choice is another obvious manner in which communicants convey their 
intent. This is also the area in which we must take most care to avoid conflating 
effects of topical and stylistic features, as individual words (especially nouns) will 
tend to carry the bulk of topical information. 
 
In addition, some specific lexical choices are frequently indicators of more or less 
formal language. Lexical features are, for the most part, characterised as addressing 
the question of whether a given word fits into a given class, however that class is 
defined. Class frequencies are then calculated as the proportion of such words in the 
document. 
 
Each document was tokenized using the Stanford toolkit in UIMA (Ferrucci & Lally 
2004; Kano et al. 2010). For each word-level feature, each token (word) was then 
assessed against the relevant criterion to determine whether it is an example of the 
feature under consideration. In the majority of cases, this determination was by 
comparison to a lexicon of words in the class; specific feature implementations are 
detailed below. This feature set assumes that the language of the message has 
already been determined: for the current project, we assume all data is in English.  
 
Parts of speech are one step away from the surface lexical level, capturing the 
structure at a higher level of abstraction rather than the distribution of individual 
words. Previous research has shown that part of speech distribution may vary 
depending on the register of the communication, and certain distributions may be 
more indicative of (in)formality. For example, Abu Sheikha & Inkpen (2010) found 
the distribution of first- and second-person pronouns to be the most important feature 
in determining text formality, in their study across a variety of media types, with a 
higher prevalence of these pronouns in informal text. However, their study defined 
email as informal by default, so their results may not agree with ours. Certain part-
of-speech features have also been shown to be productive in studies using the LIWC 
dictionaries. Part of speech tagging was undertaken using the UIMA (Ferrucci & 
Lally 2004) framework and OpenNLP (OpenNLP 2011; Kano et al. 2010), using an 
English model. 
 
F-Score. Heylighen & Dewaele’s (2002) F-score is a linear combination of part of 
speech frequencies, normalized to fall between 0 and 100. If, as might be expected, 
the F-score is shown to capture the important information about part of speech 
distribution, then it would naturally be more efficient to simply store this result 
rather than retaining the individual POS frequencies. F-score is calculated according 
to the following formula, using information from the POS tags already generated: 
 

F = (non-deictic POS frequency – deictic POS frequency + 100)/2 
 
Out of vocabulary words are defined by comparison to a reference dictionary. 
Given a set M of the words in a message in language L, and set D which is a 
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dictionary of words from L, there are a number of reasons that a word w may be in 
M but not D. For example, this may be due to codeswitching or technical jargon or 
linguistic innovation or simple typing errors. We used wordlists generated from the 
MySpell dictionary project (MySpell 2008), which is the dictionary used for spell-
checking in Firefox. Such dictionaries are available in a variety of languages. Since 
the Enron data is sourced from a multinational corporation, and study volunteeers 
came from a variety of ethnic backgrounds, both US and UK dictionaries were used. 
A word was considered out-of-vocabulary only if it failed the spell-checker test in 
both US and UK English. 
 
Out-of-vocabulary words were then tested to see if they fit into one of the distinct 
sub-categories previously identified. 
 
Affective Lengthening is a form of linguistic innovation consisting of the repetition 
of one or more letters within a word for emphasis. Although certain words are 
commonly lengthened in this manner, there is no intrinsic limitation on which words 
can be emphasised, nor are there particular social conventions around the number of 
repetitions. A regular expression was used to identify three or more repeats of the 
same letter within a word. For tokens fitting this pattern, each repeated letter was 
replaced by single and double instances of that letter, and both of these were then 
tested against the dictionary. If a valid word was found by this method, the out-of-
vocabulary token was considered to be an instance of affective lengthening. The 
score for this feature was calculated by dividing the number of lengthened words by 
the total number of words in the message. 
 
Alphanumeric Words. A simple regular expression was used to identify tokens 
which contained both letters and numbers. The score for this feature was calculated 
by dividing the number of alphanumeric words by the total number of words in the 
message. 
 
Emoticons, although not ‘words’ in the traditional sense, fall most naturally into the 
category of lexical features. Treating emoticons as a special class of word allows for 
a proportion to be calculated in the same way as for other word classes. A set of 
regular expressions were developed to identify common emoticons within a range of 
styles (see Appendix A.1 for details). Text was tokenized, and each token (word) 
was then checked against these patterns to assess whether the token represents an 
emoticon. 
 
Deixis. Deictic expressions are those which depend on external reference in order to 
be properly interpreted. These may be temporal (‘now’, ‘yesterday’), geospatial 
(‘here’, ‘there’), or personal (‘he’, ‘you’). Texts featuring more deixis are considered 
to be less formal, because the use of deictic expressions assumes common 
knowledge that the audience will use to interpret the message. This feature overlaps 
heavily with Heylighen & Dewaele’s (2002) F-score, which was also calculated. 
However, F-score depends on reliable part of speech tagging, which does not exist 
for all languages and is not always effective for informal data. With a wordlist-based 
approach, a new language can be introduced by asking a speaker of that language to 
compile a list of examples. While this may not be perfect, it is nevertheless a more 
pragmatic approach for less commonly taught languages. For use in this work, a list 
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of deictic expressions was compiled from examples in the literature; the full list can 
be found in Appendix A.2. 
 
Hedges. A list of hedging expressions was compiled from examples in the literature 
and ESL sites. We took a very broad definition of hedging strategies, erring on the 
side of inclusion, to generate a wordlist against which tokens could be compared. 
This list can be found in Appendix A.3. 
 
Politeness. In English this is a very limited feature, compared to some other 
languages, but we included words such as ‘please’, ‘thanks’, and ‘sorry’ which 
express explicit acts of politeness. Polite words used are listed in Appendix A.4. 
 
Expletives. A list of English swearwords was harvested from online resources, and 
manually edited to give a condensed list of terms which are typically used as swear 
words. This was based on intuition rather than hard evidence, and erred on the side 
of excluding words with a common non-taboo use (e.g. ‘bull’), on the basis that 
words which exist only as swearwords (e.g. where the literal as well as expletive 
sense is also considered taboo, such as ‘fuck’ and ‘cunt’) tend to represent the most 
extreme language. The list of expletives used can be found in Appendix A.5. Future 
work could investigate more rigorous methods of identifying whether a word is 
being used as an expletive in a given context; studies have shown that the wordlist-
matching baseline can be slightly exceeded by a topic-modelling approach (Xiang et 
al. 2012, Sood et al. 2012). 
 
Contractions. Contractions such as ‘don’t’ and ‘they’ve’ are standard English, and 
as such, will pass the spellcheck test. Nevertheless, these are more informal than the 
uncontracted forms ‘do not’ and ‘they have’, and as such, their use is worth 
investigating. In English, contracted forms contain an apostrophe to indicate the 
missing letters, so a wordlist was generated by taking all entries in the dictionary file 
from (above) which contain an apostrophe, and then manually editing the list to 
remove any instances (primarily foreign loan-words) which were not in fact 
contractions. The final list can be found in Appendix A.6. 
 

3.2.4.  Tag Questions 

Questions are an interesting discourse feature in their own right, but as discourse 
features tend towards the functional, we did not generally address them in this 
project. However, tag questions are a question type of particular interest, taking the 
distinctive form of ‘You’re coming, aren’t you?’ or ‘He didn’t, did he?’ where a 
short question follows a declarative sentence form.3 
 
Tag questions may be used in a literal sense, to request clarification, but they are 
frequently employed as hedges: in the hedging context they do not require an 
answer. It is in the case of hedging that they become a stylistic feature, and more 
likely to indicate features of relevance to our studies, such as deference. 
 
                                                
3 Tag questions also exist in a number of other languages, although they take several 
different forms, such as ¿no? in Spanish and nicht war? in German. 
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Moore & Podesva (2009) examine the use of tag questions in a school environment, 
and find significant variation in the frequency and mode of tag use at both an 
individual and group level. This reinforces the general point that it is likely to be 
variation from the individual’s usual style which says the most about their 
relationship to any particular interlocutor. 
 
Ladd (1981) distinguishes nuclear and postnuclear tag questions as two distinct 
categories in speech, identified by their differing patterns of intonation and prosody, 
which typically have different semantic functions. For example, “Jane’s coming, 
isn’t she?” (postnuclear) as distinct from “Jane’s coming isn’t she” (nuclear), where 
the additional pause and questioning intonation indicates additional uncertainty in 
the postnuclear example. In particular, the postnuclear form is that which is more 
likely to convey hedging, and features a stronger break before the question part of 
the utterance. It is beyond the scope of the current project to computationally 
identify the pragmatic purpose of every utterance in text, so for now we consider all 
tag questions as equal, however in identifying tag questions we limit ourselves to the 
case where there is a comma before the question (indicating a break, and therefore 
more likely to be the nuclear variety). However, as we can never be certain that a tag 
question is being used for hedging, this was kept as a separate feature in its own 
right, rather than being incorporated into the count of hedges. 
 
For the purposes of this project, we built a feature extraction engine to identify tag 
questions in English text, using a sequence of part-of-speech tags and punctuation 
marks. To identify the most common form of tag question in English, the required 
pattern is: 
 
comma – verb – (optional) negation – personal pronoun – question mark 
 
Example tag questions: 
 
, is n’t it ?  
, are  you ?  
, did  he ?  
, was n’t there ?  
 
This was subsequently extended to include syntactic variants of the form ‘did you 
not?’ where the negation is expressed in full rather than as a contraction, requiring a 
change in word order. 
 
The accuracy depends in part on the success of the underlying POS tagger. We used 
the OpenNLP tagger (OpenNLP 2011) as this gives a granular output when dealing 
with contractions, labelling the model verb and the negation separately, which is 
required for the above algorithm to succeed, whereas the Stanford tagger (Manning 
et al. 2014) labelled the entire contracted form as a single token. Using OpenNLP 
therefore enabled a more reliable result for tag questions. 
 
To verify the output of the tagger, we ran an experiment using the Switchboard 
corpus, a data set which has been manually annotated for dialogue acts (Jurafsky et 
al. 1997). Tag questions are indicated with a ^g marker. The Switchboard corpus 
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contains 384 files which contain the tag question marker ^g, and 575 individual lines 
are tagged as containing a tag question. 
 
Of the tag questions returned by our annotator, all 137 were obviously good 
examples. More interesting are the instances which were missed by the annotator, 
but marked as tag questions by the human annotators responsible for creating the 
Switchboard annotations. 143 cases had a recognisable tag question form, but with 
patterns of punctuation that did not meet our specified constraints. In 83 cases, there 
was no comma preceding the tag question, and in 76 cases there was no question 
mark at the end (16 examples fell into both of these categories). As the Switchboard 
corpus is transcribed speech, the punctuation is down to the transcriber, and has 
nothing to do with the actual speaker. 227 examples were reduced tags, consisting of 
a single word (212, or 93%, of which are accounted for by the forms ‘right?’ or 
‘huh?’). At present we do not consider these forms in our analysis. Additionally, 44 
examples were junk and contained no discernible question, and 25 consisted of a 
different question which did not meet our pre-defined syntactic patterns. Common 
examples of the latter case include ‘you know?’ ‘you mean?’ and ‘do you think?’. 
 
Parse failures are also responsible for some cases of a tag question being missed. If a 
sentence as a whole is not successfully tagged with parts of speech, the tag question 
annotator has nothing with which to work. However, attempting to correct for parser 
errors is out of scope for this project. 
 
In the vast majority of cases, when tags were not identified from the Switchboard 
corpus data, this was due to the punctuation constraints which we have deliberately 
specified. It is worth a brief investigation into the effects of relaxing these rules. For 
example, foregoing the question mark requirement (while still requiring some 
sentence-final punctuation mark) retrieves 59 additional, genuine tag questions, and 
only two false positives. (198 total returned.) Removing the comma constraint results 
in 45 genuine tag questions being identified, and one false positive. In either case, 
this relaxation results in an increase to recall at minimum cost to precision. On the 
other hand, simultaneous removal of both constraints results in 246 false positives 
and a drop of precision to 51%, which is clearly not ideal for most purposes, even 
though the recall correspondingly increases to 91.4%. 
 
 
 Recall (%) Precision (%) F1-score 

Strict 48.9 100.0 65.68 

relax question 70.0 99.0 82.01 

relax comma 65.0 99.4 78.60 

relax both 91.4 51.0 65.47 

relax either 85.0 98.3 91.17 

Table 2: Results of tag question detection on the 
Switchboard corpus. 

 
Figure 9: Detecting tag questions, precision versus 
recall. 
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As shown in Table 2 and Figure 9, if the goal is solely to maximise F-score of the 
tag questions annotated in the Switchboard data, the optimal balance between 
precision and recall is obtained by allowing a relaxation of either punctuation 
constraint, but not both. 
 
However, we made a conscious decision to include only those tag questions which 
are preceded with a comma, in order to maximise the chance of identifying nuclear 
tag questions used for hedging, rather than for questioning. We can maintain this 
distinction and still gain a significant performance increase by allowing instances 
where the tag question is terminated by punctuation other than a question mark. 

3.3. Feature Standardisation 

In our examination of the theory, we have noted that different people use language in 
different ways, leading to personal idiolects. Our second hypothesis is that, in many 
cases, the difference between idiolectal preferences would be expected to 
overshadow the subtle variations generated as a particular individual reacts to 
situations of varying status and hierarchy: 
 

H2: Differences from the individual’s normal behaviour will be more 
informative than absolute feature scores, for predicting relationships.  

 
For example, consider a message containing a single mild swearword. This has a 
rather different meaning if the sender is someone who almost never swears, 
compared to if she is someone for whom half a dozen curse-words is the norm. For 
the first sender, the swearing is marked: it is likely to indicate a high level of 
informality, and possibly an unusual level of stress or excitement. For the second, 
even though swearing is generally an indicator of informality, this particular 
message may actually be at the more formal end of their communicative spectrum. 
 
This example neatly illustrates why it is digression from the idiolect, rather than 
absolute value, which is likely to be most informative. 
 
To measure the importance of individual variation, we take the approach of 
standardising each feature by sender, such that each sender’s feature distribution will 
be adjusted have a mean of 0 and a standard deviation of 1. This is achieved as per 
Equation 1. 
 

(Equation 1) 
 
where xi

A represents a particular instance of person A using feature i, µi
A is the mean 

value of feature i across all communications originated by person A, σi
A is the 

corresponding standard deviation across all of A’s communications, and n is the 
number of features for which standardisation is undertaken. 
 
By adjusting each feature to a common distribution in this manner, we can more 
easily distinguish variations relative to the personal idiolect of the individual. 
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Having generated per-author standardised feature sets, we can then compare the 
results to results from the raw scores. If H2 is correct regarding the interaction of 
idiolect and audience-adjustment, we should see a consistent improvement from 
standardising feature scores in this manner. 

3.4. Machine Learning Approaches 

Machine learning techniques can be divided into supervised and unsupervised, 
depending on whether use is made of examples previously labelled with some 
catagorical ‘truth’ to which a model will be fitted (the supervised context), or 
whether the goal is to uncover structure within the data without any preconceptions 
(unsupervised approaches). 
 
In this instance, since we have a number of labelled examples, supervised 
approaches will be the appropriate choice to enable us to predict classes and assess 
the accuracy of our predictions, as well as providing a model that could be used in an 
eventual application. 
 
As we will need to explore a large number of variations in our feature sets, it is 
important to identify a suitable methodology that will allow comparison of results 
under different experimental conditions. Our interest is in the predictive power of 
our features; the central goal of our research is not to compare the efficacy of 
different classifiers or to fine-tune parameters to optimise classifier performance, so 
we will not devote much time to these matters, although this kind of optimisation 
would obviously be required for a practical application. 
 
Additionally, we can concieve of our classification task in two distinct ways: as a 
three-way classification (upwards, downwards, or level communication) or a series 
of binary classifiers (whether a message represents an example of hierarchical or 
level communication; and if hierarchical, whether it is directed upwards or 
downwards). This gives three possible avenues of exploration. 
 
We conducted an initial categorisation experiment to compare the performance of 
different classifiers using 10-fold cross-validation on a subset of the Enron corpus, 
using the WEKA framework (Hall et al. 2009). Note that this was not the same 
Enron dataset which we used for our eventual experiments, as we conducted this 
initial test at a very early stage, before we had cleaned and extracted our final 
dataset. We tested both three-way classification and the alternative binary classifiers. 
These initial results are plotted in Figure 10. This indicated that a Random Forest 
classifier would provide the best balance of accuracy and speed, providing the best 
performance in two of the three cases. It was therefore determined to use random 
forests for the bulk of the classification experiments. It may be appropriate to revisit 
this decision in future, in particular if an end-to-end application were to be built, at 
which point it would become more relevant to optimise performance using the 
finalised feature set. 
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Figure 10: Comparison of performance of different classifiers 

 
We also tested the stability of our results using different data partitions. Once we had 
completed cleaning the Enron data, we generated fifty additional pairwise-
partitioned data sets from our corpus, and conducted 10-fold cross validation with 
each resulting set. We tested this using the 3-class task, using raw (unstandardised) 
scores. Results are plotted in Figure 11. Accuracy ranged from 36.62% up to 
38.98%, with a mean of 37.74 and standard deviation of 0.58, while F-measure 
ranged from 0.340 to 0.368, with a mean of 0.353 and standard deviation of 0.006. 
From this we can see that our primary dataset, with accuracy 37.66% and F-measure 
of 0.356, is fairly representative, within one standard deviation of the mean in both 
dimensions. 
 

 
Figure 11: Stability of accuracy and F-measure results on the Enron corpus, using different data partitions. 
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3.5. Aggregation of Feature Scores 

Our intuition is that a single prediction for each relationship will be more effective 
than individual predictions at the message level, due to the additional information 
that is available when predictions from multiple messages are used in combination, 
to provide a single prediction for each pair of interlocutors. This gives rise to our 
third hypothesis: 
 

H3: Prediction of hierarchical relationships will be more effective at the 
pairwise level than at the level of individual messages. 

 
In order to test H3, therefore, we require a method of aggregating individual message 
predictions into a single classification for each relationship. The most basic method 
of combining scores is to use a ‘voting’ method. For example, given a set of twenty 
messages between A and B, we might have the following output from our individual 
message classification: 
 

A to B upwards: 7 downwards: 2 level: 1 
B to A upwards: 4 downwards: 6 level: 0 

 
Based on these numbers, we would have one vote for an equal relationship, and 19 
for a hierarchy. Looking further into the hierarchical evidence, we find 7 + 6 = 13 
votes for A being subordinate to B, and 2 + 4 = 6 votes for B being subordinate to A. 
 
In this case, if A is indeed B’s subordinate, we have the potential to turn 65% 
message-level accuracy into a single correct prediction at the relationship level. Of 
course, the converse of this is that when we get it wrong, we will be degrading our 
overall performance. 
 
For each relationship, taking the case with the highest number of supporting 
evidence points is the simplest method of aggregation. We will call this ‘simple 
plurality voting’, by analogy with electoral systems such as first-past-the-post, in 
which an absolute majority is not required. 
 
It is also possible to reqiure a majority agreement, which we will call ‘simple 
majority voting’. This will often result in fewer instances being classified, but with 
hopefully higher confidence. 
 
In general, simple plurality voting and majority voting can both be considered as 
instances of a threshold-based system. For plurality, the applicable threshold is 0.333 
(under three-way classification, the minimum number at which one class can 
outnumber both others), whereas for a majority, the threshold is 0.5. It should be 
possible to select a threshold value to adjust the balance between coverage and 
accuracy. 
 
Another possibility is that the data may appear to rule out one class, without deciding 
clearly between the remaining two possibilities. For example, it could be clear that a 
relationship is hierarchical, but not in which direction; likewise it may be clear that 
A is not positioned above B in the hierarchy, but not whether the two are in fact 
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peers or whether B is A’s superior. We should investigate whether these less-precise 
assertions can be made with greater confidence. 
 
For the speech and online chat data, we have balanced datasets due to the dialogic 
nature of the interactions: for all pairs, we have approximately the same number of 
utterances from A to B and from B to A. This is not true for the Enron data, which is 
often heavily unbalanced, whether due to actual differences in productivity or 
differences in corpus coverage. It is worth examining the effect of such imbalances 
on voting methods. 
 
We will assess the impact of all these techniques on our data, as appropriate. 

3.6. Identifying Power Flow in Graphs 

Our fourth hypothesis, much like H3, concerns the idea that more information should 
enable more accuracte predictions. In this case, we turn our attention to the graph of 
predictions across the whole network, and the idea that we can be more confident in 
predictions which are logically consistent with other predictions in the same 
network. 
 

H4: Relationship classification in a hierarchical situation will be aided by 
consideration of whole-network characteristics. 

 
To test H4, we consider the possibility of improving our predictions by looking for 
inconsistencies in power predictions. We will approach this by examining the overall 
shape of the graph resulting from the predictions.  
 
There is a large body of existing work on training a prediction model based on the 
metadata of a communication graph (Rowe et al. 2007; Gallagher 2010; Agarwal et 
al. 2012), and we have no intention of replicating this work here. Rather than 
examining the underlying communication graph, we are rather interested in creating 
a graphical representation of our relationship predictions, and using this to determine 
whether our predictions are self-consistent. 
 
In particular, a simple conceptualisation of power is as a transitive relation: if A is 
senior to B, and B is senior to C, then A is senior to C. Although this does not 
incorporate any of the complexities of human interactions, it should be broadly true 
in the context of a hierarchical organisation. Therefore, upon constructing a graph of 
our relationship predictions, if we encounter points in the graph where this 
transitivity is not upheld, this is likely to indicate either a mistake in our predictions 
or a relationship that is unusual in nature, perhaps due to the social sphere interfering 
with the professional. 
 
Represented graphically, with directed edges to indicate seniority, we should observe 
the transitive relationships as illustrated in Figure 12, where if A is senior to B, and 
B is senior to C, then A is also senior to C. If our relationship-level predictions 
suggested that C was senior to A, then in graphical terms, we would have a loop 
(Figure 13), which is a strong hint that one (or more) of the directed links could be 
incorrect. 
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Figure 12: The expected shape of a power graph 

 
Figure 13: A loop, such as we would hope not to 
find in a power graph

In a small network, anomalies of this kind can be spotted by eye, but as the number 
of links in the network grows, this becomes increasingly unfeasible. One 
mathematical method for identifying such areas in the graph is to calculate flows and 
tensions (Kochol 2004). Flows are defined as directed cycles within the graph, and 
the tension of a graph is defined as the acyclic component which contains no such 
cycles, relative to any arbitrary reference orientation. For the tension component, the 
sum of the labels on any cycle within the graph will be zero. Any graph can be 
decomposed into a single tension component plus some number of flows; the edge 
weights retained by the tension component can be interpreted as giving the strength 
of the (directed) relationship, or in our terms, the level of relative seniority. In the 
context of an organisational hierarchy, we would expect to have greater confidence 
in relationships in the tension component, as these are mutually supportive. 
 
The concept of flows and tensions naturally applies to a weighted, directed graph. In 
the case of an unweighted directed graph, we can use weights of 1 to indicate the 
direction of the link. Note that in a directed graph, a weight of -1 from A to B is 
equivalent to a weight of 1 from B to A. There are two plausible ways in which to 
construct power graphs from the predictions we have made in earlier chapters. The 
first and simplest option is to generate a single edge between each pair based on 
aggregate results, using input edge weights of 1 (upwards), -1 (downwards) or 0 
(level). The second is to create weighted edges between each pair, with the weight 
based on individual message predictions. We will assess the output of both of these 
approaches. 
 
Figure 14 shows a simple example of a tension-flow decomposition in a graph 
without any cyclic paths. Even though there are no awkward cycles in this graph to 
be mitigated, the resulting tension graph gives different weightings to the edges, due 
to the fact that there is a direct path from node A to node E, but that there is also a 
path A-D-E. This seems to back up the intuitive understanding that if A is senior to 
D, and D is senior to E, then not only is A senior to E, but A is correspondingly more 
senior to E than to D, as represented by the higher number on the link between A 
and E. Note that a flow component is also extracted; this is not to be taken as 
evidence that these links are not valid, as these nodes are still linked into the tension 
component. 
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Figure 15 demonstrates the effect of reversing a single link, to create a graph that is 
no longer naturally interpretable as a hierarchical system. The tension component no 
longer takes in all the nodes, once edges of weight zero are removed: note that nodes 
D and E are no longer part of the tension component, and the links A-D, D-E, and E-
A have all been removed. In this case it is the omission of certain nodes/links from 
the tension component that is the most significant, although we can look at the 
related flow component to better understand the source of the complexity. In a non-
trivial graph, complete removal of nodes from the tension component in this manner 
may be comparatively unlikely, as it results only for members of a perfectly-
balanced loop. However, when links are omitted from the tension component, this is 
the equivalent of saying we cannot make any prediction for the power relation that 
would have been represented by the link in question. 
 

 
Figure 14: Decomposition of a simple graph into tension (left) and flow (right) components. 

 

 
Figure 15: Graph decomposition into tension (left) and flow (right) components, with a loop. 

 
We use Waters (2013) software implementation in Java to calculate flows and 
tensions for the graphs. We will use this to test H4 by calculating flows and tensions 
over the graphs which we will construct from our relationship-level predictions, in 
order to test our predictions for self-consistency. If H4 is supported, we would 
expect to find that self-consistent predictions (reflected by their scores in the tension 
component) give a more confident prediction than those predictions which contradict 
one another. 

3.7. Linguistic Accommodation as Movement in Vector Space4 

Our fifth hypothesis concerns variation of a speaker’s linguistic style relative to their 
interlocutor, and derives from communication accommodation theory (Giles 1973) 
and previous work on linguistic accommodation (Bunz & Campbell 2004; Danescu-
Niculescu-Mizil et al. 2012). Convergence in speech or non-verbal behaviours has 
resulted in a perception of increased similarity between interactants (Giles 2008; 
Welkowitz & Feldstein 1969), while convergence in non-verbal behaviours 
                                                
4 This section is based on work undertaken in collaboration with Kate Muir, Simon 
Jones, Adam Joinson (University of the West of England), and Nigel Dewdney 
(University of Sheffield) and was first published in Jones et al. (2014). 
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(mimicking body language, facial expressions, or gaze) has been associated with 
feelings of rapport between interactants (Lakin & Chartrand 2003). However, little 
prior work has focused on the factors which effect the likelihood of linguistic style 
accommodation taking place within any given interaction. We will examine the 
impact of social power in particular, in order to test our fifth hypothesis: 
 

H5: Linguistic accommodation behaviour is partially motivated by relative 
social power, therefore greater accommodation of linguistic style will 
correlate with lower social power. 

 
To test H5, we will consider the relationship between accommodation of linguistic 
style and social power structures, using a vector space model of linguistic 
accommodation. 
 
Language Style Matching (LSM) is currently the most prevalent method of 
measuring accommodation of linguistic style. To calculate LSM, one simply takes 
frequency of function word use for a pair of interlocutors, and measures the absolute 
distance between the two. Equation 2 gives the LSM calculation for prepositions, as 
used by Ireland et al. (2011), where preps1 and preps2 represent the count of 
prepositions used by the first and second speaker respectively. 
 

(Equation 2) 
 
LSM provides a single score per pair of individuals, which has been shown to 
correlate with social outcomes, but this metric does not capture the extent to which 
one or both of the individuals concerned may have adjusted their personal style in 
order to reach this position. As such, it cannot really be described as a measure of 
linguistic accommodation. Figure 16 gives a pictorial illustration of how symmetric 
accommodation (top line) between two parties could result in the same absolute 
LSM value as asymmetric accommodation (middle), or even divergence (bottom). 
 

 
Figure 16: An illustration of how different accommodative behaviours could result in the same absolute score 

using Linguistic Style Matching (LSM). 

 
Turn-by-turn measures of linguistic similarity (Niederhoffer & Pennebaker 2002; 
Danescu-Niculescu-Mizil et al. 2012) have been used to add a temporal component 
to the analysis. The theory behind this approach is that if LSM, or any other 
linguistic similarity metric, is calculated sequentially, the delta in these scores from 
turn to turn will represent an individual’s movement towards or away from their 
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interlocutor. This allows for a more detailed examination of conversational 
dynamics, in particular it is possible to see how linguistic co-ordination varies 
throughout the course of a dialogue. However, this method does not account for the 
fact that individuals may pre-emptively accommodate towards their perception of 
another’s likely style (based on social group stereotypes) even during their first turn 
in the conversation, a phenomenon which has been previously observed in studies of 
behavioural mimicry (Willemyns et al. 1997). 
 
Additionally, there is no existing method that accounts for the inherent tendency of 
an individual to accommodate (or not) in their use of language, which may be a 
salient feature when interpreting raw scores. If an individual has a tendency to adjust 
her language during every exchange to perfectly match her interlocutor, then her 
doing so is less significant, and we would be unable to draw conclusions about social 
power based on her behaviour. On the other hand, for someone who is not generally 
prone to accommodation, a numerically much smaller shift might be highly 
informative. 
 
To address these limitations, we therefore propose that it is necessary to construct a 
metric which includes not only a model of an individual’s baseline linguistic style, 
but which also captures the individual’s tendency to accommodate. 
 
We achieve this by means of the Zelig Quotient, a measure for normalizing linguistic 
variation using a vector space model (Jones et al. 2014). A vector space approach is 
a natural fit for this problem, since we have a set of point measurements (feature 
scores) and we are interested in how these change over time (movement in feature 
space). Since we wish to distinguish convergence and divergence, as well as over-
accommodation, the direction of movement in vector space is important to our 
model.  
 
The Zelig Quotient is named for Leonard Zelig, the central character of the Woody 
Allen film Zelig, who is described as “the human chameleon” due to his propensity 
for taking on the characteristics of other people. This is the logical extreme of 
accommodating to one’s audience. An author who always adopts the language style 
of the intended reader is totally Zelig-like, whereas an author who does not adapt at 
all has zero likeness. Divergence represents opposite behaviour to Zelig (moving 
away from the audience), which is represented by negative Zelig scores. Over-
accommodation occurs when the author adopts elements of linguistic style of their 
intended reader, but emphasises to the point of overuse; this is represented by scores 
greater than 1. 
 
The Zelig Quotient is based on vector modelling, thus showing the extent to which 
an individual changes their linguistic style from their ‘typical’ or baseline style, to 
move either towards or away from each of their conversational partners. The average 
Zelig score across all conversational partners can then be used to demonstrate the 
individual’s general tendency to accommodate their language use to that of others. 
 
We wish our results to be comparable with earlier studies using linguistic style 
matching (LSM), and therefore we do not measure accommodation across the full 
range of stylistic features described in section 3.2. Rather, we use nine function word 
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categories from LIWC (Pennebaker et al., 2007), as enumerated in Table 3, to enable 
direct comparison with earlier work (such as Ireland et al. 2011).  
 

LIWC Category  Examples 
Personal pronouns  I, his, their  
Impersonal pronouns it, that, anything 
Conjunctions and, but, because 
Auxiliary verbs shall, be, was 
Articles a, an, the  
Prepositions in, under, about 
High frequency adverbs very, rather, just 
Negations no, not, never 
Quantifiers much, few, lots 

Table 3: LIWC features for measuring linguistic accommodation 

 
We assume an author has a latent linguistic style resulting in a baseline value for 
each of our stylistic features. However, we expect variation in the observed values 
due to sampling, an author’s natural variation, constraints of message content and 
format, etc. as well as any movement due to accommodation. We can estimate a 
baseline value for a specific feature, µf , by averaging over all the messages we have 
for an author a. Previous research has used a similar technique for establishing the 
baseline level of a lexical item in a dialog in order to study accommodation (Church 
2000; Stenchikova and Stent 2007). 
 

(Equation 3) 
 
where m is a message, na is the number of messages sent by author a and fm(a) is the 
feature value in m. 
 
We can further estimate the proportion of variance due to ‘noise’ and that due to 
accommodation by also calculating the average feature values on an author-reader 
(a, r) pairwise basis. 
 

(Equation 4) 
 
where nar is the number of messages written by author a to reader r. 
 
Measuring the variance within a pair and then averaging over all pairs that author is 
party to gives an estimate of the natural variation in feature value for an author. 
 

(Equation 5) 
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The movement in a feature due to accommodation is simply taken to be the 
difference between the value seen within a communicative pair, and the author’s 
baseline value.  
 
Having calculated scores for several features, some of which may change more 
readily than others, we can consider authors as having corresponding points in an F-
dimensional feature space described by the vector of feature values. For our 
purposes, this is a 9-dimensional space, but this technique could easily be 
generalised to measure accommodation in more (or entirely distinct) dimensions. 
The generalised phenomenon of accommodation can then be measured in terms of 
movement in this feature space, rather than movement in individual features. Note 
that to avoid bias towards the effect of particular features when considering overall 
movement, feature scales must be comparable.  
 
We represent movement and distances between the author’s baseline position, 
accommodated position, and the reader’s position as vectors in the feature space:  
 

 
 
We use the law of cosines to yield the cosine of the angle between the vector 
connecting the reader to the author’s baseline position, and that connecting the 
reader to the author’s accommodated position. The angle will be greater than 90◦ if 
the author has over-accommodated, and will therefore have a negative cosine value. 
However, the dot product of these two vectors gives the cosine of the inner angle. 
Therefore, normalising by this gives a value of +/- 1 according to whether 
accommodation movement is less or more than the amount required to meet the 
reader.  
 
Multiplying the accommodated distance by this +/-1 factor gives us a definition of 
an accommodation metric that expresses the accommodation as the change in 
directed distance from the reader, proportional to the amount required from the 
author’s unaccommodated position. This may be greater than 1 (over- 
accommodation) or less than zero (divergence). In vector notation we define 
accommodation as:  
 

(Equation 6) 
 
The dot product of !" and !" is zero if the two vectors are orthogonal. However this 
is matched by a zero value in the numerator and we take the final parentheses value 
in Equation 6 to be 1 in this case. In the other pathological case where |!"| is zero, 
the implication is that author and reader have the same preferred position, i.e. there is 
nothing meaningful to say about accommodation between the two.  
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Having estimated author to reader accommodation, we are now in a position to 
estimate how readily the author adapts to others, by averaging over the set of 
readers. This gives us our Zelig factor, Z.  
 

(Equation 7) 
 
A positive (+) Zelig Quotient signifies the author readily accommodates, with a 
Zelig Quotient of 1 indicating the author always adapts their linguistic style to that of 
their audience. A negative (-) Zelig Quotient suggests divergence in the author’s 
linguistic style (moving away from the audience).  
 
Significance of values can be estimated from the variance. Here we take movement 
beyond one standard deviation of the authors total message distribution. The 
significance of an author’s Zelig Quotient then follows from averaging the variance 
seen over the pairs the author is party to.  
 

(Equation 8) 
 
This model assumes that there are latent baseline distributions for feature values but 
does not suggest a generative function. Further work will determine appropriate 
distribution models for features, to be parameterised from the estimation methods 
presented here.  
 
Having developed a vector approach to linguistic accommodation, we are now in a 
position to test H5 by applying this approach to conversations with known social 
power dynamics. 

3.8. Discussion 

We have now laid out the underlying methodological approaches for testing our five 
hypotheses. The results of these experiments are discussed in the following chapters. 
 
Chapter 4 considers the task of predicting social power from a single message, 
whether this is an email, a spoken utterance, or a turn in an online chat room (H1) 
and examines the effect of standardising feature scores on a per-author basis (H2). 
These experiments are repeated across three datasets to allow comparison across 
genres: we use a subset of the Enron email corpus, the Muir-Joinson speech corpus, 
and the Muir-Joinson CMC corpus. 
 
Chapter 5 considers methods of aggregating information from multiple messages in 
an effort to increase confidence in our results, both through aggregation of 
predictions (H3) and through graph analytics (H4). The message predictions 
generated in Chapter 4 give the input to these methods. Chapter 6 takes a different 
approach to the intersection of linguistic style and social power, examining the 
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relationship between an individual’s power role and their tendency to accommodate 
their use of language (H5). 
 
In combination, these experiments will provide an overview of the impact of social 
power on stylistic choice, and should develop a solid foundation for future work. 
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4. Message-Level Categorisation 

Our primary hypothesis is that we can infer a social relationship from aspects of 
linguistic style: 
 

H1: Stylistic choice is a key method of expressing relationship-building, 
therefore relationship information can be inferred from linguistic style. 

 
To test this, we use the datasets described in section 3.1 and the features described in 
section 3.2, and attempt to predict social power based on style features. The task of 
identifying relative power from text can be conceptualised as a categorisation 
problem. Relationships within an organisational hierarchy can be, simplistically, 
characterised as ‘hierarchical’, where a power differential exists, or ‘level’, where 
two colleagues are approximately equal in status. A given message may have been 
sent up the hierarchy to a more senior member of staff, down the hierarchy to a 
junior, or between two peers in an equal relationship. At the message level, then, this 
problem can be described as a three-class categorisation task. 
 
It is also possible to consider three-way categorisation as two sequential binary 
classifiers: firstly to determine whether a message exists in a hierarchical or peer-to-
peer context, and secondly for hierarchical messages, to determine the direction of 
the hierarchy: relative performance on these two tasks may give an indication as to 
where overall performance could be improved. 
 
At the same time, we will consider our second hypothesis, which relates to 
individual variance of linguistic style: 
 

H2: Differences from the individual’s normal behaviour will be more 
informative than absolute feature scores, for predicting relationships.  

 
In order to test H2, we will run our categorisation experiments again using feature 
scores that have been standardised by author; if H2 is upheld, we expect to see a 
performance improvement under this condition. 
 
We used the WEKA implementation of the Random Forest classifier (Hall et al. 
2009) for all of the experiments in this chapter. 

4.1. Enron Emails 

Our first case study is of the Enron email corpus. During the data preparation phase, 
we prepared three separate sets of ten-fold data splits: one completely randomised at 
the message level, one split by sender-recipient pair, and one split by senders. 
 
We perform ten-fold cross-validation for each of our three cases, using both raw and 
standardised feature scores in each case. The results are plotted in Figure 17. 
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Figure 17: Enron corpus 3-way classification results, effects of standardisation under different data partitioning 

scenarios. 

We expected to observe a general decrease in performance as the partitioning 
becomes more stringent, however, we note the surprising result that performance is 
actually slightly higher on the sender-partitioned data than the pairwise partitioning, 
for both raw and standardised data. It is not clear why this might be the case, and 
indeed this was not observed in preliminary tests (using an earlier selection of 
features), so this may be an artefact of the particular data partitioning. 
 
It is interesting to note that the standardisation of features brings the pairwise- and 
sender-partitioned scores up to approximately the same level as the raw scores in the 
random case. This suggests that the standardisation may be compensating somewhat 
for the decrease in performance that follows from more rigorous partitioning. 
However, random partitioning also exhibits a significant increase when features are 
standardised, providing additional support for the validity of the standardisation 
approach. 
 
We will focus primarily on the pairwise partitioning, as this represents the most 
likely case in a real-life scenario: one may have partial information about an 
organisation’s hierarchy, and wish to build a model from this to predict the relative 
positions of unknown individuals within the same organisation. And we use the 
standardised feature scores, as these produce consistently better results. Our overall 
accuracy under this condition is 41.34%, which although not fantastic performance, 
is nevertheless above the random baseline of 33.3%, and narrowly beats the most 
common class baseline of 41.17%. 
 

 
upwards downwards level 

upwards 354 93 1469 

downwards 145 294 1038 

level 392 270 1712 

Table 4: Confusion matrix for pairwise partitioned, standardised data, 3-way classification 
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Examination of the confusion matrix for the pairwise-partitioned, standardised data 
clearly shows that the majority of mis-classification is down to messages being 
incorrectly placed into the ‘level’ category (Table 4). Although ‘level’ 
communications do make up the largest class of the training data, representing 
41.17% of messages, the classifier applies the label to 73.16% of results. This bias 
was not corrected by experimenting with an artificially balanced dataset: the 
tendency to incorrectly classify messages as ‘level’ persists even when it is not the 
majority class in the training data, and may be because ‘level’ messages tend to be 
more neutral in style, in a manner that may also be employed as part of a range of 
communication strategies used by participants within a hierarchical relationship. 
 
The three-way classification problem can alternatively be considered as the 
concatenation of two sequential binary classifiers: one to distinguish hierarchical 
from peer-level messages and the second, for messages with a power differential, to 
distinguish between those going upwards or downwards in the hierarchy. This view 
of the problem space allows for a more nuanced understanding of the contributing 
features and their interactions. 
 
To train a classifier to distinguish hierarchical from level communications, we begin 
by relabelling the data, assigning all ‘upward’ and ‘downward’ messages into the 
‘hierarchical’ category. This gives us a dataset of 3393 hierarchical messages, and 
2374 level. Note that we use the same partitions for cross-validation as in the three-
class task: we have simply relabelled the data. Our random baseline for this task is 
50% and the most common class baseline is 58.8%. 
 

  

Figure 18: Enron corpus, hierarchical versus level classification, effects of standardisation under different data 
partitioning. 

 
 
We repeat the comparison of results under the three different partitioning conditions, 
with and without standardisation. Again, we observe an improvement for 
standardised results in all cases, although the increase is most significant under 
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random partitioning, but only a couple of percentage points for the pairwise- and 
sender-partitioned cases. 
 
As before, we select the standardised and pairwise-partitioned data to examine in 
more detail. The resulting confusion matrix shows that we are still seeing very 
unbalanced results. 
 

 hierarchical level 

hierarchical 2876 
(84.76%) 517 

level 1935 439 
(18.49%) 

Table 5: Confusion matrix for hierarchical versus level classification 

 
In the hierarchical case, individual feature ablation results in a small decrease in 
performance for every feature which is removed. The top ten features from ablation 
can be divided into punctuation choice (semicolons; question marks; exclamation 
marks; hyphens; uppercase letters), length features (characters per word; number of 
sentences), and some parts of speech (determiners; adjectives; prepositions). Choice 
of punctuation and length features, in particular, are very much open to variation of 
individual choice, as evidenced by their value in the authorship attribution task 
(Grieve 2007; Stamatatos et al. 2001). 
 
For the second stage, we use only those messages which are genuinely hierarchical 
in nature, and endeavour to distinguish those which are sent upwards versus 
downwards in the hierarchy. This gives us a smaller dataset than we have dealt with 
previously, consisting of 1916 upward communications and 1477 downward. The 
most common class baseline for this task is 56.5%, while the random baseline 
remains 50%. 
 
Again, we use the same divisions of the data for ten-fold cross validation, in the 
three cases of random, pairwise, and sender partitioning. 
 

 
Figure 19: Enron corpus, upwards versus downwards communications, comparison of partitioning and 

standardisation results. 
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The first thing we note is that the difference between raw and standardised scores is 
larger in this case than in the hierarchical condition. 
 
This is also the only segment of the task with a direct analogue in previous literature: 
Bramsen et al. (2011) report 78.1% accuracy on an upspeak/downspeak classifier 
using a mixture of word n-grams and part of speech n-grams, using a subset of the 
Enron corpus partitioned by sender. Note that although we match their case as far as 
possible, we are unable to guarantee the same subset of the Enron emails, nor the 
same ground truth regarding roles, as Bramsen et al. do not publish exact details of 
their implementation. While our results are much lower (57.71% for the sender 
partitioned case), we are using only 40 stylistic features, contrasted with the almost 
unconstrained size of an n-gram model. This difference in performance may be 
characterised as the cost of excluding topical information, ‘what is communicated’ 
as opposed to ‘how it is conveyed’. 
 
Examining our pairwise partitioned data in more detail, the confusion matrix shows a 
tendency to classify messages as ‘upwards’, resulting in 90% accuracy for actual 
upward messages, but only 40% for those messages going down the hierarchy. 
 
 

 upwards downwards 

upwards 1725 
(90.03%) 191 

downwards 886 591 
(40.01%) 

Table 6: Confusion matrix for upwards versus downwards classification 

Feature ablation for the up-down task shows a drop in performance for only 14 of the 
available features. Again, punctuation is a productive category (quotation marks; 
exclamation marks; semicolons; colons; ampersands; full stops), as are length 
features (number of sentences; words per sentence; number of characters). Lexical 
features directly associated with politeness and (in)formality also feature more 
strongly: contractions, polite phrases, alphanumeric words, and deictic expressions 
are all present on the list. 
 
Equally interesting are the omissions: no part of speech tag categories make the list, 
nor do hedges or expletives, which are two other categories that theory suggests 
might be particularly indicative of hierarchy. In the case of expletives, this may be 
attributed to the overall scarcity of feature observations. 
 
Having examined the ablation results for both the hierarchical and up/down 
classifiers separately, we are now in a position to compare the results of these 
analyses: in particular, we are interested in which features provide the largest 
contribution in each of the two cases. We are able to compare the “Top 10” lists 
generated under each stage (Table 7). 
 
Only three features (marked by italics) make the list in both cases: percentage of 
semicolons, number of sentences, and percentage of exclamation marks. Features are 
shown in Table 7, along with the resulting drop in performance, in percentage points. 
Full ablation results are included in Appendix B. 
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Stage 1: 
Hierarchical v Level 

Stage 2: 
Upward vs Downward 

1st PercentSemicolon 
-2.16149784 

PercentQuote 
-0.986540324 

2nd PercentQuestionmark 
-1.767487066 

NumSentences 
-0.723805324 

3rd CharactersPerWord 
-1.49902995 

PercentExclamation 
-0.635587306 

4th NumSentences 
-1.466898264 

PercentSemicolon 
-0.608054922 

5th PercentDeterminer 
-1.439738716 

PercentColon 
-0.544628664 

6th PercentAdjective 
-1.340865885 

WordsPerSentence 
-0.516221101 

7th PercentHyphen 
-1.18488448 

PercentAlphanumeric 
-0.469954731 

8th PercentExclamation 
-1.158088441 

PercentAmpersand 
-0.392623103 

9th PercentUppercase 
-1.154132564 

PercentLetter 
-0.370076188 

10th PercentPreposition 
-1.151816837 

PercentContractions 
-0.362431133 

Table 7: Comparison of ablation results for binary classifiers on the Enron corpus, partitioned by pair 

 
 
We observed a significant difference between raw and standardised scores for our 3-
way classification, but breaking the task down into two binary stages shows that the 
difference is small for the hierarchical-level classifier, with most of the difference in 
the final result being made up by the up-down classifier. 
 
We have previously noted that the Enron corpus is inherently unbalanced, with very 
different levels of production from different individuals, so the personal quirks of 
more productive individuals may be dominating the results. We are also unsure of 
the level of confidence we should have in the ground truth: that is to say, we do not 
know in which cases there are personal relationships running in parallel to the 
organisational relationships with which we are concerning ourselves. 

4.2. Muir-Joinson Speech Corpus 

Having observed mixed results on the Enron data, we now look to a more carefully 
synthesised dataset. As the Muir-Joinson speech corpus was generated under 
experimental settings, relationship status is exclusively determined by the 
experimental set-up, and not complicated by factors external to the task. It is our 
hope that this translates into greater confidence in the veracity of the ground truth, 
and consequently higher classification accuracy. 
 
For the purposes of message-level categorisation, we consider a ‘message’ in this 
instance to be a single turn in the dialogue, which may consist of as little as a single 
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word. The five-minute speed networking exchanges in our dataset consist of between 
5 and 79 turns, with a median of 30 and mean of 30.8. 
 
Having established that, as expected, random data partitioning generates artificially 
high results, we do not repeat this kind of partitioning for any further datasets. 
However, we generate both pair-partitioned and sender-partitioned versions of the 
dataset for testing, as these represent geniunely distinct use cases to be considered in 
any future application development. 
 

 
Figure 20: Effects of standardisation and partitioning on the UWE speech corpus 

When the data is split using pairwise partitioning, message-level accuracy on the raw 
scores is 46.36%, using all features in the three-way classification task. Broken down 
further, this represents 45.95% accuracy for messages going up the hierarchy, 
48.07% for downwards messages, and 45.22% accuracy for messages that formed 
part of peer-level exchanges. 
 
The resulting confusion matrix (Table 8) does not show any clear patterns of mis-
classification. 
 

 
upwards downwards level 

upwards 1748 
(45.95%) 910 1146 

downwards 995 2064 
(48.07%) 1235 

level 1150 1282 2305 
(45.22%) 

Table 8: Confusion matrix for speech data, three way classification, partitioned by pair, without standardisation 

 

 
upwards downwards level 

upwards 
4250 

(99.93%) 3 0 

downwards 3 
4249 

(99.84%) 4 

level 0 1 
4685 

(99.98%) 

Table 9: Confusion matrix for speech data, three way classification, partitioned by pair, standardised by author  
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After standardising the data, we see an extreme improvement in the pairwise case, to 
99.92%. There is little to be gleaned from a confusion matrix when so few examples 
are mis-classified, as we are not able to make statistically valid claims about the 
distributions of mistakes, but we present details here for completeness (Table 9). 
This improvement gives us very strong support for our second hypothesis; although 
we are working in a constrained scenario generated under experimental conditions, 
the fact that this level of accuracy can be obtained in these circumstances indicates 
the potential for achieving similar results in real-world data if we are able to identify 
the reasons for the difference in performance. 
 
Under sender partitioning, the initial score is lower at 40.62%. We would always 
expect to observe comparatively lower accuracy for sender-partitioned data, as in 
this case we are building a model using one set of individuals, and using it to classify 
messages written by other authors whose language is not represented in the training 
set. Sender-partitioned results are therefore more dependent on commonalities and 
trends that hold true between individuals, whereas when messages are only 
partitioned by sender-author pair, we can use messages from A to B as part of the 
input to our model when classifying messages from A to C. 
 
The increase after standardisation, while still significant, is less dramatic, giving a 
classification accuracy of 65.28%. In this case, we can see from the confusion matrix 
that the overall performance is being depressed by failures to correctly classify 
downwards messages, for which success is less than random even after 
standardisation. This may indicate that behaviour of superiors towards subordinates 
is something particularly personal to the individual; whether this is an artefact of the 
simulated environment under consideration here, or a more general phenomenon, is a 
question that can only be answered by future experiments. 
 

 
upwards downwards level 

upwards 3899 
(91.68%) 221 133 

downwards 1353 1217 
(28.60%) 1686 

level 733 536 3417 
(72.92%) 

Table 10: Confusion matrix for speech data, three-way classification, partitioned by sender, standardised 

 
Again, it may prove more informative to consider the two-class problems separately. 
Unfortunately, due to the implementation of the experimental set-up, there were no 
individuals who took part in exchanges under more than one role, so the dataset is 
somewhat artificially partitioned at this stage. We use only standardised results for 
the following analysis, as these gave the better performance, and we are interested in 
characterising the remaining errors. 
 
For a binary classifier distinguishing hierarchical from level messages, our overall 
performance on the speech data, partitioned by sender, is 75.92% accuracy, with an 
F-measure of 0.770. Examination of the confusion matrix (Table 11) shows that 
level messages are more likely to be mis-classified as hierarchical. 
 
For pairwise partitioned data, the headline statistics are more impressive: accuracy is 
99.98%, with an F-measure of 0.9998. 
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hierarchical level 

hierarchical 6715 
(78.92%) 1794 

level 1384 3302 
(70.47%) 

Table 11: Confusion matrix: speech data, hierarchical classification, partitioned by sender, standardised 

 
hierarchical level 

hierarchical 8506 
(99.97%) 3 

level 0 4686 
(100.00%) 

Table 12: Confusion matrix: speech data, hierarchical classifier, partitioned by pair, standardised 

 
We can contrast this with the results of another binary classifier, classifying 
hierarchical messages as upward or downward. With data partitioned by sender, this 
gives an accuracy of 58.84% under 5-fold cross validation, with an F-measure of 
0.585. The confusion matrix in this case is much more seriously skewed, with a 
strong bias towards classifying messages as upwards. 
 

 
upwards downwards 

upwards 3811 
(89.61%) 442 

downwards 3060 1196 
(28.10%) 

Table 13: Confusion matrix: speech data, up/down classifier, partitioned by sender, standardised 

 upwards downwards 

upwards 4247 6 

downwards 2 4254 

Table 14: Confusion matrix: speech data, up/down classifier, partitioned by pair, standardised 

The fact that this extreme distribution disappears when data is partitioned pairwise 
gives weight to our earlier hypothesis that poor results in the sender-partitioned case 
are down to individual differences when choosing how to address a subordinate 
individual, and indicates that this behaviour is consistent for the individual.  
 
We do not learn much from the confusion matrices that we couldn’t see from the 
three-way classification output. However, one particular advantage of splitting out 
the task into two consecutive hierarchical classifiers is that we are able to do feature 
analysis on a more fine-grained scale. For example, we can do feature ablation on 
each separately labelled dataset. 
 
Starting with the hierarchical versus level classification, and the pairwise partitioned 
data, we observe that most individual features result in a decrease in performance. 
This is perhaps to be expected given the overall high performance of the classifier on 
this dataset. The surprising exceptions are removal of modals, emoticons, and 
character count, removal of which results in a small improvement in classifier 
performance. Table 15 shows the top 10 features for both binary classifiers, and full 
results are presented in Appendix B. 
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Stage 1: 
Hierarchical v Level 

Stage 2: 
Upward vs Downward 

1st PercentSemicolon 
-0.077177048 

PercentPreposition 
-0.075331783 

2nd PercentNumWord 
-0.051128729 

PercentRptLetterWord 
-0.066941229 

3rd PercentDeixis 
-0.038302739 

PercentPeriod 
-0.064502573 

4th PercentContractions 
-0.038145048 

PercentQuote 
-0.062475743 

5th PercentExclamation 
-0.034248981 

PercentPolite 
-0.061379583 

6th PercentPolite 
-0.033439983 

PercentPronoun 
-0.059400501 

7th PercentAdjective 
-0.033439983 

PercentModal 
-0.045001668 

8th HeylighenDewaele 
-0.033302443 

CharactersPerWord 
-0.044575723 

9th CharactersPerWord 
-0.031362701 

NumParagraphs 
-0.038153907 

10th NumWords 
-0.031217085 

PercentExclamation 
-0.036697733 

Table 15: Comparison of ablation results for binary classifiers on the Muir-Joinson speech corpus, partitioned by 
pair 

 
 

Stage 1: 
Hierarchical v Level 

Stage 2: 
Upward vs Downward 

1st PercentUppercase 
-3.644851158 

PercentBracket 
4.904938749 

2nd PercentQuote 
-2.616580655 

NumParagraphs 
4.988227656 

3rd PercentPronoun 
-2.418121512 

PercentDeterminer 
5.575987796 

4th PercentAdjective 
-1.973813703 

PercentEmoticon 
6.355616561 

5th PercentPolite 
-1.79687139 

PercentInterjection 
6.39301373 

6th HeylighenDewaele 
-1.517055488 

PercentLetter 
6.459406168 

7th PercentRptLetterWord 
-1.013506715 

WordsPerSentence 
6.545937893 

8th PercentHedges 
-0.934252051 

PercentPeriod 
7.279744221 

9th PercentNoun 
-0.279133156 

PercentNoun 
8.397261071 

10th PercentSemicolon 
-0.132629879 

PercentAmpersand 
8.576934892 

Table 16: Comparison of ablation results for binary classifiers on the Muir-Joinson speech corpus, partitioned by 
sender 

 
In the case of classifying upwards and downwards messages, similarly on pair-
partitioned data, removal of character count again results in a small performance 
improvement, along with nouns, interjections, and a number of character-level 
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features. However, the changes in this case are so slight (never dropping below 
99.83% accuracy) that this is not a significant result. 
 
In the sender split case, where the base accuracy is lower, ablation demonstrates 
some more dramatic effects (see Table 16). For the up/down classifier, removal of 
tag questions or quotation marks results in an improvement of sixteen percentage 
points; these are both comparatively rare features. It is somewhat troubling that 
punctuation features, and the choice of numerals over spelling numbers out in words, 
are at the discretion of the transcriber; it is therefore possible that this introduced 
inconsistencies into the data. In future data collection exercises, where speech data is 
used, consideration should be given to the level of guidelines provided to 
transcribers. 
 
For hierarchical versus level communications, in the sender-split case, the most 
notable results are a decrease of 3.6 percentage points when the percentage of 
uppercase characters is removed, followed by 2.6 percentage points for quotation 
marks and 2.4 percentage points for pronouns. 
 

4.3. Muir-Joinson CMC Corpus 

As outlined in the Methodology chapter, our computer-mediated communication 
(CMC) data was generated under analogous circumstances to the speech data 
discussed above, utilising an instant message chat program. Therefore, similarities 
and differences observed between these two media are of particular sociolinguistic 
interest. 
 
 

 
Figure 21: Effects of standardisation and partitioning on the UWE chat corpus 

 
Accuracy for a three-way classifier trained on the raw data was 61.38% (f=0.581) in 
the pair-partitioned case and 50.98% (f=0.485) for the sender-partitioned case. After 
per-author standardisation, pairwise results increase to an accuracy of 87.66% 

30!

40!

50!

60!

70!

80!

90!

100!

raw!scores! standardised!scores!

Ac
cu
ra
cy
"(%

)"

pair!split!

sender!split!



 86 

(f=0.876), while in the sender-partitioned case, accuracy improves to 78.73% 
(f=0.788). These improvements can be seen illustrated in Figure 21; comparison 
with Figure 20 shows that the relative increases for pair- and sender-partitioned data 
are more even for CMC than for speech data, as evidenced by the near-parallel lines 
in Figure 21. 
 
 

 upwards downwards level 

upwards 515 
(45.37%) 607 13 

downwards 581 465 
(43.79%) 16 

level 1 6 3551 
(99.80%) 

Table 17: Confusion matrix: CMC data, three-way classification, partitioned by sender, standardised 

 
 upwards downwards level 

upwards 837 
(73.74%) 289 9 

downwards 401 652 
(61.39%) 9 

level 1 1 3556 
(99.94%) 

Table 18: Confusion matrix: CMC data, three-way classification, partitioned by sender, standardised 

 
From the resulting confusion matrices (Table 17 and Table 18) it is evident that level 
communications are the most successfully classified. This was also observed in the 
Enron data (the other written medium under consideration), and less so in the speech 
data. Unlike the Enron results, however, we do not see a bias towards mis-
classifying hierarchical messages as level. If the mis-classification was due to an 
unbalanced training set, we would expect to see the opposite, with more bias in the 
CMC case, as experiemental setup resulted in almost half of all utterances occurring 
in a level context. 
 
Another interesting observation is that the improvement from sender-partitioned to 
pair-partitioned results in the overall CMC results can be almost exclusively 
attributed to an improvement in classification between upwards and downwards 
messages, as level messages were already reliably classified. This effect is so clearly 
demonstrated in the output of three-way classification that there is no benefit to be 
gained by splitting out the binary classifiers in this instance. 
 
However, for feature ablation, considering the problem as sequential binary 
classifiers is still a valuable exercise. Ablation results are not particularly 
informative for level messages, where classification accuracy is extremely high, but 
for distinguishing upwards from downwards messages there may be something of 
interest. For the pairwise partitioned data, the best performing features (giving the 
largest decrease in performance) are percentage of uppercase letters, percentage of 
words with affective lengthening, and words per sentence. The worst performance 
(where removal gives an increased accuracy) are percentage of deictic expressions, 
and percentage of determiners. 
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Stage 1: 
Hierarchical v Level 

Stage 2: 
Upward vs Downward 

1st PercentComma 
-0.067818426 

PercentUppercase 
-2.121370899 

2nd PercentLetter 
-0.064420212 

PercentRptLetterWord 
-1.94643594 

3rd PercentHyphen 
-0.019821307 

WordsPerSentence 
-1.85723798 

4th PercentHedges 
-0.018420132 

PercentContractions 
-1.812026778 

5th NumWords 
-0.013767956 

PercentTagQ 
-1.777091166 

6th PercentVerb 
-0.011243222 

PercentNumWord 
-1.477494125 

7th PercentExpletives 
-0.000261433 

PercentModal 
-1.419236799 

8th PercentNonDictionary 
0.002584095 

PercentPolite 
-1.337869915 

9th PercentInterjection 
0.010752369 

NumParagraphs 
-1.332094323 

10th PercentRptLetterWord 
0.012132198 

PercentBracket 
-1.315870399 

Table 19: Comparison of ablation results for binary classifiers on the Muir-Joinson CMC corpus, partitioned by 
pair 

 
 

Stage 1: 
Hierarchical v Level 

Stage 2: 
Upward vs Downward 

1st PercentTagQ 
-0.389083824 

PercentUppercase 
1.403049792 

2nd NumChars 
-0.387466749 

PercentAdjective 
2.103095786 

3rd PercentAdjective 
-0.367054455 

NumChars 
2.379058292 

4th NumParagraphs 
-0.354132098 

PercentPolite 
2.382127483 

5th PercentPolite 
-0.352781607 

WordsPerSentence 
2.386144115 

6th PercentAlphanumeric 
-0.344271745 

PercentQuote 
2.417578249 

7th PercentPeriod 
-0.315650776 

PercentLetter 
2.574856522 

8th PercentHyphen 
-0.31307138 

PercentVerb 
2.616499481 

9th PercentQuote 
-0.311075048 

PercentAlphanumeric 
2.642746659 

10th PercentSemicolon 
-0.301093108 

PercentTagQ 
2.646775826 

Table 20: Comparison of ablation results for binary classifiers on the Muir-Joinson CMC corpus, partitioned by 
sender 

 
With the data partitioned by sender, there were no features where removal gave a 
decrease in performance for the up/down case; the most significant increases were 
given by the removal of scores for contractions (as a percentage of parts of speech) 
and colons (as a percentage of punctuation), representing a performance 
improvement of 4.4 percentage points each. 
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The top 10 features in each case can be seen in Table 19 (partitioned by pair) and 
Table 20 (partitioned by sender), with the full ablation output supplied in Appendix 
B. 

4.4. Discussion 

We have constructed these experiments to test the following hypotheses: 
 
 

H1: Stylistic choice is a key method of expressing relationship-building, 
therefore relationship information can be inferred from linguistic style. 

 
H2: Differences from the individual’s normal behaviour will be more 
informative than absolute feature scores, for predicting relationships.  
 

 
From the results of our three-way classification experiments, using data partitioned 
by pair and which has not been standardised per author, we have demonstrated some 
success in our task, from 38.22% classification accuracy on messages from the 
Enron corpus, 46.36% on the Muir-Joinson speech corpus, and 61.38% on the Muir-
Joinson CMC corpus. These all compare favourably to the random baseline of 
33.3%, and approaching or above the most common class baselines which are 
41.17% for Enron, 35.51% for Muir-Joinson speech, and 61.82% for Muir-Joinson 
CMC. This provides some support for H1, in general, although the unbalanced 
nature of the data means that the most common class baseline is a high one. 
 
The consistent improvement when feature scores are standardised by author provides 
strong support to H2, across all datasets. For data partitioned by pair, once the 
feature scores have been standardised by author, we obtain results of 41.34% for the 
Enron corpus, 99.92% for the Muir-Joinson speech corpus, and 87.66% for the Muir-
Joinson CMC corpus. We can also take these improved scores as additional support 
for H1, since we are still using stylistic features; we are simply manipulating the 
same scores, in an entirely predictable and repeatable manner, to produce the 
improvement in classification accuracy. 
 
It is notable that we had greater success with the two experimental datasets than with 
the natural (Enron) data, which implies there may be some confounding factors for 
which we have not yet accounted, for example interference from other relationship 
types (friendship; emnity; romantic attachment) or social dynamics (social class; 
gender; age) not captured by the corporate hierarchy. Alternatively, it is possible that 
our approach is more effective on more informal text. To distinguish these 
alternatives, we would need to make use of further datasets from different genres, for 
example naturally occurring speech or CMC data, and experimentally-derived email 
data. 
 
We have also conducted ablation experiments to look at the contribution of different 
features to the success of our classifiers. Perhaps the most interesting observation 
from these ablation tests is the level of variation between the lists generated under 
different conditions: there are no features that stand out as always providing a greater 
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contribution, nor are there any that can be obviously discounted. This variation is 
observed not only across media, but for different conditions (e.g. binary versus three-
way classifiers) on the same dataset. 
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5. Aggregation and Combined Approaches 

In the previous chapter, we have undertaken categorisation of individual messages 
into three classes, according to whether the message is addressed up or down the 
organisational hierarchy, or whether it is a level communication between peers. We 
have also seen the improvements which derive from standardising feature scores by 
author. 
 
We will now turn our attention to testing the intuition that we should be able to 
further improve our results by using more information to make fewer predictions, in 
other words, the effect of aggregation. We have two hypotheses to test in this space: 
 
 

H3: Prediction of hierarchical relationships will be more effective at the 
pairwise level than at the level of individual messages. 
 
H4: Relationship classification in a hierarchical situation will be aided by 
consideration of whole-network characteristics. 
 

 
To test H3, we will take the outputs of message-level classification which we 
obtained in the previous chapter, and apply aggregation techniques (as described in 
section 3.5) to generate relationship-level predictions. If H3 is supported, we expect 
to see an improvement in classification accuracy at the relationship level. 
 
To test H4, we take both message-level and relationship-level predictions, and use 
these to generate graphs representing our predictions. These graphs are then analysed 
using the mathematics of flows and tensions (Kochol 2004) to identify those parts of 
the graph in which our predictions are not self-consistent, as described in section 3.6. 
If H4 is supported, we expect to see higher confidence (which should translate into 
higher classification accuracy) for self-consistent sections of the graph, as reflected 
in the tension component. 

5.1. Relationship-Level Categorisation 

Having obtained a set of results for categorisation at the message level, we are now 
in a position to combine these outputs into a prediction at the level of the 
relationship, taking into account the sum of the evidence provided by the individual 
messages. If our third hypothesis is to be upheld, we expect this to generate an 
improvement in the overall classification accuracy. 
 
It should be obvious that the quality of voting methods will depend on the accuracy 
of the underlying data points (i.e. the individual votes). As we obtained consistently 
better results after per-author standardisation, we use only standardised data in this 
chapter, to give ourselves a stronger starting point. 
 
Our hypothesis is that aggregation should improve confidence in our results, with the 
consequence of higher overall classification accuracy at the relationship level. 
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5.1.1. Enron Emails 

For the Enron data, we begin by considering aggregation of the pairwise-partitioned 
data, for which we observed a message-level accuracy of 41.34%. 
 
Using simple plurality voting as our aggregation technique, we obtain a relationship-
level accuracy of 38.28%, or 312 pairs correctly classified, which amounts to a drop 
of over three percentage points from the message-level accuracy. This is a surprising 
result that does not support our hypothesis that aggregation should improve accuracy 
(H3). Additionally, eighty pairs are not classified under a simple plurality voting 
system, due to having two (or occasionally three) classes with the same number of 
votes; this represents 8.9% of the 895 total. 
 
Analysis of the errors shows that, as with the message-level results, level 
relationships are more often correctly classified, however this comes at the expense 
of incorrectly classifying a large number of hierarchical relationships into the level 
category. 
 

 

 
It is not meaningful to present a traditional confusion matrix in this context, as the 
difference between ‘upwards, incorrectly labelled as downwards’ and ‘downwards, 
incorrectly labelled as upwards’ is merely down to the random ordering of senders 
and recipients in the data files. 
 
Using majority voting (a threshold of 0.5), accuracy drops further, to 38.36%, with 
100 instances not classified, equating to coverage of 88.8%. Under this condition the 
number of pairs correctly labelled has dropped from 312 to 305. 
 
Contrary to expectation, we find that adjusting the thresholds in general causes a 
(slight) decrease in accuracy: in this instance, requiring a higher level of agreement 
results in fewer correct instances getting through, as well as cutting out a number of 
incorrect instances. 
 

Threshold: 0.5 0.6 0.7 

Hierarchical, correctly labelled 
82 

10.31% 
72 

9.61% 
60 

8.85% 

Hierarchical, incorrectly labelled as level  
409 

51.45% 
392 

52.34% 
356 

52.51% 

Hierarchical, labelled with incorrect polarity  
26 

3.27% 
25 

3.34% 
25 

3.69% 

Level, correctly labelled  
223 

28.05% 
211 

28.17% 
193 

28.47% 

Level, incorrectly labelled as hierarchical  
55 

6.92% 
49 

6.54% 
44 

6.49% 

Table 22: Analysis of errors under different threshold conditions. Enron data, pairwise partitioned. 

85 10.43% Hierarchical, correctly labelled 

416 51.04% Hierarchical, incorrectly labelled as level  

28 3.44% Hierarchical, labelled with incorrect polarity  

227 27.85% Level, correctly labelled  

59 7.24% Level, incorrectly labelled as hierarchical  

Table 21: Analysis of errors, simple plurality voting, no threshold. Enron data, pairwise partitioned. 
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Figure 22: Effects of adjusting thresholds for the 
Enron data 

 
Figure 23: Accuracy against coverage for different 
thresholds 

 
The Enron data is extremely unbalanced, so we should consider the possibility that 
distributional artefacts are affecting our results. In particular, some pairs have only 
exchanged one message, or have very unbalanced numbers of messages in the two 
different directions. 
 
For 338 of the Enron pairs (37.8%) our dataset contains only a single message 
between the two interlocutors. Including these pairs in the aggregation means that we 
are including some message-level results in our aggregated results. We can adjust 
this by requiring a minimum number of messages before a pair is included in the 
relationship level calculations. Adjusting this minimum from one (the default) up to 
ten, we see a dramatic improvement at 2 and 3 (4.3 and 6.4 percentage points 
respectively), which then begins to level out, with only another 2.4 points’ 
improvement when ten messages are required. 
 

 
Figure 24: Effect on accuracy of requiring a minimum number of messages (Enron data) 
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Another way to account for imbalances in the data is to generate a prediction 
independently based on A’s communications to B, and another based on B’s 
communications to A, and then give these two predictions equal weight. This 
compensates for the weight otherwise given to highly productive individuals, whose 
productiveness may not necessarily be accompanied by the most typical linguistic 
choices. 
 
Requiring agreement between A to B and B to A predictions, we observe an 
accuracy of 47.90%, which sounds like a significant improvement, however there are 
only 57 pairs classified under this methodology, amounting to coverage of only 
6.37%. 
 
In general, as results on this data are quite poor, aggregation appears to be 
compounding errors rather than compensating for them. In the next two sections we 
will consider the effect of aggregation on the two datasets where the individual 
message-level accuracy was higher. 
 

5.1.2. Muir-Joinson Speech Corpus 

We now turn our attention to the Muir-Joinson speech data. For message level 
classification, accuracy in the sender split case was 65.28% after standardising 
feature scores by sender. As we only have one five-minute interaction between each 
pair, we treated a single utterance as a ‘message’ for the earlier analysis. We are now 
endeavouring to characterise the relationship on the basis of all utterances making up 
the exchange. 
 
Aggregation by simple plurality voting results in an improvement of 13.2 percentage 
points, giving an accuracy of 78.06% for those relationships which are labelled. In 
18 cases, no decision can be made for the pair, as there are an equal number of data 
points indicating two or more classes; this equates to coverage of 89.5%. 
 

92 46.94% Hierarchical, correctly labelled  

19 9.69% Hierarchical, incorrectly labelled as level  

16 8.16% Hierarchical, labelled with incorrect polarity  

61 31.12% Level, correctly labelled  

8 4.08% Level, incorrectly labelled as hierarchical  

Table 23: Analysis of errors, simple plurality voting, no threshold. Standardised speech data, sender split. 

 
An analysis of the errors shows that hierarchical relationships are still the most likely 
to be misclassified, whether being misclassified as level, or assigned the incorrect 
polarity. Level relationships are less frequently misclassified as hierarchical. 
 
By introducing a threshold to require higher levels of confidence, we can improve 
our accuracy, but only at the cost of significantly reduced coverage. This trade-off is 
entirely anticipated, and results in an approximately linear relationship (Figure 26). 
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Requiring majority agreement (a threshold of 0.5) results in an accuracy of 79.8%, 
which is an insignificant improvement, but accuracy then increases steeply, as shown 
in Figure 25. Coverage steeply declines at the same time. By the time the threshold 
reaches 0.6, we are observing accuracy of 94.30% but coverage of only 46.8%. 
 

 
Figure 25: Effect of thresholds on accuracy and 
coverage 

 

 
Figure 26: Accuracy versus coverage as thresholds 
are introduced to sender split speech data

 
The nature of data collection for this corpus means that the data is not unbalanced in 
the manner of the Enron corpus, as each interaction consists of approximately an 
equal number of pairs. It is therefore not useful to introduce a minimum number of 
messages for categorisation. 
 
We will, however, investigate the impact of requiring independent agreement 
between the prediction based on the communications from A to B, and the prediction 
from B to A. This adjustment substantially reduces our coverage to 37.4% (from 
89.5%), but increases our raw accuracy to 99.74% (from 78.06%, an increase of 21.7 
percentage points). This implies that we can afford to be much more confident of 
those results where the two independent predictions are in agreement, even though 
we see fewer examples for which this is true. 
 
We have examined the sender-partitioned case, which was the lower-scoring of our 
two scenarios. For the pairwise-partitioned data, there is not much space to improve 
from 99.92%, making the aggregation stage unnecessary for practical purposes. 
However in a realistic situation, classifying unknown data, we would not know the 
intermediate accuracy, so it is important to understand whether or not aggregation 
could reduce overall performance in this case. For completeness, we undertook 
simple aggregation and obtained 100.0%, successfully removing the small number of 
errors in the earlier classification without a reduction in coverage (no pairs are 
unlabelled in this instance). 

5.1.3. Muir-Joinson CMC Corpus 

Our CMC data is a very similar dataset to the speech, but due to the nature of online 
data collection (requiring participants to type their responses), a smaller amount of 
data was collected in the same amount of time. 
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For the sender-split data we observed message-level accuracy of 78.73%. Using 
simple plurality voting, this increases to 79.67%, with four pairs unlabelled 
(coverage of 97.3%). 
 
Majority voting, requiring more than half of message-level predictions to agree, 
results in 80.34% accuracy with 95.3% coverage (eight pairs unlabelled). 
 
Again, the threshold can be incrementally adjusted and the impact examined. Similar 
to the speech results, it is at thresholds above 0.5 that we start to see the most 
significant trade-off between coverage and accuracy, with accuracy steeply 
increasing as coverage declines. By 0.6 we observe an accuracy of 86.11% and 
coverage 75.6%; at 0.7, accuracy is up to 91.93%, covering 63.95% of pairs. 
 

 
Figure 27: Impact of varying threshold, on 
accuracy and coverage 

 
Figure 28: Accuracy against coverage for varying 
thresholds 

 
Considering the requirement for agreement between the independent predictions in 
each direction, we achieve an accuracy of 97.66% with 40 unlabelled pairs, 
amounting to coverage of 78.5%. We note that for this dataset, this gives a better 
balance of precision and recall than applying a threshold to aggregation of all 
message-level scores. This may be because in CMC data, by contrast with speech, 
there can more easily be a significant imbalance in number of turns between the two 
parties to a discussion. 
 
For CMC data we again had much higher message-level accuracy in the pairwise 
case, at 87.66%. Under aggregation with a simple plurality requirement, this 
increases to 98.92%, while maintaining 100% coverage. 
 

5.2. Whole Network Analysis  

We will now look at the extent to which performance can be improved by 
considering the whole network of communicants, and whether taking information 
from the structure of the network graph will give us any performance improvements. 
Our intuition is that we should be able to have more confidence in predictions which 
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network should give us more confidence in those predictions which reinforce one 
another. This gives rise to our fourth hypothesis: 
 

H4: Relationship classification in a hierarchical situation will be aided by 
consideration of whole-network characteristics. 

 
We will see if this holds true in practice by the application of flows and tensions 
analysis (Kochol 2004), a mathematical technique which considers the composition 
of an entire graph in order to generate a component (the ‘tension’) in which every 
cyclical subgraph has a sum of zero. This is the graphical equivalent of ensuring that 
relationships between edges are transitive, so we anticipate this method should 
highlight any inconsistencies in our predictions. We will use this approach to analyse 
our predictions and identify the most self-consistent interpretation of the resulting 
graph. 
 
There are two approaches to constructing the prediction graph, both of which we 
shall explore. One method is to use aggregate predictions (from section 5.1) as the 
weights for our links, with an edge weight of 0 between peers, and an edge weight of 
1 for colleagues in a hierarchical relationship. The alternative approach is to use the 
message level predictions from Chapter 4 directly as weights on the edges of the 
graph, which gives a wider range of edge weights; if this were to be equally or more 
successful, and if it is able to match the improvements generated in section 5.1, it 
may be possible to skip the aggregation step entirely. 
 
One of the major questions in applying flows and tensions analysis to this problem 
surrounds the interpretation of the numerical values returned in the tension 
component. In particular, in order to assess the impact of this additional stage on the 
accuracy of our predictions, we need to map these values onto our discrete 
categorisation of hierarchical-upwards, hierarchical-downwards, and level 
communication. We do this by setting an interval around the origin: messages within 
this interval are considered to be level. Above the threshold, messages are 
categorised as upspeak, and below it, downspeak. A threshold of zero translates to 
only edges with a score of precisely zero being classified as level, while all non-zero 
scores must be interpreted as hierarchical, with the polarity of the hierarchical 
relationship then determined by the sign of the value. We will investigate the effect 
on overall accuracy of varying this interval. 

5.2.1. Enron Emails 

We begin by constructing a power graph from the aggregated predictions from 
section 5.1, for the authors of the Enron corpus. We set the edge weight to 0 between 
two colleagues whose relationship is predicted as being level, and 1 between those in 
hierarchically-related pairs, with the direction of the edge indicating the direction of 
power in the hierarchical relationship (directionality is meaningless for an edge of 
weight zero). We use the pairwise-partitioned data, with feature values standardised 
by author, for consistency with the results presented in section 5.1. This graph is then 
fed into the flows and tensions algorithm, to measure the consistency between 
predictions. This returns the tension component of the graph, with numerical values 
on each edge representing the values thus calculated. 
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We now turn our attention to interpreting the numerical values returned by the 
algorithm. We can set a threshold about the origin above and below which we 
interpret scores to represent upward and downward relationships. A threshold of zero 
gives the poorest performance, with an accuracy 33.87%. This is worse than the 
accuracy obtained using simple plurality aggregation in section 5.1.1, which was 
38.28%, and commensurately lower than the message-level accuracy of 41.34%. 
Accuracy improves gradually as this threshold value is increased, up to 0.5 (accuracy 
48.39%, the highest we have obtained for this dataset), after which it decreases 
again. Note that as the threshold continues to increase, the limiting factor on the 
accuracy is the percentage of messages correctly assigned to the level class (which is 
not necessarily the most common class), as an arbitrarily high threshold value 
excludes any messages from being characterised as hierarchical. 
 
As an alternative approach, we can begin with the individual message predictions 
between each pair (as generated in Chapter 4), and use these to determine the 
weights of the edges. Once we have calculated the corresponding tension 
component, we can vary the threshold in the same manner to map these results onto 
our hierarchical categories. We observe very similar results, with accuracy 
increasing as the threshold is increased from 0 to 0.5, although in this case the 
differences are somewhat less pronounced, with accuracy ranging from 40.32% at a 
threshold of zero, to 45.70% at 0.5. 
 
Figure 29 demonstrates the effect on classification accuracy of varying the size of 
this interval, for both of these cases. The threshold value (X-axis) is half of the 
interval size, as the interval is symmetric about the origin (recall that positive and 
negative values are indicative of directionality on the edge). 
 

 

 
Figure 29: Effect of threshold choice on accuracy for flow-tension analysis, Enron corpus 

 
The complete tension components, as calculated by both methods, are included in 
Appendix C. 
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5.2.2. Muir-Joinson Speech Corpus 

We shall now repeat this analysis using predictions from the Muir-Joinson speech 
data. For speech data, partitioned by sender and with feature scores standardised on a 
per-sender basis, the message level accuracy reported in Chapter 4 was 65.28% 
(section 4.2), and simple plurality aggregation improved accuracy to 78.06% with 
coverage of 89.5% (section 5.1.2). We wish to see whether this can be improved by 
considering the shape of the resulting prediction graph. 
 
We begin by using individual message predictions to weight the edges of our 
network graph, and applying flow and tension analysis. By this technique we obtain 
an accuracy of 59.14% for a threshold of zero, increasing to 72.04% at a threshold of 
0.2. This is an improvement over the raw message level accuracy, but does not 
perform as well as aggregation. 
 
When instead we use the aggregated predictions as the input from which we 
construct our graph, accuracy at the zero threshold is very similar at 57.53%. 
However, at a threshold of 0.2 the accuracy is 83.87%. Although we have obtained 
higher accuracy on this dataset in section 5.1.2, the notable feature of this graphical 
technique is that coverage remains at 100% throughout, rather than being traded off 
for accuracy. 

 

 
Figure 30: Effect of threshold choice on accuracy for flow-tension analysis, speech corpus 

 
We note that the best-performing threshold in this case is much lower than the 
equivalent for the Enron data. 
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standardised on a per-sender basis (section 4.3). This increased to 79.67% (coverage 
of 97.3%) under simple plurality voting (section 5.1.3). 
 
We begin by using message level predictions to construct a weighted graph, and 
undertaking flow and tension analysis. With a zero threshold, analysis of the tension 
component gives us accuracy of only 26.34%. This increases dramatically to 77.42% 
at a threshold of 0.05, indicating that there are a large number of very small non-zero 
edge weights in this tension component. Accuracy then decreases steadily as the 
threshold is increased. 
 
When the aggregated predictions from simple plurality voting are used instead, the 
accuracy at threshold zero is 82.26%, which then decreases as the threshold 
increases. 

 

 
Figure 31: Effect of threshold choice on accuracy for flow-tension analysis, CMC data 

 
Again, we observe that the pattern of accuracy as we adjust the threshold is 
inconsistent with the other datasets. This indicates that even though we can get some 
marginal improvements in accuracy by considering the whole network using 
graphical methods, the utility of this technique will be extremely limited in practice, 
as there is no straightforward method to interpret the results in the absence of 
existing ground truth. 

5.3. Discussion 

We have tested two very different methods for building upon message-level 
classification, with mixed results. 
 

H3: Prediction of hierarchical relationships will be more effective at the 
pairwise level than at the level of individual messages. 

 
We have undertaken various methods of aggregating individual message-level 
predictions to provide predictions at the relationship level. We tested simple majority 
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voting (using individual message predictions as input) as well as looking at the 
impact of requiring agreement between independent predictions from A to B and B 
to A.  
 
Aggregating predictions across multiple messages had variable results, giving 
limited support for H3, the strength of which depended on the circumstances. In 
general, if message-level results were fairly accurate (e.g. for the Muir-Joinson 
speech and CMC transcripts), we obtained a further improvement by aggregation, 
but when message-level classification was weak (Enron), performance was degraded 
by aggregating these poor predictions. 
 
Requiring agreement between individual predictions from A to B and B to A was the 
strongest technique for improving accuracy, resulting in an improvement in all cases, 
although this came at the cost of (sometimes extreme) reductions in coverage. This 
reduction was particularly extreme for email, as we do not have messages in both 
directions for all pairs in the Enron corpus, and these pairs were automatically 
excluded.  
 
 

H4: Relationship classification in a hierarchical situation will be aided by 
consideration of whole-network characteristics. 

 
We then turned to a graphical approach, combining our individual message 
predictions and our relationship-level predictions (in two separate experiments) in 
the hope of improving accuracy by considering the structure of the whole graph. 
Although we observed improvements at certain thresholds, there was no universally 
best threshold value, meaning this technique is of limited use in practice. The fact 
that some improvements were observed at certain thresholds does provide a very 
limited amount of support for H4, suggesting that further work in this area might 
potentially be profitable. However, this is unlikely to be the first avenue of approach 
to further study, as other areas seem likely to produce greater benefits in the short 
term – for example, the use of aggregation on datasets where the base classification 
accuracy is sufficiently high. 
 
Given the extremely high success rates for classification on both sets of Muir-
Joinson transcripts, and the fact that aggregation improves these good results yet 
further, it is worthwhile designing future work to investigate methods for 
understanding the confidence of our results, perhaps via a bootstrapping approach. 
Knowing when we can have confidence in our predictions is perhaps the most 
powerful approach we could use to improve overall performance. 
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6. Linguistic Accommodation and Power5 

Having examined the possibility of modelling social power using the distribution of 
linguistic style features, we now turn to the study of accommodation in linguistic 
style choice, in order to account for the extent to which individuals’ use of stylistic 
features is influenced by the linguistic style of their conversational partner. We set 
out to test our fifth hypothesis: 
 

H5: Linguistic accommodation behaviour is partially motivated by relative 
social power, therefore greater accommodation of linguistic style will 
correlate with lower social power. 

 
Linguistic accommodation is a well-recognised indicator of social power and social 
distance (Giles et al. 1991). However, different individuals will vary their language 
to different degrees, and only a portion of this variance will be due to 
accommodation. This is an analagous phenomenon to that which we have already 
seen, as we have observed that individuals exhibit different levels of variation in 
their range of scores for each feature. In our exploration of H4, we demonstrated that 
this individual variation has a significant impact on our ability to predict social roles 
correctly, if this is not accounted for in the model. We must therefore be similarly 
cogniscent of individual variation in the context of linguistic accommodation: some 
individuals will be more inclined than others to accommodate their language. We 
wish to systematically measure the proportion of variance which is due to linguistic 
accommodation, and consider the meaning of this within the social context. 
 
This chapter presents analysis using the Zelig Quotient (Jones et al. 2014), which is a 
novel method of measuring how an individual orients their linguistic style to align 
with a particular audience, using the author’s other communications as a baseline. 
This metric was developed in order to compensate for some of the limitations of 
existing techniques such as Language Style Matching (LSM; Gonzales et al. 2010). 
In particular, we developed the Zelig Quotient to address two key concerns with 
current approaches: that direction of accommodation (who is moving their style 
towards whom) is typically ignored in favour of absolute distances, and that an 
individual’s tendency to accommodate is not modelled under any earlier techniques. 
To improve our understanding of the phenomenon of linguistic accommodation, we 
model linguistic variation as movement in vector space, using an individual’s prior 
communications to calculate a baseline for each feature and their personal variance 
to calculate the significance of any subsequent movement. 
 
As discussed in section 3.7, we calculate the Zelig Quotient using a set of nine 
function word categories from LIWC (Pennebaker et al. 2007) to enable comparison 
with LSM. It follows that the work described in this chapter uses a more constrained 
feature set than the remainder of this thesis. The nine feature categories used are 

                                                
5 This chapter is based on work undertaken in collaboration with Kate Muir, Simon 
Jones, Adam Joinson (University of the West of England), and Nigel Dewdney 
(University of Sheffield) which has been published in the following papers: Muir et 
al. 2015; Muir et al. 2016a; Muir et al. 2016b. 



 102 

auxiliary verbs, articles, common adverbs, personal pronouns, indefinite pronouns, 
prepositions, negations, conjunctions, and quantifiers. Additionally, we perform this 
analysis using only the Muir-Joinson datasets (described in sections 3.1.2 and 3.1.3), 
where we have accompanying personality data to further inform our analysis. 

6.1. Muir-Joinson Speech Corpus 

We calculated linguistic accommodation between participants in conversations in the 
Muir-Joinson speech corpus, using the Zelig Quotient. Recall that for this dataset we 
have disjoint sets of participants recorded under two conditions: the hierarhical 
(experimental) condition, where volunteers were randomly assigned to be either 
judges or workers, and the non-hierarchical (control) condition, where volunteers 
were asked to discuss the same ideas as equal collaborators. 
 
Figure 32 presents the pairwise speaker-to-recipient ZQs for judges (high power) 
versus workers (low power), as a percentage of the total number of conversations. It 
is clear to see from this illustration that the workers in general were more 
accommodating than the judges. This is backed up by the overall statistics: workers 
had a higher mean Zelig Quotient (µ = -0.11, σ = 0.12), while judges exhibited more 
divergent behaviour (µ = -0.26, σ = 0.11). A one-way ANOVA revealed social 
power was a significant influence on ZQ (F(3,37), p=0.4, η2=0.22). 
 
 

 
Figure 32: Pairwise speaker-to-recipient Zelig Quotient distributions for conversations between workers (low 

power) and judges (high power) in the Muir-Joinson speech corpus.  

 
Compare these results to the control condition, where individuals were asked to have 
collaborative discussions as equal partners, rather than being placed in positions of 
high or low social power. In this case, we see that collaborators exhibit a Zelig 
Quotient average in between that of judges and workers, and somewhat closer to that 
of judges (µ = -0.21, σ = 0.17). 
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It is noteworthy that divergence was very common across the corpus. This is an 
unexpected result, as it is usually convergence which is associated with positive 
outcomes, yet divergent conversations were not ranked as negative by participants. It 
is possible to pick out more nuance in this distribution as it relates to social power, 
since judges exhibited divergence in 65% of conversations, while workers diverged 
in only 45% of conversations. Conversely the distribution of positive ZQ, indicating 
convergence, saw convergence by workers in 39% of conversations, and 
convergence by judges in only 24%. We contrast this to collaborators in the non-
hierarhical control group, who showed similar levels of divergence across the two 
groups: Group A exhibited divergence in 63% of conversations and convergence in 
23%, while Group B exhibited divergence in 58% of conversations and convergence 
in 25%, in both cases exhibiting behaviour closer to that of judges than that of 
workers. 
 
By considering the self-reports that individuals gave about the quality of their 
interactions, we are also able to examine whether linguistic accommodation is 
correlated with individuals’ feelings about their conversational partner. We asked 
participants to complete a short questionnaire after every interaction in which they 
reported their subjective opinions of interaction quality and impression formation. 
Participants were asked to score their similarity to their partner, the level of rapport 
or ‘click’, their partner’s conversational ability, and also to score their partner’s 
social attractiveness, physical attractiveness, and task attractiveness. Most of these 
factors did not correlate with ZQ, but there are a small number of significant 
exceptions. For example, when workers were more Zelig-like, judges rated them to 
have higher social attractiveness and gave a higher score for the level of rapport. 
With every standard deviation increase of a worker’s ZQ above the group mean, 
judges’ rating of rapport increased by 2.5 points and their rating of social 
attractiveness increased by 1 point. This correlation is not replicated for workers’ 
assessment of judges: we found no correlation between a judge’s ZQ and how their 
partners scored them on interaction quality or impression formation. For equal 
collaboration, the highest rapport ratings were associated with low to moderately 
divergent behaviour, while higher or lower Zelig scores both indicated lower rapport. 
Additionally, conversational ability scores were predicted by ZQ in all social roles: 
for every standard deviation increase in ZQ, conversational ability ratings increased 
by 1.5 points. 
 
We also collected personality traits for all participants in the speed networking 
experiments, which enables a more nuanced analysis of the influences on an 
individual’s tendency to accommodate. We used model 1 of the PROCESS macro 
for SPSS (Hayes 2013) to conduct a series of moderation analyses, and found that 
several personality traits were predictive of ZQ. With increasing agreeableness, 
impression management, and self-consciousness, overall ZQ decreased, whereas ZQ 
increased with increasing leadership, Machiavellianism, and self-monitoring. These 
personality traits were also shown to be significant moderators of the relationship 
between social power and overall ZQ. Specifically, for those in the worker role (low 
social power), participants who were lower in agreeableness, impression 
management, and self-consciousness, were more likely to accommodate their 
linguistic style compared to those in a high-power role. There was less effect of 
personality on ZQ for collaborators (equal power), which suggests that the 
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combination of social power and personality is a potent one which leads to 
measurable effects. 
 
For hierarchical interactions we have a measure of task success in the form of 
whether a judge awarded extra money to each worker as a result of their pitch, and 
how much. There is not a direct and straightforward relationship between ZQ (of 
either judge or worker) and the financial outcomes, however there is a weak 
correlation between financial reward and the judges’ ratings of some of the positive 
social outcomes described above which were correlated with ZQ (conversational 
ability, similarity, and rapport) as well as one with no ZQ correlation (task 
attractiveness). 
 
For comparison, we also calculated language style matching (LSM) between 
participants. Because this is a distance rather than a vector calculation, we do not 
have a measure of directionality, but we can compare individuals under our 
experimental and control conditions. We found that LSM was not significantly 
different between judge-worker pairs (µ = 0.73, σ = 0.12) and pairs of collaborators 
(µ = 0.71, σ = 0.11). Nor did a pair’s LSM score correlate with any of the subjective 
measures of interaction quality (such as similarity, social attractiveness, or task 
attractiveness) or objective measures of task success (money awarded). 

6.2. Muir-Joinson CMC Corpus 

The Muir-Joinson CMC data was collected to be deliberately analagous to the earlier 
speech experiments, to allow us to repeat the above experiments in a different 
medium. Previous work has found that accommodation behaviours are not always 
replicated between speech and analagous text-based discussions (Gonzales et al. 
2010), while other scholars have observed accommodation in online chat media 
(Huffaker et al. 2011; Riordan et al. 2013), so we are interested in the extent to 
which these effects are observed in our case. As above, we calculated linguistic 
accommodation between each pair of individuals using the Zelig Quotient. So far, 
we have only undertaken analysis of participants in the hierarchical condition; 
comparsion to a control group is intended for future work. 
 
Figure 33 presents the pairwise speaker-to-recipient ZQs for judges (high power) 
versus workers (low power), as a percentage of the total number of conversations. In 
common with the speech results, we see that workers had a greater tendency to 
accommodate, while judges were more likely to diverge. For this dataset we observe 
divergence by judges in 63% of conversations, and divergence by workers in 57% of 
conversations, though this difference is not statistically significant. Convergence by 
judges is observed in 25% of conversations, and convergence by workers in 31%. 
The overall mean Zelig Quotient for workers in the CMC corpus was µ = -0.16 (σ = 
0.07), while judges tended to be more divergent with a lower mean ZQ, µ = -0.23 (σ 
= 0.14). Consistent with speech results, although both judges and workers exhibit a 
negative mean ZQ, the judges are consistently more likely to diverge. As with the 
speech data, linguistic style divergence is exhibited in a large number of 
conversations overall. 
 
 



 105 

 
Figure 33: Pairwise speaker-to-recipient Zelig Quotient distributions for conversations between workers (low 

power) and judges (high power) in the Muir-Joinson CMC corpus. 

 
 
We also investigated the effect of linguistic style accommodation on individuals’ 
ratings of their partner and the quality of the interaction. We did not find any 
relationship between accommodation by workers, and how they were perceived by 
the judges. However in the inverse case, the level of linguistic style accommodation 
by judges was significantly and negatively correlated with workers’ perception of 
them: as judges’ ZQ increased, workers were likely to rate them lower on similarity, 
rapport, and social attractiveness. This is the opposite of what we observed in the 
face-to-face experiments, where it was workers’ level of accommodation which had 
an effect on how they were perceived. 
 
To complement these results, we repeated the CMC data collection using a within-
subjects design where the same individuals took on both the worker and the judge 
role during the course of the speed networking session (the experimental setup is 
described more fully in Muir 2016b). In so doing, we were able to measure the 
extent to which individuals’ accommodation behaviour was consistent between 
roles, and whether there was any effect of changing roles during the experiment. As 
with the earlier data collection, we asked participants to rate their personal power 
under both roles, and this manipulation check found that participants reported 
significantly greater power in the judge role (µ = 4.23, σ = 0.77) than in the worker 
role (µ = 3.60, σ = 1.06). 
 
Figure 34 gives the distribution of ZQ observed in this within-subjects experiment. 
In common with the between-subjects experiment, judges’ style diverged in a higher 
proportion of conversations (62%, versus 43% for workers), and judges had a lower 
mean Zelig Quotient (µ = -0.22, σ = 0.17) than workers (µ = -0.09, σ = 0.11) which 
also indicates greater divergence by those in a role of higher power. 
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Figure 34: Pairwise speaker-to-recipient Zelig Quotient distributions for conversations between workers (low 

power) and judges (high power) in the within-subjects CMC experiment. 

 
In future work, we will investigate whether personality traits mediate the effect of 
linguistic accommodation in CMC, in a manner consistent with that which we have 
observed for speech. Since other results have been broadly consistent between the 
two different genres, it is reasonable to expect that the same personality traits might 
be predictive of linguistic style accommodation. We will also examine the behaviour 
of the control group. 

6.3. Discussion 

We have examined linguistic accommodation in order to test the hypothesis that 
accommodative behaviour would correlate with social power: 
 

H5: Linguistic accommodation behaviour is partially motivated by relative 
social power, therefore greater accommodation of linguistic style will 
correlate with lower social power. 

 
We have found some significant correlations between role and accomodation 
behaviour, in both speech and CMC experiments, which gives support to H5. In both 
cases, we found that individuals with more social power have less need to make use 
of linguistic accommodation strategies, which is in line with theoretical predictions. 
Additionally we have identified some personality traits which mediate these effects 
in our speech data, and which interact with social power in predictable ways. Having 
identified some specific interactions between power, personality, and language, it 
will be possible to define experiments to test more detailed hypotheses in this area in 
future work. 
 
In Chapters 4 and 5, we set out to predict social power based on an individual’s use 
of linguistic style features, with results that were promising but with scope for 
further improvement. By examining linguistic accommodation, we have identified 
another way in which linguistic style is influenced by social role, and by the 
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language of others. Future work should look to combine these approaches, 
considering both the variation due to accommodation and the variation due to role, in 
order to build a more comprehensive and integrated model. Accommodative 
behaviour could then be incorporated as part of a predictive model of social power. 
Complexities in implementing this approach arise from the way personality and 
power interact to predict accommodation. We have conducted our studies so far on 
data gathered in laboratory conditions, where we were able to ask participants to 
complete personality questionnaires. In real-world contexts, where we would not 
expect to have personality inventories for individual authors, there is a research 
question to be addressed around whether automated personality classification from 
text (as reported by Oberlander & Gill 2006; Nowson & Oberlander 2007; Iacobelli 
et al. 2011) can be reliable enough to be used as an input to a predictive model. 
 
We have also observed some surprising results, namely the prevalence of negative 
accommodation (divergence) in the whole dataset. This is unexpected as in the 
literature, divergence is traditionally associated with negative social outcomes such 
as perceptions of hostility and impoliteness (Giles & Gasiorek 2014). 
 
However, ours is not the first experiment to observe divergence of linguistic style in 
the context of social power differentials. Kacewicz et al. (2013) reported that 
individuals who rated themselves as higher in power within a dyad conversing using 
an online chat-room used fewer first person singular pronouns compared to their 
lower power partner. This is hypothesised to reflect a greater focus on the other 
when in a high power role, compared to greater focus on the self in a low power role; 
in our study, differing use of personal pronouns by individuals in high versus low 
power roles would manifest as objectively measured divergence in linguistic style, 
but actually is in line with the individuals’ social power roles. Similarly, divergence 
in linguistic style has been observed in messages between high and low ranking 
community forum members (Jones et al. 2014). 
 
The concept of speech complementarity could account for the observed divergence 
in linguistic style in judges and workers (Dragojevic et al. 2015). This refers to 
instances where divergence is consistent with social roles. For instance, males and 
females have been observed to diverge from each other in their speech behaviours 
(such as tone), in order to remain consistent with traditional sex role stereotypes 
(Giles et al. 1991). Speech complementarity is an explanation that carries particular 
weight where there is a power differential between conversationalists, as is the case 
in our work.  For example, in doctor-patient interactions, doctors (in the more 
dominant position) have been found to produce more questions and talk for longer, 
whereas patients were more submissive, in line with their help-seeking role (Street 
1991). Speech complementarity thus reflects and reinforces social differences; if 
both parties expect and prefer communicative differences, speech divergence will be 
positively received. 
 
The asymmetrical divergence exhibited by workers and judges is in line with 
predictions from communication accommodation theory, suggesting low social 
power triggered motivations in workers to gain the approval of the higher power 
partner, leading to relatively greater accommodation in linguistic style. Increasing 
linguistic style accommodation by low power participants also negatively correlated 
with their ratings of interaction quality. Hypothetically, linguistic style 



 108 

accommodation by low power participants could represent an attempt to repair or 
improve a perceived lack of rapport with their higher power interlocutor. This would 
be consistent with research indicating behavioural mimicry is sometimes used as a 
strategy to repair a failed attempt at affiliation (Lakin & Chartrand, 2003). 
 
An alternative account is that workers were exhibiting reluctant accommodation 
(Soliz & Giles, 2014). Workers were dependent on positive evaluations from judges 
for a good outcome, in terms of being awarded extra pay. Thus, workers may have 
accommodated reluctantly, due to cultural norms and outside pressures, instead of 
responding to internal motivations to affiliate. Reluctant accommodation is usually 
negatively associated with evaluations of the relationship and recipient (Soliz & 
Giles, 2014), which is consistent with our findings. 
 
This is very early work in the arena of relating linguistic style accommodation to 
social power, and has raised a number of questions which can only be answered by 
further work. We have demonstrated some consistent results across conversations in 
two different media, but we have also laid the groundwork for this methodology to 
be applied to other datasets in future. 
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7. Feature Distribution Analysis 

We have conducted a variety of experiments to test our hypotheses, with varying 
levels of success. However, negative results are not an obstacle to scientific 
progress; if we can understand why our results are not entirely in line with our 
predictions, we can make better predictions in future. A little post hoc analysis is 
therefore in order. In particular, we will examine the feature distribution in our 
datasets in further detail, in the hope that this may shed some light on the 
composition of our data, and any effects this may have had on our results. 
 
Exploratory data analysis is often taken as the first stage in a new task, but we opted 
not to do this as we wanted to select features on a theoretical basis, and measure the 
resulting performance without biasing our approach with prior knowledge of the 
specific feature distributions within our data. This is particularly important as we are 
working with three separate corpora across different genres, and we do not easily 
have access to additional datasets meeting our requirements for the task. 
 
However, having obtained a range of classification results, we will now briefly turn 
our attention to examining the data itself in more detail. This may highlight some 
interesting features, or shed light on whether communicants are behaving in our data 
as we might expect from previous studies or from linguistic theory. 
 
A selection of accompanying charts are presented in Appendix D, beginning on page 
170. 

7.1. Parts of Speech 

Interjections are one part of speech that are typical of informal spoken exchanges, 
yet which are still observed in textual sources, particularly in the case of online 
dialogue. 
 
Across all three datasets, interjections are used less often in upspeak than in 
downspeak, as illustrated in Table 24, although this difference is more pronounced in 
speech, where �= 0.095 for upwards communication and �= 0.259 for downwards 
communication (�throughout this chapter represents the mean feature score for the 
category under discussion; in this case this is the percentage of tokens that are tagged 
as interjections). This indicates that those with power may feel more entitled to 
interrupt or speak over their subordinates, in line with theoretical predictions. In 
level communications, the values fall between these two extremes. In email, the one 
medium where an interjection can’t actually be used to interrupt someone, 
interjections make up an extremely small proportion of text; they are more prevalent 
in CMC, but still comparatively rare compared to their use in spoken dialogue.  
 

 Speech CMC Email 
Upwards �=0.095 �=0.029 �=0.005 

Level �=0.132 �=0.033 �=0.006 
Downwards �=0.259 �=0.035 �=0.010 

Table 24: Comparison of feature values: interjections 
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Another interesting feature of interjections is that they are comparatively often the 
only term in a single-word utterance. In fact, of 1954 single-word turns observed in 
the speech data, 73.5% consist of an interjection. This can be contrasted with 15.9% 
of single-word messages in the CMC data and 14.6% for Enron, although in both 
written formats, single-word turns are overall much less prevalent.  
 
Modal verbs are often used as an indirect politeness strategy, particularly for 
requests (e.g. questions of the form ‘can you...?’ or ‘would you...?’). As such, it is 
unsurprising that they are observed most often in upwards communication, across all 
three datasets, although in CMC the downwards percentage is the same (�=0.020). 
 
Indeed, across the parts of speech distributions for our CMC data, it is broadly the 
case that the upwards and downwards distributions are very close, with the level 
score standing out. For example, verbs and adjectives are comparatively underused 
in level CMC communication, as are determiners, prepositions, and pronouns. 
Conversely, nouns are comparatively more prevalent, occurring with about 1.4x the 
frequency in level communications. 
 
By contrast, in speech data, it tends to be the downwards messages which feature the 
more unusually distributed parts of speech, with below-average use of verbs and 
nouns, conjunctions, determiners, and prepositions. 

7.2. Polite Expressions, Hedges, Deixis, and Tag Questions 

Unlike part of speech features, which between them must sum to 100%, there is no 
necessary relationship between the proportions of different lexical politeness and 
deference features, except insofar as they cannot sum to more than the total number 
of lexemes. (Percentages are expressed as a proportion of words in the utterance.) 
 
Of those expressions we categorised as explicitly polite (such as ‘please’ and 
‘thanks’), the highest proportion was observed in email, followed by CMC, with 
speech trailing as the least polite medium. Contrast the mean values for upwards 
communication, which are typical: �=0.018 for email, �=0.009 for CMC, and �
=0.006 for speech. 
 
By contrast, in our data, hedges are observed comparatively more frequently in CMC 
and speech, with speech having the highest frequencies, whereas email is much 
lower than both. As hedges are generally considered a negative politeness strategy, 
we would expect to see more in upspeak, but while this is true of speech (�=0.036 
upwards, versus �=0.023 downwards and �=0.030 level), we actually see more 
downward hedges in both the written media. 
 
Deictic expressions were observed to be more frequent in email and speech, 
compared to CMC. In particular, level CMC had the lowest frequency of deictic 
expressions. In speech, by contrast, deixis was observed most often in level contexts, 
closely followed by upwards. 
 
Tag questions were rare across the board, but were most common in downspeak, 
across all media. This is the opposite of what might have been expected from a 
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perspective of tag questions as a politeness strategy, and implies that those in more 
senior positions might be using the form of tag questions to confirm that requests 
will be complied with. 

7.3. Innovative Forms and Out of Vocabulary terms 

Innovative linguistic forms are more prevalent in online contexts, so it should come 
as no surprise that emoticons and affective lengthening are only observed in CMC 
text. Indeed, the transcription methodology means that such features could never be 
seen in the speech data, and the Enron corpus largely predates affective linguistic 
innovation of this kind. Surprisingly, in the CMC data, emoticons were observed in 
upward and downward contexts, but not in level exchanges. Affective lengthening is 
observed only in CMC turns, but is seen in all power contexts, although more 
commonly in level communications. 
 
By contrast, consider the distribution of alphanumeric words. We had previously 
imagined that these would follow a similar distribution, considering cases such as 
‘l8r’ which are innovative forms belonging to textspeak and the online environment. 
However, we did not account for other alphanumeric strings: in the Enron context, 
these include flight numbers or stock market codes, which results in an unexpectedly 
high incidence of this feature for Enron data. 
 
For out of vocabulary terms, overall, we note that these might be technical jargon 
just as easily as slang: this seems the most likely explanation for the comparative 
prevalence of out of vocabulary terms in the Enron data. There was also a 
surprisingly high rate of out of vocabulary incidence in the speech data, considering 
that this was professionally transcribed, and is therefore less likely to represent 
typographical errors. Again, this is most likely to be accounted for by slang or 
technical jargon. 

7.4. Contractions and Expletives 

Contractions are only moderately indicative of informality, and are generally 
accepted as standard language these days. Nevertheless, we observe a much higher 
rate of contraction usage in speech across all three power distributions, followed by 
CMC, with the lowest occurence in email. This is in line with the traditional view 
that writing is more formal than speech, and that synchronous online chat is “speech-
like” in some respects. 
 
At the opposite end of the spectrum, expletives remain amongst the most informal 
language, as even use of a taboo word requires a degree of trust. We saw the highest 
proportion of expletives in speech, which is spontaneous and where self-editing is 
not effective (even if someone apologises for their language, the original words will 
remain in the transcript). In email, by contrast, we saw very few examples, most of 
which were between peers at the same level within the organisational hierarchy. 
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7.5. Punctuation and Case Selection 

Punctuation is a linguistic feature that can be the subject of almost unlimited 
variation, allowing the creative author to express a huge range of styles.  
 
Exclamation marks are perhaps the most inherently informal of punctuation marks. 
They are most commonly seen in CMC, especially in downward communication. In 
the Enron email data, exclamations are not very common, but when they do occur it 
is more often in level communications, which fits with the informality of this 
punctuation choice. In speech transcripts, where punctuation is at the discretion of 
the transcriber choice, we can only assume this is a proxy for tone of voice – 
exclamation marks are rare in this case, and almost entirely limited to upwards 
speech. 
 
The respective distributions of commas and periods are generally uninteresting, but 
both show one feature that is an artefact of taking scores as a proportion of a small 
number of instances: in this case, occurrence of a particular punctuation mark as a 
proportion of all symbols. This is visible as distinct spikes in the bins that encompass 
1/2 and 1/3. Both commas and periods are comparatively little used in CMC, when 
contrasted to email and speech distributions; this is true across all power scenarios. 
 
Case distribution shows the most variation for CMC data, as would be expected for 
innovative use. In particular, the spike of uppercase use in level CMC is likely to be 
when capitalisation is used for emphasis. 

7.6. Message Length Features 

It is to be expected that both character and word counts exhibit strong variation by 
genre, since the length of an email is effectively unlimited, while speech and CMC 
are both synchronous media in which short turns are the norm. There is also a 
variation by relationship status: in both speech and chat, the longest turns are 
observed going up the hierarchy, while level and downward utterances skew shorter. 
 
Similarly for the case of words per sentence, Enron data exhibited a broader range, 
going up to longer sentences, while speech and CMC both tended towards shorter 
sentences, particularly in level and downwards communications. 
 
Characters per word, a commonly used proxy for complexity of vocabulary, also 
shows a clear genre bias: the longest words are used in email, followed by CMC, and 
finally speech. Within genres, although variation was observed, there was no 
consistent pattern between different power scenarios. 
 

7.7. Discussion 

We have found that our data exhibits distributions that are largely in line with our 
expectations, but there are a few interesting points to draw out. Surprises included 
the fact that tag questions were more common in downspeak than in turns addressed 
upwards or level, and that emoticons were used in upwards and downwards 
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computer-mediated communications but not in peer-to-peer exchanges. The 
distribution of alphanumeric strings within the Enron corpus was also unexpected, 
and can be attributed to cases such as stock market codes and flight numbers, which 
are not the kind of linguistic innovation we had been hoping to capture with this 
feature. 
 
In general, emails from the Enron corpus exhibit a lower incidence of many features 
that would usually be associated with informality in the literature. At the lexical 
level there are fewer interjections, fewer contractions, and very few expletives, while 
at the character level there are fewer exclamation marks, and less evidence of case 
being used innovatively to convey emphasis. In terms of message length, both 
speech and CMC exhibited longer turns going upwards, while this variation was also 
absent in Enron emails. This points towards a possible explanation for the poorer 
performance of our models on Enron data, and may indicate that our approach in 
general will be more successful for informal, ‘chatty’ media than for longer, and 
potentially more self-edited, exchanges; future work may wish to explore this in 
more depth, with an eye to developing a model which is more effective for email and 
similar media.  
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8. Conclusions & Future Work 

8.1. Summary of Findings 

Considering our three datasets represent different genres and collection 
methodologies, there are some surprising commonalities in the results. We will now 
consider the level of support for each of our starting hypotheses. 
 

H1: Stylistic choice is a key method of expressing relationship-building, 
therefore relationship information can be inferred from linguistic style. 

 
Our results show varying support for H1 depending on the source of the data, the 
partitioning, and the standardisation, but in all cases performance was above the 
random baseline, and above the most common class baseline once feature scores had 
been standardised by author. This varied from weak success for Enron emails, to 
extremely strong results in the speech and CMC data. 
 
With only a single dataset from each genre, we cannot test whether the medium itself 
is responsible for these differences in performance. It is possible that this represents 
a genuinely stronger signal in speech and “speech-like” chat data, contrasted with the 
more highly edited medium of email – this would accord with theoretical 
predictions, but we cannot state this with any degree of certainty. Other possible 
reasons for poorer performance on the Enron data include uncertainty of the 
hierarchy, the unique situation of Enron as a failing company, or the diversity of 
topics and dialogue acts represented in the corpus. Future work should look to 
identify more datasets across different genres and scenarios. 
 
Although we have attempted to separate stylistic features from topical content, this is 
by no means a perfect separation. To give one example that has come to light since 
the beginning of these experiments, we imagined that the use of alphanumeric words 
would be an informative stylistic choice, but in the Enron context this is also a 
topical feature linked, for example, to stock prices and flight numbers. This specific 
case could be addressed in future by some specialised entity extraction alongside the 
existing classifiers. However, this is a single instance of what could be a more 
general problem: there is a chance that our results are contaminated by some element 
of topic. However, the fact that we are successful in the speed-networking scenarios, 
where topic is controlled by the experimental setup, suggests that this is not a major 
problem, and we can safely interpret our classification success as supporting H1. 
 

 
H2: Differences from the individual’s normal behaviour will be more 
informative than absolute feature scores, for predicting relationships.  

 
To test H2, feature scores were standardised on a per-author basis, and all 
classification experiments were repeated using the author-standardised scores. These 
were compared to the initial classification outputs, and in all cases, relative results 
were improved by standardisation. It is particularly notable that this method is 
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effective at improving results even in the experimental data conditions when we only 
have data from each individual acting in one particular role. 
 
This gives strong support for H2, as differences between an individual author’s 
choices in different scenarios are emphasised when scores are standardised in this 
manner. Indeed, without taking account of these improvements due to 
standardisation by author, we would have only very limited support for H1. 
 
 

H3: Prediction of hierarchical relationships will be more effective at the 
pairwise level than at the level of individual messages. 

 
To test our third hypothesis, we undertook various methods of aggregating 
individual message-level predictions to provide a prediction at the relationship level. 
We then compared these results to our message level predictions, to see if we could 
obtain greater accuracy by using more information.  
 
Aggregating predictions across multiple messages had variable results, giving 
limited support for H3, the strength of which depended on the circumstances. In 
general, if message-level results were fairly accurate (e.g. for the Muir-Joinson 
speech and CMC transcripts), we obtained a further improvement by aggregation, 
but when message-level classification was weak (Enron), performance was degraded 
by aggregating these poor predictions. 
 
Requiring agreement between individual predictions from A to B and B to A was the 
strongest technique for improving accuracy, resulting in an improvement in all cases, 
although this came at the cost of (sometimes extreme) reductions in coverage. This 
reduction was particularly extreme for email, as we do not have messages in both 
directions for all pairs in the Enron corpus.  
 
To make use of aggregation in an operational environment, it would be necessary to 
first have some confidence that the message level results were good enough. Future 
work could investigate more thoroughly the level of individual message accuracy 
required to justify undertaking aggregation. 
 
 

H4: Relationship classification in a hierarchical situation will be aided by 
consideration of whole-network characteristics. 

 
We did not have success with the graphical approach as a method of bootstrapping 
our individual message predictions. Although there were improvements at certain 
thresholds, there was no universally best threshold value, meaning the technique is 
of limited use in practice. The fact that some improvements were observed at certain 
thresholds does provide a very limited amount of support for H4, suggesting that 
further work in this area might potentially be profitable. However, this is unlikely to 
be the first avenue of approach to further study, as other areas seem likely to produce 
greater benefits in the short term. 
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H5: Linguistic accommodation behaviour is partially motivated by relative 
social power, therefore greater accommodation of linguistic style will 
correlate with lower social power. 

 
We have seen support for H5 as we observed correlations between role and the 
accomodation of linguistic style, in both speech and CMC experiments. However, 
the overall prevalence of negative accommodation (divergence) was unexpected, as 
divergence is traditionally associated with negative social outcomes. It is possible 
that this is explicable via the concept of speech complementarity (Dragojevic et al. 
2015), as there is a power differential between conversationalists, and therefore 
divergence could be positively received as this reinforces the . Additionally, we have 
identified some personality traits which mediate the effects of linguistic style 
accommodation. 
 
 
 
Overall, we have demonstrated that there is some validity to the assumption that 
stylistic choices reflect social roles. In particular, we have seen that differences from 
an individual’s personal norms are particularly informative. This provides empirical 
support for the theory of identity as a social construct which changes according to 
context. We have also seen that individuals’ accommodation of linguistic style is 
mediated by not only their social role but their personality, pointing towards a rich 
seam of research for future investigation. 
 
It is particularly interesting to note that participants in the Muir-Joinson experiments 
exhibited stylistic differences between roles, as they were asked to adopt a role for 
the purpose of the experiment. The fact that their unconscious use of language 
adjusted, even in light of a temporary role, is evidence in support of the social 
constructionist view of identity. 
 
We have also demonstrated the possibility of predicting relationships based on others 
within the same community of practice, which could be developed into an 
application for analysing inboxes. For the individual user, this might provide insight 
into how others perceive them. For law enforcement, mapping out the hierarchy of a 
group could assist with identifying key individuals; stylometric analysis might be 
particularly useful in identifying those who wield de facto social power without 
being explicitly named as a leader. 

8.2. Future Work 

Part of the reason for limiting this study to stylometric features was to enable the 
creation of models with greater explanatory power. However, predictive power is 
also important, particularly for real-world applications. 
 
By separating out stylistic features, we have managed to account for some of the 
linguistic variation observed between individuals performing different roles, thereby 
demonstrating that style does change in line with seniority. However, for our 
experiments on the Enron corpus, previous studies using large n-gram models have 
demonstrated a higher accuracy than we have been able to obtain using stylistic 
features alone. This implies that there are other content-based features which are 
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contributing to overall classification in the n-gram studies. Additionally, our 
examination of feature distributions in Chapter 7 indicates that authors within the 
Enron corpus make less use of many informal linguistic styles. To explore this 
problem further, while retaining the emphasis on explanatory power, it is necessary 
to identify some additional classes of content features which could be combined with 
stylistic features in a more comprehensive model. 
 
One natural area to explore would be the intersection of topic and style. It is likely 
that topics of conversation naturally differ between roles and ranks, whether that is 
colleagues collaborating on a project, line managers discussing day-to-day issues of 
performance and progression, or senior leadership setting direction; at the same time, 
some topics such as planning travel or making lunch plans are likely to be common 
at all levels of an organisation. Unsupervised techniques in topic modelling, such as 
Latent Dirichlet Allocation (Blei et al. 2003), have seen a lot of success in recent 
years. LDA generates feature vectors representing topics by looking for patterns of 
word co-occurrence, and thus naturally discounts function words and grammatical 
features which occur uniformly across topics. This is orthogonal to our approach, 
since we have optimised for features with low semantic content, and hence could 
provide a complementary approach. LDA could be used to produce topic vectors 
from dialogue turns, and it would then be possible to look for correlations between 
topic and style features, and to study the intersection of these feature spaces with 
regard to predicting positions in the organisational hierarchy. 
 
The distribution of dialogue acts is another aspect of language that we might 
reasonably expect to vary across roles. Actions such as giving instructions or 
requesting information may be intrinsically more or less pertinent to different 
positions within an organisation, or appear in different combinations. Previous work 
has looked at various methods of tagging dialogue acts by form or function (Core & 
Allen 1997; Bennett & Carbonell 2005; Lampert et al. 2006) , and any of these 
approaches could be combined with our stylistic methods.  
 
Other studies have had success at divining organisational roles from network graphs 
of interactions. This could be another fruitful area of intersection, combining 
content-based features with the metadata of a contact graph. 
 
It would be interesting to look for correlations between stylistic feature scores and 
other features of interest such as topic models, dialogue acts, and metadata features. 
Subsequently, it would be informative to examine whether taking these features in 
combination might result in a more nuanced approach to classifying relationships. 
 
At the opposite end of the spectrum, further light may be shed on the nature of 
stylistic variation by subdividing the feature space into logical partitions (such as 
‘parts of speech’ and ‘linguistic innovation’) to investigate which feature subsets 
contribute most to the classification exercise. 
 
From a practical perspective of improving the classifier in those contexts where 
performance is poorest, one potential approach would be to adopt a bootstrapping 
approach, using verified data to incrementally re-train the model. For example, we 
have already seen that classification performance is improved when we have some 
existing truth data relating to particular individual and their relationships (i.e. 
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pairwise partitioning outperforms sender partitioning). When a new individual A is 
introduced to the network, assuming they are in contact with some known 
individuals, we can begin by calculating their relationships with those about whom 
we already have information, which we can infer with higher confidence. These data 
points could then be used to build a model for A’s other interactions. A similar 
process to be followed for each individual added to the network, beginning with 
those who have the most contacts with previously well-known individuals. We 
thereby incrementally extend our coverage of the communications network, adding 
only the most confident predictions each time. In this manner, it may be possible to 
improve the performance of a classifier in the real world, without materially altering 
the approach. 
 
We also wish to extend our work on linguistic accommodation, both to improve our 
theoretical understanding of this topic, and with the ultimate goal of incorporating 
this into a more complete model of how linguistic style covaries with social power.  
 
Finally, we have considered only one class of personal relationship: the case of 
static, hierarchical relationships in business contexts. Future work could look in 
more detail at a more finely-grained model of organisational roles and situational 
power. Alternatively, moving beyond the business world, it may also be of interest to 
examine relationships between friends, acquaintances, and family members. 
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9. Appendices 

Appendix A: Implementation Details for Feature Extraction 

This appendix contains details of our implementation for various features described 
in Chapter 3. 

A.1 Regular Expressions for Emoticons 

These regular expressions are written for the Java regex engine, as this was the 
programming language used throughout our experiments. 
 
EMOTICON_REGEX1 = Pattern.compile("(:[',]?[-o]?[(|Ss])"); 
EMOTICON_REGEX2 = Pattern.compile( "([:;8Bb=][-o]?[)(|])"); 
EMOTICON_REGEX3 = Pattern.compile("([:;8=][-o]?[ODSs])"); 
 

A.2 Deixis Word List 

 
I 
me 
you 
we 

he 
she 
they 
this 

that 
here 
there 
now 

then 
tomorrow 
yesterday 

 

A.3 Hedging Word List 

 
a bit 
a little 
according to 
actually 
allegedly 
apparently 
appears 
approximately 
although 
basically 
by the way 
clearly 
could 
depends 
depending 
essentially 
evidently 
fairly 
figuratively 
generally 

hypothetically 
I feel 
I mean 
I think 
I believe 
ish 
it feels 
kind of 
largely 
literally 
mainly 
maybe 
may 
might 
more or less 
mostly 
of course 
often 
on the whole 
overall 

perhaps 
plausibly 
possibly 
potentially 
practically 
probably 
provisionally 
rather 
reportedly 
reputedly 
roughly 
said 
seems 
should 
slightly 
somewhat 
sort of 
supposedly 
tentative 
tentatively 

theoretically 
typical 
typically 
usual 
usually 
with respect 
with all due 

respect 
would 
you know 
afaik 
ianal 
iirc 
istr 
aiui 
imo 
imho 
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A.4 Politeness Word List 

thanks 
thank 

thankyou 
please 

sorry 
apologies

 

A.5 Expletives Word List 

arsehole 
ass 
assfuck 
asshole 
asswipe 
bastard 
berk 
biatch 
bitch 
bloody 
bollicks 
bollocks 
boner 
boob 
bugger 
buggery 
bunghole 
cacker 
christacrutchian 
cock 
cocksmoker 
cocksucker 
coon 
cornhole 
crap 
crapper 
cum 
cunt 

dick 
dickwad 
dildo 
dingleberry 
dink 
dipshit 
dong 
doo-doo 
faggot 
fart 
felch 
feltch 
flange 
fuck 
fucked 
fucker 
fucking 
fugly 
gangbang 
gook 
groe 
grostulation 
gummer 
hodgie 
honkey 
hork 
hummer 
jackshit 

jizz 
jizzum 
kike 
knockers 
krunk 
meatrack 
nigga 
nigger 
nookey 
noonan 
nooner 
nudger 
pecker 
phungky 
piss 
pissed 
poop 
poopshoot 
prick 
pubes 
pussy 
queef 
quim 
reestie 
shit 
shitcan 
shitfaced 
shitfit 

shithead 
shithouse 
shitlist 
shits 
shitstain 
slapper 
slut 
sod 
spooge 
spunk 
stiffy 
telesis 
threesome 
tinkle 
tit 
tittie 
tosser 
turd 
twat 
twink 
wanker 
wetback 
whiz 
willie 
wordhole 
wuss 
zipperhead 

 

A.6 Contractions Word List 

ain't 
aren't 
didn't 
doesn't 
don't 
can't 
couldn't 
hadn't 
hasn't 
haven't 
isn't 
mayn't 
mightn't 
mustn't 
needn't 

oughtn't 
shan't 
shouldn't 
wasn't 
weren't 
won't 
wouldn't 
could've 
must've 
would've 
I'm 
we're 
you're 
he's 
she's 

it's 
they're 
I've 
we've 
you've 
they've 
I'd 
we'd 
you'd 
he'd 
she'd 
they'd 
I'll 
we'll 
you'll 

he'll 
she'll 
they'll 
let's 
that's 
there's 
what'll 
what're 
who's 
who'll 
who're 
who’d
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Appendix B: Feature Ablation Results 

This appendix contains a detailed breakdown of our feature ablation experiments. 
We include all results for completeness. Negative scores represent a decrease in 
performance when the feature in question is removed, indicating a valuable 
contribution; by contrast, positive scores represent improved performance when the 
feature is removed. 

B.1 Feature Ablation – Enron Email Corpus 

B.1.1 3-way classifier 

-1.002628778 PercentInterjection 
-0.967610098 PercentAlphanumeric 
-0.942892817 NumWords 
-0.83748455 PercentPronoun 
-0.750977306 PercentVerb 
-0.709427324 PercentRptLetterWord 
-0.661889212 PercentDeixis 
-0.559713517 PercentExpletives 
-0.545357911 NumSentences 
-0.513978689 PercentPeriod 
-0.490934461 CharactersPerWord 
-0.474982764 PercentLetter 
-0.462722864 PercentModal 
-0.435519729 PercentTagQ 
-0.422224876 PercentExclamation 
-0.415350113 PercentQuote 
-0.379844833 NumChars 
-0.359545409 PercentConjunction 
-0.339620261 PercentPreposition 
-0.286706954 PercentNonDictionary 
-0.260511509 PercentHyphen 
-0.231606706 PercentDeterminer 
-0.213837612 PercentQuestionmark 
-0.200213255 WordsPerSentence 
-0.195756446 PercentNumWord 
-0.017191706 HeylighenDewaele 
0.021732501 PercentAdjective 
0.056209755 PercentComma 
0.254938469 PercentAdverb 
0.286644487 PercentBracket 
0.353026145 PercentContractions 
0.375160364 NumParagraphs 
0.411849967 PercentNoun 
0.420607632 PercentEmoticon 
0.475078286 PercentPolite 
0.610698387 PercentAmpersand 
0.720780253 PercentHedges 
0.850938919 PercentUppercase 
0.977837786 PercentSemicolon 
1.018941344 PercentColon 

Table 25: Ablation results for the Enron emails, 3-way classifier, partitioned by pair, with standardised feature 
scores. 
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B.1.2 Hierarchical vs Level Classifier 

-2.16149784 PercentSemicolon 
-1.767487066 PercentQuestionmark 
-1.49902995 CharactersPerWord 

-1.466898264 NumSentences 
-1.439738716 PercentDeterminer 
-1.340865885 PercentAdjective 
-1.18488448 PercentHyphen 

-1.158088441 PercentExclamation 
-1.154132564 PercentUppercase 
-1.151816837 PercentPreposition 
-1.148395071 WordsPerSentence 
-1.092842262 PercentInterjection 
-1.026481334 PercentNumWord 
-0.960872793 PercentExpletives 
-0.921422489 PercentColon 
-0.916231601 PercentLetter 
-0.795583115 PercentBracket 
-0.704117499 PercentAlphanumeric 
-0.689501724 HeylighenDewaele 
-0.672620128 PercentTagQ 
-0.671976906 PercentAdverb 
-0.667054696 PercentConjunction 
-0.659534961 PercentModal 
-0.655449174 PercentPronoun 
-0.642690268 NumParagraphs 
-0.625612724 PercentComma 
-0.610059262 PercentPeriod 
-0.583006966 PercentNonDictionary 
-0.553435355 PercentDeixis 
-0.551909183 PercentNoun 
-0.518402427 PercentQuote 
-0.498683389 NumChars 
-0.483115057 PercentHedges 
-0.453987112 PercentEmoticon 
-0.403850087 PercentAmpersand 
-0.384724025 PercentContractions 
-0.330046384 PercentVerb 
-0.292658697 PercentRptLetterWord 
-0.276326436 NumWords 
-0.137912733 PercentPolite 

Table 26: Ablation results for the Enron emails, hierarchical vs. level classifier, partitioned by pair, with 
standardised feature scores. 
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B.1.3 Upwards vs Downwards Classifier 

-0.986540324 PercentQuote 
-0.723805324 NumSentences 
-0.635587306 PercentExclamation 
-0.608054922 PercentSemicolon 
-0.544628664 PercentColon 
-0.516221101 WordsPerSentence 
-0.469954731 PercentAlphanumeric 
-0.392623103 PercentAmpersand 
-0.370076188 PercentLetter 
-0.362431133 PercentContractions 
-0.302135435 NumChars 
-0.205930837 PercentPolite 
-0.192070266 PercentDeixis 
-0.13925655 PercentPeriod 
0.002507123 PercentEmoticon 
0.023164517 PercentQuestionmark 
0.10232386 HeylighenDewaele 
0.122005319 PercentInterjection 
0.213517944 PercentComma 
0.222396998 PercentNumWord 
0.412301566 PercentHyphen 
0.451406419 PercentModal 
0.472661579 NumWords 
0.474608779 PercentVerb 
0.506547766 PercentHedges 
0.570979489 CharactersPerWord 
0.668677635 PercentPreposition 
0.670947327 PercentTagQ 
0.74347844 PercentConjunction 
0.758142792 PercentExpletives 
0.774670838 PercentAdjective 
0.906062014 PercentNonDictionary 
0.922483247 PercentRptLetterWord 
0.944555666 PercentUppercase 
0.958717406 PercentNoun 
1.221690358 PercentDeterminer 
1.386489378 PercentAdverb 
1.430880589 NumParagraphs 
1.871099492 PercentBracket 
2.114725748 PercentPronoun 

Table 27: Ablation results for the Enron emails, upwards vs. downwards classifier, partitioned by pair, with 
standardised feature scores. 

  



 124 

B.2 Feature Ablation – Muir-Joinson Speech Corpus 

B.2.1 Hierarchical vs Level Classifier, Split by Pairs 

-0.077177048 PercentSemicolon 
-0.051128729 PercentNumWord 
-0.038302739 PercentDeixis 
-0.038145048 PercentContractions 
-0.034248981 PercentExclamation 
-0.033439983 PercentPolite 
-0.033439983 PercentAdjective 
-0.033302443 HeylighenDewaele 
-0.031362701 CharactersPerWord 
-0.031217085 NumWords 
-0.031039864 NumParagraphs 
-0.029621926 PercentRptLetterWord 
-0.029061793 PercentAmpersand 
-0.028488495 PercentNonDictionary 
-0.027776305 PercentTagQ 
-0.027306256 PercentHyphen 
-0.027070556 PercentQuote 
-0.025852676 WordsPerSentence 
-0.025279378 PercentComma 
-0.023629777 PercentPronoun 
-0.022824817 PercentBracket 
-0.019483249 PercentAlphanumeric 
-0.019483249 PercentVerb 
-0.018301011 PercentPreposition 
-0.018301011 PercentNoun 
-0.01769207 PercentUppercase 
-0.017492012 PercentPeriod 
-0.016687052 PercentConjunction 
-0.016400949 PercentExpletives 
-0.015700834 PercentColon 
-0.013113822 PercentDeterminer 
-0.010890924 NumSentences 
-0.010890924 PercentLetter 
-0.008722467 PercentHedges 
-0.006695588 PercentQuestionmark 
-0.003535278 PercentInterjection 
-0.000326161 PercentAdverb 
0.005665987 PercentModal 
0.006043266 PercentEmoticon 
0.013021633 NumChars 

Table 28: Ablation results for the Muir-Joinson speech corpus, hierarchical vs. level classifier, partitioned by 
pair, with standardised feature scores. 

 
  



 125 

B.2.2 Upwards vs Downwards Classifier, Split by Pairs 

-0.075331783 PercentPreposition 
-0.066941229 PercentRptLetterWord 
-0.064502573 PercentPeriod 
-0.062475743 PercentQuote 
-0.061379583 PercentPolite 
-0.059400501 PercentPronoun 
-0.045001668 PercentModal 
-0.044575723 CharactersPerWord 
-0.038153907 NumParagraphs 
-0.036697733 PercentExclamation 
-0.036687389 PercentAdjective 
-0.03362249 HeylighenDewaele 
-0.031059811 PercentAdverb 
-0.028060843 PercentColon 
-0.028060843 PercentVerb 
-0.028005257 PercentNumWord 
-0.026538738 PercentContractions 
-0.026538738 PercentNonDictionary 
-0.024871923 PercentDeixis 
-0.019904217 WordsPerSentence 
-0.019223657 PercentBracket 
-0.018437699 PercentComma 
-0.015004506 PercentHedges 
-0.013682698 PercentDeterminer 
-0.002516761 PercentTagQ 
-0.000984311 PercentConjunction 
0.003679409 PercentAmpersand 
0.003905056 PercentQuestionmark 
0.004575272 NumWords 
0.010628794 PercentLetter 
0.017857257 PercentAlphanumeric 
0.018067898 NumChars 
0.019389706 PercentExpletives 
0.021056522 PercentUppercase 
0.028150618 PercentSemicolon 
0.029683067 PercentInterjection 
0.041072588 NumSentences 
0.059556206 PercentEmoticon 
0.061223022 PercentHyphen 
0.06531815 PercentNoun 

Table 29: Ablation results for the Muir-Joinson speech corpus, upwards vs. downwards classifier, partitioned by 
pair, with standardised feature scores. 
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B.2.3 Hierarchical vs Level Classifier, Split by Sender 

-3.644851158 PercentUppercase 
-2.616580655 PercentQuote 
-2.418121512 PercentPronoun 
-1.973813703 PercentAdjective 
-1.79687139 PercentPolite 
-1.517055488 HeylighenDewaele 
-1.013506715 PercentRptLetterWord 
-0.934252051 PercentHedges 
-0.279133156 PercentNoun 
-0.132629879 PercentSemicolon 
-0.114695554 PercentAmpersand 
-0.049532843 PercentHyphen 
0.060052487 NumChars 
0.308410633 PercentContractions 
0.541388088 PercentComma 
0.550628734 PercentEmoticon 
0.600065742 PercentExclamation 
0.731715899 PercentConjunction 
0.820869342 NumWords 
1.017091532 NumParagraphs 
1.043080069 WordsPerSentence 
1.584059258 PercentDeixis 
1.664273226 PercentAlphanumeric 
1.872464779 PercentPreposition 
1.896397545 PercentBracket 
2.307047225 PercentDeterminer 
2.465059461 PercentExpletives 
2.742008487 PercentInterjection 
2.881071247 PercentNonDictionary 
3.210403009 CharactersPerWord 
3.236750434 PercentNumWord 
3.282777921 PercentAdverb 
3.59411557 PercentPeriod 
4.042139963 PercentLetter 
4.318338535 PercentModal 
4.438239798 PercentVerb 
4.557497558 PercentQuestionmark 
4.749691102 PercentTagQ 
4.982357903 NumSentences 
7.055846926 PercentColon 

Table 30: Ablation results for the Muir-Joinson speech corpus, hierarchical vs. level classifier, partitioned by 
sender, with standardised feature scores. 
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B.2.1 Upwards vs Downwards Classifier, Split by Sender 

4.904938749 PercentBracket 
4.988227656 NumParagraphs 
5.575987796 PercentDeterminer 
6.355616561 PercentEmoticon 
6.39301373 PercentInterjection 
6.459406168 PercentLetter 
6.545937893 WordsPerSentence 
7.279744221 PercentPeriod 
8.397261071 PercentNoun 
8.576934892 PercentAmpersand 
8.927286763 NumWords 
9.078224237 PercentRptLetterWord 
9.240133035 PercentHyphen 
9.476565806 PercentExpletives 
9.517275138 PercentAdverb 
9.537085212 PercentComma 
11.07478795 PercentQuestionmark 
11.18597707 PercentVerb 
11.28843918 PercentExclamation 
11.41816371 PercentPreposition 
11.49029076 PercentHedges 
11.55677551 PercentPronoun 
11.80742103 PercentConjunction 
12.28579564 PercentDeixis 
12.31745134 CharactersPerWord 
12.7908495 PercentUppercase 
12.89732666 NumSentences 
13.2439905 PercentNumWord 
13.28501804 PercentSemicolon 
13.63480079 NumChars 
13.65832047 PercentModal 
13.66524324 PercentContractions 
14.24477092 PercentAdjective 
14.81814372 PercentNonDictionary 
15.09363199 PercentColon 
15.19213727 HeylighenDewaele 
15.61769391 PercentAlphanumeric 
15.91586634 PercentPolite 
16.18897923 PercentTagQ 
16.37029556 PercentQuote 

Table 31: Ablation results for the Muir-Joinson speech corpus, upwards vs. downwards classifier, partitioned by 
sender, with standardised feature scores. 
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B.3 Feature Ablation – Muir-Joinson CMC Corpus 

B.3.1 Hierarchical vs Level Classifier, Split by Pair 

-0.067818426 PercentComma 
-0.064420212 PercentLetter 
-0.019821307 PercentHyphen 
-0.018420132 PercentHedges 
-0.013767956 NumWords 
-0.011243222 PercentVerb 
-0.000261433 PercentExpletives 
0.002584095 PercentNonDictionary 
0.010752369 PercentInterjection 
0.012132198 PercentRptLetterWord 
0.014274645 HeylighenDewaele 
0.016672171 PercentDeixis 
0.018840951 NumSentences 
0.023641681 PercentEmoticon 
0.024051493 PercentQuestionmark 
0.027392703 PercentContractions 
0.040196145 PercentAdjective 
0.04042489 PercentPolite 
0.041394908 PercentAmpersand 
0.042545991 PercentUppercase 
0.0437661 PercentNumWord 
0.044533705 PercentConjunction 
0.04622815 PercentColon 
0.047789045 PercentPreposition 
0.04948349 PercentBracket 
0.061381438 PercentExclamation 
0.061381438 WordsPerSentence 
0.063075883 CharactersPerWord 
0.06334282 PercentSemicolon 
0.075202577 NumChars 
0.075288447 PercentDeterminer 
0.075698258 PercentModal 
0.076146262 PercentPeriod 
0.078724853 PercentAlphanumeric 
0.08191133 PercentTagQ 
0.083558096 NumParagraphs 
0.089290652 PercentPronoun 
0.093041673 PercentQuote 
0.109298529 PercentAdverb 
0.161915312 PercentNoun 

Table 32: Ablation results for the Muir-Joinson CMC corpus, hierarchical vs. level classifier, partitioned by pair, 
with standardised feature scores. 
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B.3.2 Upwards vs Downwards Classifier, Split by Pair 

-2.121370899 PercentUppercase 
-1.94643594 PercentRptLetterWord 
-1.85723798 WordsPerSentence 
-1.812026778 PercentContractions 
-1.777091166 PercentTagQ 
-1.477494125 PercentNumWord 
-1.419236799 PercentModal 
-1.337869915 PercentPolite 
-1.332094323 NumParagraphs 
-1.315870399 PercentBracket 
-1.256928109 PercentAdverb 
-1.251986889 CharactersPerWord 
-1.236739793 PercentSemicolon 
-1.214128431 PercentAmpersand 
-1.050095146 PercentExclamation 
-1.030878934 PercentAdjective 
-0.995667041 PercentQuestionmark 
-0.973430878 PercentHyphen 
-0.951883248 PercentQuote 
-0.799656254 PercentNoun 
-0.780888694 PercentHedges 
-0.726255423 PercentVerb 
-0.724207271 PercentLetter 
-0.714253312 PercentAlphanumeric 
-0.657514764 NumChars 
-0.529442548 PercentNonDictionary 
-0.398507223 PercentPronoun 
-0.338273105 PercentConjunction 
-0.099912148 NumWords 
-0.082865077 NumSentences 
-0.029981946 PercentInterjection 
0.069320736 PercentPreposition 
0.086119695 PercentEmoticon 
0.091811207 HeylighenDewaele 
0.11099066 PercentExpletives 
0.208940114 PercentColon 
0.479154829 PercentComma 
0.799827058 PercentPeriod 
1.271341169 PercentDeixis 
1.534233304 PercentDeterminer 

Table 33: Ablation results for the Muir-Joinson CMC corpus, upwards vs. downwards classifier, partitioned by 
pair, with standardised feature scores. 
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B.3.3 Hierarchical vs Level Classifier, Split by Sender 

-0.389083824 PercentTagQ 
-0.387466749 NumChars 
-0.367054455 PercentAdjective 
-0.354132098 NumParagraphs 
-0.352781607 PercentPolite 
-0.344271745 PercentAlphanumeric 
-0.315650776 PercentPeriod 
-0.31307138 PercentHyphen 
-0.311075048 PercentQuote 
-0.301093108 PercentSemicolon 
-0.281354215 WordsPerSentence 
-0.249351819 PercentQuestionmark 
-0.247760024 PercentPreposition 
-0.231891135 PercentNoun 
-0.196088075 PercentExpletives 
-0.147005938 PercentNonDictionary 
-0.031703377 PercentHedges 
0.472232805 PercentComma 
0.495750619 PercentContractions 
0.534957722 PercentColon 
0.548642743 PercentAdverb 
0.598080543 PercentConjunction 
0.599793925 PercentVerb 
0.609064171 PercentDeterminer 
0.610122799 PercentNumWord 
0.612233675 PercentAmpersand 
0.619730655 PercentBracket 
0.63316505 PercentModal 
0.64014295 NumWords 
0.662424816 PercentDeixis 
0.664510411 HeylighenDewaele 
0.66686259 PercentPronoun 
0.681695188 PercentInterjection 
0.68604598 PercentUppercase 
0.692403319 NumSentences 
0.697369498 PercentRptLetterWord 
0.698226189 PercentExclamation 
0.705844757 PercentEmoticon 
0.761817121 CharactersPerWord 
0.776034331 PercentLetter 

Table 34: Ablation results for the Muir-Joinson CMC corpus, hierarchical vs. level classifier, partitioned by 
sender, with standardised feature scores. 

 
 
  



 131 

B.3.4 Upwards vs Downwards Classifier, Split by Sender 

1.403049792 PercentUppercase 
2.103095786 PercentAdjective 
2.379058292 NumChars 
2.382127483 PercentPolite 
2.386144115 WordsPerSentence 
2.417578249 PercentQuote 
2.574856522 PercentLetter 
2.616499481 PercentVerb 
2.642746659 PercentAlphanumeric 
2.646775826 PercentTagQ 
2.76375933 PercentHyphen 
2.976359532 PercentPeriod 
3.026613767 NumWords 
3.037138975 PercentNumWord 
3.12365607 PercentQuestionmark 
3.180907274 CharactersPerWord 
3.185922366 PercentConjunction 
3.196162966 PercentExclamation 
3.288300138 PercentHedges 
3.344496451 PercentInterjection 
3.397006688 PercentDeterminer 
3.40489592 PercentAmpersand 
3.515198239 NumParagraphs 
3.552828052 PercentPronoun 
3.559212565 PercentDeixis 
3.609308573 PercentNonDictionary 
3.662570519 PercentRptLetterWord 
3.671202822 HeylighenDewaele 
3.776950214 PercentAdverb 
3.790705861 PercentPreposition 
3.861944053 PercentSemicolon 
4.078857823 PercentComma 
4.125798103 NumSentences 
4.161396621 PercentEmoticon 
4.165941968 PercentModal 
4.228599551 PercentBracket 
4.235205346 PercentExpletives 
4.24484104 PercentNoun 
4.412184084 PercentContractions 
4.449654646 PercentColon 

Table 35: Ablation results for the Muir-Joinson CMC corpus, upwards vs. downwards classifier, partitioned by 
sender, with standardised feature scores. 
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Appendix C: Tension Components, Full Output 

For completeness, we include here the full output of the tension components, as 
discussed in section 5.2. 

C.1 Tension Component of Enron Message-Level Prediction Graph 

rod.hayslett@enron.com jeff.skilling@enron.com -0.220200 
rod.hayslett@enron.com shelley.corman@enron.com -0.158560 
rod.hayslett@enron.com sally.beck@enron.com -0.356440 
rod.hayslett@enron.com danny.mccarty@enron.com -0.158617 
rod.hayslett@enron.com stanley.horton@enron.com -0.258215 
rod.hayslett@enron.com drew.fossum@enron.com -0.214024 
rod.hayslett@enron.com steven.kean@enron.com -0.346046 
rod.hayslett@enron.com bill.rapp@enron.com -0.108525 
rod.hayslett@enron.com tana.jones@enron.com -0.233880 
rod.hayslett@enron.com lindy.donoho@enron.com -0.077653 
rod.hayslett@enron.com tracy.geaccone@enron.com -0.476131 
jeff.skilling@enron.com greg.whalley@enron.com -0.047244 
jeff.skilling@enron.com vince.kaminski@enron.com -0.289789 
jeff.skilling@enron.com sally.beck@enron.com -0.136240 
jeff.skilling@enron.com stanley.horton@enron.com -0.038015 
jeff.skilling@enron.com steven.kean@enron.com -0.125846 
jeff.skilling@enron.com jeff.dasovich@enron.com -0.154129 
jeff.skilling@enron.com david.delainey@enron.com 0.154091 
jeff.skilling@enron.com jeffrey.shankman@enron.com 0.054305 
jeff.skilling@enron.com a..shankman@enron.com 0.005526 
jeff.skilling@enron.com shankman@enron.com -1.000000 
mark.taylor@enron.com craig.breslau@enron.com 0.203110 
mark.taylor@enron.com kay.mann@enron.com -0.037478 
mark.taylor@enron.com harry.arora@enron.com 0.079193 
mark.taylor@enron.com stewart.rosman@enron.com 0.127486 
mark.taylor@enron.com gerald.nemec@enron.com 0.098868 
mark.taylor@enron.com stephanie.panus@enron.com 0.034050 
mark.taylor@enron.com louise.kitchen@enron.com 0.051474 
mark.taylor@enron.com shelley.corman@enron.com 0.117969 
mark.taylor@enron.com michelle.cash@enron.com -0.061112 
mark.taylor@enron.com elizabeth.sager@enron.com 0.042936 
mark.taylor@enron.com andy.zipper@enron.com 0.052058 
mark.taylor@enron.com peter.keavey@enron.com -0.108184 
mark.taylor@enron.com phillip.allen@enron.com -0.289444 
mark.taylor@enron.com marie.heard@enron.com 0.040028 
mark.taylor@enron.com don.black@enron.com 0.092870 
mark.taylor@enron.com susan.bailey@enron.com 0.113107 
mark.taylor@enron.com tana.jones@enron.com 0.042648 
mark.taylor@enron.com mark.haedicke@enron.com 0.134150 
mark.taylor@enron.com patrice.mims@enron.com -0.028079 
mark.taylor@enron.com richard.sanders@enron.com -0.014435 
mark.taylor@enron.com stacy.dickson@enron.com 0.059534 
craig.breslau@enron.com louise.kitchen@enron.com -0.151637 
craig.breslau@enron.com vince.kaminski@enron.com -0.436571 
craig.breslau@enron.com scott.neal@enron.com -0.054105 
craig.breslau@enron.com mike.grigsby@enron.com -0.495649 
craig.breslau@enron.com errol.mclaughlin@enron.com -0.257099 
craig.breslau@enron.com john.arnold@enron.com -0.245690 
craig.breslau@enron.com susan.bailey@enron.com -0.090004 
craig.breslau@enron.com patrice.mims@enron.com -0.231189 
craig.breslau@enron.com eric.bass@enron.com -0.021951 
craig.breslau@enron.com dan.hyvl@enron.com -0.146328 
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kay.mann@enron.com chris.germany@enron.com 0.033439 
kay.mann@enron.com m..presto@enron.com -0.078598 
kay.mann@enron.com michelle.cash@enron.com -0.023634 
kay.mann@enron.com elizabeth.sager@enron.com 0.080414 
kay.mann@enron.com laura.luce@enron.com 0.294264 
kay.mann@enron.com drew.fossum@enron.com 0.099982 
kay.mann@enron.com marie.heard@enron.com 0.077505 
kay.mann@enron.com susan.bailey@enron.com 0.150585 
kay.mann@enron.com tana.jones@enron.com 0.080126 
kay.mann@enron.com jake.thomas@enron.com 0.013992 
kay.mann@enron.com richard.sanders@enron.com 0.023043 
kay.mann@enron.com john.llodra@enron.com 0.073742 
harry.arora@enron.com robert.stalford@enron.com -0.172727 
harry.arora@enron.com doug.gilbert-smith@enron.com 0.219299 
harry.arora@enron.com stephanie.panus@enron.com -0.045143 
harry.arora@enron.com louise.kitchen@enron.com -0.027719 
harry.arora@enron.com john.lavorato@enron.com 0.150285 
harry.arora@enron.com vince.kaminski@enron.com -0.312654 
harry.arora@enron.com m..presto@enron.com -0.195269 
harry.arora@enron.com benjamin.rogers@enron.com 0.065521 
harry.arora@enron.com gautam.gupta@enron.com 0.397756 
harry.arora@enron.com andy.zipper@enron.com -0.027134 
harry.arora@enron.com jeffrey.shankman@enron.com 0.031441 
harry.arora@enron.com kevin.presto@enron.com -0.155742 
harry.arora@enron.com j.kaminski@enron.com -0.265389 
jane.tholt@enron.com cooper.richey@enron.com 0.150854 
jane.tholt@enron.com tori.kuykendall@enron.com -0.150854 
cooper.richey@enron.com jonathan.mckay@enron.com -0.066532 
cooper.richey@enron.com stewart.rosman@enron.com 0.033200 
cooper.richey@enron.com tim.heizenrader@enron.com 0.123301 
cooper.richey@enron.com matthew.lenhart@enron.com -0.216088 
cooper.richey@enron.com mike.grigsby@enron.com -0.386825 
cooper.richey@enron.com john.zufferli@enron.com -0.301704 
cooper.richey@enron.com phillip.allen@enron.com -0.383730 
cooper.richey@enron.com jeff.richter@enron.com 0.038275 
cooper.richey@enron.com randall.gay@enron.com -0.247375 
vladi.pimenov@enron.com jonathan.mckay@enron.com 0.154992 
vladi.pimenov@enron.com chris.germany@enron.com 0.123200 
vladi.pimenov@enron.com john.griffith@enron.com 0.036301 
vladi.pimenov@enron.com geoff.storey@enron.com 0.246875 
vladi.pimenov@enron.com chris.gaskill@enron.com 0.438632 
jonathan.mckay@enron.com chris.germany@enron.com -0.031792 
jonathan.mckay@enron.com frank.vickers@enron.com 0.089440 
jonathan.mckay@enron.com john.griffith@enron.com -0.118692 
jonathan.mckay@enron.com f..brawner@enron.com 0.148547 
jonathan.mckay@enron.com john.lavorato@enron.com 0.201724 
jonathan.mckay@enron.com scott.neal@enron.com 0.121251 
jonathan.mckay@enron.com john.zufferli@enron.com -0.235172 
jonathan.mckay@enron.com chris.dorland@enron.com -0.346694 
jonathan.mckay@enron.com kam.keiser@enron.com 0.091766 
jonathan.mckay@enron.com phillip.allen@enron.com -0.317198 
jonathan.mckay@enron.com barry.tycholiz@enron.com 0.091481 
jonathan.mckay@enron.com john.arnold@enron.com -0.070334 
jonathan.mckay@enron.com mike.maggi@enron.com -0.308301 
jonathan.mckay@enron.com brad.mckay@enron.com 0.108199 
jonathan.mckay@enron.com hunter.shively@enron.com 0.105738 
jonathan.mckay@enron.com lavorato@enron.com 0.453176 
jonathan.mckay@enron.com f..calger@enron.com -0.544657 
jonathan.mckay@enron.com martin.cuilla@enron.com 0.011549 
jonathan.mckay@enron.com steve.wang@enron.com -0.089532 
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diana.scholtes@enron.com phillip.platter@enron.com 0.642930 
diana.scholtes@enron.com holden.salisbury@enron.com 0.349176 
diana.scholtes@enron.com paul.choi@enron.com 0.641746 
diana.scholtes@enron.com sean.crandall@enron.com 0.607411 
diana.scholtes@enron.com stewart.rosman@enron.com 0.493065 
diana.scholtes@enron.com tim.heizenrader@enron.com 0.583166 
diana.scholtes@enron.com cara.semperger@enron.com 0.456177 
diana.scholtes@enron.com mike.swerzbin@enron.com 0.481982 
diana.scholtes@enron.com tim.belden@enron.com 0.364655 
diana.scholtes@enron.com tom.alonso@enron.com 0.640427 
diana.scholtes@enron.com jeff.richter@enron.com 0.498139 
diana.scholtes@enron.com kate.symes@enron.com 0.431835 
diana.scholtes@enron.com mark.fischer@enron.com 0.451261 
diana.scholtes@enron.com lloyd.will@enron.com 0.420962 
diana.scholtes@enron.com ken.lay@enron.com -0.259009 
phillip.platter@enron.com paul.choi@enron.com -0.001184 
phillip.platter@enron.com jeff.richter@enron.com -0.144791 
phillip.platter@enron.com kate.symes@enron.com -0.211095 
holden.salisbury@enron.com tim.heizenrader@enron.com 0.233990 
holden.salisbury@enron.com cara.semperger@enron.com 0.107001 
holden.salisbury@enron.com geir.solberg@enron.com 0.293571 
holden.salisbury@enron.com tim.belden@enron.com 0.015479 
holden.salisbury@enron.com tom.alonso@enron.com 0.291251 
holden.salisbury@enron.com mark.guzman@enron.com 0.172485 
holden.salisbury@enron.com craig.dean@enron.com 0.208834 
holden.salisbury@enron.com jeff.richter@enron.com 0.148964 
holden.salisbury@enron.com kate.symes@enron.com 0.082660 
holden.salisbury@enron.com mark.fischer@enron.com 0.102085 
paul.choi@enron.com stewart.rosman@enron.com -0.148681 
paul.choi@enron.com kim.ward@enron.com -0.231157 
paul.choi@enron.com tom.alonso@enron.com -0.001319 
paul.choi@enron.com mark.guzman@enron.com -0.120086 
paul.choi@enron.com chris.stokley@enron.com -0.399389 
paul.choi@enron.com matt.motley@enron.com -0.125472 
sean.crandall@enron.com stewart.rosman@enron.com -0.114347 
sean.crandall@enron.com tim.heizenrader@enron.com -0.024246 
sean.crandall@enron.com cara.semperger@enron.com -0.151235 
sean.crandall@enron.com tim.belden@enron.com -0.242757 
sean.crandall@enron.com kate.symes@enron.com -0.175576 
sean.crandall@enron.com timothy.heizenrader@enron.com -0.121378 
sean.crandall@enron.com jake.thomas@enron.com -0.265319 
sean.crandall@enron.com matt.motley@enron.com -0.091138 
stewart.rosman@enron.com m..forney@enron.com -0.203274 
stewart.rosman@enron.com kim.ward@enron.com -0.082476 
stewart.rosman@enron.com elizabeth.sager@enron.com -0.084550 
stewart.rosman@enron.com mike.swerzbin@enron.com -0.011083 
stewart.rosman@enron.com tim.belden@enron.com -0.128410 
stewart.rosman@enron.com susan.bailey@enron.com -0.014380 
stewart.rosman@enron.com chris.stokley@enron.com -0.250708 
stewart.rosman@enron.com john.forney@enron.com -0.166022 
stewart.rosman@enron.com kate.symes@enron.com -0.061230 
tim.heizenrader@enron.com matthew.lenhart@enron.com -0.339389 
tim.heizenrader@enron.com greg.whalley@enron.com -0.208503 
tim.heizenrader@enron.com cara.semperger@enron.com -0.126989 
tim.heizenrader@enron.com chris.dorland@enron.com -0.536528 
tim.heizenrader@enron.com keith.holst@enron.com -0.329152 
tim.heizenrader@enron.com mike.swerzbin@enron.com -0.101184 
tim.heizenrader@enron.com phillip.allen@enron.com -0.507031 
tim.heizenrader@enron.com tom.alonso@enron.com 0.057261 
tim.heizenrader@enron.com hunter.shively@enron.com -0.084095 
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tim.heizenrader@enron.com robert.badeer@enron.com 0.092046 
tim.heizenrader@enron.com matt.motley@enron.com -0.066892 
larry.may@enron.com robert.stalford@enron.com -0.118422 
larry.may@enron.com john.griffith@enron.com -0.115825 
larry.may@enron.com andy.zipper@enron.com 0.027171 
larry.may@enron.com peter.keavey@enron.com -0.133071 
larry.may@enron.com john.arnold@enron.com -0.067467 
larry.may@enron.com mike.maggi@enron.com -0.305434 
larry.may@enron.com brad.mckay@enron.com 0.111066 
larry.may@enron.com chris.gaskill@enron.com 0.286506 
robert.stalford@enron.com joe.stepenovitch@enron.com 0.276284 
robert.stalford@enron.com joe.parks@enron.com 0.129225 
robert.stalford@enron.com m..presto@enron.com -0.022541 
robert.stalford@enron.com sally.beck@enron.com 0.013623 
robert.stalford@enron.com andy.zipper@enron.com 0.145593 
joe.stepenovitch@enron.com don.baughman@enron.com 0.009167 
joe.stepenovitch@enron.com juan.hernandez@enron.com -0.155245 
joe.stepenovitch@enron.com lloyd.will@enron.com -0.127366 
joe.stepenovitch@enron.com larry.campbell@enron.com 0.049729 
joe.parks@enron.com chris.germany@enron.com -0.039729 
joe.parks@enron.com gerald.nemec@enron.com 0.063177 
joe.parks@enron.com chris.gaskill@enron.com 0.275703 
joe.parks@enron.com eric.bass@enron.com 0.145469 
joe.parks@enron.com dan.hyvl@enron.com 0.021092 
joe.parks@enron.com kevin.ruscitti@enron.com -0.086485 
matthew.lenhart@enron.com jason.wolfe@enron.com 0.431441 
matthew.lenhart@enron.com mike.grigsby@enron.com -0.170737 
matthew.lenhart@enron.com chris.dorland@enron.com -0.197139 
matthew.lenhart@enron.com kam.keiser@enron.com 0.241321 
matthew.lenhart@enron.com jay.reitmeyer@enron.com 0.099402 
matthew.lenhart@enron.com frank.ermis@enron.com 0.668493 
matthew.lenhart@enron.com phillip.allen@enron.com -0.167642 
matthew.lenhart@enron.com jeff.richter@enron.com 0.254363 
matthew.lenhart@enron.com robert.badeer@enron.com 0.431435 
matthew.lenhart@enron.com eric.bass@enron.com 0.302961 
matthew.lenhart@enron.com tori.kuykendall@enron.com -0.085620 
matthew.lenhart@enron.com phillip.love@enron.com 0.102302 
matthew.lenhart@enron.com martin.cuilla@enron.com 0.161104 
matthew.lenhart@enron.com matt.motley@enron.com 0.272497 
jason.wolfe@enron.com mike.grigsby@enron.com -0.602178 
jason.wolfe@enron.com keith.holst@enron.com -0.421205 
jason.wolfe@enron.com kam.keiser@enron.com -0.190120 
jason.wolfe@enron.com frank.ermis@enron.com 0.237052 
jason.wolfe@enron.com barry.tycholiz@enron.com -0.190405 
jason.wolfe@enron.com h..foster@enron.com 0.222583 
jason.wolfe@enron.com eric.bass@enron.com -0.128480 
jason.wolfe@enron.com phillip.love@enron.com -0.329139 
greg.whalley@enron.com kenneth.lay@enron.com -0.199337 
greg.whalley@enron.com louise.kitchen@enron.com 0.042390 
greg.whalley@enron.com f..brawner@enron.com 0.167216 
greg.whalley@enron.com john.lavorato@enron.com 0.220394 
greg.whalley@enron.com vince.kaminski@enron.com -0.242545 
greg.whalley@enron.com tim.belden@enron.com -0.010008 
greg.whalley@enron.com sally.beck@enron.com -0.088996 
greg.whalley@enron.com andy.zipper@enron.com 0.042974 
greg.whalley@enron.com stanley.horton@enron.com 0.009229 
greg.whalley@enron.com steven.kean@enron.com -0.078602 
greg.whalley@enron.com david.delainey@enron.com 0.201335 
greg.whalley@enron.com jim.schwieger@enron.com -0.022366 
greg.whalley@enron.com jeffrey.shankman@enron.com 0.101550 
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greg.whalley@enron.com john.arnold@enron.com -0.051664 
greg.whalley@enron.com chris.gaskill@enron.com 0.302309 
greg.whalley@enron.com mark.haedicke@enron.com 0.125066 
greg.whalley@enron.com rick.buy@enron.com -0.053425 
greg.whalley@enron.com a..shankman@enron.com 0.052770 
greg.whalley@enron.com lavorato@enron.com 0.471846 
greg.whalley@enron.com fletcher.sturm@enron.com 0.258643 
greg.whalley@enron.com j..kean@enron.com -0.470073 
greg.whalley@enron.com tom.donohoe@enron.com -0.023714 
greg.whalley@enron.com j.kaminski@enron.com -0.195280 
greg.whalley@enron.com j..sturm@enron.com 0.197856 
greg.whalley@enron.com richard.sanders@enron.com -0.023519 
kenneth.lay@enron.com louise.kitchen@enron.com 0.241727 
kenneth.lay@enron.com john.lavorato@enron.com 0.419731 
kenneth.lay@enron.com vince.kaminski@enron.com -0.043208 
kenneth.lay@enron.com benjamin.rogers@enron.com 0.334967 
kenneth.lay@enron.com sally.beck@enron.com 0.110342 
kenneth.lay@enron.com stanley.horton@enron.com 0.208567 
kenneth.lay@enron.com steven.kean@enron.com 0.120736 
kenneth.lay@enron.com richard.shapiro@enron.com 0.271250 
kenneth.lay@enron.com david.delainey@enron.com 0.400673 
kenneth.lay@enron.com jim.schwieger@enron.com 0.176972 
kenneth.lay@enron.com kevin.hyatt@enron.com 0.513022 
kenneth.lay@enron.com a..shankman@enron.com 0.252107 
kenneth.lay@enron.com j..kean@enron.com -0.270735 
kenneth.lay@enron.com tom.donohoe@enron.com 0.175623 
chris.germany@enron.com frank.vickers@enron.com 0.121233 
chris.germany@enron.com scott.neal@enron.com 0.153044 
chris.germany@enron.com kam.keiser@enron.com 0.123558 
chris.germany@enron.com judy.townsend@enron.com 0.570751 
chris.germany@enron.com chris.gaskill@enron.com 0.315432 
chris.germany@enron.com kevin.hyatt@enron.com 0.326807 
chris.germany@enron.com john.hodge@enron.com 0.277629 
chris.germany@enron.com kevin.ruscitti@enron.com -0.046756 
chris.germany@enron.com tom.donohoe@enron.com -0.010592 
chris.germany@enron.com martin.cuilla@enron.com 0.043341 
chris.germany@enron.com randall.gay@enron.com -0.149051 
chris.germany@enron.com susan.pereira@enron.com 0.000000 
frank.vickers@enron.com kim.ward@enron.com -0.072183 
frank.vickers@enron.com louise.kitchen@enron.com -0.065720 
frank.vickers@enron.com scott.neal@enron.com 0.031811 
frank.vickers@enron.com laura.luce@enron.com 0.139592 
frank.vickers@enron.com jeff.dasovich@enron.com -0.214995 
frank.vickers@enron.com marie.heard@enron.com -0.077166 
frank.vickers@enron.com barry.tycholiz@enron.com 0.002041 
frank.vickers@enron.com john.hodge@enron.com 0.156396 
m..forney@enron.com cara.semperger@enron.com 0.166386 
m..forney@enron.com doug.gilbert-smith@enron.com 0.374280 
m..forney@enron.com tim.belden@enron.com 0.074864 
m..forney@enron.com rogers.herndon@enron.com 0.271533 
m..forney@enron.com chris.stokley@enron.com -0.047434 
m..forney@enron.com robert.badeer@enron.com 0.385421 
m..forney@enron.com juan.hernandez@enron.com 0.103292 
m..forney@enron.com eric.saibi@enron.com 0.038042 
m..forney@enron.com jeff.king@enron.com 0.088061 
m..forney@enron.com lloyd.will@enron.com 0.131171 
cara.semperger@enron.com geir.solberg@enron.com 0.186570 
cara.semperger@enron.com tim.belden@enron.com -0.091522 
cara.semperger@enron.com tom.alonso@enron.com 0.184250 
cara.semperger@enron.com mark.guzman@enron.com 0.065484 
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cara.semperger@enron.com craig.dean@enron.com 0.101833 
cara.semperger@enron.com jeff.richter@enron.com 0.041963 
cara.semperger@enron.com kate.symes@enron.com -0.024341 
cara.semperger@enron.com mark.fischer@enron.com -0.004916 
doug.gilbert-smith@enron.com m..presto@enron.com -0.414568 
doug.gilbert-smith@enron.com michelle.cash@enron.com -0.359604 
doug.gilbert-smith@enron.com rogers.herndon@enron.com -0.102746 
doug.gilbert-smith@enron.com d..steffes@enron.com 0.001021 
doug.gilbert-smith@enron.com juan.hernandez@enron.com -0.270988 
doug.gilbert-smith@enron.com mike.curry@enron.com -0.442635 
doug.gilbert-smith@enron.com eric.saibi@enron.com -0.336238 
doug.gilbert-smith@enron.com jeff.king@enron.com -0.286218 
sandra.brawner@enron.com john.griffith@enron.com -0.027312 
sandra.brawner@enron.com louise.kitchen@enron.com 0.115100 
sandra.brawner@enron.com scott.neal@enron.com 0.212632 
sandra.brawner@enron.com brad.mckay@enron.com 0.199580 
john.griffith@enron.com scott.neal@enron.com 0.239943 
john.griffith@enron.com benjamin.rogers@enron.com 0.235652 
john.griffith@enron.com errol.mclaughlin@enron.com 0.036950 
john.griffith@enron.com andy.zipper@enron.com 0.142996 
john.griffith@enron.com john.arnold@enron.com 0.048358 
john.griffith@enron.com mike.maggi@enron.com -0.189609 
john.griffith@enron.com brad.mckay@enron.com 0.226891 
john.griffith@enron.com daren.farmer@enron.com 0.005513 
gerald.nemec@enron.com kim.ward@enron.com -0.053857 
gerald.nemec@enron.com stephanie.panus@enron.com -0.064818 
gerald.nemec@enron.com jim.schwieger@enron.com -0.112149 
gerald.nemec@enron.com mark.whitt@enron.com 0.060524 
gerald.nemec@enron.com theresa.staab@enron.com 0.067287 
gerald.nemec@enron.com barry.tycholiz@enron.com 0.020367 
gerald.nemec@enron.com john.hodge@enron.com 0.174723 
gerald.nemec@enron.com paul.lucci@enron.com -0.314194 
gerald.nemec@enron.com dan.hyvl@enron.com -0.042085 
gerald.nemec@enron.com richard.sanders@enron.com -0.113303 
kim.ward@enron.com stephanie.panus@enron.com -0.010961 
kim.ward@enron.com chris.foster@enron.com 0.104164 
kim.ward@enron.com mike.grigsby@enron.com -0.337550 
kim.ward@enron.com jim.schwieger@enron.com -0.058292 
kim.ward@enron.com mark.guzman@enron.com 0.111071 
kim.ward@enron.com barry.tycholiz@enron.com 0.074224 
kim.ward@enron.com john.arnold@enron.com -0.087590 
kim.ward@enron.com mike.maggi@enron.com -0.325558 
kim.ward@enron.com susan.bailey@enron.com 0.068096 
kim.ward@enron.com john.forney@enron.com -0.083546 
kim.ward@enron.com kate.symes@enron.com 0.021246 
kim.ward@enron.com paul.lucci@enron.com -0.260337 
kim.ward@enron.com tori.kuykendall@enron.com -0.252433 
kim.ward@enron.com dan.hyvl@enron.com 0.011772 
kim.ward@enron.com m..tholt@enron.com 0.293478 
stephanie.panus@enron.com elizabeth.sager@enron.com 0.008887 
stephanie.panus@enron.com marie.heard@enron.com 0.005978 
stephanie.panus@enron.com susan.bailey@enron.com 0.079057 
stephanie.panus@enron.com tana.jones@enron.com 0.008599 
louise.kitchen@enron.com f..brawner@enron.com 0.124827 
louise.kitchen@enron.com john.lavorato@enron.com 0.178004 
louise.kitchen@enron.com vince.kaminski@enron.com -0.284935 
louise.kitchen@enron.com scott.neal@enron.com 0.097531 
louise.kitchen@enron.com shelley.corman@enron.com 0.066495 
louise.kitchen@enron.com chris.foster@enron.com 0.097700 
louise.kitchen@enron.com mike.grigsby@enron.com -0.344013 
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louise.kitchen@enron.com m..presto@enron.com -0.167550 
louise.kitchen@enron.com john.zufferli@enron.com -0.258892 
louise.kitchen@enron.com keith.holst@enron.com -0.163039 
louise.kitchen@enron.com michelle.cash@enron.com -0.112586 
louise.kitchen@enron.com elizabeth.sager@enron.com -0.008538 
louise.kitchen@enron.com tim.belden@enron.com -0.052398 
louise.kitchen@enron.com sally.beck@enron.com -0.131386 
louise.kitchen@enron.com andy.zipper@enron.com 0.000584 
louise.kitchen@enron.com laura.luce@enron.com 0.205312 
louise.kitchen@enron.com peter.keavey@enron.com -0.159658 
louise.kitchen@enron.com d..steffes@enron.com 0.248039 
louise.kitchen@enron.com richard.shapiro@enron.com 0.029523 
louise.kitchen@enron.com marie.heard@enron.com -0.011446 
louise.kitchen@enron.com don.black@enron.com 0.041397 
louise.kitchen@enron.com jeffrey.shankman@enron.com 0.059160 
louise.kitchen@enron.com barry.tycholiz@enron.com 0.067761 
louise.kitchen@enron.com john.arnold@enron.com -0.094054 
louise.kitchen@enron.com john.shelk@enron.com -0.140006 
louise.kitchen@enron.com tana.jones@enron.com -0.008825 
louise.kitchen@enron.com a..martin@enron.com 0.023489 
louise.kitchen@enron.com hunter.shively@enron.com 0.082018 
louise.kitchen@enron.com geoff.storey@enron.com 0.068162 
louise.kitchen@enron.com chris.gaskill@enron.com 0.259919 
louise.kitchen@enron.com mark.haedicke@enron.com 0.082676 
louise.kitchen@enron.com h..foster@enron.com 0.480749 
louise.kitchen@enron.com rick.buy@enron.com -0.095815 
louise.kitchen@enron.com kevin.presto@enron.com -0.128024 
louise.kitchen@enron.com a..shankman@enron.com 0.010380 
louise.kitchen@enron.com lavorato@enron.com 0.429456 
louise.kitchen@enron.com calger@enron.com 0.089002 
louise.kitchen@enron.com fletcher.sturm@enron.com 0.216253 
louise.kitchen@enron.com j..kean@enron.com -0.512463 
louise.kitchen@enron.com j.kaminski@enron.com -0.237670 
louise.kitchen@enron.com mike.curry@enron.com -0.195616 
louise.kitchen@enron.com james.steffes@enron.com -0.020419 
louise.kitchen@enron.com f..calger@enron.com -0.568377 
louise.kitchen@enron.com christopher.calger@enron.com -0.090064 
louise.kitchen@enron.com john.llodra@enron.com -0.015210 
louise.kitchen@enron.com whalley@enron.com 0.089002 
f..brawner@enron.com john.lavorato@enron.com 0.053177 
f..brawner@enron.com scott.neal@enron.com -0.027295 
f..brawner@enron.com rogers.herndon@enron.com 0.019445 
f..brawner@enron.com john.arnold@enron.com -0.218880 
f..brawner@enron.com mike.maggi@enron.com -0.456848 
f..brawner@enron.com tom.donohoe@enron.com -0.190931 
f..brawner@enron.com steve.wang@enron.com -0.238079 
john.lavorato@enron.com vince.kaminski@enron.com -0.462939 
john.lavorato@enron.com scott.neal@enron.com -0.080473 
john.lavorato@enron.com mike.grigsby@enron.com -0.522017 
john.lavorato@enron.com m..presto@enron.com -0.345554 
john.lavorato@enron.com john.zufferli@enron.com -0.436896 
john.lavorato@enron.com chris.dorland@enron.com -0.548418 
john.lavorato@enron.com keith.holst@enron.com -0.341043 
john.lavorato@enron.com michelle.cash@enron.com -0.290590 
john.lavorato@enron.com mike.swerzbin@enron.com -0.113075 
john.lavorato@enron.com tim.belden@enron.com -0.230402 
john.lavorato@enron.com sally.beck@enron.com -0.309390 
john.lavorato@enron.com andy.zipper@enron.com -0.177420 
john.lavorato@enron.com rogers.herndon@enron.com -0.033732 
john.lavorato@enron.com d..steffes@enron.com 0.070035 
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john.lavorato@enron.com stanley.horton@enron.com -0.211164 
john.lavorato@enron.com steven.kean@enron.com -0.298995 
john.lavorato@enron.com jay.reitmeyer@enron.com -0.251878 
john.lavorato@enron.com richard.shapiro@enron.com -0.148481 
john.lavorato@enron.com david.delainey@enron.com -0.019058 
john.lavorato@enron.com phillip.allen@enron.com -0.518922 
john.lavorato@enron.com jim.schwieger@enron.com -0.242759 
john.lavorato@enron.com don.black@enron.com -0.136607 
john.lavorato@enron.com barry.tycholiz@enron.com -0.110243 
john.lavorato@enron.com john.arnold@enron.com -0.272058 
john.lavorato@enron.com presto@enron.com -0.000000 
john.lavorato@enron.com a..martin@enron.com -0.154515 
john.lavorato@enron.com chris.gaskill@enron.com 0.081916 
john.lavorato@enron.com mark.haedicke@enron.com -0.095328 
john.lavorato@enron.com robert.badeer@enron.com 0.080155 
john.lavorato@enron.com rick.buy@enron.com -0.273819 
john.lavorato@enron.com kevin.presto@enron.com -0.306027 
john.lavorato@enron.com a..shankman@enron.com -0.167624 
john.lavorato@enron.com lavorato@enron.com 0.251452 
john.lavorato@enron.com calger@enron.com -0.089002 
john.lavorato@enron.com j..kean@enron.com -0.690466 
john.lavorato@enron.com steffes@enron.com -1.000000 
john.lavorato@enron.com arora@enron.com -0.000000 
john.lavorato@enron.com m..tholt@enron.com 0.109011 
john.lavorato@enron.com j.kaminski@enron.com -0.415674 
john.lavorato@enron.com j..sturm@enron.com -0.022538 
john.lavorato@enron.com f..calger@enron.com -0.746381 
john.lavorato@enron.com christopher.calger@enron.com -0.268068 
john.lavorato@enron.com matt.motley@enron.com -0.078782 
john.lavorato@enron.com s..shively@enron.com -0.018417 
john.lavorato@enron.com zufferli@enron.com -0.000000 
john.lavorato@enron.com john.j.lavorato@enron.com -1.000000 
john.lavorato@enron.com whalley@enron.com -0.089002 
john.lavorato@enron.com belden@enron.com 0.250000 
vince.kaminski@enron.com sally.beck@enron.com 0.153549 
vince.kaminski@enron.com andy.zipper@enron.com 0.285519 
vince.kaminski@enron.com laura.luce@enron.com 0.490247 
vince.kaminski@enron.com richard.shapiro@enron.com 0.314457 
vince.kaminski@enron.com jim.schwieger@enron.com 0.220179 
vince.kaminski@enron.com john.arnold@enron.com 0.190881 
vince.kaminski@enron.com kimberly.watson@enron.com 0.278043 
vince.kaminski@enron.com rick.buy@enron.com 0.189120 
vince.kaminski@enron.com tracy.geaccone@enron.com 0.033858 
vince.kaminski@enron.com vince.j.kaminski@enron.com 0.222979 
vince.kaminski@enron.com j.kaminski@enron.com 0.047265 
vince.kaminski@enron.com lloyd.will@enron.com 0.288844 
scott.neal@enron.com mike.grigsby@enron.com -0.441544 
scott.neal@enron.com kam.keiser@enron.com -0.029486 
scott.neal@enron.com don.black@enron.com -0.056135 
scott.neal@enron.com john.arnold@enron.com -0.191585 
scott.neal@enron.com brad.mckay@enron.com -0.013052 
scott.neal@enron.com julia.sudduth@enron.com -0.000000 
scott.neal@enron.com a..martin@enron.com -0.074042 
scott.neal@enron.com hunter.shively@enron.com -0.015513 
scott.neal@enron.com chris.gaskill@enron.com 0.162388 
scott.neal@enron.com john.hodge@enron.com 0.124585 
scott.neal@enron.com s..shively@enron.com 0.062056 
shelley.corman@enron.com d..steffes@enron.com 0.181544 
shelley.corman@enron.com danny.mccarty@enron.com -0.000058 
shelley.corman@enron.com stanley.horton@enron.com -0.099655 
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shelley.corman@enron.com drew.fossum@enron.com -0.055465 
shelley.corman@enron.com steven.kean@enron.com -0.187486 
shelley.corman@enron.com jeff.dasovich@enron.com -0.215769 
shelley.corman@enron.com lindy.donoho@enron.com 0.080906 
shelley.corman@enron.com kimberly.watson@enron.com -0.073386 
shelley.corman@enron.com darrell.schoolcraft@enron.com -0.374221 
shelley.corman@enron.com kevin.hyatt@enron.com 0.204800 
shelley.corman@enron.com teb.lokey@enron.com 0.051586 
shelley.corman@enron.com tracy.geaccone@enron.com -0.317571 
shelley.corman@enron.com lynn.blair@enron.com -0.083424 
chris.foster@enron.com jeff.dasovich@enron.com -0.246975 
chris.foster@enron.com kate.symes@enron.com -0.082917 
chris.foster@enron.com lavorato@enron.com 0.331756 
mike.grigsby@enron.com john.zufferli@enron.com 0.085121 
mike.grigsby@enron.com chris.dorland@enron.com -0.026402 
mike.grigsby@enron.com keith.holst@enron.com 0.180974 
mike.grigsby@enron.com kam.keiser@enron.com 0.412058 
mike.grigsby@enron.com mike.swerzbin@enron.com 0.408942 
mike.grigsby@enron.com tim.belden@enron.com 0.291615 
mike.grigsby@enron.com jay.reitmeyer@enron.com 0.270139 
mike.grigsby@enron.com frank.ermis@enron.com 0.839230 
mike.grigsby@enron.com phillip.allen@enron.com 0.003095 
mike.grigsby@enron.com tom.alonso@enron.com 0.567387 
mike.grigsby@enron.com don.black@enron.com 0.385409 
mike.grigsby@enron.com mark.whitt@enron.com 0.451931 
mike.grigsby@enron.com barry.tycholiz@enron.com 0.411774 
mike.grigsby@enron.com john.arnold@enron.com 0.249959 
mike.grigsby@enron.com chris.gaskill@enron.com 0.603932 
mike.grigsby@enron.com h..foster@enron.com 0.824761 
mike.grigsby@enron.com robert.badeer@enron.com 0.602172 
mike.grigsby@enron.com eric.bass@enron.com 0.473698 
mike.grigsby@enron.com tori.kuykendall@enron.com 0.085117 
mike.grigsby@enron.com m..tholt@enron.com 0.631027 
mike.grigsby@enron.com martin.cuilla@enron.com 0.331841 
mike.grigsby@enron.com randall.gay@enron.com 0.139450 
mike.grigsby@enron.com mcuilla@enron.com 0.200000 
mike.grigsby@enron.com matt.motley@enron.com 0.443234 
mike.grigsby@enron.com s..shively@enron.com 0.503600 
m..presto@enron.com chris.dorland@enron.com -0.202865 
m..presto@enron.com elizabeth.sager@enron.com 0.159012 
m..presto@enron.com mike.swerzbin@enron.com 0.232479 
m..presto@enron.com tim.belden@enron.com 0.115152 
m..presto@enron.com rogers.herndon@enron.com 0.311822 
m..presto@enron.com don.black@enron.com 0.208946 
m..presto@enron.com john.arnold@enron.com 0.073496 
m..presto@enron.com robert.benson@enron.com 0.109296 
m..presto@enron.com mike.curry@enron.com -0.028067 
m..presto@enron.com lloyd.will@enron.com 0.171459 
m..presto@enron.com john.llodra@enron.com 0.152340 
john.zufferli@enron.com chris.dorland@enron.com -0.111523 
john.zufferli@enron.com tim.belden@enron.com 0.206494 
john.zufferli@enron.com david.delainey@enron.com 0.417837 
john.zufferli@enron.com a..shankman@enron.com 0.269272 
john.zufferli@enron.com lavorato@enron.com 0.688348 
john.zufferli@enron.com lloyd.will@enron.com 0.262801 
benjamin.rogers@enron.com gautam.gupta@enron.com 0.332235 
benjamin.rogers@enron.com rogers.herndon@enron.com 0.051032 
benjamin.rogers@enron.com stanley.horton@enron.com -0.126400 
benjamin.rogers@enron.com david.delainey@enron.com 0.065705 
benjamin.rogers@enron.com robert.benson@enron.com -0.151494 
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benjamin.rogers@enron.com joe.quenet@enron.com -0.118271 
gautam.gupta@enron.com j..sturm@enron.com -0.270009 
gautam.gupta@enron.com paul.thomas@enron.com -1.000000 
chris.dorland@enron.com keith.holst@enron.com 0.207375 
chris.dorland@enron.com barry.tycholiz@enron.com 0.438175 
chris.dorland@enron.com geoff.storey@enron.com 0.438576 
chris.dorland@enron.com chris.gaskill@enron.com 0.630334 
chris.dorland@enron.com robert.benson@enron.com 0.312161 
chris.dorland@enron.com lavorato@enron.com 0.799871 
chris.dorland@enron.com joe.quenet@enron.com 0.345384 
chris.dorland@enron.com mike.carson@enron.com 0.223204 
chris.dorland@enron.com j..sturm@enron.com 0.525881 
chris.dorland@enron.com martin.cuilla@enron.com 0.358243 
keith.holst@enron.com kam.keiser@enron.com 0.231085 
keith.holst@enron.com mike.swerzbin@enron.com 0.227968 
keith.holst@enron.com jay.reitmeyer@enron.com 0.089165 
keith.holst@enron.com jeff.dasovich@enron.com 0.013765 
keith.holst@enron.com phillip.allen@enron.com -0.177879 
keith.holst@enron.com barry.tycholiz@enron.com 0.230800 
keith.holst@enron.com jeff.richter@enron.com 0.244126 
keith.holst@enron.com geoff.storey@enron.com 0.231201 
keith.holst@enron.com m..tholt@enron.com 0.450054 
keith.holst@enron.com j.kaminski@enron.com -0.074631 
ryan.slinger@enron.com geir.solberg@enron.com -0.141193 
ryan.slinger@enron.com mark.guzman@enron.com -0.262280 
ryan.slinger@enron.com craig.dean@enron.com -0.225930 
ryan.slinger@enron.com eric.linder@enron.com -0.570597 
geir.solberg@enron.com tim.belden@enron.com -0.278092 
geir.solberg@enron.com mark.guzman@enron.com -0.121086 
geir.solberg@enron.com craig.dean@enron.com -0.084737 
geir.solberg@enron.com chris.stokley@enron.com -0.400390 
geir.solberg@enron.com h..foster@enron.com 0.255054 
geir.solberg@enron.com kate.symes@enron.com -0.210911 
geir.solberg@enron.com mark.fischer@enron.com -0.191486 
geir.solberg@enron.com eric.linder@enron.com -0.429403 
b..sanders@enron.com michelle.cash@enron.com -0.160327 
b..sanders@enron.com elizabeth.sager@enron.com -0.056279 
b..sanders@enron.com richard.shapiro@enron.com -0.018219 
b..sanders@enron.com jeff.dasovich@enron.com -0.197016 
b..sanders@enron.com james.steffes@enron.com -0.068160 
michelle.cash@enron.com elizabeth.sager@enron.com 0.104048 
michelle.cash@enron.com sally.beck@enron.com -0.018800 
michelle.cash@enron.com rogers.herndon@enron.com 0.256858 
michelle.cash@enron.com danny.mccarty@enron.com 0.179023 
michelle.cash@enron.com steven.kean@enron.com -0.008406 
michelle.cash@enron.com geoff.storey@enron.com 0.180748 
michelle.cash@enron.com mark.haedicke@enron.com 0.195262 
michelle.cash@enron.com j..kean@enron.com -0.399877 
michelle.cash@enron.com j.kaminski@enron.com -0.125084 
michelle.cash@enron.com richard.sanders@enron.com 0.046677 
michelle.cash@enron.com s..shively@enron.com 0.272173 
elizabeth.sager@enron.com tim.belden@enron.com -0.043860 
elizabeth.sager@enron.com sally.beck@enron.com -0.122848 
elizabeth.sager@enron.com rogers.herndon@enron.com 0.152810 
elizabeth.sager@enron.com marie.heard@enron.com -0.002908 
elizabeth.sager@enron.com tana.jones@enron.com -0.000288 
elizabeth.sager@enron.com john.forney@enron.com -0.081472 
elizabeth.sager@enron.com mark.haedicke@enron.com 0.091214 
elizabeth.sager@enron.com richard.sanders@enron.com -0.057371 
elizabeth.sager@enron.com f..calger@enron.com -0.559840 
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elizabeth.sager@enron.com lloyd.will@enron.com 0.012447 
elizabeth.sager@enron.com john.llodra@enron.com -0.006672 
errol.mclaughlin@enron.com kam.keiser@enron.com 0.173508 
errol.mclaughlin@enron.com andy.zipper@enron.com 0.106046 
errol.mclaughlin@enron.com john.arnold@enron.com 0.011408 
kam.keiser@enron.com jay.reitmeyer@enron.com -0.141920 
kam.keiser@enron.com tom.alonso@enron.com 0.155329 
kam.keiser@enron.com mark.whitt@enron.com 0.039872 
kam.keiser@enron.com hunter.shively@enron.com 0.013972 
kam.keiser@enron.com kevin.ruscitti@enron.com -0.170314 
kam.keiser@enron.com phillip.love@enron.com -0.139019 
mike.swerzbin@enron.com tim.belden@enron.com -0.117327 
mike.swerzbin@enron.com tana.jones@enron.com -0.073755 
mike.swerzbin@enron.com matt.motley@enron.com 0.034292 
mike.swerzbin@enron.com ken.lay@enron.com -0.740991 
tim.belden@enron.com sally.beck@enron.com -0.078988 
tim.belden@enron.com d..steffes@enron.com 0.300437 
tim.belden@enron.com steven.kean@enron.com -0.068594 
tim.belden@enron.com jeff.dasovich@enron.com -0.096877 
tim.belden@enron.com david.delainey@enron.com 0.211343 
tim.belden@enron.com phillip.allen@enron.com -0.288520 
tim.belden@enron.com tom.alonso@enron.com 0.275772 
tim.belden@enron.com mark.guzman@enron.com 0.157006 
tim.belden@enron.com chris.stokley@enron.com -0.122298 
tim.belden@enron.com jeff.richter@enron.com 0.133485 
tim.belden@enron.com john.forney@enron.com -0.037611 
tim.belden@enron.com mark.haedicke@enron.com 0.135074 
tim.belden@enron.com h..foster@enron.com 0.533146 
tim.belden@enron.com robert.badeer@enron.com 0.310557 
tim.belden@enron.com kate.symes@enron.com 0.067181 
tim.belden@enron.com mark.fischer@enron.com 0.086606 
tim.belden@enron.com timothy.heizenrader@enron.com 0.121378 
tim.belden@enron.com kevin.presto@enron.com -0.075626 
tim.belden@enron.com lavorato@enron.com 0.481854 
tim.belden@enron.com richard.sanders@enron.com -0.013511 
tim.belden@enron.com f..calger@enron.com -0.515980 
tim.belden@enron.com matt.motley@enron.com 0.151619 
sally.beck@enron.com andy.zipper@enron.com 0.131970 
sally.beck@enron.com laura.luce@enron.com 0.336698 
sally.beck@enron.com stanley.horton@enron.com 0.098225 
sally.beck@enron.com david.delainey@enron.com 0.290331 
sally.beck@enron.com barry.tycholiz@enron.com 0.199147 
sally.beck@enron.com rick.buy@enron.com 0.035571 
sally.beck@enron.com fletcher.sturm@enron.com 0.347639 
sally.beck@enron.com j..kean@enron.com -0.381077 
sally.beck@enron.com j.kaminski@enron.com -0.106284 
sally.beck@enron.com daren.farmer@enron.com -0.005513 
andy.zipper@enron.com phillip.allen@enron.com -0.341502 
andy.zipper@enron.com jim.schwieger@enron.com -0.065340 
andy.zipper@enron.com jeffrey.shankman@enron.com 0.058576 
andy.zipper@enron.com john.arnold@enron.com -0.094638 
andy.zipper@enron.com tana.jones@enron.com -0.009410 
andy.zipper@enron.com chris.gaskill@enron.com 0.259335 
andy.zipper@enron.com kevin.presto@enron.com -0.128608 
andy.zipper@enron.com a..shankman@enron.com 0.009796 
andy.zipper@enron.com lavorato@enron.com 0.428872 
andy.zipper@enron.com j..sturm@enron.com 0.154882 
andy.zipper@enron.com kaminski@enron.com 0.000000 
andy.zipper@enron.com steve.wang@enron.com -0.113836 
laura.luce@enron.com david.delainey@enron.com -0.046367 
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laura.luce@enron.com barry.tycholiz@enron.com -0.137551 
laura.luce@enron.com john.arnold@enron.com -0.299366 
laura.luce@enron.com hunter.shively@enron.com -0.123294 
laura.luce@enron.com dan.hyvl@enron.com -0.200004 
laura.luce@enron.com j.kaminski@enron.com -0.442982 
laura.luce@enron.com j..sturm@enron.com -0.049846 
laura.luce@enron.com phillip.love@enron.com -0.276286 
laura.luce@enron.com s..shively@enron.com -0.045725 
peter.keavey@enron.com john.arnold@enron.com 0.065605 
peter.keavey@enron.com brad.mckay@enron.com 0.244138 
peter.keavey@enron.com eric.bass@enron.com 0.289344 
rogers.herndon@enron.com d..steffes@enron.com 0.103767 
rogers.herndon@enron.com barry.tycholiz@enron.com -0.076511 
rogers.herndon@enron.com chris.stokley@enron.com -0.318968 
rogers.herndon@enron.com kevin.presto@enron.com -0.272295 
rogers.herndon@enron.com lavorato@enron.com 0.285184 
rogers.herndon@enron.com fletcher.sturm@enron.com 0.071981 
rogers.herndon@enron.com j..sturm@enron.com 0.011194 
rogers.herndon@enron.com richard.ring@enron.com 0.099129 
d..steffes@enron.com richard.shapiro@enron.com -0.218516 
d..steffes@enron.com jeff.dasovich@enron.com -0.397313 
d..steffes@enron.com david.delainey@enron.com -0.089093 
d..steffes@enron.com don.black@enron.com -0.206642 
d..steffes@enron.com john.shelk@enron.com -0.388045 
d..steffes@enron.com richard.ring@enron.com -0.004638 
danny.mccarty@enron.com stanley.horton@enron.com -0.099598 
danny.mccarty@enron.com drew.fossum@enron.com -0.055407 
danny.mccarty@enron.com lindy.donoho@enron.com 0.080964 
danny.mccarty@enron.com kimberly.watson@enron.com -0.073329 
danny.mccarty@enron.com tracy.geaccone@enron.com -0.317514 
danny.mccarty@enron.com lynn.blair@enron.com -0.083366 
stanley.horton@enron.com phillip.allen@enron.com -0.307757 
stanley.horton@enron.com kevin.hyatt@enron.com 0.304455 
stanley.horton@enron.com lavorato@enron.com 0.462616 
stanley.horton@enron.com tracy.geaccone@enron.com -0.217916 
stanley.horton@enron.com j..kean@enron.com -0.479302 
stanley.horton@enron.com corman@enron.com 0.000000 
drew.fossum@enron.com bill.rapp@enron.com 0.105500 
drew.fossum@enron.com kimberly.watson@enron.com -0.017922 
drew.fossum@enron.com kevin.hyatt@enron.com 0.260265 
drew.fossum@enron.com teb.lokey@enron.com 0.107051 
drew.fossum@enron.com tracy.geaccone@enron.com -0.262106 
drew.fossum@enron.com lynn.blair@enron.com -0.027959 
steven.kean@enron.com richard.shapiro@enron.com 0.150514 
steven.kean@enron.com jeff.dasovich@enron.com -0.028283 
steven.kean@enron.com rick.buy@enron.com 0.025177 
steven.kean@enron.com lavorato@enron.com 0.550448 
steven.kean@enron.com james.steffes@enron.com 0.100573 
jay.reitmeyer@enron.com frank.ermis@enron.com 0.569091 
jay.reitmeyer@enron.com phillip.allen@enron.com -0.267044 
jay.reitmeyer@enron.com mark.whitt@enron.com 0.181792 
jay.reitmeyer@enron.com theresa.staab@enron.com 0.188554 
jay.reitmeyer@enron.com chris.gaskill@enron.com 0.333793 
jay.reitmeyer@enron.com robert.badeer@enron.com 0.332033 
jay.reitmeyer@enron.com tori.kuykendall@enron.com -0.185022 
jay.reitmeyer@enron.com m..tholt@enron.com 0.360888 
jay.reitmeyer@enron.com randall.gay@enron.com -0.130689 
jay.reitmeyer@enron.com s..shively@enron.com 0.233461 
frank.ermis@enron.com phillip.allen@enron.com -0.836135 
richard.shapiro@enron.com jeff.dasovich@enron.com -0.178797 
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richard.shapiro@enron.com david.delainey@enron.com 0.129423 
richard.shapiro@enron.com jeffrey.shankman@enron.com 0.029637 
richard.shapiro@enron.com john.shelk@enron.com -0.169529 
richard.shapiro@enron.com mark.haedicke@enron.com 0.053153 
richard.shapiro@enron.com lavorato@enron.com 0.399934 
richard.shapiro@enron.com j..kean@enron.com -0.541985 
richard.shapiro@enron.com james.steffes@enron.com -0.049941 
jeff.dasovich@enron.com david.delainey@enron.com 0.308220 
jeff.dasovich@enron.com phillip.allen@enron.com -0.191643 
jeff.dasovich@enron.com barry.tycholiz@enron.com 0.217035 
jeff.dasovich@enron.com john.shelk@enron.com 0.009268 
jeff.dasovich@enron.com chris.stokley@enron.com -0.025421 
jeff.dasovich@enron.com jeff.richter@enron.com 0.230362 
jeff.dasovich@enron.com robert.badeer@enron.com 0.407434 
jeff.dasovich@enron.com kevin.hyatt@enron.com 0.420569 
jeff.dasovich@enron.com j..kean@enron.com -0.363188 
jeff.dasovich@enron.com m..tholt@enron.com 0.436289 
jeff.dasovich@enron.com james.steffes@enron.com 0.128856 
jeff.dasovich@enron.com f..calger@enron.com -0.419103 
jeff.dasovich@enron.com christopher.calger@enron.com 0.059210 
jeff.dasovich@enron.com lysa.akin@enron.com -0.052086 
jeff.dasovich@enron.com jdasovic@enron.com 0.300000 
david.delainey@enron.com barry.tycholiz@enron.com -0.091185 
david.delainey@enron.com rick.buy@enron.com -0.254760 
david.delainey@enron.com lavorato@enron.com 0.270511 
david.delainey@enron.com j..kean@enron.com -0.671408 
david.delainey@enron.com mike.curry@enron.com -0.354562 
david.delainey@enron.com john.llodra@enron.com -0.174156 
phillip.allen@enron.com don.black@enron.com 0.382314 
phillip.allen@enron.com mark.whitt@enron.com 0.448836 
phillip.allen@enron.com barry.tycholiz@enron.com 0.408679 
phillip.allen@enron.com jeff.richter@enron.com 0.422005 
phillip.allen@enron.com chris.gaskill@enron.com 0.600837 
phillip.allen@enron.com robert.badeer@enron.com 0.599077 
phillip.allen@enron.com lavorato@enron.com 0.770374 
phillip.allen@enron.com tori.kuykendall@enron.com 0.082022 
tom.alonso@enron.com robert.badeer@enron.com 0.034784 
tom.alonso@enron.com kate.symes@enron.com -0.208592 
tom.alonso@enron.com mark.fischer@enron.com -0.189166 
marie.heard@enron.com susan.bailey@enron.com 0.073079 
marie.heard@enron.com tana.jones@enron.com 0.002621 
marie.heard@enron.com richard.sanders@enron.com -0.054463 
jim.schwieger@enron.com john.arnold@enron.com -0.029298 
jim.schwieger@enron.com a..martin@enron.com 0.088245 
jim.schwieger@enron.com eric.bass@enron.com 0.194441 
mark.guzman@enron.com john.forney@enron.com -0.194617 
mark.guzman@enron.com kate.symes@enron.com -0.089825 
mark.guzman@enron.com monika.causholli@enron.com 0.500000 
don.black@enron.com john.arnold@enron.com -0.135450 
don.black@enron.com a..martin@enron.com -0.017907 
don.black@enron.com mark.haedicke@enron.com 0.041280 
don.black@enron.com kevin.presto@enron.com -0.169420 
don.black@enron.com eric.bass@enron.com 0.088289 
jeffrey.shankman@enron.com john.arnold@enron.com -0.153214 
jeffrey.shankman@enron.com rick.buy@enron.com -0.154975 
mark.whitt@enron.com theresa.staab@enron.com 0.006763 
mark.whitt@enron.com barry.tycholiz@enron.com -0.040157 
mark.whitt@enron.com jake.thomas@enron.com -0.182877 
theresa.staab@enron.com barry.tycholiz@enron.com -0.046920 
barry.tycholiz@enron.com h..foster@enron.com 0.412988 
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barry.tycholiz@enron.com robert.benson@enron.com -0.126014 
barry.tycholiz@enron.com lavorato@enron.com 0.361695 
barry.tycholiz@enron.com paul.lucci@enron.com -0.334561 
barry.tycholiz@enron.com dan.hyvl@enron.com -0.062453 
barry.tycholiz@enron.com jake.thomas@enron.com -0.142720 
barry.tycholiz@enron.com m..tholt@enron.com 0.219254 
barry.tycholiz@enron.com f..calger@enron.com -0.636138 
john.arnold@enron.com mike.maggi@enron.com -0.237967 
john.arnold@enron.com tana.jones@enron.com 0.085228 
john.arnold@enron.com brad.mckay@enron.com 0.178533 
john.arnold@enron.com hunter.shively@enron.com 0.176072 
john.arnold@enron.com geoff.storey@enron.com 0.162216 
john.arnold@enron.com chris.gaskill@enron.com 0.353973 
john.arnold@enron.com a..shankman@enron.com 0.104434 
john.arnold@enron.com lavorato@enron.com 0.523510 
john.arnold@enron.com fletcher.sturm@enron.com 0.310307 
john.arnold@enron.com s..shively@enron.com 0.253641 
bill.rapp@enron.com lindy.donoho@enron.com 0.030872 
bill.rapp@enron.com kimberly.watson@enron.com -0.123421 
bill.rapp@enron.com kevin.hyatt@enron.com 0.154765 
bill.rapp@enron.com teb.lokey@enron.com 0.001552 
bill.rapp@enron.com lynn.blair@enron.com -0.133458 
susan.bailey@enron.com tana.jones@enron.com -0.070458 
chris.stokley@enron.com jeff.richter@enron.com 0.255783 
chris.stokley@enron.com john.forney@enron.com 0.084686 
chris.stokley@enron.com h..foster@enron.com 0.655444 
chris.stokley@enron.com kate.symes@enron.com 0.189479 
jeff.richter@enron.com robert.badeer@enron.com 0.177072 
jeff.richter@enron.com kate.symes@enron.com -0.066304 
tana.jones@enron.com dan.hyvl@enron.com 0.014134 
tana.jones@enron.com stacy.dickson@enron.com 0.016885 
brad.mckay@enron.com fletcher.sturm@enron.com 0.131774 
brad.mckay@enron.com stacy.dickson@enron.com -0.076419 
lindy.donoho@enron.com kimberly.watson@enron.com -0.154293 
lindy.donoho@enron.com darrell.schoolcraft@enron.com -0.455127 
lindy.donoho@enron.com kevin.hyatt@enron.com 0.123893 
lindy.donoho@enron.com teb.lokey@enron.com -0.029320 
lindy.donoho@enron.com tracy.geaccone@enron.com -0.398478 
lindy.donoho@enron.com lynn.blair@enron.com -0.164330 
kimberly.watson@enron.com darrell.schoolcraft@enron.com -0.300834 
kimberly.watson@enron.com kevin.hyatt@enron.com 0.278186 
kimberly.watson@enron.com teb.lokey@enron.com 0.124973 
kimberly.watson@enron.com tracy.geaccone@enron.com -0.244185 
kimberly.watson@enron.com lynn.blair@enron.com -0.010037 
kimberly.watson@enron.com j.kaminski@enron.com -0.230778 
darrell.schoolcraft@enron.com kevin.hyatt@enron.com 0.579020 
darrell.schoolcraft@enron.com lynn.blair@enron.com 0.290797 
a..martin@enron.com judy.townsend@enron.com 0.491749 
a..martin@enron.com chris.gaskill@enron.com 0.236430 
a..martin@enron.com eric.bass@enron.com 0.106196 
a..martin@enron.com mike.curry@enron.com -0.219106 
hunter.shively@enron.com geoff.storey@enron.com -0.013856 
hunter.shively@enron.com chris.gaskill@enron.com 0.177901 
hunter.shively@enron.com lavorato@enron.com 0.347438 
hunter.shively@enron.com kevin.ruscitti@enron.com -0.184286 
hunter.shively@enron.com martin.cuilla@enron.com -0.094190 
hunter.shively@enron.com lloyd.will@enron.com -0.078109 
geoff.storey@enron.com chris.gaskill@enron.com 0.191758 
geoff.storey@enron.com kevin.ruscitti@enron.com -0.170430 
geoff.storey@enron.com j..sturm@enron.com 0.087304 
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geoff.storey@enron.com phillip.love@enron.com -0.139135 
geoff.storey@enron.com martin.cuilla@enron.com -0.080333 
geoff.storey@enron.com s..shively@enron.com 0.091425 
chris.gaskill@enron.com eric.bass@enron.com -0.130234 
chris.gaskill@enron.com s..shively@enron.com -0.100332 
john.forney@enron.com robert.badeer@enron.com 0.348168 
john.forney@enron.com don.baughman@enron.com 0.230451 
john.forney@enron.com mike.carson@enron.com -0.057202 
mark.haedicke@enron.com lavorato@enron.com 0.346780 
patrice.mims@enron.com kevin.ruscitti@enron.com -0.022716 
patrice.mims@enron.com tom.donohoe@enron.com 0.013448 
h..foster@enron.com robert.badeer@enron.com -0.222590 
h..foster@enron.com matt.motley@enron.com -0.381527 
h..foster@enron.com richard.ring@enron.com -0.237348 
robert.badeer@enron.com christopher.calger@enron.com -0.348223 
robert.badeer@enron.com matt.motley@enron.com -0.158938 
robert.badeer@enron.com lysa.akin@enron.com -0.459520 
kate.symes@enron.com mark.fischer@enron.com 0.019425 
kate.symes@enron.com jake.thomas@enron.com -0.089742 
kate.symes@enron.com matt.motley@enron.com 0.084439 
kevin.hyatt@enron.com tracy.geaccone@enron.com -0.522371 
kevin.hyatt@enron.com lynn.blair@enron.com -0.288223 
kevin.hyatt@enron.com larry.campbell@enron.com -0.090291 
kevin.hyatt@enron.com michele.lokay@enron.com -0.000000 
teb.lokey@enron.com tracy.geaccone@enron.com -0.369158 
robert.benson@enron.com kevin.presto@enron.com -0.069770 
robert.benson@enron.com j..sturm@enron.com 0.213720 
robert.benson@enron.com dana.davis@enron.com -1.000000 
rick.buy@enron.com a..shankman@enron.com 0.106195 
rick.buy@enron.com lavorato@enron.com 0.525271 
rick.buy@enron.com j..kean@enron.com -0.416648 
kevin.presto@enron.com lavorato@enron.com 0.557480 
kevin.presto@enron.com lloyd.will@enron.com 0.131933 
kevin.presto@enron.com john.llodra@enron.com 0.112813 
lavorato@enron.com christopher.calger@enron.com -0.519521 
fletcher.sturm@enron.com joe.quenet@enron.com -0.241283 
fletcher.sturm@enron.com jeff.king@enron.com -0.255453 
don.baughman@enron.com juan.hernandez@enron.com -0.164411 
don.baughman@enron.com lloyd.will@enron.com -0.136533 
don.baughman@enron.com larry.campbell@enron.com 0.040562 
juan.hernandez@enron.com jeff.king@enron.com -0.015231 
juan.hernandez@enron.com lloyd.will@enron.com 0.027879 
eric.bass@enron.com tori.kuykendall@enron.com -0.388581 
eric.bass@enron.com phillip.love@enron.com -0.200659 
eric.bass@enron.com martin.cuilla@enron.com -0.141857 
eric.bass@enron.com charles.weldon@enron.com -0.500000 
tori.kuykendall@enron.com martin.cuilla@enron.com 0.246724 
tori.kuykendall@enron.com randall.gay@enron.com 0.054333 
dan.hyvl@enron.com kevin.ruscitti@enron.com -0.107577 
kevin.ruscitti@enron.com tom.donohoe@enron.com 0.036164 
kevin.ruscitti@enron.com mike.curry@enron.com -0.093348 
kevin.ruscitti@enron.com martin.cuilla@enron.com 0.090097 
kevin.ruscitti@enron.com s..shively@enron.com 0.261855 
vince.j.kaminski@enron.com j.kaminski@enron.com -0.175714 
joe.quenet@enron.com jeff.king@enron.com -0.014170 
eric.saibi@enron.com mike.carson@enron.com -0.057991 
eric.saibi@enron.com lloyd.will@enron.com 0.093129 
mike.carson@enron.com jeff.king@enron.com 0.108011 
j..sturm@enron.com lloyd.will@enron.com -0.151557 
richard.sanders@enron.com lysa.akin@enron.com -0.135452 
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martin.cuilla@enron.com s..shively@enron.com 0.171758 
lloyd.will@enron.com f..campbell@enron.com 0.000000 
s..shively@enron.com steve.wang@enron.com -0.272839 
 

C.2 Tension Component of Enron Relationship-Level Prediction Graph 

rod.hayslett@enron.com jeff.skilling@enron.com -0.032872 
rod.hayslett@enron.com shelley.corman@enron.com 0.011543 
rod.hayslett@enron.com sally.beck@enron.com -0.231164 
rod.hayslett@enron.com danny.mccarty@enron.com -0.019692 
rod.hayslett@enron.com stanley.horton@enron.com -0.234905 
rod.hayslett@enron.com drew.fossum@enron.com -0.158692 
rod.hayslett@enron.com steven.kean@enron.com -0.297873 
rod.hayslett@enron.com bill.rapp@enron.com 0.203033 
rod.hayslett@enron.com tana.jones@enron.com -0.124977 
rod.hayslett@enron.com lindy.donoho@enron.com -0.003744 
rod.hayslett@enron.com tracy.geaccone@enron.com -0.110658 
jeff.skilling@enron.com greg.whalley@enron.com -0.158053 
jeff.skilling@enron.com vince.kaminski@enron.com -0.386035 
jeff.skilling@enron.com sally.beck@enron.com -0.198292 
jeff.skilling@enron.com stanley.horton@enron.com -0.202033 
jeff.skilling@enron.com steven.kean@enron.com -0.265000 
jeff.skilling@enron.com jeff.dasovich@enron.com -0.303246 
jeff.skilling@enron.com david.delainey@enron.com 0.009840 
jeff.skilling@enron.com jeffrey.shankman@enron.com -0.248171 
jeff.skilling@enron.com a..shankman@enron.com -0.281882 
jeff.skilling@enron.com shankman@enron.com -1.000000 
mark.taylor@enron.com craig.breslau@enron.com 0.206475 
mark.taylor@enron.com kay.mann@enron.com -0.058520 
mark.taylor@enron.com harry.arora@enron.com -0.017224 
mark.taylor@enron.com stewart.rosman@enron.com 0.103095 
mark.taylor@enron.com gerald.nemec@enron.com 0.305764 
mark.taylor@enron.com stephanie.panus@enron.com 0.062613 
mark.taylor@enron.com louise.kitchen@enron.com 0.048649 
mark.taylor@enron.com shelley.corman@enron.com 0.207834 
mark.taylor@enron.com michelle.cash@enron.com -0.117802 
mark.taylor@enron.com elizabeth.sager@enron.com 0.014476 
mark.taylor@enron.com andy.zipper@enron.com 0.017914 
mark.taylor@enron.com peter.keavey@enron.com -0.003780 
mark.taylor@enron.com phillip.allen@enron.com -0.402539 
mark.taylor@enron.com marie.heard@enron.com 0.045148 
mark.taylor@enron.com don.black@enron.com 0.221629 
mark.taylor@enron.com susan.bailey@enron.com 0.056839 
mark.taylor@enron.com tana.jones@enron.com 0.071314 
mark.taylor@enron.com mark.haedicke@enron.com 0.092449 
mark.taylor@enron.com patrice.mims@enron.com 0.062430 
mark.taylor@enron.com richard.sanders@enron.com 0.001016 
mark.taylor@enron.com stacy.dickson@enron.com 0.082218 
craig.breslau@enron.com louise.kitchen@enron.com -0.157827 
craig.breslau@enron.com vince.kaminski@enron.com -0.429092 
craig.breslau@enron.com scott.neal@enron.com -0.109326 
craig.breslau@enron.com mike.grigsby@enron.com -0.481370 
craig.breslau@enron.com errol.mclaughlin@enron.com -0.280357 
craig.breslau@enron.com john.arnold@enron.com -0.053100 
craig.breslau@enron.com susan.bailey@enron.com -0.149636 
craig.breslau@enron.com patrice.mims@enron.com -0.144045 
craig.breslau@enron.com eric.bass@enron.com 0.049357 
craig.breslau@enron.com dan.hyvl@enron.com -0.038130 
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kay.mann@enron.com chris.germany@enron.com 0.190645 
kay.mann@enron.com m..presto@enron.com -0.116385 
kay.mann@enron.com michelle.cash@enron.com -0.059282 
kay.mann@enron.com elizabeth.sager@enron.com 0.072996 
kay.mann@enron.com laura.luce@enron.com 0.356395 
kay.mann@enron.com drew.fossum@enron.com 0.096119 
kay.mann@enron.com marie.heard@enron.com 0.103668 
kay.mann@enron.com susan.bailey@enron.com 0.115359 
kay.mann@enron.com tana.jones@enron.com 0.129834 
kay.mann@enron.com jake.thomas@enron.com -0.069756 
kay.mann@enron.com richard.sanders@enron.com 0.059535 
kay.mann@enron.com john.llodra@enron.com 0.062351 
harry.arora@enron.com robert.stalford@enron.com 0.283396 
harry.arora@enron.com doug.gilbert-smith@enron.com 0.213027 
harry.arora@enron.com stephanie.panus@enron.com 0.079838 
harry.arora@enron.com louise.kitchen@enron.com 0.065873 
harry.arora@enron.com john.lavorato@enron.com 0.196444 
harry.arora@enron.com vince.kaminski@enron.com -0.205392 
harry.arora@enron.com m..presto@enron.com -0.157680 
harry.arora@enron.com benjamin.rogers@enron.com 0.212783 
harry.arora@enron.com gautam.gupta@enron.com 0.480194 
harry.arora@enron.com andy.zipper@enron.com 0.035139 
harry.arora@enron.com jeffrey.shankman@enron.com -0.067528 
harry.arora@enron.com kevin.presto@enron.com 0.037254 
harry.arora@enron.com j.kaminski@enron.com -0.190573 
jane.tholt@enron.com cooper.richey@enron.com 0.162606 
jane.tholt@enron.com tori.kuykendall@enron.com -0.162606 
cooper.richey@enron.com jonathan.mckay@enron.com 0.045882 
cooper.richey@enron.com stewart.rosman@enron.com -0.055173 
cooper.richey@enron.com tim.heizenrader@enron.com 0.250250 
cooper.richey@enron.com matthew.lenhart@enron.com -0.202711 
cooper.richey@enron.com mike.grigsby@enron.com -0.433162 
cooper.richey@enron.com john.zufferli@enron.com -0.479097 
cooper.richey@enron.com phillip.allen@enron.com -0.560807 
cooper.richey@enron.com jeff.richter@enron.com -0.189226 
cooper.richey@enron.com randall.gay@enron.com -0.213350 
vladi.pimenov@enron.com jonathan.mckay@enron.com 0.226426 
vladi.pimenov@enron.com chris.germany@enron.com 0.154401 
vladi.pimenov@enron.com john.griffith@enron.com 0.062918 
vladi.pimenov@enron.com geoff.storey@enron.com 0.233572 
vladi.pimenov@enron.com chris.gaskill@enron.com 0.322684 
jonathan.mckay@enron.com chris.germany@enron.com -0.072025 
jonathan.mckay@enron.com frank.vickers@enron.com 0.005799 
jonathan.mckay@enron.com john.griffith@enron.com -0.163508 
jonathan.mckay@enron.com f..brawner@enron.com -0.153513 
jonathan.mckay@enron.com john.lavorato@enron.com -0.024931 
jonathan.mckay@enron.com scott.neal@enron.com -0.107000 
jonathan.mckay@enron.com john.zufferli@enron.com -0.524979 
jonathan.mckay@enron.com chris.dorland@enron.com -0.535293 
jonathan.mckay@enron.com kam.keiser@enron.com 0.008035 
jonathan.mckay@enron.com phillip.allen@enron.com -0.606689 
jonathan.mckay@enron.com barry.tycholiz@enron.com -0.000769 
jonathan.mckay@enron.com john.arnold@enron.com -0.050774 
jonathan.mckay@enron.com mike.maggi@enron.com -0.401230 
jonathan.mckay@enron.com brad.mckay@enron.com -0.028810 
jonathan.mckay@enron.com hunter.shively@enron.com -0.017462 
jonathan.mckay@enron.com lavorato@enron.com 0.209951 
jonathan.mckay@enron.com f..calger@enron.com -0.832721 
jonathan.mckay@enron.com martin.cuilla@enron.com -0.081804 
jonathan.mckay@enron.com steve.wang@enron.com -0.349968 
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diana.scholtes@enron.com phillip.platter@enron.com 0.576931 
diana.scholtes@enron.com holden.salisbury@enron.com 0.073087 
diana.scholtes@enron.com paul.choi@enron.com 0.678558 
diana.scholtes@enron.com sean.crandall@enron.com 0.395251 
diana.scholtes@enron.com stewart.rosman@enron.com 0.432577 
diana.scholtes@enron.com tim.heizenrader@enron.com 0.738000 
diana.scholtes@enron.com cara.semperger@enron.com 0.466581 
diana.scholtes@enron.com mike.swerzbin@enron.com 0.469211 
diana.scholtes@enron.com tim.belden@enron.com 0.419438 
diana.scholtes@enron.com tom.alonso@enron.com 0.756204 
diana.scholtes@enron.com jeff.richter@enron.com 0.298524 
diana.scholtes@enron.com kate.symes@enron.com 0.330640 
diana.scholtes@enron.com mark.fischer@enron.com 0.373134 
diana.scholtes@enron.com lloyd.will@enron.com 0.257259 
diana.scholtes@enron.com ken.lay@enron.com -0.265395 
phillip.platter@enron.com paul.choi@enron.com 0.101627 
phillip.platter@enron.com jeff.richter@enron.com -0.278406 
phillip.platter@enron.com kate.symes@enron.com -0.246290 
holden.salisbury@enron.com tim.heizenrader@enron.com 0.664914 
holden.salisbury@enron.com cara.semperger@enron.com 0.393494 
holden.salisbury@enron.com geir.solberg@enron.com 0.492903 
holden.salisbury@enron.com tim.belden@enron.com 0.346351 
holden.salisbury@enron.com tom.alonso@enron.com 0.683117 
holden.salisbury@enron.com mark.guzman@enron.com 0.348483 
holden.salisbury@enron.com craig.dean@enron.com 0.360787 
holden.salisbury@enron.com jeff.richter@enron.com 0.225438 
holden.salisbury@enron.com kate.symes@enron.com 0.257554 
holden.salisbury@enron.com mark.fischer@enron.com 0.300047 
paul.choi@enron.com stewart.rosman@enron.com -0.245980 
paul.choi@enron.com kim.ward@enron.com -0.324486 
paul.choi@enron.com tom.alonso@enron.com 0.077646 
paul.choi@enron.com mark.guzman@enron.com -0.256988 
paul.choi@enron.com chris.stokley@enron.com -0.352918 
paul.choi@enron.com matt.motley@enron.com -0.117089 
sean.crandall@enron.com stewart.rosman@enron.com 0.037326 
sean.crandall@enron.com tim.heizenrader@enron.com 0.342750 
sean.crandall@enron.com cara.semperger@enron.com 0.071330 
sean.crandall@enron.com tim.belden@enron.com 0.024187 
sean.crandall@enron.com kate.symes@enron.com -0.064610 
sean.crandall@enron.com timothy.heizenrader@enron.com 0.012094 
sean.crandall@enron.com jake.thomas@enron.com -0.194044 
sean.crandall@enron.com matt.motley@enron.com 0.166218 
stewart.rosman@enron.com m..forney@enron.com -0.172742 
stewart.rosman@enron.com kim.ward@enron.com -0.078505 
stewart.rosman@enron.com elizabeth.sager@enron.com -0.088618 
stewart.rosman@enron.com mike.swerzbin@enron.com 0.036634 
stewart.rosman@enron.com tim.belden@enron.com -0.013139 
stewart.rosman@enron.com susan.bailey@enron.com -0.046255 
stewart.rosman@enron.com chris.stokley@enron.com -0.106938 
stewart.rosman@enron.com john.forney@enron.com -0.156654 
stewart.rosman@enron.com kate.symes@enron.com -0.101937 
tim.heizenrader@enron.com matthew.lenhart@enron.com -0.452961 
tim.heizenrader@enron.com greg.whalley@enron.com -0.403152 
tim.heizenrader@enron.com cara.semperger@enron.com -0.271420 
tim.heizenrader@enron.com chris.dorland@enron.com -0.739661 
tim.heizenrader@enron.com keith.holst@enron.com -0.581435 
tim.heizenrader@enron.com mike.swerzbin@enron.com -0.268790 
tim.heizenrader@enron.com phillip.allen@enron.com -0.811057 
tim.heizenrader@enron.com tom.alonso@enron.com 0.018203 
tim.heizenrader@enron.com hunter.shively@enron.com -0.221830 
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tim.heizenrader@enron.com robert.badeer@enron.com -0.095452 
tim.heizenrader@enron.com matt.motley@enron.com -0.176532 
larry.may@enron.com robert.stalford@enron.com -0.077953 
larry.may@enron.com john.griffith@enron.com -0.303482 
larry.may@enron.com andy.zipper@enron.com -0.326209 
larry.may@enron.com peter.keavey@enron.com -0.347904 
larry.may@enron.com john.arnold@enron.com -0.190748 
larry.may@enron.com mike.maggi@enron.com -0.541204 
larry.may@enron.com brad.mckay@enron.com -0.168784 
larry.may@enron.com chris.gaskill@enron.com -0.043716 
robert.stalford@enron.com joe.stepenovitch@enron.com 0.253740 
robert.stalford@enron.com joe.parks@enron.com -0.057920 
robert.stalford@enron.com m..presto@enron.com -0.441076 
robert.stalford@enron.com sally.beck@enron.com -0.301044 
robert.stalford@enron.com andy.zipper@enron.com -0.248257 
joe.stepenovitch@enron.com don.baughman@enron.com -0.553288 
joe.stepenovitch@enron.com juan.hernandez@enron.com -0.252597 
joe.stepenovitch@enron.com lloyd.will@enron.com -0.592135 
joe.stepenovitch@enron.com larry.campbell@enron.com -0.348239 
joe.parks@enron.com chris.germany@enron.com -0.076126 
joe.parks@enron.com gerald.nemec@enron.com 0.097513 
joe.parks@enron.com chris.gaskill@enron.com 0.092157 
joe.parks@enron.com eric.bass@enron.com 0.047581 
joe.parks@enron.com dan.hyvl@enron.com -0.039906 
joe.parks@enron.com kevin.ruscitti@enron.com -0.179139 
matthew.lenhart@enron.com jason.wolfe@enron.com 0.286543 
matthew.lenhart@enron.com mike.grigsby@enron.com -0.230452 
matthew.lenhart@enron.com chris.dorland@enron.com -0.286700 
matthew.lenhart@enron.com kam.keiser@enron.com 0.256627 
matthew.lenhart@enron.com jay.reitmeyer@enron.com -0.079521 
matthew.lenhart@enron.com frank.ermis@enron.com 0.523695 
matthew.lenhart@enron.com phillip.allen@enron.com -0.358097 
matthew.lenhart@enron.com jeff.richter@enron.com 0.013485 
matthew.lenhart@enron.com robert.badeer@enron.com 0.357509 
matthew.lenhart@enron.com eric.bass@enron.com 0.300275 
matthew.lenhart@enron.com tori.kuykendall@enron.com -0.122501 
matthew.lenhart@enron.com phillip.love@enron.com 0.240250 
matthew.lenhart@enron.com martin.cuilla@enron.com 0.166788 
matthew.lenhart@enron.com matt.motley@enron.com 0.276429 
jason.wolfe@enron.com mike.grigsby@enron.com -0.516994 
jason.wolfe@enron.com keith.holst@enron.com -0.415017 
jason.wolfe@enron.com kam.keiser@enron.com -0.029915 
jason.wolfe@enron.com frank.ermis@enron.com 0.237152 
jason.wolfe@enron.com barry.tycholiz@enron.com -0.038719 
jason.wolfe@enron.com h..foster@enron.com 0.082597 
jason.wolfe@enron.com eric.bass@enron.com 0.013732 
jason.wolfe@enron.com phillip.love@enron.com -0.046293 
greg.whalley@enron.com kenneth.lay@enron.com -0.200239 
greg.whalley@enron.com louise.kitchen@enron.com 0.043283 
greg.whalley@enron.com f..brawner@enron.com 0.045271 
greg.whalley@enron.com john.lavorato@enron.com 0.173854 
greg.whalley@enron.com vince.kaminski@enron.com -0.227982 
greg.whalley@enron.com tim.belden@enron.com 0.084590 
greg.whalley@enron.com sally.beck@enron.com -0.040239 
greg.whalley@enron.com andy.zipper@enron.com 0.012549 
greg.whalley@enron.com stanley.horton@enron.com -0.043980 
greg.whalley@enron.com steven.kean@enron.com -0.106948 
greg.whalley@enron.com david.delainey@enron.com 0.167892 
greg.whalley@enron.com jim.schwieger@enron.com 0.434946 
greg.whalley@enron.com jeffrey.shankman@enron.com -0.090118 
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greg.whalley@enron.com john.arnold@enron.com 0.148010 
greg.whalley@enron.com chris.gaskill@enron.com 0.295042 
greg.whalley@enron.com mark.haedicke@enron.com 0.087083 
greg.whalley@enron.com rick.buy@enron.com -0.123776 
greg.whalley@enron.com a..shankman@enron.com -0.123829 
greg.whalley@enron.com lavorato@enron.com 0.408735 
greg.whalley@enron.com fletcher.sturm@enron.com 0.064372 
greg.whalley@enron.com j..kean@enron.com -0.566185 
greg.whalley@enron.com tom.donohoe@enron.com 0.008767 
greg.whalley@enron.com j.kaminski@enron.com -0.213163 
greg.whalley@enron.com j..sturm@enron.com 0.205209 
greg.whalley@enron.com richard.sanders@enron.com -0.004350 
kenneth.lay@enron.com louise.kitchen@enron.com 0.243522 
kenneth.lay@enron.com john.lavorato@enron.com 0.374092 
kenneth.lay@enron.com vince.kaminski@enron.com -0.027743 
kenneth.lay@enron.com benjamin.rogers@enron.com 0.390432 
kenneth.lay@enron.com sally.beck@enron.com 0.160000 
kenneth.lay@enron.com stanley.horton@enron.com 0.156258 
kenneth.lay@enron.com steven.kean@enron.com 0.093291 
kenneth.lay@enron.com richard.shapiro@enron.com 0.263769 
kenneth.lay@enron.com david.delainey@enron.com 0.368131 
kenneth.lay@enron.com jim.schwieger@enron.com 0.635185 
kenneth.lay@enron.com kevin.hyatt@enron.com 0.223355 
kenneth.lay@enron.com a..shankman@enron.com 0.076410 
kenneth.lay@enron.com j..kean@enron.com -0.365946 
kenneth.lay@enron.com tom.donohoe@enron.com 0.209006 
chris.germany@enron.com frank.vickers@enron.com 0.077824 
chris.germany@enron.com scott.neal@enron.com -0.034975 
chris.germany@enron.com kam.keiser@enron.com 0.080060 
chris.germany@enron.com judy.townsend@enron.com 0.373212 
chris.germany@enron.com chris.gaskill@enron.com 0.168283 
chris.germany@enron.com kevin.hyatt@enron.com -0.103642 
chris.germany@enron.com john.hodge@enron.com 0.054122 
chris.germany@enron.com kevin.ruscitti@enron.com -0.103013 
chris.germany@enron.com tom.donohoe@enron.com -0.117992 
chris.germany@enron.com martin.cuilla@enron.com -0.009779 
chris.germany@enron.com randall.gay@enron.com -0.187207 
chris.germany@enron.com susan.pereira@enron.com -0.000000 
frank.vickers@enron.com kim.ward@enron.com -0.185359 
frank.vickers@enron.com louise.kitchen@enron.com -0.161300 
frank.vickers@enron.com scott.neal@enron.com -0.112799 
frank.vickers@enron.com laura.luce@enron.com 0.087926 
frank.vickers@enron.com jeff.dasovich@enron.com -0.349776 
frank.vickers@enron.com marie.heard@enron.com -0.164800 
frank.vickers@enron.com barry.tycholiz@enron.com -0.006567 
frank.vickers@enron.com john.hodge@enron.com -0.023702 
m..forney@enron.com cara.semperger@enron.com 0.206746 
m..forney@enron.com doug.gilbert-smith@enron.com 0.265450 
m..forney@enron.com tim.belden@enron.com 0.159603 
m..forney@enron.com rogers.herndon@enron.com 0.216876 
m..forney@enron.com chris.stokley@enron.com 0.065804 
m..forney@enron.com robert.badeer@enron.com 0.382714 
m..forney@enron.com juan.hernandez@enron.com 0.336962 
m..forney@enron.com eric.saibi@enron.com 0.062611 
m..forney@enron.com jeff.king@enron.com 0.133068 
m..forney@enron.com lloyd.will@enron.com -0.002575 
cara.semperger@enron.com geir.solberg@enron.com 0.099410 
cara.semperger@enron.com tim.belden@enron.com -0.047143 
cara.semperger@enron.com tom.alonso@enron.com 0.289623 
cara.semperger@enron.com mark.guzman@enron.com -0.045011 
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cara.semperger@enron.com craig.dean@enron.com -0.032707 
cara.semperger@enron.com jeff.richter@enron.com -0.168056 
cara.semperger@enron.com kate.symes@enron.com -0.135940 
cara.semperger@enron.com mark.fischer@enron.com -0.093446 
doug.gilbert-smith@enron.com m..presto@enron.com -0.370707 
doug.gilbert-smith@enron.com michelle.cash@enron.com -0.313604 
doug.gilbert-smith@enron.com rogers.herndon@enron.com -0.048574 
doug.gilbert-smith@enron.com d..steffes@enron.com -0.187535 
doug.gilbert-smith@enron.com juan.hernandez@enron.com 0.071512 
doug.gilbert-smith@enron.com mike.curry@enron.com -0.337391 
doug.gilbert-smith@enron.com eric.saibi@enron.com -0.202839 
doug.gilbert-smith@enron.com jeff.king@enron.com -0.132382 
sandra.brawner@enron.com john.griffith@enron.com 0.450197 
sandra.brawner@enron.com louise.kitchen@enron.com 0.458204 
sandra.brawner@enron.com scott.neal@enron.com 0.506705 
sandra.brawner@enron.com brad.mckay@enron.com 0.584895 
john.griffith@enron.com scott.neal@enron.com 0.056508 
john.griffith@enron.com benjamin.rogers@enron.com 0.154917 
john.griffith@enron.com errol.mclaughlin@enron.com -0.114524 
john.griffith@enron.com andy.zipper@enron.com -0.022728 
john.griffith@enron.com john.arnold@enron.com 0.112734 
john.griffith@enron.com mike.maggi@enron.com -0.237722 
john.griffith@enron.com brad.mckay@enron.com 0.134698 
john.griffith@enron.com daren.farmer@enron.com -0.037758 
gerald.nemec@enron.com kim.ward@enron.com -0.281175 
gerald.nemec@enron.com stephanie.panus@enron.com -0.243151 
gerald.nemec@enron.com jim.schwieger@enron.com 0.134548 
gerald.nemec@enron.com mark.whitt@enron.com -0.158932 
gerald.nemec@enron.com theresa.staab@enron.com 0.077239 
gerald.nemec@enron.com barry.tycholiz@enron.com -0.102383 
gerald.nemec@enron.com john.hodge@enron.com -0.119517 
gerald.nemec@enron.com paul.lucci@enron.com -0.461186 
gerald.nemec@enron.com dan.hyvl@enron.com -0.137419 
gerald.nemec@enron.com richard.sanders@enron.com -0.304749 
kim.ward@enron.com stephanie.panus@enron.com 0.038024 
kim.ward@enron.com chris.foster@enron.com 0.045144 
kim.ward@enron.com mike.grigsby@enron.com -0.299484 
kim.ward@enron.com jim.schwieger@enron.com 0.415723 
kim.ward@enron.com mark.guzman@enron.com 0.067498 
kim.ward@enron.com barry.tycholiz@enron.com 0.178792 
kim.ward@enron.com john.arnold@enron.com 0.128786 
kim.ward@enron.com mike.maggi@enron.com -0.221670 
kim.ward@enron.com susan.bailey@enron.com 0.032250 
kim.ward@enron.com john.forney@enron.com -0.078148 
kim.ward@enron.com kate.symes@enron.com -0.023431 
kim.ward@enron.com paul.lucci@enron.com -0.180011 
kim.ward@enron.com tori.kuykendall@enron.com -0.191533 
kim.ward@enron.com dan.hyvl@enron.com 0.143756 
kim.ward@enron.com m..tholt@enron.com 0.074780 
stephanie.panus@enron.com elizabeth.sager@enron.com -0.048137 
stephanie.panus@enron.com marie.heard@enron.com -0.017465 
stephanie.panus@enron.com susan.bailey@enron.com -0.005774 
stephanie.panus@enron.com tana.jones@enron.com 0.008700 
louise.kitchen@enron.com f..brawner@enron.com 0.001988 
louise.kitchen@enron.com john.lavorato@enron.com 0.130571 
louise.kitchen@enron.com vince.kaminski@enron.com -0.271265 
louise.kitchen@enron.com scott.neal@enron.com 0.048501 
louise.kitchen@enron.com shelley.corman@enron.com 0.159185 
louise.kitchen@enron.com chris.foster@enron.com 0.021085 
louise.kitchen@enron.com mike.grigsby@enron.com -0.323543 
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louise.kitchen@enron.com m..presto@enron.com -0.223554 
louise.kitchen@enron.com john.zufferli@enron.com -0.369478 
louise.kitchen@enron.com keith.holst@enron.com -0.221566 
louise.kitchen@enron.com michelle.cash@enron.com -0.166451 
louise.kitchen@enron.com elizabeth.sager@enron.com -0.034173 
louise.kitchen@enron.com tim.belden@enron.com 0.041307 
louise.kitchen@enron.com sally.beck@enron.com -0.083522 
louise.kitchen@enron.com andy.zipper@enron.com -0.030734 
louise.kitchen@enron.com laura.luce@enron.com 0.249226 
louise.kitchen@enron.com peter.keavey@enron.com -0.052429 
louise.kitchen@enron.com d..steffes@enron.com -0.040382 
louise.kitchen@enron.com richard.shapiro@enron.com 0.020247 
louise.kitchen@enron.com marie.heard@enron.com -0.003500 
louise.kitchen@enron.com don.black@enron.com 0.172981 
louise.kitchen@enron.com jeffrey.shankman@enron.com -0.133401 
louise.kitchen@enron.com barry.tycholiz@enron.com 0.154733 
louise.kitchen@enron.com john.arnold@enron.com 0.104727 
louise.kitchen@enron.com john.shelk@enron.com -0.302153 
louise.kitchen@enron.com tana.jones@enron.com 0.022665 
louise.kitchen@enron.com a..martin@enron.com -0.170099 
louise.kitchen@enron.com hunter.shively@enron.com 0.138039 
louise.kitchen@enron.com geoff.storey@enron.com 0.162647 
louise.kitchen@enron.com chris.gaskill@enron.com 0.251759 
louise.kitchen@enron.com mark.haedicke@enron.com 0.043800 
louise.kitchen@enron.com h..foster@enron.com 0.276048 
louise.kitchen@enron.com rick.buy@enron.com -0.167059 
louise.kitchen@enron.com kevin.presto@enron.com -0.028619 
louise.kitchen@enron.com a..shankman@enron.com -0.167112 
louise.kitchen@enron.com lavorato@enron.com 0.365452 
louise.kitchen@enron.com calger@enron.com 0.065285 
louise.kitchen@enron.com fletcher.sturm@enron.com 0.021089 
louise.kitchen@enron.com j..kean@enron.com -0.609468 
louise.kitchen@enron.com j.kaminski@enron.com -0.256446 
louise.kitchen@enron.com mike.curry@enron.com -0.190238 
louise.kitchen@enron.com james.steffes@enron.com -0.123381 
louise.kitchen@enron.com f..calger@enron.com -0.677220 
louise.kitchen@enron.com christopher.calger@enron.com -0.285607 
louise.kitchen@enron.com john.llodra@enron.com -0.044817 
louise.kitchen@enron.com whalley@enron.com 0.065285 
f..brawner@enron.com john.lavorato@enron.com 0.128582 
f..brawner@enron.com scott.neal@enron.com 0.046513 
f..brawner@enron.com rogers.herndon@enron.com 0.096591 
f..brawner@enron.com john.arnold@enron.com 0.102738 
f..brawner@enron.com mike.maggi@enron.com -0.247717 
f..brawner@enron.com tom.donohoe@enron.com -0.036504 
f..brawner@enron.com steve.wang@enron.com -0.196455 
john.lavorato@enron.com vince.kaminski@enron.com -0.401836 
john.lavorato@enron.com scott.neal@enron.com -0.082070 
john.lavorato@enron.com mike.grigsby@enron.com -0.454114 
john.lavorato@enron.com m..presto@enron.com -0.354124 
john.lavorato@enron.com john.zufferli@enron.com -0.500049 
john.lavorato@enron.com chris.dorland@enron.com -0.510362 
john.lavorato@enron.com keith.holst@enron.com -0.352137 
john.lavorato@enron.com michelle.cash@enron.com -0.297021 
john.lavorato@enron.com mike.swerzbin@enron.com -0.039491 
john.lavorato@enron.com tim.belden@enron.com -0.089264 
john.lavorato@enron.com sally.beck@enron.com -0.214092 
john.lavorato@enron.com andy.zipper@enron.com -0.161305 
john.lavorato@enron.com rogers.herndon@enron.com -0.031991 
john.lavorato@enron.com d..steffes@enron.com -0.170952 



 154 

john.lavorato@enron.com stanley.horton@enron.com -0.217834 
john.lavorato@enron.com steven.kean@enron.com -0.280801 
john.lavorato@enron.com jay.reitmeyer@enron.com -0.303183 
john.lavorato@enron.com richard.shapiro@enron.com -0.110323 
john.lavorato@enron.com david.delainey@enron.com -0.005961 
john.lavorato@enron.com phillip.allen@enron.com -0.581759 
john.lavorato@enron.com jim.schwieger@enron.com 0.261093 
john.lavorato@enron.com don.black@enron.com 0.042410 
john.lavorato@enron.com barry.tycholiz@enron.com 0.024162 
john.lavorato@enron.com john.arnold@enron.com -0.025844 
john.lavorato@enron.com presto@enron.com -0.000000 
john.lavorato@enron.com a..martin@enron.com -0.300670 
john.lavorato@enron.com chris.gaskill@enron.com 0.121188 
john.lavorato@enron.com mark.haedicke@enron.com -0.086770 
john.lavorato@enron.com robert.badeer@enron.com 0.133847 
john.lavorato@enron.com rick.buy@enron.com -0.297630 
john.lavorato@enron.com kevin.presto@enron.com -0.159189 
john.lavorato@enron.com a..shankman@enron.com -0.297683 
john.lavorato@enron.com lavorato@enron.com 0.234881 
john.lavorato@enron.com calger@enron.com -0.065285 
john.lavorato@enron.com j..kean@enron.com -0.740039 
john.lavorato@enron.com steffes@enron.com -1.000000 
john.lavorato@enron.com arora@enron.com 0.000000 
john.lavorato@enron.com m..tholt@enron.com -0.079850 
john.lavorato@enron.com j.kaminski@enron.com -0.387017 
john.lavorato@enron.com j..sturm@enron.com 0.031356 
john.lavorato@enron.com f..calger@enron.com -0.807790 
john.lavorato@enron.com christopher.calger@enron.com -0.416178 
john.lavorato@enron.com matt.motley@enron.com 0.052767 
john.lavorato@enron.com s..shively@enron.com -0.035194 
john.lavorato@enron.com zufferli@enron.com -0.000000 
john.lavorato@enron.com john.j.lavorato@enron.com -1.000000 
john.lavorato@enron.com whalley@enron.com -0.065285 
john.lavorato@enron.com belden@enron.com 1.000000 
vince.kaminski@enron.com sally.beck@enron.com 0.187743 
vince.kaminski@enron.com andy.zipper@enron.com 0.240531 
vince.kaminski@enron.com laura.luce@enron.com 0.520491 
vince.kaminski@enron.com richard.shapiro@enron.com 0.291512 
vince.kaminski@enron.com jim.schwieger@enron.com 0.662929 
vince.kaminski@enron.com john.arnold@enron.com 0.375992 
vince.kaminski@enron.com kimberly.watson@enron.com 0.186378 
vince.kaminski@enron.com rick.buy@enron.com 0.104206 
vince.kaminski@enron.com tracy.geaccone@enron.com 0.308250 
vince.kaminski@enron.com vince.j.kaminski@enron.com 0.007410 
vince.kaminski@enron.com j.kaminski@enron.com 0.014819 
vince.kaminski@enron.com lloyd.will@enron.com 0.150393 
scott.neal@enron.com mike.grigsby@enron.com -0.372044 
scott.neal@enron.com kam.keiser@enron.com 0.115035 
scott.neal@enron.com don.black@enron.com 0.124480 
scott.neal@enron.com john.arnold@enron.com 0.056226 
scott.neal@enron.com brad.mckay@enron.com 0.078191 
scott.neal@enron.com julia.sudduth@enron.com 0.000000 
scott.neal@enron.com a..martin@enron.com -0.218600 
scott.neal@enron.com hunter.shively@enron.com 0.089538 
scott.neal@enron.com chris.gaskill@enron.com 0.203258 
scott.neal@enron.com john.hodge@enron.com 0.089097 
scott.neal@enron.com s..shively@enron.com 0.046876 
shelley.corman@enron.com d..steffes@enron.com -0.199567 
shelley.corman@enron.com danny.mccarty@enron.com -0.031235 
shelley.corman@enron.com stanley.horton@enron.com -0.246448 
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shelley.corman@enron.com drew.fossum@enron.com -0.170235 
shelley.corman@enron.com steven.kean@enron.com -0.309416 
shelley.corman@enron.com jeff.dasovich@enron.com -0.347662 
shelley.corman@enron.com lindy.donoho@enron.com -0.015288 
shelley.corman@enron.com kimberly.watson@enron.com -0.244072 
shelley.corman@enron.com darrell.schoolcraft@enron.com -0.716882 
shelley.corman@enron.com kevin.hyatt@enron.com -0.179352 
shelley.corman@enron.com teb.lokey@enron.com 0.106616 
shelley.corman@enron.com tracy.geaccone@enron.com -0.122201 
shelley.corman@enron.com lynn.blair@enron.com -0.145697 
chris.foster@enron.com jeff.dasovich@enron.com -0.209561 
chris.foster@enron.com kate.symes@enron.com -0.068576 
chris.foster@enron.com lavorato@enron.com 0.344367 
mike.grigsby@enron.com john.zufferli@enron.com -0.045935 
mike.grigsby@enron.com chris.dorland@enron.com -0.056249 
mike.grigsby@enron.com keith.holst@enron.com 0.101977 
mike.grigsby@enron.com kam.keiser@enron.com 0.487079 
mike.grigsby@enron.com mike.swerzbin@enron.com 0.414623 
mike.grigsby@enron.com tim.belden@enron.com 0.364850 
mike.grigsby@enron.com jay.reitmeyer@enron.com 0.150930 
mike.grigsby@enron.com frank.ermis@enron.com 0.754146 
mike.grigsby@enron.com phillip.allen@enron.com -0.127645 
mike.grigsby@enron.com tom.alonso@enron.com 0.701616 
mike.grigsby@enron.com don.black@enron.com 0.496524 
mike.grigsby@enron.com mark.whitt@enron.com 0.421727 
mike.grigsby@enron.com barry.tycholiz@enron.com 0.478276 
mike.grigsby@enron.com john.arnold@enron.com 0.428270 
mike.grigsby@enron.com chris.gaskill@enron.com 0.575302 
mike.grigsby@enron.com h..foster@enron.com 0.599592 
mike.grigsby@enron.com robert.badeer@enron.com 0.587960 
mike.grigsby@enron.com eric.bass@enron.com 0.530727 
mike.grigsby@enron.com tori.kuykendall@enron.com 0.107951 
mike.grigsby@enron.com m..tholt@enron.com 0.374264 
mike.grigsby@enron.com martin.cuilla@enron.com 0.397240 
mike.grigsby@enron.com randall.gay@enron.com 0.219813 
mike.grigsby@enron.com mcuilla@enron.com 1.000000 
mike.grigsby@enron.com matt.motley@enron.com 0.506881 
mike.grigsby@enron.com s..shively@enron.com 0.418920 
m..presto@enron.com chris.dorland@enron.com -0.156238 
m..presto@enron.com elizabeth.sager@enron.com 0.189381 
m..presto@enron.com mike.swerzbin@enron.com 0.314633 
m..presto@enron.com tim.belden@enron.com 0.264860 
m..presto@enron.com rogers.herndon@enron.com 0.322133 
m..presto@enron.com don.black@enron.com 0.396534 
m..presto@enron.com john.arnold@enron.com 0.328280 
m..presto@enron.com robert.benson@enron.com 0.362154 
m..presto@enron.com mike.curry@enron.com 0.033316 
m..presto@enron.com lloyd.will@enron.com 0.102682 
m..presto@enron.com john.llodra@enron.com 0.178736 
john.zufferli@enron.com chris.dorland@enron.com -0.010314 
john.zufferli@enron.com tim.belden@enron.com 0.410785 
john.zufferli@enron.com david.delainey@enron.com 0.494088 
john.zufferli@enron.com a..shankman@enron.com 0.202366 
john.zufferli@enron.com lavorato@enron.com 0.734930 
john.zufferli@enron.com lloyd.will@enron.com 0.248606 
benjamin.rogers@enron.com gautam.gupta@enron.com 0.267411 
benjamin.rogers@enron.com rogers.herndon@enron.com -0.048331 
benjamin.rogers@enron.com stanley.horton@enron.com -0.234173 
benjamin.rogers@enron.com david.delainey@enron.com -0.022301 
benjamin.rogers@enron.com robert.benson@enron.com -0.008309 
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benjamin.rogers@enron.com joe.quenet@enron.com -0.196166 
gautam.gupta@enron.com j..sturm@enron.com -0.252395 
gautam.gupta@enron.com paul.thomas@enron.com -1.000000 
chris.dorland@enron.com keith.holst@enron.com 0.158226 
chris.dorland@enron.com barry.tycholiz@enron.com 0.534524 
chris.dorland@enron.com geoff.storey@enron.com 0.542439 
chris.dorland@enron.com chris.gaskill@enron.com 0.631551 
chris.dorland@enron.com robert.benson@enron.com 0.518393 
chris.dorland@enron.com lavorato@enron.com 0.745244 
chris.dorland@enron.com joe.quenet@enron.com 0.330536 
chris.dorland@enron.com mike.carson@enron.com 0.249063 
chris.dorland@enron.com j..sturm@enron.com 0.541718 
chris.dorland@enron.com martin.cuilla@enron.com 0.453489 
keith.holst@enron.com kam.keiser@enron.com 0.385102 
keith.holst@enron.com mike.swerzbin@enron.com 0.312646 
keith.holst@enron.com jay.reitmeyer@enron.com 0.048953 
keith.holst@enron.com jeff.dasovich@enron.com 0.033090 
keith.holst@enron.com phillip.allen@enron.com -0.229622 
keith.holst@enron.com barry.tycholiz@enron.com 0.376299 
keith.holst@enron.com jeff.richter@enron.com 0.141959 
keith.holst@enron.com geoff.storey@enron.com 0.384213 
keith.holst@enron.com m..tholt@enron.com 0.272287 
keith.holst@enron.com j.kaminski@enron.com -0.034880 
ryan.slinger@enron.com geir.solberg@enron.com -0.063846 
ryan.slinger@enron.com mark.guzman@enron.com -0.208267 
ryan.slinger@enron.com craig.dean@enron.com -0.195963 
ryan.slinger@enron.com eric.linder@enron.com -0.531923 
geir.solberg@enron.com tim.belden@enron.com -0.146552 
geir.solberg@enron.com mark.guzman@enron.com -0.144421 
geir.solberg@enron.com craig.dean@enron.com -0.132117 
geir.solberg@enron.com chris.stokley@enron.com -0.240351 
geir.solberg@enron.com h..foster@enron.com 0.088190 
geir.solberg@enron.com kate.symes@enron.com -0.235350 
geir.solberg@enron.com mark.fischer@enron.com -0.192856 
geir.solberg@enron.com eric.linder@enron.com -0.468077 
b..sanders@enron.com michelle.cash@enron.com 0.131996 
b..sanders@enron.com elizabeth.sager@enron.com 0.264274 
b..sanders@enron.com richard.shapiro@enron.com 0.318694 
b..sanders@enron.com jeff.dasovich@enron.com 0.109970 
b..sanders@enron.com james.steffes@enron.com 0.175065 
michelle.cash@enron.com elizabeth.sager@enron.com 0.132278 
michelle.cash@enron.com sally.beck@enron.com 0.082929 
michelle.cash@enron.com rogers.herndon@enron.com 0.265030 
michelle.cash@enron.com danny.mccarty@enron.com 0.294400 
michelle.cash@enron.com steven.kean@enron.com 0.016220 
michelle.cash@enron.com geoff.storey@enron.com 0.329098 
michelle.cash@enron.com mark.haedicke@enron.com 0.210251 
michelle.cash@enron.com j..kean@enron.com -0.443018 
michelle.cash@enron.com j.kaminski@enron.com -0.089995 
michelle.cash@enron.com richard.sanders@enron.com 0.118817 
michelle.cash@enron.com s..shively@enron.com 0.261827 
elizabeth.sager@enron.com tim.belden@enron.com 0.075479 
elizabeth.sager@enron.com sally.beck@enron.com -0.049349 
elizabeth.sager@enron.com rogers.herndon@enron.com 0.132752 
elizabeth.sager@enron.com marie.heard@enron.com 0.030672 
elizabeth.sager@enron.com tana.jones@enron.com 0.056838 
elizabeth.sager@enron.com john.forney@enron.com -0.068035 
elizabeth.sager@enron.com mark.haedicke@enron.com 0.077973 
elizabeth.sager@enron.com richard.sanders@enron.com -0.013461 
elizabeth.sager@enron.com f..calger@enron.com -0.643047 
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elizabeth.sager@enron.com lloyd.will@enron.com -0.086699 
elizabeth.sager@enron.com john.llodra@enron.com -0.010645 
errol.mclaughlin@enron.com kam.keiser@enron.com 0.286066 
errol.mclaughlin@enron.com andy.zipper@enron.com 0.091796 
errol.mclaughlin@enron.com john.arnold@enron.com 0.227257 
kam.keiser@enron.com jay.reitmeyer@enron.com -0.336149 
kam.keiser@enron.com tom.alonso@enron.com 0.214537 
kam.keiser@enron.com mark.whitt@enron.com -0.065352 
kam.keiser@enron.com hunter.shively@enron.com -0.025497 
kam.keiser@enron.com kevin.ruscitti@enron.com -0.183072 
kam.keiser@enron.com phillip.love@enron.com -0.016377 
mike.swerzbin@enron.com tim.belden@enron.com -0.049773 
mike.swerzbin@enron.com tana.jones@enron.com -0.068415 
mike.swerzbin@enron.com matt.motley@enron.com 0.092258 
mike.swerzbin@enron.com ken.lay@enron.com -0.734605 
tim.belden@enron.com sally.beck@enron.com -0.124829 
tim.belden@enron.com d..steffes@enron.com -0.081688 
tim.belden@enron.com steven.kean@enron.com -0.191537 
tim.belden@enron.com jeff.dasovich@enron.com -0.229783 
tim.belden@enron.com david.delainey@enron.com 0.083303 
tim.belden@enron.com phillip.allen@enron.com -0.492495 
tim.belden@enron.com tom.alonso@enron.com 0.336766 
tim.belden@enron.com mark.guzman@enron.com 0.002132 
tim.belden@enron.com chris.stokley@enron.com -0.093799 
tim.belden@enron.com jeff.richter@enron.com -0.120913 
tim.belden@enron.com john.forney@enron.com -0.143514 
tim.belden@enron.com mark.haedicke@enron.com 0.002494 
tim.belden@enron.com h..foster@enron.com 0.234742 
tim.belden@enron.com robert.badeer@enron.com 0.223111 
tim.belden@enron.com kate.symes@enron.com -0.088797 
tim.belden@enron.com mark.fischer@enron.com -0.046304 
tim.belden@enron.com timothy.heizenrader@enron.com -0.012094 
tim.belden@enron.com kevin.presto@enron.com -0.069925 
tim.belden@enron.com lavorato@enron.com 0.324145 
tim.belden@enron.com richard.sanders@enron.com -0.088940 
tim.belden@enron.com f..calger@enron.com -0.718526 
tim.belden@enron.com matt.motley@enron.com 0.142031 
sally.beck@enron.com andy.zipper@enron.com 0.052788 
sally.beck@enron.com laura.luce@enron.com 0.332748 
sally.beck@enron.com stanley.horton@enron.com -0.003741 
sally.beck@enron.com david.delainey@enron.com 0.208131 
sally.beck@enron.com barry.tycholiz@enron.com 0.238255 
sally.beck@enron.com rick.buy@enron.com -0.083537 
sally.beck@enron.com fletcher.sturm@enron.com 0.104610 
sally.beck@enron.com j..kean@enron.com -0.525946 
sally.beck@enron.com j.kaminski@enron.com -0.172924 
sally.beck@enron.com daren.farmer@enron.com 0.037758 
andy.zipper@enron.com phillip.allen@enron.com -0.420454 
andy.zipper@enron.com jim.schwieger@enron.com 0.422398 
andy.zipper@enron.com jeffrey.shankman@enron.com -0.102666 
andy.zipper@enron.com john.arnold@enron.com 0.135461 
andy.zipper@enron.com tana.jones@enron.com 0.053399 
andy.zipper@enron.com chris.gaskill@enron.com 0.282493 
andy.zipper@enron.com kevin.presto@enron.com 0.002116 
andy.zipper@enron.com a..shankman@enron.com -0.136378 
andy.zipper@enron.com lavorato@enron.com 0.396186 
andy.zipper@enron.com j..sturm@enron.com 0.192661 
andy.zipper@enron.com kaminski@enron.com 0.000000 
andy.zipper@enron.com steve.wang@enron.com -0.163733 
laura.luce@enron.com david.delainey@enron.com -0.124617 



 158 

laura.luce@enron.com barry.tycholiz@enron.com -0.094493 
laura.luce@enron.com john.arnold@enron.com -0.144499 
laura.luce@enron.com hunter.shively@enron.com -0.111187 
laura.luce@enron.com dan.hyvl@enron.com -0.129530 
laura.luce@enron.com j.kaminski@enron.com -0.505672 
laura.luce@enron.com j..sturm@enron.com -0.087300 
laura.luce@enron.com phillip.love@enron.com -0.102067 
laura.luce@enron.com s..shively@enron.com -0.153850 
peter.keavey@enron.com john.arnold@enron.com 0.157156 
peter.keavey@enron.com brad.mckay@enron.com 0.179120 
peter.keavey@enron.com eric.bass@enron.com 0.259612 
rogers.herndon@enron.com d..steffes@enron.com -0.138961 
rogers.herndon@enron.com barry.tycholiz@enron.com 0.056153 
rogers.herndon@enron.com chris.stokley@enron.com -0.151072 
rogers.herndon@enron.com kevin.presto@enron.com -0.127198 
rogers.herndon@enron.com lavorato@enron.com 0.266872 
rogers.herndon@enron.com fletcher.sturm@enron.com -0.077491 
rogers.herndon@enron.com j..sturm@enron.com 0.063347 
rogers.herndon@enron.com richard.ring@enron.com 0.012836 
d..steffes@enron.com richard.shapiro@enron.com 0.060629 
d..steffes@enron.com jeff.dasovich@enron.com -0.148095 
d..steffes@enron.com david.delainey@enron.com 0.164991 
d..steffes@enron.com don.black@enron.com 0.213362 
d..steffes@enron.com john.shelk@enron.com -0.261771 
d..steffes@enron.com richard.ring@enron.com 0.151797 
danny.mccarty@enron.com stanley.horton@enron.com -0.215213 
danny.mccarty@enron.com drew.fossum@enron.com -0.138999 
danny.mccarty@enron.com lindy.donoho@enron.com 0.015948 
danny.mccarty@enron.com kimberly.watson@enron.com -0.212837 
danny.mccarty@enron.com tracy.geaccone@enron.com -0.090965 
danny.mccarty@enron.com lynn.blair@enron.com -0.114461 
stanley.horton@enron.com phillip.allen@enron.com -0.363925 
stanley.horton@enron.com kevin.hyatt@enron.com 0.067097 
stanley.horton@enron.com lavorato@enron.com 0.452715 
stanley.horton@enron.com tracy.geaccone@enron.com 0.124248 
stanley.horton@enron.com j..kean@enron.com -0.522205 
stanley.horton@enron.com corman@enron.com 0.000000 
drew.fossum@enron.com bill.rapp@enron.com 0.361725 
drew.fossum@enron.com kimberly.watson@enron.com -0.073837 
drew.fossum@enron.com kevin.hyatt@enron.com -0.009117 
drew.fossum@enron.com teb.lokey@enron.com 0.276851 
drew.fossum@enron.com tracy.geaccone@enron.com 0.048034 
drew.fossum@enron.com lynn.blair@enron.com 0.024538 
steven.kean@enron.com richard.shapiro@enron.com 0.170478 
steven.kean@enron.com jeff.dasovich@enron.com -0.038246 
steven.kean@enron.com rick.buy@enron.com -0.016828 
steven.kean@enron.com lavorato@enron.com 0.515683 
steven.kean@enron.com james.steffes@enron.com 0.026849 
jay.reitmeyer@enron.com frank.ermis@enron.com 0.603216 
jay.reitmeyer@enron.com phillip.allen@enron.com -0.278576 
jay.reitmeyer@enron.com mark.whitt@enron.com 0.270796 
jay.reitmeyer@enron.com theresa.staab@enron.com 0.506967 
jay.reitmeyer@enron.com chris.gaskill@enron.com 0.424372 
jay.reitmeyer@enron.com robert.badeer@enron.com 0.437030 
jay.reitmeyer@enron.com tori.kuykendall@enron.com -0.042980 
jay.reitmeyer@enron.com m..tholt@enron.com 0.223333 
jay.reitmeyer@enron.com randall.gay@enron.com 0.068882 
jay.reitmeyer@enron.com s..shively@enron.com 0.267989 
frank.ermis@enron.com phillip.allen@enron.com -0.881791 
richard.shapiro@enron.com jeff.dasovich@enron.com -0.208723 
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richard.shapiro@enron.com david.delainey@enron.com 0.104362 
richard.shapiro@enron.com jeffrey.shankman@enron.com -0.153648 
richard.shapiro@enron.com john.shelk@enron.com -0.322400 
richard.shapiro@enron.com mark.haedicke@enron.com 0.023553 
richard.shapiro@enron.com lavorato@enron.com 0.345205 
richard.shapiro@enron.com j..kean@enron.com -0.629715 
richard.shapiro@enron.com james.steffes@enron.com -0.143628 
jeff.dasovich@enron.com david.delainey@enron.com 0.313086 
jeff.dasovich@enron.com phillip.allen@enron.com -0.262712 
jeff.dasovich@enron.com barry.tycholiz@enron.com 0.343209 
jeff.dasovich@enron.com john.shelk@enron.com -0.113676 
jeff.dasovich@enron.com chris.stokley@enron.com 0.135984 
jeff.dasovich@enron.com jeff.richter@enron.com 0.108869 
jeff.dasovich@enron.com robert.badeer@enron.com 0.452894 
jeff.dasovich@enron.com kevin.hyatt@enron.com 0.168310 
jeff.dasovich@enron.com j..kean@enron.com -0.420992 
jeff.dasovich@enron.com m..tholt@enron.com 0.239197 
jeff.dasovich@enron.com james.steffes@enron.com 0.065095 
jeff.dasovich@enron.com f..calger@enron.com -0.488743 
jeff.dasovich@enron.com christopher.calger@enron.com -0.097131 
jeff.dasovich@enron.com lysa.akin@enron.com -0.135421 
jeff.dasovich@enron.com jdasovic@enron.com 0.000000 
david.delainey@enron.com barry.tycholiz@enron.com 0.030123 
david.delainey@enron.com rick.buy@enron.com -0.291668 
david.delainey@enron.com lavorato@enron.com 0.240843 
david.delainey@enron.com j..kean@enron.com -0.734077 
david.delainey@enron.com mike.curry@enron.com -0.314847 
david.delainey@enron.com john.llodra@enron.com -0.169427 
phillip.allen@enron.com don.black@enron.com 0.624169 
phillip.allen@enron.com mark.whitt@enron.com 0.549372 
phillip.allen@enron.com barry.tycholiz@enron.com 0.605921 
phillip.allen@enron.com jeff.richter@enron.com 0.371581 
phillip.allen@enron.com chris.gaskill@enron.com 0.702947 
phillip.allen@enron.com robert.badeer@enron.com 0.715606 
phillip.allen@enron.com lavorato@enron.com 0.816640 
phillip.allen@enron.com tori.kuykendall@enron.com 0.235596 
tom.alonso@enron.com robert.badeer@enron.com -0.113655 
tom.alonso@enron.com kate.symes@enron.com -0.425563 
tom.alonso@enron.com mark.fischer@enron.com -0.383070 
marie.heard@enron.com susan.bailey@enron.com 0.011691 
marie.heard@enron.com tana.jones@enron.com 0.026165 
marie.heard@enron.com richard.sanders@enron.com -0.044133 
jim.schwieger@enron.com john.arnold@enron.com -0.286937 
jim.schwieger@enron.com a..martin@enron.com -0.561762 
jim.schwieger@enron.com eric.bass@enron.com -0.184480 
mark.guzman@enron.com john.forney@enron.com -0.145646 
mark.guzman@enron.com kate.symes@enron.com -0.090929 
mark.guzman@enron.com monika.causholli@enron.com -1.000000 
don.black@enron.com john.arnold@enron.com -0.068254 
don.black@enron.com a..martin@enron.com -0.343080 
don.black@enron.com mark.haedicke@enron.com -0.129180 
don.black@enron.com kevin.presto@enron.com -0.201599 
don.black@enron.com eric.bass@enron.com 0.034203 
jeffrey.shankman@enron.com john.arnold@enron.com 0.238128 
jeffrey.shankman@enron.com rick.buy@enron.com -0.033658 
mark.whitt@enron.com theresa.staab@enron.com 0.236171 
mark.whitt@enron.com barry.tycholiz@enron.com 0.056549 
mark.whitt@enron.com jake.thomas@enron.com -0.275108 
theresa.staab@enron.com barry.tycholiz@enron.com -0.179622 
barry.tycholiz@enron.com h..foster@enron.com 0.121316 
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barry.tycholiz@enron.com robert.benson@enron.com -0.016132 
barry.tycholiz@enron.com lavorato@enron.com 0.210719 
barry.tycholiz@enron.com paul.lucci@enron.com -0.358803 
barry.tycholiz@enron.com dan.hyvl@enron.com -0.035036 
barry.tycholiz@enron.com jake.thomas@enron.com -0.331657 
barry.tycholiz@enron.com m..tholt@enron.com -0.104012 
barry.tycholiz@enron.com f..calger@enron.com -0.831952 
john.arnold@enron.com mike.maggi@enron.com -0.350456 
john.arnold@enron.com tana.jones@enron.com -0.082062 
john.arnold@enron.com brad.mckay@enron.com 0.021965 
john.arnold@enron.com hunter.shively@enron.com 0.033312 
john.arnold@enron.com geoff.storey@enron.com 0.057920 
john.arnold@enron.com chris.gaskill@enron.com 0.147032 
john.arnold@enron.com a..shankman@enron.com -0.271839 
john.arnold@enron.com lavorato@enron.com 0.260725 
john.arnold@enron.com fletcher.sturm@enron.com -0.083638 
john.arnold@enron.com s..shively@enron.com -0.009350 
bill.rapp@enron.com lindy.donoho@enron.com -0.206778 
bill.rapp@enron.com kimberly.watson@enron.com -0.435562 
bill.rapp@enron.com kevin.hyatt@enron.com -0.370842 
bill.rapp@enron.com teb.lokey@enron.com -0.084874 
bill.rapp@enron.com lynn.blair@enron.com -0.337187 
susan.bailey@enron.com tana.jones@enron.com 0.014474 
chris.stokley@enron.com jeff.richter@enron.com -0.027115 
chris.stokley@enron.com john.forney@enron.com -0.049716 
chris.stokley@enron.com h..foster@enron.com 0.328540 
chris.stokley@enron.com kate.symes@enron.com 0.005001 
jeff.richter@enron.com robert.badeer@enron.com 0.344024 
jeff.richter@enron.com kate.symes@enron.com 0.032116 
tana.jones@enron.com dan.hyvl@enron.com 0.097032 
tana.jones@enron.com stacy.dickson@enron.com 0.010904 
brad.mckay@enron.com fletcher.sturm@enron.com -0.105603 
brad.mckay@enron.com stacy.dickson@enron.com -0.093122 
lindy.donoho@enron.com kimberly.watson@enron.com -0.228784 
lindy.donoho@enron.com darrell.schoolcraft@enron.com -0.701594 
lindy.donoho@enron.com kevin.hyatt@enron.com -0.164064 
lindy.donoho@enron.com teb.lokey@enron.com 0.121903 
lindy.donoho@enron.com tracy.geaccone@enron.com -0.106913 
lindy.donoho@enron.com lynn.blair@enron.com -0.130409 
kimberly.watson@enron.com darrell.schoolcraft@enron.com -0.472810 
kimberly.watson@enron.com kevin.hyatt@enron.com 0.064720 
kimberly.watson@enron.com teb.lokey@enron.com 0.350688 
kimberly.watson@enron.com tracy.geaccone@enron.com 0.121871 
kimberly.watson@enron.com lynn.blair@enron.com 0.098375 
kimberly.watson@enron.com j.kaminski@enron.com -0.171559 
darrell.schoolcraft@enron.com kevin.hyatt@enron.com 0.537530 
darrell.schoolcraft@enron.com lynn.blair@enron.com 0.571185 
a..martin@enron.com judy.townsend@enron.com 0.626788 
a..martin@enron.com chris.gaskill@enron.com 0.421858 
a..martin@enron.com eric.bass@enron.com 0.377282 
a..martin@enron.com mike.curry@enron.com -0.020139 
hunter.shively@enron.com geoff.storey@enron.com 0.024608 
hunter.shively@enron.com chris.gaskill@enron.com 0.113720 
hunter.shively@enron.com lavorato@enron.com 0.227413 
hunter.shively@enron.com kevin.ruscitti@enron.com -0.157576 
hunter.shively@enron.com martin.cuilla@enron.com -0.064342 
hunter.shively@enron.com lloyd.will@enron.com -0.258911 
geoff.storey@enron.com chris.gaskill@enron.com 0.089112 
geoff.storey@enron.com kevin.ruscitti@enron.com -0.182184 
geoff.storey@enron.com j..sturm@enron.com -0.000721 
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geoff.storey@enron.com phillip.love@enron.com -0.015488 
geoff.storey@enron.com martin.cuilla@enron.com -0.088950 
geoff.storey@enron.com s..shively@enron.com -0.067271 
chris.gaskill@enron.com eric.bass@enron.com -0.044576 
chris.gaskill@enron.com s..shively@enron.com -0.156383 
john.forney@enron.com robert.badeer@enron.com 0.366625 
john.forney@enron.com don.baughman@enron.com 0.020182 
john.forney@enron.com mike.carson@enron.com -0.028521 
mark.haedicke@enron.com lavorato@enron.com 0.321652 
patrice.mims@enron.com kevin.ruscitti@enron.com -0.033318 
patrice.mims@enron.com tom.donohoe@enron.com -0.048297 
h..foster@enron.com robert.badeer@enron.com -0.011631 
h..foster@enron.com matt.motley@enron.com -0.092711 
h..foster@enron.com richard.ring@enron.com -0.164633 
robert.badeer@enron.com christopher.calger@enron.com -0.550025 
robert.badeer@enron.com matt.motley@enron.com -0.081080 
robert.badeer@enron.com lysa.akin@enron.com -0.588315 
kate.symes@enron.com mark.fischer@enron.com 0.042494 
kate.symes@enron.com jake.thomas@enron.com -0.129434 
kate.symes@enron.com matt.motley@enron.com 0.230828 
kevin.hyatt@enron.com tracy.geaccone@enron.com 0.057151 
kevin.hyatt@enron.com lynn.blair@enron.com 0.033655 
kevin.hyatt@enron.com larry.campbell@enron.com 0.143190 
kevin.hyatt@enron.com michele.lokay@enron.com 0.000000 
teb.lokey@enron.com tracy.geaccone@enron.com -0.228817 
robert.benson@enron.com kevin.presto@enron.com -0.167220 
robert.benson@enron.com j..sturm@enron.com 0.023326 
robert.benson@enron.com dana.davis@enron.com -1.000000 
rick.buy@enron.com a..shankman@enron.com -0.000053 
rick.buy@enron.com lavorato@enron.com 0.532511 
rick.buy@enron.com j..kean@enron.com -0.442409 
kevin.presto@enron.com lavorato@enron.com 0.394071 
kevin.presto@enron.com lloyd.will@enron.com -0.092253 
kevin.presto@enron.com john.llodra@enron.com -0.016199 
lavorato@enron.com christopher.calger@enron.com -0.651059 
fletcher.sturm@enron.com joe.quenet@enron.com -0.070344 
fletcher.sturm@enron.com jeff.king@enron.com -0.006317 
don.baughman@enron.com juan.hernandez@enron.com 0.300691 
don.baughman@enron.com lloyd.will@enron.com -0.038846 
don.baughman@enron.com larry.campbell@enron.com 0.205049 
juan.hernandez@enron.com jeff.king@enron.com -0.203894 
juan.hernandez@enron.com lloyd.will@enron.com -0.339538 
eric.bass@enron.com tori.kuykendall@enron.com -0.422776 
eric.bass@enron.com phillip.love@enron.com -0.060025 
eric.bass@enron.com martin.cuilla@enron.com -0.133486 
eric.bass@enron.com charles.weldon@enron.com -1.000000 
tori.kuykendall@enron.com martin.cuilla@enron.com 0.289289 
tori.kuykendall@enron.com randall.gay@enron.com 0.111862 
dan.hyvl@enron.com kevin.ruscitti@enron.com -0.139233 
kevin.ruscitti@enron.com tom.donohoe@enron.com -0.014979 
kevin.ruscitti@enron.com mike.curry@enron.com -0.170701 
kevin.ruscitti@enron.com martin.cuilla@enron.com 0.093234 
kevin.ruscitti@enron.com s..shively@enron.com 0.114913 
vince.j.kaminski@enron.com j.kaminski@enron.com 0.007410 
joe.quenet@enron.com jeff.king@enron.com 0.064027 
eric.saibi@enron.com mike.carson@enron.com -0.075043 
eric.saibi@enron.com lloyd.will@enron.com -0.065186 
mike.carson@enron.com jeff.king@enron.com 0.145500 
j..sturm@enron.com lloyd.will@enron.com -0.282798 
richard.sanders@enron.com lysa.akin@enron.com -0.276264 
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martin.cuilla@enron.com s..shively@enron.com 0.021679 
lloyd.will@enron.com f..campbell@enron.com -0.000000 
s..shively@enron.com steve.wang@enron.com -0.289844 
 

C.3 Tension Component of Muir-Joinson Speech Message-Level Prediction 
Graph 

 
buqb40 herd40 0.097105 
buqb40 hoql53 0.159300 
buqb40 maeg89 -0.337777 
buqb40 raus83 -0.003287 
buqb40 sabe64 0.014814 
buqb40 shbs25 0.440204 
buqb40 smtt74 0.008165 
buqb40 stjn43 0.020130 
buqb40 wadn66 -0.167416 
herd40 chip27 -0.072945 
herd40 greg44 -0.086135 
herd40 guah24 -0.545734 
herd40 hahg14 -0.059641 
herd40 hous14 -0.086885 
herd40 mual23 -0.113812 
herd40 roen52 0.015037 
hoql53 chip27 -0.135139 
hoql53 greg44 -0.148329 
hoql53 guah24 -0.607928 
hoql53 hahg14 -0.121835 
hoql53 hous14 -0.149079 
hoql53 mual23 -0.176007 
hoql53 roen52 -0.047158 
maeg89 chip27 0.361938 
maeg89 greg44 0.348748 
maeg89 guah24 -0.110851 
maeg89 hahg14 0.375242 
maeg89 hous14 0.347998 
maeg89 mual23 0.321071 
maeg89 roen52 0.449920 
raus83 chip27 0.027447 
raus83 greg44 0.014257 
raus83 guah24 -0.445342 
raus83 hahg14 0.040751 
raus83 hous14 0.013507 
raus83 mual23 -0.013420 
raus83 roen52 0.115429 
sabe64 chip27 0.009347 
sabe64 greg44 -0.003843 
sabe64 guah24 -0.463442 
sabe64 hahg14 0.022650 
sabe64 hous14 -0.004593 
sabe64 mual23 -0.031521 
sabe64 roen52 0.097328 
shbs25 chip27 -0.416043 
shbs25 greg44 -0.429234 
shbs25 guah24 -0.888832 
shbs25 hahg14 -0.402740 
shbs25 hous14 -0.429983 
shbs25 mual23 -0.456911 

shbs25 roen52 -0.328062 
smtt74 chip27 0.015996 
smtt74 greg44 0.002806 
smtt74 guah24 -0.456793 
smtt74 hahg14 0.029299 
smtt74 hous14 0.002056 
smtt74 mual23 -0.024872 
smtt74 roen52 0.103977 
stjn43 chip27 0.004031 
stjn43 greg44 -0.009159 
stjn43 guah24 -0.468758 
stjn43 hahg14 0.017335 
stjn43 hous14 -0.009909 
stjn43 mual23 -0.036837 
stjn43 roen52 0.092012 
wadn66 chip27 0.191577 
wadn66 greg44 0.178387 
wadn66 guah24 -0.281212 
wadn66 hahg14 0.204881 
wadn66 hous14 0.177637 
wadn66 mual23 0.150709 
wadn66 roen52 0.279558 
barp60 axht13 0.723125 
barp60 brbz64 0.603835 
barp60 brel45 0.464613 
barp60 deeu72 -0.030745 
barp60 hazh36 0.900399 
barp60 hobs94 0.479459 
barp60 hozg91 0.916558 
barp60 jadg52 0.893299 
barp60 leln17 0.012634 
barp60 reeg74 0.267491 
barp60 rodh93 0.170850 
barp60 whqy96 0.456975 
axht13 hojd22 -0.601679 
axht13 moub86 -0.720981 
axht13 piey32 -0.729284 
axht13 sizl24 -0.714360 
axht13 arus37 -0.773664 
axht13 barp74 -0.753654 
axht13 benz72 -0.728548 
axht13 bras17 -0.742067 
axht13 ches11 -0.777154 
axht13 gehw13 -0.766757 
axht13 maqh17 -0.314916 
brbz64 hojd22 -0.482390 
brbz64 moub86 -0.601691 
brbz64 piey32 -0.609994 
brbz64 sizl24 -0.595070 
brbz64 arus37 -0.654374 
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brbz64 barp74 -0.634364 
brbz64 benz72 -0.609258 
brbz64 bras17 -0.622777 
brbz64 ches11 -0.657864 
brbz64 gehw13 -0.647467 
brbz64 maqh17 -0.195627 
brel45 hojd22 -0.343167 
brel45 moub86 -0.462469 
brel45 piey32 -0.470772 
brel45 sizl24 -0.455848 
brel45 arus37 -0.515152 
brel45 barp74 -0.495142 
brel45 benz72 -0.470036 
brel45 bras17 -0.483555 
brel45 ches11 -0.518642 
brel45 gehw13 -0.508245 
brel45 maqh17 -0.056404 
deeu72 hojd22 0.152191 
deeu72 moub86 0.032889 
deeu72 piey32 0.024586 
deeu72 sizl24 0.039510 
deeu72 arus37 -0.019794 
deeu72 barp74 0.000216 
deeu72 benz72 0.025322 
deeu72 bras17 0.011803 
deeu72 ches11 -0.023284 
deeu72 gehw13 -0.012887 
deeu72 maqh17 0.438954 
hazh36 hojd22 -0.778954 
hazh36 moub86 -0.898255 
hazh36 piey32 -0.906558 
hazh36 sizl24 -0.891634 
hazh36 arus37 -0.950938 
hazh36 barp74 -0.930928 
hazh36 benz72 -0.905822 
hazh36 bras17 -0.919341 
hazh36 ches11 -0.954428 
hazh36 gehw13 -0.944031 
hazh36 maqh17 -0.492190 
hobs94 hojd22 -0.358014 
hobs94 moub86 -0.477315 
hobs94 piey32 -0.485618 
hobs94 sizl24 -0.470694 
hobs94 arus37 -0.529998 
hobs94 barp74 -0.509988 
hobs94 benz72 -0.484882 
hobs94 bras17 -0.498401 
hobs94 ches11 -0.533488 
hobs94 gehw13 -0.523091 
hobs94 maqh17 -0.071250 
hozg91 hojd22 -0.795113 
hozg91 moub86 -0.914414 
hozg91 piey32 -0.922717 
hozg91 sizl24 -0.907793 
hozg91 arus37 -0.967097 
hozg91 barp74 -0.947087 
hozg91 ches11 -0.970587 

hozg91 gehw13 -0.960190 
hozg91 maqh17 -0.508349 
jadg52 hojd22 -0.771854 
jadg52 moub86 -0.891156 
jadg52 piey32 -0.899458 
jadg52 sizl24 -0.884534 
jadg52 arus37 -0.943838 
jadg52 barp74 -0.923829 
jadg52 benz72 -0.898722 
jadg52 bras17 -0.912241 
jadg52 ches11 -0.947328 
jadg52 gehw13 -0.936931 
jadg52 maqh17 -0.485091 
leln17 hojd22 0.108811 
leln17 moub86 -0.010491 
leln17 piey32 -0.018793 
leln17 sizl24 -0.003869 
leln17 arus37 -0.063174 
leln17 barp74 -0.043164 
leln17 benz72 -0.018057 
leln17 bras17 -0.031577 
leln17 ches11 -0.066663 
leln17 gehw13 -0.056267 
leln17 maqh17 0.395574 
reeg74 hojd22 -0.146046 
reeg74 moub86 -0.265348 
reeg74 piey32 -0.273650 
reeg74 sizl24 -0.258726 
reeg74 arus37 -0.318031 
reeg74 barp74 -0.298021 
reeg74 benz72 -0.272914 
reeg74 bras17 -0.286434 
reeg74 ches11 -0.321520 
reeg74 gehw13 -0.311124 
reeg74 maqh17 0.140717 
rodh93 hojd22 -0.049405 
rodh93 moub86 -0.168707 
rodh93 piey32 -0.177009 
rodh93 sizl24 -0.162085 
rodh93 arus37 -0.221389 
rodh93 barp74 -0.201380 
rodh93 benz72 -0.176273 
rodh93 bras17 -0.189793 
rodh93 ches11 -0.224879 
rodh93 gehw13 -0.214482 
rodh93 maqh17 0.237358 
whqy96 hojd22 -0.335530 
whqy96 moub86 -0.454831 
whqy96 piey32 -0.463134 
whqy96 sizl24 -0.448210 
whqy96 arus37 -0.507514 
whqy96 barp74 -0.487504 
whqy96 benz72 -0.462398 
whqy96 bras17 -0.475917 
whqy96 ches11 -0.511004 
whqy96 gehw13 -0.500607 
whqy96 maqh17 -0.048767 
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C.4 Tension Component of Muir-Joinson Speech Relationship-Level 
Prediction Graph 

buqb40 herd40 -0.152778 
buqb40 hoql53 -0.027778 
buqb40 maeg89 -0.027778 
buqb40 raus83 -0.027778 
buqb40 sabe64 -0.027778 
buqb40 shbs25 0.472222 
buqb40 smtt74 -0.152778 
buqb40 stjn43 -0.027778 
buqb40 wadn66 -0.027778 
herd40 chip27 0.041667 
herd40 greg44 0.152778 
herd40 guah24 -0.625000 
herd40 hahg14 0.152778 
herd40 hous14 0.041667 
herd40 mual23 0.041667 
herd40 roen52 0.041667 
hoql53 chip27 -0.083333 
hoql53 greg44 0.027778 
hoql53 guah24 -0.750000 
hoql53 hahg14 0.027778 
hoql53 hous14 -0.083333 
hoql53 mual23 -0.083333 
hoql53 roen52 -0.083333 
maeg89 chip27 -0.083333 
maeg89 greg44 0.027778 
maeg89 guah24 -0.750000 
maeg89 hahg14 0.027778 
maeg89 hous14 -0.083333 
maeg89 mual23 -0.083333 
maeg89 roen52 -0.083333 
raus83 chip27 -0.083333 
raus83 greg44 0.027778 
raus83 guah24 -0.750000 
raus83 hahg14 0.027778 
raus83 hous14 -0.083333 
raus83 mual23 -0.083333 
raus83 roen52 -0.083333 
sabe64 chip27 -0.083333 
sabe64 greg44 0.027778 
sabe64 guah24 -0.750000 
sabe64 hahg14 0.027778 
sabe64 hous14 -0.083333 
sabe64 mual23 -0.083333 
sabe64 roen52 -0.083333 
shbs25 chip27 -0.583333 
shbs25 greg44 -0.472222 
shbs25 guah24 -1.250000 
shbs25 hahg14 -0.472222 
shbs25 hous14 -0.583333 
shbs25 mual23 -0.583333 
shbs25 roen52 -0.583333 
smtt74 chip27 0.041667 
smtt74 greg44 0.152778 
smtt74 guah24 -0.625000 
smtt74 hahg14 0.152778 
smtt74 hous14 0.041667 
smtt74 mual23 0.041667 

smtt74 roen52 0.041667 
stjn43 chip27 -0.083333 
stjn43 greg44 0.027778 
stjn43 guah24 -0.750000 
stjn43 hahg14 0.027778 
stjn43 hous14 -0.083333 
stjn43 mual23 -0.083333 
stjn43 roen52 -0.083333 
wadn66 chip27 -0.083333 
wadn66 greg44 0.027778 
wadn66 guah24 -0.750000 
wadn66 hahg14 0.027778 
wadn66 hous14 -0.083333 
wadn66 mual23 -0.083333 
wadn66 roen52 -0.083333 
barp60 axht13 0.906061 
barp60 brbz64 0.656061 
barp60 brel45 0.322727 
barp60 deeu72 -0.427273 
barp60 hazh36 0.906061 
barp60 hobs94 0.322727 
barp60 hozg91 0.950000 
barp60 jadg52 0.906061 
barp60 leln17 0.572727 
barp60 reeg74 0.739394 
barp60 rodh93 0.572727 
barp60 whqy96 0.572727 
axht13 hojd22 -0.822727 
axht13 moub86 -1.072727 
axht13 piey32 -0.989394 
axht13 sizl24 -0.906061 
axht13 arus37 -1.072727 
axht13 barp74 -1.239394 
axht13 benz72 -1.265152 
axht13 bras17 -1.174242 
axht13 ches11 -1.072727 
axht13 gehw13 -1.239394 
axht13 maqh17 -0.239394 
brbz64 hojd22 -0.572727 
brbz64 moub86 -0.822727 
brbz64 piey32 -0.739394 
brbz64 sizl24 -0.656061 
brbz64 arus37 -0.822727 
brbz64 barp74 -0.989394 
brbz64 benz72 -1.015152 
brbz64 bras17 -0.924242 
brbz64 ches11 -0.822727 
brbz64 gehw13 -0.989394 
brbz64 maqh17 0.010606 
brel45 hojd22 -0.239394 
brel45 moub86 -0.489394 
brel45 piey32 -0.406061 
brel45 sizl24 -0.322727 
brel45 arus37 -0.489394 
brel45 barp74 -0.656061 
brel45 benz72 -0.681818 
brel45 bras17 -0.590909 



 165 

brel45 ches11 -0.489394 
brel45 gehw13 -0.656061 
brel45 maqh17 0.343939 
deeu72 hojd22 0.510606 
deeu72 moub86 0.260606 
deeu72 piey32 0.343939 
deeu72 sizl24 0.427273 
deeu72 arus37 0.260606 
deeu72 barp74 0.093939 
deeu72 benz72 0.068182 
deeu72 bras17 0.159091 
deeu72 ches11 0.260606 
deeu72 gehw13 0.093939 
deeu72 maqh17 1.093939 
hazh36 hojd22 -0.822727 
hazh36 moub86 -1.072727 
hazh36 piey32 -0.989394 
hazh36 sizl24 -0.906061 
hazh36 arus37 -1.072727 
hazh36 barp74 -1.239394 
hazh36 benz72 -1.265152 
hazh36 bras17 -1.174242 
hazh36 ches11 -1.072727 
hazh36 gehw13 -1.239394 
hazh36 maqh17 -0.239394 
hobs94 hojd22 -0.239394 
hobs94 moub86 -0.489394 
hobs94 piey32 -0.406061 
hobs94 sizl24 -0.322727 
hobs94 arus37 -0.489394 
hobs94 barp74 -0.656061 
hobs94 benz72 -0.681818 
hobs94 bras17 -0.590909 
hobs94 ches11 -0.489394 
hobs94 gehw13 -0.656061 
hobs94 maqh17 0.343939 
hozg91 hojd22 -0.866667 
hozg91 moub86 -1.116667 
hozg91 piey32 -1.033333 
hozg91 sizl24 -0.950000 
hozg91 arus37 -1.116667 
hozg91 barp74 -1.283333 
hozg91 ches11 -1.116667 
hozg91 gehw13 -1.283333 
hozg91 maqh17 -0.283333 
jadg52 hojd22 -0.822727 
jadg52 moub86 -1.072727 
jadg52 piey32 -0.989394 
jadg52 sizl24 -0.906061 
jadg52 arus37 -1.072727 

jadg52 barp74 -1.239394 
jadg52 benz72 -1.265152 
jadg52 bras17 -1.174242 
jadg52 ches11 -1.072727 
jadg52 gehw13 -1.239394 
jadg52 maqh17 -0.239394 
leln17 hojd22 -0.489394 
leln17 moub86 -0.739394 
leln17 piey32 -0.656061 
leln17 sizl24 -0.572727 
leln17 arus37 -0.739394 
leln17 barp74 -0.906061 
leln17 benz72 -0.931818 
leln17 bras17 -0.840909 
leln17 ches11 -0.739394 
leln17 gehw13 -0.906061 
leln17 maqh17 0.093939 
reeg74 hojd22 -0.656061 
reeg74 moub86 -0.906061 
reeg74 piey32 -0.822727 
reeg74 sizl24 -0.739394 
reeg74 arus37 -0.906061 
reeg74 barp74 -1.072727 
reeg74 benz72 -1.098485 
reeg74 bras17 -1.007576 
reeg74 ches11 -0.906061 
reeg74 gehw13 -1.072727 
reeg74 maqh17 -0.072727 
rodh93 hojd22 -0.489394 
rodh93 moub86 -0.739394 
rodh93 piey32 -0.656061 
rodh93 sizl24 -0.572727 
rodh93 arus37 -0.739394 
rodh93 barp74 -0.906061 
rodh93 benz72 -0.931818 
rodh93 bras17 -0.840909 
rodh93 ches11 -0.739394 
rodh93 gehw13 -0.906061 
rodh93 maqh17 0.093939 
whqy96 hojd22 -0.489394 
whqy96 moub86 -0.739394 
whqy96 piey32 -0.656061 
whqy96 sizl24 -0.572727 
whqy96 arus37 -0.739394 
whqy96 barp74 -0.906061 
whqy96 benz72 -0.931818 
whqy96 bras17 -0.840909 
whqy96 ches11 -0.739394 
whqy96 gehw13 -0.906061 
whqy96 maqh17 0.093939 

 
 
 
 

C.5 Tension Component of Muir-Joinson CMC Message-Level Prediction 
Graph 
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ixclde kzmern 0.004664 
ixclde qilped -0.000143 
ixclde ieogpe 0.004664 
ixclde teepln 0.004664 
ixclde rtoxwf 0.023628 
ixclde smwext 0.005400 
ixclde unblpe 0.011282 
ixclde wrplod 0.004664 
kzmern abofef -0.003890 
kzmern nazwle 0.002689 
kzmern hblqra -0.000883 
kzmern brodsx -0.000690 
kzmern cletym 0.002689 
kzmern eglprn 0.007496 
kzmern jroscd -0.002746 
oslebm sprake -0.003019 
oslebm twqisp -0.003019 
oslebm ewtpen -0.003019 
oslebm trwlia -0.003019 
oslebm baolin -0.006643 
oslebm dqarlt -0.003019 
sprake zeplea -0.000604 
sprake yaspeh -0.000604 
sprake wrelcu -0.000604 
sprake eiorln -0.000604 
sprake pefsla -0.000604 
abofef qilped -0.000917 
abofef ieogpe 0.003890 
abofef teepln 0.003890 
abofef rtoxwf 0.022854 
abofef smwext 0.004626 
abofef unblpe 0.010508 
abofef wrplod 0.003890 
nazwle qilped -0.007496 
nazwle ieogpe -0.002689 
nazwle teepln -0.002689 
nazwle rtoxwf 0.016275 
nazwle smwext -0.001953 
nazwle unblpe 0.003929 
nazwle wrplod -0.002689 
hblqra qilped -0.003925 
hblqra ieogpe 0.000883 
hblqra teepln 0.000883 
hblqra rtoxwf 0.019846 
hblqra smwext 0.001618 
hblqra unblpe 0.007500 
hblqra wrplod 0.000883 
qilped brodsx 0.004118 
qilped cletym 0.007496 
qilped eglprn 0.012304 
qilped jroscd 0.002062 
brodsx ieogpe 0.000690 
brodsx teepln 0.000690 
brodsx rtoxwf 0.019653 
brodsx smwext 0.001425 
brodsx unblpe 0.007307 
brodsx wrplod 0.000690 
cletym ieogpe -0.002689 
cletym teepln -0.002689 
cletym rtoxwf 0.016275 

cletym smwext -0.001953 
cletym unblpe 0.003929 
cletym wrplod -0.002689 
eglprn ieogpe -0.007496 
eglprn teepln -0.007496 
eglprn rtoxwf 0.011467 
eglprn smwext -0.006761 
eglprn unblpe -0.000879 
eglprn wrplod -0.007496 
ieogpe jroscd -0.002746 
jroscd teepln 0.002746 
jroscd rtoxwf 0.021710 
jroscd smwext 0.003481 
jroscd unblpe 0.009364 
jroscd wrplod 0.002746 
smwext unblpe 0.005882 
zeplea twqisp 0.000604 
zeplea ewtpen 0.000604 
zeplea trwlia 0.000604 
zeplea baolin -0.003019 
zeplea dqarlt 0.000604 
twqisp yaspeh -0.000604 
twqisp wrelcu -0.000604 
twqisp eiorln -0.000604 
twqisp pefsla -0.000604 
ewtpen yaspeh -0.000604 
ewtpen wrelcu -0.000604 
ewtpen eiorln -0.000604 
ewtpen pefsla -0.000604 
trwlia yaspeh -0.000604 
trwlia wrelcu -0.000604 
trwlia eiorln -0.000604 
trwlia pefsla -0.000604 
baolin yaspeh 0.003019 
baolin wrelcu 0.003019 
baolin eiorln 0.003019 
baolin pefsla 0.003019 
yaspeh dqarlt 0.000604 
dqarlt wrelcu -0.000604 
dqarlt eiorln -0.000604 
dqarlt pefsla -0.000604 
awpmnm uqeuiv -0.068621 
awpmnm gleneo 0.068907 
awpmnm lqwenm -0.128206 
awpmnm pofcer 0.117929 
awpmnm ffepxs 0.196986 
awpmnm pckelf -0.216995 
uqeuiv kfeopd 0.007375 
uqeuiv limobr -0.156585 
uqeuiv lkupib 0.161342 
uqeuiv twbeif -0.114121 
uqeuiv trzaqt 0.015900 
jwexnt bcdelf -0.365837 
jwexnt indpew -0.095938 
jwexnt huiegp -0.439347 
jwexnt ubxcle -0.035262 
jwexnt nieftl 0.295442 
jwexnt trwmet 0.013085 
jwexnt vdlpes 0.070397 
bcdelf mneaep -0.202969 
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bcdelf plyinw 0.474206 
bcdelf diojgs 0.445446 
bcdelf bveaqf -0.021427 
bcdelf nidlse 0.597390 
bcdelf psfief 0.354237 
mneaep indpew 0.472869 
mneaep huiegp 0.129460 
mneaep ubxcle 0.533545 
mneaep nieftl 0.864249 
mneaep trwmet 0.581892 
mneaep vdlpes 0.639204 
plyinw indpew -0.204307 
plyinw huiegp -0.547716 
plyinw ubxcle -0.143630 
plyinw nieftl 0.187073 
plyinw trwmet -0.095284 
plyinw vdlpes -0.037972 
indpew diojgs 0.175547 
indpew bveaqf -0.291326 
indpew nidlse 0.327491 
indpew psfief 0.084337 
diojgs huiegp -0.518956 
diojgs ubxcle -0.114870 
diojgs nieftl 0.215834 
diojgs trwmet -0.066524 
diojgs vdlpes -0.009211 
huiegp bveaqf 0.052083 
huiegp nidlse 0.670900 
huiegp psfief 0.427746 
gleneo kfeopd -0.130153 
gleneo limobr -0.294113 
gleneo lkupib 0.023814 
gleneo twbeif -0.251649 

gleneo trzaqt -0.121628 
kfeopd lqwenm -0.066960 
kfeopd pofcer 0.179175 
kfeopd ffepxs 0.258232 
kfeopd pckelf -0.155749 
lqwenm limobr -0.096999 
lqwenm lkupib 0.220927 
lqwenm twbeif -0.054535 
lqwenm trzaqt 0.075486 
pofcer limobr -0.343134 
pofcer lkupib -0.025208 
pofcer twbeif -0.300670 
pofcer trzaqt -0.170649 
ffepxs limobr -0.422192 
ffepxs lkupib -0.104265 
ffepxs twbeif -0.379728 
ffepxs trzaqt -0.249707 
limobr pckelf 0.008211 
lkupib pckelf -0.309716 
ubxcle bveaqf -0.352002 
ubxcle nidlse 0.266815 
ubxcle psfief 0.023661 
nieftl bveaqf -0.682706 
nieftl nidlse -0.063889 
nieftl psfief -0.307043 
bveaqf trwmet 0.400349 
bveaqf vdlpes 0.457661 
nidlse trwmet -0.218468 
nidlse vdlpes -0.161156 
psfief trwmet 0.024686 
psfief vdlpes 0.081998 
pckelf twbeif 0.034253 
pckelf trzaqt 0.164274 

 

C.6 Tension Component of Muir-Joinson CMC Relationship-Level 
Prediction Graph 

ixclde kzmern 0.000000 
ixclde qilped 0.000000 
ixclde ieogpe 0.000000 
ixclde teepln 0.000000 
ixclde rtoxwf 0.000000 
ixclde smwext 0.000000 
ixclde unblpe 0.000000 
ixclde wrplod 0.000000 
kzmern abofef 0.000000 
kzmern nazwle 0.000000 
kzmern hblqra 0.000000 
kzmern brodsx 0.000000 
kzmern cletym 0.000000 
kzmern eglprn 0.000000 
kzmern jroscd 0.000000 
oslebm sprake 0.000000 
oslebm twqisp 0.000000 
oslebm ewtpen 0.000000 
oslebm trwlia 0.000000 
oslebm baolin 0.000000 
oslebm dqarlt 0.000000 

sprake zeplea 0.000000 
sprake yaspeh 0.000000 
sprake wrelcu 0.000000 
sprake eiorln 0.000000 
sprake pefsla 0.000000 
abofef qilped 0.000000 
abofef ieogpe 0.000000 
abofef teepln 0.000000 
abofef rtoxwf 0.000000 
abofef smwext 0.000000 
abofef unblpe 0.000000 
abofef wrplod 0.000000 
nazwle qilped 0.000000 
nazwle ieogpe 0.000000 
nazwle teepln 0.000000 
nazwle rtoxwf 0.000000 
nazwle smwext 0.000000 
nazwle unblpe 0.000000 
nazwle wrplod 0.000000 
hblqra qilped 0.000000 
hblqra ieogpe 0.000000 
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hblqra teepln 0.000000 
hblqra rtoxwf 0.000000 
hblqra smwext 0.000000 
hblqra unblpe 0.000000 
hblqra wrplod 0.000000 
qilped brodsx 0.000000 
qilped cletym 0.000000 
qilped eglprn 0.000000 
qilped jroscd 0.000000 
brodsx ieogpe 0.000000 
brodsx teepln 0.000000 
brodsx rtoxwf 0.000000 
brodsx smwext 0.000000 
brodsx unblpe 0.000000 
brodsx wrplod 0.000000 
cletym ieogpe 0.000000 
cletym teepln 0.000000 
cletym rtoxwf 0.000000 
cletym smwext 0.000000 
cletym unblpe 0.000000 
cletym wrplod 0.000000 
eglprn ieogpe 0.000000 
eglprn teepln 0.000000 
eglprn rtoxwf 0.000000 
eglprn smwext 0.000000 
eglprn unblpe 0.000000 
eglprn wrplod 0.000000 
ieogpe jroscd 0.000000 
jroscd teepln 0.000000 
jroscd rtoxwf 0.000000 
jroscd smwext 0.000000 
jroscd unblpe 0.000000 
jroscd wrplod 0.000000 
smwext unblpe 0.000000 
zeplea twqisp 0.000000 
zeplea ewtpen 0.000000 
zeplea trwlia 0.000000 
zeplea baolin 0.000000 
zeplea dqarlt 0.000000 
twqisp yaspeh 0.000000 
twqisp wrelcu 0.000000 
twqisp eiorln 0.000000 
twqisp pefsla 0.000000 
ewtpen yaspeh 0.000000 
ewtpen wrelcu 0.000000 
ewtpen eiorln 0.000000 
ewtpen pefsla 0.000000 
trwlia yaspeh 0.000000 
trwlia wrelcu 0.000000 
trwlia eiorln 0.000000 
trwlia pefsla 0.000000 
baolin yaspeh 0.000000 
baolin wrelcu 0.000000 
baolin eiorln 0.000000 
baolin pefsla 0.000000 
yaspeh dqarlt 0.000000 
dqarlt wrelcu 0.000000 
dqarlt eiorln 0.000000 
dqarlt pefsla 0.000000 
awpmnm uqeuiv -0.555556 

awpmnm gleneo 0.444444 
awpmnm lqwenm -0.222222 
awpmnm pofcer 0.444444 
awpmnm ffepxs 0.444444 
awpmnm pckelf -0.555556 
uqeuiv kfeopd 0.222222 
uqeuiv limobr -0.111111 
uqeuiv lkupib 0.888889 
uqeuiv twbeif -0.111111 
uqeuiv trzaqt 0.555556 
jwexnt bcdelf -0.918367 
jwexnt indpew -0.632653 
jwexnt huiegp -0.918367 
jwexnt ubxcle -0.346939 
jwexnt nieftl 0.510204 
jwexnt trwmet -0.346939 
jwexnt vdlpes -0.346939 
bcdelf mneaep -0.510204 
bcdelf plyinw 0.632653 
bcdelf diojgs 0.918367 
bcdelf bveaqf -0.510204 
bcdelf nidlse 1.204082 
bcdelf psfief 0.346939 
mneaep indpew 0.795918 
mneaep huiegp 0.510204 
mneaep ubxcle 1.081633 
mneaep nieftl 1.938776 
mneaep trwmet 1.081633 
mneaep vdlpes 1.081633 
plyinw indpew -0.346939 
plyinw huiegp -0.632653 
plyinw ubxcle -0.061224 
plyinw nieftl 0.795918 
plyinw trwmet -0.061224 
plyinw vdlpes -0.061224 
indpew diojgs 0.632653 
indpew bveaqf -0.795918 
indpew nidlse 0.918367 
indpew psfief 0.061224 
diojgs huiegp -0.918367 
diojgs ubxcle -0.346939 
diojgs nieftl 0.510204 
diojgs trwmet -0.346939 
diojgs vdlpes -0.346939 
huiegp bveaqf -0.510204 
huiegp nidlse 1.204082 
huiegp psfief 0.346939 
gleneo kfeopd -0.777778 
gleneo limobr -1.111111 
gleneo lkupib -0.111111 
gleneo twbeif -1.111111 
gleneo trzaqt -0.444444 
kfeopd lqwenm 0.111111 
kfeopd pofcer 0.777778 
kfeopd ffepxs 0.777778 
kfeopd pckelf -0.222222 
lqwenm limobr -0.444444 
lqwenm lkupib 0.555556 
lqwenm twbeif -0.444444 
lqwenm trzaqt 0.222222 
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pofcer limobr -1.111111 
pofcer lkupib -0.111111 
pofcer twbeif -1.111111 
pofcer trzaqt -0.444444 
ffepxs limobr -1.111111 
ffepxs lkupib -0.111111 
ffepxs twbeif -1.111111 
ffepxs trzaqt -0.444444 
limobr pckelf 0.111111 
lkupib pckelf -0.888889 
ubxcle bveaqf -1.081633 
ubxcle nidlse 0.632653 

ubxcle psfief -0.224490 
nieftl bveaqf -1.938776 
nieftl nidlse -0.224490 
nieftl psfief -1.081633 
bveaqf trwmet 1.081633 
bveaqf vdlpes 1.081633 
nidlse trwmet -0.632653 
nidlse vdlpes -0.632653 
psfief trwmet 0.224490 
psfief vdlpes 0.224490 
pckelf twbeif -0.111111 
pckelf trzaqt 0.555556 
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Appendix D: Feature Distribution Charts 

This appendix contains charts illustrating the distributions of features, as discussed 
in Chapter 7. A note on the charts: most of these features are very sparse, so for 
many features, the spike at zero on a frequency chart would overwhelm the other 
scores. Zero is therefore omitted in all cases, and axes are adjusted to accommodate 
the non-zero frequency distributions. 
 
 
 
 
 
 
 
 

 
Figure 35: Frequency distributions for interjections 
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Figure 36: Frequency distributions for modal verbs 

 
Figure 37: Frequency distributions for verbs 
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Figure 38: Frequency distributions for nouns 

 
Figure 39: Frequency distributions for determiners 
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Figure 40: Frequency distributions for conjunctions 

 
Figure 41: Frequency distributions for prepositions 
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Figure 42: Frequency distributions for pronouns 

 
Figure 43: Frequency distributions for polite words 
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Figure 44: Frequency distributions for hedges 

 
Figure 45: Frequency distributions for deixis 
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Figure 46: Frequency distributions for affective lengthening

 

Figure 47: Frequency distributions for alphanumeric words 
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Figure 48: Frequency distributions for out of vocabulary terms 

 
Figure 49: Frequency distributions for contractions 
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Figure 50: Frequency distributions for expletives 

 
Figure 51: Frequency distributions for exclamation marks 
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Figure 52: Frequency distributions for commas 

 
Figure 53: Frequency distributions for periods 
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Figure 54: Frequency distributions for uppercase letters

 

Figure 55: Frequency distributions for word counts  
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Figure 56: Frequency distributions for character counts 

 
Figure 57: Frequency distributions for characters per word 
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Figure 58: Frequency distributions for words per sentence 
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