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Abstract

An increasingly popular application of parallel computing is Big Data, which concerns the

storage and analysis of very large datasets. Many of the prominent Big Data frameworks

are written in Java or JVM-based languages. However, as a base language for Big Data

systems, Java still lacks a number of important capabilities such as processing very large

datasets and distributing the computation over multiple machines. The introduction of

Streams in Java 8 has provided a useful programming model for data-parallel computing,

but it is limited to a single JVM and still does not address Big Data issues.

This thesis contends that though the Java 8 Stream framework is inadequate to support

the development of Big Data applications, it is possible to extend the framework to achieve

performance comparable to or exceeding those of popular Big Data frameworks. It first

reviews a number of Big Data programming models and gives an overview of the Java 8

Stream API. It then proposes a set of extensions to allow Java 8 Streams to be used in Big

Data systems. It also shows how the extended API can be used to implement a range of

standard Big Data paradigms. Finally, it compares the performance of such programs with

that of Hadoop and Spark. Despite being a proof-of-concept implementation, experimental

results indicate that it is a lightweight and efficient framework, comparable in performance

to Hadoop and Spark.
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Chapter 1

Introduction

A trend in parallel computing is towards the storage and analysis of very large datasets,

commonly referred to as Big Data. Madden [53] defines Big Data as data that is:

too big, too fast, or too hard for existing tools to process.

In other words, these datasets are complex and difficult to process using traditional data

processing techniques [54] such as databases, either due to the sheer scale of the data being

produced, or tight timing requirements placed on the processing of the data.

In 2001, Laney [47] characterised Big Data as having three important dimensions,

termed the 3Vs:

• Volume – Indicates the size and scale of data, which is increasing exponentially.

This can be attributed to the ease of creating data in the digital age. The following

examples give an idea of how large the datasets are:

– The Large Hadron Collider can output a raw data stream of approximately

1PB/s [84] which must be filtered before storage.

– Aircraft, such as the Boeing 787, can output half a TB of data for each

flight [35].

It is estimated that by the year 2020 some 40ZB (40 trillion GB) of data will be

produced in total, which is 300 times what was produced by the year 2005 [41].

• Variety – Conventional databases primarily deal with structured data, but Big

Data is mainly unstructured and comes from a wide variety of sources and in many

formats. Examples of data formats are Youtube videos (binary data), tweets (short

strings of text) and Wikipedia encyclopedia entries (long text articles and binary

data for images and audio).

• Velocity – A significant amount of data is produced on-the-fly (such as the Large

Hadron Collider, aircraft monitoring equipment and stock market trading sessions [41]).

It is sometimes necessary to analyse this data before storage, possibly to filter or

compress it to reduce the size of data that needs to be stored.

More recently, this model has been extended to include other V s:
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• Veracity – Refers to the accuracy of Big Data, as inaccurate data is of no bene-

fit [41]. This is better known by the common idiom “garbage in, garbage out”.

• Value – Refers to the potential business opportunities and cost savings that arise

from analysing Big Data [55].

• Variability – Refers to data (words, for example) whose meaning depends on the

context in which it is used [58]. In some cases, context needs to be taken into account

for accurate analysis of the data.

• Visualisation – Refers to the way Big Data is presented after analysis [58]. Big

Data tends to be multidimensional and simple charts are usually inadequate for Big

Data visualisation.

In some domains, requests for analytics and mining of stored datasets must be serviced

sufficiently fast for the end user. In these situations, faster processing allows for potentially

greater accuracy (i.e. by covering a larger historical dataset).

By definition, it is not feasible to use a single computer large enough to store and

process Big Data, so computation is normally done on a cluster of commodity hardware

or on a supercomputer. For a cluster of commodity hardware, it is most cost-effective to

store data on hard disks. This is also done to increase the I/O bandwidth of the system,

as disk speeds are even slower than main memory.

Using a cluster of multicore machines also adds another layer of parallelism (and thus

complexity) for programmers to deal with, and the way computation and data is mapped

to clusters has a large impact on the efficiency of the computation. To illustrate the

complexity of mapping Big Data computations to a cluster, consider the example of a

word-count [12] (the Big Data equivalent of Hello World) which outputs the number of

words in a given text input. In a seven-node cluster, the input data for word-count can

be stored in three nodes, the counting done on another three nodes, and the summing of

partial counts done on the last node (see figure 1.1). However, this gives rise to several

inefficiencies:

• Disk I/O bandwidth is low, as only three out of seven nodes are reading input data.

• The data and computation are not located in the same node, requiring the transfer

of all data across nodes and resulting in high network usage.

• There is under-utilisation of the cluster: the summing node will be idle most of the

time as it waits for the partial counts to arrive.

From the example above, it can be noted that data locality is a significant factor in

the efficiency of Big Data computations. To make the computation more efficient, the

mapping can be rearranged such that input data is partitioned across all nodes, with each

node processing its local data and forwarding its partial count to a designated node (see

figure 1.2). Efficiency is now improved:

• Disk I/O bandwidth is fully utilised, as all seven nodes are reading input data.
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Figure 1.1: Naive mapping of word-count onto a 7-node cluster.

Data Data Data

Data Data Datacount

count

count

count

count

count

Data
sum

count

Figure 1.2: Improved mapping of word-count onto the same cluster.

• Since input data and counting tasks are on the same node, only the partial counts

need to be sent over the network, thus using much less network bandwidth.

However, this introduces the issue of evenly distributing the input data and whether

achieving this is feasible. This is something programmers and system designers did not

have to be concerned about if the data size was small.

In summary, the main issues with programming Big Data systems are:

• How data is distributed. This includes partitioning, storage and retrieval.

• How computation is distributed.

• How data flows across the cluster.

This thesis is primarily concerned with the problem of programming Big Data systems

and will thus be addressing these issues. It will focus on clusters with one disk per node.
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1.1 Java

Recently, the 8th release of Java (henceforth called Java 8 ) added support for data-parallel

computations to the language. This brings the base language closer to supporting Big Data

processing.

Java is the base language for a number of popular Big Data frameworks, including

Hadoop [4], Spark [8] and Storm [57]. Hadoop is a popular Big Data framework upon

which many other higher-level frameworks such as Hive [6] and Mahout [7] are built.

The introduction of streams and lambda expressions in Java 8 has brought Big Data

closer to the core language. Java 8 Streams allow programmers to think of data processing

in terms of pipelines of operations, and complementing it are lambda expressions that

simplify functional programming. However, this stream-based model is still not sufficient

for Big Data for two main reasons. Firstly, streams are limited to computations within

a single machine, and there is no mechanism for distributing computations over multiple

machines. This is due to Streams being built on Java’s Executor framework, which has no

concept of distribution. Secondly, Java’s default stream sources (such as collections and

arrays) either store their data in-memory and thus cannot support very large datasets, or

are not optimised for data-parallel computation.

This thesis addresses these issues and extends Java 8 with Distributed Streams (which

introduce the concept of distributed computing on a cluster) and Stored and/or Dis-

tributed Collections (which introduce the concepts of accessing very large datasets on-

demand and of datasets that are distributed over a cluster).

1.2 Thesis hypothesis

This thesis contends that the Java 8 Stream framework is inadequate to support all the

requirements of programming Big Data systems. However, it is possible to extend the

framework to meet all the requirements for programming Big Data systems, and still

achieve performance comparable to or exceeding those of the popular Big Data frameworks

(Hadoop and Spark, for example). Furthermore, this can be achieved in a way which

retains compatibility with existing Java 8 software.

1.3 Thesis structure

The rest of the thesis is structured as follows:

• Chapter 2 reviews the existing programming models and frameworks for Big Data.

• Chapter 3 discusses the limitations of using the Java 8 programming model for

Big Data processing and proposes a set of requirements for processing large datasets

with Java 8.

• Chapters 4 and 5 extend the Java 8 model to meet the requirements listed in

chapter 3 and discusses the decisions and trade-offs made in developing the model.

• Chapter 6 focuses on the implementation details of Distributed Streams.
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• Chapter 7 describes the tests done to compare the performance of Distributed

Streams with those of Hadoop and Spark. It also evaluates the expressiveness of

Distributed Streams.

• Finally, chapter 8 suggests avenues of further research and improvements to the

proposed model, and concludes the thesis.
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Chapter 2

Programming Models for Big Data

This literature review first defines several terms relating to parallel computing that are

used throughout the thesis, as well as a number of parallel computing concepts that

are essential to understanding Big Data programming models. It then discusses existing

approaches to solving the Big Data issues (section 2.5) mentioned in chapter 1. Finally,

it explains the relevant new features provided by Java 8 (section 2.6).

2.1 Concurrency and parallelism

There is some confusion between the words “concurrency” and “parallelism” as they are

often used interchangeably. For this research, these concepts will be defined as follows:

• Concurrency describes a program’s structure. A concurrent program is split into

parts that can potentially be executed simultaneously [72].

• Parallelism describes a hardware’s architecture and the operating system (OS) that

runs on it [62]. Parallel hardware usually refers to systems with multiple CPUs.

Given a concurrent program, these CPUs can potentially execute the concurrent

parts simultaneously. However, given a sequential program, one CPU will be exe-

cuting it while the rest remain idle.

A parallel program is a concurrent program that was written with parallel hardware in

mind. Depending on how it was written, it may assume a certain type of parallel hardware

and fail to execute at all on others, or fall back gracefully and adapt itself to the given

hardware.

A concurrent program, on the other hand, may not have been written with parallel

hardware in mind, and may thus have latent faults which only manifest when executing on

parallel hardware. These faults are generally difficult to trace and debug if the debugger is

not aware of parallelism, as it may change the sequence of instructions that are executed.

Before the introduction of multicore hardware, concurrency was (and still is) achieved

by multiplexing execution on a CPU. As a result, this type of concurrency is generally well-

understood in the literature compared to concurrency on parallel hardware. Parallelism

adds new challenges to efficiently programming such systems. For example, the choice

of algorithms to use may be different, as those best suited for sequential execution are

unlikely to parallelise well [72]. However, opinions diverge on when parallelism should

25



be considered in the software design process. Reinders suggests that it should be done

early in the process rather than leave it as an afterthought [72], but Grama et al. suggest

developing an optimised sequential implementation before parallelising it [37].

The use of functional programming concepts in parallel programming has gained popu-

larity recently. This is due to functional programs being easier to parallelise. For example,

new languages such as Scala [27] have both imperative and functional features.

2.2 Types of parallelism

To parallelise a program, one should be able to split it into parts that can execute in

parallel, while keeping in mind that parallelism is limited by any sequential dependencies

between the various parts of the program [51]. This section describes three ways a program

can be split up, and gives examples of related languages in each case. (A single computer

is assumed in these examples for simplicity.)

2.2.1 Task parallelism

Grama et al. define a task as a computation unit that can potentially be executed in par-

allel [37], and task parallelism as that obtained by tasks in a task-dependency graph [37].

Tasks that run in parallel may share input data but usually produce separate outputs [51].

There are several methods to achieve task parallelism, two of which are described in

this section. If all CPUs execute the same piece of code, the program can be structured

using conditional statements as follows, where each CPU executes its assigned task based

on its identifier:

if (CPU == 0)

taskA();

else if (CPU == 1)

taskB();

The disadvantage of this method is that an assumption of hardware architecture is made –

that there are at least two CPUs in this case – and the CPU mapping is hard-coded into

the program.

An alternative method is to use threads, which are implemented by threading libraries

on popular operating systems. Program execution begins with a single thread, and more

threads are spawned as needed:

t1 = create_thread();

t2 = create_thread();

t1.run(taskA);

t2.run(taskB);

Examples of languages that provide support for threads are C (through the native C11

thread API and Pthreads), C++ (through the native thread API and Pthreads) and

Java (through the Thread class). The threading library and OS map the threads to

CPUs, thus programmers do not have to make assumptions about the number of CPUs

in the architecture.
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Though C, C++ and Java provide threads for task parallelism, programming with

threads is considered low-level, and it is easy to introduce race conditions if not care-

ful [50]. Although not all higher-level task-parallel languages eliminate race conditions,

they help by allowing programmers to specify sections of code that can run concurrently

and mapping this to threads automatically, thus freeing the programmer from having to

deal with thread handling. An example of such a language is Cilk [71], which provides

keywords to indicate that a function can be spawned concurrently (cilk), to spawn a

function concurrently (spawn) and to wait for spawned functions to return (sync). If

these keywords are removed, the result is still valid sequential C code. Cilk does not au-

tomatically prevent race conditions in concurrent functions, thus programmers still need

to use locks to synchronise execution where necessary.

2.2.2 Data parallelism

Whereas task parallelism splits a program into multiple tasks, data parallelism splits the

data that a program operates on and processes each part using identical tasks [51]. Data

parallelism is a special case of task parallelism. Consider the following task that populates

the specified range of an array:

void task(int array[], int from, int to)

{

for (int i = from; i < to; i++)

array[i] = ...;

}

Parallelising this task with the first method described in Section 2.2.1 gives:

int array[100];

if (CPU == 0)

task(array, 0, 50);

else if (CPU == 1)

task(array, 50, 100);

or simply:

int array[100];

task(array, CPU, CPU + 1);

if there are the same number of CPUs as array elements. If the workload and number of

CPUs are not known in advance, the code would then be:

int array[N];

int from = CPU * N / NumCPUs;

int to = (CPU + 1) * N / NumCPUs;

task(array, from, to);

The granularity of the task also needs to be considered in data parallelism [51]. If each

task is given a similar amount of data to operate on but runs with different execution

times, the workload distribution is uneven and, towards the end, some CPUs will be idle

while others are still working. This can be mitigated by reducing the granularity of the

task, giving it smaller chunks of data to operate on (for simplicity, a granularity of 1 is

used in the example), while load balancing the increased number of tasks over the CPUs:
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int array[N];

int index = 0;

while (index < N && (index = getNextIndex()))

task(array, index, index + 1);

This, however, introduces the need to get the next piece, or pieces, of work to operate

on. There are several methods to implement this. The simplest is to increment a counter

atomically or by using a critical section:

int count = 0;

int getNextIndex()

{

enter_critical_section();

int result = count++; // atomic operation

exit_critical_section();

return result;

}

Since this requires the use of atomic CPU instructions or critical sections, there is con-

tention between CPUs as getNextIndex is called frequently. An alternative is to use work

stealing [72] – each CPU has a queue of tasks to execute, and when a CPU runs out of

tasks in its queue, it transfers a task on another queue to its own.

Besides Big Data, there are many other applications for data parallel computing, in-

cluding simulating cellular automata, solving n-body problems and collision detection [59].

Since data parallelism is a special case of task parallelism, all languages that support

task parallelism also support data parallelism. However, some languages simplify data

parallel programming by supporting certain language constructs. For example, a forall

construct that parallelises a similarly coded sequential for-loop can be found in High

Performance Fortran (HPF) [74] (as FORALL) and Cilk Plus [23] (as cilk for). HPF also

provides the PURE keyword for the declaration of pure functions – functions with no side

effects – and limits function calls inside FORALL constructs to those that call pure functions.

This eliminates any interference when multiple such functions are executed in parallel.

2.2.3 Stream parallelism

Stream parallelism, or pipelined decomposition, is a combination of task and data paral-

lelism [51]. The processing of each piece of data that enters the pipeline is broken down

into several tasks which can execute in parallel, but with data being fed sequentially from

one task to another in a certain order [37]. This type of parallelism is useful for event and

video processing where low latency is needed [15].

An example of a stream parallel language is StreamIt, a Java-like language [82]. In

StreamIt, the programmer defines stream objects, the simplest of which are filters (tasks),

and a pair of stream objects can be connected via tapes (infinite sequences) which store

output from one object and feed them as input into the other. The other type of stream

object is the composite stream, which consists of multiple filters. StreamIt limits compos-

ite streams to three predefined types – pipelines (a number of stream objects connected

linearly), splitjoins (input is split among a number of stream objects) and feedback loops
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(output of a stream object is fed back into the input after being processed by another

stream object).

2.3 Programming and memory models

The architecture of a system determines the memory model supported at the lowest level

(as one can be expressed in terms of the other). The majority of parallel programming

models are focussed on either shared memory or message passing communication mecha-

nisms.

There are many ways to group parallel programming models, but a classification that

has far-reaching implications is whether a model is fragmented or global-view. In a frag-

mented model, programmers are required to explicitly split algorithms into tasks and map

them onto the system [21]. In a global-view model, programmers do not need to do this; if

necessary, the mapping is specified separate from the algorithm [21]. Fragmented models

tend to be low-level and difficult to write code for, but are expressive. On the other hand,

global-view models tend to be high-level and easy to write code for, but are often less

flexible and more difficult to implement (the implementation has to handle the splitting

and mapping of tasks). In other words, programmers assume the burden of complexity

in a fragmented model, while framework or library implementers have to handle it in a

global-view model instead.

2.3.1 Shared memory mechanisms

Shared memory is a popular abstraction of symmetric multiprocessing (SMP) architec-

tures, and many imperative languages such as C and Java use this abstraction implicitly.

In shared memory, the programmer sees a system with a single address space that all

CPUs can directly access [37]. This simplifies communication between CPUs, as it is

not necessary to make copies of data to be transmitted, since other CPUs can access the

original contents with just a memory address.

However, this gives rise to memory consistency issues when multiple CPUs attempt to

modify memory at the same address. This is handled by using atomic CPU instructions

such as swap (the XCHG instruction on x86) and compare-and-swap (CMPXCHG on x86). On

multicore architectures that support out-of-order execution (e.g. x86), memory fences [1]

are also used to maintain consistency. These impose a particular order on memory accesses

by different CPUs.

Shared memory systems can be categorised by the latency of memory access. In a

uniform memory access (UMA) system, all CPUs incur the same latency for accessing

any main memory location. In a non-uniform memory access (NUMA) system, CPUs

incur different latencies when accessing different memory locations. Current multicore

architectures are usually cache coherent NUMA (ccNUMA) systems, where the hardware

transparently handles cache coherency issues that arise from multiple CPUs accessing the

same memory location at the same time. The advantage of shared memory’s simplicity

outweighs any variation in memory access latencies.

However, shared memory does not scale well because it becomes more difficult to
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maintain cache and memory coherency as the number of CPUs in multicore architectures

increases. On distributed memory architectures, it is restricted to local memory only,

as remote memory locations are not directly accessible. There have been attempts to

extend shared memory to distributed architectures (called distributed shared memory) by

adding support in operating systems or libraries (such as the Grappa distributed shared

memory runtime [60]), but this is complex and involves implementing memory coherency

in software.

OpenMP

OpenMP is a shared memory, global-view model API for structured parallel programming.

It is implemented as a runtime which manages a pool of threads, and a set of compiler

directives which parallelises blocks of code over the thread pool [26]. Exact syntax differs

between languages; in C, OpenMP supports the following features:

• Task parallelism via the #pragma omp parallel directive on a statement to indi-

cate that it is a parallel region and should be executed in parallel by threads in

the pool, and the #pragma omp parallel sections and #pragma omp parallel

section directives to indicate statements that a thread can run in parallel. With

the introduction of OpenMP 3.0, programmers can specify tasks using the #pragma

omp task directive. A task is either executed by the current thread immediately or

passed to another thread for execution later.

• Data parallelism via the #pragma omp parallel for directive on a for-loop.

• Thread synchronisation via the #pragma omp critical directive to specify a critical

section and the #pragma omp barrier directive to specify a barrier in a parallel

region.

The shared memory model that OpenMP relies on, however, prevents such programs

from scaling efficiently to distributed systems. Thus, in a system with distributed memory,

OpenMP may be used within regions of shared memory while another model handles

remote memory accesses.

2.3.2 Message passing mechanisms

Shared memory does not scale to distributed memory architectures due to CPUs not

having direct access to all memory locations. The message passing mechanism augments

shared memory in these systems, with communication between CPUs being achieved by

sending and receiving messages via an interconnect [37].

An extreme example of a language with a built-in message passing mechanism is

Smalltalk, which interprets a binary operation expression (operand1 operator operand2 )

as passing a message operator consisting of operand2 to operand1 . Message passing

mechanisms can also be found the POSIX socket API (primarily used in POSIX-compliant

C programs) and the Remote Method Invocation API (used in Java programs) to work

around their shared memory limitations.
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Due to the architecture of commodity hardware clusters (typically SMP machines

connected by Ethernet), Big Data programming models are usually a hybrid of both shared

memory and message passing mechanisms. Computation and communication within each

machine is done with shared memory, while communication between machines is message-

based using packets.

MPI

The Message Passing Interface (MPI) is the de facto standard for communication via

message passing, especially in high-performance computing [26], but also in clusters of

commodity hardware called Beowulf clusters [43]. It exposes a fragmented programming

model and is commonly used with a number of co-operating processes which run in parallel

and do not share any part of their address space. These may be run on distributed

systems, including heterogeneous ones. Several MPI library implementations (OpenMPI

and MPICH for example) exist for common programming languages such as C and Java.

MPI supports sending and receiving arrays of both primitive and derived data types.

Primitive data types include byte arrays and integers, while derived data types include

structs and vector types. Programmers are required to define all derived data types and

commit them to MPI before using them. Some MPI libraries support sending and receiving

language-specific data types. For example, Java objects can be transmitted with the MPJ

Express library’s [79] object data type, thus handling serialisation and deserialisation of

objects automatically for the programmer.

MPI defines one-to-one and collective operations between processes, with collective

operations expressible as a sequence of one-to-once operations. One-to-one operations

include both blocking and non-blocking sends and receives. Collective operations between

a group of processes include:

• Barriers, where all processes synchronise at a particular point in the program.

• Broadcasts, where one process sends the data to all other processes.

• Scatters (and the inverse – gathers), where one process sends different parts of an

array to all other processes.

• All-to-all operations, where each process gathers all parts of an array from all other

processes, resulting in each process having a copy of the whole array.

Version 2 of the MPI specification added support for one-sided communication [26],

which is for remote memory access via low-latency network connections such as InfiniBand.

MPI requires that the programmer deal with low-level issues such as network topology,

the number of communicating processes [36] and fault-tolerance. By default, all processes

terminate on encountering an error [38], so programmers have to modify this setting and

handle errors manually.

However, MPI is not immune to the consequences of shared memory. With the pro-

liferation of multicore architectures, MPI implementations have to address the issue of

thread safety in multithreaded programs [26]. During MPI initialisation, a program can

specify one of the following four thread safety levels it requires:
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• MPI THREAD SINGLE, if the program is single-threaded.

• MPI THREAD FUNNELED, if subsequent MPI calls are made only from the thread per-

forming the MPI initialisation.

• MPI THREAD SERIALIZED, if more than one thread may make MPI calls and their

calls will be serialised by the program.

• MPI THREAD MULTIPLE, if more than one thread is involved and no serialisation is

performed. That is, full thread safety is required from the implementation. For

correct behaviour, the program still has to ensure that there are no race conditions

resulting from MPI calls which refer to the same piece of data [39].

The MPI implementation, however, is free to support any of the thread safety levels. The

program has to check the actual thread safety level that MPI has been initialised with, and

handle the cases when it is not what the program expects. Gropp and Thakur conclude

that making a MPI implementation thread safe is a difficult task and there is currently

no way to test an implementation’s claim that it is thread safe [39].

2.3.3 Partitioned global address space model

The partitioned global address space (PGAS) model is an attempt to address the scalability

issues of shared memory and the different memory access semantics of message passing.

It extends the shared memory mechanism to distributed memory architectures with two

distinct levels of memory (fast local memory and slow remote memory; see figure 2.1).

It defines a single address space, and each process or thread is assigned a local partition

of it [77]. Data can either be allocated globally or locally, with global data distributed

over the partitions and accessible from other processes [77]. This makes the PGAS model

suitable for data parallel computations.

The PGAS model still suffers from a number of issues: the lack of support for task

parallel computations and heterogeneous systems [77]. This prompted the development

of the asynchronous partitioned global address space (APGAS) model, which adds the

ability to spawn new tasks and define locations of coherent memory [77]. This allows task

parallel computations to be performed and locations of tasks to be specified. Currently,

most operating systems do not support PGAS or APGAS natively. Thus it has to be
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implemented in a library (an example of such a library is GASNet [49]) or mapped from

a new programming language.

Fatahalian et. al. propose an extension to the PGAS model called Sequoia, to support

architectures with more than two levels of memory [34]. Sequoia allows a programmer to

control the movement of data within the memory hierarchy of a system at a high level [34],

and splits a machine’s memory into a tree of mutually exclusive memory spaces, with

memory spaces further from the root faster than those nearer the root. Each memory space

has a corresponding processor, and it can only access memory from its memory space. To

access memory outside its memory space, the required data has to be transferred between

memory spaces first. Programs consist of a tree of isolated tasks, and the runtime maps

each task to a memory space. Child tasks can potentially run on a child memory space.

This model is suitable for parallel divide-and-conquer algorithms, with child tasks being

smaller instances of parent tasks.

In the last decade several new languages which use the APGAS model have been

developed to simplify parallel programming for distributed systems. The remainder of

this section reviews two such languages, Chapel and X10.

Chapel

The Cascade High Productivity Language (Chapel) is a parallel language developed by

Cray and designed to target a wide range of architectures from multicore and distributed

computing to supercomputers. Its main goal is to simplify parallel programming while

being as robust and efficient as widely used programming models [21]. It has a multi-

layered design, where higher-level constructs are built upon lower-level ones.

A location with SMP-like processing and memory resources is known as a locale in

Chapel [21], and tasks can be assigned to it for execution. A locale’s address space is part

of a global logical address space, accessible from other locales. To synchronously execute a

task on a particular locale the on locale do statement can be used. Similarly, to ensure

that execution takes place on a locale (or locales) where the required variable is found,

the on var do statement can be used.

For parallelism, Chapel supports task parallelism, as well as data parallelism which

is internally mapped onto task-parallel constructs. It supports the common sequential

constructs, such as if, for and while. For task parallelism, the following primitive

constructs are provided:

• A begin keyword that precedes a statement asynchronously spawns a task to execute

the statement.

• A sync keyword that precedes a statement executes the statement and waits for it

and all its spawned tasks to complete.

Higher-level task parallelism constructs include the following:

• A cobegin keyword that precedes a block statement asynchronously spawns a task

for each child statement and waits for them to finish. Any tasks that are spawned

by the child tasks are not waited on.
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• A coforall statement spawns a specified number of tasks which execute the body

asynchronously and waits for them to finish.

For data parallelism, the following constructs are provided:

• Domains and arrays, which are closely related. A domain defines a set of indexes,

and an array is defined over a domain. Domains can be distributed over locales by

specifying a mapping for each domain index; arrays defined over such domains will

have their data distributed accordingly.

• A forall statement iterates over an array or domain, and distributes the computa-

tion over a number of tasks. Iterating over a distributed array causes remote tasks

to be spawned automatically to handle the relevant parts of the array.

• Chapel defines a number of reduction operations that can be performed on an array

with the op reduce expr expression. It is also possible to write custom reductions.

Synchronisation in Chapel can be achieved in two ways:

• With the sync keyword preceding a statement, mentioned above.

• With sync-types. If a variable is declared with the sync keyword, it behaves as a

single-valued buffer. Reading an empty variable blocks until another task writes a

value to it, and writing to a variable blocks if the last written value has not yet been

read.

Compilation is done in stages – Chapel code is first translated into C, then compiled

into machine code for the target architecture.

As Chapel is a relatively new language, some of its planned features, such as hierarchi-

cal locales, are still in development. Thus, a Chapel program may not yet run efficiently

on ccNUMA architectures, since such architectures cannot be adequately represented with

just single- or multi-dimensional arrays of locales.

X10

X10 is a distributed parallel language developed by IBM. It is also object-oriented, with

Java having influence over its syntax [31].

X10 defines a place, similar to Chapel’s locale, as a location with SMP-like character-

istics, and an activity as a task [22]. Once spawned, an activity cannot be stopped. An

activity is not allowed to access remote data; it has to spawn activities at the remote place

to do that instead [22]. The at(place ) A construct synchronously executes an activity A

in a specified place. When invoked, all dependent objects and variables of A are copied to

the remote place [76]. If A is a statement, any changes made to data in place are ignored

and execution resumes at the original place upon completion. If A is an expression, any

changes made to data in place are ignored, except for the the value of A which is returned,

and execution resumes at the original place upon completion.

Task parallelism in X10 is achieved with the following:
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• The async keyword that precedes a statement asynchronously spawns an activity

which executes the statement. This corresponds to Chapel’s begin keyword.

• The finish keyword that precedes a statement executes the statement and waits for

all its spawned activities to complete. This corresponds to Chapel’s sync keyword.

The following constructs are provided for data parallelism:

• Regions and arrays for distributed computing. Similarly to Chapel, a region de-

scribes how data in a distributed array is stored. Arrays are indexed by a tuple of

integers, or points, and each has a corresponding region which holds the points in

the array [22]. A distribution stores the place of each distributed array element [22].

• The ateach statement iterates over a distributed array and spawns an activity for

each element of the array at the corresponding place.

Synchronisation in X10 can be achieved with the atomic keyword, which lets only one

activity execute the statement that follows it.

Compilation of X10 code also takes place in stages. X10 code can be compiled to

machine code via translation into C++, or to Java bytecode via translation into Java.

Currently, all places are assumed to be homogeneous. This may change in future

versions of X10 with planned support for accelerators.

2.4 Parallel computation on clusters

Historically, supercomputers were used for computations requiring more processing power.

With the increasing performance of commodity hardware, a cluster of commodity PCs

has become more cost effective compared to proprietary and expensive supercomputers.

Clusters are also useful for fault tolerance, as the entire computation does not have to be

repeated if a computer (or node) fails, though this requires software support.

Clusters are more difficult to program efficiently, due to the two-level view of memory

in the system. Shared memory does not extend beyond a single node, so message passing

is needed for inter-node communication. Furthermore, communication between nodes is

slower than within a node, hence existing algorithms that assume a single level of memory

(usually shared memory) need to be modified to favour local over remote communication.

2.4.1 Parallel computation paradigms

A number of paradigms, or styles, can be found in cluster-based parallel computing [19].

This section discusses the popular ones related to Big Data computing.

Task farming

Also known as master-slave, this paradigm designates a master node which is responsible

for splitting the computation into smaller ones for the other (slave) nodes to perform [19].

Upon completion of the smaller computations, the partial results are sent to the master

node, which combines them into the final result (see figure 2.2). Communication is thus

35



Master

Node Node

Node Node

Task

Task

Task

Task
Master

Node Node

Node Node

Resul
t

Result

Result

Result

Figure 2.2: Task farming paradigm. Left: master splits computation into tasks and hands
them to other nodes. Right: master receives partial results from nodes.

between the master and slave nodes only. This makes the master node a single point of

failure, though there are variations of the paradigm that address this by defining a set of

master nodes instead of a single node [19].

The task farming paradigm is useful for data parallel computations without data de-

pendencies, especially on large datasets distributed across the cluster. This is achieved by

having slave nodes perform the same task but on different data. For example, a distributed

word-count fits well into the task farming paradigm.

Single program multiple data

In the single program multiple data (SPMD) paradigm, there is no centre of control, and all

nodes run the same program on different data [19]. Data parallelism is better supported

in SPMD as communication between all nodes is possible, allowing for more complex

operations such as barrier synchronisation and broadcasting (see figure 2.3). However,

this makes the system less fault tolerant, as a node failure can potentially cause all other

nodes to stall [19]. A well-known example of a programming model that uses the SPMD

paradigm is MPI.

Actor

The actor paradigm involves entities called actors that communicate with each other

via asynchronous message passing and perform actions in response to the messages they

receive [50]. Actors can either be supported implicitly in a language (such as Erlang [32])

or implemented in a library (such as Akka [83]). Message passing libraries such as MPI

and ZeroMQ [42] can also be used to implement the actor paradigm.

Data pipelining

The data pipelining paradigm is based on stream parallelism, and is useful if the com-

putation can be broken down into multiple tasks (or stages) which can execute concur-

rently [19]. A data item flows through each stage sequentially, but at any time each stage

is processing a different data item. Data pipelining can be found in Unix shell commands

that use pipes; the output of one process is fed into the input of another.

This paradigm can be mapped to a cluster by having nodes or groups of nodes execute

different stages, or by having processes or threads within a node execute different stages

and replicating this configuration on other nodes. The former mapping is less complex
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than the latter, but suffers from having to move data across nodes, which is slower than

local memory access.

2.4.2 Load balancing

An important issue in cluster computing is balancing the workload of each node [37].

Ideally, each node should be given an equal workload, but it is often not feasible to

determine the amount of input data that corresponds to these workloads. Thus, methods

such as work stealing are employed, where idle nodes are allowed to claim part of another

node’s workload.

Load balancing is also desirable in Big Data computations, but it is complicated by the

inefficiency of moving large parts of the dataset to achieve this. This has led to modified

work stealing algorithms that take data locality into account [86]. Load balancing is also

related to two of the three Big Data issues mentioned in chapter 1 – the distribution

of data and distribution of computation. Both these issues affect the workload of nodes

relative to one another.

2.5 Big Data programming models and frameworks

This section reviews several Big Data programming models and frameworks developed to

address the issues mentioned in chapter 1. It can be observed that there are similarities

between most of the programming models discussed in this section:

• Big Data programming models are global-view rather than fragmented. They sup-

port data parallelism well, but have little or no support for task parallelism. This
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Figure 2.4: MapReduce computation stages, showing the movement of key-value pairs.
Arrows indicate data flow.

makes them less expressive but easier to program for its intended uses (Big Data).

The restrictions give implementations room to address the Big Data-specific issues.

• Big Data programming models are designed for processing large volumes of data and

thus emphasise data locality.

• Since the chance of a hardware failure increases with larger clusters, Big Data pro-

gramming models that are used in production environments are designed to be fault

tolerant with minimal additional effort from the programmer.

2.5.1 MapReduce and Hadoop

MapReduce [25] is a Big Data programming model developed by Google. Its popularity

is due to Hadoop [4], an open source MapReduce framework for Java.

A MapReduce computation consists of three stages, illustrated in figure 2.4:

1. Map stage: Input data is processed by a set of mappers, which output key-value

pairs as a result.

2. Shuffle stage: The key-value pairs are collected over a set of reducers, with the same

keys sent to the same reducer. For each key, the values are collected and sorted in

a key-value-list pair.

3. Reduce stage: Each reducer processes all given key-value-list pairs and optionally

outputs a result.

Mappers and reducers are implemented by the programmer, while the shuffle stage pro-

cedure is fixed and can be optimised by a MapReduce framework.

This model of computation is more efficient if each mapper has local access to its

partition of the input data. Hadoop facilitates this by introducing the Hadoop Distributed

File System (HDFS) [11], a locality-aware distributed file system. Before a MapReduce

computation begins, input data is copied to HDFS. HDFS splits a file into blocks (usually

64MB or 128MB) which are distributed across the cluster. For fault tolerance, each block
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is replicated 3 times by default and each copy stored on a different node. During the map

stage in Hadoop, a mapper reads from local file blocks as far as possible, and the output

from each reducer is written back as a separate file. HDFS does not allow the contents of

a file to be overwritten, thus it is not POSIX-compliant.

Hadoop uses a task farming paradigm for computation, and designates several roles

to the nodes in a cluster. A Hadoop cluster has one JobTracker and NameNode each.

The NameNode stores information on the distributed filesystem, such as on which ma-

chine pieces of data are located. The JobTracker receives MapReduce jobs from client

applications, consults the NameNode for the location of data, and distributes work to the

TaskTrackers in a way that data movement over the network is minimised. The Task-

Trackers, each running on a machine in the cluster, receive work in the form of map and

reduce tasks, and spawns a separate JVM for each task so that an error in a task does not

affect other tasks. A DataNode stores HDFS blocks as indexed by the NameNode. If a

map task requires data not found in the DataNode on the local machine, it retrieves the

data from an appropriate DataNode.

Listing 2.1 illustrates a word-count Hadoop program [12]. In the main method, a

Hadoop job is configured to use a mapper (TokenizerMapper) that emits (word, 1) key-

value pairs from each line, and a reducer (IntSumReducer) that adds up the values from

the same key (word).

Though popular, there are major disadvantages of using Hadoop:

• The framework has a very high latency as it is optimised for batch processing [61].

• The user does not have fine-grained control over how data is distributed in HDFS.

Thus, optimisations such as keeping data in a small subset of nodes to reduce data

transfer in the shuffle stage are not possible. (Section 2.5.4 describes extensions to

Hadoop that allow more control over data partitioning.)

• Input data that is not already in HDFS incurs an extra step to copy them into the

filesystem. Furthermore, files in HDFS are write-once, so changing the contents of

a file is inefficient.

• Due to Hadoop being a general purpose Big Data framework, it has to support a

wide range of deployments, resulting in many configuration variables. This makes

Hadoop complex to configure.

• Hadoop was designed to be portable, but this comes with inefficiencies such as not us-

ing the OS’s filesystem cache [78]. It also makes assumptions about system behaviour

such as optimised scheduling for concurrent disk accesses, leading to performance

that is heavily system-dependent [78].

2.5.2 Stream-based models

Though suitable for many applications, the MapReduce model is inflexible due to the fixed

stage sequence. More recently, focus has shifted to in-memory stream-based models for

Big Data processing, with the Spark and Storm frameworks being prominent examples of

such models.
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public class WordCount {

public static class Map extends MapReduceBase

implements Mapper<LongWritable, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(LongWritable key, Text value,

OutputCollector<Text, IntWritable> output, Reporter reporter) {

StringTokenizer tokenizer = new StringTokenizer(value.toString());

while (tokenizer.hasMoreTokens()) {

word.set(tokenizer.nextToken());

output.collect(word, one);

}

}

}

public static class Reduce extends MapReduceBase

implements Reducer<Text, IntWritable, Text, IntWritable> {

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterator<IntWritable> values,

OutputCollector<Text, IntWritable> output, Reporter reporter) {

int sum = 0;

while (values.hasNext())

sum += val.next().get();

output.collect(key, new IntWritable(sum));

}

}

public static void main(String[] args) {

JobConf conf = new JobConf(WordCount.class);

conf.setJobName("wordcount");

conf.setOutputKeyClass(Text.class);

conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(Map.class);

conf.setCombinerClass(Reduce.class);

conf.setReducerClass(Reduce.class);

conf.setInputFormat(TextInputFormat.class);

conf.setOutputFormat(TextOutputFormat.class);

FileInputFormat.setInputPaths(conf, new Path(args[0]));

FileOutputFormat.setOutputPath(conf, new Path(args[1]));

JobClient.runJob(conf);

}

}

Listing 2.1: Hadoop (version 1.2.1) word-count example.
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Spark

Spark improves on MapReduce by exposing a pipeline-based programming model for data

processing. Instead of implementing mappers and reducers, programmers specify a pipeline

of smaller and simpler operations on a Resilient Distributed Dataset (RDD). An operation

either returns a new RDD (a transformation, which can be chained) or returns a value (an

action, which terminates the pipeline).

Listing 2.2 illustrates the word-count example for Spark [9]. The pipeline has two

transformations (flatMap and map) followed by an action (reduceByKey). In the flatMap

transformation, each line of text is split into an array of words. Each word is then mapped

to a (word, 1) key-value pair. Finally in the reduceByKey action, all key-value pairs are

merged by adding the values of pairs with the same key. Comparing this to the Hadoop

word-count example in listing 2.1, the Spark code is much more concise. There is also

less code devoted to configuration and the data flow can be more readily seen from the

pipeline. (The Java version is slightly more verbose as the programmer needs to specify

types for variables and tuples, and to use anonymous class syntax for passing functions in

Java 7 and earlier.)

object WordCount {

def main(args: Array[String]) {

val conf = new SparkConf().setAppName("word count")

val spark = new SparkContext(conf)

val textFile = spark.textFile("hdfs://...")

val counts = textFile.flatMap(line => line.split(" "))

.map(word => (word, 1))

.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")

spark.stop()

}

}

Listing 2.2: Spark word-count example in Scala.

Spark also allows programmers to trade off execution time and storage space by caching

intermediate RDDs in memory or on disk. This is useful to avoid recomputing results in

frequently-used RDDs.

Internally, Spark operates on small partitions of RDDs in memory at a time. Oper-

ations are implemented as MapReduce computations (some stages are optional depend-

ing on the operation; see figure 2.5 for an illustration). For example, flatMap and map

correspond to map stages while reduceByKey implements the shuffle and reduce stages.

Operations with only map stages do not require nodes to communicate with each other,

unlike those with reduce stages. These tasks are submitted to executors on each node.

Spark does not force any particular input source on the programmer. Instead it sup-

ports a number of them ranging from simple text files to distributed filesystems and

services (HDFS and AmazonS3). This makes Spark compatible with existing storage ser-

vices and thus speeds up its adoption rate. The downside is that the distribution of data

is outside of Spark’s control, limiting its ability to optimise data flows.
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Simple Scalable Streaming System (S4) and Storm

S4’s programming model differs significantly from Spark as it is an event processor for

unbounded data streams [61]. It defines a stream as a sequence of key-value tuples, which

are selectively consumed and processed by Processing Elements (PEs), which optionally

emit more key-value tuples. A PE processes tuples associated with a specified event and

optionally containing a specified key-value pair. As a result, potentially many PEs can

be created during a computation, and they are subject to garbage collection to reduce

memory usage.

S4 removes the limitation of MapReduce’s fixed map-shuffle-reduce stage sequence.

However, it still requires the use of key-value pairs which limits its flexibility.

Storm is also an unbounded event processor, but does not limit the programmer to

using key-value pairs. Storm executes topologies which run indefinitely on a cluster. A

topology defines a directed acyclic graph of vertices and data streams (edges). A stream

consists of an unbounded sequence of tuples. A vertex is either a spout (data source – a

Twitter feed, for example) or a bolt (consumes and processes streams, and may emit new

streams, similar to a PE; see figure 2.6 for an illustration). This is also an improvement

over S4 as it includes data sources (spouts) in the model and uses a static topology thus

removing the need to garbage collect bolts.

To help map a Storm topology onto a cluster, each bolt is partitioned into tasks,

with each node running at least one task. Programmers specify a stream grouping for

each stream, which determines how tuples in the stream are forwarded to tasks in the

destination bolt. For example:

• A shuffle grouping forwards tuples to a random task.

• A fields grouping forwards tuples based on field values, with those having the same

values going to the same task. This is conceptually similar to the MapReduce shuffle
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stage.

• A local or shuffle grouping forwards tuples to a local task. If there are none, a

random remote task receives them (as in a shuffle grouping).

Both S4 and Storm are implemented using the actor paradigm, which contributes to

the frameworks being easily programmable.

2.5.3 High-level languages

This section briefly reviews a number of frameworks that provide high-level languages

geared towards processing large datasets. Hive, Shark and Pig cater to requirements for

processing large relational datasets.

Hive and Shark

The Apache Hive framework provides HiveQL, a SQL-like language, which is translated

and executed as Hadoop jobs. Apache Shark is a related framework that maps HiveQL

to Spark jobs instead. Data is first loaded into Hive tables with the LOAD statement,

and can subsequently be used and manipulated with SELECT, INSERT, UPDATE and DELETE

statements. Data in Hive tables can be written back to disk with the INSERT OVERWRITE

DIRECTORY statement. Hive tables are stored in HDFS. HiveQL also allows Hive tables

to be partitioned according to specified column values, which potentially avoids time-

consuming full-table scans. Although this frees the programmer from low-level implemen-

tation details, not all datasets fit into the relational data model.

Pig

The Apache Pig framework introduces a data-parallel language called Pig Latin for analysing

relational data. Like Hive, data first needs to be loaded into relations before it can be

analysed. However, unlike Hive, Pig Latin is a procedural language and provides a high-

level alternative to declarative languages (primarily SQL and its derivatives), where the

flow of data is not readily apparent in queries. This also gives programmers more control

over data flows instead of having to rely on query optimisers.
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2.5.4 Extending existing models, frameworks and languages

Twister, HaLoop and ReStore

Twister [28] extends the MapReduce programming model by adding iteration and caching

of data across MapReduce jobs. This reduces the amount of data read from disk during

each iteration and thus speeds up execution. HaLoop [18] modifies Hadoop to make it

easier to build iterative applications, and also aggressively caches loop-invariant data to

reduce recalculation. Although better support for iterative MapReduce improves readabil-

ity of job submission code, it does not address the low level nature of the programming

model.

ReStore [29] is an extension to Pig which attempts to store and reuse intermediate

results of jobs and sub-jobs, making it possible to speed up programs without any code

modification. Decisions to store and evict results are rule- and heuristic-based.

CoHadoop and CARTILAGE

CoHadoop [30] proposes a lightweight extension to Hadoop to allow control over the place-

ment of data. This follows from the observation that an even partitioning of data over a

cluster (which HDFS tries to achieve) is not always as efficient as a custom partitioning.

It introduces for each file an optional locator property that is used as a hint for placement

in the cluster.

Similarly, CARTILAGE [45] recognises that suboptimal data layout is often a cause

of poor performance in HDFS-based systems and so allows more user control over data

partitioning, replication and layout.

EARL

The EARL framework [48] extends MapReduce to handle early and incremental calcu-

lations. EARL initially operates on a small subset of the input data, and estimates the

error of the produced result. If the error is too great, then more data is brought in and

the result refined. This is useful if one does not require an exact result and thus does not

need to process the entire dataset.

Ricardo

Ricardo [24] integrates the statistical modelling language R with Hadoop through a JSON-

based query language (JAQL) [17] to allow use of R on large datasets. JAQL queries

embedded in R are executed in parallel on the cluster.

Parallelization Contracts

As discussed in section 2.5.1, MapReduce allows programmers to specify map and reduce

functions which are executed in fixed map-shuffle-reduce stages. The Parallelization Con-

tract (PACT) model [16] generalises MapReduce to support more user-defined functions

and acyclic data flows. In PACT, programmers specify input contracts that determine

how data is partitioned before being processed by user-defined functions. For example,
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the map contract partitions a set of key-value pairs into singleton sets and passes each

set independently to the mapping function. The reduce contract groups key-value pairs

by their keys and passes each set of pairs to the reduction function. PACT also defines

a number of input contracts that accept multiple input sets. Optionally, to aid compiler

optimisation, output contracts that guarantee certain properties of processed data can

also be specified.

2.5.5 Improving the performance of existing frameworks

Besides enlarging the cluster, there are other ways to speed up Big Data computations.

Using faster hardware

Many Big Data computations are I/O-bound and thus may benefit from faster hardware

at bottlenecks [69]. For datasets that are distributed over the whole cluster, performance

can be improved by using solid state disks (SSDs) [44, 81] and faster network interconnects

such as 10 gigabit Ethernet and Infiniband [81].

Faster network speeds also enable new possibilities for mapping existing program-

ming models to the underlying architecture. There have been attempts to use Lustre (a

high-performance and POSIX-compliant distributed file system) as the storage layer for

Hadoop [75] to avoid loading datasets into HDFS and for applications that require files to

be overwritable. This is a departure from the traditional assumption that data locality is

important.

Tachyon

Tachyon is an in-memory data storage layer that is compatible with many popular Big

Data frameworks [52]. It sits between the framework (such as Hadoop or Spark) and the

underlying data storage (such as HDFS), caching datasets in memory to speed up data

access. For datasets that do not fit in memory, it also supports using SSDs for caching.

The advantage of using Tachyon is that no major changes to applications is needed.

2.6 Java 8

The most popular open-source Big Data frameworks are targeted towards Java and/or

higher-level languages that run on the JVM (eg. Scala). This is mainly because of the

write-once-run-anywhere nature of JVM bytecode making it easier to deploy code on het-

erogeneous clusters. Another contributing factor is the optimised state of current JVMs

(eg. Oracle and OpenJDK) narrowing the gap between machine code and bytecode exe-

cution times [80]. This reduces the need for programming Big Data systems – which are

potentially complex – in a non-portable and low-level language.

The recent introduction of Java 8 has brought the language a step closer to having

native Big Data capabilities due to the addition of the following:

• Java 8 Streams (specified in JEP 107) [66] provide a new programming model for

data parallel computation on a single machine. The motivation of introducing Java
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8 Streams was for programs to scale to multicore systems with little or no modifi-

cation [66]. On such systems it is able to parallelise a computation over multiple

threads to speed up execution.

• Lambda expressions (specified in JSR 335) [67] simplify functional programming

in Java, allowing concise instantiation of functional interfaces instead of using the

anonymous class syntax. These are used extensively in Java 8 Streams, making its

code more readable. Lambda expressions were inspired by functional programming

languages such as Haskell [40]. They were also introduced to keep up with the JVM

languages Scala [27] and Clojure [73], both of which support functional programming.

2.6.1 Lambda expressions

A lambda can be specified in place of a value whose type is a functional interface – an

interface with only one abstract method. For example, a thread which was originally

declared using anonymous class syntax:

Thread th = new Thread(new Runnable()

{

public void run()

{

...

}

});

can instead be written more easily with a lambda:

Thread th = new Thread(() ->

{

...

});

Lambdas have a flexible syntax. For example, an expression can be used in place

of a single return statement, allowing for more concise expression of one-line functions.

Parameter types can also be omitted, as they will be inferred from by the compiler. The

parentheses surrounding the parameters can also be omitted if there is one parameter.

Thus, for a lambda that doubles an integer, the following representations are equivalent:

(int x) -> { return x * 2; }

(int x) -> x * 2

(x) -> x * 2

x -> x * 2

The return type of a lambda is not stated in the syntax, but return values have to

match the corresponding abstract method’s return type. Thus, if the required return type

is int, a lambda such as:

(x, y) -> { if (x == y) return x + y; }

is illegal and will generate a compile error because there is no return value for the case (x

!= y).
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In the context of parallel programming, lambdas do not expose data parallelism di-

rectly, but they make it easier for libraries to implement it. Consider the following se-

quential loop that operates on all elements in an iterable:

for (Shape s: shapes)

s.type = CIRCLE;

Libraries are unable to parallelise this, as it will be compiled into a sequential loop by

most compilers. With lambdas and a library-defined forEach method that executes a

given lambda in parallel, it can be rewritten as:

shapes.forEach(s -> { s.type = CIRCLE; });

There are several limitations to what lambdas in Java 8 can do:

• Variables or fields that are outside the lambda’s scope can be accessed, but cannot

be modified, from inside the lambda. Attempts to modify these values will generate

a compilation error.

• When parallelising a sequential loop, it is possible to skip an iteration – normally

done with the continue statement – with a return statement. However, it is more dif-

ficult to end the loop early because subsequent iterations after the desired end-point

may potentially be executing or have been executed. Some form of co-ordination

between individual lambdas may be required in this case.

2.6.2 Streams

A Java 8 stream is a sequence of data elements that can be processed by a pipeline of

operations. Streams can be generated from several sources, including:

• Collections, by calling the stream method if the desired stream should be sequential,

or the parallelStream method for a parallel stream;

• Arrays, by calling the Arrays.stream method;

• Factory methods in the Stream class;

• Files, by calling the BufferedReader.lines method.

After retrieving the stream from a source, a pipeline of aggregate operations (formerly

called bulk data operations) can be performed on it, consisting of zero or more intermediate

operations followed by a terminal operation. From the programmer’s perspective, an

intermediate operation returns a new stream of processed elements from the given stream,

and a terminal operation returns a non-stream result.

Streams, pipelines and operations have the following properties and restrictions:

• Pipelines are evaluated lazily. The terminal operation triggers computation of the

pipeline. Execution of the pipeline is thus deferred until the terminal operation is

called.
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Figure 2.7: Recursive partitioning using spliterators.

• Pipelines are short-circuiting. Only enough elements are consumed by the pipeline

as required. This allows unbounded datasets (such as those generated from infinite

sequences) to be used as data sources. Operations that cause this behaviour in

pipelines are called short-circuiting operations. Examples of such operations are

findFirst and limit.

• Pipelines are linear. There is a single stream source, and there is no branching

mechanism for routing elements to different downstream operations.

• Streams can be traversed at most once. To use the data source again, a new stream

has to be created.

• Operations should not change the data source if the source does not support con-

current modification.

Java 8 Streams further classify intermediate operations as stateless and stateful, de-

pending on whether the operation needs to hold any state as data passes through. For

example, map is a stateless operation as each element can be processed independently

of another. However, the distinct operation (remove all duplicate elements from the

Stream) is stateful because it must keep track of all encountered elements.

Details of the Java 8 Stream API can be found at [68]. The rest of this section gives

details on how Streams are implemented.

Parallel execution of pipelines

Execution of a sequential pipeline is achieved by iterating over all its elements. While an

iterator is sufficient for a sequential pipeline, a spliterator is needed to operate on a parallel

pipeline. A spliterator recursively partitions the stream by “splitting” itself to create child

spliterators, allowing threads to then traverse the multiple spliterators in parallel.

To execute a pipeline in parallel, a spliterator covering the entire associated stream is

first created. Recursive partitioning is achieved by creating child spliterators from parent

spliterators as shown in figure 2.7. During each partition, a thread is given access to

a spliterator and attempts to partition it using the Spliterator.trySplit method. If

the spliterator is larger than a threshold specified in its implementation, a new spliterator

covering part of it is created and submitted for further partitioning by other threads, while

the current thread is left with the remainder of the spliterator.
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import java.nio.file.*;

import java.util.*;

import java.util.regex.*;

import java.util.stream.*;

public class WordCount

{

public static long wordcount(Stream<String> lines)

{

Pattern delim = Pattern.compile("\\s+");

return lines

.flatMap(line -> Stream.of(delim.split(line)))

.count();

}

public static void main(String[] args)

{

Path filename = Paths.get(args[0]);

Stream<String> s = Files

.lines(filename)

.parallel();

System.out.println(wordcount(s));

}

}

Listing 2.3: Simple word-count application using Java 8 Streams.

The fork-join framework

Parallel streams are executed by Java’s common fork-join thread pool [64]. Introduced in

Java 7, the fork-join framework is a type of Executor framework that allows programmers

to specify tasks that can be subdivided and executed in parallel on multicore systems.

Such tasks are submitted to a fork-join pool, which consists of a set of worker threads.

Each worker thread has a task queue, and when empty, steals tasks from other threads’

queues. To simplify usage of the framework, a common fork-join pool is defined, with the

number of worker threads defaulting to one less than the number of cores on the system.

This common pool receives tasks from executing pipelines. In the context of Java Streams,

a task is the pipeline that operates on part of the stream covered by a spliterator.

The behaviour of the fork-join framework gives rise to a partial ordering of splits. Thus

(referring to figure 2.7), the partition that creates Spliterator 2 may happen before or after

the partition that creates Spliterator 3, but both may not happen before the partition that

created Spliterator 1.

2.6.3 Word-count example

To illustrate the Java 8 Stream programming model, listing 2.3 shows the the word-count

example implemented in Java 8 Streams.

Firstly, in the main method, Files.lines returns a sequential stream of lines (strings)

from the file pointed to by filename. Next, the call to parallel marks the stream as a

parallel stream, allowing it to be partitioned and the pipeline to be executed in parallel.

The actual pipeline consists of two operations:

• The flatMap operation splits each line into words (Java Strings) which are then
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passed downstream as individual data elements.

• The count operation then counts the number of data elements encountered and

returns the result in a long integer.

2.7 Summary

This chapter has reviewed several parallel programming models, Big Data programming

models and frameworks, as well as introduced the new stream-based programming model

that comes with Java 8. A summary of characteristics for the reviewed Big Data program-

ming models as well as for the Java 8 Stream model is given in table 2.1.

In general, the main differences between conventional parallel programming models

and Big Data programming models are:

• Big Data models are high-level compared to conventional models, but they restrict

the progammer more. For example, conventional models support task parallelism

while Big Data models have very limited or no support for task parallelism and only

support data parallelism. This is due to Big Data models prioritising the locality

of data. They are designed to keep data local as far as possible, while conventional

models are for general parallelism and do not place the same restrictions on the

programmer. The Big Data models handle most of the splitting, communication

and mapping of tasks implicitly while more of this work is given to the programmer

in conventional models.

• Fault tolerance is implemented in Big Data models used in production environments

but is usually lacking in conventional models [85]. This is because support for large

clusters is needed in Big Data models as the likelihood of a node failure increases as

the size of a cluster grows, thus fault tolerance is needed in production-quality Big

Data models.

Of the Big Data programming models reviewed, MapReduce was the earliest model

developed, and was popularised by Hadoop. Hadoop was successful in addressing the Big

Data issues mentioned in chapter 1:

• Data is distributed over the cluster by the file system (HDFS).

• Computation is split into three stages: map, shuffle and reduce.

• Data is read from HDFS into mappers (locally as far as possible), shuffled to the

appropriate reducers, and the results are written back to HDFS.

Hadoop was simple to program but low-level (for Big Data models) and restrictive. It

limited programmers to implementing mappers and reducers, required them to think in

terms of key-value pairs, as well as forced datasets to be stored in HDFS. To work around

the limitations, there have been attempts to extend Hadoop and MapReduce (to support

iterative computations or to further generalise MapReduce, for example). Less restrictive

programming models were also developed. Some models allow programmers to specify

graphs of computations (Storm and S4). Others, such as Spark, use pipelines to describe
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Model(s) Type Underlying
paradigm or
model

Parallelism Attributes

MPI Framework SPMD Task, data Fragmented, message-passing

OpenMP Framework Shared mem-
ory

Task, data Global-view

Chapel,
X10

Language
(imperative)

APGAS Task, data Global-view

Hadoop
and ex-
tensions

Framework Task farming Data Global-view, mapper/reducer
in separate classes

Twister Framework Task farming Data Global-view, mapper/reducer
in separate classes

Spark Framework Task farming Data Global-view, pipeline

Storm Framework Actor Data Global-view, computation
graph, bolt code in separate
classes

S4 Framework Actor Data Global-view, computation
graph, PE code in separate
classes

Hive,
Shark

Language
(declarative)

Hadoop Data Global-view, SQL-like query

Pig Language
(imperative)

Hadoop Data Global-view

PACT Framework MapReduce
(generalised)

Data Global-view, computation
graph

Java 8
Streams

Framework Shared mem-
ory

Data Global-view, pipeline

Table 2.1: Summary of programming model and framework characteristics.

computations, greatly improving code readability. These newer models tend to support

multiple data source formats to maximise adoption of the models and to operate with

existing data. A third approach was to develop high-level languages on top of Hadoop and

MapReduce. Some of the languages, such as Pig, are new while others (Hive and Shark)

resemble SQL. With faster hardware to store or move data, new ways to map existing

programming models to architectures emerged.

The next chapter explores the feasibility of using Java 8 Streams for Big Data process-

ing.
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Chapter 3

Using Java 8 for Big Data

The previous chapter introduced several Big Data programming models as well as the Java

8 Stream model. In this chapter:

• Section 3.1 identifies the attributes of Big Data programming models.

• Section 3.2 discusses the Java 8 Stream model with respect to these Big Data at-

tributes.

• Section 3.3 lists the requirements of an extended, distributed stream model based

on Java 8 Streams.

• Finally, section 3.4 summarises this chapter.

3.1 Attributes of Big Data programming models

From the Big Data programming models and frameworks reviewed in section 2.5, several

attributes can be identified.

3.1.1 Architecture independence

Many of the popular Big Data frameworks are written in and have bindings for architecture-

independent languages such as Java, Scala (both which use the JVM) and Python. They

can run on any supported OS without having to re-compile the binaries. This allows

clusters to be built from different OSes and hardware architectures.

3.1.2 Ability to process very large datasets

One of the most important attributes of Big Data programming models is the efficient and

transparent processing of very large datasets. This implies some form of data distribution

mechanism as these datasets often do not fit in a single machine. For example, Hadoop

uses its HDFS file system to transparently partition large files into blocks and spread

them across the cluster. It also handles cases when data items straddle multiple blocks.

Thus, the programmer can code without knowledge of blocks and other HDFS internals.

Spark, on the other hand, has wider support for data sources from text files on the local

filesystem to distributed filesystems [13] (including HDFS, Cassandra [14] and Amazon
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S3 [3], many of which are fairly mature and have built-in fault tolerance and replication).

Finally, Twister by default treats a dataset as a group of files on each node with the same

pathname on the local filesystem [28]. Data is also not allowed to straddle multiple files.

3.1.3 Support for different data formats

With the proliferation of Big Data frameworks, recent frameworks began to emphasise

extensibility and interoperability with parts of older frameworks, especially of datasets.

Besides giving users more choices, this benefits adopters of early frameworks who already

have large volumes of data stored in existing Big Data formats, allowing them to experi-

ment with newer frameworks more easily. For example, Hadoop introduced the HDFS file

system (reviewed in section 2.5.1), which can be used as a data source in newer frame-

works such as Spark and Storm. Data sources that are not already supported can be

added without modifying the framework’s internals. A more extreme example is Tachyon

(reviewed in section 2.5.5), which supports many different frameworks.

3.1.4 Data locality

Data locality is also an important Big Data attribute. Since it is expensive to move data

between nodes in a cluster, data needs to be kept local as much as possible. Neverthe-

less, Big Data programming models also provide a mechanism for moving data for cases

where this is necessary (in data aggregation, for example). Hadoop, which implements

the MapReduce programming model, has a shuffle stage where all key-value pairs emitted

from mappers are sent to the appropriate reducer depending on the key. In Spark, the

movement of data (if any) is determined by the transformations and actions specified in

the pipeline. For example, the sortByKey transformation may move data across nodes

to matching key destinations, while the map transformation keeps data local. In Storm,

the movement of data is determined by the stream groupings specified in the topology.

For example, a local or shuffle grouping maintains locality of data between bolts as far as

possible, while a fields grouping likely involves movement of data across nodes.

In most cases (as above), data locality is implicit in the programming models and

transparent to the programmer. There are also extensions to existing models (reviewed in

section 2.5.4) that give programmers more control over where data is placed.

3.1.5 Transparent fault tolerance

The programmer normally does not need to be concerned with fault tolerance in Big

Data frameworks, as it is handled transparently by the programming model. Unlike high-

performance computing, this is important for Big Data because applications are deployed

over large numbers of unreliable nodes. For example, Hadoop uses heartbeats to detect a

failed node and automatically reruns jobs that were assigned to it on other nodes.

Due to time constraints, this thesis does not address fault tolerance. However, the

transparent nature means that fault tolerance can be added in the future without signifi-

cantly affecting the programming model.

54



3.1.6 Functional programming

Some Big Data programming models use functional programming to simplify data-parallel

programming. For example, Spark’s pipelines are more easily written in Scala due to its

functional programming syntax than in Java 7.

3.2 The Java 8 programming model and Big Data attributes

Although there are several advantages in using Java 8 for Big Data computing, there are

also issues with its programming model. This section reviews Java 8’s ability to handle

Big Data.

3.2.1 Architecture independence

One of the main advantages of Java is its write-once-run-anywhere paradigm. The JVM is

supported on major OSes, and has also been optimised on popular hardware architectures

(such as x86, x86-64, ARM and PowerPC).

3.2.2 Ability to process very large datasets

Java 8 Streams are unable to handle very large (and distributed) datasets because they

only operate within a JVM and there is no concept of a cluster. Furthermore, it does not

support on-disk datasets well. These deficiencies are elaborated below, and are addressed

in chapters 4 and 5.

No concept of a cluster

Java 8 Streams exist within a single JVM, and JVMs tend to only support individual

SMP or ccNUMA machines, therefore stream computations will be limited to individual

machines. (Since there are no distributed JVMs in wide use, this thesis assumes that a

JVM does not span multiple machines or nodes.) There is no concept of a cluster and

hence of distributing data or computations to other nodes in a cluster, thus on its own it

does not have the ability to process very large datasets (as mentioned in section 3.1.2).

Although Java supports RMI which helps in writing distributed applications, there is no

integration between RMI and Java 8 Streams.

A difficulty of large-scale computation is that it requires support for both distribution

of computation and distribution of data. Both methods potentially speed up process-

ing, depending on the workload. An I/O-bound workload will see a speed improvement

when distributing data, whilst a CPU-bound workload will benefit more from distributed

computation.

Since a standard JVM has a single heap and runs on a single node in a cluster, multiple

JVMs are needed for distributed, cluster computing. Thus, the computation has to be

partitioned across all JVM heaps and memory access on a remote heap must be done

explicitly with the use of middleware such as MPI. However, simulating a single cluster-

wide heap makes the cluster more tightly coupled and thus increases the difficulty of

implementing fault tolerance.
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Java 8 Streams support short-circuiting (reviewed in section 2.6.2). However, using

short-circuiting in a distributed computing model may have performance implications.

Since the current model supports computation only in a single node, each thread in the

fork-join pool works a single data element at a time through the pipeline. Thus, the deci-

sion to retrieve the next element is known immediately after the last element is processed

by the terminal operation (or if another thread signals completion) – that is, no waiting

is necessary. When a pipeline is distributed across a cluster, the terminal operation will

need to wait for existing data items on other nodes to be processed before knowing if more

data needs to be processed. If the data source is also distributed, there is the additional

overhead of deciding which node to get more data from. These pieces of information will

have to be communicated across nodes, with increased latency as a result. Hence, the

short-circuiting feature needs to be modified when applied to a cluster.

No support for very large, potentially distributed data sources

Only in-memory datasets are well supported (by the Java collections framework), but

these are not useful for very large datasets as it requires loading the entire dataset into

memory. Datasets from existing on-disk sources (eg. BufferedReader.lines) are not

optimised for large amounts of data and are likely to cause out-of-memory errors with

large files. Furthermore, there is no concept of a dataset that is distributed over a cluster.

3.2.3 Support for different data formats

There is currently no support for Big Data formats as Java 8 does not address Big Data

issues. However, the Java collections framework is extensible and can be used as a base

for these datasets. Chapters 4 and 5 describe how collections can be extended to support

Big Data processing and thus the various Big Data formats.

3.2.4 Data locality

There was no previous research on data locality in Java 8 Streams as it was recently

introduced. Chapter 4 describes experiments that were done to determine the data locality

of Java 8 Streams. Chapter 5 extends data locality to a distributed environment.

3.2.5 Fault tolerance

Since Java runs on a single JVM, it has no concept of cluster-based fault tolerance. Al-

though RMI allows distributed programs to be written, it is not integrated with Java 8

Streams and is not fault-tolerant by default, so programmers have to implement their own.

3.2.6 Functional programming

To facilitate functional programming, lambda expressions have been introduced in Java 8.

Although they have limitations (discussed in section 2.6.1), they are still useful, especially

for specifying pipelines in Java 8 Streams.
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3.3 Requirements

The last section brought up issues faced by using Java 8 Streams for Big Data. From

these, a set of requirements for an extended stream framework is derived:

1. It must support running on a cluster of nodes. This is to allow data-parallel

computation to take place on a group of computers built from commodity hardware,

as opposed to more expensive high-performance hardware.

2. It must support large datasets, both on a single node and distributed

across nodes. Distributed datasets scale with the number of nodes in the cluster,

and can potentially improve data locality of a computation.

3. It must maintain data locality within a node and across nodes. This makes

computation efficient within each node and within the cluster.

4. It must have operations which distribute data and computation across

nodes. This is to allow for cases where data needs to be explicitly transferred

between nodes.

5. It must be a drop-in replacement for Java 8 Streams. Backward compat-

ibility is not a priority in Big Data frameworks given that their development is

fast-paced and that this area of research is still at the cutting edge. However, mak-

ing the new model backward compatible with the current Java 8 Stream model can

minimise porting effort and even speed up adoption of the new model. For example,

a pipeline for filtering and counting data items (see listing 3.1) would remain the

same regardless of the data source used.

long countPositive(IntStream s)

{

return s

.filter(n -> n > 0)

.count();

}

void existingMethod()

{

int[] numbers = { ... }; // local data source

IntStream s = Arrays.stream(numbers);

long positives = countPositive(s);

}

void newMethod()

{

IntStream s = distributedSourceOfInts.stream(); // distributed data source

long positives = countPositive(s);

}

Listing 3.1: Example code showing how the new programming model can maintain back-
ward compatibility with Java 8 Streams. The pipeline in the countPositive method filters
out negative integers and zeros, and counts the remaining positive integers. Its implemen-
tation stays fixed while the data sources change (from a local source in existingMethod

to a distributed one in newMethod).
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3.4 Summary

This chapter has analysed the desirable attributes of Big Data programming models and

compared them with what is provided by Java 8 Streams. Having derived the list of

requirements in section 3.3, the next two chapters describe extensions to the Java 8 Stream

model that fulfill them. Chapter 4 focuses on single-node extensions and chapter 5 builds

on them to propose a fully distributed solution.
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Chapter 4

Supporting Big Data on a Single

Node

The previous chapter (specifically section 3.2.2) has highlighted problems with Java 8

Streams in using existing data sources within a single node. Therefore, as a start, a new

data source that overcomes these limitations on a single node is introduced in section 4.1.

In section 4.2, a single-node performance comparison of Hadoop and Java 8 Streams

(backed by existing and new data sources) was carried out. Additionally, section 4.2

compares the data locality of Stored Collection-backed and array-backed Java 8 Streams.

Finally, section 4.4 concludes the evaluation and summarises the chapter.

4.1 Stored Collections

One of the data sources supported by Java 8 Streams is the (in-memory) collection. This is

part of Java’s collection framework, and the built-in implementations store their data items

in the Java heap. However, being in-memory is a major drawback. It implies populating

the entire collection before any operations can be performed, resulting in a potentially

long delay while this takes place. Furthermore, heap memory is usually small compared

to disk space, so for Big Data computations, there may not be enough heap memory to

load the entire dataset from disk. Hence, the built-in collections are unsuitable for Big

Data processing.

To extend its functionality, the idea of a Stored Collection is introduced. A Stored

Collection allows data to be read from a file on-demand, thus eliminating the initial pop-

ulation step and the memory issues that accompany it.

Stored Collections allow arbitrarily large files on a single node to be used as data

sources without any modification of the Java 8 Stream framework. It does so in batches of

constant size, so as not to use up too much memory at any time (unlike the stream created

by the BufferedReader.lines method, which has too large a maximum batch size). They

are also designed to be extensible, so other on-disk data sources (such as results from

database queries) can be used as Stored Collections by extending the StoredCollection

and Spliterator classes (see listing 4.1).

For example, to implement a SQLStoredCollection that contains rows from executing

a query in a database:
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• It should extend the StoredCollection class.

• A constructor which accepts the necessary information to open and read from the

database (e.g. the filename and query string) should be defined.

• The spliterator method should return a new SQLStoredSpliterator object.

The corresponding SQLStoredSpliterator class should extend the Spliterator class

and implement the following key methods:

• A constructor which accepts the necessary information to open and read from the

database (e.g. the filename and query string). In many cases, the parameters will

be similar to those in the Stored Collection constructor.

• The tryAdvance (and optionally the forEachRemaining and trySplit) method.

The trySplit method attempts to split part of the dataset into another spliterator

to allow for concurrent execution (defaults to sequential execution if not overridden).

The tryAdvance method reads a single item in the range covered by the spliterator.

The forEachRemaining method reads all remaining unread items in the range cov-

ered by the spliterator (defaults to repeatedly calling the tryAdvance method if not

overridden).

Stored Collections are backward compatible with read-only in-memory collections and,

optionally, writable in-memory collections as sources in Stream computations (see list-

ing 4.2 for an example). They replace instances of creating and populating an in-memory

collection with creating a StoredCollection object. If data needs to be written back to

disk, one of two approaches can be used:

• If the underlying data format supports modifying data items (e.g. SQL databases),

the Stored Collection’s add and (optionally) addAll methods can be overridden to

appropriately modify the dataset.

• If the underlying data format does not allow modifying data items once written

(e.g. HDFS), the above-mentioned approach may be used with the add and addAll

methods throwing an exception if attempting to modify an existing dataset.

• If the underlying data format does not allow modifying data items once written, a

separate Stored Collection that only writes to newly created datasets can be imple-

mented. This thesis uses the latter approach.

4.2 Implementation and evaluation of Stored Collections

To evaluate the performance of Stored Collections, a StringStoredCollection was im-

plemented and used as data sources for Java 8 Streams. The corresponding String-

StoredSpliterator was implemented to partition the file into byte ranges and, to re-

sume traversal after a partition, an algorithm to retrieve the next full line was used. For

simplicity, a partition generates a spliterator spanning approximately half the size of the

current one, and no more partitions are made if the resulting spliterator is smaller than

1MB in size.
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package dstream.util;

import java.util.*;

public abstract class StoredCollection<E> extends AbstractCollection<E>

{

@Override

public int size()

{

// Default implementation scans entire dataset

// Override for a faster implementation

long n = parallelStream().count();

return (int) (n < Integer.MAX_VALUE ? n : Integer.MAX_VALUE);

}

@Override

public Iterator<E> iterator()

{

// Uses the spliterator implementation but does not parallelise

return new IteratorFromSpliterator<E>(spliterator());

}

}

Listing 4.1: The StoredCollection abstract class.

public void main(String[] args)

{

// Create Stored Collection of lines from file

String filename = "file.txt";

Collection<String> lines = new StringStoredCollection(filename);

// Compute number of lines

long numLines = lines

.parallelStream()

.count();

System.println("Line count: " + numLines);

// Compute number of empty lines

long numEmpty = lines

.parallelStream()

.filter(line -> line.length() == 0)

.count();

System.println("Empty line count: " + numEmpty);

}

Listing 4.2: Example usage of a Stored Collection of lines: counting lines.
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4.2.1 Experimental setup

Programs written for the following frameworks were compared:

• Hadoop (running on a single node).

• Java 8 Streams backed by in-memory collections (implemented as ArrayLists).

• Java 8 Streams backed by Stored Collections.

For each framework, two applications were run:

• Word-count (detailed) – outputs all encountered words and the number of occur-

rences of each word.

• Grep – outputs all occurrences of a given regular expression. The regular expression

used in all tests is “\w*z\w*z\w*”.

The machine used in all tests is a 4-socket AMD Opteron with a total of 16 cores

clocked at 2GHz with 16GB of main memory and 2GB of swap, running Ubuntu 13.04.

Storage consists of a single (rotational) disk. For Hadoop, version 1.2.1 on Java 7 is used

with the default block size (128MB), no HDFS replication and a maximum of 16 map tasks

and 16 reduce tasks. For non-Hadoop programs, a Java 8 build with lambdas (revision

h4962-20130630-b97-b00) is used. In all cases, the default garbage collector for each

Java version is used, and the disk cache is cleared before each run.

Each program is fed with plain text input data [70] with sizes starting from approxi-

mately 7.5MB. Larger input data sizes are derived by appending the original data multiple

times. Each application is run 20 times for every input size.

4.2.2 Results

The results of these runs are displayed in tables 4.1 and 4.2, which contain the execution

times of each application type under the default Java environment. The running times

of in-memory collection programs is significantly faster than those of Hadoop. However,

they do not scale well to large datasets and fail with an out-of-memory error for larger

input data sizes, as the data is not able to fit into heap memory. Increasing the maximum

heap size does not improve matters much, as there is still not enough main memory and

data therefore spills over into swap.

For Stored Collection programs, their execution times are up to 1.44× faster and their

heap usage is 2.35%–84.1% of those for in-memory collection programs. However, their

execution times with respect to Hadoop appear to be application-specific. For example,

they are between 1.60× and 8.53× faster than Hadoop in the word-count application but,

for the largest dataset tested, are 1.24× slower than Hadoop in the grep application.

The scalability issues of Stored Collections were investigated and the implementations

of StringStoredCollection and StringStoredSpliterator were improved by allowing

only one thread to perform I/O on a Stored Collection at any time. This increases the

chance of sequential reads and thus improves disk read speeds. Tables 4.1 and 4.2 include

execution times for the improved Stored Collection program results. Speed increases of
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Data size Hadoop In-mem collection Stored Collection Stored Collection (improved)

7.5MB 35.1 4.71 5.05 5.25
75MB 69.8 9.22 8.18 6.27
750MB 80.7 43.3 30.0 29.5
7.5GB 534 (Out of memory) 232 238
75GB 4830 (Out of memory) 3010 2290

Table 4.1: Average execution times (in seconds) for the word-count application.

Data size Hadoop In-mem collection Stored Collection Stored Collection (improved)

7.5MB 51.3 3.58 3.04 2.71
75MB 56.9 5.71 5.18 3.31
750MB 62.0 24.2 23.6 12.2
7.5GB 292 (Out of memory) 227 100
75GB 2390 (Out of memory) 2960 1100

Table 4.2: Average execution times (in seconds) for the grep application.

up to 1.31× for the word-count application and up to 2.69× for the grep application

were obtained. The improved Stored Collection was also more scalable than before, with

execution times increasing up to 9.6× for word-count and up to 11× for grep for a 10×
increase in data size.

4.3 Data locality within a node

Another evaluation was performed to compare the effects of data locality within a single

Java 8 JVM on two types of data sources: arrays and Stored Collections.

To illustrate the effects that arrays and Stored Collections have on memory access,

assume a hypothetical quad-core computer with cache-coherent main memory divided

into two regions that have non-uniform access times (NUMA nodes), and each memory

area is local to a pair of cores. (This is a “black-box” approach which has its limits,

but modern systems are increasing in complexity and it may not be feasible to be aware

of all the effects components have as they interact with one another. Accordingly, this

methodology is unable to differentiate where in the memory hierarchy effects are observed.

It instead aims to reduce the observed overheads of the memory system when observed as

a whole.)

By default, threads are scheduled by the OS to execute on any core. This can lead to

increased execution times if a thread is migrated to a core attached to a different memory

area, causing its once-local memory accesses to subsequently be remote. To prevent this

from occurring, threads can be bound to a core or set of cores.

However, affinity makes scheduling less flexible and may even negate any performance

gains from locality. For example, if two threads are bound to the same core, at most one

of them will be running at any time, even if there are other idle cores.

4.3.1 Memory access

For array-backed streams, suppose that a large dataset is stored in the array which spans

both NUMA nodes. As a simplification, assume that the work is split into four tasks – one
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for each thread (with one thread per core, as in figure 4.1) – that all workloads are even

and that no threads block. When a pipeline of operations is performed in parallel, each

thread may not be accessing local memory, depending on the location of the section of

the array and the mapping of threads to cores. Binding threads to cores may not improve

access times as the required array section may still be non-local (figure 4.2). For Stored

Collections, data is read into buffers that, on ccNUMA-aware JVMs, are allocated locally

to each thread (figure 4.3) on a best-effort basis. This increases the chance of fast access

to a buffer by its corresponding thread. However, the pathological case is still possible

if the OS or JVM subsequently migrates threads to cores such that all buffers are non-

local. This can be mitigated by binding the threads to cores before buffers are allocated.

Alternatively, if NUMA nodes can be identified in the hardware architecture, a looser

binding of threads to NUMA nodes can be made.
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Figure 4.1: For a collection- or array-backed pipeline, threads may not be accessing local
memory.
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Figure 4.2: Processor affinity does not improve the performance of collection- or array-
backed pipelines.

4.3.2 Disk and memory access

All data in an array or built-in collection source needs to be inserted before operations

can be performed. Since sequential disk access results in fastest read throughput [44],
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CPU 0 CPU 1

NUMA node 0 NUMA node 1

CPU 2 CPU 3

Thread 0 Thread 1 Thread 2 Thread 3

Buffer 0 Buffer 1 Buffer 2 Buffer 3

Figure 4.3: Locally-allocated buffers in Stored Collections.

a reasonable implementation would be to insert this data using a single thread. On a

ccNUMA-aware JVM, the backing array would likely be local to the core that requested

it, but would span memory areas if it is large. Thus for large datasets, the initial population

of the array will likely involve non-local memory access. In the case of Stored Collections,

data from disk is read into the buffers only when needed. The chance of local memory

access is thus greater, and is further increased for bound threads. These predictions were

tested by running a series of experiments described in section 4.3.3. The results obtained

are given in sections 4.3.4 and 4.3.5.

4.3.3 Experimental setup and baseline

In general, CPU data caches improve the performance of programs due to temporal and

spatial locality of reference – data that has been recently accessed is likely to be used again,

and data that is close to those that have been accessed is likely to be used. However, for

Big Data computations, disk reads take up a significant amount of time and cannot be

accelerated this way. This is because the data size handled is much larger than the cache

size. As a result, every attempt to access a new block of data from disk will result in a

cache miss. Similarly, if the block has been accessed before, it would have been flushed out

of the cache by other memory accesses in between. Hence, performance improvements in

Big Data applications are more likely to come from optimising the locality of main memory

access in ccNUMA architectures. Since only individual nodes in a cluster are concerned

here, a machine that is representative of such nodes is considered. The machine used in

all experiments is a 2GHz AMD Opteron 8350 running Ubuntu 13.04 with the following

properties:

• 16 cores in total, with 4 cores per NUMA node

• 2MB of L2 cache in total, with 512KB per NUMA node

• 2MB of L3 cache shared among all NUMA nodes

• 16GB main memory in total, with 4GB per NUMA node

• Swap diabled

All programs were run with Java SE 8u5 with additional flags specifying 14GB of initial

and maximum heap memory, and that the JVM use a ccNUMA-aware memory allocator.
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Allocate (CPUs)
0–3 4–7 8–11 12–15

Execute (CPUs)

0–3 1.304 1.371 1.352 1.508
4–7 1.373 1.282 1.483 1.340
8–11 1.368 1.484 1.290 1.396
12–15 1.504 1.361 1.405 1.306

Table 4.3: Average time taken (in seconds) for a core in a specific NUMA node to sum an
array of long integers allocated in a specific NUMA node.

Working on the assumption that the same thread which allocates memory will later access

it, a ccNUMA-aware allocator puts memory that a thread allocates in the same NUMA

node. Garbage collection is avoided during pipeline execution by reusing the SHA-256

hash objects and byte arrays that store the hash results.

The first set of experiments establish the memory access times for local and remote

access separately. This is done with a C program that allocates an array of 228 bytes

from each NUMA node and measures the time taken for a core in each NUMA node to

XOR them with a for-loop. Care is taken to ensure that no part of the array is initially in

cache. This simulates a pass over a block of data that has just been read from disk, and the

maximum difference between no-affinity and with-affinity results was obtained. Averaged

results from 10 runs are in table 4.3, and indicate that the largest difference between

memory accesses is about 0.23s on this machine. Percentage-wise, remote memory access

is up to 18% slower than local memory access. This is a worst-case difference; the actual

differences in subsequent experiments is expected to be smaller.

Subsequent experiments measured the execution times of computing the SHA-256

hashes (the SHA-256 implementation was adapted from [46]) of a stream of consecutive

long integers starting from 1:

• The second set of experiments determine memory access times. Array-backed streams

allocate and assign an array of long integers using the main thread and use it as the

stream’s source. However, Stored Collection-backed streams do not allocate this

array; instead they allocate a buffer for each thread and fill it with long integers

on demand. Since the JVM is ccNUMA-aware, the memory will be local to the

allocating threads at the time of the requests and therefore locality of threads and

data is preserved. Assignment of individual elements in the array or buffer is done

sequentially and (in the case of the buffer) one thread at a time.

• The final set of experiments determine disk and memory access times. This time, the

long integers are read from disk instead. Array-backed streams read them into the

same array as described above, while Stored Collection-backed streams read them

into the buffers on demand. This simulates a Big Data application reading and

processing a dataset from disk.

For each experiment, three programs were written for each stream source:

1. Without thread affinity.

2. Binding one thread to each core.
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3. Binding not more than 4 threads to each NUMA node.

All programs use 15 threads including the main thread, leaving one core free for other

OS processes.

Each program is run with stream lengths of 226, 227 and 228 long integers, 200 times

each. Results of the remaining experiments are presented sections 4.3.4 and 4.3.5. Two-

tailed t-tests were performed to demonstrate that the observations are statistically signif-

icant with p-values not exceeding 10−10, unless otherwise noted.

4.3.4 Memory access results

Table 4.4 shows the results obtained from 200 runs of each program. Figure 4.6 shows

cumulative histograms for array-backed stream results, while figure 4.7 shows cumulative

histograms for Stored Collection-backed stream results. Affinity caused a large increase

in performance for array-backed streams for 226 integers, while having little effect on the

rest. Possible reasons for these observations were given in section 4.3, but further work is

needed to fully account for the effects of affinity on streams. Nevertheless, compared to

array-backed streams, Stored Collection-backed streams are still between 1.14× and 1.17×
faster for the data sizes tested.

4.3.5 Disk and memory access results

Table 4.5 shows the results obtained from 200 runs of each program. Figure 4.4 shows

cumulative histograms for array-backed stream results, while figure 4.5 shows cumulative

histograms for Stored Collection-backed stream results. As data sizes increase, affinity

causes execution times to significantly increase for array-backed streams, but slightly de-

crease for Stored Collection-backed streams. Two-tailed t-tests were performed to demon-

strate that the Stored Collection affinity results are statistically significant with p-values

not exceeding 10−3. For Stored Collection-backed streams, the differences in execution

times are within the baseline results. They are also much smaller, suggesting that the OS

seldom migrates worker threads, and/or that it intelligently handles thread affinity within

the system. However, for array-backed streams, large increases in execution times were

observed. This is likely due to data locality of the array, but more research needs to be

carried out to accurately determine the causes of the large differences. Another possible

reason for this is the JVM, which creates a number of background threads that perform

actions such as JIT compilation, signal dispatching and garbage collection. From time to

time these threads may pre-empt the worker threads, and this is likely to occur more fre-

quently if affinities of worker threads are specified. Nevertheless, Stored Collection-backed

streams are between 1.64× and 2.00× faster than array-backed streams for the data sizes

tested, and are also up to an order of magnitude more predictable.
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4.4 Summary

The results of these evaluations show that besides being able to handle large datasets,

Stored Collections tend to keep data more local than simple arrays (and by extension,

other in-memory Java collections) within a node. The programmer also need not be

concerned about optimising data locality within a node when using Stored Collections, as

the system is able to do this well. Thus, Stored Collections are a suitable base to build a

distributed stream source on.

This chapter has introduced and evaluated Stored Collections, which allow efficient

processing of large datasets on a single node. Stored Collections avoid out-of-memory

problems by reading data from disk on demand. They also improve the locality of data

compared to in-memory data sources, and are able to do this without help from the

programmer. This first step towards Big Data addresses the large dataset and data locality

requirements for single nodes (see requirements 2 and 3 in section 3.3). The next chapter

further extends the programming model to address the rest of the requirements.
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Chapter 5

The Distributed Stream

Framework

Chapter 3 listed several requirements for a Big Data framework based on Java 8 Streams

in section 3.3, and chapter 4 proposed the concept of Stored Collections to handle large

datasets on a single node in section 4.1. This chapter addresses the rest of the requirements,

in particular, to support distributed cluster-based computing while maintaining backward

compatibility with the existing framework. It does so by introducing the Distributed

Stream framework, whose programming model inherits Java 8 Streams’ global-view and

pipeline-based model but extends it to support cluster-based computation. Figure 5.1

illustrates the high-level view of the framework. It introduces several components that are

visible to the programmer:

• Stored Collections and Distributed Collections, which build on the existing Java

collections framework.

• Compute nodes and groups, which utilise a communication layer to synchronise

execution with other nodes.

• Distributed Streams, which build on the existing Java 8 Stream framework and the

communication layer for distributed computation.

Section 5.1 describes the approach taken for the framework’s design, while the details

are explained in sections 5.2 to 5.4. Section 5.5 presents examples of using Distributed

Streams and, finally, section 5.6 concludes the chapter.

Java platform

Java 8 Streams

Distributed Streams

Java collections

Distributed Collections

Stored Collections
Compute nodes and groups

...Communication layer

NodeNode

Stored data

Figure 5.1: High-level view of the Distributed Stream framework. Arrows indicate flow
of data between stored data and Stored/Distributed Collections as well as between the
communication layers.
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5.1 Approach

Since Java 8 Streams only function within a node, a distributed approach for computation

is needed. As multiple machines are involved, a system of identifying and grouping them

is first necessary. Section 5.2 explains how nodes in a cluster are represented in the

framework.

Chapter 4 showed how Java’s collections can be extended to support reading large

datasets (as Stored Collections). Likewise, they can also be extended to group data that

resides on separate nodes together, allowing distributed datasets to be represented. Sec-

tion 5.3 describes this extension to Java’s collections – Distributed Collections.

As with collections, a Stream can similarly be extended to a distributed environment.

There are several methods to extend a pipeline-based stream framework:

• Replicating the pipeline – Identical copies of a pipeline can be run on multiple

compute nodes, each processing local data from a distributed dataset.

• Distributing the pipeline – The pipeline can be broken up into sections, each running

on separate compute nodes. Different data items can be processed at the same time

on different nodes, and data processed by one pipeline section is transferred to the

next.

• A combination of replicating and distributing the pipeline.

Pipeline replication and distribution are illustrated in figure 5.2.

Both methods potentially speed up processing, depending on the workload. An I/O-

bound workload will see a speed improvement with a replicated pipeline as as result of data

locality. On the other hand, a CPU-bound workload will benefit more with a distributed

pipeline, because the processing of a single pipeline is shared among multiple compute

nodes.

Thus, by supporting both replicated and distributed pipelines, both types can be

specified according to the workload’s attributes. Section 5.4 explains the concept and

design of Distributed Streams, which are central to the framework. It also details the

backward-compatible nature of the framework, as well as additional concepts to support

distributed computing.

To extend the operations in Java 8 to a distributed environment, they are grouped into

those that require communication across nodes (non-local) and those that do not (local).

For non-local operations, new local variants are added to allow for greater expressiveness

of the model and optimisation within a node (see section 5.4.1 for more about the new

local operations). A general-purpose distribute operation is also added to allow for

situations where data needs to be shuffled across the cluster or transferred to another

group of compute nodes (this is detailed in section 5.4.2). This allows specifying pipelines

such as that shown in figure 5.3.

5.2 Compute nodes and groups

Before distribution of data and computation can be supported, a system of identifying and

grouping compute nodes is needed for decisions such as which node (or group of nodes)
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Node 1

Node 2

Node 0

Data
source

A B C D

A B C D

A B C D

(a) A replicated pipeline.

Node 0 Node 1 Node 2

Data
source

A B C D

(b) A distributed pipeline.

Figure 5.2: Difference between replicating and distributing a pipeline of four operations
(A, B, C and D) over three nodes. Arrows represent data flow.

Node 1

Node 2

Node 0

Data
source

A

A

A

B

B

B

C

C

D

D

C D

Figure 5.3: Example Distributed Stream pipeline. Operations A and C are data-parallel,
while operations B and D require communication between nodes. Arrows represent data
flow.
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to send data to. This is achieved with the ComputeNode and ComputeGroup classes. An

example usage can be found in listing 5.10.

5.2.1 The ComputeNode class

Each node in the cluster is represented by a ComputeNode object and has a unique name

(the model does not prescribe a node naming convention). There are also methods to get

the current node, or a specific node by its name. When the program is initialised, each

compute node starts a single JVM where all computation on that node takes place.

package dstream;

public class ComputeNode {

public String getName();

public boolean isSelf();

public static ComputeNode getSelf();

public static ComputeNode findByName(String name);

}

Listing 5.1: The ComputeNode class.

5.2.2 The ComputeGroup class

A compute group is an ordered set of compute nodes and is represented by a ComputeGroup

object.

package dstream;

public abstract class ComputeGroup extends ArrayList<ComputeNode> {

public ComputeGroup();

public ComputeGroup(Collection<ComputeNode> nodes);

public ComputeGroup(ComputeNode node);

public static ComputeGroup getCluster();

}

Listing 5.2: The ComputeGroup class.

The entire cluster can be retrieved by calling the getCluster method. Standard Java

List methods can be called to modify a compute group’s members. To prevent modifi-

cations of one compute group affecting another, the ComputeGroup(nodes) constructor

makes a copy of given collection, and the getCluster method returns a new compute

group for each call.

The ComputeGroup class is defined as abstract, in order to support different implemen-

tations of compute groups. For example, if fault tolerance is needed, an implementation

can provide a subclass of ComputeGroup which monitors all compute nodes and handles

failures gracefully. If not, a simple but fast implementation would be sufficient. The

introduction of compute nodes and compute groups exposes an SPMD paradigm to the

programmer.

Compute nodes and groups are explicitly used when it is necessary for data to be

moved to a certain node (or subset of nodes) during computation. However, it is expected
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in the common case that computations occur across the entire cluster, and this is assumed

if the compute node/group is omitted in methods that accept them. A program that does

not make explicit use of compute nodes and groups is more portable across clusters as it

does not assume the existence of certain nodes. It is also likely to be more scalable as

computation and data are distributed across all compute nodes.

5.3 Distributed Collections

This section describes extensions to Java’s collections1, called Distributed Collections, for

use as distributed data sources.

A Distributed Collection contains data that is partitioned across a cluster. It is used

as a source of a Distributed Stream, the same way as a collection is a source of a Java

8 Stream. Data items in a Distributed Collection correspond to those in the underlying

dataset. The DistributedCollection interface itself does not specify the data format

and how the data should be retrieved. Instead, this is done in subclasses to the interface.

This approach is taken as there are already many existing distributed data formats in use,

and it is more extensible to allow any format to be accessed through a subclass than to

force one (or a few) formats on the framework.

5.3.1 Distribution of data

Section 4.1 introduced Stored Collections, which extend Java’s in-memory collections to

efficiently read large datasets from a local disk. However, neither Stored Collections nor

Java’s existing collections address the issue of data distribution across a cluster, which is

an orthogonal problem.

A Java collection, being an in-memory dataset, implicitly guarantees that all its con-

tents are in the Java heap. A Stored Collection breaks this guarantee, but still ensures

that all its contents will be accessed when iterating through the dataset. However in a

Distributed Collection, the dataset is partitioned across compute nodes, so iteration on

a single node will only yield part of its contents. (Thus, to access the entire dataset, all

participating nodes will need to iterate through the Distributed Collection.)

The DistributedCollection interface extends Java’s Collection interface, enabling

two main use cases. The first use case is to extend existing (non-distributed) collections,

without needing to re-implement the distributed version from scratch. Conceptually, this

groups data on each compute node (in the existing collections) and treats them as a

single, distributed dataset. The second, more complex, use case is for datasets that are

not already or not easily encapsulated in Java collections. These datasets (such as HDFS

files) often have their own interfaces for data storage and retrieval, may also have built-in

fault tolerance and data distribution, or may even be stored remotely. Such Distributed

Collection implementations will need to take these attributes into account.

A data element that exists in a Distributed Collection is in exactly one of its com-

pute nodes, thus the programmer does not need to handle coherency issues in the data.

1Since maps are also part of Java’s collection framework, this section also applies to distributed maps.
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However, the underlying data format can provide redundancy as long as this is abstracted

away by the Distributed Collection implementation.

The Distributed Collection interface is shown in listing 5.3. This extends a Java

collection as follows:

• The overridden stream and parallelStream methods now return a DistributedStream

object instead of a Stream object.

• There is an associated compute group containing the nodes on which its data can

be found. The getComputeGroup method returns this information.

• The wrap methods create a new Distributed Collection by grouping together normal

(non-distributed) collections across nodes.

Using wrap is a quick way to group an existing collection on each compute node into

a new Distributed Collection, which can then be used as a Distributed Stream source. In

such a Distributed Stream, the pipeline on each compute node gets data from the local

collection for processing. The two wrap methods are essentially identical in behaviour. If

the compute group is specified, local collections on compute nodes in the group are used.

If the compute group is omitted, the entire cluster is assumed.

package dstream.util;

public interface DistributedCollection<E> extends Collection<E> {

public ComputeGroup getComputeGroup();

@Override public DistributedStream<E> stream();

@Override public DistributedStream<E> parallelStream();

public static DistributedCollection<E> wrap(Collection<E> c, ComputeGroup grp);

public static DistributedCollection<E> wrap(Collection<E> c);

}

Listing 5.3: The Distributed Collection interface.

5.3.2 Caching intermediate results

It is sometimes necessary to avoid recomputing data by storing intermediate results.

Java 8 Streams already allow storing data into a collection by using the collect op-

eration. (This terminates the stream, so a new stream consisting of the stored data

needs to be created.) Some forms of the collect operation allow the programmer to

specify the storage container, which can be a Distributed Collection. Alternatively, the

DistributedCollection.wrap methods can be used to group the resulting collections on

each compute node into a Distributed Collection.

Distributed Collections that are derived from existing Java collections will support in-

memory caching with little or no implementation effort, because it is already possible to

add data items to each local collection. However, support for caching on other Distributed

Collections depend on the underlying data storage system. For example, HDFS files are

write-once; thus, caching to a Distributed Collection backed by an existing HDFS file is

prohibited.
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5.4 Distributed Streams

A Distributed Stream is a sequence of data items that is spread over a subset of the

cluster, with a Distributed Collection being its data source. It is used in place of a

Stream when performing computations on a cluster. Pipelines that are constructed from

a Distributed Stream are replicated over the respective compute nodes, enabling cluster-

level data parallelism. This allows each node to perform the same pipeline operations on

their local data items.

Each Distributed Stream has an associated compute group, which is initialised to that

of the source Distributed Collection. In most cases this will be the entire cluster. If

data needs to be relocated to other nodes, this should be done in the pipeline (using the

distribute operation introduced in section 5.4.2).

Distributed Streams extend the functionality of Java 8 Streams, fulfilling the distribu-

tion and drop-in replacement requirements described in section 3.3.

5.4.1 A drop-in replacement for Java 8 Streams

To maintain compatibility, Distributed Streams are a drop-in replacement for Java 8

Streams. The new DistributedStream interface extends the existing Java 8 Stream inter-

face, overriding methods that return Streams with those that return DistributedStreams.

A partial definition of the Distributed Stream interface is in listing 5.4.

For completeness, primitive-type Stream interfaces (IntStream, LongStream and Double-

Stream) will have corresponding Distributed Stream interfaces (DistributedIntStream,

DistributedLongStream and DistributedDoubleStream).

Some operations require communication between nodes to ensure correctness of results

(the count operation for example). This is solved by overriding these operations so that

they behave as expected. Thus, the count operation in Distributed Streams additionally

sums up the partial results of each participating node and sends the total count back

to the nodes. The flatMap operation, on the other hand, does not require inter-node

communication for correct results and its implementation can thus be left unchanged.

The Java 8 Stream framework does not restrict the lambda expressions passed to

pipeline operations. However, it discourages the use of side effects in such lambda expres-

sions [65] as they may cause race conditions when accessing shared resources in parallel

streams. This also applies to the Distributed Stream framework, with the additional

caveat that the shared resources are not automatically distributed over the cluster.

Finally, making these operations work across a compute group introduces two further

issues:

• For operations such as collect, a large result requires significant network com-

munication to replicate data elements on each node. This is often undesirable or

unnecessary.

• For cases where the programmer actually intends to obtain local results on each node

(for example, to obtain a partial count for further computation), this is currently

not possible.
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package dstream;

public interface DistributedStream<T> extends Stream<T> {

// Methods that override Stream methods

@Override public DistributedStream<T> distinct();

@Override public DistributedStream<T> filter(Predicate<? super T> predicate);

@Override public <R> DistributedStream<R> flatMap(

Function<? super T,? extends Stream<? extends R>> mapper);

@Override public DistributedDoubleStream flatMapToDouble(

Function<? super T,? extends DoubleStream> mapper);

@Override public DistributedIntStream flatMapToInt(

Function<? super T,? extends IntStream> mapper);

@Override public DistributedLongStream flatMapToLong(

Function<? super T,? extends LongStream> mapper);

@Override public DistributedStream<T> limit(long maxSize);

@Override public <R> DistributedStream<R> map(

Function<? super T,? extends R> mapper);

@Override public DistributedDoubleStream mapToDouble(

ToDoubleFunction<? super T> mapper);

@Override public DistributedIntStream mapToInt(

ToIntFunction<? super T> mapper);

@Override public DistributedLongStream mapToLong(

ToLongFunction<? super T> mapper);

@Override public DistributedStream<T> parallel();

@Override public DistributedStream<T> peek(Consumer<? super T> action);

@Override public DistributedStream<T> sequential();

@Override public DistributedStream<T> skip(long n);

@Override public DistributedStream<T> sorted();

@Override public DistributedStream<T> sorted(Comparator<? super T> comparator);

...

}

Listing 5.4: The Distributed Stream interface with methods that override those in the
Stream interface.
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To address these issues, new local variants of these operations that handle data within

a node are provided (see listing 5.5 for a few of these operations). Both variants behave

identically on single-node clusters, but the local operations are more efficient over multiple

nodes and can thus be used to construct more efficient pipelines.

package dstream;

public interface DistributedStream<T> extends Stream<T>

{

...

// New local operations

public <R, A> R localCollect(Collector<? super T, A, R> collector);

public <R> R localCollect(Supplier<R> supplier,

BiConsumer<R, ? super T> accumulator, BiConsumer<R, R> combiner);

public DistributedStream<T> localDistinct();

public DistributedStream<T> localForEach(Consumer<? super T> action);

public DistributedStream<T> localLimit(long maxSize);

public DistributedStream<T> localPeek(Consumer<? super T> action);

public Optional<T> localReduce(BinaryOperator<T> accumulator);

public T localReduce(T identity, BinaryOperator<T> accumulator);

public <U> U localReduce(U identity,

BiFunction<U, ? super T, U> accumulator, BinaryOperator<U> combiner);

public DistributedStream<T> localSkip(long n);

public DistributedStream<T> localSorted();

public DistributedStream<T> localSorted(Comparator<? super T> comparator);

...

}

Listing 5.5: Local operations in the Distributed Stream interface.

5.4.2 Distribution of data and computation

As mentioned in section 5.4, Distributed Streams use replicated pipelines for data paral-

lelism by default. This handles the most common case for Big Data, where the data source

is distributed over compute nodes.

A Distributed Stream sources its data from a Distributed Collection, which reads the

local data items on each compute node (as described in section 5.3.1) and passes them

through the pipeline on the same node. This ensures data locality, with each compute node

processing data stored on its disk. However, at certain points in the pipeline, it may be

required for data to be distributed and gathered over the compute nodes to do partitioning

and aggregation, such as in the MapReduce shuffle stage. Java 8 Streams support gathering

of data with the general-purpose terminal operations collect and reduce, but there are

currently no operations for distributing data according to a given algorithm (as there is

no requirement to do this in the current Java 8 Streams). Therefore, a set of operations

called distribute which facilitate the transfer of data using inter-node communication is

introduced.

The Distributed Stream model does not require that all participating compute nodes

execute exactly the same operations in the evaluation of a pipeline. For example, a pipeline

can read data on a given set of input nodes, filter it on a different set of compute nodes,

and then store it on a further different set of output nodes. (See section 5.5.2 for a

more concrete example.) The distribute operation can thus be viewed as moving the
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evaluation of part of the pipeline from one subset of the cluster to another. (The subsets

may overlap and may even be the same.)

In order to support distribution of data across the cluster, it is first necessary to

provide some standard interfaces that allow the programmer to specify how the data

should be partitioned. The Partitioner interface (shown in listing 5.6) allows user-

specified partitioning of data. Similar interfaces for primitive-type partitioners (Int-

Partitioner, LongPartitioner and DoublePartitioner) for the appropriate primitive-

type Distributed Streams are also defined.

package dstream;

@FunctionalInterface

public interface Partitioner<T> {

public int partition(T data);

}

Listing 5.6: The Partitioner interface.

The partition method accepts a data element and returns an index representing a

node in the compute group. For ease of use, it is not important for the programmer to

know the size of the compute group, so if the index is out of range it will be wrapped

around by the framework. This makes the partitioner suitable for range partitioning if

the compute group size is known, as well as load balancing methods such as hash-based

partitioning.

With a way to partition data, several variants of the distribute method that transfer

data from one compute group to another can be introduced in the DistributedStream

interface (see listing 5.7).

package dstream;

public interface DistributedStream<T> extends Stream<T> {

...

// Methods for distribution of data

public DistributedStream<T> distribute();

public DistributedStream<T> distribute(Partitioner<? super T> p);

public DistributedStream<T> distribute(ComputeGroup grp);

public DistributedStream<T> distribute(

ComputeGroup grp, Partitioner<? super T> p);

public DistributedStream<T> distribute(ComputeNode node);

...

}

Listing 5.7: distribute methods in the DistributedStream interface.

Parameters change the behaviour of distribute as follows:

• If used without parameters, distribute sends data to the same compute group

according to a default hash-based partitioner.

• If a partitioner is given, it is used in place of the default hash-based partitioner.

• If a compute group/node is given, data is partitioned and sent to that group/node

instead. The nodes in the specified compute group do not have to be part of the
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initial compute group.

A distribute operation returns a new Distributed Stream consisting of the same data

elements which may have been moved across nodes.

5.4.3 More flexible pipelines

Distributed Streams inherit pipelines from Java 8 Streams, which are linear in nature.

While adequate in most cases, this hinders the concise implementation of programs which

are better expressed with non-linear pipelines. These limitations can be addressed by

allowing the splitting and joining of pipelines. Hence, two new operations are introduced

(see also listing 5.8) to support these actions:

• The split operation splits the current pipeline into a specified number of pipelines.

Each resulting pipeline receives the same stream of data elements from the current

pipeline.

• The join operation merges a number of pipelines with the current pipeline. The

resulting pipeline receives data elements from all pipelines.

To preserve data locality, these operations do not transfer data across nodes. However,

a subsequent distribute operation may be used to move the data to the desired locations.

package dstream;

public interface DistributedStream<T> extends Stream<T> {

...

public DistributedStream<T>[] split(int numStreams);

public DistributedStream<T> join(DistributedStream<T>... streams);

}

Listing 5.8: The split and join operations for creating non-linear pipelines.

5.4.4 Short-circuiting evaluation

A key property of Java 8 Streams is that they are short-circuiting, but extending this to

a distributed pipeline environment impacts efficiency in the following ways:

• The pipeline has to wait for existing data items to be fully processed before deciding

if more data items are needed. This may result in idle pipeline sections in certain

nodes.

• Requests for data items originate from the terminal operation, and for distributed

pipelines this has to be communicated upstream to different nodes which increases

overhead. There is also the additional problem of choosing the node(s) from which

to retrieve data.

Figure 5.4 shows an example pipeline that uses a distribute operation, and where

operations A and (terminal) C are on different nodes. If the entire pipeline is short-

circuiting, operation A will wait for a message from operation C to begin processing the
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Figure 5.4: A distributed pipeline to illustrate the problem of short-circuit evaluation in
a distributed environment.

next data item. The inefficiency is compounded if operation A potentially takes a long

time to let a data item through the pipeline (eg. filtering). The time spent waiting in

upstream operations could have been used to process data speculatively to keep those

operations better utilised.

Consequentially, the solution employed is to view the distribute operation as termi-

nating the current pipeline and starting another. This ensures that each section of the

pipeline is on a single node and is evaluated as efficiently as possible without having to be

concerned with parallelism in other pipeline sections. Therefore, this solution of restricting

short-circuit evaluation to each node is simpler than enforcing it across nodes.

5.5 Examples

This section contains examples that show Distributed Stream usage.

5.5.1 Word-count

Returning to the word-count example, the drop-in replacement extensions allow code

describing the pipeline to be identical in both Streams and Distributed Streams (see list-

ings 2.3 and 5.9 for a comparison). In this case, the lines argument in the wordcount

method will be a DistributedStream. The pipelines are also replicated on each partici-

pating compute node2.

5.5.2 Detailed word-count

This section illustrates the use of the distribute operation in two examples.

The word-count example above computes the total number of words, but does not give

a breakdown of the individual count for each word. To obtain a detailed word-count, the

algorithm can be changed to the one in listing 5.10. (It uses Distributed Maps, which

are analogous to Distributed Collections.) The steps are as follows: On each compute

node, all local data is split into words and sent to a single node, where they are counted

and collected into local maps of (word, count) pairs. These maps are then grouped as a

Distributed Map using the wrap method. Finally, the contents of the Distributed Map are

added to the result collection.

The algorithm above is neither efficient nor scalable, because the workload is not evenly

distributed across all nodes, and the node that is handling the incoming words may run

out of memory when attempting to store all the intermediate results. Listing 5.11 gives an

2 Pipeline replication is done using the underlying communication layer, which is described in chapter 6
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import java.util.regex.*;

import java.util.stream.*;

import dstream.*;

import dstream.util.*;

public class WordCount

{

public static long wordcount(Stream<String> lines)

{

Pattern delim = Pattern.compile("\\s+");

return lines

.flatMap(line -> Stream.of(delim.split(line)))

.count();

}

public static void main(String[] args)

{

String filename = args[0];

Collection<String> c = new DistributedStringStoredCollection(filename);

Stream<String> s = c.parallelStream();

System.out.println(wordcount(s));

}

}

Listing 5.9: Simple word-count application using Distributed Streams.

...

public static void wordcount(DistributedCollection<String> lines,

DistributedCollection<String> result)

{

Pattern delim = Pattern.compile("\\s+");

ComputeNode rootNode = ComputeNode.findByName("node0");

// Split data into words and send to root node

// Process local words into a map of (word, count) pairs

Map<String, Long> totalCount = lines

.parallelStream()

.flatMap(line -> Stream.of(delim.split(line)))

.distribute(rootNode)

.localCollect(Collectors.groupingByConcurrent(w -> w,

Collectors.counting()));

// Group local maps as a Distributed Map

DistributedMap<String, Long> totalCountDist

= DistributedMap.wrap(totalCount);

// Add to result collection

totalCountDist

.entrySet()

.stream()

.localForEach(e -> { result.add(e.getKey() + " " + e.getValue()); });

}

...

Listing 5.10: Detailed word-count application using Distributed Streams.
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improved algorithm. It first performs a local detailed word-count, and the (word, count)

pairs are then distributed across the cluster such that pairs with the same word get sent to

the same compute node (similar to the MapReduce shuffle stage). This results in a more

even workload, reduced network usage from sending partially-reduced data, and a smaller

chance of running out of memory.

...

public static void wordcount(DistributedCollection<String> lines,

DistributedCollection<String> result)

{

Pattern delim = Pattern.compile("\\s+");

// Perform local detailed word-count

Map<String, Long> localCount = lines

.parallelStream()

.flatMap(line -> Stream.of(delim.split(line)))

.localCollect(Collectors.groupingByConcurrent(w -> w,

Collectors.counting()));

// Group local maps as a Distributed Map

DistributedMap<String, Long> localCountDist

= DistributedMap.wrap(localCount);

// Shuffle (word, count) pairs and collect into local maps

Map<String, Long> totalCount = localCountDist

.entrySet()

.parallelStream()

.distribute(e -> e.getKey().hashCode())

.localCollect(Collectors.groupingByConcurrent(e -> e.getKey(),

Collectors.summingLong(e -> (long) e.getValue())));

// Group local maps as a Distributed Map

DistributedMap<String, Long> totalCountDist

= DistributedMap.wrap(totalCount);

// Add to result collection

totalCountDist

.entrySet()

.stream()

.localForEach(e -> { result.add(e.getKey() + " " + e.getValue()); });

}

...

Listing 5.11: Improved detailed word-count application using Distributed Streams.

5.6 Summary

This chapter has presented the components of the Distributed Stream framework, which

satisfy the requirements listed in section 3.3:

• Compute nodes and compute groups for identifying and grouping nodes in a cluster.

This satisfies requirement 1.

• Distributed Collections as a distributed data source and for storing intermediate

results. Together with Stored Collections, this satisfies requirement 2.

• Distributed Streams with replicated pipelines for cluster-wide data processing and

as a drop-in replacement for Java 8 Streams. This satisfies requirements 3 and 5.

• New Distributed Stream operations for distributing data and computation across

nodes. This satisfies requirement 4.

86



Chapter 6

Implementation of the Distributed

Stream Framework

This chapter gives an overview of how the proof-of-concept Distributed Stream framework

is implemented. A high-level view of its components are shown in figure 6.1. In general, it

is based on the default Java 8 Stream implementation, inheriting and extending several of

its classes. This allows for future changes to the default Stream implementation without

significantly affecting Distributed Streams.

Section 6.1 discusses the transport layer. Sections 6.2 and 6.3 discuss compiling and

starting Distributed Stream programs. Sections 6.4 and 6.5 elaborate on compute nodes

and groups. Sections 6.6 and 6.7 expand on how Distributed Collections and Distributed

Streams are implemented. Finally, section 6.8 summarises.

6.1 Transport layer

Communication between nodes is handled by a transport layer. This additional layer of

abstraction helps to simplify porting to other transport layers (e.g. to RMI) if necessary,

without significant modification to the rest of the library.

Since there is no requirement to use any particular transport layer, a patched version

of the MPJ Express [79] library is used. This is for several reasons:

• It is based on MPI, a message-passing protocol widely used in cluster-based parallel

Java 8 Streams

Distributed Streams

Java collections

Distributed Collections

Stored Collections
Compute nodes and groups

...MPJ Express

Java platform

NodeNode

Operating system
Disk

File system
Stored data

Figure 6.1: High-level view of the proof-of-concept implementation. Arrows indicate flow
of data between stored data and Stored/Distributed Collections as well as between the
communication layers (MPJ Express).
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computing.

• It is written in Java, lightweight and has a simple API, making integration into the

framework easy.

• It supports MPI in full multithreaded mode.

The prototype implementation assumes a reliable transport layer and no node failures.

A more robust implementation may handle failures by configuring a timeout interval be-

tween messages sent to and received from a node, and retrying the computation, possibly

on another node, if the timeout has been exceeded.

6.2 Compilation

The Distributed Stream framework and MPJ Express are provided as JAR files, thus both

need to be added to the classpath.

Thus, the command to compile a simple Distributed Stream program is given in list-

ing 6.1.

javac -cp .:$MPJ_HOME/lib/mpj.jar:$DSTREAM_PATH/dstream.jar HelloWorld.java

Listing 6.1: Command to compile a simple Distributed Stream program (in file
HelloWorld.java). The $MPJ HOME and $DSTREAM PATH environment variables should
specify the paths where MPJ Express and the Distributed Stream framework are installed
respectively.

6.3 Program startup

Before running a program, MPJ Express needs to know the details of the cluster. This is

done by creating a file (located in $MPJ HOME/machines) which contains the hostnames or

IP addresses of each compute node, one per line. (The machine on which this file resides

does not need to be in the cluster.) The $MPJ HOME/bin/mpjboot command then initialises

MPJ Express on each node. In this Distributed Stream implementation, the name of each

node is the string “node” concatenated with its rank (the first node is node0, the second

node1, etc.).

A Distributed Stream program is started by executing the MPJ Express run script

as shown in listing 6.2. The -dev hybdev flag tells MPJ Express to run across a cluster

in multithreaded mode. The Distributed Stream JAR file is included in the classpath.

Finally, the desired program (class name) and any program arguments are appended.

$MPJ_HOME/bin/mpjrun.sh -dev hybdev -cp .:$DSTREAM_PATH/dstream.jar \

dstream.ComputeNode HelloWorld [args...]

Listing 6.2: Command to run a Distributed Stream program (in class file
HelloWorld.class). The $MPJ HOME and $DSTREAM PATH environment variables should
specify the paths where MPJ Express and the Distributed Stream framework are installed
respectively.
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MPJ Express first distributes the same Java bytecode to each compute node. Then,

on each compute node, MPJ Express starts a JVM with the ComputeNode.main method

as the entry point. The ComputeNode.main method initialises the transport layer and,

once initialised, executes the actual program (in this case HelloWorld.main). Section 6.4

has more details on this method.

6.4 Compute nodes

As mentioned in section 6.3, the ComputeNode.main method is the entry point for a

Distributed Stream program in this implementation. To keep transport layer-specific code

separate from the ComputeNode class, a Communicator class is defined, as well as an

extension for MPJ Express called MPJCommunicator. This communicator is then used in

the ComputeNode class to send messages. This is illustrated in listing 6.3.

package dstream;

...

abstract class Communicator

{

abstract public String[] init(String[] argv);

abstract public void cleanup();

abstract public int getRank();

abstract public int getSize();

abstract public void sendObject(Object obj, int dst, int tag);

abstract public Object recvObject(int tag);

// Returns source rank:

abstract public int recvObject(Object[] obj, int tag);

abstract public void sendInt(int n, int dst, int tag);

abstract public int recvInt(int src, int tag);

}

class MPJCommunicator extends Communicator

{

... // Implementation for MPJ Express as transport layer

}

public class ComputeNode

{

static Communicator comm;

public static void main(String[] argv)

{

...

comm = new MPJCommunicator(); // Create this node’s communicator

...

}

}

Listing 6.3: The Communicator class and its uses.

The Communicator class defines several methods:

• init and cleanup for initialising and finalising the transport layer.

• getRank and getSize for retrieving the node’s rank and the cluster size.
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• sendObject and recvObject for sending and receiving messages in the form of

Java objects. For MPJ Express, these objects must be serialisable (i.e. they must

implement the Serializable interface).

• sendInt and recvInt for sending and receiving integer messages. These methods

are used during initialisation of the transport layer.

Each communicator is assigned a rank (similar to that in MPI) which is used in the source

and destination nodes for messages.

This separation of code is intended to confine changes to the compute node or transport

layer to one class. Thus, ports to other transport layers will mainly need to implement

a different communicator class and change the definition of ComputeNode to extend that

class instead.

The ComputeNode.main method performs the following steps:

1. It initialises the transport layer.

2. It populates a compute group with all compute nodes in the cluster.

3. It loads the class specified on the command line and calls its main method.

4. Upon returning, it cleans up the transport layer.

6.5 Compute groups

Introduced in section 5.2.2, a compute group represents a source or destination of pipeline

operations. It is an ordered set of compute nodes, and the ComputeGroup class extends

an ArrayList of ComputeNodes. To maintain the constraints of an ordered set, the

ComputeGroup class overrides the add and addAll methods to prevent duplicate compute

nodes from being added to the group.

The default compute group implementation assumes no node failures and thus does

not check for node connectivity or modify the set of compute nodes on its own.

6.6 Distributed Collections

The DistributedCollection interface overrides the default methods stream and parallel-

Stream. It also implements new static wrap methods which return a WrappedDistributed-

Collection of the same data type (see listing 6.4 for more details). It keeps a reference to

the local collection, which is used when generating iterators and spliterators, or retrieving

the local size of the collection.

A pair of Distributed Collections (HDFSStringCollection and HDFSStringCollectionWriter)

that read from and write to HDFS are implemented for the evaluating the framework in

chapter 7. They are described in more detail below.
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package dstream.util;

...

public interface DistributedCollection<E> extends Collection<E>

{

public static <E> DistributedCollection<E> wrap(Collection<E> c,

ComputeGroup grp)

{

return new WrappedDistributedCollection(c, grp);

}

public static <E> DistributedCollection<E> wrap(Collection<E> c)

{

return new WrappedDistributedCollection(c, ComputeGroup.getCluster());

}

...

}

class WrappedDistributedCollection<E> extends AbstractCollection<E>

implements DistributedCollection<E>

{

private ComputeGroup grp;

private Collection<E> c;

public WrappedDistributedCollection(Collection<E> c, ComputeGroup grp)

{

this.c = c;

this.grp = grp;

}

@Override

public ComputeGroup getComputeGroup()

{

return grp;

}

@Override

public Iterator<E> iterator()

{

return c.iterator();

}

@Override

public Spliterator<E> spliterator()

{

return c.spliterator();

}

@Override

public int size()

{

return c.size();

}

}

Listing 6.4: Implementation of the WrappedDistributedCollection class and usage in
DistributedCollection.wrap methods.
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6.6.1 The HDFSStringCollection class

A HDFSStringCollection allows HDFS paths to be used as data sources for Distributed

Streams. This represents a Distributed Collection of lines from all files in a specified

HDFS path. Since HDFS files are already partitioned across the cluster, each compute

node queries the HDFS namenode for a list of local file blocks and reads lines of text from

these blocks to preserve data locality. Lines that straddle multiple blocks are automatically

handled by HDFS, which sends the non-local part across the network.

6.6.2 The HDFSStringCollectionWriter class

HDFS files can only be written to once, so adding data to a HDFSStringCollection

(which implies writing to an existing file) is prohibited. To allow writing of data back to

a HDFS file, the HDFSStringCollectionWriter class is implemented. Instantiating such

an object creates a new file for writing, and writes occur when the add method is called.

6.7 Distributed Streams

This section first details how Distributed Streams are implemented in terms of Java 8

Streams, then describes the implementation of different pipeline operations.

6.7.1 Interfacing with Java 8 Streams

The Java 8 Streams internally define several classes that implement the stream interfaces:

• ReferencePipeline (implementing Stream) for processing a stream of objects.

• IntPipeline (implementing IntStream) for processing a stream of integers.

• LongPipeline (implementing LongStream) for processing a stream of long integers.

• DoublePipeline (implementing DoubleStream) for processing a stream of double

precision floats.

These classes are returned by intermediate operations and other stream-constructing meth-

ods (e.g. Collection.stream) so that additional operations can be appended to the

pipeline.

Analogously, the prototype implementation also defines these classes which implement

the respective Distributed Stream interfaces. In these classes, a reference of the local

pipeline is kept. This may be used to implement the various operations on the replicated

pipeline, depending on the type of operation. The remainder of this section gives more

details on how this is achieved.

6.7.2 Local operations

Introduced in section 5.4.1, local operations process data within each node, allowing for

partial results to be obtained and optimisations to be performed.

The local operations introduced in Distributed Streams simply call the corresponding

operations on each local pipeline (i.e. a localCount operation calls the local pipeline’s
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count operation). Terminal operations return a result which may potentially be differ-

ent on each compute node. Intermediate operations return one of the pipeline objects

described in section 6.7.1, allowing more operations to be appended to the pipeline.

6.7.3 Overridden operations

Several Distributed Stream operations are reimplemented to satisfy the drop-in replace-

ment requirement. This section gives examples of several of these operations.

The reduce operation

There are a number of reduce operations for each stream type, but all have implementa-

tions similar to the following:

1. A reduction is performed on local data elements with the localReduce operation.

2. The local result is sent to the first node in the compute group.

3. The first node receives and accumulates all local results, and sends the final result

to the other nodes.

4. The other nodes receive the final result. All nodes return the same value.

The allMatch operation

The allMatch operation is expressed as a reduction with the result being the logical-AND

of local allMatch operations on each participating node.

The count operation

The count operation is expressed as a reduction with the result being the sum of local

count operations on each participating node.

The distinct operation

The distinct operation is expressed in terms of the distribute operation followed by

the localDistinct operation. The distribute operation sends elements with the same

hash value (which includes all identical elements) to the same node. The localDistinct

operation then removes duplicate elements within each node.

The forEach operation

To be a drop-in replacement, each participating node needs to perform the specified action

on every element in the Distributed Stream. Thus, each node broadcasts its local data

elements to other nodes, thereby ensuring that each local stream contains elements from

all nodes. However, this is unlikely to be efficient. The localForEach operation avoids

broadcasting elements and is intended for programmers to optimise their implementations.

(The localForEach operation is the local version of forEach, thus it only performs its

operations on data elements that are on the node.)
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The sorted operation

The sorted operation first performs a bucket sort: it samples the data to determine the

range of values each participating node will accept, then distributes the data accordingly.

It then locally performs an external merge sort on the data received by each node. This

ensures that data which is too large to fit in memory can still be sorted (the Java 8 Stream

implementation suffers from this issue as it uses an in-memory collection to facilitate the

sort).

6.7.4 The distribute operation

As mentioned in section 5.4.4, the distribute operation terminates the existing pipeline

and starts a new one. The following algorithm describes the core of all distribute

operation variants.

The existing pipeline is terminated with a localForEach operation, which sends each

element to the appropriate destination node. After all elements are sent, an end-of-data

marker is sent to all participating nodes. This marker is represented by a null object in

the implementation (null objects thus cannot be used as data items).

Concurrently, a new pipeline is created and converts incoming messages into data

elements. It determines that no more data is available when it has received end-of-data

markers from all participating nodes.

Since a stream computation blocks until the terminal operator completes, one extra

thread is created to keep the two pipelines executing concurrently.

Default partitioner

The default hash-based partitioner computes the hash by calling the Object.hashCode

method. This is generally sufficient for use in load-balancing data flow across the cluster.

6.8 Summary

This chapter has given an overview of the prototype Distributed Stream implementation.

It confines the transport layer-dependent part to subclasses of the Communicator class,

leaving the rest of the implementation transport layer-independent.

The next chapter evaluates the framework’s programming model and performance.
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Chapter 7

Evaluation

Chapters 5 and 6 have described the concept and implementation of Distributed Streams.

This chapter evaluates the following aspects of Distributed Streams:

• The types of parallelism the programming model supports (in section 7.1).

• Whether the programming model allows efficient description of Big Data programs,

both for MapReduce-style and streaming processing. Comparisons are made with

the programming models of MapReduce/Hadoop (in section 7.2), Spark and Storm

(both in section 7.3).

• The performance of the prototype implementation (described in chapter 6), specif-

ically the execution times and network usage. Comparisons are made with the

performance of Hadoop and Spark (in sections 7.4 to 7.7).

A summary of the evaluation is presented in section 7.8.

7.1 Parallelism in Distributed Streams

Section 2.2 described three types of parallelism in programs. This section evaluates the

Distributed Stream framework on the parallelism it supports.

7.1.1 Data parallelism

The most important type of parallelism in Big Data processing is data parallelism. While

Java 8 Streams already supports this on a single JVM, Distributed Streams extends this

support to a cluster. As with Java 8, data parallelism within a node is enabled by calling

the parallelStream method on a collection to start a pipeline, or by using the parallel

operation on an existing pipeline. On each compute node, a spliterator partitions the local

data from the data source and submits each partition to the common fork-join pool for

processing through the pipeline. At the cluster level, data parallelism is always enabled –

data in a Distributed Collection is read across the cluster in parallel.

Listing 7.1 shows a pipeline that filters its input into another dataset, with figure 7.1

showing the corresponding data parallelism. The Distributed Collection is read in parallel

on all compute nodes, filtered for non-empty lines and collected. As there is no need for
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Figure 7.1: Diagram showing data parallelism in listing 7.1. Additionally, node 2 shows
node-level data parallelism that is present in a multicore system.

any communication in the filter and localCollect operations, data items remain in

their respective nodes.

DistributedCollection<String> nonEmptyLines(DistributedCollection<String> lines)

{

Collection localNonEmpty = lines

.parallelStream()

.filter(s -> s.length > 0)

.localCollect(Collectors.toList());

return DistributedCollection.wrap(localNonEmpty);

}

Listing 7.1: Example pipeline that exhibits data parallelism.

7.1.2 Task parallelism

When a thread executes a Distributed Stream pipeline, it does not return control until

execution is complete on all compute nodes (this is similar in behaviour to Java 8 Streams).

Thus, to process multiple pipelines simultaneously, multiple threads are needed, each

executing a single pipeline. Listing 7.2 demonstrates how two simple pipelines can be

executed in parallel using separate threads for each pipeline, and figure 7.2 illustrates the

task parallelism. The main thread creates another thread which counts the number of

items in a stream, while it sums up the numbers in another stream.

For a parallel stream (created with the parallelStream method), the thread that

initiates execution shares the workload with the fork-join thread pool on each node. For a
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Figure 7.2: Diagram showing task parallelism in listing 7.2.

sequential stream (created with the stream method), the thread that initiates execution

handles the entire workload on each node.

void main(String[] args) throws InterruptedException

{

Thread th = new Thread(() ->

{

DistributedIntStream s1 = ...;

long count = s1.count();

...

});

th.start();

DistributedIntStream s2 = ...;

long sum = s2.sum();

...

th.join();

}

Listing 7.2: Executing two pipelines in parallel.

7.1.3 Stream parallelism

Due to the introduction of pipeline sections, a limited form of stream parallelism is a side-

effect in Distributed Streams. Stream parallelism did not exist in Java 8 Streams because

each data item was operated on by the same thread throughout the pipeline. However,

recall that in section 5.4.4, the difficulties that the distribute operation presented were

resolved by splitting the pipeline into sections. Within a pipeline section, each data item

is operated on by the same thread (as in a Java 8 Stream). As pipeline sections run
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Figure 7.3: Diagram showing stream parallelism in listing 7.3. Note that the data items
are processed in parallel in each pipeline section.

concurrently, each section will be operating on different data items at any time. Thus,

pipelines containing the distribute operation exhibit stream parallelism.

Listing 7.3 shows a pipeline that counts the occurrences of numeric strings (e.g. "35")

from a stream of strings, with figure 7.3 illustrating the stream parallelism. The upstream

pipeline section (until the distribute operation) filters away non-numeric strings, while

the downstream section collects the remaining strings and stores them as (number, count)

key-value pairs. (The distribute operation ensures that identical strings/numbers are

sent to the same node.) The concurrent execution of these sections means that a thread

can operate on the next item after passing it on to the distribute operation, and does

not have to wait until the same item is collected at the terminal operation.

DistributedMap<String, Long> numCount()

{

DistributedCollection<String> words = ...;

Map<String, Long> localCounts = words

.parallelStream()

.filter(w -> w.matches("-?[0-9]+")) // Remove non-numeric strings

.distribute()

.localCollect(Collectors.groupingByConcurrent(w -> w, Collectors.counting()));

return DistributedMap.wrap(counts);

}

Listing 7.3: A number-count pipeline.

98



Map

Disk

Node 0

Shuffle

Reduce

Disk

Disk

Node 1

Disk

Disk

Node 2

Mapper Mapper Mapper

Distribute Distribute DistributeDistribute

Collect & sort Collect & sort Collect & sort

Reducer

Mapper Mapper

Collect & sort Collect & sort Collect & sort

Reducer

Mapper

ReducerReducer ReducerReducer

Disk

Figure 7.4: Expressing a MapReduce computation in terms of Distributed Streams. Ar-
rows indicate the flow of data. The mapper, reducer, local collect and local sort may span
multiple stream operations.

7.2 Mapping MapReduce to Distributed Streams

In section 2.5, two dominant programming models for Big Data systems were introduced:

MapReduce (Hadoop) and streaming (Spark/Storm). In order to demonstrate the ef-

ficacy of the Distributed Stream programming model, comparisons between the models

and Distributed Streams were carried out. This section considers how the MapReduce

programming model can be expressed in terms of the Distributed Stream model.

With Java 8 Streams, performing MapReduce computations across a cluster was not

possible as the framework operated within a single node. Distributed Streams solve this

problem by defining operations to transfer data across nodes. In MapReduce, the shuffle

stage is where data transfer is needed. This stage can be broken down into sub-stages and

implemented with Distributed Streams as follows:

1. The distribute operation transfers data (in key-value form) between compute nodes

such that those with the same key are sent to the same node.

2. The localCollect operation on each node accumulates incoming data into a collec-

tion of key-value-list pairs. The value lists are optionally sorted. Since localCollect

is a terminal operation, a new stream consisting of elements in the collection is cre-

ated and passed to the reduce stage.

Figure 7.4 shows in general how a MapReduce computation can be represented with

pipeline operations. Special cases such as summing, counting and collecting are built into

Distributed Streams. Hence the resulting code is more concise if such operations are used,

than if programmers implement their own versions through the reduce operation.

7.2.1 Illustrative example

This example returns to the detailed word-count introduced in section 5.5.2. In that

section, two algorithms were provided: a naive and an improved one. Listings 7.4 and 7.5

contain the programs with comments showing the equivalent MapReduce stages.
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The DistributedStringStoredCollection referenced in both listings is a distributed

version of StringStoredCollection mentioned in section 4.2.

Note that the shuffle stage also needs to be implemented in the Distributed Stream

program. In general, the beginning and end of Distributed Stream pipelines do not neces-

sarily correspond with MapReduce stages. In listing 7.4, the map and shuffle stages were

implemented with a single pipeline, whereas in listing 7.5, all stages were implemented

with separate pipelines.

In listing 7.4, the map stage consists of the flatMap operation which splits each line

into words. The shuffle stage consists of the distribute operation to send all all words to

the first compute node, followed by a localCollect operation to group words into (word,

count) key-value pairs. Finally, the reduce stage is just a forEach operation to write all

key-value pairs to standard output on each compute node.

In listing 7.5, the map stage consists of the flatMap operation as above, followed by

a localCollect operation to group local words into a map of (word, count) key-value

pairs. This reduces the amount of network traffic during the shuffle stage. The local maps

are then wrapped into a Distributed Map (localCountDist), which would contain all

key-value pairs in memory (this allows its entries to be used as a source of a Distributed

Stream). In the shuffle stage, the key-value pairs are distributed across the cluster by

key (word), collected again into (word, count) pairs and the resulting maps wrapped into

another Distributed Map (totalCountDist). Finally, the reduce stage is a localForEach

operation to write all local key-value pairs to standard output.

7.3 Mapping in-memory streaming to Distributed Streams

The previous section showed how MapReduce can be expressed in terms of Distributed

Streams. This section focuses on Spark and Storm, these being the two main proponents

of the streaming model.

7.3.1 Spark and comparisons with Distributed Streams

Since both Spark and Distributed Streams are stream-based programming models, there

are some similarities between the models. For example, Spark pipelines are also lazily

evaluated, and their Java syntax resembles that of Java 8 Streams. Also, Spark trans-

formations are analogous to intermediate operations and Spark actions are equivalent to

terminal operations.

Table 7.1 lists a number of Spark transformations/actions together with the equivalent

Distributed Stream operations to demonstate the similarities between them.

There are also significant differences between the models. Spark was designed specif-

ically for Big Data applications, whereas Distributed Streams have to maintain compati-

bility with Java 8 Streams. RDDs can be reused, unlike Java 8 Streams, and Spark allows

caching of data in memory for frequently-used RDDs to avoid recomputing data. Also,

Java 8 Streams are conceptually separate from Java collections (which can be the source

of a stream), but Spark RDDs do not have such a distinction. A Spark pipeline consists of

a number of RDDs chained together with transformations.Thus, depending on its position
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import java.util.regex.*;

import java.util.stream.*;

import dstream.*;

import dstream.util.*;

public class WordCountDetailed {

public static void wordcount(DistributedCollection<String> lines) {

Pattern pat = Pattern.compile("\\s+");

ComputeNode rootNode = ComputeNode.findByName("node0");

Map<String, Long> words = lines

.parallelStream()

// ===== Map stage =====

.flatMap(line -> Stream.of(pat.split(line)))

// ===== Shuffle stage =====

// Send to first node in compute group

.distribute(node0)

.localCollect(Collectors.groupingByConcurrent(

w -> w, TreeMap::new, Collectors.counting()));

Set<Map.Entry<String, Long>> entries = words.entrySet();

entries

.stream() // Generates a normal, sequential stream

// ===== Reduce stage =====

.forEach(e -> {

System.out.println(e.getKey() + "\t" + e.getValue());

});

}

public static void main(String[] args) {

String filename = args[0];

wordcount(new DistributedStringStoredCollection(filename));

}

}

Listing 7.4: Naive detailed word-count application using Distributed Streams, with data
funnelled to a single compute node in the shuffle stage.
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import java.util.regex.*;

import java.util.stream.*;

import dstream.*;

import dstream.util.*;

public class WordCountDetailed {

public static void wordcount(DistributedCollection<String> lines)

{

Pattern delim = Pattern.compile("\\s+");

// Perform local detailed word-count

Map<String, Long> localCount = lines

.parallelStream()

// ===== Map stage =====

.flatMap(line -> Stream.of(delim.split(line)))

.localCollect(Collectors.groupingByConcurrent(w -> w, Collectors.counting()));

// Group local maps as a Distributed Map

DistributedMap<String, Long> localCountDist = DistributedMap.wrap(localCount);

// Shuffle (word, count) pairs and collect into local maps

Map<String, Long> totalCount = localCountDist

.entrySet()

.parallelStream()

// ===== Shuffle stage =====

.distribute(e -> e.getKey().hashCode())

.localCollect(Collectors.groupingByConcurrent(e -> e.getKey(),

Collectors.summingLong(e -> (long) e.getValue())));

// Group local maps as a Distributed Map

DistributedMap<String, Long> totalCountDist = DistributedMap.wrap(totalCount);

// Add to result collection

totalCountDist

.entrySet()

.stream()

// ===== Reduce stage =====

.localForEach(e -> { System.out.println(e.getKey() + " " + e.getValue()); });

}

public static void main(String[] args) {

String filename = args[0];

wordcount(new DistributedStringStoredCollection(filename));

}

}

Listing 7.5: Improved detailed word-count application using Distributed Streams.
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Spark Distributed Stream Description

.countByKey() .collect(

Collectors.groupingBy(e ->

e.getKey(),

Collectors.counting()))

Action: Counts the occurrence of
each key and returns a map of key-
count pairs.

.filter(p) .filter(p) Transformation: Removes elements
in the Distributed Stream that do
not satisfy the predicate.

.foreach(f) .forEach(f) Action: Executes a function over
each element.

.groupByKey() .collect(

Collectors.groupingBy(e ->

e.getKey()))

.entrySet()

.parallelStream()

Transformation: Groups key-value
pairs into key-value-list pairs.

.map(f) .map(f) Transformation: Replaces each ele-
ment with those from the mapping
function.

.reduce(f) .reduce(f) Action: Reduces the elements to a
single value using a binary function.

.take(n) .limit(n)

.collect(Collectors.toList())

Action: Returns the first n elements
in a List.

Table 7.1: Comparison of Spark transformations/actions and Distributed Stream opera-
tions.

in the pipeline, an RDD may contain data from HDFS blocks, or transformed data cached

in memory, or even information on how the data should be processed (to support lazy

evaluation). However, a Distributed Stream pipeline section only manages data flow and

is not concerned with data storage, thus each data item is always in memory as it is moved

through the pipeline (or pipeline section).

Since Spark is a high-level framework, it does not have operations for distributing

data across nodes with a programmer-supplied partitioner. Instead, this shuffling of data

is done internally by several of the transformations and actions when required.

7.3.2 Distributed Stream implementation for Spark

Due to the similarities in programming models, parts of the Spark and Distributed Stream

pipelines can be almost identical. However, programmers using Distributed Streams will

need to be aware of the following:

• A feature of Spark is that it can reuse computed values in an RDD on a best-effort

basis with the cache method. However, there is no equivalent feature in Distributed

Streams. This is due to inheriting the Java 8 Stream model, which allows only linear

pipelines and keeps data that is processed through the pipeline in memory, thus

eliminating the need for caching. To manually store and use intermediate results, the

programmer can collect data into a Distributed Collection (using localCollect) and

start a new Distributed Stream from that collection. This is illustrated in figure 7.5.

• Since Spark has the concept of a driver program which defines the pipeline and
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Spark Distributed Stream
RDD 0

RDD 1

RDD 2

...

rdd0

 .trans(...)

 .cache()

 .trans(...)

Collection 0

Collection 1

c1 = c0
 .parallelStream()

 .op(...)

 .localCollect(
   Collectors.toList()
 );

 .op(...)

...

DistributedCollection
 .wrap(c1)
 .parallelStream()

 ... ...

Transformation Operation

Transformation

Operation

localCollect

Figure 7.5: Caching in Spark and Distributed Streams. A cylinder indicates that the
dataset is stored.

submits work to the master node, actions such as collect send data to the driver

instead of to all processes on participating nodes. To achieve a similar effect of

sending all data to one compute node, the distribute(node ) operation can be

used.

• Like Distributed Stream operations, a number of Spark transformations and actions

require significant inter-node communication when dealing with datasets spanning

multiple nodes and should be avoided if there are still many elements in the dataset.

• Distributed Collections are not guaranteed to be redundant. If the underlying data

source has no redundancy, Distributed Collection implementations will need to han-

dle it. This is rare, as common distributed file systems such as HDFS and Lustre [63]

can be configured for redundancy, or have it enabled by default.

7.3.3 Spark example

To demonstrate the similarities and differences between Spark and Distributed Streams,

reference is again made to the detailed word-count example. The corresponding Spark

code (using lambda expressions) is shown in listing 7.6.

After replacing each line of text with the individual words (using flatMap), each word

is converted to a (word, 1) pair. The reduceByKey transformation reduces values (word,

M) and (word, N) to (word, M + N). The collect action ends the pipeline, saving the

remaining pairs into a List. Finally, the list contents are printed to standard output.

Note that Spark has built-in definitions for tuples and has transformations that handle

tuples. This allows the pipeline to be more concise.

7.3.4 Storm and comparisons with Distributed Streams

Storm is also a stream-based programming model, but it performs eager evaluation, as

opposed to lazy evaluation in Distributed Streams. Another major departure from the

104



static void wordcount(JavaRDD<String> lines) {

Pattern pat = Pattern.compile("\\s+");

List<Tuple2<String, Integer>> result = lines

.flatMap(line -> Arrays.asList(pat.split(line))

// Convert to (word, 1) pair

.mapToPair(s -> new Tuple2<String, Integer>(s, 1))

// Add pairs with same words together

.reduceByKey((i1, i2) -> i1 + i2)

// Save as list of (word, count) pairs

.collect();

// Print each (word, count) pair

for (Tuple2<?,?> t : result)

System.out.println(t._1() + "\t" + t._2());

}

Listing 7.6: Detailed word-count application using Spark.

A B

D

C

E F

DistributedStream initial = ...;

DistributedStream[] splits = initial

.op(...) // A

.op(...) // B

.split(2); // Split into 2 streams

DistributedStream afterC = splits[0].op(...); // C

DistributedStream afterD = splits[1].op(...); // D

afterC

.join(afterD) // Join streams

.op(...) // E

.op(...); // F

Figure 7.6: Example non-linear Storm topology and the Distributed Stream pseudocode
that implements it.

other programming models is that Storm topologies run indefinitely, thus stopping the

computation requires external action.

7.3.5 Distributed Stream implementation for Storm

In a Storm topology, bolts receive data streams consisting of tuples (from spouts and other

bolts), perform computation on them, and may output streams to other bolts. A linear

topology maps easily to a Distributed Stream pipeline, which is implicitly linear.

A non-linear topology can be broken up into linear sections, splits and joins. As above,

a linear section can be implemented with a single Distributed Stream pipeline. A split can

be implemented with the split operation, which sends data to multiple pipelines. A join

can be implemented by the join operation, which merges data from multiple pipelines.

Figure 7.6 illustrates an example non-linear Storm topology and the corresponding map-

ping to Distributed Streams.
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7.3.6 Storm example

For Storm, the pipeline is split into two bolts shown in listing 7.7. The bolts are incorpo-

rated into a topology with the code in listing 7.8.

public class Splitter implements IRichBolt {

// Private variables are initialised in the prepare() method

private OutputCollector collector;

@Override public vold execute(Tuple line) {

Pattern pat = Pattern.compile("\\s+");

for (String word: pat.split(line.getString(0)))

collector.emit(new Values(word)); // Send each word to next bolt

collector.ack(line);

}

// ...

}

public class Counter implements IRichBolt {

// Private variables are initialised in the prepare() method

private OutputCollector collector;

private TreeMap<String, Integer> wordcount;

@Override public vold execute(Tuple t) {

String word = t.getString(0);

if (wordcount.containsKey(word))

wordcount.put(word, wordcount.get(word) + 1); // Update occurrence

else

wordcount.put(word, 1); // Add new word

collector.ack(t);

}

// ...

}

Listing 7.7: Detailed word-count application using Storm.

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("input", ...);

builder.setBolt("split", new Splitter()).shuffleGrouping("input");

builder.setBolt("count", new Counter()).shuffleGrouping("split");

// ...

Listing 7.8: Storm topology for detailed word-count application.

When run, the Splitter accepts lines of text and outputs individual words. Con-

currently, the Counter adds each word from the Splitter into a TreeMap or updates its

occurrence if already present. Since Spark topologies run indefinitely, an external signal,

special marker or timeout is needed to indicate the end of input and that the TreeMap is

ready to be output.

7.4 Evaluating the performance of Distributed Streams

Direct comparisons of end-to-end execution times for Distributed Streams, Spark and

Hadoop are often not appropriate because each system performs different styles of com-

putation, at different times, and with different data distribution, replication, and fault
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tolerance guarantees. Therefore, this evaluation attempts to remove initial distribution

from the comparison and focus solely on the computation by pre-distributing the input

data. This is how Hadoop (and Spark on HDFS) works normally, but it is not required

by Storm or the Distributed Streams approach.

7.4.1 Benchmarking suite, clusters and workloads

BigDataBench [87] is a benchmarking suite containing a wide range of Big Data workloads

that run on datasets randomly generated from real-world data. Unlike other benchmark-

ing suites, it comes with a variety of real-world datasets, with workloads spanning multiple

application domains such as search engines, e-commerce and social networking (its empha-

sis is on Internet services, but there are also workloads for DNA sequencing and ongoing

progress on adding image, video and raytracing workloads). It also has multiple framework

implementations for many of the workloads.

The evaluation was based on a subset of BigDataBench workloads with Hadoop and

Spark implementations, and that span many of the domains covered. Being a work-in-

progress, there is a possibility of testing more workloads and frameworks as they are added

to BigDataBench.

Tests were carried out on two clusters with varying numbers of nodes:

1. A cluster with a master node and 6 compute nodes, with a total of 12 compute cores.

This was a private cluster with exclusive access given, allowing for more accurate

measurements.

2. A national, shared cluster1 with 332 nodes, of which:

(a) A master node and 10 compute nodes were used, with a total of 160 compute

cores.

(b) A master node and 20 compute nodes were used, with a total of 320 compute

cores.

Using two cluster sizes allows evaluating the framework’s scalability as more nodes

are added. However, the shared nature of this cluster made measurements less

accurate (fewer repetitions were carried out due to resource constraints, and there

was the potential of interference from other users).

Table 7.2 lists the workloads that were evaluated, along with their attributes and the

input sizes used. For each workload, a Distributed Stream application was implemented

and compared against the provided Hadoop and Spark implementations.

In the BigDataBench suite, the Hadoop and Spark workloads read their data from

HDFS. Thus, to use the same data source for all tests, HDFSStringCollections and HDFS-

StringCollection-Writers were implemented to allow Distributed Stream workloads to

also access HDFS data (see section 6.6.1 and 6.6.2 for details on their implementation).

1N8 High Performance Computing cluster (URL: http://n8hpc.org.uk).
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Workload Attributes Inputs (cluster 1) Inputs (cluster 2)

Grep Disk-intensive 2GB – 32GB 2GB – 32GB
Sort Disk-intensive,

communication-
intensive

2GB – 32GB 2GB – 32GB

Word-count (detailed) Disk-intensive 2GB – 32GB 2GB – 32GB
Bayes (naive) Disk-intensive 1GB – 16GB 1GB – 32GB
Connected components Graph, communication-

intensive
210 – 218 vertices 210 – 220 vertices

PageRank Graph, communication-
intensive

210 – 218 vertices 210 – 220 vertices

Table 7.2: Workloads evaluated, attributes and input sizes tested.

7.5 Experimental setup

Cluster 1 consisted of one master and six compute nodes:

• Intel Core 2 Duo E6600 with 2GB RAM (master)

• Intel Core 2 Duo E6400 with 2GB RAM

• Intel Core 2 Duo E6400 with 4GB RAM

• Intel Core 2 Duo E8400 with 8GB RAM

• 3 × Intel Core 2 Duo E8400 with 4GB RAM

Each node had a single 7200RPM hard disk attached. The master node ran Ubuntu 12.04

Linux while the compute nodes ran Debian 7 Linux. All nodes were connected with gigabit

Ethernet via a switch.

Cluster 2a consisted of one master and 10 compute nodes, with two Intel E5-2670

CPUs per node (for a total of 16 cores per node). Each node had 64 GB of RAM, an

attached 7200RPM hard disk, and ran CentOS 6.7 Linux. All nodes were connected with

InfiniBand. Cluster 2b consisted of one master and 20 compute nodes with the same

hardware as cluster 2a.

For all clusters, Hadoop version 1.2.1 and Spark version 1.3.0 were used. Java 8u5 was

used on cluster 1, while Java 8u45 was used on clusters 2a and 2b.

To minimise any differences in input data access, all tests read their input data from

HDFS (as this was the default for the Hadoop and Spark tests) with data replication dis-

abled. Input data was copied to HDFS before any measurements began, and the OS buffers

were cleared before each test. The master node acted as the HDFS namenode as well as

the jobtracker, while the compute nodes were each HDFS datanodes and tasktrackers.

7.6 Tests and workloads

The following metrics were obtained:

• Execution time – the elapsed time of the computation, excluding the time taken to

copy data to HDFS. This was taken from output of the time command prepended

to the startup command on the driver node.
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• Network usage – the total volume of data transferred over the network during the

computation, again excluding the initial copying of data to HDFS. This was taken

from output of the ifconfig commands which ran before and after each run on each

node, the sum of all (transferred) network traffic giving the desired metric.

A number of runs were carried out for each input size, and the average values and

standard deviations were obtained:

• For cluster 1, workloads were run 15 times per input size.

• For clusters 2a and 2b, workloads were run 5 times per input size (due to resource

constraints).

The rest of this section gives details of all workloads. Full code for all workloads can

be found in appendix B.

7.6.1 Grep

The grep workload behaves similarly to the Unix grep tool: it outputs the lines of an

input file for which the given regular expression can be found. This is implemented with

Distributed Streams as shown in listing 7.9.

void grep(DistributedCollection<String> lines, String re)

{

// Initialise regular expression pattern

Pattern match = Pattern.compile(re);

lines

.parallelStream()

// Retain lines that match regular expression

.filter(line -> match.matcher(line).find())

.localForEach(System.out::println);

}

Listing 7.9: Distributed Stream implementation of the grep workload.

7.6.2 Sort

The sort workload reads an input text file, sorts the lines and outputs the result. Since

the sorted operation has been reimplemented in the framework to support larger-than-

memory datasets, the programmer does not have to be concerned about memory usage

during the sorting phase. Thus, sorting a stream of data simply uses the sorted operation,

as shown in listing 7.10.

After sorting, the results are added to another Distributed Collection. In this workload,

the resulting Distributed Collection is a HDFSStringCollectionWriter, thus data that is

added to the collection is written to a HDFS file.

7.6.3 Word-count

The word-count workload outputs the number of occurrences of each word in an input

text file. The Distributed Stream algorithm used is the same as the detailed word-count

described in listing 7.5.
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static void sort(DistributedCollection<String> lines,

DistributedCollection<String> result)

{

lines

.stream()

.sorted()

.localForEach(result::add);

}

Listing 7.10: Distributed Stream implementation of the sort workload.

7.6.4 Bayes

The Bayes workload classifies lines of text from an input file using a naive Bayes classifier.

Before the workload, the classifier is trained with a subset of the input file, and the models

are stored in a HDFS file. Each model contains a map of (word, probability) pairs. The

elapsed time and resources used in training are not taken into account.

The classification algorithm used is shown in listing 7.11 and is adapted from the Spark

implementation. The Hadoop implementation uses the Mahout [7] library. The algorithm

is highly parallelisable, and assuming that the models fit in memory, each line is processed

in parallel as follows:

1. The line is parsed to obtain a set of words (i.e. duplicates are removed).

2. Iterating through each model, multiply the probabilities of each word (as given in

the model) together to obtain the a posteriori probability.

3. From these, pick the model which gives the highest a posteriori probability for the

line.

7.6.5 Connected components

The connected components workload finds the subsets of a graph described by an input

file that are connected together (directly or indirectly) by edges. The algorithm used in

the Distributed Stream version is as follows:

1. Each node reads its local part of the graph and finds the sets of vertices in the

subgraph that are connected.

2. All sets of vertices are sent to the first node, which accumulates and merges them if

there are overlaps.

The Hadoop and Spark implementations use the Pegasus [20] and GraphX [10] libraries

respectively.

7.6.6 PageRank

The PageRank workload executes a naive PageRank analysis on an input file describing a

directed graph, with each line describing an edge in the graph. The implementation uses

an iterative MapReduce approach with a damping factor d of 0.85 as follows:
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static void classify(DistributedCollection<String> lines,

DistributedCollection<String> out, String trainFile)

{

...

FileSystem fs = ...; // Used for opening HDFS files

Pattern delim = Pattern.compile("\\s+");

// Read models into memory

Map<String, Map<String, Double>> models;

ObjectInputStream in = new ObjectInputStream(fs.open(new Path(trainFile)));

models = (Map<String, Map<String, Double>>) in.readObject();

...

// Run classifier

lines

.parallelStream()

.map(line -> {

// Get words in line with no duplicates

Set<String> words = Arrays.stream(delim.split(line)).collect(Collectors.toSet());

double maxp = -1.0;

String result = "default";

// Iterate through each model and compute most probable model

for (Map.Entry<String, Map<String, Double>> m: models.entrySet())

{

double p = 1.0;

Map<String, Double> model = m.getValue();

// Compute a posteriori probability

for (String word: words)

p *= model.getOrDefault(word, 0.0001);

// Update most probable model for line

if (p > maxp)

{

maxp = p;

result = m.getKey();

}

}

return result + " " + line;

})

.localForEach(line -> {

out.add(line);

});

}

Listing 7.11: Distributed Stream classification algorithm for the Bayes workload.
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1. The PageRank of each node is initialised to 1.

2. Map stage: each source node’s PageRank is divided into fragments of equal value to

be distributed to each destination node that is linked to from the source node.

3. Reduce stage: for each destination node, the incoming fragment values are summed

up and the result r is used to compute the node’s new PageRank (which is rd+1−d).

4. Repeat steps 2 and 3 for a total of 10 iterations2.

The Hadoop and Spark implementations were also run for at most 10 iterations.

7.7 Results and discussion

All experimental results from the tests described in section 7.6 can be found in appendix A

arranged according to workload. (Several of the graphs are reproduced in this section for

convenience.)

Note that even though the tests were carried out as fairly as possible, Distributed

Streams are a proof-of-concept and are not heavily optimised. On the other hand, Hadoop

and Spark have been under active development for several years and are thus much more

optimised. Fault tolerance is also not implemented in Distributed Streams. Therefore, it

is not burdened by such overhead. However, fault tolerance overheads may still exist in

Hadoop and Spark regardless of the reliability of the clusters.

7.7.1 Execution time

The Distributed Stream implementations of disk-intensive-only workloads (Bayes, grep

and word-count) ran significantly faster than or comparable to those for Hadoop and

Spark. Figure 7.7 shows the execution time results for the grep workload on cluster 2b.

On cluster 1, the performance of Distributed Stream sort workloads (which are both

disk-intensive and network-intensive) were comparable to Spark’s and Hadoop’s respec-

tively. However, on clusters 2a and 2b, the sort workload ran significantly slower (see

figure 7.8 for sort workload execution time results on cluster 2b). This was due to the

sorting implementation not making full use of the faster network interconnect and available

memory. An improved version was implemented with the following changes:

• The data items are sorted locally and partitioned according to the sampled data.

• On each node, several threads are created (one for each compute node except itself)

and associated with each partition destined for a non-local node.

• Each thread sends data from its partition to the destination node in sorted order.

This replaces the existing implementation which uses a single thread to send all data

unsorted.

2In general, PageRank algorithms terminate when the new PageRank values differ by less than a
threshold. However, due to the different algorithms used, the number of iterations would be different, thus
an upper limit for the number of iterations was specified.
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Figure 7.7: Average execution time for the Grep workload on cluster 2b (20 nodes).

• Each node receives and merges the incoming data on the fly. This replaces the

existing external merge sort as there is sufficient memory in clusters 2a and 2b to

hold all the data.

This was substituted for the existing version and measured to run about 1.2× faster than

Spark for the largest input size. It appears that the performance of operations requiring

communication are dependent on the internals of the transport layer used. In this case, the

use of multiple threads for sending data and a single thread for receiving data was faster

on MPJ Express than other threading combinations. Thus, modifying the implementation

to sort data first allows concurrent sending of data which potentially speeds up execution

time.

For graph workloads (connected components and PageRank), execution times for Dis-

tributed Stream implementations vary widely depending on the input size. See figure 7.9

for PageRank workload execution time results on cluster 2b. Besides being less optimised,

another reason is that Hadoop and Spark have optimised graph processing frameworks

and libraries (Pegasus and GraphX) that are closely tied to the respective programming

models while the graph algorithms for Distributed Stream implementations were written

from scratch. It is likely that if more efficient graph algorithms and optimisations are

used, they can scale as well as Hadoop and Spark for larger datasets.

The standard deviations on cluster 1 are generally smaller than those on clusters 2a

and 2b. This is because full and exclusive access was given to cluster 1 for the tests, while

the nodes in clusters 2a and 2b were part of a larger shared cluster with a job submission

mechanism. This hindered efforts to minimise variability in clusters 2a and 2b. Such
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Figure 7.8: Average execution time for the Sort workload on cluster 2b (20 nodes).
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Figure 7.9: Average execution time for the PageRank workload on cluster 2b (20 nodes).
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factors included interference from other users of the cluster, the lack of hard disk data

persistence between jobs and the differences in hardware (especially hard disk I/O speeds).

7.7.2 Network usage

Hadoop and Spark attempt to load-balance tasks across the cluster, which may require

nodes to read data on a non-local disk and have it sent across the network. Distributed

Streams does not do this, except for sending data items that straddle HDFS blocks. This

can be seen in results for the grep and word-count workloads, with network usage being

higher and less predictable for Hadoop and Spark than Distributed Streams (see figure 7.10

for the grep workload network usage results on cluster 2b). In particular, on clusters 2a

and 2b, some of the standard deviations for Spark’s network usage were larger than the

values themselves. These large variations are likely caused by the difference in HDFS block

locations in the input data (the input data could not be persistent on these clusters and

thus had to be copied to HDFS for every run, resulting in different block placements).
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Figure 7.10: Average network usage for the Grep workload on cluster 2b (20 nodes).

The network usage patterns are generally determined by what each workload does. Low

usage is observed in disk-intensive workloads grep and word-count which output a small

volume of data (see figure 7.10). Higher usage is observed in the Bayes workload due to

writing each line of input to output together with its classification and attempts by HDFS

to distribute the output data over the cluster. The difference in Bayes results between

Hadoop and the other frameworks is likely due to the less optimised HDFS bindings for

Distributed Streams (HDFSStringCollectionWriter) and Spark.

The highest usage is found in the sort workload, which is due to the shuffling and
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subsequent writing out of the entire dataset (which HDFS tries to balance over the cluster).

Again, Hadoop has the least usage due to its optimised shuffling and sorting. See figure 7.11

for network usage of the sort workload on cluster 2b.
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Figure 7.11: Average network usage for the Sort workload on cluster 2b (20 nodes).

Usage for the connected components and PageRank workloads are dependent on the

input data size, approaching linear growth as the dataset gets larger. Since the algo-

rithms of these two workloads vary widely by framework, they exhibit very different usage

patterns. See figure 7.12 for network usage of the PageRank workload on cluster 2b.

As previously mentioned, Distributed Streams are not heavily optimised. This is es-

pecially true of the communication layer. Though network usage of Distributed Streams

was generally in the high end, they still ran as fast as (if not faster than) the other frame-

works for non-graph workloads. This highlights the efficiency of Distributed Streams, and

especially the Java 8 Stream framework that it builds upon.

7.7.3 Further evaluation

More experiments were carried out to determine the cause of the different execution times

observed in section 7.7.1. The grep workloads for each framework were re-run on cluster

2b with a script that outputs the disk usage statistics per second on each compute node as

recorded by the Linux kernel for the duration of the computation. Then, each run’s disk

read per second statistics were obtained by summing up the individual node’s statistics.

Figure 7.13 shows the disk reads per second of one run from each framework, which

is representative of the other runs. Although all frameworks read from the same HDFS
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Figure 7.12: Average network usage for the PageRank workload on cluster 2b (20 nodes).

dataset, Distributed Streams had the highest disk read throughput and spent the least

amount of time with disks idle. Thus, it was more efficient in reading data from disk and

computation than the other frameworks. A possible reason is that the HDFSStringCollection

implementation only allows one thread to read from disk at a time, reducing contention

and enabling mostly sequential disk reads. This was shown in section 4.2.2 to be faster

than allowing multiple threads access to the disk at the same time, which degenerates into

random disk reads.

7.8 Summary

This section recapitulates the evaluation findings and brings up general observations.

7.8.1 Expressive power

The Distributed Stream framework is expressive enough to implement Big Data algorithms

across a wide range of domains. However, algorithms involving graphs (and other high-

level concepts) tend to be verbose. This is because, unlike Spark, the framework has no

special-purpose operations to simplify graph programming. In Hadoop’s case, its wide

usage has prompted the development of libraries, such as Mahout, that map well-known

Big Data algorithms to MapReduce jobs. In addition, Java 8 does not have graph data

structures in its core libraries. Thus the programmer will need to use a third-party library,

implement their own, or use distributed versions of Java collections and maps to achieve

the same results.
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Figure 7.13: Disk reads per second for the Grep workload on cluster 2b (20 nodes).

7.8.2 Performance

Of the six workloads, Distributed Streams performed better or comparably well with

three workloads (grep, word-count andBayes). One of the workloads (sort) achieved better

performance with an improved implementation on clusters 2a and 2b. Distributed Streams

did not scale well on the remaining workloads (connected components and PageRank, which

are graph workloads) due to the algorithms used and the unoptimised communication

layer. With an increase in cluster size, the execution time and network usage of Distributed

Streams scaled as well as those of Hadoop and Spark.

Currently, Distributed Streams do not provide any fault tolerance above that which

is already provided by the underlying communication layer implementation. Yet, these

results illustrate that as a thin layer, the Distributed Streams API is a suitable extension

to Java 8 Streams for Big Data computations.

With Distributed Streams being proof-of-concept, there is room for efficiency improve-

ments. To support larger clusters, reliability issues will also need to be addressed while

not significantly degrading performance.
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Chapter 8

Conclusion

This thesis has proposed, implemented and evaluated Distributed Streams, a framework

for Big Data computation based on Java 8 Streams. Returning to the hypothesis stated

in section 1.2:

This thesis contends that the Java 8 Stream framework is inadequate to sup-

port all the requirements of programming Big Data systems. However, it is

possible to extend the framework to meet all the requirements for programming

Big Data systems, and still achieve performance comparable to or exceeding

those of the popular Big Data frameworks (Hadoop and Spark, for example).

Furthermore, this can be achieved in a way which retains compatibility with

existing Java 8 software.

This has been adequately demonstrated in the thesis.

The thesis establishes in chapter 1 that although Java is the base language for widely

used Big Data frameworks, it does not have Big Data capabilities on its own, though

recent changes in Java 8 have brought it a step closer. The introduction of Streams and

lambda expressions in Java 8 have allowed more concise implementations of data-parallel

programs. However, current Big Data applications need the computing power and storage

capacity of multiple computers, so these new features are still insufficient for Big Data

processing on their own. Thus, this chapter supports the first sentence of the thesis

hypothesis:

This thesis contends that the Java 8 Stream framework is inadequate to support

all the requirements of programming Big Data systems.

In chapter 2, the thesis reviewed a number of Big Data programming models and

frameworks. Many of the popular Big Data frameworks (e.g. Hadoop, Spark, Storm

and S4) introduce programming models that require programmers to significantly rewrite

their programs and grasp new concepts in order to use them effectively. Applicability

and expressiveness is sometimes reduced due to restrictions in the programming model

(e.g. only mappers and reducers allowed in Hadoop/MapReduce computations, and Storm

topologies run indefinitely). Some of the frameworks (e.g. Hive, Shark and Ricardo) bring

Big Data capabilities to existing languages without significantly changing the existing

programming model. However, these mainly cater to high-level languages and, in the case
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of Ricardo, introduce another query language in the process. Java 8 Streams provide a

pipeline-based model, which is similar to Spark’s programming model, but is restricted to

a single JVM.

From these findings, chapter 3 derived a list of requirements for an extended Java 8

Stream framework that addresses Big Data issues to:

• Support running programs on a cluster of nodes.

• Support large datasets (both single-node and distributed).

• Maintain data locality within a node and across the cluster.

• Provide operations for distributing data and computation across the cluster.

• Be a drop-in replacement for Java 8 Streams.

These requirements define what needs to be met in order to support the following clause

in the thesis hypothesis:

However, it is possible to extend the framework to meet all the requirements

for programming Big Data systems...

Chapter 4 introduced the concept of Stored Collections as a data source for Java 8

Streams to allow efficient reading of data on disk and thus support large datasets on a

single node. Preliminary evaluations of Stored Collections used in conjunction with Java 8

Streams show better performance compared to Hadoop and that data locality is preserved

within a node.

Chapter 5 introduced the main contribution of the thesis, the Distributed Stream

framework that satisfies the remainder of the requirements. It extends the Java 8 Stream

framework to multiple JVMs, allowing it to be used in a cluster for greater parallelism.

Computation over the cluster is made possible by the concept of compute nodes and

groups, which allow addressing and grouping of nodes. A Distributed Stream is the dis-

tributed analog of a Java 8 Stream, using a pipeline that is replicated over the compute

nodes. New operations have been added to distribute data and computation across com-

pute nodes, as well as local operations that are useful in optimising the performance of

these pipelines. Also part of the framework are Distributed Collections, which are a data

source for Distributed Streams and encapsulate data that is partitioned across the clus-

ter. Furthermore, data from a distributed source can be fed into a pipeline that was

written for Java 8 Streams, demonstrating backward compatibility. A proof-of-concept

implementation was described in chapter 6.

The framework was evaluated in chapter 7 for programmability and performance

against popular Big Data frameworks. Programmability-wise, the framework is expres-

sive enough for MapReduce and streaming computations. Performance-wise, on many

workloads the framework either ran as fast as or faster than Hadoop and Spark. Hence,

chapters 4 to 7 fully support the second sentence of the thesis hypothesis:

However, it is possible to extend the framework to meet all the requirements

for programming Big Data systems, and still achieve performance comparable
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to or exceeding those of the popular Big Data frameworks (Hadoop and Spark,

for example).

In the remainder of this chapter, section 8.1 discusses areas for improvement and

further research, and section 8.2 concludes the thesis.

8.1 Future work

Chapter 7 has shown the advantages in using Distributed Streams. However, it has also

highlighted a number of limitations (as presented and implemented in the thesis). This

section discusses possible improvements in programmability and performance, and ways

to adapt the framework to a wider range of uses.

8.1.1 Fault tolerance

The Distributed Stream framework as implemented in chapter 6 is a proof-of-concept

and has no fault tolerance other than that provided by the underlying communication

layer. This is one of the Big Data attributes listed in section 3.1 not addressed in the

implementation. This is generally not a problem for small clusters consisting of recent

commodity hardware.

In environments with large clusters, the chance of hardware failure increases and it

is important that these failures do not prevent long-running computations from finishing.

Therefore, fault tolerance from node failures is an essential requirement in these situations.

(The software is assumed to be fault-free, so fault tolerance from software failures are

ignored.)

This section considers two ways to add fault tolerance to Distributed Streams – by

extending the current (SPMD-based) programming model, or by changing the program-

ming paradigm to be more similar to existing Big Data frameworks (master-slave). In the

current model, all compute nodes run the same program which synchronises the execution

of all nodes. Hence, the same pipeline would be running on all participating compute

nodes. In a hypothetical model that uses master-slave, the program would be run on a

master node which hands parts of pipelines to compute nodes for execution. The compute

nodes would then communicate among themselves to pass data around where necessary.

SPMD

As mentioned in section 2.4.1, using redundant nodes and checkpointing are two ways

fault tolerance on SPMD can be achieved. This can be introduced into the model by

extending the ComputeGroup class to handle failed nodes. Thus, compute groups would

monitor nodes for any failures and rerun the affected computations on other nodes. Using

this method, different levels and implementations of fault tolerance can be used in a single

program if needed.

There are several MPI implementations with extensions that address fault tolerance.

Two of them are FT-MPI [33] and StarFish MPI [2]. The drop in performance for both

approaches were shown to be minimal, so they can be considered for porting to Java and

use in Distributed Streams.
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Master-slave

Alternatively, one can base the fault tolerance implementation on those used in existing

Big Data frameworks.

In Hadoop, fault tolerance is achieved by the jobtracker periodically sending heartbeat

messages to the tasktrackers and restarting lost tasks on other nodes if no reply is received.

The Distributed Stream framework can adopt a similar approach by making the following

changes to the programming model:

• Running the main program on the master node only, and having the compute nodes

receive work from the master. Thus, the master node can send the same piece of

work to another compute node if one fails.

• Disallowing addressing of specific compute nodes and compute groups. Thus, all

Distributed Stream pipelines will be replicated across the whole cluster. Hints may

be given to the framework to specify the number of destination nodes a distribute

operation should send data to, but the actual number cannot be guaranteed. This

may also imply having a process that load-balances work on the cluster to avoid

situations where most work is sent to one node (unless explicitly hinted).

In the implementation, the master node would keep track of computations occurring

on the compute nodes and, on failure, restart them on another node. During distribute

operations, data sent over the network is logged, in case it needs to be re-sent to another

node.

This approach requires more changes to the programming model and implementation,

but the resulting fault tolerance mechanism would resemble that of other Big Data ap-

proaches more closely. The new programming model would be simpler (as there are no

compute nodes or groups) but with reduced expressiveness. Data parallelism and data

locality, which are important in Big Data computations, would be preserved but task par-

allelism would be eliminated, as the entire cluster would be performing a single stream

computation. This is unlikely to be a significant issue as most programs are not expected

to use the full expressiveness of the current model. The performance of this approach can

also be compared with that of the current approach by running the same workloads on

the new implementation.

8.1.2 Supporting different data formats

Another Big Data attribute listed in section 3.1 is the support of different data formats.

Currently, support only exists for accessing HDFS files (through HDFSStringCollections

that were implemented for evaluating the framework). A comprehensive implementation of

Distributed Streams would include Distributed Collections that read from other common

data formats such as Cassandra and HBase [5].

8.1.3 Optimising performance

The framework’s specification is sufficiently broad to allow for many dissimilar implemen-

tations, so an optimised one may look very different from the current prototype. An

optimised implementation will likely have the following properties:
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• Uses a fast, low-level communication layer. This may be accomplished by using

a network layer that offers Java Native Interface (JNI) support. Thus, part of its

implementation would bypass the JVM and potentially reduce latencies for sending

and receiving messages.

• Minimises the overhead of partitioning data by keeping the number of partitions

small. However, too small a number may unnecessarily delay processing and consume

memory while data is buffered, so some benchmarking and heuristics may be needed

to arrive at a reasonable range of values.

• Writes temporary data to disk only when memory is low. Certain complex operations

(for example sorted) will benefit from this optimisation if there is enough memory

to hold the temporary data, saving costly disk I/O.

• If accurate results are not required, operations which consume memory proportional

to the input size (such as distinct) can be reimplemented to use approximate

algorithms, or have a counterpart that uses these. This would lower the program’s

memory usage.

8.1.4 Programming extensions

Chapter 7 described two graph workloads (connected components and PageRank) that

were used in the evaluation of Distributed Streams. Since the framework does not have

operations that simplify graph programming, implementations of these workloads manipu-

lated primitive data in Distributed Collections. Although this gives the programmer more

control over the implementation, it leads to more verbose code. To address this issue,

further research can be carried out to determine common patterns that are found in graph

algorithms that use Distributed Streams, and then consider extending the framework in

one of a few ways:

• Extend the DistributedStream interface to handle streams of vertices and/or edges

and include graph operations.

• Implement a separate graph library that uses Distributed Streams for computation.

8.1.5 Improving the prototype implementation

The prototype implementation as presented in chapter 6 suffers from a number of limita-

tions. The following suggests ways to work around them:

• The current implementation does not allow null values to be used in streams, as it is

used internally as the last data item sent from a compute node during a distribute

operation. A possible solution is to send a more-data indicator together with each

item, so that a destination node knows whether to expect more data items from a

source node.

• The current implementation only allows objects that are serialisable to be sent during

a distribute operation. This is a limitation of using the MPJ Express MPI.OBJECT
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type. As a workaround, serialisation can be done using an alternative library (for

example Kryo [56]) and the resulting byte stream sent as a MPI.BYTE array. Thus,

objects that do not implement Serializable can still be serialised and used in

distribute operations without any changes, improving compatibility with existing

code.

The procedure for starting programs can also be improved by hiding MPJ Express-

specific and other implementation details. For example, to run a program in the HelloWorld.class

file, the startup command could be simplified to that in listing 8.1.

$DSTREAM_PATH/run [-c cluster-spec] HelloWorld [args...]

Listing 8.1: Improved command to run a Distributed Stream program (in class file
HelloWorld.class). The $DSTREAM PATH environment variable contains the installed path
of the framework. The -c cluster-spec option describes the cluster the program will
run on.

8.1.6 Evaluation of simultaneous workloads

All tests in chapter 7 consisted of single workloads that were run across the whole cluster.

This is useful for gauging the baseline performance of frameworks. However, clusters

may be running several Big Data computations at once and it would be insightful to

observe the performance of Distributed Streams on multiple simultaneous workloads. (The

BigDataBench benchmarks also do not consider such cases.) The performance of these

tests may depend largely on how efficiently data is read from disk, as there potentially

would be multiple tasks needing disk access at the same time.

There could also be variations of these tests, including running different workloads (for

example sort and word-count) and starting them at different times. These would more

closely simulate Big Data clusters that respond to queries from front-end servers.

8.1.7 Evaluation of other use cases

Although chapter 7 compared the programming models of Distributed Streams and Storm,

there was no evaluation of Storm’s performance. In part, this is due to the difference in

purposes of each framework – Storm is designed for low-latency event processing. The

BigDataBench suite also did not include workloads for Storm. However, it would be

interesting to compare the performance of both frameworks on event processing-based

workloads.

Currently, each worker thread in Distributed Streams receives a batch of data items

every time they call the trySplit method of a spliterator. Although this reduces overheads

for Big Data processing, this may increase the latency of responses when the rate of arrival

of data items (events) is slow. In this case, the spliterator implementation can be modified

to reduce the batch size of data items, possibly to 1 if a near-immediate response is needed.
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8.2 Closing remarks

Java 8 Streams is an efficient framework for data parallel computation within a JVM.

This can be seen in results from experiments in chapter 4 to determine the single-node

performance of Java 8 Streams. Today, however, Big Data involves distributed computing

which Java 8 Streams does not provide. This thesis has presented in chapter 5 an extended

framework, called Distributed Streams, that addresses the Big Data shortcomings in Java 8

Streams. The framework is also backward compatible with Java 8 Streams, allowing most

existing programs to be incrementally changed to use the full functionality of Distributed

Streams.

This framework was evaluated in chapter 7 and many workloads were shown to be

faster or as fast using Distributed Streams compared to Hadoop and Spark. Given more

resources, it should be possible for performance to be improved further.

The thesis has taken a bottom-up approach to introducing Big Data into an existing

framework. This approach was taken after having observed that Java 8 Streams already

perform efficiently on a single node, and in many cases more efficiently than Hadoop.

More generally, the thesis has shown that extending an existing shared memory pro-

gramming model to support Big Data is a viable alternative to rewriting the entire program

in a new and unfamiliar model. The popular Big Data frameworks such as Hadoop rev-

olutionised Big Data computing, but require programmers to learn a new programming

model. The approach this thesis has taken preserves most properties of the existing model

as well as its syntax.
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Appendix A

Distributed Stream Evaluation

Results

This appendix contains all the execution time and network usage results from the Dis-

tributed Stream framework evaluation in chapter 7, grouped by workload.
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Figure A.1: Average execution time and network usage for the Grep workload on cluster
1 (6 nodes).
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Figure A.2: Average execution time and network usage for the Grep workload on cluster
2a (10 nodes).
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Figure A.3: Average execution time and network usage for the Grep workload on cluster
2b (20 nodes).
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A.2 Sort

On cluster 1, Spark did not complete for the largest input size due to insufficient disk

space for the computation.
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Figure A.4: Average execution time and network usage for the Sort workload on cluster
1 (6 nodes).
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Figure A.5: Average execution time and network usage for the Sort workload on cluster
2a (10 nodes).
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Figure A.6: Average execution time and network usage for the Sort workload on cluster
2b (20 nodes).
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A.3 Word-count
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Figure A.7: Average execution time and network usage for the Word-count workload on
cluster 1 (6 nodes).
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Figure A.8: Average execution time and network usage for the Word-count workload on
cluster 2a (10 nodes).

138



2 4 8 16 32
101

102

Input size [GB]

E
x
ec

u
ti

on
ti

m
e

[s
]

Word-count

2 4 8 16 32

102

103

Input size [GB]

N
et

w
or

k
u

sa
ge

[M
B

]

Distributed Stream
Hadoop
Spark

Figure A.9: Average execution time and network usage for the Word-count workload on
cluster 2b (20 nodes).
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A.4 Bayes
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Figure A.10: Average execution time and network usage for the Bayes workload on cluster
1 (6 nodes).
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Figure A.11: Average execution time and network usage for the Bayes workload on cluster
2a (10 nodes).
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Figure A.12: Average execution time and network usage for the Bayes workload on cluster
2b (20 nodes).
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A.5 Connected components
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Figure A.13: Average execution time and network usage for the Connected components
workload on cluster 1 (6 nodes).
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Figure A.14: Average execution time and network usage for the Connected components
workload on cluster 2a (10 nodes).
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Figure A.15: Average execution time and network usage for the Connected components
workload on cluster 2b (20 nodes).

148



C
o
n
n
e
c
te
d

c
o
m
p
o
n
e
n
ts

D
is

tr
ib

u
te

d
S

tr
ea

m
H

ad
o
op

S
p

a
rk

In
p

u
t

(v
er

-
ti

ce
s)

T
im

e
(s

)
S

td
.

d
ev

.
N

et
w

or
k

(M
B

)
S

td
.

d
ev

.
T

im
e

(s
)

S
td

.
d

ev
.

N
et

w
or

k
(M

B
)

S
td

.
d

ev
.

T
im

e
(s

)
S

td
.

d
ev

.
N

et
w

o
rk

(M
B

)
S

td
.

d
ev

.

21
0

23
.6

1
0.

33
1

0
22

66
.1

5
5.

26
10

0
0

1
8
.2

0
0
.4

7
0

0
21

2
25

.3
7

0.
29

4
0

22
68

.3
0

3.
38

10
8

1
1
8
.8

4
0
.5

6
0

0
21

4
32

.4
9

0.
46

14
0

25
94

.6
6

5.
80

16
0

1
2
0
.8

3
0
.4

9
1

0
21

6
62

.0
8

0.
72

62
0

26
64

.9
0

3.
48

34
1

4
2
5
.3

2
0
.6

0
3

0
21

8
28

8.
81

7.
80

30
1

2
30

47
.0

9
6.

77
13

35
14

3
9
.2

9
1
.1

2
1
4

0

T
ab

le
A

.1
3:

A
v
er

ag
e

ex
ec

u
ti

on
ti

m
e

an
d

n
et

w
or

k
u

sa
ge

fo
r

th
e

C
o
n

n
ec

te
d

co
m

po
n

en
ts

w
o
rk

lo
a
d

o
n

cl
u

st
er

1
(6

n
o
d
es

).

C
o
n
n
e
c
te
d

c
o
m
p
o
n
e
n
ts

D
is

tr
ib

u
te

d
S

tr
ea

m
H

ad
o
op

S
p

a
rk

In
p

u
t

(v
er

-
ti

ce
s)

T
im

e
(s

)
S

td
.

d
ev

.
N

et
w

or
k

(M
B

)
S

td
.

d
ev

.
T

im
e

(s
)

S
td

.
d

ev
.

N
et

w
or

k
(M

B
)

S
td

.
d

ev
.

T
im

e
(s

)
S

td
.

d
ev

.
N

et
w

o
rk

(M
B

)
S

td
.

d
ev

.

21
0

11
.0

8
5.

85
2

0
46

2.
50

3.
02

13
3

8
1
7
.7

6
1
.4

3
2

0
21

2
7.

35
1.

75
4

0
52

6.
77

2.
80

16
1

8
1
9
.4

4
1
.5

6
4

0
21

4
11

.9
3

4.
01

15
0

52
6.

78
3.

04
20

4
4

1
9
.9

2
1
.6

9
8

2
21

6
23

.6
1

3.
38

63
1

54
5.

47
5.

88
38

2
4

2
1
.1

4
1
.8

5
3
5

4
21

8
11

7.
30

8.
52

29
0

3
55

5.
61

2.
78

12
33

8
2
4
.4

4
1
.7

5
1
3
8

2
1

22
0

13
06

.4
0

14
2.

91
13

30
22

63
6.

64
26

.9
0

52
65

48
4
3
.8

3
3
.3

8
5
9
2

3
5

T
ab

le
A

.1
4:

A
v
er

ag
e

ex
ec

u
ti

on
ti

m
e

an
d

n
et

w
or

k
u

sa
ge

fo
r

th
e

C
o
n

n
ec

te
d

co
m

po
n

en
ts

w
o
rk

lo
a
d

o
n

cl
u

st
er

2
a

(1
0

n
o
d

es
).

149



C
o
n
n
e
c
te
d

c
o
m
p
o
n
e
n
ts

D
is

tr
ib

u
te

d
S

tr
ea

m
H

ad
o
op

S
p

a
rk

In
p

u
t

(v
er

-
ti

ce
s)

T
im

e
(s

)
S

td
.

d
ev

.
N

et
w

or
k

(M
B

)
S

td
.

d
ev

.
T

im
e

(s
)

S
td

.
d

ev
.

N
et

w
or

k
(M

B
)

S
td

.
d

ev
.

T
im

e
(s

)
S

td
.

d
ev

.
N

et
w

o
rk

(M
B

)
S

td
.

d
ev

.

21
0

12
.6

1
3.

90
4

0
33

8.
44

5.
78

20
9

8
23

.2
7

4
.1

2
4

0
21

2
8.

42
2.

45
7

0
38

9.
32

7.
44

25
0

10
24

.7
3

5
.3

8
6

1
21

4
14

.2
2

3.
23

18
0

40
0.

64
17

.6
0

29
0

7
24

.8
3

4
.4

1
1
1

2
21

6
23

.3
5

5.
89

70
1

40
3.

56
13

.2
5

47
6

6
25

.3
3

3
.2

1
3
7

4
21

8
80

.7
8

6.
55

30
8

2
43

5.
40

70
.1

8
13

56
11

28
.3

0
3
.6

5
1
4
3

1
4

22
0

65
2.

53
55

.9
3

14
20

6
47

9.
74

6.
18

55
13

23
42

.0
3

2
.9

0
6
2
4

1
4

T
ab

le
A

.1
5:

A
v
er

ag
e

ex
ec

u
ti

on
ti

m
e

an
d

n
et

w
or

k
u

sa
ge

fo
r

th
e

C
o
n

n
ec

te
d

co
m

po
n

en
ts

w
or

k
lo

ad
on

cl
u

st
er

2
b

(2
0

n
o
d

es
).

150



A.6 PageRank

210 212 214 216 218

102

103

Vertices

E
x
ec

u
ti

o
n

ti
m

e
[s

]

PageRank

210 212 214 216 218

100

101

102

103

104

Vertices

N
et

w
or

k
u

sa
ge

[M
B

]

Distributed Stream
Hadoop
Spark

Figure A.16: Average execution time and network usage for the PageRank workload on
cluster 1 (6 nodes).
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Figure A.17: Average execution time and network usage for the PageRank workload on
cluster 2a (10 nodes).
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Figure A.18: Average execution time and network usage for the PageRank workload on
cluster 2b (20 nodes).
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Appendix B

Code listings

This appendix contains implementations of the workloads used in evaluating Distributed

Streams for easy reference. Source code for the Distributed Stream implementation (chap-

ter 6) and single-node experiments (chapter 4) can be found online at the follwing URL:

https://github.com/RTSYork/DistributedStream

B.1 Evaluation workloads

B.1.1 Grep

import dstream.*;

import dstream.util.*;

import java.util.*;

import java.util.concurrent.*;

import java.util.regex.*;

import java.util.stream.*;

public class HDFSGrep

{

public static void main(String[] argv)

{

if (argv.length < 3)

{

System.err.println("Usage: Grep REGEXP INDIR OUTDIR");

System.exit(1);

}

HDFSStringCollection lines = new HDFSStringCollection(argv[1]);

HDFSStringCollectionWriter result = new HDFSStringCollectionWriter(argv[2]);

grep(lines, result, argv[0]);

result.finish();

}

static void grep(DistributedCollection<String> lines,

DistributedCollection<String> result, String re)

{

Pattern match = Pattern.compile(re);

// Find lines containing the regular expression
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DistributedMap<String, Long> localFound = lines

.parallelStream()

.flatMap(line ->

{

Matcher m = match.matcher(line);

List<String> li = new ArrayList<>();

while (m.find())

li.add(m.group());

return li.stream();

})

// Group local occurrences and count

.localCollect(Collectors.groupingBy(s -> s, DistributedHashMap<String, Long>::new,

Collectors.counting()));

// Merge with all occurrences

DistributedMap<String, Long> totalFound = localFound

.entrySet()

.parallelStream()

.map(e -> new AbstractMap.SimpleEntry<>(e))

.distribute(e -> e.getKey().hashCode())

.localCollect(Collectors.groupingBy(e -> e.getKey(),

DistributedHashMap<String, Long>::new,

Collectors.summingLong(e -> (long) e.getValue())));

localFound = null;

// Store results

totalFound

.entrySet()

.stream()

.localForEach(e -> { result.add(e.getValue() + "\t" + e.getKey()); });

}

}

B.1.2 Sort

import dstream.*;

import dstream.util.*;

import java.util.*;

import java.util.concurrent.*;

import java.util.concurrent.atomic.*;

import java.util.regex.*;

import java.util.stream.*;

public class HDFSSort

{

public static void main(String[] argv)

{

if (argv.length < 2)

{

System.err.println("Usage: HDFSSort INDIR OUTDIR");

System.exit(1);

}

HDFSStringCollection lines = new HDFSStringCollection(argv[0]);

HDFSStringCollectionWriter result = new HDFSStringCollectionWriter(argv[1]);
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sort(lines, result);

result.finish();

}

static void sort(DistributedCollection<String> lines, DistributedCollection<String> result)

{

// Sort and store results

lines

.stream()

.sorted()

.localForEach(i -> { result.add(i); });

}

}

B.1.3 Word-count

import dstream.*;

import dstream.util.*;

import java.util.*;

import java.util.regex.*;

import java.util.stream.*;

public class HDFSWordCount

{

public static void main(String[] argv)

{

if (argv.length < 2)

{

System.err.println("Usage: HDFSWordCount INDIR OUTDIR");

System.exit(1);

}

HDFSStringCollection lines = new HDFSStringCollection(argv[0]);

HDFSStringCollectionWriter result = new HDFSStringCollectionWriter(argv[1]);

wordcount(lines, result);

result.finish();

}

static void wordcount(DistributedCollection<String> lines,

DistributedCollection<String> result)

{

Pattern delim = Pattern.compile("\\s+");

// Get local word counts

Map<String, Long> localCount = lines

.parallelStream()

.flatMap(line -> Stream.of(delim.split(line)))

.localCollect(Collectors.groupingByConcurrent(w -> w, Collectors.counting()));

DistributedMap<String, Long> localCountDistrib = DistributedMap.wrap(localCount);

// Shuffle

Map<String, Long> totalCount = localCountDistrib

.entrySet()

.parallelStream()

.map(e -> new AbstractMap.SimpleEntry<>(e)) // Map.Entry is not serialisable
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.distribute(e -> e.getKey().hashCode())

.localCollect(Collectors.groupingByConcurrent(e -> e.getKey(),

Collectors.summingLong(e -> (long) e.getValue())));

DistributedMap<String, Long> totalCountDistrib = DistributedMap.wrap(totalCount);

// Get total counts

totalCountDistrib

.entrySet()

.stream()

.localForEach(e -> { result.add("(" + e.getKey() + "," + e.getValue() + ")"); });

}

}

B.1.4 Bayes

import dstream.*;

import dstream.util.*;

import java.io.*;

import java.util.*;

import java.util.regex.*;

import java.util.stream.*;

import org.apache.hadoop.conf.*;

import org.apache.hadoop.fs.*;

import org.apache.hadoop.io.*;

import org.apache.hadoop.mapred.*;

// Naive Bayes trainer and classifier

public class HDFSBayes

{

private static void usage()

{

System.err.println("Usage:");

System.err.println("    HDFSBayes train INFILE TRAINFILE");

System.err.println("    HDFSBayes classify INFILE OUTFILE TRAINFILE");

System.exit(1);

}

public static void main(String[] argv)

{

if (argv.length < 3)

usage();

HDFSStringCollection lines = new HDFSStringCollection(argv[1]);

if (argv[0].equals("train"))

train(lines, argv[2]);

else if (argv[0].equals("classify"))

{

if (argv.length < 4)

usage();

HDFSStringCollectionWriter out = new HDFSStringCollectionWriter(argv[2]);

classify(lines, out, argv[3]);

out.finish();

}
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else

usage();

}

static void train(DistributedCollection<String> lines, String outFile)

{

FileSystem fs = null;

Configuration conf = new Configuration();

conf.addResource(new Path(System.getenv("HADOOP_HOME") + "/conf/core-site.xml"));

try

{

fs = FileSystem.get(conf);

}

catch (IOException e)

{

e.printStackTrace();

System.exit(1);

}

ComputeNode root = ComputeGroup.getCluster().get(0);

ComputeGroup rootGroup = new ComputeGroup(root);

Pattern delim = Pattern.compile("\\s+");

Map<String, P<HashMap<String, Integer>, Integer>> models_rk = lines

.parallelStream()

// Train every line

.map(line -> {

HashMap<String, Integer> wcount = new HashMap<>();

String[] tokens = delim.split(line);

String category = tokens[0];

for (int i = 0; i < tokens.length; i++)

wcount.put(tokens[i], 1);

return new P<>(category, new P<>(wcount, 1));

})

// Merge all classifiers

.distribute(rootGroup)

.localCollect(Collectors.groupingBy(p -> p.k,

Collector.of(() -> new P<>(new HashMap<>(), 0), (p, a) -> {

Map<String, Integer> wcount = p.k;

for (String word: a.v.k.keySet())

wcount.put(word, wcount.getOrDefault(word, 0) + 1);

p.v += a.v.v;

}, (p1, p2) ->

{

Map<String, Integer> wcount = p1.k;

for (String word: p2.k.keySet())

wcount.put(word, wcount.getOrDefault(word, 0) + 1);

p1.v += p2.v;

return p1;

})));

// Calculate probabilities

if (ComputeNode.getSelf() == root)

{

Map<String, HashMap<String, Double>> models_p = models_rk

.entrySet()

.parallelStream()
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.map(p -> {

HashMap<String, Double> prob = new HashMap<>();

Map<String, Integer> wcount = p.getValue().getKey();

double ccount = (double) p.getValue().getValue();

for (String word: wcount.keySet())

prob.put(word, (double) wcount.getOrDefault(word, 0) / ccount);

return new P<>(p.getKey(), prob);

})

.collect(Collectors.toMap(P::getKey, P::getValue));

try

{

ObjectOutputStream out = new ObjectOutputStream(fs.create(new Path(outFile), false));

out.writeObject(models_p);

out.close();

}

catch (IOException e)

{

e.printStackTrace();

System.exit(1);

}

}

}

static void classify(DistributedCollection<String> lines,

DistributedCollection<String> out, String trainFile)

{

FileSystem fs = null;

Configuration conf = new Configuration();

conf.addResource(new Path(System.getenv("HADOOP_HOME") + "/conf/core-site.xml"));

try

{

fs = FileSystem.get(conf);

}

catch (IOException e)

{

e.printStackTrace();

System.exit(1);

}

Pattern delim = Pattern.compile("\\s+");

// Read models into memory

Map<String, Map<String, Double>> models;

try

{

ObjectInputStream in = new ObjectInputStream(fs.open(new Path(trainFile)));

models = (Map<String, Map<String, Double>>) in.readObject();

in.close();

}

catch (IOException | ClassNotFoundException e)

{

e.printStackTrace();

System.exit(1);

return;

}
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lines

.parallelStream()

.map(line -> {

// Get words in line with no duplicates

Set<String> words = Arrays.stream(delim.split(line)).collect(Collectors.toSet());

double maxp = -1.0;

String result = "default";

// Iterate through each model and compute most probable model

for (Map.Entry<String, Map<String, Double>> m: models.entrySet())

{

double p = 1.0;

Map<String, Double> model = m.getValue();

for (String word: words)

p *= model.getOrDefault(word, 0.0001);

if (p > maxp)

{

maxp = p;

result = m.getKey();

}

}

return result + " " + line;

})

.localForEach(line -> {

out.add(line);

});

}

// Serialisable key-value pair

private static class P<T extends Serializable, U extends Serializable>

implements Serializable

{

public T k; // key

public U v; // value

public P(T k, U v)

{

this.k = k;

this.v = v;

}

public T getKey()

{

return k;

}

public U getValue()

{

return v;

}

}

}
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B.1.5 Connected components

import dstream.*;

import dstream.util.*;

import java.io.*;

import java.util.*;

import java.util.concurrent.*;

import java.util.regex.*;

import java.util.stream.*;

public class HDFSConnComponents

{

public static void main(String[] argv)

{

if (argv.length < 2)

{

System.err.println("Usage: HDFSConnComponents INFILE OUTDIR");

System.exit(1);

}

HDFSStringCollection lines = new HDFSStringCollection(argv[0]);

HDFSStringCollectionWriter outVertices =

new HDFSStringCollectionWriter(argv[1] + "/vertices");

HDFSStringCollectionWriter outSummary =

new HDFSStringCollectionWriter(argv[1] + "/summary");

cc(lines, outVertices, outSummary, 0);

}

static Queue<HashSet<Long>> localMerge(Queue<HashSet<Long>> q)

{

boolean changed;

do

{

Queue<HashSet<Long>> q2 = new ConcurrentLinkedQueue<>();

changed = false;

while (!q.isEmpty())

{

HashSet<Long> s1 = q.remove();

if (s1.isEmpty())

continue;

for (HashSet<Long> s2: q)

{

if (!Collections.disjoint(s1, s2))

{

s1.addAll(s2);

s2.clear();

changed = true;

}

}

q2.add(s1);

}

q = q2;

}

while (changed);
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return q;

}

static void cc(DistributedCollection<String> lines, DistributedCollection<String> result,

DistributedCollection<String> summary, int iterations)

{

Pattern delim = Pattern.compile("\\t");

// Load edges

Queue<HashSet<Long>> localComponents = new ConcurrentLinkedQueue<>();

lines

.parallelStream()

.flatMap(line -> {

String[] ints = delim.split(line);

if (ints.length != 2)

{

System.err.println("Invalid line format");

System.exit(1);

}

long v1 = Long.parseLong(ints[0]);

long v2 = Long.parseLong(ints[1]);

if (v1 < v2)

return Stream.of(new Edge(v1, v2));

if (v1 > v2)

return Stream.of(new Edge(v2, v1));

return null;

})

.distribute(e -> (int) e.v1)

.localForEach(e ->

{

HashSet<Long> s = new HashSet<>();

s.add(e.v1);

s.add(e.v2);

localComponents.add(s);

});

// Merge local components

Queue<HashSet<Long>> localMergedComponents = localMerge(localComponents);

DistributedCollection<HashSet<Long>> components =

DistributedCollection.wrap(localMergedComponents);

// Merge all components: send to first node

ComputeNode node0 = ComputeGroup.getCluster().get(0);

boolean isNode0 = node0.isSelf();

components

.parallelStream()

.filter(s -> !isNode0) // Don’t send components in node0

.distribute(node0)

.localForEach(s -> { localMergedComponents.add(s); });

if (!isNode0)

localMergedComponents.clear();

// Merge local components again

DistributedCollection<HashSet<Long>> allComponents =

DistributedCollection.wrap(localMerge(localMergedComponents));

// Output number of components

long count = allComponents

.parallelStream()
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.count();

System.out.println(ComputeNode.getSelf().getName() + ": There are " +

count + " components");

// Output vertices and their component IDs

// Output summary (number of vertices in each component; ie. number of

// vertices with same component ID)

allComponents

.stream()

.localForEach(s ->

{

List<Long> sorted = new ArrayList<>(s);

Collections.sort(sorted);

long root = sorted.get(0);

for (Long i: sorted)

result.add(i + "\t" + root);

summary.add(root + "\t" + s.size());

});

}

}

// Represents a directed edge from v1 to v2

class Edge implements Serializable

{

public long v1, v2; // Vertices: v1 -> v2

public Edge(long v1, long v2)

{

this.v1 = v1;

this.v2 = v2;

}

}

B.1.6 PageRank

import dstream.*;

import dstream.util.*;

import java.io.*;

import java.util.*;

import java.util.regex.*;

import java.util.stream.*;

public class HDFSPageRank

{

public static void main(String[] argv)

{

if (argv.length != 3)

{

System.err.println("Usage: HDFSPageRank INFILE OUTDIR ITERATIONS");

System.exit(1);

}

HDFSStringCollection lines = new HDFSStringCollection(argv[0]);

HDFSStringCollectionWriter out = new HDFSStringCollectionWriter(argv[1]);
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int iter = Integer.parseInt(argv[2]);

pagerank(lines, out, iter);

out.finish();

}

static void pagerank(DistributedCollection<String> lines,

DistributedCollection<String> out, int iterations)

{

Pattern delim = Pattern.compile("\\t");

// Directed edges: (from, (to1, to2, to3))

System.out.println("Loading links");

Map<String, List<String>> localLinks = lines

.parallelStream()

.map(s -> {

String[] parts = delim.split(s);

return new P<String, String>(parts[0], parts[1]);

})

.distribute(p -> p.getKey().hashCode())

.localDistinct()

.localCollect(Collectors.groupingByConcurrent(p -> p.getKey(),

Collectors.mapping(p -> p.getValue(), Collectors.toList())));

DistributedMap<String, List<String>> links = DistributedMap.wrap(localLinks);

System.out.println(links.size() + " links loaded.");

// Initialise ranks to 1.0

Map<String, Double> localRanks = links

.keySet()

.parallelStream()

.localCollect(Collectors.toConcurrentMap(s -> s, s -> 1.0,

(a, b) -> a));

DistributedMap<String, Double> ranks = DistributedMap.wrap(localRanks);

for (int it = 0; it < iterations; it++)

{

System.out.println("Iteration " + (it + 1));

final DistributedMap<String, Double> curRanks = ranks;

// Calculate contribution to destinations

Map<String, Double> localContribs = links

.entrySet()

.parallelStream()

.flatMap(e -> {

double size = (double) e.getValue().size();

return e

.getValue()

.stream()

.map(url -> new P<String, Double>(url,

curRanks.getOrDefault(e.getKey(), 0.0) / size));

})

.distribute(p -> p.getKey().hashCode())

// Add contributions for each destination together

.localCollect(Collectors.toConcurrentMap(

p -> p.getKey(), p -> p.getValue(),

(v1, v2) -> v1 + v2));

DistributedMap<String, Double> contribs = DistributedMap.wrap(localContribs);
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// Adjust ranks

localRanks = contribs

.entrySet()

.parallelStream()

.map(p -> new P<>(p.getKey(), p.getValue() * 0.85 + 0.15))

.localCollect(Collectors.toConcurrentMap(P::getKey, P::getValue, (v1, v2) -> v1));

ranks = DistributedMap.wrap(localRanks);

}

}

// Represents a key-value pair

private static class P<T extends Serializable, U extends Serializable>

implements Serializable

{

public T k; // key

public U v; // value

public P(T k, U v)

{

this.k = k;

this.v = v;

}

public T getKey()

{

return k;

}

public U getValue()

{

return v;

}

}

}
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