
ENHANCING ROBOTIC

COMMUNICATIONS VIA MOBILITY

DIVERSITY ALGORITHMS

Daniel Bonilla Licea

Submitted in accordance with the requirements for the degree of
Doctor of Philosophy

School of Electronic & Electrical Engineering,

University of Leeds.

August 2016





Declaration

The candidate con�rms that the work submitted is his/her own, except where work
which has formed part of jointly authored publications has been included. The
contribution of the candidate and the other authors to this work has been explicitly
indicated below. The candidate con�rms that appropriate credit has been given
within the thesis where reference has been made to the work of others. It is to
assert that the candidate has contributed solely to the technical part of the joint
publication under the guidance of his academic supervisors. Detailed breakdown of
the publications is presented in the �rst chapter of this thesis.

This copy has been supplied on the understanding that it is copyright material and
that no quotation from the thesis may be published without proper acknowledge-
ment.

c©2016 The University of Leeds and Daniel Bonilla Licea.

The right of Daniel Bonilla Licea to be identi�ed as Author of this work has been
asserted by him in accordance with the Copyright, Designs and Patents Act 1988.





Acknowledgements

First of all I would like to thank Dr. McLernon who was my academic supervisor
during my doctoral studies. His guidance from my �rst conference paper until this
thesis has been invaluable.

I am grateful to Prof. Mounir Ghogho for his suggestions and support during the
development of my doctoral studies.

I would like to acknowledge CONACYT (the Mexican National Council for Sci-
ence and Technology) for awarding me the scholarship that allowed me to complete
my studies. I am also thankful for the complementary �nancial aid provided to me
by the Secretariat of Public Education of Mexico.

I am also grateful for the support of my parents Moisés and Martha as well as
my brothers Samuel and Moïse.

Finally, I would also like to thank my friends and colleagues for all their support.

i



Abstract

Nowadays wireless communications is an important aspect of mobile robotics. It is
common that mobile robots need to establish wireless links to exchange information
with other robots, base stations or sensor nodes. And, as in traditional mobile
communications small-scale wireless channel fading also occurs in these scenarios.
This phenomenon means that the channel gain will vary signi�cantly over small-
distances and in a random manner. This degrades both the communication ability
of the robots and as a consequence, their overall performance in executing certain
tasks. There is therefore a clear need to compensate for this small-scale fading.

We could of course compensate small-scale fading in robotic communications
using classical diversity techniques. But these diversity techniques were designed for
transceivers that either cannot move, or can move but have no control over their
position. In the context of robotic communications we can think of mobile robots as
transceivers who know their own position and can also control it. This allows us to
create a new form of diversity called mobility diversity whose principle is as follows.
If the mobile robot experiences a poor channel gain due to a deep fading then it can
alter its location by a small amount in order to �nd a new point with a higher channel
gain (note that a low channel gain requires more transmitter energy to achieve the
same SNR at the receiver as a high channel gain). Now, the more points the robot
explores then the higher is the probability of obtaining a high channel gain but the
consumption of mechanical energy also increases. Thus e�cient mobility diversity
algorithms (MDAs) must be able to deliver high channel gains while simultaneously
using a small amount of mechanical energy.

In this thesis, we start by simultaneously considering the theoretical aspects of
both wireless communications and robotics that underpin this interdisciplinary prob-
lem. We then develop intelligent algorithms (MDAs) to solve the maximise channel
gain/ minimise mechanical energy challenge while looking at various modi�cations
that can occur�i.e., predetermined and adaptive stopping points; MDAs for robots as
wireless relays; MDAs that incorporate energy harvesting; and �nally optimisation
over a continuous search space.

In summary, mobility diversity is a relatively new research area in an early stage
of development. In this thesis we have developed a comprehensive theory for MDAs
that will form the basis for future applications as outlined in chapter 7.
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Chapter 1

Introduction

Wireless communications is nowadays an important aspect of mobile robots and is
a unique research �eld within the general mobile communications research area. Its
uniqueness comes from the fact that for general mobile communications the position
of the transceiver is seen as a random and uncontrollable process. But in wireless
communications for mobile robots the position of the transceiver is a controllable pa-
rameter due to the nature of the mobile robot. Therefore in wireless communications
for mobile robots we can control the position of the transceiver in addition to all the
other aspects of the classical communications systems (e.g. transmission frequency,
transmission power, modulation scheme, etc.). This opens up the possibility to use
new communications techniques.

Within this research �eld we �nd di�erent problems that are being studied. For
example in [1] the authors consider the problem of keeping a certain transmission
rate in an optical wireless link between a drone and a ground robot that is exploring
some area. In this problem the ground robot is equipped with a �xed optical receiver
(composed of either a PIN photodiode or an avalanche photodiode) pointing upwards
while the the drone is equipped with an adjustable optical transmitter (composed of
either a light-emitting diode or a laser diode) pointing to the ground robot's optical
receiver. The transmission rate of such a link depends on the relative position of
the drone with respect to the optical receiver of the ground robot. So the authors
design a control law that makes the drone maintain a certain relative position with
the ground robot at all times. This allows the drone to follow the ground robot while
maintaining a certain transmission rate.

Collaborative systems are also being studied. In [2] the authors consider the
problem of a team of robots with sensing and mapping capabilities trying to escape
from a maze. It is assumed at the beginning that the robots know nothing about the
maze and so they have to sense it to start constructing a map and then �nd a way
out. If each robot shares the information that they have gathered about the maze
with the other robots it can accelerate (for all the robots) the process of escaping
from the maze. So the authors design a communications algorithm that has as its
ultimate goal to allow all the robots to escape from the maze as fast as possible.

1



CHAPTER 1. INTRODUCTION

This involves designing how each robot must explore the maze and how they should
share the map with the other robots.

In [3] the authors consider a mobile robotic network that is tasked with con-
structing a map of occluded structures using RF wireless channel measurements.
The wireless channel is a�ected by the mechanisms [4] which are path loss, shadow-
ing (or large-scale fading) and multipath-fading (or small-scale fading). The occluded
structure to be mapped is located in between two mobile robots which establish a
wireless link between them and then estimate the wireless channel. They use a high
gain antenna to reduce the e�ects of small-scale fading and since they know the
distance between them they can estimate the path loss term. In consequence from
the wireless channel estimate they isolate the e�ect of the shadowing which gives
information about the occluded structure located in the middle of the wireless link.
So after both robots take various RF wireless channel measurements at di�erent po-
sitions around the occluded structure they combine them to construct an estimated
map of that structure.

Connectivity in robotic networks is also a problem that is being studied within
this research area. In [5] the authors consider a robotic network which must maintain
an end-to-end communications channel between a base station and the leader of
the robotic team while the team leader has to move around to some pre-speci�ed
locations in order to perform some pre-assigned tasks. So the authors design a
distributed control law for all the robotic team so that the team leader can explore
the pre-assigned locations while the rest of the robots adapt their locations in order
to ensure a certain prede�ned quality in the end-to-end communications channel.

In [8] and [9] the authors consider a team of autonomous robots in which a leader
must perform a certain task while the other robots must optimize their position
in order to maintain a certain quality in the wireless end-to-end communications
link from the leader to an access point; in [7] and [10] the authors consider a similar
problem in which which an autonomous robotic network must attain a desired con�g-
uration of the robots positions while maintaining a certain communications quality;
then in [6] the authors maximize the coverage area of a mobile sensor network while
ensuring wireless communications between its members; in [11] the authors consider
a cooperative mobile sensor network and then design control laws so that at each
iteration the sensor nodes gather a maximum amount of information.

As the reader see there are a large variety of problems being studied in the area
of robotics communications. In this thesis we will focus on one particular problem
within this area. The problem we are referring to is the compensation of small-scale
fading using the robot's mobility. Small-scale fading [12] is a common phenomenon
in RF wireless communications that a�ects the gain of the wireless channel. It occurs
when, mainly due to re�ection, various copies of the transmitted signal arrive at the
receiver's antenna and depending on their phases they combine in a constructive or
destructive way. This produces random variations in the wireless channel gain over
very small distances (fractions of the wavelength used in the transmission). These
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variations can degrade signi�cantly the signal to noise ratio and in some cases even
impede any communication at all. Therefore it must be compensated.

The e�ects of small-scale fading can be reduced by using high gain (directional)
antennae as in [3]. This class of antenna can be bulky because they need a re�ector
in order to obtain their high gain and a mechanism to point the antenna in the
desired direction. Thus this solution would require adding more hardware to the
mobile robot and thus increase cost and weight which in turn will increase also its
energy consumption. Another solution is the use of classical diversity techniques [12].
The idea behind diversity is that due to small-scale fading the channel gain varies
randomly across di�erent positions, times and/or frequencies and so the probability
that all channels exhibit simultaneously poor gain is lower than the probability that
a single channel exhibits poor gain. Diversity techniques construct a new `arti�cial
channel' by combining multiple channels. In consequence, this `arti�cial channel'
has a low probability of experiencing a poor gain. Diversity techniques have been
extensively studied and developed in the wireless communications literature for more
than 50 years and they have been devised for transceivers that are either stationary
(e.g., a base station) or whose movement is random and uncontrolled (e.g., a user of
a cellular network). But as mentioned above, robotics communications are unique
due to the fact that the position of the transceiver is controllable and taking into
account that small-scale fading varies signi�cantly over small distances this opens
up the possibility of developing a new class of diversity that compensates small-scale
fading using the robot's mobility.

The main idea behind this diversity technique is as follows. The gain of RF
wireless channels exhibiting small-scale fading varies signi�cantly over very small
distances. Therefore if the robot is communicating through an RF wireless channel
and the channel gain is poor (due to a deep fade) then the robot can move slightly
to �nd a location where the channel gain is higher.

In the next section we present brief review of the papers that have used this kind
of (mobility) diversity in order to present to the reader the state of the art of this
technique at the moment in which we started doing research on.

1.1 Related Work

The amount of literature dealing with the topic of compensating small-scale fading
by controlling the position of the transceiver is relatively scarce when compared with
other research topics in communications. But in this section we brie�y present the
most important papers addressing this problem.

To the author's knowledge the �rst work in which mobility was controlled in order
to compensate small-scale fading is [13]. In that paper the authors consider an RF
wireless link experiencing small-scale fading and they showed experimentally that:
(i) when the channel gain is bad due to the small-scale fading individuals can move in
the surroundings to alter the physical con�guration of the scatterers and therefore to
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alter the small-scale fading in order to try to obtain high channel gains in the wireless
channel; (ii) it is possible to move the transmitter very small distances in order to
�nd a position in which the channel gain is high. In other words the authors showed
that we can take advantage of the small-scale fading by either altering the physical
con�guration of the surroundings or by altering the position of the transmitter. In
that paper, the authors provided mobility to a transmitter node by placing it on a
motorized turntable and so the transmitter moves in a circular path. The channel
is then measured at various points along that circular path and the node stops at a
position when the channel gain is high. This technique was used by the same authors
in [14] to compensate small-scale fading in a wireless sensor network.

In [15] the authors consider the problem of moving a robot to compensate small-
scale fading but without deviating too much from its initial position. The authors
suggest making the robot explore a �nite number of points and then make it return to
the point that exhibits the best channel gain. Regarding the physical con�gurations
of the points explored by the robot the authors propose two con�gurations: (i) points
arranged in a circular path; (ii) points arranged in an hexagonal lattice contained in
a circle. The size of both con�gurations are calculated in order to obtain independent
wireless channels.

In [16] the authors refer to the mobility diversity principle as RF mobility gain. In
that article the authors mention that one of the key elements of this technique is how
the mobile robot (MR) samples the RF map� i.e., the shape of what we refer to (in
this thesis) as the search space. This is due to the fact that as the frequency decreases
the distance that the MR needs to move in order to observe higher variations on
the channel gain increases and so using mobility to compensate small-scale fading
becomes more costly. In addition, the authors test experimentally the concept of
mobility diversity with a MR. The test was done in an o�ce building with an RF
carrier frequency of 1.254 GHz and under non-line of sight conditions. The small-
scale fading observed in this experiment was Rayleigh. The authors tested four
di�erent search spaces: (i) a random path, a linear path, a circular path and a helical
path. The results of these experiments show that this technique can signi�cantly
improve the channel gain by making the MRmove just small distances. They [16] also
commented that this technique can increase the received signal power and improve
the packet reception more than any coding scheme could achieve.

In [17] the authors propose to compensate small-scale fading by exploring N
points randomly distributed in a small circle centered around the robot's initial
position and then making the robot go to the point with the highest channel gain.
In that paper the number of points and the size of the circle are design parameters
which are arbitrarily determined.

In [18] the authors consider a mobile wireless robotic network where wireless
links are a�ected by multipath, small-scale fading. The authors propose to use co-
ordinated micro-motions to compensate for the small-scale fading and improve the
overall performance of the network. In this algorithm each mobile robot can ex-
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plore N positions in its near vicinity. A distributed algorithm is used to coordinate
the movement of the robots so that collectively they �nd their optimum position
to improve the performance of the network according to some prede�ned metric.
Speci�cally the authors consider the case of N = 2, where both positions are sepa-
rated a distance of λ/2, and the case of N = 5 where the positions form a uniform
circular array of radius λ/2 with a central element. This is done in order to obtain
independent channels at each position. In that article the authors show experimen-
tally that these micro-movements can indeed increase signi�cantly the throughput
of the robotic network.

As can be observed from the previous summary in [13]-[18] the authors propose
di�erent con�gurations for the points explored by the robot in order to compensate
for small-scale fading but another variant to this problem is considered in [19]-[23]
where the authors consider that the mobile robot must follow a prede�ned path while
communicating with a base station through an RF wireless channel experiencing
small-scale fading. In this case, as opposed to [13]-[18], in order to compensate
the small-scale fading the authors do not focus on determining the location of the
points where the robot transmits but rather on determining its velocity pro�le. The
solution in those articles is roughly based on the idea of following the predetermined
path but spending more time at points (in the prede�ned path) with high channel
gain (due to constructive interference generated by the small-scale fading) and less
time at points (in the prede�ned path) with poor channel gain (due to destructive
interference generated by the small-scale fading). Note that this approach works due
to the fact that in the presence of small-scale fading then the channel gain varies
signi�cantly over small distances.

In this thesis we focus on the �rst variant of the problem �i.e., the design of the
physical con�guration of the points explored by the robot in order to compensate the
small-scale fading. As we can see from [13]-[18] it is clear that the fact that we can
compensate small-scale fading by moving the transceiver has already been proved
experimentally. We also observe that in those works the authors understand that the
points where the robot measures the wireless channel gain must be selected so that
the wireless channel gains are independent. Nevertheless, we also note that there is
no formal method to calculate the location of those points. This is the state of the
art from which we start our research on the problem of compensating small-scale
fading in robotics communications by controlling the robot's mobility.

1.2 Mobility Diversity Algorithms

We will refer to the diversity technique that uses the robot's mobility to compensate
small-scale fading as mobility diversity and thus any algorithm implementing this
technique will be referred to as a mobility diversity algorithm (MDA). In this section
we will give a general overview of the structure and classi�cation of MDAs.

In order to present an overview of MDAs consider �rst a mobile robot (MR)
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Figure 1.1: Search spaces for : (a) 2 stopping points, (b) 3 stopping points and (c)
4 stopping points (see later in thesis).

equipped with a single antenna communicating with a static node, which remains
temporally stationary during the execution of the MDA, through a time-invariant
wireless channel exhibiting small-scale �at fading. Due to the small-scale fading
the wireless channel gain varies signi�cantly over small distances with respect to
the wavelength of the RF carrier used in the transmission. Therefore if the MR is
experiencing poor channel gain due to the small-scale fading it can explore a search
space in order to �nd a point with higher channel gain. Note that the greater the
search space then the higher the number of points explored and the higher is the
probability for the MR to �nd a point with a high channel gain. But the distance the
MR travels also increases and so also the amount of energy spent in locomotion. So
with this drawback the location of the points to be explored (as well as the number)
must be optimized in order to allow the MR to obtain a high channel gain while
expending low amounts of energy in the process.

The main component of the MDA is the search space. The search space is the
spatial region that the MR is allowed to explore in order to �nd a point with a high
channel gain. It can be discrete and so consists of a series of points as in Fig. 1.1
(to be described later in the thesis). In this case the MR moves from point to point
stopping at each one to measure the channel gain and so we refer to these points as
stopping points. This allows the MR to collect as many (noisy) samples from the
receiver in order to obtain a channel estimate as accurate as needed. The discrete
search space is characterized by the number of stopping points (its cardinality) and
their geometry (its physical distribution).

Alternatively the search space can be continuous �i.e., it consists of a continuous
path. In Fig. 1.2 (see later in the thesis) we observe some examples of continuous
exploration paths. In this case the MR moves along the continuous path while
collecting wireless channel samples and stops only at the end of the path. Since the
MR stops only once at the end of the continuous search space (and not multiple
times as in the discrete search space) then it can bene�t from its inertia to use less
energy during the exploration of the search space. Also note that for the continuous
search space the number of explored points is determined by the MR receiver's spatial
sampling rate and not by the size of the search space. For the discrete search space
the number of explored points depends on its size (cardinality). The continuous
search space is characterized by its length and its shape.
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Figure 1.2: Optimized continuous path P for N = 25 and di�erent values of Lp.
d1 and dN are represented with a circle and with a square respectively (see later in
thesis).

The search space can also be either predetermined or adaptive. A predetermined
search space means that it has already been fully de�ned (number of stopping points
and physical con�guration or length and shape) prior to the MDA execution. The
advantage of predetermined spaces is that they can be designed o�-line and then
loaded into the MR's memory thus making this approach suitable for MRs with low
computational capacity. The search spaces in Figs. 1.1 and 1.2 are examples of
predetermined search spaces. Note that a predetermined space can also be either
random or deterministic.

An adaptive search space is a search space that is being calculated (in real time)
during the MDA execution according to the channel measurements that are being
obtained. This type of search space requires more computation by the MR but it
can perform better than the predetermined one because it adapts to each particular
scenario. In Fig. 1.3 we observe four realizations of an adaptive discrete search
space with eight stopping points. Theoretically speaking we could also have adaptive
continuous search spaces but we have not yet found how to generate them.

Once the class of search space is selected we also need to de�ne the way in which
the MR is going to explore it. This means we need to de�ne the order in which the
MR is going to explore and also to decide what to do if it encounter a point with
a high channel gain during the exploration. Now, once the MR �nishes exploring
the search space we need to determine the best action. Should it stay at that point
and establish communications from it? Should it go to the best point in the search
space? What does `best point' means in this context?

We also need to determine the execution time of the MDA. If the execution time
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Figure 1.3: Di�erent realizations of an adaptive path with eight stopping points.

is short the MR has to move fast and so the consumption of mechanical energy will
be high. On the other hand if the execution time is long then the MR can move
slowly and so the mechanical energy consumption will be lower but then the MR will
have to wait longer between the start of the MDA execution and the establishment
of the wireless link with its intended destination. Once this has been settled we need
to design the control signals to move the MR during the MDA execution. These will
determine the energy consumption and so they have to be optimized to minimize
this consumption.

This concludes with the general overview of the MDA. In the next subsection we
will present the organization of the chapters and their contribution.

1.3 Thesis Organization and Contribution

In the past, when analog televisions had bad reception and did not allow the specta-
tor to watch their tv shows the users used to move the antenna to di�erent positions
until the reception was improved. This can be seen as an early and manual im-
plementation of mobility diversity. The same technique is sometimes applied by
cell-phone users. Therefore, strictly speaking the concept of mobility diversity by
itself is not completely new but what is new is its automatization, optimization and
implementation within autonomous agents (i.e., MRs).

In this thesis we start our study of MDAs from the state of the art presented in
section 1.1 and we will examine all aspects of MDAs mentioned in section 1.2, but
we will mainly focus on the design of the search space. Now we present the content
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of each chapter and brie�y mention the main contributions of each chapter.
In chapter 2 we consider the problem of MDAs with predetermined discrete search

spaces. The main contributions of this chapter are as follows. We de�ne what an
optimum stopping point geometry means and we show that the de�nition is not
unique. This leads to the development of two di�erent techniques to optimize the
geometry of the stopping points. We also develop the concept of adaptive diversity
order which indicates how to optimize the number of stopping points. Finally, in
chapter 2 we also propose the MDMTA approach which is a general MDA for discrete
search spaces. The work presented in that chapter is taken from our journal paper:

• D. Bonilla Licea, M. Ghogho, D. McLernon and S. A. Raza Zaidi, �Mobility
Diversity-Assisted Wireless Communication for Mobile Robots�, IEEE Trans-
actions on Robotics, vol. 32, no. 1, 2016, pp. 214-229.

which in turn is an extension of our earlier conference paper:

• D. Bonilla Licea, D. McLernon, M. Ghogho and S. A. Raza Zaidi, �An energy
saving robot mobility diversity algorithm for wireless communications�, 21st
European Signal Processing Conference (EUSIPCO 2013), Marrakech, 2013.

In chapter 3 we consider the problem of MDAs with adaptive discrete search
spaces, which is a continuation of chapter 2. In this case we solve the problem of how
to design path planners to determine adaptively the optimum location of the stopping
points. The main contributions of this chapter are �rst of all to show that contrary
to classic diversity techniques, in the case of MDAs the channel correlation can be
bene�cial. We also demonstrate that by controlling the channel correlation we can
obtain a higher channel gain than when all the channels are independent. We consider
this a major breakthrough in the communications research area. We also design
various optimum path planners with any memory order and show that MDAs using
path planners with memory can outperform MDAs using predetermined stopping
point geometries in both the channel gain obtained and the amount of mechanical
energy spent. The path planners with memory order one and two presented in this
chapter were �rst proposed in the conference paper:

• D. Bonilla Licea, D. McLernon and M. Ghogho, �A Robotic Mobility Diversity
Algorithm with Markovian Trajectory Planners�, Proc. of IEEE Workshop on
Machine Learning and Signal Processing, Southampton, 2013.

Then the inspiration for the path planners with arbitrary memory order was taken
from the conference paper:

• D. Bonilla Licea, D. McLernon and M. Ghogho, �Designing Optimal Trajec-
tory Planners for Robotic Communications�, Proc. of IET Intelligent Signal
Processing (ISP'13) Conference, London, 2013.
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Nevertheless, we later developed much more e�cient and theoretically solid path
planners with arbitrary memory order which perform much better in all aspects.
Therefore we decided to leave out from this thesis the path planners presented in
the IET conference paper above. Finally, we re�ned and extended all of our work
regarding path planners with memory for MDAs in the following journal paper:

• D. Bonilla Licea, D. McLernon and M. Ghogho, �Path Planners with Memory
for Mobility Diversity Algorithms�, conditionally accepted for publication in
IEEE Transactions on Robotics.

In chapters 2 and 3 we studied the MDAs with discrete search spaces considering
SISO channels. In chapter 4 we extend even further that work to consider MDAs
that compensate small-scale fading at various links simultaneously. Particularly we
focus on the development of double-link path planners for MDAs that can be used in
robotic relays in the context of robotic wireless networks. The contributions of this
chapter is the development of path planners that can improve small-scale fading at
various links simultaneously. The content of the chapter is taken from:

• D. Bonilla Licea, D. McLernon and M. Ghogho, �Multiple-link MDMTA for
Robotic Networks�, to be submitted.

The �rst part of the thesis, composed by chapters 2 to 4, consists of a rigorous
treatment of various aspects of MDAs with discrete search spaces. The second part
of the thesis, composed by chapters 5 and 6, treats the problem of MDAs with
continuous search space.

In chapter 5 we show how an MDA with a continuous search space can be used
to improve an RF energy harvesting system for a MR. In this chapter we restrict
the shape of the continuous search space to be a straight line but we show how to
optimize its length and all the other parameters involved. The main contribution
of this chapter is to show that optimized MDAs can enhance RF energy harvesting
and also the optimization of the continuous search space length. The content of this
chapter was published in the following journal paper:

• D. Bonilla Licea, S. A. Raza Zaidi, D. McLernon and M. Ghogho, �Improving
Radio Energy Harvesting in Robots Using Mobility Diversity�, IEEE Transac-
tions on Signal Processing, vol. 64, no. 8, 2016, pp. 2065-2077.

In chapter 5 we started to study MDAs with continuous search spaces but we
restricted the shape of the search space to a straight line and we only optimized its
length. In chapter 6 we continue with the study of MDAs with a continuous search
space but in this chapter we show how we can derive the optimum shape of the
continuous search space. The main contribution of this chapter is a general method
to obtain the shape of the continuous path that forms the continuous search space
(given a desired overall length). The content of this chapter is taken from:
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• D. Bonilla Licea, D. McLernon, M. Ghogho, �Continuous Searching Space Mo-
bility Diversity Algorithm�, to be submitted.

Finally, we have to mention that part of the technique used to derive the shape of
the continuous path was inspired by our work on an alternative topic on robotics
communications presented in the following conference paper:

• D. Bonilla Licea, D. McLernon, M. Ghogho, �Optimal trajectory design for a
DTOA based multi-robot angle of arrival estimation system for rescue oper-
ations�, IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2014, pp. 6800-6804.
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Chapter 2

MDA with Predetermined Stopping

Points

As mentioned in chapter 1 the search space for MDAs can be either predetermined
or adaptive as well as discrete or continuous. In this chapter we start our treatment
of MDAs with the simplest class of the search space which corresponds to the prede-
termined discrete search space. This type of search space is composed of N stopping
points whose geometry is stored in the MR's memory prior to the MDA execution.
Hence the predetermined use of the word.

In order to study MDAs in a systematic way we now introduce a general MDA
and explicitly identify each one of its components and how they interact with each
other. This general MDA is the mobility diversity with multi-threshold algorithm
(MDMTA). Due to its generality, other di�erent MDAs can be seen as particular
cases of the MDMTA and so by studying it we can gain insight about other MDAs.

The physical distribution of the stopping points, which we will also refer to as the
stopping points geometry, play an important role in the MDMTA performance. If
the stopping points are far from each other then the wireless channel at those points
will be approximately independent and thus the expected value of the maximum
channel gain will be maximized1. This implies that the MDA using that geometry,
depending on its internal parameters, will obtain a high channel gain. Therefore,
in a �rst instance we could simply randomly locate the stopping points, as was
proposed in [17], while ensuring that the minimum distance between them is at least
on the order of half wavelength in order to obtain independent wireless channels.
Nevertheless, this approach does not consider the distances that the robot has to
travel during the MDMTA execution. So the distance traveled by the MR and the
energy used in locomotion may be large. Therefore this approach is not e�cient
from an energy point of view.

A more e�cient and intelligent approach to the design of the stopping points

1This is when we consider only predetermined geometries. In the next chapter we shall see that
when we consider adaptive geometries this is not true anymore.
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geometry requires both consideration of the correlation of the wireless channels at
the stopping points and the amount of mechanical energy used by the MR to explore
the stopping points. So in this chapter we will consider realistic probabilistic models
for the wireless channels as well as realistic dynamical models for the MR. This will
allow us to optimize the stopping points geometry (and the other internal parameters
of the MDMTA) in order to obtain high channel gains while using as little energy as
possible in exploration of the stopping points.

The main contribution of this chapter is the solution to the problem of how to
optimise the stopping points geometry for any number of stopping points. In addi-
tion, we demonstrate that the interpretation of optimum stopping points geometry
is not unique. To illustrate this we derive two di�erent methods to optimise these
geometries according to di�erent criteria. Another contribution of this chapter is
the concept of adaptive diversity order which allows us to adapt the number of
stopping points (diversity order) of the MDMTA to select the optimum number for
each particular case just prior to the algorithm execution. The MDMTA is also an-
other contribution. But, a more important contribution than the MDMTA itself is
the formalization and the identi�cation of its components. This formalization and
identi�cation of its components facilitates the study MDAs.

We start this chapter in section 2.1 by introducing the wireless channel model as
well as the dynamical model for the MR. Then in section 2.2 we present in detail
the MDMTA (with each one of its components) and explain how they interact with
each other. We then present the core element of this chapter (and one of the most
important parts of this thesis) in subsection 2.3.1. Here we derive di�erent optimum
stopping point geometries and also optimise their exploration order. In subsection
2.3.2 we show how to optimise the rest of the MDMTA parameters and in subsection
2.3.3 we introduce the concept of adaptive diversity order that allows us to optimise
the number of stopping points. In section 2.4 we analyse some properties of the
MDMTA and �nally in sections 2.5 and in 2.6 we discuss some results regarding
the behaviour of the MDMTA and present some conclusions for the MDA with a
predetermined discrete search space.

2.1 System Model

2.1.1 MR Model

In this chapter, we consider an omnidirectional MR, i.e., a MR that can move in any
direction at any time. In particular we select a three-wheel omnidirectional mobile
robot2 (TOMR) [24]. A TOMR is a MR with three omnidirectional wheels [25],
where each wheel is driven by its own motor. The distance from the center of the
robot to each wheel is denoted by L. The TOMR model described in this subsection

2Although we select this particular MR the results presented in this chapter can be applied to
any other type of omnidirectional MR.
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Figure 2.1: Three-wheeled omnidirectional mobile robot at position p(t) =
[xg(t) yg(t)]

T , orientation φ(t) and with an antenna at its centre.

is a version of the model presented in [26]. The robot is equipped with an antenna
installed at the geometrical center of the robot (see Fig. 2.1).

The TOMR position at time t in the global coordinate frame is p(t) and its pose
is po(t) = [pT (t) φ(t)]T , where φ(t) is its orientation. The TOMR pose is related to
the control inputs as follows [26]:

ż(t) =

[
O3×3 I3×3

O3×3 R(t)ṘT (t)−A−1C

]
z(t) +

[
O3×3

A−1R(t)D

]
u(t), (2.1)

where z(t) = [pT
o (t) ṗT

o (t)]T , u(t) = [u1(t) u2(t) u3(t)]T , ui(t) is the control input
to the ith motor, O3×3 is a 3 × 3 zero matrix and I3×3 is a 3 × 3 identity matrix.
Matrix A is given by

A =

 m+ 3Jw
2r2 0 0

0 m+ 3Jw
2r2 0

0 0 Jc + 3JwL2

r2

 , (2.2)

where m is the total mass of the robot, r is the radius of the wheels, L is the distance
from the geometric center of the robot to each wheel and Jc and Jw represent the
inertia for the robot rotation and for each wheel respectively. We also have:

C = k1

 1 0 0
0 1 0
0 0 2L2

 , (2.3)
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with k1 being a robot-speci�c parameter, and the matrix D is:

D = k2

 0 −sin(π/3) sin(π/3)
1 −cos(π/3) −cos(π/3)
L L L

 , (2.4)

where k2 is another robot-speci�c parameter. Finally, the rotation matrix R(t) is
given by:

R(t) =

 cos(φ(t)) −sin(φ(t)) 0
sin(φ(t)) cos(φ(t)) 0

0 0 1

 . (2.5)

Now, the energy drawn from the battery by the MR's motion from time tk to tk+1

is [26]:

Emech(tk, tk+1,u(t)) =

∫ tk+1

tk

(
k3u

T (t)u(t)− k4ṗ
T
o (t)R(t)Du(t)

)
dt, (2.6)

where k3 and k4 are robot-speci�c parameters. All four parameters (k1, k2, k3 and
k4) depend on various electromechanical parameters of the MR's motors but to avoid
introducing more parameters and keep the notation as simple as possible we do not
present any more detail. The interested reader can �nd more detailed expressions
for k1, k2, k3 and k4 by comparing the model presented in [26] to our version.

2.1.2 Wireless Channel Model

In this and subsequent chapters we consider a MR communicating with a stationary
node through a wireless channel in a static environment. The stationarity of both
the node and the environment have to hold during the MDA execution and the
transmission. So the static node can be another MR which remains still during that
period of time. This implies that for the MDA analysis and design we can consider
the wireless channel to be time invariant.

Note that if the environment or the position of one node changes during the
transmission then the wireless channel may be degraded and so the MDA has to be
executed again before resuming the transmission.

We assume that the MR is surrounded by various scatterers and thus the elec-
tromagnetic waves radiated by the stationary node's antenna will arrive to the MR's
antenna through multiple paths each with di�erent angles of incidence and di�erent
phases. As a consequence, these copies will combine at the MR's antenna randomly
producing either constructive or destructive interference depending on the MR's lo-
cation. Thus the wireless channel exhibits small-scale fading (also called multi-path
fading) [27].

Furthermore we assume that the signals used for communication are narrowband,
meaning that their bandwidth is small compared to RF carrier used for transmission
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and so the wireless channel model is frequency independent. In consequence the
small-scale fading is �at.

We also assume that there is neither line of sight between the stationary node and
the MR nor a predominant wave arriving at the MR's antenna as a consequence the
angle of incidence of the waves arriving at the MR's antenna is uniformly distributed
on [0, 2π) while the average power of all the incident waves at the moment of the
arrival to the MR's antenna is considered the same. Thus we have Rayleigh fading
[27].

Taking all the above assumptions into account we have a time invariant wireless
channel exhibiting Rayleigh �at fading and so the signal received by the MR when
located at point p(t) is:

y(t) = s(p(t))h(p(t))x(t) + nr(t) (2.7)

where x(t) is the narrowband signal transmitted by the stationary node and nr(t) ∼
CN (0, σ2) is3 the additive white Gaussian noise generated at the MR's receiver. Then
s(p(t)) and h(p(t)) are the shadowing (also known as large-scale fading) [27] and
small scale fading terms respectively (both depending on the MR's position, p(t)).
Note that h(p(t)) ∼ CN (0, 1) and |h(p(t))| is Rayleigh distributed.

We also assume that the wireless channel is reciprocal and so the signal received
by the stationary node when the MR is located at p(t) is given by (2.7), simply by
exchanging nr(t) by the noise generated at the stationary node's receiver and x(t)
by the signal transmitted by the MR.

The spatial normalized covariance of h(p(t)) is given by [28]:

E [h(p)h∗(q)] = J0 (2π‖p− q‖2/λ)

= r(p,q), (2.8)

while its channel gain has the following normalized spatial covariance function:

E [(|h(p)| − E[|h(p)|])(|h(q)| − E[|h(q)|])]
var(|h(p)|)

= r2(p,q). (2.9)

where J0(·) is the Bessel function of the �rst kind and zeroth order, var(|h(p)|) is the
variance of |h(p)| (which is the same as the variance of |h(q)|, λ is the wavelength
used in the RF transmission by the stationary node and p,q ∈ R2 are any two points
on the space.

Finally, during the execution of the MDMTA the MR moves in a small area and
so we can assume that the shadowing term is constant for all the stopping points,
i.e., s(p(t)) ≈ s.

3Note that CN (0, σ2) means a complex normal random variable with zero mean and variance
σ2, whose real and imaginary parts are independent and identically distributed.
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2.2 Mobility Diversity with Multi-Threshold Algo-

rithm

The MDMTA is a general mobility diversity algorithm for MRs that uses a discrete
search space composed of stopping points. This algorithm requires that one end of
the wireless link remains �xed during its execution. We will refer to this end of
the link as the stationary node. In order to implement the MDMTA the stationary
node uses time division duplex transmission4. During the transmission time the �xed
node sends a training signal so that the MR can estimate the channel gain at each
stopping point. During the receiving time it waits for a response from the MR to
start communicating. This occurs once the MDMTA terminates and the MR �nds
an optimum stopping point.

Now, the MDMTA is divided into two phases: a searching phase and a selection
phase, respectively over the periods t1 ≤ t < tN and tN ≤ t ≤ tN+1. During
the searching phase the MR stops and estimates the channel gain at N di�erent
points called stopping points. By de�nition the initial position of the MR is the �rst
stopping point q1, i.e., p(t1) = q1. If at time instant tk the estimation of the kth
channel gain is greater than the threshold ηk the MDMTA terminates prematurely
and the MR then transmits (at qk) its data to the stationary node. In this case we
will say, for notational convenience, that the optimum stopping point qopt is qk. If
the kth channel gain is less than ηk, then the MR moves to qk+1 in tk+1− tk seconds
and repeats the process. If it reaches the Nth stopping point then the searching
phase terminates and the selection phase initiates. During the selection phase the
MR uses a selection rule (Rs) to determine the optimum stopping point qopt from
which to transmit (the optimum position is not always the one with the highest
channel gain as we shall later see). Then the MR moves from the stopping point qN
to qopt in tN+1 − tN seconds.

The MDMTA requires: N , the number of stopping points to be explored; a
matrix QN = [q1, q2, · · · ,qN ]T containing the positions of the N stopping points to
be explored; an N + 1 dimensional temporal vector t = [t1 t2 · · · tN+1]T ; an N − 1
dimensional vector η = [η1, η2, · · · , ηN−1]T of thresholds; a selection rule Rs (to be
explained later in this section) and (optionally) an estimate of the shadowing term s
denoted by ŝ. The pseudocode of the MDMTA is summarized below in Algorithm 1
where p represents the position of the MR. Note that the ŝ is in brackets in the list of
input parameters for the MDMTA in Algorithm 1. This means that this parameter
is optional. Later, as we shall see, we can run the MDMTA without this parameter
but in this case we will not be able to use the thresholds.

The thresholds in the MDMTA are used to terminate prematurely the algorithm
when the MR �nds a stopping point with a high channel gain. This is in order
to avoid spending more energy by exploring the rest of the stopping points. If

4This means that the �xed node alternates periodically its behaviour acting either as a receiver
or a transmitter.

17



CHAPTER 2. MDA WITH PREDETERMINED STOPPING POINTS

Algorithm 1 MDMTA(N,QN , t,η,Rs, (ŝ))
1: p← q1

2: for k = 1 to N − 1 do
3: ŝ|ĥ(qk)| ← Estimate[s|h (p) |] {Channel gain estimation .}
4: if |ĥ(qk)| ≥ ηk then

5: qopt ← qk
6: Terminate Algorithm
7: end if

8: p← qk+1{The MR moves to the next stopping point in tk+1 − tk seconds.}
9: end for

10: ŝ|ĥ(qN)| ← Estimate[s|h (p) |]
11: qopt ← Rs{A `selection rule' is used to determine the optimum position.}
12: p← qopt{The MR moves to the optimum stopping point in tN+1− tN seconds.}
13: Terminate Algorithm

the thresholds are too low the probability that |ĥ(q1)| ≥ η1 occurs is high and so
the MR will stop most of the time at the �rst stopping point. This implies that the
probability of �nding a stopping point exhibiting a high channel gain will be low. On
the other hand, if the thresholds are too high then the probability that any channel
gain is superior to its corresponding threshold will be considerably low and then the
MDMTA will almost never be prematurely terminated, so making the thresholds
useless.

Now, as mentioned above, during the execution of the MDMTA the stationary
node sends a training signal to the MR. This training signal allows the MR to
estimate s|h(qk)| (see lines 3 and 9 of Algorithm 1) but the thresholds need to be
compared with |h(qk)| and not with s|h(qk)| (see lines 4 to 6 of Algorithm 1). So the
estimation (ŝ) of the shadowing term5 is used to isolate |ĥ(qk)| from the estimation
of s|h(qk)| for the thresholding (lines 4 to 6 of Algorithm 1).

The reason why, in general, we compare the thresholds ηk with |h(qk)| instead of
comparing them with the total gain s|h(qk)| is as follows. If we select the thresholds
ηk, without knowing s nor |h(qk)| separately, and we compare them with the total
gain s|h(qk)| then it may happen with a non-negligible probability that η would
correspond to a total gain value s|h(qk)| obtained by a low value of |h(qk)|, i.e. a
locally small value of s|h(qk)|. This implies that if η was selected slighlty higher
then the MR could �nd a much better total channel gain s|h(qk)| without investing
signi�cantly more mechanical energy. In other words, such procedure would not
be taking full advantage of the bene�ts that the MDMTA can provide. So, if the
designer wants to obtain a locally high total channel gain s|h(qk)| it should compare
it directly to |h(qk)|. On the other hand, depending on the application, the designer

5The MR can estimate the shadowing term prior to the MDMTA execution with a technique
like the one stated in [29] (implemented by this robot or by a robotic network).
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may just want to satisfy a certain total channel gain s|h(qk)|, regardless if it is locally
low or high. In that case the designer can simply compare the thresholdsit directly
to the total channel gain.

As mentioned above, in case the designer wants to obtain a locally high channel
gain s|h(qk)| then he should compare the thresholds directly with |h(qk)|. If the MR
does not have an estimate of s and wants to compare ηk directly with s|h(qk)|, it
would be equivalent to comparing |h(qk)| with ηk/s. Since in this case s is unknown,
this action would be equivalent to using random thresholds which can be too low or
too high (and so having the consequences as were previously explained). Therefore, if
the MR wants to execute the MDMTA but does not know ŝ, then it would be better
to set ηk = +∞ to avoid choosing the thresholds too low which would signi�cantly
reduce the probability of obtaining a high channel gain. This is why ŝ is an optional
input parameter for the MDMTA.

The selection rule selects the optimum point (qopt) based on estimates of the
product s|h(qk)| and so, as opposed to the thresholding issues, it is not necessary to
estimate s and |h(qk)| separately to implement the selection rule. Nevertheless, for
the remainder of this chapter we will assume that the MR knows ŝ.

The simplest selection rule Rs is the Maximum Channel Gain Rule which selects
the stopping point with the highest estimated channel gain. This selection rule was
used in [17] and also in our original MDMTA [30].

Assume that the MR uses the Maximum Channel Gain Rule. Then, consider the
particular case in which the stopping point with maximum channel gain is not qN
(i.e., qopt 6= qN) and also that the maximum channel gain is just slightly higher than
the channel gain observed at qN . So, in this particular case the following events
can occur. Due to the estimation errors and the slightly di�erence between |h(qN)|
and |h(qopt)| then it may happen that ŝ|ĥ(qopt)| > ŝ|ĥ(qN)|, when in fact we have
s|h(qopt)| < s|h(qN)|. Which means that the MR would expend energy by moving
from qN to a stopping point with a lower channel gain (qopt). Now, another event

that can occur is that ŝ|ĥ(qopt)| > ŝ|ĥ(qN)| and we have indeed s|h(qopt)| > s|ĥ(qN)|.
But the di�erence between the channel gains is really small. So the MR would expend
energy by moving from a qN to a stopping point with a marginally higher channel
gain (qopt).

In order to solve these problems with the Maximum Channel Gain Rule we pro-
pose a new selection rule: the Minimum E�ort Rule (see Algorithm 2). The key idea
of this new selection rule is to avoid wasting mechanical energy in movement that
does not provide a good improvement in the channel gain. So, the MR now moves
from qN to the point with the highest estimated channel gain only if the di�erence
((ŝ|ĥ(qkmax)| − ŝ|ĥ(qN)|)�see Algorithm 2) is signi�cant, in other words, larger than
some threshold µ, see Algorithm 2. Note that if µ = 0 then this selection rule be-
comes the Maximum Channel Gain Rule. For the rest of the chapter we will assume
that the MDMTA uses the Minimum E�ort Rule.

Now that we have explained in detail the behavior and the components of the
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Algorithm 2 qopt ← Rs(µ) Minimum E�ort Rule

1: kmax ← arg max
k=1,2,···,N−1

{
ŝ|ĥ(qk)|

}
2: if ŝ|ĥ(qkmax)| − ŝ|ĥ(qN)| > µ then

3: qopt ← qkmax
4: else

5: qopt ← qN
6: end if

7: return qopt

MDMTA we will proceed to explain how to optimize this algorithm in the next
section.

2.3 MDMTA Optimization

In this section we will deal with the optimisation of the MDMTA which is in e�ect
the optimisation of its parameters, the stopping points geometry and the number of
stopping points. Before optimising the MDMTA we need to establish how a good
MDA should behave so that we know what cost function to optimise. The objective
of an MDA is to obtain high channel gain and it achieves this by moving the MR
but this `costs' mechanical energy. Thus an e�cient MDA can obtain high channel
gains by `investing' low amounts of mechanical energy. So, given the number of stop-
ping points N , the MDMTA can be optimized by maximizing a cost function that
takes into account the maximum channel gain obtained and also the mechanical en-
ergy invested during the MDMTA execution. So, the general MDMTA optimization
problem to be solved is:

min
η,t,µ,QN ,u(t)

f (|h(qopt)|, Emech (t1, tN+1,u(t)))

s.t.
qk ∈ X , k = 1, 2, · · · , N
tN+1 − t1 − Tmax(N) = 0

(2.10)

where η is the threshold vector, t is the temporal vector, µ is the Minimum E�ort

Rule input parameter, QN is the matrix describing the geometry of the ordered stop-
ping points (i.e., the order in which they must be visited), X is the exploration area
(which must be `small' to validate the assumption made in section 2.1.2 about the
constant shadowing term the for all the stopping points) in which the stopping points
are allowed to lie, Tmax(N) is a design parameters that determines the maximum ex-
ecution time of the MDMTA and f (|h(qopt)|, Emech (t1, tN+1,u(t))) is a general cost
function depending on the optimum channel gain |h(qopt)| and the mechanical energy
spent during the MDMTA execution Emech (t1, tN+1,u(t)). This cost function should
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have low values when the MDMTA is e�cient (as de�ned above) and high values
when it is ine�cient. To construct this function we need to translate the previous
qualitative description into mathematical language and as we shall see later there is
not a unique way to do this.

This optimization problem is extremely complicated because it is non-linear, non-
convex and it involves the simultaneous optimization of the MDMTA parameters
jointly with the geometry of the stopping points (including the order in which they
must be visited) and the control law for the MR. A suboptimal but much manageable
approach is to partially decouple the optimization of the MDMTA parameters from
the optimization of the stopping points geometry.

2.3.1 Stopping Points Optimization

The stopping points have a major in�uence on the performance of the MDMTA. They
determine the maximum channel gain obtainable and also have a large in�uence
on the amount of mechanical energy used by the MDMTA. This section, which
constitutes one of the most important parts of this thesis, tackles the problem of its
optimisation for any number of stopping points.

To optimise the stopping points we need �rst to optimise its spatial distribu-
tion. This determines the maximum channel gain obtainable. Once the geometry
of the stopping points is optimised the MR needs to know in which order explore
them. From a communications perspective the exploration order is irrelevant since,
as mentioned above, the maximum channel gain obtainable is only determined by
the stopping points geometry. Nevertheless the exploration order needs to be opti-
mized to make the MR travel the minimum distance possible in order to minimise the
amount of mechanical energy. In this section, we will �rst discuss the optimisation
of the stopping points geometry and then the optimisation of the exploration order.

The reason why we decided to consider an omnidirectional MR is because it
signi�cantly simpli�es the optimisation of the stopping points. An omnidirectional
MR can traverse any geometry of stopping points in any order always moving in
straight line from point to point but other types of MR may have di�culties in
traversing certain geometries due to their kinematic constraints [25]. Thus, the
omnidirectionality of the MR allows us to freely design the geometry without having
to take into account any kinematic constraints.

We present two di�erent approaches for the optimisation of the stopping points
geometry. In the �rst approach the points are restricted to a prede�ned exploration
area and then we arrange them in such a way that the expected value of the maximum
of the channel gain at all the points is maximised. Mathematically this can be stated
as follows:

max
Qu
N

E[maxj |h(quj )|] (2.11)

s.t.
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quk ∈ Xe(ρ), k = 1, 2, · · · , N (2.12)

with:

Xe(ρ) = {[x y]T | x2 + y2 ≤ ρ2}. (2.13)

where Xe(ρ) represents the exploration area, Qu
N = [qu1 , qu2 , · · · ,quN ]T is the matrix of

unordered stopping points (i.e., this matrix describes the stopping points geometry
but it does not indicate the order in which they must be explored). By contrast, QN

has the stopping points arranged in the exact order that they must be visited. Later
in this section we will explain how to derive QN from Qu

N .
Note that in the optimization problem (2.11) we are not explicitly considering

mechanical energy. But by selecting properly the size of the exploration area Xe(ρ)
and by optimizing the exploration order of the stopping points (see later in this
chapter) we can reduce the amount of mechanical energy used.

The solution of this optimization problem depends on the particular shape of
the exploration area Xe(ρ) which for simplicity we choose to be circular with radius
ρ. Other choices are also possible (e.g., a rectangular, elliptic or even a non-convex
shape) but we will not consider them in this thesis.

Although in general there is no analytical expression for the cost function in
(2.11), in theory we could obtain an estimate by evaluating it via Monte Carlo
simulations and then using an heuristic optimization algorithm to optimize it. Then
the problem is that if the variance of the estimation error is not small enough the
optimization algorithm could have trouble converging or delivering a reliable solution.
But to achieve a variance small enough we need to perform a high number of Monte
Carlo simulations to estimate the true value of the cost function thus making the
optimization process computationally too costly and slow. Therefore, even if in
theory (2.11) can be solved in practice this can be problematic in particular as the
number of stopping points N increases.

So we need a more tractable approach. To do this we can use the common
knowledge from the communications literature regarding the fact that the expected
value of the maximum channel gain of various channels is maximized when all the
channels are independent, (see chapter 9 of [12]). We shall illustrate this in section
2.4.1 for the reader unfamiliar with this result. Thus instead of directly optimising
E[maxj |h(quj )|] (for which there is not an analytical expression) an alternative and
simpler approach is to minimise the Frobenius norm of the spatial covariance matrix
Cu
N of the channel gains with the entry of the ith row and jth column given by

Cu
N(i, j) = J2

0

(
2π‖qui − quj ‖2/λ

)
. The resulting modi�ed optimization problem is

now:

min
Qu
N

‖Cu
N‖2

F (2.14)

s.t.

quk ∈ Xe(ρ), k = 1, 2, · · · , N (2.15)
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Figure 2.2: De�nition of z0 as the smallest value of z that produces a zero covariance.

where ‖·‖F is the Frobenius norm. Before we continue let us de�ne z0 as the smallest
value of z that satis�es J2

0 (2πz/λ) = 0. For illustration purposes we show z0 in Fig.
2.2

This optimization problem is non-linear, non-convex, with multiple local minima
and is 2N -dimensional (2 variables per stopping point) but at least the search space is
constrained and we have an analytical expression for the cost function. Antenna array
geometry optimization problems [31] have been solved before using the simulated

annealing (SA) algorithm [32] which is a heuristic searching method. Mathematically,
the stopping points geometry problem is similar in the sense that both problems
have to determine an optimum distribution of points in the space (although the cost
functions may di�er). Therefore we will also use SA to solve (2.14). In Figs. 2.3
to 2.6 we observe the geometries obtained by solving (2.14) with the SA algorithm
for N = 3, 4, · · · , 8 and with di�erent radii of the circular exploration area. The SA
algorithm aims to �nd the global solution of the optimization problem through a well
designed random search. This implies that generally in our problem the geometries
obtained by the SA will be very close to the optimum depending on how long we run
the SA algorithm and also on the values the parameters used to run it. For example
in Fig. 2.3 for N = 8 we observe that the geometry is quite close to a uniform
circular array (UCA) and so we may reasonably deduce that the actual optimum
geometry is the UCA. This deduction is con�rmed by comparing the cost function
evaluated with the geometry obtained by the SA with the one evaluated with the
UCA geometry.

It is interesting to note that for small exploration areas (ρ ≤ z0/2) the optimum
geometries (at least for N ≤ 8) are points on a UCA. But as ρ grows the shape
of the optimum geometries changes. The case of N = 4 is particularly interesting
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Figure 2.3: Geometries obtained by solving (2.14) with Xe(0.5z0) using SA for N =
3, 4, · · · , 8 stopping points.

because the geometry transforms gradually from a perfect square, for small ρ, to
a rhombus, for higher values of ρ. This shows that, in general, the shape of the
optimum geometries depends on the size of the exploration area. In addition, these
results are obtained using a circular exploration area and so if we change the shape
of the exploration area (e.g., elliptic or rectangular) the shapes of the optimum
geometries may also di�er. Now, if we observe Fig. 2.6 we note that the geometries
obtained are no longer regular and look more random and spread out. This is
because for ρ ≥ z0 and a low number of stopping points the number of local minima
increases considerably as the exploration area increases. Many of these local minima
will have a high value of E[max

j
|h(qj)|] but they will also have the stopping points

more separated from each other and so it will demand the MR to travels over longer
distances and consequently use more mechanical energy.

Now, the second approach for optimizing the stopping points geometries consists
in arranging the points in such a manner that they provide us with a high channel
gain while making the points lie as close as possible so that the MR has to move as
little as possible. Mathematically this problem can be stated as follows:

min
Qu
N

(1− θ)‖Cu
N‖2

F + θ
N∑
j=1

(
quj −

1

N

N∑
i=1

qui

)2

(2.16)

where θ is a design parameter. The cost function minimized in (2.16) is a convex
combination of both the correlation among the channels and the actual spatial spread
of the stopping points. Therefore, this cost function will allow us to obtain geometries
with channels that have low correlation (and thus large E[max

j
|h(qj)|]), with points
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Figure 2.4: Geometries obtained by solving (2.14) with Xe(0.7z0) using SA for N =
3, 4, · · · , 8 stopping points.

that are close together (and so will require a small amount of mechanical energy
from the MR while traversing this geometry).

Note that θ in (2.16 has the same role as ρ in (2.14. These parameters are used
to control how far from each other will be the stopping points. The further (closer)
the stopping points are the lower (higher) the correlation between their channels
and so the maximum channel gain obtainable increases (decreases) but the amount
of mechanical energy required to explore such geometry also increases (decreases).

In Figs. 2.7 to 2.10 we can see the geometries obtained by solving (2.16) with the
SA algorithm for N = 3, 4, · · · , 8 and di�erent values of θ. For high values of θ (see
Fig. 2.7) and N > 3 we can observe a curious phenomenon: the optimum geometries
have two points overlapping on the center while the remaining N − 2 points form a
UCA. It seems to happen for N = 8 and θ = 0.9 (see Fig. 2.8).

This phenomenon occurs when the second term (i.e., point spatial spread) in
(2.16) takes much larger values than the �rst term (i.e., spatial correlation). When
this happens the optimum solution to (2.16) has stopping points overlapped at the
center of the con�guration in order to reduce the spatial spread even while the spatial
correlation is signi�cantly increased. Note that in the limit when the second term is
much more important than the �rst term the solution to (2.16) will tend to a single
point (i.e., all the points overlapped). Therefore when choosing (2.16) to obtain the
optimum geometries we need to be careful not to select high values of θ and/or N
that could produce such undesired behaviour.

We should emphasise that if θ is not large enough then the optimum geometries
for N = 3 and N = 4 are the equilateral triangle (as in (2.14) ) and the rhombus
geometry (as in (2.14) for ρ > 0.5z0 ). Finally, we should mention that as the number
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Figure 2.5: Geometries obtained by solving (2.14) with Xe(z0) using SA for N =
3, 4, · · · , 8 stopping points.

of stopping points N increases and/or the parameter θ decreases it becomes more
di�cult to solve (2.16) using the SA algorithm.

It is important to highlight that the geometries shown in Figs. 2.3 to 2.10,
which are typical cases, can easily be contained into a square of side 2λ. So, given
these small dimensions, then along with experimental results relating to the spatial
autocorrelation function of the shadowing term (s) presented in [33], our assumption
that s is approximately constant for all stopping points is clearly justi�ed.

We have also to point out that in the design of the geometries only the relative
position of the stopping points is important. This is because the relative position
of the stopping points determine channel correlation between all the channels which
in turn determines the maximum channel gain that can be obtained such geometry.
This can be corroborated by analysing (2.14)-(2.16).

It is interesting to note that although the geometries obtained by solving (2.16)
and (2.14) are optimal they are also di�erent. This shows that there is not a unique
way to de�ne an optimum stopping points geometry.

Once we have the optimum matrix6 Qu
N of unordered points we have to establish

the optimum exploration order for the stopping points (i.e., the matrix QN). We
remind the reader that by de�nition q1 will be the initial position of the MR. A
matrix QN is optimum7 if it minimizes the following cost function:

J (QN) =
N−1∑
k=1

‖qk+1 − qk‖2 +
1

N

N−1∑
j=1

‖qj − qN‖2. (2.17)

6Obtained by solving either (2.14) or (2.16).
7Because of the symmetry of the geometries there may be many equivalent optimum orders.
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Figure 2.6: Geometries obtained by solving (2.14) with Xe(2z0) using SA for N =
3, 4, · · · , 8 stopping points.

The �rst summation on the right hand side of (2.17) is the distance travelled by
the MR while traversing the whole geometry starting at q1 and �nishing at qN ;
the second summation is the average distance that the MR needs to travel (after
exploring the whole geometry) from qN to the point with the highest channel gain.
So, the optimum ordering problem can be stated as:

min
QN

J (QN) (2.18)

s.t.

QN = PQu
N (2.19)

where P is a permutation matrix and (2.18) is a combinatorial optimization problem.
This problem can be solved using �branch and bound�8 [34] as follows: we �rst create
a tree, where the jth level (the root node is considered the zeroth level) of the tree
represents the possible values for qN+1−j (which are included in Qu

N). Then we set a
bound B = +∞ (a required parameter for the algorithm) and we explore the leftmost
path in the tree until reaching the leaf. Once we reach the leaf we update the value
of B with (2.17) evaluated along the path explored in the tree. After this, we proceed
to explore the next path to the right in the tree. At the jth level of that path we
evaluate the partial cost function:

JBB (j) =
N−1∑

k=N+1−j

‖qk+1 − qk‖2 +
1

N

N−1∑
k=N+1−j

‖qk − qN‖2. (2.20)

8This algorithm is also used to solve the classical travelling salesman problem which is similar
to the problem (2.18).
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Figure 2.7: Geometries obtained by solving (2.16) with θ = 0.95 using SA for N =
3, 4, · · · , 8 stopping points. For N > 3 the central circle represents two overlapping
points.

If JBB (j) ≥ B we prune the corresponding subtree and proceed to explore the
next path in the tree. If we reach a leaf (i.e., j = N) then we update the bound
B = JBB (N) again and explore the next path in the tree. Once we reach the
rightmost path the algorithm is terminated and we take as solution the rightmost
path that reached a leaf. This method is not necessarily the most e�cient way to
solve (2.18) but �nding the most e�cient algorithm to solve it is outside the scope
of this thesis.

We should mention that (2.18) is slightly di�erent from the classical travelling
salesman problem in that we are not looking to optimize a tour that starts at q1,
passes through all the stopping points and �nishes at q1 but rather to optimize a
path that starts at q1, passes through all the stopping points until qN and then
whose �nishing position is a random variable uniformly distributed among all the
stopping points; the cost function (2.17) to be minimized is the expected value of
the distance travelled during this path.

In Fig. 2.11 we observe an optimum unordered set of points taken from the
optimum matrix Qu

N obtained by solving (2.14) with the SA for Xe(z0) and also we
observe the ordered set of stopping points taken from the optimum matrix QN . If
we do not optimize the permutation matrix and we simply select P = I then the
MR, when using the MDMTA without thresholds and usingMaximum Channel Gain

Rule, will travel an average distance of ≈ 5.88z0. On the other hand if we optimize P
then the MR, under the same conditions, will travel an average distance of ≈ 4.8z0.
By optimizing the exploration order of the stopping points the MDMTA will require
the MR to travel smaller distances and so it will be more energy e�cient.
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Figure 2.8: Geometries obtained by solving (2.16) with θ = 0.9 using SA for N =
3, 4, · · · , 8 stopping points. For N = 8 the central circle represents two overlapping
points.

Finally, the partial decoupling of the geometry optimization (together with the
optimum ordering) from the optimization of the MDMTA parameters allows us to
create an `optimum geometry dictionary'. This `optimum geometry dictionary' is
indexed by9 N, ζ and contains at each entry the optimum ordered geometry for
those particular parameters. As we will show in the next section, the use of this
`optimum geometry dictionary' can help us to reduce the complexity of the MDMTA
optimization.

2.3.2 Optimization of the MDMTA Parameters

In the preceding subsection we showed di�erent methods to optimize the stopping
points geometry. Now, in this section we show how to optimize the rest of the
MDMTA parameters given that we have already chosen an optimum geometry (in-
cluding its optimum exploration order). For simplicity, in the rest of the chapter
each geometry will be referred to by the pair of parameters (N ,ζ) where N is the
number of stopping points and ζ = ρ if we obtained the geometry by solving (2.14)
or ζ = θ if we obtained it by solving (2.16).

The approach used for optimizing the MDMTA parameters may be adapted ac-
cording to the particular application of the MDMTA. To illustrate this consider the
following two applications:

1. The MR has to transmit a �nite amount of data (e.g., a set of pictures, video or

9Whether ζ = ρ or ζ = θ depends upon whether we chose (2.14) or (2.16) for the geometry
optimization.
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Figure 2.9: Geometries obtained by solving (2.16) with θ = 0.8 using SA for N =
3, 4, · · · , 8 stopping points.

sensor measurements) consisting of M bits to the stationary node and the bit
duration is Tb. The MR uses power control to ensure a reference receive power
Pref at the stationary node. In addition the MR cannot radiate more power
than Pmax and if it cannot satisfy Pref at the receiver then it does not transmit
at all. In this application the MR can use the MDMTA to minimize the amount
of energy. So, in this case, the MDMTA must be optimized to minimize the
total amount of energy expended (i.e., the energy used for transmission plus
energy used for motion during the MDMTA execution).

2. The MR has to establish a wireless link with the stationary node to exchange
an undetermined amount of data. This can occur if the MR, equipped with
a camera, is performing a surveillance task and continuously transmits the
images recorded to the stationary node. In this application the MDMTA can
be used by the MR prior to the establishment of the wireless link to maximize
its signal to noise ratio (SNR) in order to obtain a high transmission rate. So,
in this application the MDMTA should be optimized to obtain a high SNR
while using as little as possible mechanical energy in the process.

In the �rst application we want to minimize the total amount of energy. If we
take into account Pmax and the outage probability then the statement of the problem
becomes more complicated. A simpler approach is to assume Pmax = +∞ for this
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Figure 2.10: Geometries obtained by solving (2.16) with θ = 0.5 using SA for N =
3, 4, · · · , 8 stopping points.

optimization. The resulting optimization problem is now:

min
η,t,µ,ζ,u(t)

E

[
α

|h(qopt)|2 + Emech (t1, tN+1,u(t))
α

|h(q1)|2

]
s.t.
tN+1 − t1 − Tmax(N) = 0

(2.21)

where α =
MTbPref

s2
, η is the threshold vector, t is the temporal vector, µ is the

input parameter for the Minimum E�ort Rule and ζ is the design parameter for the
geometry optimization (i.e., ζ = ρ if we optimize (2.14) and ζ = θ if we optimize
(2.16)). Inside the expected value of the cost function we have, in the numerator,
the total amount of energy that the MR will use if it adopts the MDMTA and, in the
denominator, the total amount of energy that the MR will use if it transmits from
its initial position and does not use the MDMTA. So, this cost function tells us (on
average) how much the energy consumption is decreased by the use of the MDMTA.

Now, in the second application the optimization problem can be seen as an in-
vestment problem: we want to maximize the revenue (the SNR) while minimizing
the investment (the mechanical energy). Therefore, the optimization problem for
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Figure 2.11: Geometry obtained using SA with Xe(z0) for N = 5 stopping points.

this application can be mathematically stated10 as:

min
η,t,µ,ζ,u(t)

(β − 1)E
[
|h(qopt)|2

]
+ βE [Emech (t1, tN+1,u(t))]

s.t.
tN+1 − t1 − Tmax(N) = 0

(2.22)

where η is the threshold vector, t is the temporal vector, µ is the input parame-
ter for the selection rule, ζ is the input parameter for the geometry optimization
(ζ = ρ if we optimize (2.14) and ζ = θ if we optimize (2.16)) and β ∈ [0, 1] is a
design parameter. The cost function is a convex combination of −E [|h(qopt)|2] with
E [Emech (t1, tN+1,u(t))]. Therefore, decreasing β means that the improvement in
the SNR becomes more important and so the MR is allowed to use more mechanical
energy to achieve this goal.

Now, regarding the choices of the input parameters for the optimization problems
(2.21) and (2.22) will depend on the particular application and the objective of the
designer. If the MR has to send a �nite (and known) number of bits then the designer

should choose optimization problem (2.21) and choose α =
MTbPref

s2
, η (as mentioned

before) in order to minimize the total amount of energy used.
On the other hand if for the particular MR that is considered the energy used

for transmission is negligible with respect to the mechanical energy then could select
optimization problem (2.22) in order to obtain a high channel gain but avoiding
to spend too much mechanical energy in the process. As mentioned before, this

10We modelled our problem as an investment problem but we multiplied the optimization target
by −1 to re-state it as a minimization problem so that all the MDMTA parameter optimization
problems in this chapter are minimization problems.
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compromise is controlled by the parameter β. If the number of bits to be sent is too
high or if the bit error rate required is too low then we should select β low in order to
prioritize the obtention of a high channel gain over the saving of mechanical energy.
Nevertheless, for the same MR, if the energy in the battery is low then the designer
could give more importance to saving energy and so he could select a medium or
high (close to 1) value of β depending on the battery level, the importance of the
transmission at that moment as well as the size of the payload.

We have to mention that the cost functions of the optimization problems (2.21)
and (2.22) are two di�erent forms of the cost function for the more general optimiza-
tion problem (2.10).

Now, the �rst step in the optimization of (2.21) and (2.22) is the optimization of
the control law used by MR to move. In both cases it is intuitive that the optimum
control law used by the MR must allow it to move from one stopping point to the next
one in a �nite time tk+1 − tk while using minimum energy. Therefore the optimum
control law u(t) for t ∈ [tk, tk+1] for the TOMR considered in this chapter is obtained
as follows11:

min
u(t)

Emech (tk, tk+1,u(t))

s.t.
Ap̈o(t) + Cṗo(t) = Du(t)
po(tk) = [qTd (k) 0]T , po(tk+1) = [qTa (k) 0]T

ṗo(tk) = 0, ṗo(tk+1) = 0

(2.23)

where k = 1, 2, · · · , N , t1 = 0 and qd(k) and qa(k) are the departure and arrival
points at the kth iteration12. The cost function corresponds to the mechanical energy
consumed by the TOMR, see (2.6). The �rst restriction describes the TOMR's
dynamical model (as described in section 2.1.1) and the remaining restrictions ensure
that the TOMR is motionless at both the departure point qd(k) and at the arrival
point qa(k) while completing the movement in tk+1 − tk seconds.

This is a classical optimum control problem that can be solved analytically using
calculus of variations. Speci�cally we can solve the Euler-Lagrange equation [35] to
optimize the functional in (2.23) to derive the optimum control law. The resulting
control law for t ∈ [tk, tk+1], is given by

u∗k (t) =
A1,1v̇

∗
k(t) + k1v

∗
k(t)

k2


2 sin(ψa,b(k))

3

− sin(ψa,b(k))

3
− cos(ψa,b(k))√

3

− sin(ψa,b(k))

3
+

cos(ψa,b(k))√
3

 (2.24)

where13 ψa,b(k) = ](qa(k) − qd(k)) and v∗k(t) is the optimum translational velocity

11In order to be able to simplify the problem and obtain an analytical expression for the optimum
control law we restricted the MR orientation to remain constant during the whole movement, i.e.,
φ̇(t) = 0 and without loss of generality we also set φ(t) = 0 (see Fig. 2.1).

12At the kth iteration qd(k) = qk, qa(k) = qk+1 for k = 1, 2, · · · , N − 1, qd(N) = qN and
qa(N) = qopt, where qopt is the optimum point chosen by the selection rule.

13](qa(k)− qd(k)) represents the angle of the vector qa(k)− qd(k).
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for t ∈ [tk, tk+1] and is given by:

v∗k(t) = ‖qa(k)− qd(k)‖2 · (Kv1(∆k)e
−t√
τ +Kv2(∆k)e

t√
τ +Kv3(∆k)) (2.25)

with ∆k = tk+1 − tk and:

τ =
2A2

1,1k3

2k2
1k3 − 3k1k2

2k4

, (2.26)

Kv1(∆k) = 1−e
∆k√
τ

4
√
τ
(

1−cosh
(

∆k√
τ

))
+2∆k sinh

(
∆k√
τ

) ,

Kv2(∆k) = e

−∆k√
τ −1

4
√
τ
(

1−cosh
(

∆k√
τ

))
+2∆k sinh

(
∆k√
τ

) ,

Kv3(∆k) =
2 sinh

(
∆k√
τ

)
4
√
τ
(

1−cosh
(

∆k√
τ

))
+2∆k sinh

(
∆k√
τ

) .

(2.27)

Therefore, when the optimum control law u∗k(t) is used for moving during the kth
iteration the mechanical energy consumed over that movement is:

Emech (tk, tk+1,u
∗
k(t)) = K(∆k)‖qa(k)− qd(k)‖2

2 (2.28)

where K(∆k) is given by (2.29).

K(∆k) =

(
2k3A

2
1,1 −

√
τA1,1(4k1k3 − 3k2

2k4) + τk1(2k1k3 − 3k2
2k4)

6
√
τk2

2

)
×

(
1− e

−2∆k√
τ

)
K2
v1

(∆k)

+

(
A1,1(3k2

2k4 − 4k1k3) + 2k1

√
τ(2k1k3 − 3k2

2k4)

3k2
2

)
×

(
1− e

−∆k√
τ

)
Kv1(∆k)Kv3(∆k)

+

(
k1(2k1k3 − 3k2

2k4)

3k2
2

)(
2Kv1(∆k)Kv2(∆k) +K2

v3
(∆k)

)
∆k

−
(

4k3A
2
1,1

3k2
2τ

)
Kv1(∆k)Kv2(∆k)∆k

+

(
A1,1(4k1k3 − 3k2

2k4) + 2k1

√
τ(2k1k3 − 3k2

2k4)

3k2
2

)
×

(
e

∆k√
τ − 1

)
Kv2(∆k)Kv3(∆k)

+

(
2k3A

2
1,1 +

√
τA1,1(4k1k3 − 3k2

2k4) + τk1(2k1k3 − 3k2
2k4)

6
√
τk2

2

)
×

(
e

2∆k√
τ − 1

)
K2
v2

(∆k). (2.29)
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Once we have the optimum control law (u∗(t)) and having access to an `optimum
geometry dictionary' (see subsection 2.3.1) calculated a-priori, then the searching
space of (2.21) and (2.22) is reduced to 2N variables: η1, η2, · · · ηN−1, t2, t3 · · · , tN ,
ζ and µ. If we do not use an `optimum geometry dictionary' then we would have
to embed the geometry optimization problem into the optimization of the MDMTA
parameters which would increase considerably the amount of calculations needed.

Now, if the designer does not have a dynamic model for the MR then a suboptimal
approach is to replace the mechanical energy term in the cost functions of (2.10),
(2.21) and (2.22) with the distance travelled by the MR.

Note that if we want to implement the MDMTA with a non-omnidirectional
MR (e.g., a di�erential drive mobile robot) then the design of the stopping points
geometry would have to take into account its kinematic restrictions. In general the
MR could not directly move in straight line from stopping point to stopping point
and probably a joint design of both the optimum stopping points geometry and the
minimum energy control law would be necessary. These considerations are beyond
the scope of this thesis but the material already presented in this chapter could be
used as a departure point to develop such techniques.

Finally, we should mention that in general there is no analytical expression for
the cost functions of (2.10), (2.21) and (2.22) and so they must be evaluated by
simulations. When calculating the value of the cost function by simulations we will
obtain the true value plus a random error (which will be small if we use a large
enough number of iterations to calculate it). This makes it more complicated to
exactly solve these optimization problems. In this chapter (see simulation section)
we use the SA algorithm but this does not guarantee us an optimum solution but
rather a good or a near optimum solution if we let the SA run for a signi�cant amount
of time and we also obtain a small enough error in the cost function by using a large
enough number of simulations to evaluate it.

This is because the SA algorithm uses a random search mechanism to determine
the testing points where it evaluates the optimisation target. When the SA is used in
an optimisation problem whose optimisation space is bounded and discrete then the
probability that it reaches the global optimum tends to 1 as it runs for long enough
time. But when the search space is continuous, due to the random search component,
we can only guarantee that we will reach a point close to the global optimum. In
addition, we have to mention that the random mechanism in the SA helps to get out
of local optima [32] but sometimes it may fail to do that and so we may end near a
local optima rather than near the global optima. One way to compensate for this is
to run the SA various times with di�erent initial conditions. Note that in our case
this problem is accentuated as we increase the number of stopping points and also
as the area in which the stopping points are allowed to lie increases. This is because
all these actions increase the number of local optima and therefore it becomes more
di�cult for the SA to avoid them. Nevertheless, despite all these inconvinients the
SA algorithm can produce good results as long as the number of stopping points is
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not too high.

2.3.3 Adaptive Diversity Order

We have already shown how to optimise the geometry of the stopping points, the vis-
iting order of the points and all the parameters of the MDMTA, except for the actual
number of stopping points N . In this subsection we address this last optimisation
problem.

The optimisation of N prior to each invoking of the MDMTA is called Adaptive

Diversity Order [30]. This is due to the fact that the diversity order of the MDMTA
(and of any MDA with discrete search space) is given by the number of stopping
points N . The Adaptive Diversity Order is one of the elements that di�erentiates the
MDMTA from other diversity techniques in which the diversity order is �xed once
the system is deployed (e.g., multi-antenna diversity techniques). Now, assuming
that the MR has in memory a list of various optimal geometries with the respective
to MDMTA optimum parameter values then N can be optimized as follows:

min
N

f ∗(N, ξ, Tmax(N))

s.t.
Tmax(N) ≤ TM
N ≤ Nmax

(2.30)

where ξ = α (ξ = β) if we chose the (2.21) ((2.22)) to optimize the parameters of
the MDMTA, f ∗(N, ξ, Tmax(N)) denotes the minimum value of the cost function of
the optimization problem selected ((2.21) or (2.22)), Nmax is a prede�ned maximum
value that N may take14, and Tmax(N) is the maximum execution time allowed15 for
N stopping points while TM is the maximum execution time allowed for any number
of stopping points.

There are many possible choices for Tmax(N) but we will only mention two. One
option is to set the same duration independently of the number of stopping points
Tmax(N) = TM and another option is to set the duration proportional to the number
of stopping points Tmax(N) = TMN

Nmax
. The mechanical energy is a decreasing function

of Tmax(N) and since TM ≥ TMN
Nmax

, in general the �rst option uses less energy while
the second option results in a lower MDMTA execution time. So, depending on the
particular design requirements we can choose one option or the other.

Now, the minimum value of Tmax(N) depends on the maximum velocity of the
MR, the number of stopping points and the distance between adjacent stopping
points. To give a rough idea of typical values of Tmax(N) for the MDMTA we
develop a loose upper bound for its minimum value. As mentioned previously, in
typical scenarios the optimum geometries obtained by solving (2.14) or (2.16), the

14A reasonable value for Nmax can be around 10 or less.
15The actual execution time is a random variable that at most takes the value of Tmax(N).
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distance between adjacent stopping points is in general less than a wavelength λ,
see Figs. 2.3 to 2.10. If the carrier frequency used is higher than 1GHz then the
wavelength is smaller than 30cm and according to the experimental results in [26],
the article from which we extracted the TOMR model for this chapter, this particular
MR can at least travel 50cm in one second. Therefore the MR can now move from
stopping point to stopping point in less than one second. Now, the time taken for
the MR to estimate the channel at each stopping point will depend on the amount
of data utilized for this process but in general the time required for this task could
easily be assumed less than one second16. Considering all this information we can say
that the minimum value for Tmax(N) , for this particular robot, is loosely bounded
by 2N seconds: N − 1 seconds to traverse all the N stopping points, N seconds to
measure the channel at all the stopping points and around one second to go from
qN to qopt.

With the introduction of the adaptive diversity order concept we have completed
the discussion about the design and optimization of the MDMTA.

2.4 MDMTA Analysis

A general analysis of the MDMTA is extremely complicated and in most cases it is
not possible to obtain analytical results. Nevertheless there is one particular case of
interest in which we can obtain exact analytical expressions for the c.d.f. (cumulative
distribution function) of |h(qopt)| and the p.m.f. (probability mass function) of Emech.
This is the case for the MDMTA with two stopping points, using the Maximum

Channel Gain Rule and assuming perfect channel estimation. Although we have
neglected the localization error up to now, we will analyze its e�ects on the MDMTA
in this section.

2.4.1 Two Stopping Points and Perfect Channel Gain Esti-

mation

In this subsection we derive the c.d.f. of |h(qopt)| and the p.m.f. of Emech for the
MDMTA when using the Maximum Channel Gain Rule as the selection rule and
assuming perfect channel estimation (i.e., the MR measures the channel gain without
error). From the MDMTA description we can derive the following expression for the
channel gain at qopt:

Pr(|h(qopt)| < x) = Pr(|h(q1)| < x, |h(q1)| ≥ η1)

+ Pr(max (|h(q1)|, |h(q2)|) < x, |h(q1)| < η1), (2.31)

where the �rst probability of the right hand side represents the case where the channel
gain at the �rst stopping point is higher than the threshold η1 and so qopt = q1. The

16In this chapter for simplicity we are not considering this time but it should be considered when
the MDMTA is implemented.
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second term represents the case where the MR reaches q2 and uses the Maximum

Channel Gain Rule to determine qopt. Performing some probability calculations on
(2.31) we obtain:

Pr(|h(qopt)| < x) = Pr(η1 ≤ |h(q1)| < x)

+ Pr(|h(q2)| < |h(q1)| < x, |h(q1)| < η1)

+ Pr(|h(q1)| < |h(q2)| < x, |h(q1)| < η1). (2.32)

In order to simplify we �rst analyze the c.d.f. for x < η1 and then for x ≥ η1. For
x < η1 we have:

Pr(|h(qopt)| < x) = Pr(|h(q2)| < |h(q1)| < x) + Pr(|h(q1)| < |h(q2)| < x), (2.33)

and Pr(|h(q2)| < |h(q1)| < x) = Pr(|h(q1)| < |h(q2)| < x) due to the fact that the
channel at both stopping points is identically distributed so we have:

Pr(|h(qopt)| < x) = 2Pr(|h(q1)| < |h(q2)| < x). (2.34)

and using the total probability theorem we can write:

Pr(|h(qopt)| < x) = 2

∫ x

0

Pr(|h(q2)| < y | |h(q1)| = y)f|h(q1)|(y)dy. (2.35)

where f|h(q1)|(y) is the unconditional (probability density function) p.d.f. of |h(q1)|
which is Rayleigh distributed with E[|h(q1)|2] = 1 and so we have:

Pr(|h(qopt)| < x) = 4

∫ x

0

Pr(|h(q2)| < y | |h(q1)| = y)ye−y
2

dy. (2.36)

Since h(q2) is a zero-mean complex Gaussian random variable then when we condi-
tion the random variable |h(q2)| on the realisation of |h(q1)| = y it becomes a Rician
random variable with the following distribution:

f|h(q2)| | |h(q1)|=y(z) =
2z

1− γ2
e
−(z2+γ2y2)

1−γ2 I0

(
2γzy

1− γ2

)
(2.37)

where I0(·) is modi�ed Bessel function of the �rst kind and zero order and γ =
r (q1,q2), see (2.9). From the Rician distribution (2.37) we have then:∫ x

0

Pr(|h(q2)| < y | |h(q1)| = y) =

∫ y

0

f|h(q2)| | |h(q1)|=y(z)dz (2.38)

∫ x

0

Pr(|h(q2)| < y | |h(q1)| = y) = 1−Q1

( √
2yγ√

1− γ2
,

√
2y√

1− γ2

)
(2.39)
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where Q1(·, ·) is the modi�ed Marcum Q-function. Now, substituting (2.39) in (2.36)
gives us:

Pr(|h(qopt)| < x) = 4

∫ x

0

(
1−Q1

( √
2yγ√

1− γ2
,

√
2y√

1− γ2

))
ye−y

2

dy. (2.40)

Pr(|h(qopt)| < x) = 2(1− e−x2

)

− 4

∫ x

0

Q1

( √
2yγ√

1− γ2
,

√
2y√

1− γ2

)
ye−y

2

dy. (2.41)

Now, in[36] we �nd the following integral:∫ c

0

e
−p2x2

2 Q1(ax, bx)dx =
1

2p2

(
1 +

t

r

)[
1 + e

−sc2
2 I0(abc2)

]
− e

−p2c2
2 Q1(ac, bc)− t

r
Q1

(
c

√
s− r

2
, c

√
s+ r

2

)
(2.42)

with s = p2 + a2 + b2, t = p2 + a2 − b2 and r =
√
s2 − 4a2b2. So, using this integral

into (2.41) and simplifying terms we obtain:

Pr(|h(qopt)| < x) = 1− e
−2x2

1−γ2 I0

(
2γx2

1− γ2

)
− 2e−x

2

(
1−Q1

(
γ
√

2x√
1− γ2

,

√
2x√

1− γ2

))
(2.43)

And for x ≥ η1 we have:

P (|h(qopt)| < x) = P (η1 ≤ |h(q1)| < x) + P (|h(q2)| < x, |h(q1)| < η1) (2.44)

where again using the integrals from [36] the c.d.f. of |h(qopt)| reduces to:

Pr(|h(qopt)| < x) = e−x
2

Q1

( √
2xγ√

1− γ2
,

√
2η1√

1− γ2

)

− e−η
2
1Q1

( √
2x√

1− γ2
,

√
2γη1√

1− γ2

)
+ 1− 2e−x

2

+ e−η
2
1 . (2.45)

Now, using a similar approach the p.m.f. of the mechanical energy consumed by the
TOMR when using the optimum control law (2.24) becomes:

Pr(Emech = 0) = e−η
2
1 , (2.46)
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Pr(Emech = K(T1)‖q1 − q2‖2
2) =

1

2

(
1 + e

−2η2
1

1−γ2 I0

(
2γη2

1

1− γ2

))
− e−η

2
1Q1

(
γ
√

2η1√
1− γ2

,

√
2η1√

1− γ2

)
, (2.47)

Pr(Emech = (K(T1) +K(T2)) ‖q1 − q2‖2
2) =

1

2

(
1− e

−2η2
1

1−γ2 I0

(
2γη2

1

1− γ2

))
+ e−η

2
1Q1

(
γ
√

2η1√
1− γ2

,

√
2η1√

1− γ2

)
− e−η

2
1 . (2.48)

Note that Pr(Emech = 0) is equivalent to the probability that the �rst channel gain
is superior to η1 and since |h(q1)| follows. Now, Pr(Emech = (K(T1) +K(T2)) ‖q1 −
q2‖2

2) is equivalent to the probability to the case in which the MR reaches q2 (and
so |h(q1)| < η1 ) and has to return to q1 because |h(q1)| > |h(q2)|. In other
words, Pr(Emech = (K(T1) +K(T2)) ‖q1−q2‖2

2) is equivalent to the probability that
Pr(|h(q2)| < |h(q1)| < x, |h(q1)| < η1) which in turn is equivalent to 1

2
Pr(|h(qopt)| <

x) when x < η1 (see (2.32) − (2.43)) and so (2.48) results. Finally, the remaining
possibility for Emech is to take the value ofK(T1)‖q1−q2‖2

2 and so we have Pr(Emech =
K(T1)‖q1 − q2‖2

2) = 1 − Pr(Emech = (K(T1) +K(T2)) ‖q1 − q2‖2
2) − Pr(Emech = 0).

As consequence (2.47) follows.
In Fig. 2.12 we observe the normalized versions17 of E[|h(qopt)|] and E[Emech]

(calculated from equations (2.43), (2.45) and (2.46)-(2.48)) as functions of η1. We
observe that as η1 decreases then E[Emech] reduces faster than E[|h(qopt)|]. This
is why we can use the thresholds to slightly reduce E[|h(qopt)|] while signi�cantly
reducing the mechanical energy consumption. For example, from Fig. 2.12, we
observe that if η1 = 1.5 then E[|h(qopt)|] is practically una�ected but E[Emech] is
reduced by more than 10%.

2.4.2 Localization Error Impact

In this subsection we brie�y discuss the impact of the localization error on the
MDMTA. By de�nition the initial position of the MR is q1. We assume that the
MR uses �dead reckoning [25]� to estimate its relative location to q1. Then as the
MR starts to move from stopping point to stopping point, during the exploration
phase the localization error starts to accumulate and so the actual geometry of the
stopping points deviates more from the intended geometry as the number of stopping
points increases. This is the �rst e�ect. Now, during the selection phase, if the jth
stopping point was selected as the optimum stopping point then the MR will move

17The normalization is made with respect to the parameter values when η1 = +∞.
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Figure 2.12: Normalized values for E[|h(qopt)|] and E[Emech] as a function of the
threshold η1 for di�erent γ values and T1 = T2.

believing that it is moving from qN to qj while in reality it will be moving from
p(tN)(6= qN due to localization error) to a random point centered at p(tj) (6= qj also
due to the localization error). Note that p(tN) is a random variable (centered at qN)
whose variance depends on both the accuracy of the MR motion and the number of
stopping points in the explored geometry. In other words |h(p(tN+1))| 6= |h(p(tj))|,
and this is the second e�ect. If the localization error is small then p(tN+1) and
p(tj) will be close enough, and their channels will be highly correlated and so that
|h(p(tN+1))| ≈ |h(p(tj))|.

Finally we have to mention that as the e�ects of the localization error accumulate
more with the number of stopping points then localization error is one of the elements
that in practice limits the maximum number (Nmax) of stopping points that the MR
can explore during the MDMTA.

2.5 Simulations

In the simulations, we selected the robot parameters to �t the TOMR used in [26]
which describes a real robot. These corresponding parameters are shown in table
2.1. In addition, we will assume throughout this section that the error term in
the channel gain estimation has a variance σ2

n = 0.05 which corresponds to a low
estimation error.

We �rst compare three di�erent types of geometries:
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Table 2.1: TOMR parameters.

m = 1.989kg Jc = 0.020691kg ·m2 Jw = 0.060g ·m2

r = 3cm L = 12.55cm k1 = 35.0330N/m

k2 = 38.7342N k3 = 72.9114W k4 = 1

Table 2.2: MDMTA results for the geometry Gz0(N).
N 2 3 4 5

E[Emech] 0.1432 0.2521 0.4221 0.5305
E[|h(qopt)|2] 1.4775 1.7944 2.0143 2.1774

1. The linear geometry Lz0(N): In this geometry there are N linear points ar-
ranged uniformly spaced at a distance z0. These points are ordered from left
to right.

2. The random geometries Rz0(N) and R1.5z0(N): In these geometries the points
are arranged randomly inside a circle of radius z0 and 1.5z0 respectively. The
points are not optimally ordered. The random geometries inside a circle to
combat fading was suggested in [17].

3. The optimized geometry Gz0(N): This is obtained by solving (2.14) for a cir-
cular area of radius ρ = z0. The points are optimally ordered according to
(2.18).

In order to compare the geometries we use the MDMTA without thresholds and
with the Maximum Channel Gain Rule. We assume a wavelength λ = 30cm and
tk+1 − tk = 1s for k = 1, 2, · · · , N .

In tables 2.2 to 2.5 we observe, for di�erent number of stopping points, the
expected value of the mechanical energy used by the MDMTA for each geometry
as well as the power of the optimum channel obtained. We �rst observe that with
the geometry Gz0(N) we obtain a channel gain with the same characteristics as
with Lz0(N), but using less mechanical energy. The random geometry Rz0(N) has
the same exploration area as Gz0(N) but provides a poorer channel gain than when
using the MDMTA. If the TOMR adopts the random geometry R1.5z0(N) then it will
use more mechanical energy while still obtaining poorer channel gains. Therefore,
incorporating an optimum geometry into the MDMTA will allow the MR to obtain
good channel gains while using less mechanical energy.

Now, we optimise all the parameters of the MDMTA by solving (2.22) with
β = 0.6, Tmax(N) = N and optimizing it assuming the estimation error for the
channel gain mentioned at the beginning of this section. The selection rule chosen
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Table 2.3: MDMTA results for the geometry Lz0(N).
N 2 3 4 5

E[Emech] 0.1432 0.3496 0.6186 0.9529
E[|h(qopt)|2] 1.4780 1.7812 2.0034 2.1779

Table 2.4: MDMTA results for the geometry Rz0(N).
N 2 3 4 5

E[Emech] 0.0952 0.1706 0.2404 0.3087
E[|h(qopt)|2] 1.3658 1.5818 1.7279 1.8364

was the Minimum E�ort Rule. The results for this optimized algorithm are shown
in table 2.6. Now, if we compare tables 2.2 and 2.6 we observe that the power of
the optimum channel gain obtained with the optimized algorithm is around 97% to
92% of the one for the non optimized version. But the mechanical energy used by
the optimized algorithm is around 50% (and in some cases even 31%) of the one for
the non optimized version. Therefore, by choosing the parameter β appropriately
we can sacri�ce channel gain a little but at the same time signi�cantly reduce the
mechanical energy consumption thus making the MDMTA more energy e�cient.

Now, we consider the case in which the TOMR must transmit a �le of M =
100MB to a stationary node. The duration of each bit is Tb = 500ns. The MR
must satisfy a minimum power of Pref = 100µW at the stationary node receiver
and it cannot transmit more than Pmax = 40mW. We assume that the shadowing
term s = 0.5 is known. The wavelength used for this transmission is λ = 15cm.
We optimize the MDMTA with the Minimum E�ort Rule according to (2.21) for
N = 2 and Tmax(2) = 5s. By using this optimized MDMTA the outage probability
decreases from 10−2 to 10−3. In addition, when the communication is successful the
energy reduction factor reaches 78%. In other words, when the communication is
successful the MR saves 22% of the energy that it would use if it did not employ the
MDMTA at all and if Pmax = +∞. These results show that the MDMTA reduces
the outage probability and in the successful communication cases can also reduce
considerably the amount of total energy expended (energy used in transmission plus
energy used in motion).

Finally, we illustrate a possible implementation of the MDMTA in a practical
scenario. Consider a robotic wireless network that needs to communicate with a MR
in order to connect it to the robotic network. To do this a node (another MR) from
the robotic network that remains temporally stationary starts to operate in a time
division duplex mode. During the transmission period it transmits a training signal
to the MR and during the receiving period it waits for an �answer' from the MR.
Now, the MR receives this signal but due to small scale fading the received signal has
a poor SNR and so it decides to implement the MDMTA to improve the quality of the
wireless link before answering the stationary node. To avoid making the stationary
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Table 2.5: MDMTA results for the geometry R1.5z0(N).
N 2 3 4 5

E[Emech] 0.2147 0.3829 0.5393 0.6915
E[|h(qopt)|2] 1.4093 1.6598 1.8369 1.9647

Table 2.6: MDMTA optimised according to (2.22) results.
N 2 3 4 5

E[Emech] 0.0774 0.1274 0.1602 0.1651
E[|h(qopt)|2] 1.4470 1.7321 1.9038 2.0055

node wait too long the designer sets in the MR's program the time limit TM = 5
seconds. The MR has in memory a number of geometries of di�erent sizes and
di�erent number of stopping points (up to N = 5) optimized according to (2.14) and
(2.18). The MR also has in memory two preloaded tables containing the optimum
parameters of the MDMTA according to (2.22). It will also have the corresponding
value of the cost function for up to N = 5 stopping points and for di�erent values
of the parameter β. The �rst preloaded table has the optimum parameters of the
algorithm using the thresholds ηk = +∞, while the second preloaded table gives the
optimum value of all the parameters including the thresholds. If the MR's battery
is almost full, and establishing communication with the robotic network is very
important, it will select β small to prioritize �nding a large channel gain (as opposed
to expenditure of mechanical energy, see (2.22)). Now, in order to apply the adaptive
diversity mechanism it �rst realizes that in this particular case it does not have an
estimate of the shadowing term (s) and so it explores all the entries of the �rst table
(i.e., the table containing the optimized parameters when ηk = +∞) having small β
and then selects the row with the lowest cost function value. Then the MR reads that
row, picks the values for all its parameters (including the number and the ordered
geometry for the stopping points) and executes the MDMTA according to Algorithm
1. Finally, when it reaches qopt it answers to the stationary node.

2.6 Conclusions

In this chapter we have developed the MDMTA which is a general MDA for discrete
search spaces and we have clearly identi�ed and formalized each one of its compo-
nents. This makes it easier to analyze MDAs with discrete search spaces and as we
shall see in the next chapters this will also allow us to create new MDAs by modifying
the MDMTA components and/or adding more components.

We solved the problem of obtaining optimum predetermined geometries for any
number of stopping points. We also showed that the meaning of optimum geometry
can have various interpretations and so the solution to the optimisation of predeter-
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mined geometries for a given number of stopping points has not a unique solution.
We provided two di�erent solutions, each one derived from a di�erent interpretation
of this optimality.

We also showed that by using optimum geometries in the MDMTA we can make
it more e�cient by obtaining higher channel gains while using less mechanical en-
ergy. So in summary, we have developed a basic theory for MDAs with discrete
search spaces, proposed a general MDA (for discrete search spaces) and veri�ed its
advantages via simulation and analytical results.

In the next chapter we continue developing the theory for MDAs with discrete
search spaces. To do this we now explore how to improve the location of the stopping
points by calculating their position adaptively during the MDA execution rather than
using predetermined geometries.
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Chapter 3

MDA with Adaptive Stopping Points

In chapter 2 we studied in detail the case of the MDA with a predetermined discrete
search space and solved the problem of optimising the predetermined geometry of
the stopping points. We showed as well the bene�ts of such optimisation. Now, our
next step in the study of MDAs is to consider adaptive locations for the stopping
points. This will be achieved by using path planners with memory which will now
be developed in this chapter.

As shown in the last chapter the design of predetermined geometries is based
on the principle that the expected value of the maximum gain of N channels is
maximized1 when all the channels are independent. But the design of path planners
with memory to adaptively calculate the location of the stopping points is based on
a di�erent principle. If the MR measures the channel at its current location and
wants to improve the average channel gain at its next location then it must choose
the next location so that the channel (at the next location) is uncorrelated to the
channel at the current location if its gain is poor and correlated if the channel at
the current location is high. In other words, by controlling the channel correlation
rather than try to select always uncorrelated channels. We will formally derive this
result in this chapter. Then we will extend it to construct various path planners
with memory to adaptively determine the location of the stopping points.

The main contribution of this chapter is the development of optimum path plan-
ners with memory for MDAs with discrete search spaces, which as will be demon-
strated can outperform the MDAs with predetermined discrete search spaces both
in terms of the channel gain obtained and the energy used in motion. In the context
of diversity techniques channel correlation has always being considered as something
negative that degrades the performance of the diversity techniques [12]. But in this
chapter we demonstrate that in the context of MDAs it is possible to harness channel
correlation to improve the performance of MDAs with respect to the case in which
all the channels are independent. This constitutes one of the major contribution of
this thesis.

1This holds only under the restriction that the stopping points geometry is predetermined.
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This chapter is organized as follows. First we introduce the general form of a path
planner with memory and show how it �ts into the theory of the MDMTA presented
in the previous chapter. Then in section 3.2 we derive the optimum path planner
with memory order one. In 3.3 we analyse it and demonstrate the new properties
of the wireless channel that are introduced by use of path planners with memory.
Then we continue with the development of a path planner with memory order two
in section 3.4 and we generalise them to derive path planners with arbitrary memory
order in section 3.5.

The models used in this chapter for the wireless channel gain and for the mobile
robot will be the same as in the previous chapter but for convenience we re-write the
channel model:

y(t) = sh(p(t))x(t) + nr(t) (3.1)

where x(t) and y(t) are the transmitted and received signals while nr(t) is the additive
white Gaussian noise at the receiver, h(p(t)) is the small-scale fading term and s is
the shadowing term which is considered to be constant for all the stopping points.
In addition we will assume that s is known for this chapter.

3.1 Path Planners with Memory for MDAs

In this chapter the location of the next stopping point is calculated as a function of
the channel at the current and previous stopping points as well as their locations.
So, in general when the MR is located at the stopping point qk at time instant tk it
can calculate the next stopping point qk+1 using a path planner with memory order
M(k) as follows:

qk+1 = fM(k)

(
QM(k)(k), ĤM(k)(k), k

)
(3.2)

where QM(k)(k) = [qk−M(k)+1, qk−M(k)+2, · · · ,qk]T is a matrix containing the current

location of the MR and theM(k) previous stopping points; ĤM(k)(k) = [ĥ
(
qk−M(k)+1

)
,

ĥ
(
qk−M(k)+2

)
· · · , ĥ (qk)]

T , ĥ(qk) is the estimation for h(qk) with estimation errors

ĥ(qk)−h(qk) ∼ CN (0, σ2
e) and fM(k)(·, ·, ·) is a general iterative path planner function

with memory order M(k) (IPPF-M(k)) to be developed and analysed throughout
this chapter.

Note that in the previous chapter we didn't mention explicitly the path planner
when we presented the components of the MDMTA but we indeed used a memoryless
one (i.e., M(k) = 0) which can be described mathematically as follows:

f0(QN ,−, k) = IN(k + 1)QN (3.3)

where IN(k + 1) is the k + 1th row of an N × N identity matrix, QN is given in
(2.19) and the hyphen in the second input argument of (3.3) means that in this case
the second input to the planner function is not used. Now, in order to further clarify
the interaction of the path planner within the MDMTA we rewrite the pseudocode
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of the MDMTA in 3 just with minor modi�cations in the presentation and the list
of input parameters.

Algorithm 3 MDMTA(N,M(k), fM(k), t,η,Rs, (ŝ))
1: p← q1

2: for k = 1 to N − 1 do
3: ŝĥ(qk)← Estimate[sh (p)] {Channel gain estimation .}
4: if |ĥ(qk)| ≥ ηk then

5: qopt ← qk
6: Terminate Algorithm
7: end if

8: qk+1 = fM(k)

(
QM(k)(k), ĤM(k)(k), k

)
{The path planner is used to calculate

the next stopping point.}
9: p← qk+1{The MR moves to the next stopping point in tk+1 − tk seconds.}
10: end for

11: ŝĥ(qN)← Estimate[sh (p)]
12: qopt ← Rs{A `selection rule' is used to determine the optimum position.}
13: p← qopt{The MR moves to the optimum stopping point in tN+1− tN seconds.}
14: Terminate Algorithm

Note also that the memory order is in general a function of time and does not
necessarily have to be a constant. The reason behind this will become evident when
we present the path planners with arbitrary memory order in section 3.5.

In this chapter we will consider again an omnidirectional MR and so the MR will
move in straight line from stopping point to stopping point. Also, for simplicity and
to strictly focus on the spatial dimension (i.e., the location of the stopping points)
and not on the temporal aspects, we will restrict tk+1− tk = T . In chapter 5 we will
discuss more about the temporal aspects of MDAs. In addition we will use the same
model for the wireless channel as in the previous chapter.

During the searching phase of the MDMTA, at time instant tk the MR knows
{ĥ(qj)}kj=1 but the IPPF-M(k) has only access to {ĥ(qj)}kj=k−M(k)+1 because it has

memory order M(k) ≤ k.

Claim: The IPPF-M(k)'s predictor model for the wireless channel h(qk+1) at time in-
stant tk when the IPPF-M(k) has knowledge of {ĥ(qj)}kj=k−M(k)+1 and {qj}kj=k−M(k)+1

is given by:

h̃M(k)(qk+1) = p(k + 1,M(k) + 1)

[
P−1(k,M(k))ĤM(k)(k)

νk+1

]
(3.4)

where νk+1 is zero-mean complex Gaussian random variable with unit variance and
and also νj and νk are independent if k 6= j; the matrix P(k,M(k)) is a lower triangu-
lar matrix with C(k,M(k)) = P(k,M(k))PT (k,M(k)) and p(k+ 1,M(k) + 1) is the

48



CHAPTER 3. MDA WITH ADAPTIVE STOPPING POINTS

last row of the matrix P(k+1,M(k)+1). In addition, C(k,M(k)) is anM(k)×M(k)
correlation matrix with entries Cmn(k,M(k)) = r(qk−M(k)+m,qk−M(k)+n), where
r(·, ·) is the channel correlation given by (2.8).

Proof: The set of channels {h(qj)}kj=k−M(k)+1 is a set of correlated zero-mean complex

Gaussian random variables with unit variance whose correlation matrix is C(k,M(k))
with entries Cmn(k,M(k)) = r(qk−M(k)+m,qk−M(k)+n). Therefore an statistical
model for {h(qj)}kj=k−M(k)+1 is given by:

h(qk−M(k)+1)
h(qk−M(k)+2)

...
h(qk)

 = P(k,M(k))


νk−M(k)+1

νk−M(k)+2
...
νk

 (3.5)

where {νj}kj=k−M(k)+1 is a set i.i.d. zero-mean complex Gaussian random variables
with unit variance that serve to construct the set of correlated random variables that
represent the wireless channels {h(qj)}kj=k−M(k)+1. We also have:

h(qk−M(k)+1)
h(qk−M(k)+2)

...
h(qk)
h(qk+1)

 = P(k + 1,M(k + 1))


νk−M(k)+1

νk−M(k)+2
...
νk
νk+1

 (3.6)


h(qk−M(k)+1)
h(qk−M(k)+2)

...
h(qk)
h(qk+1)

 = P(k+1,M(k+1))


P−1(k,M(k))


h(qk−M(k)+1)
h(qk−M(k)+2)

...
h(qk)


νk+1

 (3.7)

Note that the last row of (3.7) is a statiscal model that relates the channel h(qk+1) to
the set of the channels {h(qj)}kj=k−M(k)+1. So, if we neglect the channel estimation

error and take the last row of (3.7) we obtain the IPPF-M(k)'s predictor model for
h(qk+1) given by (3.4). �

For mathematical simplicity we will assume during the development of this chap-
ter that the channel estimation error is negligible and so ĥ(qk) = h(qk) but in the
simulation section we will take the error into account to observe its e�ects on the
performance of the path planners.

Note that for this kind of path planner the MR needs to know the small scale
fading term in (3.1). To do this the MR �rst needs to perform a channel estimation
which will produce an estimate of the product of the small-scale fading and the
shadowing term. Then it needs to isolate the small-scale fading term and to do this
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the MR needs to have access to an estimate of the shadowing term s. Therefore for
all the path planners with memory in this chapter we will consider that the MR has
an estimate of s.

3.2 Path Planners with Memory Order One

In this section we develop the iterative path planner in (3.2) with memory order one,
i.e., with M(k) = 1. We will refer to this path planner as IPPF-1 and its general
form is:

f1(qk, h(qk), k) = d1(h(qk))v(k) + qk, (3.8)

v(k) = [cos(ψ(k)) sin(ψ(k))]T

where d1(h(qk)) is a distance function that determines the distance between the kth
and the k+1th stopping points (i.e., ‖qk+1−qk‖2) and ψ(k) is the direction in which
the MR has to move to arrive at qk+1 by departing from qk.

As mentioned in the previous chapter an e�cient MDA should obtain a high
channel gain while using little mechanical energy. So one way to optimise the IPPF-
1 in (3.8) is as follows:

max
d1(h(qk)),ψ(k)

θE [|h(qopt)|]− (1− θ)E

[
N∑
k=1

Em (tk, tk+1,u
∗
k(t))

]
s.t.
qk+1 = d1(h(qk))v(k) + qk k = 1, 2, · · · , N − 1
qN+1 = qopt

(3.9)

where u∗k(t) is the optimum control law derived in section 2.3.2 that moves the MR
in straight line from qk to qk+1 in tk+1− tk seconds. The optimization target in this
problem is a convex combination of the expected value of the channel gain at qopt
and the negative of the average mechanical energy used during the MDA execution.
This optimization target has the same form as the one we used in (2.22) in chapter
2 where we casted the optimization problem as an `investment problem'. The design
parameter θ ∈ [0, 1] de�nes the importance of obtaining a high channel gain with
respect to the mechanical energy consumption.

The �rst equality restriction in (3.9) refers to the fact that the stopping points
are calculated using the IPPF-1. The second restriction is added for notational
convenience to simplify the expression of the term that represents the mechanical
energy used during the whole algorithm execution (i.e., from time instant t1 until
tN+1) in the optimisation target in (3.9).

The optimization target of (3.9) is a functional that depends on the functions
d1(h(qk)) and ψ(k) and so theoretically it could be solved using dynamic program-
ming [35]. But, in general there is no an analytical expression for the optimisation
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target in (3.9) (speci�cally for the term E [|h(qopt)|]) so in practice we must evaluate
it by Monte Carlo simulations, thus making the optimization process computation-
ally expensive. This problem is accentuated by the fact that the optimisation target
depends on two functions rather than a single one.

This can be alleviated by �rst optimising d1(h(qk)) assuming ψ(k) constant (i.e.,
ψ(k) = ψ(1)) and then optimize ψ(k) using the previously optimized d1(h(qk)). This
produces two optimization problems with smaller search spaces which are simpler
and computationally cheaper to solve than directly trying to solve (3.9).

We can further simplify the optimization of d1(h(qk)) by restricting it to be a
speci�c parameterized function and then optimise its parameters. This is because
optimising a few parameters of a function is computationally cheaper than �nding
the optimal form of the function itself. To achieve this we �rst note that forM(k) = 1
the predictor (3.4) can be written as:

h̃1(qk+1) = νk+1

√
1− r2(qk,qk+1) + h(qk)r(qk,qk+1), (3.10)

with power:

E
[
|h̃1(qk+1)|2

]
= (1 + r(qk,qk+1)(|h(qk)|2 − 1)), (3.11)

where r(·, ·) is the channel correlation given by (2.8). For notational simplicity, we
will use interchangeably r(qk,qj) and rk,j in the rest of the chapter. From (2.8)
and (3.11) we observe that if the MR wants to maximize the power of the predicted
channel at qk+1 it must move near (far) from qk to experience a high (low) correlation
factor rk,k+1 if |h(qk)|2 is high (low). If we implement this principle in the general
IPPF-1 (3.8) then its distance function d1(h(qk)) takes the following form (see Fig.
3.1):

d1 (h (qk)) = 1R+∗(|h (qk) | − α)d+ 1R−(|h (qk) | − α)D, (3.12)

where 1R+∗(·) is the indicator function and d < D and α are the parameters to be
optimized according to:

max
d,D,α

θE [|h(qopt)|]− (1− θ)E

[
N∑
k=1

‖qk+1 − qk‖2
2

]
s.t.
qk+1 = d1(h(qk))v(k) + qk k = 1, 2, · · · , N − 1,
d1 (h (qk)) = 1R+∗(|h (qk) | − α)d+ 1R−(|h (qk) | − α)D,
qN+1 = qopt,
ψ(k) = ψ(1).

(3.13)

This optimization problem is obtained by restricting d1 (h (qk)) to take the form in
(3.12) and absorbing the term K(T ) of the mechanical energy term into the multi-
plying factor 1−θ. The optimization target in (3.1) is a convex combination between
the expected value of the channel gain at qopt and the negative of the sum the average
mechanical energy (normalized by K(T )). The design parameter θ determines the
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Figure 3.1: Example of the function d1 (h (qk)) for d = 0.15λ, D = 0.35λ and α = 1.2.

relative importance of obtaining a high channel gain respect to spending mechanical
energy. Therefore if we want to obtain a high channel gain but we do not mind
spending too much mechanical energy then we can select θ close to 1.

This optimization problem can be solved numerically using simulated annealing.
In general there is no analytical expression for the optimization target and so it must
be evaluated by simulations but for the particular case of N = 2 stopping points we
are able to derive an analytical expression for the optimization target, as we will
show in subsections 3.3.2 and 3.3.3.

Note that the optimization target in (3.13) depends indirectly on the parameters
d, D and α. This is because the optimization target depends on the stopping points
and these are calculated using those parameters as can be seen from the �rst and
second equality restrictions in (3.13).

Now, given d1 (h (qk)), the function ψ(k) determines the distance traveled by
the MR during the selection phase2, the distance among the stopping points and
so the correlation between their wireless channels. Consequently, it also a�ects the
statistics of h(qopt). So, a poor choice of ψ(k) can signi�cantly decrease E [|h(qopt)|]
and/or maximize the amount of mechanical energy used during the selection phase.
Therefore the necessity of optimizing ψ(k) is clear. Given the number of stopping
points N and the optimized function d1 (h (qk)) we can optimise ψ(k) by solving the

2The distance traveled during the searching phase depends only on d1 (h (qk)) and not on ψ(k).
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following problem:

max
ψ

θE [|h(qopt)|]− (1− θ)E
[
‖qopt − qN‖2

2

]
s.t.
qk+1 = d∗1(h(qk))v(k) + qk k = 1, 2, · · · , N − 1,
ψ(k + 1)− ψ(k) = ψ k = 1, 2, · · · , N − 2,

(3.14)

where d∗1(h(qk)) is the optimised distance function according to (3.13). The �rst
term in the optimization target is the same as in (3.13) while the second term is the
expected value of the distance traveled during the selection phase. This is because,
as mentioned previously, only the distance traveled during the selection phase is
a�ected by ψ(k). In the optimization target, the �rst term will tend to spread out
the stopping points to reduce the correlation among all the points and to increase
E [|h (qopt) |] but the second term will tend to concentrate the stopping points around
qN to reduce the distance traveled during the selection phase. Now, the last equality
restriction of (3.14) reduces the dimension of the search space from N−2 to 1. This is
done because there is not an analytical expression for the optimization target and so
reducing the search space simpli�es signi�cantly the optimization process (although
it also reduces the performance). We have used this angular restriction in similar
optimisation problems [37].

Note that by solving optimization problem (3.14) we are reducing the average dis-
tance between qN and qopt while avoiding a large increase in the channel correlation
that could degrade signi�cantly E [|h(qopt)|].

So now that we have shown how to optimise d1(h(qk)) and ψ(k) in (3.8) we have
concluded the design of the IPPF-1 in (3.8). In the next section we will analyse
some properties of this particular IPPF-1 for the particular case when N = 2. We
will also derive the analytical expression for the optimization target of (3.13) for the
particular case when N = 2. Finally, it is important to mention that although the
IPPF-1 will be executed online its optimization can be done o�-line.

3.3 IPPF-1 Analysis

In this section we demonstrate some important properties of the IPPF-1 and fully
characterize it for the special case of N = 2. We also obtain an analytical expression
for the optimization target in (3.13) for N = 2.

3.3.1 Channel Gain Distributions

When the location of the stopping points is predetermined as in the previous chapter
the channels at all the stopping points are identically distributed. But, when we use
the IPPF-1 developed in the previous section to calculate the location of the stopping
points this property does not hold anymore. Now we proceed to prove this. Consider
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two stopping points q1 and q2, where q1 is explored �rst. So the p.d.f. of |h(q1)| is:

f1(x) = 2x exp
(
−x2

)
. (3.15)

We use the IPPF-1 from previous section to calculate q2 so the correlation between
h(q1) and h(q2) is r0 = J0

(
2πD
λ

)
if |h(q1)| < α and r1 = J0

(
2πd
λ

)
if |h(q1)| ≥ α.

Since in this case q2 depends on |h(q1)|, and in order to avoid having a cumbersome
notation, instead of writing the correlation between the channels at both q1 and q2

as r(q1,q2(|h(q1)|)) in this section we will write r(|h(q1)|), where q1 is the arbitrary
starting point.

Now, given h(q1), from (3.10), it can be demonstrated that h(q2) is a complex
Gaussian random variable with mean r(|h(q1)|)h(q1) and variance 1 − r2(|h(q1)|).
Thus, we can show that the conditional p.d.f. of |h(q2)| given |h(q1)| = x is a Rician
distribution:

f2|1(y|x) = 2y
1−r2(x)

exp
(
−y2−r2(x)x2

1−r2(x)

)
I0

(
2r(x)yx
1−r2(x)

)
(3.16)

where I0(·) is the modi�ed Bessel function of the �rst kind and zeroth order. Now,
combining (3.15) and (3.16) according to the total probability theorem we have:

f2(y) =

∫ +∞

0

f2|1(y|x)f1(x)dx, (3.17)

f2(y) =

∫ +∞

0

4xy

1− r2(x)
exp

(
−x2

)
exp

(
−y2 − r2(x)x2

1− r2(x)

)
I0

(
2r(x)yx

1− r2(x)

)
dx,

(3.18)

f2(y) =

∫ α

0

4xy

1− r2
0

exp
(
−x2

)
exp

(
−y2 − r2

0x
2

1− r2
0

)
I0

(
2r0yx

1− r2
0

)
dx

+

∫ +∞

α

4xy

1− r2
1

exp
(
−x2

)
exp

(
−y2 − r2

1x
2

1− r2
1

)
I0

(
2r1yx

1− r2
1

)
dx, (3.19)

f2(y) =

∫ α

0

4xy

1− r2
0

exp

(
−y2 − x2

1− r2
0

)
I0

(
2r0yx

1− r2
0

)
dx

+

∫ +∞

α

4xy

1− r2
1

exp

(
−y2 − x2

1− r2
1

)
I0

(
2r1yx

1− r2
1

)
dx, (3.20)

f2(y) = 2y exp
(
−y2

) ∫ α

0

2x

1− r2
0

exp

(
−x2 − r2

0y
2

1− r2
0

)
I0

(
2r0yx

1− r2
0

)
dx

+ 2 exp
(
−y2

) ∫ +∞

α

2x

1− r2
1

exp

(
−x2 − r2

1y
2

1− r2
1

)
I0

(
2r1yx

1− r2
1

)
dx, (3.21)
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Note that the integrands in (3.21) are Rician distributions and consequently we have:

f2(y) = 2y exp
(
−y2

)(
1−Q1

( √
2r0y√

1− r2
0

,

√
2α√

1− r2
0

))

+ 2 exp
(
−y2

)
Q1

( √
2r1y√

1− r2
1

,

√
2α√

1− r2
1

)
, (3.22)

where Q1(·, ·) is the generalized Marcum Q-function of �rst order and after factorizing
the p.d.f. of |h(q2)| is:

f2(y) =

[
1−Q1

( √
2r0y√

1− r2
0

,

√
2α√

1− r2
0

)
+ Q1

( √
2r1y√

1− r2
1

,

√
2α√

1− r2
1

)]
2y exp

(
−y2

)
.

(3.23)
Comparing (3.15) with (3.23) we clearly observe that |h(q1)| and |h(q2)| have dif-
ferent distributions. This demonstrates that when the MR uses the IPPF-1 the
channels are not in general identically distributed. This occurs because the correla-
tion between the channels depends on the realization of |h(q1)| - see (3.8) and (3.12)
.

3.3.2 Optimum Channel Gain Properties

Now we derive the c.d.f. of |h(qopt)| which is the maximum of both channel gains
|h(q1)| and |h(q2)|. From basic probability theory we have3:

Pr (|h(qopt)| < z) =

∫ z

0

∫ z

0

f1,2(x, y)dxdy

=

∫ z

0

∫ z

0

f2|1(y|x)f1(x)dxdy (3.24)

where f1,2(x, y) is the joint p.d.f. of the channel gains |h(q1)| and |h(q2)|, f2|1(y|x)
is the conditional p.d.f. of |h(q2)| conditioned on |h(q1)| = x given by (3.16) and
f1(x) is the marginal p.d.f. of |h(q1)| given by (3.15). Now, for z < α, we have from
(3.15), (3.16) and (3.24) that:

Pr (|h(qopt)| < z) =

∫ z

0

∫ z

0

f2|1(y|x)dyf1(x)dx (3.25)

Pr (|h(qopt)| < z) =

∫ z

0

f1(x)

∫ z

0

2y

1− r2
0

exp

(
−y2 − r2

0x
2

1− r2
0

)
I0

(
2r0yx

1− r2
0

)
dydx

(3.26)

3Pr (|h(qopt)| < z) is the probability that |h(qopt)| < z is satis�ed.
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the inner integrand is a Rician distribution and so:

Pr (|h(qopt)| < z) =

∫ z

0

f1(x)

(
1−Q1

( √
2r0x√
1− r2

0

,

√
2z√

1− r2
0

))
dx

(3.27)

Pr (|h(qopt)| < z) = 1− exp(−z2)

−
∫ z

0

2x exp(−x2)Q1

( √
2r0x√
1− r2

0

,

√
2z√

1− r2
0

)
dx

(3.28)

Now, in [36] we �nd the following integral:∫ c

0

x exp(−p2x2/2)Q1 (ax, b) dx =
1

p2
exp

(
−p2b2

2(a2 + p2)

)
Q1

(
c
√
a2 + p2,

ab√
a2 + p2

)

− exp

(
−p2c2

2

)
Q1 (ac, b) (3.29)

Then, using integral (3.29) into (3.28) we obtain:

Pr(|h(qopt)| < z) = e−z
2

(
Q1

( √
2r0z√

1− r2
0

,

√
2z√

1− r2
0

)
−Q1

( √
2z√

1− r2
0

,

√
2r0z√

1− r2
0

))
+ 1− e−z2

, (3.30)

and for z ≥ α we have:

Pr(|h(qopt)| < z) = Pr(|h(qopt)| < α)

+ Pr(|h(q1)| < α, α < |h(q2)| < z)

+ Pr(|h(q2)| < α, α < |h(q1)| < z)

+ Pr(α < |h(q1)| < α, α < |h(q2)| < z) (3.31)

where the �rst probability on the right hand side is obtained by evaluating (3.30) at α
while the following three probabilities can be calculated using a similar procedure as
the one used to derive (3.30). Then after calculating each probability and simplifying
terms we obtain:

Pr(|h(qopt)| < z) = e−α
2

(
Q1

(
r0α
√

2√
1− r2

0

,
z
√

2√
1− r2

0

)
−Q1

(
αr1

√
2√

1− r2
1

,
z
√

2√
1− r2

1

))

− e−z
2

(
Q1

(
α
√

2√
1− r2

0

,
r0z
√

2√
1− r2

0

)
−Q1

(
α
√

2√
1− r2

1

,
zr1

√
2√

1− r2
1

))

+ e−z
2

(
Q1

(
zr1

√
2√

1− r2
1

,
z
√

2√
1− r2

1

)
−Q1

(
z
√

2√
1− r2

1

,
zr1

√
2√

1− r2
1

))
+ 1− e−z2

. (3.32)
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And its expected value can be obtained by evaluating numerically the following
integral:

E[|h(qopt)|] =

∫ ∞
0

(1− P (|h(qopt)| < z)) dz. (3.33)

This gives us an analytical expression to calculate the �rst term in the optimization
target of (3.13) for N = 2. Now, when the location of both stopping points is
predetermined we have α→ +∞ and so the c.d.f. of |h(qopt)| is given by (3.30) and
by evaluating numerically its expected value with (3.33) we observe that E[|h(qopt)|]
its a decreasing function of r0 and so reaches its maximum for r0 = 0. Now we
proceed to calculate this maximum value. When α→ +∞ (3.26) becomes:

Pr (|h(qopt)| < z) =

(∫ z

0

2x exp
(
−x2

)
dx

)2

=
(
1− exp

(
−z2

))2

= 1− 2 exp
(
−z2

)
+ exp

(
−2z2

)
(3.34)

and from (3.33) we have:

E[|h(qopt)|] =

∫ ∞
0

(
2 exp

(
−z2

)
− exp

(
−2z2

))
dz. (3.35)

E[|h(qopt)|] = 2
√
π

∫ ∞
0

1√
π

exp
(
−z2

)
dz −

√
π√
2

∫ ∞
0

√
2√
π

exp
(
−2z2

)
dz. (3.36)

Note that both integrands are Gaussian distributions with zero-mean and then both
integrals take the value of 1/2. Therefore we have the maximum value for E[|h(qopt)|]
is given by:

E[|h(qopt)|] =
√
π −
√
π√
2

1

2
(3.37)

E[|h(qopt)|] =
√
π

(
1− 1√

8

)
(3.38)

Nevertheless, if we optimize d1(h(qk)) according to (3.13) with θ = 1 then, for

N = 2, we have E[|h(qopt)|] ≈ 1.561 >
√
π
(

1− 1√
8

)
≈ 1.458. In other words, if

we intelligently control the channel correlation (using the IPPF-1) we can surpass
the expected value of the maximum channel gain obtained when both channels are
independent. Even if for N = 2 the expected value E[|h(qopt)|] is just slightly
larger with respect to the case in which both channels are independent this is an
important result from a theoretical perspective and we shall see the implications
of this interesting property later in section 3.6. This is a unique property of the
MDAs since traditional diversity techniques have their performance reduced with
the introduction of channel correlation [12].
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3.3.3 Mechanical Energy

The mechanical energy is proportional to the squared distance traveled by the MR
between stopping points (see (2.28)). So, we �rst derive the statistics of the distance
traveled and then we derive the statistics for the mechanical energy.

The distance l1 traveled during the searching phase can be shown to have the
following p.m.f.:

Pr (l1 = d) = Pr (|h(q1)| ≥ α) = exp(−α2)

Pr (l1 = D) = Pr (|h(q1)| < α) = 1− exp(−α2). (3.39)

Now, we derive the p.m.f. for the distance l2 traveled during the selection phase. For
Pr (l2 = D) we have:

Pr (l2 = D) = Pr (qopt = q1, |h(q1)| < α)

= Pr (α > |h(q1)| > |h(q2)|)
= Pr (α > |h(q1)|, α > |h(q2)|)/2

=
1

2
e−α

2

(
Q1

(
αr0

√
2√

1− r2
0

,
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√

2√
1− r2

0

)
−Q1

(
α
√

2√
1− r2

0

,
αr0

√
2√

1− r2
0

))
+

1

2
− 1

2
e−α

2

.

(3.40)

For Pr (l2 = d) we have:

Pr (l2 = d) = Pr (qopt = q1, |h(q1)| ≥ α)

= Pr(qopt = q1)− Pr (l2 = D) (3.41)

where Pr(qopt = q1) can be calculated from the joint p.d.f. f1,2(x, y), given by the
product of (3.15) and (3.16). Then by integrating f1,2(x, y) we have:

Pr(qopt = q1) =
1

2
e−α

2
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1
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1− r2
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√

2√
1− r2

0
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− 1

2
e−α

2

(
Q1

(
αr1
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1− r2
1

,
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√
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1− r2

1

)
+Q1

(
α
√

2√
1− r2

0

,
αr0

√
2√

1− r2
0

))
+

1

2
(3.42)

Now, regarding Pr (l2 = 0) we have:

Pr (l2 = 0) = Pr (qopt = q2) (3.43)
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where Pr (qopt = q2) = 1− Pr(qopt = q1). And the p.m.f. of the mechanical energy
(see (2.28)) Em (t1, t3,u(t)) used during the MDA execution is:

Pr
(
Em (t1, t3,u(t)) = K(T )D2

)
= Pr (qopt = q2, |h(q1)| < α)

= Pr (l1 = D)− Pr (l2 = D)

(3.44)

Pr
(
Em (t1, t3,u(t)) = K(T )d2

)
= Pr (qopt = q2, |h(q1)| ≥ α)

= Pr (l1 = d)− Pr (l2 = d)

(3.45)

Pr
(
Em (t1, t3,u(t)) = 2K(T )D2

)
= Pr (l2 = D) (3.46)

Pr
(
Em (t1, t3,u(t)) = 2K(T )d2

)
= Pr (l2 = d) . (3.47)

Finally we can calculate E[Em (t1, t3,u(t))] from (3.39), (3.40), (3.41) and the above
equations. So together with (3.30), (3.32) and (3.33) we have now a complete ana-
lytical expressions for both terms of the optimization target in (3.13) for N = 2.

3.4 Path Planners with Memory Order Two

Now that we have derived the IPPF-1 we proceed to derive the IPPF-2 in this
section. As mentioned during the design of the IPPF-1, the maximization of an
optimisation target which does not have an analytical expression can be problematic
and computationally expensive. So, in order to derive the optimum IPPF-2 we will
�rst develop an analytical expression for the optimisation target.

This optimization target must have two elements: the �rst element must take into
account the optimum channel gain obtained and the second element must consider
the mechanical energy used for obtaining the optimum channel. In general, due
to the complexity of the problem it is not possible to obtain analytical expressions
either for E[|h(qopt)|] or for E[Emech (t1, tN+1,u(t))] but there are alternative choices
as we shall see later.

If we try to optimize f2

(
Q2(k), Ĥ2(k), k

)
o�-line then we need to optimise this

function over its whole domain. On the other hand, if we optimise f2

(
Q2(k), Ĥ2(k), k

)
online at time instant tk then qk, qk−1, h (qk) and h (qk−1) are all known and there-

fore we just need to optimise the value of f2

(
Q2(k), Ĥ2(k), k

)
at a single point rather

than �nding the whole optimal function, thus making the optimisation process much
simpler. Thus for designing IPPF-2 we are going to use the predictor (3.4) with
M(k) = 2. In this case (M(k) = 2) the predictor (3.4) can be written as:

h̃2(qk+1) = νk+1

√
1−

r2
k−1,k+1 + r2

k,k+1 − 2rk−1,krk,k+1rk−1,k+1

1− r2
k−1,k
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+ h(qk)

(
rk,k+1 − rk−1,krk−1,k+1

1− r2
k−1,k

)

+ h(qk−1)

(
rk−1,k+1 − rk−1,krk,k+1

1− r2
k−1,k

)
(3.48)

where νk+1 ∼ CN (0, 1) and it is not di�cult to see that h̃2(qk+1) is a complex
Gaussian random variable with mean:

µ = h(qk)

(
rk,k+1 − rk−1,krk−1,k+1

1− r2
k−1,k

)

+ h(qk−1)

(
rk−1,k+1 − rk−1,krk,k+1

1− r2
k−1,k

)
, (3.49)

and variance:

σ2 = 1−
r2
k−1,k+1 + r2

k,k+1 − 2rk−1,krk,k+1rk−1,k+1

1− r2
k−1,k

(3.50)

where rk,j = r(qk,qj) (for notational simplicity) and we will use interchangeably
both terms in the rest of the chapter.

The fact that h̃2(qk+1) is complex Gaussian distributed with such a mean and
variance implies that |h̃2(qk+1)| is Rician distributed with its two �rst moments given
by:

E
[
|h̃2(qk+1)|

]
=

(
σ
√
π

2

)
e
−|µ|2

2σ2

[(
1 +
|µ|2

σ2

)
I0

(
|µ|2

2σ2

)
+

(
|µ|2

σ2

)
I1

(
|µ|2

2σ2

)]
,

(3.51)
and:

E
[
|h̃2(qk+1)|2

]
= σ2 + |µ|2. (3.52)

Where Ij(·) is the modi�ed Bessel functions of the �rst kind and order ith. As
mentioned previously, to design the IPPF-2 we need to construct a optimization
target that takes into account both the optimum channel gain obtained and the
mechanical energy used. There is no analytical expression for the expected value of
the optimum channel gain obtained but we can indirectly take it into account in the
optimization target by using either (3.51) or (3.52). For the second term we can use
‖qk+1−qk‖2, which corresponds to the mechanical energy normalized by K(T ) that
will be used in moving from qk to qk+1. So, one way to calculate qk+1 by optimising
the IPPF-2 at Q2(k) and Ĥ2(k) is to solve:

max
qk+1

θE
[
|h̃2(qk+1)|n

]
− (1− θ)‖qk+1 − qk‖2

s.t.
(−1)koTk (qk+1 − qk) ≥ 0
ok = [−(yq(k)− yq(k − 1)), xq(k)− xq(k − 1)]

(3.53)
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where xq(k) and yq(k) are the x and y components of the point qk and n = 1, 2
is a design parameter. Note that vector ok is an orthogonal vector to qk − qk−1,
see Fig.3.2. The optimization target of this optimization problem is symmetric with
respect to the vector qk − qk−1 meaning that if the optimization target is evaluated
at a particular qk+1 and also at its mirrored image respect to qk − qk−1 then the
optimization target will produce the same value in both cases. Thus, we can restrict4

the search space to one semi-plane5 without eliminating any possible solution. This
is done by the inequality restriction. The vector ok de�ned in the second restriction
(in (3.53)) is orthogonal to qk − qk−1 and the �rst restriction ensures that all the
points qk+1 are situated in the correct semi-plane with respect to qk − qk−1. The
term (−1)k in the second restriction produces a semi-plane �alternation�. In other
words if at the time instant tk the search space is in the left semi-plane then when
invoked again at tk+1 the search space is in the right semi-plane. This semi-plane
alternation avoids the MR following an inwards spiral-like trajectory that clusters
the stopping points, increases the correlation between the wireless channels and so
reduces E[|h(qopt)|] as we will show in section 3.6. Through experimentation we

Figure 3.2: On the left we observe an example of the con�guration for the stopping
points {qj}k+1

k−1 and on the right we observe their corresponding vectors ok, qk+1−qk
and qk − qk−1 which are considered in the optimization problem (3.53).

found that if we replace the term E
[
|h̃2(p(ti+1))|2

]
in the optimization target of

4This restriction makes smaller the searching space and so helps to accelerate the optimization
process.

5De�ned with respect to vector qk − qk−1.
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(3.53) with E
[
|h̃2(qk+1)|2

]
+σ2 = 2σ2 + |µ|2 then we obtain an IPPF-2 that performs

signi�cantly better in terms of E[|h(qopt)|] as we shall see later in the section 3.6.
This change produces:

max
qk+1

θ
(
2σ2 + |µ|2

)
− (1− θ)‖qk+1 − qk‖2

s.t.
(−1)koTk (qk+1 − qk) ≥ 0
ok = [−(yq(k)− yq(k − 1)), xq(k)− xq(k − 1)].

(3.54)

Although calculating qk+1 by optimizing online either (3.53) or (3.54) is compu-
tationally cheaper than doing it o�ine it still remains expensive for a MR with
low computational capabilities. Thus a di�erent approach which is computationally
cheaper is desirable for these types of MRs. This approach can be derived from the
superposition of the distance function (3.12) used in the IPPF-1. This produces a
rule based path planner with memory order two (RBPPM-2).

Now, we present the RBPPM-2. We �rst assume that q2 is calculated using the
IPPF-1 and so either ‖q2−q1‖2 = d or ‖q2−q1‖2 = D. The RBPPM-2 is described
by the following set of rules:

1. If |h(qk)| < η and |h(qk−1)| < η then qk+1 must be chosen so that rk,k+1 and
rk−1,k+1 are small. To achieve this we need ‖qk+1−qk‖2 = ‖qk+1−qk−1‖2 = D.
There will be two solutions: one to the left of the vector qk − qk−1 and one to
its right. We choose the left side solution if k is odd and the right side solution
otherwise.

2. If |h(qk)| ≥ η and |h(qk−1)| < η then qk+1 must be chosen so that rk,k+1

is large but rk−1,k+1 is small. To do this we need ‖qk+1 − qk‖2 = d and
‖qk+1 − qk−1‖2 = D, with d < D. There will be two solutions: one to the left
of the vector qk − qk−1 and one to its right. We choose the left side solution if
k is odd and the right side solution otherwise.

3. If |h(qk)| ≥ η and |h(qk−1)| ≥ η then qk+1 must be chosen so that rk,k+1 and
rk−1,k+1 are large. To do it we need ‖qk+1−qk‖2 = ‖qk+1−qk−1‖2 = d. There
will be two solutions: one to the left of the vector qk − qk−1 and one to its
right. We choose the left side solution if k is odd and the right side solution
otherwise.

4. If |h(qk)| < η and |h(qk−1)| ≥ η then qk+1 must be chosen so that rk,k+1

is small but rk−1,k+1 is larger. This is achieved by ‖qk+1 − qk‖2 = D and
‖qk+1 − qk−1‖2 = D − d.

We have to highlight that if ‖q2 − q1‖2 = d or ‖q2 − q1‖2 = D then this set of four
rules is complete. This means that we can calculate all the future stopping points qk
with k = 3, 4, ... using only the four rules already presented. This is because under
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the conditions mentioned above this set of rules considers all the possible scenarios
and so at any time instant tk we will have ‖qk − qk−1‖2 = d or ‖qk − qk−1‖2 = D
and consequently we will always be able to calculate qk+1 using one of the four rules
composing the RBPPM-2.

We have already shown how to obtain path planners with memory order one and
two. So, in the next section we show how to derive path planners with an arbitrary
memory order.

3.5 Path Planners with Arbitrary Memory Order

To do develop path planners with arbitrary memory order, we �rst note that accord-
ing to (3.4) the prediction model h̃M(k)(qk+1) is a complex Gaussian random variable
with mean:

µM(k) = pM(k)+1,1:M(k)(k + 1,M(k) + 1)P−1(k,M(k))ĤM(k)(k), (3.55)

and variance:
σ2
M(k) = p2

M(k)+1,M(k)+1(k + 1,M(k) + 1), (3.56)

where pM(k)+1,1:M(k)(k+ 1,M(k) + 1) is a vector containing the �rst M(k) entries of
the last row of the matrix P(k + 1,M(k) + 1) and pM(k)+1,M(k)+1(k + 1,M(k) + 1)
is the last entry of the the last row of the same matrix P(k + 1,M(k) + 1). Since
h̃M(k)(qk+1) is a complex Gaussian random variable then �rst two moments of its
modulus are:

E
[
|h̃M(k)(qk+1)|

]
=

(
1 +
|µM(k)|2

σ2
M(k)

)
I0

(
|µM(k)|2

2σ2
M(k)

)(
σM(k)

√
π

2

)
e

−|µM(k)|
2

2σ2
M(k)

+

(
|µM(k)|2

σ2
M(k)

)
I1

(
|µM(k)|2

2σ2
M(k)

)(
σM(k)

√
π

2

)
e

−|µM(k)|
2

2σ2
M(k) (3.57)

E
[
|h̃M(k)(qk+1)|2

]
= σ2

M(k) + |µM(k)|2. (3.58)

It is interesting to note (compare (3.57) and (3.58) with (3.51) and (3.52)) that the
�rst two moments of the channel predictor of order M(k) (|h̃M(k)(qk+1)|) have the

same form as the two �rst moments of the channel predictor of order 2 (|h̃2(qk+1)|).
The only di�erences are that µM 6= µ and σ2

M 6= σ2, see (3.49), (3.50), (3.55) and
(3.56). Therefore, we can use this similarity to extend the IPPF-2 to derive the
IPPF-M(k) with an arbitrary memory order M(k) using the same approach. So we
can optimize the IPPF-M(k) at QM(k)(k) and ĤM(k)(k) by solving:

max
qk+1

{
θE
[
|h̃M(k)(qk+1)|n

]
− (1− θ)‖qk+1 − qk‖2

}
s.t.
2 < M(k) ≤ k, n = 1, 2

(3.59)
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where θ ∈ [0, 1], n and M(k) are design parameters. Regarding the memory order
parameter M(k) we must mention that to use the IPPF-M(k) with full memory
order we must choose M(k) = k and so the memory order of the path planner
increases at each iteration. Now, similar to (3.53) if this optimization problem is
solved online rather than o�-line it becomes easier to solve. But as opposed to (3.53)
the optimization target of (3.59) has no symmetries and so we do not reduce the
search space in the same way. Another di�erence with (3.53) is that the optimization
target is computationally more expensive to evaluate6 but as we shall see in section
3.6 its performance is signi�cantly better.

3.6 Simulations

In the simulations, we selected the same robot parameters as in last chapter which
describe a real robot. We consider the channel estimation error to have a variance
σ2
e = 0.05 and we select a wavelength λ = 14.02cm, corresponding to a carrier

frequency of 2.14GHz, and T = 833.775ms.
We will �rst test the path planners with memory order one and compare them

with the memoryless path planners. To do so we will test di�erent path planners on
the MDMTA using the Maximum Channel Gain Rule as the selection rule and we
will not use the thresholds. So we �rst consider the following MDAs:

1. MDA1(N): MDMTA with predetermined the stopping points which are uni-
formly distributed along a straight line and the distance between adjacent
stopping points is ‖qi − qi+1‖2 ≈ 0.3827λ.

2. MDA2(N): MDMTA with the IPPF-1 derived in section 3.2. The distance
function is optimized by solving o�-line (3.13) for N = 2 with θ = 0.99. In
addition we select vi = 0 so the stopping points will lie into a straight line.

3. MDA3(N): Similar to MDA2(N) but the direction vectors vi are optimized
for each di�erent number of stopping points variable N and according to (3.14)
with θ = 0.9.

In addition, for reference purposes we plot the upper bound for E[|h(qopt)|2] when
the stopping points are predetermined. This upper bound is reached when all the
N wireless channels considered are independent. Note that this upper bound also
represents the upper bounds for selection combining systems.

First of all, the most striking aspect that we observe in Fig. 3.3 is that the MDA's
using the IPPF-1 surpass the upper bounds for E[|h(qopt)|2] when all the channels

6Because the optimization target of IPPF-M(k) depends on µM(k), see (3.55), and to calculate
this term we �rst need to calculate the correlation matrix C(k,M(k)) (see section 3.1), then we
need to perform its Cholesky decomposition to obtain the matrix P(k,M(k)) and �nally we need
to invert this matrix.
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are independent. This shows that contrary to what has been widely accepted in the
wireless communications literature, the expected value of the maximum gain of N
wireless channels is not maximized when all those channels are independent. This
result matches our analysis of the MDA2(2) in section 3.3.2.

From Figs. 3.3-3.4 we observe that the MDA2(N) outperforms the MDA1(N)
(which uses predetermined stopping points arranged along a straight line) in terms
of both E[|h(qopt)|2] and the mechanical energy used. Now, the MDA3(N) also uses
an IPPF-1 with the same distance function as the MDA2(N) but instead of moving
in a straight line it optimizes the direction vectors (see (3.14)) and therefore reduces
the distance traveled during the selection phase. As we can observe in the �gures,
in terms of E[|h(qopt)|2] both the MDA2(N) and the MDA3(N) have practically the
same performance but the MDA3(N) uses signi�cantly less mechanical energy due
to the reduction in the distance traveled during the selection phase. Now, we ob-
serve that for the special case of N = 3 stopping points MDA3(N) produces higher
E[|h(qopt)|2] than MDA2(N). This is because the optimal angle of the direction
vectors for this particular case is around 120 degrees and so in some cases the resul-
tant geometries match the adaptive geometries that would be produced by a path
planner with memory order two. Therefore, in this particular case for N = 3, the
IPPF-1 used by the MDA3(N) acts as an approximation for an IPPF-2 and this is
why MDA3(3) produces better E[|h(qopt)|2] than MDA2(3).
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Figure 3.3: E[|h(qopt)|2] obtained by the MDAs as a function of the number (N) of
stopping points.

Now, to evaluate the performance of the path planners with memory order two
we consider the following variations of the MDMTA which again use the Maximum

Channel Gain Rule as the selection rule and do not use the thresholds:

1. MDA4(N): MDMTA with an IPPF-2. The IPPF-2 is obtained by solving

65



CHAPTER 3. MDA WITH ADAPTIVE STOPPING POINTS

2 4 6 8 10 12
0

0.5

1

1.5

N

E
[E

m
ec

h
]

MDA1

MDA2

MDA3

Figure 3.4: E[Em (t1, tN+1,u(t))] for di�erent MDAs as a function of the number (N)
of stopping points.

online (3.53) with θ = 0.99 and n = 1.

2. MDA5(N): Similar to MDA4(N) but with n = 2.

3. MDA6(N): Similar to MDA5(N) but without the `semi-plane alternation'
mechanism mentioned in section 3.4.

4. MDA7(N): MDMTA with an IPPF-2. The IPPF-2 is obtained by solving
online (3.54) with θ = 0.99.

5. MDA8(N): MDMTA with an IPPF-2. The IPPF-2 chosen is the RBPPM-2
whose parameter values (d, D and α) are the same as the ones used for the
MDA3(N).

Note that IPPF-2s require two stopping points to start working so in order to cal-
culate the second stopping point in the MDAs 4-8 we use the IPPF-1 used in the
MDA3(N) and to calculate the remaining stopping points we will use the corre-
sponding IPPF-2.

We observe �rst in Figs. 3.5-3.6 that they can outperform the MDAs using IPPF-
1. The MDA4(N) uses an IPPF-2 that at time instant tk maximizes E[|h̃(p(tk+1))|].
We observe that N = 3 produces approximately the same E[|h(qopt)|2] as MDA1(3)
while using less mechanical energy but then for N > 3 it produces lower E[|h(qopt)|2]
than the simpler MDA1(N) which uses a memoryless path planner. Now, the
MDA5(N) uses a similar IPPF but instead of maximizing E[|h̃(p(tk+1))|] it max-
imizes E[|h̃(p(tk+1))|2]. This small di�erence has a signi�cant impact on the perfor-
mance and as we can see in Figs. 3.5-3.6 the MDA5(N) produces higher channel
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power than the MDA4(N). In addition, for a small number of stopping points it
also outperforms the MDAs using the IPPF-1 in terms of E[|h(qopt)|2] as well as in
terms of the mechanical energy used. But then for N > 6 its performance in terms of
E[|h(qopt)|2] becomes smaller than the MDAs using the IPPF-1 and even smaller than
the MDA1(N). Now, the only di�erence between the MDA5(N) and MDA6(N) is
that the MDA6(N) does not use the `semi-plane alternation' mechanism mentioned
in section 3.4. In Fig. 3.5 we observe that the lack of this `semi-plane alterna-
tion' mechanism reduces the performance in terms of E[|h(qopt)|2] and also makes
the MR consume slightly more mechanical energy, see Fig. 3.6. This is because the
lack of `semi-plane alternation' mechanism generates an inwards spiral-like trajectory
that increases the correlation among the channels and therefore reduces E[|h(qopt)|2].
This shows the bene�ts of introducing the `semi-plane alternation' mechanism into
the IPPF-2.

As we mentioned, MDA4(N) uses an IPPF-2 that maximizes the gain of the
channel predictor while MDA5(N) uses an IPPF-2 that maximizes the power of
the channel predictor but MDA7(N) uses an IPPF-2 that maximizes a optimization
target slightly di�erently, see (3.54), that does not have a physical interpretation.
Nevertheless we can observe in Fig. 3.5 that in terms of channel power it outperforms
all the previously considered MDAs and in terms of the mechanical energy it uses
less energy than the MDAs using the IPPF-1. This suggests that we might �nd more
cost functions for (3.54) that do not necessarily have a physical interpretation but
produce better results.

Now, to �nish with the analysis of the IPPF-2s we consider the MDA8(N) which
uses the RBPPM-2. As we can observe from Figs. 3.5-3.6 the MDA8(N) has a good
performance in terms of both E[|h(qopt)|2] and the mechanical energy used. For a
higher number of stopping points it produces a slightly lower E[|h(qopt)|2] than the
MDAs using the IPPF-1 but uses considerably less mechanical energy. Now, the
MDA8(N) is only outperformed in both aspects by the MDA7(N). Nevertheless the
MDA8(N) uses a rule based IPPF-2 which does not require any complex calculation
during the MDA execution while the MDA7(N) uses an IPPF which requires solving
an optimization problem at each stopping point thus making it computationally more
expensive.

To �nish our analysis we will consider MDAs using path planners with arbitrary
memory order:

1. MDA9(N): MDMTA with IPPF-M(k) obtained by solving online at time in-
stant tk (3.59) with θ = 0.99, n = 1 and M(k) = k − 1.

2. MDA10(N): Similar to MDA9(N) but with n = 2.

As we can observe in Figs. 3.7-3.8 the MDA9(N) and MDA10(N) outperform sig-
ni�cantly all the previous MDAs in terms of E[|h(qopt)|2] as well as in terms of the
mechanical energy used. By comparing these MDAs with those using an IPPF-2 or
an IPPF-1 we note that in general an IPPF with higher memory can have better
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Figure 3.5: E[|h(qopt)|2] obtained by the MDAs as a function of the number (N) of
stopping points.

performance. We also note that MDA10(N) performs better than MDA9(N). It is
interesting to note that the IPPFs that maximize the power of the channel predic-
tor perform better than those which optimize the gain of the channel predictor �
compare MDA9(N) with MDA10(N) and MDA4(N) with MDA5(N).

So in summary, we have shown that MRs executing MDAs with adaptive path
planners can achieve signi�cantly higher wireless channel gain while using consider-
ably less mechanical energy when compared to the case when they use predetermined
stopping points.

3.7 Conclusions

One of the main contributions of this chapter is the fact that we demonstrated that
the expected value of the maximum channel gain of N channels is not maximized
when all the N channels are independent. From a theoretical point of view for
the communications community this is an important result and in our context it
implies that MDAs using path planners with memory can outperform MDAs using
predetermined stopping points in terms of E[|h(qopt)|2].

Another important contribution of this chapter is the derivation of the path
planners with memory using channel predictors. We solved this problem for any
memory order. We also showed that when using path planners with memory there are
properties of the channel that change with respect to the case in which predetermined
stopping points are used. Speci�cally the channels at all the stopping points are no
longer identically distributed. Also as mentioned above the fact that the when using
these path planners with memory we can obtain higher values of E[|h(qopt)|2] than
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Figure 3.6: E[Em (t1, tN+1,u(t))] for di�erent MDAs as a function of the number (N)
of stopping points.

when we use predetermined stopping points. Therefore, these properties con�rm that
from a mathematical perspective MDAs are not equivalent to selection combining
and they are indeed a new kind of diversity techniques.

For completeness we showed how the path planner �ts into the MDMTA derived
in the previous chapter and we showed that the predetermined stopping points con-
sidered in the previous chapter can be seen as a path planner with zero memory
order. We also showed how to construct systematically path planners with any level
of memory using the channel predictors. Also, as expected it was shown through
simulations that MDAs using path planners with higher memory order can perform
better than MDAs with lower levels of memory both in terms of E[|h(qopt)|2] and in
terms of mechanical energy obtained.

Now, after observing these results we could say that path planners with memory
are superior to predetermined stopping points. Nevertheless we have to take into
account that as mentioned at the beginning of the chapter the path planners with
memory require knowledge of the shadowing term in order to isolate the small-scale
fading term. So when the MR does not have an estimate of the shadowing term it can
only use predetermined stopping points. In addition, although path planners with
memory can produce higher channel gains and can reduce the amount of mechanical
energy used in the MDA execution, it is computationally more expensive than using
predetermined stopping points.
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Figure 3.7: E[|h(qopt)|2] obtained by the MDAs as a function of the number (N) of
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Chapter 4

Multiple-links MDAs

In chapters 2 and 3 we addressed the problem of MDAs with discrete search spaces
in order to compensate the small-scale fading in a single wireless link between a MR
and a stationary node which may be another MR or a base station. We will refer
to this kind of MDA as a single-link MDAs. Consider a robotic wireless network
experiencing small-scale fading and assume we want to improve the performance
of the network by compensating the small-scale fading using a single-link MDA. In
general each node of the network has to communicate with more than one node
(not necessarily simultaneously). In other words, each node is part of more than
one wireless link. As a consequence, compensating the small-scale fading in all the
wireless links of the network using single-link MDAs may be a complicated process.
Therefore, in this chapter we develop MDAs that can compensate small-scale fading
at multiple-links simultaneously to be used in robotic wireless networks scenarios. To
do this we depart from our previous work on single-link MDAs with discrete search
spaces and extend it to develop the multiple-link MDAs with discrete search spaces.

The main contributions of this chapter are the general structure of the multiple-
link MDA, double-link path planners with arbitrary memory order for the double-
link MDAs and also a multiple-link path planner with arbitrary memory order for
multiple-link MDAs.

This multiple-link MDAs can useful in wireless robotic networks operating in
environments which present small-scale fading. In this scenario some MRs may need
to establish communication with more than one MR at the same time via wireless
channel experiencing small-scale fading. Although, the MRs could use single-link
MDAs to compensate for the fading at each wireless link separately this could take
more time than using multiple-link MDAs to compensate simultaneously the small-
scale fading at various wireless channels. Therefore, multiple-link MDAs could be
bene�cial in such multi-agent scenarios.

In section 4.1 we start by re-stating the wireless channel model notation in order
to make it more convenient for the multiple-link MDAs. Then in section 4.2 we
present the general structure of the multiple-link MDA for discrete search spaces.
In section 4.3 we design a double-link MDA to be used by an amplify-and-forward
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and robotic relay and in section 4.4 we design another double-link MDA but this
time for a decode-and-forward robotic relay. Finally, in section 4.5 we show how we
can extend the double-link path planner with memory order one developed in the
previous sections for the double-link MDA in order to obtain �rst double-link path
planners with arbitrary memory order and then multiple-link path planners with
arbitrary memory order. Finally in 4.7 we brie�y summarize the work presented in
this chapter.

4.1 System Model

In this chapter we consider again the same channel model depicted in section 2.1.2
of chapter 2. We will rewrite the equations describing that model in a more suitable
form for to handle the consideration of the small-scale fading at multiple wireless
links simultaneously. In a robotic wireless network the signal received by the jth
MR due to a transmission of the kth MR is given by:

yj,k(t) = s(pk(t),pj(t))h(pk(t),pj(t))xk(t) + nj(t) (4.1)

where pj(t) and pk(t) are the locations of the jth and the kth MRs; xk(t) is the nar-
rowband signal transmitted by the kth MR; nj(t) ∼ CN(0, σ2

n,j) is the additive white
zero-mean Gaussian noise generated at the jth MR's receiver; h(pk(t),pj(t)) is the
small-scale fading term in the (k-j) link (i.e., the link between the kth and jth MRs);
and �nally s(pk(t),pj(t)) is the shadowing term with 10 log10(s(pk(t),pj(t))) ∼
N (0, σ2

s,k−j).
As in section 2.1.2 we assume again channel reciprocity as well as Jakes' model [28]

for the small scale fading. Thus h(pj(t),pk(t)) ∼ CN (0, 1) and its spatial normalized
correlation is then given by:

C(o,p,o,q) = E[h(o,p)h∗(o,q)]

= E[h(p,o)h∗(q,o)]

= J0

(
2π‖p− q‖2

λ

)
(4.2)

where λ is the wavelength used for the RF and o, p and q are any three points in the
space. For notational simplicity we will write in the rest of the chapter sk,j instead
of s(pk(t),pj(t)) and also hj,k(pk(t)) instead of h(pk(t),pj(t)) when pj(t) remains
constant. Also, for notational convenience we will write MR-j instead of jth MR.

4.2 Multiple-Link MDA Structure

In this section we describe the structure of the L-link MDMTA. We assume that
this MDA is executed by the MR-0 to compensate simultaneously for the fading at
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L wireless links with other L MRs. During the L-link MDMTA execution the MR-0
will explore N stopping points (q1,q2, · · · ,qN) and it requires that all the remaining
L MRs remain stationary during the algorithm execution. Before we continue let us
de�ne the fading vector as h(L)(qk) = [h0,1(qk), h0,2(qk), · · · , h0,L(qk)]

T (where the
superscript (L) refers to the fact that it contains L small-scale fading terms) and
the shadowing matrix S(L) = diag[s0,1, s0,2, · · · , s0,L]. We also de�ne the following
M(k)× L matrix:

Ĥ
(L)
M(k)(k) = [h(L)(qk−M(k)+1),h(L)(qk−M(k)+2), · · · ,h(L)(qk)]

T (4.3)

where M(k) is the memory order of the path planner used by the L-link MDMTA
and, as in the previous chapter, the matrix QM(k)(k) = [qk−M(k)+1, qk−M(k)+2, · · · ,qk]T
contains the last M(k) visited stopping points.

The L-link MDMTA is divided into the `exploration phase' and the `selection
phase'. During the `exploration phase' (t ∈ [t1, tN ]) the algorithm works as follows.
The initial position p0(t1) is by de�nition the �rst stopping point, i.e., q1. Then at
time instant tk the MR-0 located at qk (i.e., p0(tk) = qk) calculates the estimate
of the wireless channel (i.e., the product S(L)h(L)(qk)) which will be denoted as

Ŝ(L)ĥ(L)(qk)). Then the MR-0 evaluates a thresholding function TH
(
Ŝ(L)ĥ(L)(qk)

)
and if this function is greater than some value ηk then the MR-0 terminates the
algorithm and establishes communication with the other L MRs. In this case, for
notational coherence, we say that qopt = qk. On the other hand, if the thresholding
function is lower than ηk then the MR-0 invokes the path planner of memory order
M(k) for L links in order to calculate the next stopping point qk+1 and then it moves
to that point. Once the MR-0 reaches qN it estimates the wireless channel at this
last stopping point and so the `exploration phase' ends while the `selection phase'
starts. Then the MR-0 invokes an L link `selection rule' to determine the optimum
stopping point qopt, moves to that point to establish communications with the other
L robots and the L-link MDMTA terminates. In algorithm 4 we observe the details
of the L-link MDMTA. Note that Ŝ(L) is in brackets in the list of input parameters.
This means that this input parameter is optional. Nevertheless, as in the single link
case, if we are going to use path planners with memory we require this parameter.
Otherwise we will only be able to use memoryless path planners.

After having presented the structure of the L-link MDMTA (referred to as the
L-MDMTA for short) we will proceed to design its main components (i.e., the thresh-

olding function TH, the path planner f
(L)
M(k)(·, ·, ·) and the selection rule Rs)). We will

start by designing a double-link MDMTA for two di�erent applications. The �rst
double-link MDMTA will be designed for an amplify-and-forward robotic relay while
the second one will be designed for a decode-and-forward robotic relay. In both
applications the robot executing the double-link MDMTA (i.e., the MR-0) will be
referred to as the robotic relay (RR).
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Algorithm 4 L−MDMTA(N,M(k), f
(L)
M(k), t,η,Rs, (Ŝ

(L)))

1: p0(t1)← q1

2: for k = 1 to N − 1 do
3: Ŝ(L)ĥ(L)(qk)← Estimate[S(L)h(L)(qk)] {Channel gain estimation .}

4: if TH
(
Ŝ(L)ĥ(L)(qk)

)
≥ ηk then

5: qopt ← qk
6: Terminate Algorithm
7: end if

8: qk+1 = f
(L)
M(k)

(
QM(k)(k), Ĥ

(L)
M(k)(k), k

)
{The path planner is used to calculate

the next stopping point.}
9: p0(tk+1) ← qk+1{The MR moves to the next stopping point in tk+1 − tk sec-

onds.}
10: end for

11: Ŝ(L)ĥ(L)(qN)← Estimate[S(L)h(L)(qN)]
12: qopt ← Rs{A `selection rule' is used to determine the optimum position.}
13: p0(tN+1) ← qopt{The MR moves to the optimum stopping point in tN+1 − tN

seconds.}
14: Terminate Algorithm

4.3 Amplify-and-Forward Robotic Relay

In this section we customise the components of the double-link MDMTA for an
amplify-and-forward robotic relay. In this case the RR receives a signal from MR-1,
ampli�es it by a factor β and then re-transmits it to MR-2. We also assume that
s2,1 ≈ 0 and so the signals received by RR and by the MR-2 are then:

y0,1(t) = s0,1h0,1(p0(t))x1(t) + n0(t), (4.4)

y2,0(t) = s2,0h2,0(p0(t))βy0,1(t) + n2(t) (4.5)

where x1(t) is the signal transmitted by the MR-1 and βy0,1(t) is the signal trans-
mitted by the RR. For simplicity we will assume that all the MRs have the same
type of receiver and so the power of the noise generated at each receiver is the same.
So we have σ2

n,0 = σ2
n,2 = σ2

n. We assume that both the MR-1 and the RR transmit
using their maximum allowable average power (Pmax) and so E[|x1(t)|2] = Pmax. So
the ampli�cation factor β in (4.5) becomes:

β2 =
Pmax

σ2
n + s2

0,1|h0,1(qk)|2Pmax
. (4.6)

Substituting (4.4) and (4.6) into (4.5) we obtain:

y2,0(t) =

h2,0(p0(t))h0,1(p0(t))s2,0s0,1

√
Pmax√

σ2
n + s2

0,1|h0,1(p0(t))|2Pmax

x1(t) (4.7)
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+

 h2,0(p0(t))s2,0

√
Pmax√

σ2
n + s2

0,1|h0,1(p0(t))|2Pmax

n0(t) + n2(t).

Departing from (4.7) we start the customisation of the MDMTA components in the
next subsections. We will �rst design the selection rule and then double-link path
planner.

4.3.1 Selection Rule Design

The selection rule is invoked at time instant tN when the RR is at qN and it has
already estimated the L wireless channels at all the N stopping points. It be shown
from (4.7) that given the wireless channels at both links the SNR observerd by the
MR-2's receiver, when the RR is located at qk, is given by:

Γ(qk) =

(
Pmax
σ2
n

)2

s2
2,0|h2,0(qk)|2s2

0,1|h0,1(qk)|2(
Pmax
σ2
n

)
(s2

2,0|h2,0(qk)|2 + s2
0,1|h0,1(qk)|2) + 1

. (4.8)

The RR knows Pmax and σ
2
n which were used in the calculation for the ampli�cation

factor β (4.6). In addition, as mentioned above it also knows the wireless channels
of both links at the N stopping points. Therefore the RR can calculate (4.8) for all
the stopping points. In consequence the natural choice in this case for the selection
rule is to select qopt as the stopping point that maximises (4.8).

For the thresholding function T H we can also use (4.8) and so when one qk
stopping point presents an SNR higher than some value ηk the double-link MDMTA
will terminate.

Note that to use this selection rule the RR only requires to know sj,l|hj,l(qk)| but
not sj,l and |hj,l(qk)| separately. In other words, to implement this selection rule the
RR does not need to know the shadowing terms in order to isolate the small-scale
fading terms. In the next subsection we will discuss the construction of the path
planner.

4.3.2 Path Planner Design

Now we proceed to design a double-link path planner with memory order one for the
amplify-and-forward RR. To do this we will follow a similar procedure as the one
we used to develop the single-link path planner with memory order one developed in
section (3.2). So, the general double-link path planner with memory order one has
the following form:

f
(2)
1

(
qk, ĥ

(2)(qk), k
)

= qk + d
(2)
1

(
ĥ(2)(qk)

)
vk, k = 1, 2, · · · , N − 1

v(k) = [cos(ψ(k)) sin(ψ(k))]T (4.9)
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where ψ(k) is the direction that the RR has to follow in order to move from qk to

qk+1 and d
(2)
1

(
ĥ(2)(qk)

)
is a function that determines ‖qk+1 − qk‖2 using ĥ(2)(qk).

We will reasonably assume that ‖p1(t)−p2(t)‖2 � λ. In other words we assume
that the distance between MR-1 and MR-2 is signi�cantly greater than the distance
of a wavelenght1. Thus, according to (4.2) we have E

[
h2,0(p0(t))h∗0,1(p0(t))

]
≈ 0.

In other words, for all practical purposes, the wireless channels from one link are
independent of the wireless channel of the other link.

In the single-link case the distance function d1(h(qk)) in (3.8) took a form that
allowed us to improve the channel gain at the next stopping point qk+1. In the

double-link case we can try to design d
(2)
1

(
ĥ(2)(qk)

)
to maximise the SNR at the next

stopping point but this is a complicated problem. A more practical and reasonable
solution is to design the distance function to maximise the power of the signal received
by the MR-2 and sent by the MR-1 while assuming the gain factor β constant.
This problem is equivalent to �nding the distance function that, at time instant tk,
maximises s2

2,0s
2
0,1E[|h2,0(qk+1)|2]E[|h0,1(qk+1)|2].

Since at time instant tk the channels h2,0(qk+1) and h0,1(qk+1) are not known we
can only maximise s2

2,0s
2
0,1E[|h̃2,0,1(qk+1)|2]E[|h̃0,1,1(qk+1)|2] where h̃j,l,1(qk+1) is the

predictor of memory order one for the channel hj,l(qk+1).
Since the channels from one link are independent of the channels of the other

link then we can use two separate single-link channel predictors as the ones used
in (3) for the channel of each link and indirectly coupling them via the double-

link distance function d
(2)
1

(
ĥ(2)(qk)

)
. Therefore the double-link channel predictor

of memory order one h(2)(qk+1) can be written as:

h̃
(2)
1 (qk+1) = νk+1

√
1− ρ2

(
ĥ(2)(qk)

)
+ ĥ(2)(qk)ρ

(
ĥ(2)(qk)

)
, (4.10)

with:

ρ
(
ĥ(2)(qk)

)
= J0

2πd
(2)
1

(
ĥ(2)(qk)

)
λ

 , (4.11)

where h̃
(2)
1 (qk+1) = [h̃0,1,1(qk+1) h̃2,0,1(qk+1)]T , ρ

(
ĥ(2)(qk)

)
represents the corre-

lation between h2,0(qk) and h2,0(qk+1) which is the same as the correlation be-
tween h0,1(qk) and h0,1(qk+1). In addition νk+1 = [ν1(k + 1) ν2(k + 1)]T with
ν1(k + 1), ν2(k + 1),∼ CN (0, 1) and E[νk+1 νHk+1] = I. So, using the predictors
(4.10) we have:

E
[
|h̃2,0,1(qk+1)|2

]
E
[
|h̃0,1,1(qk+1)|2

]
= (1 + ρ2

(
ĥ(2)(qk)

)
(|h2,0(qk)|2 − 1))

1This assumption is consistent with the fact that in this application MR-1 needs to use MR-0
as a relay in order to communicate with MR-2.
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× (1 + ρ2
(
ĥ(2)(qk)

)
(|h0,1(qk)|2 − 1)).

(4.12)

We now maximise (4.12) with respect to the correlation factor ρ
(
ĥ(2)(qk)

)
to give

the optimum value:

ρ∗
(
ĥ(2)(qk)

)
=

{ 0, |h2,0(qk)|2 + |h0,1(qk)|2 < 2
1, 2|h2,0(qk)|2|h0,1(qk)|2 − |h2,0(qk)|2 − |h0,1(qk)|2 > 0

2−|h2,0(qk)|2−|h0,1(qk)|2
2(|h2,0(qk)|2−1)(|h0,1(qk)|2−1)

, otherwise.

(4.13)
This equation de�nes three regions: In the �rst region the channel gain of both links

is low and thus the optimal correlation factor ρ∗
(
ĥ(2)(qk)

)
must be low (�rst line

of (4.13)); in the second region the channel gain is high for both links and thus the
optimal correlation factor must be high (second line of (4.13)); and �nally in the
third region either both links have moderate channel gains or one has a high channel
gain while the other has low channel gain and in this case a moderate correlation
factor is desirable (third line of (4.13)). Using this interpretation we can derive the

optimum form of the distance function d
(2)
1

(
ĥ(2)(qk)

)
which is then given by:

d
(2)
1

(
ĥ(2)(qk)

)
= (ds − dm)1R+∗

(
2|h2,0(qk)|2|h0,1(qk)|2 − |h2,0(qk)|2 − |h0,1(qk)|2

)
+ (dm − db)1R+∗

(
|h2,0(qk)|2 + |h0,1(qk)|2 − 2

)
+ db

(4.14)

where 1R+∗(·) is the indicator function; and db > dm > ds are design parameters that
must be chosen so that when the distance function (4.14) is evaluated in (4.11) it
produces low, moderate and high channel correlation according to the regions de�ned
in (4.13).

Now that we have derived the optimum form of the distance function (4.14) we
can optimise its parameters as well as the angles ψ(k) in (4.9) in order to conclude
with the optimisation of the double-link path planner for the amplify-and-forward
RR. To do this we can follow a similar approach to the one used to optimise the
parameters of the single-link path planner in section 3.2. That is, �rst we optimise
the parameters db, dm and ds assuming ψ(k) is constant and then we optimise ψ(k)
with the previously optimised db, dm and ds. For the �rst part optimisation problem
(i.e., the optimisation of db, dm and ds) we can modify (3.9) by replacing E [|h(qopt)|]
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with E
[

max
k=1,2,···,N

|h2,0(qk)h0,1(qk)|2
]
. Thus the resulting optimisation problem is:

max
dm,ds,db

θE
[

max
k=1,2,···,N

|h2,0(qk)h0,1(qk)|2
]
− (1− θ)E

[
N∑
k=1

Em (tk, tk+1,u
∗
k(t))

]
s.t.

qk+1 = qk + d
(2)
1

(
ĥ(2)(qk)

)
v(k), k = 1, 2, · · · , N − 1

v(k) = [cos(ψ(k)) sin(ψ(k))]T

ψ(k) = ψ(1), k = 2, 3 · · · , N − 1
ds ≤ dm ≤ db ≤ z0,

(4.15)
where z0 is the smallest value of the distance to make zero the correlation in (4.11).
This is done to reduce the size of the optimisation space without eliminating any
possible solution. The optimization target in (4.15) is a convex combination of the
expected value of the maximum channel power gain from MR-1 to MR-2 via the RR

E
[

max
k=1,2,···,N

|h2,0(qk)h0,1(qk)|2
]
and the negative of the average mechanical energy

used by the RR during the MDA execution using the optimum control law presented
in the previous chapters. This optimization target has the same form as (3.9). The
design parameter θ ∈ [0, 1] de�nes the importance of one term over the other.

Once we have optimised db, dm and ds we optimise the set of angles ψ(k). The
resulting optimisation problem is:

max
ψ

θE
[

max
k=1,2,···,N

|h2,0(qk)h0,1(qk)|2
]
− (1− θ)E

[
N∑
k=1

Em (tk, tk+1,u
∗
k(t))

]
s.t.

qk+1 = qk + d
(2)
1

(
ĥ(2)(qk)

)
v(k), k = 1, 2, · · · , N − 1

v(k) = [cos(ψ(k)) sin(ψ(k))]T

ψ(k + 1)− ψ(k) = ψ k = 1, 2, · · · , N − 2,

(4.16)

where the distance function uses the values of db, dm and ds optimised according to
(4.16). Since there is no analytical expression for the optimization target in (4.16) we
have to evaluate it by simulations which can increase signi�cantly the computational
load. To alleviate this problem and reduce the computational load we add the third
constraint in (4.16) to reduce the dimensionality of the optimisation problem2 just
as it was done in the optimisation problem (3.14). Both (4.15) and (4.16) can be
solved using simulated annealing.

With the optimisation of the double-link path planner we conclude the design
of the double-link MDMTA for the amplify-and-forward RR. In the next section we
design the double link MDMTA for the decode-and-forward RR.

2This reduction in the dimensionality of the problem will reduce the performance of the solution
but it will also reduce the computational load and as a consequence it will make the problem more
manageable.
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4.4 Decode-and-Forward Relay

In this subsection the RR operates as a decode-and-forward relay. So, the RR decodes
the signal transmitted by the MR-1 and then it forwards the decoded signal to the
MR-2. Thus the signal received by RR and the MR-2 are respectively:

y0(t) = s0,1h0,1(p0(t))x1(t) + n0(t),

y2(t) = s2,0h2,0(p0(t))x̄1(t) + n2(t), (4.17)

where x̄1(t) is the decoded version of x1(t). We could try to devise the selection
rule and the path planner to minimise the BER at MR-2 but this would be too
complicated and it will also make the components of the MDMTA dependent on the
modulation scheme selected. We can �nd an alternative approach if we note that in
this application when one of the links has a low channel gain the resultant BER will
be high independently if the other link has a high channel gain or not.

Therefore, a good choice for the selection rule is to select qopt as the stopping
point that maximises the minimum channel gain of both links:

m(qk) = min{s2,0|h2,0(qk)|, s0,1|h0,1(qk)|}. (4.18)

For the thresholding function T H we can also use (4.18) and so when one at some
stopping point qk we have m(qk) > ηk the algorithm will terminate.

The double-link path planner for the decode-and-forward RR takes the form (4.9)

but with the distance function d
(2)
1

(
ĥ(2)(qk)

)
takes a particular form which we will

now develop. But before continuing the design of the path planner let us �rst de�ne
the following random variable:

m̃1(qk) = min{s2,0|h̃2,0,1(qk)|, s0,1|h̃0,1,1(qk)|} (4.19)

where h̃2,0,1(qk) and h̃0,1,1(qk) are the channel predictors of order one for h2,0(qk)
and h0,1(qk) given by (4.10) and (4.11).

A reasonable and simple solution to derive the form of the path planner is to
devise it to maximise the second moment3 of m̃1(qk+1) at time instant tk. This
moment is given by:

E[m̃2
1(k + 1)] =

∫ +∞

0

(
1− Pr(m̃2

1(k + 1) ≤ z)
)
dz, (4.20)

with:

Pr(m̃2
1(k + 1) ≤ z) = Pr(s2

2,0|h̃2,0,1(qk+1)|2 ≤ z) (4.21)

+ Pr(s2
0,1|h̃0,1,1(qk+1)|2 ≤ z)

− Pr(s2
2,0|h̃2,0,1(qk+1)|2 ≤ z)Pr(s2

0,1|h̃0,1,1(qk+1)|2 ≤ z),

3We choose the second moment because its analytical expression is easier to handle than the
expression for the �rst moment.
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and so:

E[m̃2
1(k + 1)] ≤ E[s2

2,0|h̃2,0,1(qk+1)|2] + E[s2
0,1|h̃0,1,1(qk+1)|2]

= s2
2,0

(
1 + ρ2(ĥ(2)(qk))(|ĥ2,0(qk)|2 − 1)

)
+ s2

0,1

(
1 + ρ2(ĥ(2)(qk))(|ĥ0,1(qk)|2 − 1)

)
. (4.22)

Then we optimise the right hand term of (4.22) with respect to ρ(ĥ(2)(qk)) in order
to derive the optimum form of the distance function for the path planner. It can be
shown that the optimum ρ(ĥ(2)(qk)) that maximises the right hand term of (4.22) is

ρ∗
(
ĥ(2)(qk)

)
=

{
0, s2

0,1(|ĥ0,1(qk)|2 − 1) + s2
2,0+1(|ĥ2,0(qk)|2 − 1) < 0

1, otherwise.
(4.23)

This equation de�nes two regions, one inside the ellipse s2
0,1(|ĥ0,1(qk)|2−1)+s2

2,0+1(|ĥ2,0(qk)|2−
1) and another outside of it. In the outer region of the ellipse the upper bound for
E[m̃2

1(k+ 1)] is maximized by choosing a low correlation factor while in the inner re-
gion this bound maximized by choosing a high correlation factor. Therefore, for the
decode-and-forward relay case this motivates the following distance function form:

d
(2)
1

(
ĥ(2)(qk)

)
= (ds − db)1R+∗

(
s2

2,0(|ĥ2,0(qk)|2 − 1) + s2
0,1(|ĥ0,1(qk)|2 − 1)

s2
2,0 + s2

0,1

)
+ db

(4.24)
with db > ds. Then we insert (4.24) into (4.9) and obtain the full path planner
form for the decode-and-forward relay. To optimise its parameters we can follow
the same procedure as for the amplify-and-forward case in the previous section by
only substituting the �rst term in (4.15) and (4.16) by a more suitable term like

E
[

max
k=1,2,···,N

m(qk)
2

]
. This �nalises the design of 2-MDMTA for both the amplify-

and forward RR as well as for the decode-and-forward RR.

4.5 Other Path Planners

In the previous sections we designed double-link MDAs and in the process we de-
veloped double-link path planners with memory order one. In this section we show
�rst how to extend the memory of the path planners and then we show to extend
the number of links considered.

4.5.1 Double-link Path Planner with Higher Memory Order

To develop the double-link path planner with arbitrary memory order we use the
channel predictors of chapter 3 for each link and combine them. So we �rst extend
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the single-link channel predictor with arbitrary memory order in (3.10) to obtain the
double-link channel predictor of arbitrary memory order. As we mentioned earlier
the channels from one link are independent to the channels at the other link and so
the predictor with arbitrary memory order for h(2)(qk+1) at time instant tk is given
by:

h̃
(2)
M(k)(qk+1) =

[
P−1(k,M(k))Ĥ

(2)
M(k)(k)

ν(2)

]T
pT (k + 1,M(k) + 1) (4.25)

where ν(2)(k+1) = [ν1 ν2] with ν1, ν2 ∼ CN (0, 1) and ν1 is statistically independent

to ν2. Then Ĥ
(2)
M(k)(k) is de�ned in (4.3), with the matrix P−1(k,M(k)) and the

vector p(k + 1,M(k) + 1) de�ned in section 3.1. It is not di�cult to see that:

µ(2) = E[h̃
(2)
M(k)] =

(
P−1(k,M(k))Ĥ

(2)
M(k)(k)

)T
pT1:M(k)(k + 1,M(k) + 1) (4.26)

where p1:M(k)(k + 1,M(k) + 1) contains the �rst M(k) entries of the vector p(k +

1,M(k) + 1) and the covariance matrix C of h̃
(2)
M(k) is given by:

C = Ip2
M(k):M(k)(k + 1,M(k) + 1) (4.27)

with I the identity matrix and pM(k):M(k)(k + 1,M(k) + 1) is the last entry of the
vector p(k+1,M(k)+1). From (4.26) and (4.27) the second moment of the predictors
for both channels can be written as:

E
[
|h̃0,1,M(k)(qk+1)|2

]
= p2

M(k):M(k)(k + 1,M(k) + 1) + |µ(2)
1 |2,

E
[
|h̃2,0,M(k)(qk+1)|2

]
= p2

M(k):M(k)(k + 1,M(k) + 1) + |µ(2)
2 |2 (4.28)

with µ
(2)
1 and µ

(2)
2 the �rst and the second entries of µ(2) in (4.26).

Finally we modify (3.59) by replacing the single-link path planner with memory
order one of section 3.5 with the double-link path planner with arbitrary memory
order in (4.25). So we can calculate the optimum qk+1 by solving:

max
qk+1

θg
(
h̃

(2)
M(k)(qk+1), S(2)

)
− (1− θ)‖qk+1 − qk‖2

s.t.
M(k) ≤ k − 1,

(4.29)

where g
(
h̃

(2)
M(k)(qk+1), S(2)

)
is a general function that takes into account the channel

gain at both links and can be customized according to the particular applicaltion.
For example, in the case of the amplify-and-forward relay we can set this function
to be :

g
(
h̃

(2)
M(k)(qk+1), S(2)

)
= E

[
|h̃2,0,M(k)(qk+1)|2

]
E
[
|h̃0,1,M(k)(qk+1)|2

]
. (4.30)
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And for the case of the decode-and-forward we can select g
(
h̃

(2)
M(k)(qk+1), S(2)

)
to

represent the upper bound for the minimum channel gain of both wireless links, see
section 4.4, and thus we have:

g
(
h̃

(2)
M(k)(qk+1), S(2)

)
=
s2

2,0E
[
|h̃2,0,M(k)(qk+1)|2

]
+ s2

0,1E
[
|h̃0,1,M(k)(qk+1)|2

]
s2

2,0 + s2
0,1

.

(4.31)
So we have derived a double-link path planner with arbitrary memory order by using
double-link channel predictors. In the next subsection we show how we can extend
these planners even further to obtain multiple-link path planners with arbitrary
memory order.

4.5.2 Multiple-link Path Planner

In the previous subsection we showed how to obtain the double-link path planner with
arbitrary memory order so now we show how to obtain a multiple-link path planner
with arbitrary memory order. To do this we �rst extend the double-link channel
predictor with arbitrary memory order in (4.25) to the multiple-link channel predictor
with arbitrary memory order. By analysing the form of (4.25) it is straightforward
to note that the multiple-link channel predictor with arbitrary memory order is:

h̃
(L)
M(k)(qk+1) =

[
P−1(k,M(k))Ĥ

(L)
M(k)(k)

ν(L)

]T
pT (k + 1,M(k) + 1) (4.32)

where L is the number of wireless links considered.
A good objective for a multiple-link MDA can be to try to �nd a stopping point

where the minimum channel gain of all L the wireless links considered is not poor.
In other words, a good strategy (but not the only one) for a multiple-link MDA
could be to maximize the minimum channel gain of the L links. To achieve this a
multiple-link path planner that maximises the upper bound of the minimum channel
gain of the predicted channels could be used. To do this we �rst de�ne the following
random variable:

m̃
(L)
M(k)(k) = min

j=1,2,···,L
{s0,j|h̃0,j,M(k)(qk)|}. (4.33)

We also remember that due to the reciprocity assumption h̃0,j,M(k)(qk) = h̃j,0,M(k)(qk).
Now, it can be shown that:

Pr
(
m̃

(L)
M(k)(k + 1) < z

)
=

L∑
j=1

Pr
(
s2

0,j|h̃0,j(qk+1)|2 < z
)

− (L− 1)
L∏
j=1

Pr
(
s2

0,j|h̃0,j(qk+1)|2 < z
)
.

(4.34)
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So we also have:

E
[
m̃

(L)
M(k)(k + 1)

]
<

L∑
j=1

s2
0,jE

[
|h̃0,j(qk+1)|2

]
(4.35)

which becomes:
L∑
j=1

s2
0,jE

[
|h̃0,j(qk+1)|2

]
=

L∑
j=1

s2
0,j

(
p2
M(k):M(k)(k + 1,M(k) + 1) + |µ(2)

j |2
)
. (4.36)

Finally, in order to calculate qk with the multiple-link path planner with arbitrary

memory order we can �rst select g
(
h̃

(L)
M(k)(qk+1), S(L)

)
as:

g
(
h̃

(L)
M(k)(qk+1), S(L)

)
=

∑L
j=1 s

2
0,jE

[
|h̃0,j(qk+1)|2

]
∑L

j=1 s
2
0,j

. (4.37)

Then we use this function in (4.29) and solve it to obtain a multiple-link path planner
arbitrary memory order that maximises the upper bound of the minimum channel
gain. By observing the shape of (4.37) we can note that a more general optimization
target for the path planner could be as follows:

g
(
h̃

(L)
M(k)(qk+1), S(L)

)
=

L∑
j=1

θjE
[
|h̃0,j(qk+1)|2

]
(4.38)

where θj ∈ [0, 1] and
∑L

j θj = 1. In other words (4.38) represents a convex combina-
tion of all the channel power predicted for all the L wireless links. The parameters θj
represent then relative the importance of compensating the small-scale fading term
at each channel. So we can calculate qk+1 with a more general multiple-link path
planner with arbitrary memory order by solving online:

max
qk+1

θ
L∑
j=1

θjE
[
|h̃0,j(qk+1)|2

]
− (1− θ)‖qk+1 − qk‖2

s.t.
M(k) ≤ k − 1.

(4.39)

Note that the channel gain is the product of the shadowing term s0,j multiplied by
the magnitude of the small-scale fading term. Then it makes more sense to give
more importance in (4.39) to the links with lower values of the shadowing term. So
a possible choice (but not the only one) for the parameters θj could be:

θj =
s−1

0,j∑L
k=1 s

−1
0,k

. (4.40)

Finally, (4.39) constitutes the more general path planner for the discrete search
spaces presented in this thesis since it is has arbitrary memory order and takes
simultaneously into account as many channels as possible.
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Figure 4.1: Expected value of the SNR at MR-2 after the execution of various double-
link MDAs.

4.6 Simulations

In order to provide more insight into the multiple-links MDAs we present in this
section some simulations of a double-link MDA. Particularly we will present results
for the double-link MDA designed in section 4.3 for amplify-and-forward robotic
relays. For the simulations we will assume that the shadowing has a variance of
16dB, which is a realistic value measured in [56]; Pm/σ

2
n = 20, which corresponds to a

moderate SNR; and a channel estimation error with 0.01 variance, which corresponds
to a low estimation error.

Let us �rst consider the following two MDAs:

1. MDA-1: it uses the selection rule that maximizes (4.8) but uses a predeter-
mined geometry with all the N stopping points uniformly arranged in a straight
line and separated by a distance z0.

2. MDA-2: it uses the selection rule that maximizes (4.8) and the double-link
adaptive path planner with memory order one presented in section 4.3.2. The
path planner is optimized according to (4.15) with θ = 1, i.e., it is optimized
to obtain the best possible channel gain.

From Fig. 4.1 we note that MDA-2 produces an SNR at the MR-2 moderately
superior to MDA-1, and from Fig. 4.2 we note that it also requires the MR to
move a signi�cantly smaller distance. This shows that the adaptive double-link path
planner with memory order one that we have designed improves the performance of
the double-link MDA. In particular: (i) the statistics of the channels are improved
at each iteration of the adaptive path planner and so the resulting SNR at MR 2 is
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Figure 4.2: Expected value of the distance travelled by the RR for various double-link
MDAs.

better than for the case in which the stopping points are predetermined; (ii) the total
distance travelled by the RR while using the adaptive path planner is reduced and
consequently the mechanical energy used is also reduced making the MDA-2 more
energy e�cient.

Note that these results are similar to the results in chapter 3 when we compared
the single-link adaptive path planner with memory order one against the predeter-
mined stopping point geometries.

Now, let us consider two more MDAS:

1. MDA-3: uses the same selection rule as MDA-2 but uses the optimized single-
link adaptive path planner with memory order one derived in 3 to improve the
wireless channel in the link between MR-1 and RR.

2. MDA-4: uses the same path planner as the MDA-2 but uses a single-link
selection rule that maximizes the channel gain of the link between RR and
MR-2.

From Figs. 4.1 and 4.2 we observe that both MDA-3 and MDA-4 perform worse
than MDA-2. This is because the MDA-3 uses a single-link path planner instead of
a double-link path planner while the MDA-4 uses a single-link selection rule instead
of a single-link one. Nevertheless we observe that the degradations are considerably
di�erent. The degradation for the MDA-4 in terms of the SNR is quite signi�cant
(see Fig. 4.1) while the degradation of the MDA-3 with respec to the MDA-2 is small.
This implies that when designing double-link MDAs (and multiple-link MDAs) we
need to use double-link selection rules. But we can use single-link path planners
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(which are simpler) instead of double-link ones at the cost of only a small degradation
in the performance.

4.7 Summary

In this chapter we departed from the theory of single-link MDAs that we developed
in chapters 2 and 3 in order to develop a theory for multiple-link MDAs. We started
by designing double-link MDAs for robotic relays with all their components including
the double-link path planners. Then we showed how to derive the double-link path
planners with arbitrary memory order and �nally we derived a general multiple-link
path planner with arbitrary memory order.

This chapter concludes the �rst part of this thesis in which we have studied in
detail all di�erent aspects of MDAs with discrete search spaces.
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Chapter 5

MDA for Energy Harvesting

In the �rst part of this thesis, composing chapters 2 to 4, we developed and studied in
detail MDAs with discrete search spaces. In the second part of this thesis we develop
MDAs with continuous search spaces (particularly predetermined continuous search
spaces). As mentioned earlier, in MDAs with discrete search spaces MRs move from
one point to the other, then stop at each point (this is why we refer to them as
stopping points) and collect as many noisy samples from the wireless receiver as
needed in order to obtain a channel estimate with su�cient accuracy. On the other
hand, in MDAs with continuous search spaces MRs follow a continuous path without
stopping (until the end) while collecting samples of the wireless channel.

The main motivation to develop MDAs with a continuous search space is that
from a mechanical energy point of view MDAs with discrete search spaces are not
so e�cient. To illustrate this consider a set of N points {qj}Nj=1 and then make
the MR explore them all only once in a time T and in a certain order. If we were
using an MDA with a discrete search space then we would design the control law
so that the MR moves from point qj to point qj+1 using a minimum amount of

energy in a time Tj (such that
∑N

j=1 Tj = T ) and stopping at each of the N points.
Now assume that we eliminate the restriction of stopping at each point, then we
could design a control law that makes the MR pass through all of the N points in
a time T using minimum energy and stopping only at the end. It is intuitive that
the amount of energy used by the second control law will be either lower or equal
(in the worst case scenario) than the energy consumed by the �rst control law. This
is because both control laws execute the same task (passing through all N points
in a time T ) but the �rst control law has additional restrictions (stopping at each
point). Note that the second control law describes how the MR would operate in
an MDA with a continuous search space. This implies that MDAs with continuous
search spaces are more e�cient from a mechanical energy consumption point of view.
This could lead the reader to think that MDAs with continuous search spaces are
better than MDAs with discrete search spaces. But we remind the reader that in
the case of MDAs with discrete search spaces the MR stops at each point and can
collect as many noisy samples from the wireless receiver as needed in order to satisfy
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a certain accuracy in the channel estimate while in the case of the MDA with a
discrete search space the MR can only collect one noisy sample per point. As a
consequence, MDAs with a discrete search space are more robust against noise than
MDAs with a continuous search space. Therefore MDAs with a continuous search
space are conceptually the complement to MDAs with discrete search space.

We start our treatment of MDAs with continuous search space in this chapter by
restricting the shape of the continuous search space to be a straight line, which is
the simplest shape. Although the shape of the discrete search space will remain a
straight line in this chapter we will optimise its length. In previous chapters we have
focused on the spatial aspects of the MDA (i.e., the search space) and we have brie�y
discussed the temporal aspects of the MDA (i.e., execution time and its partition for
the di�erent phases). In this chapter we will pay more attention regarding the e�ect
of the execution time and its partition on the MDA. Another di�erence with the
previous chapters is that here we will show how the MDA can be used to improve
RF energy harvesting [38], [39].

Before we explain how we can improve RF energy harvesting using MDAs let us
brie�y discuss some generalities about energy harvesting and the energy consumption
of MRs. Untethered MRs draw their energy exclusively from an onboard battery.
The amount of tasks that they can execute depends on the energy stored in its
battery. Hence energy, in the context of untethered MRs, is a very scarce and
important resource. There are many approaches that allow the robots to increase
the time duration over which an untethered MR can operate without having to
return to its base for recharging its battery. These include using energy conservation
techniques to make the robot more energy e�cient [40] or adding energy harvesting
capabilities to the MR [41]. Now, wireless energy harvesting [42] is a technique that
is being studied for sensor networks but it could be applied to small untethered MRs
requiring low power. This can be done by using a dedicated base station to transmit
RF energy and adding a recti�er antenna [43] to the MR so that it stores the wireless
energy transmitted by the base station. Although the amount of energy stored by
this method may not be as high as with other energy harvesting techniques (e.g., solar
or wind energy) it is cheap to implement and it requires only a very small area on the
robot's surface. Because of this latter property wireless energy harvesting systems
can easily be implemented on small MRs (e.g. the micro-robot Alice [41], [44]).
Moreover, the key advantage in RF energy harvesting is that it imposes minimal
hardware requirements for MRs, as they are already provided with on-board radio
communication capabilities.

In this chapter, we consider an untethered MR with an antenna which uses the
integrated receiver architecture presented in [45] that provisions simultaneous data
and wireless energy reception from the command-and-control center base station.
This base station is charged to maintain communications for control purposes or
just to exchange data with the MR. More speci�cally, we consider a scenario where
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a MR, that is harvesting wireless energy most of the time1 thanks to the receiver
mentioned earlier, is deployed in the �eld. The robot has to perform a series of tasks
demanded by the BS. Now, we assume that there are `dead times' between the tasks
which are demanded by the BS. This means that once the MR completes one task
it will not be required to perform any further action for a `dead time' of duration T
seconds until the BS requests execution of the next task. During the execution of a
task the MR will harvest wireless energy while completing it.

During the `dead times' the base station transmits an RF signal so that the MR
can harvest energy from it. Generally, MRs may observe many scatterers in their
near vicinity and that there may not be a line of sight between the MR and the
base station antenna. Therefore, the wireless channel from the base station to the
MR will experience small scale fading which will a�ect the amount of radio energy
that can be harvested. Thus, the key challenge posed in this scenario is to devise
a MR algorithm which maximizes the energy stored during these `dead times' in
the presence of fading. In this chapter we achieve this by customising a continuous
search space MDA to execute this task during the `dead times'.

The contributions of this chapter is the customisation of a continuous search space
MDA to improve RF energy harvesting and also the optimisation of the continuous
search space size.

This chapter is organized as follows. In section 5.1 we describe the model for
the MR, for the wireless channel model and for the energy storage system. Then in
section 5.2 we propose a continuous search space MDA for improving the RF energy
harvesting. In section 5.3 we optimize the parameters of this MDA. An explanation
about how to �nd the optimal point from which to harvest the energy is presented
in section 5.4. Finally, simulation results are given in section 5.5 and conclusions are
presented in section 5.6.

5.1 System and Channel Model

5.1.1 MR Model

In this chapter, we consider a di�erential drive robot2 (DDR) [46] furnished with
a recti�er antenna3 (rectenna) [43]. It is assumed that the rectenna is installed on
the geometric center of the robot (see Fig. 5.1) such that it can harvest the energy
received from the base station. A DDR is a MR that has two wheels (each with

1The only times when the MR is not harvesting wireless energy could be when the it is trans-
mitting. This is because at that time the antenna could be connected to the transmitter instead of
the receiver (depending on the transceiver architecture.)

2Although we restrict our analysis to a DDR the technique presented in this chapter can be
easily extended to other types of MR like (for example) a three wheeled omni-directional robot as
in the previous chapters.

3An antenna which is connected directly to a recti�er composed of a Schottky diode and a
lowpass �lter.
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Figure 5.1: Diferential drive robot (DDR).

radius r controlled by its own motor). The distance between the two motorized
wheels is 2b. In addition, it may have a third passive4 omnidirectional5 wheel which
serves as support for the robot (see Fig. 5.1). The DDR model considered in this
chapter is a version of the model presented in [47].

The position of the MR is p(t) and its translational velocity v(t) is controlled
by the motor's input vector u(t) = [uR(t) uL(t)]T where uR(t) and uL(t) are the
control inputs for the right and left motors respectively. The following state equation
describes how the translational velocity v(t) is controlled by u(t):

v̇(t) + [1 0]Ā[v(t) 0]T = [1 0]B̄u(t), (5.1)

where Ā = cATqJ
−1T−1

q and B̄ = cBTqJ
−1, with cA and cB two constants depending

on the electromechanical characteristics of the robot; the matrix J is the equivalent
inertia matrix of the robot's motors:

J =

[
J1 J2

J2 J1

]
, (5.2)

and Tq depends on the geometry of the robot and is given by:

Tq =

[
r/2 r/2

r/2b −r/2b

]
. (5.3)

Finally, the energy consumed by the MR due to its mechanical movement from any
time t0 to time t1 is:

Emech(t0, t1,u(t)) =

∫ t1

t0

c1u
T (t)u(t)dt (5.4)

4A passive wheel is a wheel which is not controlled by any motor.
5An omnidirectional wheel can roll in any direction at any time.
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−
∫ t1

t0

c2[v(t) 0]T−Tq u(t)dt,

where c1 and c2 are constants which depend on the electrical parameters of the
robot's motors.

5.1.2 Channel Model

In this chapter, we consider that during the dead time of duration T the base station
is constantly transmitting a narrowband RF signal so that the robot can replenish its
battery with RF harvested energy. A narrowband signal will produce less interference
to adjacent wireless systems than a broadband signal. Now while narrowband signals
will experience �at fading, which in turn will produce losses6 in the wireless energy
harvested by the system, this impairment will be compensated through the MR
movement (as we will see later in the chapter).

Now, we assume that the MR receiver follows the architecture proposed in [45].
On the MR, the energy is received by a rectenna. The output of the recti�er is
connected to both the robot's battery and an analog-to-digital converter (ADC) (see
Fig. 5.2). In general, the receiver in Fig. 5.2 serves to receive information (through
the ADC) while simultaneously harvesting radio energy, but during the dead times
the receiver will just be used to harvest radio energy. We also assume that most of
the energy generated at the output of the recti�er is fed to the battery and only a
small amount is absorbed by the ADC's input. This may be achieved by inserting (at
the recti�er's output) a well-designed three-port matching network [48] (not shown
in Fig. 5.2) with one input and two outputs. Consequently, the on-board battery is
charged by employing the radio signal, while the MR simultaneously monitors the
amount of energy that arrives into its battery.

Since the radio signal transmitted by the base station is narrow band the wireless
channel experiences �at fading. Furthermore, it is assumed that during the dead time
the environment remains stationary and consequently the duration T of the dead
time is smaller than the coherence time of the channel and so the channel will be
considered approximately time-invariant over this duration. Note that this can only
be achieved if the MR works on environments with physical features that experience
low mobility. So the low-pass, complex equivalent baseband signal received by the
robot's antenna at position p(t) is given by:

ye(p(t), t) = s(p(t))h(p(t))xe(t) + ny(t), (5.5)

where ny(t) ∼ CN (0, σ2
y) is complex, zero-mean, additive white Gaussian noise,

s(p(t)) and h(p(t)) are the shadowing experienced and small-scale fading observed
at p(t) while xe(t) is the lowpass equivalent of a pure RF tone with amplitude a
transmitted by the base station.

6Due to the deep fades.
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Figure 5.2: Energy receiver architecture [45].

If the movement of the robot during the dead times is in a small region then we
have s(p(t)) = s, a constant, i.e., the shadowing term is constant for all the positions
in which the robot moves during the dead times. With all these considerations then
(5.5) simpli�es to:

ye(p(t), t) = h(p(t))ay + ny(t), (5.6)

where ay = sa. We will consider that the small scale fading follows Jakes' model

[28] and so |h(p(t))| ∼ R
(

1√
2

)
is Rayleigh distributed and the normalized spatial

covariance function of the channel gain is:

C(p,q) =
E[(|h(p)| − E[|h(p)|])(|h(q)| − E[|h(q)|])]√

var (|h(p)|) var (|h(q)|)
,

= J2
0

(
2π‖p− q‖2

λ

)
, (5.7)

where λ is the wavelength of the RF signal transmitted by the BS. The signal at the
output of the recti�er in Fig. 5.2 is [45]:

re(p(t), t) = |ye(p(t), t)|2 + nr(t), (5.8)

where nr(t) ∼ N (0, σ2
r) is the real zero-mean additive Gaussian noise at the output

of the recti�er. We will refer to nr(t) as the post-recti�er noise and to ny(t) in
(5.5) as the pre-recti�er noise in order to di�erentiate between them. Finally, the
signal at the output of the ADC can be characterised as re(p(k∆s), k∆s) with k∆s

being the discrete sampling time. We will use re(k) as the shorthand notation for
re(p(k∆s), k∆s), and the same reasoning will apply for all the discrete-time signals
in the rest of this chapter.
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Also, note that both the pre-recti�er ny(t) and post-recti�er ny(t) noises have the
same variance at all times and it is independent of the robot's movement. This is
because those noises are generated inside the MR's receiver. We have also to mention
that since the time necessary to take one sample from (5.8) is always constant then
the same pre and pos recti�er noises also have constant variance after the being
sampled.

5.1.3 Energy Storage System

The energy storage system is a vital component of the MR. The net amount of energy
stored from any time t0 to t1 can be written as

Es(t0, t1) = Er(p(t), t0, t1)− Emech(t0, t1,u(t)), (5.9)

where Er(p(t), t0, t1) is the energy harvested over this time period using the rectenna.
Mathematically, this can be written as:

Er(p(t), t0, t1) = η

∫ t1

t0

re(p(τ), τ)dτ, (5.10)

where η ∈ (0, 1] is the energy charging e�ciency parameter [49]. The energy storage
e�ciency of the MR depends on the impedance matching network at the recti�er's
output and also on the energy charging system for the battery. Although the battery
has �nite capacity we will not consider this on our model because we assume that
the amount of energy stored in the battery at the beginning of the dead time is not
high enough so that the battery can be completely replenished at the end of this
period. In the same manner, we will assume that the battery level at the beginning
of the dead time is not low enough so that the MR runs out of energy because of the
motion carried out during this period of time.

5.2 MDA for Energy Harvesting

As we will de�ne later in this section, the dead time of T secs (from t = 0 to t = T )
when the MR is attempting to �nd an optimal position from which to �re-energize�
itself, will comprise of three phases. Only during the third phase will the MR actually
be stationary. The objective is to maximise E[Es(0, T )] in (5.9). Now, due to the
small scale fading, the radio energy harvested by the MR using its rectenna can be
very low if the MR is located at a position where the channel gain is poor. Thus, we
will design a continuous search space MDA in order to compensate the small-scale
fading and consequently maximize the energy stored by the MR during the dead
time.

During the dead time, the more the MR moves the higher the probability of
obtaining a point with a high channel gain and so increasing the radio energy har-
vested, Er(p(t), 0, T ). But also the greater the search space the higher the con-
sumption of mechanical energy, see (5.4). This consumption in turn depletes the
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energy from the MR's battery. This implies that although moving can signi�cantly
increase Er(p(t), 0, T ) it also increases Emech(0, T,u(t)) and consequently the net
energy Es(0, T ) (see (5.9)) can be low or even negative. This encourages intelligent
mobility control such that the energy stored during the dead time is maximized.
This intelligent control will be implemented by a continuous search space MDA. In
short, in the RF energy harvesting problem for MRs the net energy stored is highly
dependent on the actual exploration strategy.

The MDA is then executed during the dead time. Let us we de�ne the design
parameters Ts < T and α ∈ (0, 1), which will be optimized in section 5.3. We divide
the dead time into three distinct phases:

1. Phase 1 - Searching Time (t ∈ [0, αTs]) During this period the MR moves
along the continuous search space of the MDA while simultaneously monitoring
the channel gain and harvesting energy. This constitutes the �rst part of the
MDA.

2. Phase 2 - Positioning Time (t ∈ (αTs, Ts]) During this phase the MR ex-
ecutes the last part of the MDA. The MR continues harvesting energy while
moving from its current location p(αTs) to the optimal operating point p̂opt,
where p̂opt is the estimation of popt de�ned as:

popt = arg max
p(t)

t ∈ [0, αTs]

|h(p(t))|. (5.11)

3. Phase 3 - Resting Time (t ∈ (Ts, T ]) In this period the robot remains mo-
tionless at p̂opt harvesting energy through its rectenna.

Note that, the MDA is executed in the �rst and second phases while in the third
phase the MR enjoys the bene�ts of having obtained a high channel gain by executing
the MDA. Now, following (5.9) the net energy stored during the harvesting time (i.e.,
over the total pause period of T seconds) is:

Es(0, T ) =

Harvested energy (Phases 1& 2)︷ ︸︸ ︷
Er(p(t), 0, αTs) + Er(p(t), αTs, Ts) (5.12)

+

Harvested energy (Phase 3)︷ ︸︸ ︷
Er(p̂opt, Ts, T )

− Emech(0, αTs,u1(t))− Emech(αTs, Ts,u2(t))︸ ︷︷ ︸
Energy consumed due to mobility in Phases 1 & 2

.

where u1(t) and u2(t) are the control inputs (see (5.1)) employed during the �rst and
second phases7. Let us de�ne the continuous searching space of the MDA as follows:

S = {q | q = p(t) for t ∈ [0, T ]}. (5.13)

7Note that energy is harvested during all three phases of the dead time but it is during phase 3
that the most signi�cant harvesting actually takes place.
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In this chapter, for simplicity, we restrict the search space S to be a straight segment
with �nite length, to consider a linear search space with �nite length L. So, in this
chapter we select S to be:

S = {[l 0]T | l ∈ [0, L]}. (5.14)

This implies that:

1. The control input u1(t) has to follow a control law that takes the robot from
its initial linear velocity v(0) = 0 and initial pose po(0) = 0 to the �nal linear
velocity v(αTs) = 0 and �nal pose po(αTs) = [L 0 0]T while moving in a
straight line.

2. The control input u2(t) has to follow a control law that takes the robot from
the initial linear velocity v(αTs) = 0 and initial pose po(αTs) = [L 0 0]T to
the �nal linear velocity v(Ts) = 0 and �nal pose po(Ts) = [p̂opt 0]T . Since popt
and p̂opt are both random variables the control law u2(t) is a stochastic process
(as opposed to u1(t) which is deterministic).

While in this chapter we are arbitrarily restricting the shape of the continuous search
space for the MDA in the next chapter we will show how to optimise its shape.

5.3 Optimization of the MDA

In this section, our objective is to optimize the MDA so that the expected value of
the net energy stored during the dead time is maximized. In other words, we want
to maximize the average net stored energy E[Es(0, T )]. The optimization process
will ensure that the average energy level of the MR battery at the end of the dead
time will be maximized.

For this section, we assume that at the second subphase popt is known and there-
fore p̂opt = popt (In section 5.4, we provide further details of the estimation process
for popt). Finally, we assume that we know ay in (5.6).

Substituting (5.10) into (5.12) and taking the expectation:

E[Es(0, T )] = η

∫ αTs

0

E[re(p(τ), τ)]dτ + η

∫ Ts

αTs

E[re(p(τ), τ)]dτ

+ η

∫ T

Ts

E[re(popt, τ)]dτ − Emech(0, αTs,u1(t))

− E[Emech(αTs, Ts,u2(t))]. (5.15)

We will now examine in turn each of the �ve terms on the right hand side of (5.15).
The �rst term corresponds to the energy harvested during the �rst phase and we can
demonstrate that:

E[re(p(τ), τ)] = a2
y + σ2

y. (5.16)
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Figure 5.3: Evolution of E[|h(p(t))|2], obtained fromMonte Carlo simulations, during
the execution of the three phases (see start of section 5.2) with T = 30s, Ts = 20s,
α = 0.5 and L = 1λ.

The second term on the right hand side of (5.15) corresponds to the energy harvested
during the second phase. In this phase the MR starts at position p(αTs) (which is
a deterministic position) and �nishes at p(Ts) = popt (which is a random position).

Now, |h(p(αTs))| ∼ R
(

1√
2

)
and so E[|h(p(αTs))|2] = 1. Also, due to the de�nition

of popt then, for L > 0, E[|h(p(Ts))|2] > 1. During this phase, if at time instant t the
MR is `near' to popt then h(p(t)) will be highly correlated with h(p(Ts)) = h(popt)
and so E[|h(p(t))|2] will be just slightly inferior to E[|h(popt)|2]. On the other hand,
if at time instant t the MR is `far' from popt then h(p(t)) will be almost uncorrelated
with h(p(Ts)) = h(popt) and so E[|h(p(t))|2] ≈ 1. This all means that during this
second phase E[|h(p(t))|2] > 1 and E[|h(p(t))|2] increases from 1 to E[|h(popt)|2]. In
Fig. 5.3 we illustrate this temporal evolution. These results imply that E[re(p(τ), τ)]
is bounded as follows:

a2
y + σ2

y ≤ E[re(p(τ), τ)] ≤ a2
yE[|h(popt)|2] + σ2

y. (5.17)

Now, the third term on the right hand side of (5.15) depends on popt which further
depends on S in (5.14). Analytical evaluation of E[re(popt, τ)] is a complicated and
non-trivial task that implies calculating E[|h(popt)|2]. Nevertheless, by extensive
simulations and numerical analysis we realised that E[|h(popt)|2] seemed to be a
logarithmic function of L. Hence we observed that a good �tting for E[|h(popt)|2] is:

E[|h(popt)|2] ≈ ah ln

(
bh · L
λ

+ 1

)
+ 1 (5.18)
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Table 5.1: Evaluation (by simulation) of functionals ah and bh in (5.18) for di�erent
spatial sampling rates, Sr = αTsλ/∆sL

Sr 1 2 4 8 16

ah 0.9909 1.03 1.061 1.092 1.14

bh 0.6494 1.057 1.698 1.987 1.907

where ah (not to be confused with the amplitude ay) and bh are the shorthand no-
tations for ah(p(k∆s),∆s) and bh(p(k∆s),∆s), which are two functionals of p(k∆s)
parameterized on ∆s. For the case in which

p(k∆s) =

[
k∆sL

αTs
0

]T
for k = 0, 1, · · · , αTs

∆s

(5.19)

we used simulations to evaluate ah and bh for di�erent spatial sampling rates8 given
by:

Sr =
αTsλ

∆sL
. (5.20)

To obtain this approximation we �rst noted that E[|h(popt)|2] depends only on the
search space S and the spatial sampling rate Sr in (5.20). Since we have selected
the search space S to be a line it is uniquely characterized by its length L. After
performing an extensive amount of simulations and plotting the results we noted that
for any �xed value of Sr the plot of E[|h(popt)|2] versus L seems to be logarithmic with
respect to L. Considering that for L = 0 we must have E[|h(popt)|2] = E[|h(0)|2] = 1
then we proposed the approximation (5.18) and later we optimized numerically the
parameters ah and bh for each sampling rate.

The results are summarized in table 5.1. In addition, as illustrated by Fig. 5.4,
the proposed analytical approximation in (5.18) is virtually indistinguishable from
the actual mean E[|h(popt)|2], and this shows the validity of our approximations.
Note that in (5.19) the number αTs

∆s
must be an integer, and so we can write:

∆s =
αTs
N

(5.21)

where N a positive integer.
Now consider the fourth and �fth terms on the right hand side of (5.15). We

need a control law that takes the robot from its initial position along a straight line
of length L, stops the robot at the end of that line and �nally makes it move to
popt. In addition, this must be done by using the minimum amount of mechanical
energy. So we �rst derive the optimum control law that makes the DDR described by
equations (5.1)-(5.4) start still at an initial time instant ti, then move in a straight

8The spatial sampling rate is measured samples per wavelength.
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Figure 5.4: Comparison between the simulated E[|h(popt)|2] (in blue) and its ana-
lytical approximation (in red) given by (5.18) for di�erent spatial sampling rates,
Sr.

line a distance l then stop at a �nal time instant tf and perform all this using
a minimum amount of energy. Mathematically this optimization problem can be
stated as follows:

min
uR(t)

∫ tf

ti

(
c1u

T (t)u(t)− c2[v(t) 0]T−Tq u(t)
)
dt (5.22)

s.t.

v̇(t) + [1 0]Ā[v(t) 0]T = [1 0]B̄u(t), (5.23)∫ tf

ti

v(t)dt = l, (5.24)

uR(t) = uL(t) (5.25)

v(ti) = 0, v(tf ) = 0. (5.26)

The di�erential constraint (5.23) corresponds to the state equation that describes
how the velocity v(t) is controlled by the control input u(t). We must also satisfy
the isoperimetric [35] constraint (5.24) that makes the robot advance a distance l,
and satisfy the boundary conditions (5.26) which state that the robot starts from
rest and �nishes at rest. Finally, we must satisfy the constraint (5.25) to ensure that
the robot moves in straight line.

The optimization problem (5.22)-(5.26) is a classical optimum control problem
and can be solved using calculus of variations [35], [50]. By applying this method we
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arrive at the following second order di�erential equation:

v̈(t)− [1 0]

(
QTQ[v(t) 0]T + B̄B̄T

[
α

2c1

0

]T)
= 0 (5.27)

where α is the Lagrange multiplier for constraint (5.24) and

QTQ = ĀT Ā−
(
c2

c1

)
B̄B̄TT−Tq B̄−1Ā. (5.28)

By solving (5.27) and satisfying the conditions (5.26) we get:

v(t) =
(
Kv1(tf − ti)e

−t√
τv +Kv2(tf − ti)e

t√
τv +Kv3(tf − ti)

)
· l (5.29)

where τv = cA(c1cA−c2cB)
c1(J1+J2)2 and:

Kv1(tf − ti) = 1−e
tf−ti√
τv

4
√
τv

(
1−cosh

(
tf−ti√
τv

))
+2(tf−ti) sinh

(
tf−ti√
τv

) ,
Kv2(tf − ti) = e

−(tf−ti)√
τv −1

4
√
τv

(
1−cosh

(
tf−ti√
τv

))
+2(tf−ti) sinh

(
tf−ti√
τv

) ,
Kv3(tf − ti) =

2 sinh
(
tf−ti√
τv

)
4
√
τv

(
1−cosh

(
tf−ti√
τv

))
+2(tf−ti) sinh

(
tf−ti√
τv

) .
(5.30)

Finally, using (5.29) with (5.25) and (5.23) we obtain the optimal control law:

u∗(t) =

[
Ku1(tf − ti)e

−t√
τv +Ku2(tf − ti)e

t√
τv +Ku3(tf − ti)

Ku1(tf − ti)e
−t√
τv +Ku2(tf − ti)e

t√
τv +Ku3(tf − ti)

]
· l (5.31)

where:

Ku1(tf − ti) =

(
cA−

J1+J2√
τv

cBr

)
Kv1(tf − ti),

Ku2(tf − ti) =

(
cA+

J1+J2√
τv

cBr

)
Kv2(tf − ti),

Ku3(tf − ti) =
(
cA
cBr

)
Kv3(tf − ti).

(5.32)

Using (5.31) it is not di�cult to show that the optimal control law for phase 1 is
given by:

u∗1(t) = L · [1 1]T
(
Ku1(αTs)e

−t√
τv +Ku2(αTs)e

t√
τv +Ku3(αTs)

)
, (5.33)

where t ∈ [0, αTs]. Similarly, for the phase 2 it is:

u∗2(t) =
(
Ku1((1−α)Ts)e

−(t−αTs)√
τv +Ku2((1−α)Ts)e

t−αTs√
τv +Ku3((1− α)Ts)

)
· ‖[L 0]T − qopt‖2 · [1 1]T , (5.34)
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where t ∈ (αTs, Ts]. Using these optimal control laws and by performing some
cumbersome algebra on (5.1) and (5.4), we can show that the mechanical energy
consumed during phase 1 is:

Emech(0, αTs,u1(t)) = m2(αTs)L
2 (5.35)

and the mechanical energy consumed during phase 2 is:

Emech(αTs, Ts,u2(t)) = m2((1− α)Ts)‖[L 0]T − qopt‖2
2 (5.36)

where m2(t) is given by (5.37) with Kv1(t0), Kv2(t0) and Kv3(t0) de�ned in (5.30):

m2(t0) = 2
[(√τvKu1(t0)

2

)
·
(
c1Ku1(t0)− c2

r
Kv1(t0)

)
·
(

1− e
−2t0√
τv

)
+
√
τv

(
2c1Ku1(t0)Ku3(t0)− c2

r
(Ku1(t0)Kv3(t0) +Kv1(t0)Ku3(t0))

)
·
(

1− e
−t0√
τv

)
+
(
c1(2Ku1(t0)Ku2(t0) +K2

u3(t0))
)
t0

−
(c2

r
(Ku1(t0)Kv2(t0) +Kv1(t0)Ku2(t0) +Ku3(t0)Kv3(t0))

)
t0

+
√
τv

(
2c1Ku2(t0)Ku3(t0)− c2

r
(Ku2(t0)Kv3(t0) +Kv2(t0)Ku3(t0))

)
·
(
e

t0√
τv − 1

)
+
(√τvKu2(t0)

2

)
·
(
c1Ku2(t0)− c2

r
Kv2(t0)

)
·
(
e

2t0√
τv − 1

) ]
.

(5.37)

Now, using the proposed approximation (5.18), and substituting (5.16), (5.35)
and (5.36) into (5.15) we obtain

E[Es(0, T )] ≈ ηαTs

(
a2
y + σ2

y

)
+ η

∫ Ts

αTs

E[re(p(τ), τ)]dτ

+ η(T − Ts)a2
y

(
ah ln

(bh · L
λ

+ 1
)

+ 1
)

+ η(T − Ts)σ2
y −m2(αTs)L

2

− m2((1− α)Ts)E[‖[L 0]T − qopt‖2
2]. (5.38)

For the case where Sr →∞ in (5.20) (according to experimental results Sr ≥ 8Sa/λ
will perform similarly to Sr →∞) then ‖[L 0]T−qopt‖2 becomes a continuous random

variable uniformly distributed between 0 and L. Thus, E[‖[L 0]T − qopt‖2
2] = L2

3
and

if we use the inequality (5.17) in (5.38) then we can derive a lower bound:

E[Es(0, T )] > ηαTs

(
a2
y + σ2

y

)
+ η

∫ Ts

αTs

(a2
y + σ2

y)dτ

+ η(T − Ts)a2
y

(
ah ln

(bh · L
λ

+ 1
)

+ 1
)

+ η(T − Ts)σ2
y −m2(αTs)L

2

− m2((1− α)Ts)E[‖[L 0]T − qopt‖2
2], (5.39)
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E[Es(0, T )] > ηαTs

(
a2
y + σ2

y

)
+ η(Ts − αTs)(a2

y + σ2
y)

+ η(T − Ts)a2
y

(
ah ln

(bh · L
λ

+ 1
)

+ 1
)

+ η(T − Ts)σ2
y −m2(αTs)L

2

− m2((1− α)Ts)
L2

3
, (5.40)

E[Es(0, T )] > ηTs(a
2
y + σ2

y) + η(T − Ts)a2
y + η(T − Ts)σ2

y

+ η(T − Ts)a2
yah ln

(bh · L
λ

+ 1
)

−
(
m2(αTs) +

1

3
m2((1− α)Ts)

)
· L2, (5.41)

E[Es(0, T )] > ηTs(a
2
y + σ2

y) + η(T − Ts)(a2
y + σ2

y)

+ η(T − Ts)a2
yah ln

(bh · L
λ

+ 1
)

−
(
m2(αTs) +

1

3
m2((1− α)Ts)

)
· L2, (5.42)

and then the lower bounds becomes:

E[Es(0, T )] > ηT
(
a2
y + σ2

y

)
+ η(T − Ts)a2

yah ln
(bh · L

λ
+ 1
)

−
(
m2(αTs) +

1

3
m2((1− α)Ts)

)
· L2

= fL(L, α, Ts), (5.43)

Now, for the upper bound we use again the inequality (5.17) in (5.38) to obtain:

E[Es(0, T )] < ηαTs

(
a2
y + σ2

y

)
+ η

∫ Ts

αTs

(a2
yE[|h(qopt)|2] + σ2

y)dτ

+ η(T − Ts)a2
y

(
ah ln

(bh · L
λ

+ 1
)

+ 1
)

+ η(T − Ts)σ2
y

−
(
m2(αTs) +

1

3
m2((1− α)Ts)

)
· L2, (5.44)

then using the approximation (5.18) to replace E[|h(qopt)|2] in (5.44) we have:

E[Es(0, T )] < ηαTs

(
a2
y + σ2

y

)
+ η

∫ Ts

αTs

(
a2
y

(
ah ln

(bh · L
λ

+ 1
)

+ 1
)

+ σ2
y

)
dτ

+ η(T − Ts)a2
y

(
ah ln

(bh · L
λ

+ 1
)

+ 1
)

+ η(T − Ts)σ2
y

−
(
m2(αTs) +

1

3
m2((1− α)Ts)

)
· L2, (5.45)
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E[Es(0, T )] < ηαTs

(
a2
y + σ2

y

)
+ η(T − αTs)σ2

y

+ η(T − αTs)a2
y

(
ah ln

(bh · L
λ

+ 1
)

+ 1
)

−
(
m2(αTs) +

1

3
m2((1− α)Ts)

)
· L2, (5.46)

E[Es(0, T )] < ηαTs

(
a2
y + σ2

y

)
+ η(T − αTs)σ2

y + η(T − αTs)a2
y

+ η(T − αTs)a2
yah ln

(bh · L
λ

+ 1
)

−
(
m2(αTs) +

1

3
m2((1− α)Ts)

)
· L2, (5.47)

and so the upper bound becomes:

E[Es(0, T )] < ηT
(
a2
y + σ2

y

)
+ η(T − αTs)a2

yah ln
(bh · L

λ
+ 1
)

−
(
m2(αTs) +

1

3
m2((1− α)Ts)

)
· L2

= fU(L, α, Ts). (5.48)

Therefore instead of maximizing E[Es(0, T )], for which we do not have an analytical
expression, we can optimize its bounds, i.e., either fL(L, α, Ts) or fU(L, α, Ts). If we
optimize the upper bound fU(L, α, Ts) we risk obtaining a behaviour in which the
average of the energy harvested is lower than the average energy used for the motion,
because the energy harvested is over-estimated in this bound. On the other hand
if we optimize the lower bound fL(L, α, Ts) then we eliminate this risk because the
energy harvested is under-estimated in this other bound. Therefore we will proceed
to maximize the lower bound fL(L, α, Ts).

Now, we can maximise fL(L, α, Ts) by simultaneously solving the following set of
equations:

∂fL(L,α,Ts)
∂L

= 0,
∂fL(L,α,Ts)

∂α
= 0,

∂fL(L,α,Ts)
∂Ts

= 0.

(5.49)

Solving for the optimal length L the �rst equation in (5.49) gives:

Lopt(α, Ts) =
1

2

√
λ2

b2
h

+
2η(T − Ts)a2

yah

m2(αTs) + 1
3
m2((1− α)Ts)

− λ

2bh
. (5.50)

The objective of this technique is to obtain gain from the small-scale fading which
varies considerably over small distances. In practice if L is too big then the shad-
owing and the path-loss e�ects cannot be considered constant anymore (as we have
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assumed at the beginning of this chapter) and consequently this technique may not
work properly anymore. Therefore in order to avoid this problem we will limit the
maximum value of L to some prede�ned value Lmax and so the bounded optimal
value for L is:

Lbopt(α, Ts) =

{
Lopt(α, Ts), ∀ Lopt(α, Ts) < Lmax

Lmax, otherwise.
(5.51)

Since the shadowing can usually be considered constant for distances of a few wave-
lengths then we would suggest selecting Lmax < 10λ.

Now, if we substitute for L in fL(L, α, Ts) with (5.51) then we obtain the modi�ed
optimization target fm(α, Ts). We have to note that since α ∈ (0, 1) and Ts ∈ (0, T )
the domain of fm(α, Ts) is �nite. If we discretize this domain by applying a �ne
enough grid and then we use simulated annealing [32] to maximize fm(α, Ts) over
this grid we can ensure that we obtain a solution su�ciently close to the global
maximum.

Finally, note that Ts is the execution time of the MDA and α determines the
portion of Ts that one part of the MDA lasts (with (1 − α) the other part), see
de�nition of phases 1 and 2 in section 5.2. Therefore by maximising fm(α, Ts) we
are optimising the execution time and the temporal duration of both parts of the
MDA. In other words we are optimising the temporal aspects of the MDA (unlike
in previous chapter) and by using (5.51) we are optimising the size of its continuous
search space.

So now we have completed the optimization of the MDA to maximize the net
average stored energy, E[Es(0, T )]. In the next section we will look at the estimator
for popt.

5.4 Estimation of Optimal Location popt

In this section, we illustrate how the optimal location popt can be estimated from
the noisy signal re(k) in (5.8) (shorthand for re(p(k∆s), k∆s)). This process is done
once the robot �nishes the �rst part of the MDA (phase 1 of the dead time). Let
the sampling period be ∆s = αTs

N
and so the robot will use N + 1 measurements

[re(0), re(1), . . . , re(N)]. The MR can use a linear smoother to reduce the e�ect of
the noise. Then it can employ the output of the smoother rs(k) instead of the signal
re(k) to obtain a better estimate for popt. So, the estimation of popt can be performed
as follows:

p̂opt = p(kopt), (5.52)

where

kopt = arg max
k
rs(k), (5.53)
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and

rs(k) =
N∑
m=0

β∗k,mre(m). (5.54)

Now, the optimal weights (β∗k,m) for the linear smoother are calculated as follows:

β∗k = arg min
βk

J(βk) (5.55)

with
J(βk) = E

[(
rs(k)− a2

y|h(p(k))|2
)2
]

(5.56)

where βk = [βk,0, βk,1, . . . , βk,N ]T and

J(βk) = E
[
r2
s(k)− 2a2

yrs(k)|h(p(k))|2 + a4
y|h(p(k))|4

]
= E

( N∑
m=0

βk,mre(m)

)2
− 2a2

y

N∑
m=0

βk,mE
[
re(m)|h(p(k))|2

]
+ a4

yE
[
|h(p(k))|4

]
. (5.57)

So setting
∇βkJ(βk) = 0, (5.58)

where ∇βk = [ ∂
∂βk,0

, ∂
∂βk,1

, . . . , ∂
∂βk,N

]T and:

∂J(βk)

∂βk,i
= 2

N∑
m=0

βk,mE [re(m)re(i)]− 2a2
yE
[
re(i)|h(p(k))|2

]
(5.59)

then it is not di�cult to show that:

E
[
re(i)|h(p(k))|2

]
= a2

yE
[
|h(p(i))|2|h(p(k))|2

]
+ σ2

y

= a2
yJ

2
0

(
2π‖p(i)− p(k)‖2

λ

)
+ a2

y + σ2
y (5.60)

E [re(i)re(m)] = a4
y

(
J2

0

(
2π‖p(i)− p(m)‖2

λ

)
+ 1

)
+ 2a2

yσ
2
y + σ4

y + σ2
r , i 6= m (5.61)

and

E
[
r2
e(i)
]

= 2a4
y + 8a2

yσ
2
y + 8σ4

y + σ2
r , i = m. (5.62)

Therefore, if we know σ2
y, σ

2
r and a

2
y (or we can estimate them) then we can evaluate

(5.60), (5.61) and (5.62) and use in (5.59) to calculate an analytical expression for
the gradient ∇βkJ(βk). So, we can solve (5.58) and obtain the optimal weights for
the smoother in (5.54) in order to estimate popt with (5.52).
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Table 5.2: Mobile robot parameters

c1 = 202.8169W c2 = 14.8885N r = 9.5cm

cA = 1.1279Nm cB = 14.8885Nm b = 16.5cm

J1 = 7 · 10−2 J2 = 1.3 · 10−3

5.5 Simulation and Results

With the analytical framework developed in the previous sections, our objective now
is to provide further insights by employing extensive simulations. To this end, we
divide this section into two parts. In the �rst part, we analyze the energy harvest-
ing technique that we have designed in this chapter in a noiseless scenario, that is
assuming that p̂opt = popt. Then, in the second part we consider a noisy scenario
and we analyze how the estimation error in p̂opt a�ects the energy harvested during
the resting time in phase 3. We also observe how the optimal smoother described in
section 5.4 can mitigate this degradation due to estimation error.

We will take the parameter values of [47] for the DDR since these values were
obtained experimentally and therefore represent a real robot. This will allow us to get
more realistic results in our simulations. In table 5.2 we show the MR's parameters.
In addition, since the performance of the system depends on ηa2

y and ησ2
y and not

on individual values of η we can assume for simulation purposes, and without any
loss of generality, that η = 1 in (5.10).

5.5.1 Energy Harvesting Performance without Noise

Although ignoring the noise for the proposed technique would seem unrealistic, it is
of practical interest to analyze the energy harvesting technique under such a con-
sideration since it represents an upper bound on the performance of the proposed

algorithm and also describes the behaviour of our technique when SNR =
a2
y

σ2
y+σ2

r
is

high.
In order to evaluate the performance of the energy harvesting technique, we now

de�ne a new metric called the �Energy Mobility Improvement Factor� (EMIF):

EMIF =
E[Es(0, T )]

ηa2
yT

. (5.63)

The numerator in (5.63) corresponds to the average net energy stored during the
total dead time T while using mobility to harvest energy. The denominator is the
expected value of the energy that the robot would harvest if it did not move at all.
This metric quanti�es how much the average net stored energy has been increased
by moving the robot in comparison to the case where the robot does not move at
all, and so we want EMIF > 1.
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Figure 5.5: Comparison of EMIF vs a2
y (i.e., average received power) for di�erent

dead times T , with N = d16Lopt
λ
e and λ = 6cm (which corresponds to a carrier

frequency of 5GHz).

We consider �rst the case in which the signal transmitted by the BS uses a carrier
frequency of 5GHz (corresponding to a wavelength of 6cm). In Figs. 5.5 and 5.6 we
can see the performance of the MR-EHT for a spatial sampling rate9 Sr > 16Sa/λ,
di�erent dead times T and di�erent average powers received a2

y.
From these �gures we �rst observe that indeed EMIF > 1 which shows that the

optimal energy harvesting approach is to use intelligent motion. We also observe
that EMIF is a nonlinear increasing function of both the dead time T and a2

y, and
so the higher the dead time T and/or the higher is a2

y then the larger will be the
EMIF. In other words, when the dead time and/or the average received power are
above a certain minimum our technique is more bene�cial. Now, it is interesting to
observe in Fig. 5.5 that if the robot has a dead time T of just 2 minutes and receives
an average power a2

y = 40µW then EMIF > 1.5. This implies that by optimally
moving the robot the stored energy has increased by more than 50%. In a more
bene�cial case, for example with a dead time of T = 5min and an average receiving
power of a2

y = 50µW , the bene�t of moving the robot is even greater producing an
EMIF higher than 2, i.e., an increase of more than 100% (see Fig. 5.6).

Now, in order to observe the e�ect of the wavelength of the RF signal transmitted
by the BS we repeated exactly the same simulations but changed the wavelength to
14.02cm (which corresponds to a carrier frequency of 2.14GHz). So comparing Figs.
5.5 and 5.6 with 5.7 and 5.8 we observe that EMIF is considerably lower for the
carrier frequency of 2.14GHz than for 5GHz.

This can be explained as follows: consider two robots using the same EHT de-

9This is obtained by making N = d 16Lopt

λ e in (5.21) with Lopt the optimal line length.
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Figure 5.6: Comparison of EMIF vs T for di�erent average received powers a2
y, with

N = d16Lopt
λ
e and λ = 6cm (which corresponds to a carrier frequency of 5GHz).

scribed in this chapter. Let the �rst robot receive a signal with wavelength λ1 and
let the second robot receive a signal of wavelength λ2 > λ1. If both robots move just
one wavelength then the energy harvested will be the same since this energy depends
only on the normalized distance (see (5.18)) but the second robot will have to travel
a longer distance than the �rst one and so it will use a greater amount of mechanical
energy. Thus the net energy stored (see (5.9)) by the second robot will be lower.
This means that given the same conditions of received power and dead time duration
our harvesting technique works better for small wavelengths. Nevertheless we should
remark that the path loss increases with frequency [51]. Thus in the system using
a smaller wavelength either the MR would have to be closer to the BS or the BS
would have to transmit with higher power to meet the same conditions of received
power as the system using a higher wavelength.

In Fig. 5.9, we observe the behaviour of E[|hopt|2] as a function of the sampling
rate Sr. We can observe it tends to saturate for a certain value of Sr and then in
the noiseless case there is no reason to select Sr greater than ≈ 8Sa/λ. But, as we
shall see in the next subsection, higher values of Sr help to better estimate popt when
noise is present.

We illustrate the behaviour of the optimal values of L, α and Ts in the �gures 5.10
and 5.11. It is worth noticing that although Lopt is an increasing function of a2

y and
T , we observe that Tsopt is an increasing function of a2

y but a decreasing function of
T . This behaviour of Ts means that for a �xed received power a2

y, if we increase the
dead time T the robot will complete phases 1 and 2 slower to save more mechanical
energy and increase the net stored energy. On the other hand if the dead time T
is �xed but we increase the received power a2

y then the robot will complete phases
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Figure 5.7: Comparison of EMIF vs a2
y (i.e., average received power) for di�erent

dead times T , with N = d16Lopt
λ
e and λ = 14.02cm (which corresponds to a carrier

frequency of 2.14GHz).

1 and 2 faster to increase the duration of the resting time (phase 3). By doing so
the robot increases the amount of energy harvested during this last phase and thus
increases the net stored energy. Finally, it is also interesting to note that αopt is
independent of a2

y and is almost constant10 for T > 60secs.

As mentioned earlier the channel coherence time is considered longer than the
dead time (see de�nition in the Introduction and at the start of section III). So ac-
cording to the values T presented in this simulation section it would seem that we are
considering unrealistic values since in mobile communications coherence times are at
most on the order of a couple of seconds or even miliseconds. Nevertheless, as men-
tioned earlier in the chapter, we are considering that the MR works in a extremely
low mobility environment. Now, in [52] a narrow band wireless channel operating at
a 2.4GHz in an environment with very little movement was experimentally charac-
terized and the coherence time (referred to as time duration for which the temporal
autocorrelation is higher than 90% of its maximum value) is 50 seconds. Therefore
it seems natural that environments with extremely low mobility like museums at
night or caves without people can exhibit coherence times on the order of a couple
of minutes or at least tens of seconds.

10The optimal value of α was derived by optimizing fT (L,α, Ts) which is a valid approximation
for E[Es(0, T )] as long as Sr ≥ 8Saλ. Therefore for values Sr < 8Saλ this behaviour may change
slightly.
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Figure 5.8: Comparison of EMIF vs T for di�erent average received powers a2
y,

with N = d16Lopt
λ
e and λ = 14.02cm (which corresponds to a carrier frequency of

2.14GHz).

5.5.2 Energy Harvesting Performance with Noise

In this section, we consider the e�ect of the noise on the estimation of popt and its
e�ect on the harvested energy (5.10) during the resting time (i.e., t ∈ [Ts, T ]). De�ne
Pn = σ2

y + σ2
r as the total noise power, i.e., the power of the pre-recti�er noise plus

the power of the post-recti�er noise . Also let σ2
y = αnPn and σ2

r = (1− αn)Pn with

αn ∈ (0, 1). Finally de�ne the SNR as 10 log10

(
a2
y

Pn

)
. Let us consider three cases:

(i) in the �rst case we consider that popt is estimated as in (5.52) using the optimal
smoother of section 5.4 and we will denote this estimate by p̂

′
opt; (ii) in the second

case we consider that popt is estimated as in (5.52) but using the signal re(k) instead
of rs(k), the output of the smoother (5.54). We will denote this estimate by p̂

′′
opt;

(iii) in the last case assume that the robot knows exactly popt. While this case is
unrealistic it will serve us for comparison.

We consider two scenarios with a low SNR of 0dB, line length L = 1λ, di�erent
values of αn (for σ2

y = αnPn and for σ2
r = (1− αn)Pn) and two values of the spatial

sampling rate: Sr = 16Sa/λ and Sr = 8Sa/λ. In table 5.3 we observe the degrada-
tion11 of the energy harvested during the third phase. In the �rst row we observe
the degradation su�ered when the MR uses the estimate p̂

′
opt and in the second row

we observe the degradation when the MR uses the estimate p̂
′′
opt mentioned above.

11The degradation is mathematically expressed as the ratio of the energy harvested during the
resting time when p̂opt 6= popt over the energy harvested during the resting time when p̂opt = popt.
This ratio shows us how much the energy harvested has decreased due to the estimation error in
p̂opt.
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Figure 5.9: Behaviour of E[|h(popt)|2] as a function of the spatial sampling rate Sr
parameterized on di�erent lengths of the exploration line (L).

Table 5.3: Harvested Energy degradation for Sr = 16Sa/λ

αn 0.3 0.5 0.9

E[Er(p̂
′
opt,Ts,T )]

E[Er(popt,Ts,T )]
0.8731 0.8761 0.9004

E[Er(p̂
′′
opt,Ts,T )]

E[Er(popt,Ts,T )]
0.8209 0.8070 0.8315

From tables 5.3 and 5.4 we see that the harvested energy degradation is lower for
higher values of the spatial sampling rate Sr. This means that while in the noiseless
scenario there is no reason to select a value of Sr > 8Sa/λ, in the noisy scenario
taking higher values of Sr helps to combat the degradation of the energy harvested.

It is also interesting that the degradation of the energy harvested is not only a
function of the SNR but also a function of αn, (i.e., depending on the individual
powers of the pre-recti�er noise σ2

y = αnPn and the power of the post-recti�er noise
σ2
r = (1 − αn)Pn). The degradation is higher for low values of αn (see tables 5.3

and 5.4) which implies that the post-recti�er noise is more harmful to our technique
than the pre-recti�er noise. Therefore, the RF designers should pay more attention
to reducing the post-recti�er noise than the pre-recti�er noise when designing the
energy harvesting receiver of �gure 5.2.

5.6 Conclusions

We have shown that when harvesting radio energy with a MR the average, net
amount of energy stored (i.e., the average energy harvested minus the average energy
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Figure 5.10: Optimal parameter values of fL(L, α, Ts) vs a2
y for T = 300s, with

λ = 14.02cm (which corresponds to a carrier frequency of 2.14GHz).

Table 5.4: Harvested Energy degradation for Sr = 8Sa/λ

αn 0.3 0.5 0.9

E[Er(p̂
′
opt,Ts,T )]

E[Er(popt,Ts,T )]
0.8296 0.8449 0.8580

E[Er(p̂
′′
opt,Ts,T )]

E[Er(popt,Ts,T )]
0.8018 0.8139 0.8222

used for movement) is higher when the robot is moved in an optimal way than when
the robot simply stands still. This implies that the optimal behaviour for a MR
using wireless energy harvesting under a �at-fading wireless channel is to move in
an optimal way rather than not moving. That is an MDA can actually enhance RF
energy harvesting under fading channels. We also showed how to optimise the size
of the continuous search space of the MDA and also how to optimise its duration.
While in this chapter we restricted the shape of the continuous search space and we
limited ourselves to optimise only its size, in the next chapter we will show how we
can also optimise the shape of the continuous search space.
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Figure 5.11: Optimal parameter values of fL(L, α, Ts) vs T for a2
y = 100µW, with

λ = 14.02cm (which corresponds to a carrier frequency of 2.14GHz).
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Chapter 6

Continuous Search Space MDA

In general, MDAs work by ensuring that the MR estimates the channel gain over
a search space in its close vicinity and then determines the optimum position using
those channel gain estimates. The search space, the method used to explore it and
the way to estimate the wireless channel gains all depend on the particular type of
MDA. These algorithms can be divided depending on the class of search space which
can be either discrete or continuous. In chapters 2 to 4, which forms the �rst part
of this thesis, we treated the problem of MDAs with discrete search spaces and we
provided di�erent solutions to determine its shape for any number of stopping points.
Then in chapter 5 we started treating the case of MDAs with continuous search space
(but restricted to be a straight line). There we optimised only the length of the line.

In this chapter we consider a MR equipped with a single antenna wanting to
establish communications, in a static environment, with a stationary node (also
equipped with a single antenna) through a wireless channel experiencing small-scale
fading. To compensate the small-scale fading we develop a continuous search space
MDA which we will refer to as the continuous MDA (CMDA). Here, as opposed to
the previous chapter, we will optimise the shape of its continuous search space. In
addition we will also design the control law for the MR to explore such a continuous
search space. So the main contribution of this chapter is the optimisation of the
continuous search space shape.

In section 6.1 we present the models for the wireless channel and the MR. Then
in section 6.2 we optimise the CMDA including its continuous search space and in
section 6.3 we evaluate the performance of the CMDA under di�erent conditions.
Finally in section 6.4, some conclusions are given.

6.1 System Model

In this chapter we will consider again the three-wheel MR considered in chapters 2
and 3 and we will use also the same channel model, but for his respective convenience
we will brie�y again review these models.
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6.1.1 MR Model

We will consider an omnidirectional MR, but in particular we select a three-wheel
omnidirectional MR (TOMR) [24] for illustration purposes. However, the results
of this chapter apply to any wheeled omnidirectional MR. A TOMR is a MR with
three omnidirectional wheels [25] each of radius r and each wheel is driven by its
own motor. The distance from the center of the robot to each wheel is L. The robot
is equipped with a single antenna installed on its geometrical center. The TOMR
model described in this subsection is a condensed version of the model presented in
[47].

The TOMR position at time t is p(t) = [px(t) py(t)]
T and its pose is po(t) =

[p(t) φ(t)]T where φ(t) is its orientation. The TOMR pose is related to the control
inputs as follows:

p̈o(t) =
(
R(t)ṘT (t)−A−1C

)
ṗo(t) + A−1R(t)Du(t), (6.1)

where u(t) = [u1(t) u2(t) u3(t)]T is the control input vector and ui(t) is the input for

the ith motor; A = diag
[
m+ 3Jw

2r2 ,m+ 3Jw
2r2 , Jc + 3JwL2

r2

]
where m is the total mass of

the robot, r is the radius of the wheels, L is the distance from the geometric center of
the robot to each wheel, and Jc and Jw are the inertia for the robot rotation and for
each wheel respectively. We also have C = k1diag[1, 1, 2L2] with k1 a robot-speci�c
parameter. The matrix D is:

D = k2

 0 −sin(π/3) sin(π/3)

1 −cos(π/3) −cos(π/3)

L L L

 , (6.2)

where k2 is a robot-speci�c parameter. And the rotation matrix R(t) is given by:

R(t) =

 cos(φ(t)) −sin(φ(t)) 0

sin(φ(t)) cos(φ(t)) 0

0 0 1

 . (6.3)

The energy drawn from the battery by the MR due to motion overtime period t0 to
tf is:

Emech(t0, tf ,u(t)) = k3

∫ tf

t0

uT (t)u(t)dt

− k4

∫ tf

t0

ṗTo (t)R(t)Du(t)dt, (6.4)

where k3 and k4 are also robot-speci�c parameters.

114



CHAPTER 6. CONTINUOUS SEARCH SPACE MDA

6.1.2 Wireless Channel Model

We assume that there is no line of sight between the stationary node1 and the
MR; that the signal transmitted by the stationary node to the MR is narrowband
(i.e., the bandwidth of the signal is signi�cantly smaller than the radio frequency
carrier frequency used in the transmission); that the MR's environment is stationary
(i.e., it does not change with time during the execution of the MDA) and presents a
large number of scatterers (which produce the small-scale fading). Consequently, the
wireless channel is time invariant (for a given MR position) and presents Rayleigh
�at fading [12]. Thus, the signal received by the MR at time instant t, when located
at p(t), is:

z(t) = h(p(t)) · w(t) + n(t), (6.5)

where w(t) is the narrowband signal transmitted by the stationary node, n(t) ∼
CN (0, σ2

n) is the additive white Gaussian noise generated at the MR's receiver and
h(p(t)) represents the small-scale fading. We will assume Jakes' model [28] for
the small scale fading term and so h(p(t)) ∼ CN (0, 1). The spatial normalized
correlation function is thus:

r(p,q) = E [h(p)h∗(q)] = J0 (2π‖p− q‖2/λ) , (6.6)

where λ is the wavelength used in the RF transmission and p,q ∈ R2 are any two
points in the space.

6.2 Continuous Mobility Diversity Algorithm

For this algorithm the stationary node initially works as a transmitter over Tf seconds
(t ∈ [0, Tf ]) and transmits a pure tone to allow the MR to collect wireless channel
measurements during the CMDA execution. Thus the signal received by the MR
during that period is:

z(t) = h(p(t))K + n(t) (6.7)

where K is the amplitude of the received tone. Once this period �nishes the station-
ary node recalibrates its behaviour as a receiver and waits for a reply from the MR
to establish communication.

Note that for MDAs with continuous search space their search space is a contin-
uous path and so, for the rest of the chapter, we will refer to the continuous search
space of the CMDA as the continuous exploration path P .

The CMDA starts when the stationary node initiates its transmission and it
is divided into the `exploration phase' t ∈ [0, Te] and the `positioning phase' t ∈
[Te, Tf ]. The MR initiates the algorithm from a stationary position at the start of
the continuous exploration path P . During the `exploration phase' the MR follows

1The stationary node can be a base station or another MR which remains stationary during the
CMDA execution.
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the continuous path P while estimating the wireless channel all along it. At time
instant Te the MR stops at the end of the continuous exploration path P . Then it
invokes a selection rule to determine the optimum point qopt ∈ P and moves from
the end of P to qopt in a time Tf − Te in order to establish communications with
the stationary node. This last stage is called the `positioning phase'. Note that the
MDA of the previous chapter was also divided into two phases and operated in a
similar manner.

In the next subsection we show how to optimize the continuous exploration path
P for the CMDA.

6.2.1 Optimum Exploration Path

We want to optimize the exploration path P so that when used within the CMDA
it generates a high expected value for the channel gain at qopt (i.e., E[|h(qopt)|]).
The main problem for achieving this is that in general there is not an analytical
expression for E[|h(qopt)|] as a function of the continuous path P . So, in practice2

we cannot optimize P directly. Nevertheless there is an alternative approach. To do
this let us �rst de�ne the set of path points DN = {d1,d2, · · · ,dN} associated with
the following restriction:

‖dj − dj+1‖2 =
Lp

N − 1
, j = 1, 2, · · · , N − 1. (6.8)

Note that for any given continuous path P with length Lp and a value N high enough
there exists a set DN with the restriction (6.8) such that:

I {DN} ≈ P . (6.9)

where I {DN} is an interpolation of DN . It is intuitive that the higher a value for
N the better the approximation (6.9) will be.

Consider now that a particular set DN has a large enough value of N which
according to (6.9) is a good approximation for the particular continuous path P .
If instead of allowing qopt ∈ P we impose the restriction qopt ∈ DN then we still
do not have an analytical expression for E[|h(qopt)|]. But the results of [53] imply
that if the norm of the spatial correlation matrix of the wireless channels at the
path points DN is high (low) then E[|h(qopt)|] will be low (high). So if given N ,
the set DN minimizes the Frobenius norm of the spatial correlation matrix of the
wireless channels at the path points then E[|h(qopt)|] will be high under the constraint
qopt ∈ DN . This implies that E[|h(qopt)|] (with qopt ∈ P) will also be higher. In other
words, the continuous path P obtained from the interpolation of DN will produce a
high channel gain. Therefore a practical way to indirectly optimize the continuous

2Theoretically we could obtain by simulations an approximation to the term E[|h(qopt)|] for each
continuous path but this would require an extremely large amount of calculations, thus making the
direct optimization of E[|h(qopt)|] prohibitive in practice.
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path P is to optimize the set DN to minimize its spatial correlation matrix and
then interpolate the path points to obtain the optimum continuous path P . This
optimum continuous path P will be referred to as the minimum correlation path
(MCP). Taking all this into account we can optimize DN as follows:

min
φ1,φ2,···,φN−1

‖CN‖2
F

s.t.

‖dj+1 − dj‖2 = Lp
N−1

, j = 1, 2, · · · , N − 1,

]{dj+1 − dj} = φj ∈ [0, 2π), j = 1, 2, · · · , N − 1

(6.10)

where CN is the spatial correlation matrix of the wireless channel at the path points
with the (m,n) entry being given by r(dm,dn) (see (6.6)) and ‖ · ‖F is the Frobenius
norm. When this norm is low the expected value of the channel gain at qopt ∈ P will
be large. Since the domain of the optimization space for (6.10) is bounded and we
have an analytical expression to calculate the cost function we can solve this problem
numerically using simulated annealing [32].

For the special case when Lp/λ ≤ z0, and where z0 is the smallest value of z that
satis�es J0(2πz) = 0, we can demonstrate that the general solution of (6.10) for any

N is dj = d1 + (j−1)Lp
N−1

[cos(φ1) sin(φ1)]T for all 1 < j ≤ N .
Now we show how to interpolate the path points DN using splines [54] to obtain

the continuous exploration path P . We want the MR to be able to move through the
continuous exploration path without stopping until it reaches the end of the path.
To achieve this, the continuous path P should be signi�cantly smooth. So we will use
second-order3 splines to perform the interpolation of the path points DN to obtain
P . The parameterized function for the continuous path P is then obtained by:

g(s) =

{
Πj(s− j), ∀s ∈ [j, j + 1), j = 1, 2, . . . , N − 1

ΠN−1(1), otherwise
(6.11)

where s ∈ [0, N − 1] is a free parameter and Πj(s) is a two-dimensional second-order
polynomial vector:

Πj(s) = aj + bjs+ cjs
2 (6.12)

where aj, bj and cj are vector coe�cients to be calculated below. In addition the
polynomials must satisfy the following restrictions:

Πj(1) = Πj+1(0) = dj+1, j = 1, 2, · · · , N − 2 (6.13)

dΠj(s)

ds

∣∣∣
s=1

=
dΠj+1(s)

ds

∣∣∣
s=0

, j = 1, 2, · · · , N − 2 (6.14)

Π1(0) = d1, ΠN−1(1) = dN . (6.15)

3Second-order splines are enough to allow the MR to traverse the continuous path P with
continuous velocity and without needing to stop due to abrupt direction changes.
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The restriction (6.13) ensures the continuity of the exploration path; restriction
(6.14) ensures the smoothness of the exploration path P ; and (6.15) ensures that the
starting and ending points of the exploration path P are d1 and dN . Later we will
explain how to decide which one is the starting point and which one is the ending
point. To satisfy these restrictions we can select either Π1(s) to be a �rst-order
polynomial vector (i.e., c1 = 0) and then calculate the coe�cient of the polynomial
vectors or select ΠN−1(s) to be a �rst-order polynomial (i.e., cN−1 = 0) and then
calculate the coe�cient of the polynomial vectors. Without loss of generality we will
arbitrarily choose the �rst option, i.e., c1 = 0.

Now, after choosing c1 = 0, in order to satisfy restrictions (6.13)-(6.15) we can
calculate a1 and b1 as follows:

a1 = d1, (6.16)

b1 = d2 − d1, (6.17)

and then we can calculate iteratively in ascending order of j the rest of the coe�cients
of Πj(s) as follows:

aj = dj, (6.18)

bj = bj−1 + 2cj−1, (6.19)

cj = dj+1 − aj − bj. (6.20)

Finally, note that the real length L′p of the continuous exploration path P is:

L′p =

∫ N−1

0

∥∥∥∥dg(s)

ds

∥∥∥∥
2

ds, (6.21)

and in general we have L′p ≥ Lp where the equality only holds if cj = 0 for all
j = 1, 2, · · · , N − 1.

From Fig. 6.1 we can observe how the shape of the MCP changes signi�cantly
as Lp increases. We demonstrated before that for Lp/λ ≤ z0 the optimum path
is a straight line and from Fig. 6.1 we observe that at least until Lp ≤ 0.6λ the
optimum path remains an straight line. We have to mention that as Lp increases,
solving (6.10) becomes more problematic since the number of local minima seems to
increase. So for this chapter we solved (6.10) only up to Lp = 1.8λ.

Finally, we brie�y discuss the sense in which the MR will traverse the exploration
path P . Consider now the set D∗N = {d∗1, d∗2, · · · ,d∗N} that minimizes (6.10). The
question is, whether the MR must traverse the path P from d∗1 to d∗N or from d∗N
to d∗1. The optimum traversing sense is the one that minimizes the average distance
to be travelled during the positioning phase. So we chose the sense that minimizes
the average distance from its �nal end point to qopt. Now, since the wireless channel
at all the path points is identically distributed it can be shown that qopt ∈ D∗N is a
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Figure 6.1: Optimized continuous path P for N = 25, λ = 14.02cm and di�erent
values of Lp. The start point d1 and the end point dN are represented with a circle
and a square respectively.

discrete random variable (almost) uniformly distributed across all the path points in
D∗N and so the average distance between the ending point and qopt is:

J(k) ≈ 1

N

N∑
j=1

‖d∗j − d∗k‖2, k = 1 and N (6.22)

So if J(1) < J(N) we choose d∗1 as the starting point and d∗N as the ending point; we
do the opposite if J(1) > J(N). Nevertheless, if the continuous path presents some
symmetry we can have J(1) = J(N) in which case we can arbitrarily choose either.

By optimizing the sense in which the MR explores the continuous path P we
minimise the distance that it has to travel during the positioning phase and conse-
quently minimise the energy used for motion during that phase. For the rest of the
chapter, for simplicity purposes and without loss of generality, we assume that the
sense in which the MR traverses P has already been optimised resulting in d1 and
dN being the start and end points respectively of the exploration path P .

Note that the mechanical energy is not considered in the optimisation of the ex-
ploration path but it will be considered in the optimisation of the trajectory that
will traverse the optimum path that we have designed. This is because the joint
optimisation of the path and the mechanical energy is too complex. This approach
gives more importance to obtaining a high channel gain from the continuous explo-
ration path than to the minimisation of the mechanical energy. Nevertheless, even
with this approach the mechanical energy used can be indirectly controlled by se-
lecting the length Lp of the path. In addition we have to note from Fig. 6.1 that the
curvatureof the optimized path P (when the path is not a straight line) shortens the
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average distance travelled during the positioning phase by the MR and consequently
reduces the mechanical energy used with respect to the case in a straight line path
of the same length is selected. Therefore although the optimization of the path P
indirectly reduces and limits the mechanical energy expenditure even if it does not
considers it explicitly.

6.2.2 Trajectory Design

Once we have the continuous exploration path P (described by its parameterized
function g(s)) we need to design the optimum control law that makes the MR follow
P during the searching phase. To obtain such a control law we �rst use the computed
torque technique [24] to control directly the acceleration of the MR. This produces
the following control law:

u(t) = D−1R−1(t)A
((

A−1C−R(t)ṘT (t)
)

ṗo(t) + w(t)
)
, (6.23)

w(t) =
[
g̈T (s(t)), 0

]T
, (6.24)

where s(t) is a continuous function to be optimized that satis�es s(0) = 1 and
s(Te) = N . Then by substituting (6.23) and (6.24) into (6.1) we obtain:

p̈T
o (t) =

[
g̈T (s(t)), 0

]T
. (6.25)

This equation implies that the MR will follow the continuous exploration path P
described by its parametrization g(s(t)).

To �nish the design of the MR trajectory for the exploration phase we need to
determine s(t). In order to make the MR follow the complete exploration path P and
ensure that it is still at the starting (d1) and ending (dN) points of the exploration
path P we need to satisfy s(0) = 1, s(Te) = N , ṡ(0) = 0 and ṡ(Te) = 0. A simple
way to satisfy these restrictions is to restrict the velocity ṡ(t) to be a trapezoidal
function, and so s(t) becomes:

s(t) =

{ t2β
2α

+ 1 0 ≤ t < α

βt− αβ
2

+ 1 α ≤ t ≤ Te − α
−β(Te−t)2

2α
+ β(Te − α) + 1 Te − α < t ≤ Te

(6.26)

with:

β =
N − 1

Te − α
(6.27)

where α ∈ (0, Te/2]. The control law described by (6.23) and (6.24) with s(t) given
by (6.26) and (6.27) will be denoted as uep(t). And u∗ep(t) will be the optimized
control law with respect to α so that it minimizes the amount of energy used in
motion during the exploration phase.

120



CHAPTER 6. CONTINUOUS SEARCH SPACE MDA

Now regarding the positioning phase, the MR must move from dN to the op-
timum point qopt in Tf − Te seconds and then stop. Since we are considering an
omnidirectional MR then it can move in a straight line between those points. An
optimum control law that executes this movement using minimum energy for this
MR can be found in chapter 2 and it will be referred to as u∗pp(t).

Now, if we assume that no early stopping mechanism is used then we can optimize
Te, the duration of the exploration phase, to minimize the total energy consumed
during the CMDA execution as follows:

min
Te

Emech(0, Te,u
∗
ep(t)) + E

[
Emech(Te, Tf ,u

∗
pp(t))

]
s.t.

0 < Te < Tf

(6.28)

with:

E
[
Emech(Te, Tf ,u

∗
pp(t))

]
= K(Tf − Te)E[‖qopt − dN‖2

2] (6.29)

where the expression for K(Tf − Te) can be found in [16]. Now, for the paths that
we have designed, we observed from numerous simulation results that qopt ∈ P is a
random variable which for practical purposes is almost4 uniformly distributed along
the exploration path P . Hence we can make the following approximation:

E[‖qopt − dN‖2
2] ≈ 1

N

N∑
j=1

‖dj − dN‖2
2 . (6.30)

Note that this is not a general result and so for other types of exploration paths the
random variable qopt may be signi�cantly far from being uniformly distributed.

By substituting the approximation (6.30) into (6.29) we have now a complete
analytical expression for the cost function of (6.28). It can be seen that the �rst
term in (6.28) is a strictly decreasing positive function of Te while the second term
is a strictly increasing positive function of Te. Therefore, unless the cost function
of (6.28) is constant, it has a unique minimum and then we can minimize this cost
function by adapting the hill-climbing search algorithm [32].

This concludes the design of the control laws for both the exploration and posi-
tioning phases. In the next subsection we will show how to collect and process the
wireless channel measurements to determine qopt.

4The main reason why qopt is not exactly uniformly distributed is because according to the
simulations the probability that qopt = q1 or qopt = qN is slightly higher than the other posibilities.
This is may be due their location the channels at these points are less correlated to the rest of the
channels.
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6.2.3 qopt Determination and Channel Estimation

In this subsection we �rst show how the MR estimates the wireless channel along P
and then we explain how it can use these estimates to determine qopt.

During the exploration phase the stationary node transmits a pure tone so that
the MR estimates the wireless channel along P and so the signal (see (6.5)) received
by the MR during this phase becomes:

z(ts(k)) = Kh(p(ts(k))) + n(ts(k)), (6.31)

whereK is the amplitude of the tone transmitted and ts(k) are the sampling instants.
The sampling instants are chosen so that the samples are uniformly distributed along
the path P and so:∫ s(ts(k+1))

s(ts(k))

∥∥∥∥dg(s)

ds

∥∥∥∥
2

ds =
L′p

M − 1
, k = 1, 2, · · · ,M − 1 (6.32)

where M is the number of samples taken along the continuous path P . Note that
the temporal sampling rate in general is not uniform. In the CMDA the MR moves
continuously along the exploration path P without stopping while collecting only
one noisy measurement of the wireless channel per point as opposed to the MDMTA
of chapter 2 where the MR can collect various wireless channel measurements per
stopping point. To obtain a good channel estimate at the sampling point p(ts(k))
the MR needs to combine the measurement collected at the sampling point p(ts(k))
with the measurements collected at other sampling points as follows:

ĥs(p(ts(k)),Sk(d)) =
∑

j∈Sk(d)

ak,jz(ts(j)) (6.33)

where ĥs(p(ts(k)),Sk(d)) is the estimate for h(p(ts(k))) using the measurements
collected at Sk(d) which contains all sampling points included in a ball of radius d
centered at the sampling point p(ts(k)):

Sk(d) = {p(ts(j)) : ‖p(ts(j))− p(ts(k))‖2 ≤ d} . (6.34)

By using only the measurements collected at Sk(d), and using the appropriate value
of d, the MR uses only measurements that are highly correlated to h(p(ts(k))) and
neglects the rest, thus reducing the computational load of the estimation process.

Now, to optimize the coe�cients ak,j for the estimator in (6.33) we minimize the
following error:

ek = E

∣∣∣∣∣∣Kh(p(ts(k)))−
∑

j∈Sk(d)

ak,jz(ts(j))

∣∣∣∣∣∣
2 . (6.35)
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It can be shown that the optimal coe�cients a∗k,j that minimize (6.35) are given by:

a∗ =

(
CSk(d) +

σ2
n

K2
I

)−1

CSk(d)(:, k) (6.36)

where a∗ = [a∗k,1, a
∗
k,2, · · · , a∗k,Ns ]

T , CSk(d) is spatial correlation matrix of the wireless
channels at Sk(d) whose entries can be calculated using (6.6) and CSk(d)(:, k) is the
kth column of this matrix.

Once we have estimates for all the channel gains we can use a selection rule that
chooses qopt as the point with the highest estimated channel gain. This concludes
the discussion on the theoretical development of the CMDA.

6.3 Simulations

We �rst show the bene�ts of executing the CMDA with the optimum path obtained
by solving (6.28). We then execute the CMDA, for comparison purposes, with the
linear path (LP) used in [55] and [16] or the circular path (CP) used in [13] and [16].

As mentioned in section 6.2.1 we optimise indirectly the exploration path P by
�rst optimising the set of path points DN according to (6.10) and then interpolating
them instead of directly optimising the continuous path P . In order to make the
indirect optimisation of P a good approximation to its direct optimisation we need
to select N large enough. To do this, for a given length Lp, we optimise the set
of path points DN and interpolate them for di�erent values of N . Then as N is
increased we observe how the shape of the resulting path changes. Once the shape
of the exploration path remains unchanged we can assume that we have reached a
value of N large enough so that the indirect optimisation5 of P results in a good
approximation to its direct optimisation.

Now, in these simulations we will obtain the MCP for 0.2λ ≤ Lp ≤ 1.8λ. To do
this we will optimise the path points DN according to (6.10) with N = 25, which
according to the explanation given above is a su�ciently large enough value of N for
Lp ≤ 1.8λ.

For this section we set Tf = 3s while Te is optimized according to (6.28) for every
path. The number of sampling points is selected as follows:

M =

⌈
L′p
∆

⌉
+ 1 (6.37)

where ∆ is the desired distance between sampling points. Due to the ceiling function
in (6.37) the real distance between sampling points along the continuous path (6.32)

5The optimum continuous path derived via the indirect optimisation explained in 6.2.1 is called
the minimum correlation path (MCP).
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Table 6.1: TOMR parameters
m = 1.989kg Jc = 0.020691kg ·m2 Jw = 0.060g ·m2

r = 3cm L = 12.55cm k1 = 35.0330N/m
k2 = 38.7342N k3 = 72.9114W k4 = 1

will be just marginally inferior to ∆. According to (6.7) the signal-to-noise ratio
during the `exploration phase' is:

SNR = 10 log10

(
K2

σ2
n

)
. (6.38)

In addition, we select the robot parameters to �t the TOMR used in [47] which
describes a real robot. These corresponding parameters are shown in table 6.1.

In Figs 6.2 and 6.3 we observe the performance of the CMDA when the MCP (i.e.,
optimum path), the LP (i.e., linear path) and the CP (i.e., circular path) are used.
We arbitrarily select a sampling interval ∆ = 0.05λ, which according to simulation
results in [55] will be su�cient to obtain the maximum channel power from each
path under noiseless conditions. First, we have to mention that the MCP and the
LP are the same for L′p ∈ {0.2λ, 0.4λ, 0.6λ}. For higher values of L′p we note that the
MCP outperforms the LP both in terms of channel power obtained and in terms of
mechanical energy consumed. The former (channel power) is due to the fact that the
MCP is optimized so that the wireless channel at the path points (d1,d2, · · · ,dN)
have minimum correlation between them, see (6.10). This in turn makes the wireless
channel at the sampling points (p(ts(1)),p(ts(2)), · · · ,p(ts(M))) have almost min-
imum correlation among them and thus the channel power obtained is high while
in the case of the LP the correlation among the wireless channel sampling points
is higher and thus the channel power obtained is lower. Now, it can be seen that
the LP is the path that maximises the average distance between its end point and
qopt. In consequence when the MCP is used the MR has to travel a smaller distance
during the positioning phase and thus uses less mechanical energy than the case in
which the LP is used.

Now, comparing the MCP with the CP under noiseless conditions we observe
from Figs 6.2 and 6.3 that the MCP produces a much higher channel power and
it also uses less mechanical energy for L′p approximately between 1.0λ and slightly
higher than 1.7λ. This `strange' behaviour may be explained due to the fact that the
shape of the MCP can signi�cantly change depending on Lp and so this also implies
that we cannot extrapolate the results of Figs 6.2 and 6.3 to higher values of L′p.

Note that for the rest of the simulations we will not plot mechanical energy again.
This is because under the conditions that we will consider in the simulations below,
Fig. 6.3 remains virtually unchanged for each path.

Then in Fig. 6.4 we observe the channel power for SNR = 10dB, which represents
a signi�cantly noisy example. We observe the behaviour of all three paths for two
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Figure 6.2: E[|h(qopt)|2] for di�erent continuous paths and lengths under noiseless
conditions and ∆ = 0.05λ.
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Figure 6.3: Mechanical energy consumption for di�erent continuous paths and
lengths under noiseless conditions and ∆ = 0.05λ.

di�erent values of the parameter d (see (6.34)) which determines the number of
sampling points used for each estimation of the channel gains along the path. In the
�rst case we select d = 0.3828λ and in the second case we select d = 0.3λ. Thus in
the �rst case to estimate the channel at the sampling point p(ts(k)) the MR takes
all the sampling points that are closer than the minimum distance at which the
correlation is zero (i.e., 0.3828λ) while in the second case the MR takes the sampling
points with channels that have a correlation higher than ≈ 0.3 in that area. This
reduces slightly the amount of computation needed for the estimation of the channel
gains and as we can observe in Fig. 6.4 this reduction in sampling points for the
estimation process has an almost negligible e�ect on the channel power obtained.

From Fig. 6.5 we observe that for the noisy cases if we decrease the sampling
rate by increasing the number of sampling points we can obtain better channel gain
estimates and thus the performance of the CMDA approaches (to a certain extent)
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Figure 6.4: E[|h(qopt)|2] for di�erent continuous paths, lengths and values of d with
SNR = 10dB and ∆ = 0.05λ.
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Figure 6.5: E[|h(qopt)|2] for the MCP under di�erent conditions.

its performance in the noiseless case. Note that this occurs even when decreasing d.
This is because what is important for the channel gain estimation is to have a larger
number of samples but at the same time the samples must present high correlation
with the channel to be estimated, so that their contribution to the estimation is
signi�cant. The �rst part implies that we should choose small values of ∆ and the
second part implies that we can choose small values of d to use only the samples
with high correlation and discard the rest.

Now, the CMDA can be more e�cient than an MDA based on discrete stopping
points. This is because when the MR follows the continuous path it does not have to
stop and restart, moving multiple times as it does, when it executes an MDA based
on discrete stopping points. As a consequence, when the MR executes the CMDA it
uses less energy in motion. In addition, in general when the MR executes the CMDA
it collects more samples per unit distance travelled than when it executes the MDA
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Table 6.2: MDMTA simulation results.
Number of stopping points 3 4 5

E[Emech] 0.0549 0.1458 0.2753
E[|h(q2

opt)|] 1.8301 2.0675 2.2501

based on stopping points and so the maximum channel gain obtained can be higher
given that the MR travels the same length in both cases.

To illustrate this, we present in Table 6.2 the MDMTA with the optimum geome-
tries used in the simulations section of chapter 2 and with its parameters selected
to maximise the channel power that it delivers. In addition we run the simulations
of the MDMTA with the same wavelength that we are using in this section (i.e.,
λ = 14.02cm), the same MR and the same execution time of 3 seconds in order to
make a meaningful comparison with the CMDA. From Figs. 6.3-6.4 and Table 6.2 we
note that given an amount of mechanical energy used the CMDA can obtain a higher
channel power than the MDMTA or alternatively the CMDA uses less mechanical
energy in obtaining certain channel power. Also, note that in this comparison the
results of the MDMTA were obtained in a noiseless (best case) scenario while the
results of the CMDA were calculated in a very noisy scenario. Therefore the CMDA
is indeed much more e�cient (in terms of mechanical energy) than the MDMTA in
obtaining a high channel gain.

On the other hand, the MDAs that use stopping points are more robust to noise
since they can take as many samples per stopping point as needed to satisfy a certain
channel estimation error in order to ensure that the degradation in the performance
of the MDA does not surpass a prede�ned level. But, in the case of the CMDA
the MR only takes one sample per point and therefore it is more sensitive to noise.
Therefore the MDAs based on discrete stopping points should be preferred when the
SNR is signi�cantly low due to its higher robustness against noise. But when the SNR
is not signi�cantly low CMDAs are preferred due to their their better performance
in obtaining high channel gains while using lower mechanical energy.

6.4 Conclusions

We have solved the problem of how to optimise the shape of continuous paths for
mobility diversity algorithms, given a speci�ed path length. Our minimum correla-
tion path (MCP) maximises the channel power obtainable through the CMDA given
a �xed path length. This has been corroborated in the simulation section. And when
compared to the linear path the MCP showed itself to be more e�cient in terms of
both channel power obtained and energy used in motion. We also showed that the
MCP takes the form of a linear path for the case of very small-lengths. In addition
we showed that the CMDA using the MCP can be more e�cient than MDAs using
discrete stopping points.
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Chapter 7

Conclusion and Future work

7.1 Conclusion

In this thesis we have examined the design and performance of MDAs. At the
time of beginning the research that is presented in this thesis the amount of work
dealing with mobility diversity available in the literature was signi�cantly scarce
and the amount of knowledge regarding this technique was minimal. It was clearly
understood and demonstrated experimentally that mobility diversity works. It was
also understood that the points that the MR explores must be selected to obtain
independent channels. Nevertheless there were no published results about how to
optimise the position of those points and their physical distribution was also selected
arbitrarily. Therefore, there was not a clear understanding of how to optimise the
location of the points and so the main objective of this thesis was to provide an
answer to this particular problem.

We began our research by considering simultaneously the channel gain obtained
by the MDA and the amount of mechanical energy used during its execution. We
developed and optimised di�erent MDAs. In addition, we also provided di�erent
solutions regarding how to optimise the location of the points explored by the MR
during the MDA.

Speci�cally, in the �rst part of this thesis which is composed of chapters 2-4 we
considered the case of MDAs with a discrete search space. In chapter 2 we devel-
oped the MDMTA, which is a general MDA designed for discrete search spaces. We
also developed two di�erent methods to optimise the predetermined geometry of the
stopping points for any number of them. These methods generate geometries that
can provide high channel gain while requiring low amounts of mechanical energy
during the MDA execution. Then in chapter 3 we developed path planners to adap-
tively optimise the location of each stopping point during the MDA execution. In
that chapter we also showed that controlled channel correlation (introduced through
the use of the path planners) can improve the performance of MDAs. This is an
interesting result since for classical diversity techniques channel correlation degrades
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their performance and thus in those techniques the designers try to avoid channel
correlation. Finally in chapter 4 we concluded the treatment of MDAs with a discrete
search space by extending the theory that we developed in the previous chapters for
the case of multiple-link MDAs. Then in the second part of this thesis (chapters 5
and 6) we examined the case of MDAs with a continuous search space. In chapter 5
we customised a continuous search space MDA to improve the performance of an RF
energy harvesting technique. The continuous search space of that chapter consisted
of a straight line whose length we optimised. In chapter 6 we developed the CMDA
which is a general MDA for continuous search spaces and we also solved the problem
of how to optimise the actual shape of the continuous search space.

According to the results obtained we can say that in the context of MDAs with
discrete search spaces when the shadowing term is known we should use the path
planners with memory presented in chapter 3 to maximise the performance of the
MDAs rather than using the predetermined geometries developed in chapter 2. But
if the shadowing term is unknown then we can not implement the path planners of
chapter 3 and so we should use the optimum geometries of chapter 2. Now, when
comparing MDAs with discrete search spaces and MDAs with continuous search
spaces we can say that the ones with discrete search spaces are more robust against
noise than the ones with continuous search spaces. Nevertheless, the MDAs with
continuous search spaces use less mechanical energy. Therefore MDAs with continu-
ous search spaces should be preferred over MDAs with discrete search spaces when
the SNR is high. But when the SNR is low we should prefer MDAs with discrete
search spaces.

MDAs are a relatively new class of diversity whose main advantage is the fact that
they can compensate small-scale fading without needing extra hardware as in multi-
antenna diversity techniques. The cost of MDAs for compensating the small-scale
fading and obtaining a good channel gain without needing extra hardware comes from
the consumption of mechanical energy. Since the techniques developed in this thesis
allow the MDA to provide high channel gains while requiring little mechanical energy
then our results help reduce the (energy) cost of executing MDAs. This reduction
in the energy needed to execute MDAs and the theory that we developed for such
algorithms could help to initiate further research into their design and utilisation in
the context of robotics communications.

7.2 Future Work

Although we have produced some interesting theoretical results for MDAs in general,
there are still several questions which remain unanswered and should be addressed
in future research. For example, all the work presented in this thesis has been done
assuming Rayleigh fading. So a natural next step for this research should be to
study MDAs under more general fading models like Nakagami and considerate also
di�erent spatial correlation functions for di�erent scenarios.
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Figure 7.1: Software de�ned radio which will be used to perform experimental re-
search on MDAs.

Figure 7.2: Di�erential drive robot which will be used to perform experimental
research on MDAs.

Another aspect that we should study is the applicability of MDAs for aerial
robots. In that case the robot can move in a three dimensional space and so we
should consider a fading channel model which is valid in a three dimensional space.
In addition aerial MRs always consume mechanical energy as long as they are in the
air so the statement of the problem would be di�erent to the problem considered in
this thesis in which the wheeled MR does not consume any mechanical energy if it
does not move.

Also, multiple-link MDAs require more development in order to access their im-
pact on wireless robotic networks. We can also extend this research to study the
bene�ts of using MDAs for systems with two antennas. Then we could observe if
those systems with just two antennas and moving extremely short distances (smaller
that the ones considered in this thesis) could provide even more bene�ts than diver-
sity techniques with a large number of antennas or MDAs with large search spaces.

Finally, the most important point for extending this research is the realisation
of practical experiments to further validate and corroborate all the theory we have
just developed as well as to develop MDAs which can operate robustly under real
scenarios. We have already initiated such an approach with the software de�ned
radio in Fig.7.1 and the MR in Fig. 7.2.
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Appendix A

Algorithms

A.1 Hill climbing search

The hill climbing search [32] is an heuristic optimization algorithm to �nd an local
maximum. Let us �rst consider the function f(x1, x2, · · · , xN) and xj ∈ R for all j.

If we want �nd a local maximum of f(x1, x2, · · · , xN) using hill climbing search
we have �rst to discretize the domain so that the new domain for xj is {kε}+∞

−∞ where
ε is a small positive number selected by the user. Then we select an initial test point
denoted by x1(0), x2(0), · · · , xN(0). We can see the pseudocode in Algorithm 5.

Algorithm 5 Hill climbing search (x1(0), x2(0), · · · , xN(0))

1: while 1 do
2: CurrentPoint← [x1(0), x2(0), · · · , xN(0)]T

3: Jcurrent ← Eval (CurrentPoint, f) {Evaluate the function f at CurrentPoint.}
4: N ← Neighbours (CurrentPoint) {Generates all the neighbours of

CurrentPoint.}
5: J ← Eval (N , f) {Evaluate the function f at all the points in N .}
6: if Jcurrent < max{J } then

7: CurrentNext ← ArgMaxEval (N , f) {Finds the point in N that produces
the highest value of the function f .}

8: else

9: Terminate Algorithm
10: end if

11: end while

A.2 Simulated annealing

The simulatead annealing algorithm [32] is an heuristic optimization algorithm used
to �nd global minimum and avoid local minima. This optimization algorithm initially

131



APPENDIX A. ALGORITHMS

behaves like a random search algorithm and smoothly changes its behaviour a to a
close version of the hill climbing search algorithm. We can see the pseudocode in
Algorithm 6.

Algorithm 6 Simulated annealing ([x1(0), x2(0), · · · , xN(0)]T , Iterations, Tempmax)

1: CurrentPoint← [x1(0), x2(0), · · · , xN(0)]T

2: BestPoint← CurrentPoint
3: Jcurrent ← Eval (CurrentPoint, f)
4: Jbest ← Jcurrent
5: for it = 1 to Iterations do
6: NeighbourPoint ← RandomNeighbour (CurrentPoint) {Generate randomly a

point close to CurrentPoint.}
7: Jneighbour ← Eval (NeighbourPoint, f)
8: Tempcurrent ← UpdateTemperature (Tempmax, it) {Updates the temperature

variable. The UpdateTemperature function must be a decreasing function of
it.}

9: if Jcurrent > Jneighbour then

10: CurrentPoint← NeighbourPoint
11: if Jbest > Jneighbour then

12: Jbest ← Jneighbour
13: BestPoint← NeighbourPoint
14: end if

15: else

16: r ← Random() {Generates a random number uniformly distributed between
0 and 1.}

17: if exp
(
Jcurrent−Jneighbour

Tempcurrent

)
> r then

18: CurrentPoint ← NeighbourPoint {With a probability p (which is a de-
creasing function it) we allow CurrentPoint to take worse positions. This
step helps to avoid local minima.}

19: end if

20: end if

21: end for
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