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Summary 
 

All life demands the temporal and spatial control of essential biological functions. 

However, the understanding of cellular organization in the prokaryotic kingdom is 

poorly understood. Bacteria lack many of the known organisers as well as the 

compartmentalisation of eukaryotic cells and have to count on the cell wall and the 

membrane as anchoring sites for fundamental processes.   

A novel supramolecular localisation pattern was found in the membrane of the 

apparently spherical bacterium Staphylococcus aureus. The phospholipid synthesis 

enzymes PlsY and CdsA are localised in a punctate pattern, along with a septal 

localisation in cells that are undergoing cell-division. This localisation pattern is 

stabilised by the cytoskeletal and cell-division-associated protein MreD. 

MreD, which is also localised in punctate pattern, is required for growth at 42 

°C. Cells lacking MreD stop growing and exhibit severe morphological defects along 

with the delocalisation of FtsZ. This phenotype might be explained by a decrease in 

cardiolipin levels which was revealed by thin layer chromatography and could be 

relieved by the addition of high amounts of NaCl to the growth medium. 

Fluorescence microscopy studies revealed similar localisation patterns as seen 

for PlsY for membrane proteins involved in phospholipid biosynthesis and other 

metabolic processes, but not for the secretion protein SecY. A novel protein-interaction 

system based on Förster Resonance Energy Transfer was established in S. aureus and 

used to demonstrate the interaction of PlsY with CdsA, MreD and PgsA (another 

phospholipid synthesis enzyme) suggesting the formation of phospholipid synthesis 

clusters in the membrane that would allow metabolic channelling. 

The observed localisation pattern is independent of wall teichoic acids, 

cardiolipin, lysinylated phosphatidylglycerolphosphate, squalene and peptidoglycan. 

However, PlsY has been found to localise homogeneously in the membrane when cells 

are treated with the FtsZ-polymerisation inhibitor PC190723 suggesting a potential role 

for FtsZ in the punctate patterned distribution of PlsY. 

This study illustrates a novel supramolecular structure of membrane proteins in 

S. aureus which could be a common feature across biology. 
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Chapter 1: Introduction 

 

1.1 The organisation of life 

Life is categorised into three domains: Eubacteria, Archaebacteria and Eukaryotes. 

Eukaryotes are composed of highly specialised organelles that fulfil specific tasks 

within the cell. Importantly, the genetic information of eukaryotes is compacted in the 

nucleus. Eubacteria and archaebacteria are much smaller than eukaryotes and possess an 

apparently more simple structure in which cell functions do not seem to be spatially 

separated and the nucleoid is located within the cell together with all the cell 

components. Thus, do bacteria and archaea not require a higher organisation and rely 

solely on diffusion to maintain cell function and proliferation? 

Indeed, diffusion does play a significant role in bacterial cells, however, in a 

more complex and efficient way than initially anticipated. In 1952, Alan Turing 

delineated the chemical basis for what we as modern researchers are now able to 

observe (Turing, 1990). He wanted to understand how two chemicals diffuse in a 

spatially homogeneous system with differing diffusion coefficients. This work 

illustrated that diffusion disturbances, such as a chemical diffusing quicker than another, 

can create local compartments. Although, his work was based on a very simple system 

of only two components, it illustrated convincingly that chemical and structural 

compartmentalisation can be achieved based on diffusion mechanics and does not 

necessarily require organelles. The basis for diffusion disturbances can be due to a 

variety of factors including reaction-diffusion mechanisms in which one molecule slows 

down the diffusion of another along through simple geometry. Its outcome is the basis 

for experimental observations in bacteria in an attempt to understand how an apparently 

simple organism is capable of completing complex tasks. 

The following introduction describes how bacterial cells are structured and how 

essential biopolymers required for homoeostasis and cell-proliferation are generated 

from a bottom-up view point.  
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1.2 The bacterial blueprint 

 

1.2.1 The different shapes of bacteria 

Bacteria are found in every habitat of the world and are highly adapted to different life 

styles which led to the development of a wide range of morphologies that determines 

their inner structure and features. Different cell shapes were initially used for the 

classification of bacteria into rod, cocci, spiral, comma and corkscrew-shaped bacteria 

(Fig. 1.1). These shapes are also found in various variations of single-cell, clusters and 

chains. 

 

 

Figure 1.1 The different shapes of bacteria 

Image is adapted from: http://www.microbiologyonline.org.uk/about-microbiology/ 

introducing -microbes/bacteria. 

 

To outline how a bacterial cell is composed and structured, their shape constitutes a 

starting point. However, most bacterial aspects are derived from an interplay between 

different factors and the following blueprint is therefore simplified. 

 

1.2.2 Shape determinants or the bacterial cytoskeleton 

As mentioned before, the shape or geometry of bacterial cells facilitates a basic starting 

point for the localisation of further proteins and subcellular structures. The shapes of 

eukaryotes are determined by cytoskeletal components that were initially thought to be 

unique for eukaryotic cells. Tubulin is a dimer that polymerises by GTP hydrolysis into 
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microtubules and is essential in many pivotal cellular processes such as mitosis and 

intracellular transport. 

Another major cytoskeletal component is the ATPase actin. Actin is a 

multifunctional protein that assembles into filaments and gives structure to eukaryotic 

cells by facilitating cell motility, division and bridging to other cells. Its polymerisation 

is driven by ATP hydrolysis and often involves the interaction with membranes. The 

third principal cytoskeletal elements, intermediate filaments (IF), are composed of a 

family of proteins exhibiting a structural rather than a dynamic role within the cell and 

provide mechanical strength and integrity. Recently, structural homologues of all three 

eukaryotic elements have been found in bacteria. 

 

1.2.3.1 Bacterial actin homologues 

The screen for cytoskeletal components in bacteria based on amino acid sequence 

homologies to actin, tubulin or IF was unsuccessful and thus it was thought that bacteria 

lack these components. Advances in structural biology however, changed the focus to 

examining structural homologues rather than screening for primary structures. In 1992, 

a comparison of three-dimensional structures of ATPases with actin revealed a set of 

common conserved residues (Bork et al., 1992). Searching for this pattern in 

prokaryotic species led to the discovery of bacterial actin-homologues such as MreB 

and ParM. 

 

1.2.3.1.1 MreB 

MreB is widely conserved across non-spherical bacteria. Some species, particularly 

gram-positive bacteria even possess more than one MreB homolog. The lack of MreB in 

spherical shaped bacteria gave a hint to the rod-shape determining function of MreB 

(Daniel & Errington, 2003, Pinho et al., 2013). Like actin, MreB is an ATPase capable 

of polymerisation (van den Ent et al., 2001, Colavin et al., 2014). MreB forms dynamic 

and flexible cables in a helical pattern throughout the entire bacterial cell and localises 

just under the cytoplasmic membrane (Jones et al., 2001). This observation was 

supported by Cryo-EM and crystal structures showing that MreB forms antiparallel 

filaments (van den Ent et al., 2014). MreB in cooperation with RodA work together to 

help synthesise the glycan strands of peptidoglycan (PGN) (Uehara & Park, 2008). In 

cells depleted of UndP, a lipid-linked cell wall precursor, MreB disassembles into the 

cytoplasm giving evidence that the membrane association of MreB is dependent on 

these precursors (Schirner et al., 2015). In Escherichia coli and Caulobacter crescentus 
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MreB changes its helical pattern according to the cell cycle, while in Bacillus subtilis, 

MreB stays in its helical pattern even during cell division (Figge et al., 2004, Vats & 

Rothfield, 2007, Defeu Soufo & Graumann, 2006). Labelling of new peptidoglycan 

strands using fluorescent vancomycin revealed similar patterns to those observed for 

MreB, underscoring its involvement in peptidoglycan synthesis (Daniel & Errington, 

2003). Pulse-chase labelling of newly synthesised peptidoglycan indicated its 

heterogeneous insertion that is spatially and temporally correlated with MreB. 

Furthermore, MreB localises to negatively curved membranes where it also directs 

peptidoglycan synthesis which results in cell straightening that contributes to the 

cylindrical shape of E. coli (Ursell et al., 2014). However, it has to be highlighted that 

the helical pattern of MreB is controversially discussed since it turned out that the 

MreB-YFP fusion used for localisation studies in E. coli creates artefacts caused by the 

yellow fluorescent protein tag (Swulius & Jensen, 2012). Moreover, the question 

whether MreB directs the peptidoglycan synthesis machinery or is directed by it 

represents a typical chicken and egg problem. Several authors suggest that MreB forms 

discontinuous fibres and rotates around the long-axis of the cell in discrete patches 

driven by the cell wall synthesis enzymes (Reimold et al., 2013, Dominguez-Escobar et 

al., 2011, van Teeffelen & Gitai, 2011, Garner et al., 2011). Another study raises doubt 

that rod-shaped cells require a continuous filament of MreB to maintain their shape 

since coarse-grained simulations revealed that local coordination of cell wall synthesis 

enzymes alone can be sufficient for their cell integrity during growth (Nguyen et al., 

2015). Besides its direct connection to cell wall synthesis, MreB has a global effect on 

the bacterial membrane. MreB filaments create membrane regions with increased 

fluidity which might have an affect on membrane protein diffusion (Strahl et al., 2014). 

The turnover dynamics of MreB are still unclear, but it has been shown that a sub-

population of elongation factor Tu interacts with MreB and promotes formation of 

MreB filaments (Liu et al., 2014, Defeu Soufo et al., 2015). Furthermore, roles for 

MreB in motility of Myxococcus xanthus and competence of B. subtilis were described 

(Treuner-Lange et al., 2015, Mirouze et al., 2015). 

 

1.2.3.1.2 ParM 

Equal distribution of plasmids during cell-division is required to ensure their stable 

inheritance, particularly for low-copy plasmids. ParCMR is the best understood plasmid 

partitioning system. ParM is an actin-like ATPase that spontaneously forms double-

helical polar filaments that either hydrolyse or get stabilised by the DNA binding 
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protein ParR. ParR binds to plasmid-localised direct repeats sequences named parC and 

forms a nucleoprotein that is attached to the ParM filament. The stabilised ParM bound 

to ParR then drives the segregation by polymerisation and thereby pushes the plasmid to 

the cell poles (Gerdes et al., 2010, Bharat et al., 2015, Gayathri et al., 2012, Ebersbach 

& Gerdes, 2005, Gunning et al., 2015, Schumacher, 2012). Homologues of this system 

have been found in B. thuringiensis (Jiang et al., 2016), E. coli (Jiang et al., 2016, 

Gerdes et al., 2010, Polka et al., 2014, Popp et al., 2010), B. subtilis (Polka et al., 2014) 

and Staphylococcus aureus (Popp et al., 2010). In S. aureus for instance, ParM secures 

the maintenance of the clinically relevant pSK41 plasmid that confers resistance to 

multiple antibiotics (Popp et al., 2010). 

 

1.2.3.1.3 Crenactin 

Studies of the generally neglected third domain of life, archaea, added a novel entry to 

the world of prokaryotic cytoskeletal elements. The actin homologue crenactin was 

found in the rod-shaped hyperthermophilic archaea Pyrobaculum calidifontis. Crenactin 

forms a helical structure in vivo as demonstrated by in situ immunostaining and 

localises between segregated nucleoids suggesting a possible involvement in cytokinesis 

(Ettema et al., 2011). Although it only shares a low sequence similarity with actin, its 

three-dimensional structure is highly similar to those observed for actin and MreB 

(Lindas et al., 2014). 

In contrast to MreB and actin that both form helical double stranded filaments, 

structural studies demonstrated that crenactin forms a single stranded helical filament 

similar in structure to a single strand of actin (Izore et al., 2014, Braun et al., 2015). 

Therefore, it has been proposed that crenactin might be an ancestor of the later evolved 

actin from eukaryotes (Ettema et al., 2011). 

 

1.2.3.2 Bacterial tubulin homologues 

Microtubules in eukaryotes facilitate chromosome segregation and intracellular-

transport forming tubules by a dynamic assembly-disassembly interplay. GTP 

hydrolysis of tubulins stabilises the microtubule structure and enable their 

polymerisation.  

 

1.2.3.2.1 FtsZ 

The essential cell-division protein FtsZ was the first protein of the prokaryotic 

cytoskeleton to be identified. Although it does not share a high level of sequence 
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similarity with the eukaryotic tubulin, FtsZ turned out to be a tubulin-homologue based 

on its tertiary structure (Lowe & Amos, 1998) (Nogales et al., 1998, Erickson, 1995). In 

confirmation of this theory, FtsZ also possesses a self-activating GTPase activity and is 

capable of polymerisation. Binding of GTP activates the polymerisation of FtsZ that 

eventually induces its GTPase activity (Lutkenhaus et al., 1980, de Boer et al., 1992, 

Mukherjee & Lutkenhaus, 1994, Mukherjee et al., 2001, Scheffers & Driessen, 2001, 

Oliva et al., 2004, Ruiz-Avila et al., 2013, Singh et al., 2007). Thus, GTP hydrolysis is 

not required for the polymerisation of FtsZ which is supported by a study showing FtsZ 

polymerisation in the presence of GDP. This mechanism could ensure the disassembly 

and recycling of FtsZ monomers after cell-division (Erickson et al., 1996, Huecas & 

Andreu, 2004). FtsZ is considered to be the first protein to move to the division site 

where it forms a structure called the Z-ring, a molecular scaffold for the recruitment of 

other cell-division associated proteins that coordinate cell-division in concert with FtsZ 

(Bi & Lutkenhaus, 1991, Adams & Errington, 2009). Therefore, it is not surprising that 

E. coli and B. subtilis cells lacking FtsZ fail to form complete septa, which eventually 

leads to cell lysis (Lutkenhaus et al., 1980, Dai & Lutkenhaus, 1991, Beall & 

Lutkenhaus, 1991). The use of immunogold electron microscopy and GFP fusions also 

revealed that FtsZ localises and assembles in a ring structure at the midcell in a number 

of bacteria (Bi & Lutkenhaus, 1991). The in vivo characterisation of the Z-ring in E. coli 

by photo-activated localisation microscopy demonstrated that the Z-ring is rather 

composed of a loose bundle of FtsZ protofilaments than forming one single continuous 

ring. These filaments are randomly overlapping with each other in both longitudinal and 

radial directions of the cell (Fu et al., 2010)(Holden et al., 2014). Surprisingly, only 

approximately 30 % of FtsZ in B. subtilis and E. coli was localised at the septum 

whereas the rest was distributed in the cytoplasm (Anderson et al., 2004). Recently, the 

architecture of the Z-ring in B. subtilis and S. aureus was examined by using 3D-

structured illumination microscopy (3D-SIM). It demonstrated that the Z ring is 

composed of a heterogeneous discontinuous distribution of FtsZ. The authors of that 

study proposed that FtsZ localises dynamically in a bead-like pattern (Strauss et al., 

2012). Amongst bacteria, only members of the obligate intracellular living 

Chlamydiaceae family and Ureaplasma urealyticum lack FtsZ homologues (Vaughan et 

al., 2004). FtsZ has also been found in eukaryotic organelles having prokaryotic origins 

such as mitochondria and chloroplasts which possess two homologues of ftsZ (Stokes & 

Osteryoung, 2003, Miyagishima et al., 2004).  
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1.2.3.2.2 TubZ 

Similarly to the actin homologue ParM, TubZ facilitates the partitioning of low-copy 

plasmids into the two daughter cells during cell-division (Tinsley & Khan, 2006). TubZ 

is a tubulin homologue that forms filaments upon GTP-hydrolysis and exhibits a 

treadmilling activity in vitro (Larsen et al., 2007, Hoshino & Hayashi, 2012). Its role in 

plasmid segregation is linked to the DNA adaptor protein TubR that binds tubC 

sequences located on the plasmids. TubZ then binds to TubR and starts to depolymerise 

on the non-TubR bound end of the filament. In contrast to the ParCMR system which is 

based on pushing, the dynamic instability of TubZ causes the segregation of plasmids 

by pulling them to the cell poles. Thus, it has been suggested that a capping mechanism 

prevents the depolymerisation at the filament pole bound to TubR-plasmid complex 

(Chen & Erickson, 2008). Furthermore it has been demonstrated that TubZ forms 

switche between a two-stranded and four-stranded state depending on its ability to bind 

GTP (Montabana & Agard, 2014).  

 

1.2.3.2.3 CetZ 

CetZ is a tubulin homologue found in many archaea that coexists with FtsZ. Deletion 

studies in Haloferax volcanii, which harbours two homologues of CetZ, indicated their 

role as rod -shape determinants that are required for the transition from a sessile to a 

motile lifestyle. X-ray crystal structures showed the structural similarity to Tubulin and 

FtsZ along with the formation of protofilaments. In contrast to FtsZ, CetZ does not 

seem to be involved in cell-division and cells of Haloferax volcanii lacking one of the 

cetZ genes do not exhibit cell-division defects (Duggin et al., 2015). 

 

1.2.3.3 Bacterial intermediate filament homologues 

Eukaryotic intermediate filaments (IF) are flexible cables that are extremely resistant to 

strain forces. These filaments function in the maintenance of cell-shape by bearing 

tension and organising the internal three-dimensional structure of the cell by anchoring 

organelles. 

 

1.2.3.3.1 Crescentin 

Just as MreB and FtsZ, the intermediate filament homologue crescentin is a major 

cytoskeletal component and shape determinant that was discovered in C. crescentus 

(Ausmees et al., 2003). Analyses of rod-shaped mutants led to the identification of 
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crescentin. It is located at the concave face of the cell and is necessary for cell shape 

(Lew et al., 2011). It shares the common features of intermediate filaments by assembly 

into filaments that continuously integrate subunits on both ends without energy or 

cofactor requirements (Ausmees et al., 2003, Charbon et al., 2009). Biochemical and 

ultrastructural studies revealed that IF can be functionally divided into two subdomains 

where the first is required for recruiting proteins while the second domain facilitates 

structural assembly. A linker sequence between both domains prevents the 

disintegration into non-functional aggregates (Cabeen et al., 2011). Crescentin seems to 

be a unique cytoskeletal element only found in C. crescentus. However, the screen for 

‘central segmented coiled-coil rod’ domains that are regarded to be crucial for the 

structural features of crescentin revealed 21 bacterial genomes harbouring potential IF 

homologues. Three of these including the ones from Mycobacterium and other 

actinomycetes were tested in vitro where all of them spontaneously formed filaments 

(Bagchi et al., 2008). This suggests that just like tubulin and actin homologues, IF 

homologues might be a common cytoskeletal component of bacterial cells. 

 

1.2.4 The membrane 

All bacteria possess a cytoplasmic membrane that is composed of a phospholipid 

bilayer. Membranes act as a first barrier to maintain cellular processes in a defined and 

controllable space. Additionally, membranes serve as chassis for the incorporation of a 

number of proteins involved in the transport of molecules into the cell, energy 

conservation and cell signalling. 

 

1.2.4.1 Phospholipid synthesis  

Phospholipids are the main component of cell membranes. They are composed of a 

variable fatty acid chain and a hydrophilic phospholipid headgroup. In general, the 

biosynthesis of phospholipids can be sub-grouped in four synthetic steps. The initiation 

module produces building blocks for fatty acid synthesis and feeds the elongation 

module where fatty acids are gradually extended. Both modules are features of the 

multiprotein complex fatty acid synthase II (FASII). This process takes place in the 

cytoplasm. Fatty acids are then incorporated into glycerol-3-phosphate by a membrane 

associated acyltransferase module synthesising the precursor used for a series of mainly 

integral membrane bound phospholipid synthesis enzymes that modify the head group 
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of phospholipids. This procedure is described in detail by Parsons and Rock that also 

elucidates remaining knowledge gaps (Parsons & Rock, 2013). A summary of fatty acid 

and phospholipid synthesis is shown in Fig. 1.5. 

 

1.2.4.1.1 FASII initiation module 

The first step in phospholipid synthesis is performed by the acetyl-CoA carboxylase by 

carboxylation of acetyl-CoA which is catalysed by a four protein subunit complex 

(AccABCD) and its product is subsequently transferred to the acyl carrier protein 

(ACP) through FabD (see Fig. 1.2) (Cronan & Waldrop, 2002, Choi-Rhee & Cronan, 

2003, Li & Cronan, 1992, Zhang & Rock, 2008). Some bacteria such as B. subtilis and 

S. aureus preferentially employ acyl-CoA instead of acetyl-CoA (Choi et al., 2000, Qiu 

et al., 2005, He & Reynolds, 2002, Jackowski et al., 1989). In the last step of the fatty 

acid initiation module, FabH condenses acyl-CoA with malonyl-ACP to β-Ketoacyl-

ACP which, together with malonyl-ACP feed directly into the elongation module (Tsay 

et al., 1992, Heath & Rock, 1996a, Alhamadsheh et al., 2007). 

 

1.2.4.1.2 FASII elongation module  

The second step in fatty acid synthesis elongates the precursors, malonyl-ACP and β-

ketoacyl-ACP, derived from the initiation module through four enzymes that differ 

between bacterial species which act in concert in a cycled process (Fig. 1.2) (Heath & 

Rock, 1996b). The second keto group of β-Ketoacyl-ACP gets removed and two 

carbons get added to the acyl chain per cycle. This process is repeated until a long fatty 

acid chain is generated (Heath & Rock, 1996b, Fisher et al., 2000, Massengo-Tiasse & 

Cronan, 2008). First, FabF/B decarboxylates malonyl-ACP to β-ketoacyl-ACP that is 

then reduced by FabG to β -hydroxyacyl-ACP (Prescott & Vagelos, 1970, Parsons & 

Rock, 2013). The next step is catalysed by FabZ/A hydrolysing β -hydroxyacyl-ACP to 

form trans-2-enoyl-ACP which leads to the final reaction catalysed by FabI (Heath & 

Rock, 1995). The resulting acyl-ACP product is either used to begin another round of 

elongation or it is incorporated into phospholipids by the acyltransferase module (Heath 

et al., 2000). 

 

1.2.4.1.3 Acyltransferase module  

The assembly of fatty acids and glycerophol-3-phosphate (G3P) is mainly facilitated by 

the PlsB system in γ-proteobacteria bacteria (Bell, 1975) whereas the slightly different 

PlsX/PlsY system is dominating in gram-positive bacteria. G3P is gained by the 
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glycolysis though the glycerol-3-phosphate dehydrogenase GspA and two of its acyl 

chains are connected with the Acyl-ACP derived from the elongation module forming 

lysophosphatidic acid (LPA) (Fig. 1.3) (Ray & White, 1972, Ray et al., 1972). This 

reaction is catalysed by PlsB and PlsC. Both enzymes can either use Acyl-ACP or Acyl-

CoA for the incorporation of the acyl chain. In gram-positive bacteria, the acyl chain is 

first phosphorylated by PlsX and subsequently connected to G3P by PlsY to LPA 

(Paoletti et al., 2007) (Lu et al., 2006). The addition of the second acyl chain is 

facilitated by PlsC in both the PlsB as well as the PlsX/PlsY systems resulting in the 

universal bacterial phospholipid precursor phosphatidic acid (PA). 

Due to their central role in connecting fatty acid synthesis with phospholipid 

headgroup generation, enzymes from the acyltransferase module are regarded as key 

regulators in phospholipid synthesis. 

 

1.2.4.1.4 Phospholipid head group synthesis  

The diversity and composition in phospholipids in bacteria determines the topology, 

properties and localisation of membrane proteins and affects membrane curvature 

(Zhang et al., 2005b, Xie et al., 2006).  

The first step in phospholipid headgroup synthesis is shared among all bacteria. 

PA gets cytidinylated by CdsA into CDP-diacylglycerol (CDP-DAG) which acts as a 

precursor for the formation of various phospholipids (Fig. 1.4) (Kanfer & Kennedy, 

1964) (Sparrow & Raetz, 1985). PssA and PgsA then convert CDP-DAG to 

phosphatidylserine (PS) and phosphatidylglycerolphosphate (PG) respectively. 

Phosphatidylserine is further processed to phosphatidylethanolamine by the Psd 

enzyme, whereas phosphatidylglycerolphosphate is dephosphorylated to 

phosphatidylgylcerol by PgpA in most bacteria. Some species such as E. coli also 

possess multiple homologues of pgp genes (Ames, 1968) (Miyazaki et al., 1985, Li & 

Dowhan, 1990). Phosphatidylglycerol displays the precursor for cardiolipin (CL) and 

lysylphosphatidylglycerol (LPG). The former can be catalysed by several enzymes 

termed ClsA/B/C and the latter is only formed in firmicutes by the enzyme MprF 

(Miyazaki et al., 1985) (Ernst & Peschel, 2011). MprF also possesses a flippase activity 

and translocates LPG to the outer leaflet of the phospholipid bilayer which confers 

resistance to cationic antimicrobial peptides such as daptomycin (Ernst et al., 2009). 

Currently, it is not known how other phospholipids are flipped and are therefore thought 

to be independent of a specific membrane protein. 
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1.2.4.2 Teichoic acids 

Teichoic acids are crucial and major constituent cell wall polymers that include two 

forms. Both phospholipid-anchored lipoteichoic acids (LTA) and the peptidoglycan-

bound wall teichoic acids (WTA) are only found in gram-positive bacteria. Firstly, the 

synthesis of the lipoteichoic acids is discussed. WTA synthesis can be found in Section 

1.2.5 since it is anchored at the cell wall which will be described later. 

 

1.2.4.2.1 Lipoteichoic acid synthesis 

The synthesis of the LTA lipid anchor diglucosyldiacylglycerol (Glc2DAG) is catalysed 

by the cytoplasmic glycosyltransferase YpfP which uses a nucleotide-activated sugar as 

substrate (see Fig. 1.6) (Fischer, 1990)(Reichmann & Grundling, 2011, Jorasch et al., 

2000, Jorasch et al., 1998, Kiriukhin et al., 2001). The putative flippase LtaA 

translocates Glc2DAG to the outer leaflet of the membrane where LtaS repeatedly 

extends Glc2DAG by glycerolphosphate (GroP) taken from the headgroup of 

phosphatidylglycerol. Importantly, the sugar chain is highly diverse and species-

dependent. S. aureus has a GroP-chain based lipoteichoic, whereas for example, 

Micrococcus luteus employs a mannose-phosphate chain attached to Glc1DAG 

(Weidenmaier & Peschel, 2008, Powell et al., 1975). 
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Figure 1.2 Initiation and elongation module of fatty acid synthesis 
Schematic overview of fatty acid production in bacteria. Acetyl-CoA is carboxylated 

and transferred to β-ketoacyl-ACP by FabH or converted to malonyl-ACP by 

AccABCD and FabD. Both products feed into the elongation module while malonyl-

ACP is first converted to β-ketoacyl-ACP by FabF/B. The acyl chain of β-ketoacyl-ACP 

is extended in a cycled process involving the enzymes FabG, FabZ/A, FabI and FabF/B 

and gains two carbon atoms per turn. The final product acyl-ACP feeds into the 

acyltransferase module. This process takes place in the cytoplasm. Figure is adapted 

from Parsons and Rock, 2013. 
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Figure 1.3 Acyltransferase module 

Schematic overview of the transfer of acyl groups to glycerol-3-phosphate. Acyl-

ACP/Acetyl-ACP fatty acid chains from the fatty acid elongation module are transferred 

to G3P derived from glycolysis through the glycerol-3-phosphate dehydrogenase GspA. 

This process is either facilitated by the PlsB/PlsC or PlsX/PlsY/PlsC system. PlsB or 

PlsY together with PlsX connect the acyl chain to G3P synthesising lysophosphatidic 

acid which is then used as substrate by PlsC to generate phosphatidic acid. PA is 

required as a precursor for various phospholipid head group modifications. Figure is 

adapted from Zhang and Rock, 2008. 
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Figure 1.4 Phospholipid headgroup synthesis 

Schematic overview of the modification of phospholipid headgroups. This process is 

highly branched and precursors are used for several modifications. A (starting from 

CdsA facing to the left of CdsA), First phosphatidic acid (PA) is converted by CdsA to 

CDP-diacylglycerol (CDP-CAG) that is used as a substrate to synthesise 

phosphatidylserine (PS) by PssA and is further processed to phosphatidylethanolamine 

(PE) through Psd. B (starting from CdsA facing to the right of CdsA), PA is also 

used for the synthesis of phosphatidylglycerolphosphate (PG) catalysed by PgsA PG is 

dephosphorylated by PgpA to form phosphatidylglycerol (P), a substrate to form both, 

cardiolipin (CL) by Cls and lysylphosphatidylglycerol (LPG) by MprF. MprF also acts 

as a flippase translocating LPG to the outer leaflet of the cell. It is currently not known 

how other phospholipids are flipped. Figure is adapted from Zhang and Rock, 2008. 
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Figure 1.5 Phospholipid synthesis 

Initiation module:  FabH catalyses the priming reaction by condensing malonyl-ACP 

and Acyl-CoA to form β-Ketoacyl-ACP. Elongation module: The acyl-chain is 

extended in a cyclical process involving four enzymes acting in concert. Each turn adds 

two carbon atoms to the acyl chain of β-Ketoacyl-ACP. Acyltransferase module: 

Acyl-ACP is then incorporated in G3P in a species-dependent process, either by the 

PlsX/PlsY/PlsC system (mainly gram-positive bacteria) or the PlsB/PlsC system. 

Phospholipid head group synthesis: Phosphatidic acid gets cytidinylated to CDP-

diacylglycerol by CdsA which is further processed to phosphatidylserine and eventually 

phosphatidylethanolamine by PssA and Psd Alternatively, CDP-diacylglycerol is 

converted to phosphatidylglycerolphosphate by PgsA, followed by dephosphorylation to 

phosphatidylglycerol catalysed by the enzyme PgpA. Phosphatidylglycerol is then 

either converted to cardiolipin via ClsA/B/C or lysinylated by MprF to 

lysylphophatidylglycerol. Figure is adapted from Parsons and Rock, 2013. 
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The by-product of this reaction, DAG, is recycled by translocation to the inner leaflet 

and is fed into the regular phospholipid synthesis pathway. First, the cytoplasmic 

enzyme DgkB phosphorylates DAG to phosphatidic acid which is converted to CDP-

DAG by CdsA. PgsA catalyses the next step by adding glycerol-3-phosphate resulting 

in PG. PG is then dephosphorylated by a yet unknown enzyme to the precursor used by 

LtaS for the incorporation of GroP (Koch et al., 1984, Taron et al., 1983, Grundling & 

Schneewind, 2007b, Grundling & Schneewind, 2007a). In S. aureus, LTA synthesis 

enzymes were found to interact with many components of the cell-division machinery 

suggesting a coupled role of LTAs. Additionally, cells lacking LTAs exhibit severe cell-

division defects. It was also demonstrated that LTA backbone synthesis takes place at 

the division site whereas glycolipid synthesis is found throughout the membrane 

(Grundling & Schneewind, 2007b, Fedtke et al., 2007, Reichmann et al., 2014).  

 

1.2.4.2 Outer membrane 

The outer membrane (OM) is an asymmetric bilayer only present in gram negative 

bacteria that is distinct in its composition from the cytoplasmic membrane as it mainly 

contains phospholipids on the inner leaflet and lipopolysaccharides (LPS) on the outer 

leaflet (Bos et al., 2007). Its biogenesis requires crossing LPS and phospholipids 

through hydrophilic and hydrophobic parts of the cell wall making it a great energetic 

and organisational effort for the cell that has not yet been entirely explained. LPS is the 

major constituent of the outer membrane that greatly contributes to the negative charge 

and overall integrity of the membrane. 

 

1.2.4.2.1 LPS synthesis and outer membrane biogenesis 

LPS comprises three parts: The O-antigen, a core oligosaccharide and a lipid anchor 

called Lipid A. Although being part of the outer leaflet of the outer membrane, the core 

oligosaccharide bound to lipid A is synthesized gradually in the cytoplasm by a number 

of enzymes using UDP-N-acetylglucosamine (UDP-GlcNAc) as a substrate (Wang & 

Quinn, 2010). The final product is then flipped to the outer leaflet of the inner 

membrane by the ATPase driven flippase MsbA (Fig. 1.7) (Doerrler & Raetz, 2002). 

The O-antigen oligosaccharide is synthesised separately by glycosyltransferase enzymes 

using the membrane-bound undecaprenyl phosphate and UDP-GlcNAc (Raetz & 

Whitfield, 2002). After synthesis, it is translocated by the transporter Wzx to the 

periplasmic side of the inner membrane, polymerised by WzY and Wzz and connected 

to core-lipid A via the ligase WaaL   
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Figure 1.6 Lipoteichoic acid synthesis in gram positive bacteria 

Schematic overview of lipoteichoic acid synthesis and insertion. This process is divided 

into two parts. A (starting from YpfP) , First, YpfP catalyses the synthesis of 

diglucosyldiacyl-glycerol (Glc2-DAG) that is subsequently flipped to the outer leaflet 

by LtaA. LtaS gradually adds glycerolphosphate (GroP) from phosphatidy-

glycerolephosphate (PG) to the glucose end of Glc2-DAG forming a long GroP chain. 

B, Dephosphorylated PG (DAG) is recycled through feeding to the phospholipid 

headgroup module. DAG gets converted to phosphatidic acid by DgkB followed by 

conversion to CDP-DAG by CdsA. Next, PgsA catalyses the synthesis of PG which is 

used as a substrate of a yet unknown enzyme that dephosphorylates PG. The final 

product is used by LtaS. Figure is adapted from Percy and Gründling, 2014. 
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to the final product LPS (Wu et al., 2006, Abeyrathne et al., 2005, Samuel & Reeves, 

2003, Merino et al., 2011). The exact mechanism of how LPS is inserted into the outer 

leaflet of the outer membrane is currently not fully understood. It is known that the 

periplasmic protein LptA binds LPS and its deletion causes the accumulation of LPS in 

the periplasm (Sperandeo et al., 2008, Ma et al., 2008, Tran et al., 2008). Two 

competing models are currently discussed, one is based on LptA forming a bridge 

through the periplasm while the other relies on LptA as a chaperone guiding LPS 

through the periplasm (Okuda et al., 2016). LptC, a membrane protein of the inner 

membrane and LptD, part of the outer membrane, both possess periplasmic domains 

that are thought to connect both membranes via LptA. The outer membrane also 

contains phospholipids mainly at the inner leaflet of the bilayer. It is not yet known how 

they are translocated to the outer membrane. However, the mechanism appears to be 

distinct from the LPS transport since spheroplasts treated with periplasmic extract 

resulted in the release of LPS but not phospholipids into the medium (Tefsen et al., 

2005). 

 

1.2.5 Peptidoglycan 

The cell membrane displays a first line of defence against external factors. However, 

due to the higher osmotic pressure of the cytoplasm, a phospholipid bilayer alone is not 

enough to withstand the turgor pressure. Thus, most bacteria possess and require a cell 

wall that also maintains cell shape and provides mechanical strength. The backbone of 

the cell is comprised of glycan chains cross-linked by short peptides covering the entire 

surface of the bacterial cell. Both gram-negative and gram-positive bacteria possess a 

cell-wall; however the one of gram-positive cells is thickened. The basic synthesis of 

peptidoglycan (PGN) is very similar between both groups and can be sub-divided into 

three stages: cytoplasmic generation of UDP-MurNAc and UDP-GlcNAc; anchorage to 

the membrane forming lipid II followed by translocation to the outer leaflet of the 

membrane; and finally the polymerisation via penicillin binding proteins (PBPs) (Fig. 

1.8). 

 

1.2.5.1 Synthesis of UDP-MurNAc and UDP-GlcNAc 

The PGN precursors UDP-N-acetyl-muramic acid (UDP-MurNAc) and UDP-N-

acetylglucosamine (UDP-GlcNAc) are synthesised in the cytoplasm. Mur ligases 

MurA-F sequentially add a short polypeptide chain consisting of five amino acids 

(usually: L-alanine, D-glutamate, m-diaminopimelate or L-lysine, and the dipeptide D-

alanyl-D-alanine) to UDP-MurNAc in an ATP-dependent manner. The amino acid 
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composition can change depending on the bacterial species (Benson et al., 1996, Brown 

et al., 1995, Deva et al., 2006, Perdih et al., 2007, Boniface et al., 2006, Longenecker et 

al., 2005).  

 

1.2.5.2 Synthesis of lipid II 

The second stage of PGN synthesis takes place at the inner leaflet of the membrane 

where the integral membrane protein MraY anchors the UDP-MurNAc-pentapeptide to 

the membrane via undecaprenyl pyrophosphate (El Ghachi et al., 2004, Bouhss et al., 

1999). The resulting product is termed lipid I. Subsequently, lipid II is formed by the 

addition of GlcNAc to lipid I using UDP-GlcNAc as a substrate via the membrane 

associated enzyme MurG (Mengin-Lecreulx et al., 1991, Mohammadi et al., 2007). In 

some bacteria such as S. aureus, a short peptide cross bridge is added to the third amino 

acid of the pentapeptide catalysed by FemXAB (Henze et al., 1993, Labischinski et al., 

1998, Rohrer et al., 1999, Seligman & Pincus, 1987, Johnson et al., 1995, Benson et al., 

2002). In these species, the later introduced peptide cross-linking contains the cross 

bridge sequence instead of a direct link. The final lipid II is flipped to the outer leaflet of 

the bilayer by FtsW or MurJ. Many studies are currently focused on the properties of 

these apparent flippases (Meeske et al., 2015, Sham et al., 2014, Mohammadi et al., 

2011).  

 

1.2.5.3 Transglycosylation and transpeptidation via PBPs 

The third stage of PGN synthesis is performed by penicillin binding proteins (PBPs) in 

the periplasm connecting the sugar and peptide links of lipid II with each other. PBPs 

fulfil two major roles in PGN synthesis. The first is to connect the two sugars, MurNAc 

and GlcNAc via transglycosylation and the second relies on the formation of 

interpeptide bridges or direct connections via a transpeptidation activity. This activity 

requires a D-alanine dipeptide of which one is cleaved off and the other is covalently 

linked to the interpeptide bridge. All bacteria possess at least one transpeptidase PBP 

(Grandchamps et al., 1995). Most bacteria however harbour a number of PBP genes and 

it is not fully understood whether each gene encodes a protein with a distinct function or 

whether there is a degree of redundancy. B. subtilis and E. coli have 16 and 12 PBPs, 

respectively, while S. aureus only possesses four PBPs and is regarded as a minimalistic 

system suited for the study of PBPs (Scheffers & Pinho, 2005). The S. aureus PBPs 1, 3 

and 4 exhibit a transpeptidase (TP) activity forming the inter peptide bridge while PBP2 

is a bifunctional enzyme that can perform both transglycosylation and transpeptidation 

(Pereira et al., 2007, Pinho & Errington, 2003, Pinho & Errington, 2005). 
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1.2.5.2 Wall teichoic acid synthesis 

Wall teichoic acids are covalently attached to peptidoglycan and major constituents of 

the cell wall comprising more than 60 % of the total mass (Bera et al., 2007, Kojima et 

al., 1985). Its synthesis if different from LTAs and highly species-dependent. WTAs are 

built from two main parts: a conserved disaccharide linker and a highly diverse chain of 

phosphodiester linked polyol units (Neuhaus & Baddiley, 2003). The disaccharide 

linker is composed of N-acetylmannosamine N-acetylglucosamine-1-phosphate linked 

to one or two glycerol-3-phosphate (GroP) residues and its synthesis is conserved across 

gram-positive bacteria. Names of enzymes involved in WTA acid are termed Tag or Tar 

and are used for the same protein. As a first step, TarO catalyses the transfer of N-

acetyl-glucosamine from UDP-GlcNAc, a precursor shared with peptidoglycan 

synthesis, to the membrane anchor undecaprenylpyrophosphate (Fig. 1.9) (Rubinchik et 

al., 2011, Soldo et al., 2002). N-Acetylmannosamine from the sugar-activated UDP-

ManNAc is subsequently added to GlcNAc via TarA, thereby forming the disaccharide 

linker part of WTAs (D'Elia et al., 2009, Ginsberg et al., 2006, Zhang et al., 2006). The 

glycerolphosphotransferase TarB then adds one glycerol-phosphate unit to ManNAc 

(Bhavsar et al., 2005, Ginsberg et al., 2006). The next step in WTA synthesis extends 

the disaccharide linker by diverse and species-dependent polyols along with 

modifications mainly comprised of sugars. The mechanism to explain how the final but 

still membrane anchored wall teichoic acid is flipped to the outer leaflet is still unknown 

but it involves the membrane protein TarG and the ATPase TarH. Presumably, 

undecaprenylpyrophosphate is translocated and the polyol chain is following to the 

extracellular space through TarG driven by ATP hydrolysis via TarH (Brown et al., 

2013, Schirner et al., 2011, Bron et al., 2012). Once on the outer leaflet, WTA are 

disconnected from the membrane anchor and attached to the MurNAc residue of 

peptidoglycan via a phosphodiester bond catalysed by LytR, Cps2a, Psr in B. subtilis 

and Msr, SA0908 and SA2101 in S. aureus. (Kawai et al., 2011, Hubscher et al., 2009, 

Dengler et al., 2012, Eberhardt et al., 2012, Over et al., 2011). 

 

1.2.6 Nucleoid 

The biggest polymer in bacteria based on one unit repeats is the chromosome that, 

together with episomal components, encodes for the entire genetic information of the 

bacterial cell. In eukaryotes, the chromosome also referred to as the nucleoid, is 

surrounded by a specialised compartment called the nucleus whereas the bacterial 

nucleoid apparently freely diffuses in 
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Figure 1.7 LPS synthesis and translocation in gram-negative bacteria 

Schematic overview of lipopolysaccharide synthesis and insertion into the outer leaflet 

of the outer membrane. O-antigen and the core anchored to Lipid A are synthesised 

separately. The O-antigen bound to undecaprenyldiphosphate is synthesised by several 

cytoplasmic enzymes using UDP-GlcNAc as a substrate. Wzx translocates O-antigen to 

the periplasmic site where Wzy and Wzz polymerise multiple O-antigens to a long 

chain. The core is anchored to the membrane via Lipid A and is also synthesised from 

UDP-GlcNAc in the cytoplasm. MsbA flips the core-lipid A to the periplasmic leaflet 

and the ligase WaaL connects the O-antigen chain to core-Lipid A forming LPS. LPS is 

then translocated by a yet unknown mechanism through the periplasm involving 

LptBCFG on the inner membrane, LptA in the periplasm and LptDE in the outer 

membrane. The latter also acts as a flippase, translocating LPS to its destined position 

on the outer leaflet of the outer membrane. Figure is adapted from May et al., 2016 and 

Bos et al., 2007. 
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Figure 1.8 Peptidoglycan synthesis in bacteria 

Schematic overview of peptidoglycan synthesis. UDP-N-acetylmuramic acid (UDP-

MurNAc) is synthesised in the cytoplasm by several Mur ligases (Gomez-Baena et al.) 

and anchored to the membrane via MraY to an undecaprenylpyrophosphate resulting in 

lipid I. Lipid II formation is catalysed by MurG by adding N-acetylglutamic acid 

(GlcNAc) using UDP-GlcNAc as a substrate. In some bacteria such as S. aureus, a 

peptide bridge is added to the third amino acid via the three cytoplasmic proteins 

FemXAB. Lipid II is flipped to the periplasmic facing leaflet of the membrane and 

connected to existing peptidoglycan chains. The MurNAc residue is added to the 

GlcNAc residue via transglycosylation and the third amino acid is connected to the 

interpeptide bridge or fourth amino acid of pre-existing PGN. Both reactions are 

facilitated by penicillin binding proteins. Figure is adapted from Pinho et al., 2013 and 

Typas et al., 2012. 
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Figure 1.9 Wall teichoic acid synthesis in gram-positive bacteria 

Schematic overview of wall teichoic acid synthesis. First, a membrane bound 

disaccharide precursor is synthesised by the membrane associated proteins TarO and 

TarA. This process takes place at the membrane. TarO anchors GlcNAc from UDP-

GlcNAc to the membrane anchor undecaprenylpyrophosphate that is in turn extended 

by ManNAc which is catalysed by TarA. Next, TarB adds two GroP to the disaccharide. 

These reactions are conserved across gram positive bacteria whereas the following 

reactions, at which a decorated sugar polymer is gradually added to the linker unit, are 

highly species dependent. A number of Tar proteins add polyol phosphates tailored with 

sugars. The final product is then presumably flipped to the outer side of the membrane 

by the integral membrane protein TarG driven by ATP hydrolysis through a TarH 

dimer. Once at the extracellular side of the cell, LytR, Cps2a, Psr in B. subtilis and Msr, 

SA0908 and SA2101 in S. aureus catalyse the detachment of WTAs from their 

membrane anchor and facilitate the link to MurNAc via a phosphodiester bond. Figure 

is adapted from Brown et al., 2013. 
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the cytoplasm. However, recent research revealed that also the bacterial nucleoid has a 

defined organisation condensed in a matrix comprised of proteins and RNAs along with 

organisational sequences encoded genetically on the chromosome (Thanbichler et al., 

2005). Furthermore, the bacterial cell contains 2-4 chromosomes during septation 

depending on the pace of growth. Fast growing cells begin chromosome replication 

prior to septation since the doubling time of certain species of bacteria, for instance E. 

coli, can be faster than the replication phase forcing cells to spatially organise their 

nucleoid copies (Skarstad et al., 1986, Le et al., 2013). 

 

1.2.6.1 Chromosome replication 

DNA synthesis requires a template from which newly synthesised DNA strands are 

copied in a reverse complement manner. The bacterial chromosome is highly contained 

and packaged by a variety of DNA condensing proteins such as SMC and MukB. These 

proteins, acting like eukaryotic histones, are crucial factors in chromosome 

condensation and partitioning (Britton et al., 1998, Dervyn et al., 2004, Volkov et al., 

2003). An overview of DNA replication is given in Figure 1.10. 

 

1.2.7 The bacterial division machinery 

The bacterial cell possesses a membrane and cell wall composed of several 

biopolymers. In order to proliferate and to ensure survival bacterial cells need to divide, 

a process that is performed mostly by binary fission in prokaryotic organisms. Bacterial 

cells separate into two parts that both renew into copies of the original cell. This process 

requires that both daughter cells receive the complete genetic information, the synthesis 

of cell wall and cell membrane material and the proper formation of the division ring 

that provides a contractile force for cytokinesis. 

 

1.2.7.1 Temporal regulation 

The polymerisation of FtsZ at the division site initiates and drives the septation of the 

cell (Adams & Errington, 2009). However, bacteria are exposed to a variety of quick 

and drastic environmental changes where cell proliferation is disadvantageous. Thus, a 

system to avoid cell-division initiation via FtsZ responding to the metabolic state of the 

cell is required. Nutrient availability is a crucial factor in cell-division initiation since 

proliferation in nutrient-poor conditions is disadvantageous for the survival of bacteria. 

This can be achieved prior to FtsZ-assembly by blocking chromosome replication  
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Figure 1.10 Chromosome replication 

In order to disentangle the chromosome, helicases separate the two annealed DNA 

strands. The single strands are then stabilised by single-strand binding proteins to avoid 

their re-annealing. DNA is always synthesised in the 5’ to 3’ direction. Polymerase III 

adds complementary nucleotides to the leading strand whereas complementation of the 

lagging strand first requires primers composed of RNA which are placed by the 

primase. This is necessary since the replication fork opens in opposite direction to the 

lagging strand 5’ to 3’ orientation. Polymerase III then complements the lagging strand 

starting from RNA-primers and finishes at the next placed primer. This leaves non-

annealed DNA fragments, also known as Okazaki fragments, behind. DNA fragments 

are finally linked via a ligase enzyme forming a phosphodiester bond. Image is adapted 

from:http://reasonandscience.heavenforum.org/t1849p25-dna-replication-of-

prokaryotes. 
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through the synthesis of (p)ppGpp, a molecule produced in response to amino acid and 

carbon starvation. (p)ppGpp represses the expression of the replication initiating gene 

dnaA and interacts directly with the primase (Boutte et al., 2012, Lesley & Shapiro, 

2008, Potrykus & Cashel, 2008, Wang et al., 2007, Denapoli et al., 2013). Additionally, 

regulation of the FtsZ polymerisation displays a crucial factor in controlling cell-

division. This control mechanism is employed in the response to the metabolic state 

which is linked to the recently identified enzymes UgtP in B. subtilis and OpgH in E. 

coli (Begg & Donachie, 1998) (Sharpe et al., 1998, Weart & Levin, 2003) (Weart et al., 

2007) (Hill et al., 2013). Both enzymes are terminal sugar transferases that use UDP–

glucose for the synthesis of the diglucosyl-diacylglycerol anchor of lipoteichoic acids. 

UgtP and OpgH reversibly inhibit FtsZ assembly under nutrient-rich conditions where 

their substrate UDP-glucose is more abundant. Hence, a high level of UDP-glucose 

leads to increased cell length by the inhibition of Z-ring formation (Fig. 1.11) (Weart et 

al., 2007) (Hill et al., 2013). 

 

1.2.7.2 Spatial regulation 

FtsZ polymerisation can theoretically occur at any place within the cell as even in vitro 

experiments showed the formation of FtsZ bundles (Fu et al., 2010)(Holden et al., 

2014). To prevent initiation of Z-ring formation near the cell poles or through the 

chromosome, bacterial cells facilitate a number of systems regulating its spatial 

organisation. E. coli has two independent mechanisms by which the formation of the 

dividing wall or septum is ensured to take place at the right place: The Min system and 

nucleoid occlusion (NO) avoid the formation of the Z-Ring at cell poles and through the 

chromosome (see Fig. 1.12) (Lutkenhaus, 2007) (Wu & Errington, 2012). 

 

1.2.7.2.1 The Min system 

The Min system prevents formation of the Z-ring near the cell poles. In E. coli, it 

comprises the three proteins MinCDE that oscillate between the cell poles while in B. 

subtilis, four proteins, MinCDJ and DivIVA are deployed to identify the cell poles in a 

non-oscillating manner (Monahan et al., 2014, Rowlett & Margolin, 2015). In both 

systems, MinC inhibits FtsZ polymerisation and thereby prevents the formation of the 

cell division ring (Raskin & de Boer, 1999, Hu & Lutkenhaus, 1999). MinC is 

composed of two domains. The N-terminal domain inhibits the polymerisation of FtsZ 

while the C-terminal domain avoids interaction between FtsZ filaments and also 

interacts with the membrane protein MinD (Hu & Lutkenhaus, 2000).   
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Figure 1.11 Temporal regulation of Z-ring formation 

Schematic overview of cell-division initiation regulation by UgtP/OpgH. FtsZ 

polymerises at the cell-division site and is attached to the membrane via the membrane-

associated protein FtsA. FtsZ is apparently organised in bundles of polymers that 

overlap each other and thereby form a discontinuous ring-like structure. Polymerisation 

of FtsZ is inhibited by UgtP in B. subtilis and OpgH in E. coli when induced by UDP-

glucose, an abundant substrate during nutrient-rich growth conditions. Figure is adapted 

from (Begg & Donachie, 1998), (Sharpe et al., 1998, Weart & Levin, 2003), (Weart et 

al., 2007) and (Hill et al., 2013). 
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MinD is an ATPase that is organised as a dimer when bound to ATP and interacts with 

MinC forming a membrane-bound complex (Hu & Lutkenhaus, 2003, Ghosal et al., 

2014, Conti et al., 2015, Lutkenhaus, 2008). Another member of the Min system, MinE, 

forms a ring-like structure that moves towards the cell poles and binds the dimer form 

of MinD which in turn causes the detachment of MinC (Fig. 1.12). The release of MinC 

triggers the ATPase activity of MinD that consecutively monomerises and dissociates 

from the membrane. This dynamic between MinE and MinC competing for MinD 

results in their oscillation between poles. Thus, a gradient of MinC is formed with its 

highest concentration at the cell poles and lowest concentration at the middle of the cell. 

Z-formation is therefore only initiated at the middle of the cell (Ma et al., 2004, Lackner 

et al., 2003, Hu et al., 1999, Raskin & de Boer, 1997, Park et al., 2011, Hu & 

Lutkenhaus, 2001, Hsieh et al., 2010). The Min system in B. subtilis features MinCD 

but not a MinE homologue. Instead, DivIVA and MinJ act as localisation determinants 

of MinCD. DivIVA was shown to preferentially localise at negatively curved 

membranes and recruits MinJ to the cell poles (Lenarcic et al., 2009, Eswaramoorthy et 

al., 2011). MinJ in turn binds MinD and could replace the membrane binding properties 

of E. coli MinD (Bramkamp et al., 2008, Patrick & Kearns, 2008). However, MinCD do 

not oscillate in B. subtilis but relocalise from the old cell pole to the newly formed 

septum after cell-division initiation to prevent the formation of multiple Z-rings near the 

mid-cell (Marston & Errington, 1999, Gregory et al., 2008). 

 

1.2.7.2.2 Nucleoid occlusion 
The Min system ensures that the Z-ring is not formed at the cell poles; however, a 

second mechanism is required to guarantee that the chromosome integrity is not 

affected. Nucleoid occlusion (NO) factors such as Noc (B. subtilis) or SlmA (E. coli) 

were found through a synthetic-lethal phenotype in cells with a defective Min system. 

Noc binds to specific palindromic sequences that are found 70 times spread across the 

chromosome but are absent from the termination region (Wu et al., 2009). Furthermore, 

Noc binds to membranes via an N-terminal amphipathic helix. Full inhibitory activity of 

Noc is dependent on its ability to bind DNA and membranes simultaneously which 

suggests the formation of a membrane-associated nucleoprotein complex that avoids 

polymerisation of FtsZ through the chromosome (Adams et al., 2015). SlmA inhibits 

the polymerisation of FtsZ by a direct interaction whereas the interaction partner of Noc 

is still unknown (Cho et al., 2011). The nucleoid occlusion in rod-shaped bacteria is 
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only required when major cell cycle events have been disturbed since the Min system 

alone is capable to position the division ring (Wu & Errington, 2004). However, in 

coccoid bacteria such as S. aureus that lack the Min system, deletion of noc results in 

division defects such as DNA breaks and multiple FtsZ rings (Veiga et al., 2011).  

 

1.2.7.2.3 Alternative mechanisms 

Most work on Z-ring positioning has been done in E. coli and B. subtilis where the Min 

system and nucleoid occlusion play a pivotal role to ensure correct placement of the 

cell-division site. Recently, it has become evident that many bacteria do not possess 

these spatial organisers (Pinho et al., 2013, Monahan et al., 2014). Furthermore, 

although the depletion of both, the min genes and NO genes in B. subtilis and E. coli 

reduce cell viability, cells are still able to correctly place the Z-ring. Taking together, 

this suggests that Min and NO are not the only spatial organisers and that other systems 

contribute to or are able to take over Z-ring placement in E. coli and B. subtilis (Wu & 

Errington, 2004, Bernhardt & de Boer, 2005, Bailey et al., 2014). 

 

1.2.7.2.3.1 MipZ 

Caulobacter crescentus is capable to divide properly without using the Min or NO 

system. MipZ, an essential ATPase protein of previously unknown function, interacts 

with the chromosome partitioning protein ParB forming a complex near the origin of 

replication at the cell poles and inhibits FtsZ polymerisation (Thanbichler & Shapiro, 

2006). After replication, one copy of the chromosome moves to the other end of the cell 

together with MipZ. Interaction with ParB stimulates the ATPase activity of MipZ 

which is required for inhibition of FtsZ. ATP hydrolysis in turn causes the release of 

MipZ from the chromosome followed by recapturing of MipZ by ParB (Kiekebusch et 

al., 2012). This dynamic process explains the formation of a MipZ gradient where its 

concentration is lowest in the midcell and highest at the cell poles, thereby preventing 

Z-ring formation near the cell poles.  

 

1.2.7.2.3.2 MapZ/LocZ 

Streptococcus pneumoniae is an ellipsoidic shaped gram-positive bacterium and also 

lacks the canonical spatial organisation systems. First evidence for a cell-division site 

regulatory system came from the Serine/Threonine kinase StkP. Its deletion causes 

elongated cells and StkP localises at the septum (Beilharz et al., 2012). Later work of 

two groups supported the notion of an involvement of StkP in cell-division 
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demonstrating that MapZ, also called LocZ, is a cell-division associated protein that is 

phosphorylated by StkP. Both the phosphorylated as well as the non-phosphorylated 

form of MapZ positively affect Z-ring formation by direct protein-protein interactions 

with FtsZ (Fleurie et al., 2014a). MapZ arrives prior to FtsZ and forms ring-like 

structures moving apart as the cell elongates. These rings serve as future division 

determinants (Fleurie et al., 2014a, Holeckova et al., 2015). 

 

1.2.7.2.3.3 SsgAB 

An entirely new mechanism of Z-ring regulation was found in Streptomycetes 

coelicolor, another bacterium lacking all the known FtsZ-positioning proteins. SsgA-

like proteins (SALP) are cell-division site determinant factors in Streptomycetes. Cells 

lacking ssgB form long hyphae incapable of cell-division (Traag & van Wezel, 2008). 

In vitro studies showed that the membrane-associated protein SsgB positively affects 

FtsZ formation and interacts with FtsZ as demonstrated by FRET and BACTH studies 

(Willemse et al., 2011). Presumably, SsgB tethers FtsZ to the membrane and induces 

the formation of the Z-ring. The second protein involved is SsgA that only interacts 

with SsgB but not FtsZ, indicating a role for SsgA in guiding SsgB to the cell-division 

site. Interestingly, both proteins still localise to the septum in FtsZ-depleted cells but it 

is currently unknown how SsgAB identify the future cell-division site. However, SsgAB 

proteins are only found in Actinomycetes (Willemse et al., 2011). 

 

1.2.7.2.3.4 PomXYZ 

Myxococcus xanthus neither possesses Min proteins nor the NO system. Recently, it has 

been reported that cells without the ParA-like protein PomZ exhibit severe cell-division 

defects along with incorrectly positioned Z-rings and mini-cells lacking a chromosome 

(Treuner-Lange et al., 2013). PomZ localises to the cell-division site prior to FtsZ and 

after chromosome segregation and forms a complex with PomX and PomY. PomZ 

interacts with FtsZ from cell extract and promotes the formation of the Z-ring upon 

ATP hydrolysis stimulated by PomXY and DNA binding (Schumacher, 2016). Since 

PomZ also localises to the future cell-division site in cells depleted of FtsZ, a role for 

PomZ in division-site identification has been suggested (Treuner-Lange et al., 2013).  
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Figure 1.12 MinCDE oscillation in E. coli 

Schematic overview of oscillation dynamics of MinCDE proteins. A, MinCD oscillate 

between cell poles. MinE forms a ring-like structure that also moves towards the cell 

poles following MinCD. B, MinD forms a dimer in the presence of ATP and binds to 

the membrane. C, MinC binds to the MinD dimer forming a membrane bound complex. 

D, MinE recognises and binds the MinD dimer and thereby causes the detachment of 

MinC. E, Released MinC activates ATPase activity of MinD which then results in the 

monomerisation of MinD and in return its dissociation from the membrane. Figure is 

adapted from Rowlett and Margolin, 2013. 
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1.2.7.3 Divisome assembly 

After the cell-division site is determined, FtsZ polymerises and forms the Z-ring. To 

complete septation the following steps have to be taken into consideration:  

1. FtsZ needs to be tethered to the membrane 

2. Recruitment of downstream divisome proteins 

3. FtsZ filament stabilisation 

4. Constriction 

5. Formation of a bridge between the divisome and peptidoglycan 

6. Peptidoglycan synthesis 

7. Membrane fusion 

8. Peptidoglycan hydrolysis to release septated cells 

First, FtsZ itself does not have an affinity for the membrane and needs to be tethered to 

the membrane via FtsA or ZipA (Pichoff & Lutkenhaus, 2005, Ma & Margolin, 1999). 

FtsA is highly conserved among bacteria except for Mycobacteria and Cyanobacteria 

whereas ZipA is only found in E. coli and other γ-proteobacteria. These proteins act as a 

scaffold recruiting a number of proteins that are required for complete septation. 

Recruited proteins are involved in a variety of functions of which not all are essential 

and overlap with each other. FtsZ assembly is regulated by EzrA, SepF, ZapA and 

ZapB. EzrA is only found in gram-positive bacteria with low GC content, inhibits FtsZ-

assembly and limits the number of Z-rings. SepF is conserved across gram-positive and 

cyanobacteria and contributes to the recruitment of other cell-division-associated 

proteins and is capable of taking over the function of FtsA when overexpressed 

(Ishikawa et al., 2006). Z-ring assembly is positively regulated by ZapA and ZapB by 

stabilising FtsZ filaments. FtsZ membrane attachment is crucial for Z-ring formation 

and constriction since reconstitution of FtsZ together with FtsA was enough to partially 

constrict liposomes in vitro (Osawa et al., 2008, Osawa & Erickson, 2011). While the 

Z-ring constricts the cell, new cell material in the form of peptidoglycan and 

phospholipids has to be produced at the site of membrane invagination. The former has 

been investigated intensively and it has been demonstrated that many divisome proteins 

such as FtsQ (DivIB), FtsL and FtsB (DivIC) build up a link between divisome and 

peptidoglycan synthesis. It has been suggested that another protein, GpsB along with 

EzrA localises PBP1 in B. subtilis (Claessen et al., 2008). Furthermore, DivIB interacts 

with PBP2B in B. subtilis and binds peptidoglycan in S. aureus (Rowland et al., 2010, 

Bottomley et al., 2014). Additionally, the integral membrane protein FtsW is a flippase 

translocating peptidoglycan precursors to the outer leaflet of the cell providing the 

substrate for PBPs in peptidoglycan synthesis (Mercer & Weiss, 2002). FtsW is also 
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involved in the recruitment of the peptidoglycan synthesis machinery and interacts with 

FtsI (PBP3), FtsL and FtsN (Di Lallo et al., 2003, Fraipont et al., 2011, Karimova et al., 

2005, Typas et al., 2012). Moreover, to save septally entrapped chromosomes, FtsK, a 

DNA translocase, binds to specific sequences termed KOPS located throughout the 

chromosome and resolves chromosome dimers and moves the DNA out of the 

constricting septum. Although this mechanism is only crucial during stress, the deletion 

of the membrane part of FtsK is lethal for the cell indicating a second role for FtsK 

(Begg et al., 1995, Bigot et al., 2005, Steiner et al., 1999, Fleming et al., 2010). After 

complete cell-division, daughter cells are still attached to each other via peptidoglycan 

and need to be separated by hydrolases. A potential role has been demonstrated for 

FtsEX, an ABC transporter that recruits EnvC to the cell-division site (Schmidt et al., 

2004, Yang et al., 2011). EnvC is a septal peptidoglycan amidase that contributes to 

complete septation as well as the positive regulation of the amidases AmiA, AmiB and 

AmiC (Uehara et al., 2010). An overview of the cell-division machineries of E. coli, B. 

subtilis and S. aureus is given in Fig. 1.13. 

 

1.2.8 Cytoplasm 

All the aforementioned cellular processes follow a certain pattern. Precursors are 

formed in the cytoplasm, linked to the membrane and then gradually extended to 

polymers either at the cytoplasmic face of the membrane or after flipping to the outer 

leaflet of the cell. Finally, polymers are modified and anchored to their final destination. 

The material is provided from cytoplasmic metabolic processes whose products are 

transported by diffusion. Thus, not much attention has been put on the cytoplasm since 

it is mainly seen as an aqueous densely packed solution of polydisperse molecules 

(Cayley et al., 1991). An early study undertaken by Elowitz et al. demonstrated the 

mobility of several cytoplasmic proteins in E. coli and showed that, although all 

proteins follow simple diffusion mechanics based on Brownian motion, a single 

viscosity for the cytoplasm does not explain the observed diffusion values (Elowitz et 

al., 1999). Brownian motion is the process of random particle motion due to their 

collision with other particles and describes what is commonly understood as diffusion 

(Phillips, 2013). Recently, research has slowly moved into the physical aspects of 

diffusion and their biological impact on cellular processes gradually created an image to 

explain the observations of Elowitz et al.. Single-particle tracking using 

photoactivatible fluorophores allowed the trajectories of proteins to be followed and to 

draw conclusions whether diffusion is homogeneous throughout the cell or regulated by 

intracellular structures. The photoactivatible protein Kaede was found to be 



 

34 
 

homogeneously distributed in the cytoplasm and exhibits a homogeneous diffusion. 

However, in longer cells, Kaede diffusion is faster within the nucleoid than in the 

middle of the cell (Bakshi et al., 2011). Macromolecular structures such as the nucleoid 

are heterogeneously distributed and influence the diffusion of molecules such as the the 

small heat shock chaperone IbpA (Coquel et al., 2013). Furthermore, also protein 

aggregates that have to been linked to ageing in E. coli diffuse to and accumulate at the 

old cell pole that acts as a landfill (Coquel et al., 2013). Single-particle tracking of the 

cytoplasmic photoactivatible protein mEos2 revealed geometrical aspects as an 

additional component that affects diffusion rates since the diffusion of mEos2 was 

found to be faster in the middle of the cells and slower at the cell poles where proteins 

are spatially more restricted (English et al., 2011). Diffusion studies using fluorescently 

marked mRNAs further showed that diffusion of at least mRNAs is independent of 

cytoskeletal components such as FtsZ and MreB (Golding & Cox, 2006). FtsZ itself is 

localised in a stationary manner during cell-division along with a diffusive cytoplasmic 

form. Interestingly, although FtsZ movement follows Brownian motion, the diffusion is 

restricted to a helical region spanning throughout the entire cell suggesting a yet 

unknown diffusion barrier for FtsZ (Niu & Yu, 2008). Diffusion patterns can also be 

altered due to protein-protein interactions or metabolite binding. For instance, the 

stringent response protein RelA that binds to ribosomes shows drastically altered 

diffusion behaviour upon starvation and is more diffusive to reach as many ribosomes 

as possible (English et al., 2011). A ground-breaking study undertaken by Parry et al, 

fundamentally altered the view of the cytoplasm. The trajectories of molecules are 

highly dependent on their size and the metabolic state (Parry et al., 2014). While small 

particles diffuse freely, bigger molecules are more constrained and trapped within 

certain areas. This leads to the formation of crowded macromolecules. However, active 

metabolism ‘fluidises’ the cytoplasm and allows bigger molecules to leave their local 

environment (Fig. 1.14). It is still unclear what causes the observed changes in 

subdiffusive motion but an explanation could be that active metabolism causes more 

rearrangements within macromolecules which potentially lower the hydrophobic and 

electrostatic interactions between macromolecule components. Thereby, molecules 

could leave the macromolecule and access areas further away (Parry et al., 2014, 

Spitzer, 2011). In summary, diffusion in bacterial cells is governed by the following: 

geometry, molecule size that results in the formation of macromolecular structures 

mainly composed of ‘big’ molecules, the affinity to other molecules that might be 

stationary and the metabolic state of the cell. 
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Figure 1.13 Cell-division machineries in E. coli, B. subtilis and S. aureus 

Schematic representation of the divisome in E. coli (A), B. subtilis (B) and S. aureus 

(C). Images are adapted from Bottomley, 2011. 
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Figure 1.14 Molecule diffusion dynamics in the bacterial cytoplasm 

Schematic overview of some aspects that regulate subdiffusive properties of molecules. 

A, Geometry: The cell poles spatially restrict the diffusion of molecules and can result 

in their polar accumulation. B+C, Molecule size and metabolic state: ‘Small’ molecules 

exhibit a faster diffusion rate compared to ‘big’ molecules (length of arrows indicates 

the diffusion rate). Diffusion is greatly increased during metabolism which especially 

affects ‘bigger’ molecules. D, Macromolecular crowding: Dynamics due to A-C result 

in crowding of ‘big’ molecules into subcellular macromolecules with low diffusion. 

Components of macro-molecules have increased chances to access other areas in states 

of active metabolism whereas ‘small’ molecules are mainly diffusive and less affected 

by the metabolic state. Figure is adapted from Parry et al., 2014. 
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1.3 Localisation of membrane proteins 

As discussed before, the bacterial cell is composed of a variety of biopolymers many of 

which are synthesised at the membrane. This process involves several synthases located 

in the membrane along with temporal and spatial regulatory elements. How do bacterial 

cells provide the structural foundation to make cellular processes as efficient as 

possible? Firstly, processes mostly require a complex of proteins that allow the 

channelling of metabolites. Secondly, these complexes are localised by protein-protein 

interactions within a spatial determining protein, lipid interactions or sense the 

curvature of the membrane (Kuriyan & Eisenberg, 2007, Bramkamp & Lopez, 2015). 

And lastly, synthesis has to occur at a particular place for a specific function as it would 

be energetically unfavourable to transport products to a far off cellular destination. In 

order to position membrane proteins and membrane-associated proteins, bacterial cells 

deploy both membrane curvature features and specific microdomains composed of 

certain lipids. 

 

1.3.1 Membrane curvature as a cue for protein localisation 

Ultimate cues in bacterial cells are given by their wide range of different cell shapes that 

can be reduced to arrangements of positively and negatively curved membranes. Polar 

localisation of proteins is a common feature in bacteria as seen for septal positioning 

mechanisms (Young, 2006). In the case of E. coli, the previously described tethering of 

MinCD to the poles gives a supramolecular foundation. 

 

1.3.1.1 DivIVA 

The cell division initiation protein DivIVA has been investigated intensively and is a 

bacterial topological marker. It is widely conserved among Gram-positive bacteria and 

mainly acts as a protein scaffold to position proteins involved in peptidoglycan 

synthesis, secretion or division-site selection. In B. subtilis and Listeria monocytogenes, 

DivIVA serves as part of the Min system and tethers MinC via MinJ to the cell poles, 

whereas it is required for polar growth and peptidoglycan synthesis in Corynebacterium 

glutamicum, Streptococcus pneumonia and Mycobacteria (Bramkamp et al., 2008, 

Letek et al., 2008, Sieger & Bramkamp, 2014, Fleurie et al., 2014b, Meniche et al., 

2014, Halbedel et al., 2012). Yet another function of DivIVA is found in Listeria 

monocytogenes where the protein is needed for the secretion of autolysins at the poles. 

Cells lacking DivIVA grow as long chains that have clearly completed cell division but 

daughter cells are still attached (Halbedel et al., 2012). Unexpectedly, a divIVA null 
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mutant of S. aureus shows no obvious phenotype and undergoes normal cell-division, 

which raises the question whether there is a homologue that takes over the function of 

DivIVA (Pinho & Errington, 2004). The common feature of all DivIVA proteins is that 

they localise at the poles or the cell division site. But it was unknown whether DivIVA 

is the first protein to arrive or is recruited by other factors. Two studies however 

clarified the picture by showing that the heterologous expression of B. subtilis DivIVA 

in E. coli and Schizosaccharomyces pombe displayed the same localisation at the poles 

(Edwards et al., 2000). Furthermore, DivIVA that was reconstituted into liposomes was 

always found at locations with highly curved membranes (Lenarcic et al., 2009). In 

spherical cells, DivIVA is homogeneously distributed, since suitable membrane areas 

with high curvatures are missing, which underlines its ability to discriminate between 

degrees of concavity (Ramamurthi & Losick, 2009). Both the heterologous expression 

and the reconstitution into liposomes made it clear that it is an intrinsic feature of 

DivIVA to bind to negatively curved membranes. DivIVA has a highly conserved N-

terminus that is required for the membrane targeting (Perry & Edwards, 2004). 

Daptomycin-treated B. subtilis cells form membrane distortions that recruit DivIVA 

suggesting the formation of local highly curved membrane patches (Pogliano et al., 

2012). It forms a parallel coiled-coil that exposes hydrophobic and positively charged 

residues that are essential for membrane binding (Oliva et al., 2010). Its C-terminus is 

more variable and used for interaction with proteins, however, the N-terminus of the B. 

subtilis DivIVA is needed to bind MinJ (van Baarle et al., 2013). The big question 

however is which mechanism accounts for the polar localisation of DivIVA since lipids 

at strongly curved membranes are densely packed and probably prevent the insertion of 

the DivIVA N-terminus into the membrane? Strahl and Hamoen proposed that the 

answer relies in the ability of DivIVA to form oligomers. These oligomers are 

composed of 4-8 monomers and span half of the curvature radius of B. subtilis septa. 

Using a Monte-Carlo simulation, they could show that DivIVA likely forms stable 

clusters at curved membranes because of the combined interactions between each other 

and lipids (Fig. 1.15A) (Strahl & Hamoen, 2012). Recently, a study demonstrated that 

B. subtilis cells lacking the secretion ATPase SecA fail to properly localise DivIVA. 

However, it has been hypothesized that not SecA directly but a downstream effect such 

as potential membrane changes due to the lack of SecA are responsible for the observed 

DivIVA localisation (Halbedel et al., 2014). Structured illumination microscopy (SIM) 

revealed that DivIVA forms a highly stable ring at the septum that collapses into 

patches at the poles (Eswaramoorthy et al., 2011). Another group used photo-

convertible and activatable fluorophores and proposed that DivIVA in newly divided 
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cells moves from the poles to the new septum. The cell-division site probably provides a 

higher curvature compared to the poles and is therefore favored (Bach et al., 2014). The 

mechanism how DivIVA moves to the poles and its accompanied switch between 

membrane detached and soluble form remains unknown. 

 

1.3.1.2 SpoVM 

DivIVA is not the only known protein that senses curved membranes. An early study 

demonstrated the recruitment of a peripheral membrane protein involved in spore 

formation to the polar septum right after the start of spore formation. SpoVM engulfs 

the spore (Fig. 1.15B). However, the authors assumed that a yet unknown protein is 

responsible for SpoVM targeting (van Ooij & Losick, 2003). Later work clarified the 

picture and revealed the independent specific localisation of SpoVM to positively 

curved membranes that are found when the cells are forming spores (Ramamurthi et al., 

2009). Ramamurthy et al., also observed that SpoVM localises to the outer surface of 

internal vesicles when expressed in E. coli and Saccharomyces cerevisiae mutants that 

produce vesicles or fragmented vacuoles, respectively. Additionally, purified SpoVM-

GFP was found to attach to unilamellar vesicles. However, it only binds to small 

vesicles with diameter sizes between 1 µm and 5 µm which strongly indicates the ability 

of SpoVM to discriminate between the degree of positive curvature. Further studies 

corroborated this finding and revealed that SpoVM extensively interacts with acyl 

chains in membranes to sense packing differences between curved membranes leading 

to its preferential binding to convex membranes (Gill  et al., 2015). 

 

1.3.1.3 Other curvature sensing proteins 

Non-membrane proteins of the general phosphotransferase system also display a polar 

localisation. Enzyme I (EI) was found to be localised at the poles in E. coli and 

preferentially accumulates at sites of strong curvature in spherical E. coli cells (Lopian 

et al., 2010, Govindarajan et al., 2013). Co-expression with DivIVA-GFP from B. 

subtilis demonstrated that E1 and DivIVA exhibit a similar localisation pattern. 

However, E1 is a soluble protein and no membrane tethering domain could be found. 

Thus, it is assumed that another factor might orchestrate E1 localisation (Govindarajan 

et al., 2013). 

The chemoreceptor TlpA localises at the base of the septum and at strongly 

curved membranes in B. subtilis. Structural studies of TlpA revealed its cone-shape that 

is required to sense negatively curved membranes (Fig. 1.15C). This localisation pattern 

was still seen in cell wall free cells that are also referred to as L-forms. Interestingly, 
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amino acid substitutions causing structural rearrangements to form a cylindrical shaped 

TlpA resulted in a loss of the observed localisation pattern (Strahl et al., 2015). 

 

1.3.1.4 BAR-domain containing proteins in eukaryotes 

BAR domain proteins in eukaryotic organisms have been investigated intensively 

during the last decade. Proteins belonging to the Bin-Amphiphysin-Rvs (BAR) domain 

superfamily have a dimeric α-helical protein motif, which enables them to interact with 

membranes. Due to their curved interface they preferentially bind to positive (BAR) or 

negative (I-BAR) curved membranes (Fig. 1.15D) (Frost et al., 2008, Saarikangas et al., 

2009) (Zhao et al., 2011). These are found in various eukaryotic species such as yeast, 

Drosophila melanogaster or Leishmania spec. (Lefebvre et al., 2013). Some BAR 

domain proteins contain an additional N-terminal amphipathic helix that inserts into the 

membrane and induces membrane curvature (Peter et al., 2004). Furthermore, most 

BAR-proteins have at least one domain that enables them to interact with other proteins. 

Thus, BAR-proteins are scaffolding proteins that organise a variety of other proteins in 

a curvature-dependent manner (Mim & Unger, 2012). Creation of trusions in eukaryotic 

cells by these and other proteins are crucial to maintain cell fundamentals such as 

membrane fusion (Chamberlain et al., 2001), membrane fission (Hinshaw, 2000), 

membrane budding (McMahon & Gallop, 2005) and endocytosis (Canton & Battaglia, 

2012). 

 

1.3.2 Driving forces for membrane curvature 

Bacterial cells rely on differently curved membranes as crucial localisation cues. 

Consequently, this begs the question as to how curved membranes are formed. With the 

discovery of lipid rafts in eukaryotic cells it became evident that membranes are 

structured and not only composed of a disordered liquid phase (Rietveld & Simons, 

1998). Using fluorescent microscopy of liposomes it was demonstrated that membranes 

that are formed by different lipids can laterally separate into coexisting liquid domains 

with distinct lipid compositions and curvatures (Baumgart et al., 2003) (Parthasarathy et 

al., 2006). These domains are enriched by cholesterol and or sphingholipids that 

stimulate their formation. Further studies confirmed these results and showed that even 

weak negative curvatures cause the enrichment of certain lipids (Nishizawa and 

Nishizawa, 2011). 
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Figure 1.15 Examples of membrane curvature sensing protein mechanisms 

Schematic overview of proteins and mechanisms that sense positive and negative 

membrane curvature. A, DivIVA in B. subtilis, accumulates to strongly negatively 

curved membranes by an interaction between DivIVA proteins and lipids. B, SpoVM in 

B. subtilis binds to the outer positively curved membranes of endospores. C, The cone-

shaped TlpA senses negatively curved membranes in B. subtilis. D, BAR and I-BAR 

domain containing proteins in eukaryotes attach to positively (BAR) or negatively (I-

BAR) curved membranes. Figures is adapted from Strahl et al., 2015. 

 

  



 

42 
 

1.3.2.1 Lipid composition 

However, not only the sorting of lipids is dependent on membrane curvature. Lipids 

also display an important force for the formation of curved membranes. The shape of 

lipids depends on the size of their headgroup and their acyl chain length, saturation and 

composition (Cooke & Deserno, 2006). Cylindrical lipids such as phosphatidylcholine 

and phosphatidylserine form flat membranes whereas conical shaped lipids such as 

phosphatidylethanolamine, phosphatidic acid, diacylglycerol and cardiolipin impose a 

negative curvature to membranes. Lipids with big headgroups forming inverted conical 

shapes such as lysophosphatidylcholine and phosphatidylinositol phosphates cause the 

generation of positive curvatures (Martens & McMahon, 2008, Chernomordik & 

Kozlov, 2003, Di Paolo & De Camilli, 2006, Zimmerberg & Kozlov, 2006). In 

principal, the ratio between the size of the acyl chain and the polar head group decide 

whether the lipid is likely to be a part of positively, negatively or non-curved 

membranes.  

 

1.3.2.2 Shaped membrane proteins and protein crowding 

Furthermore, this heterogeneity also drives the sorting of peptides and proteins. Wu and 

Liang, 2014, showed using MARTINI Force dynamic simulations, that proteins tend to 

accumulate in curved regions dependent on their intrinsic structural features (Wu & 

Liang, 2014). Interestingly, the simulated peptides could also further enhance the 

membrane curvature suggesting a complex interplay between lipids, proteins/peptides 

and membrane curvature that determines the organisation and shape of membranes. 

Proteins can insert a hydrophobic domain between lipid headgroups acting as a ‘wedge’ 

and induces local membrane curvature. The amount of these inserted motifs is crucial in 

the stabilisation and degree of curved membranes (Ford et al., 2002, Campelo et al., 

2008, McMahon et al., 2010). Another mechanism of how proteins induce membrane 

curvature is scaffolding that is seen for BAR-domain proteins or the earlier discussed 

crescentin (Peter et al., 2004, Ausmees et al., 2003). These proteins display an intrinsic 

shape that is imposed on the membrane through a membrane-binding interface. 

Additionally, in bacteria the cell-wall is a major shape and membrane curvature 

determining factor and both of these are affected by the insertion of new PGN material. 

An example is seen for MreB, that directs the PGN synthesis machinery to membrane 

areas of negative membrane curvature which in return results in straightening of the 

cells and flattened membranes (Ursell et al., 2014). The shape of integral membrane 

proteins may also affect local membrane curvature. Transmembrane proteins such as the 
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ABC-transporter BmrA or the chemoreceptor protein TlpA from B. subtilis that form a 

conical or inverted conical shape can impose their intrinsic shape on the membrane 

(Strahl et al., 2015, Fribourg et al., 2014, MacKinnon, 2003, Aimon et al., 2014). 

However, the contribution of these proteins to the overall membrane shape has not been 

yet fully explained. 

 

1.3.3 Lipid microdomains in bacterial membranes 

Although most simulation studies on membranes were performed using eukaryotic 

model membranes, it is very likely that the interplay, together with its resulting sorting 

of proteins and lipids also occurs in bacterial membranes. Bacterial membranes are also 

composed of a variety of differently shaped lipids and integral membrane proteins, but 

they lack cholesterol and most bacterial membranes do not contain sphingholipids. 

However, bacterial membranes can rarely contain hopanoids and squalene, the precursor 

of cholesterol. Hopanoids that are found in Methylobacterium extorquens have been 

shown to exhibit sterol-like properties in vitro that can order membranes and form 

microdomains (Saenz et al., 2015, Saenz et al., 2012). The first evidence that bacterial 

membranes possess structural heterogeneity in vivo came from fluorescent staining 

studies. Two studies showed that fluorescent lipophilic dyes are distributed 

heterogeneously in Mycobacteria and E. coli (Christensen et al., 1999, Fishov & 

Woldringh, 1999). Using of the cardiolipin-specific 10-N-nonyl acridine orange dye led 

to the discovery of cardiolipin (CL) domains in E. coli and B. subtilis on the polar and 

septal regions (Nishizawa et al., Mileykovskaya & Dowhan, 2000) (Kawai et al., 2004). 

Another phospholipid that was found to form domains is phosphatidylethanolamine 

(PE). It can be visualised with the cyclic peptide probe Ro09-0198 (Ro) and it localises 

to septal membranes of exponentially growing cells of B. subtilis (Nishibori et al., 

2005)(Nishibori et al., 2005) while it was found to be distributed uniformly in the 

membrane of E. coli and other Gram-negative bacteria such as Salmonella and 

Pseudomonas (Emoto & Umeda, 2001, Nishibori et al., 2005). Furthermore, early work 

also demonstrated the heterogeneous localisation of several membrane proteins across 

the cytoplasmic membrane (Meile et al., 2006). Eventually, a study undertaken by 

Lopez and Kolter revealed the existence of microdomains in bacteria as well as their 

association with certain proteins (Lopez & Kolter, 2010). One of them is FloT, a 

homologue of the well-studied eukaryotic lipid raft marker flotillin, that is found in 

most bacterial genomes and displays a punctate pattern in B. subtilis and S. aureus 

(Donovan & Bramkamp, 2009, Zhang et al., 2005a, Neumann-Giesen et al., 2004). 
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Interestingly, cells that are treated with zaragozic acid lose this pattern and are impaired 

in biofilm formation which is due to the delocalisation of another lipid raft associated 

protein, the kinase KinC. KinC is indirectly required for the inhibition of motility and 

activation of biofilm formation. Zaragozic acid is a known inhibitor of squalene 

synthases which suggests that squalene is required for the formation of microdomains in 

B. subtilis and S. aureus (Lopez & Kolter, 2010). STED microscopy allowed the 

determination of the assembly of FloT and another raft protein FloA into assemblies of 

85 to 110 nm in B. subtilis which resemble flotillin microdomains in eukaryotic cells 

(Dempwolff et al., 2016). The protein cargo of these microdomains include the protease 

FtsH, the secretion protein SecY and the signal peptidase SppA which all interact with 

FloT indicating a lipid raft scaffolding function for FloT (Bach & Bramkamp, 2013). A 

variety of other proteins were found in B. subtilis microdomains including proteins 

involved in cell-division, signaling and iron uptake (Bramkamp & Lopez, 2015). 

 

1.4 Staphylococcus aureus  

S. aureus is a gram-positive apparently spherically shaped bacterium that is mostly 

known for its virulence and the spread of antibiotic resistance (Foster, 2005, Veldkamp 

& van Strijp, 2009, de Lencastre et al., 2007). Staphylococcal diseases in form of sepsis 

and abscess formation were first described by Alexander Ogston in 1880 and 1882 

(Ogston, 1882, 1984) (Ogston, 1882, 1984). Nowadays, S. aureus is one of the major 

causes of nosocomial and community associated infections. Approximately 30 % of the 

healthy human population carry S. aureus in their nose and a skin puncture or break can 

allow S. aureus to enter tissues and cause infections (Kluytmans et al., 1997, Lowy, 

1998, Peacock et al., 2001, Hennekinne et al., 2012). S. aureus has a low GC content 

and can be distinguished from other staphylococcal species by DNase and coagulase 

tests (Lowy, 1998)(Madigan and Martinko, 2006). 

 

1.4.1 Staphylococcus aureus as a model to study membrane 

protein localisation 

Most of our knowledge about protein positioning comes from the rod-shaped model 

organisms B. subtilis and E. coli. These display a variety of well-studied geometrical 

cues such as cell poles, endospores (in B. subtilis) and the septum during cell-division 

along with several spatial organisers like the Min system or MreB. Less attention has 
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been given to membrane proteins that are not among the aforementioned. Some proteins 

are found to be distributed homogeneously throughout the cell periphery such as SecY 

and the ATPase subunit AtpC in B. subtilis whereas other proteins are found in clusters 

such as the respiratory protein CydB in E. coli and the NAD(P)H dehydrogenase NDH-

1 in Synechococcus elongatus (Matsumoto and Matsuoka, 2012)(Lenn et al., 2008b, Liu 

et al., 2012). S. aureus is an apparently coccoid shaped bacterium that divides in three 

orthogonal planes by forming a septum in the middle of the cell generating two 

hemispherical daughter cells that are connected by a thin peripheral ring (Tzagoloff & 

Novick, 1977, Pinho et al., 2013, Turner et al., 2014, Turner et al., 2010). The 

peripheral ring cracks due to circumferential stress and perforations leading to a cell 

‘popping’ event where both daughter cells are separated within milliseconds and gain an 

apparent coccoid shape (Zhou et al., 2015). Most localisation studies in S. aureus have 

been focused on proteins involved in septum formation rather than other processes 

taken place at the cell periphery.  

 

1.5 A supramolecular structure in the membrane of S. aureus 

Recent studies on the distribution of enzymes involved in lipid metabolism in S. aureus 

led to the discovery of a colocalised punctate pattern of PlsY and CdsA (Fig. 1.16AB) 

(Garcia-Lara et al., 2015). The absence of PlsY causes severe morphological defects in 

division. Furthermore, the localisation of the septally located cell-division proteins 

EzrA and PBP2 were affected in PlsY-depleted cells which may explain the observed 

aberrant cell-division. It seemed unlikely that PlsY is the key protein for the localisation 

of this protein network and the focus was directed the MreBCD proteins that are known 

to function as spatial organisers. S. aureus lacks MreB and nearly nothing is known 

about the role of MreC and MreD. Deletion of mreC showed no effect on 

staphylococcal cells but mreD null mutants are affected in the localisation of PlsY and 

CdsA (Fig. 1.16C). Further studies revealed that MreD is also localised in a similar 

punctate pattern to PlsY and CdsA, giving first evidence that MreD might be the 

responsible localisation component (Fig. 1.16D). Furthermore, it was shown by a 

bacterial two-hybrid analysis that MreD, CdsA and PlsY interact with each other raising 

the question as to whether MreD forms a network of proteins anchoring them to certain 

spots within the cell or if there is another component that ‘arrives’ beforehand? 
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Figure 1.16 Enzymes involved in phospholipid synthesis and MreD are part of a 

supramolecular structure in the membrane of S. aureus 

A, fluorescence image of PlsY-GFP in S. aureus SH1000. The number indicates the 

enlarged image of one selected cell. B, Immunofluorescence image of PlsY, labelled 

with an anti-PlsY-antibody (red) and fluorescence image of CdsA-GFP in SH1000. C, 

Growth curves of SH1000 (wild type), SH1000 ∆mreC (mreC), SH1000 ∆mreD (mreD) 

and SH1000 ∆mreCD (mreCD) over a time-course of 12 h. D, Phasecontrast and 

immunofluorescence image of MreD-GFP in SH1000 labelled with an anti-GFP 

antibody. Scale bars represent 1 µm. 
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1.6 Aims and summary of this study 
 

Chapter 3: The physiological role of MreD in S. aureus was analysed by a functional 

characterisation of an mreD deletion mutant. This was carried by subjecting the mutant 

to a number of physiological stresses such as heat, anaerobic growth and varying 

medium composition showing that the mreD mutant stops growing at 42 °C. This 

phenotype could be restored by the addition of NaCl. A particular focus was led on the 

potential role of MreD on the membrane organisation of S. aureus which was tested by 

fatty acid, phospholipid and membrane fluidity analyses which demonstrated that the 

mreD mutant exhibits lower levels of CL but higher levels of PG and LPG while the 

fatty acid composition and membrane fluidity were not altered compared to the parental 

strain. Metabolome studies showed a changed metabolome between both strains and at 

different growth temperatures. 

Chapter 4: This study also aimed to investigate the localisation of membrane 

proteins and specifically proteins involved in phospholipid biosynthesis in S. aureus 

using a range of fluorescent tags such as GFP, eYFP, mCherry and SNAP along with 

colocalisation studies. Integrative plasmids were used to express the protein of interest 

fused to a fluorescent marker under its native promoter. Their analysis confirmed the 

localisation pattern of PlsY using SNAP/eYFP/meYFP tags and further identified that 

its localisation is dose-dependent. Other proteins such as CydB, FloT, PlsC, PgsA, 

MprF and Cls2 also exhibit a non-uniform distribution in the membrane of 

Staphylococcus aureus while SecY was distributed homogeneously. A key element in 

this study was to investigate the underlying mechanism that determines membrane 

protein localisation using a variety of deletion mutants to analyse the impact of specific 

membrane components such as cardiolipin, lysinylated-phosphatidylglycerolphosphate 

and wall teichoic acids. In addition fluorescent strains were subjected to a number of 

inhibitors affecting fatty acid synthesis, membrane potential, Z-ring formation and the 

formation of squalene-dependent lipid rafts showing that FtsZ plays a crucial role in the 

positioning of PlsY. 

Chapter 5: A novel FRET-based protein-protein interaction system was 

developed to confirm the interaction of PlsY with CdsA, MreD and to identify 

interactions with other membrane proteins demonstrating an interaction of PlsY with 

CdsA, MreD, PgsA and CydB, but not with SecY and MscL. 

Chapter 6: To understand the basis of the punctate patterned distribution of 

membrane proteins, MreD-eYFP was expressed in E. coli where MreD was found to be 

distributed in patches within the membrane. As a next step, reconstitution experiments 

of purified MreD, labelled with Cy2, into liposomes were attempted to ask the question 

as to whether MreD can form the observed punctate pattern intrinsically? 
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Chapter 2: Materials and Methods 

2.1 Media 

2.1.1 Tryptic Soy Broth (TSB) 

TSB (Oxoid)      30 g l-1 

2.1.2 Brain Heart Infusion (BHI) 

BHI (Oxoid)      37 g l-1 

1.5 % (w/v) Oxoid agar was added to make BHI agar. 

2.1.3 Lysogeny broth (LB) 

Tryptone (Oxoid)     10 g l-1 

Yeast extract (Oxoid)     5 g l-1 

NaCl       10 g l-1 

2.1.4 LK medium 

Tryptone (Oxoid)     10 g l-1 

Yeast extract (Oxoid)     5 g l-1 

KCl       7 g l-1 

1.5 % (w/v) Oxoid agar was added to make LK agar. 

2.1.5 Lipase activity agar plates 

Baird-Parker agar base (Oxoid)   63 g l-1 

Egg Yolk with potassium tellurite (VWR Prolabo) 50 ml l-1 

The Egg Yolk was added to the autoclaved Baird-Parker Agar Base after cooling down 

to 50-60 °C. 
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2.1.6 Chemically defined medium (CDM) 

The recipe for CDM is based on (Hussain et al., 1991). 

Table 2.1 Chemically defined medium composition 

Solution 1 – Dissolved in 700 ml of distilled water adjusted to pH 7.2 
Na2HPO4 x 2H2O 7 g L-Lysine 0.1 g 
KH2PO4 3 g L-Leucine 0.15 g 
L-Aspartic Acid 0.15 g L-Methionine 0.1 g 
L-Alanine 0.1 g L-Phenylalanine 0.1 g 
L-Arginine 0.1 g L-Proline 0.15 g 
L-Cysteine 0.05 g L-Serine 0.1 g 
Glycine 0.1 g L-Threonine 0.15 g 
L-Glutamic Acid 0.15 g L-Tryptophan 0.1 g 
L-Histidine 0.1 g L-Tyrosine 0.1 g 
L-Isoleucine 0.15 g L-Valine 0.15 g 
Solution 2 – Dissolved in 140 ml of distilled water (1000x) 
Biotin 0.02 g Pyridoxal 0.8 g 
Nicotinic Acid 0.4 g Pyridoxamine di-

HCl 
0.8 g 

D-Panthothenic 
Acid 

0.4 g Riboflavin 0.4 g 

Thiamine HCl 0.4 g   
Solution 3 – Dissolved in 400 ml of 0.1 M HCl 
Adenine 
Hemisulphate 

0.16 g Guanine HCl 0.16 g 

Solution 4 – Dissolved in 500 ml of 0.1 M HCl 
CaCl2 x 6H2O 0.5 g (NH4)2Fe(SO4)2 x 

6H2O 
0.3 g 

Solution 5 – Dissolved in 800 ml of distilled water 
MgSO4 x 7H2O 4 g 
 

Solutions 1, 3 and 4 were mixed and autoclaved together. Whereas solution 2 was filter 

sterilised (0.2 µm pore size) and added after cooling. Solution 5 was autoclaved 

separately and added after cooling. 

The solutions were mixed at the following ratio: 

Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 

7 0.0001 0.5 0.1 1 

Before use, the medium was supplemented with different amounts of glucose. 

2.2 Antibiotics 
Antibiotics used in this study were prepared as filter-sterilised (0.2 µm pore size) stock 

solutions and stored at -20 °C (Tab. 1.2). For the use in liquid media, antibiotic stock 

solutions were added just before use whereas for the use in agar plates, stock solutions 

were added to media cooled below 50 °C.  
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Table 2.2 Antibiotics 

Antibiotic Stock  
conc. 
(mg ml-1) 

S. aureus  
working  
conc.  
(µg ml-1) 

E. coli  
working  
conc.  
(µg ml-1) 

Dissolved   
in: 

Ampicillin (Amp) 100 - 100 H2O 
Chloramphenicol 
(Cm) 

30 30 - 100 % ethanol (v/v) 

Erythromycin (Ery) 5 5 - 100 % ethanol (v/v) 
Kanamycin (Kan) 50 50 50 H2O 
Lincomycin (Lin) 25 25 - 50 % ethanol (v/v) 
Neomycin (Neo) 50 50 - H2O 
Spectinomycin (Spe) 50 - 50 H2O 
Tetracycline (Tet) 5 5 - 100 % ethanol (v/v) 

 
2.3 Bacterial strains and plasmids 

2.3.1 Staphylococcus aureus strains 

Table 2.3 S. aureus strains used in this study 

Strain Relevant genotype/Markers Reference 
RN4220 Restriction deficient transformation 

recipient 
(Kreiswirth et al., 
1983) 

SH1000 Derived from 8325-4, rsbU+ (Horsburgh et al., 
2002) 

Newman saeRS constitutively expressed by 
SaeS T53C substitution 

(Baba et al., 2008, 
Duthie, 1952) 

NewHG Derived from Newman, repaired 
saeS 

(Herbert et al., 2010) 
 

SH1000 secY-gfp 
(SJF1927) 

PsecY:secY-gfp Pspac:secY; EryR , LinR (Garcia-Lara et al., 
2015) 

SH1000 plsY-gfp 
(SJF1754) 

PplsY:plsY-gfp Pspac:plsY; EryR , LinR (Garcia-Lara et al., 
2015) 

SH1000 mreC-gfp 
(SJF1923) 

PmreC:mreC-gfp Pspac:mreC; EryR , 
LinR 

(Garcia-Lara et al., 
2015) 

SH1000 mreD-gfp 
(SJF1925) 

PmreD:mreD-gfp Pspac:mreD; EryR , 
LinR 

(Garcia-Lara et al., 
2015) 

SH1000 ezrA-gfp 
(SJF2095) 

PezrA:ezrA-gfp Pspac:ezrA; EryR , LinR (Steele et al., 2011) 

SH1000 plsY-eyfp 
(SJF4395) 

PplsY:plsY-eyfp Pspac:plsY; EryR , LinR This study 

SH1000 plsY-meyfp 
(SJF4775) 

PplsY:plsY-meyfp Pspac:plsY; EryR , 
LinR 

This study 

SH1000 plsC-eyfp 
(SJF4416) 

PplsC:plsC-eyfp Pspac:plsC; EryR , 
LinR 

This study 

SH1000 pgsA-eyfp 
(SJF4414) 

PpgsA:pgsA-eyfp Pspac:pgsA; EryR , 
LinR 

This study 

SH1000 mprF-eyfp 
(SJF4510) 

PmprF:mprF-eyfp Pspac:mprF; EryR , 
LinR 

This study 

SH1000 cydB-eyfp PcydAB:cydAcydB-eyfp Pspac:cydB; This study 
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(SJF4547) EryR , LinR 
SH1000 floT-eyfp 
(SJF4543) 

PfloT:floT-eyfp Pspac:floT; EryR , LinR This study 

SH1000 floT-eyfp + 
pGL485 
(SJF4795) 

PfloT:floT-eyfp Pspac:floT, pGL485; 
EryR , LinR, CmR 

This study 

JE2 NE258 Cls2::Tn; from NARSA transposon 
library, transposon inserted at the 
beginning of cls2; EryR 

(Fey et al., 2013) 
 

RN4220 plsY-gfp(tet) 
(SJF4793) 

PplsY:plsY-gfp Pspac:plsY; TetR This study 

SH1000 plsY-gfp(tet) 
(SJF4794) 

PplsY:plsY-gfp Pspac:plsY; TetR This study 

RN4220 plsY-SNAP 
(SJF4783) 

PplsY:plsY-SNAP Pspac:plsY; TetR This study 

SH1000 plsY-
SNAP/secY-gfp 
(SJF4727) 

PplsY:plsY-SNAP Pspac:plsY, 
PsecY:secY-gfp Pspac:secY; EryR , 
LinR, TetR 

This study 

RN4220 pgsA-SNAP 
(SJF4782) 

PpgsA:pgsA-SNAP Pspac:pgsA; TetR This study 

RN4220 cydB-SNAP 
(SJF4781) 

PcydB:cydB-SNAP Pspac:cydB; TetR This study 

SH1000 pGL485 
(SJF2991) 

pGL485; CmR (Cooper et al., 2009) 

SH1000 pGL621 
(SJF3193) 

pGL621; CmR (Garcia-Lara et al., 
2015) 

SH1000 mreD::kan  
(SJF2976) 

mreD::kan; KanR (Garcia-Lara et al., 
2015) 

SH1000 mreD::kan 
pGL621 
(SJF3208) 

mreD::kan pGL621 (mreD); KanR, 
CmR 

(Garcia-Lara et al., 
2015) 

SH1000 mreD::kan 
pGL631 

mreD::kan pGL631 (mreCD); KanR, 
CmR 

(Garcia-Lara et al., 
2015) 

SH1000 mreD::kan 
pGL485 
(SJF3210) 

mreD::kan pGL485 ; KanR, CmR (Garcia-Lara et al., 
2015) 

SH1000 mreCD::kan  
(SJF2841) 

mreCD::kan; KanR (Garcia-Lara et al., 
2015) 

SH1000 mreCD::kan 
pGL621 
(SJF3202) 

mreCD::kan pGL621 (mreD); KanR, 
CmR 

(Garcia-Lara et al., 
2015) 

SH1000 mreCD::kan 
pGL631 
(SJF3205) 

mreCD::kan pGL631 (mreCD); 
KanR, CmR 

(Garcia-Lara et al., 
2015) 

SH1000 mreCD::kan 
pGL485 
(SJF3206) 

mreCD::kan pGL485 ; KanR, CmR (Garcia-Lara et al., 
2015) 

Newman mreD::kan  
(SJF4705) 

mreD::kan; KanR This study 
 
 

NewHG mreD::kan  mreD::kan; KanR This study 
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(SJF4708) 
JE2 NE858 mreD::Tn; from NARSA transposon 

library, transposon inserted at the 
beginning of mreD; EryR 

(Fey et al., 2013) 
 

SH1000 mreD::Tn mreD::Tn, transduced from JE 
NE858; EryR 

This study 

SH1000 mreD::kan 
ftsZ-eyfp 
(SJF4711) 

mreD::kan, pCQ11-ftsZ-eyfp; KanR, 
IPTG-inducible expression of ftsZ-
eyfp; EryR, LinR 

This study 

SH1000 ftsZ-eyfp 
(SJF4704) 

pCQ11-ftsZ-eyfp, IPTG-inducible 
expression of ftsZ-eyfp; EryR, LinR 

(Dr.C.Walther, 
unpublished) 

SH1000 PmreCD-
mreD 
(SJF4651) 

geh::PmreCD-mreD; TetR,  This study 

SH1000 mreD::kan 
PmreCD-mreD 
(SJF4650) 

mreD::kan, geh::PmreCD-mreD; 
KanR, TetR, 

This study 

SH1000 
pWhiteWalker10 
(SJF4772) 

pWhiteWalker10, IPTG-inducible 
expression of plsY-gfp, EryR, LinR 

This study 

SA113 tarO::ermB 
pRB-tarO (SJF4147) 

tarO::ermB; pRB-tarO, constitutive 
expression of tarO, EryR, CmR 

(Peschel et al., 2001) 

SA113 mprF::ermB 
(SJF2207) 

mprF::ermB; EryR (Weidenmaier et al., 
2005) 

SH1000 mprF::ermB 
plsY-gfp (SJF4767) 

mprF::ermB, PplsY:plsY-gfp 
Pspac:plsY; EryR, LinR, TetR 

This study 

SH1000 ∆cls1/2 
(SJF4289) 

cls1::cat, cls2::tet; TetR, CmR (Ohniwa et al., 2013) 

SH1000 ∆cls1/2 plsY-
gfp (SJF4353) 

cls1::cat, cls2::tet, PplsY:plsY-gfp 
Pspac:plsY; EryR , LinR, TetR, CmR 

This study 

SH1000 ∆tarO plsY-
gfp 
(SJF4713) 

tarO::ermB, PplsY:plsY-gfp 
Pspac:plsY; EryR , TetR 

This study 

RN4220 pgsA-
mRFPmars1 
(SJF4791) 

PpgsA:pgsA-mRFPmars1; Pspac:pgsA; 
TetR 

This study 

RN4220 cdsA-mCherry 
(SJF4792) 

PcdsA:cdsA-mCherry; Pspac:cdsA; 
TetR 

This study 

RN4220 cdsA-
mRFPmars1 
(SJF4790) 

PcdsA:cdsA-mRFPmars1; Pspac:cdsA; 
TetR 

This study 

RN4220 + 
pWhiteWalker1 
(SJF4752) 

IPTG-inducible expression of gfp 
and mCherry;  EryR, LinR  

(Garcia-Lara et al., 
2015) 

RN4220 + 
pWhiteWalker2 
(SJF4753) 

IPTG-inducible expression of 
mCherry-gfp fused in tandem;  EryR, 
LinR 

(Garcia-Lara et al., 
2015) 

RN4220 + 
pWhiteWalker3 
(SJF4754) 

IPTG-inducible expression of mreD-
mCherry and plsY-gfp;  EryR, LinR 

(Garcia-Lara et al., 
2015) 

RN4220 + IPTG-inducible expression of cdsA- (Garcia-Lara et al., 
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pWhiteWalker4 
(SJF4755) 

mCherry and plsY-gfp;  EryR, LinR 2015) 

RN4220 + 
pWhiteWalker7 
(SJF4756) 

IPTG-inducible expression of cydB-
mCherry and plsY-gfp;  EryR, LinR 

This study 

RN4220 + 
pWhiteWalker8 
(SJF4757) 

IPTG-inducible expression of pgsA-
mCherry and plsY-gfp;  EryR, LinR 

This study 

RN4220 + 
pWhiteWalker10 
(SJF4758) 

IPTG-inducible expression of plsY-
gfp;  EryR, LinR 

(Garcia-Lara et al., 
2015) 

RN4220 + 
pWhiteWalker11 
(SJF4759) 

IPTG-inducible expression of mreD-
mCherry and plsY-gfp;  EryR, LinR 

This study 

RN4220 + 
pWhiteWalker12 
(SJF4760) 

IPTG-inducible expression of secY-
mCherry and plsY-gfp;  EryR, LinR 

(Garcia-Lara et al., 
2015) 

RN4220 + 
pWhiteWalker13 
(SJF4761) 

IPTG-inducible expression of mscL-
mCherry and plsY-gfp;  EryR, LinR 

(Garcia-Lara et al., 
2015) 

RN4220 + 
pWhiteWalker14 
(SJF4762) 

IPTG-inducible expression of fmnP-
mCherry and plsY-gfp;  EryR, LinR 

This study 

RN4220 + 
pWhiteWalker15 
(SJF4763) 

IPTG-inducible expression of alsT-
mCherry and plsY-gfp;  EryR, LinR 

This study 

RN4220 + 
pWhiteWalker16 
(SJF4764) 

IPTG-inducible expression of mntP-
mCherry and plsY-gfp;  EryR, LinR 

This study 

RN4220 + 
pWhiteWalker17 
(SJF4765) 

IPTG-inducible expression of lspA-
mCherry and plsY-gfp;  EryR, LinR 

This study 

RN4220 + 
pWhiteWalker18 
(SJF4766) 

IPTG-inducible expression of the 
first transmembrane domain of PlsY 
fused to mCherry and plsY-gfp;  
EryR, LinR 

This study 

EryR, erythromycin resistance; LinR, lincomycin resistance; TetR, tetracycline resistance, 

CmR, chloramphenicol resistance; KanR, kanamycin resistance.  
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2.3.2 Escherichia coli strains 

Table 2.4 E. coli strains used in this study 

Strain Relevant genotype/Markers Reference 
Top10  F-  mcrA  ∆(mrr-hsdRMS-mcrBC)  

Φ80lacZ∆M15  ∆lacX74  recA1 araD139 
∆(araleu)7697 galU galK rpsL (Str R ) 
endA1 nupG 

Invitrogen 

NEB5α fhuA2 ∆(argF-lacZ)U169  phoA glnV44 
Φ80 ∆(lacZ) M15 gyrA96 recA1 relA1 
endA1 thi-1 hsdR17 

New England 
Biolabs 

BL21 (DE) B F– ompT gal dcm lon hsdSB(rB
–mB

–) 
λ(DE3 [lacI lacUV5-T7p07 ind1 
sam7 nin5]) [malB+]K-12(λ

S) 

New England 
Biolabs 

C43 (DE3) Derivative of BL21 (DE3), contains 
mutations in the lacUV promoter driving 
the expression of T7 RNA polymerase 

(Wagner et al., 
2008) 

C43 (DE3) pWALDO-
mreD-eyfp (SJF4397) 

pWALDO-mreD-eyfp; IPTG-inducible 
expression of mreD-eyfp; KanR 

This study 

C43 (DE3) pWALDO-
mreD-6-eyfp (SJF4398) 

pWALDO-mreD-6-eyfp; IPTG-inducible 
expression of mreD-6-eyfp; KanR 

This study 

C43 (DE3) pWALDO-
eyfp-11-mreD 
(SJF4552) 

pWALDO-eyfp-11-mreD; IPTG-
inducible expression of eyfp-11-mreD; 
KanR 

This study 

C43 (DE3) pWALDO-
murJ-gfp(SJF4399) 

pWALDO-murJ-gfp; IPTG-inducible 
expression of murJ-gfp; KanR 

This study 

KanR, kanamycin resistance. 

 

2.3.3 Plasmids 

Table 2.5 Plasmids used in this study 

Strain Relevant genotype/Markers Reference 

pAISH1 TetR derivative of pMUTIN4 which 
contains a promoterless transcriptional 
lacZ fusion, non-replicating in gram-
positive bacteria; AmpR  (E. coli), TetR 
(S. aureus) 

(Aish., 2003)  
(Vagner et al., 
1998) 

pGL485  CmR derivative  of  E. coli-S. aureus  
shuttle  vector pMJ8426,  containing  E. 
coli  lacI  gene  under  the control  of  
the  constitutive  Bacillus  licheniformis 
penicillinase promoter (Ppcn); SpecR  
(E. coli), CmR (S. aureus) 

(Cooper et al.,  
2009) 

pKASBAR  Hybrid vector of pCL84 and pUC18 for 
integration into  S. aureus lipase  gene  
(geh)  encoding  the  attP integration site 
of L54a phage; AmpR  (E. coli), TetR (S. 
aureus) 

(Bottomley et al., 
2014) 
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pKASBAR-ezrA-eyfp pKASBAR-KanR; expression of ezrA-
eyfp  under  the putative promoter of 
ezrA; AmpR (E. coli),  KanR (S. aureus)   

Dr.K.Wacnik, 
unpublished 

pKASBAR-ezrA-meyfp pKASBAR-KanR; expression of ezrA-
meyfp  under  the putative promoter of 
ezrA; meYFP is the monomeric version 
of eYFP containing A206K; AmpR (E. 
coli),  KanR (S. aureus)   

Dr.K.Wacnik, 
unpublished 

pKASBAR-ezrA-SNAP  pKASBAR-KanR; expression of ezrA-
SNAP  under  the putative promoter of 
ezrA; AmpR (E. coli),  KanR (S. aureus) 

Dr.K.Wacnik, 
unpublished 

pCQ11-FtsZ-SNAP E. coli-S. aureus shuttle  vector  
containing  the  lacI gene  and  ftsZ-snap  
under  control of Pspac;  AmpR (E. coli), 
EryR, LinR (S. aureus) 

Dr.F.Grein, 
unpublished 

pMUTIN-gfp+ Contains a Pspac promoter regulating 
the expression of gfp+, non-replicating in 
gram positive bacteria; AmpR (E. coli), 
EryR, LinR (S. aureus) 

(Kaltwasser et al., 
2002) 

pYL112∆19 Expression of integrase, required for 
integration of pKASBAR, CmR 
(S.aureus) 

(Luong & Lee, 
2007)  

pMUTIN-secY-gfp Contains a translational fusion of secY-
gfp, non-replicating in gram positive 
bacteria; AmpR (E. coli), EryR, LinR (S. 
aureus) 

(Garcia-Lara et 
al., 2015) 

pMUTIN-plsY-gfp Contains a translational fusion of plsY-
gfp, non-replicating in gram positive 
bacteria; AmpR (E. coli), EryR, LinR (S. 
aureus) 

This study 

pMUTIN-plsY-eyfp Contains a translational fusion of plsY-
eyfp, non-replicating in gram positive 
bacteria; AmpR (E. coli), EryR, LinR (S. 
aureus) 

This study 

pAISH-plsY-eyfp Contains a translational fusion of plsY-
eyfp, non-replicating in gram positive 
bacteria; AmpR (E. coli), TetR (S. 
aureus) 

This study 

pAISH-plsY-mCherry Contains a translational fusion of plsY-
mCherry, non-replicating in gram 
positive bacteria; AmpR (E. coli), TetR 
(S. aureus) 

This study 

pAISH-plsY-SNAP Contains a translational fusion of plsY-
SNAP, non-replicating in gram positive 
bacteria; AmpR (E. coli), TetR (S. 
aureus) 

This study 

pMUTIN-pgsA-eyfp Contains a translational fusion of pgsA-
eyfp, non-replicating in gram positive 
bacteria; AmpR (E. coli), EryR, LinR (S. 
aureus) 
 

This study 
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pAISH-pgsA-SNAP Contains a translational fusion of pgsA-
SNAP, non-replicating in gram positive 
bacteria; AmpR (E. coli), TetR (S. 
aureus) 

This study 

pAISH-pgsA-
mRFPmars 

Contains a translational fusion of pgsA-
mRFPmars, non-replicating in gram 
positive bacteria; AmpR (E. coli), TetR 
(S. aureus) 

This study 

pMUTIN-plsC-eyfp Contains a translational fusion of plsC-
eyfp, non-replicating in gram positive 
bacteria; AmpR (E. coli), EryR, LinR (S. 
aureus) 

This study 

pMUTIN-mprF-eyfp Contains a translational fusion of mprF-
eyfp, non-replicating in gram positive 
bacteria; AmpR (E. coli), EryR, LinR (S. 
aureus) 

This study 

pKASBAR-cls2-eyfp pKASBAR-KanR; expression of cls2-
eyfp  under  the putative promoter of 
cls2; AmpR (E. coli),  KanR (S. aureus)   

This study 

pMUTIN-cydB-eyfp Contains a translational fusion of cydB-
eyfp, non-replicating in gram positive 
bacteria; AmpR (E. coli), EryR, LinR (S. 
aureus) 

This study 

pAISH-cydB-SNAP Contains a translational fusion of cydB-
SNAP, non-replicating in gram positive 
bacteria; AmpR (E. coli), TetR (S. 
aureus) 

This study 

pMUTIN-floT-eyfp Contains a translational fusion of floT-
eyfp, non-replicating in gram positive 
bacteria; AmpR (E. coli), EryR, LinR (S. 
aureus) 

This study 

pAISH-cdsA-mCherry Contains a translational fusion of cdsA-
mCherry, non-replicating in gram 
positive bacteria; AmpR (E. coli), TetR 
(S. aureus) 

This study 

pAISH-cdsA-
mRFPmars 

Contains a translational fusion of cdsA-
mRFPmars, non-replicating in gram 
positive bacteria; AmpR (E. coli), TetR 
(S. aureus) 

This study 

pKASBAR-mreD pKASBAR-KanR; expression of mreD 
under  the putative promoter of mreCD; 
AmpR (E. coli),  KanR (S. aureus)   

This study 

pWALDO-gfp Overexpression vector, IPTG-inducible 
expression of an insert tagged to gfp and 
under the control of a T7 RNA 
polymerase promoter, expresses lacI; 
KanR (E. coli)   

(Waldo et al., 
1999) 

pWALDO-mreD-eyfp IPTG-inducible expression of mreD-
eyfp; The C-terminus of eyfp contains a 
TEV protease restriction site and a 8x 
His tag; KanR 

This study 



 

57 
 

pWALDO-mreD-6-eyfp IPTG-inducible expression of mreD-6-
eyfp; The C-terminus of eyfp contains a 
TEV protease restriction site and a 8x 
His tag; KanR 

This study 

pWALDO-eyfp-11-
mreD 

IPTG-inducible expression of eyfp-11-
mreD; The C-terminus of mreD contains 
a TEV protease restriction site and a 8x 
His tag; KanR 

This study 

pWALDO-murJ-gfp IPTG-inducible expression of murJ-gfp; 
The C-terminus of gfp contains a TEV 
protease restriction site and a 8x His tag 
KanR 

Dr.D.Roper, 
unpublished 

pCQ11-gfp E. coli-S. aureus shuttle  vector  
containing  the  lacI gene  and  gfp  
under control of  Pspac;  AmpR (E. coli), 
EryR, LinR (S. aureus) 

(Garcia-Lara et 
al., 2015) 

pWhiteWalker1 Derivative from pCQ11-gfp, contains 
gfp and mCherry under control of  
Pspac;  AmpR (E. coli), EryR, LinR (S. 
aureus) 

(Garcia-Lara et 
al., 2015) 

pWhiteWalker2 Derivative from pCQ11-gfp, contains 
gfp fused mCherry under control of  
Pspac;  AmpR (E. coli), EryR, LinR (S. 
aureus) 

(Garcia-Lara et 
al., 2015) 

pWhiteWalker10 Derivative from pCQ11-gfp, contains 
plsY fused to gfp under control of Pspac;  
AmpR (E. coli), EryR, LinR (S. aureus) 

(Garcia-Lara et 
al., 2015) 

pWhiteWalker3 Derivative from pCQ11-gfp, contains 
plsY fused to gfp and mreD fused to 
mCherry under control of  Pspac;  AmpR 
(E. coli), EryR, LinR (S. aureus) 

(Garcia-Lara et 
al., 2015) 

pWhiteWalker4 Derivative from pCQ11-gfp, contains 
plsY fused to gfp and cdsA fused to 
mCherry under control of  Pspac;  AmpR 
(E. coli), EryR, LinR (S. aureus) 

(Garcia-Lara et 
al., 2015) 

pWhiteWalker7 Derivative from pCQ11-gfp, contains 
plsY fused to gfp and cydB fused to 
mCherry under control of  Pspac;  AmpR 
(E. coli), EryR, LinR (S. aureus) 

(Garcia-Lara et 
al., 2015)  

pWhiteWalker8 Derivative from pCQ11-gfp, contains 
plsY fused to gfp and pgsA fused to 
mCherry under control of  Pspac;  AmpR 
(E. coli), EryR, LinR (S. aureus) 

This study 

pWhiteWalker11 Derivative from pCQ11-gfp, contains 
plsY fused to gfp and pheP fused to 
mCherry under control of  Pspac;  AmpR 
(E. coli), EryR, LinR (S. aureus) 

This study 

pWhiteWalker12 Derivative from pCQ11-gfp, contains 
plsY fused to gfp and secY fused to 
mCherry under control of  Pspac;  AmpR 
(E. coli), EryR, LinR (S. aureus) 

(Garcia-Lara et 
al., 2015) 
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pWhiteWalker13 Derivative from pCQ11-gfp, contains 
plsY fused to gfp and mscL fused to 
mCherry under control of  Pspac;  AmpR 
(E. coli), EryR, LinR (S. aureus) 

(Garcia-Lara et 
al., 2015) 

pWhiteWalker14 Derivative from pCQ11-gfp, contains 
plsY fused to gfp and fmnP fused to 
mCherry under control of  Pspac;  AmpR 
(E. coli), EryR, LinR (S. aureus) 

This study 

pWhiteWalker15 Derivative from pCQ11-gfp, contains 
plsY fused to gfp and alsT  fused to 
mCherry under control of  Pspac;  AmpR 
(E. coli), EryR, LinR (S. aureus) 

This study 

pWhiteWalker16 Derivative from pCQ11-gfp, contains 
plsY fused to gfp and mntP fused to 
mCherry under control of  Pspac;  AmpR 
(E. coli), EryR, LinR (S. aureus) 

This study 

pWhiteWalker17 Derivative from pCQ11-gfp, contains 
plsY fused to gfp and lspA fused to 
mCherry under control of  Pspac;  AmpR 
(E. coli), EryR, LinR (S. aureus) 

This study 

pWhiteWalker18 Derivative from pCQ11-gfp, contains 
plsY fused to gfp and the first 
transmembrane domain of PlsY fused to 
mCherry under control of  Pspac;  AmpR 
(E. coli), EryR, LinR (S. aureus) 

This study 

EryR, erythromycin resistance; LinR, lincomycin resistance; TetR, tetracycline resistance, 

CmR, chloramphenicol resistance; KanR, kanamycin resistance; SpecR, spectinomycin 

resistance; AmpR, ampicillin resistance. 

 

2.4 Buffers and solutions 
All buffers and solutions were prepared with dH2O, sterilised if required and stored at  

RT unless otherwise stated. 

2.4.1 Phage buffer 

MgSO4              1 mM   

CaCl2               4 mM   

Tris-HCl pH 7.8          50 mM   

NaCl              0.6 % (w/v)   

Gelatin            0.1 % (w/v)  
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2.4.2  Phosphate buffered saline (PBS)   

NaCl               8 g l-1   

Na2HPO4            1.4 g l-1   

KCl              0.2 g l-1   

KH2PO4             0.2 g l-1   

The pH was adjusted to 7.4 with NaOH. 

2.4.3 TAE (50x)  

Tris              242 g l-1   

Glacial acetic acid          5.7% (v/v)   

Na2EDTA pH 8.0          0.05 M  

50 x stock solution was diluted 1:50 with dH2O to produce a 1x TAE working solution.  

2.4.4 Tris buffered saline (TBS)  

Tris-HCl pH 7.5         50 mM  

NaCl              0.1 M  

EDTA-free protease inhibitor cocktail (Sigma) was added and dissolved in TBS 

according to the manufacturer’s instructions if required. 

2.4.5 QIAGEN buffers  

2.4.5.1  QIAGEN Buffer P1  

Tris-HCl pH 8              50 mM 

EDTA       10 mM 

RNase A      100  pg/ml 

 

2.4.5.2  QIAGEN Buffer P2  

NaOH       200 mM 

SDS        1 % (w/v) 

 

2.4.5.3  QIAGEN Buffer P3  

Potassium acetate pH 5.5          3.0 M 
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2.4.5.4  QIAGEN Buffer EB  

Tris-HCl pH 8.5             10 mM 

 

2.4.5.5  QIAGEN QBT 

NaCl       0.75 M 

MOPS adjusted to pH 7.0 with NaOH  50 mM 

Isopropanol      15 % (v/v) 

Triton X-100               0.15 % (v/v) 

 

2.4.5.6  QIAGEN QC 

NaCl       1 M 

MOPS adjusted to pH 7.0 with NaOH  50 mM 

Isopropanol      15 % (v/v) 

 

2.4.5.7  QIAGEN QF 

NaCl       1.25 M 

MOPS adjusted to pH 8.5 with NaOH  50 mM 

Isopropanol      15 % (v/v) 

 

2.4.5.8  Buffer N3 

Guanidine-HCl     4.2 M 

Potassium acetate      0.9 M 

Adjusted to pH 4.8 with HCl 

 

2.4.5.9  Buffer PB 

Guanidine-HCl     5 M 

Isopropanol       30 % (v/v) 

 

2.4.5.10  Buffer PE 

Tris adjusted to pH 7.5 with HCl   10 mM 

Ethanol       80 % (v/v) 
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2.4.5.11  Buffer QG 

Tris adjusted to pH 6.6 with HCl   20 mM 

Guanidine thiocyanate     5.5 M 

 

2.4.5.12  Buffers AL, AW1 and AW2 

Supplied in the Qiagen DNeasy Blood & Tissue Kit; details not provided.   

 

2.4.6  Fixative 

 

2.4.6.1 Preparation of 16 % (w/v) p-formaldehyde 

 

2.4.6.1.1 100 mM sodium phosphate buffer 

Na2HPO4      9.36 g l-1 

NaH2PO4       3.96 g l-1 

The pH was adjusted to 7 and the solution was filtered using a filter (0.2 µm pore size).  

 

2.4.6.1.2 16 % (w/v) p-formaldehyde 

8 g of p-formaldehyde were added to 40 ml of the sodium phosphate buffer followed by 

heating to 60 °C whilst stirring for 20 min. NaOH (≥ 5 M) were added until the solution 

clears. Finally the total volume was increased to 50 ml using sodium phosphate buffer. 

 

2.4.7 SDS-PAGE solutions 

2.4.7.1 SDS-PAGE reservoir buffer (10 x) 

Glycine             144 g l-1 

Tris             30.3 g l-1 

SDS               10 g l-1 

Before use, the reservoir buffer (10 x) was diluted 1:10 with dH2O to the working 

solution. 
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2.4.7.2 SDS-PAGE loading buffer (5x) 

Tris-HCl pH 6.8         250 mM  

SDS              10 % (w/v)  

Bromophenol blue         0.5 % (w/v)  

Glycerol            50 % (v/v)  

DTT              0.5 M  

 

2.4.7.3 Coomassie Blue stain   

Coomassie Blue         0.1 % (w/v)  

Methanol           5 % (v/v)  

Glacial acetic acid         10 % (v/v)  

  

2.4.7.4 Coomassie destain   
Methanol            5 % (v/v)  

Glacial acetic acid         10 % (v/v)  

  

2.4.8  Western blotting solutions  

2.4.8.1 Blotting buffer   

Tris              2.4 g l-1 

Glycine            11.26 g l-1 

Ethanol           20 % (v/v)  

  

2.4.8.2 TBST (20x)   

Tris              48.4 g l-1 

NaCl              20 g l-1 

Tween-20            2 % (v/v)  

The pH was adjusted to 7.6. Before use, the TBST stock solution (20 x) was diluted 

1:20 with dH2O to give a working solution of 1 x TBST. 

 

2.4.8.3 Blocking buffer   

5 % (w/v) dried skimmed milk powder was dissolved in 1x TBST. 
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2.4.9 HiTrap purification buffers 

2.4.9.1  0.1M Sodium phosphate buffer  

NaH2PO4 (1 M)              31.6 ml  

Na2HPO4 (1 M)                  68.4 ml  

dH2O                900 ml  

The pH was adjusted to 7.2 and the buffer was autoclaved.  

  

2.4.9.2 START Buffer  

Sodium phosphate buffer (0.1 M)     200 ml  

NaCl                0.5 M  

dH2O                up to 1l  

 

2.4.9.3 Elution Buffer  

START buffer containing:  Imidazole          0.5 M  

2.5 Chemicals and enzymes 
All chemicals and enzymes in this study were purchased from Sigma-Aldrich, Fisher 

Scientific, MP Biomedicals, Roche and Avanti Polar lipids unless otherwise stated. All 

restriction enzymes, T4 ligase, DNase, Gibson Assembly mix, PCR master mixes and 

appropriate buffers for DNA manipulation were  purchased  from  New  England  

Biolabs, Roche or Thermo-Fisher Scientific. Storage conditions and concentrations of 

stock solutions are listed in Table 2.6. 

Table 2.6 Stock solutions used in this study 

Chemical name Storage  Concentration  Solvent  
Ammonium persulfate (APS) -20 °C 10 % (w/v) dH20 
Carbonyl cyanide 3-
chlorophenylhydrazone  (CCCP) 

-20 °C 25 mM DMSO 

Cerulenin -20 °C 100 mM DMSO 
DNase -20 °C 10 mg ml -1   dH20 
HADA (hydroxycoumarin 3-
amino-D-alanine;  
Department of Chemistry, 
University of Sheffield) 

-20 °C in 
the dark 

100 mM DMSO 

Isopropyl  β -D-1-
thiogalactopyranoside  
(IPTG) 

-20 °C 1 M dH20 
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Lysostaphin -20 °C 5 mg ml -1   20 mM sodium  

acetate pH 5.2 
PC190723 (Calbiochem) -20 °C 10 mg ml -1   DMSO 
RNase -20 °C 2 mg ml -1   dH20 
SNAP-Cell TMR-Star   -20 °C in 

the dark 
1 mM DMSO 

Vancomycin, BODIPY® FL 
Conjugate 

-20 °C in 
the dark 

1 mg ml -1   DMSO 

Zaragozic acid -20 °C 100 µM 100  % Ethanol 
(v/v) 

 

2.6 Centrifugation 
The following centrifuges were used for harvesting cells or precipitated material. 

Centrifugation was carried out at room temperature unless otherwise stated. 

Table 2.7 Centrifuges used in this study 

Centrifuge name Largest load capacity Max speed 
Eppendorf microcentrifuge 
5418 

18 x 1.5-2 ml 14,000  rpm  (16,783 x g) 
 

Sigma centrifuge 4K15C 16 x 50 ml 5,100 rpm (5,525 x g) 
Avanti High 
Speed J25I 
centrifuge 

JA-25.50 6 x 50 ml 25,000 rpm (75,600 x g) 
JA-10.5 6 x 400 ml 10,000 rpm (18,500 x g) 

Beckman 
Ultracentrifuge 
Optima  LE-
80k 

70.1Ti 12 x 13.5 ml 70,000 rpm (450,000 x g) 
50.2 Ti 12 x 39 ml  50,000 rpm (302,000 x g) 
SW 41 6 x 13.2 ml 41,000 rpm, (288,000 x g) 

2.7  Determining bacterial cell density   

2.7.1  Spectrophotometric measurement (OD600)   

The density of cell cultures was determined by measuring the optical density at a 

wavelength 600 nm using a Jenway 6100 spectrophotometer or a Biochrom WPA 

Biowave DNA  spectrophotometer. Cultures were diluted to 1:10 or 1:20 in sterile 

appropriate medium where necessary. 

2.7.2  Direct cell counts (CFU ml-1)  

Viable cells were estimated by direct cell counts. Thus, serial dilutions of cultures were 

prepared and 20 µl of dilutions 10-4 to 10-7 were spotted onto BHI agar. The number of 

colony forming units per 1 ml of cell culture (CFU ml-1) was estimated based on visible 

colonies after 18 h incubation at 37 °C. 



 

65 
 

2.8 DNA purification techniques  
 

2.8.1  Genomic DNA extraction  

Genomic DNA extraction was performed using buffers provided by Qiagen Dneasy 

Blood & Tissue Kit (Hilden, Germany). 

1 - 2 ml ml of an overnight culture of Staphylococcus aureus was harvested by 

centrifugation and resuspended in 180 µl dH2O. 5 µl lysostaphin (5 mg/ml) was added 

and the resuspension was incubated for approximately one hour at 37 °C. Subsequently, 

25 µl proteinase K and 200 µl buffer AL (without ethanol) were added and incubated for 

30 min at 65 °C. The resuspension was mixed with 200 µl of a 100 % ethanol (v/v) 

solution, vortexed and transferred to a mini spin column. The column was centrifuged 

for 1 min at 10,000 rpm. The column was subsequently washed with 500 µl buffer AW1 

(+ ethanol) for 1 min and 10,000 rpm, followed by an additional washing step with 500 

µl buffer AW2 (+ ethanol) for 3 min and 10,000 rpm. The column was transferred to a 

fresh microcentrifuge tube and 100 - 200 µl buffer AE were added on top of the 

membrane. The tube was incubated at RT for 1 min the column. Finally, genomic DNA 

was eluted by centrifugation for 1 min at 10,000 rpm.  

2.8.2  Small scale plasmid purification  

Plasmid  extraction  of  up 10  ml  bacterial  cultures  were  performed  according  to  

the  manufacturer’s instruction of QIAGEN Plasmid Miniprep Kit provided by Qiagen 

(Hilden, Germany).  

1 ml of overnight culture was harvested and the pellet was resuspended in 250 µl 

pre-chilled resuspension buffer (P1). If plasmids were purified from a staphylococcal 

culture, 8 µl lysostaphin (5 mg/ml) was added, followed by incubation for 1 h at 37 °C. 

The resuspension was mixed with 250 µl  lysis  buffer (P2) and  inverted  5  -  7  times.  

350  µl  neutralization  buffer (N3) were added subsequently and the resuspension was 

inverted 5  -  7  times,  followed  by centrifugation for 10 min at 14,000 rpm at RT. The 

supernatant was transferred by pipetting to the provided spin column. The column was 

centrifuged for 1 min and washed two times with 500 µl wash buffer. One additional 

centrifugation step was performed to remove residual ethanol. The column was 

transferred to a fresh tube and eluted with 30  -  50  µl  elution  buffer (EB) that was 
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pipetted directly onto the column membrane. The column was incubated for 2 min at 

RT and DNA was eluted by centrifugation for 2 min at 12000 rpm. 

2.8.3  Large scale plasmid purification 

Plasmid extraction of 50 to 100 ml cultures were performed according to the 

manufacturer’s instruction of HiSpeed plasmid midi kit provided by Qiagen (Hilden, 

Germany). 

50 ml (high-copy plasmids) or 100 ml (low-copy plasmids) of an overnight cell 

culture  was harvested by centrifugation at 5,000  x  g for 10 min at 4 °C. Subsequently, 

6 ml P2-buffer was added and mixed gently by inverting 6 - 7 times followed by 

incubation for 5 min at room temperature. The suspension was neutralised by addition 

of 6 ml P3 buffer and inverted for 6 - 7 times. The lysate was poured into the barrel of 

the QIAfilter Cartridge and incubated at room temperature for 10 min. In the mean time, 

a HiSpeed Midi Tip was equilibrated by adding 4 ml QBT buffer and allowed to empty 

by gravity flow. The lysate was filtered into the pre-equilibrated Tip through the 

QIAfilter using a plunger. After the lysate entered the resin by gravity flow, the Tip was 

washed with 20 ml QC buffer and eluted with 5 ml QF buffer into a 15 ml Falcon tube. 

The eluate was mixed with 3.5 ml 100 % Isopropanol (v/v) and incubated at RT for 5 

min. Subsequently, the eluate/isopropanol mix was pushed through a QIAprecipitator 

using a plunger and washed with 2 ml 70 % ethanol (v/v). To remove residual ethanol, 

air was pressed through the QIAprecipitator several times and the nozzle was dried with 

absorbent paper. The QIAprecipitator was eluted with 1 ml TE buffer and the eluate was 

afterwards transferred back to the same filter and eluted again. 

2.8.4  DNA Gel extraction and PCR purification  

Gel extraction of agarose slices containing the desired DNA fragment and PCR 

products were purified according to the protocol of Wizard ® SV Gel and PCR Clean-

Up System (Promega, Madison, United States of America). 

Agarose slices were pre-weighed in a 1.5 ml microcentrifuge tube and dissolved 

in 10 µl of membrane binding solution per 10 mg at 60 °C. PCR products were mixed 

with the same volume of membrane binding solution. The DNA solution was loaded 

onto a SV minicolumn and incubated for 1 min. The column was subsequently 

centrifuged for 1 min with 13,000 rpm followed by two washing steps using 700 and 

500 µl membrane wash solution for 1 and 5 min at 13,000 rpm, respectively. Another 
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centrifugation step for 1 min was performed to remove residual ethanol. The column 

was finally eluted using 20 - 50 µl nuclease-free water. The column was pre-incubated 

at RT for 2 - 5 min if low elution volumes were used. 

2.8.5  Ethanol precipitation of DNA 

DNA precipitation was carried out by mixing DNA with 0.1 volumes of 3 M sodium 

acetate (pH 5.2) and 3 volumes of chilled 100 % ethanol (v/v). The mixture was 

incubated at -80 °C for 2 h and the precipitated DNA was recovered by centrifugation at 

14,000 rpm for 15 min. The supernatant was carefully removed and the pellet was 

washed with 1 ml 70 % ethanol (v/v). Finally, the pellet was air dried and resuspended 

in 10-20 µl of pre-warmed nuclease-free dH2O. 

2.9  In vitro DNA manipulation techniques 

2.9.1  In vitro DNA manipulation techniques 

Primers used in this study for PCR amplification were designed as short synthetic 

oligonucleotides (20-40  nucleotides) that were designed according to the genomic 

DNA sequence of S. aureus 8325-4. 

The predicted annealing temperature and risk of formation of secondary 

structural elements were identified using Clone Manager Professional Suite 8 (Sci-Ed 

Software, Denver, United States of America). Primers were manufactured by Eurofins 

Genomics (Ebersberg, Germany) and stored at -20 °C in sdH2O as 100 pmol/µl stock 

solutions or 50 pmol/µl working solutions (see Tab.2.8). 

2.9.2 PCR amplification  

2.9.2.1 Phusion polymerase   
Cloning procedures require accurate DNA sequences that were amplified using Phusion 

High-Fidelity PCR Master Mix with HF buffer (New England Biolabs). Unless 

otherwise stated, a total PCR mix volume of 50 µl was used: 

Phusion High-Fidelity PCR Master Mix (2x)   25 µl  

Forward primer (50 µM)         2 µl   

Reverse primer (50 µM)          2 µl  

Template DNA             50-100 ng  

sdH2O                 up to 50 µl 
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Table 2.8 Primers used in this study 

Primer Sequence (5’-> 3’) Application Reference 
Outward_gfp GCATCACCTTCACCCTCTCCACTGAC PCR confirmation of chromosomal gfp integrations This study 
Outward_eyf
p 

GACTTGAAGAAGTCGTGCTGC PCR confirmation of chromosomal eyfp integrations This study 

Outward_mC
herry 

ACATATGCTTTACTGCCATAC PCR confirmation of chromosomal mCherry integrations This study 

Outward_SN
AP 

CGCTGGTGCCTTTACCCAGCAG PCR confirmation of chromosomal SNAP integrations This study 

Outward_mR
FPmars1 

ACTGTTACAACACCACCATC PCR confirmation of chromosomal mRFPmars1 
integrations 

This study 

Outward_er
mB1 

CACTCCTGAAGTGATTACATC PCR confirmation of the presence of erythromycin 
resistance cassette ermB 

This study 

Outward_er
mB2 

CATCAAGCAATGAAACACGCC PCR confirmation of the presence of erythromycin 
resistance cassette ermB 

This study 

5’FW14 CTAGAGTCGAGGGTACATGAATCAGGAAGTTAAAAAC
AAAATATTTTC 

Amplification of mprF for Gibson Assembly of 
pMUTIN-mprF-eyfp 

This study 

3’FW14 GAACCTGATTTGTGACGTATTACACGC Amplification of mprF for Gibson Assembly of 
pMUTIN-mprF-eyfp 

This study 

5’FW15 CGTCACAAATCAGGTTCAGGTTCAGGTATG Amplification of eyfp for Gibson Assembly of pMUTIN-
mprF-eyfp 

This study 

3’FW117 ATTAGGCGGGCTGCATTACTTGTACAGCTCGTC Amplification of eyfp for Gibson Assembly of pMUTIN-
mprF-eyfp, pMUTIN-plsC-eyfp, pMUTIN-pgsA-eyfp, 
pMUTIN-floT-eyfp, pMUTIN-plsY-eyfp 

This study 

5’FW10 CTAGAGTCGAGGGTACATGTATTCAGTGATTAGTAAG
ATTTTG 

Amplification of eyfp for Gibson Assembly of pMUTIN-
plsC-eyfp 

This study 

3’FW10 CTGAACCTAAACTTTTTACAATTTCATGCAATTC Amplification of eyfp for Gibson Assembly of pMUTIN-
plsC-eyfp 

This study 

5’FW11 GTAAAAAGTTTAGGTTCAGGTTCAGGTATG Amplification of eyfp for Gibson Assembly of pMUTIN-
plsC-eyfp 
 

This study 
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Upstream CTCGATTCTATTAACAAGGG Binds within the NARSA library transposon, verification 
of NARSA library mutants 

(Fey et al., 
2013) 

Buster GCTTTTTCTAAATGTTTTTTAAGTAAATCAAGTAC Binds within the NARSA library transposon, verification 
of NARSA library mutants 

(Fey et al., 
2013) 

5’FW16 CTAGAGTCGAGGGTACATGAATATTCCGAACCAGATT
AC 

Amplification of pgsA for Gibson Assembly of pMUTIN-
pgsA-eyfp 

This study 

3’FW16 GAACCTGATTTTTGTTTAAAAACATCTCTACCTTTAT
AAAAG 

Amplification of pgsA for Gibson Assembly of pMUTIN-
pgsA-eyfp 

This study 

5’FW17 TTTAAACAAAATCAGGTTCAGGTTCAGGTATG Amplification of eyfp for Gibson Assembly of pMUTIN-
pgsA-eyfp 

This study 

5’FW07 GACTTTACAAATACATACAGGGG Verification of ∆spa::tet and ∆spa::kan This study 
3’FW07 GGTTTGGATAAAATGATATCTATCG Verification of ∆spa::tet and ∆spa::kan This study 
5’FW08 CAATTAATAAGATATACTACTCG Verification of ∆cls2::tet This study 
3’FW08 GTTGCATTAAAGTTACACTCCTC Verification of ∆cls2::tet This study 
5’FW09 CCTTTTTTTGCCCCGGCAAACTAAATTGTCATGATAT

TTAAATTG 
Amplification of cls2 and tfor Gibson Assembly of 
pKASBAR 

This study 

3’FW09 GAACCTGAACCTGAGGATAAGATAGGTGACAATAATT
GTG 

Amplification of pgsA for Gibson Assembly of pMUTIN-
pgsA-eyfp 

This study 

5’FW18 CCATATATTTATTGCTGGAACG Sequencing of mprF This study 
3’FW18 CAGATGTATGCATTTCAATCG Sequencing of mprF This study 
Inward_pgsA GTGAGAAATGAGGATGTATA PCR confirmation of chromosomal C-terminal fusions to 

pgsA 
This study 

Inward_plsC TTCAGACTATCTTGTTCTAG PCR confirmation of chromosomal C-terminal fusions to 
plsC 

This study 

Inward_mpr
F 

CAGAAATAATTAGAATTGATGTG PCR confirmation of chromosomal C-terminal fusions to 
mprF 

This study 

Inward_plsY CGCCTCCTGCAAACGTACGTTCG PCR confirmation of chromosomal C-terminal fusions to 
plsY 

This study 

5’FW19 CTAGAGTCGAGGGTACATGTTTAGTTTAAGTTTTATC
GTAATAG 

Amplification of floT for Gibson Assembly of pMUTIN-
floT-eyfp 

This study 

3’FW19 GAACCTGAATGTTCAGGTGACTCATC Amplification of floT for Gibson Assembly of pMUTIN-
floT-eyfp 

This study 
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5’FW20 CCTGAACATTCAGGTTCAGGTTCAGGTATG Amplification of eyfp for Gibson Assembly of pMUTIN-
floT-eyfp 

This study 

5’FW21 CTAGAGTCGAGGGTACATGATTTATGCATTTATAGGT
ATAACAG 

Amplification of cydB for Gibson Assembly of pMUTIN-
cydB-eyfp 

This study 

3’FW21 GAACCTGATGATTTCTTTCCTTCAACATATTC Amplification of cydB for Gibson Assembly of pMUTIN-
cydB-eyfp 

This study 

5’FW22 A AAAGAAATCATCAGGTTCAGGTTCAGGTATG Amplification of eyfp for Gibson Assembly of pMUTIN-
cydB-eyfp 

This study 

5’FW23 GTGAGCGCTCACAATTAATGATGATAATCGTCATGTT
AC 

Amplification of plsY for Gibson Assembly of pAISH-
plsY-mCherry, pAISH-plsY-gfp 

This study 

3’FW23 TGAACCTGACATCCATTTTATTTTAGGTTCTTC Amplification of plsY for Gibson Assembly of pAISH-
plsY-mCherry 

This study 

5’FW24 AAATGGATGTCAGGTTCAGGTTCAGGTATGGGCGTTA
GTAAAGGC 

Amplification of mCherry for Gibson Assembly of 
pAISH-plsY-mCherry 

This study 

3’FW24 GTATTACATATGTAAGATTTTTAAGATCTTTTATATA
ATTCATCCATGC 

Amplification of mCherry for Gibson Assembly of 
pAISH-plsY-mCherry, pAISH-pgsA-mCherry, pAISH-
cdsA-mCherry 

This study 

5’FW25 GTGAGCGCTCACAATTAATGAATATTCCGAACCAGAT
TAC 

Amplification of pgsA for Gibson Assembly of pAISH-
plsY-mCherry 

This study 

3’FW25 TGAACCTGATTTTTGTTTAAAAACATCTCTACCTTTA
TAAAAG 

Amplification of pgsA for Gibson Assembly of pAISH-
plsY-mCherry 

This study 

5’FW26 TTAAACAAAAATCAGGTTCAGGTTCAGGTATGGGCGT
TAGTAAAGGC 

Amplification of mCherry for Gibson Assembly of 
pAISH-plsY-mCherry 

This study 

5’FW33 TAACTTTAAGAAGGAGACAGGAGGAGACAATATCATG
GTGAGCAAAGGTGAAG 

Amplification of eyfp for Gibson Assembly of pWALDO-
eyfp-8-mreD 

This study 

3’FW33 CTGGAAGTACAGGTTTTCTTTATACAGTTCATCCATA
CCC 

Amplification of eyfp for Gibson Assembly of pWALDO-
eyfp-8-mreD 

This study 

5’FW34 ACTGTATAAAGAAAACCTGTACTTCCAGGGTAGCGGT
AGCGGTAGCGGTAGCGGTAGCGGTATGCGTACCCTGT
ATTATTTC 

Amplification of mreD for Gibson Assembly of 
pWALDO-eyfp-8-mreD 

This study 

3’FW34 TGGTGATGATGATGGGCCGCACACTGACGACGTTTCA
TATC 

Amplification of mreD for Gibson Assembly of 
pWALDO-eyfp-8-mreD 

This study 
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5’FW36 TCCCATAAGCCCTTGTAAATATTG Sequencing of qoxA This study 
3’FW36 GCCATTGTAATCATCCAGTTAC Sequencing of qoxA This study 
3’FW43 CCTGAACCTGAACCTGACATCCATTTTATTTTAGGTT

CTTC 
Amplification of plsY for Gibson Assembly of pAISH-
plsY-gfp 

This study 

5’FW44 AAATGGATGTCAGGTTCAGGTTCAGGTATGGCTAGCA
AAGGAGAAG 

Amplification of gfp for Gibson Assembly of pAISH-
plsY-gfp 

This study 

3’FW44 GTATTACATATGTAAGATTTTTATTTGTAGAGCTCAT
CCATG 

Amplification of gfp for Gibson Assembly of pAISH-
plsY-gfp 

This study 

5’FW45 GTGAGCGCTCACAATTAATGAAAGTTAGAACGCTGAC Amplification of cdsA for Gibson Assembly of pAISH-
cdsA-mCherry 

This study 

3’FW45 CCTGAACCTGAACCTGAAGATTGTATTAATAAAATAT
TTAATAATGG 

Amplification of cdsA for Gibson Assembly of pAISH-
cdsA-mCherry 

This study 

5’FW46 AATACAATCTTCAGGTTCAGGTTCAGGTTCAGGTTCA
GGTTCAGGTATG 

Amplification of mCherry for Gibson Assembly of 
pAISH-cdsA-mCherry 

This study 

5’FW47 GTGAGCGCTCACAATTAATGAAAGTTAGAACGCTGAC Amplification of cdsA for Gibson Assembly of pAISH-
cdsA-mRFPmars1 

This study 

3’FW47 CCTGAACCTGAACCTGAAGATTGTATTAATAAAATAT
TTAATAATGGTAACAC 

Amplification of cdsA for Gibson Assembly of pAISH-
cdsA-mRFPmars1 

This study 

5’FW48 AATACAATCTTCAGGTTCAGGTTCAGGTATGGCATCA
TCAGAAGATGTTATTAAAG 

Amplification of mRFPmars1 for Gibson Assembly of 
pAISH-cdsA-mRFPmars1 

This study 

3’FW48 GTATTACATATGTAAGATTTATTGGGATCCTGCACCT
GTTG 

Amplification of mRFPmars1 for Gibson Assembly of 
pAISH-cdsA-mRFPmars1, pAISH-pgsA-mRFPmars1 

This study 

5’FW49 GTGAGCGCTCACAATTAATGAATATTCCGAACCAGAT
TAC 

Amplification of pgsA for Gibson Assembly of pAISH-
pgsA-mRFPmars1 

This study 

3’FW49 CCTGAACCTGAACCTGATTTTTGTTTAAAAACATCTC
TACCTTTATAAAAG 

Amplification of pgsA for Gibson Assembly of pAISH-
pgsA-mRFPmars1 

This study 

5’FW50 TTAAACAAAAATCAGGTTCAGGTTCAGGTATGGCATC
ATCAGAAGATGTTATTAAAG 

Amplification of mRFPmars1 for Gibson Assembly of 
pAISH-pgsA-mRFPmars1 

This study 

Inward_tarO AAGCTATAAGATATACGTAG PCR confirmation of ∆tarO::ermB This study 
5’FW65 AAAGAATTCTTAGGAGGAAATTATTGAATGATTTATG

CATTTATAGG 
Amplification of cydB for construction of pWhiteWalker 
7 (cydB-mCherry+plsY-gfp), extends cydB with an EcoRI 
restriction enzyme site (italic) 

This study 
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3’FW65 TTTGCTAGCTGATTTCTTTCCTTCAACATA Amplification of cydB for construction of pWhiteWalker 
7 (cydB-mCherry+plsY-gfp), extends cydB with an NheI 
restriction enzyme site (italic) 

This study 

5’FW66 AAAGAATTCTTAGGAGGAAATTATTGAATGAATATTC
CGAACCAGATTACGG 

Amplification of pgsA for construction of pWhiteWalker 
8 (pgsA-mCherry+plsY-gfp), extends pgsA with an EcorI 
restriction enzyme site (italic) 

This study 

3’FW66 AAAGCTAGCTTTTTGTTTAAAAACATCTCTACC Amplification of pgsA for construction of pWhiteWalker 
8 (pgsA-mCherry+plsY-gfp), extends pgsA with an NheI 
restriction enzyme site (italic) 

This study 

5’FW73 CAATTAAGCTTGATATCGAGGAGGATGAACCGGTATG Amplification of plsY-gfp for Gibson Assembly of 
pWhiteWalker 10 (plsY-gfp) 

This study 

3’FW73 ATTATGCATTTAGAATAGGGGCGCGCCCTATTTGTAT Amplification of plsY-gfp for Gibson Assembly of 
pWhiteWalker 10 (plsY-gfp) 

This study 

5’FW74 CAATTAAGCTTGATATCGGAATTCTTAGGAGGAAATT
ATTGAATGGAAGATAATAAAATGAACCG 

Amplification of pheP for Gibson Assembly of 
pWhiteWalker 11 (pheP-mCherry+plsY-gfp) 

This study 

3’FW74 ATGCTGCCGCTGCCGCCTTTTTGATTGTCATAATCGT
GTG 

Amplification of pheP for Gibson Assembly of 
pWhiteWalker 11 (pheP-mCherry+plsY-gfp) 

This study 

5’FW75 CAATTAAGCTTGATATCGGAATTCTTAGGAGGAAATT
ATTGAATGATTCAAACCCTTGTGAAC 

Amplification of secY for Gibson Assembly of 
pWhiteWalker 12 (secY-mCherry+plsY-gfp) 

This study 

3’FW75 ATGCTGCCGCTGCCGCCTCTACCACCAAAGCCTTTAT
ATTC 

Amplification of secY for Gibson Assembly of 
pWhiteWalker 12 (secY-mCherry+plsY-gfp) 

This study 

5’FW76 CAATTAAGCTTGATATCGGAATTCTTAGGAGGAAATT
ATTGAATGTTAAAAGAATTCAAAGAGTTCG 

Amplification of mscL for Gibson Assembly of 
pWhiteWalker 13 (mscL-mCherry+plsY-gfp) 

This study 

3’FW76 ATGCTGCCGCTGCCGCCTTTTTTCTCACGTAATAAAT
CTCTG 

Amplification of mscL for Gibson Assembly of 
pWhiteWalker 13 (mscL-mCherry+plsY-gfp) 

This study 

5’FW77 CAATTAAGCTTGATATCGGAATTCTTAGGAGGAAATT
ATTGAATGCAACAAAATAAACGTCTTATC 

Amplification of fmnP for Gibson Assembly of 
pWhiteWalker 14 (fmnP-mCherry+plsY-gfp) 

This study 

3’FW77 ATGCTGCCGCTGCCGCCAATTCTTTTCAAGAAATTCG
CAAG 

Amplification of fmnP for Gibson Assembly of 
pWhiteWalker 14 (fmnP-mCherry+plsY-gfp) 

This study 

5’FW78 CAATTAAGCTTGATATCGGAATTCTTAGGAGGAAATT
ATTGATTGAAAGATTTCGATAGTTTAATACC 

Amplification of alsT for Gibson Assembly of 
pWhiteWalker 15 (alsT-mCherry+plsY-gfp) 
 

This study 
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3’FW78 ATGCTGCCGCTGCCGCCTTTATCAGAGTTCTTATATT
TGTTAGC 

Amplification of alsT for Gibson Assembly of 
pWhiteWalker 15 (alsT-mCherry+plsY-gfp) 

This study 

5’FW79 CAATTAAGCTTGATATCGGAATTCTTAGGAGGAAATT
ATTGAATGTTAGAGTTTGTCGAACATTTATTTAC 

Amplification of mntB for Gibson Assembly of 
pWhiteWalker 16(mntB-mCherry+plsY-gfp) 

This study 

3’FW79 ATGCTGCCGCTGCCGCCTGTTAAACTTCCTCGTTTCT
TTC 

Amplification of mntB for Gibson Assembly of 
pWhiteWalker 16(mntB-mCherry+plsY-gfp) 

This study 

5’FW80 CAATTAAGCTTGATATCGGAATTCTTAGGAGGAAATT
ATTGAATGCACAAAAAATATTTTATTGGC 

Amplification of lspA for Gibson Assembly of 
pWhiteWalker 17(lspA-mCherry+plsY-gfp) 

This study 

3’FW80 ATGCTGCCGCTGCCGCCCTTAACCTCCTTCTCCTTTT
TATTG 

Amplification of lspA for Gibson Assembly of 
pWhiteWalker 17(lspA-mCherry+plsY-gfp) 

This study 

5’FW81-1 CTTATCGGCGCTTTCCCAAGTGGATTCGTAATTGGAA
AATTATTTTTCAAAAGCGGCAGCGGCAGCATGGGCG 

Amplification of mCherry. Extends mCherry with the 
nucleotide sequence encoding for the first transmembrane 
domain of PlsY 

This study 

5’FW81 CAATTAAGCTTGATATCGAGGAGGAAATTATTGAATG
ATAATCGTCATGTTACTACTAAGTTATCTTATCGGCG
CTTTCCCA 

Amplification of TMD(plsY)-mCherry for Gibson 
Assembly of pWhiteWalker 18(TMD(plsY)-Cherry+plsY-
gfp) 

This study 

3’FW81 GTTCATCCTCCTAATCAAGATCTTTTATATAATTCAT
CCATGCCACC 

Amplification of TMD(plsY)-mCherry for Gibson 
Assembly of pWhiteWalker 18(TMD(plsY)-Cherry+plsY-
gfp) 

This study 

5’FW82 AGATGCGCAAGATCAAGACA Sequencing of qoxB This study 
3’FW82 CGCACCATTACCCATTGTG Sequencing of qoxB This study 
5’FW83 GGGCAACTGCCGGTATCGCG Sequencing of qoxB This study 
3’FW83 GCCAAGCTTATTTAATTCGCC Sequencing of qoxB This study 
5’FW84 GCAGAAACTGAAGCTAGATT Sequencing of qoxCD This study 
3’FW84 GCTAACAAAAGTGTTAGCTGGTT Sequencing of qoxCD This study 
5’FW85 GTGAGCGCTCACAATTAATGATGATAATCGTCATGTT

AC 
Amplification of plsY for Gibson Assembly of pMUTIN-
plsY-SNAP  

This study 

3’FW85 CCTGAACCTGAACCTGACATCCATTTTATTTTAGGTT
CTTC 

Amplification of plsY for Gibson Assembly of pMUTIN-
plsY-SNAP 

This study 

5’FW86 AAATGGATGTCAGGTTCAGGTTCAGGTATGGACAAAG
ATTGCGAAATG 

Amplification of SNAP for Gibson Assembly of 
pMUTIN-plsY-SNAP 
 

This study 
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3’FW86 GTATTACATATGTAAGATTTTCATCCCAGACCCGGTT
T 

Amplification of SNAP for Gibson Assembly of 
pMUTIN-plsY-SNAP, pMUTIN-pgsA-SNAP, pMUTIN-
cydB-SNAP, 

This study 

5’FW87 GTGAGCGCTCACAATTAATGAATATTCCGAACCAGAT
TAC 

Amplification of pgsA for Gibson Assembly of pMUTIN-
pgsA-SNAP 

This study 

3’FW87 CCTGAACCTGAACCTGATTTTTGTTTAAAAACATCTC
TACCTTTATAAAAG 

Amplification of pgsA for Gibson Assembly of pMUTIN-
pgsA-SNAP 

This study 

5’FW88 TTAAACAAAAATCAGGTTCAGGTTCAGGTATGGACAA
AGATTGCGAAATG 

Amplification of SNAP for Gibson Assembly of 
pMUTIN-pgsA-SNAP 

This study 

5’FW89 GTGAGCGCTCACAATTAATGATTTATGCATTTATAGG
TATAACAG 

Amplification of cydB for Gibson Assembly of pMUTIN-
cydB-SNAP 

This study 

3’FW89 CCTGAACCTGAACCTGATGATTTCTTTCCTTCAACAT
ATTC 

Amplification of cydB for Gibson Assembly of pMUTIN-
cydB-SNAP 

This study 

5’FW90 AAAGAAATCATCAGGTTCAGGTTCAGGTATGGACAAA
GATTGCGAAATG 

Amplification of SNAP for Gibson Assembly of 
pMUTIN-cydB-SNAP 

This study 

5’FW91 GCTTCGAACATGTCTGAATCGAC PCR confirmation of ∆tarO::ermB This study 
3’FW91 CGTTAAAAGTGACTATGAAGCG PCR confirmation of ∆tarO::ermB This study 
5’FW94 CCTTTTTTTGCCCCGGTTTAAACTACTAGTGACTGGA

ATG 
Amplification of the mreCD promoter PmreCD for Gibson 
Assembly of pKASBAR-PmreCD-mreD 

This study 

3’FW94 CTGCTTTCTTGTATATCCTTTTCTATTTTATATTACT
CC 

Amplification of the mreCD promoter PmreCD for Gibson 
Assembly of pKASBAR-PmreCD-mreD 

This study 

5’FW95 GGATATACAAGAAAGCAGGGATAAATAATGC Amplification of mreD for Gibson Assembly of 
pKASBAR-PmreCD-mreD 

This study 

3’FW95 CTATGACCATGATTACGTTACCATTGACGACGTTTC Amplification of mreD for Gibson Assembly of 
pKASBAR-PmreCD-mreD 

This study 

5’FW107 AACAATTAAGCTTGATATCGAGGAGGAAATTATTGAG
TGTCAAAATTTAAGTCTTTGC 

Amplification of qoxA for Gibson Assembly of pCQ11-
qoxA 

This study 

3’FW107 ATTTATTATGCATTTAGAATAGGTTAATGTCCACCTC
CATG 

Amplification of qoxA for Gibson Assembly of pCQ11-
qoxA 

This study 

5’FW108 AACAATTAAGCTTGATATCGAGGAGGAAATTATTGAA
TGAATTTTCCATGGGATCAATTAC 

Amplification of qoxB for Gibson Assembly of pCQ11-
qoxB 
 

This study 
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3’FW108 ATTTATTATGCATTTAGAATAGGTCATGACTCATGAC
TTACAG 

Amplification of qoxB for Gibson Assembly of pCQ11-
qoxB 

This study 

5’FW109 AACAATTAAGCTTGATATCGAGGAGGAAATTATTGAA
TGAGTCATGATACAAACACTATTG 

Amplification of qoxC for Gibson Assembly of pCQ11-
qoxC 

This study 

3’FW109 ATTTATTATGCATTTAGAATAGGTCATCCGCTATACA
CCATC 

Amplification of qoxC for Gibson Assembly of pCQ11-
qoxC 

This study 

5’FW112 TAACTTTAAGAAGGAGACAATAATGCGTACCCTGTAT
TATTTC 

Amplification of mreD as a template and further for 
Gibson Assembly of pWALDO-mreD-eyfp and 
pWALDO-mreD-6-eyfp.  

This study 

3’FW112 GAATTGACCCTGGAAGTACAGGTTTTCCCACTGACGA
CGTTTCATATCG 

Amplification of mreD as a template and further for 
Gibson Assembly of pWALDO-mreD-eyfp and 
pWALDO-mreD-6-eyfp. 

This study 

3’FW113 GAATTGACCCTGGAAGTACAGGTTTTCACCGCTGCCG
CTACCGCTCCACTGACGACGTTTCATATCGATGTCG 

Amplification of mreD as a template and further for 
Gibson Assembly of pWALDO-mreD-eyfp and 
pWALDO-mreD-6-eyfp. 

This study 

3’FW114 CTCACCATGAATTGACCCTGGAAGTAC Amplification of mreD as a template and further for 
Gibson Assembly of pWALDO-mreD-eyfp and 
pWALDO-mreD-6-eyfp. 

This study 

5’FW115 TGGTGATGATGATGGGCCGCATTTTTATACAGTTCAT
CCATACC 

Amplification of eyfp for Gibson Assembly of pWALDO-
mreD-eyfp and pWALDO-mreD-6-eyfp 

This study 

3’FW115 GGTCAATTCATGGTGAGCAAAGGTGAAG Amplification of eyfp for Gibson Assembly of pWALDO-
mreD-eyfp and pWALDO-mreD-6-eyfp 

This study 

5’FW116 CTAGAGTCGAGGGTACAGGAGGTGTAATATTTATGAT
GATAATC 

Amplification of plsY for Gibson Assembly of pMUTIN-
plsY-eyfp 

This study 

3’FW116 GAACCTGACATCCATTTTATTTTAGGTTCTTC Amplification of plsY for Gibson Assembly of pMUTIN-
plsY-eyfp, PCR confirmation of chromosomal pMUTIN-
plsY-eyfp and pMUTIN-plsY-meyfp integration 

This study 

5’FW117 AAATGGATGTCAGGTTCAGGTTCAGGTATG Amplification of eyfp for Gibson Assembly of pMUTIN-
plsY-eyfp 

This study 

5’pCQ11gfp TTTGAATTCTTAGGAGGATGATTATTTATGAGTAAAG
GAGAAGAACT 

Amplification of gfp for construction of pCQ11-gfp, 
extends gfp with a EcoRI restriction enzyme site (italic) 
 

(Garcia-Lara 
et al., 2015) 
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3’pCQ11gfp AAAGGCGCGCCCTATTTGTATAGTTCATC Amplification of gfp for construction of pCQ11-gfp, 
extends gfp with a AscI restriction enzyme site (italic) 

(Garcia-Lara 
et al., 2015) 

5’FL04 AAAGAATTCAGGAGGATAAAACACATGGGCGTTAGTA
AAGGCG 

Amplification of mCherry for construction of 
pWhiteWalker1 (mCherry + gfp), extends mCherry with a 
ribosomal binding site and a EcoRI restriction enzyme 
site (italic) 

(Garcia-Lara 
et al., 2015) 

3’pWhite-
Walker0 
mCherryOE 

AAGTTCTTCTCCTTTACTCATGGTACCTCATCCTCCT
AATCAAGATCTTTTATATAATTCATCC 

Amplification of mCherry for construction of 
pWhiteWalker1 (mCherry + gfp) and overlap extension 
PCR of pWhiteWalker2 (mCherry -gfp), extends mCherry 
with a BglII restriction enzyme site (italic) and a overlap 
sequence to gfp including a ribosomal binding site and a 
KpnI restriction enzyme site (italic) 

(Garcia-Lara 
et al., 2015) 

5’ pWhite-
Walker0GFP
OE 

GGATGAATTATATAAAAGATCTTGATTAGGAGGATGA
GGTACCATGAGTAAAGGAGAAGAAC 

Amplification of gfp for construction of pWhiteWalker1 
(mCherry + gfp), extends gfp with a ribosomal binding 
site and a KpnI restriction enzyme site (italic) ) and a 
overlap sequence to mCherry 

(Garcia-Lara 
et al., 2015) 

3’FL05 AAAGGCGCGCCCTATTTGTATAGTTCATCCA Amplification of gfp for construction of pWhiteWalker1 
(mCherry + gfp) and overlap extension PCR of 
pWhiteWalker2 (mCherry-gfp), extends gfp with a AscI 
restriction enzyme site (italic) 

(Garcia-Lara 
et al., 2015) 

3’FL04OE AAGTTCTTCTCCTTTACTCATGGATCCACCAGAACCA
GATCTTTTATATAATTCATCC 

Amplification of mCherry for overlap extension PCR of 
pWhiteWalker2 (mCherry -gfp), pWhiteWalker3 (mreD-
mCherry + plsY-gfp) and ), pWhiteWalker4 (cdsA-
mCherry + plsY-gfp), extends mCherry with a BglII 
restriction enzyme site (italic) and a overlap sequence to 
gfp including a linker sequence 

(Garcia-Lara 
et al., 2015) 

5’FL05OE GGATGAATTATATAAAAGATCTGGTTCTGGTGGATCC
ATGAGTAAAGGAGAAGAAC 

Amplification of gfp for overlap extension PCR of 
pWhiteWalker2 (mCherry -gfp), extends gfp with a BglII 
restriction enzyme site (italic) and a overlap sequence to 
mCherry including a linker sequence 
 
 

(Garcia-Lara 
et al., 2015) 
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5’FL06 TTTAGATCTTGATTAGGAGGATGAACCGGTATGATGA
TAATCGTCATG 

Amplification of plsY for construction of pWhiteWalker3 
(mreD-mCherry + plsY-gfp), extends plsY with a AgeI 
restriction enzyme site (italic), a ribosomal binding site 
and a BglII restriction enzyme site (italic) 

(Garcia-Lara 
et al., 2015) 

3’FL06 AAAGGTACCCGAGCCCGAGCCCATCCATTTTATTTTA
GG 

Amplification of plsY for construction of pWhiteWalker3 
(mreD-mCherry + plsY-gfp), extends plsY with a linker 
sequence and a KpnI restriction enzyme site (italic) 

(Garcia-Lara 
et al., 2015) 

5’FL07 TTTGAATTCTTAGGAGGAAATTATTGAATGCGTACAC
TGTAT 

Amplification of mreD for construction of 
pWhiteWalker3 (mreD-mCherry + plsY-gfp), extends 
mreD with a EcoRI restriction enzyme site (italic) and a 
ribosomal binding site 

(Garcia-Lara 
et al., 2015) 

3’FL07OE TCTTCGCCTTTACTAACGCCCATGCTGCCGCTGCCGC
TAGCCCATTGACGACGTTT 

Amplification of mreD for construction of 
pWhiteWalker3 (mreD-mCherry + plsY-gfp), extends 
mreD with a NheI restriction enzyme site (italic) and a 
linker sequence 

(Garcia-Lara 
et al., 2015) 

5’FL08 AAACGTCGTCAATGGGCTAGCGGCAGCGGCAGCATGG
GCGTTAGTAAAGGCGAAGA 

Amplification of mCherry for construction of 
pWhiteWalker3 (mreD-mCherry + plsY-gfp), extends 
mCherry with a NheI restriction enzyme site (italic) and a 
linker sequence 

(Garcia-Lara 
et al., 2015) 

5’FL09 TTTGAATTCTTAGGAGGATGAAATTATATGAAAGTTA
GAACG 

Amplification of cdsA for construction of pWhiteWalker4 
(cdsA-mCherry + plsY-gfp), extends mCherry with a 
EcoRI restriction enzyme site (italic) and a ribosomal 
binding site 

(Garcia-Lara 
et al., 2015) 

3’FL09OE TCTTCGCCTTTACTAACGCCCATGCTGCCGCTGCCGC
TAGCAGATTGTATTAATAAAATATTT 

Amplification of cdsA for construction of pWhiteWalker4 
(cdsA-mCherry + plsY-gfp), extends cdsA with a NheI 
restriction enzyme site (italic) and a linker sequence 

(Garcia-Lara 
et al., 2015) 

5’FL10OE AAATATTTTATTAATACAATCTGCTAGCGGCAGCGGC
AGCATGGGCGTTAGTAAAGGCGAAGA 

Amplification of mCherry for construction of 
pWhiteWalker4 (cdsA-mCherry + plsY-gfp), extends 
mCherry with a NheI restriction enzyme site (italic) and a 
overlap sequence to cdsA for overlap extension PCR 

(Garcia-Lara 
et al., 2015) 

Nucleotide sequences in italic indicate added nucleotides to the original template sequence or introduced restriction enzyme sites if primers were 
used for non-gibson assembly cloning. Underlined nucleotides indicate homologues sequences to the template. 
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PCR amplifications were performed in a Veriti Thermal Cycler and the following cycle 

setup was employed: 

 1 cycle  Initial denaturation      95 ° C     1 min  

30 cycles    Denaturation        95 °C     30 s  

       Annealing         50-60 °C   30 s  

       Extension         72 °C     30 sec/kb  

1 cycle     Final extension      72 °C     7 min  

 Following PCR, products were separated by gel electrophoresis. 

2.9.2.2 Taq polymerase   
Verification of chromosomal insertions where an accurate DNA amplification is not 

required was performed using the DreamTaq Green Master Mix (Thermo Scientific). 

Unless otherwise stated, a total PCR mix volume of 20 µl was used. 

  

DreamTaq Green Master Mix (2x)      10 µl  

Forward primer (50 µM)         1 µl   

Reverse primer (50 µM)          1 µl  

Template DNA             50-100 ng  

sdH2O                 up to 20 µl  

 

PCR amplifications were performed in a Veriti Thermal Cycler and the following cycle 

setup was employed: 

 1 cycle  Initial denaturation      95 ° C     1 min  

30 cycles    Denaturation        95 °C     30 s  

       Annealing         50-60 °C   30 s  

       Extension         72 °C     1 min/kb  

1 cycle     Final extension      72 °C     7 min  

 Following PCR, products were separated by gel electrophoresis. 
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2.9.2.3 Colony PCR screening of E. coli   
A sterile pipette tip was used to resuspend a single colony of E. coli from an agar plate 

into a PCR master mix containing DreamTaq Green master mix, primers and sdH2O in a 

0.2 ml thin-walled PCR tube. The PCR mix composition and PCR reaction is described 

described in Section 2.9.2.2. 

2.9.3 Restriction endonuclease digestion 

All restriction enzymes were purchased from New England Biolabs or Thermo 

Scientific. DNA digests were carried out according to the manufacturer’s instructions. 

Buffers were double digest were selected using the NEB double digest finder 

(https://www.neb.com/tools-and-resources/interactive-tools/double-digest-finder) and 

digests were performed at the recommended incubation temperature. Digested DNA 

fragments were then either separated by gel electrophoresis followed by gel extraction 

or DNA fragments were purified by PCR purification (see section 2.8.4). 

2.9.4 Ligation of DNA 

Digested vector and insert DNA fragments were mixed in a molar ratio of 1:3 unless 

otherwise stated and the reaction  was performed in a 10 µl total volume including 1 µl 

T4 ligase (Promega) and 1µl T4 ligase buffer (10 x) (Promega). The ligation reaction 

was incubated overnight at 16 °C and subsequently used for transformation of E. coli 

cells or stored at -20 °C. 

 Molar ratios were calculated using the ligation calculator from the University of 

Düsseldorf (Germany) (http://www.insilico.uni-duesseldorf.de/Lig_Input.html). 

2.9.5 Gibson Assembly 

Gibson Assembly reactions were carried out according to the manufacturer’s 

instructions (New England Biolabs). 

2.9.6 Agarose gel electrophoresis 

Agarose was prepared as a 0.8 % (w/v) solution in TAE buffer (1 x) and used to prepare 

horizontally submerged agarose gels in HU6 Mini or HU10 Mini tanks provided by 

Alpha Metrix (Alpha Metrix Biotech GmbH, Rödermark, Germany). After pouring the 

gel and before the agarose hardens, 5 µl (HU6 Mini) or 15 µl (HU10 Mini) of ethidium 

bromide (10 mg ml-1; Sigma-Aldrich) were mixed into the gel and appropriate combs 
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were inserted. DNA was mixed with 6 x DNA loading buffer (ThermoScientific) at the 

appropriate ratio and loaded into the wells and at least one well lane was loaded with 5 

µl GeneRuler1kb DNA ladder (see Table 2.9(ThermoScientific). Gels were for 30 – 60 

min at 100 V and visualised using a transilluminator at 260 nm and photographed using 

the BioCoc-ItTM Imaging System (UVP, Cambridge). 

Table 2.9 1kb DNA ladder (Thermo Scientific) DNA fragment sizes 

Marker DNA fragment 
 
 
 
 
 
 

GeneRuler 1 kb DNA Ladder 
(ThermoScientific) 

10,000 
8,000 
6,000 
5,000 
4,000 
3,500 
3,000 
2,500 
2,000 
1,500 
1,000 
750 
500 
250 

2.9.7 Determination of DNA concentration 

DNA concentrations were measured using a nanodrop ND-1000 spectrophotometer 

(Peqlab, Erlangen, Germany). 

2.9.8 DNA sequencing 

Samples were sent for Sanger DNA sequencing at GATC (GATC Biotech AG, 

Konstanz, Germany). 

2.10 Transformation techniques 

2.10.1 Transformation of E. coli 

2.10.1.1 Preparation of electrocompetent E. coli cells 
Overnight cultures of E. coli were diluted to OD600=0.05 in 400 ml TSB or LB medium 

and incubated at 37 °C at 250 rpm to OD600=0.5-0.7. Cell cultures were incubated on 

ice-slurry for 15 min and harvested by centrifugation for 10 min at 5000 rpm and 4 °C. 

Subsequently, the pellet was washed four times with ice-cold sterile sdH2O at 

decreasing volumes (200 ml / 120 ml / 120 ml/ 40 ml). The resulting pellet was 
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resuspended in 50 % (v/v) ice-cold glycerol to reach an end concentration of 

approximately 10 % glycerol (v/v). Aliquots of 50 µl were stored at -80 °C.  

2.10.1.2 Electroporation of DNA into E. coli competent cells 
Competent cells were thawed on ice for 5 min and mixed with 2-15 µl plasmid or 

Gibson Assembly reaction mix. The mixture was transferred to a pre-cooled 

electroporation cuvette (1 mm gap). The cuvette containing the cell suspension was 

subsequently pulsed with 1.75 kV, 25 µF capacity and 200 Ω resistance. 950 µl BHI 

medium was added immediately after and the mixture was transferred to a 15 ml Falcon 

tube. Cells were incubated for 1 h at 37 °C at 250 rpm. 20 - 100 µl were plated out on 

BHI agar supplemented with the respective antibiotic.   

2.10.1.3 Preparation of chemically competent E. coli cells 

 

2.10.1.3.1 TFBI buffer 

RbCl         100 mM  

MnCl2               50 mM 

Potassium acetate             30 mM 

CaCl2       10 mM 

Glycerol      15 % (v/v) 

The pH was adjusted to 6.8 with HCl and the buffer was sterile filtrated.  

 

2.10.1.3.2 TFBII buffer 

3-(N-morpholino) propanesulfonic acid (MOPS)    10 mM 

RbCl                10 mM 

CaCl2       75 mM 

Glycerol      15 % (v/v) 

The pH was adjusted to 6.8 with KOH and the buffer was sterile filtrated.  

2.10.1.3.3 Preparation of chemically competent E. coli cells 
Overnight cultures of E.coli were diluted to OD600=0.1 in 100 ml LB and incubated at 

37 °C to OD600≈0.5. Cells were recovered by centrifugation for 10 min at 4 °C and 5000 

rpm and resuspended in 30 ml ice-cold TFB1 buffer. The resuspended cells were 

incubated on ice for 90 min and again pelleted for 10 min at 4 °C and 4700 rpm. The 

pellet was resuspended in 4 ml ice-cold TFB2 buffer. Aliquots of 100 µl each were 

stored at -80 °C. 
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2.10.1.4 Heat-shock transformation of DNA into E. coli competent cells 
Competent cells were thawed on ice for 5 min and mixed with 2-15 µl plasmid or 

Gibson Assembly reaction mix and incubated on ice for 20 min. Cells were incubated at 

42 °C for exactly 90 sec. Subsequently, 900 µl sterile BHI was added immediately and 

cells were incubated for 1 h at 37 °C. 200 µl were plated out on BHI agar plates 

supplemented with the respective antibiotic. 

 

2.11.1 Transformation of S. aureus 

2.11.1.1 Preparation of electrocompetent S. aureus RN4220 cells 
Overnight cultures of S. aureus were diluted to OD600=0.5 in 100 ml BHI and incubated 

at 37 °C at 250 rpm to OD600≈0.6. Cell cultures were incubated on ice for 15 min and 

recovered by centrifugation for 10 min at 5000 rpm and 4 °C. Subsequently, the cells 

were washed three times with ice-cold sterile sdH2O Water at decreasing volumes (100 

ml / 50 ml / 16 ml), followed by two additional washing steps with ice-cold sterile 10 % 

glycerol (v/v) (2 ml / 1 ml). The resulting pellet was resuspended in 700 µl ice-cold 10 

% glycerol (v/v). Aliquots of 70 µl were stored at -80 °C.  

2.11.1.2 Electroporation of DNA into S. aureus RN4220 competent cells 
Competent cells were thawed on ice for 5 min and 1  –  10  µl  of  DNA  was  added  

and  carefully  mixed  by  pipetting. The mixture was transferred to a pre-cooled 

electroporation cuvette (1 mm gap). The cuvette containing the cell suspension was 

subsequently pulsed with 2.5 kV, 25 µF capacity and 100 Ω resistance. The pulse-

duration should be between 3.8 and 5 sec. 950 µl BHI medium was added immediately 

after and the mixture was transferred to a 15 ml Falcon tube. Cells were then incubated 

for 2 h at 37 °C and 100 - 200 µl were plated out on BHI agar supplemented with the 

respective antibiotic.   

 

2.10 Phage techniques 

2.10.1 Bacteriophage 

Φ11 is a S. aureus specific phage used to transduce DNA between strains. And requires 

Ca2+ for infection maintenance (Mani et al., 1993, Novick, 1991). 
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2.10.1 Preparation of phage lysate 

150 µl of an overnight culture of S. aureus was mixed with 5 ml BHI medium, 5 ml 

phage buffer and 100 µl phage lysate in an Universal tube. The sample mixture was 

incubated without shaking overnight at 25 °C. Once cleared, the lysate was filter 

sterilised (0.2 µm pore size) and stored at 4 °C. 

 

2.10.2 Phage transduction 

The recipient S. aureus strain was grown overnight in 50 ml LK medium containing 

appropriate antibiotics. Cells were harvested by centrifugation at 5000 rpm at 4 °C for 

10 min and the resulting pellet was resuspended in 1 - 3 ml LK.  

The following mixtures were prepared in Universal tubes (Tab. 2.10): 

Table 2.10 Phage transduction 

Buffer/cells Sample Negative control 
Recipient cells 500 µl 500 µl 
LK broth 1 ml 1.5 ml 
1 M CaCl2 10 µl 15 µl 
Phage lysate 500 µl - 
 

These were incubated at 37 °C for 25 min without shaking, followed by an additional 37 

°C incubation step at 250 rpm for 15 min. Subsequently, 1 ml ice-cold 0.02 M sodium 

citrate was added and the mixture was incubated on ice for 5 min. The cells were 

recovered by centrifugation for 10 min at 4 °C and 5000 rpm and the supernatant was 

removed. The pellet was resuspended in 1 ml ice-cold 0.02 M sodium citrate and 

incubated on ice for 45 min. 100 µl of the resuspension was spread onto LK plates 

containing sodium citrate and the appropriate antibiotics. The plates were then 

incubated at 37 °C for at least 24 hours. 

 

2.11 Protein analysis  

2.11.1 SDS-PAGE 

SDS-PAGE gels consist of a resolving and a stacking gel. The resolving gel was 

prepared using the following components: 
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11 % (w/v) resolving gel 

dH2O         3.5 ml 

1.5 M Tris-HCl (pH 8.8)             2.5 ml 

10 % SDS (w/v)     100 µl 

30 % Acrylamide/Bis (w/v) (37:5:1, BioRad)     4 ml 

10% Ammonium persulphate (APS) (w/v)      100 µl 

TEMED (N,N,N’N’-tetramethyl-ethylenediamine)  20 µl 

 

All components were mixed in a Falcon tube and APS and TEMED were added 

immediately before the gel was poured into the gel casting apparatus (BioRad Mini-

Protean II gel slabs).  1 ml dH2O was loaded on top of the gel to straighten the upper 

edge of the gel. 

 Once the gel solidified, the remaining dH2O was removed using paper and the 

stacking gel was prepared and poured on top of the resolving gel. A BioRad plastic 

comb was immediately inserted into the gel to create wells. 

 

11 % (w/v) stacking gel 

dH2O         3.6 ml 

1.5 M Tris-HCl (pH 8.8)             0.75 ml 

10 % SDS (w/v)     50 µl 

30 % Acrylamide/Bis (w/v) (37:5:1, BioRad)     0.65 ml 

10% Ammonium persulphate (APS) (w/v)      50 µl 

TEMED (N,N,N’N’-tetramethyl-ethylenediamine)  25 µl 

 

After the gel solidified, the gel was transferred to a Protean II (BioRad) gel-running 

tank and submerged in 1x SDS PAGE reservoir buffer. The comb was removed and 

appropriate volumes of samples (5-20 µl) were loaded.  10 µl of prestained protein 

ladder broad range (New England Biolabs) were loaded into at least one lane. Proteins 

were separated by electrophoresis at 100 V for 100 min until the blue dye front of the 

sample buffer was at the base of the gel plate.  
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2.11.2 Coomassie staining 
After electrophoresis, the gel was placed into Coomassie Blue stain for 30 min. The gel 

was destained using Coomassie destain solution including several solution exchanges 

where the last destain step was performed overnight.  

 

 2.11.3 Gel drying 
The SDS gel was placed between two sheets of DryEase mini Cellophane (Invitrogen) 

that were soaked in Gel-Dry TM drying solution (Invitrogen). The gel and the two 

sheets were held together using a drying frame and base (Novex) and left (at RT) until 

completely dried. 

 

2.11.4 Determination of protein concentrations 
Protein concentrations were determined using a bicinchoninic acid assay provided by 

Pierce™ BCA Protein Assay Kit (Thermo Scientific). The assay was performed 

according to the manufacturer’s instructions. 

 

2.11.5 Western Blot 

2.11.5.1 Western Blot transfer 
The SDS-PAGE and AmershamTM Hybond-ECL nitrocellulose blotting membrane (GE 

Healthcare) were equilibrated in 25 ml blotting buffer for 15 minutes. The proteins were 

transferred to the nitrocellulose membrane by electrophoresis using the wet transfer 

system BioRad Mini-PROTEAN® Tetra for 90 minutes at 100 V with ice-cold ethanol 

blotting buffer.  

2.11.5.2 Antibody treatment 
The membrane was carefully removed from the transfer system and washed in 25 ml 

TBST twice for 5 min and once for 15 min at mild agitation replacing the TBST buffer 

between each step. Next, the membrane was incubated with 25 ml blocking buffer for 1 

h at RT followed by three aforementioned washing steps.  The membrane was incubated 

in 25 ml blocking buffer containing the appropriate primary antibody at dilution of 

1:5,000 or 1:10,000 (Rabbit) for at least 2 h at RT followed by the three washing steps 

with TBST buffer. Subsequently, the secondary antibody was applied by incubating the 

membrane in 25 ml blocking buffer containing horseradish peroxidase conjugated anti-

rabbit antibodies at a dilution of 1:10,000 for 1 – 2 h at RT. Finally the membrane was 

washed with TBST as described before. 
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2.11.5.2 Western blot development 
The SuperSignal® West Pico (Thermo Scientific) kit was used to develop the 

membrane and all the following steps were performed in a dark room. The membrane 

was air dried on paper and covered with a mixture of 2 ml of ECL reagent 1 and 2 ml of 

ECL reagent 2. After a 5 min incubation, the membrane was dried and placed between 

two sheets of plastic foil inside a film cassette. AmershamTM Hyperfilm-ECL (GE 

Healthcare) was attached on top and the film cassette was closed and held together for 5 

min. Next, the film was washed in developer solution until bands became visible. 

Immediately after the film was submerged in fixer solution and washed with dH2O. The 

film was then air-dried and scanned. 

 

2.12 Production of recombinant protein 
2.12.1 Expression in E. coli C43 (DE3) 
Recombinant protein expression and harvesting was carried out according to (Drew et 

al., 2006). 

A single colony of E. coli C43 (DE3) containing the plasmid pWALDO-mreD-

6-eyfp or pWALDO-murJ-gfp was inoculated in LB medium supplemented with 

kanamycin (50 µg ml-1) and grown overnight at 37 °C at 250 rpm. The culture was 

diluted to an OD600=0.05 in 1 l LB medium supplemented with kanamycin (50 µg ml-1) 

and incubated at 37 °C at 250 rpm until an OD600≈0.5. Protein expression was induced 

by addition of IPTG to a final concentration of 0.4 mM to the culture followed by 

lowering the temperature to 25 °C. The cultures were incubated for 4 h at 25 °C at 150 

rpm before cells were recovered by centrifugation for 20 min at 6000 rpm at 4 °C. Cells 

were washed and finally resuspended using ice-cold PBS supplemented with a protease 

inhibitor cocktail (PBSi) (Sigma-Aldrich). 

Resuspended cells were broken in two passes through a French Press (SLM 

Instruments, Rochester, United States of America) at 10,000 Psi and unbroken cells 

were removed by centrifugation at 14,100 rpm (24,000 x g) for 12 min at 4 °C. This 

step was repeated and the supernatant was transferred to a fresh tube. The solution was 

sonicated in order to resuspend the membranes followed by centrifugation at 35,300 

rpm (150,000 x g) at 4 °C for 45 min to collect the membranes containing the 

recombinant protein. The pellet was washed with PBSi and resuspended in 5 ml PBSi 

using sonication. The membranes were then solubilised by adding a 1 % DDM (w/v; in 

dH2O) solution to an end concentration of 0.2 % DDM (w/v) followed by incubation at 

4 °C for 1 h at mild agitation. The resuspension was centrifuged at 28,800 rpm (100,000 
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x g) for 45 min at 4 °C and the supernatant was transferred to a fresh micro centrifuge 

tube and stored at -20 °C or was immediately used for the purification via a HiTrap™ 

 column. 

   

2.12.2  HisTrap HP ™  column  for  protein  purification 
For the purification of solubilised membranes, Elution buffer and START buffer were 

supplemented with 0.1 % DDM (w/v). 

Both recombinant proteins contain a C-terminal 8 x His tag that was used for 

purification by a HisTrap HP column charged with Ni2+. In order to do so, a Bio-Rad 

Econo Gradient system and a 1 ml HisTrap HP (GE Healthcare) was used to purify the 

recombinant proteins. First, the column was washed with 3 ml dH2O. Then, the column 

was charged with 3 ml 50 mM NiSO4 followed by a washing step with 3 ml dH2O to 

remove excess Ni2+ ions. Tubes and system pumps of the Bio-Rad Econo Gradient 

system were flushed with 20 ml sdH2O buffer at a flow rate of 2 ml min-1. The charged 

column was then connected to the system while the pump is running to avoid the 

introduction of air bubbles. The solubilised membranes were loaded at a flow rate of 0.3 

ml min-1. Non-specifically bound proteins were removed by a washing step using 4 % 

Elution buffer (v/v). Elution was performed by applying rising concentrations of the 

elution buffer that are mixed by the gradient pump. The elution starts at 0 % elution 

buffer/100 % START buffer (v/v) reaching 20 % elution buffer (v/v) /80 % START 

buffer (v/v) within 20 min at a flow rate of 1 ml min-1. Each 1 ml fraction was collected 

in a separate microcentrifuge tube and analysed by SDS-PAGE. 

The charged HisTrap column was washed with 10 ml 50 mM EDTA followed by 

10 ml dH2O. Finally, 10 ml of 20 % ethanol (v/v) were run through the column and stored 

at 4 °C. 

2.13 Microscopes 
Unless otherwise stated, fluorescence images were acquired using a Delta Vision 

deconvolution microscope (Applied precision, GE Healthcare) and images were 

deconvolved using SoftWoRx v.3.5.1 software. The applied filter sets are listed in Table 

2.11. 

 

 

 



 

88 
 

Table 2.11 DeltaVision filter sets 

Filter Excitation 
filter/bandpass 

Emission 
filter/bandpass 

Fluorophores 

DAPI 360/40 457/50 HADA 
FITC 492/20 528/38 GFP, eYFP, FM1-

43 
RF-TR-PE 555/28 617/73 mCherry, 

mRFPmars1, TMR-
Star 

Cy5 640/20 685/40 FM4-64 
 

 

2.14 Sample preparation for light-microscopy 
 

2.14.1Fluorescence microscopy 
Overnight cultures were diluted in BHI or LB to an OD600 of 0.05 and grown at 37 °C 

on a rotary shaker until early-exponential phase (OD600=0.4-0.6). 1 ml of cell culture 

was harvested by centrifugation for 3 min at 12,000 rpm and washed with 1 ml PBS. 

The pellet was resuspended in 500 µl PBS µl and 500 µl fixative (PBS/16 % P-

formaldehyde (w/v) (2:0.5)) and incubated on a shaker at RT and 90 rpm. The tubes 

were covered in foil if the respective strain contains  fluorescent proteins or markers. 

Subsequently, cells were recovered by centrifugation and washed 2 times with 1 ml 

dH2O. Dependent on the pellet size, the cells were resuspended in an appropriate 

amount of PBS or dH2O (100 -400 µl). 5 µl of this solution was pipetted onto a poly-l-

lysine coated slide (Polyprep, Sigma-Aldrich) and dried under a stream of nitrogen. 6 µl 

sdH2O were pipetted on top of the dried cells followed by a coverslip. The coverslip 

was additionally sealed with nail polish to keep the sample wet. Slide samples were 

either imaged immediately or stored in the dark at 4 °C. 

Background of fluorescent images was subtracted and intensity values are 

depicted in a linear colour code. 

 

2.14.2 Donor photobleaching FRET experiments 
This section only describes the growth conditions of strains used for FRET experiments 

and the set-up of the microscope. FRET data analysis can be found in Section 5.2.6  

 Only fresh transformants of RN4220 carrying pWhiteWalker plasmids or strains 

streaked out from cryo cultures made from fresh transformants were used for FRET 

analyses. Overnight cultures were diluted to OD600=0.025 in 50 ml BHI supplemented 

with erythromycin (5 µg ml-1) and lincomycin (25 µg ml-1) and grown at 37 °C and 250 
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rpm for 2.5 h to an OD600≈0.4. Cultures were diluted again to OD600=0.025 in 50 ml 

BHI supplemented with erythromycin (5 µg ml-1), erythromycin (25 µg ml-1) and 0.5 

mM IPTG followed by grown at 37 °C and 250 rpm for 2 h to an OD600≈0.4. 1 ml 

samples were harvested by centrifugation at 13,000 rpm for 3 min. Samples were 

washed with 1 ml PBS, fixed and prepared on poly-lysine slides as described previously 

(Section 2.13.1). 

 Image acquisition was carried out using a Nikon Dual Cam system and NIS 

elements software under a 100 x oil lens in the FITC channel. The following settings 

were used for imaging:  

Format – Binning 2x2   Exposure – 500 ms 

Readout mode – Global Shutter  Readout rate – 560 MHz 

Dynamic Range – 12 bit & Gain 1  Sensor mode – Normal 

Images were taken continuously over 6 min and analysed as described in Section 5.2.6. 

 

2.14.3 Super resolution microscopy 
STORM studies were performed using a system described by Dr. R.D. Turner (Turner 

et al., 2013). An Olympus IX71 inverted optical microscope and a 60x, NA 1.4 oil 

immersion objective, a system was used for eYFP imaging with a 75 mW, 514 nm laser 

and a filter cube containing a 514 nm longpass dichroic filter and a 542/27 nm bandpass 

emission filter. Focus was adjusted using a piezoelectric motor (Physik Instrumente) 

and the image was projected onto a Hamamatsu ImagEM at 10-50 frames/sec using an 

image expander comprising a 35 mm and 100 mm lens.  

A 1m focal length cylindrical lens was inserted between the image expander 

lenses to allow for compensation of drift perpendicular to the focal plane (Huang et al., 

2008). Focus was maintained by repeatedly localising a TetraSpeck marker and 

adjusting the objective position using the piezo to maintain a constant ratio of the fitted  

full-width  half maxima (FWHM) in perpendicular directions. The camera and piezo 

were controlled using a custom Labview based software (Dr. R.D. Turner) and image 

processing was carried out according to previous studies (Huang et al., 2008, Betzig et 

al., 2006). Data were processed by fitting Gaussian functions to individual molecule 

fluorescence, identified by clear intrinsic blinks, using Matlab. Drift in the focal plane 

was corrected retrospectively by tracking a fiducial particle throughout the acquisition 

sequence and offsetting localisations against its position. 
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2.14.3.1 STORM buffers 
The following stock solutions were prepared: 

 

Tris buffer 

Tris        50 mM 

NaCl       10 mM 

The pH was adjusted to 8 using HCl. 

 

Catalase stock 

Catalase       4 mg ml-1 

The catalase stock was prepared in Tris buffer. 

 

Glucose oxidase stock 

Glucose oxidase      5 mg ml-1 

The glucose oxidase stock was prepared in Tris buffer. 

 

MEA stock 

Mercaptoethylamine      5 mg ml-1 

The MEA stock was prepared in Tris buffer. 

 

GLOX buffer (for 1 ml) 

Glucose      100 mg  

Tris buffer      790 µl 

Glucose oxidase stock    100 µl 

Catalase stock      10 µl 

MEA stock      100 µl 

 

2.14.3.2 Coverslip sample preparation 
First, high-precision coverslips No.1 5H (Marienfeld-Superior, Lauda-Königshofen, 

Germany) were cleaned by placing the covers slips in a beaker containing 1 M KOH 

followed by sonication for 15 min at RT using a sonic bath. Subsequently, the 

coverslips were washed with dH2O and incubated in a 0.01 % poly-l-lysine (w/v) 

solution (Sigma-Aldrich) for 30 min at RT. The coverslip was rinsed again with dH2O 

and dried under a flow of nitrogen. 
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2.14.3.3 Sample application 
3 µl of cell suspension were mixed with 3 µl of diluted Tetraspecks (1:500 in dH2O, 

sonicated) used as reference points during imaging and the mixture was placed onto the 

cover slip. The resuspension was dried down using nitrogen followed by carefully 

rinsing the cover slip. Once again, the cover slip was dried using nitrogen and placed 

with the sample side down on a clean slide containing a drop of 5 µl GLOX buffer. 

Finally, the coverslip was sealed using nail polish and the sample was ready for 

imaging. 

 

2.15 Metabolite analysis 
2.15.1 Harvesting samples 
Metabolite samples were collected using the the ethanol and sodium chloride (NaCl) 

method described by (Spura et al., 2009).  

Samples (20 ml) collected from growing cultures were transferred into a 50 ml 

Falcon tube containing 20 ml of quenching solution (40 % ethanol (v/v) + 0.8 % NaCl 

(w/v)), which had been pre-cooled to -30 °C by placing in an insulated bath containing 

isopropanol that had been cooled by addition of dry ice. A thermometer is used in the 

bath to monitor the temperature. The sample mixture was then mixed instantly by 

inversion, producing a cell suspension at approximately 0 °C and left to cool down to -5 

°C in the -35 °C isopropanol bath over the course of 2 - 3 minutes. The cells are stirred 

all the time at this stage, using the thermometer. Then the cells were centrifuged at 3940 

x g at -8 °C for 5 min in a pre-cooled centrifuge (Beckman Avanti HP-25I, JLA-10.500) 

and the supernatant was removed by aspiration and stored at -70 °C until used for 

metabolite extraction. 

2.15.2 Metabolite extraction 
The following solvents were used for the metabolite extraction. To avoid salt 

contamination, only LC-MS grade solvents were used. Solvents A and B were pre-

cooled at -20 °C and Solvent C was put on ice before use. Furthermore, all following 

steps were performed on ice. 

Solvent A Methanol : Chloroform : dH2O (2.5:1:1)(v/v/v) 

Solvent B Methanol : Chloroform (1:1)(v/v) 

Solvent C dH2O 

The Falcon tubes containing the harvested pellets were weighed and thawed on ice. 

Subsequently, the pellet was resuspended in 1 ml of Solvent A by vortexing. The cells 

were then sonicated for 30 sec in a sonication bath containing ice slurry followed by 
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vortexing for 30 sec. After incubation on ice for approximately 5 min the cells were 

recovered by centrifugation for 2 min at 5000 rpm and 4 °C. The centrifugation 

separates two phases with a precipitate phase in between. The upper phase was 

transferred to a pre-cooled 15 ml Falcon tube whereas the bottom phase was mixed with 

500 µl of Solvent B, vortexed and added to the the Falcon tube containing the upper 

phase. Subsequently, 350 µl Solvent C and 200 µl CHCl3 were added and the mixture 

was vortexed. The phases were separated again by centrifugation for 15 min with 5000 

rpm at 4 °C. The upper aqueous phase and the bottom chloroform phase were 

transferred carefully to separate microcentrifuge tubes and stored at - 80 °C. 

2.15.3 Electro-spray induced liquid chromatography mass 
spectrometry 
Detection of metabolites was performed by ESI-LC-MS using a QSTAR Elite liquid 

chromatographic system (Applied Biosystems) equipped with an autosampler. The 

liquid chromatography was run in electrospray negative ionisation mode and the mass 

range was set to 50-1000 Da. Source parameters were as follows: ionspray voltage of 

3500 V, GS1 at 27, GS2 at 0 and curtain gas at 20. The data was acquired and analysed 

using Applied Biosystems Analyst QS 2.0 software. Prior to injection, samples were 

centrifuged for 10 min at 12000 rpm and equally mixed with 50:50:0.02 

(Methanol:H2O:formic acid (v/v/v)), all LC-MS grade solvents) and infused into the 

mass spectrometer at 0.1 ml min-1. 
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Chapter 3: The physiological role of MreD in S. aureus 
 

3.1 Introduction 

 

3.1.1 The roles of MreC and MreD  

MreC and MreD are widely conserved and thought to be shape-determinants in rod-

shaped bacteria. Their genes are chromosomally located together in an operon with 

mreB and were shown to be essential, both in E. coli and in B. subtilis (Levin et al., 

1992) (Lee & Stewart, 2003) (Ishino et al., 1986). Deletion of either mreC or mreD 

causes the formation of spherical cells that eventually lyse. Growth but not morphology 

of both mutants can be restored when grown in medium supplemented with high 

Mg2+ concentrations (Wachi et al.) (Leaver & Errington, 2005). MreC is a membrane 

bound protein with its major part facing the periplasm (Lovering & Strynadka, 2007). It 

is thought that MreC acts as a spatial organiser to direct PGN precursor synthesis 

proteins in the periplasm. (Divakaruni et al., 2005) (Divakaruni et al., 2007). According 

to this model, MreC could be the link between the intracellular cytoskeleton and 

periplasmic cell wall synthesis machinery. The function of MreD in rod-shaped bacteria 

is poorly understood. Its deletion causes the same phenotype as seen for MreC. 

Therefore, it is considered to act in a complex with MreB and MreC to direct peripheral 

PGN synthesis by control of localisation and activity of PGN synthesis proteins (Land 

& Winkler, 2011). Interestingly, mreCD are not essential in Streptococcus pneumoniae 

in strains with a suppressor mutation within the peptidoglycan synthesis gene pbp1a 

which strongly suggests an involvement of MreCD in cell wall synthesis (Land & 

Winkler, 2011). Another link to peptidoglycan synthesis in S. pneumoniae was seen in 

cells depleted of MreC or MreD which resulted in the formation of spherical cells 

connected in chains. This phenotype was also seen in pbp2a depletion experiments and 

possibly indicates that MreCD regulate PBP2a (Berg et al., 2013). MreD was also 

shown to interact with the PGN synthesis enzymes MurG and MraY which are 

dependent on MreD for proper positioning in C. crescentus (White et al., 2010). Using 

total internal reflection fluorescence microscopy (TIRFM), MreB in B. subtilis was 

shown to colocalise with MreC and MreD and to move in circumferential patches along 

the cell periphery (Garner et al., 2011). These are held together by MreB and driven by 

peptidoglycan synthesis (Dominguez-Escobar et al., 2011, Garner et al., 2011). Recent 

research has suggested an involvement of Mre proteins in membrane organisation. 
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MreC and MreD were shown to be involved in the positioning of MreB which has direct 

effects on membrane fluidity and membrane organisation as shown by altered Nile Red 

staining (Strahl et al., 2014). MreCD is widely conserved among ovoccoid firmicutes 

such as Enterococci, Streptococci, Lactobacilli and Staphylococci (Pinho et al., 2013). 

In the ellipsoid-shaped Streptococcus pneumoniae, MreCD are colocalised with 

peptidoglycan synthesis at the septa and equators and are thought to be required for cell 

elongation. Additionally, insertion of new PG primarily takes place at the cell-division 

site (Monteiro et al., 2015). MreCD might be crucial for driving the elongation of cells 

by regulating peripheral PG synthesis and therefore their role is unclear in non-

elongating coccoid bacteria such as Staphylococcus aureus.  

During this study, Tavares et al., published the characterisation of a partial mreD 

mutant in S. aureus. It has been reported that the deletion of full-length mreD was not 

feasible since a promoter for the downstream genes rplU, ysxB and rpmA is predicted to 

be within the end of mreD (Tavares et al., 2015). RplU, YsxB and RpmA are putative 

ribosomal proteins and assumed to be essential (Chaudhuri et al., 2009). Therefore only 

the first 374 bp of MreD (531 bp total length) were deleted and the resulting strain was 

used for the characterisation of an mreD mutant. This ∆mreD strain exhibits no growth 

or morphological defect and no changes in the peptidoglycan composition were 

observed. Furthermore, a number of stress agents such as sodium chloride, hydrogen 

peroxide and hydrochloric acid were tested but did not reveal any role of MreD in the 

response to various stresses. Also, MICs for various antibiotics remained unchanged in 

∆mreD. 

Contradictory to that study, Garcia-Lara et al., demonstrated that the 

construction of a full-length deletion mutant of mreD is achievable (Garcia-Lara et al., 

2015). This mutant exhibits a growth defect and shows aberrant cell-morphologies. 

Cells with changed shapes also exhibited a delocalisation of the phospholipid synthesis 

enzyme PlsY and the cell-division protein EzrA.  

 

3.1.2 Aims of this chapter 

• Investigate growth of ∆mreD in various media and incubation temperatures 

• Lipididomic analysis of ∆mreD: fatty acid, phospholipid composition 

• Investigate the effect of MreD on membrane fluidity 

• Phenotypic characterisation and whole genome sequencing of suppressors of 

∆mreD 



 

95 
 

3.2 Results 

 

3.2.1 Effect of temperature on ΔmreD 

Heat has several effects on bacterial cells. S. aureus cells grow faster when incubated at 

42 °C rather than 37 °C, which also results in expression of heat-shock proteins that 

support protein folding or oxidative stress (Qoronfleh et al., 1998, Qoronfleh et al., 

1990). 

The question arises as to whether MreD is involved in adjusting to heat-stress 

and thereby allows faster growth? This was tested by several experiments. First, 

overnight cultures of SH1000 and SH1000 ΔmreD growth were grown on agar plates 

incubated at 37 °C or 42 °C (Fig. 3.1A) and CFUs were calculated based on visible 

colonies after 24 h (Fig.  3.1B). To test whether a short-time heat-shock affects the 

mreD mutant, stationary overnight cultures were treated at 42 °C for 10 min, 

subsequently plated on agar and incubated at 37 °C for 24 h (Fig. 3.1C). 

The mreD strain exhibits a growth defect on agar plates both at 37 °C and 42 °C 

compared to the parental strain as seen by smaller colony size (Fig. 3.1A). However, at 

42 °C, CFU counts of visible colonies after a 24 h incubation on agar were significantly 

(P=0.008) lower compared to growth on 37 °C. This effect was not achieved by a 10 

min heat-shock demonstrating that 42 °C inhibits growth rather than inducing cell death. 

Interestingly, incubation at 42 °C revealed the formation of big colonies that are 

potentially suppressors of ∆mreD (Fig. 3.1D). 

Next, growth of both strains were compared to each other in BHI broth at 

different temperatures. Cultures were temperature shifted by growing cells at 30 °C 

from an OD600 of 0.05 to an OD600≈0.2 followed by placing the growth flask in a 

shaking water bath at 30, 37 or 42 °C (Fig. 3.2A). In a different approach, overnight 

cultures were incubated at 30, 37 or 42 °C and subsequent subcultivated cultures were 

incubated at the same temperature to monitor growth without a temperature shift (Fig. 

3.2B). 

The mreD strain grows worse than its parent at all temperatures tested (30, 37, 

42 °C). 

Comparable to the plating experiment, the mreD mutant exhibits a heat-sensitivity in 

liquid culture when temperature shifted (Fig. 3.2A). Shifting the temperature from 30 to 

42 °C eventually results in growth arrest. Cells stop growing 4 h after the temperature 

shift. The question remains what exactly is altered during that phase until growth is 

entirely inhibited. Cultures that were grown at the same temperature throughout the 
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experiment showed a different pattern (Fig. 3.2B). The OD600 of the mreD mutant grew 

over-night at 42 °C was very low (OD600=1.8). Subcultured cells however were growing 

almost as quickly as the parent and did not exhibit any heat-sensitivity. During initial 

growth at 42 °C cells either adjusted to the heat-stress or suppressors likely 

accumulated. At 30 °C and 37 °C the mreD mutant still exhibited a growth defect 

compared to the parental strain. 

Next, it was investigated what might lead to the growth inhibition at 42 °C in the 

mreD strain. Therefore, samples of SH1000, SH1000 ΔmreD and the complemented 

SH1000 ΔmreD Δgeh::PmreCD-mreD (see 3.7.2 Complementation) were taken 2 h after 

the temperature shift, stained with fluorescent vancomycin (BODIPY) and analysed by 

fluorescence microscopy (Fig. 3.3AB). 

Microscopic analysis of ΔmreD cells grown at 42 °C reveals that their cell 

morphology changed severely. Cells are larger and fluorescent vancomycin staining 

shows that septa are formed at irregular positions and appear to be bent towards the 

septal distal end of the cell. Many cells also exhibit excessive staining in one half of the 

cell (Fig. 3.3B). MreD might be involved in the placement of the septum under heat-

stress or in conditions of fast growth raising the question as to whether cell-division 

initiation by the Z-ring formation is affected in cells lacking MreD. 

In order to investigate the localisation of FtsZ in the mreD mutant, a plasmid 

expressing pCQ11-ftsZ-eyfp upon IPTG induction, was transduced into SH1000 and 

SH1000 ΔmreD. Strains were grown in the presence of IPTG at 30 °C and temperature 

shifted to 37 °C or 42 °C. As a control one group was left at 30 °C. Samples were taken 

2 h post shift and analysed as previously described using fluorescence microscopy. 

FtsZ localisation in the mreD mutant was drastically affected when grown at 42 

°C. SH1000 and SH1000 ∆mreD grown at 30 °C exhibited a normal distribution of FtsZ 

at which FtsZ forms an apparent ring at the septum (Fig. 3.4AB). Cultures subjected to 

a temperature shift to 37 °C or 42 °C exhibited cells with unexpected FtsZ localisation 

patterns in both strains. FtsZ was found to be distributed in patches around the 

membrane of cells with increased cell size. This was observed both for SH1000 and the 

mreD mutant which might be due to overexpression of FtsZ leading to bigger cells and 

in turn to a delocalisation of FtsZ itself. This issue could potentially be resolved using 

lower IPTG inducer amounts or adding IPTG at a later time point during growth. 

Nevertheless, FtsZ localisation was altered in the mreD mutant shifted to 42 °C 

compared to the parent. As previously shown, cells are enlarged and the altered 

morphology is associated with FtsZ localised in patches and aberrant Z-ring formation 

at unexpected places, or multiple Z-ring formations within the same cell. 
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Figure 3.1 Characterization of SH1000 ∆mreD grown at 42 °C 
A, Growth of SH1000 and SH1000 ΔmreD on BHI agar at 37 °C or 42 °C after 24 h. B, 

CFU counts of visible colonies on agar after 24 h at 37 °C or 42 °C. At least five 

independent replicates were carried out. Significance value p was calculated using a 

paired two-tailed student’s t-test C, Growth of SH100 and SH1000 ΔmreD on BHI agar 

at 37 °C for 24 h after exposure to a 10 min 42 °C incubation. D, SH1000 ΔmreD shows 

potential suppressors restored in growth when grown at 42 °C. 

  



 

98 
 

 

Figure 3.2 Growth phenotype of SH1000 ∆mreD at various temperatures  
A, Growth curves of SH1000 and SH1000 ΔmreD grown at 30°C. The black arrows 

indicate a temperature shift to 30, 37 or 42 °C. Three independent replicates were 

carried out. B, Growth curves of SH1000 and SH1000 ΔmreD. Pre-cultures and cultures 

were grown at the same temperature. Three independent replicates were carried out. 
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Figure 3.3 BODIPY-FL-Vancomycin labelling of SH1000 ∆mreD mutants  
grown at 42 °C 
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A, Phase contrast and fluorescence images (convolved and deconvolved) of S. aureus 

SH1000, SH1000 ΔmreD and SH1000 ΔmreD Δgeh::PmreCD-mreD. Images were 

acquired using a  Delta Vision microscope and SoftWoRx 3.5.0 software (Applied 

Precision). Acquisition of fluorescence images were taken using 1 sec exposure in the 

FITC channel. Scale bars represent 1 µm. B, Quantification and categorisation of 

BODIPY-FL-Vancomycin labelled S. aureus SH1000, SH1000 ΔmreD and SH1000 

ΔmreD Δgeh::PmreCD-mreD grown at 30, 37 and 42 °C. Scale bars represent 1 µm. 
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Figure 3.4  FtsZ-eYFP in SH1000 ∆mreD grown at 42 °C 

A, Phase contrast and fluorescence images (convolved and deconvolved) of S. aureus 

SH1000, SH1000 ΔmreD and SH1000 ΔmreD Δgeh::PmreCD-mreD . Images  were  

acquired  using  a  Delta Vision  microscope  and SoftWoRx 3.5.0 software (Applied 

Precision). Acquisition of fluorescence images were taken using 1 sec exposure in the 

FITC channel. Scale bars represent 1 µm. B, Quantification and categorisation of FtsZ-

eYFP in S. aureus SH1000, and SH1000 ΔmreD grown at 30, 37 and 42 °C. Scale bars 

represent 1 µm. 
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3.2.2 Effect of salts on ΔmreD growth 

Temperature sensitive mutants have been described before in Staphylococcus aureus. 

Mutations within genes involved in chromosome replication and repair, dnaB, dnaI and 

dnaC were shown to be viable but stopped growth immediately after a temperature shift 

from 30 °C to 43 °C (Li et al., 2007, Kaito et al., 2002). A similar phenotype was found 

for mutants harbouring mutations in peptidoglycan synthesis enzyme genes murB and 

murC. These mutants are able to grow until temperature shifted to 43 °C (Ishibashi et 

al., 2007, Matsuo et al., 2003). Interestingly, cell viability was restored in medium 

supplemented with >4 % NaCl (w/v) or >20 % sucrose (w/v). MreD itself is required 

for the rod-shaped morphology in B. subtilis mutants and for growth. The addition of 20 

mM MgCl2 to the growth medium partially restores growth of a mreD mutant but not 

morphology (Leaver & Errington, 2005). 

To test whether salts or sucrose can restore the growth defect and or 

temperature-sensitivity of S. aureus SH1000 ∆mreD, growth curves were performed in 

BHI supplemented with 40 % sucrose (w/v), 20 mM MgCl2 or 4 % NaCl (w/v). 

Overnight cultures were diluted to an OD600=0.05 and grown at 37 °C or 42 °C (Fig. 

3.5ABCD). Growth in 4 % NaCl (w/v) was additionally analysed by phase contrast 

microscopy, taking samples 2 h after the temperature shift (Fig. 3.5F). Furthermore, 

growth of cells plated on BHI agar supplemented with 4 % NaCl (w/v) was investigated 

(Fig. 3.5E). 

Growth of SH1000 ∆mreD in BHI supplemented with 20 % sucrose (w/v) or 20 

mM MgCl2 was not altered. Nor did the supplements complement the heat-sensitivity 

(Fig. 3.5AB). As seen before, mreD mutants grow slower than SH1000 and growth at 

the non-permissive temperature 42 °C resulted in growth arrest after reaching a low 

cell-density plateau. Supplementation with 4 % NaCl (w/v) specifically relieves heat-

sensitivity at 42 °C both on agar and liquid culture, but not the overall growth defect 

compared to the parent (Fig. 3.5CD). SH1000 ∆mreD cells are still enlarged grown at 

42 °C in medium supplemented with NaCl but less compared to growth in non-

supplemented medium (Fig. 3.5F). The heat-sensitivity could not be reversed by adding 

4 % NaCl (w/v) to a mreD mutant culture grown at 42 °C that already reached its 

plateau suggesting that the inability to form correctly placed septa (Fig. 3.3) and FtsZ 

localisation (Fig. 3.4) is irreversible. 

 

3.2.3 Growth of SH1000 ∆mreD in a chemically defined medium  

Cells lacking MreD have a growth defect at 42 °C. However, it is not known whether 

this phenotype is due to the elevated temperature or faster growth. Faster cell 

propagation requires efficient cellular organisation. To test whether cell growth rate is 
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responsible for the observed phenotype of SH1000 ∆mreD, cells were grown in a 

chemically defined medium (CDM) (see Chapter 2 Section 2.1.6) using different 

glucose concentrations to regulate the growth rate. Overnight cultures were grown in 

CDM and diluted to an OD600=0.05 in CDM followed by monitoring growth at 37 °C at 

250 rpm. 

Growth of SH1000 and SH1000 ∆mreD in CDM was monitored under three 

different conditions. First, growth curves were performed in CDM and different glucose 

amounts were added at OD600≈0.2. The mreD mutant exhibited a growth defect 

compared to the wild type (Fig. 3.6A). Growth was slower than in BHI and addition of 

glucose did not alter growth rate indicating that glucose is not the limiting factor in 

CDM. Therefore the experiment was repeated in (2x) CDM resulting in faster growth of 

both strains (Fig. 3.6B). Addition of glucose enhanced the growth rate of SH1000 but 

not of the mreD mutant. The same effect was seen in (2x) CDM supplemented with 

different glucose concentrations added from the start (Fig. 3.6C). Only very low (0.01 

% glucose (w/v)) or no glucose levels affected growth of SH1000 ∆mreD. This might 

indicate a deficiency of mreD to adapt to changing nutritional conditions or that the 

growth bottleneck is based on a metabolic process that is not addressed in this assay. 

 

3.2.4 Membrane analysis of SH1000 ΔmreD 

It has been previously shown that MreD is involved in the localisation of phospholipid 

synthesis enzymes PlsY and CdsA (Garcia-Lara et al., 2015). The delocalisation of 

these enzymes and potentially other proteins involved in fatty acid and phospholipid 

synthesis could affect their activity. Thereby the ratio between certain fatty acid species 

or phospholipids could be altered. The analysis of mreB and mreC mutants in B. subtilis 

revealed an increase of the overall fatty acid chain length (Strahl et al., 2014). The 

analysis of anteiso compared to iso fatty acids however, revealed that mreC mutant and 

to a lesser extent the mreB mutant exhibited an increased amount of anteiso fatty acids. 

Interestingly, fatty acid compositions can have an effect on membrane fluidity which 

was shown to be a crucial factor in the organisation of bacterial membranes (Strahl et 

al., 2014). 

 

3.2.4.1 Phospholipid and fatty acid analysis 

In order to analyse fatty acids and phospholipids, SH1000 and SH1000 ∆mreD 

overnight cultures were diluted in BHI to an OD600=0.05 and grown to exponential 

phase of OD600≈0.5 in BHI at 37 °C and 250 rpm. Pellets were washed in PBS and  

 



 

104 
 

 
 
Figure 3.5 Heat-sensitivity phenotype of ∆mreD in the presence of salts or sucrose 
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A, Growth curves of SH1000 and SH1000 ΔmreD in BHI medium and BHI medium 

supplemented with 20 % sucrose (w/v). B, Growth curves of SH1000 and SH1000 

ΔmreD in BHI medium and BHI medium supplemented with 20 mM MgCl2. C, Growth 

curves of SH1000 and SH1000 ΔmreD in BHI medium and BHI medium supplemented 

with 4 % NaCl (w/v). Experiments were carried out in three independent replicates. D, 

Growth curve of SH1000 ΔmreD in BHI medium. Black arrow indicates addition of 4 % 

NaCl (w/v). E, CFU counts of visible colonies on agar supplemented with 4 % NaCl 

(w/v) after 24 h at 37 °C or 42 °C. At least three independent replicates were carried 

out. Significance value p was calculated using a paired two-tailed tt-test.  F, Phase 

contrast images of S. aureus SH1000, SH1000 ΔmreD and grown at 37 °C or 42 °C in 

regular BHI broth or supplemented with 4 % NaCl (w/v). Images  were  acquired using 

a Delta Vision microscope and SoftWoRx 3.5.0 software (Applied Precision). 
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Figure 3.6 Growth of SH1000 ΔmreD in chemically defined medium (CDM) 

A, Growth curves of SH1000 and SH1000 ΔmreD in CDM broth. Black arrows indicate 

addition of different glucose concentrations. B, Growth curves of SH1000 and SH1000 

ΔmreD in (2x) CDM broth. Black arrows indicate addition of different glucose 

concentrations. C, Growth curves of SH1000 and SH1000 ΔmreD in (2x) CDM broth 

supplemented with different glucose concentrations. 
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Figure 3.7 Fatty acid and phospholipid composition of SH1000 and SH1000 ∆mreD 

A, Fatty acid amounts relative to total fatty acids categorised into C13-C20 species. B, 

Relative amounts of iso and anteiso fatty acid species. C, Thin layer chromatograms of 

phospholipids. D, Phospholipid quantification based on the thin layer chromatograms 

(C). 
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snap-frozen in liquid nitrogen. Subsequently, frozen pellets were dehydrated using a 

freeze dryer and stored at -80 °C. Phospholipid analysis was carried out by thin layer 

chromatography and fatty acids were analysed as fatty acid methyl esters using gas 

chromatography (Fig. 3.7). Both services were provided by the DSMZ Identification 

Service (Braunschweig, Germany). 

Fatty acid analysis results were categorised into their carbon chain length and 

compared to the total fatty acid amount. C15 and C18 fatty acids are the predominant 

species in both strains (Fig. 3.7A). C16/C17/C20 species constitute 5-13 % of the total 

fatty acids. Other fatty acids such as C12/C13/C14/C19 are less represented in both 

analysed strains under the conditions tested. SH1000 ∆mreD exhibits slightly higher 

amounts of C15 fatty acid species but lower long-chained species such as C16-C20 

compared to the parent meaning a decrease in the overall fatty acid chain length in cells 

lacking MreD. Additionally, SH1000 ∆mreD has less branch-chained fatty acids as less 

iso and anteiso species were found compared to the parental strain (Fig. 3.7B). Both, 

anteiso fatty acids and short chain length fatty acids contribute to an increase of 

membrane fluidity (de Mendoza D et al., 2002). However, this analysis did not reveal 

any large changes in the fatty acid composition and needs to repeated in order to be able 

to draw specific conclusions about the effect of MreD on the fatty acid composition. 

The phospholipid (PL) composition was analysed based on thin layer 

chromatograms (Fig. 3.7C). Intensity values of signal patches were measured using Fiji-

ImageJ and compared to the total phospholipid amount (Fig. 3.7D).. Unidentified PLs 

were marked with PL1-5 (Fig. 3.7C). 

The mreD mutant exhibited more phosphatidylglycerol and more lys-

phosphatidyl-glycerol. Another unidentified PL, termed PL1, was also found to be more 

abundant in SH1000 ∆mreD compared to SH1000. Interestingly, PL5 was only found in 

the mreD mutant and cardiolipin levels were greatly (≈ 30 %) reduced. This initial 

analysis suggests changes in the membrane composition due to the effect of MreD. 

 

3.2.4.2 Membrane fluidity analysis 

It has been reported previously that MreB organises the bacterial membrane by creating 

regions of increased fluidity (RIFs) (Strahl et al., 2014). These RIFs are involved in 

lipid homeostasis and localisation of several membrane proteins in B. subtilis. 

Furthermore, B. subtilis cells lacking MreD exhibited changed Nile Red staining and 

MreB localisation suggesting a role for MreD in the organisation of the membrane 

together with MreB. Changes in phospholipid composition and to a lesser degree in 
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fatty acid composition in SH1000 and its mreD mutant could have an impact on 

membrane fluidity. 

Membrane fluidity can be measured by fluorescence polarisation using the 

membrane dye 1,6-diphenyl-1,3,5-hexatriane (DPH) that specifically fluoresces within 

hydrophobic but not within aqueous environments (Kinosita et al., 1981). Movement of 

DPH intercalated within the membrane is dependent on the membrane fluidity (Fig. 

3.8A). The more fluid the membrane the more DPH changes its orientation. This 

movement is analysed by exciting DPH with polarised light and measuring the intensity 

of emitted light parallel and perpendicular to the incident light (Fig. 3.8B) (Jovin, T. M., 

1979).  

Membrane fluidity analysis experiments were carried out based on a modified 

protocol of Bayer et al. (Bayer et al., 2000). SH1000 and SH1000 ∆mreD overnight 

cultures were diluted in BHI to an OD600=0.05 and grown to exponential phase of 

OD600≈0.5. 1 ml samples were washed twice in sterile 15 mM Tris-HCl buffer (pH 7.0) 

and resuspended in the same buffer at an OD600=0.4. The sample was transferred to a 

quartz cuvette and DPH was added to a final concentration of 4 µM (4 mM stock 

solution in THF) followed by incubation for 15 min with magnetic stirring at 200 rpm in 

the dark at 37 °C to allow the incorporation of DPH into the membrane. Fluorescence 

polarisation was measured using a Spectrofluorimeter (LS50B Perkin-Elmer) equipped 

with a temperature-controlled cuvette holder and a magnetic cuvette stirrer. The sample 

was excited at 358 nm emitted light was measured at 428 nm whereas one emission 

polariser is oriented in the horizontal plane and the other one in the vertical plane. 

Measured emission intensities parallel (I1) and perpendicular (I2) to the plane of 

excitation light were used to calculate the degree of polarisation according to the 

following equation: 

P=I1-G2/I2-G1 

, where the correlation factor G is the ratio between parallel and perpendicular emitted 

light when the excitation light is horizontal. Lower fluorescence polarisation values 

indicate a higher membrane fluidity. 

Fluorescence polarisation values of membrane fluidity experiments are usually 

within a narrow range and experiments need to be carried out multiple times to achieve 

significant results (Camargo et al., 2008, Mishra et al., 2009, Cartron et al., 2014). The 

analysis of membrane fluidity SH1000 and the mreD mutant did not reveal a significant 

difference between both strains (Fig. 3.10C). However, experiments were only carried 

out three times due to limited time which is not sufficient to draw conclusions on the 

effect of MreD on membrane fluidity of S. aureus. 



 

110 
 

 

Figure 3.8 Membrane fluidity measurements 
A, Schematic illustration of DPH intercalated in the membrane. B, Schematic 

illustration of fluorescence anisotropy measurements. Samples are excited by polarised 

light and the intensity emitted light parallel and perpendicular to the incident light is 

measured. C, Fluorescence polarisation measurements of SH1000 and SH1000 ∆mreD. 

Experiments were performed with three independent biological replicates. P value was 

calculated using an unpaired student’s ttest. 
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3.2.5 Metabolome analysis of SH1000 and SH1000 ∆mreD 

Cells lacking MreD were shown to be sensitive towards temperature changes (Fig. 3.1 

and Fig. 3.2) and are unable to utilise different glucose amounts when added to the 

growth medium (Fig. 3.6). Additionally, the mreD mutant exhibited a growth defect at 

all incubation temperatures tested. Taking together this led to the assumption that MreD 

might act as metabolic optimiser that improves cellular processes. This hypothesis was 

tested by the analysis of the metabolome of SH1000 compared to SH1000 ∆mreD 

incubated at 37 °C and 42 °C. 

 

3.2.5.1 Sample processing 

Sample preparation, metabolite extraction and metabolite analysis are described in 

detail in Section 2.14. 

Briefly, metabolites were extracted from samples taken from a temperature-shift 

experiment. SH1000 and SH1000 ∆mreD were grown at 37 °C to an OD600≈0.2 before 

cultures were either temperature shifted to 42 °C or left at 37 °C (Fig. 3.9A). Cultures 

were harvested at an OD600≈1 and instantly mixed with the NaCl/Ethanol extraction mix 

pre-cooled to -30 °C. Cultures were harvested by centrifugation and the pellet was 

stored at -80 °C. 

Metabolites were extracted using a methanol/chloroform protocol (see Section 

2.14.2) and analysed by electro spray induced liquid chromatography mass 

spectrometry (ESI-LC-MS). 

 

3.2.5.2 Principal component analyses between metabolome subgroups 

First of all, it was tested whether the metabolomes between both strains and between 

growth 37 °C and 42 °C differs (Fig. 3.9BCDE). This analysis was performed by 

principal component analysis (PCA) using the multivariate analysis software SIMCA 

P+ (Umetrics SIMCA P+, Umeå, Sweden). PCA identifies groups of variables that are 

related to each other between multiple multivariate datasets and visualises them on a 

PCA plot (Trivedi et al., 2012). This plot shows possible groups of similar or unrelated 

datasets at which the distance between data points indicate how closely both datasets are 

related to each other.  
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Figure 3.9 Metabolome principal component analyses 
Individual triangles represent metabolomes for SH1000 (red triangle) and SH1000 

∆mreD (green triangle). Overlapping points indicate ‘similar’ or matching 

metabolomes. A, Growth curve of SH1000 and SH1000 ∆mreD. Black arrows indicate 

a temperature shift. Black circles indicate sampling points for metabolite extraction. B, 

PCA of four metabolome biological replicates of SH1000 and SH1000 ∆mreD grown at 

37 °C. C, PCA of four metabolome biological replicates of SH1000 and SH1000 

∆mreD grown at 42 °C. D, PCA of four metabolome biological replicates of SH1000 

∆mreD grown at 37 °C or 42 °C. E, PCA of four metabolome biological replicates of 

SH1000 grown at 37 °C or 42 °C. 
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The principal component analysis between four biological replicates of SH1000 and 

SH1000 ∆mreD metabolomes from cultures grown at 37 °C identifies a cluster of 

∆mreD metabolomes that are closely related to each other (Fig. 3.9B). Metabolomes of 

SH1000 are more spread but rather unrelated to the ∆mreD metabolome cluster. This 

means that the metabolome of SH1000 ∆mreD is different from its parental strain when 

grown at 37 °C. However, the metabolomes between different replicates of SH1000 

grown at 37 °C were also found to exhibit variations compared to each other which 

could be explained by an extreme variability of metabolites due to small changes in 

their growth phase. Potentially, samples of SH1000 metabolomes were harvested at 

slightly different time points and thus exhibit differing metabolite compositions. Yet, 

the PCA does not show a random unrelated distribution of all metabolome datasets 

indicating that the metabolite extraction and analysis reveals real changes and is 

reproducible. 

The same analysis was carried out between both strains grown at 42 °C (Fig. 

3.9C) and gives a similar picture. Metabolomes of SH1000 ∆mreD are strongly 

clustered and different from the ones of SH1000 showing that the metabolome of the 

mreD mutant grown at 42 °C is different from SH1000 grown at the same temperature. 

Next, the effect of a temperature shift on SH1000 ∆mreD was tested by 

comparing metabolomes of the mreD mutant grown at 37 °C against growth at 42 °C 

(Fig. 3.9D). The PCA identifies two clusters where the metabolomes of SH1000 ∆mreD 

grown at 37 °C are similar to each other. The other cluster is composed with all ∆mreD 

samples grown at 42 °C with the exception of one outlier. This suggests that SH1000 

∆mreD temperature shifted from 37 °C to 42 °C exhibits a change in its metabolite 

composition. 

No clear cluster formation can be seen comparing metabolomes of SH1000 

grown at 37 °C and 42 °C (Fig. 3.9E). All datasets apart from two samples grown at 37 

°C are located within the same cluster. It is therefore likely that the temperature switch 

in SH1000 did not cause large metabolome alteration.  

 

3.2.5.3 Identification of altered metabolites 

It has been shown that the metabolome between SH1000 and its mreD mutant is altered 

and the logical next step is to identify which metabolites are changed. Even small 

differences in metabolite levels can indicate changes in metabolic processes. Some 

metabolites are very abundant whereas others are rarely found but no less important. 

Therefore, the comparison of absolute metabolite levels can lead to wrong conclusions 

and oversee changes of low level metabolites. Hence, metabolites that were found to be 

significantly different (two-tailed paired ttest, p<0.005) between SH1000 and SH1000 

∆mreD grown at 37 °C independent of absolute numbers were picked and further 
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investigated. Since the identity of metabolites is unknown they are referred to their 

mass/charge in the following analyses.  

A number of metabolites were found to be significantly up or down-regulated 

comparing the metabolomes from SH1000 ∆mreD with SH1000 grown at 37 °C (Fig. 

3.10A). Some metabolites were up to 250 % up and 90 % down-regulated in the mreD 

mutant. 

Next it was analysed how the same investigated metabolites are altered in 

SH1000 ∆mreD grown at 42 °C (Fig. 3.10B). Thus, the same analysis was performed 

comparing the same metabolites between SH1000 ∆mreD grown at 42 °C compared to 

growth at 37 °C. This reveals that metabolites being up-regulated at 37 °C are down-

regulated at 42 °C and vice versa. The metabolome of SH1000 ∆mreD at 42 °C is 

therefore more similar to SH1000 grown at 37 °C. 

The first step in the identification of altered metabolite levels is to study which 

molecule masses could correspond to the mass found by mass spectrometry. It has to be 

noted that electro spray induced mass spectrometry signals indicate the mass of 

protonated molecules at which molecules can be protonated with H+, Na+, K+ or NH4
+. 

The signal output of mass data is stated as mass/charge since molecules could be 

protonated more than once in case of a normality of >1. 

These information were taken together and a list of potential metabolites was 

collected (see Table 3.1). Most masses, however, correspond to several different 

metabolites and it is therefore not possible to identify a molecule solely based on its 

mass. This requires further analysis to collect more information of the mass signal 

(Table 3.1). 

 

3.2.5.4 Metabolite identification by tandem mass spectrometry 

Tandem mass spectrometry is a technique that separates a signal based on its mass to 

charge ratio. Thus, it is possible to fragment the isolated mass by electron capture (EC) 

ionisation (Leis et al., 2004). This results in the separation of certain groups that 

indicate whether the molecule of interest contains certain functional groups and thus 

gives more information about its identity. Tandem mass spectrometry with EC induced 

fragmentation was performed on signal peaks 100.2/142.2/211.2/242.2/ 244.2/258.2 

/267.1 and 473.2. One example of this fragmentation process is shown in Fig. 3.11. 

The additional information gathered by fragmentation analyses was not enough 

to identify the metabolites of interest since none of the observed fragmentation patterns 

corresponded to the potential metabolite candidates. This might be explained by 

choosing the wrong candidates or too strong fragmentation settings that might have 

resulted in unexpected fragmentation patterns. The analysis of the metabolome was not 

continued since it would have been difficult to identify a range of metabolites. 
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 Figure 3.10 Relative changes of metabolite levels 

A, Relative changes in metabolite levels from SH1000 compared to SH1000 ∆mreD 

grown at 37 °C. Metabolites were chosen since they were found to be significantly 

altered between both strains. Red arrows indicate whether metabolite levels are lower or 

higher in ∆mreD strain compared to its parent. B, Relative changes in metabolite levels 

from SH1000 ∆mreD grown at 42 °C compared to SH1000 ∆mreD grown at 37 °C. 

Metabolites analysed from SH1000 ∆mreD compared to SH1000 were chosen. Red 

arrows indicate whether metabolite levels are lower or higher in the ∆mreD strain 

grown at 42 °C compared to growth at 37 °C. 
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Table 3.1 Analysed metabolite masses and potential candidates 

This table contains all analysed metabolites based on their mass and their corresponding 

potential molecule. Importantly, candidate molecules do not possess the mass shown 

here, but their protonated mass correlating with the mass detected my ESI-LC-MS. Red 

arrows indicate whether metabolite levels are lower or higher in SH1000 ∆mreD 

compared to SH1000. 
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Figure 3.11 Tandem mass spectrometry electron capture induced fragmentation  

of peak 211.2 da 
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3.2.6 Suppressors of ∆mreD 

 

3.2.6.1 Phenotypic characterisation of ∆mreD suppressors 

SH1000 ∆mreD forms big colony variants that potentially contain suppressors of mreD. 

These suppressors are especially pronounced when the mreD mutant was streaked on 

agar at 42 °C. Most cells are unable to grow due to the heat-sensitivity of SH1000 

∆mreD as shown in Fig. 3.2 and Fig. 3.3. The suppressors however, are not affected by 

heat and when restreaked, it is revealed that these variants are growing faster than their 

parental strain (Fig. 3.12AC). PCR and whole genome sequencing confirmed that these 

strains are mreD mutants and suppressors are still resistant towards kanamycin since 

mreD is replaced by a kanamycin resistance cassette (Fig. 3.12A). Plating of 

suppressors at 37 °C and 42 °C shows that suppressors lost their heat-sensitivity (Fig. 

3.12D).  

To test whether the suppressors exhibit mutations in mreC, the double mreCD 

mutant was checked for the formation of suppressor mutants grown at 42 °C (Fig. 

3.12B). 

Suppressor mutants could be found both for the mreD as well as for the mreCD 

mutant  when strains are grown on BHI agar incubated at 42 °C (Fig. 3.12). This also 

reveals that the mreCD mutant exhibits a heat-sensitivity.  

Next, it was determined whether these variants contain suppressors. This would 

mean that the suppressors are stable and growth should be restored when strains are 

restreaked. In order to test this, ∆mreD suppressed clones were streaked next to their 

parental strain and plates were incubated for 24 h at 37 °C. Subsequently, single 

colonies of the suppressed strain were restreaked and the procedure was repeated twice. 

For comparison, the parental ∆mreD strain, was streaked next to the potential 

suppressed strains. 

Suppressed clones always grew faster than their parental strain (Fig. 3.13) and 

are likely to be mutants since the restored growth was stably inherited after continued 

restreaking .  

 

3.2.6.2 Whole genomes sequencing of ∆mreD suppressors 

To identify potential suppressor mutations of ∆mreD, genomic DNA of SH1000 ∆mreD 

and seven SH1000 ∆mreD suppressed clones were sent for whole genome sequencing 

(paired end, 50 bp reads) (GATC, Konstanz, Germany). Whole genome sequencing 
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coverage was > 300x and therefore more than enough for the identification of single 

nucleotide polymorphisms (SNPs). The SH1000 sequence was used as a template to 

compare whole genome sequences and to identify SNPs between SH1000 ∆mreD, its 

suppressed derivatives and the original sequence. In the following analysis, only SNPs 

between SH1000 ∆mreD and suppressed derivatives were taken into account (Table 

3.2). A complete analysis including all sequences can be found online using the 

following link: http://lin5.shef.ac.uk/saureus2/ 

Whole genome sequencing revealed up to three non-silent mutations in each 

∆mreD suppressed strain compared to the parental SH1000 ∆mreD (Table 3.2). Out of 

seven sequenced suppressor strains, four (No. 5, 15, 16 and 23) showed mutations in 

‘qox’ genes that encode for subunits of the protein complex cytochrome aa3. 

Cytochrome aa3 is one of the terminal oxidases in staphylococci and contributes to the 

last step of respiration by transferring electrons to oxygen (Tynecka et al., 1999, 

Clements et al., 1999). The mutations found include stop codons at the beginning of 

qoxB and qoxC and amino acid exchanges within the N-terminus of QoxA and QoxC. 

Furthermore, whole genome sequencing revealed that two strains (No.12 and 15) 

harbouring mutations in genes involved in the phosphotransferase system (PTS). PTS is 

a multicomponent protein system that facilitates the uptake of sugars in bacteria 

(Bramley & Kornberg, 1987).  

One suppressor strain (No.9) harbours an amino acid exchange within the global 

regulator CodY as the only found SNP (Ledala et al., 2014, Majerczyk et al., 2010). 

CodY is a repressor that regulates various aspects of metabolism and virulence factors. 

CodY has also been shown to regulate oxidative stress related proteins by inhibiting 

expression of katA (catalase) and sodM (superoxide dismutase) (Pohl et al., 2009). 

Whole genome sequencing of suppressor No.10 additionally revealed a SNP 

within the gene sbi that is encoding the immunoglobulin G binding protein. Since its 

major role is during host infection specifically in the evasion of the immune response 

(Smith et al., 2011), it seems unlikely that sbi is involved in suppression of a lack of 

MreD. 

Many of the SNPs found point to the qoxABCD operon as being involved in the 

suppression of ∆mreD. Confirmation of the SNPs was carried out by PCR amplification 

and sequencing of qoxA (5’FW36/3’FW36), qoxB (5’FW82/3’FW83) and qoxCD 

(5’FW84/3’FW84) from suppressed strains No. 5, 15, 16 and 23. Additionally, 

qoxABCD genes of 5 additional suppressed strains (No.17, 18, 19 ,21 and 22) were sent 

for sequencing. SNPs in qox genes revealed by whole genome sequencing were  
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Figure 3.12 SH1000 ∆mreD suppressor growth on plate  
A, Growth of SH1000, SH1000 ∆mreD and ∆mreD suppressors on BHI agar plates 

without or with kanamycin at 37 °C for 24 h. B, Plating of SH1000, SH1000 ∆mreD 

and SH1000 ∆mreCD BHI agar plates incubated at 42 °C for 24 h. C, Growth of 

SH1000 ∆mreD and ∆mreD suppressors on BHI agar incubated at 37 °C for 24 h. D, 

Plating CFU counts on BHI agar of SH1000, SH1000 ∆mreD and ∆mreD suppressors at 

37 °C and 42 °C. 
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Figure 3.13 Restreaking of SH1000 ∆mreD suppressed derivatives 
SH1000 ∆mreD suppressed derivatives were streaked on BHI supplemented with 

kanamycin (50 µg/ml). SH1000 ∆mreD streaks were performed from the same plate. 

Right images show magnified plate areas. 
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Table 3.2 Single nucleotide polymorphisms of SH1000 ∆mreD suppressor strains 

Strain 
Number Gene Mutation Function 

5 SAOUHSC_01002 
(qoxA) 

S43L Quinol oxidase AA3, subunit II 

 
 

10 

SAOUHSC_02660 M250I Hypothetical protein, putative Mg 
transporter 

SAOUHSC_02706 
(sbi) 

A266V Immunoglobulin G-binding 
protein Sbi (Smith et al., 2011) 

SAOUHSC_02790 K718I Hypothetical protein, putative 
helicase 

 
 

11 

SAOUHSC_01228 
(codY) 

N11K 
 

transcriptional repressor CodY, 
GTP-binding protein that senses 
the intracellular GTP 
concentration as an indicator of 
nutritional limitations (Pohl et al., 
2009) 

 
 
 

12 

SAOUHSC_00524 
(rpoB) 

R825I RNA polymerase beta chain 

SAOUHSC_01979 P75L Hypothetical protein, Cro/Cl 
family transcriptional regulator 

SAOUHSC_02661 
(ptsG1) 

G6A PTS system sucrose-specific 
transporter subunit IIBC 

 
 
 
 

15 

SAOUHSC_00749 V276L Hypothetical protein, domains of 
FepB (ABC-type Fe3+-
hydroxamate transport system) 
and FatB (Siderophore binding 
protein) 

SAOUHSC_01029 
(ptsA) 

R138H Phosphoenolpyruvate-protein 
Phosphotransferase (Bramley & 
Kornberg, 1987) 

SAOUHSC_01000 
(qoxC) 

L70Stop 
(201 amino 
acid total 
length) 

Cytochrome c oxidase subunit III 
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SAOUHSC_01001 
(qoxB) 

Q190Stop 
(662 amino 
acid total 
length) 

quinol oxidase, subunit I 

SAOUHSC_A00526 R64L Hypothetical protein 
23 SAOUHSC_01000 

(qoxC) 
E29K Cytochrome c oxidase subunit III 

Amino acid exchanges are stated in the amino acid one letter code. If a mutation leads 

to a stop codon, the original total amino acid sequence length is stated in brackets. 
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confirmed by re-sequencing (not shown). Furthermore, sequencing of additional 

suppressed strains showed that 2 out 5 sequenced strains also harboured mutations in 

qox genes. Sequencing revealed a mutation at the beginning of qoxB leading to a 

frameshift and following stop codon (after 5 aa) in strain No.21. Another mutation was 

found in qoxA of strain No.18 causing a stop codon after the 148th codon (total length of 

QoxA is 320 amino acids). All mutations found in qoxABCD genes are summarised in 

Fig. 3.14. 

In summary, many mutations were found in qox genes and two suppressed 

strains (No. 5 and 23) were shown to only harbour mutations in these genes. This 

strongly suggests an involvement of the terminal oxidase in suppression of ∆mreD. 

Potentially, all mutations lead to a non functional cytochrome aa3 that has a positive 

effect on cells lacking MreD.  

 If respiration has a harmful effect on the mreD mutant, growth at anaerobic 

conditions could relieve the growth defect. This was tested by growing the  mreD 

mutant and its parent on agar plates incubated at 37 or 42 °C in a sealed box containing 

AnaeroGen sachets (ANAEROGENTM, Thermo Scientific) and in liquid culture in BHI 

filled universal tube incubated without shaking. However, no differences to aerobic 

growth were observed (not shown). 

 

3.2.7 Complementation of ∆mreD 

Phenotypes observed after mutation of a gene of interest have to be confirmed by 

complementation experiments to exclude the influence of polar effects and spontaneous 

mutations. 

Former complementation was performed by constitutive expression of mreD or 

mreC together with mreD using a plasmid-based system (Ma, 2016). However, the 

growth defect on agar was not complemented and growth in liquid was only 

complemented when mreD was expressed in ∆mreCD but no complementation was 

seen when mreD is expressed in ∆mreD. Expression of mreD together with mreC in 

∆mreCD only partially complemented growth in liquid culture. 

 

3.2.7.1 Plasmid-based complementation of ΔmreD 

To reproduce these experiments plasmids pGL485 (empty vector expressing lacI) 

(Cooper et al., 2009), pGL621 (mreD expression) and pGL631 (mreCD expression) 



 

125 
 

were transduced into SH1000, ∆mreD and ∆mreCD and growth in BHI medium 

supplemented with chloramphenicol (10 µg/ml) was investigated. 

As seen in Fig. 3.15, previous results could not be reproduced and expression of 

mreD alone led to slightly impaired growth of SH1000 and both the mreD and mreCD 

mutant. Expression of mreCD in the mreD mutant but not in the double mutant partially 

restored growth (Fig. 3.15). 

 

3.2.7.2 Single-copy-expression of mreD complementation of ∆mreD 

The plasmid-based complementation of the growth phenotype is therefore not 

conclusive. Using a promoter prediction software (http://www.softberry 

.com/berry.phtml?topic=bprom &group=programs&subgroup=gfindb; ) suggests that 

mreC and mreD expression is driven by a promoter upstream of mreC. However, there 

might also be a promoter within the last 80 bp of mreD driving the expression of a 

downstream DNA fragment encoding for the ribosomal proteins rplU, ysxB and rpmA 

(see Fig. 3.16). Using the neural network promoter prediction 

(http://www.fruitfly.org/seq_tools/promoter.html) on the other hand proposes two 

promoters in the intergenic region of mreD and rplU. Thus, this suggests that expression 

of downstream genes might not be affected by the deletion of mreD. 

3.2.7.2.1 Construction of complementation vector pKASBAR-PmreCD-mreD 

To ensure that the observed phenotypes of the mreD mutant are not due to downstream 

effects, a single copy of mreD integrated ectopically on the chromosome expressed by 

the promoter of mreCD was constructed. 

This was facilitated using pKASBAR, a derivative of pCL84 (Kabli, 2013))(Lee 

et al., 1991). pKASBAR is a non-replicating plasmid in S. aureus that integrates into 

the lipase gene via site-specific recombination with help of an integrase expressed from 

plasmid pYL112∆19. 

A DNA fragment upstream of mreC (5’FW94/3’FW94) and the gene encoding 

mreD (5’FW95/3’FW93) were amplified from SH1000 genomic DNA and both 

fragments were cloned into the BamHI/EcoRI site of pKASBAR-ezrA-eyfp using 

Gibson Assembly replacing ezrA-eyfp (see Fig. 3.17). Recombinant plasmids were 

tested by PCR using primer pair 5’FW94/3’FW93 resulting amplification of a 732 bp 

fragment (Fig. 3.17B) and validated by DNA sequencing (GATC Biotech AG, 

Konstanz, Germany). The resulting plasmid, pKASBAR-PmreCD-mreD, was 

electroporated into a RN4220 strain containing the helper 
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Figure 3.14 SNPs found in SH1000 ∆mreD suppressed strains 
Schematic representation of the qoxABCD operon and SNPs found in ∆mreD 
suppressors. No.5 (qoxA:S43L), No.18 (qoxA:K149Stop), No.21 
(qoxB:S161Frameshift), No.16 (qoxB:Q190Stop), No.23 (qoxC:E29K), No.15 
(qoxC:L70Stop). 

 
Figure 3.15 Plasmid-based complementation of the growth phenotype of SH1000 

ΔmreD and SH1000 ΔmreCD  

A, Growth curves of SH1000 and SH1000 ΔmreD with pGL485 (lacI), pGL621 (mreD) 

and pGL631 (mreCD) in BHI broth. Three independent experiments were carried out. 

B, Growth curves of SH1000 and SH1000 ΔmreCD with pGL485 (lacI), pGL621 

(mreD) and pGL631 (mreCD) in BHI broth. Three independent experiments were 

carried out. 

 

Figure 3.16 Schematic overview of the native genomic region of mreCD 

Predicted promoters (Softberry and Neural network promoter prediction) are indicated 

by blue bars and the terminator is indicated by a green bar. 
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plasmid pYL112∆19 that expresses an integrase needed for the chromosomal 

integration of pKASBAR (Luong & Lee, 2007, Lee et al., 1991) and from there 

transduced into the mreD deletion strain and SH1000 wild type strain. Integration into 

the lipase gene was confirmed by streaking candidates on a Baird-Parker agar plate 

supplemented with Egg-Yolk (Fig. 3.17D). Positive candidates lost their halo indicating 

the loss of lipase activity. Additionally, integration of the plasmid was tested by PCR 

using primers 5’FW94/3’FW93 for the presence of the promoter PmreCD next to mreD 

and primer pair Fwd_mreD_EcoRI/3’FW12 for verification of ∆mreD::kan. (Fig. 

3.17CE). 

3.2.7.2.2 Analysis of single-copy mreD expression complementation of  SH1000 

∆mreD 

Constructed strains were analysed for morphology as follows. Overnight cultures were 

subcultivated to an OD600=0.05 and grown to exponential phase. Samples were 

harvested and treated with FM1-43 to visualise membranes and allow cell-size 

measurements, followed by analysis using a  Nikon Dual Cam epifluorescence 

microscope (Fig. 3.18AB). 

Growth phenotypes were investigated on agar plates (Fig. 3.18D) and in BHI 

broth (Fig. 3.18C). To analyse whether the single-copy complementation vector 

complements the previously described heat-sensitivity, over-night cultures were plated 

on BHI agar using drop spreading and plates were then incubated at 37 or 42 °C (Fig. 

3.18E). 

The mreD mutant expressing an ectopically integrated single-copy of mreD in 

the lipase gene was analysed regarding morphology phenotype as well as growth in 

liquid and on BHI agar plates. Cells lacking MreD exhibited a high proportion of cells 

with increased cell sizes (Fig. 3.18 AB). Expression of mreD in the mreD mutant led to 

smaller cells than the wild type and the non-complemented mutant. Both, growth in 

liquid and on agar plates were partially restored in the complemented ∆mreD strain and 

as seen in Fig. 3.18E the growth at 42 °C on BHI agar was also restored. 

 

3.2.7.3 Transduction of ∆mreD into pre-complemented SH1000 

As shown in Section 3.2.1, suppressor mutations arising in the complemented strains is 

possible. To circumvent the risk of suppressor formation, the ΔmreD::kan mutation was 

transduced into SH1000 carrying the PmreCD-mreD complementation or the empty 

pKASBAR construct. Strains were restreaked on BHI plates supplemented with 

appropriate antibiotics after transduction and subsequently streaked on BHI plates 

without antibiotics (Fig. 3.19). 
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Figure 3.17 Construction of a single-copy chromosomal complementation plasmid 
for ∆mreD 
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A, Diagram  illustrating  the  construction of pKASBAR-PmreCD-mreD. B, Verification 

of pKASBAR-PmreCD-mreD (Lane 2) by PCR using primer pair 5’FW94/3’FW93 which 

results in amplification of 732 bp fragment, marked by a black arrow. PCR products 

were separated by 1%  (w/v) TAE  agarose  gel  electrophoresis. No DNA amplification 

is seen using pKASBAR as a negative control template (Lane 1). C, Schematic 

overview of the native genomic region of mreCD, mreC∆mreD and integrated 

pKASBAR-PmreCD-mreD. Black arrows indicate primer binding sites. D, Lipase activity 

test. SH1000, SH1000 ΔmreD and SH1000 ΔmreD  ∆geh::PmreCD-mreD growth on 

Baird-Parker agar supplemented with egg yolk. The halo around colonies indicates 

lipase activity. E, Verification of ΔmreD ::kan by PCR using primer pair 

Fwd_mreD_EcoRI/3’FW12. PCR products were separated by 1%  (w/v)  TAE  agarose  

gel  electrophoresis. A band of approximately 1600 bp, marked by a black arrow, 

indicates replacement of mreD by the kanamycin resistance cassette (Lanes 3-4). A 

band of approximately 600 bp, marked by a black arrow, indicates the presence of the 

native mreD. Genomic DNA from SH1000 was used as a negative control template 

(Lane 1) and genomic DNA from SH1000 ∆mreD::kan was used as a positive control 

template (Lane 2). F, Verification of chromosomal integration of  PmreCD-mreD  by PCR 

using primer pair 5’FW94/3’FW93. PCR products were separated by 1%  (w/v)  TAE  

agarose  gel  electrophoresis. A band of approximately 600 bp, marked by a black 

arrow, indicates chromosomal integration of PmreCD-mreD (Lanes 3-4). A band of 

approximately 1500 bp, marked by a black arrow, indicates the native PmreCD-mreCD 

locus. Genomic DNA from SH1000 and from SH1000 ∆mreD::kan were used as 

negative control templates resulting in the native PmreCD-mreCD for SH1000 genomic 

DNA (Lane 1) and no DNA amplification for SH1000 ∆mreD::kan genomic DNA 

(Lane 2). 
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Figure 3.18 Complementation of SH1000 ΔmreD by single-copy mreD expression  
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A, Phase contrast and convolved fluorescence images of S. aureus SH1000, SH1000 

ΔmreD and SH1000 ΔmreD Δgeh::PmreCD-mreD stained with FM1-43. Images were 

acquired using a Nikon Dual Cam microscope and NIS elements software (Nikon 

Instruments). White arrows indicate abnormally sized cells. Scale bars represent 3 µm. 

B, Cell counts categorized by cell diameter. C, Growth curves of S. aureus SH1000, 

SH1000 ΔmreD and SH1000 ΔmreD Δgeh::PmreCD-mreD in BHI broth. D, Growth 

curves of S. aureus SH1000, SH1000 ΔmreD and SH1000 ΔmreD Δgeh::PmreCD-mreD 

on BHI agar plates. E, CFU/ml counts of S. aureus SH1000, SH1000 ΔmreD and 

SH1000 ΔmreD Δgeh::PmreCD-mreD plated on BHI agar incubated at 37 and 42 °C. 
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Figure 3.19 Growth on BHI agar of precomplemented SH1000 ∆mreD 

Growth on BHI agar of various complemented and non-complemented mreD mutants 

and SH1000 wild type strains. Plates were incubated for 36 h at 37 °C. The ‘+ΔmreD’ 

indicates that this mutation was transduced into the strain. 

  



 

133 
 

The original and a fresh SH1000 ∆mreD both show a growth defect on plate although the 

fresh mutant appears to exhibit a more pronounced growth defect as colonies are found 

throughout the streak for the original mutant but not the fresh mutant (Fig. 3.19). The 

empty plasmid, pKASBAR, has no effect on growth on SH1000. A pre-complemented 

SH1000 that got transduced by ∆mreD is partially restored in growth and colony sizes are 

bigger as for the parental mreD strain but colonies are not found throughout the entire 

streak. However, the empty pKASBAR plasmid also seems to confer partially restored 

growth in ∆mreD. These observations were reproducible as other transformants exhibited 

the same growth phenotypes. It seems unlikely that the knockout of the lipase gene geh or 

the resistance marker of pKASBAR are responsible for the growth complementation since 

growth of SH1000 containing pKASBAR was not affected. 

 

3.2.7.4 ∆mreD in other strain backgrounds 

In order to investigate whether the lack of MreD results in a growth defect in other strain 

backgrounds ∆mreD::kan was transduced into Newman and NewHG and growth curves 

were performed. The replacement of mreD by the kanamycin resistance cassette was 

confirmed by PCR with primers Fwd_mreD_EcoRI/3’FW12 that are binding upstream 

and at the end of mreD using genomic DNA. Amplification of an approximately 1500 bp 

fragment indicates ΔmreD::kan whereas amplification of a 600 bp fragment shows the 

original mreD gene. There was always an amplification of a 600 bp fragment in all PCR 

reactions which is probably due to nonspecific amplification of a DNA fragment of 

similar size or a low frequent recombination event may be taking place. 

Newman ∆mreD and NewHG ∆mreD exhibited a growth defect compared to their 

parental counterparts suggesting that the previously observed growth defect phenotype in 

SH1000 is not a strain-specific effect (Fig. 3.20). 

The NARSA library is a collection of transposon mutants in a plasmid-cured 

USA300 strain (Fey et al., 2013). It was tested whether a transposon integrated at the 

beginning of mreD (insertion within the first 5 amino acids) (see Fig. 3.21A) has an effect 

on growth. In order to do so, ∆mreD::Tn from USA300 NE858 was transduced into 

SH1000 and the resulting strain was tested for growth in BHI broth. 

The insertion of a transposon at the beginning of mreD does not affect growth in 

liquid broth (Fig. 3.21B). The mreD gene contains several alternative start codons at the 

beginning and mreD expression could be driven by an alternative RBS within the 

beginning of mreD or at the end of the transposon. Another explanation could also be that 

mreD has no effect on growth and the observed growth phenotype of ∆mreD::kan is due 

to polar effects meaning that the deletion of mreD reduced expression of its downstream 

genes that are required for growth. 
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Figure 3.20 Growth phenotype of Newman ΔmreD and NewHG ΔmreD  

A, Verification of ΔmreD::kan by PCR using primer pair Fwd_mreD_EcoRI/3’FW12. 

PCR products were separated by 1%  (w/v)  TAE  agarose  gel  electrophoresis. A band 

of approximately 1500 bp, marked by a black arrow, indicates replacement of mreD by 

a kanR. A band of approximately 600 bp, marked by a black arrow, indicates the 

presence of mreD. B, Growth curve of Newman, NewHG and their ΔmreD mutant, 

respectively. 

 

 
 

 

Figure 3.21 Growth phenotype of the mreD transposon mutant SH1000 NE858 
A, Schematic overview of the native genomic region of mreCD and transposon insertion 

site of NE858. B, Growth curve of SH1000 and SH1000 ∆mreD::Tn (NE858). 
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3.3 Discussion 

 

3.3.1 Is MreD required for cell viability?  

A previous study by Tavares et al., demonstrated that a partial mutant of mreD is not 

affected in growth, morphology, peptidoglycan composition and did not exhibit any 

sensitivity towards various stresses (Tavares et al., 2015). It was therefore hypothesised 

that MreD has no effect on cell viability which strongly contradicts the findings in this 

study.  

The key experiment to prove the involvement of a gene of interest in the 

observed phenotype is complementation. A plasmid-based complementation, using 

expression of mreD or mreCD revealed that the growth deficiency of SH1000 ∆mreD in 

liquid culture was only partially restored expressing mreC and mreD together. 

Expression of mreD alone worsened growth both in the mutant as well as the wild type 

strain which might show a ratio dependent effect at which a naturally occurring ratio 

between MreC and MreD is required for MreD function. However, the mreC mutant 

also possesses a different ratio and did not exhibit a growth defect (Garcia-Lara et al., 

2015). Therefore, this effect might only be seen using a plasmid-based mreD expression 

which likely results in a higher expression of mreD than in the native cell. 

Chromosomal integration into the lipase gene locus of mreD under control of the 

putative promoter of mreCD partially complemented growth on agar and in liquid 

culture and completely restored the morphology phenotype (Fig. 3.18). Partial growth 

complementation might be due to non-wild type expression levels. Although the native 

promoter of mreCD was employed, the complementation construct was still different 

from the wild type setting. First, expression within the lipase gene might be different 

than at the mreCD locus, Second, mreD expression levels are likely to be higher since 

the mreD gene follows the promoter immediately instead of being transcribed after 

mreC. In conclusion, the partial complementation at this point is convincing. 

A problem arises however regarding SH1000 ∆mreD with the integrated empty 

plasmid pKASBAR(tet) which also exhibited restored growth similar to the 

complemented strain (Fig. 3.19). This phenomenon was reproducible and growth was 

restored when pKASBAR was transduced into the mreD mutant and vice versa, 

transducing mreD into SH1000 harbouring the integrated pKASBAR(tet) plasmid. This 

questions the complementation by mreD. Complementation might be either achieved by 

the knockout of the lipase gene or the plasmid itself, e.g. the resistance marker. Both 

scenarios seem unlikely. Additionally, the formation of suppressors might explain the 
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apparent growth restoration. However, in this case both small and big colony variants 

should have been observable after transduction. However, a difference was observed 

when analysing growth on agar of the original mreD strain compared to a fresh mreD 

mutant (Fig. 3.19). The freshly constructed strain exhibited a more pronounced growth 

defect compared to the original strain which could point to spontaneous mutations. 

Furthermore, it also shows that the mreD mutant is not stable and exhibits altered 

phenotypes after restreaking. 

Investigating whether the resistance marker has an influence on growth 

restoration could be resolved by using an erythromycin resistance marker version of 

pKASBAR. Also an inducible copy of mreD could be investigated to titrate levels of 

mreD expression. 

It must be taken into account, that mreD might not be required for growth and 

that the observed phenotypes are due to polar effects. All downstream genes rplU, ysxB 

and rpmA are proposed to be essential (Chaudhuri et al., 2009) and are likely to be 

encoded in one operon based on promoter and terminator predictions. Several putative 

promoters are found in between mreD and rplU and one was found within the end of 

mreD (Fig. 3.16). A putative terminator was only found downstream of rpmA. This 

possibility that the observed effect is based on a down-regulation of rplU-ysxB-rpmA is 

supported by a study in E. coli showing that a rplU-rpmA deletion mutant stops growth 

at high (43 °C) and low (25 °C) temperatures (Wower et al., 1998). At 37 °C, the 

mutant was still viable and able to grow but also exhibited a severe growth defect. This 

phenotype is reminiscent of that observed for SH1000 ∆mreD suggesting that the 

growth defect and heat-sensitivity might be due to lower transcript levels of rplU-ysxB-

rpmA. The mRNA levels of the downstream genes could be measured using RT-PCR. 

Additionally, 5’RACE-PCR could be applied to identify whether the predicted promoter 

within mreD is functional. 

 

3.3.2 Effect of MreD on membrane organisation  

MreB was shown to functionally organise the membrane of B. subtilis by creating 

membrane domain regions of increased fluidity (Strahl et al., 2014). These lipid 

domains are involved in membrane compartmentalisation and membrane protein 

localisation. In B. subtilis, MreD does not have an effect on membrane fluidity (Strahl et 

al., 2014). The coccoid bacterium S. aureus however, lacks MreB and MreD could 

overtake functions of MreB and replace its role as a spatial organiser. Cells lacking 

MreD fail to localise phospholipid synthesis enzymes PlsY and CdsA and exhibit an 
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altered phospholipid composition (Garcia-Lara et al., 2015) (Fig. 3.7C). MreD could act 

as a glue to bring together and thereby optimise phospholipid enzyme activity by 

protein interactions or by generating lipid domains. These domains could favour the 

localisation of phospholipid synthesis enzymes and bring proteins that belong together 

in close proximity to each other. The lack of MreD does not abolish phospholipid 

synthesis, since that would lead to immediate growth arrest, but it potentially reveals 

bottlenecks in the process. The loss of MreD might shift the reaction equilibrium of 

certain steps within phospholipid synthesis and thereby slowing it down and altering the 

composition. 

However, fatty acid analyses of a mreD mutant compared to its parent did not 

reveal massive changes. SH1000 ∆mreD was found to exhibit a slightly decreased 

amount of longer fatty acids that contribute to higher fluidity (Fig. 3.7). Yet, anteiso 

fatty acid species, that were shown to significantly increase membrane fluidity, were not 

found to be different to the wild type (de Mendoza D et al., 2012). It is therefore not 

surprising that the membrane fluidity when tested directly by fluorescence polarisation 

was not significantly altered (Fig. 3.8). In summary, MreD is unlikely to being involved 

in regulating membrane fluidity but might have an impact on phospholipid synthesis. 

SH1000 ∆mreD exhibits a heat-sensitivity when grown at 42 °C both on agar as 

well as in liquid culture (Fig. 3.1). Growth in medium supplemented with 4 % NaCl 

(w/v) restored the heat sensitivity but not the impaired growth rate (Fig. 3.5). The 

membrane composition of Lactobacillus casei and Bifidibacterium bifidum subjected to 

various NaCl concentrations was reported to be significantly altered (Gandhi & Shah, 

2016). Saturated fatty acid content was increased along with an increase in cardiolipin 

and decrease in phosphatidylglycerol upon NaCl-induced salt stress. Another study 

reported that growth of Pseudomonas halosaccharolytica at high temperatures is 

enhanced by NaCl which also increases cardiolipin amounts along with a decrease of 

phosphatidylglycerol (Ohno et al., 1979). Furthermore, Staphylococcus aureus cells 

incubated in medium supplemented with various NaCl concentrations also exhibits 

similar alterations. Cardiolipin increases whereas phosphatidylglycerol and 

lysylphosphatidylglycerol diminishes dependent on the amount of NaCl (Kanemasa et 

al., 1972). Importantly, this study shows that the mreD mutant in S. aureus exhibits the 

opposite effect of what was reported for NaCl stressed cells. 

SH1000 ∆mreD exhibits decreased levels of cardiolipin and increased levels of 

phosphatidylglycerol and lysylphosphatidylglycerol (Fig. 3.7BC). Possibly, NaCl 
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reverses the phospholipid composition and thereby restores cardiolipin, PG and lys-PG 

to wild type levels which could be required for growth at high temperatures. 

 

3.3.4 Suppressors of ∆mreD  

Suppressor mutations can infer the role and function of the genes. The analysis of a 

lipoteichoic acid deficient mutant (∆ltaS) which normally exhibits increased cell size, 

misplaced septa and eventually lyses revealed that suppressors in gdpP restored cell 

viability (Corrigan et al., 2011). GdpP is a phosphodiesterase that degrades the bacterial 

second messenger c-di-AMP. It later turned out that c-di-AMP amongst others regulate 

potassium uptake suggesting a role of lipoteichoic acids in ion-homeostasis (Corrigan et 

al., 2013). Another example is found for MreD itself. MreD is essential in S. 

pneumoniae but a mutation in pbp1a relieved the essentiality of mreD and indicated a 

role of MreD in peptidoglycan synthesis (Land & Winkler, 2011). 

Suppressors also revealed an important aspect of cell wall free forms of B. 

subtilis, also referred to as L-forms. B. subtilis is able to grow without a cell wall but 

requires to be stabilised in a hyperosmotic medium (Mercier et al., 2014). This 

transition requires the synthesis of excess membrane synthesis (Mercier et al., 2013) 

and suppressors in ispA. IspA catalyses the formation of a precursor required for the 

synthesis of menaquinone that is involved in the electron transport chain (ETC). 

Thereby it could be shown that reduced ETC activity leading to reduced oxidative stress 

increased the cell viability of B. subtilis L-forms (Kawai et al., 2015). 

Suppressor formation of SH1000 ∆mreD was predominantly observed when 

cells were grown at 42 °C (Fig. 3.1). These suppressors were found to be heat-resistant 

and exhibited partially restored growth on agar (Fig. 3.12). Whole genome sequencing 

revealed a number of mutations including stop codons in genes encoding for the 

terminal oxidase Cytochrome aa3 (Fig. 3.14 and Tab. 3.2). Staphylococcus aureus 

harbours at least two terminal oxidases, Cytochrome aa3 (qoxABCD) and Cytochrome 

bd (cydAB) (Clements et al., 1999, Gotz & Mayer, 2013) (Tynecka et al., 1999). 

Aerobic growth in a single mutant of either the qox genes or cyd genes is barely affected 

suggesting that one system is able to take over the other. A double mutant however, is 

completely inhibited in aerobic respiration (Hammer et al., 2013). 

Interestingly, SNPs in suppressors of SH1000 ∆mreD were only found in qox 

but not cyd genes which might implicate a specific role of MreD connected to 

Cytochrome aa3. The fact that deletion of one terminal oxidase normally has no effect 
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on aerobic growth also shows that Cytochrome aa3 could produce toxic by-products in 

the absence of MreD.  

MreD could help to localise or assemble Cytochrome aa3. Without MreD, 

Cytochrome aa3 function could be disturbed and also inhibit its electron donors NADH-

dehydrogenase and menaquinone which could cause an electron reflux and oxidative 

damage. These could be responsible for the growth defect and heat-sensitivity of 

SH1000 ∆mreD. 

 

3.4 Main findings in this chapter 

 

• Replacement of the mreD gene with a kanamycin cassette results in a severe 

growth defect and heat-sensitivity. 

• The phospholipid composition in SH1000 ∆mreD is altered. Less CL but more 

PG and lys-PG was found compared to SH1000. 

• Cells growing at 42 °C stop growing and exhibit misplaced septa, FtsZ 

localisation and aberrant cell morphologies. This heat sensitivity is relieved by 

high amounts of NaCl. 

• The mreD mutant forms suppressors that are partially restored in growth on agar 

and do not possess a heat-sensitivity. 

• Suppressors harbour mutations in a variety of genes but mainly in genes 

encoding for Cytochrome aa3. 

 

3.5 Contributions 
 

Fatty acid and phospholipid extraction and analysis shown in Fig. 3.7 were provided by 

the DSMZ identification service (Braunschweig, Germany). The analysis of whole 

genome sequencing data of mreD suppressor strains shown in Table 3.2 was performed 

by Dr. Roy Chaudhuri (University of Sheffield). Membrane fluidity experiments shown 

in Fig. 3.8 were performed by me and Dr. Helena Rosado (Imperical College London). 

All other experiments in this chapter were carried out by me 
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Chapter 4: Localisation of membrane proteins in 
S. aureus 

4.1 Introduction 

4.1.1 Membrane heterogeneity and localisation of phospholipid 
synthesis enzymes 

Bacterial membranes are primarily composed of proteins embedded in a lipid bilayer. 

The lipids consist of a hydrophilic phospholipid headgroup carrying a hydrophobic tail 

that is usually composed of two fatty acids. Both components are variable and serve 

different functions.  

The major phospholipids in bacteria are phosphatidylglycerol (PG), cardiolipin 

(CL) and phosphatidylethanolamine (PE) (de Mendoza et al., 2003)(Fischer et al., 

1978). The phospholipid composition is highly dependent on the species and is altered 

due to various environmental changes. E. coli membranes are composed of 5 % CL, 20–

25 % PG and 70–80 % PE whereas S. aureus exhibits mainly PG (43 %) , lysinylated 

PG (30 %) and CL (20 %) but no PE (Hayami et al., 1979, Dowhan, 1997). Anionic 

phospholipids such as CL, phosphatidic acid (PA) and PE have been found to be 

preferentially located at negatively curved regions of the cell membrane such as the 

septum and poles in E. coli (Renner et al., 2013, Ramamurthi, 2010, Jouhet, 2013, 

Renner & Weibel, 2011). Conversely, PG, stained with FM4-64, was found in the 

whole membrane or in a helical pattern along the long axis of the cell in B. subtilis 

(Barak et al., 2008). The helical organisation of FM4-64 stained lipids was missing in 

cells depleted of MurG, an enzyme involved in peptidoglycan precursor synthesis, 

indicating a connection between membrane organisation and peptidoglycan synthesis 

(Muchova et al., 2011). However, the helical arrangement could not be observed in E. 

coli (Fishov & Woldringh, 1999) and no unambiguous evidence could be shown apart 

from that FM4-64 specifically stains PG (Strahl et al., 2014). Nevertheless, these 

studies indicate a heterogeneity in the bacterial membrane that could be explained by 

the subcellular localisation of lipid synthesis enzymes.  

In B. subtilis, translational fusions of lipid synthesis enzymes with GFP have 

been used to study their localisation. Fusions revealed that the cardiolipin synthase, 

ClsA, colocalises with its product and therefore plays an important role in the 

localisation of CL (Nishibori et al., 2005). A number of other metabolism associated 

membrane proteins were also found to localise to the septum including PgsA, PssA , 
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Psd, CdsA, MprF and UgtP (functions are described in Section 1.2.4.1) (Nishibori et al., 

2005). UgtP exhibits a septal, as well as a peripheral, heterogeneous punctate pattern 

which corresponds to its role in the synthesis of glucolipids and in the regulation of 

FtsZ-assembly (Shiomi & Margolin, 2007, Weart et al., 2007). The question arises as to 

how these enzymes are targeted to the septum? A well conserved amphipathic α-helix 

was found near the C-terminus of cardiolipin synthases in E. coli, B. subtilis, S. aureus 

and a number of other bacterial species (Kusaka et al., 2016). The deletion of this motif 

results in the loss of septal localisation indicating that this amphipathic helix is required 

for the septal localisation of cardiolipin synthases. Yet, no amphipathic helices were 

found for PgsA and other phospholipid synthesis enzymes suggesting a different mode 

of localisation. 

The enzymes PlsY and PlsX link fatty acid with phospholipid synthesis. PlsY is 

localised at the cell periphery and at the septum in B. subtilis shown by using a xylose-

inducible chromosomal expression system (Hunt et al., 2006). The localisation of PlsX 

was unexpected as although it also localises at the cell-division site, it arrives prior to 

other proteins colocalised with the FtsZ-anchoring protein FtsA, and remains at the cell-

division site after septation. It could therefore act as cell-division marker before the Z-

ring forms. Its depletion results in aberrant Z-ring formation and suggests a connection 

between fatty acid synthesis and cell-division (Takada et al., 2014). Furthermore, 

protein-protein interaction studies also revealed an interaction between PlsX and FtsA 

as well as several other cell-division associated proteins, metabolic enzymes and 

cytoskeletal proteins (Takada et al., 2014). 

4.1.2 Aims of this chapter 

• The general localisation of membrane proteins within the membrane was 

investigated. Specifically, integral membrane proteins involved in phospholipid 

synthesis such as PlsY and other membrane proteins were analysed utilising 

several reporter protein fusions.  

• Colocalisation approaches were used to identify coordination in protein patterns. 

• What are the molecular processes that lead to membrane protein localisation? 

Employing PlsY-GFP as a marker protein, a variety of inhibitors and gene 

mutations were used to analyse their impact on the localisation of membrane 

proteins.  
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4.2 Results 

 

4.2.1 Localisation of PlsY  
PlsY was shown to localise in a punctate pattern throughout the membrane. Localisation 

studies were performed using a GFP fusion and immunolocalisation with an antibody 

targeting a extracellular peptide loop of PlsY (Garcia-Lara et al., 2015). 

The following PlsY localisation studies were performed using a strain that 

expresses the native plsY gene translationally fused to gfp under control of its native 

promoter ensuring native levels of PlsY-GFP. This was carried out with an derivative of 

the integrative plasmid pMUTIN (Kaltwasser et al., 2002). pMUTIN-plsY-gfp integrates 

by homologous recombination into the native locus of plsY and thereby places a plsY-

gfp fusion under control of the native promoter of plsY while the original plsY gene is 

placed under control of the IPTG-inducible promoter Pspac. Repression of the original 

plsY gene is facilitated by LacI which is expressed from the integrated pMUTIN 

plasmid. 

 

4.2.1.1 Growth phase dependent localisation of PlsY 

The subcellular localisation of PlsY-GFP in SH1000 was studied at different growth 

phases by comparing early-, late exponential and stationary phase cells using 

fluorescence microscopy of fixed cells. 

An overnight culture of SH1000 plsY-gfp was precultured to an OD600=0.05 in 

BHI and incubated at 37 °C at 250 rpm in the presence of erythromycin (5 µg/ml) and 

lincomycine (25 µg/ml). Samples were taken at early exponential phase (after 2 or 3 h), 

late exponential (after 4 or 5 h) and stationary phase (7 h), fixed using p-formaldehyde 

and analysed by fluorescence microscopy. 

Cells taken from exponential phase exhibit a punctate localisation pattern of 

PlsY-GFP that is especially distinctive during early exponential phase (Fig. 4.1AB). 

This pattern lessens in stationary phase. However, cells also appear smaller and have 

less overall fluorescent signal and thus a diminished signal to noise ratio. A Z-stack of 

two cells from early-exponential phase reveals the three-dimensional non-homogeneous 

distribution of PlsY-GFP in the membrane (Fig. 4.1C). Since the diffraction limit of 

about 250 nm pushes light-microscopy to its limits to see structures within the 1 µm 

diameter Staphylococcus aureus it is required to deconvolve acquired images. 

Nonetheless, the localisation pattern can be seen in convolved pictures even though with 

less clarity. Additionally, another algorithm called super resolution radial fluctuations 

(SRRF) (Gustafsson et al., 2016) that assumes that signals are formed of a point spread 

function with a higher degree of symmetry than the background which can be applied to 
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improve the resolution and showed similar results compared to deconvolution (Fig. 

4.2AB). This analysis was undertaken using a Nikon confocal microscope and data 

analysis was performed with the NanoJ-SRRF software package for Fiji-ImageJ.  

 

4.2.1.2 Cell-cycle dependent localisation of PlsY 

The localisation of PlsY during the cell cycle was studied by co-labelling using HADA. 

HADA is a fluorescent D-amino acid that is incorporated into the peptidoglycan and can 

be used to indicate the cell cycle status (Kuru et al., 2012). 

An overnight culture of SH1000 plsY-gfp was precultured to an OD600=0.05 in 

BHI and incubated at 37 °C at 250 rpm in the presence of erythromycin (5 µg/ml) and 

lincomycin (25 µg/ml). Samples were taken at an OD600≈0.5 and cells were labelled 

with 5 µl HADA (100 mM stock solution) in PBS for 5 min at 37 °C on a rotary wheel. 

Labelled cells were washed with PBS, fixed and analysed by fluorescence microscopy.  

PlsY-GFP localises in a cell-phase dependent manner (Fig. 4.3AB). The fusion 

goes to the septum during cell division and it appears that two dots are formed at the 

septum base during early-division phase that merge or redistribute to form a single dot 

at the cell-division site after the fission is almost finished. However, the fusion is also 

distributed in a punctate pattern both during cell-division and in non-dividing cells. Cell 

counts show that a punctate pattern is common and that PlsY-GFP is predominantly 

localised at the septum during late cell-division (Fig. 4.3B). 

 

4.2.1.3 Dose dependent localisation of PlsY 

The question arises as to whether the number of PlsY-GFP molecules affects its 

localisation pattern. In order to test this, IPTG controlled plsY-gfp expression from a 

plasmid (pWW10, see Section 5.2.4) was carried out using 50 and 500 µM IPTG. 

Fluorescence of samples was measured using a Tecan Plate reader with 100 µl cells 

adjusted to an OD600=5 that were washed and resuspended in PBS. Fluorescence 

measurements were taken by exposure for 1 sec at 485 nm and Emission at 535 nm. 

Samples were taken every 30 min after addition of IPTG, fixed with p-formaldehyde 

and visualised by fluorescence microscopy. 

The fluorescence of the samples increased over time upon IPTG addition and 

was dependent on the amount of IPTG whereby higher IPTG concentrations led to 

higher fluorescence (Fig. 4.4A). One sample was taken before and one at the time of 

IPTG addition which resulted in no measurable fluorescence counts. This shows that the 

IPTG-inducible expression of plsY-gfp is tightly repressed without the inducer in the 

tested framework. 

A higher expression level of plsY-gfp has no effect on growth, indicating that 

high amounts of the fusion are not harmful for the cell. The signal-to-noise ratio of 
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acquired fluorescence images improved in correlation to the measured values (Fig. 

4.4AB). Cells exhibit an obvious punctate distribution of PlsY-GFP at low expression 

levels of plsY-gfp. This pattern however gets lost at later stages (500 µM IPTG, 120 min 

past IPTG addition) and the PlsY-GFP fusion is located throughout the whole 

membrane. The septal localisation of PlsY-GFP during cell-division however, is 

independent of the expression levels (Fig. 4.4B). 

 

4.2.1.4 Verification of the punctate localisation pattern of PlsY 

It has been suggested recently that the helical bundles seen for an YFP-MreB fusion 

were formed due to an artefact of the fluorescent protein tag that are potentially created 

by the multimerisation of YFP (Margolin, 2012, Swulius & Jensen, 2012). 

To investigate whether the observed localisation pattern is due to the 

multimerisation of the GFP-tag, the localisation of PlsY was investigated with eYFP 

and its monomeric version. meYFP was generated by replacing alanine at position 206 

with lysine (Fig. 4.5) which disrupts the hydrophobic interaction at the dimeric 

interface. This mutation also creates a monomeric version of GFP (von Stetten et al., 

2012).  

 

4.2.1.4.1 Construction of a PlsY-eYFP and PlsY-meYFP fusion in S. aureus 

In order to construct pMUTIN-plsY-(m)eyfp, plsY (5’FW116/3’FW116) was amplified 

using SH1000 genomic DNA as a template and eyfp (5’FW117/3’FW117) was 

amplified using plasmids pKASBAR-ezrA-eyfp or pKASBAR-ezrA-meyfp (Wacnik, 

2016) as templates. DNA fragments were cloned into the KpnI/SpeI site of pMUTIN-

gfp+ using Gibson Assembly (Fig. 4.6A) and transformed into E. coli NEB5α. 

Recombinant plasmids were tested by restriction digest with HindIII and SpeI resulting 

in 6388 and 394 bp fragments (Fig. 4.6C) and validated by DNA sequencing (GATC 

Biotech AG, Konstanz, Germany). The resulting plasmids, pMUTIN-plsY-eyfp and 

pMUTIN-plsY-meyfp, were electroporated into RN4220 and from there transduced into 

SH1000. Genomic integration at the plsY locus was confirmed by PCR amplification of 

a 1077 bp fragment using one primer that binds in the genome upstream of plsY and one 

primer within the eyfp gene (Inward_plsY/Outward_eyfp) (Fig. 4.6D). No amplification 

of a 1077 bp fragment was seen using SH1000 genomic DNA as a template. The whole 

plsY gene was amplified with the use of primers Inward_plsY/3’FW116 resulting in a 

807 bp fragment to confirm the PCR and template. 
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Figure 4.1 Growth phase dependent localisation of PlsY-GFP 

A, Growth of SH1000 plsY-gfp. Imaging sampling points are indicated by white arrows. 

B, Phase contrast and fluorescence images (convolved and deconvolved) of S. aureus 

SH1000 plsY-gfp. Images were acquired using a Delta Vision microscope and SoftWoRx 

3.5.0 software (Applied Precision). Acquisition of fluorescence images were taken using 

2.5sec exposure in the FITC channel. Scale bars represent 2 µm. C, Z-stack images of 

selected cells from early-exponential growth phase. Scale bars represent 1 µm.  
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Figure 4.2 SRRF analysis of PlsY-GFP 

A, SRRF analysis of exponentially grown SH1000 plsY-gfp cells. Scale bars represent 1 

µm. B, SRRF analysis of exponentially grown SH1000 plsY-gfp cells Z-stack images of 

selected cells. 

 
 
 

  



 

147 
 

 
Figure 4.3 Cell-cycle dependent localisation of PlsY-GFP 

A, Deconvolved fluorescence images of selected cells representing different cell-cycle 

stages of S. aureus SH1000 plsY-gfp labelled with HADA. Images were acquired using 

a Delta Vision microscope and SoftWoRx 3.5.0 software (Applied Precision). 

Acquisition of fluorescence images were taken using 1.5 sec exposure in the DAPI 

channel and 2.5sec exposure in the FITC channel. Scale bar represents 1 µm. 

Fluorescent signal intensities are depicted in a linear colour code and saturated pixels 

are highlighted in red. B, Cell counts categorized depending on PlsY-GFP localisation 

and cell-cycle stage indicated by HADA labelling. Value n indicates counted cells for 

each group. Red and yellow bars indicate septal and blue bars indicate peripheral PlsY-

GFP localisation. The green coloured bar indicates random PlsY-GFP localisation. 
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Figure 4.4 Dose-dependent localisation of PlsY-GFP 

A, Growth curve of SH1000 + pWhiteWalker10 (IPTG-inducible plsY-gfp expression) 

grown in the presence of 50 or 500 µM IPTG. Left Y-axis shows OD600 and right Y-axis 

shows A.U. fluorescence values, white arrows indicate imaging sampling points and 

IPTG addition. B, Fluorescence images (convolved and deconvolved) of S. aureus 

SH1000 + pWhiteWalker10 1, 2 or 3 h post addition of IPTG. Images were acquired 

using a Delta Vision microscope and SoftWoRx 3.5.0 software (Applied Precision). 

Acquisition of fluorescence images was taken using 1 sec exposure in the FITC 

channel. Scale bars represents 1 µm. 

 

 

Figure 4.5 Nucleotide and amino acid sequence of eyfp compared to meyfp 
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Figure 4.6 Construction of a chromosomal plsY-(m)eyfp fusion in S. aureus SH1000 
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A, Diagram illustrating the construction of pMUTIN-plsY-(m)eyfp. B, Schematic 

overview of the native genomic region of plsY and post integration of pMUTIN-plsY-

(m)eyfp. Black arrows indicate primer binding sites. C, pMUTIN-plsY-eyfp p (Lane 1), 

pMUTIN-plsY-meyfp (Lane 3), and pMUTIN-gfp+ (Lane 2) were digested with HindIII 

and SpeI and separated by 1 % (w/v) TAE agarose gel electrophoresis. Bands of 6388 

bp and 394 bp, corresponding to pMUTIN-plsY-eyfp (Lane 1) and pMUTIN-plsY-meyfp 

(Lane 3), respectively, are marked by black arrows. Bands of 5394 bp and 608 bp (and 

190 bp) correspond to pMUTIN-gfp+ (Lane 2). D, Verification of pMUTIN-plsY-eyfp 

and pMUTIN-plsY-meyfp integration by PCR using primer pair Inward_plsY/ 

Outward_eyfp. PCR products were separated by 1 % (w/v) TAE agarose gel 

electrophoresis. A band of 1077 bp, marked by a black arrow, indicates pMUTIN-plsY-

eyfp chromosomal integration (Lane 1) and pMUTIN-plsY-meyfp chromosomal 

integration (Lane 4). No DNA amplification is seen using genomic DNA from SH1000 

(Lanes 2 and 5) or SH1000 plsY-gfp (Lane 3). PCR amplification of the whole plsY 

gene using primer pair Inward_plsY/3’FW116 results in a band of 807 bp using 

genomic DNA from pMUTIN-plsY-eyfp and pMUTIN-plsY-meyfp chromosomally 

integrated into the genome of SH1000 and the parental SH1000 as templates (Lanes 6-

7). 
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4.2.1.4.2 Localisation of PlsY-eYFP 
First of all, the localisation of PlsY-eYFP was investigated to confirm that the fusion 

localises the same as PlsY-GFP to exclude that eYFP alters the properties of PlsY. 

Thus, overnight cultures of SH1000 plsY-eyfp and SH1000 plsY-meyfp were diluted to 

an OD600=0.05 and grown at 37 °C for 2 h at 250 rpm. 1 ml samples were harvested, 

fixed using p-formaldehyde and imaged by fluorescence microscopy. 

PlsY-GFP and PlsY-eYFP exhibit a similar distribution pattern (compare Fig. 

4.3B with Fig. 4.7D). Both fusions are localised in a heterogeneous fashion and the 

majority of the cells show a septal localisation of both fusions in cells during early and 

late-cell division stages. The GFP tagged PlsY fusion however was easier to image due 

to a higher fluorescence signal. Furthermore, detected fluorescence signals for the PlsY-

eYFP fusion varied between cells whereas fluorescence of PlsY-GFP was more 

consistent. PlsY fused to the monomeric version of eYFP, meYFP, was not expressed or 

fluorescent in the majority of cells (Fig. 4.8). Cells that exhibit a fluorescent signal 

however, show a punctate patterned distribution of PlsY-meYFP along with a septal 

localisation. It is not known why the fusion is not expressed in every cell but the 

monomeric property of meYFP has no influence on the localisation pattern observed for 

PlsY-eYFP. 

 

4.2.2 Localisation of other phospholipid synthesis enzymes 

4.2.2.1 Genes selected for investigation 

It has been shown that PlsY is distributed heterogeneously and forms a punctate 

localisation pattern. The question arises whether other enzymes of the phospholipid 

synthesis pathway are localised in a similar fashion or even colocalised. In order to 

investigate other fusions, enzymes involved in phospholipid synthesis (see Fig. 1.5) 

were bioinformatically analysed in terms of their genetic organisation and topology to 

choose suitable candidates for localisation studies (Tab. 4.1). 
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Figure 4.7 Localisation of PlsY-eYFP in S. aureus SH1000 
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Phase contrast and fluorescence images (convolved and deconvolved) of S. aureus 

SH1000 plsY-eyfp. Images were acquired using a Delta Vision microscope and 

SoftWoRx 3.5.0 software (Applied Precision). Acquisition of fluorescence images were 

taken using 2.5 sec exposure in the FITC channel. A, Scale bars represent 3 µm. B, 

Selected cells showing the localisation of PlsY-eYFP and HADA. White arrows 

indicate septal localisation. Scale bars represent 1 µm. C, Z-stack images of selected 

cells. Scale bars represent 1 µm. D, Cell counts categorized depending on PlsY-eYFP 

localisation and cell-cycle stage indicated by HADA labelling. Value n indicates 

counted cells for each group. Red and yellow bars indicate septal and blue bars indicate 

peripheral PlsY-eYFP localisation. The green coloured bar indicates random PlsY-

eYFP localisation. 
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Figure 4.8 Localisation of PlsY-meYFP in S. aureus SH1000 

Phase contrast and fluorescence images (convolved and deconvolved) of S. aureus 

SH1000 plsY-meyfp. Images were acquired using a Delta Vision microscope and 

SoftWoRx 3.5.0 software (Applied Precision). Acquisition of fluorescence images were 

taken using 2.5 sec exposure in the FITC channel. 
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Table 4.1 Bioinformatic analysis of phospholipid synthesis enzymes 
Gene name GeneID (Staphylococcus aureus 

NCTC8325) 
Function (protein length in amino 

acids) 
and topology Prediction 

(http://wlab.ethz.ch/protter/#) 
PlsX SAOUHSC_01197 glycerol-3-phosphate acyltransferase 

(336) 

 
 

recG: ATP-dependent DNA helicase 
SAOUHSC_01196: fatty acid biosynthesis transcriptional 
regulator, potentially fabA 
fabD: malonyl CoA-acyl carrier protein transacylase  
dabG: 3-oxoacyl-(acyl-carrier-protein) reductase 
acpP: acyl carrier protein 
 rnc: ribonuclease III 

 

 
PlsC SAOUHSC_01837 1-acyl-sn-glycerol-3-phosphate 

acyltransferase (206) 

 
ptsG: Phosphotransferase system IIC components 
degQ: putative Periplasmic serine protease 
SAOUHSC_01839: tyrosyl-tRNA synthase 
mrcB: Membrane carboxypeptidase, Transglycosylase 
 

 
PgsA SAOUHSC_01260 

 
CDP-diacylglycerol-glycerol-3-phosphate 

3-phosphatidyltransferase (193) 

 
 

fabG: 3-ketoacyl-(acyl-carrier-protein) reductase 
SAOUHSC_01258: hypothetical protein 
rodZ: Cytoskeletal protein, Helix-turn-helix motif 
cinA: competence-damage inducible protein 
recA: recombinase A  

 
Cls2 SAOUHSC_02323 major cardiolipin synthase (495) 

 
 

rodA: rod shape-determining protein RodA 
SAOUHSC_02322: putative Staphylococcus aureus 
copper-sensitive operon repressor (CsoR) 
SAOUHSC_02324: putative RnaY; HD superfamily 
phosphodieaserase 
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MprF SAOUHSC_01359 lysylphosphatidyl-glycerol synthetase 
(841) 

 
 
SAOUHSC_01358: predicted PurR-regulated permease 
PerM 
msrA1: methionine sulfoxide reductase A 
msrR: Cps2a, transcriptional regulator 

 

 

Transmembrane domains were found for proteins PgsA, Cls2 and MprF but not for PlsC 

and PlsX. However, PlsX has been described as a membrane associated protein in 

B.subtilis (Takada et al., 2014). PgsA and MprF are predicted to have cytoplasmic C-

termini that could be used for protein fusions. Additionally, both proteins together with 

PlsC are likely to be monocistronic or the last gene of their operon which makes a C-

terminal fusion using pMUTIN feasible. Although PlsC was not identified as an integral 

membrane protein by Protter it was included to analyse how an allegedly non-

membrane protein of the same pathway is localised. Therefore, PgsA, MprF and PlsC 

were chosen for localisation studies using single-copy chromosomally integrated eyfp 

tagged protein fusions under control of their native promoters.  

Another phospholipid synthesis enzyme, the major cardiolipin synthase Cls2, 

was chosen to be investigated using a slightly different approach. The gene cls2 was 

found to be located within a potential operon including a downstream gene that might 

be expressed together with cls2. Thus, a cls2-eyfp fusion was chromosomally integrated 

into the lipase gene under control of its native promoter in a cls2 deficient strain. 

The gene encoding for PlsX is likely to be the middle of an operon and was 

therefore not considered for localisation studies as well as the phosphatidylserine 

decarboxylase Psd since it could not be found in the genome of S. aureus NCTC8325 or 

has not been annotated. 

 
4.2.2.2 Construction of single-copy integrative plasmids for phospholipid 

synthesis enzyme fusions with eYFP 

eYFP was chosen to determine the localisation of phospholipid synthesis enzymes since 

it has been shown to be useful for STORM studies (Dr. R. D. Turner, personal 

communication) and can be imaged with the filter set available for the Delta Vision 

deconvolution microscope (Applied precision, GE Healthcare). 
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4.2.2.2.1 Construction of a PlsC-eYFP fusion in S. aureus 
In order to construct pMUTIN-plsC-eyfp, plsC (5’FW10/3’FW10) from SH1000 

genomic DNA and eyfp (5’FW11/3’FW117) from plasmid pKASBAR-ezrA-eyfp were 

amplified, cloned into the KpnI/SpeI site of pMUTIN-gfp+ using Gibson Assembly 

(Fig. 4.9) and transformed into E. coli NEB5α. Recombinant plasmids were tested by 

restriction digest with EcoRI and ClaI resulting in 5626, 814, 287 and 45 bp fragments. 

(Fig. 4.9C) and validated by DNA sequencing (GATC Biotech AG, Konstanz, 

Germany). The resulting plasmid, pMUTIN-plsC-eyfp, was electroporated into RN4220 

and from there transduced into SH1000. Genomic integration at the plsC locus was 

confirmed by PCR amplification of a 906 bp fragment using one primer that binds at the 

beginning of plsC and one primer within the eyfp gene (5’FW10/Outward_eyfp) (Fig. 

4.9D). No DNA amplification was seen using SH1000 genomic DNA as a negative 

control template. The whole plsC gene was amplified with the use of primers 

5’FW10/3’FW10 resulting in a 638 bp fragment to confirm the PCR and template.  

 

4.2.2.2.2 Construction of a PgsA-eYFP fusion in S. aureus 
In order to construct pMUTIN-pgsA-eyfp, pgsA (5’FW16/3’FW16) from SH1000 

genomic DNA and eyfp (5’FW17/3’FW117) from plasmid pKASBAR-ezrA-eyfp were 

amplified, cloned into the KpnI/SpeI site of pMUTIN-gfp+ using Gibson Assembly 

(Fig. 4.10) and transformed into E. coli NEB5α. Recombinant plasmids were tested by 

restriction digest with PstI resulting in 3284, 2000 and 1452 bp fragments (Fig. 4.10C) 

and validated by DNA sequencing (GATC Biotech AG, Konstanz, Germany). The 

resulting plasmid, pMUTIN-pgsA-eyfp, was electroporated into RN4220 and from there 

transduced into SH1000. Genomic integration at the pgsA locus was confirmed by PCR 

amplification of a 870 bp fragment using one primer that binds at the beginning of pgsA 

and one primer within the eyfp gene (5’FW16/Outward_eyfp) (Fig. 4.10D). No DNA 

amplification was seen using SH1000 genomic DNA as a negative control template. 

The whole pgsA gene was amplified with the use of primers 5’FW16/3’FW16 resulting 

in a 600 bp fragment to confirm the PCR and template. 
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Figure 4.9 Construction of a chromosomal plsC-eyfp fusion in S. aureus SH1000 
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A, Diagram illustrating the construction of pMUTIN-plsC-eyfp. B, Schematic overview 

of the native genomic region of plsC and post integration of pMUTIN-plsC-eyfp. Black 

arrows indicate primer binding sites. C, pMUTIN-plsC-eyfp (Lane 2) and pMUTIN-

gfp+ (Lane 1) were digested with ClaI and EcoRI and separated by 1 % (w/v) TAE 

agarose gel electrophoresis. Bands of 5626, 814, 287 and 45 bp, corresponding to 

pMUTIN-plsC-eyfp, respectively, are marked by black arrows. Bands of 4829, 747, 329 

and 287 bp correspond to pMUTIN-gfp+. D, Verification of pMUTIN-plsC-eyfp 

integration by PCR using primer pair 5’FW10/Outward_eyfp. PCR products were 

separated by 1 % (w/v) TAE agarose gel electrophoresis. A band of 906 bp, marked by 

a black arrow, indicates pMUTIN-plsC-eyfp chromosomal integration (Lane 1). No 

DNA amplification is seen using SH1000 genomic DNA (Lane 2). PCR amplification 

of the whole plsC gene using primer pair 5’FW10/3’FW10 results in a band of 638 bp, 

marked by a black arrow (Lanes 3-4). 
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Figure 4.10 Construction of a chromosomal pgsA-eyfp fusion in S. aureus SH1000 
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A, Diagram illustrating the construction of pMUTIN-pgsA-eyfp. B, Schematic overview 

of the native genomic region of pgsA and post integration of pMUTIN-pgsA-eyfp. Black 

arrows indicate primer binding sites. C, pMUTIN-pgsA-eyfp (Lane 2) and pMUTIN-

gfp+ (Lane 1) were digested with PstI and separated by 1 % (w/v) TAE agarose gel 

electrophoresis. Bands of 3284, 2000 and 1452 bp, corresponding to pMUTIN-pgsA-

eyfp, respectively, are marked by black arrows. Bands of 4192 and 2000 bp correspond 

to pMUTIN-gfp+. D, Verification of pMUTIN-pgsA-eyfp integration by PCR using 

primer pair 5’FW05/Outward_eyfp. PCR products were separated by 1 % (w/v) TAE 

agarose gel electrophoresis. A band of 870 bp, marked by a black arrow, indicates 

pMUTIN-pgsA-eyfp chromosomal integration (Lane 1) . No DNA amplification is seen 

using SH1000 genomic DNA (Lane 2). PCR amplification of the whole pgsA gene 

(Lanes 3-4) using primer pair 5’FW05/3’FW05 results in a band of 600 bp, marked by a 

black arrow, indicating the functionality of the PCR.  
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4.2.2.2.3 Construction of an MprF-eYFP fusion in S. aureus 
In order to construct pMUTIN-mprF-eyfp, mprF (5’FW14/3’FW14) from SH1000 

genomic DNA and eyfp (5’FW14/3’FW117) from plasmid pKASBAR-ezrA-eyfp were 

amplified, cloned into the KpnI/SpeI site of pMUTIN-gfp+ using Gibson Assembly 

(Fig. 4.11) and transformed into E. coli NEB5α. Recombinant plasmids were tested by 

restriction digest with EcoRI and SpeI which should result in 6944, 1449 and 287 bp 

fragments (Fig. 4.11C) and validated by DNA sequencing (GATC Biotech AG, 

Konstanz, Germany). The resulting plasmid was electroporated into RN4220 and from 

there transduced into SH1000. Genomic integration at the mprF locus was confirmed by 

PCR amplification of a 2813 bp fragment using one primer that binds at the beginning 

of mprF and one primer within the eyfp gene (5’FW01/Outward_eyfp) (Fig. 4.11D). No 

DNA was seen using SH1000 genomic DNA as a negative control template. The whole 

mprF gene was amplified with the use of primers 5’FW01/3’FW14 resulting in a 2543 

bp fragment to confirm the PCR and template. 

 

4.2.2.2.4 Construction of a Cls2-eYFP fusion in S. aureus 
The gene encoding for the major cardiolipin synthase cls2 is likely to be organised in an 

operon since its downstream gene, SAOUHSC_02324 (hypothetical protein), begins 

immediately after the stop codon of cls2 (see Tab. 4.1). The use of pMUTIN could 

therefore affect the expression of SAOUHSC_02324. pKASBAR is a pCL84 derivative 

that is non-replicative in gram positive bacteria and integrates into the lipase gene geh 

(Lee et al., 1991) (Kabli, 2013). This integration is facilitated by site specific 

recombination via help of an integrase between an attB site located within the lipase 

gene and an attP site located on pKASBAR (Fig. 4.12B). A promoter prediction 

suggests (http://www.fruitfly.org/) that the promoter of cls2 is localised within 100 bp 

upstream of the start codon. 

Single-copy expression of cls2 under its native promoter was achieved via 

integration of a pKASBAR plasmid carrying cls2 and its promoter into the genome of a 

cls2 negative RN4220 strain. The cls2 gene from RN4220 was knocked out by 

transduction of a JE2 NARSA transposon library strain containing a transposon at the 

beginning of cls2 (JE NE258). In order to construct pKASBAR-Pcls2-cls2-eyfp, cls2 and 

its upstream sequence (5’FW09/3’FW09) were amplified from SH1000 genomic DNA, 

cloned into the BamHI/AscI site of pKASBAR-ezrA-eyfp using Gibson Assembly (Fig. 

4.12A). This led to the exchange of ezrA by cls2 and its promoter in frame with eyfp. 

The resulting plasmid was transformed into E. coli NEB5α. Recombinant plasmids were 

tested by restriction digest with EcoRI resulting in 6347 and 1357 bp fragments (Fig. 

4.12E) and validated by DNA sequencing (GATC Biotech AG, Konstanz, Germany). 

The resulting plasmid, pKASBAR-Pcls2-cls2-eyfp, was electroporated into RN4220 
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expressing an integrase from plasmid pYL112∆19 and from there transduced into 

RN4220 ∆cls2::Tn. The loss of lipase activity was tested on Baird-Parker agar 

supplemented with egg yolk (Fig. 4.12D). The presence of a chromosomal cls2-eyfp 

fusion was confirmed by PCR amplification of a 1831 bp fragment using one primer 

that binds at the beginning of cls2 and one primer within the eyfp gene 

(5’FW08/Outward_eyfp) (Fig. 4.12F). No DNA amplification was seen using SH1000 

genomic DNA as a negative control template. The knock-out of the original cls2 gene 

via transposon insertion was also confirmed by PCR. According to the NARSA library 

information (http://app1. unmc.edu/fgx/index.html), the transposon inserted in reverse 

into cls2 (Fig. 4.12C). Based on this, transposon integration was tested twice using two 

primer combinations (5’FW08/Upstream and Buster/3’FW08, see Fig. 4.10C for primer 

binding sites) that should result in approximately 1500 bp (5’FW08/Upstream) and 600 

bp (Buster/3’FW08) fragments whereas no DNA was amplified using SH1000 genomic 

DNA as a template (Fig. 4.12F). 

 

4.2.2.3 Localisation studies of phospholipid synthesis enzyme fusions with 

eyfp 

The constructed strains expressing eyfp fusions of phospholipid synthesis enzymes were 

used for localisation studies by fluorescence microscopy. Hence, overnight cultures 

were diluted to an OD600=0.05 and grown at 37 °C for 2 h at 250 rpm. 1 ml samples 

were harvested, fixed using p-formaldehyde and imaged by fluorescence microscopy. 

The phospholipid synthesis enzyme fusions, PlsC-eYFP, PgsA-eYFP, MprF-

eYFP and Cls2-eYFP, were found to localise in a punctate pattern and at the septum in 

cells undergoing cell division (Fig. 4.13 - 4.16). All fusions except for PgsA-eYFP 

showed a punctate distribution at the septum along with peripherally localised fusions. 

Fluorescence levels of PgsA-eYFP were lower compared to the other fusions and thus, 

the fusion protein appears to only localise at the septum in cells undergoing cell-

division. 

Interestingly, the analysis of Cls2-eYFP localisation by comparing eYFP fluorescence 

with HADA signals throughout the Z-stack reveals that Cls2-eYFP appears to be 

localised at the base of the septum during cell-division (Fig. 4.16C). This potentially 

indicates that Cls2-eYFP localises to the site of highest membrane curvature within the 

cell during cell-division.  

In summary, all proteins involved in phospholipid synthesis were found not to 

distribute homogeneously throughout the membrane but to be localised in a punctate 

pattern and to display septal localisation in dividing cells. However, at this stage more 

experiments are required to conclude whether these proteins are colocalised.  
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Figure 4.11 Construction of a chromosomal mprF-eyfp fusion in S. aureus SH1000 
 



 

165 
 

A, Diagram illustrating the construction of pMUTIN-mprF-eyfp. B, Schematic 

overview of the native genomic region of mprF and post integration of pMUTIN-mprF-

eyfp. Black arrows indicate primer binding sites. C, pMUTIN-mprF-eyfp (Lane 1) and 

pMUTIN-gfp+ (Lane 2) were digested with SpeI/EcoRI and separated by 1 % (w/v) 

TAE agarose gel electrophoresis. Bands of 6944 and 1449 (and 287 bp), corresponding 

to pMUTIN-mprF-eyfp, respectively, are marked by black arrows. Bands of 4819 and 

1076 (and 287 and 10 bp) correspond to pMUTIN-gfp+. D, Verification of pMUTIN-

mprF-eyfp integration by PCR using primer pair 5’FW01/Outward_eyfp. PCR products 

were separated by 1 % (w/v) TAE agarose gel electrophoresis. A band of 2813 bp, 

marked by a black arrow, indicates pMUTIN-mprF-eyfp chromosomal integration (Lane 

2). No DNA amplification is seen using SH1000 genomic DNA (Lane 1). PCR 

amplification of the whole mprF gene (Lanes 3-4) using primer pair 5’FW01/3’FW14 

results in a band of 2543 bp, marked by a black arrow. 
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Figure 4.12 Construction of a chromosomal cls2-eyfp fusion in S. aureus RN4220 

cls2::Tn 
 

A, Diagram illustrating the construction of pKASBAR-Pcls2-cls2-eyfp. B, Schematic 

overview of the native genomic region of geh and post integration of pKASBAR-Pcls2-

cls2-eyfp. Black arrows indicate primer binding sites. C, Schematic overview of the 

native genomic region of cls2 and transposon integration site. Black arrows indicate 

primer binding sites. D, Lipase activity test. RN4220 and RN4220 cls2::Tn ∆geh::cls2-

eyfp growth on Baird-Parker agar supplemented with egg yolk. The halo around 

RN4220 colonies indicates lipase activity. E, pKASBAR-Pcls2-cls2-eyfp (Lane 2) and 

pKASBAR-ezrA-eyfp (Lane 1) were digested with EcoRI and separated by 1 % (w/v) 

TAE agarose gel electrophoresis. Bands of 6347 and 1357 bp, corresponding to 

pKASBAR-Pcls2-cls2-eyfp (Lane 2), respectively, are marked by black arrows. A band 

of 7995 bp corresponds to linearized pKASBAR-ezrA-eyfp (Lane 1). F, Verification of 

pKASBAR-Pcls2-cls2-eyfp integration by PCR amplification using primer pair 

5’FW08/Outward_eyfp. PCR products were separated by 1 % (w/v) TAE agarose gel 

electrophoresis. A band of 1831 bp, marked by a black arrow, indicates pKASBAR-

Pcls2-cls2-eyfp chromosomal integration (Lanes 2-3). No DNA amplification is seen 

using SH1000 genomic DNA (Lane 1). Verification of ∆cls2::Tn by PCR amplification 

using primer pair 5’FW08/Upstream and Buster/3’FW08. Bands of approximately 1500 

bp (Lanes 5-6) and 600 bp (Lanes 8-9), respectively, marked by black arrows, indicate 

transposon integration into cls2. No DNA amplification is seen for both primer pairs 

using SH1000 genomic DNA (Lanes 4 and 7). 
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4.2.2.3.1 Localisation of PlsC-eYFP 

 
Figure 4.13 Localisation of PlsC-eYFP in S. aureus SH1000 
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Phase contrast and fluorescence images (convolved and deconvolved) of S. aureus 

SH1000 plsC-eyfp. Images were acquired using a Delta Vision microscope and 

SoftWoRx 3.5.0 software (Applied Precision). Acquisition of fluorescence images were 

taken using 2.5 sec exposure in the FITC channel and 1 sec exposure in the DAPI 

channel. A, Scale bars represent 3 µm. B, Selected cells showing the localisation of 

PlsC-eYFP and HADA. The white arrows indicate septal localisation. Scale bars 

represent 1 µm. C, Z-stack images of selected cells. Scale bars represent 1 µm. D, Cell 

counts categorized depending on PlsC-eYFP localisation and cell-cycle stage indicated 

by HADA labelling. Value n indicates counted cells for each group. Red and yellow 

bars indicate septal and blue bars indicate peripheral PlsC-eYFP localisation. The green 

coloured bar indicates random PlsC-eYFP localisation. 
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4.2.2.3.2 Localisation of PgsA-eYFP 
 

 
Figure 4.14 Localisation of PgsA-eYFP in S. aureus SH1000 
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Phase contrast and fluorescence images (convolved and deconvolved) of S. aureus 

SH1000 pgsA-eyfp. Images were acquired using a Delta Vision microscope and 

SoftWoRx 3.5.0 software (Applied Precision). Acquisition of fluorescence images were 

taken using 2.5 sec exposure in the FITC channel and 1 sec exposure in the DAPI 

channel. A, Scale bars represent 3 µm. B, Selected cells showing the localisation of 

PgsA-eYFP and HADA. The white arrows indicate septal localisation. Scale bars 

represent 1 µm. C, Z-stack images of selected cells. Scale bars represent 1 µm. D, Cell 

counts categorized depending on PgsA-eYFP localisation and cell-cycle stage indicated 

by HADA labelling. Value n indicates counted cells for each group. Red and yellow 

bars indicate septal and blue bars indicate peripheral PgsA-eYFP localisation. The green 

coloured bar indicates random PgsA-eYFP localisation. 
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4.2.2.3.3 Localisation of MprF-eYFP 
 

 
 

Figure 4.15 Localisation of MprF-eYFP in S. aureus SH1000 
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Phase contrast and fluorescence images (convolved and deconvolved) of S. aureus 

SH1000 mprF-eyfp. Images were acquired using a Delta Vision microscope and 

SoftWoRx 3.5.0 software (Applied Precision). Acquisition of fluorescence images were 

taken using 2.5 sec exposure in the FITC channel. A, Scale bars represent 3 µm. B, 

Selected cells showing the localisation of MprF-eYFP. The white arrows indicate septal 

localisation. Scale bars represent 1 µm. C, Z-stack images of selected cells. Scale bars 

represent 1 µm. D, Cell counts categorized depending on MprF-eYFP localisation and 

cell-cycle stage indicated by HADA labelling. Value n indicates counted cells for each 

group. Red and yellow bars indicate septal and blue bars indicate peripheral MprF-

eYFP localisation. The green coloured bar indicates random MprF-eYFP localisation. 
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4.2.2.3.4 Localisation of Cls2-eYFP 

 
Figure 4.16 Localisation of Cls2-eYFP in S. aureus RN4220 
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Phase contrast and fluorescence images (convolved and deconvolved) of S. aureus 

RN4220 ∆geh::Pcls2-cls2-eyfp ∆cls2. Images were acquired using a Delta Vision 

microscope and SoftWoRx 3.5.0 software (Applied Precision). Acquisition of 

fluorescence images were taken using 2.5 sec exposure in the FITC channel. A, Scale 

bars represent 3 µm. B, Selected cells showing the localisation of Cls2-eYFP. The white 

arrow indicates septal localisation. Scale bars represent 1 µm. C, Selected cells at the 

upper and lower Z-level of the cells showing the localisation of Cls2-eYFP. Scale bars 

represent 1 µm. D, Z-stack images of selected cells. Scale bars represent 1 µm. E, Cell 

counts categorized depending on Cls2-eYFP localisation and cell-cycle stage indicated 

by HADA labelling. Value n indicates counted cells for each group. Red and yellow 

bars indicate septal and blue bars indicate peripheral Cls2-eYFP localisation. The green 

coloured bar indicates random Cls2-eYFP localisation. 
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4.2.2.4 Localisation studies of non-phospholipid synthesis proteins 

The previous localisation studies were focused on enzymes involved in phospholipid 

synthesis and revealed that all of them show a similar punctate heterogeneous 

distribution. This raises several questions whether this localisation pattern is unique to 

phospholipid synthesis enzymes and how membrane proteins from unrelated pathways 

are distributed.  

 

4.2.2.5 Cytochrome B subunit (CydB) 

CydB is a subunit of cytochrome BD, a quinol oxidoreductase, one of two terminal 

oxidases in S. aureus. Its main function is the production of a proton motive force 

through a transfer of protons during respiration. It has been shown previously that a C-

terminal CydB-GFP fusion in E. coli is functional and localises in mobile membrane 

patches within the plasma membrane (Lenn et al., 2008b). These mobile patches could 

coincide with the punctate localisation pattern of the analysed staphylococcal membrane 

proteins. 

 

4.2.2.5.1 Construction of a CydB-eYFP fusion in S. aureus 
pMUTIN-cydB-eyfp was constructed by amplification of, genes cydB 

(5’FW21/3’FW21) from SH1000 genomic DNA and eyfp (5’FW22/3’FW117) from 

plasmid pKASBAR-ezrA-eyfp were amplified, cloned into the KpnI/SpeI site of 

pMUTIN-gfp+ using Gibson Assembly (Fig. 4.17) and transformed into E. coli NEB5α. 

Recombinant plasmids were tested by restriction digest with PstI which should result in 

6944, 1449 and 287 bp fragments (Fig. 4.17C). However, neither the digest of 

pMUTIN-gfp+ which should result in DNA fragments of 5394, 608 and 190 bp nor of 

pMUTIN-cydB-eyfp resulted in the expected digestion pattern. This might be explained 

due to star activity of PstI or that the plasmid sequence of pMUTIN-gfp+ used for 

analysis is incorrect. Sequencing showed that the insert is correct and harbours no 

mutations. The resulting plasmid, pMUTIN-cydB-eyfp, was electroporated into RN4220 

and from there transduced into SH1000. Genomic integration at the cydB locus was 

confirmed by PCR amplification of a 1311 bp fragment using one primer that binds at 

the beginning of cydB and one primer within the eyfp gene (5’FW21/Outward_eyfp) 

(Fig. 4.17D). No DNA amplification was seen using SH1000 genomic DNA as a 

negative control template. The whole cydB gene was amplified with the use of primers 

5’FW21/3’FW21 resulting in a 1040 bp fragment confirming the PCR and template. 
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4.2.2.5.2 Localisation of CydB-eYFP 
In order to study the localisation of CydB-eYFP in S. aureus SH1000, an overnight 

culture was diluted to an OD600=0.05 and grown at 37 °C to an OD600≈0.5. Cells were 

labelled with 5 µl HADA (100 mM stock solution) in PBS for 5 min and subsequently 

washed with PBS followed by fixing with para-formaldehyde before analysis by 

fluorescence microscopy. 

CydB-eYFP distributes non-homogeneously in the membrane (Fig. 4.18). 

Fluorescence can be seen in punctate patches around the cell periphery but not at the 

cell-division site (Fig. 4.18BD). This is confirmed by cell counts showing that CydB-

eYFP is only septally localised in around 20-30 % of cells undergoing cell-division. 

These counts however, could be miscategorised due to the limited resolution that could 

lead to an apparent septal localisation. Notably, the fluorescence levels between cells 

differed and could be explained that the fusion is not expressed in every single cell at 

the same level.  
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Figure 4.17 Construction of a chromosomal cydB-eyfp fusion in S. aureus SH1000 
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A, Diagram illustrating the construction of pMUTIN-cydB-eyfp. B, Schematic overview 

of the native genomic region of cydB and post integration of pMUTIN-cydB-eyfp. Black 

arrows indicate primer binding sites. C, pMUTIN-cydB-eyfp (Lane 2) and pMUTIN-

gfp+ (Lane 1) were digested with PstI and separated by 1 % (w/v) TAE agarose gel 

electrophoresis. Bands of 6388 bp and 394 bp, corresponding to pMUTIN-cydB-eyfp, 

respectively, are marked by black arrows. Bands of 5394 bp and 608 bp (and 190 bp) 

correspond to pMUTIN-gfp+. D, Verification of pMUTIN-cydB-eyfp integration by 

PCR using primer pair 5’FW21/Outward_eyfp. PCR products were separated by 1 % 

(w/v) TAE agarose gel electrophoresis. A band of 1311 bp, marked by a black arrow, 

indicates pMUTIN-cydB-eyfp chromosomal integration (Lane 3). No DNA 

amplification is seen using genomic DNA from SH1000 (Lane 4). PCR amplification of 

the whole cydB gene using primer pair 5’FW21/3’FW21 results in a band of 1040 bp 

(Lanes 1-2), marked by a black arrow, indicating the functionality of the PCR. 
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Figure 4.18 Localisation of CydB-eYFP in S. aureus SH1000 
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Phase contrast and fluorescence images (convolved and deconvolved) of S. aureus 

SH1000 cydB-eyfp. Images were acquired using a Delta Vision microscope and 

SoftWoRx 3.5.0 software (Applied Precision). Acquisition of fluorescence images were 

taken using 2.5 sec exposure in the FITC channel. A, Scale bars represent 3 µm. B, 

Selected cells showing the localisation of CydB-eYFP and HADA. Scale bars represent 

1 µm. C, Z-stack images of selected cells. Scale bars represent 1 µm. D, Cell counts 

categorized depending on CydB-eYFP localisation and cell-cycle stage indicated by 

HADA labelling. n indicates counted cells for each group. Red and yellow bars indicate 

septal and blue bars indicate peripheral CydB-eYFP localisation. The green coloured 

bar indicates random CydB-eYFP localisation. 
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4.2.2.6 Flotillin  

The first evidence for the existence of lipid rafts in S. aureus has been published 

recently (Lopez & Kolter, 2010). Lopez et al., showed that the bacterial homologue of 

Flotillin-1 (FloT) a lipid raft marker in eukaryotes, localises at a single spot in the 

membrane of S. aureus (Fig. 4.19) (Lopez & Kolter, 2010). This localisation is 

dependent on the cholesterol precursor squalene. Cells treated with zaragozic acid, an 

inhibitor of the squalene synthase, exhibit a loss of FloT localisation which eventually 

leads to its degradation. In order to allow comparison of FloT localisation to PlsY, the 

localisation of FloT was investigated followed by a zaragozic acid assay. 

 

 
Figure 4.19 Localisation of FloT-eYFP in S. aureus UAMS-1 

Image is taken from (Lopez & Kolter, 2010). 
 

4.2.2.6.1 Construction of a FloT-eYFP fusion in S. aureus 
pMUTIN-floT-eyfp was constructed by amplification of, genes floT (5’FW19/3’FW19) 

from SH1000 genomic DNA and eyfp (5’FW20/3’FW117) from plasmid pKASBAR-

ezrA-eyfp were amplified, cloned into the KpnI/SpeI site of pMUTIN-gfp+ using Gibson 

Assembly (Fig. 4.20) and transformed into E. coli NEB5α. Recombinant plasmids were 

tested by restriction digest with PacI and BamHI resulting in 3435, 2926, 619 and 167 

bp fragments (Fig. 4.20C) and further validated by DNA sequencing (GATC Biotech 

AG, Konstanz, Germany). The resulting plasmid, pMUTIN-floT-eyfp, was 

electroporated into RN4220 and from there transduced into SH1000. Genomic 

integration at the floT locus was confirmed by PCR amplification of a 1281 bp fragment 

using one primer that binds at the beginning of floT and one primer within the eyfp gene 

(5’FW21/Outward_eyfp) (Fig. 4.20D). No DNA amplification was seen using SH1000 

genomic DNA as a negative control template. The whole floT gene was amplified with 

the use of primers 5’FW19/3’FW19 resulting in a 1011 bp fragment confirming the 

PCR and template. 
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4.2.2.6.2 Localisation of FloT-eYFP 
In order to study the localisation of FloT-eYFP in S. aureus SH1000, an overnight 

culture was diluted to an OD600=0.05 and grown at 37 °C to an OD600≈0.5. Cells were 

harvested, washed with PBS followed by fixing with para-formaldehyde and analysed 

by fluorescence microscopy. 

As reported previously, FloT-eYFP is expected to localise in a single patch in 

the membrane (Lopez & Kolter, 2010). Conversely, the majority of cells were found to 

show a heterogeneous punctate distribution (Fig. 4.21AB) similar to the ones observed 

for phospholipid synthesis enzymes (Fig. 4.7 and Fig. 4.13 - Fig. 4.16).  

To determine if the integration of pMUTIN affected the localisation, the 

multicopy lacI expressing plasmid pGL485 was transduced to SH1000 floT-eyfp to 

create strain SH1000 floT-eyfp + pGL485. pMUTIN integration results in the original 

untagged floT gene under control of the IPTG inducible promoter Pspac. It also 

expresses one copy of lacI, the repressor or Pspac. This could potentially constitute an 

issue since one copy might not be enough to tightly repress the expression of untagged 

floT and it could thereby affect the localisation of FloT-eYFP. 

The expression of the original gene upon IPTG addition nor a tighter regulation 

through pGL485 alters the localisation of FloT-eYFP inferring that the original gene 

does not affect the localisation of FloT-eYFP (Fig. 4.22). Yet it may be possible that the 

integration of pMUTIN affects the downstream gene (SAOUHSC_01675, putative 

DNA translocase) and that it is linked to floT localisation. However, it seems unlikely 

that a helicase is involved in the localisation of a membrane protein. On the other hand, 

the localisation of FloT-eYFP that has been published recently might be an artefact due 

to overexpression (Lopez & Kolter, 2010). The paper does not state clearly whether a 

single-copy expression or overexpression of floT-eyfp was applied for the study.  
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Figure 4.20 Construction of a chromosomal floT-eyfp fusion in S. aureus SH1000 
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A, Diagram illustrating the construction of pMUTIN-floT-eyfp. B, Schematic overview 

of the native genomic region of floT and post integration of pMUTIN-floT-eyfp. Black 

arrows indicate primer binding sites. C, pMUTIN-floT-eyfp (Lanes 2-4) and pMUTIN-

gfp+ (Lane 1) were digested with PacI and BamHI and separated by 1 % (w/v) TAE 

agarose gel electrophoresis. Bands of 3435, 2926, 619 and 167 bp, corresponding to 

pMUTIN-floT-eyfp (Lane 2), respectively, are marked by black arrows. Bands of 343, 

1599, 991 and 167 bp correspond to pMUTIN-gfp+ (Lane 1). D, Verification of 

pMUTIN-floT-eyfp integration by PCR using primer pair 5’FW19/Outward_eyfp. PCR 

products were separated by 1 % (w/v) TAE agarose gel electrophoresis. A band of 1281 

bp, marked by a black arrow, indicates pMUTIN-floT-eyfp chromosomal integration 

(Lane 3). No DNA amplification is seen using genomic DNA from SH1000 (Lane 4). 

PCR amplification of the whole floT gene using primer pair 5’FW19/3’FW19 results in 

a band of 1011 bp ) (Lanes 1-2). 
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Figure 4.21 Localisation of FloT-eYFP in S. aureus SH1000 
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Phase contrast and fluorescence images (convolved and deconvolved) of S. aureus 

SH1000 floT-eyfp. Images were acquired using a Delta Vision microscope and 

SoftWoRx 3.5.0 software (Applied Precision). Acquisition of fluorescence images were 

taken using 1.5 sec exposure in the FITC channel. A, Scale bars represent 3 µm. B, 

Selected cells showing the localisation of FloT-eYFP and HADA. Scale bars represent 1 

µm. C, Z-stack images of selected cells. Scale bars represent 1 µm. D, Cell counts 

categorized depending on FloT-eYFP localisation and cell-cycle stage indicated by 

HADA labelling. n indicates counted cells for each group. Red and yellow bars indicate 

septal and blue bars indicate peripheral peripheral FloT-eYFP localisation. The green 

coloured bar indicates random FloT-eYFP localisation. 
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Figure 4.22 Localisation of FloT-eYFP in S. aureus SH1000 

Phase contrast and fluorescence images (convolved and deconvolved) of S. aureus 

SH1000 floT-eyfp + pGL485 grown in the presence of no (left) or 1 mM IPTG (right). 

Images were acquired using a Delta Vision microscope and SoftWoRx 3.5.0 software 

(Applied Precision). Acquisition of fluorescence images were taken using 1.5 sec 

exposure in the FITC channel. Scale bars represent 3 µm. 
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4.2.2.7 Secretion ATPase (SecY) 

SecY is part of the bacterial Sec secretion machinery. It is composed of three integral 

membrane proteins, SecYEG, that form a channel pore driven by the peripheral 

cytoplasmic ATPase SecA (Wickner et al., 1991, Driessen et al., 2001). It has been 

shown previously that SecY is homogeneously distributed in B. subtilis (Matsumoto et 

al., 2015) and was therefore chosen for localisation studies in S. aureus to compare its 

localisation pattern with PlsY. 

 

4.2.2.7.1 Construction of a SecY-GFP fusion in S. aureus 
Construction of pMUTIN-secY-gfp was carried out by Jagath Kasturiarachchi (Garcia-

Lara et al., 2015) by replacing plsY with secY from pMUTIN-plsY-gfp. secY was 

amplified from SH1000 template DNA. 

 

4.2.2.7.2 Localisation of SecY-GFP 
In order to study the localisation of SecY-GFP in S. aureus SH1000, an overnight 

culture was diluted to an OD600=0.05 and grown at 37 °C to an OD600≈0.5. Cells were 

harvested, washed with PBS followed by fixing with para-formaldehyde and analysed 

by fluorescence microscopy. 

SecY-GFP appears to be localised homogeneously throughout the membrane 

(Fig. 4.23AB). 60-70 % of the cells exhibit homogeneous distribution of SecY-GFP and 

additionally, SecY-GFP barely localises at the cell-division site (Fig. 4.23). It is 

therefore the first investigated membrane protein in this study showing a non-punctate 

localisation pattern. This observation has to be treated cautiously though. Due to the 

light diffraction limit it is not possible from these images to conclude whether proteins 

are distributed homogeneously or in a punctate pattern of more and smaller ‘dots’. 

Therefore it is inevitably possible that SecY is more abundant than PlsY and thus 

appears to be localised homogeneously. Dose-dependent experiments with PlsY-GFP 

expression (Fig. 4.4AB) gave the first evidence that the concentration of proteins affect 

their localisation which might also be the case for SecY-GFP. It has to be noted that 

SecY-GFP distribution is not perfectly homogeneous and some dot-like distribution can 

be seen. Nevertheless, its localisation is distinctly different from the other investigated 

membrane proteins. 
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Figure 4.23 Localisation of SecY-GFP in S. aureus SH1000 
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Phase contrast and fluorescence images (convolved and deconvolved) of S. aureus 

SH1000 secY-gfp. Images were acquired using a Delta Vision microscope and 

SoftWoRx 3.5.0 software (Applied Precision). Acquisition of fluorescence images were 

taken using 2 sec exposure in the FITC channel. A, Scale bars represent 3 µm. B, 

Selected cells showing the localisation of SecY-GFP and HADA. Scale bars represent 1 

µm. C, Z-stack images of selected cells. Scale bars represent 1 µm. D, Cell counts 

categorized depending on SecY-GFP localisation and cell-cycle stage indicated by 

HADA labelling. n indicates counted cells for each group. Red and yellow bars indicate 

septal and blue bars indicate peripheral SecY-GFP localisation. Black framed bars 

indicate a homogeneous distribution of SecY-GFP. The green coloured bar indicates 

random SecY-GFP localisation. 
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4.2.3 Homogeneity Distribution measurements 

To calculate whether SecY-GFP is less heterogeneously distributed in the membrane 

compared to PlsY-GFP, a new measurement was introduced to analyse the variation of 

fluorescence signal within the membrane. First, the polar transformer plug-in for Fiji-

ImageJ was employed to convert images to polar coordinates where the y-value 

represents the angle and the x-value stands for the distance from the centre of the image 

(https://imagej.nih.gov/ij/plugins/polar-transformer.html). An intensity profile of this 

image was then created and plotted. The intensity values were used to calculate the 

standard deviation as an indicator for heterogeneity. The standard deviation is both 

influenced by the variation of fluorescence as well as the intensity. To remove the latter 

effect, the coefficient of variation (CV) was calculated as follows: 

CV-factor = STDEV/Mean intensity value x 100 

An example using the logo of the Sheffield United football club is given in Figure 4.24. 

A high CV indicates a more heterogeneous distribution of fluorescence signal, while 

low values indicate a more homogeneous distribution. Since cytoplasmic signals affect 

the CV (see the two swords and the rose in Fig. 4.24) the measurements were further 

optimised by removing the cytoplasm. This was performed by deleting approximately 

20 % of the cell volume from the cell centre. However, this procedure was not carried 

out for deconvolved images since deconvolution already reduces cytoplasmic signals.  

The CV measurement was performed using fluorescence images (convolved and 

deconvolved) of PlsY-GFP and SecY-GFP in SH1000. As a control for a homogeneous 

distribution of fluorescence, fluorescence images of cytoplasmic GFP in RN4220 + 

pWhiteWalker1 (gfp and mCherry expression) was analysed. 

SH1000 plsY-gfp cells exhibit a CV factor of 18.2 (convolved) and 18.3 

(deconvolved) while the CV-factor of SH1000 secY-gfp cells was found to be 

significantly lower at 12.2 (convolved) and 11.8 (deconvolved) (p = 0.0130 between 

convolved images and p = 0.0014 between deconvolved images). Thus, SecY-GFP is 

more homogeneously distributed in the membrane compared to PlsY-GFP. Cytoplasmic 

GFP was found to be distributed more homogeneously than SecY-GFP and PlsY-GFP 

as CV values were 8.7 (convolved) and 8.1 (deconvolved). 

Moreover, deconvolution does not significantly alter the CV-factor (p>0.69 for 

all analysed groups). 
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 Figure 4.24 Example for the calculation of the coefficient of variation factor  

The logo of Sheffield United with (A) or without (B) the inner part as a representative 

of the bacterial cytoplasm, was converted to polar coordinates. These were then used to 

plot an intensity profile and calculate the coefficient of variation (CV). 
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 Figure 4.25 CV factor calculation for PlsY-GFP and SecY-GFP in S. aureus  

A, Convolved and deconvolved images of SH1000 plsY-gfp and SH1000 secY-gfp were 

converted into polar coordinates (bars atop of plot profiles) and their intensity profile 

was plotted. The CV-factor indicates the heterogeneity of fluorescence signal and is 

calculated based on the intensity values derived from the polar coordinate image. The 

cytoplasm was removed by deleting approximately 20 % of the cell volume starting 

from the cell centre. B, The CV-factor for 10 cells using convolved and deconvolved 

images of SH1000 plsY-gfp and SH1000 secY-gfp were calculated. Additionally, a 

control using cytoplasmic GFP from strain RN4220 + pWhiteWalker 1 (gfp and 

mCherry expression) was employed. P-values were calculated using a two-tailed two-

sample equal variance ttest. No significance was found between SecY-GFP and 

cytoplasmic GFP. Asterisks indicate the following p-values: *: p<0.05; **: 

0.01<p<0.05; ***: p<0.01. 
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4.2.4 Colocalisation studies of membrane proteins 

The previous experiments showed that membrane proteins have a tendency to be 

organised in a punctate non-uniform pattern. Consequently, the next step is to study the 

localisation of several membrane proteins in the same cell. Evidently, a second 

fluorophore is required to carry out colocalisation studies.  

GFP is an excellent fluorophore in terms of folding or brightness but it cannot be 

used in combination with eYFP due to their overlap of excitation/emission spectra (Fig. 

4.26). This puts the blue and red light spectrum into focus. eCFP and mCherry are 

commonly used in localisation studies. However, eCFP exhibits a clear deficiency in its 

properties. The Excitation/Emission of CFP lies within the auto fluorescence range of 

bacterial cells and possesses a low brightness which all together makes it a bad 

fluorophore especially for the study of low abundance proteins. 

(http://nic.ucsf.edu/dokuwiki/doku.php?id=fluorescent_ proteins). Additionally, both its 

excitation and emission spectra overlap with that of GFP. At the other end of the range, 

‘red’ proteins suffer from long maturation times and low brightness levels making it 

difficult to choose an appropriate protein. mCherry and mRFPmars1 have both been 

used before for localisation studies in S. aureus (Fischer et al., 2004, Brzoska & Firth, 

2013), and offer non-overlapping spectra with GFP. Despite their low brightness 

properties, mCherry and mRFPmars1 were chosen for co-localisation studies in 

combination with GFP simply because of a lack of good alternatives.  

A similar approach than the previously shown single-copy tagged genes was 

used in order to construct mCherry or mRFPmars1 tagged proteins. pAISH1 is a 

pMUTIN derivative that contains a tetracycline resistance marker instead of a 

erythromycin resistance marker (Aish, 2003) making the application of both plasmids in 

concert possible. Unfortunately, single-copy expression of PlsY-mCherry, PgsA-

mRFPmars1, CdsA-mCherry and CdsA-mRFPmars1, did not yield sufficient 

fluorescence signals (not shown)(construction of plasmids can be found in the 

Appendix: Section 9.1.1 - 9.1.4). Most cells either did not express the fusions, showed 

severe growth defects or only a small subset of cells express the fusions (not shown). 

This could be explained by slow folding of mCherry and mRFPmars1 or low 

fluorescence signal. 
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Table 4.2 Fluorescence properties of selected fluorescent proteins 

Protein λex λem EC QY Brightness Aggregation Relative 

brightness to 

eGFP [%]  

Notes 

eCFP 433 475 32500 0.4 13.0 Monomer 39  

superfolder 

GFP 

485 510 83300 0.65 54.1 Monomer 160 Fast folding, 

highly stable 

mNeonGree

n 

506 517 116000 0.80 92.8 Monomer 276  

eGFP 488 507 56000 0.6 33.6 Monomer 100  

eYFP 513 527 83400 0.61 50.9 Monomer 151  

Citrine 516 529 77000 0.76 58.5 Monomer 174  

mKO 548 559 51600 0.6 31.0 Monomer 92  

mOrange 548 562 71000 0.69 49.0 Monomer 146 ~2.5 hr 

maturation 

time 

mCherry 587 610 72000 0.22 15.8 Monomer 47 ~15 min 

maturation 

time 

mRFP 
584 607 50,000 0.25  

Monomer 37 ~15 min 

maturation 

time 

tdTomato 554 581 138000 0.69 95.2 Monomer 283 ~1 hr 

maturation 

time 

λex: Excitation wavelength, λem: Emission wavelength, EC: The extinction coefficient 

determines the amount of absorbed light. QY: The quantum yield describes the 

efficiency of molecules to convert absorbed photons into emitted photons. This table is 

adapted from the following websites: http://nic.ucsf.edu/FPvisualization/ and 

http://www.microscopyu.com/articles/livecellimaging/fpintro.html 
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4.2.4.1 Colocalisation studies using overexpression plasmids 

In order to measure the protein-interaction between various membrane proteins and 

PlsY, overexpression plasmids expressing plsY-gfp together with a membrane protein of 

interest translationally fused to mCherry were constructed. Plasmid construction, 

bioinformatic analyses and function of selected membrane proteins are described in 

Section 5.2.3. 

Protein-interaction plasmids were also used to investigate the localisation of 

PlsY together with other membrane proteins either related to phospholipid synthesis 

such as CdsA or PgsA or proteins of other metabolic processes that are expected not to 

be colocalised with PlsY (Tab. 4.3). These include the formerly described respiratory 

protein CydB, the secretion ATPase SecY, the phenyl-alanine transporter PheP, the 

mechanosensitive channel MscL and the lipoprotein signal peptidase LspA (Tab. 4.3). 

Furthermore, localisation of PlsY was compared with that of MreD which was reported 

to interact with PlsY in a bacterial-two-hybrid assay (Garcia-Lara et al., 2015). 

These plasmids were used to overcome the issues encountered for single-copy 

expression of mCherry-membrane protein fusions and analyse the localisation of PlsY-

GFP compared to other membrane proteins of interest. 

RN4220 strains containing the plasmids pWhiteWalker3 (mreD), 4 (cdsA), 7 

(cydB), 8 (pgsA), 11 (pheP), 12 (secY), 13 (mscL) or 17 (lspA) were precultured from an 

overnight culture to an OD600 of 0.05 and grown for 2 h at 37°C supplemented with 50 

µM IPTG to an OD600≈0.7-0.9. 1 ml samples were taken, fixed and prepared for 

fluorescence microscopy. 

All fusions, both plsY-gfp and the membrane proteins fused to mCherry, were 

expressed at high levels since short exposure times (0.7 sec (FITC), 1 sec (RFP)) 

compared to 2.5 sec for single-copy plsY-gfp expression were sufficient for their 

visualisation. Although with less clarity, punctate patterns can still be seen for PlsY-

GFP and the other fusions. Fig. 4.27 shows their localisation and arrows indicate 

whether proteins appear to be colocalised (white arrows) or non-colocalised (red 

arrows). This analysis reveals several interesting observations. 

First of all, using PlsY-GFP as an indicator for cells that are undergoing cell-

division (Fig. 4.28), MreD and CdsA almost always localise at the septum of cells in 

early and late cell-division stage. PgsA and LspA are septally colocalised during late 

cell-division. Membrane proteins CydB, PheP and more conspicuously SecY and MscL, 

do not exhibit septal colocalisation with PlsY-GFP in the majority of cells (Fig. 4.28). 
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Figure 4.26 Excitation an emission spectra of selected fluorescent proteins 

compared to GFP 

Excitation and emission spectra of CFP and eYFP compared to GFP (upper panel) and 

mCherry and mRFP1 compared to GFP (lower panel). %T stands for the transmission 

efficiency indicating the proportion of light exciting the fluorophore and light emission. 

 
 
Table 4.3 Selected proteins used for colocalisation studies with PlsY-GFP 
Protein name Function 

CdsA 
CDP-diacylglycerol synthase, catalyses the conversion of 
phosphatidic acid to CDP-diacylglycerol (Garcia-Lara et al., 
2015) 

PgsA Phosphatidylglycerol synthase (Garcia-Lara et al., 2015) 

MreD 
Cytoskeletal protein, potentially involved in the localisation of 
phospholipid synthesis enzymes (Garcia-Lara et al., 2015) 

CydB 
Respiration  
(4.2.2.5 Cytochrome B subunit (CydB)) 

SecY 
ATPase, drives secretion of the Sec system 
(4.2.2.7 Secretion ATPase (SecY)) 

PheP Phenyl-alanine transporter (Horsburgh et al., 2004)  

MscL 
Large-conductance mechanosensitive channel, pressure sensor 
(Haswell et al., 2011) 

LspA 
Lipoprotein signal peptidase, lipoprotein processing (Tjalsma et 
al., 1999) 

 

 

 



 

199 
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Figure 4.27 Localisation of PlsY-GFP and various membrane proteins  

fused to mCherry in S. aureus SH1000 

Phase contrast and fluorescence images (convolved and deconvolved) of S. aureus 

RN4220 plsY-gfp and various proteins fused to mCherry. Images were acquired using a 

Delta Vision microscope and SoftWoRx 3.5.0 software (Applied Precision). Acquisition 

of fluorescence images were taken using 0.7 sec exposure in the FITC channel and 1 sec 

exposure in the RFP channel. A-H , White arrows indicate matching fluorescence 

signals in FITC and RFP channel. Red arrows indicate mismatching punctate 

fluorescence signals. Scale bars represent 1 µm. 
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The colocalisation of punctate fluorescence signals is more common for PlsY-GFP with 

MreD, CdsA, PgsA and LspA (see white and red arrows in Fig. 4.27ABDH) and a 

mixture of matching and non-matching punctate signals is seen for CydB, PheP, SecY 

and MscL (Fig. 4.27CEFG). To quantify this observation a pixel-by-pixel analysis was 

applied using Fiji ImageJ.  

This analysis was carried out for strains expressing plsY-gfp together with MreD 

(pWW3), CdsA (pWW4), CydB (pWW7), PgsA (pWW8), SecY (pWW12) and MscL 

(pWW13) fused to mCherry. A strain only expressing plsY-gfp (pWW10) was used as a 

control. These proteins were selected as representatives of proteins that appear to be 

colocalised, partially colocalised or not-colocalised with PlsY-GFP according to Fig. 

4.27. 

The overlap coefficient according to Manders was chosen to calculate 

colocalisation. Manders indicates an overlap of signals of two channels (Zinchuk et al., 

2007)(Manders et al., 1993). It is composed of two values named M1 and M2. M1 

describes whether a signal in channel 1 for example the FITC channel, is correlated with 

a signal in channel 2 for example the RFP channel. In other words, if a pixel is green 

and red, M1 has a value of 1. If a pixel is green but not red, the value of M1 is 0. 

Manders M2 describes the opposite comparing a signal in channel 2 with channel 1.  

Samples were prepared and imaged the same way as described before and three 

image fields with comparable amounts of cells per strain were taken. Images were 

deconvolved and both convolved and deconvolved images were analysed to identify 

whether deconvolution alters results of colocalisation. Channels were separated and the 

background of fluorescence images was subtracted (Rolling Ball radius: 50 pixels). The 

threshold of the FITC channel image was auto adjusted and a selection of pixels within 

the threshold was created. Colocalisation was analysed using the Coloc2 Plugin in Fiji 

ImageJ using the threshold selection for both images. This procedure was repeated for 

all three replicates. 

Colocalisation analysis according to Manders shows that a pixel-by-pixel 

analysis of two fluorescence images can be applied to measure colocalisation of two 

membrane proteins, however with one drawback that will be explained later. The 

negative control of sole expression of plsY-gfp without a mCherry fusion results in a 

low M1 value meaning that a ‘green’ signal is not correlated with a ‘red’ signal. 

Comparing M1 values of convolved with deconvolved images does not alter results 

(Fig. 4.29). 
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Regarding the colocalisation of PlsY with the membrane proteins of interest, 

colocalisation of PlsY with MreD, CdsA, CydB and PgsA can be seen. SecY and MscL 

however also show colocalisation to a certain degree but less than the other membrane 

proteins. This might be explained by a general problem with this analysis. It has to be 

taken into account that the comparison of two membrane proteins will always result in 

high false-positive values because both proteins are localised in the membrane and the 

light-diffraction limits to resolve most structures. Thus, this kind of colocalisation 

measurement is not very sensitive. 

Nevertheless, the previous observation that PlsY is colocalised with MreD, 

CdsA and PgsA and non-colocalisation of PlsY with SecY and MscL (Fig. 4.27A-H) 

can be confirmed. According to Fig. 4.27C, CydB is partially colocalised with PlsY but 

using Manders overlay coefficient results in a high M1 value. Hence, colocalisation of 

PlsY with CydB remains unclear. 

 

4.2.4.2 Localisation studies of SNAP-tagged membrane proteins 

However, the amount of membrane proteins in the cell clearly affects their localisation 

as shown previously by the dose-dependent plsY-gfp expression meaning the shown 

distribution patterns are not necessarily conclusive. First, proteins are likely to be 

overexpressed which directly affects their localisation and second, these localisation 

studies were performed with non-native levels. The expression system of pWhiteWalker 

theoretically results in equal amounts of both fusions, which does not represent a native 

cell. 

An alternative approach is required to verify and further analyse the localisation 

of these proteins. SNAP tags are self-labelling enzymes that can be translationally fused 

to a gene of interest and fluorescently labelled with suitable substrates (Keppler et al., 

2004a, Keppler et al., 2004b). To overcome the potential folding issues of mCherry and 

mRFPmars1, single copy expression of C-terminal fusions of CydB, PlsY and PgsA 

with SNAP were constructed. The C-terminus of all proteins is predicted to be at the 

inside of the cell. Therefore the SNAP tag substrate has to be capable of diffusing 

through the membrane. Additionally, its excitation and emission wavelengths should be 

compatible with GFP or eYFP. TMR-Star (SNAP-Cell® TMR-Star) meets the criteria. 

It diffuses through the membrane of S. aureus (Dr.C.Walther, personal communication) 

and its ex/em wavelengths are suitable for colocalisation studies with GFP and eYFP 

(Fig. 4.30). 
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Figure 4.28 Septal colocalisation of various membrane proteins fused to mCherry 

with PlsY-GFP 

Fluorescence signals in the RFP channel were counted and categorized. Each count 

includes at least 60 cells undergoing cell-division taking the localisation of PlsY-GFP as 

an indicator for cell-division. At least 50 cells undergoing cell-division were counted 

and categorised for each strain. 

 

 

Figure 4.29 Overlap coefficient according to Manders using convolved and 

deconvolved images 

Three images of strains expressing PlsY-GFP and a membrane protein of interest fused 

to mCherry were analysed using Fiji ImageJ Coloc2 Plugin. Images were acquired using 

a Delta Vision microscope and SoftWoRx 3.5.0 software (Applied Precision). 

Acquisition of fluorescence images were taken using 0.7 sec exposure in the FITC 

channel and 1 sec exposure in the RFP channel. Analysis was carried out in triplicate on 

three image fields. 
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Figure 4.30 Excitation and emission spectra of TMRStar 

Excitation maximum: 554 nm Emission maximum 580 nm. Image was taken from NEB 

(https://www.neb.com/products/s9105-snap-cell-tmr-star). 
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4.2.4.2.1 Construction of a PlsY-SNAP fusion in S. aureus 
Single-copy expression of plsY-SNAP regulated by its native promoter was achieved 

using pAISH1 (Aish, 2003). Construction of pAISH-plsY-SNAP was facilitated by 

amplification of plsY (5’FW85/3’FW85) from SH1000 genomic DNA and amplification 

of the gene encoding for SNAP (5’FW86/3’FW86) from plasmid pCQ11-ftsZ-SNAP. 

Both fragments were then cloned into the HindIII/SwaI site of pAISH1 using Gibson 

Assembly (Fig. 4.31A) and transformed into E. coli NEB5α. Recombinant plasmids 

were tested by restriction digest with EcoRV and PstI. (Fig. 4.31C) resulting in 

approximately 2000, 1400 and 1100 bp fragments and validated by DNA sequencing 

(GATC Biotech AG, Konstanz, Germany). The resulting plasmid, pAISH-plsY-SNAP, 

was electroporated into RN4220 and from there transduced into SH1000. Genomic 

integration at the plsY locus was confirmed by PCR amplification of an approximately 

800 bp fragment using one primer that binds in the genome upstream of plsY and one 

primer within the SNAP gene (Inward_plsY/Outward_SNAP) (Fig. 4.31D).  

 

4.2.4.2.2 Localisation of PlsY-SNAP (TMR-Star) 
SH1000 plsY-SNAP was precultured from an over-night culture to an OD600=0.05 and 

grown to exponential phase of OD600≈0.6 at 37°C and 250 rpm without antibiotics. 1 ml 

samples were harvested by centrifugation and washed with PBS. The pellet was 

resuspended in 1 ml PBS and 600 nM TMR-Star (SNAP-Cell® TMR-Star) was added. 

The tube was covered in foil and incubated at 37 °C for 10 min on a rotary wheel. 

Subsequently, cells were recovered by centrifugation, washed with PBS and the pellet 

was resuspended in 1 ml BHI. The tube was covered again in foil and incubated at 37 

°C for 15 min on a rotary wheel. Cells were harvested, fixed with para-formaldehyde 

and analysed by fluorescence microscopy. 

The localisation of PlsY-SNAP was analysed by addition of TMR-Star, a SNAP 

substrate fluorescent in the RFP channel. The fluorescence was brighter than the GFP 

tagged PlsY since an exposure time of 1.5 sec instead of 2.5 sec was enough to visualise 

the fusion. The SNAP tag PlsY fusion localises in a punctate pattern throughout the 

membrane and at the cell septum (Fig. 4.32AB) which is in accordance with the 

localisation seen for the PlsY-GFP and PlsY-eYFP fusions.  

 

4.2.4.3.1 Construction of a CydB-SNAP fusion in S. aureus 
Construction of pAISH-cydB-SNAP was facilitated by amplification of cydB 

(5’FW89/3’FW89) from SH1000 genomic DNA and amplification of the gene encoding 

for SNAP (5’FW90/3’FW86) from plasmid pCQ11-ftsZ-SNAP. Both fragments were 
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then cloned into the HindIII/SwaI site of pAISH1 using Gibson Assembly (Fig. 4.33A) 

and transformed into E. coli NEB5α. Recombinant plasmids were tested by restriction 

digest with EcoRV resulting in approximately 4500, 2500 , 1000 and 400 bp fragments, 

(Fig. 4.33C) and validated by DNA sequencing (GATC Biotech AG, Konstanz, 

Germany). The resulting plasmid, pAISH-cydB-SNAP, was electroporated into RN4220 

and from there transduced into SH1000. Genomic integration at the cydB locus was 

confirmed by PCR amplification of an approximately 1169 bp fragment using one 

primer that binds in the genome upstream of cydB and one primer within the SNAP gene 

(5’FW21/Outward_SNAP) (Fig. 4.33D).  

 

4.2.4.3.2 Localisation of CydB-SNAP (TMR-Star) 
Localisation of CydB-SNAP in SH1000 was investigated as shown for PlsY-SNAP 

(Section 4.2.4.2.2). Briefly, an overnight culture was diluted and grown to exponential 

phase. Samples were harvested and labelled using TMRStar (SNAP-Cell® TMR-Star). 

Subsequently, cells were fixed and analysed by fluorescence microscopy (Fig. 4.34). 

CydB-SNAP (TMR-Star) localises in the same way as CydB-eYFP showing that 

its heterogeneous localisation pattern is not an artefact of the eYFP-tag (Fig. 4.18). 

Some of the cells show septal localisation of CydB-SNAP which was also seen for 

earlier localisation studies using a mCherry or eYFP fusions. 

 

4.2.4.4.1 Construction of a PgsA-SNAP fusion in S. aureus 
Construction of pAISH-cydB-SNAP was facilitated by amplification of pgsA 

(5’FW87/3’FW87) from SH1000 genomic DNA and amplification of the gene encoding 

for SNAP (5’FW88/3’FW86) from plasmid pCQ11-ftsZ-SNAP. Both fragments were 

then cloned into the HindIII/SwaI site of pAISH using Gibson Assembly (Fig. 4.35) and 

transformed into E. coli NEB5α. Recombinant plasmids were tested by restriction digest 

with EcoRV (Fig. 4.35B) and validated by DNA sequencing (GATC Biotech AG, 

Konstanz, Germany). The resulting plasmid, pAISH-pgsA-SNAP, was electroporated 

into RN4220 and from there transduced into SH1000. Genomic integration at the pgsA 

locus was confirmed by PCR amplification of an approximately 1169 bp fragment using 

one primer that binds in the genomic part upstream of pgsA and one primer within the 

SNAP gene (5’FW21/Outward_SNAP) (Fig. 4.35D).  

 

4.2.4.4.2 Localisation of PgsA-SNAP (TMR-Star) 
Localisation of PgsA-SNAP in SH1000 was investigated as shown for PlsY-SNAP 

(Section 4.2.4.2.2). Briefly, an overnight culture was diluted and grown to exponential 
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phase. Samples were labelled using TMRStar (SNAP-Cell® TMR-Star), fixed using 

para-formaldehyde and analysed by fluorescence microscopy. 

The microscopic analysis demonstrates that PgsA-SNAP is found to be localised 

similar as PgsA-eYFP in heterogeneous punctate distribution pattern and is localised at 

the septum during cell-division (Fig. 4.36). 

 

4.2.4.5 Colocalisation of SecY-GFP and PlsY-SNAP (TMRStar) 

 

4.2.4.5.1 Construction of a double tagged SecY-GFP and PlsY-SNAP strain 
In order to construct a double-tagged strain expressing secY-gfp and plsY-SNAP, phage 

lysate of RN4200 plsY-SNAP was transduced to SH1000 secY-gfp. Integration of plsY-

SNAP at the plsY locus was confirmed by PCR using genomic DNA as a template and 

primer pair Inward_plsY/Outward_SNAP. Amplification of an approximately 800 bp 

fragment indicated integration of plsY-SNAP (Fig. 4.37C). Integration of secY-gfp was 

also confirmed by PCR amplification of an approximately 1400 bp fragment using a 

primer binding at the beginning of secY and one primer binding within gfp 

(5’FW75/Outward_gfp) (Fig. 4.37D). 

 

4.2.4.5.1 Colocalisation of SecY-GFP and PlsY-SNAP (TMRStar) 
Localisation of SecY-GFP and PlsY-SNAP in SH1000 was investigated as shown for 

PlsY-SNAP (Section 4.2.4.2.2). Briefly, an overnight culture was diluted and grown to 

exponential phase. Samples were washed with PBS and subsequently the PlsY-SNAP 

fusion was labelled using 600 nM TMRStar (SNAP-Cell® TMR-Star). The tube was 

covered in foil and incubated at 37 °C for 10 min on a rotary wheel. Labelled samples 

were washed in PBS and incubated in BHI for 15 min followed by an additional 

washing step with PBS before being fixed and analysed by fluorescence microscopy 

(Fig. 4.38). 

PlsY-SNAP and SecY-GFP are not colocalised. PlsY-SNAP localisation was 

unchanged in a double tagged strain and SecY-GFP appears to be localised 

homogeneously (Fig. 4.23). As shown before, PlsY localises to the septum early during 

cell-division and remains there until cells are divided. SecY however, does only go to 

the septum during late-cell division as the full septum is formed as indicated by the 

PlsY localisation showing that both proteins are localised by different mechanisms. 
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Figure 4.31 Construction of a chromosomal plsY-SNAP fusion in S. aureus SH1000 
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A, Diagram illustrating the construction of pAISH-plsY-SNAP. B, Schematic overview 

of the native genomic region of plsY and post integration of pAISH-plsY-SNAP. Black 

arrows indicate primer binding sites. C, pAISH-plsY-SNAP (Lane 1) and pAISH1 (Lane 

2) were digested with EcoRI and PstI and separated by 1% (w/v) TAE agarose gel 

electrophoresis. Bands of approximately 2000, 1400 and 1100 bp, corresponding to 

pAISH-plsY-SNAP (Lane 1), respectively, are marked by black arrows. Bands of 

approximately 5000, 2000, 1400 and 1100 bp correspond to pAISH1 (Lane 2). D, 

Verification of pAISH-plsY-SNAP integration by PCR using primer pair 

Inward_plsY/Outward_SNAP. PCR products were separated by 1% (w/v) TAE agarose 

gel electrophoresis. A band of 800 bp, marked by a black arrow, indicates chromosomal 

integration of pAISH-plsY-SNAP (Lane 1). No DNA amplification can be seen using 

SH1000 genomic DNA as a template (Lane 2). 
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Figure 4.32 Localisation of PlsY-SNAP in S. aureus SH1000 

Phase contrast and fluorescence images (convolved and deconvolved) of S. aureus 

SH1000 plsY-SNAP using TMR-Star as a SNAP-substrate. Images were acquired using 

a Delta Vision microscope and SoftWoRx 3.5.0 software (Applied Precision). 

Acquisition of fluorescence images were taken using 1.5 sec exposure in the RFP 

channel. A, Scale bars represent 3 µm. B, Images of selected cells. Scale bars represent 

1 µm.  
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Figure 4.33 Construction of a chromosomal cydB-SNAP fusion in S. aureus SH1000 
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A, Diagram illustrating the construction of pAISH-cydB-SNAP. B, Schematic overview 

of the native genomic region of cydB and post integration of pAISH-cydB-SNAP. Black 

arrows indicate primer binding sites. C, pAISH-cydB-SNAP (Lane 1) and pAISH1 

(Lane 2) were digested with EcoRV and separated by 1 % (w/v) TAE agarose gel 

electrophoresis. Bands of approximately 4500, 2500 , 1000 and 400 bp, corresponding 

to pAISH-cydB-SNAP (Lanes 1-4), respectively, are marked by black arrows. Bands of 

approximately 4500, 3000, 1300 and 1100 bp correspond to pAISH1 (Lane 5). D, 

Verification of pAISH-cydB-SNAP integration by PCR using primer pair 

5’FW21/Outward_SNAP. PCR products were separated by 1 % (w/v) TAE agarose gel 

electrophoresis. A band of 1169 bp, marked by a black arrow, indicates chromosomal 

integration of pAISH-cydB-SNAP (Lane 1). No DNA amplification can be seen using 

SH1000 genomic DNA as a template (Lane 2). 
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Figure 4.34 Localisation of CydB-SNAP in S. aureus SH1000 

Phase contrast and fluorescence images (convolved and deconvolved) of S. aureus 

SH1000 cydB-SNAP using TMR-Star as a SNAP-substrate. Images were acquired using 

a Delta Vision microscope and SoftWoRx 3.5.0 software (Applied Precision). 

Acquisition of fluorescence images were taken using 1.5 sec exposure in the RFP 

channel. A, Scale bars represent 3 µm. B, Images of selected cells. Scale bars represent 

1 µm.  
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Figure 4.35 Construction of a chromosomal pgsA-SNAP fusion in S. aureus SH1000 
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A, Diagram illustrating the construction of pAISH-pgsA-SNAP. B, Schematic overview 

of the native genomic region of pgsA and post integration of pAISH-pgsA-SNAP. Black 

arrows indicate primer binding sites. C, pAISH-pgsA-SNAP (Lane 1) and pAISH1 

(Lane 2) were digested with BamHI and EcoRV and separated by 1 % (w/v) TAE 

agarose gel electrophoresis. Bands of approximately 4200, 2000 , 1100 and 400 bp, 

corresponding to pAISH-pgsA-SNAP (Lane 1), respectively, are marked by black 

arrows. Bands of approximately 4200, 3500, 1200 and 1100 bp correspond to pAISH1 

(Lane 2). D, Verification of pAISH-pgsA-SNAP integration by PCR using primer pair 

5’FW87/Outward_SNAP. PCR products were separated by 1 % (w/v) TAE agarose gel 

electrophoresis. A band of 729 bp, marked by a black arrow, indicates chromosomal 

integration of pAISH-pgsA-SNAP (Lanes 5-6). No DNA amplification is seen using 

SH1000 genomic DNA (Lane 4). PCR amplification of the whole pgsA gene using 

primer pair 5’FW87/3’FW87 results in a band of 610 bp (Lanes 1-3). 
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Figure 4.36 Localisation of PgsA-SNAP in S. aureus SH1000 

Phase contrast and fluorescence images (convolved and deconvolved) of S. aureus 

SH1000 pgsA-SNAP using TMR-Star as a SNAP-substrate. Images were acquired using 

a Delta Vision microscope and SoftWoRx 3.5.0 software (Applied Precision). 

Acquisition of fluorescence images were taken using 1.5 sec exposure in the RFP 

channel. A, Scale bars represent 3 µm. B, Images of selected cells. Scale bars represent 

1 µm.  

  



 

217 
 

 

Figure 4.37 Construction of SH1000 secY-gfp plsY-SNAP 

A, Schematic representation of the genomic region of pAISH-plsY-SNAP 

chromosomally integrated into the plsY locus. Primer binding sites are indicated by 

black arrows. B, Schematic representation of the genomic region of pMUTIN-secY-gfp 

chromosomally integrated into the secY locus. Primer binding sites are indicated by 

black arrows. C, Verification of pAISH-plsY-SNAP integration by PCR using primer 

pair Inward_plsY/Outward_SNAP. PCR products were separated by 1 % (w/v) TAE 

agarose gel electrophoresis. A band of approximately 800 bp, marked by a black arrow, 

indicates integration of pAISH-plsY-SNAP (Lane 1). Genomic DNA of SH1000 plsY-

SNAP was used as a positive control template (Lane 2). No DNA amplification was 

seen for SH1000 genomic DNA (Lane 3). D, Verification of pMUTIN-secY-gfp 

integration by PCR using primer pair 5’FW75/Outward_gfp. PCR products were 

separated by 1 % (w/v) TAE agarose gel electrophoresis. A band of approximately 1400 

bp, marked by a black arrow, indicates integration of pMUTIN-secY-gfp (Lane 1). No 

DNA amplification was seen for SH1000 genomic or SH1000 plsY-SNAP DNA (Lane 

2-3). 
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Figure 4.38 Colocalisation of SecY-GFP and PlsY-SNAP in S. aureus SH1000 

Phase contrast and fluorescence images (convolved and deconvolved) of S. aureus 

SH1000 secY-gfp plsY-SNAP using TMR-Star as a SNAP-substrate. Images were 

acquired using a Delta Vision microscope and SoftWoRx 3.5.0 software (Applied 

Precision). Acquisition of fluorescence images were taken using 1.5 sec exposure in the 

FITC channel and 1.5 sec exposure in the RFP channel. Scale bars represent 1 µm. 
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4.2.5 Role of membrane components in PlsY-GFP localisation 

My work has illustrated the heterogeneous localisation of many membrane proteins in S. 

aureus. At least for PlsY-GFP the heterogeneous localisation is dose-dependent and 

overexpression of PlsY-GFP leads to a loss of this pattern to an apparent homogeneous 

distribution. How these patterns are generated, maintained and the role of specific 

components of the bacterial membrane is investigated in the following studies. 

 

4.2.5.1 Inhibition of squalene synthesis 

The existence of lipid rafts in bacteria has been previously reported (Lopez & Kolter, 

2010, LaRocca et al., 2013, Toledo et al., 2014). Lipid rafts are described as 

microdomains within the membrane enriched in cholesterol, glycolipids and 

sphingholipids. Lopez et al., revealed lipid rafts in S. aureus that contain a number of 

signalling proteins and FloT, a homologue of flotillin that is known as a lipid raft 

marker in eukaryotic cells. Interestingly, these structures are localised in a single 

position in the membrane of S. aureus and are dependent on squalene. Squalene is a 

precursor of cholesterol although cholesterol is not produced in Staphylococci (Fig. 

4.39). Fortunately, zaragozic acid (ZA), an inhibitor of the squalene synthase was 

already known and was used to show that cells that lack squalene lost FloT localisation. 

It is hypothesised that FloT requires squalene for its localisation and gets degraded if it 

is not placed properly. 

Since FloT exhibits a non-homogeneous distribution comparable to PlsY, it was 

tested whether squalene is involved in the placement of PlsY. In order to investigate 

this, cells were grown in the presence of zaragozic acid at various concentrations.  

Zaragozic acid inhibits the activity of the squalene synthase. Squalene, as well as 

being required for the formation of lipid rafts, is also a precursor of staphyloxanthin 

(Fig. 4.39A). Since staphyloxanthin is responsible for the distinct golden coloration of 

S. aureus, the pellet of cultures treated with either 1 µM, 10 µM or no ZA was analysed 

to confirm the activity of ZA and to test which concentration is needed for following 

localisation studies. Although a slight change of colour can be observed, complete 

inhibition was only seen for cells treated with 10 µM ZA (Fig. 4.39). To test whether 

zaragozic acid has any effect on localisation of PlsY-GFP, cells were treated with 1 µM, 

10 µM or no zaragozic acid for 2 h or 5 h, respectively, and analysed by fluorescence 

microscopy. The application of 10 µM zaragozic acid led to a obvious loss of 

localisation and decrease in fluorescence signal of FloT-eYFP (Fig. 4.40). However, no 
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effect on the localisation or fluorescence on PlsY-GFP was seen. Therefore, it is likely 

that squalene is not involved in the localisation of PlsY. 

 

4.2.5.2 PlsY-GFP localisation in a cardiolipin (cls1/cls2) deletion mutant 

Cardiolipin, also called diphospatidylglycerol, is a cone-shaped phospholipid. Due to its 

structure, its hydrophilic head group is smaller in cross-section than its hydrophobic tail 

(Huang et al., 2006, Mukhopadhyay et al., 2008) making it preferentially localise to 

negatively curved membranes that are found at the cell poles and the septum. Its 

intrinsic ability to sense negatively curved membranes makes CL interesting for protein 

localisation studies since proteins could use CL as a prior localisation cue. Some 

proteins like the osmosensory transporter ProP were shown to require cardiolipin for 

their polar localisation (Romantsov et al., 2007, Mileykovskaya, 2007). 

In order to study PlsY-GFP localisation in a strain lacking cardiolipin, 

chromosomally integrated pMUTIN-plsY-gfp was transduced to SH1000 ∆cls1∆cls2. 

This strain lacks both known cardiolipin synthases in S. aureus. Integration of 

pMUTIN-plsY-gfp at the native locus of plsY was confirmed via PCR amplification 

using one primer binding upstream of plsY and one primer binding within gfp resulting 

in amplification of an approximately 900 bp fragment (Fig. 4.41B).  

The localisation of PlsY-GFP was investigated as previously shown. Overnight 

cultures were subcultured to an OD600=0.05 and grown to exponential phase of an 

OD600≈0.5 in BHI medium supplemented with erythromycin (5 µg/ml), tetracycline (5 

µg/ml) and chloramphenicol (1 µg/ml) incubated at 37 °C at 250 rpm. Samples were 

fixed and analysed by fluorescence microscopy. 

No growth defect could be observed (not shown) and PlsY-GFP localisation was 

unchanged in a mutant lacking both cardiolipin synthases (Fig. 4.42). Fluorescence is 

seen as a punctate pattern and at the septum during cell-division which suggests that 

cardiolipin is not involved in the placement of PlsY. 

 

4.2.5.3 PlsY-GFP localisation in a lys-PG (mprF) deletion mutant 

MprF is a phospholipid modifying enzyme that alters the net charge of 

phosphatidylglycerol (Andra et al., 2011) and could therefore have an impact on 

membrane organisation and potentially the localisation of membrane proteins like PlsY. 

MprF catalyses an enzymatic transfer of a lysine residue to PG which converts a 

positive net charge that was shown to confer resistance to antimicrobial peptides (Ernst 

et al., 2015).  
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Figure 4.39 Inhibitory effect of zaragozic acid on squalene and staphyloxanthin 

production 

A, chematic presentation of the biochemical pathway to produce squalene in S. aureus. 

The full names of the intermediates are as follows: HMG-CoA (3-Hydroxy-3-

methylglutaryl-CoA), IPP (Isopentenylpyrophosphat), FPP (Farnesyl-diphosphate 

farnesyltransferase). B, Pellet of S. aureus SH1000 floT-eyfp cells treated with zaragozic 

acid at different concentrations and untreated after 5 h growth. 
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Figure 4.40 Effect of zaragozic acid on localisation of PlsY-GFP and FloT-eYFP 

Fluorescence images of S. aureus SH1000 floT-eyfp and SH1000 plsY-gfp after 2 and 5 

h treatment with zaragozic acid. Images were acquired using a Delta Vision microscope 

and SoftWoRx 3.5.0 software (Applied Precision). Acquisition of fluorescence images 

were taken using 2.5 sec exposure in the FITC channel for PlsY-GFP and 1.5 sec 

exposure in the FITC channel for FloT-eYFP. Scale bars represent 3 µm. 
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Figure 4.41 Construction of SH1000 ∆cls1∆cls2 plsY-gfp 

A, Schematic representation of the genomic region of pMUTIN-plsY-gfp 

chromosomally integrated into the plsY locus. Primer binding sites are indicated by 

black arrows. B, Verification of pMUTIN-plsY-gfp integration by PCR using primer 

pair Inward_plsY/Outward_gfp. PCR products were separated by 1 % (w/v) TAE 

agarose gel electrophoresis. A band of approximately 900 bp, marked by a black arrow, 

indicates pMUTIN-plsY-gfp chromosomal integration (Lane 2). No DNA amplification 

is seen using SH1000 genomic DNA (Lane 1). Genomic DNA of SH1000 plsY-gfp was 

used as a positive control template (Lane 3).  
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Figure 4.42 PlsY-GFP localisation in a ∆cls1∆cls2 mutant 

Phase contrast and fluorescence images (convolved and deconvolved) of S. aureus 

SH1000 ∆cls1∆cls2 plsY-gfp. Images were acquired using a Delta Vision microscope 

and SoftWoRx 3.5.0 software (Applied Precision). Acquisition of fluorescence images 

were taken using 2.5 sec exposure in the FITC channel. A, Scale bars represent 3 µm. B, 

Images of selected cells. Scale bars represent 1 µm. C, Cell counts categorized 

depending on PlsY-GFP localisation and cell-cycle stage indicated by HADA labelling. 

Value n indicates counted cells for each group. Red and yellow bars indicate septal and 

blue bars indicate peripheral PlsY-GFP localisation. The green coloured bar indicates a 

random PlsY-GFP localisation. 
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So the question arises as to whether an altered charge of PG has an influence on 

membrane domains and/or membrane protein localisation which was investigated 

localisation studies of PlsY-GFP in a strain lacking mprF. 

Replacing the gene mprF by an erythromycin resistance cassette was achieved 

by transduction of ∆mprF::ermB from strain SA113 ∆mprF::ermB (Peschel et al., 

2001) to SH1000 plsY-gfp. The ∆mprF::ermB was transduced to the tetracycline 

resistant version of SH1000 plsY-gfp (see Appendix Fig. 9.5 for construction of pAISH-

plsY-gfp) due to selection marker purposes. The replacement of mprF by ermB was 

verified by PCR using primer pair Inward_mprF-N/Outward_ermb1 (see Fig. 4.43B for 

primer binding sites) and genomic DNA as a template resulting in the amplification of 

an approximately 800 bp fragment for strains containing the ∆mprF::ermB mutation 

and no DNA amplification for the wild type SH1000 strain and SH1000 plsY-gfp (Fig. 

4.43C). SH1000 ∆mprF::ermB genomic DNA was used as a positive control. The 

chromosomal fusion of plsY to gfp was verified by primer pair 5’FW23/Outward_gfp 

(see Fig. 4.43A for primer binding sites) that amplifies an approximately 800 bp 

fragment and results in no amplification for wild type SH1000 genomic DNA (Fig. 

4.43E). The whole plsY gene was amplified using primers 5’FW23/3’FW23 resulting in 

a 632 bp to confirm both the PCR and template (Fig. 4.43D). 

Localisation of PlsY-GFP in strain SH1000 ∆mprF::ermB plsY-gfp was then 

investigated as previously described and samples from early-exponential phase were 

harvested, fixed and analysed by fluorescence microscopy. 

The deletion of mprF results in the loss of lysinylation of phosphatidylglycerol 

phosphate (LPG). No growth defect could be observed (not shown) and the localisation 

of PlsY-GFP was not affected by the lack of LPG. PlsY-GFP exhibits a septal 

localisation during cell-division along with a heterogeneous punctate pattern at the cell 

membrane periphery (Fig. 4.44). Therefore, MprF and LPG do not appear to be 

involved in the localisation of PlsY. 

 

4.2.5.4 PlsY-GFP localisation in a wall teichoic acid (tarO) deletion mutant 

Wall teichoic acids are a crucial multifunctional component of gram positive cells that 

are involved in the localisation of a number of enzymes. They are thought to regulate 

ion homeostasis by binding extracellular metal cations and protons which has direct 

effects on the positioning of autolysins and their activity (Kern et al., 2010). 
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Figure 4.43 Construction of SH1000 ∆mprF::ermB plsY-gfp 

A, Schematic representation of the genomic region of pAISH-plsY-gfp chromosomally 

integrated into the plsY locus. Primer binding sites are indicated by black arrows. B, 

Schematic representation of the genomic region of mprF and ∆mprF::ermB. Primer 

binding sites are indicated by black arrows. C, Verification of mprF replacement by 

PCR using primer pair Inward_mprF-N/Outward_ermB1. PCR products were separated 

by 1 % (w/v) TAE agarose gel electrophoresis. A band of approximately 800 bp, 

marked by a black arrow, indicates replacement of mprF by an erythromycin resistance 

cassette (Lanes 1-2). No DNA amplification is seen using SH1000 and SH1000 plsY-gfp 

genomic DNA as negative control templates (Lanes 3-4). D, PCR amplification of the 

whole plsY gene using primer pair 5’FW23/3’FW23 resulting in a band of 638 bp, 

marked by a black arrow (Lanes 1-4). PCR products were separated by 1 % (w/v) TAE 

agarose gel electrophoresis. E, Verification of pAISH-plsY-gfp integration by PCR 

using primer pair 5’FW23/Outward_gfp. PCR products were separated by 1 % (w/v) 

TAE agarose gel electrophoresis. A band of approximately 800 bp, marked by a black 

arrow, indicates pMUTIN-plsY-gfp chromosomal integration (Lane 1). No DNA 

amplification is seen using SH1000 genomic DNA as negative control template (Lanes 

2). Genomic DNA from SH1000 plsY-gfp was used as positive control template (Lane 

3). 
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Figure 4.44 PlsY-GFP localisation in a ∆mprF mutant 

Phase contrast and fluorescence images (convolved and deconvolved) of S. aureus 

SH1000 ∆mprF plsY-gfp. Images were acquired using a Delta Vision microscope and 

SoftWoRx 3.5.0 software (Applied Precision). Acquisition of fluorescence images were 

taken using 2.5 sec exposure in the FITC channel. A, Scale bars represent 3 µm. B, 

Images of selected cells. Scale bars represent 1 µm. C, Cell counts categorized 

depending on PlsY-GFP localisation and cell-cycle stage indicated by HADA labelling. 

Value n indicates counted cells for each group. Red and yellow bars indicate septal and 

blue bars indicate peripheral PlsY-GFP localisation. The green coloured bar indicates 

random PlsY-GFP localisation. 
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Many studies identified an interaction between WTAs and the PG machinery showing 

that WTAs are involved in the proper placement of cross-linking enzymes PBP4 and 

Fmt (Atilano et al., 2010, Qamar & Golemi-Kotra, 2012). Cells lacking WTAs through 

the deletion of tarO (tarO), a gene required for the first step of WTA synthesis, also 

showed a decrease in PG cross-linking (Schlag et al., 2010). The localisation of WTAs 

themselves is controversially discussed. Some studies suggest that WTAs attach to 

nascent PG at the septum since fluorescent TarO fusions exhibit septal localisation 

(Atilano et al., 2010, Bhavsar et al., 2005). However, other studies using fluorescently 

labelled concavalin, a lectin being reported to bind WTAs, suggest the opposite since 

fluorescence could only be observed at non-septal PG (Schlag et al., 2010, Andre et al., 

2011). Nevertheless, WTAs are an interesting component in protein localisation that 

could be also involved in the localisation of PlsY. 

The knockout of WTAs was facilitated by transduction of a ∆tarO::ermB to 

SH1000 plsY-gfp mutation resulting in a complete loss of WTA synthesis. A 

complemented tarO mutant (SA113 ∆tarO::ermB + pRB-tarO) (Weidenmaier et al., 

2005) was used for phage transduction since phages require WTA to infect cells. The 

∆tarO::ermB was transduced to the tetracycline resistant version of SH1000 plsY-gfp 

(see Appendix Fig. 9.5 for construction of pAISH-plsY-gfp) due to selection marker 

purposes. The replacement of tarO by ermB was verified by PCR using primer pair 

Fwd_tarO/Rev_tarO (see Fig. 4.45B for primer binding sites) and genomic DNA as a 

template which results in the amplification of an approximately 1600 bp fragment for 

strains containing the ∆tarO::ermB mutation and an approximately 1100 bp fragment 

for the wild type SH1000 strain (Fig. 4.45C). The chromosomal fusion of plsY to gfp 

was confirmed by primer pair Inward_plsY/Outward_gfp (see Fig. 4.45A for primer 

binding sites) that amplifies a approximately 950 bp fragment and results in no 

amplification using wild type SH1000 genomic DNA (Fig. 4.45D).  

SH1000 ∆tarO::ermB plsY-gfp showed an unexpected growth defect on agar 

plates. When streaking out this strain, only a few colonies appeared at the beginning of 

the streak. These colonies however were not visibly affected in growth and exhibited no 

obvious growth defect in liquid culture (Fig. 4.46A). Restreaking the colonies resulted 

in the same effect of single colonies at the beginning of the streak. This might be due to 

improper cell-division and proliferation leading to clumping and therefore do not spread 

easily or indicating the generation of suppressors. 
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Figure 4.45 Construction of SH1000 ∆tarO::ermB plsY-gfp 

A, Schematic representation of the genomic region of pAISH-plsY-gfp chromosomally 

integrated into the plsY locus. Primer binding sites are indicated by a black arrow. B, 

Schematic representation of the genomic region of tarO and ∆tarO::erm. Primer 

binding sites are indicated by a black arrow. C, Verification of replacement of tarO by 

ermB by PCR using primer pair Inward_plsY/Outward_gfp. PCR products were 

separated by 1 % (w/v) TAE agarose gel electrophoresis. A band of approximately 1600 

bp, marked by a black arrow, indicates pMUTIN-plsY-gfp chromosomal integration 

(Lane 1). Genomic DNA from SH1000 and SH1000 plsY-gfp were used as negative 

control templates and resulted in amplification of an approximately 1100 bp fragment 

(Lanes 2-3). D, Verification of pAISH-plsY-gfp integration by PCR using primer pair 

Inward_plsY/Outward_gfp. PCR products were separated by 1 % (w/v) TAE agarose 

gel electrophoresis. A band of approximately 900 bp, marked by a black arrow, 

indicates pMUTIN-plsY-gfp chromosomal integration (Lane 1). Genomic DNA from 

SH1000 plsY-gfp was used as a positive control template (Lane 2). No DNA 

amplification is seen using SH1000 genomic DNA as a negative control template (Lane 

3). 
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The localisation of PlsY-GFP in ∆tarO was investigated as previously described. 

Samples were taken 2, 3 and 4 h after subcultivation (see Fig. 4.46A for sampling 

points). Samples were then fixed and analysed by fluorescence microscopy. 

Although SH1000 ∆tarO plsY-gfp exhibits no growth defect in liquid culture, the 

microscopical analysis reveals severe morphological aberrations (Fig. 4.46AB). Cells 

are heavily enlarged, especially during exponential growth phase (Fig. 4.46B and Fig. 

4.45B). Parental PlsY-GFP localisation is seen in most cells (Fig. 4.47A). PlsY-GFP is 

heterogeneously distributed and localises at the septum of dividing cells (see white 

arrows in enlarged images). At sample point 3 h, the septal localisation cannot be 

clearly observed or is lost which might be due to a further changed morphology. 

Furthermore, due to enlarged cells, the punctate pattern of PlsY-GFP becomes more 

obvious which is probably based on a better resolution of fluorescence signal. 

In summary, it is likely, that WTAs are not directly involved in the positioning 

of PlsY which is still non-homogeneously localised. The altered cell morphology on the 

other hand affects its septal localisation whereas the underlying punctate pattern of PlsY 

though, remains unaffected by the lack of WTAs. 

 

4.2.5.5 Effect of fatty acid synthesis inhibition on PlsY-GFP localisation 

Cerulenin is an antibiotic that inhibits fatty acid synthesis in bacteria (Goldberg et al., 

1973). It binds to one of the seven fatty acid synthase moieties (β-ketoacyl-acyl-ACP 

synthase) and thereby inhibits fatty acid synthesis (Fig. 4.48) (Price et al., 2001). It is 

thought that this inhibition perturbs the membrane function and it was specifically 

found to alter protein secretion (Jacques, 1983). This makes cerulenin interesting in two 

aspects. First, the perturbation of the membrane might affect membrane protein 

localisation. Second, PlsY connects fatty acids via PlsX with glycerol-3-phosphate and 

the removal of its substrate could have a direct effect on PlsY-localisation by 

interrupting the reaction chain.  

Localisation of PlsY-GFP was studied in presence of various concentrations of 

cerulenin. SH1000 plsY-gfp was subcultured from an over-night culture to an 

OD600=0.05 and grown in BHI medium supplemented with 0, 5, 25, 50 or 100 µM 

cerulenin. Additionally, for one culture, cerulenin was added at a concentration of 500 

µM after 2 h of growth at an OD600≈0.7. Samples were taken 2, 3 or 4 h post 

subcultivation. One sample was taken at 4 h for the culture with addition of 500 µM 

cerulenin. Cells were fixed and analysed by fluorescence microscopy. 
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Figure 4.46 PlsY-GFP localisation in a ∆tarO mutant 
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A, Growth curve of SH1000 and SH1000 ∆tarO plsY-GFP. Arrows indicate sampling 

points. B, Phase contrast and fluorescence images (convolved and deconvolved) of S. 

aureus SH1000 ∆tarO plsY-gfp samples taken 2, 3 and 4 h past subcultivation. Images 

were acquired using a Delta Vision microscope and SoftWoRx 3.5.0 software (Applied 

Precision). Acquisition of fluorescence images were taken using 2.5 sec exposure in the 

FITC channel. The second row of images for each sampling point shows enlarged  

selected cells. White arrows indicate septal localisation of PlsY-GFP. Scale bars 

represent 1 µm. 
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Figure 4.47 PlsY-GFP localisation in a ∆tarO mutant and morphology of ∆tarO 

A, Cell counts categorized depending on PlsY-GFP localisation and cell-cycle stage 

indicated by HADA labelling. Value n indicates counted cells for each group. Red bars 

indicate septal and blue bars indicate peripheral PlsY-GFP localisation. The green 

coloured bar indicates random PlsY-GFP localisation. B, Cell counts of exponentially 

growing cells, categorised into their cell diameter. 
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Figure 4.48 Cerulenin inhibits fatty acid synthesis 

Schematic overview of fatty acid synthesis linked to phospholipid synthesis and the 

effect of cerulenin. A more detailed description of the enzymatic processes are 

described in Section 1.2.5.1.4 and Fig. 1.5. Cerulenin inhibits the β-ketoacyl-acyl-ACP 

synthase activity and therefore fatty acid synthesis. 
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Figure 4.49 Effect of fatty acid inhibition on PlsY-GFP localisation  
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A, Growth curve of SH1000 plsY-gfp grown in the presence of different concentrations 

of cerulenin. Arrows indicate sampling points. B, Phase contrast and fluorescence 

images (convolved and deconvolved) of S. aureus SH1000 plsY-gfp samples taken 2, 3 

and 4 h past subcultivation. Images were acquired using a Delta Vision microscope and 

SoftWoRx 3.5.0 software (Applied Precision). Acquisition of fluorescence images were 

taken using 2.5 sec exposure in the FITC channel. Scale bars represent 1 µm. 
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Cerulenin affects growth of S. aureus (Fig. 4.49). Strains grown in the presence of 100 

µM cerulenin, but not 5-50 µM, exhibited impaired growth. The late addition of 500 

µM cerulenin to exponentially growing cells stopped growth entirely. However, 

samples taken to investigate the localisation of PlsY-GFP in these strains did not show 

any changes. PlsY-GFP localises to the septum and in heterogeneous patches. Images 

taken 4 h post subcultivation of strains grown in the presence of 100 or 500 µM 

cerulenin show a slightly altered localisation pattern of PlsY-GFP that lacks a punctate 

distribution in many cells and appears to be focused at one spot within some cells. This 

effect however, is not very clear due to the limited resolution and makes it hard to draw 

conclusions on the effect of cerulenin on PlsY-GFP localisation. Nevertheless, cerulenin 

might have an effect on membrane protein localisation. 

 

4.2.5.6 Effect of membrane potential inhibition on PlsY-GFP localisation 

The previous experiments focused on directly affecting the integrity of membranes to 

reveal potential localisation cues of PlsY. But what if other membrane processes may be 

involved such as respiration and membrane potential? It has been reported before that 

respiratory complexes form punctate patches in the membrane that can be spatially 

redistributed in response to light (Liu et al., 2012). 

To test whether respiration or membrane potential has an influence on the 

localisation of PlsY-GFP, cells were treated with the uncoupling agent carbonyl 

cyanide m-chlorophenyl hydrazone (CCCP). CCCP inhibits the terminal oxidase that 

exports protons by acting as an ionophore along with the inhibition of the ATP synthase 

(Diez-Gonzalez & Russell, 1997). This destroys the membrane potential by increasing 

intracellular protons along with reduced ATP which eventually leads to cell death 

(Diez-Gonzalez & Russell, 1997). MreB was shown to require an intact membrane 

potential and delocalised in B. subtilis cells treated with CCCP (Strahl & Hamoen, 

2010). 

The localisation of PlsY-GFP was studied in the presence of various 

concentrations of CCCP. SH1000 plsY-gfp was subcultured from an overnight culture to 

an OD600=0.05 and grown in BHI medium supplemented with 0, 0.5, 2.5 or 25 µM 

CCCP. Additionally, for one culture, CCCP was added at a concentration of 25 µM 

after 2 h of growth at an OD600≈0.8. Samples were taken 3 post subcultivation or 1 h 

after addition of 25 µM CCCP. Cells were fixed and analysed by fluorescence 

microscopy. 
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CCCP has a strong effect on growth of S. aureus cells. Low concentrations (0.5 - 

2.5 µM) of CCCP were sufficient to inhibit growth entirely (Fig. 4.50A). Cells almost 

immediately stopped growth after addition of CCCP. However, localisation was not 

affected and a punctate distribution pattern along with septal localisation could still be 

observed which leads to the conclusion that the membrane potential does not effect the 

localisation of PlsY-GFP (Fig. 4.50B). 

 

4.2.5.7 Effect of FtsZ-polymerisation inhibition 

Localisation studies of phospholipid synthesis enzymes in B. subtilis revealed that their 

septal localisation is dependent on FtsZ in a conditional, IPTG-inducible ftsZ mutant. 

Upon depletion of FtsZ cells fail to divide and grow filamentously. PssA and ClsA lost 

septal localisation and distributed in random patches dispersed in the membrane 

indicating that septal localisation is dependent on FtsZ ring formation (Nishibori et al., 

2005). Z-ring formation is mediated by a GTPase driven polymerisation of FtsZ. This 

polymerisation can be inhibited using the small molecule PC190723 that binds to the 

GTP-binding site of FtsZ and stabilises its monomeric state (Elsen et al., 2012, Haydon 

et al., 2008). Thereby FtsZ stops polymerising and cells keep growing without division. 

The use of PC190723 to study the localisation of PlsY is interesting in two ways. 

First, it allows the investigation of PlsY localisation in enlarged cells and second, the 

determination of the role of FtsZ polymerisation in PlsY positioning. 

SH1000 plsY-gfp was grown as previously described. Overnight cultures were 

subcultivated in BHI to an OD600=0.05 and grown in the presence of erythromycin (5 

µg/ml) and lincomycin (25 µg/ml). Samples were taken before addition of 10 µl of 

PC190723 stock solution and after incubation for further 30, 60, 90, 120 and 150 min. 

To indicate septum formation, samples were labelled with 5 µl HADA (100 mM stock 

solution) for 30 min at 37 °C before fixing and analysis by fluorescence microscopy. 

Treatment with PC190723 has no immediate effect on cell-growth using optical 

density measurements as treated cultures grew identically to the control up to 2 h post 

addition followed by growth arrest (Fig. 4.51A). Microscopic analysis reveals that cell 

size enlarges depending on the duration of treatment with PC190723 as the cells 

enlarge, no septal localisation of PlsY-GFP can be observed as most cells appear to 

have stopped cell-division (Fig. 4.51C). Some cells appear to attempt cell-division 

resulting in sandwich-like deformed cells where PlsY-GFP is localised at the 

presumptive beginning of septum formation (see 3 h treatment). Cells treated for 210 

min were excluded from the following analysis since cells did not labell with HADA 
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anymore and many cells lacked any fluorescence of PlsY-GFP suggesting that cells 

were dying. 

PlsY-GFP localisation appears to be more homogeneously distributed in cells 

treated with PC190723 compared to untreated cells. This was quantified by calculating 

the coefficient of variation (CV-factor) as described in Section 4.2.3 (Fig. 4.51B and 

Fig. 4.52). 

Quantification of PlsY-GFP localisation dependent on cell-size reveals a 

significant correlation between PC190723 treated cells and a lower CV-factor (p < 

0.001 for all treated groups) which indicates a more homogeneous distribution of PlsY-

GFP (Fig. 4.51B). However, as cells grow larger, the CV-factor remains at the same low 

level. 

In conclusion, septal localisation of PlsY is dependent on FtsZ-polymerisation. 

The heterogeneous punctate pattern is lost in cells treated with PC190723 independent 

of the duration of PC190723 treatment (Fig. 4.51B and Fig. 4.52).  
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Figure 4.50 Effect of membrane potential inhibition on PlsY-GFP localisation  

A, Growth curve of SH1000 plsY-gfp grown in the presence of different concentrations 

of carbonyl cyanide m-chlorophenyl hydrazone (CCCP). White arrows indicate 

sampling points. The black arrow indicates the addition of 25 µM CCCP. B, Phase 

contrast and fluorescence images (convolved and deconvolved) of S. aureus SH1000 

plsY-GFP in the presence of different amounts of CCCP. Images were acquired using a 

Delta Vision microscope and SoftWoRx 3.5.0 software (Applied Precision). Acquisition 

of fluorescence images were taken using 2.5 sec exposure in the FITC channel. Scale 

bars represent 1 µm. 
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Figure 4.51 Quantification of PlsY-GFP localisation in PC190723 treated cells 

A, Growth curves of SH1000 plsY-gfp. Black arrow indicates addition of PC190723. 

White arrows indicate sampling points. B, CV-factor calculation of deconvolved images 

of SH1000 plsY-gfp untreated and treated with PC190723 for 60, 90 or 150 min. 40 

cells were measured for each group and significance values against the untreated group 

were calculated using a two-tailed unpaired ttest. C, Fluorescence images (convolved 

and deconvolved) of S. aureus SH1000 plsY-gfp samples treated or untreated with 

PC190723. Samples were taken before or 60, 90, 150 and 210 min after addition of 

PC190723 with HADA labelling for the final 30 min. Images were acquired using a 

Delta Vision microscope and SoftWoRx 3.5.0 software (Applied Precision). Acquisition 

of fluorescence images were taken using 1 sec exposure in the DAPI channel and 2.5 

sec exposure in the FITC channel. Scale bars represent 1 µm.  
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 Figure 4.52 Correlation between cell size, PC19072 treatment and coefficient of 

variation 

Fluorescence images (deconvolved) of SH1000 plsY-gfp cells untreated (diamonds) or 

treated with PC190723 for 60 min (green squares), 90 min (blue circles) or 150 min (red 

triangles) were measured in diameter (X-axis) and CV-factor (Y-axis) and plotted. Each 

data point represents a single cell. Four cell examples including a deconvolved image 

and their intensity profile are shown to illustrate the correlation between CV-factor, 

image and intensity profile. 
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4.2.5.8 PlsY-GFP localisation in protoplasts 

The cell wall is a multifunctional essential component of bacteria. Besides its main 

function to counteract cell turgor pressure and to act as a physical barrier against 

exterior factors it is one of the key players in protein localisation. In gram positive cells, 

many proteins are known to be anchored to peptidoglycan via the LPXTG motif that is 

recognized by the enzyme sortase A that cleaves off the sorting signal and covalently 

links the target protein via transpeptidation to the cell wall (Mazmanian et al., 1999). 

These cell-wall associated proteins include a number of virulence factors such as 

clumping factor A (McDevitt et al., 1994) fibronectin binding proteins (Flock et al., 

1987) iron-regulated surface protein B (IsdB) (Mazmanian et al., 2003) or 

staphylococcal protein A (DeDent et al., 2007). A variety of proteins possess 

transmembrane domains or are integral membrane proteins that act on the outside of the 

membrane at the cell wall. Examples of these proteins are PBPs that are linked to the 

membrane through a single transmembrane domain but present their enzymatic active 

domains on the outside of the cell to catalyse the transglycosylation and 

transpeptidation of peptidoglycan precursors (Zapun et al., 2008). 

The question arises as to whether membrane proteins that exhibit a 

heterogeneous punctate localisation pattern, specifically PlsY, are anchored via 

extracellular cell-wall associated factors which can be determined by the enzymatic 

removal of the cell-wall using lysostaphin? To avoid cell lysis of protoplasts due to 

osmotic pressure, cells were stabilised in a hyperosmotic medium. 

SH1000 plsY-gfp was subcultured from an over-night culture to an OD600=0.05 

and grown in BHI medium for 3 h to an OD600≈1.5. Cells were recovered by 

centrifugation and resuspended in SMM-BHI medium (50 % BHI (v/v) , 50 % SMM 

(v/v) (1 M sucrose, 0.04 M maleic acid, 0.04 M MgCl2 x 6 H2O, pH 6.5)). The culture 

was then split into two 500 µl fractions. One fraction was treated with 5 µl lysostaphin 

(5 mg/ml stock solution) for 10 min at RT on a rotary wheel whereas the other fraction 

was treated the same way without lysostaphin. The generation of protoplasts was 

monitored by turbidity in 1 % SDS and CFU counts (not shown). 50 µl of cells were 

recovered by centrifugation and 100 µl of a 1 % SDS (w/v) solution was added on top 

of the pellet. The disappearance of the pellet within 1 min indicated the disruption of 

protoplasts. Protoplasts were placed on a non-coated slide and analysed by fluorescence 

microscopy. 

Protoplasts could be stabilised using a sucrose rich medium that prevents cell 

lysis. Cells do not appear do be enlarged compared to non-treated cells due to osmotic 

pressure showing BHI-SMM medium successfully creates isoosmotic conditions that 
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maintain cell integrity of protoplasts (Fig. 4.53A). The underlying localisation 

behaviour of PlsY is not altered in protoplasts (Fig. 4.53AB). PlsY-GFP still localises in 

patches around the cell periphery. No septal localisation can be seen simply because 

there are no septa without peptidoglycan in protoplasts (Fig. 4.53AB).  

In conclusion, apart from septal localisation, the punctate PlsY-GFP localisation 

pattern is neither dependent, nor affected by, lysostaphin-mediated removal of the cell 

wall. 

 

4.2.5.9 Effect of SDS treatment on PlsY-GFP localisation  

Previous results indicated so far that PlsY localisation is solely dependent on the 

membrane and FtsZ polymerisation. Specific non-essential phospholipid species are not 

required for its proper placement as well as the cell wall. However, the geometry of the 

membrane could have an impact on the localisation of PlsY. Therefore it was of interest 

to see whether the disruption of the membrane via detergents alters the localisation of 

PlsY-GFP.  

Sodium dodecyl sulfate (SDS) possesses a long hydrophobic tail combined with 

a polar head group that imitates phospholipids and integrates into and disrupts the 

membrane. Cells were treated with SDS up to the the critical micelle concentration of 8 

mM. 

SH1000 plsY-gfp was grown as previously described. A 1 ml sample of 

exponentially growing cells was harvested, resuspended in PBS supplemented with 

various concentrations of SDS (0, 0.125, 0.25, 0.5, and 2 mM) and incubated covered in 

foil for 10 min at RT on a rotary wheel. These cultures were used for CFU counts and 

the rest were harvested by centrifugation, fixed and prepared for light-microscopy as 

previously described.  

PlsY-GFP localisation in cells treated with SDS is altered in a dose-dependent 

manner. Instead of its punctate pattern around the cell membrane it is aberrantly 

localised in one or two patches (Fig. 4.54AB). This occurred dependent on the 

concentration of SDS (Fig. 4.54AB) whereby the use of >2 mM SDS resulted in a 

altered localisation pattern of at least 50 % of the cells. It has to be noted, that the 

signal-to-noise ratio deteriorated which could be explained by protein degradation due 

to the SDS treatment. CFU counts reveal that changed PlsY-GFP localisation correlates 

with reduced CFUs meaning that cells with an altered localisation pattern might be 

dead. Nevertheless, this shows that there was a pattern beforehand that requires an intact 

membrane. SDS disrupts the membrane and the localisation of PlsY-GFP. 
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Figure 4.53 Localisation of PlsY-GFP in protoplasts 

Phase contrast and fluorescence images (convolved and deconvolved) of S. aureus 

SH1000 plsY-gfp samples treated or untreated with lysostaphin stabilised in a sucrose-

rich medium. Images were acquired using a Delta Vision microscope and SoftWoRx 

3.5.0 software (Applied Precision). Acquisition of fluorescence images were taken 

using 2.5 sec exposure in the FITC channel. A, Scale bars represent 1 µm. B, Cell 

counts categorized depending on PlsY-GFP. Value n indicates counted cells for each 

group. Red and yellow bars indicate septal and blue bars indicate peripheral PlsY-GFP 

localisation. The green coloured bar indicates random or homogeneous PlsY-GFP 

localisation and the black frames blue bar indicates a peripheral homogeneous 

distribution. 
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 Figure 4.54 Effect of SDS on PlsY-GFP localisation 

A, Phase contrast and fluorescence images (convolved and deconvolved) of S. aureus 

SH1000 plsY-gfp samples treated with different SDS concentrations. Images were 

acquired using a Delta Vision microscope and SoftWoRx 3.5.0 software (Applied 

Precision). Acquisition of fluorescence images were taken using 2.5 sec exposure in the 

FITC channel. Scale bars represent 1 µm. B, Cell counts of PlsY-GFP localisation 

categorized in 4 groups. Red and yellow bars indicate localisation of PlsY-GFP in one 

or two patches in the membrane. Blue bars indicate PlsY-GFP localisation in a punctate 

heterogeneous pattern and at the septum in dividing cells. N indicates number of cells 

counted for each group. C, CFU counts for cultures treated with different SDS 

concentrations in PBS for 10 min. Cultures were plated on BHI agar and incubated at 37 

°C for 24 h. 
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4.3 Discussion 

 

4.3.1 Localisation of PlsY in S. aureus 

In B. subtilis, the phospholipid synthesis enzyme YneS (PlsY) was found to localise at 

the cell periphery and at the cell-division site (Hunt et al., 2006). PlsY in S. aureus is 

strongly associated with the septum as well as the cell-periphery in a heterogeneous 

punctate pattern during cell-division. Non-dividing cells exhibit an even clearer 

punctate distribution of PlsY. This localisation pattern suggests a manifold role of PlsY. 

The cell-division protein EzrA was found at unexpected division planes in the absence 

of PlsY in a conditional knockout strain (Garcia-Lara et al., 2015) giving the first 

evidence for a role of PlsY in cell-division and the link between phospholipid synthesis 

and the divisome in S. aureus.  

Interestingly, localisation studies in B. subtilis on PlsX, an enzyme that catalyses 

the first step in phospholipid synthesis, revealed a heterogeneous punctate distribution 

of PlsX (Takada et al., 2014). PlsX was also shown to interact with various cell-division 

associated proteins such as the FtsZ-anchoring protein FtsA and EzrA or cytoskeletal 

proteins such as MreB. Further studies focused on its role on cell-division showed that 

PlsX localises to potential cell-division sites and affects the Z-ring formation which 

again indicates a connection between phospholipid synthesis and cell-division.  

PlsY might very likely be involved in a similar role together with PlsX and mark 

future cell-division sites. The absence or misplacement of these ‘road signs’ might then 

lead the divisome to the wrong place resulting in misplaced septa. The big questions 

however remain unsolved: Which protein arrives first and how do they know where to 

go? It seems unlikely that PlsY is the first to arrive and be the key to position Z-ring 

formation, since its overexpression did not affect cell viability and cell-division (Fig. 

4.4B). Additionally, cells lacking MreD exhibit aberrant cell morphologies along with 

the delocalisation of PlsY (Garcia Lara et al., 2015). This might indicate a role of MreD 

further up the line of command than PlsY in the organisation of a punctate protein 

localisation pattern in the membrane 

 

4.3.2 FtsZ dependent localisation of PlsY 

Phospholipid synthesis enzymes in B. subtilis are localised at the septum (Nishibori et 

al., 2005). This localisation was shown to be FtsZ dependent, as the depletion of FtsZ in 

a conditional mutant resulted in the loss of septal localisation of Pss and ClsA. Both 
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proteins dispersed in random patches in the peripheral membrane (Nishibori et al., 

2005).  

In contrast to B. subtilis, phospholipid synthesis enzymes in S. aureus are not 

solely septally localised but also exhibit a punctate pattern throughout the membrane. 

The septal localisation of PlsY-GFP is lost in cells with non-polymerising FtsZ as 

shown by a homogeneous distribution of PlsY-GFP. The depletion of FtsZ in B. subtilis 

causes filamentous growth since Z-ring formation is impeded. It might be that 

phospholipid synthesis enzymes are then localised by a second cell-division associated 

protein or mechanism that is not present in S. aureus.  

In respect to S. aureus, this potentially reveals two localisation mechanisms. The 

first one is the positioning to the cell-division site that is dependent on FtsZ and 

peptidoglycan as shown with localisation studies in protoplasts (Fig. 4.53AB and Fig. 

4.51) and the second one is based on the ability of FtsZ to polymerise which is required 

for the heterogeneous distribution of PlsY-GFP (Fig. 4.51 and Fig. 4.52). Importantly, 

the heterogeneous distribution is independent on the cell size since the duration of FtsZ-

polymerisation inhibition which is correlated to the cell size does not affect the 

localisation of PlsY (Fig. 4.52). Additionally, PlsY localisation in a strain lacking 

WTAs which also results in larger cells was unaffected (Fig. 4.47). 

  

4.3.3 The role of lipid domains in the localisation of membrane 

proteins 

PlsY is an essential part of phospholipid synthesis by linking fatty acids to glycerol-3-

phosphate. It is thought that phospholipid synthesis mainly takes place the septum since 

all phospholipid synthesis enzymes in B. subtilis like ClsA, CdsA, Psd, MprF and YhdO 

(PlsC) were found to go to the septum (Nishibori et al., 2005). However, only CL and 

PE are localised to the septum or cell poles in rod-shaped bacteria whereas PG is found 

at the septum and cell periphery. The mechanism whereby certain lipids (CL and PE) 

are being kept from diffusing to the cell periphery whereas PG is free to go remains 

unclear. The distinct localisation of CL and PE led to the assumption that these lipid 

domains are required for the localisation of polar and septal membrane proteins. This 

was found for the osmosensory ProP in E. coli that failed to localise to the cell poles in 

a CL deletion mutant (Mileykovskaya, 2007, Romantsov et al., 2007). In S. aureus it is 

only possible to delete CL and LPG since other lipids are required for cell viability 

(Martin et al., 1999). Both lipids were shown not be required for the septal or peripheral 
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localisation of PlsY (Fig. 4.42, Fig. 4.44 and Fig. 4.55) leaving only PG as a 

phospholipid as a localisation cue for PlsY. Furthermore, the deletion of tarO, resulting 

in the loss of wall teichoic acids, increases the septal localisation of PlsY-GFP in cells 

beginning the septum formation but only slightly increased the heterogeneous 

localisation pattern of PlsY-GFP (Fig. 4.55). The role of lipoteichoic acids in the 

placement of PlsY was not studied since its deletion is lethal. 

FM dyes stain negatively charged lipids such as CL and PG (Brumback et al., 

2004) and revealed a striking helical pattern in B. subtilis (Barak et al., 2008). It was 

suggested that this pattern is dependent on the synthesis of peptidoglycan and its 

insertion directed by MreB (Daniel & Errington, 2003, Wang et al., 2012). Other 

proteins like MinD or SecA were shown to colocalise with the helical arrangement 

stained by FM dyes (Barak et al., 2008, Campo et al., 2004). Importantly, this pattern 

was lost in protoplasts and cells depleted of MurG, providing strong evidence for a link 

between peptidoglycan and lipid organisation (Muchova et al., 2011). PlsY localisation 

however, was not affected in protoplasts suggesting that PG/CL are not specifically 

required for the placement of PlsY (Fig. 4.53). Yet, SDS treated cells exhibit a changed 

PlsY localisation where the original punctate pattern is disrupted and PlsY localises to 

one or two dots per cell (Fig. 4.54). This points out that while specific lipids might not 

be required, the membrane integrity as a whole is crucial for the positioning of PlsY. 

 

4.3.4 Dose-dependent localisation of membrane proteins 

One of the most studied and most controversial localisation of a bacterial protein is 

MreB. It has been shown in several publications that MreB localises in a helical pattern 

throughout the the whole cell and thereby navigates a number of proteins including 

components of the cell division synthesis apparatus (Shih et al., 2005, Vats & Rothfield, 

2007, Vats et al., 2009, Wang et al., 2012). It turned out that the helical pattern was due 

to the YFP tag and overexpressed MreB (Swulius et al., 2011, Garner et al., 2011, 

Dominguez-Escobar et al., 2011). This example shows that protein localisation studies 

have to be carefully examined.  

Localisation of wild type levels of PlsY has been validated thoroughly using a 

variety of localisation methods including different fluorescent protein fusions (GFP, 

eYFP) (Fig. 4.3 and Fig. 4.7), a monomeric eYFP version (Fig. 4.8), SNAP tag (Fig. 

4.32) and immunofluorescence microscopy (Garcia-Lara et al., 2015). 

However, two proteins in this study, PlsY and SecY, showed varying localisation 

patterns depending on their expression levels (Fig. 4.4 and comparing Fig. 4.23 with  
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Figure 4.55 Summary of the effect of cardiolipin and lysinylated 

phosphatidylglycerolphosphate on the localisation of PlsY 

A, Cell counts categorized depending on PlsY-GFP localisation in SH1000, SH1000 

∆cls1/2 and SH1000 ∆mprF dependent on the cell-cycle stage indicated by HADA 

labelling. Red and yellow bars indicate septal and blue bars indicate peripheral PlsY-

GFP localisation. The green coloured bar indicates random PlsY-GFP localisation. Data 

was taken from Fig. 4.1, Fig. 4.42 and Fig. 4.44. B, CV-factor calculation of 20 cells of 

deconvolved images of PlsY-GFP in SH1000, SH1000 ∆cls1/cls2, SH1000 ∆mprF and 

SH1000 ∆tarO. Significance values against SH1000 were calculated using a two-tailed 

unpaired student’s ttest. 
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4.27F). PlsY is localised in a heterogeneous fashion at wild type levels but distributes 

homogeneously when overexpressed on a plasmid (Fig. 4.4). A higher number of 

PlsYmolecules might lead to a higher number of dots that are eventually not 

distinguishable using fluorescence based microscopy limited by light-diffraction. SecY 

on the other hand, is localised throughout the whole membrane but appeared to form a 

dot like distribution expressed from an IPTG-inducible plasmid after a short IPTG 

induction (Fig. 4.27F). This potentially resulted in a lower expression level compared to 

its wild type level. The cell might use the regulation of membrane protein expression 

levels as a mechanism to regulate protein localisation and thereby their activity and 

function.  

 

4.3.5 Subcellular localisation of other membrane proteins 

The localisation of a number of proteins were analysed in this study. First and foremost, 

membrane proteins tend to distribute heterogeneously in random patches. Proteins 

involved in phospholipid synthesis appear to be colocalised with PlsY whereas others 

are positioned in a similar fashion but do not localise at the same spots as PlsY. Another 

important localisation marker is whether a protein is going to the septum indicating a 

possible role in cell-division.  

Proteins found to be septally localised were enzymes involved in phospholipid synthesis 

such as PlsY, CdsA, PgsA, MprF, PlsC and Cls2 (Fig. 4.7 and Fig. 4.13-Fig. 4.16). 

Their septal localisation suggests that phospholipid synthesis in S. aureus mainly takes 

place at the septum. However, all these proteins were also shown to additionally localise 

at the cell-periphery in a punctate pattern, potentially demonstrating that phospholipid 

synthesis also takes place at the cell periphery or that these proteins have a second so far 

unknown role. MreD was recently shown to affect localisation of PlsY and showed a 

weak interaction with PlsY using BACTH (Garcia-Lara et al., 2015). 

Some proteins such as the phenylalanine transporter PheP and the lipoprotein 

signal peptidase LspA also exhibit a septal localisation in the majority of dividing cells 

(Fig. 4.28). Both proteins do not seem to share roles with PlsY as LspA is involved in 

the maturation of lipoproteins (Zhao & Wu, 1992) and PheP is an amino acid 

transporter PheP (Horsburgh et al., 2004). However, it remains unclear whether 

lipoprotein maturation takes place at the septum suggesting that lipoproteins are 

integrated into the membrane during septation along with the synthesis of peptidoglycan 

and phospholipids. The role of phenylalanine transport at the septum remains unclear. 

Proteins SecY, MscL and CydB only show septal localisation in a minority of cells, 

mainly during early cell-division (Fig. 4.28). These counts however, might be due to the 
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limited resolution and localisation patches could have been near the septum start and 

misinterpreted as septum associated localisation. Homogeneous non-septal localisation 

of SecY has been described for E. coli (Brandon et al., 2003) and B. subtilis 

(Matsumoto et al., 2015) and this study in S. aureus confirms these findings suggesting 

that secretion seems to be a process required throughout the cell membrane but not at 

the septum (Fig. 4.23). The large mechanosensitive channel (MscL) is responsible for 

turgor regulation upon activation by osmotic pressure (Perozo & Rees, 2003, Sukharev 

et al., 1994). MscL needs to be exposed to external pressure rather than pressure 

induced by the daughter cell during septation which could lead to an unwanted 

induction during cell-division. Therefore, it makes sense to find MscL at the cell-

periphery rather than at the septum. It would be of interest to investigate whether MscL 

is naturally localised in a punctate or homogeneous pattern since a homogeneous 

distribution would be favourable to sense the overall pressure on the cell surface. 

Cytochrome BD subunit II CydB was found to be localised in patches mainly at 

the cell-periphery (Fig. 4.18, Fig. 4.27C and Fig. 4.28). This is consistent with findings 

in E. coli describing CydB to be concentrated in mobile domains (Lenn et al., 2008b). 

Other studies on respiratory proteins such as the succinate dehydrogenase (SDH) and 

ATP synthase in B. subtilis or the SDH and the NADPH dehydrogenase in 

Synechococcus elongatus revealed a localisation pattern in discrete spots in the 

membrane (Johnson et al., 2004, Liu et al., 2012). 

Lenn et al., hypothesised the formation of so-called ‘respirazones’ that concentrate 

respiration components in specialised microdomains. Respirazones would allow the cell 

to optimise the efficiency of electron and proton circuits resulting in a higher output of 

ATP for the cell and reduction of oxidative stress (Lenn et al., 2008a). Finding CydB to 

exhibit a similar distribution pattern in the membrane of S. aureus is a first indicator for 

the existence of respirazones in S. aureus. 

  

4.3.6 Conclusion 

Membrane proteins in S. aureus tend to form punctate patterns at the cell periphery. 

Phospholipid biosynthetic enzymes also exhibit a septal localisation providing evidence 

for a link between lipid synthesis and cell-division. Interestingly, no specific membrane 

or cell wall components such as cardiolipin, LPG or WTAs are required for the 

localisation of PlsY. However, level of PlsY and FtsZ-polymerisation are crucial for the 

pattern formation. 
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4.4 Main findings in this chapters 

• The phospholipid synthesis enzyme PlsY is localised in a heterogeneous 

punctate pattern at the cell periphery and at the septum during cell-division as 

shown with an eYFP, a GFP and a SNAP fusion with PlsY. 

• Most investigated membrane proteins also exhibit a punctate localisation pattern 

using native expression levels including phospholipid synthesis enzymes PgsA, 

PlsC, MprF, Cls2, the eukaryotic lipid raft marker, FloT and the respiratory 

protein CydB. 

• The secretion protein SecY is homogeneously distributed in the membrane. 

• The localisation of PlsY and SecY are dose-dependent. 

• The localisation of PlsY is independent of lys-PG, cardiolipin, WTAs, 

membrane potential, is not disturbed by fatty acid synthesis inhibition and does 

not require peptidoglycan. 

• Inhibition of FtsZ polymerisation redistributes PlsY. 

• Cells treated with SDS exhibit an altered PlsY localisation. 

 

4.5 Contributions 
 

I performed all experiments in this chapter with the exception of the NanoJ-SRRF 

analysis shown in Fig. 4.2, which was carried out by Dr. Sian Culley (University 

College London). 
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Chapter 5: Membrane protein interaction studies in  

S. aureus 
 

5.1 Introduction 

5.1.1 Protein-interaction analysis methods in bacteria  

Cellular functions rely on the interplay between proteins. To understand what role a 

specific protein plays, it is crucial to consider its place within its local environment 

since most biological processes are executed by groups of proteins rather than a single 

protein. The discovery of genetically encoded fluorophores has enabled the study of the 

localisation of a wide range of proteins. However, due to the diffraction limit, it is not 

possible to conclude the colocalisation at the molecular level or interactions between 

proteins which requires the application of resolution-independent or indirect methods. 

Relatively few bacteria have been comprehensively studied for protein-protein 

interactions. Most of these interactions have never been verified by a second method 

and therefore have to be considered of potentially limited biological relevance. 

There are two main approaches for protein-interaction studies: complementation 

assays such as yeast 2-hybrid and bacterial 2-hybrid and immunoprecipitation based 

methods. The yeast 2-hybrid assay was first shown by Fields and Song in 1989 and 

relies on the reconstitution properties of the transcription regulator GAL4 from 

Saccharomyces cerevisiae (Fields & Song, 1989). The DNA binding domain and the 

activation domain of GAL4 can be fused separately to proteins of interest. If both 

proteins interact with each other, both GAL4 domains are reconstituted and enable the 

expression of reporter genes. Yeast 2-hybrid has been used early to identify interactions 

between cell-division proteins in various bacteria (Wang et al., 1997, Yan et al., 2000, 

Din et al., 1998, Liu et al., 1999). However, heterologous host interaction studies of 

bacterial proteins in yeast might be inaccurate and Y2H is known to produce a high 

number of false positive results since many proteins were demonstrated to induce GAL4 

without an interaction with the activation domain. It even has been estimated that 50 % 

of all Y2H results are unreliable (Deane et al., 2002). These major flaws were resolved 

with the introduction of the bacterial adenylate cyclase two hybrid system (BACTH). 

BACTH facilitates a similar mechanism as Y2H by restoring the activity of two 

domains of the Bordetella pertussis adenylate cyclase to proteins of interest in an 

adenylate cyclase negative (cya-) strain of E. coli (Karimova et al., 1998). A positive 

interaction activates the adenylate cyclase to convert ATP to cAMP. cAMP triggers the 

transcriptional activation of the lac operon containing lacZ. Expression of lacZ results 

in the hydrolysis of X-Gal to galactose and 5-bromo-4-chloro-3-hydroxyindole. The 
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latter product exhibits an intense blue colour that can be detected as an indicator for 

positive protein-protein-interaction. Unlike Y2H, the transcriptional activation of a 

reporter gene is uncoupled from the protein-protein-interaction and thus allows the 

investigation of membrane and as well as cytoplasmic proteins and produces less false 

positive results. BACTH has been used intensively to study protein interactions of cell-

division proteins in many bacteria. In S. aureus BACTH was used to map the 

interactome between cell-division related proteins (Steele et al., 2011) and showed the 

interaction between Fem proteins involved in peptidoglycan synthesis (Rohrer & 

Berger-Bachi, 2003). Another study used BACTH to demonstrate that RNases in S. 

aureus form a protein complex termed the ‘Degradosome’ (Roux et al., 2011). 

Although being superior to Y2H in the analysis of bacterial proteins, BACTH exhibits 

many problems that can cause false-negative and false-positive results. Proteins fused to 

the adenylate cyclase domains may not be folded properly which might be especially 

problematic for multimerising proteins for their interaction properties. Also, both 

studied proteins might never be expressed together or their interaction is dependent on a 

third protein or condition that is not present in E. coli. Y2H and BACTH are easy to 

carry out and allow the screening for possible interaction partners with a protein of 

interest or even the generation of en entire interactome. However, due to a variety of 

problems, positive interactions have to be confirmed by another method such as co-

purification via an affinity tag. Immunoprecipitation relies on the pull-down of protein 

complexes using an antibody that binds the native protein of interest or a protein 

translationally fused to an affinity tag. Pulled-down proteins can be then identified by 

Western blot or mass spectrometry. Co-immunoprecipitation was used to show protein 

interactions between components of the type 3 secretion system of Pseudomonas 

aeruginosa by enhancing the cytoplasmic secretion regulator PcrG with an affinity tag 

that was used for a pull-down assay (Lee et al., 2010). Furthermore, this method 

demonstrated interactions within the Z-ring of FtsZ with FtsW and ClpX in M. 

tuberculosis and between penicillin binding proteins in Caulobacter crescentus (Datta 

et al., 2002, Sureka et al., 2010, Figge et al., 2004). Although Co-IP is a reliable method 

to show protein complexes it misses the detection of weak or transient interactions.  

A series of other approaches have been used to reveal protein-protein-

interactions such as Plasmon Surface Resonance (Ishino et al.) which is based on the 

changing refractive index of a medium on a gold film with absorbed proteins in 

response to interactions with added proteins (Patching, 2014). Moreover, phage display 

and affinity gel electrophoresis were successfully applied to study protein interactions. 

An overview of commonly applied protein-protein interaction methods in bacteria is 

listed in Table 5.1. 
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Table 5.1 Protein-protein interaction methods 
 Protein-protein 

interaction method 
Advantages and Disadvantages First described in and application examples 

C
om

pl
em

en
ta

tio
n 

as
sa

ys
 

Yeast-2-Hybrid (Y2H) 

� easy to carry out 
� high number of false positives,  
� fusions are hybrids  
� requires overexpression 
� heterologous host 

(Fields & Song, 1989)(first described) 
(Chien et al., 1991, Wang et al., 1997)  
(Yan et al., 2000, Din et al., 1998, Liu et al., 1999) 

Bacterial adenylate cyclase 
two-hybrid system (BACTH) 

� easy to carry out 
� high number of false positives  
� fusions are hybrids, 
� non native environment if not E. coli 
� requires overexpression 

(Karimova et al., 1998) (first described)(Claessen et 
al., 2008, Daniel et al., 2006, Datta et al., 2006, 
Ebersbach et al., 2008, Fraipont et al., 2011, Galli 
& Gerdes, 2010, Karimova et al., 2005, Marbouty 
et al., 2009, Mazouni et al., 2004, Muller et al., 
2007, Patrick & Kearns, 2008) 

Bimolecular 
fluorescence/luminescence 

complementation (BiFC/BiLC) 

� in vivo 
� native environment 

 

(Ghosh et al., 2000) (first described)(Morell et al., 
2008) 
 

Spectroscopic 
analysis Surface Plasmon resonance 

� low-throughput 
� requires purified proteins 
� non-native environment 

(Liedberg et al., 1995) (first described)(Bertsche et 
al., 2006) 
 

B
io

ch
em

ic
al

 
ap

pr
oa

ch
es

 

Farwestern 
� requires purified proteins 
� proteins are denatured 
� non-native environment 

(Reddy & Kumar, 2000, Sato et al., 2011) 
 

Phage display 
 

� Non-native environment 
 

(Smith, 1985) (first described)(Rosander et al., 
2002, Wall et al., 2003) 

Affinity purification 
 

� potential protein degradation or modification 
during sample preparation,  

� results dependent on antibody binding 
efficiency 

� nonspecific binding to beads 

(Bertsche et al., 2006, Corbin et al., 2007, de 
Leeuw et al., 1999, Espeli et al., 2003, 
Buddelmeijer & Beckwith, 2004, Noirclerc-Savoye 
et al., 2005, Butland et al., 2005) 

Fluorescence- 
based 

measurements 

FRET/FRAP/FLIM 
 

� real-time analysis of dynamic processes 
� capable of detecting transient interactions 
� low sensitivity 
� native environment 
� extremely sensitive to small distance changes 

(Forster, 2012)(first described)(Sourjik et al., 2007, 
Berg et al., 2013, Hu & Lutkenhaus, 1999, Okuno 
et al., 2009, Shen & Lutkenhaus, 2010, Szeto et al., 
2001, Fraipont et al., 2011, Broussard et al., 2013) 
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5.1.2 Förster Resonance Energy Transfer 

The Förster-resonance energy transfer is a non-radiative energy transfer between two 

light-sensitive molecules. A well known example of FRET in nature is seen in 

photosynthesis. Light-harvesting complexes focus energy by a gradual transfer of 

energy of carotenoids to phycobiline to Chlorophyll b and a (van Thor & Hellingwerf, 

2002). Energy is only transferred upon excitation of a donor fluorophore if its emission 

spectrum overlaps with the excitation spectrum of an acceptor fluorophore (see Fig. 

5.1).  

 

 

Figure 5.1 Schematic overview of FRET 

A, FRET only occurs if the emission spectrum of a donor fluorophore overlaps with the 

excitation spectrum of an acceptor fluorophore. Image is taken from (Broussard et al., 

2013). B, FRET itself describes the transfer of energy from an excited state of the donor 

to the ground state of the acceptor fluorophore. Image is taken from 

https://de.wikipedia. org/wiki/Förster-Resonanzenergietransfer. 

 

Since the efficiency of FRET is inversely proportional to the sixth power of the distance 

between donor and acceptor, it makes it a powerful tool to investigate small changes in 

distance between 1 and 10 nm of fluorophores (Stryer, 1978). Thus, the fusion of 

appropriate fluorophores to molecules of interest allows making conclusions on their 

potential colocalisation and interaction (Harris, 2010). 

FRET based interaction systems are the leading approach to study protein 

interactions in vivo, for instance to investigate the interaction between the chemotaxis 
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response regulator CheY and its phosphatase CheZ in E. coli which later led to the first 

interactome revealed by FRET (Sourjik et al., 2007, Vaknin & Berg, 2004, Sourjik & 

Berg, 2002). FRET has also been applied to study the redox state by using genetically 

modified fused fluorescent proteins that carry reactive cysteine residues. The cysteine 

residues form a disulfide bond in an oxidised state which brings both fluorophores 

closer to each other and thereby increases the FRET efficiency (Abraham et al., 2014). 

FRET also provided the experimental framework to reveal protein interactions 

within the divisome and peptidoglycan synthesis enzymes in E. coli. Van der Ploeg et 

al., revealed the interaction between MreB with other cytoskeletal proteins such as 

RodZ and RodA together with the peptidoglycan synthesis enzyme PBP2. These 

interactions were abolished using the MreB polymerization inhibitor A22 (van der 

Ploeg et al., 2015). A FRET system using near endogenous levels of the investigated 

proteins unveiled the interaction of FtsZ with itself and ZapA. Additionally it allowed 

the study of the interaction between various other Z-ring associated proteins such as 

FtsN, FtsI, FtsW and FtsQ (Alexeeva et al., 2010). Furthermore, this system could 

showed the interaction of PBP2 with PBP3 at the cell division site (van der Ploeg et al., 

2013). Other studies involved the design of biosensors to screen colonies for calcium 

uptake or the validation of protein interactions between magnetosome associated 

proteins in magnetotactic bacteria (Litzlbauer et al., 2015, Carillo et al., 2013). 

 

5.1.3 Measurement techniques  

Since FRET is a non-radiative process, it is not possible to directly detect and quantify 

FRET. However, FRET affects the emission intensity of acceptor and donor as well as 

the lifetime of the donor fluorophore which can be measured with the appropriate 

instruments. 

 

5.1.3.1 Sensitized emission 

FRET results in a decreased donor emission and increased acceptor due to the energy 

transfer from the donor to the acceptor (Clegg, 2009). Thus, FRET efficiency can be 

inferred from the variation of emission intensities since excitation of the donor also 

results in excitation of the acceptor which is known as sensitized FRET. However, an 

issue can be an emission crosstalk leading to a direct excitation of the acceptor. This 

effect can be corrected by acquisition of fluorescence images of samples with donor-

only, acceptor-only or both fluorophores using different filter settings.  
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5.1.3.2 Fluorescence Lifetime Imaging Microscopy (FLIM) 

FLIM measures how long in average a fluorophore remains in its excited state. These 

time constants lie in a range of pico to nano seconds and therefore require very fast 

image acquisition. Since the fluorescence lifetime is influenced by a number of 

environmental changes such as pH, ion, oxygen or FRET partners it can be a useful tool 

for a variety of applications (Gadella, 2009)(George Abraham et al., 2015). 

 

5.1.3.3 Acceptor bleaching 

Presently, the most prevalent measurement method for FRET is acceptor 

photobleaching. The principle idea is to unquench the donor fluorophore by bleaching 

the acceptor. This avoids the energy transfer and concomitantly increases the emission 

intensity of the donor. A gradual acceptor bleach can thereby help to find the optimal 

bleaching settings (Van Munster et al., 2005). 

 

5.1.3.4 Donor Photobleaching (pbFRET) 

Fluorophores are only sensitive to photodamage in their excited state. Since FRET 

decreases their fluorescence lifetime they are also less sensitive to photodamage and 

hence have longer photobleaching times. Consequently, the FRET efficiency can be 

inferred from photo-bleaching over time (see Fig. 5.2)  

pbFRET was introduced by Jovin et al., in 1989 and used to show clustering of 

lectin receptors and conformational changes of major histocompatibility complex 

molecules (Young et al., 1994, Szollosi et al., 2002). However, pbFRET has never been 

applied in prokaryotic cells. Both acceptor- and donor photobleaching require long 

time-frames and are therefore most applicable to fixed samples where cell function is 

not affected by the bleaching and the measurement is not affected by potential specimen 

movements. 

  

5.1.4 Aims of this chapter 

• Establishment of a donor photo bleaching based protein-interaction system in S. 

aureus 

• Confirmation of protein interactions between PlsY and CdsA and PlsY and 

MreD 

• Analysis of protein interaction of PlsY with other membrane proteins 
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Figure 5.2 Examples for donor photobleaching decay rates 

pbFRET measures the photobleaching decay rates of a donor fluorophore in presence 

and absence of an acceptor fluorophore. The donor bleaches slower in the presence of 

an acceptor due its reduced energy excitation. Image is taken from (Young et al., 1994). 
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5.2 Results 

5.2.1 Genetic and experimental setup 

Donor photobleaching was chosen as the measurement technique due to its simplicity in 

terms of image acquisition. This method can be performed with a standard equipped 

wide field microscope. In this study, a Nikon Dual Cam System was used to carry out 

FRET experiments. Proteins of interest were translationally fused to GFP or mCherry 

encoded on the shuttle-vector pCQ11. This pair was chosen based on good expression 

levels in S. aureus as seen in previous experiments and low unwanted photosensitivity 

in case other measurement techniques like FLIM or acceptor photobleaching should be 

applied (Tramier et al., 2006). 

pWhiteWalker, a derivative of pCQ11 designed in this study, is a shuttle-vector 

and fusions are expressed in E. coli and gram-positive bacteria such as S. aureus. Both 

fusions are expressed under control of the IPTG-inducible promoter Pspac (Yansura & 

Henner, 1984). This allows the controlled expression of proteins in the experimental 

host. The emission spectrum of GFP and the excitation spectrum of mCherry overlap 

(see Fig. 5.3A) making them a suitable FRET pair. However, their spectral overlap is 

less favourable compared to other commonly applied FRET pairs like eYFP/mCherry or 

CFP/eYFP (see Fig. 5.3BC). 

Fig. 5.4 shows the genetic setup of the pCQ11 based pWhiteWalker 

experimental plasmids. Both fluorophores and genes of interest can be replaced by 

restriction digest. Additionally, proteins of interest are fused to mCherry or GFP via a 

five amino acid glycine-serine linker (GGSGS) to decrease the risk of steric hindrance 

between protein of interest and the fluorescent protein. 

 

5.2.2 Selected controls 

Donor photobleaching analyses the bleaching behaviour of a donor, in this case GFP, 

over time. The FRET efficiency is calculated comparing bleaching time constants of a 

donor in the presence of an acceptor compared to the time constant of the donor in the 

absence of an acceptor. In this study, protein-interactions between PlsY and various 

other membrane proteins were tested. This requires expression of PlsY-GFP only as a 

control for the donor in absence of an acceptor. Since donor photobleaching has not 

been used in S. aureus, or other bacteria before it is not known what to expect. In order 

to introduce a positive control, GFP and mCherry were translationally fused in tandem 

linked by the same Glycine-Serine linker used for the experimental plasmids. In this 

case, both fluorophores are forced to stay in close proximity and therefore to show 

FRET. 
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Figure 5.3 Excitation and emission spectra of selected fluorophores 

Spectra were generated using Chroma Spectra Viewer 

(https://www.chroma.com/spectra-viewer). A, Excitation (blue) and emission (red) 

spectra of GFP and mCherry. B, Excitation (blue) and emission (red) spectra of eYFP 

and mCherry. C, Excitation (blue) and emission (red) spectra of CFP and eYFP. 

 

 

Figure 5.4 Schematic presentation of the genetic constructs used for FRET 

experiments 

Genes are indicated by arrows. The gene of interest A (goi A) is translated in frame with 

mCherry whereas the gene of interest B (goi B) is translated in frame with gfp. Every 

part of the system can be replaced by restriction digest and cloning. 
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5.2.3 Genes selected for investigation 

The primary aim was to confirm protein-interaction results obtained by BACTH. 

Therefore a PlsY-GFP fusion was investigated in the presence of CdsA- or MreD-

mCherry fusions. Additionally, membrane proteins of various metabolic or 

physiological functions were tested for interaction with PlsY. For this purpose integral 

membrane proteins were chosen based on their topology and size. GFP was 

translationally fused to the C-terminus of PlsY since this configuration has been shown 

to be functional and the C-terminus is likely to be on the inside of the cell. Thus, only 

membrane proteins with a cytoplasmic C-terminus were chosen for interaction studies 

to make sure the fluorescent protein fusion is in the inside of the cell and to maintain the 

overall structure of the overexpression plasmid. Additionally, only proteins with a 

maximum size of 500 amino acids were chosen to avoid the construction of massively 

large plasmids (>13000bp). 

 

5.2.4 Construction of FRET plasmids 

Plasmids pWhiteWalker1-4 and pCQ11-gfp were constructed in cooperation with Lucas 

Walker (Walker, 2015). Some of these plasmids were renamed and the updated name is 

shown in Table 5.3. 

The plasmid pWhiteWalker1 was constructed as follows: codon-optimised forms 

of the genes mCherry (Uniprot X5DSL3-1) and gfp (eGFP; Uniprot Q8GHE2-1) 

containing their own ribosomal binding sites were separately amplified by PCR 

(oligonucleotide primers: 5’FL04/3’pWhiteWalker0mCherryOE and 5’ 

pWhiteWalker0GFPOE/3’FL05, respectively), fused by overlap extension PCR and 

cloned at the EcoRI/AscI site of shuttle-vector pCQ11 (Fig. 5.5). A translational fusion 

of mCherry-gfp linked by a sequence encoding a Serine/Glycine linker was constructed 

by PCR amplification of mCherry and gfp (oligonucleotide primers: 5’FL04/3’FL04OE 

and 5’FL05OE/3’FL05, respectively), fusion of the fragments using overlap extension 

PCR and cloning of the final fragment at the EcoRI/AscI site of pCQ11. This resulted in 

plasmid pWhiteWalker2. In the following constructs S. aureus SH1000 genomic DNA 

was used as a template for amplification of all investigated genes. Construction of 

pWhiteWalker3 was carried out by amplification and cloning the gene coding for S. 

aureus plsY (5’FL06/3’FL06) at the BglII/KpnI site of pWhiteWalker1 in lieu of gfp. 

Additionally, a tandem fusion of mreD (5’FL07/3’FL07OE) and mCherry 

(5’FL08OE/3’FL04) was created by overlap extension PCR. This fragment contained a 

ribosome-binding site and is flanked by BglII and EcoRI sites that were used for  
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Table 5.2 Bioinformatic analysis of selected integral membrane proteins chosen for 
protein interaction studies with PlsY 
Gene 
name 

GeneID Function (protein length 
in amino acids) 

Topology Prediction (http://wlab.ethz.ch/protter/#) 

pheP SAOUHS
C_01326 

Phenylalaninetransporter 
(484) 

 
pgsA SAOUHS

C_01260 
CDP-diacylglycerol--
glycerol-3-phosphate 3-
phosphatidyltransferase, 
involved in phospholipid 
synthesis, processes the 
CdsA product CDP-
diacylglycerol into 
Phosphatidylglycerolpho-
sphate that is required for 
Phosphatidylglycerol (PG) 
synthesis (193) 

 

cydB SAOUHS
C_01032 

Cytochrome B subunit, 
component of the terminal 
oxidase Cytochrome bd 
(339) 

 
mscL SAOUHS

C_1342a 
Large-Conductance 
Mechanosensitive Channel, 
translates physical forces 
applied to the membrane 
into electro-physiochemical  
signals (120)  

 
secY SAOUHS

C_02989 
Main transmembrane 
subunit of the Sec secretion 
pathway, ATPase (430) 
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alsT SAOUHS
C_01354 

Sodium-Alanine Symporter 
(486) 

 
lspA SAOUHS

C_01162 
Lipoprotein signal 
peptidase (163) 

 
fmnP SAOUHS

C_01505 
Riboflavin Symporter (181) 

 
mntP SAOUHS

C_00636 
Manganese transporter 
(278) 
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Table 5.3 Nomenclature of FRET plasmids and their features  
Plasmid name Features Purpose 
pCQ11-gfp Expression of cytoplasmic gfp Intermediate plasmid used for 

the construction of other 
pWhiteWalker’s 

pWhiteWalker1 Expression of cytoplasmic gfp 
and mCherry 

Negative control 

pWhiteWalker2 Expression of cytoplasmic gfp 
and mCherry fused in tandem 

Positive control 

pWhiteWalker10 Expression plsY-gfp Negative control, used for FRET 
efficiency calculation 

pWhiteWalker3 Expression plsY-gfp and mreD-
mCherry 

Confirmation of PlsY-MreD 
interaction 

pWhiteWalker4 Expression plsY-gfp and mreD-
mCherry 

Confirmation of PlsY-CdsA 
interaction 

pWhiteWalker7 Expression plsY-gfp and cydB-
mCherry 

Investigation of potential 
interactions of PlsY with other 
membrane proteins 

pWhiteWalker8 Expression plsY-gfp and pgsA-
mCherry 

Investigation of potential 
interactions of PlsY with other 
membrane proteins 

pWhiteWalker11 Expression plsY-gfp and pheP-
mCherry 

Investigation of potential 
interactions of PlsY with other 
membrane proteins 

pWhiteWalker12 Expression plsY-gfp and secY-
mCherry 

Investigation of potential 
interactions of PlsY with other 
membrane proteins 

pWhiteWalker13 Expression plsY-gfp and mscL-
mCherry 

Investigation of potential 
interactions of PlsY with other 
membrane proteins 

pWhiteWalker14 Expression plsY-gfp and fmnP-
mCherry 

Investigation of potential 
interactions of PlsY with other 
membrane proteins 

pWhiteWalker15 Expression plsY-gfp and alsT-
mCherry 

Investigation of potential 
interactions of PlsY with other 
membrane proteins 

pWhiteWalker16 Expression plsY-gfp and mntP-
mCherry 

Investigation of potential 
interactions of PlsY with other 
membrane proteins 

pWhiteWalker17 Expression plsY-gfp and lspA-
mCherry 

Investigation of potential 
interactions of PlsY with other 
membrane proteins 

pWhiteWalker18 Expression plsY-gfp and 
TMD(plsY)-mCherry 

Investigation of PlsY interaction 
with an artificially membrane 
bound mCherry 

A more detailed description of plasmids used in this chapter can be found in Section 
2.3.3 Table 2.5. 
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cloning into the EcoRI/BglII site of the modified pWhiteWalker1 containing plsY. This 

resulted in the final construct pWhiteWalker3 containing tandem fusions of mreD-

mCherry and plsY-gfp. pWhiteWalker 4 was constructed in the same manner as for 

pWhiteWalker3, using a gene encoding cdsA (5’FL09/3’FL09OE) fused by overlap 

extension PCR to mCherry (5’FL10OE/3’FL04) in lieu of mreD. The resulting 

construct contained tandem fusions of cdsA-mCherry and plsY-gfp. 

Construction of pCQ11-gfp was carried out by amplification of gfp using 

primers 5’pCQ11gfp/3’CQ11gfp followed by restriction digest with EcoRI/AscI. The 

digested DNA fragment was then ligated into EcoRI/AscI cut pCQ11 resulting in 

pCQ11-gfp.  

In order to construct pWhiteWalker7 and 8, genes encoding for cydB and pgsA 

were amplified using primer pairs 5`FW65/3`FW65 and 5’FW66/3’FW66 respectively. 

These fragments were then cut with EcoRI and NheI and ligated into pWhiteWalker3 

that was cut with the same enzymes replacing mreD with cydB or pgsA. A schematic 

cloning overview of the construction of pWhiteWalker’s 7,8 and 10-18 is depicted in 

Figures 5.6 and 5.7. 

Plasmids pWhiteWalker10-18 were constructed using Gibson Assembly (New 

England Biolabs, Hitchin, United Kingdom). pWhiteWalker3 was used as a template to 

amplify a tandem fusion of plsY-gfp (5’FW73/3’FW73) that was subsequently cloned 

into the EcoRI/AscI site of pCQ11-gfp replacing gfp by plsY-gfp resulting in 

pWhiteWalker10. In order to construct pWhiteWalker11-17, genes encoding pheP, 

secY, mscL, fmnP, alsT, mntP and lspA were amplified using primer pairs 

5’FW74/3’FW74 (pheP), 5’FW75/3’FW75 (secY), 5’FW76/3’FW76 (mscL), 

5’FW77/3’FW77 (fmnP), 5’FW78/3’FW78 (alsT), 5’FW79/3’FW79 (mntP) and 

5’FW80/3’FW80 (lspA), respectively. These DNA fragments were then cloned into 

NheI/EcoRI cut pWhiteWalker3 replacing mreD. This resulted in plasmids containing 

tandem fusions of the cloned genes with mCherry together with plsY-gfp. 

pWhiteWalker18 containing a tandem fusion of plsY-gfp together with the first 

transmembrane domain of PlsY fused to the C-terminus of mCherry was constructed by 

amplifying mCherry through two amplification rounds. First, mCherry was amplified 

using primer pair 5’FW81-1/3’FW81. The product was subsequently used as a template 

for another PCR amplification round using primers 5’FW81/3’FW81, thus resulting in 

an enhanced mCherry containing a nucleotide sequence that encodes for the first 27 

amino acids of PlsY on the C-terminus. This DNA fragment was cloned into the 

EcoRI/BglII site of pWhiteWalker3, thus replacing mreD-mCherry (Fig. 5.7). 
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All plasmids were transformed into E. coli NEB5α by Heat-Shock 

transformation and correct transformants were checked by restriction digest (see Fig. 

5.5B-E, 5.6C-G and Fig. 5.7B) followed by DNA sequencing (GATC Biotech AG, 

Konstanz, Germany). Recombinant plasmids containing the correct insert without 

mutations were purified, concentrated and electroporated into S. aureus RN4220. 

Restriction digest of pCQ11-gfp and pWhiteWalker10 candidate plasmids 

resulted in unexpected DNA fragment sizes using the restriction enzymes SpeI and 

AscI. Sequencing however showed the right DNA sequence for the inserts. AscI was 

used before and cuts once within the plasmid backbone suggesting an additional SpeI 

restriction site within the plasmid backbone that was not indicated in the plasmid 

sequence used for cloning.  

 

5.2.5 Analysis of functionality 

To test the functionality of the constructed plasmids in RN4220, overnight cultures were 

diluted to an OD600=0.05 and grown for 2 h at 37 °C in the presence of erythromycin (5 

µg / ml) and lincomycin (25 µg / ml) and 500 mM IPTG. Cultures were harvested, 

washed with PBS and analysed by fluorescence microscopy using a Nikon Dual Cam 

epifluorescence microscope. 

Both strains expressing gfp and mCherry from pWhiteWalker1 or 2 show 

cytoplasmic fluorescence signals in the FITC and RFP channel (TexasRed) (see Fig. 

5.8AB). The control plasmid pWhiteWalker10 only expresses a plsY-gfp fusions that is 

localised at the membrane and the septum during cell-division (Fig. 5.8G). Importantly, 

there is no cross-bleed through the RFP (TexasRed) channel using the excitation and 

emission settings applied for image acquisition of all strains (Fig. 5.8G). All the other 

pWhiteWalkers express a plsY-gfp fusion together with a gene of interest fused to 

mCherry. mCherry-fusions with mreD, cdsA, cydB, pgsA, pheP, secY, mscL, fmnP, 

mntB and lspA are expressed and membrane-associated (Fig. 5.8C-F and H-K and M-

N). An alsT-mCherry fusion was barely expressed in most cells and expressed fusions 

do not appear to be membrane-associated (Fig. 5.8L). The expression of mCherry fused 

to the first transmembrane domain of PlsY also does not express well, but the fusion 

appears to be located at the membrane (Fig. 5.8O). 
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Figure 5.5 Construction of pWhiteWalker 1-4 



 

270 
 

A, Diagram illustrating the construction of pWhiteWalker 1-4. pCQ11 was used as the 

backbone for the integration of mCherry inframe with gfp (pWhiteWalker2) or mCherry 

separately expressed from gfp (pWhiteWalker1). mCherry of pWhiteWalker1 was then 

replaced by a translational fusion of mreD (pWhiteWalker 3) or cdsA (pWhiteWalker 4) 

with mCherry and plsY was inserted upstream and inframe of gfp resulting in plasmids 

pWhiteWalker 3 and 4. B, pWhiteWalker1 candidate plasmids (Lanes 1-4) were 

digested with EcoRI/AscI and separated by 1 % (w/v) TAE agarose gel electrophoresis. 

Bands of 8380 and 1477 bp corresponding to pWhiteWalker1, respectively, are marked 

by black arrows. C, pWhiteWalker2 candidate plasmids (Lanes 1-4) were digested with 

EcoRI/AscI and separated by 1 % (w/v) TAE agarose gel electrophoresis. Bands of 

8380 and 1471 bp corresponding to pWhiteWalker2, respectively, are marked by black 

arrows. D, pWhiteWalker3 candidate plasmids (Lanes 1-2) were digested with 

EcoRI/NcoI and separated by 1 % (w/v) TAE agarose gel electrophoresis. Bands of 

8933 and 2097 bp corresponding to pWhiteWalker3, respectively, are marked by black 

arrows. E, pWhiteWalker4 candidate plasmids (Lanes 1-3) were digested with 

EcoRI/NcoI and separated by 1 % (w/v) TAE agarose gel electrophoresis. Bands of 

8933, 2112 and 237 bp corresponding to pWhiteWalker4, respectively, are marked by 

black arrows. A list of plasmids used in this chapter and their nomenclature can be 

found in Table 5.3. 
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Figure 5.6 Construction of pWhiteWalker 7, 8, 10-17 
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A, Diagram illustrating the construction of pWhiteWalker 7,8 and 11-17. 

pWhiteWalker3 was used as the backbone for the replacement of mreD with the gene of 

interest resulting in a translational fusion of the gene of interest with mCherry along 

with the separate expression of a translational fusion of plsY with gfp. B, Diagram 

illustrating the construction of pWhiteWalker10. pCQ11-gfp was used as a backbone for 

the construction of pWhiteWalker 10 by replacing gfp with plsY-gfp. C, pWhiteWalker7 

(Lane 1) and pWhiteWalker3 (Lane 2) were digested with EcoRI/BglII and separated by 

1 % (w/v) TAE agarose gel electrophoresis. Bands of 9749 and 1329 bp corresponding 

to pWhiteWalker7, respectively, are marked by black arrows. D, pWhiteWalker8 (Lane 

1) and pWhiteWalker3 (Lane 2) were digested with BamHI and separated by 1 % (w/v) 

TAE agarose gel electrophoresis. Bands of 9626 and 1452 bp corresponding to 

pWhiteWalker8, respectively, are marked by black arrows. E, pWhiteWalker10 (Lane 

1) and pCQ11-gfp (Lane 2) were digested with AscI/SpeI and separated by 1 % (w/v) 

TAE agarose gel electrophoresis. Bands of approximately 5000, 2000, 1500 and 1200 

bp corresponding to pWhiteWalker10 (Lane 1), respectively, are marked by black 

arrows. F, pWhiteWalker11 (Lanes 1), pWhiteWalker12 (Lane 2), pWhiteWalker13 

(Lane 3) and pWhiteWalker14 (Lane 4) were digested with EcoRI/BglII and separated 

by 1 % (w/v) TAE agarose gel electrophoresis. Bands of 9750 and 2202 bp 

corresponding to pWhiteWalker11, respectively, are marked by black arrows. Bands of 

9750 and 2040 bp corresponding to pWhiteWalker12, respectively, are marked by black 

arrows. Bands of 9750, 1077 bp (and 33 bp) corresponding to pWhiteWalker13, 

respectively, are marked by black arrows. Bands of 9750 and 1293 bp corresponding to 

pWhiteWalker14, respectively, are marked by black arrows. G, pWhiteWalker15 (Lane 

1), pWhiteWalker16 (Lane 2), pWhiteWalker17 (Lane 3) and pWhiteWalker3 (Lane 4) 

were digested with EcoRI/BglII and separated by 1 % (w/v) TAE agarose gel 

electrophoresis. Bands of 9750 and 2208 bp corresponding to pWhiteWalker15, 

respectively, are marked by black arrows. Bands of 9750 and 1584 bp corresponding to 

pWhiteWalker16, respectively, are marked by black arrows. Bands of 9750 and 1239 bp 

corresponding to pWhiteWalker17, respectively, are marked by black arrows. Bands of 

9749 and 1281bp corresponding to pWhiteWalker3, respectively, are marked by black 

arrows. A list of plasmids used in this chapter and their nomenclature can be found in 

Table 5.3. 
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Figure 5.7 Construction of pWhiteWalker 18 

A, Diagram illustrating the construction of pWhiteWalker 18. pWhiteWalker3 was used 

as a backbone replacing mreD-mCherry with an enhanced mCherry containing the 

sequence encoding for the first transmembrane domain of PlsY at its N-terminus. B, 

pWhiteWalker18 (Lane 2) and pWhiteWalker3 (Lane 1) were digested with 

HindIII/BglII and separated by 1% (w/v) TAE agarose gel electrophoresis. Bands of 

6583, 3154 and 836 bp corresponding to pWhiteWalker18 (Lane 2), respectively, are 

marked by black arrows. Restriction digest of pWhiteWalker3 results in bands of 6583, 

3154 and 1293 bp (Lane 1). A list of plasmids used in this chapter and their 

nomenclature can be found in Table 5.3. 
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Figure 5.8 Localisation of PlsY-GFP and various membrane proteins fused to 

mCherry in S. aureus RN4220 

Fluorescence images (convolved) of S. aureus RN4220 + pWhiteWalkers incubated in 

the presence of antibiotics and 500 µM IPTG for 2 h. Images were acquired using a 

Nikon Dual Cam system and NIS elements software (Nikon Instruments). Acquisition 

of fluorescence images were taken using 500 ms exposure in both channels. Scale bars 

on the left panel represent 3 µm and scale bars on the right represent 1 µm. A, 

Fluorescence images of RN4220 + pWhiteWalker1 (mCherry + gfp). B, Fluorescence 

images of RN4220 + pWhiteWalker2 (mCherry-gfp, fused in tandem). C, Fluorescence 

images of RN4220 + pWhiteWalker3 (mreD-mCherry + plsY-gfp). D, Fluorescence 

images of RN4220 + pWhiteWalker4 (mreD-mCherry + plsY-gfp). E, Fluorescence 

images of RN4220 + pWhiteWalker7 (cydB-mCherry + plsY-gfp). F, Fluorescence 

images of RN4220 + pWhiteWalker8 (pgsA-mCherry + plsY-gfp). G, Fluorescence 

images of RN4220 + pWhiteWalker10 (plsY-gfp). H, Fluorescence images of RN4220 + 

pWhiteWalker11 (pheP-mCherry + plsY-gfp). I, Fluorescence images of RN4220 + 

pWhiteWalker12 (secY-mCherry + plsY-gfp). J, Fluorescence images of RN4220 + 

pWhiteWalker13 (mscL-mCherry + plsY-gfp). K , Fluorescence images of RN4220 + 

pWhiteWalker14 (fmntP-mCherry + plsY-gfp). L , Fluorescence images of RN4220 + 

pWhiteWalker15 (alsT-mCherry + plsY-gfp). M , Fluorescence images of RN4220 + 

pWhiteWalker16 (mntP-mCherry + plsY-gfp). N, Fluorescence images of RN4220 + 

pWhiteWalker17 (lspA-mCherry + plsY-gfp). O, Fluorescence images of RN4220 + 

pWhiteWalker18 (TMD(plsY)mCherry + plsY-gfp). 
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5.2.6 FRET measurements 

Protein interactions using FRET are measured by their FRET efficiency. This value 

describes the amount of transferred energy between donor and acceptor. As described in 

the introduction, this energy transfer only occurs in close proximity between both 

fluorophores. A detailed protocol of sample preparation, image acquisition and analysis 

can be found in the Methods section. Briefly, cells were continuously bleached for 5 

min at wavelength 488 nm and fluorescence intensity over time was used to determine 

the photobleaching decay rate in arbitrary units/frame. Table 5.4 lists the 

photobleaching time constants for all carried out FRET strains. These values were used 

to calculate the FRET efficiency using the following formula: 

E=1-τPB/τ’PB 

where τPB is the time constant of PlsY-GFP in the absence of an acceptor and τ’PB is the 

time constant of PlsY-GFP in presence of the investigated fusion. In other words, 

expression of plsY-gfp from pWhiteWalker10 was used for determination of τPB. FRET 

efficiencies were only calculated between strains that were analysed on the same day to 

minimise experimental variations. Therefore, time constant summaries cannot draw 

conclusions on FRET efficiencies. 

This study demonstrates a donor-photobleaching FRET approach for the first 

time in S. aureus to identify protein interactions between PlsY fused to GFP and various 

other membrane proteins fused to mCherry. All values were calculated based of the 

photobleaching decay rate of GFP compared to the one of a strain only expressing plsY-

gfp. Since this system is novel, a positive control using a cytoplasmic tandem fusion of 

mCherry-GFP, was required to get an idea of a positive FRET result. mCherry-GFP 

(pWW2) exhibits an efficiency value of 19.9% ±9.9 % whereas a strain expressing 

cytoplasmic non-fused mCherry and gfp (pWW1) shows an efficiency of 6.5% ±10.1 % 

(Fig. 5.9AB). These values are not significantly different but exhibit a relatively low p-

value of 0.076 (Fig. 5.9C). Expression of cytoplasmic GFP and mCherry might result in 

too high levels of both proteins and thereby cause random FRET events in the 

cytoplasm. However, the analysis of FRET efficiencies between PlsY and MreD 

(pWW3) or CdsA (pWW4) or PgsA (pWW8) shows high efficiency levels of 20 – 23 % 

that are not significantly different from each other (p-values range from 0.06 to 0.99) 

(Fig. 5.9ABC). Furthermore, the interaction between CydB and PlsY (pWW7) also 

exhibits a high FRET efficiency value of 13.0% ±4.6 % that is not significantly different 

from MreD (p = 0.074), CdsA (p = 0.500) and PgsA (p = 0.152). Two proteins showed 

a low FRET efficiency. SecY-PlsY (pWW12) and MscL-PlsY (pWW13) interaction 
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measurements demonstrate FRET efficiencies of -0.4 % ± 4.8 % and -4.1 % ± 5.3 %, 

respectively (Fig. 5.9AB). Both data sets are significantly different to the mCherry-GFP 

fusion, MreD (p = 0.0024 for pWW12 and p = 0.0041 for pWW13), CydB (p = 0.0174 

for pWW12 and p = 0.0456 for pWW13) and PgsA studies (p = 0.0179 for pWW12 and 

p = 0.0316 for pWW13) (Fig. 5.9C). The analysis of interaction between PlsY and the 

artificially membrane bound mCherry protein (pWW18) containing a N-terminal 

transmembrane domain exhibits a negative FRET efficiency. This could be explained 

that this protein has a negative effect on PlsY-GFP and potentially decreases its 

fluorescence lifetime. FRET interaction studies between PlsY and PheP, FmnP and 

LspA were only carried out once and showed FRET efficiency values in between the 

negative and positive values seen for other groups. These studies have to be repeated in 

order to draw conclusions. Furthermore, although the interaction between PlsY and 

CdsA (pWW4) exhibit a high FRET efficiency value, it is not significantly different 

from any other group (p values range between 0.1659 and 0.9998) since this group has 

only been carried out twice. 

In conclusion, a donor photo bleaching approach to reveal interactions between 

membrane proteins in S. aureus is viable and identified the interaction of PlsY with 

MreD and PgsA. Additionally, CdsA and CydB are potential interaction partners but 

need to be clarified since significance values (for CdsA) or FRET efficiency (for CydB) 

are different from the other positively tested proteins. 

Table 5.4 Donor photobleaching times 
Plasmid name pWhiteWalker1 pWhiteWalker2 pWhiteWalker10 pWhiteWalker3 
Time constant 
[A.U./frame] 

99.2±6.8 118.6±9.9 94.6±8.6 124.2±7.5 

Sample size 4 6 6 5 

 
Plasmid name pWhiteWalker4 pWhiteWalker7 pWhiteWalker8 pWhiteWalker11 
Time constant 
[A.U./frame] 

112.8±6.5 108.4±12.3 118.2±8.3 93.4 

Sample size 2 4 3 1 

 
Plasmid name pWhiteWalker12 pWhiteWalker13 pWhiteWalker14 pWhiteWalker15 
Time constant 
[A.U./frame] 

94.1±11.5 98.8±12.0 104.2 - 

Sample size 3 4 1 0 

 
Plasmid name pWhiteWalker16 pWhiteWalker17 pWhiteWalker18 
Time constant 
[A.U./frame] 

- 92.5 85.8±14.4 

Sample size 0 1 2 
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Figure 5.9 Protein-protein-interactions between PlsY-GFP and various membrane 

proteins fused to mCherry 

A, FRET efficiencies calculated based on donor photo bleaching decay rates of GFP 

compared with the decay rate of a strain expressing plsY-gfp (pWhiteWalker10) alone. 

Sample size indicates the biological replicate of each group. B, Mean and standard 

deviation values of FRET efficiencies used for A. C, Cross-table of significance values 

calculated between all groups that were investigated in duplicate or more repeats (no 

pWhiteWalkers11,14 and 17). Significance was calculated using a student’s t-test, two-

tailed unequal variance. Green bars indicate significance whereas non-coloured bars 

(n.s.) indicate no significance. 
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5.2.7 FRET measurements in presence the of Daptomycin 

Daptomycin is a lipopeptide antibiotic used to treat gram positive bacteria. Its mode of 

action has not been entirely elucidated but it is thought that daptomycin acts on the cell 

membrane causing local changes in membrane curvature that eventually result in the 

delocalisation of cell-division proteins in a Ca2+ ion dependent manner (Pogliano et al., 

2012). In order to investigate whether this delocalisation has an effect on the interaction 

between the previously shown membrane proteins, FRET studies were carried out 

comparing the interaction of PlsY with MreD, CydB, SecY and MscL. Additionally, the 

translational fusion of mCherry-GFP was used as a positive control since its FRET 

activity is based on a interaction in the cytoplasm and not in the membrane. Therefore, 

if daptomycin affects the interaction between membrane proteins, no effect should be 

seen on the cytoplasmic mCherry-GFP fusion.  

In order to determine the minimal inhibitory concentration of daptomycin, an 

overnight culture of S. aureus SH1000 was diluted to an OD600=0.025 in 25 ml BHI 

supplemented with CaCl2 (5 µg / ml) and grown at 37 °C at 250 rpm to OD600≈1.4 

followed by addition of daptomycin (1, 10 or 50 µg / ml). 50 µg / ml daptomycin was 

the only concentration causing a growth defect and therefore chosen for the following 

FRET interaction studies. (Fig. 5.10A). 

The interaction between membrane proteins in the presence of FRET was carried out as 

described in Section 5.2.6 with the modification that the second subculture was 

supplemented with CaCl2 (5 µg / ml) and grown for 1.5 h before adding daptomycin to a 

final concentration of 50 µg / ml. The cultures were then incubated for another 30 min 

before cells were fixed and analysed by fluorescence microscopy (Fig. 5.10B). 

All FRET efficiency values except for the positive control, mCherry-GFP, 

decreased in the presence of daptomycin (Fig. 5.10B). The interaction of PlsY with 

CydB is completely abolished whereas the interaction values between SecY and MscL 

with PlsY even reached negative levels of ≈ -7%. The FRET efficiency of MreD-PlsY 

however remains high and only exhibits a decrease of around 3 %. Interestingly, the 

translational fusion of mCherry-GFP was not affected by daptomycin and even 

increased by ≈ 9 %. These changes might be explained that the interaction of all fusions 

except for mCherry-GFP is affected by daptomycin and that the reference strain 

expressing plsY-gfp alone that was used to calculate the FRET efficiency values might 

also have been affected. However, this study was only carried out once since it requires 

high amounts of daptomycin and thus is not conclusive regarding the effect of 

daptomycin on the interaction of membrane proteins in S. aureus. 
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5.2.8 Single cell subcellular FRET measurements 

The application of FRET revealed an interaction between PlsY and MreD but no 

interaction between PlsY and SecY. Furthermore, PlsY might interact with CydB. This 

protein-protein interaction system is capable of determining where, on a subcellular 

level, the interaction takes place. Usual measurements were carried out by analysing the 

fluorescence intensity of GFP of a whole image field over time. Repeating the analysis 

of selected cells that are either undergoing cell-division or do not show cell-division 

was studied to reveal a potential difference (Fig. 5.11A). Additionally, cells undergoing 

cell-division were further subdivided into septa and peripheral membranes to investigate 

whether protein interactions mainly occur at the septum. 

In order to achieve this, 10 cells or subcellular areas per image field of strains 

RN4220 + pWhiteWalker3 (MreD), pWhiteWalker7 (CydB), pWhiteWalker10 (PlsY-

GFP only) and pWhiteWalker12 (SecY), were selected and analysed (Fig. 5.11B). 

Using a single-cell donor-bleaching analysis results in similar values compared 

to the whole image method applied to the initial FRET efficiency calculation (Fig. 

5.11B). PlsY-MreD displays a high FRET value for all investigated subcellular areas. 

However, the FRET efficiency is higher for cells undergoing cell-division indicating 

that these cells might exhibit more protein interaction between PlsY and MreD. 

Interaction between PlsY and SecY is low or even negative in all studied areas. 

Interestingly, CydB-PlsY interaction is more pronounced in cells undergoing cell-

division and dissecting these cells further reveals an interaction at the cell periphery 

rather than the septum. However, the standard deviation is high and the difference is not 

significant. 
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Figure 5.10 Protein-protein-interactions between PlsY-GFP and various 
membrane proteins fused to mCherry in the presence and absence of daptomycin 

A, Growth curves of SH1000 in the presence of CaCl2 (5 µg / ml) and daptomycin. 

Strains were grown to an OD600≈1.4 followed by addition of daptomycin. Only OD600 

values after addition of daptomycin are shown to clarify the growth defect. B, FRET 

efficiencies calculated based on donor photo bleaching decay rates of GFP compared 

with the decay rate of a strain expressing plsY-gfp (pWhiteWalker10) alone in the 

presence of CaCl2 (5 µg / ml) and daptomycin (50 µg / ml). ‘–‘ indicates no addition of 

daptomycin whereas ‘+’ indicates the addition of daptomycin. 
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Figure 5.11 Subcellular single-cell FRET analysis of protein-interactions of PlsY-

GFP and MreD, CydB and SecY fused to mCherry 

A, Schematic presentation of the data analysis in terms of selected subcellular areas 

used for FRET efficiency measurements. B, FRET efficiencies of protein interactions of 

PlsY with MreD, CydB or SecY. Whole image values were taken from Fig. 5.9B. C, 

Significance values calculated between all three groups within the subcellular area of 

measurement. Significance was calculated using a two-tailed equal variance student’s t-

test. Green bars indicate significance whereas non-coloured bars (n.s.) indicates no 

significance. 
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5.3 Discussion 

5.3.1 A novel system to study protein-protein-interactions in S. aureus  

This study introduced a novel method to study protein-protein interactions in S. aureus. 

A donor photobleaching approach allows investigating protein interactions in vivo in its 

native host. This can have great benefits compared to bacterial-two hybrid studies in E. 

coli since heterogeneous expression can result in delocalised and misfolded proteins that 

exhibit altered properties. The measurements are reproducible but require at least three 

independent replicates to produce significant data. However, this assay is time 

consuming and not suitable to screen for protein interactions in between a group of 

proteins. The protein interaction assay here was used with exponentially growing cells 

to investigate protein interactions between fast growth where cellular processes have to 

be efficient. Since photobleaching rates are theoretically dose-independent, it should be 

possible to use this system to analyse protein interactions over time to study the relation 

between two proteins dependent on the growth phase. This study also demonstrates that 

the analysis of subcellular areas is feasible which could be a powerful tool to study 

protein-interactions dependent on the cell-cycle stage. Furthermore, it would be of great 

interest to elucidate the mode of action of membrane targeting antibiotics by analysing 

their effect on the interaction between membrane proteins. Preliminary results using 

daptomycin demonstrated that protein-interactions between PlsY and MreD decreased 

and the interaction between PlsY and CydB was entirely abolished. Importantly, 

daptomycin had no negative effect on the cytoplasmic control comprised of a tandem 

fusion of mCherry-GFP. Further studies could investigate the effects of telomycin or 

lysocin E, two cytoplasmic membrane targeting antibiotics that are active in gram 

positive bacteria (Fu et al., 2015, Hamamoto et al., 2015). Interestingly, daptomycin, 

telomycin and lysocin intercalate between specific lipids. Daptomycin targets 

phosphatidyl-glycerolphosphate, telomycin intercalates between cardiolipin and lysocin 

exhibits an affinity to menaquinones (Epand et al., 2016). In case the membrane 

proteins investigated in this study preferentially localise in a local microenvironment of 

specific lipids, the use and comparison of these antibiotics could identify these lipids. 

The treatment should specifically only inhibit interactions of membrane proteins 

localised in these lipid domains.  

To deploy better controls than the cytoplasmic expression of mCherry and GFP, 

either separately expressed or in tandem, it would of interest to construct membrane 

bound fluorophore fusions. A first attempt was undertaken by fusing the first 

transmembrane domain of the integral membrane protein PlsY to the N-terminus of 

mCherry termed TMD(PlsY)-mCherry. Although the fusion appears to be located at the 
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cell periphery, it did not express or fluoresce well (Fig. 5.8) and also exhibits a lower 

photobleaching rate than the negative control of PlsY-GFP alone (Fig. 5.9A). This could 

be explained due to a detrimental effect of TMD(PlsY)-mCherry on PlsY-GFP. To 

repeat the experiment using a different transmembrane domain fused to mCherry and or 

GFP would further corroborate the protein-interaction system. Additionally, the analysis 

of protein levels using Western blots with anti-GFP and anti-mCherry antibodies could 

be used to ensure that both protein fusions are expressed at the same level. 

 

5.3.2 PlsY is part of a complex protein-interaction network 

Bacterial two-hybrid studies revealed the interaction between PlsY, CdsA and MreD 

(Fig. 1.19). The donor photobleaching system used here confirms the interactions 

between PlsY/CdsA and between PlsY/MreD (Fig. 5.9) which further indicates that the 

cytoskeletal protein MreD could be involved in the localisation of PlsY and indirectly of 

CdsA. Furthermore, it has been demonstrated that PlsY interacts with PgsA, another 

component of the phospholipid biosynthesis pathway (Fig. 5.9). These findings along 

with the localisation studies using fluorescent protein fusions point to a protein cluster 

composed of phospholipid synthesis enzymes and MreD. This cluster could improve the 

synthesis of phospholipid head groups through metabolic channelling. No enzymatic 

activity is known for MreD so far suggesting that MreD might act as a glue to keep 

phospholipid synthesis enzymes together. 

Additionally, the interaction of PlsY with other membrane proteins was 

investigated and showed that PlsY potentially interacts with the respiratory enzyme 

CydB. A FRET efficiency of 13 % was found between PlsY and CydB which is lower 

than that of other studied interactions. CydB is one of at least two terminal oxidases in 

S. aureus that facilitate the last step in respiration that transfers an electron to O2 

forming H2O and thereby pumping a proton to the outside of the cell. This step is 

required to drive the ATP synthase to generate ATP (Miller & Gennis, 1983, Kita et al., 

1984, Clements et al., 1999). The synthesis of phosphatidic acid, the substrate for CdsA 

can either be performed by the acetyltransferase module by PlsX/Y/C or by a recycling 

process catalysed by DgkB (Fig. 1.5 and Fig. 1.6) (Miller  et al., 2008). The latter is 

ATP dependent and it might be advantageous for the cell to keep respiration and 

phospholipid synthesis close to each other to improve cellular processes. 

In Section 4.2.2.7, fusions of the secretion protein SecY with GFP showed that SecY 

homogeneously distributes in the membrane unlike phospholipid synthesis enzymes that 

exhibit a heterogeneous punctate distribution. The analysis of PlsY and SecY shows no 

interaction, suggesting that both proteins are likely to be independent of each other. 

Thus, secretion might be a process that is required throughout the cell periphery but not 



 

287 
 

at specific places. Moreover, no interaction between PlsY and MscL is found and it 

would of interest to study the localisation of MscL expressed at native levels.  

This study further corroborates a link between cell-division and lipid synthesis. 

The cytoskeletal protein MreD that is thought to be involved in peptidoglycan synthesis 

in other species interacts with the phospholipid biosynthesis enzyme PlsY. Depletion 

studies of PlsY revealed the delocalisation of the cell-division proteins EzrA and PBP2 

(Garcia-Lara et al., 2015). A similar link is seen in B. subtilis where PlsX has been 

shown to interact with several cell-division proteins including DivIB, DivIC, FtsL and 

FtsA together with cytoskeletal proteins such as MreB, MbI and RodZ (Takada et al., 

2014). PlsX arrives prior to FtsA and FtsZ at the cell-division site and its localisation is 

stabilised by the Z-ring. Additionally it localises to the cell poles (Takada et al., 2014). 

PlsY might have the same properties as PlsX and it would be of great interest to study 

their interaction. Furthermore, a bacterial two-hybrid assay did not identify an 

interaction between PlsY and FtsA in S. aureus in preliminary experiments (Bottomley, 

2011). This could either mean that the interaction has to be tested under different 

conditions or that not PlsY but PlsX or MreD are the key interaction partners that 

facilitate the link between cell-division and phospholipid biosynthesis. 

 

5.3.3 Main findings in this chapter 

• Establishment of a FRET donor photobleaching system to study protein-protein 

interactions in S. aureus. 

• Confirmation of the interaction between PlsY and MreD and between PlsY and 

CdsA 

• PlsY also interacts with the phospholipid synthesis enzyme PgsA and the 

respiratory protein CydB. 

• Daptomycin treatment decreases the protein interaction of membrane proteins 

such as between PlsY and MreD and between PlsY and CydB. 

3.5 Contributions 
The construction and analysis of pWhiteWalkers 1-4 was carried out by me and Lucas 

Walker as part of his Master thesis. The software used for the analysis of 

photobleaching decay rates was provided by Dr. Robert Turner (University of 

Sheffield). All other experiments in this chapter were performed by me. 
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Chapter 6: In vitro studies of MreD 
 

6.1 Introduction 

6.1.1 Reconstitution of bacterial proteins in vitro 

The study of protein functions in vivo can be misleading. The bacterial cell is composed 

of a variety of proteins acting independently and in concert with each other. Removing 

one protein can result in pleiotropic phenotypes that might only be indirectly linked to 

the protein of interest and thus makes it hard to draw conclusions. In order to 

comprehend how proteins function, it is required to gradually remove parts of the 

system to study a protein in a well-defined and controlled environment which can range 

from expression in a heterologous host to proteins bound to microbeads or membrane 

nanodiscs (see Fig. 1 for an overview of in vivo and in vitro study systems). 

 

6.1.2 Subcellular localisation and in vitro study examples 

 

6.1.2.1 DivIVA  

DivIVA localises to the septum and/or cell poles in B. subtilis (Edwards & Errington, 

1997, Marston et al., 1998). However, it was unclear how DivIVA targets membranes 

and finds its way to the cell-division site and poles. Expression of DivIVA in B. subtilis 

mutants exhibiting aberrant cell morphologies showed that DivIVA preferentially binds 

to highly curved membranes (Lenarcic et al., 2009). This observation was confirmed 

expressing DivIVA in constrained E. coli cells. Confining E. coli spheroplasts in 

agarose micro chambers allowed bending of cells and adjustment of their shape to the 

chambers (Renner et al., 2013). Experiments using DivIVA in liposomes also revealed 

that the N-terminus containing an ampiphatic helix is required for membrane binding 

(Lenarcic et al., 2009). DivIVA lost its localisation pattern in lysozyme induced 

spheroplasts where it was found to distribute uniformly around the cell (Ramamurthi & 

Losick, 2009).  

 

6.1.2.2 SpoVM 

SpoVM expressed in the non-sporulating bacterium E. coli showed that it binds to 

convex shaped membranes (Ramamurthi et al., 2009). Interestingly, an E. coli ∆mreB 

strain forming internal vesicles revealed that SpoVM binds to the surface of the vesicles 

which mimic forespores. This observation was also seen expressing SpoVM in a mutant 

of Saccharomyces cerevisiae that produces internal vacuoles. Additionally, the use of 

GUVs and spherical supported lipid bilayers at which a lipid bilayer is coated around 
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silica beads with defined sizes revealed that SpoVM binds to the surface of curved 

membranes dependent on the degree of positive curvature (Ramamurthi et al., 2009, 

Gill et al., 2015). 

 

6.1.2.3 MinCDE 

To understand the underlying mechanism of how Min protein oscillation works required 

in vitro studies. Reconstitution of fluorescently labelled MinCDE on a supported lipid 

bilayer that mimicks the inner membrane of E. coli showed that MinCDE proteins self-

organise and propagate in waves (Loose et al., 2008). This movement lasted for several 

micrometers and only required a lipid membrane and ATP for the activity of MinD. The 

wave lengths were 10 fold longer than the length of E. coli which could be explained by 

missing boundaries in a cell-free environment or higher reaction rates in the tested in 

vitro system in comparison to E. coli (Loose et al., 2011). A similar observation was 

made by reconstitution of MinCDE on the surface of GUV which resulted in circular 

and spiral waves of MinCDE (Martos et al., 2013). The analysis of Min protein 

propagation in a controlled environment such as GUVs also allowed the identification 

of other physiochemical factors influencing Min proteins. It was also demonstrated that 

lipid composition can alter Min protein movement since MinD and MinE preferentially 

bind to anionic lipids (Vecchiarelli et al., 2014).  

 

6.1.2.4 FtsZ-FtsA 

FtsZ is the first protein moving to the cell-division site forming the Z-ring that initiates 

cell septation but it is not a membrane bound protein and relies on FtsA to be tethered to 

the membrane (Bi & Lutkenhaus, 1991). Isolation of FtsA into a nanodisc containing 

lipids proved to be a powerful tool to study its membrane binding properties and 

revealed its affinity for the inner membrane. Interestingly, FtsA was shown to exhibit a 

10 fold higher affinity to native E. coli inner membranes containing membrane proteins 

than to E. coli lipids without proteins which indicates that other cell-division proteins 

could support the membrane targeting of FtsA (Martos et al., 2012b). Cloning the 

membrane targeting sequence of FtsA to the C-terminus of FtsZ (FtsZ-mts) allowed 

studying the activity of FtsZ in vitro. This demonstrated that FtsZ alone can form Z-

rings that move laterally along tubular vesicles. These rings generate a force and can 

constrict but not divide vesicles (Osawa et al., 2008). Later studies using co-

reconstitution of fluorescently tagged FtsZ and FtsA in GUVs showed that vesicle-

division can be achieved suggesting that FtsA plays a critical role in membrane division 

(Osawa & Erickson, 2013). FtsZ and FtsA were found to be homogeneously distributed 

but started to form dense spots and fibres upon GTP addition (Jimenez et al., 2011). 
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Finally, the combination of both FtsZ and the Min system demonstrated impressively 

what can be achieved with a simple in vitro system. The reconstitution of oscillating 

MinCDE proteins in a membrane-clad soft-polymer compartment, mimicking a rod-

shaped cell, together with FtsZ-mts revealed that FtsZ only formed a Z-ring at the 

middle of the compartment (Zieske & Schwille, 2014, Arumugam et al., 2012). 

 

6.1.2.5 Other examples of protein reconstitutions 

Reconstitution experiments aim to understand how proteins work under defined 

conditions and also work towards a bottom-up reconstitution of an artificial cell to 

address general questions how life can be created and maintained. This includes several 

other aspects of cell maintenance and division like chromosome partitioning and 

cytoskeletal features.  

The actin homologue MreB was shown to bind directly to membranes and is 

capable of self-assembly to double protofilaments when reconstituted on lipid bilayers 

(Salje et al., 2011, van den Ent et al., 2014). Due to its crucial role as a shape-

determinant and in peptidoglycan synthesis (Kawai et al., 2009, Kruse et al., 2005, 

White et al., 2010, Vats & Rothfield, 2007) MreB is considered a key component of 

bacterial cells and its implementation with FtsZ and Min proteins into an in vitro system 

would be of great interest. Furthermore, cells require to segregate their genetic material 

in order to propagate. The ParABS system is a key player in a mitosis-like partitioning 

of low-copy plasmids in bacteria. ParB bound to specific parS DNA sites present on the 

plasmid is capable to bind ParA and thereby activates its ATPase activity. ParA in 

return looses its affinity for DNA. This results in ParB pulling the DNA and chasing 

after ParA (Rodionov et al., 1999, Hirano et al., 1998, Erdmann et al., 1999). An in 

vitro system where ParA was reconstituted inside a DNA-carpeted flow cell 

demonstrated the detachment of DNA upon ParB-stimulated ATPase activity (Hwang et 

al., 2013). 

The combination of these described systems that work in isolated in vitro 

systems could be a powerful tool towards a bottom-up reconstitution of an artificial cell. 

 

6.1.7 Aims of this chapter 

• Expression and localisation studies of S. aureus MreD in E. coli 

• Overexpression and purification of S. aureus MreD 

• Reconstitution of purified MreD into liposomes 

• Localisation studies of membrane proteins in cytoplasmic membrane vesicles 

derived from S. aureus membranes 
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6.2 Results 

 

6.1.1 Heterologous expression of mreD-eyfp in E. coli  

MreD was shown to interact with PlsY and CdsA (Garcia-Lara et al., 2015). The 

deletion of mreD causes the delocalisation of PlsY and MreD itself was shown to 

localise in a punctate pattern. As a first step in determining how MreD is able to form a 

heterogeneous punctate distribution it was investigated how S. aureus MreD localises in 

the heterologous expression host E. coli. Since E. coli preferentially uses different 

codons as S. aureus, the genes encoding for mreD and eyfp were codon-optimised to the 

use in E. coli (DNA and amino acid sequence can be found in the Appendix: Fig. 9.6 

and Fig. 9.7) (GeneArt™, Thermo Fisher Scientific, Waltham, United States of 

America). 

An eyfp translational fusion to mreD was chosen as eYFP can be used for super 

resolution microscopy studies (Dr.R.D.Turner, personal communication). The fusion 

was expressed from the IPTG-inducible overexpression plasmid pWALDO. The insert 

in this plasmid is tagged with 8 histidines and can therefore also be used for protein 

purification purposes (Waldo et al., 1999). 

Three constructs were designed to analyse whether a C-terminal or N-terminal 

fusion of MreD with eYFP or a linker sequence in between both proteins is more 

suitable for expression or affects the localisation properties of MreD (see Fig. 6.2 for an 

overview of expression constructs). Additionally, a TEV protease recognition site was 

cloned in between MreD and eYFP to be able to cut off eYFP post purification. 

Expression of all constructs is driven by a T7-RNA polymerase promoter that is 

repressed by LacI and therefore requires an E. coli strain expressing the T7-RNA 

polymerase and medium supplemented with IPTG. The plasmids were expressed in E. 

coli C43 (DE3), a derivative from BL21 that was selected for better overexpression of 

membrane proteins (Miroux & Walker, 1996). Strain C43 harbours a mutation in the 

promoter driving the expression of T7 RNA polymerase, lacUV, resulting indirectly in 

a slower expression of the gene of interest (Wagner et al., 2008). This can have a 

positive effect on the cell since it is not overwhelmed by high expression of potentially 

toxic proteins. 
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Figure 6.1 Schematic overview of in vivo and in vitro protein study systems 

Adapted and extended from (Martos et al., 2012a, Salje et al., 2011). 

 

 

 

Figure 6.2 Schematic overview of mreD-eyfp fusion expression constructs 

The blue bar indicates the IPTG-inducible T7RNA promoter. The red bars and arrows 

are translated in frame and encode for a single protein. 
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6.1.1.1 Construction of an IPTG-inducible MreD-eYFP fusion in E. coli 
First, mreD was amplified by either extending the gene with a TEV protease restriction 

site (primer pair: 5’FW112/3’FW112) or a TEV site including a six amino acid linker 

sequence (SGSGSG) (primer pair: 5’FW112/3’FW113) at the N-terminus of mreD 

using the codon-optimised mreD gene provided by GeneArt™ (Thermo Fisher 

Scientific, Waltham, United States of America) as a template. The PCR products were 

purified and served as templates for further PCR amplification using primer pair 

5’FW112/3’FW114. The gene encoding for eyfp was amplified with primers 

5’FW115/3’FW115 using codon optimised linear DNA fragments provided by 

GeneArt™ (Thermo Fisher Scientific, Waltham, United States of America) as a 

template. All DNA fragments were gel purified and two combinations (mreD-TEVsite + 

eyfp or mreD-TEVsite-linker + eyfp) were cloned into the XhoI/HindIII site of 

pWALDO-gfp-E using Gibson Assembly (see Fig. 6.3 for an overview), followed by 

transformation into E. coli NEB5α. Recombinant plasmids were tested by restriction 

digest with ClaI resulting in 4325, 1753 and 453 bp fragments for pWALDO-mreD-6-

eyfp and 4325, 1753 and 435 bp fragments for pWALDO-mreD-eyfp. Plasmids were 

validated by DNA sequencing (GATC Biotech AG, Konstanz, Germany) and 

electroporated into E. coli C43 (DE3). 

Additionally, for an N-terminal eyfp-mreD fusion, mreD was amplified with 

primers 5’FW34/3’FW34 and eyfp was amplified with primers 5’FW33/3’FW33 using 

their codon optimised gene templates. In this configuration, eyfp was extended by a 

TEV site and an 11 amino acid linker (GSGSGSGSGSG) at the N-terminus. Both DNA 

fragments were gel purified and cloned into the XhoI/HindIII site of pWALDO-gfp-E 

(Waldo et al., 1999) using Gibson Assembly (Fig. 6.3) followed by transformation into 

E. coli NEB5α. Recombinant plasmids were tested by restriction digest with EcoRV and 

PstI resulting in 5092 and 1494 bp fragments (Fig. 6.3B) and were further validated by 

DNA sequencing (GATC Biotech AG, Konstanz, Germany). All recombinant plasmids 

were then electroporated into E. coli C43 (DE3). 

 

6.1.1.2 Localisation of MreD-eYFP and MurJ-GFP in E. coli 
In order to investigate the localisation of MreD-eYFP, MreD-6-eYFP and eYFP-11-

MreD in E. coli, overnight cultures were diluted to an OD600=0.05 in BHI and grown at 

25 °C for 5 h in the presence of kanamycin (50 µg/ml) and 1 mM IPTG. Cells were 

harvested, washed with PBS and analysed by fluorescence microscopy.  

 



 

294 
 

 
 
Figure 6.3 Construction of IPTG-inducible mreD-eyfp fusion constructs in E. coli 
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A, Diagram illustrating the construction of pWALDO-mreD-eyfp/ pWALDO-mreD-6-

eyfp and pWALDO-eyfp-11-mreD. B, pWALDO-mreD-eyfp (Lanes 1-2) and 

pWALDO-mreD-6-eyfp (Lanes 3-4) candidate plasmids and pWALDO-gfp-E (Lane 5) 

were digested with ClaI. WALDO-eyfp-11-mreD (Lanes 6-8) candidate plasmids and 

pWALDO-gfp-E (Lane 9) were digested with EcoRV and PstI. All digest products were 

separated by 1 % (w/v) TAE agarose gel electrophoresis. Bands of 4325, 1753 and 435 

bp, corresponding to pWALDO-mreD-eyfp (Lanes 1-2), respectively, are marked by 

black arrows. Bands of 4325, 1753 and 453 bp, corresponding to pWALDO-mreD-6-

eyfp (Lanes 3-4), respectively, are marked by black arrows. Bands of 4325 and 1753 bp 

correspond to pWALDO-gfp-E (Lane 5). Bands of 5092 bp and 1494 bp, corresponding 

to pWALDO-eyfp-11-mreD (Lanes 6-8), respectively, are marked by black arrows. A 

band of 6011 bp corresponds to pWALDO-gfp-E (Lane 9). 
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As a control strain to analyse the localisation of a membrane protein unrelated to MreD, 

pWALDO-murJ-gfp (gift from Dr.D.Roper, University of Warwick) was electroporated 

into E. coli C43 (DE3) and prepared as described for the MreD-eYFP fusion strains. 

MurJ flips lipid-linked precursors for peptidoglycan synthesis (lipid II) from the inside 

to the outside of the cell (Sham et al., 2014). 

All fusions were expressed in E. coli C43 (DE3) (Fig. 6.4). Both the C-terminal 

as well as the N-terminal fusion of MreD and eYFP are localised at the cell periphery as 

well as the cell poles. However, they do not exhibit a preference for the poles since no 

increased polar fluorescence can be observed. The fluorescence is not equally 

distributed throughout the membrane and appears to form a punctate pattern. In contrast 

to the MreD-eYFP fusion, MurJ-GFP localises preferentially at the cell pole and to a 

lesser extent to the cell periphery. 

Since the MreD-eYFP fusions are likely to be highly expressed, it was tested 

next whether the distribution pattern is maintained at lower expression levels. Thus, 

overnight-cultures were diluted in BHI to an OD600=0.05 and grown at 37 °C for 1 h in 

the presence of kanamycin (50 µg/ml) at 250 rpm. Subsequently, 0.6 mM IPTG was 

added and cultures were grown for another 2 h at 37 °C. Cells were harvested, washed 

with PBS and analysed by fluorescence microscopy (Fig. 6.5AB). Additionally, MreD-

6-eYFP localisation was analysed using stochastic optical reconstruction microscopy 

(Fig. 6.6).  

Low expression of MreD-6-eYFP and eYFP-11-MreD clarifies the protein 

localisation pattern in E. coli. Both fusions localise in a punctate pattern and do not 

exhibit a preference for the cell poles (Fig. 6.5AB). C-terminal or N-terminal tagging 

with eYFP to MreD does not alter its localisation properties. However, it is not known 

whether the tag itself affects the localisation. STORM studies of MreD-6-eYFP in E. 

coli also confirm its non homogeneous distribution (Fig. 6.6). However, due to the 

overexpression of the fusion protein, the localisation pattern appears messier compared 

to deconvolved epifluorescence images and the fusion seems to be localised at the 

whole cell periphery. This might show that deconvolution oversimplifies the 

localisation pattern and that MreD-6-eYFP in E. coli is rather localised in a gradient 

than in clearly separated areas. Nevertheless, the fusion does not localise 

homogeneously. 
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Figure 6.4 Localisation of MreD-eYFP fusions and MurJ-GFP in E. coli 

A, Phase contrast and fluorescence images (convolved and deconvolved) of E. coli C43 

(DE3) + pWALDO-mreD-6-eyfp, pWALDO-eyfp-11-mreD and pWALDO-murJ-gfp 

grown in the presence of 1 mM IPTG for 5 h. Images were acquired using a Delta 

Vision microscope and SoftWoRx 3.5.0 software (Applied Precision). Acquisition of 

fluorescence images were taken using 1 sec exposure in the FITC channel. Scale bars 

represent 3 µm. B, Images of selected cells. Scale bar represents 1 µm.  
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Figure 6.5 Localisation of MreD-eYFP fusions in E. coli at low expression levels 

A, Phase contrast and fluorescence images (convolved and deconvolved) of E. coli C43 

(DE3) + pWALDO-mreD-6-eyfp, pWALDO-eyfp-11-mreD and pWALDO-murJ-gfp 

grown in the presence of 0.4 mM IPTG for 2.5 h. Images were acquired using a Delta 

Vision microscope and SoftWoRx 3.5.0 software (Applied Precision). Acquisition of 

fluorescence images were taken using 1 sec exposure in the FITC channel. Scale bars 

represent 3 µm. B, Z-stack images of selected E. coli + pWALDO-mreD-6-eyfp cells. 

Scale bar represents 1 µm.  
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Figure 6.6 3D-STORM imaging of MreD-6-eYFP in E. coli 

3D-STORM reconstruction images of MreD-eYFP localisation in E. coli C43 (DE3) + 

pWALDO-mreD-6-eyfp. Imaging was performed in GLOX -MEA. The colour scale  

represents the z-axis (nm). 
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Next it was asked as to whether the rod-shape of E. coli is required for the 

heterogeneous localisation pattern of MreD-eYFP. Cells were prepared as shown for the 

previous experiment (Fig. 6.5). Cells were harvested and washed with ice-cold Tris-HCl 

(10 mM, pH 7.5) and the pellet was resuspended to an OD600=0.6 in sucrose buffer (33 

mM Tris-HCl (pH 8.0), 20 % sucrose (w/v)). 80 µl of EDTA (0.1 M) and 400 µl 

lysozyme (1 mg/ml) were added to 1 ml of resuspended cells and the tube was covered 

in foil and incubated at 4 °C on a rotary wheel for 30 min. Cells were then washed with 

and resuspended in ice-cold sucrose buffer. Prepared spheroplasts were placed on non-

coated slides and analysed by fluorescence microscopy. 

MreD-eYFP localises in a heterogeneous fashion in E. coli spheroplasts (Fig. 

6.7). Therefore the rod-shape is not the determinant for MreD positioning in terms of its 

heterogeneous distribution. 

 

6.1.2 Localisation of membrane proteins in cytoplasmic vesicles 

As a next step, the localisation properties of S. aureus membrane proteins were 

investigated in isolated protoplast membranes that are also referred to as cytoplasmic 

membrane vesicles. In B. subtilis and E. coli, cytoplasmic membrane vesicles are 

generated by the enzymatic removal of the cell wall using lysozyme in a hypotonic 

medium which causes the cells to burst. In an alternative gradual approach, the cell wall 

is removed first in a stabilising hypertonic medium followed by the transfer to a 

hypotonic medium (see Fig. 6.8). Cytoplasmic membrane vesicles still contain all the 

native membrane proteins and components. 

Since MreD at its native levels is not abundant enough for visualisation, an 

EzrA-GFP fusion, that was shown to be very bright under the microscope, was used to 

establish the cytoplasmic membrane vesicle protocol. S. aureus is lysozyme resistant 

due to an O-acetyl group on its N-acetylmuramic acid residue sterically hindering the 

access for lysozyme (Bera et al., 2005). Therefore, lysostaphin was used instead of 

lysozyme in the following protocols. A new protocol for the creation of cytoplasmic 

membrane vesicles was designed based on Kim et al. and Alcayaga et al. including 

modifications (Kim et al., 2009, Alcayaga et al., 1992).  
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Figure 6.7 Localisation of MreD-eYFP in E. coli spheroplasts 

A, Phase contrast and fluorescence images (convolved and deconvolved) of E. coli C43 

(DE3) + pWALDO-mreD-6-eyfp spheroplasts. Images were acquired using a Delta 

Vision microscope and SoftWoRx 3.5.0 software (Applied Precision). Acquisition of 

fluorescence images were taken using 1 sec exposure in the FITC channel. Scale bars 

represent 3 µm. B, Selected convolved fluorescence images. Scale bar represents 1 µm.  

 

 
 

 

Figure 6.8 Schematic overview of the preparation of membrane vesicles 
Image is adapted from Konings et al.,1973. 
 

 



 

302 
 

Overnight cultures of SH1000 and SH1000 ezrA-gfp (Steele et al., 2011) were diluted in 

1 l to an OD600=0.05 in a HCl-washed 3 l flask. Cultures were grown to an OD600≈2 at 

37 °C and 200 rpm. Cells were harvested by centrifugation at 6000 x g for 20 min at 4 

°C and subsequently washed with Tris-HCl (50 mM, pH7.5). The pellet was 

resuspended in 40 ml hypertonic resuspension buffer (1 M sucrose, 50 mM Tris-HCl, 

pH 7.5, protease inhibitor cocktail (Sigma-Aldrich, St.Louis, United States)). 

Lysostaphin and DNase were added to a final concentration of 75 µg/ml and 20 µg/ml, 

respectively. The tubes were covered in foil and incubated at 37 °C with mild agitation 

at 40 rpm for 2.5 h. Formation of protoplasts was monitored on a microscope placing a 

sample of protoplasts on a non-coated slide without sealing the coverslip. Cells were put 

on focus before adding a drop of a 10 % SDS (w/v) solution at the edge of the coverslip. 

The disappearance of cells straight after adding SDS indicated the presence of 

protoplasts. Protoplasts were recovered by centrifugation at 5000 x g at 4 °C for 15 min 

and resuspended in 40 ml hypotonic resuspension buffer (50 mM Tris-HCl, pH 7.5, 

protease inhibitor cocktail (Sigma-Aldrich, St.Louis, United States)) supplemented with 

RNase (10 µg/ml) and DNase (10 µg/ml). The resuspension was incubated at RT for 1 h 

at mild agitation covered in foil. Subsequently, unbroken cell debris was removed by 

centrifugation at 2000 x g for 10 min at 4 °C and the supernatant was centrifuged at 25 

000 rpm (38 000 x g; Beckman Ti50.2 rotor) for 30 min at 4 °C. The pellet was 

carefully resuspended in sucrose buffer (300 mM sucrose, 50 mM Tris-HCl, pH 7.5) 

and loaded on top of a sucrose gradient in a SW41 polycarbonate tube. The gradient was 

built up as follows: 3.5 ml 50 % sucrose (w/v), 3.5 ml 30 % sucrose (w/v), 3.5 ml 20 % 

sucrose (w/v) and 1-1.5 ml sample. The gradient was run for 10 h at 4 °C and 36400 

rpm (100 000 x g) and fractions at the interphases to 20 %, 30 %, 50 % and near the 

bottom of the tube were carefully collected. Samples were mixed with a 2 % agarose 

(w/v) solution and placed on a non-coated slide followed by analysis using fluorescence 

microscopy. 

Vesicle formation is a rare event since not many membrane vesicles could be 

observed even though the initial culture volume was very high. Membrane vesicles 

reached sizes of 2-10 µm and were mostly connected to other vesicles and smaller 

undefined potential membrane particles. 

First, vesicles derived from SH1000 expressing ezrA-gfp were analysed (Fig. 

6.9A) using a vesicle-agarose suspension supplemented with FM4-64. Vesicles were 

successfully stained with the membrane dye, FM4-64, as a fluorescent signal could be 

seen in the Cy5 channel. Furthermore, the Ezra-GFP fusion appears to be present in the 
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vesicles and fluoresces. However, using two controls, one with SH1000 derived vesicles 

stained with FM4-64 and the other without the addition of FM4-64, questions the 

observation seen for SH1000 EzrA-GFP vesicles (Fig. 6.9B). Vesicles prepared in 

agarose supplemented with FM4-64 exhibit fluorescence in both the Cy5 and the FITC 

channel which shows that the fluorescence seen for SH1000 EzrA-GFP vesicles is 

unlikely to be due to the EzrA fusion (Fig. 6.9B). Furthermore, using no membrane dye 

still results in fluorescence signals in both channels even though the signal strength is 

weaker. In conclusion, FM4-64 could cross-bleed to the FITC channel and membrane 

vesicles may exhibit auto-fluorescence in both channels. 

 

 

6.1.3 Localisation of membrane proteins in liposomes 

6.1.3.1 Liposome formation by lipid emulsion 
Cytoplasmic membrane vesicles are not suitable to for membrane protein localisation 

studies since the autofluorescence hinders the application of fluorescently tagged 

membrane proteins in the FITC channel.  

The use of liposomes could circumvent this issue if the observed 

autofluorescence of vesicles is due to fluorescent components in the membrane of S. 

aureus. In order to do so, a lipid emulsion protocol adapted from (Osawa et al., 2008) 

was applied using DMPC lipids. This method is based on layering a lipid emulsion on 

top of an aqueous phase followed by centrifugation resulting in the formation of 

vesicles as the lipid emulsion enters the aqueous phase. 

25 µl of a DMPC stock solution (10 mg/ml in 100 % methanol (v/v))(Avanti 

Polar lipids, Alabaster, United States of America) was dried under air-flow in an 

eppendorf tube at RT. The lipid pellet was resuspended in 250 µl mineral oil 

(Affymetrix, Santa Clara, United States of America) followed by 20 x 2 sec sonication 

cycles at maximal amplitude (Equipment). The resuspension was incubated at RT for 5 

h and subsequently 130 µl of the resuspension were layered on top of 50 µl dH20 in an 

eppendorf tube followed by centrifugation at 2000 x g for 3 min. The bottom phase 

containing a mix of vesicles and dH2O was carefully removed without mixing both 

phases and 40 µl of this phase were gently and quickly mixed with 20 µl agarose (2 %, 

(w/v), low gelling agarose) supplemented with FM 4-64 (1 µg/ml) or FM1-43 (1 

µg/ml). 20 µl of this mix were placed on a non-coated slide and analysed by 

fluorescence microscopy. 
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Figure 6.9 Cytoplasmic membrane vesicles of S. aureus 

A, Phase contrast and fluorescence images (convolved and deconvolved) of cytoplasmic 

membrane vesicles derived from S. aureus SH1000 ezrA-gfp and prepared in agarose 

supplemented with FM4-64. Images were acquired using a Delta Vision microscope and 

SoftWoRx 3.5.0 software (Applied Precision). Acquisition of fluorescence images were 

taken using 1 sec exposure in the FITC channel and 1 sec exposure in the Cy5 Channel. 

Scale bars represent 5 µm. B, Cytoplasmic membrane vesicles of S. aureus SH1000 

prepared in agarose with and without the addition of FM4-64. Scale bar represents 5 

µm.  
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Figure 6.10 Liposome generation using the emulsion method 

Images were acquired using a Delta Vision microscope and SoftWoRx 3.5.0 software 

(Applied Precision). Acquisition of fluorescence images were taken using 1 sec 

exposure in the FITC channel, 1 sec in the RFP channel and 1 sec exposure in the Cy5 

channel. Scale bars represent 5 µm. A, Phase contrast and fluorescence images 

(convolved) of liposomes derived from DMPC lipids and prepared in agarose 

supplemented with FM1-43. B, Phase contrast and fluorescence images (convolved) of 

liposomes derived from DMPC lipids and prepared in agarose supplemented with FM4-

64. C, Phase contrast and fluorescence images (convolved) of liposomes derived from 

DMPC lipids and prepared in agarose without membrane dyes.  
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Liposomes could be successfully formed using the lipid emulsion method. Liposomes 

were stained by stabilising the vesicles in agarose supplemented with membrane dyes 

FM1-43 and FM4-64 resulting in bright vesicles in the FITC channel (FM1-43) and Cy5 

(FM4-64) channel (Fig. 6.10AB). Observed vesicle sizes were in the range between a 1 

to 30 µm in diameter. However, fluorescence analyses of unstained vesicles revealed an 

autofluorescence in the FITC and RFP channel but not in the Cy5 channel (Fig. 6.10C) 

which could potentially be an issue for localisation studies with reconstituted proteins 

that are labelled with dyes fluorescent at these wavelengths. 

 

6.1.3.2 Reconstitution of MreD into liposomes 
 

6.1.3.2.1 Overexpression and purification of MreD-6-eYFP 
MreD-6-eYFP purification was performed according to a protocol based on the 

purification of GFP-tagged membrane proteins (Drew et al., 2006). As a control to 

establish the purification protocol, MurJ-GFP was also overexpressed and purified. 

Protein overexpression and purification is described in detail in Section 2.12. 

Briefly, recombinant proteins were overexpressed by growing E. coli C43 (DE3) + 

pWALDO-mreD-6-eyfp or pWALDO-murJ-gfp to exponential phase at 37 °C, followed 

by induction with 1 mM IPTG and shifting the incubation temperature to 25 °C for 4 h. 

Cultures were harvested and broken by a French press. Membranes were purified by 

ultracentrifugation and solubilised using DDM. The proteins were then purified by 

passage over a HiTrap™  affinity column  (GE  Healthcare), that was preloaded with Ni 

Sepharose™  and  charged  with Ni2+. The column was washed with 5 % (w/v) 

imidazole and finally eluted by increasing imidazole concentrations. Eluted 1 ml 

fractions were collected, separated by 15 % (w/v) SDS-PAGE and purified MreD-6-

eYFP and MurJ-GFP were visualised by western blotting using anti-GFP antibodies 

(Rabbit) (Thermo Fisher Scientific, Waltham, United States of America) as primary 

antibodies and anti-Rabbit peroxidase (Goat, horseradish peroxidase conjugate) as 

secondary antibodies (Thermo Fisher Scientific, Waltham, United States of America). 

The western blot was developed by enhanced chemiluminescence using the Pierce™ 

ECL Western Blotting Substrates (Thermo Fisher Scientific, Waltham, United States of 

America). 

Purification of MreD-6-eYFP was unsuccessful since the fusion did not bind 

properly to the HiTrap column and was washed out with low imidazole amounts (see 
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Fig. 6.11A, Lanes 3-4). Separation of the initial membranes used for purification also 

did not show any signal indicating that the amount of MreD-6-eYFP fusions in the 

overexpression might not be sufficient for purification (Fig. 6.11A, Lane 1). The band 

corresponding to MreD-6-eYFP runs between 32 and 46 kDa which is lower than 

expected since the calculated weight of MreD-6-eYFP is 54.6 kDa 

(http://www.sciencegateway.org/tools/proteinmw.htm). 

Purification of MurJ-GFP could be achieved since a strong signal of a protein 

band can be seen of elution fractions (Fig. 6.11B, Lanes 6-8) and MurJ-GFP fusions 

could also be visualised in purified membranes (Fig. 6.11B, Lane 1). 

Overexpression and purification of MreD-6-eYFP with plasmid pWALDO-

mreD-6-eyfp was also attempted by A.Szewczak (Cambridge) but expression yields 

were not sufficient and the fusion could not be purified via a Nickel column (personal 

communication A.Szewczak). Therefore, purified non-fluorescent MreD including a C-

terminal His-tag was used for reconstitution studies (gift from Prof. J. Löwe, University 

of Cambridge). 

 

6.1.3.2.2 FITC-labelling of purified MreD 
In order to visualise MreD, purified MreD proteins were labelled with Fluorescein 

Isothiocyanate (FITC). FITC is a derivative of Fluorescein that reacts with amine 

groups and can be used to label proteins. 2 mg of purified MreD proteins were mixed in 

1 ml labelling buffer (200 mM sodium bicarbonate, 0.04 % n-dodecyl β-d-maltoside 

(DDM) (w/v), pH 9) and 50 µl FITC (10 mg/ml stock solution in DMSO) was added. 

The tube was covered in foil and incubated at RT for 6 h on a rotary wheel. Unbound 

FITC was removed using an equilibrated PD MidiTrap G-25 desalting column 

(equilibration buffer: 20 ml of 20 mM Tris-HCl, 100 mM NaCl, 0.03 % DDM (w/v) pH 

7) (GE Healthcare, Little Chalfont, United Kingdom). The concentration of the desalted 

MreD-FITC solution was determined by Pierce™ BCA Protein Assay Kit (Thermo 

Fisher Scientific, Waltham, United States of America) and stored at -70 °C. 

 

6.1.3.2.3 Reconstitution of FITC-labelled MreD into liposomes 
Liposomes were created as previously described in Section 6.1.3.1. Briefly, DMPCs 

were dried under air-flow and the lipid pellet was resuspended in 250 µl mineral oil 

followed by sonication. The resuspension was incubated at RT for 5 h. Labelled MreD 

was added and the mixture was vigorously vortexed before 130 µl of the resuspension 
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was layered on top of 50 µl dH20 in an Eppendorf tube followed by centrifugation at 

2000 x g for 3 min. The bottom phase was removed and 40 µl was mixed with 20 µl 

agarose (2 % (w/v), low gelling agarose) supplemented with FM 4-64 (1 µg/ml). 20 µl 

of this mix were placed on a non-coated slide and analysed by fluorescence microscopy. 

MreD reconstitution into liposomes was attempted using several combinations to 

explore how the membrane dye or different protein concentrations affect the liposomes. 

First, liposomes were generated using 0.5 µM MreD-FITC without FM4-64 to 

investigate whether the FITC-labelled protein exhibits a cross-bleed to the Cy5 channel. 

As seen in Fig. 6.12A, no fluorescence signal can be observed in the Cy5 channel, but a 

liposome with a fluorescent signal in the FITC channel can be observed. Next, various 

MreD-FITC concentrations ranging from 0.5 to 7 µM protein were employed. Protein 

concentrations higher than 2 µM resulted in a massive fluorescent signal (not shown). 

Using 2 µM MreD-FITC shows that the labelled protein binds to liposomes (Fig. 

6.12B). However, the background signal is very high and no signal can be observed for 

FM4-64 that was used to stain the liposomes. Potentially, the amount of MreD-FITC is 

too abundant and blocks the incorporation of FM4-64. Using 0.5 µM resulted in the best 

results showing liposomes stained with FM4-64 and MreD-FITC (Fig. 6.12D). The 

background signal is still very high and probably indicates that the unbound FITC was 

not removed enough by the desalting column. Interestingly, liposomes appear to be 

deformed. This might indicate a potential effect of MreD on the liposome structure by 

bending the membranes or that the detergent used to keep the purified MreD proteins 

soluble affects the liposomes. The fluorescent signal in the FITC channel is distributed 

homogeneously and no detailed features can be observed. As a control, only FM4-64 

without using MreD-FITC was used to investigate whether FM4-64 causes a fluorescent 

signal in the FITC channel (Fig. 6.12C). Unfortunately, a clear signal could be seen 

even though no MreD-FITC was used. This signal was weaker compared to the MreD-

FITC reconstitution experiments and might be due to the autofluorescence of the 

liposomes (see Fig. 6.10) or due to a fluorescence cross-bleed from FM4-64. 
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Figure 6.11 Purification of MreD-6-eYFP and MurJ-GFP 

Western Blot of various purification steps of MreD-6-eYFP and MurJ-GFP. Western 

blots were performed using a 1:2000 dilution of Anti-GFP (Rabbit) antibodies as a 

primary and 1:10000 Anti-Rabbit (Goat) peroxidise as a secondary antibody. Blots were 

developed by enhanced chemiluminescence. Western Blot of purification fractions of 

MreD-6-eYFP (A) and MurJ-GFP (B). The following fractions were analysed: purified 

membranes (Lane 1), flowthrough of membranes passaged through the HiTrap column 

(Lane 2), Wash fractions (Lanes 3-4) and elution fractions (Lanes 5-7 for MreD-6-eYFP 

and lanes 5-8 for MurJ-GFP). 
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Figure 6.12 MreD-FITC reconstitution into liposomes 
Fluorescence images (convolved) of different concentrations of reconstituted FITC-

labelled MreD into liposomes derived from DMPC in agarose with or without FM4-64. 

Images were acquired using a DeltaVision microscope and SoftWoRx 3.5.0 software 

(Applied Precision). Acquisition of fluorescence images were taken using 0.2 sec 

exposure at 50 % intensity in the FITC channel and 1 sec exposure in the Cy5 channel. 

Scale bars represent 5 µm. A, Fluorescence images (convolved) of liposomes derived 

from DMPC lipids with 0.5 µM FITC-labelled MreD and prepared in agarose. B, 

Fluorescence images (convolved) of liposomes derived from DMPC lipids with 2 µM 

FITC-labelled MreD and prepared in agarose supplemented with FM4-64. C, 

Fluorescence images (convolved) of liposomes derived from DMPC lipids and prepared 

in agarose supplemented with FM4-64. D, Fluorescence images (convolved) of 

liposomes derived from DMPC lipids with 0.5 µM FITC-labelled MreD and prepared in 

agarose supplemented with FM4-64.  
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6.3 Discussion 

 

6.3.1 Punctate patterned distribution of membrane proteins in rod-

shaped bacteria  

MreD-eYFP expressed in E. coli localises in a heterogeneous punctate pattern (Fig. 

6.5). This localisation is dose-dependent since higher expression resulted in a more 

homogeneous distribution at the cell-periphery (Fig. 6.4). Importantly, although MreD 

does not avoid the cell poles, no increased polar fluorescence could be observed unlike 

for other membrane proteins such as MurJ (Fig. 6.4) , the lactose transporter LacY, the 

chemotaxis protein CheR or the phosphotransferase system protein E1 (Romantsov et 

al., 2010, Santos et al., 2014, Govindarajan et al., 2013).  

There are two possibilities as to how MreD localises in a punctate pattern: First, 

the heterogeneous punctate localisation pattern might be an intrinsic property of MreD 

by sensing membrane domains or membrane curvature. E. coli poles are enriched in 

cardiolipin and phosphatidylethanolamine and MreD might avoid these lipids (Kawai et 

al., 2004, Nishibori et al., 2005). Furthermore, the degree of membrane curvature could 

be the critical parameter determining the localisation of MreD. The radius of the E. coli 

cylinder is 0.37 ± 0.05 µm and the radius of E. coli spheroplasts 0.61 ± 0.09 µm 

whereas the S. aureus exhibits also a similar cell size radius of 0.46 ± 0.04 µm (the 

average cell size of 76 cells was measured from exponentially growing cells using 

MreD-eYFP in E. coli and PlsY-GFP in S. aureus as membrane markers). Hence, E. 

coli rods and spheroplast membranes offer similar degrees of membrane curvature 

compared to S. aureus membranes. 

The second explanation for the punctate localisation of S. aureus MreD in E. coli 

could be that the protein is positioned by MreB. MreBCD interact with each other in E. 

coli and form a membrane bound complex (Kruse et al., 2005). MreB localises either in 

a helical pattern throughout the cell or in patches at the cell-periphery (Errington, 2015). 

In either way, if MreB positions MreD, the localisation of MreD could appear as a 

punctate pattern. In B. subtilis, MreD localises similarly to E. coli in a banded pattern 

along with MreB and MreC (Leaver & Errington, 2005). Therefore, a punctate pattern 

of MreD in the rod-shaped bacterium E. coli is not surprising and might facilitate pre-

existing localisation cues. 

Also other membrane proteins in rod-shaped bacteria were found to exhibit a 

punctate localisation pattern. The succinate dehydrogenase Sdh, the ATPase AtpA as 
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well as the phage protein p16.7 localise in discrete patches along the cell periphery of B. 

subtilis and form a pattern reminiscent of MreD-eYFP in E. coli (Johnson et al., 2004). 

Recently, KinC, a histidine kinase involved in sporulation, and FloT were shown to be 

localised in lipid rafts in B. subtilis (Meile et al., 2006, Lopez & Kolter, 2010). These 

rafts also form discrete patches in the membrane. It is not known yet whether these lipid 

rafts are connected to the positioning of other punctate patterned membrane proteins 

such as Sdh, AtpA or p16.7. Another membrane protein localised heterogeneously is the 

FtsZ-associated protein UgtP (Nishibori et al., 2005). UgtP is a division inhibitor that 

stops FtsZ assembly under nutrient rich-conditions and colocalises with FtsZ (Shiomi & 

Margolin, 2007, Weart et al., 2007). 

In conclusion, several mechanisms can be responsible for a punctate patterned 

distribution of membrane proteins in rod-shaped bacteria and specifically for MreD in 

E. coli as shown in this study. These encompass cytoskeletal components such as MreB, 

membrane domains or FtsZ. However, it can not be excluded that MreD self-organises 

based on a specific degree of membrane curvature.  

 

6.3.2 Reconstitution of MreD into liposomes  

The overexpression and purification of MreD-eYFP in E. coli was not successful which 

could be explained in several ways. MreD-eYFP containing a C-terminal His-tag might 

not bind properly to the HiTrap column. MreD is an integral membrane protein and 

likely to be insoluble. Therefore it might be covered in a mix of lipids and detergents 

and the His-tag might not be exposed and thus useless in terms of purification. MreD 

containing a C-terminal His-tag but without eYFP, however, could be purified 

indicating that the eYFP tag might be an issue which could be resolved with the use of 

different detergents, an N-terminal His-tag of MreD-eYFP or the use of other affinity 

tags such as the streptavidin tag. 

Labelling of membrane proteins might also exhibit a problem regarding their 

micro environment. In this study, amine-labelling with FITC was used to visualise 

purified MreD. Since proteins are likely to be covered in lipids or detergents, FITC 

might not reach amine residues of MreD resulting in incomplete labelling. Additionally, 

protein reconstitution experiments revealed a high background fluorescence that is 

either due to labelled MreD not being incorporated into liposomes or due to unbound 

FITC. In the latter case, a desalting column is not enough to remove unbound FITC 

which could be resolved by an additional purification step via gel filtration. 
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Reconstituted MreD appears to be localised homogeneously in liposomes. No 

detailed features such as a punctate localisation pattern could be observed. Potentially, 

too much MreD was used for reconstitution experiments or if MreD is capable of self-

organisation and requires a specific membrane curvature, the liposomes generated in 

this study were probably too large. Vesicles were 5 µm in diameter and thus 

substantially larger than S. aureus or E. coli cells. Another explanation could be that the 

punctate heterogeneous localisation pattern of MreD is based on a different underlying 

mechanism that is not present in liposomes such as membrane domains or other 

proteins.  

 

6.3.3 Conclusion  

MreD-eYFP localises non-homogeneously in a punctate pattern in E. coli. This pattern 

is maintained in spheroplasts and therefore, the rod-shape, cell wall and the outer 

membrane are not required for the localisation pattern. Purification of MreD-eYFP 

failed but MreD without an eYFP tag could be purified. Purified proteins were 

attempted to be reconstituted into liposomes and appear to be localised homogeneously 

in liposomes. However, autofluorescence of liposomes and high background 

fluorescence potentially due to unbound label exhibit major problems with this method. 

 

6.4 Main findings in this chapters 

• MreD with a C-terminal or N-terminal fusion with eYFP localises in a punctate 

pattern in E. coli 

• The punctate pattern of MreD-eYFP is maintained in E. coli spheroplasts 

• MreD labelled with FITC distributes homogeneously in liposomes but more 

experiments are required to draw conclusions of the properties of MreD in 

liposomes 

 

3.5 Contributions 
Purified MreD was provided by the laboratory of Prof. Jan Löwe (Andrzej Szewczak, 

University of Cambridge). I performed all experiments in this chapter. 
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Chapter 7: General Discussion 
 

All life demands the temporal and spatial control of essential biological functions. 

However, cellular organisation in the prokaryote kingdom is poorly understood. 

Bacteria lack many of the known organisers as well as the compartmentalisation of 

eukaryotic cells and have to count on the cell wall and the membrane as anchoring sites 

for fundamental processes. Furthermore, these membrane-associated processes are 

driven by proteins organised in complexes that have to be positioned at certain 

subcellular locations. The discrimination between subcellular cues is vital and much 

research over recent years has been focused on determining how proteins identify where 

to locate, be it the cell poles, division site etc. An important role for sensing membrane 

curvature has begun to be established. Studies have focused on regions of greatest 

membrane curvature but the question remains as to how proteins are organised 

throughout the cell membrane? In addressing fundamental questions that can lead to a 

better understanding of biological systems it is inevitable to apply a reductionist 

approach. The removal and dissection of individual components allows the 

identification of novel mechanisms contributing to the whole system. In this respect, the 

study of membrane protein localisation in the apparently spherical bacterium S. aureus 

seems a logical approach. S. aureus lacks many of the known spatial organisers such as 

MreB and the Min system (Pinho et al., 2013) and does not have highly curved cell 

poles. It therefore represents a simplified model for the study of membrane protein 

organisation. 

 Recently, a novel protein localisation pattern and supramolecular structure was 

found in the membranes of S. aureus (Garcia-Lara et al., 2015). This structure is 

composed of the phospholipid synthesis enzymes PlsY and CdsA being localised in a 

heterogeneous punctate pattern that is stabilised by the cytoskeletal protein MreD. This 

study focused on the identification of how this pattern is maintained and whether other 

membrane proteins exhibit a similar localisation as seen for PlsY and CdsA. 

 

7.1 Pattern maintenance  
Cells lacking MreD exhibit delocalised PlsY. This study also demonstrated that a mreD 

mutant grown at 42 °C shows severe morphological changes along with the 

delocalisation of FtsZ and aberrant placement of the septum (Fig. 3.3 and Fig. 3.4) 

while the majority of cells, when grown at 37 °C, do not exhibit delocalisation effects. 
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MreD might therefore act as a spatial stabiliser required for fast growth when cellular 

processes have to be efficient.  

Previous studies revealed the importance of membrane domains and thus 

specific lipids on the placement of membrane proteins. In particular, cardiolipin and 

phosphatidylethanolamine were shown to be localised at the cell poles or the septum 

and to be required for localisation of many proteins such as the osmosensory transporter 

ProP in E. coli (Romantsov et al., 2007, Mileykovskaya, 2007), or the cholera toxin 

export system in Vibrio cholerae (Camberg et al., 2007). Since membrane proteins 

could have an affinity for certain lipids it would be possible to also observe lipid-

dependent patterns for PlsY. The three major phospholipids in S. aureus are cardiolipin, 

phosphatidyl-glycerolphosphate and lysinylated phosphatidylglycerolphosphate (de 

Mendoza et al., 2003)(Fischer et al., 1978). Surprisingly, PlsY localisation was 

unaffected in strains lacking either CL or LPG (Fig. 4.40 and Fig. 4.42). The enzyme 

catalysing the synthesis of PG, PgsA, is essential in S. aureus (Chaudhuri et al., 2009) 

making localisation studies of PlsY in a mutant lacking PG not feasible. Additionally, 

wall teichoic acids, squalene and peptidoglycan are not required for the punctate pattern 

of PlsY (Fig. 4.44, Fig. 4.38 and Fig. 4.51.). It is therefore possible that the observed 

localisation pattern solely relies on the existence of a membrane. 

 So how can PlsY, CdsA and MreD adopt the observed pattern in a uniformly 

curved membrane (in non-septating cells), in the absence of cytoskeletal components 

and without an impact through the cell-wall or the investigated membrane constituents? 

 A mathematical approach considering the basic features of the staphylococcal 

cell was used to analyse the distribution of PlsY (Garcia-Lara et al., 2015). If integral 

membrane protein complexes inflict a sufficiently large local curvature on the 

membrane, protein complexes can themselves spontaneously form the observed patterns 

(see Fig. 7.1 for a graphical simplified representation of the model). A homogeneous or 

random distribution would be accompanied with high energy costs to counteract the 

intrinsic locally induced membrane curvature imposed by the protein complexes. This 

model is robust in respect to altering parameters since changing single variables of the 

system over a broad range does not change the formation of protein patterns. However, 

the intrinsic properties of the protein complexes play a crucial role in their own 

localisation. Changing the degree of membrane bending leads to the decay of the 

localisation pattern. Therefore the composition of the protein complex is pivotal, which 

is where MreD and other proteins come into play. 
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Figure 7.1 A mathematical explanation for the punctate patterned distribution of membrane proteins in S. aureus 

A, The bacterial membrane is a lipid-based surface, under cytoplasm-induced turgor pressure and tethered to the cell wall, which contains protein 

complexes whose distribution is a 3D phenomenon that can be defined by a mathematical function. B, The latter depends on multiple independent 

variables that can be grouped into dimensionless variables (P, K, M, and W). This enables one to solve the differential equations corresponding to 

the various components and overall free energy of the system. The solutions to the equation are two functions λ + and λ −, representing the growth 

(λ > 0; pattern formation of protein complexes) or decay (λ < 0 and λ = 0; random distribution of protein complexes) in the membrane. C, A linear 

analysis reveals W as the key variable determining the distribution of protein complexes. Hence, the presence of a protein complex in the membrane 

induces a membrane deformation that results in localised membrane curvature (Hp) and will entail a bending cost. If the curvature is larger than a 

critical threshold (Hpc), it will result in a system that will enable the growth of patterns. If Hp < Hpc , the resulting system will lead to the decay of 

patterns. A more detailed explanation and the respective calculations can be found in Garcia-Lara et al., 2015. 
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7.2 A metabolic perspective 
This study revealed that a number of proteins exhibit a heterogeneous distribution 

pattern. Other proteins involved in phospholipid synthesis such as PgsA, MprF, PlsC 

and the cardiolipin synthase Cls2 exhibit a similar localisation pattern to PlsY and 

CdsA. Also proteins from non-related metabolic processes were found not to be 

homogeneously distributed but to be localised in certain spots throughout the cell-

periphery. These proteins include the respiratory protein CydB and the lipid raft marker 

FloT. Additionally, PlsY was shown to interact with PgsA and CdsA using a novel 

FRET-based protein-interaction system giving further evidence for a phospholipid 

synthesis protein complex. Importantly, PlsY does not interact with other membrane 

proteins such as the homogeneously distributed SecY and shows less interaction with 

CydB. These interactions not only take place at the septum, where many metabolic 

processes (such as the majority of peptidoglycan synthesis) are localised, but also at the 

cell-periphery (Fig. 5.11) (Monteiro et al., 2015). In summary, this shows that the 

membrane of S. aureus is highly organised and not a random fluid cell compartment 

that only exhibits organisation at the septum. 

 These observations are in agreement with the ‘compartmentalised fluid’ or 

‘partitioned’ model of biological membranes (Engelman, 2005, Kusumi et al., 2005, 

Marguet et al., 2006) that replaced the out-of-date traditional fluid mosaic model 

(Singer & Nicolson, 1972). According to the new membrane paradigm, a random 

membrane protein distribution must be regarded as the exception rather than the rule. 

But why do these protein patterns and thus the intrinsic properties of membrane proteins 

evolve? This is important since it shows that there may exist an underlying 

organisational pattern that conducts proteins of the same metabolic processes to be 

where they are supposed to be. Thus, the bacterial cell reduces energy costs by avoiding 

the active transport of metabolic intermediates to the next enzyme or avoiding time-loss 

and inefficiency due to the transport via diffusion over a long range. Metabolic 

channelling through the formation of protein complexes anchored to the membrane 

through the bending imposed by the complexes themselves could be a common 

mechanism applied in all organisms that does not require prior curvature of membranes.  

 

7.3 A link between phospholipid synthesis and cell-division? 
It is currently unknown as to how S. aureus divides in three planes which requires a 

system to create cell polarity in the absence of known polarity determinants such as the 

Min system (Pinho et al., 2013). Moreover, a divIVA null mutant shows no apparent 
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phenotype (Pinho & Errington, 2004). Another polarity determinant, TipN, identifies 

the new cell pole, but is only found in C. crescentus (Lam et al., 2006). It is therefore 

likely that the future cell-division sites are marked through an epigenetic inheritance 

system in S. aureus. An AFM analysis demonstrated that cells exhibit an altered 

peptidoglycan architecture at the newly formed septum with a ‘piecrust’ ring, remnants 

of which are inherited over generations and might facilitate a cue used to divide in 

orthogonal planes (Turner et al., 2010). However, it is not known whether this structure 

is recognised by the membrane proteins involved in the placement of the Z-ring. 

 Some of the findings in my study point towards the involvement of the observed 

localisation patterns in the placement of the Z-ring. Cells depleted in PlsY exhibit 

incorrectly placed Z-rings and a severe growth defect but it seems unlikely that PlsY is 

a spatial organiser (Garcia-Lara et al., 2015). Additionally, cells lacking MreD have a 

similar phenotype compared to PlsY depleted cells (Garcia-Lara et al., 2015). Bacterial-

two-hybrid analyses also identified the interaction between PlsY, PBP4 and putative 

wall teichoic acid ligases SA1195 and SA0908 (Kent, 2013). 

 A link with FtsZ is present for PlsX in B. subtilis which exhibits a punctate 

pattern reminiscent of PlsY and interacts with the FtsZ-anchoring protein FtsA (Takada 

et al., 2014). PlsX localises at the future cell-division site prior to and independent of 

FtsZ. Deletion of plsX also results in a severe growth defect along with misplaced septa. 

 

7.4 Future work 
Future studies will work towards a better understanding of the supramolecular structure 

described here, in a biological context and to elucidate their physical properties. This 

can be done on several levels. Studies of membrane proteins in S. aureus are crucial for 

a basic understanding that can be transferred and tested in other bacterial species and 

their properties can be examined in cell-free systems such as liposomes. 

 

7.4.1 In vivo and Ex vivo 
Epifluorescence microscopy allowed an initial analysis of the supramolecular 

organisation of membrane proteins but ultimately, super resolution techniques such as 

STORM/PALM are required to get further insights of the nature of the investigated 

membrane proteins. Preliminary attempts to achieve high-resolution images of PlsY-

eYFP at native levels in S. aureus were unsuccessful (not shown) and may require more 

suitable fluorescent fusions. These could also be used for single molecule tracking to 
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investigate whether the protein complexes are mobile and how they behave in respect to 

other potentially non-colocalised proteins such as MscL and CydB. 

 Furthermore, the investigation of the localisation of a range of membrane 

proteins at native levels combined with quantitative image analysis would allow 

mapping of the membrane of S. aureus. This analysis could be transferred to the 

ellipsoidic shaped Enterococcus faecalis or Streptococcus pneumoniae to investigate 

whether altered membrane curvature features found in these bacteria are enough to 

fundamentally effect the localisation of membrane proteins. Alternatively, membrane 

proteins taken from S. aureus could be expressed in ellipsoidic and rod-shaped bacteria 

as shown for MreD in this study (Section 6.1.1.2) and compared to their native 

homologues. This would direct future work as to how membrane protein properties, 

independent of their metabolic function, evolved dependent on cell shape. In this 

respect, it is crucial to determine whether the monomeric version of eYFP in a MreD-

meYFP fusion expressed in E. coli still localises in a punctate pattern.  

 Additionally, a role for protein complexes might lie in a connection to cell-

division which could be further analysed by protein-interactions studies using co-

immunoprecipitation of PlsY-GFP with anti-GFP antibodies. BACTH studies with PlsX 

and cell-division components could show whether PlsX is the linking factor. The 

heterogeneous distribution of PlsY was found to be dependent on the ability of FtsZ to 

polymerise. It would be interesting to extend this observation with the FRET assay to 

analyse whether protein-interactions between PlsY and CdsA or MreD require the 

punctate patterned distribution of PlsY, by combination of PC190723 treated cells with 

FRET. 

 

7.4.2 In vitro 
Ultimately the aim is to analyse purified proteins in an in vitro system to have a ‘filter’ 

free view on the properties of membrane proteins. It has been shown before that 

proteins reconstituted into liposomes can self-assemble and form patterns as seen for 

FtsA, ZipA and FtsZ (Osawa et al., 2008, Osawa & Erickson, 2013, Martos et al., 

2012a). In this study, a preliminary attempt was undertaken using MreD. Future work 

should be directed to the purification of a range of membrane proteins followed by their 

reconstitution using a different liposome generation method that yields more vesicles 

than the one employed in my work. These could be prepared using the hydration 

method followed by the use of a lipid extruder (https://avantilipids.com/tech-

support/liposome-preparation). Moreover, various lipid compositions could shed light 
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on the influence of lipids in the observed patterns. These techniques could also be used 

to study membrane protein localisation in non-curved membranes such as supported 

lipid bilayers. 

 The protruding nature of membrane proteins in membranes could be facilitated 

using atomic force microscopy (AFM). This tool could show whether PlsY and Co. are 

forming protein complexes on a molecular level. Using the vesicle purification protocol 

described in Section 6.1.2 coupled to fluorescence microscopy and AFM would allow to 

identify the position of the PlsY-GFP fusion and to study their supramolecular 

architecture in native S. aureus membranes. 

 

7.5 Conclusion 
My study highlights a simple mechanism that potentially controls physiological 

processes within a complex system. While bacteria were once thought of as being 

simple life forms, the last decade have provided unexpected insights, drawing the 

picture of an intricate cell composed of simple mechanisms. It is these ‘hidden’ 

mechanisms that constitute the framework for the development of cellular life forms. 

The discovery of a supramolecular organisation of membrane proteins in S. aureus 

could be a common feature and apply across all biology. 

 My work illustrates a glimpse into future avenues for research. These will be 

technically challenging but their outcome will help to unravel the fundamentals of life. 

  



 

321 
 

Chapter 8: References 
 
(1984) Classics in infectious diseases. "On abscesses". Alexander Ogston (1844-1929). 

Reviews of infectious diseases 6: 122-128. 
Abeyrathne, P. D., C. Daniels, K. K. Poon, M. J. Matewish & J. S. Lam, (2005) 

Functional characterization of WaaL, a ligase associated with linking O-antigen 
polysaccharide to the core of Pseudomonas aeruginosa lipopolysaccharide. 
Journal of bacteriology 187: 3002-3012. 

Abraham, B. G., V. Santala, N. V. Tkachenko & M. Karp, (2014) Fluorescent protein-
based FRET sensor for intracellular monitoring of redox status in bacteria at 
single cell level. Analytical and bioanalytical chemistry 406: 7195-7204. 

Adams, D. W. & J. Errington, (2009) Bacterial cell division: assembly, maintenance 
and disassembly of the Z ring. Nature reviews. Microbiology 7: 642-653. 

Adams, D. W., L. J. Wu & J. Errington, (2015) Nucleoid occlusion protein Noc recruits 
DNA to the bacterial cell membrane. The EMBO journal 34: 491-501. 

Aimon, S., A. Callan-Jones, A. Berthaud, M. Pinot, G. E. Toombes & P. Bassereau, 
(2014) Membrane shape modulates transmembrane protein distribution. 
Developmental cell 28: 212-218. 

Alcayaga, C., R. Venegas, A. Carrasco & D. Wolff, (1992) Ion channels from the 
Bacillus subtilis plasma membrane incorporated into planar lipid bilayers. FEBS 
letters 311: 246-250. 

Alexeeva, S., T. W. Gadella, Jr., J. Verheul, G. S. Verhoeven & T. den Blaauwen, 
(2010) Direct interactions of early and late assembling division proteins in 
Escherichia coli cells resolved by FRET. Molecular microbiology 77: 384-398. 

Alhamadsheh, M. M., F. Musayev, A. A. Komissarov, S. Sachdeva, H. T. Wright, N. 
Scarsdale, G. Florova & K. A. Reynolds, (2007) Alkyl-CoA disulfides as 
inhibitors and mechanistic probes for FabH enzymes. Chemistry & biology 14: 
513-524. 

Ames, G. F., (1968) Lipids of Salmonella typhimurium and Escherichia coli: structure 
and metabolism. Journal of bacteriology 95: 833-843. 

Anderson, D. E., F. J. Gueiros-Filho & H. P. Erickson, (2004) Assembly dynamics of 
FtsZ rings in Bacillus subtilis and Escherichia coli and effects of FtsZ-regulating 
proteins. Journal of bacteriology 186: 5775-5781. 

Andra, J., T. Goldmann, C. M. Ernst, A. Peschel & T. Gutsmann, (2011) Multiple 
peptide resistance factor (MprF)-mediated Resistance of Staphylococcus aureus 
against antimicrobial peptides coincides with a modulated peptide interaction 
with artificial membranes comprising lysyl-phosphatidylglycerol. The Journal of 
biological chemistry 286: 18692-18700. 

Andre, G., M. Deghorain, P. A. Bron, S. van, II, M. Kleerebezem, P. Hols & Y. F. 
Dufrene, (2011) Fluorescence and atomic force microscopy imaging of wall 
teichoic acids in Lactobacillus plantarum. ACS chemical biology 6: 366-376. 

Arumugam, S., G. Chwastek, E. Fischer-Friedrich, C. Ehrig, I. Monch & P. Schwille, 
(2012) Surface topology engineering of membranes for the mechanical 
investigation of the tubulin homologue FtsZ. Angew Chem Int Ed Engl 51: 
11858-11862. 

Atilano, M. L., P. M. Pereira, J. Yates, P. Reed, H. Veiga, M. G. Pinho & S. R. Filipe, 
(2010) Teichoic acids are temporal and spatial regulators of peptidoglycan cross-
linking in Staphylococcus aureus. Proceedings of the National Academy of 
Sciences of the United States of America 107: 18991-18996. 

Ausmees, N., J. R. Kuhn & C. Jacobs-Wagner, (2003) The bacterial cytoskeleton: an 
intermediate filament-like function in cell shape. Cell 115: 705-713. 



 

322 
 

Baba, T., T. Bae, O. Schneewind, F. Takeuchi & K. Hiramatsu, (2008) Genome 
sequence of Staphylococcus aureus strain Newman and comparative analysis of 
staphylococcal genomes: polymorphism and evolution of two major 
pathogenicity islands. Journal of bacteriology 190: 300-310. 

Bach, J. N., N. Albrecht & M. Bramkamp, (2014) Imaging DivIVA dynamics using 
photo-convertible and activatable fluorophores in Bacillus subtilis. Frontiers in 
microbiology 5: 59. 

Bach, J. N. & M. Bramkamp, (2013) Flotillins functionally organize the bacterial 
membrane. Molecular microbiology 88: 1205-1217. 

Bagchi, S., H. Tomenius, L. M. Belova & N. Ausmees, (2008) Intermediate filament-
like proteins in bacteria and a cytoskeletal function in Streptomyces. Molecular 
microbiology 70: 1037-1050. 

Bailey, M. W., P. Bisicchia, B. T. Warren, D. J. Sherratt & J. Mannik, (2014) Evidence 
for divisome localization mechanisms independent of the Min system and SlmA 
in Escherichia coli. PLoS genetics 10: e1004504. 

Bakshi, S., B. P. Bratton & J. C. Weisshaar, (2011) Subdiffraction-limit study of Kaede 
diffusion and spatial distribution in live Escherichia coli. Biophysical journal 
101: 2535-2544. 

Barak, I., K. Muchova, A. J. Wilkinson, P. J. O'Toole & N. Pavlendova, (2008) Lipid 
spirals in Bacillus subtilis and their role in cell division. Molecular microbiology 
68: 1315-1327. 

Baumgart, T., S. T. Hess & W. W. Webb, (2003) Imaging coexisting fluid domains in 
biomembrane models coupling curvature and line tension. Nature 425: 821-824. 

Bayer, A. S., R. Prasad, J. Chandra, A. Koul, M. Smriti, A. Varma, R. A. Skurray, N. 
Firth, M. H. Brown, S. P. Koo & M. R. Yeaman, (2000) In vitro resistance of 
Staphylococcus aureus to thrombin-induced platelet microbicidal protein is 
associated with alterations in cytoplasmic membrane fluidity. Infection and 
immunity 68: 3548-3553. 

Beall, B. & J. Lutkenhaus, (1991) FtsZ in Bacillus subtilis is required for vegetative 
septation and for asymmetric septation during sporulation. Genes & 
development 5: 447-455. 

Begg, K. J., S. J. Dewar & W. D. Donachie, (1995) A new Escherichia coli cell division 
gene, ftsK. Journal of bacteriology 177: 6211-6222. 

Begg, K. J. & W. D. Donachie, (1998) Division planes alternate in spherical cells of 
Escherichia coli. Journal of bacteriology 180: 2564-2567. 

Beilharz, K., L. Novakova, D. Fadda, P. Branny, O. Massidda & J. W. Veening, (2012) 
Control of cell division in Streptococcus pneumoniae by the conserved Ser/Thr 
protein kinase StkP. Proceedings of the National Academy of Sciences of the 
United States of America 109: E905-913. 

Bell, R. M., (1975) Mutants of Escherichia coli defective in membrane phospholipid 
synthesis. Properties of wild type and Km defective sn-glycerol-3-phosphate 
acyltransferase activities. The Journal of biological chemistry 250: 7147-7152. 

Benson, T. E., D. B. Prince, V. T. Mutchler, K. A. Curry, A. M. Ho, R. W. Sarver, J. C. 
Hagadorn, G. H. Choi & R. L. Garlick, (2002) X-ray crystal structure of 
Staphylococcus aureus FemA. Structure 10: 1107-1115. 

Benson, T. E., C. T. Walsh & J. M. Hogle, (1996) The structure of the substrate-free 
form of MurB, an essential enzyme for the synthesis of bacterial cell walls. 
Structure 4: 47-54. 

Bera, A., R. Biswas, S. Herbert, E. Kulauzovic, C. Weidenmaier, A. Peschel & F. Gotz, 
(2007) Influence of wall teichoic acid on lysozyme resistance in Staphylococcus 
aureus. Journal of bacteriology 189: 280-283. 



 

323 
 

Bera, A., S. Herbert, A. Jakob, W. Vollmer & F. Gotz, (2005) Why are pathogenic 
staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase 
OatA is the major determinant for lysozyme resistance of Staphylococcus 
aureus. Molecular microbiology 55: 778-787. 

Berg, K. H., G. A. Stamsas, D. Straume & L. S. Havarstein, (2013) Effects of low 
PBP2b levels on cell morphology and peptidoglycan composition in 
Streptococcus pneumoniae R6. Journal of bacteriology 195: 4342-4354. 

Bernhardt, T. G. & P. A. de Boer, (2005) SlmA, a nucleoid-associated, FtsZ binding 
protein required for blocking septal ring assembly over Chromosomes in E. coli. 
Molecular cell 18: 555-564. 

Bertsche, U., T. Kast, B. Wolf, C. Fraipont, M. E. Aarsman, K. Kannenberg, M. von 
Rechenberg, M. Nguyen-Disteche, T. den Blaauwen, J. V. Holtje & W. Vollmer, 
(2006) Interaction between two murein (peptidoglycan) synthases, PBP3 and 
PBP1B, in Escherichia coli. Molecular microbiology 61: 675-690. 

Betzig, E., G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, 
M. W. Davidson, J. Lippincott-Schwartz & H. F. Hess, (2006) Imaging 
intracellular fluorescent proteins at nanometer resolution. Science 313: 1642-
1645. 

Bharat, T. A., G. N. Murshudov, C. Sachse & J. Lowe, (2015) Structures of actin-like 
ParM filaments show architecture of plasmid-segregating spindles. Nature 523: 
106-110. 

Bhavsar, A. P., R. Truant & E. D. Brown, (2005) The TagB protein in Bacillus subtilis 
168 is an intracellular peripheral membrane protein that can incorporate glycerol 
phosphate onto a membrane-bound acceptor in vitro. The Journal of biological 
chemistry 280: 36691-36700. 

Bi, E. F. & J. Lutkenhaus, (1991) FtsZ ring structure associated with division in 
Escherichia coli. Nature 354: 161-164. 

Bigot, S., O. A. Saleh, C. Lesterlin, C. Pages, M. El Karoui, C. Dennis, M. Grigoriev, J. 
F. Allemand, F. X. Barre & F. Cornet, (2005) KOPS: DNA motifs that control 
E. coli chromosome segregation by orienting the FtsK translocase. The EMBO 
journal 24: 3770-3780. 

Boniface, A., A. Bouhss, D. Mengin-Lecreulx & D. Blanot, (2006) The MurE 
synthetase from Thermotoga maritima is endowed with an unusual D-lysine 
adding activity. The Journal of biological chemistry 281: 15680-15686. 

Bork, P., C. Sander & A. Valencia, (1992) An ATPase domain common to prokaryotic 
cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. 
Proceedings of the National Academy of Sciences of the United States of 
America 89: 7290-7294. 

Bos, M. P., V. Robert & J. Tommassen, (2007) Biogenesis of the gram-negative 
bacterial outer membrane. Annual review of microbiology 61: 191-214. 

Bottomley, A. L., A. F. Kabli, A. F. Hurd, R. D. Turner, J. Garcia-Lara & S. J. Foster, 
(2014) Staphylococcus aureus DivIB is a peptidoglycan-binding protein that is 
required for a morphological checkpoint in cell division. Molecular 
microbiology. 

Bouhss, A., D. Mengin-Lecreulx, D. Le Beller & J. Van Heijenoort, (1999) Topological 
analysis of the MraY protein catalysing the first membrane step of 
peptidoglycan synthesis. Molecular microbiology 34: 576-585. 

Boutte, C. C., J. T. Henry & S. Crosson, (2012) ppGpp and polyphosphate modulate 
cell cycle progression in Caulobacter crescentus. Journal of bacteriology 194: 
28-35. 

Bramkamp, M., R. Emmins, L. Weston, C. Donovan, R. A. Daniel & J. Errington, 
(2008) A novel component of the division-site selection system of Bacillus 



 

324 
 

subtilis and a new mode of action for the division inhibitor MinCD. Molecular 
microbiology 70: 1556-1569. 

Bramkamp, M. & D. Lopez, (2015) Exploring the existence of lipid rafts in bacteria. 
Microbiology and molecular biology reviews : MMBR 79: 81-100. 

Bramley, H. F. & H. L. Kornberg, (1987) Sequence homologies between proteins of 
bacterial phosphoenolpyruvate-dependent sugar phosphotransferase systems: 
identification of possible phosphate-carrying histidine residues. Proceedings of 
the National Academy of Sciences of the United States of America 84: 4777-
4780. 

Brandon, L. D., N. Goehring, A. Janakiraman, A. W. Yan, T. Wu, J. Beckwith & M. B. 
Goldberg, (2003) IcsA, a polarly localized autotransporter with an atypical 
signal peptide, uses the Sec apparatus for secretion, although the Sec apparatus 
is circumferentially distributed. Molecular microbiology 50: 45-60. 

Braun, T., A. Orlova, K. Valegard, A. C. Lindas, G. F. Schroder & E. H. Egelman, 
(2015) Archaeal actin from a hyperthermophile forms a single-stranded filament. 
Proceedings of the National Academy of Sciences of the United States of 
America 112: 9340-9345. 

Britton, R. A., D. C. Lin & A. D. Grossman, (1998) Characterization of a prokaryotic 
SMC protein involved in chromosome partitioning. Genes & development 12: 
1254-1259. 

Bron, P. A., S. Tomita, S. van, II, D. M. Remus, M. Meijerink, M. Wels, S. Okada, J. 
M. Wells & M. Kleerebezem, (2012) Lactobacillus plantarum possesses the 
capability for wall teichoic acid backbone alditol switching. Microbial cell 
factories 11: 123. 

Broussard, J. A., B. Rappaz, D. J. Webb & C. M. Brown, (2013) Fluorescence 
resonance energy transfer microscopy as demonstrated by measuring the 
activation of the serine/threonine kinase Akt. Nature protocols 8: 265-281. 

Brown, E. D., E. I. Vivas, C. T. Walsh & R. Kolter, (1995) MurA (MurZ), the enzyme 
that catalyzes the first committed step in peptidoglycan biosynthesis, is essential 
in Escherichia coli. Journal of bacteriology 177: 4194-4197. 

Brown, S., J. P. Santa Maria, Jr. & S. Walker, (2013) Wall teichoic acids of gram-
positive bacteria. Annual review of microbiology 67: 313-336. 

Brumback, A. C., J. L. Lieber, J. K. Angleson & W. J. Betz, (2004) Using FM1-43 to 
study neuropeptide granule dynamics and exocytosis. Methods 33: 287-294. 

Brzoska, A. J. & N. Firth, (2013) Two-plasmid vector system for independently 
controlled expression of green and red fluorescent fusion proteins in 
Staphylococcus aureus. Applied and environmental microbiology 79: 3133-
3136. 

Buddelmeijer, N. & J. Beckwith, (2004) A complex of the Escherichia coli cell division 
proteins FtsL, FtsB and FtsQ forms independently of its localization to the septal 
region. Molecular microbiology 52: 1315-1327. 

Butland, G., J. M. Peregrin-Alvarez, J. Li, W. Yang, X. Yang, V. Canadien, A. 
Starostine, D. Richards, B. Beattie, N. Krogan, M. Davey, J. Parkinson, J. 
Greenblatt & A. Emili, (2005) Interaction network containing conserved and 
essential protein complexes in Escherichia coli. Nature 433: 531-537. 

Cabeen, M. T., H. Herrmann & C. Jacobs-Wagner, (2011) The domain organization of 
the bacterial intermediate filament-like protein crescentin is important for 
assembly and function. Cytoskeleton (Hoboken) 68: 205-219. 

Camargo, I. L., H. M. Neoh, L. Cui & K. Hiramatsu, (2008) Serial daptomycin selection 
generates daptomycin-nonsusceptible Staphylococcus aureus strains with a 
heterogeneous vancomycin-intermediate phenotype. Antimicrobial agents and 
chemotherapy 52: 4289-4299. 



 

325 
 

Camberg, J. L., T. L. Johnson, M. Patrick, J. Abendroth, W. G. Hol & M. Sandkvist, 
(2007) Synergistic stimulation of EpsE ATP hydrolysis by EpsL and acidic 
phospholipids. The EMBO journal 26: 19-27. 

Campelo, F., H. T. McMahon & M. M. Kozlov, (2008) The hydrophobic insertion 
mechanism of membrane curvature generation by proteins. Biophysical journal 
95: 2325-2339. 

Campo, N., H. Tjalsma, G. Buist, D. Stepniak, M. Meijer, M. Veenhuis, M. 
Westermann, J. P. Muller, S. Bron, J. Kok, O. P. Kuipers & J. D. Jongbloed, 
(2004) Subcellular sites for bacterial protein export. Molecular microbiology 53: 
1583-1599. 

Canton, I. & G. Battaglia, (2012) Endocytosis at the nanoscale. Chemical Society 
reviews 41: 2718-2739. 

Carillo, M. A., M. Bennet & D. Faivre, (2013) Interaction of proteins associated with 
the magnetosome assembly in magnetotactic bacteria as revealed by two-hybrid 
two-photon excitation fluorescence lifetime imaging microscopy Forster 
resonance energy transfer. The journal of physical chemistry. B 117: 14642-
14648. 

Cartron, M. L., S. R. England, A. I. Chiriac, M. Josten, R. Turner, Y. Rauter, A. Hurd, 
H. G. Sahl, S. Jones & S. J. Foster, (2014) Bactericidal activity of the human 
skin fatty acid cis-6-hexadecanoic acid on Staphylococcus aureus. Antimicrobial 
agents and chemotherapy 58: 3599-3609. 

Cayley, S., B. A. Lewis, H. J. Guttman & M. T. Record, Jr., (1991) Characterization of 
the cytoplasm of Escherichia coli K-12 as a function of external osmolarity. 
Implications for protein-DNA interactions in vivo. Journal of molecular biology 
222: 281-300. 

Chamberlain, L. H., R. D. Burgoyne & G. W. Gould, (2001) SNARE proteins are 
highly enriched in lipid rafts in PC12 cells: implications for the spatial control of 
exocytosis. Proceedings of the National Academy of Sciences of the United 
States of America 98: 5619-5624. 

Charbon, G., M. T. Cabeen & C. Jacobs-Wagner, (2009) Bacterial intermediate 
filaments: in vivo assembly, organization, and dynamics of crescentin. Genes & 
development 23: 1131-1144. 

Chaudhuri, R. R., A. G. Allen, P. J. Owen, G. Shalom, K. Stone, M. Harrison, T. A. 
Burgis, M. Lockyer, J. Garcia-Lara, S. J. Foster, S. J. Pleasance, S. E. Peters, D. 
J. Maskell & I. G. Charles, (2009) Comprehensive identification of essential 
Staphylococcus aureus genes using Transposon-Mediated Differential 
Hybridisation (TMDH). BMC genomics 10: 291. 

Chen, Y. & H. P. Erickson, (2008) In vitro assembly studies of FtsZ/tubulin-like 
proteins (TubZ) from Bacillus plasmids: evidence for a capping mechanism. The 
Journal of biological chemistry 283: 8102-8109. 

Chernomordik, L. V. & M. M. Kozlov, (2003) Protein-lipid interplay in fusion and 
fission of biological membranes. Annual review of biochemistry 72: 175-207. 

Chien, C. T., P. L. Bartel, R. Sternglanz & S. Fields, (1991) The two-hybrid system: a 
method to identify and clone genes for proteins that interact with a protein of 
interest. Proceedings of the National Academy of Sciences of the United States 
of America 88: 9578-9582. 

Cho, H., H. R. McManus, S. L. Dove & T. G. Bernhardt, (2011) Nucleoid occlusion 
factor SlmA is a DNA-activated FtsZ polymerization antagonist. Proceedings of 
the National Academy of Sciences of the United States of America 108: 3773-
3778. 



 

326 
 

Choi-Rhee, E. & J. E. Cronan, (2003) The biotin carboxylase-biotin carboxyl carrier 
protein complex of Escherichia coli acetyl-CoA carboxylase. The Journal of 
biological chemistry 278: 30806-30812. 

Choi, K. H., R. J. Heath & C. O. Rock, (2000) beta-ketoacyl-acyl carrier protein 
synthase III (FabH) is a determining factor in branched-chain fatty acid 
biosynthesis. Journal of bacteriology 182: 365-370. 

Christensen, H., N. J. Garton, R. W. Horobin, D. E. Minnikin & M. R. Barer, (1999) 
Lipid domains of mycobacteria studied with fluorescent molecular probes. 
Molecular microbiology 31: 1561-1572. 

Claessen, D., R. Emmins, L. W. Hamoen, R. A. Daniel, J. Errington & D. H. Edwards, 
(2008) Control of the cell elongation-division cycle by shuttling of PBP1 protein 
in Bacillus subtilis. Molecular microbiology 68: 1029-1046. 

Clements, M. O., S. P. Watson, R. K. Poole & S. J. Foster, (1999) CtaA of 
Staphylococcus aureus is required for starvation survival, recovery, and 
cytochrome biosynthesis. Journal of bacteriology 181: 501-507. 

Colavin, A., J. Hsin & K. C. Huang, (2014) Effects of polymerization and nucleotide 
identity on the conformational dynamics of the bacterial actin homolog MreB. 
Proceedings of the National Academy of Sciences of the United States of 
America 111: 3585-3590. 

Conti, J., M. G. Viola & J. L. Camberg, (2015) The bacterial cell division regulators 
MinD and MinC form polymers in the presence of nucleotide. FEBS letters 589: 
201-206. 

Cooke, I. R. & M. Deserno, (2006) Coupling between lipid shape and membrane 
curvature. Biophysical journal 91: 487-495. 

Cooper, E. L., J. Garcia-Lara & S. J. Foster, (2009) YsxC, an essential protein in 
Staphylococcus aureus crucial for ribosome assembly/stability. BMC 
microbiology 9: 266. 

Coquel, A. S., J. P. Jacob, M. Primet, A. Demarez, M. Dimiccoli, T. Julou, L. Moisan, 
A. B. Lindner & H. Berry, (2013) Localization of protein aggregation in 
Escherichia coli is governed by diffusion and nucleoid macromolecular 
crowding effect. PLoS computational biology 9: e1003038. 

Corbin, B. D., Y. Wang, T. K. Beuria & W. Margolin, (2007) Interaction between cell 
division proteins FtsE and FtsZ. Journal of bacteriology 189: 3026-3035. 

Corrigan, R. M., J. C. Abbott, H. Burhenne, V. Kaever & A. Grundling, (2011) c-di-
AMP is a new second messenger in Staphylococcus aureus with a role in 
controlling cell size and envelope stress. PLoS pathogens 7: e1002217. 

Corrigan, R. M., I. Campeotto, T. Jeganathan, K. G. Roelofs, V. T. Lee & A. Grundling, 
(2013) Systematic identification of conserved bacterial c-di-AMP receptor 
proteins. Proceedings of the National Academy of Sciences of the United States 
of America 110: 9084-9089. 

Cronan, J. E., Jr. & G. L. Waldrop, (2002) Multi-subunit acetyl-CoA carboxylases. 
Progress in lipid research 41: 407-435. 

D'Elia, M. A., J. A. Henderson, T. J. Beveridge, D. E. Heinrichs & E. D. Brown, (2009) 
The N-acetylmannosamine transferase catalyzes the first committed step of 
teichoic acid assembly in Bacillus subtilis and Staphylococcus aureus. Journal 
of bacteriology 191: 4030-4034. 

Dai, K. & J. Lutkenhaus, (1991) ftsZ is an essential cell division gene in Escherichia 
coli. Journal of bacteriology 173: 3500-3506. 

Daniel, R. A. & J. Errington, (2003) Control of cell morphogenesis in bacteria: two 
distinct ways to make a rod-shaped cell. Cell 113: 767-776. 



 

327 
 

Daniel, R. A., M. F. Noirot-Gros, P. Noirot & J. Errington, (2006) Multiple interactions 
between the transmembrane division proteins of Bacillus subtilis and the role of 
FtsL instability in divisome assembly. Journal of bacteriology 188: 7396-7404. 

Datta, P., A. Dasgupta, S. Bhakta & J. Basu, (2002) Interaction between FtsZ and FtsW 
of Mycobacterium tuberculosis. The Journal of biological chemistry 277: 
24983-24987. 

Datta, P., A. Dasgupta, A. K. Singh, P. Mukherjee, M. Kundu & J. Basu, (2006) 
Interaction between FtsW and penicillin-binding protein 3 (PBP3) directs PBP3 
to mid-cell, controls cell septation and mediates the formation of a trimeric 
complex involving FtsZ, FtsW and PBP3 in mycobacteria. Molecular 
microbiology 62: 1655-1673. 

de Boer, P., R. Crossley & L. Rothfield, (1992) The essential bacterial cell-division 
protein FtsZ is a GTPase. Nature 359: 254-256. 

de Leeuw, E., B. Graham, G. J. Phillips, C. M. ten Hagen-Jongman, B. Oudega & J. 
Luirink, (1999) Molecular characterization of Escherichia coli FtsE and FtsX. 
Molecular microbiology 31: 983-993. 

de Lencastre, H., D. Oliveira & A. Tomasz, (2007) Antibiotic resistant Staphylococcus 
aureus: a paradigm of adaptive power. Current opinion in microbiology 10: 428-
435. 

Deane, C. M., L. Salwinski, I. Xenarios & D. Eisenberg, (2002) Protein interactions: 
two methods for assessment of the reliability of high throughput observations. 
Molecular & cellular proteomics : MCP 1: 349-356. 

DeDent, A. C., M. McAdow & O. Schneewind, (2007) Distribution of protein A on the 
surface of Staphylococcus aureus. Journal of bacteriology 189: 4473-4484. 

Defeu Soufo, H. J. & P. L. Graumann, (2006) Dynamic localization and interaction with 
other Bacillus subtilis actin-like proteins are important for the function of MreB. 
Molecular microbiology 62: 1340-1356. 

Defeu Soufo, H. J., C. Reimold, H. Breddermann, H. G. Mannherz & P. L. Graumann, 
(2015) Translation elongation factor EF-Tu modulates filament formation of 
actin-like MreB protein in vitro. Journal of molecular biology 427: 1715-1727. 

Dempwolff, F., F. K. Schmidt, A. B. Hervas, A. Stroh, T. C. Rosch, C. N. Riese, S. 
Dersch, T. Heimerl, D. Lucena, N. Hulsbusch, C. A. Stuermer, N. Takeshita, R. 
Fischer, B. Eckhardt & P. L. Graumann, (2016) Super Resolution Fluorescence 
Microscopy and Tracking of Bacterial Flotillin (Reggie) Paralogs Provide 
Evidence for Defined-Sized Protein Microdomains within the Bacterial 
Membrane but Absence of Clusters Containing Detergent-Resistant Proteins. 
PLoS genetics 12: e1006116. 

Denapoli, J., A. K. Tehranchi & J. D. Wang, (2013) Dose-dependent reduction of 
replication elongation rate by (p)ppGpp in Escherichia coli and Bacillus subtilis. 
Molecular microbiology 88: 93-104. 

Dengler, V., P. S. Meier, R. Heusser, P. Kupferschmied, J. Fazekas, S. Friebe, S. B. 
Staufer, P. A. Majcherczyk, P. Moreillon, B. Berger-Bachi & N. McCallum, 
(2012) Deletion of hypothetical wall teichoic acid ligases in Staphylococcus 
aureus activates the cell wall stress response. FEMS microbiology letters 333: 
109-120. 

Dervyn, E., M. F. Noirot-Gros, P. Mervelet, S. McGovern, S. D. Ehrlich, P. Polard & P. 
Noirot, (2004) The bacterial condensin/cohesin-like protein complex acts in 
DNA repair and regulation of gene expression. Molecular microbiology 51: 
1629-1640. 

Deva, T., E. N. Baker, C. J. Squire & C. A. Smith, (2006) Structure of Escherichia coli 
UDP-N-acetylmuramoyl:L-alanine ligase (MurC). Acta crystallographica. 
Section D, Biological crystallography 62: 1466-1474. 



 

328 
 

Di Lallo, G., M. Fagioli, D. Barionovi, P. Ghelardini & L. Paolozzi, (2003) Use of a 
two-hybrid assay to study the assembly of a complex multicomponent protein 
machinery: bacterial septosome differentiation. Microbiology 149: 3353-3359. 

Di Paolo, G. & P. De Camilli, (2006) Phosphoinositides in cell regulation and 
membrane dynamics. Nature 443: 651-657. 

Diez-Gonzalez, F. & J. B. Russell, (1997) Effects of carbonylcyanide-m-
chlorophenylhydrazone (CCCP) and acetate on Escherichia coli O157:H7 and 
K-12: uncoupling versus anion accumulation. FEMS microbiology letters 151: 
71-76. 

Din, N., E. M. Quardokus, M. J. Sackett & Y. V. Brun, (1998) Dominant C-terminal 
deletions of FtsZ that affect its ability to localize in Caulobacter and its 
interaction with FtsA. Molecular microbiology 27: 1051-1063. 

Divakaruni, A. V., C. Baida, C. L. White & J. W. Gober, (2007) The cell shape proteins 
MreB and MreC control cell morphogenesis by positioning cell wall synthetic 
complexes. Molecular microbiology 66: 174-188. 

Divakaruni, A. V., R. R. Loo, Y. Xie, J. A. Loo & J. W. Gober, (2005) The cell-shape 
protein MreC interacts with extracytoplasmic proteins including cell wall 
assembly complexes in Caulobacter crescentus. Proceedings of the National 
Academy of Sciences of the United States of America 102: 18602-18607. 

Doerrler, W. T. & C. R. Raetz, (2002) ATPase activity of the MsbA lipid flippase of 
Escherichia coli. The Journal of biological chemistry 277: 36697-36705. 

Dominguez-Escobar, J., A. Chastanet, A. H. Crevenna, V. Fromion, R. Wedlich-
Soldner & R. Carballido-Lopez, (2011) Processive movement of MreB-
associated cell wall biosynthetic complexes in bacteria. Science 333: 225-228. 

Donovan, C. & M. Bramkamp, (2009) Characterization and subcellular localization of a 
bacterial flotillin homologue. Microbiology 155: 1786-1799. 

Dowhan, W., (1997) Molecular basis for membrane phospholipid diversity: why are 
there so many lipids? Annual review of biochemistry 66: 199-232. 

Drew, D., M. Lerch, E. Kunji, D. J. Slotboom & J. W. de Gier, (2006) Optimization of 
membrane protein overexpression and purification using GFP fusions. Nature 
methods 3: 303-313. 

Driessen, A. J., E. H. Manting & C. van der Does, (2001) The structural basis of protein 
targeting and translocation in bacteria. Nature structural biology 8: 492-498. 

Duggin, I. G., C. H. Aylett, J. C. Walsh, K. A. Michie, Q. Wang, L. Turnbull, E. M. 
Dawson, E. J. Harry, C. B. Whitchurch, L. A. Amos & J. Lowe, (2015) CetZ 
tubulin-like proteins control archaeal cell shape. Nature 519: 362-365. 

Duthie, E. S., (1952) Variation in the antigenic composition of staphylococcal 
coagulase. Journal of general microbiology 7: 320-326. 

Eberhardt, A., C. N. Hoyland, D. Vollmer, S. Bisle, R. M. Cleverley, O. Johnsborg, L. 
S. Havarstein, R. J. Lewis & W. Vollmer, (2012) Attachment of capsular 
polysaccharide to the cell wall in Streptococcus pneumoniae. Microb Drug 
Resist 18: 240-255. 

Ebersbach, G., E. Galli, J. Moller-Jensen, J. Lowe & K. Gerdes, (2008) Novel coiled-
coil cell division factor ZapB stimulates Z ring assembly and cell division. 
Molecular microbiology 68: 720-735. 

Ebersbach, G. & K. Gerdes, (2005) Plasmid segregation mechanisms. Annual review of 
genetics 39: 453-479. 

Edwards, D. H. & J. Errington, (1997) The Bacillus subtilis DivIVA protein targets to 
the division septum and controls the site specificity of cell division. Molecular 
microbiology 24: 905-915. 



 

329 
 

Edwards, D. H., H. B. Thomaides & J. Errington, (2000) Promiscuous targeting of 
Bacillus subtilis cell division protein DivIVA to division sites in Escherichia coli 
and fission yeast. The EMBO journal 19: 2719-2727. 

El Ghachi, M., A. Bouhss, D. Blanot & D. Mengin-Lecreulx, (2004) The bacA gene of 
Escherichia coli encodes an undecaprenyl pyrophosphate phosphatase activity. 
The Journal of biological chemistry 279: 30106-30113. 

Elowitz, M. B., M. G. Surette, P. E. Wolf, J. B. Stock & S. Leibler, (1999) Protein 
mobility in the cytoplasm of Escherichia coli. Journal of bacteriology 181: 197-
203. 

Elsen, N. L., J. Lu, G. Parthasarathy, J. C. Reid, S. Sharma, S. M. Soisson & K. J. 
Lumb, (2012) Mechanism of action of the cell-division inhibitor PC190723: 
modulation of FtsZ assembly cooperativity. Journal of the American Chemical 
Society 134: 12342-12345. 

Emoto, K. & M. Umeda, (2001) Membrane lipid control of cytokinesis. Cell structure 
and function 26: 659-665. 

Engelman, D. M., (2005) Membranes are more mosaic than fluid. Nature 438: 578-580. 
English, B. P., V. Hauryliuk, A. Sanamrad, S. Tankov, N. H. Dekker & J. Elf, (2011) 

Single-molecule investigations of the stringent response machinery in living 
bacterial cells. Proceedings of the National Academy of Sciences of the United 
States of America 108: E365-373. 

Epand, R. M., C. Walker, R. F. Epand & N. A. Magarvey, (2016) Molecular 
mechanisms of membrane targeting antibiotics. Biochimica et biophysica acta 
1858: 980-987. 

Erdmann, N., T. Petroff & B. E. Funnell, (1999) Intracellular localization of P1 ParB 
protein depends on ParA and parS. Proceedings of the National Academy of 
Sciences of the United States of America 96: 14905-14910. 

Erickson, H. P., (1995) FtsZ, a prokaryotic homolog of tubulin? Cell 80: 367-370. 
Erickson, H. P., D. W. Taylor, K. A. Taylor & D. Bramhill, (1996) Bacterial cell 

division protein FtsZ assembles into protofilament sheets and minirings, 
structural homologs of tubulin polymers. Proceedings of the National Academy 
of Sciences of the United States of America 93: 519-523. 

Ernst, C. M., S. Kuhn, C. J. Slavetinsky, B. Krismer, S. Heilbronner, C. Gekeler, D. 
Kraus, S. Wagner & A. Peschel, (2015) The lipid-modifying multiple peptide 
resistance factor is an oligomer consisting of distinct interacting synthase and 
flippase subunits. mBio 6. 

Ernst, C. M. & A. Peschel, (2011) Broad-spectrum antimicrobial peptide resistance by 
MprF-mediated aminoacylation and flipping of phospholipids. Molecular 
microbiology 80: 290-299. 

Ernst, C. M., P. Staubitz, N. N. Mishra, S. J. Yang, G. Hornig, H. Kalbacher, A. S. 
Bayer, D. Kraus & A. Peschel, (2009) The bacterial defensin resistance protein 
MprF consists of separable domains for lipid lysinylation and antimicrobial 
peptide repulsion. PLoS pathogens 5: e1000660. 

Errington, J., (2015) Bacterial morphogenesis and the enigmatic MreB helix. Nature 
reviews. Microbiology 13: 241-248. 

Espeli, O., C. Lee & K. J. Marians, (2003) A physical and functional interaction 
between Escherichia coli FtsK and topoisomerase IV. The Journal of biological 
chemistry 278: 44639-44644. 

Eswaramoorthy, P., M. L. Erb, J. A. Gregory, J. Silverman, K. Pogliano, J. Pogliano & 
K. S. Ramamurthi, (2011) Cellular architecture mediates DivIVA ultrastructure 
and regulates min activity in Bacillus subtilis. mBio 2. 

Ettema, T. J., A. C. Lindas & R. Bernander, (2011) An actin-based cytoskeleton in 
archaea. Molecular microbiology 80: 1052-1061. 



 

330 
 

Fedtke, I., D. Mader, T. Kohler, H. Moll, G. Nicholson, R. Biswas, K. Henseler, F. 
Gotz, U. Zahringer & A. Peschel, (2007) A Staphylococcus aureus ypfP mutant 
with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial 
surface properties and autolysin activity. Molecular microbiology 65: 1078-
1091. 

Fey, P. D., J. L. Endres, V. K. Yajjala, T. J. Widhelm, R. J. Boissy, J. L. Bose & K. W. 
Bayles, (2013) A genetic resource for rapid and comprehensive phenotype 
screening of nonessential Staphylococcus aureus genes. mBio 4: e00537-00512. 

Fields, S. & O. Song, (1989) A novel genetic system to detect protein-protein 
interactions. Nature 340: 245-246. 

Figge, R. M., A. V. Divakaruni & J. W. Gober, (2004) MreB, the cell shape-
determining bacterial actin homologue, co-ordinates cell wall morphogenesis in 
Caulobacter crescentus. Molecular microbiology 51: 1321-1332. 

Fischer, M., I. Haase, E. Simmeth, G. Gerisch & A. Muller-Taubenberger, (2004) A 
brilliant monomeric red fluorescent protein to visualize cytoskeleton dynamics 
in Dictyostelium. FEBS letters 577: 227-232. 

Fisher, M., J. T. Kroon, W. Martindale, A. R. Stuitje, A. R. Slabas & J. B. Rafferty, 
(2000) The X-ray structure of Brassica napus beta-keto acyl carrier protein 
reductase and its implications for substrate binding and catalysis. Structure 8: 
339-347. 

Fishov, I. & C. L. Woldringh, (1999) Visualization of membrane domains in 
Escherichia coli. Molecular microbiology 32: 1166-1172. 

Fleming, T. C., J. Y. Shin, S. H. Lee, E. Becker, K. C. Huang, C. Bustamante & K. 
Pogliano, (2010) Dynamic SpoIIIE assembly mediates septal membrane fission 
during Bacillus subtilis sporulation. Genes & development 24: 1160-1172. 

Fleurie, A., C. Lesterlin, S. Manuse, C. Zhao, C. Cluzel, J. P. Lavergne, M. Franz-
Wachtel, B. Macek, C. Combet, E. Kuru, M. S. VanNieuwenhze, Y. V. Brun, D. 
Sherratt & C. Grangeasse, (2014a) MapZ marks the division sites and positions 
FtsZ rings in Streptococcus pneumoniae. Nature 516: 259-262. 

Fleurie, A., S. Manuse, C. Zhao, N. Campo, C. Cluzel, J. P. Lavergne, C. Freton, C. 
Combet, S. Guiral, B. Soufi, B. Macek, E. Kuru, M. S. VanNieuwenhze, Y. V. 
Brun, A. M. Di Guilmi, J. P. Claverys, A. Galinier & C. Grangeasse, (2014b) 
Interplay of the serine/threonine-kinase StkP and the paralogs DivIVA and 
GpsB in pneumococcal cell elongation and division. PLoS genetics 10: 
e1004275. 

Flock, J. I., G. Froman, K. Jonsson, B. Guss, C. Signas, B. Nilsson, G. Raucci, M. 
Hook, T. Wadstrom & M. Lindberg, (1987) Cloning and expression of the gene 
for a fibronectin-binding protein from Staphylococcus aureus. The EMBO 
journal 6: 2351-2357. 

Ford, M. G., I. G. Mills, B. J. Peter, Y. Vallis, G. J. Praefcke, P. R. Evans & H. T. 
McMahon, (2002) Curvature of clathrin-coated pits driven by epsin. Nature 419: 
361-366. 

Forster, T., (2012) Energy migration and fluorescence. 1946. Journal of biomedical 
optics 17: 011002. 

Foster, T. J., (2005) Immune evasion by staphylococci. Nature reviews. Microbiology 3: 
948-958. 

Fraipont, C., S. Alexeeva, B. Wolf, R. van der Ploeg, M. Schloesser, T. den Blaauwen 
& M. Nguyen-Disteche, (2011) The integral membrane FtsW protein and 
peptidoglycan synthase PBP3 form a subcomplex in Escherichia coli. 
Microbiology 157: 251-259. 

Fribourg, P. F., M. Chami, C. O. Sorzano, F. Gubellini, R. Marabini, S. Marco, J. M. 
Jault & D. Levy, (2014) 3D cryo-electron reconstruction of BmrA, a bacterial 



 

331 
 

multidrug ABC transporter in an inward-facing conformation and in a lipidic 
environment. Journal of molecular biology 426: 2059-2069. 

Frost, A., R. Perera, A. Roux, K. Spasov, O. Destaing, E. H. Egelman, P. De Camilli & 
V. M. Unger, (2008) Structural basis of membrane invagination by F-BAR 
domains. Cell 132: 807-817. 

Fu, C., L. Keller, A. Bauer, M. Bronstrup, A. Froidbise, P. Hammann, J. Herrmann, G. 
Mondesert, M. Kurz, M. Schiell, D. Schummer, L. Toti, J. Wink & R. Muller, 
(2015) Biosynthetic Studies of Telomycin Reveal New Lipopeptides with 
Enhanced Activity. Journal of the American Chemical Society 137: 7692-7705. 

Fu, G., T. Huang, J. Buss, C. Coltharp, Z. Hensel & J. Xiao, (2010) In vivo structure of 
the E. coli FtsZ-ring revealed by photoactivated localization microscopy 
(PALM). PloS one 5: e12682. 

Galli, E. & K. Gerdes, (2010) Spatial resolution of two bacterial cell division proteins: 
ZapA recruits ZapB to the inner face of the Z-ring. Molecular microbiology 76: 
1514-1526. 

Gandhi, A. & N. P. Shah, (2016) Effect of salt stress on morphology and membrane 
composition of Lactobacillus acidophilus, Lactobacillus casei, and 
Bifidobacterium bifidum, and their adhesion to human intestinal epithelial-like 
Caco-2 cells. Journal of dairy science 99: 2594-2605. 

Garcia-Lara, J., F. Weihs, X. Ma, L. Walker, R. R. Chaudhuri, J. Kasturiarachchi, H. 
Crossley, R. Golestanian & S. J. Foster, (2015) Supramolecular structure in the 
membrane of Staphylococcus aureus. Proceedings of the National Academy of 
Sciences of the United States of America 112: 15725-15730. 

Garner, E. C., R. Bernard, W. Wang, X. Zhuang, D. Z. Rudner & T. Mitchison, (2011) 
Coupled, circumferential motions of the cell wall synthesis machinery and MreB 
filaments in B. subtilis. Science 333: 222-225. 

Gayathri, P., T. Fujii, J. Moller-Jensen, F. van den Ent, K. Namba & J. Lowe, (2012) A 
bipolar spindle of antiparallel ParM filaments drives bacterial plasmid 
segregation. Science 338: 1334-1337. 

George Abraham, B., K. S. Sarkisyan, A. S. Mishin, V. Santala, N. V. Tkachenko & M. 
Karp, (2015) Fluorescent Protein Based FRET Pairs with Improved Dynamic 
Range for Fluorescence Lifetime Measurements. PloS one 10: e0134436. 

Gerdes, K., M. Howard & F. Szardenings, (2010) Pushing and pulling in prokaryotic 
DNA segregation. Cell 141: 927-942. 

Ghosal, D., D. Trambaiolo, L. A. Amos & J. Lowe, (2014) MinCD cell division 
proteins form alternating copolymeric cytomotive filaments. Nature 
communications 5: 5341. 

Gill, R. L., Jr., J. P. Castaing, J. Hsin, I. S. Tan, X. Wang, K. C. Huang, F. Tian & K. S. 
Ramamurthi, (2015) Structural basis for the geometry-driven localization of a 
small protein. Proceedings of the National Academy of Sciences of the United 
States of America 112: E1908-1915. 

Ginsberg, C., Y. H. Zhang, Y. Yuan & S. Walker, (2006) In vitro reconstitution of two 
essential steps in wall teichoic acid biosynthesis. ACS chemical biology 1: 25-
28. 

Goldberg, I., J. R. Walker & K. Bloch, (1973) Inhibition of lipid synthesis in 
Escherichia coli cells by the antibiotic cerulenin. Antimicrobial agents and 
chemotherapy 3: 549-554. 

Golding, I. & E. C. Cox, (2006) Physical nature of bacterial cytoplasm. Physical review 
letters 96: 098102. 

Gomez-Baena, G., O. A. Rangel, A. Lopez-Lozano, J. M. Garcia-Fernandez & J. Diez, 
(2009) Stress responses in Prochlorococcus MIT9313 vs. SS120 involve 



 

332 
 

differential expression of genes encoding proteases ClpP, FtsH and Lon. 
Research in microbiology 160: 567-575. 

Gotz, F. & S. Mayer, (2013) Both terminal oxidases contribute to fitness and virulence 
during organ-specific Staphylococcus aureus colonization. mBio 4: e00976-
00913. 

Govindarajan, S., Y. Elisha, K. Nevo-Dinur & O. Amster-Choder, (2013) The general 
phosphotransferase system proteins localize to sites of strong negative curvature 
in bacterial cells. mBio 4: e00443-00413. 

Grandchamps, J., M. Nguyen-Disteche, C. Damblon, J. M. Frere & J. M. Ghuysen, 
(1995) Streptomyces K15 active-site serine DD-transpeptidase: specificity 
profile for peptide, thiol ester and ester carbonyl donors and pathways of the 
transfer reactions. The Biochemical journal 307 ( Pt 2): 335-339. 

Gregory, J. A., E. C. Becker & K. Pogliano, (2008) Bacillus subtilis MinC destabilizes 
FtsZ-rings at new cell poles and contributes to the timing of cell division. Genes 
& development 22: 3475-3488. 

Grundling, A. & O. Schneewind, (2007a) Genes required for glycolipid synthesis and 
lipoteichoic acid anchoring in Staphylococcus aureus. Journal of bacteriology 
189: 2521-2530. 

Grundling, A. & O. Schneewind, (2007b) Synthesis of glycerol phosphate lipoteichoic 
acid in Staphylococcus aureus. Proceedings of the National Academy of 
Sciences of the United States of America 104: 8478-8483. 

Gunning, P. W., U. Ghoshdastider, S. Whitaker, D. Popp & R. C. Robinson, (2015) The 
evolution of compositionally and functionally distinct actin filaments. Journal of 
cell science 128: 2009-2019. 

Gustafsson, N., S. Culley, G. Ashdown, D. M. Owen, P. M. Pereira & R. Henriques, 
(2016) Fast live-cell conventional fluorophore nanoscopy with ImageJ through 
super-resolution radial fluctuations. Nature communications 7: 12471. 

Halbedel, S., B. Hahn, R. A. Daniel & A. Flieger, (2012) DivIVA affects secretion of 
virulence-related autolysins in Listeria monocytogenes. Molecular microbiology 
83: 821-839. 

Halbedel, S., M. Kawai, R. Breitling & L. W. Hamoen, (2014) SecA is required for 
membrane targeting of the cell division protein DivIVA in vivo. Frontiers in 
microbiology 5: 58. 

Hamamoto, H., M. Urai, K. Ishii, J. Yasukawa, A. Paudel, M. Murai, T. Kaji, T. 
Kuranaga, K. Hamase, T. Katsu, J. Su, T. Adachi, R. Uchida, H. Tomoda, M. 
Yamada, M. Souma, H. Kurihara, M. Inoue & K. Sekimizu, (2015) Lysocin E is 
a new antibiotic that targets menaquinone in the bacterial membrane. Nature 
chemical biology 11: 127-133. 

Hammer, N. D., M. L. Reniere, J. E. Cassat, Y. Zhang, A. O. Hirsch, M. Indriati Hood 
& E. P. Skaar, (2013) Two heme-dependent terminal oxidases power 
Staphylococcus aureus organ-specific colonization of the vertebrate host. mBio 
4. 

Haswell, E. S., R. Phillips & D. C. Rees, (2011) Mechanosensitive channels: what can 
they do and how do they do it? Structure 19: 1356-1369. 

Hayami, M., A. Okabe, R. Kariyama, M. Abe & Y. Kanemasa, (1979) Lipid 
composition of Staphylococcus aureus and its derived L-forms. Microbiology 
and immunology 23: 435-442. 

Haydon, D. J., N. R. Stokes, R. Ure, G. Galbraith, J. M. Bennett, D. R. Brown, P. J. 
Baker, V. V. Barynin, D. W. Rice, S. E. Sedelnikova, J. R. Heal, J. M. Sheridan, 
S. T. Aiwale, P. K. Chauhan, A. Srivastava, A. Taneja, I. Collins, J. Errington & 
L. G. Czaplewski, (2008) An inhibitor of FtsZ with potent and selective anti-
staphylococcal activity. Science 321: 1673-1675. 



 

333 
 

He, X. & K. A. Reynolds, (2002) Purification, characterization, and identification of 
novel inhibitors of the beta-ketoacyl-acyl carrier protein synthase III (FabH) 
from Staphylococcus aureus. Antimicrobial agents and chemotherapy 46: 1310-
1318. 

Heath, R. J. & C. O. Rock, (1995) Enoyl-acyl carrier protein reductase (fabI) plays a 
determinant role in completing cycles of fatty acid elongation in Escherichia 
coli. The Journal of biological chemistry 270: 26538-26542. 

Heath, R. J. & C. O. Rock, (1996a) Inhibition of beta-ketoacyl-acyl carrier protein 
synthase III (FabH) by acyl-acyl carrier protein in Escherichia coli. The Journal 
of biological chemistry 271: 10996-11000. 

Heath, R. J. & C. O. Rock, (1996b) Roles of the FabA and FabZ beta-hydroxyacyl-acyl 
carrier protein dehydratases in Escherichia coli fatty acid biosynthesis. The 
Journal of biological chemistry 271: 27795-27801. 

Heath, R. J., N. Su, C. K. Murphy & C. O. Rock, (2000) The enoyl-[acyl-carrier-
protein] reductases FabI and FabL from Bacillus subtilis. The Journal of 
biological chemistry 275: 40128-40133. 

Hennekinne, J. A., M. L. De Buyser & S. Dragacci, (2012) Staphylococcus aureus and 
its food poisoning toxins: characterization and outbreak investigation. FEMS 
microbiology reviews 36: 815-836. 

Henze, U., T. Sidow, J. Wecke, H. Labischinski & B. Berger-Bachi, (1993) Influence of 
femB on methicillin resistance and peptidoglycan metabolism in Staphylococcus 
aureus. Journal of bacteriology 175: 1612-1620. 

Herbert, S., A. K. Ziebandt, K. Ohlsen, T. Schafer, M. Hecker, D. Albrecht, R. Novick 
& F. Gotz, (2010) Repair of global regulators in Staphylococcus aureus 8325 
and comparative analysis with other clinical isolates. Infection and immunity 78: 
2877-2889. 

Hill, N. S., P. J. Buske, Y. Shi & P. A. Levin, (2013) A moonlighting enzyme links 
Escherichia coli cell size with central metabolism. PLoS genetics 9: e1003663. 

Hinshaw, J. E., (2000) Dynamin and its role in membrane fission. Annual review of cell 
and developmental biology 16: 483-519. 

Hirano, M., H. Mori, T. Onogi, M. Yamazoe, H. Niki, T. Ogura & S. Hiraga, (1998) 
Autoregulation of the partition genes of the mini-F plasmid and the intracellular 
localization of their products in Escherichia coli. Molecular & general genetics : 
MGG 257: 392-403. 

Holeckova, N., L. Doubravova, O. Massidda, V. Molle, K. Buriankova, O. Benada, O. 
Kofronova, A. Ulrych & P. Branny, (2015) LocZ is a new cell division protein 
involved in proper septum placement in Streptococcus pneumoniae. mBio 6: 
e01700-01714. 

Horsburgh, M. J., J. L. Aish, I. J. White, L. Shaw, J. K. Lithgow & S. J. Foster, (2002) 
sigmaB modulates virulence determinant expression and stress resistance: 
characterization of a functional rsbU strain derived from Staphylococcus aureus 
8325-4. Journal of bacteriology 184: 5457-5467. 

Horsburgh, M. J., M. D. Wiltshire, H. Crossley, E. Ingham & S. J. Foster, (2004) PheP, 
a putative amino acid permease of Staphylococcus aureus, contributes to 
survival in vivo and during starvation. Infection and immunity 72: 3073-3076. 

Hoshino, S. & I. Hayashi, (2012) Filament formation of the FtsZ/tubulin-like protein 
TubZ from the Bacillus cereus pXO1 plasmid. The Journal of biological 
chemistry 287: 32103-32112. 

Hsieh, C. W., T. Y. Lin, H. M. Lai, C. C. Lin, T. S. Hsieh & Y. L. Shih, (2010) Direct 
MinE-membrane interaction contributes to the proper localization of MinDE in 
E. coli. Molecular microbiology 75: 499-512. 



 

334 
 

Hu, Z. & J. Lutkenhaus, (1999) Topological regulation of cell division in Escherichia 
coli involves rapid pole to pole oscillation of the division inhibitor MinC under 
the control of MinD and MinE. Molecular microbiology 34: 82-90. 

Hu, Z. & J. Lutkenhaus, (2000) Analysis of MinC reveals two independent domains 
involved in interaction with MinD and FtsZ. Journal of bacteriology 182: 3965-
3971. 

Hu, Z. & J. Lutkenhaus, (2001) Topological regulation of cell division in E. coli. 
spatiotemporal oscillation of MinD requires stimulation of its ATPase by MinE 
and phospholipid. Molecular cell 7: 1337-1343. 

Hu, Z. & J. Lutkenhaus, (2003) A conserved sequence at the C-terminus of MinD is 
required for binding to the membrane and targeting MinC to the septum. 
Molecular microbiology 47: 345-355. 

Hu, Z., A. Mukherjee, S. Pichoff & J. Lutkenhaus, (1999) The MinC component of the 
division site selection system in Escherichia coli interacts with FtsZ to prevent 
polymerization. Proceedings of the National Academy of Sciences of the United 
States of America 96: 14819-14824. 

Huang, B., W. Wang, M. Bates & X. Zhuang, (2008) Three-dimensional super-
resolution imaging by stochastic optical reconstruction microscopy. Science 319: 
810-813. 

Huang, K. C., R. Mukhopadhyay & N. S. Wingreen, (2006) A curvature-mediated 
mechanism for localization of lipids to bacterial poles. PLoS computational 
biology 2: e151. 

Hubscher, J., N. McCallum, C. D. Sifri, P. A. Majcherczyk, J. M. Entenza, R. Heusser, 
B. Berger-Bachi & P. Stutzmann Meier, (2009) MsrR contributes to cell surface 
characteristics and virulence in Staphylococcus aureus. FEMS microbiology 
letters 295: 251-260. 

Huecas, S. & J. M. Andreu, (2004) Polymerization of nucleotide-free, GDP- and GTP-
bound cell division protein FtsZ: GDP makes the difference. FEBS letters 569: 
43-48. 

Hunt, A., J. P. Rawlins, H. B. Thomaides & J. Errington, (2006) Functional analysis of 
11 putative essential genes in Bacillus subtilis. Microbiology 152: 2895-2907. 

Hussain, M., J. G. Hastings & P. J. White, (1991) A chemically defined medium for 
slime production by coagulase-negative staphylococci. Journal of medical 
microbiology 34: 143-147. 

Hwang, L. C., A. G. Vecchiarelli, Y. W. Han, M. Mizuuchi, Y. Harada, B. E. Funnell & 
K. Mizuuchi, (2013) ParA-mediated plasmid partition driven by protein pattern 
self-organization. The EMBO journal 32: 1238-1249. 

Ishibashi, M., K. Kurokawa, S. Nishida, K. Ueno, M. Matsuo & K. Sekimizu, (2007) 
Isolation of temperature-sensitive mutations in murC of Staphylococcus aureus. 
FEMS microbiology letters 274: 204-209. 

Ishikawa, S., Y. Kawai, K. Hiramatsu, M. Kuwano & N. Ogasawara, (2006) A new 
FtsZ-interacting protein, YlmF, complements the activity of FtsA during 
progression of cell division in Bacillus subtilis. Molecular microbiology 60: 
1364-1380. 

Ishino, F., W. Park, S. Tomioka, S. Tamaki, I. Takase, K. Kunugita, H. Matsuzawa, S. 
Asoh, T. Ohta, B. G. Spratt & et al., (1986) Peptidoglycan synthetic activities in 
membranes of Escherichia coli caused by overproduction of penicillin-binding 
protein 2 and rodA protein. The Journal of biological chemistry 261: 7024-7031. 

Izore, T., R. Duman, D. Kureisaite-Ciziene & J. Lowe, (2014) Crenactin from 
Pyrobaculum calidifontis is closely related to actin in structure and forms steep 
helical filaments. FEBS letters 588: 776-782. 



 

335 
 

Jackowski, S., C. M. Murphy, J. E. Cronan, Jr. & C. O. Rock, (1989) Acetoacetyl-acyl 
carrier protein synthase. A target for the antibiotic thiolactomycin. The Journal 
of biological chemistry 264: 7624-7629. 

Jacques, N. A., (1983) Membrane perturbation by cerulenin modulates 
glucosyltransferase secretion and acetate uptake by Streptococcus salivarius. 
Journal of general microbiology 129: 3293-3302. 

Jiang, S., A. Narita, D. Popp, U. Ghoshdastider, L. J. Lee, R. Srinivasan, M. K. 
Balasubramanian, T. Oda, F. Koh, M. Larsson & R. C. Robinson, (2016) Novel 
actin filaments from Bacillus thuringiensis form nanotubules for plasmid DNA 
segregation. Proceedings of the National Academy of Sciences of the United 
States of America 113: E1200-1205. 

Jimenez, M., A. Martos, M. Vicente & G. Rivas, (2011) Reconstitution and 
organization of Escherichia coli proto-ring elements (FtsZ and FtsA) inside giant 
unilamellar vesicles obtained from bacterial inner membranes. The Journal of 
biological chemistry 286: 11236-11241. 

Johnson, A. S., S. van Horck & P. J. Lewis, (2004) Dynamic localization of membrane 
proteins in Bacillus subtilis. Microbiology 150: 2815-2824. 

Johnson, S., D. Kruger & H. Labischinski, (1995) FemA of Staphylococcus aureus: 
isolation and immunodetection. FEMS microbiology letters 132: 221-228. 

Jones, L. J., R. Carballido-Lopez & J. Errington, (2001) Control of cell shape in 
bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104: 913-922. 

Jorasch, P., D. C. Warnecke, B. Lindner, U. Zahringer & E. Heinz, (2000) Novel 
processive and nonprocessive glycosyltransferases from Staphylococcus aureus 
and Arabidopsis thaliana synthesize glycoglycerolipids, glycophospholipids, 
glycosphingolipids and glycosylsterols. European journal of biochemistry / 
FEBS 267: 3770-3783. 

Jorasch, P., F. P. Wolter, U. Zahringer & E. Heinz, (1998) A UDP glucosyltransferase 
from Bacillus subtilis successively transfers up to four glucose residues to 1,2-
diacylglycerol: expression of ypfP in Escherichia coli and structural analysis of 
its reaction products. Molecular microbiology 29: 419-430. 

Jouhet, J., (2013) Importance of the hexagonal lipid phase in biological membrane 
organization. Frontiers in plant science 4: 494. 

Kaito, C., K. Kurokawa, M. S. Hossain, N. Akimitsu & K. Sekimizu, (2002) Isolation 
and characterization of temperature-sensitive mutants of the Staphylococcus 
aureus dnaC gene. FEMS microbiology letters 210: 157-164. 

Kaltwasser, M., T. Wiegert & W. Schumann, (2002) Construction and application of 
epitope- and green fluorescent protein-tagging integration vectors for Bacillus 
subtilis. Applied and environmental microbiology 68: 2624-2628. 

Kanemasa, Y., T. Yoshioka & H. Hayashi, (1972) Alteration of the phospholipid 
composition of Staphylococcus aureus cultured in medium containing NaCl. 
Biochimica et biophysica acta 280: 444-450. 

Kanfer, J. & E. P. Kennedy, (1964) Metabolism and Function of Bacterial Lipids. Ii. 
Biosynthesis of Phospholipids in Escherichia Coli. The Journal of biological 
chemistry 239: 1720-1726. 

Karimova, G., N. Dautin & D. Ladant, (2005) Interaction network among Escherichia 
coli membrane proteins involved in cell division as revealed by bacterial two-
hybrid analysis. Journal of bacteriology 187: 2233-2243. 

Karimova, G., J. Pidoux, A. Ullmann & D. Ladant, (1998) A bacterial two-hybrid 
system based on a reconstituted signal transduction pathway. Proceedings of the 
National Academy of Sciences of the United States of America 95: 5752-5756. 



 

336 
 

Kawai, F., M. Shoda, R. Harashima, Y. Sadaie, H. Hara & K. Matsumoto, (2004) 
Cardiolipin domains in Bacillus subtilis marburg membranes. Journal of 
bacteriology 186: 1475-1483. 

Kawai, Y., R. A. Daniel & J. Errington, (2009) Regulation of cell wall morphogenesis 
in Bacillus subtilis by recruitment of PBP1 to the MreB helix. Molecular 
microbiology 71: 1131-1144. 

Kawai, Y., J. Marles-Wright, R. M. Cleverley, R. Emmins, S. Ishikawa, M. Kuwano, N. 
Heinz, N. K. Bui, C. N. Hoyland, N. Ogasawara, R. J. Lewis, W. Vollmer, R. A. 
Daniel & J. Errington, (2011) A widespread family of bacterial cell wall 
assembly proteins. The EMBO journal 30: 4931-4941. 

Kawai, Y., R. Mercier, L. J. Wu, P. Dominguez-Cuevas, T. Oshima & J. Errington, 
(2015) Cell growth of wall-free L-form bacteria is limited by oxidative damage. 
Current biology : CB 25: 1613-1618. 

Keppler, A., M. Kindermann, S. Gendreizig, H. Pick, H. Vogel & K. Johnsson, (2004a) 
Labeling of fusion proteins of O6-alkylguanine-DNA alkyltransferase with 
small molecules in vivo and in vitro. Methods 32: 437-444. 

Keppler, A., H. Pick, C. Arrivoli, H. Vogel & K. Johnsson, (2004b) Labeling of fusion 
proteins with synthetic fluorophores in live cells. Proceedings of the National 
Academy of Sciences of the United States of America 101: 9955-9959. 

Kern, T., M. Giffard, S. Hediger, A. Amoroso, C. Giustini, N. K. Bui, B. Joris, C. 
Bougault, W. Vollmer & J. P. Simorre, (2010) Dynamics characterization of 
fully hydrated bacterial cell walls by solid-state NMR: evidence for cooperative 
binding of metal ions. Journal of the American Chemical Society 132: 10911-
10919. 

Kiekebusch, D., K. A. Michie, L. O. Essen, J. Lowe & M. Thanbichler, (2012) 
Localized dimerization and nucleoid binding drive gradient formation by the 
bacterial cell division inhibitor MipZ. Molecular cell 46: 245-259. 

Kim, S. J., M. Singh & J. Schaefer, (2009) Oritavancin binds to isolated protoplast 
membranes but not intact protoplasts of Staphylococcus aureus. Journal of 
molecular biology 391: 414-425. 

Kinosita, K., Jr., R. Kataoka, Y. Kimura, O. Gotoh & A. Ikegami, (1981) Dynamic 
structure of biological membranes as probed by 1,6-diphenyl-1,3,5-hexatriene: a 
nanosecond fluorescence depolarization study. Biochemistry 20: 4270-4277. 

Kiriukhin, M. Y., D. V. Debabov, D. L. Shinabarger & F. C. Neuhaus, (2001) 
Biosynthesis of the glycolipid anchor in lipoteichoic acid of Staphylococcus 
aureus RN4220: role of YpfP, the diglucosyldiacylglycerol synthase. Journal of 
bacteriology 183: 3506-3514. 

Kita, K., K. Konishi & Y. Anraku, (1984) Terminal oxidases of Escherichia coli aerobic 
respiratory chain. II. Purification and properties of cytochrome b558-d complex 
from cells grown with limited oxygen and evidence of branched electron-
carrying systems. The Journal of biological chemistry 259: 3375-3381. 

Kluytmans, J., A. van Belkum & H. Verbrugh, (1997) Nasal carriage of Staphylococcus 
aureus: epidemiology, underlying mechanisms, and associated risks. Clinical 
microbiology reviews 10: 505-520. 

Koch, H. U., R. Haas & W. Fischer, (1984) The role of lipoteichoic acid biosynthesis in 
membrane lipid metabolism of growing Staphylococcus aureus. European 
journal of biochemistry / FEBS 138: 357-363. 

Kojima, N., Y. Araki & E. Ito, (1985) Structure of the linkage units between ribitol 
teichoic acids and peptidoglycan. Journal of bacteriology 161: 299-306. 

Kreiswirth, B. N., S. Lofdahl, M. J. Betley, M. O'Reilly, P. M. Schlievert, M. S. 
Bergdoll & R. P. Novick, (1983) The toxic shock syndrome exotoxin structural 
gene is not detectably transmitted by a prophage. Nature 305: 709-712. 



 

337 
 

Kruse, T., J. Bork-Jensen & K. Gerdes, (2005) The morphogenetic MreBCD proteins of 
Escherichia coli form an essential membrane-bound complex. Molecular 
microbiology 55: 78-89. 

Kuriyan, J. & D. Eisenberg, (2007) The origin of protein interactions and allostery in 
colocalization. Nature 450: 983-990. 

Kuru, E., H. V. Hughes, P. J. Brown, E. Hall, S. Tekkam, F. Cava, M. A. de Pedro, Y. 
V. Brun & M. S. VanNieuwenhze, (2012) In Situ probing of newly synthesized 
peptidoglycan in live bacteria with fluorescent D-amino acids. Angew Chem Int 
Ed Engl 51: 12519-12523. 

Kusaka, J., S. Shuto, Y. Imai, K. Ishikawa, T. Saito, K. Natori, S. Matsuoka, H. Hara & 
K. Matsumoto, (2016) Septal localization by membrane targeting sequences and 
a conserved sequence essential for activity at the COOH-terminus of Bacillus 
subtilis cardiolipin synthase. Research in microbiology 167: 202-214. 

Kusumi, A., C. Nakada, K. Ritchie, K. Murase, K. Suzuki, H. Murakoshi, R. S. Kasai, J. 
Kondo & T. Fujiwara, (2005) Paradigm shift of the plasma membrane concept 
from the two-dimensional continuum fluid to the partitioned fluid: high-speed 
single-molecule tracking of membrane molecules. Annual review of biophysics 
and biomolecular structure 34: 351-378. 

Labischinski, H., K. Ehlert & B. Berger-Bachi, (1998) The targeting of factors 
necessary for expression of methicillin resistance in staphylococci. The Journal 
of antimicrobial chemotherapy 41: 581-584. 

Lackner, L. L., D. M. Raskin & P. A. de Boer, (2003) ATP-dependent interactions 
between Escherichia coli Min proteins and the phospholipid membrane in vitro. 
Journal of bacteriology 185: 735-749. 

Lam, H., W. B. Schofield & C. Jacobs-Wagner, (2006) A landmark protein essential for 
establishing and perpetuating the polarity of a bacterial cell. Cell 124: 1011-
1023. 

Land, A. D. & M. E. Winkler, (2011) The requirement for pneumococcal MreC and 
MreD is relieved by inactivation of the gene encoding PBP1a. Journal of 
bacteriology 193: 4166-4179. 

LaRocca, T. J., P. Pathak, S. Chiantia, A. Toledo, J. R. Silvius, J. L. Benach & E. 
London, (2013) Proving lipid rafts exist: membrane domains in the prokaryote 
Borrelia burgdorferi have the same properties as eukaryotic lipid rafts. PLoS 
pathogens 9: e1003353. 

Larsen, R. A., C. Cusumano, A. Fujioka, G. Lim-Fong, P. Patterson & J. Pogliano, 
(2007) Treadmilling of a prokaryotic tubulin-like protein, TubZ, required for 
plasmid stability in Bacillus thuringiensis. Genes & development 21: 1340-1352. 

Le, T. B., M. V. Imakaev, L. A. Mirny & M. T. Laub, (2013) High-resolution mapping 
of the spatial organization of a bacterial chromosome. Science 342: 731-734. 

Leaver, M. & J. Errington, (2005) Roles for MreC and MreD proteins in helical growth 
of the cylindrical cell wall in Bacillus subtilis. Molecular microbiology 57: 
1196-1209. 

Ledala, N., B. Zhang, J. Seravalli, R. Powers & G. A. Somerville, (2014) Influence of 
iron and aeration on Staphylococcus aureus growth, metabolism, and 
transcription. Journal of bacteriology 196: 2178-2189. 

Lee, C. Y., S. L. Buranen & Z. H. Ye, (1991) Construction of single-copy integration 
vectors for Staphylococcus aureus. Gene 103: 101-105. 

Lee, J. C. & G. C. Stewart, (2003) Essential nature of the mreC determinant of Bacillus 
subtilis. Journal of bacteriology 185: 4490-4498. 

Lee, P. C., C. M. Stopford, A. G. Svenson & A. Rietsch, (2010) Control of effector 
export by the Pseudomonas aeruginosa type III secretion proteins PcrG and 
PcrV. Molecular microbiology 75: 924-941. 



 

338 
 

Lefebvre, M., E. Tetaud, M. Thonnus, B. Salin, F. Boissier, C. Blancard, C. Sauvanet, 
C. Metzler, B. Espiau, A. Sahin & G. Merlin, (2013) LdFlabarin, a new BAR 
domain membrane protein of Leishmania Flagellum. PloS one 8: e76380. 

Leis, H. J., G. Fauler, G. N. Rechberger & W. Windischhofer, (2004) Electron-capture 
mass spectrometry: a powerful tool in biomedical trace level analysis. Current 
medicinal chemistry 11: 1585-1594. 

Lenarcic, R., S. Halbedel, L. Visser, M. Shaw, L. J. Wu, J. Errington, D. Marenduzzo & 
L. W. Hamoen, (2009) Localisation of DivIVA by targeting to negatively curved 
membranes. The EMBO journal 28: 2272-2282. 

Lenn, T., M. C. Leake & C. W. Mullineaux, (2008a) Are Escherichia coli OXPHOS 
complexes concentrated in specialized zones within the plasma membrane? 
Biochemical Society transactions 36: 1032-1036. 

Lenn, T., M. C. Leake & C. W. Mullineaux, (2008b) Clustering and dynamics of 
cytochrome bd-I complexes in the Escherichia coli plasma membrane in vivo. 
Molecular microbiology 70: 1397-1407. 

Lesley, J. A. & L. Shapiro, (2008) SpoT regulates DnaA stability and initiation of DNA 
replication in carbon-starved Caulobacter crescentus. Journal of bacteriology 
190: 6867-6880. 

Letek, M., E. Ordonez, J. Vaquera, W. Margolin, K. Flardh, L. M. Mateos & J. A. Gil, 
(2008) DivIVA is required for polar growth in the MreB-lacking rod-shaped 
actinomycete Corynebacterium glutamicum. Journal of bacteriology 190: 3283-
3292. 

Levin, P. A., P. S. Margolis, P. Setlow, R. Losick & D. Sun, (1992) Identification of 
Bacillus subtilis genes for septum placement and shape determination. Journal 
of bacteriology 174: 6717-6728. 

Lew, M. D., S. F. Lee, J. L. Ptacin, M. K. Lee, R. J. Twieg, L. Shapiro & W. E. 
Moerner, (2011) Three-dimensional superresolution colocalization of 
intracellular protein superstructures and the cell surface in live Caulobacter 
crescentus. Proceedings of the National Academy of Sciences of the United 
States of America 108: E1102-1110. 

Li, Q. X. & W. Dowhan, (1990) Studies on the mechanism of formation of the pyruvate 
prosthetic group of phosphatidylserine decarboxylase from Escherichia coli. The 
Journal of biological chemistry 265: 4111-4115. 

Li, S. J. & J. E. Cronan, Jr., (1992) The genes encoding the two carboxyltransferase 
subunits of Escherichia coli acetyl-CoA carboxylase. The Journal of biological 
chemistry 267: 16841-16847. 

Li, Y., K. Kurokawa, L. Reutimann, H. Mizumura, M. Matsuo & K. Sekimizu, (2007) 
DnaB and DnaI temperature-sensitive mutants of Staphylococcus aureus: 
evidence for involvement of DnaB and DnaI in synchrony regulation of 
chromosome replication. Microbiology 153: 3370-3379. 

Liedberg, B., C. Nylander & I. Lundstrom, (1995) Biosensing with surface plasmon 
resonance--how it all started. Biosensors & bioelectronics 10: i-ix. 

Lindas, A. C., M. Chruszcz, R. Bernander & K. Valegard, (2014) Structure of crenactin, 
an archaeal actin homologue active at 90 degrees C. Acta crystallographica. 
Section D, Biological crystallography 70: 492-500. 

Litzlbauer, J., M. Schifferer, D. Ng, A. Fabritius, T. Thestrup & O. Griesbeck, (2015) 
Large Scale Bacterial Colony Screening of Diversified FRET Biosensors. PloS 
one 10: e0119860. 

Liu, L. N., S. J. Bryan, F. Huang, J. Yu, P. J. Nixon, P. R. Rich & C. W. Mullineaux, 
(2012) Control of electron transport routes through redox-regulated 
redistribution of respiratory complexes. Proceedings of the National Academy of 
Sciences of the United States of America 109: 11431-11436. 



 

339 
 

Liu, Z., A. Mukherjee & J. Lutkenhaus, (1999) Recruitment of ZipA to the division site 
by interaction with FtsZ. Molecular microbiology 31: 1853-1861. 

Liu, Z., D. Xing, Q. P. Su, Y. Zhu, J. Zhang, X. Kong, B. Xue, S. Wang, H. Sun, Y. Tao 
& Y. Sun, (2014) Super-resolution imaging and tracking of protein-protein 
interactions in sub-diffraction cellular space. Nature communications 5: 4443. 

Longenecker, K. L., G. F. Stamper, P. J. Hajduk, E. H. Fry, C. G. Jakob, J. E. Harlan, R. 
Edalji, D. M. Bartley, K. A. Walter, L. R. Solomon, T. F. Holzman, Y. G. Gu, C. 
G. Lerner, B. A. Beutel & V. S. Stoll, (2005) Structure of MurF from 
Streptococcus pneumoniae co-crystallized with a small molecule inhibitor 
exhibits interdomain closure. Protein science : a publication of the Protein 
Society 14: 3039-3047. 

Loose, M., E. Fischer-Friedrich, J. Ries, K. Kruse & P. Schwille, (2008) Spatial 
regulators for bacterial cell division self-organize into surface waves in vitro. 
Science 320: 789-792. 

Loose, M., K. Kruse & P. Schwille, (2011) Protein self-organization: lessons from the 
min system. Annual review of biophysics 40: 315-336. 

Lopez, D. & R. Kolter, (2010) Functional microdomains in bacterial membranes. Genes 
& development 24: 1893-1902. 

Lopian, L., Y. Elisha, A. Nussbaum-Shochat & O. Amster-Choder, (2010) Spatial and 
temporal organization of the E. coli PTS components. The EMBO journal 29: 
3630-3645. 

Lovering, A. L. & N. C. Strynadka, (2007) High-resolution structure of the major 
periplasmic domain from the cell shape-determining filament MreC. Journal of 
molecular biology 372: 1034-1044. 

Lowe, J. & L. A. Amos, (1998) Crystal structure of the bacterial cell-division protein 
FtsZ. Nature 391: 203-206. 

Lowy, F. D., (1998) Staphylococcus aureus infections. The New England journal of 
medicine 339: 520-532. 

Lu, Y. J., Y. M. Zhang, K. D. Grimes, J. Qi, R. E. Lee & C. O. Rock, (2006) Acyl-
phosphates initiate membrane phospholipid synthesis in Gram-positive 
pathogens. Molecular cell 23: 765-772. 

Luong, T. T. & C. Y. Lee, (2007) Improved single-copy integration vectors for 
Staphylococcus aureus. Journal of microbiological methods 70: 186-190. 

Lutkenhaus, J., (2007) Assembly dynamics of the bacterial MinCDE system and spatial 
regulation of the Z ring. Annual review of biochemistry 76: 539-562. 

Lutkenhaus, J., (2008) Min oscillation in bacteria. Advances in experimental medicine 
and biology 641: 49-61. 

Lutkenhaus, J. F., H. Wolf-Watz & W. D. Donachie, (1980) Organization of genes in 
the ftsA-envA region of the Escherichia coli genetic map and identification of a 
new fts locus (ftsZ). Journal of bacteriology 142: 615-620. 

Ma, B., C. M. Reynolds & C. R. Raetz, (2008) Periplasmic orientation of nascent lipid 
A in the inner membrane of an Escherichia coli LptA mutant. Proceedings of the 
National Academy of Sciences of the United States of America 105: 13823-
13828. 

Ma, L., G. F. King & L. Rothfield, (2004) Positioning of the MinE binding site on the 
MinD surface suggests a plausible mechanism for activation of the Escherichia 
coli MinD ATPase during division site selection. Molecular microbiology 54: 
99-108. 

Ma, X. & W. Margolin, (1999) Genetic and functional analyses of the conserved C-
terminal core domain of Escherichia coli FtsZ. Journal of bacteriology 181: 
7531-7544. 

MacKinnon, R., (2003) Potassium channels. FEBS letters 555: 62-65. 



 

340 
 

Majerczyk, C. D., P. M. Dunman, T. T. Luong, C. Y. Lee, M. R. Sadykov, G. A. 
Somerville, K. Bodi & A. L. Sonenshein, (2010) Direct targets of CodY in 
Staphylococcus aureus. Journal of bacteriology 192: 2861-2877. 

Mani, N., P. Tobin & R. K. Jayaswal, (1993) Isolation and characterization of autolysis-
defective mutants of Staphylococcus aureus created by Tn917-lacZ mutagenesis. 
Journal of bacteriology 175: 1493-1499. 

Marbouty, M., C. Saguez, C. Cassier-Chauvat & F. Chauvat, (2009) ZipN, an FtsA-like 
orchestrator of divisome assembly in the model cyanobacterium Synechocystis 
PCC6803. Molecular microbiology 74: 409-420. 

Margolin, W., (2012) The price of tags in protein localization studies. Journal of 
bacteriology 194: 6369-6371. 

Marguet, D., P. F. Lenne, H. Rigneault & H. T. He, (2006) Dynamics in the plasma 
membrane: how to combine fluidity and order. The EMBO journal 25: 3446-
3457. 

Marston, A. L. & J. Errington, (1999) Selection of the midcell division site in Bacillus 
subtilis through MinD-dependent polar localization and activation of MinC. 
Molecular microbiology 33: 84-96. 

Marston, A. L., H. B. Thomaides, D. H. Edwards, M. E. Sharpe & J. Errington, (1998) 
Polar localization of the MinD protein of Bacillus subtilis and its role in 
selection of the mid-cell division site. Genes & development 12: 3419-3430. 

Martens, S. & H. T. McMahon, (2008) Mechanisms of membrane fusion: disparate 
players and common principles. Nature reviews. Molecular cell biology 9: 543-
556. 

Martin, P. K., T. Li, D. Sun, D. P. Biek & M. B. Schmid, (1999) Role in cell 
permeability of an essential two-component system in Staphylococcus aureus. 
Journal of bacteriology 181: 3666-3673. 

Martos, A., M. Jimenez, G. Rivas & P. Schwille, (2012a) Towards a bottom-up 
reconstitution of bacterial cell division. Trends in cell biology 22: 634-643. 

Martos, A., B. Monterroso, S. Zorrilla, B. Reija, C. Alfonso, J. Mingorance, G. Rivas & 
M. Jimenez, (2012b) Isolation, characterization and lipid-binding properties of 
the recalcitrant FtsA division protein from Escherichia coli. PloS one 7: e39829. 

Martos, A., Z. Petrasek & P. Schwille, (2013) Propagation of MinCDE waves on free-
standing membranes. Environmental microbiology 15: 3319-3326. 

Massengo-Tiasse, R. P. & J. E. Cronan, (2008) Vibrio cholerae FabV defines a new 
class of enoyl-acyl carrier protein reductase. The Journal of biological chemistry 
283: 1308-1316. 

Matsumoto, K., H. Hara, I. Fishov, E. Mileykovskaya & V. Norris, (2015) The 
membrane: transertion as an organizing principle in membrane heterogeneity. 
Frontiers in microbiology 6: 572. 

Matsuo, M., K. Kurokawa, S. Nishida, Y. Li, H. Takimura, C. Kaito, N. Fukuhara, H. 
Maki, K. Miura, K. Murakami & K. Sekimizu, (2003) Isolation and mutation 
site determination of the temperature-sensitive murB mutants of Staphylococcus 
aureus. FEMS microbiology letters 222: 107-113. 

Mazmanian, S. K., G. Liu, H. Ton-That & O. Schneewind, (1999) Staphylococcus 
aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 
285: 760-763. 

Mazmanian, S. K., E. P. Skaar, A. H. Gaspar, M. Humayun, P. Gornicki, J. Jelenska, A. 
Joachmiak, D. M. Missiakas & O. Schneewind, (2003) Passage of heme-iron 
across the envelope of Staphylococcus aureus. Science 299: 906-909. 

Mazouni, K., F. Domain, C. Cassier-Chauvat & F. Chauvat, (2004) Molecular analysis 
of the key cytokinetic components of cyanobacteria: FtsZ, ZipN and MinCDE. 
Molecular microbiology 52: 1145-1158. 



 

341 
 

McDevitt, D., P. Francois, P. Vaudaux & T. J. Foster, (1994) Molecular characterization 
of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. 
Molecular microbiology 11: 237-248. 

McMahon, H. T. & J. L. Gallop, (2005) Membrane curvature and mechanisms of 
dynamic cell membrane remodelling. Nature 438: 590-596. 

McMahon, H. T., M. M. Kozlov & S. Martens, (2010) Membrane curvature in synaptic 
vesicle fusion and beyond. Cell 140: 601-605. 

Meeske, A. J., L. T. Sham, H. Kimsey, B. M. Koo, C. A. Gross, T. G. Bernhardt & D. 
Z. Rudner, (2015) MurJ and a novel lipid II flippase are required for cell wall 
biogenesis in Bacillus subtilis. Proceedings of the National Academy of Sciences 
of the United States of America 112: 6437-6442. 

Meile, J. C., L. J. Wu, S. D. Ehrlich, J. Errington & P. Noirot, (2006) Systematic 
localisation of proteins fused to the green fluorescent protein in Bacillus subtilis: 
identification of new proteins at the DNA replication factory. Proteomics 6: 
2135-2146. 

Mengin-Lecreulx, D., L. Texier, M. Rousseau & J. van Heijenoort, (1991) The murG 
gene of Escherichia coli codes for the UDP-N-acetylglucosamine: N-
acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-
acetylglucosamine transferase involved in the membrane steps of peptidoglycan 
synthesis. Journal of bacteriology 173: 4625-4636. 

Meniche, X., R. Otten, M. S. Siegrist, C. E. Baer, K. C. Murphy, C. R. Bertozzi & C. 
M. Sassetti, (2014) Subpolar addition of new cell wall is directed by DivIVA in 
mycobacteria. Proceedings of the National Academy of Sciences of the United 
States of America 111: E3243-3251. 

Mercer, K. L. & D. S. Weiss, (2002) The Escherichia coli cell division protein FtsW is 
required to recruit its cognate transpeptidase, FtsI (PBP3), to the division site. 
Journal of bacteriology 184: 904-912. 

Mercier, R., Y. Kawai & J. Errington, (2013) Excess membrane synthesis drives a 
primitive mode of cell proliferation. Cell 152: 997-1007. 

Mercier, R., Y. Kawai & J. Errington, (2014) General principles for the formation and 
proliferation of a wall-free (L-form) state in bacteria. eLife 3. 

Merino, S., N. Jimenez, R. Molero, L. Bouamama, M. Regue & J. M. Tomas, (2011) A 
UDP-HexNAc:polyprenol-P GalNAc-1-P transferase (WecP) representing a new 
subgroup of the enzyme family. Journal of bacteriology 193: 1943-1952. 

Mileykovskaya, E., (2007) Subcellular localization of Escherichia coli osmosensory 
transporter ProP: focus on cardiolipin membrane domains. Molecular 
microbiology 64: 1419-1422. 

Mileykovskaya, E. & W. Dowhan, (2000) Visualization of phospholipid domains in 
Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl 
acridine orange. Journal of bacteriology 182: 1172-1175. 

Miller, D. J., A. Jerga, C. O. Rock & S. W. White, (2008) Analysis of the 
Staphylococcus aureus DgkB structure reveals a common catalytic mechanism 
for the soluble diacylglycerol kinases. Structure 16: 1036-1046. 

Miller, M. J. & R. B. Gennis, (1983) The purification and characterization of the 
cytochrome d terminal oxidase complex of the Escherichia coli aerobic 
respiratory chain. The Journal of biological chemistry 258: 9159-9165. 

Mim, C. & V. M. Unger, (2012) Membrane curvature and its generation by BAR 
proteins. Trends in biochemical sciences 37: 526-533. 

Miroux, B. & J. E. Walker, (1996) Over-production of proteins in Escherichia coli: 
mutant hosts that allow synthesis of some membrane proteins and globular 
proteins at high levels. Journal of molecular biology 260: 289-298. 



 

342 
 

Mirouze, N., C. Ferret, Z. Yao, A. Chastanet & R. Carballido-Lopez, (2015) MreB-
Dependent Inhibition of Cell Elongation during the Escape from Competence in 
Bacillus subtilis. PLoS genetics 11: e1005299. 

Mishra, N. N., S. J. Yang, A. Sawa, A. Rubio, C. C. Nast, M. R. Yeaman & A. S. 
Bayer, (2009) Analysis of cell membrane characteristics of in vitro-selected 
daptomycin-resistant strains of methicillin-resistant Staphylococcus aureus. 
Antimicrobial agents and chemotherapy 53: 2312-2318. 

Miyagishima, S. Y., H. Nozaki, K. Nishida, M. Matsuzaki & T. Kuroiwa, (2004) Two 
types of FtsZ proteins in mitochondria and red-lineage chloroplasts: the 
duplication of FtsZ is implicated in endosymbiosis. Journal of molecular 
evolution 58: 291-303. 

Miyazaki, C., M. Kuroda, A. Ohta & I. Shibuya, (1985) Genetic manipulation of 
membrane phospholipid composition in Escherichia coli: pgsA mutants 
defective in phosphatidylglycerol synthesis. Proceedings of the National 
Academy of Sciences of the United States of America 82: 7530-7534. 

Mohammadi, T., A. Karczmarek, M. Crouvoisier, A. Bouhss, D. Mengin-Lecreulx & T. 
den Blaauwen, (2007) The essential peptidoglycan glycosyltransferase MurG 
forms a complex with proteins involved in lateral envelope growth as well as 
with proteins involved in cell division in Escherichia coli. Molecular 
microbiology 65: 1106-1121. 

Mohammadi, T., V. van Dam, R. Sijbrandi, T. Vernet, A. Zapun, A. Bouhss, M. 
Diepeveen-de Bruin, M. Nguyen-Disteche, B. de Kruijff & E. Breukink, (2011) 
Identification of FtsW as a transporter of lipid-linked cell wall precursors across 
the membrane. The EMBO journal 30: 1425-1432. 

Monahan, L. G., A. T. Liew, A. L. Bottomley & E. J. Harry, (2014) Division site 
positioning in bacteria: one size does not fit all. Frontiers in microbiology 5: 19. 

Montabana, E. A. & D. A. Agard, (2014) Bacterial tubulin TubZ-Bt transitions between 
a two-stranded intermediate and a four-stranded filament upon GTP hydrolysis. 
Proceedings of the National Academy of Sciences of the United States of 
America 111: 3407-3412. 

Monteiro, J. M., P. B. Fernandes, F. Vaz, A. R. Pereira, A. C. Tavares, M. T. Ferreira, 
P. M. Pereira, H. Veiga, E. Kuru, M. S. VanNieuwenhze, Y. V. Brun, S. R. 
Filipe & M. G. Pinho, (2015) Cell shape dynamics during the staphylococcal 
cell cycle. Nature communications 6: 8055. 

Morell, M., A. Espargaro, F. X. Aviles & S. Ventura, (2008) Study and selection of in 
vivo protein interactions by coupling bimolecular fluorescence complementation 
and flow cytometry. Nature protocols 3: 22-33. 

Muchova, K., A. J. Wilkinson & I. Barak, (2011) Changes of lipid domains in Bacillus 
subtilis cells with disrupted cell wall peptidoglycan. FEMS microbiology letters 
325: 92-98. 

Mukherjee, A. & J. Lutkenhaus, (1994) Guanine nucleotide-dependent assembly of 
FtsZ into filaments. Journal of bacteriology 176: 2754-2758. 

Mukherjee, A., C. Saez & J. Lutkenhaus, (2001) Assembly of an FtsZ mutant deficient 
in GTPase activity has implications for FtsZ assembly and the role of the Z ring 
in cell division. Journal of bacteriology 183: 7190-7197. 

Mukhopadhyay, R., K. C. Huang & N. S. Wingreen, (2008) Lipid localization in 
bacterial cells through curvature-mediated microphase separation. Biophysical 
journal 95: 1034-1049. 

Muller, P., C. Ewers, U. Bertsche, M. Anstett, T. Kallis, E. Breukink, C. Fraipont, M. 
Terrak, M. Nguyen-Disteche & W. Vollmer, (2007) The essential cell division 
protein FtsN interacts with the murein (peptidoglycan) synthase PBP1B in 
Escherichia coli. The Journal of biological chemistry 282: 36394-36402. 



 

343 
 

Neuhaus, F. C. & J. Baddiley, (2003) A continuum of anionic charge: structures and 
functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiology and 
molecular biology reviews : MMBR 67: 686-723. 

Neumann-Giesen, C., B. Falkenbach, P. Beicht, S. Claasen, G. Luers, C. A. Stuermer, 
V. Herzog & R. Tikkanen, (2004) Membrane and raft association of reggie-
1/flotillin-2: role of myristoylation, palmitoylation and oligomerization and 
induction of filopodia by overexpression. The Biochemical journal 378: 509-
518. 

Nguyen, L. T., J. C. Gumbart, M. Beeby & G. J. Jensen, (2015) Coarse-grained 
simulations of bacterial cell wall growth reveal that local coordination alone can 
be sufficient to maintain rod shape. Proceedings of the National Academy of 
Sciences of the United States of America 112: E3689-3698. 

Nishibori, A., J. Kusaka, H. Hara, M. Umeda & K. Matsumoto, (2005) 
Phosphatidylethanolamine domains and localization of phospholipid synthases 
in Bacillus subtilis membranes. Journal of bacteriology 187: 2163-2174. 

Nishizawa, M., Y. Yabusaki & M. Kanaoka, (2011) Identification of the catalytic 
residues of carboxylesterase from Arthrobacter globiformis by diisopropyl 
fluorophosphate-labeling and site-directed mutagenesis. Bioscience, 
biotechnology, and biochemistry 75: 89-94. 

Niu, L. & J. Yu, (2008) Investigating intracellular dynamics of FtsZ cytoskeleton with 
photoactivation single-molecule tracking. Biophysical journal 95: 2009-2016. 

Nogales, E., S. G. Wolf & K. H. Downing, (1998) Structure of the alpha beta tubulin 
dimer by electron crystallography. Nature 391: 199-203. 

Noirclerc-Savoye, M., A. Le Gouellec, C. Morlot, O. Dideberg, T. Vernet & A. Zapun, 
(2005) In vitro reconstitution of a trimeric complex of DivIB, DivIC and FtsL, 
and their transient co-localization at the division site in Streptococcus 
pneumoniae. Molecular microbiology 55: 413-424. 

Novick, R. P., (1991) Genetic systems in staphylococci. Methods in enzymology 204: 
587-636. 

Ogston, A., (1882) Micrococcus Poisoning. Journal of anatomy and physiology 17: 24-
58. 

Ohniwa, R. L., K. Kitabayashi & K. Morikawa, (2013) Alternative cardiolipin synthase 
Cls1 compensates for stalled Cls2 function in Staphylococcus aureus under 
conditions of acute acid stress. FEMS microbiology letters 338: 141-146. 

Ohno, Y., I. Yano & M. Masui, (1979) Effect of NaCl concentration and temperature on 
the phospholipid and fatty acid compositions of a moderately halophilic 
bacterium, Pseudomonas halosaccharolytica. Journal of biochemistry 85: 413-
421. 

Okuda, S., D. J. Sherman, T. J. Silhavy, N. Ruiz & D. Kahne, (2016) 
Lipopolysaccharide transport and assembly at the outer membrane: the PEZ 
model. Nature reviews. Microbiology 14: 337-345. 

Okuno, T., M. Ogoh, H. Tanina, N. Funasaki & K. Kogure, (2009) Direct monitoring of 
interaction between Escherichia coli proteins, MinC and monomeric FtsZ, in 
solution. Biological & pharmaceutical bulletin 32: 1473-1475. 

Oliva, M. A., S. C. Cordell & J. Lowe, (2004) Structural insights into FtsZ 
protofilament formation. Nature structural & molecular biology 11: 1243-1250. 

Oliva, M. A., S. Halbedel, S. M. Freund, P. Dutow, T. A. Leonard, D. B. Veprintsev, L. 
W. Hamoen & J. Lowe, (2010) Features critical for membrane binding revealed 
by DivIVA crystal structure. The EMBO journal 29: 1988-2001. 

Osawa, M., D. E. Anderson & H. P. Erickson, (2008) Reconstitution of contractile FtsZ 
rings in liposomes. Science 320: 792-794. 



 

344 
 

Osawa, M. & H. P. Erickson, (2011) Inside-out Z rings--constriction with and without 
GTP hydrolysis. Molecular microbiology 81: 571-579. 

Osawa, M. & H. P. Erickson, (2013) Liposome division by a simple bacterial division 
machinery. Proceedings of the National Academy of Sciences of the United 
States of America 110: 11000-11004. 

Over, B., R. Heusser, N. McCallum, B. Schulthess, P. Kupferschmied, J. M. Gaiani, C. 
D. Sifri, B. Berger-Bachi & P. Stutzmann Meier, (2011) LytR-CpsA-Psr 
proteins in Staphylococcus aureus display partial functional redundancy and the 
deletion of all three severely impairs septum placement and cell separation. 
FEMS microbiology letters 320: 142-151. 

Paoletti, L., Y. J. Lu, G. E. Schujman, D. de Mendoza & C. O. Rock, (2007) Coupling 
of fatty acid and phospholipid synthesis in Bacillus subtilis. Journal of 
bacteriology 189: 5816-5824. 

Park, K. T., W. Wu, K. P. Battaile, S. Lovell, T. Holyoak & J. Lutkenhaus, (2011) The 
Min oscillator uses MinD-dependent conformational changes in MinE to 
spatially regulate cytokinesis. Cell 146: 396-407. 

Parry, B. R., I. V. Surovtsev, M. T. Cabeen, C. S. O'Hern, E. R. Dufresne & C. Jacobs-
Wagner, (2014) The bacterial cytoplasm has glass-like properties and is 
fluidized by metabolic activity. Cell 156: 183-194. 

Parsons, J. B. & C. O. Rock, (2013) Bacterial lipids: metabolism and membrane 
homeostasis. Progress in lipid research 52: 249-276. 

Parthasarathy, R., C. H. Yu & J. T. Groves, (2006) Curvature-modulated phase 
separation in lipid bilayer membranes. Langmuir : the ACS journal of surfaces 
and colloids 22: 5095-5099. 

Patching, S. G., (2014) Surface plasmon resonance spectroscopy for characterisation of 
membrane protein-ligand interactions and its potential for drug discovery. 
Biochimica et biophysica acta 1838: 43-55. 

Patrick, J. E. & D. B. Kearns, (2008) MinJ (YvjD) is a topological determinant of cell 
division in Bacillus subtilis. Molecular microbiology 70: 1166-1179. 

Peacock, S. J., I. de Silva & F. D. Lowy, (2001) What determines nasal carriage of 
Staphylococcus aureus? Trends in microbiology 9: 605-610. 

Perdih, A., M. Kotnik, M. Hodoscek & T. Solmajer, (2007) Targeted molecular 
dynamics simulation studies of binding and conformational changes in E. coli 
MurD. Proteins 68: 243-254. 

Pereira, S. F., A. O. Henriques, M. G. Pinho, H. de Lencastre & A. Tomasz, (2007) 
Role of PBP1 in cell division of Staphylococcus aureus. Journal of bacteriology 
189: 3525-3531. 

Perozo, E. & D. C. Rees, (2003) Structure and mechanism in prokaryotic 
mechanosensitive channels. Current opinion in structural biology 13: 432-442. 

Perry, S. E. & D. H. Edwards, (2004) Identification of a polar targeting determinant for 
Bacillus subtilis DivIVA. Molecular microbiology 54: 1237-1249. 

Peschel, A., R. W. Jack, M. Otto, L. V. Collins, P. Staubitz, G. Nicholson, H. 
Kalbacher, W. F. Nieuwenhuizen, G. Jung, A. Tarkowski, K. P. van Kessel & J. 
A. van Strijp, (2001) Staphylococcus aureus resistance to human defensins and 
evasion of neutrophil killing via the novel virulence factor MprF is based on 
modification of membrane lipids with l-lysine. The Journal of experimental 
medicine 193: 1067-1076. 

Peter, B. J., H. M. Kent, I. G. Mills, Y. Vallis, P. J. Butler, P. R. Evans & H. T. 
McMahon, (2004) BAR domains as sensors of membrane curvature: the 
amphiphysin BAR structure. Science 303: 495-499. 

Phillips, R., (2013) In retrospect: The Feynman Lectures on Physics. Nature 504: 30-31. 



 

345 
 

Pichoff, S. & J. Lutkenhaus, (2005) Tethering the Z ring to the membrane through a 
conserved membrane targeting sequence in FtsA. Molecular microbiology 55: 
1722-1734. 

Pinho, M. G. & J. Errington, (2003) Dispersed mode of Staphylococcus aureus cell wall 
synthesis in the absence of the division machinery. Molecular microbiology 50: 
871-881. 

Pinho, M. G. & J. Errington, (2004) A divIVA null mutant of Staphylococcus aureus 
undergoes normal cell division. FEMS microbiology letters 240: 145-149. 

Pinho, M. G. & J. Errington, (2005) Recruitment of penicillin-binding protein PBP2 to 
the division site of Staphylococcus aureus is dependent on its transpeptidation 
substrates. Molecular microbiology 55: 799-807. 

Pinho, M. G., M. Kjos & J. W. Veening, (2013) How to get (a)round: mechanisms 
controlling growth and division of coccoid bacteria. Nature reviews. 
Microbiology 11: 601-614. 

Pogliano, J., N. Pogliano & J. A. Silverman, (2012) Daptomycin-mediated 
reorganization of membrane architecture causes mislocalization of essential cell 
division proteins. Journal of bacteriology 194: 4494-4504. 

Pohl, K., P. Francois, L. Stenz, F. Schlink, T. Geiger, S. Herbert, C. Goerke, J. 
Schrenzel & C. Wolz, (2009) CodY in Staphylococcus aureus: a regulatory link 
between metabolism and virulence gene expression. Journal of bacteriology 
191: 2953-2963. 

Polka, J. K., J. M. Kollman & R. D. Mullins, (2014) Accessory factors promote AlfA-
dependent plasmid segregation by regulating filament nucleation, disassembly, 
and bundling. Proceedings of the National Academy of Sciences of the United 
States of America 111: 2176-2181. 

Popp, D., W. Xu, A. Narita, A. J. Brzoska, R. A. Skurray, N. Firth, U. Ghoshdastider, 
Y. Maeda, R. C. Robinson & M. A. Schumacher, (2010) Structure and filament 
dynamics of the pSK41 actin-like ParM protein: implications for plasmid DNA 
segregation. The Journal of biological chemistry 285: 10130-10140. 

Potrykus, K. & M. Cashel, (2008) (p)ppGpp: still magical? Annual review of 
microbiology 62: 35-51. 

Powell, D. A., M. Duckworth & J. Baddiley, (1975) A membrane-associated 
lipomannan in micrococci. The Biochemical journal 151: 387-397. 

Prescott, D. J. & P. R. Vagelos, (1970) Acyl carrier protein. XIV. Further studies on 
beta-ketoacyl acyl carrier protein synthetase from Escherichia coli. The Journal 
of biological chemistry 245: 5484-5490. 

Price, A. C., K. H. Choi, R. J. Heath, Z. Li, S. W. White & C. O. Rock, (2001) 
Inhibition of beta-ketoacyl-acyl carrier protein synthases by thiolactomycin and 
cerulenin. Structure and mechanism. The Journal of biological chemistry 276: 
6551-6559. 

Qamar, A. & D. Golemi-Kotra, (2012) Dual roles of FmtA in Staphylococcus aureus 
cell wall biosynthesis and autolysis. Antimicrobial agents and chemotherapy 56: 
3797-3805. 

Qiu, X., A. E. Choudhry, C. A. Janson, M. Grooms, R. A. Daines, J. T. Lonsdale & S. 
S. Khandekar, (2005) Crystal structure and substrate specificity of the beta-
ketoacyl-acyl carrier protein synthase III (FabH) from Staphylococcus aureus. 
Protein science : a publication of the Protein Society 14: 2087-2094. 

Qoronfleh, M. W., J. E. Gustafson & B. J. Wilkinson, (1998) Conditions that induce 
Staphylococcus aureus heat shock proteins also inhibit autolysis. FEMS 
microbiology letters 166: 103-107. 

Qoronfleh, M. W., U. N. Streips & B. J. Wilkinson, (1990) Basic features of the 
staphylococcal heat shock response. Antonie van Leeuwenhoek 58: 79-86. 



 

346 
 

Raetz, C. R. & C. Whitfield, (2002) Lipopolysaccharide endotoxins. Annual review of 
biochemistry 71: 635-700. 

Ramamurthi, K. S., (2010) Protein localization by recognition of membrane curvature. 
Current opinion in microbiology 13: 753-757. 

Ramamurthi, K. S., S. Lecuyer, H. A. Stone & R. Losick, (2009) Geometric cue for 
protein localization in a bacterium. Science 323: 1354-1357. 

Ramamurthi, K. S. & R. Losick, (2009) Negative membrane curvature as a cue for 
subcellular localization of a bacterial protein. Proceedings of the National 
Academy of Sciences of the United States of America 106: 13541-13545. 

Raskin, D. M. & P. A. de Boer, (1997) The MinE ring: an FtsZ-independent cell 
structure required for selection of the correct division site in E. coli. Cell 91: 
685-694. 

Raskin, D. M. & P. A. de Boer, (1999) MinDE-dependent pole-to-pole oscillation of 
division inhibitor MinC in Escherichia coli. Journal of bacteriology 181: 6419-
6424. 

Ray, P. H., T. T. Lillich & D. C. White, (1972) Consequences of glycerol deprivation 
on the synthesis of membrane components in a glycerol auxotroph of 
Staphylococcus aureus. Journal of bacteriology 112: 413-420. 

Ray, P. H. & D. C. White, (1972) Effect of glycerol deprivation on the phospholipid 
metabolism of a glycerol auxotroph of Staphylococcus aureus. Journal of 
bacteriology 109: 668-677. 

Reddy, V. M. & B. Kumar, (2000) Interaction of Mycobacterium avium complex with 
human respiratory epithelial cells. The Journal of infectious diseases 181: 1189-
1193. 

Reichmann, N. T. & A. Grundling, (2011) Location, synthesis and function of 
glycolipids and polyglycerolphosphate lipoteichoic acid in Gram-positive 
bacteria of the phylum Firmicutes. FEMS microbiology letters 319: 97-105. 

Reichmann, N. T., C. Picarra Cassona, J. M. Monteiro, A. L. Bottomley, R. M. 
Corrigan, S. J. Foster, M. G. Pinho & A. Grundling, (2014) Differential 
localization of LTA synthesis proteins and their interaction with the cell division 
machinery in Staphylococcus aureus. Molecular microbiology 92: 273-286. 

Reimold, C., H. J. Defeu Soufo, F. Dempwolff & P. L. Graumann, (2013) Motion of 
variable-length MreB filaments at the bacterial cell membrane influences cell 
morphology. Molecular biology of the cell 24: 2340-2349. 

Renner, L. D., P. Eswaramoorthy, K. S. Ramamurthi & D. B. Weibel, (2013) Studying 
biomolecule localization by engineering bacterial cell wall curvature. PloS one 
8: e84143. 

Renner, L. D. & D. B. Weibel, (2011) Cardiolipin microdomains localize to negatively 
curved regions of Escherichia coli membranes. Proceedings of the National 
Academy of Sciences of the United States of America 108: 6264-6269. 

Rietveld, A. & K. Simons, (1998) The differential miscibility of lipids as the basis for 
the formation of functional membrane rafts. Biochimica et biophysica acta 1376: 
467-479. 

Rodionov, O., M. Lobocka & M. Yarmolinsky, (1999) Silencing of genes flanking the 
P1 plasmid centromere. Science 283: 546-549. 

Rohrer, S. & B. Berger-Bachi, (2003) Application of a bacterial two-hybrid system for 
the analysis of protein-protein interactions between FemABX family proteins. 
Microbiology 149: 2733-2738. 

Rohrer, S., K. Ehlert, M. Tschierske, H. Labischinski & B. Berger-Bachi, (1999) The 
essential Staphylococcus aureus gene fmhB is involved in the first step of 
peptidoglycan pentaglycine interpeptide formation. Proceedings of the National 
Academy of Sciences of the United States of America 96: 9351-9356. 



 

347 
 

Romantsov, T., A. R. Battle, J. L. Hendel, B. Martinac & J. M. Wood, (2010) Protein 
localization in Escherichia coli cells: comparison of the cytoplasmic membrane 
proteins ProP, LacY, ProW, AqpZ, MscS, and MscL. Journal of bacteriology 
192: 912-924. 

Romantsov, T., S. Helbig, D. E. Culham, C. Gill, L. Stalker & J. M. Wood, (2007) 
Cardiolipin promotes polar localization of osmosensory transporter ProP in 
Escherichia coli. Molecular microbiology 64: 1455-1465. 

Rosander, A., J. Bjerketorp, L. Frykberg & K. Jacobsson, (2002) Phage display as a 
novel screening method to identify extracellular proteins. Journal of 
microbiological methods 51: 43-55. 

Roux, C. M., J. P. DeMuth & P. M. Dunman, (2011) Characterization of components of 
the Staphylococcus aureus mRNA degradosome holoenzyme-like complex. 
Journal of bacteriology 193: 5520-5526. 

Rowland, S. L., K. D. Wadsworth, S. A. Robson, C. Robichon, J. Beckwith & G. F. 
King, (2010) Evidence from artificial septal targeting and site-directed 
mutagenesis that residues in the extracytoplasmic beta domain of DivIB mediate 
its interaction with the divisomal transpeptidase PBP 2B. Journal of 
bacteriology 192: 6116-6125. 

Rowlett, V. W. & W. Margolin, (2015) The Min system and other nucleoid-independent 
regulators of Z ring positioning. Frontiers in microbiology 6: 478. 

Rubinchik, E., T. Schneider, M. Elliott, W. R. Scott, J. Pan, C. Anklin, H. Yang, D. 
Dugourd, A. Muller, K. Gries, S. K. Straus, H. G. Sahl & R. E. Hancock, (2011) 
Mechanism of action and limited cross-resistance of new lipopeptide MX-2401. 
Antimicrobial agents and chemotherapy 55: 2743-2754. 

Ruiz-Avila, L. B., S. Huecas, M. Artola, A. Vergonos, E. Ramirez-Aportela, E. 
Cercenado, I. Barasoain, H. Vazquez-Villa, M. Martin-Fontecha, P. Chacon, M. 
L. Lopez-Rodriguez & J. M. Andreu, (2013) Synthetic inhibitors of bacterial cell 
division targeting the GTP-binding site of FtsZ. ACS chemical biology 8: 2072-
2083. 

Saarikangas, J., H. Zhao, A. Pykalainen, P. Laurinmaki, P. K. Mattila, P. K. Kinnunen, 
S. J. Butcher & P. Lappalainen, (2009) Molecular mechanisms of membrane 
deformation by I-BAR domain proteins. Current biology : CB 19: 95-107. 

Saenz, J. P., D. Grosser, A. S. Bradley, T. J. Lagny, O. Lavrynenko, M. Broda & K. 
Simons, (2015) Hopanoids as functional analogues of cholesterol in bacterial 
membranes. Proceedings of the National Academy of Sciences of the United 
States of America 112: 11971-11976. 

Saenz, J. P., E. Sezgin, P. Schwille & K. Simons, (2012) Functional convergence of 
hopanoids and sterols in membrane ordering. Proceedings of the National 
Academy of Sciences of the United States of America 109: 14236-14240. 

Salje, J., F. van den Ent, P. de Boer & J. Lowe, (2011) Direct membrane binding by 
bacterial actin MreB. Molecular cell 43: 478-487. 

Samuel, G. & P. Reeves, (2003) Biosynthesis of O-antigens: genes and pathways 
involved in nucleotide sugar precursor synthesis and O-antigen assembly. 
Carbohydrate research 338: 2503-2519. 

Santos, T. M., T. Y. Lin, M. Rajendran, S. M. Anderson & D. B. Weibel, (2014) Polar 
localization of Escherichia coli chemoreceptors requires an intact Tol-Pal 
complex. Molecular microbiology 92: 985-1004. 

Sato, Y., M. Kameya, H. Arai, M. Ishii & Y. Igarashi, (2011) Detecting weak protein-
protein interactions by modified far-western blotting. Journal of bioscience and 
bioengineering 112: 304-307. 

Scheffers, D. & A. J. Driessen, (2001) The polymerization mechanism of the bacterial 
cell division protein FtsZ. FEBS letters 506: 6-10. 



 

348 
 

Scheffers, D. J. & M. G. Pinho, (2005) Bacterial cell wall synthesis: new insights from 
localization studies. Microbiology and molecular biology reviews : MMBR 69: 
585-607. 

Schirner, K., Y. J. Eun, M. Dion, Y. Luo, J. D. Helmann, E. C. Garner & S. Walker, 
(2015) Lipid-linked cell wall precursors regulate membrane association of 
bacterial actin MreB. Nature chemical biology 11: 38-45. 

Schirner, K., L. K. Stone & S. Walker, (2011) ABC transporters required for export of 
wall teichoic acids do not discriminate between different main chain polymers. 
ACS chemical biology 6: 407-412. 

Schlag, M., R. Biswas, B. Krismer, T. Kohler, S. Zoll, W. Yu, H. Schwarz, A. Peschel 
& F. Gotz, (2010) Role of staphylococcal wall teichoic acid in targeting the 
major autolysin Atl. Molecular microbiology 75: 864-873. 

Schmidt, K. L., N. D. Peterson, R. J. Kustusch, M. C. Wissel, B. Graham, G. J. Phillips 
& D. S. Weiss, (2004) A predicted ABC transporter, FtsEX, is needed for cell 
division in Escherichia coli. Journal of bacteriology 186: 785-793. 

Schumacher, M. A., (2012) Bacterial plasmid partition machinery: a minimalist 
approach to survival. Current opinion in structural biology 22: 72-79. 

Seligman, S. J. & M. R. Pincus, (1987) A model for the three-dimensional structure of 
peptidoglycan in staphylococci. Journal of theoretical biology 124: 275-292. 

Sham, L. T., E. K. Butler, M. D. Lebar, D. Kahne, T. G. Bernhardt & N. Ruiz, (2014) 
Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for 
peptidoglycan biogenesis. Science 345: 220-222. 

Sharpe, M. E., P. M. Hauser, R. G. Sharpe & J. Errington, (1998) Bacillus subtilis cell 
cycle as studied by fluorescence microscopy: constancy of cell length at 
initiation of DNA replication and evidence for active nucleoid partitioning. 
Journal of bacteriology 180: 547-555. 

Shen, B. & J. Lutkenhaus, (2010) Examination of the interaction between FtsZ and 
MinCN in E. coli suggests how MinC disrupts Z rings. Molecular microbiology 
75: 1285-1298. 

Shih, Y. L., I. Kawagishi & L. Rothfield, (2005) The MreB and Min cytoskeletal-like 
systems play independent roles in prokaryotic polar differentiation. Molecular 
microbiology 58: 917-928. 

Shiomi, D. & W. Margolin, (2007) A sweet sensor for size-conscious bacteria. Cell 130: 
216-218. 

Sieger, B. & M. Bramkamp, (2014) Interaction sites of DivIVA and RodA from 
Corynebacterium glutamicum. Frontiers in microbiology 5: 738. 

Singer, S. J. & G. L. Nicolson, (1972) The fluid mosaic model of the structure of cell 
membranes. Science 175: 720-731. 

Singh, J. K., R. D. Makde, V. Kumar & D. Panda, (2007) A membrane protein, EzrA, 
regulates assembly dynamics of FtsZ by interacting with the C-terminal tail of 
FtsZ. Biochemistry 46: 11013-11022. 

Skarstad, K., E. Boye & H. B. Steen, (1986) Timing of initiation of chromosome 
replication in individual Escherichia coli cells. The EMBO journal 5: 1711-
1717. 

Smith, E. J., L. Visai, S. W. Kerrigan, P. Speziale & T. J. Foster, (2011) The Sbi protein 
is a multifunctional immune evasion factor of Staphylococcus aureus. Infection 
and immunity 79: 3801-3809. 

Smith, G. P., (1985) Filamentous fusion phage: novel expression vectors that display 
cloned antigens on the virion surface. Science 228: 1315-1317. 

Soldo, B., V. Lazarevic & D. Karamata, (2002) tagO is involved in the synthesis of all 
anionic cell-wall polymers in Bacillus subtilis 168. Microbiology 148: 2079-
2087. 



 

349 
 

Sourjik, V. & H. C. Berg, (2002) Binding of the Escherichia coli response regulator 
CheY to its target measured in vivo by fluorescence resonance energy transfer. 
Proceedings of the National Academy of Sciences of the United States of 
America 99: 12669-12674. 

Sourjik, V., A. Vaknin, T. S. Shimizu & H. C. Berg, (2007) In vivo measurement by 
FRET of pathway activity in bacterial chemotaxis. Methods in enzymology 423: 
365-391. 

Sparrow, C. P. & C. R. Raetz, (1985) Purification and properties of the membrane-
bound CDP-diglyceride synthetase from Escherichia coli. The Journal of 
biological chemistry 260: 12084-12091. 

Sperandeo, P., F. K. Lau, A. Carpentieri, C. De Castro, A. Molinaro, G. Deho, T. J. 
Silhavy & A. Polissi, (2008) Functional analysis of the protein machinery 
required for transport of lipopolysaccharide to the outer membrane of 
Escherichia coli. Journal of bacteriology 190: 4460-4469. 

Spitzer, J., (2011) From water and ions to crowded biomacromolecules: in vivo 
structuring of a prokaryotic cell. Microbiology and molecular biology reviews : 
MMBR 75: 491-506, second page of table of contents. 

Spura, J., L. C. Reimer, P. Wieloch, K. Schreiber, S. Buchinger & D. Schomburg, 
(2009) A method for enzyme quenching in microbial metabolome analysis 
successfully applied to gram-positive and gram-negative bacteria and yeast. 
Analytical biochemistry 394: 192-201. 

Steele, V. R., A. L. Bottomley, J. Garcia-Lara, J. Kasturiarachchi & S. J. Foster, (2011) 
Multiple essential roles for EzrA in cell division of Staphylococcus aureus. 
Molecular microbiology 80: 542-555. 

Steiner, W., G. Liu, W. D. Donachie & P. Kuempel, (1999) The cytoplasmic domain of 
FtsK protein is required for resolution of chromosome dimers. Molecular 
microbiology 31: 579-583. 

Stokes, K. D. & K. W. Osteryoung, (2003) Early divergence of the FtsZ1 and FtsZ2 
plastid division gene families in photosynthetic eukaryotes. Gene 320: 97-108. 

Strahl, H., F. Burmann & L. W. Hamoen, (2014) The actin homologue MreB organizes 
the bacterial cell membrane. Nature communications 5. 

Strahl, H. & L. W. Hamoen, (2010) Membrane potential is important for bacterial cell 
division. Proceedings of the National Academy of Sciences of the United States 
of America 107: 12281-12286. 

Strahl, H. & L. W. Hamoen, (2012) Finding the corners in a cell. Current opinion in 
microbiology 15: 731-736. 

Strahl, H., S. Ronneau, B. S. Gonzalez, D. Klutsch, C. Schaffner-Barbero & L. W. 
Hamoen, (2015) Transmembrane protein sorting driven by membrane curvature. 
Nature communications 6: 8728. 

Strauss, M. P., A. T. Liew, L. Turnbull, C. B. Whitchurch, L. G. Monahan & E. J. 
Harry, (2012) 3D-SIM super resolution microscopy reveals a bead-like 
arrangement for FtsZ and the division machinery: implications for triggering 
cytokinesis. PLoS biology 10: e1001389. 

Stryer, L., (1978) Fluorescence energy transfer as a spectroscopic ruler. Annual review 
of biochemistry 47: 819-846. 

Sukharev, S. I., P. Blount, B. Martinac, F. R. Blattner & C. Kung, (1994) A large-
conductance mechanosensitive channel in E. coli encoded by mscL alone. 
Nature 368: 265-268. 

Sureka, K., T. Hossain, P. Mukherjee, P. Chatterjee, P. Datta, M. Kundu & J. Basu, 
(2010) Novel role of phosphorylation-dependent interaction between FtsZ and 
FipA in mycobacterial cell division. PloS one 5: e8590. 



 

350 
 

Swulius, M. T., S. Chen, H. Jane Ding, Z. Li, A. Briegel, M. Pilhofer, E. I. Tocheva, S. 
R. Lybarger, T. L. Johnson, M. Sandkvist & G. J. Jensen, (2011) Long helical 
filaments are not seen encircling cells in electron cryotomograms of rod-shaped 
bacteria. Biochemical and biophysical research communications 407: 650-655. 

Swulius, M. T. & G. J. Jensen, (2012) The helical MreB cytoskeleton in Escherichia 
coli MC1000/pLE7 is an artifact of the N-Terminal yellow fluorescent protein 
tag. Journal of bacteriology 194: 6382-6386. 

Szeto, T. H., S. L. Rowland & G. F. King, (2001) The dimerization function of MinC 
resides in a structurally autonomous C-terminal domain. Journal of bacteriology 
183: 6684-6687. 

Szollosi, J., P. Nagy, Z. Sebestyen, S. Damjanovicha, J. W. Park & L. Matyus, (2002) 
Applications of fluorescence resonance energy transfer for mapping biological 
membranes. Journal of biotechnology 82: 251-266. 

Takada, H., S. Fukushima-Tanaka, M. Morita, Y. Kasahara, S. Watanabe, T. 
Chibazakura, H. Hara, K. Matsumoto & H. Yoshikawa, (2014) An essential 
enzyme for phospholipid synthesis associates with the Bacillus subtilis 
divisome. Molecular microbiology 91: 242-255. 

Taron, D. J., W. C. Childs, 3rd & F. C. Neuhaus, (1983) Biosynthesis of D-alanyl-
lipoteichoic acid: role of diglyceride kinase in the synthesis of 
phosphatidylglycerol for chain elongation. Journal of bacteriology 154: 1110-
1116. 

Tavares, A. C., P. B. Fernandes, R. Carballido-Lopez & M. G. Pinho, (2015) MreC and 
MreD Proteins Are Not Required for Growth of Staphylococcus aureus. PloS 
one 10: e0140523. 

Tefsen, B., J. Geurtsen, F. Beckers, J. Tommassen & H. de Cock, (2005) 
Lipopolysaccharide transport to the bacterial outer membrane in spheroplasts. 
The Journal of biological chemistry 280: 4504-4509. 

Thanbichler, M. & L. Shapiro, (2006) MipZ, a spatial regulator coordinating 
chromosome segregation with cell division in Caulobacter. Cell 126: 147-162. 

Thanbichler, M., S. C. Wang & L. Shapiro, (2005) The bacterial nucleoid: a highly 
organized and dynamic structure. Journal of cellular biochemistry 96: 506-521. 

Tinsley, E. & S. A. Khan, (2006) A novel FtsZ-like protein is involved in replication of 
the anthrax toxin-encoding pXO1 plasmid in Bacillus anthracis. Journal of 
bacteriology 188: 2829-2835. 

Tjalsma, H., V. P. Kontinen, Z. Pragai, H. Wu, R. Meima, G. Venema, S. Bron, M. 
Sarvas & J. M. van Dijl, (1999) The role of lipoprotein processing by signal 
peptidase II in the Gram-positive eubacterium bacillus subtilis. Signal peptidase 
II is required for the efficient secretion of alpha-amylase, a non-lipoprotein. The 
Journal of biological chemistry 274: 1698-1707. 

Toledo, A., J. T. Crowley, J. L. Coleman, T. J. LaRocca, S. Chiantia, E. London & J. L. 
Benach, (2014) Selective association of outer surface lipoproteins with the lipid 
rafts of Borrelia burgdorferi. mBio 5: e00899-00814. 

Traag, B. A. & G. P. van Wezel, (2008) The SsgA-like proteins in actinomycetes: small 
proteins up to a big task. Antonie van Leeuwenhoek 94: 85-97. 

Tramier, M., M. Zahid, J. C. Mevel, M. J. Masse & M. Coppey-Moisan, (2006) 
Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on 
FRET determination by fluorescence lifetime imaging microscopy in living 
cells. Microscopy research and technique 69: 933-939. 

Tran, A. X., M. S. Trent & C. Whitfield, (2008) The LptA protein of Escherichia coli is 
a periplasmic lipid A-binding protein involved in the lipopolysaccharide export 
pathway. The Journal of biological chemistry 283: 20342-20349. 



 

351 
 

Treuner-Lange, A., K. Aguiluz, C. van der Does, N. Gomez-Santos, A. Harms, D. 
Schumacher, P. Lenz, M. Hoppert, J. Kahnt, J. Munoz-Dorado & L. Sogaard-
Andersen, (2013) PomZ, a ParA-like protein, regulates Z-ring formation and cell 
division in Myxococcus xanthus. Molecular microbiology 87: 235-253. 

Treuner-Lange, A., E. Macia, M. Guzzo, E. Hot, L. M. Faure, B. Jakobczak, L. 
Espinosa, D. Alcor, A. Ducret, D. Keilberg, J. P. Castaing, S. Lacas Gervais, M. 
Franco, L. Sogaard-Andersen & T. Mignot, (2015) The small G-protein MglA 
connects to the MreB actin cytoskeleton at bacterial focal adhesions. The 
Journal of cell biology 210: 243-256. 

Tsay, J. T., W. Oh, T. J. Larson, S. Jackowski & C. O. Rock, (1992) Isolation and 
characterization of the beta-ketoacyl-acyl carrier protein synthase III gene 
(fabH) from Escherichia coli K-12. The Journal of biological chemistry 267: 
6807-6814. 

Turing, A. M., (1990) The chemical basis of morphogenesis. 1953. Bulletin of 
mathematical biology 52: 153-197; discussion 119-152. 

Turner, R. D., A. F. Hurd, A. Cadby, J. K. Hobbs & S. J. Foster, (2013) Cell wall 
elongation mode in Gram-negative bacteria is determined by peptidoglycan 
architecture. Nature communications 4: 1496. 

Turner, R. D., E. C. Ratcliffe, R. Wheeler, R. Golestanian, J. K. Hobbs & S. J. Foster, 
(2010) Peptidoglycan architecture can specify division planes in Staphylococcus 
aureus. Nature communications 1: 26. 

Turner, R. D., W. Vollmer & S. J. Foster, (2014) Different walls for rods and balls: the 
diversity of peptidoglycan. Molecular microbiology 91: 862-874. 

Tynecka, Z., Z. Szczesniak, A. Malm & R. Los, (1999) Energy conservation in 
aerobically grown Staphylococcus aureus. Research in microbiology 150: 555-
566. 

Typas, A., M. Banzhaf, C. A. Gross & W. Vollmer, (2012) From the regulation of 
peptidoglycan synthesis to bacterial growth and morphology. Nature reviews. 
Microbiology 10: 123-136. 

Tzagoloff, H. & R. Novick, (1977) Geometry of cell division in Staphylococcus aureus. 
Journal of bacteriology 129: 343-350. 

Uehara, T. & J. T. Park, (2008) Growth of Escherichia coli: significance of 
peptidoglycan degradation during elongation and septation. Journal of 
bacteriology 190: 3914-3922. 

Uehara, T., K. R. Parzych, T. Dinh & T. G. Bernhardt, (2010) Daughter cell separation 
is controlled by cytokinetic ring-activated cell wall hydrolysis. The EMBO 
journal 29: 1412-1422. 

Ursell, T. S., J. Nguyen, R. D. Monds, A. Colavin, G. Billings, N. Ouzounov, Z. Gitai, 
J. W. Shaevitz & K. C. Huang, (2014) Rod-like bacterial shape is maintained by 
feedback between cell curvature and cytoskeletal localization. Proceedings of 
the National Academy of Sciences of the United States of America 111: E1025-
1034. 

Vagner, V., E. Dervyn & S. D. Ehrlich, (1998) A vector for systematic gene inactivation 
in Bacillus subtilis. Microbiology 144 ( Pt 11): 3097-3104. 

Vaknin, A. & H. C. Berg, (2004) Single-cell FRET imaging of phosphatase activity in 
the Escherichia coli chemotaxis system. Proceedings of the National Academy of 
Sciences of the United States of America 101: 17072-17077. 

van Baarle, S., I. N. Celik, K. G. Kaval, M. Bramkamp, L. W. Hamoen & S. Halbedel, 
(2013) Protein-protein interaction domains of Bacillus subtilis DivIVA. Journal 
of bacteriology 195: 1012-1021. 

van den Ent, F., L. A. Amos & J. Lowe, (2001) Prokaryotic origin of the actin 
cytoskeleton. Nature 413: 39-44. 



 

352 
 

van den Ent, F., T. Izore, T. A. Bharat, C. M. Johnson & J. Lowe, (2014) Bacterial actin 
MreB forms antiparallel double filaments. eLife 3: e02634. 

van der Ploeg, R., S. T. Goudelis & T. den Blaauwen, (2015) Validation of FRET Assay 
for the Screening of Growth Inhibitors of Escherichia coli Reveals Elongasome 
Assembly Dynamics. International journal of molecular sciences 16: 17637-
17654. 

van der Ploeg, R., J. Verheul, N. O. Vischer, S. Alexeeva, E. Hoogendoorn, M. Postma, 
M. Banzhaf, W. Vollmer & T. den Blaauwen, (2013) Colocalization and 
interaction between elongasome and divisome during a preparative cell division 
phase in Escherichia coli. Molecular microbiology 87: 1074-1087. 

Van Munster, E. B., G. J. Kremers, M. J. Adjobo-Hermans & T. W. Gadella, Jr., (2005) 
Fluorescence resonance energy transfer (FRET) measurement by gradual 
acceptor photobleaching. Journal of microscopy 218: 253-262. 

van Ooij, C. & R. Losick, (2003) Subcellular localization of a small sporulation protein 
in Bacillus subtilis. Journal of bacteriology 185: 1391-1398. 

van Teeffelen, S. & Z. Gitai, (2011) Rotate into shape: MreB and bacterial 
morphogenesis. The EMBO journal 30: 4856-4857. 

van Thor, J. J. & K. J. Hellingwerf, (2002) Fluorescence resonance energy transfer 
(FRET) applications using green fluorescent protein. Energy transfer to the 
endogenous chromophores of phycobilisome light-harvesting complexes. 
Methods Mol Biol 183: 101-119. 

Vats, P. & L. Rothfield, (2007) Duplication and segregation of the actin (MreB) 
cytoskeleton during the prokaryotic cell cycle. Proceedings of the National 
Academy of Sciences of the United States of America 104: 17795-17800. 

Vats, P., Y. L. Shih & L. Rothfield, (2009) Assembly of the MreB-associated 
cytoskeletal ring of Escherichia coli. Molecular microbiology 72: 170-182. 

Vaughan, S., B. Wickstead, K. Gull & S. G. Addinall, (2004) Molecular evolution of 
FtsZ protein sequences encoded within the genomes of archaea, bacteria, and 
eukaryota. Journal of molecular evolution 58: 19-29. 

Vecchiarelli, A. G., M. Li, M. Mizuuchi & K. Mizuuchi, (2014) Differential affinities of 
MinD and MinE to anionic phospholipid influence Min patterning dynamics in 
vitro. Molecular microbiology 93: 453-463. 

Veiga, H., A. M. Jorge & M. G. Pinho, (2011) Absence of nucleoid occlusion effector 
Noc impairs formation of orthogonal FtsZ rings during Staphylococcus aureus 
cell division. Molecular microbiology 80: 1366-1380. 

Veldkamp, K. E. & J. A. van Strijp, (2009) Innate immune evasion by staphylococci. 
Advances in experimental medicine and biology 666: 19-31. 

Volkov, A., J. Mascarenhas, C. Andrei-Selmer, H. D. Ulrich & P. L. Graumann, (2003) 
A prokaryotic condensin/cohesin-like complex can actively compact 
chromosomes from a single position on the nucleoid and binds to DNA as a 
ring-like structure. Molecular and cellular biology 23: 5638-5650. 

von Stetten, D., M. Noirclerc-Savoye, J. Goedhart, T. W. Gadella, Jr. & A. Royant, 
(2012) Structure of a fluorescent protein from Aequorea victoria bearing the 
obligate-monomer mutation A206K. Acta crystallographica. Section F, 
Structural biology and crystallization communications 68: 878-882. 

Wachi, M., M. Doi, Y. Okada & M. Matsuhashi, (1989) New mre genes mreC and 
mreD, responsible for formation of the rod shape of Escherichia coli cells. 
Journal of bacteriology 171: 6511-6516. 

Wagner, S., M. M. Klepsch, S. Schlegel, A. Appel, R. Draheim, M. Tarry, M. Hogbom, 
K. J. van Wijk, D. J. Slotboom, J. O. Persson & J. W. de Gier, (2008) Tuning 
Escherichia coli for membrane protein overexpression. Proceedings of the 



 

353 
 

National Academy of Sciences of the United States of America 105: 14371-
14376. 

Waldo, G. S., B. M. Standish, J. Berendzen & T. C. Terwilliger, (1999) Rapid protein-
folding assay using green fluorescent protein. Nature biotechnology 17: 691-
695. 

Wall, T., S. Roos, K. Jacobsson, A. Rosander & H. Jonsson, (2003) Phage display 
reveals 52 novel extracellular and transmembrane proteins from Lactobacillus 
reuteri DSM 20016(T). Microbiology 149: 3493-3505. 

Wang, J. D., G. M. Sanders & A. D. Grossman, (2007) Nutritional control of elongation 
of DNA replication by (p)ppGpp. Cell 128: 865-875. 

Wang, S., L. Furchtgott, K. C. Huang & J. W. Shaevitz, (2012) Helical insertion of 
peptidoglycan produces chiral ordering of the bacterial cell wall. Proceedings of 
the National Academy of Sciences of the United States of America 109: E595-
604. 

Wang, X., J. Huang, A. Mukherjee, C. Cao & J. Lutkenhaus, (1997) Analysis of the 
interaction of FtsZ with itself, GTP, and FtsA. Journal of bacteriology 179: 
5551-5559. 

Wang, X. & P. J. Quinn, (2010) Lipopolysaccharide: Biosynthetic pathway and 
structure modification. Progress in lipid research 49: 97-107. 

Weart, R. B., A. H. Lee, A. C. Chien, D. P. Haeusser, N. S. Hill & P. A. Levin, (2007) 
A metabolic sensor governing cell size in bacteria. Cell 130: 335-347. 

Weart, R. B. & P. A. Levin, (2003) Growth rate-dependent regulation of medial FtsZ 
ring formation. Journal of bacteriology 185: 2826-2834. 

Weidenmaier, C. & A. Peschel, (2008) Teichoic acids and related cell-wall 
glycopolymers in Gram-positive physiology and host interactions. Nature 
reviews. Microbiology 6: 276-287. 

Weidenmaier, C., A. Peschel, Y. Q. Xiong, S. A. Kristian, K. Dietz, M. R. Yeaman & 
A. S. Bayer, (2005) Lack of wall teichoic acids in Staphylococcus aureus leads 
to reduced interactions with endothelial cells and to attenuated virulence in a 
rabbit model of endocarditis. The Journal of infectious diseases 191: 1771-1777. 

White, C. L., A. Kitich & J. W. Gober, (2010) Positioning cell wall synthetic complexes 
by the bacterial morphogenetic proteins MreB and MreD. Molecular 
microbiology 76: 616-633. 

Wickner, W., A. J. Driessen & F. U. Hartl, (1991) The enzymology of protein 
translocation across the Escherichia coli plasma membrane. Annual review of 
biochemistry 60: 101-124. 

Willemse, J., J. W. Borst, E. de Waal, T. Bisseling & G. P. van Wezel, (2011) Positive 
control of cell division: FtsZ is recruited by SsgB during sporulation of 
Streptomyces. Genes & development 25: 89-99. 

Wower, I. K., J. Wower & R. A. Zimmermann, (1998) Ribosomal protein L27 
participates in both 50 S subunit assembly and the peptidyl transferase reaction. 
The Journal of biological chemistry 273: 19847-19852. 

Wu, L. J. & J. Errington, (2004) Coordination of cell division and chromosome 
segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117: 915-
925. 

Wu, L. J. & J. Errington, (2012) Nucleoid occlusion and bacterial cell division. Nature 
reviews. Microbiology 10: 8-12. 

Wu, L. J., S. Ishikawa, Y. Kawai, T. Oshima, N. Ogasawara & J. Errington, (2009) Noc 
protein binds to specific DNA sequences to coordinate cell division with 
chromosome segregation. The EMBO journal 28: 1940-1952. 



 

354 
 

Wu, Q. Y. & Q. Liang, (2014) Interplay between curvature and lateral organization of 
lipids and peptides/proteins in model membranes. Langmuir : the ACS journal of 
surfaces and colloids 30: 1116-1122. 

Wu, T., A. C. McCandlish, L. S. Gronenberg, S. S. Chng, T. J. Silhavy & D. Kahne, 
(2006) Identification of a protein complex that assembles lipopolysaccharide in 
the outer membrane of Escherichia coli. Proceedings of the National Academy 
of Sciences of the United States of America 103: 11754-11759. 

Xie, J., M. Bogdanov, P. Heacock & W. Dowhan, (2006) Phosphatidylethanolamine 
and monoglucosyldiacylglycerol are interchangeable in supporting topogenesis 
and function of the polytopic membrane protein lactose permease. The Journal 
of biological chemistry 281: 19172-19178. 

Yan, K., K. H. Pearce & D. J. Payne, (2000) A conserved residue at the extreme C-
terminus of FtsZ is critical for the FtsA-FtsZ interaction in Staphylococcus 
aureus. Biochemical and biophysical research communications 270: 387-392. 

Yang, D. C., N. T. Peters, K. R. Parzych, T. Uehara, M. Markovski & T. G. Bernhardt, 
(2011) An ATP-binding cassette transporter-like complex governs cell-wall 
hydrolysis at the bacterial cytokinetic ring. Proceedings of the National 
Academy of Sciences of the United States of America 108: E1052-1060. 

Yansura, D. G. & D. J. Henner, (1984) Use of the Escherichia coli lac repressor and 
operator to control gene expression in Bacillus subtilis. Proceedings of the 
National Academy of Sciences of the United States of America 81: 439-443. 

Young, K. D., (2006) The selective value of bacterial shape. Microbiology and 
molecular biology reviews : MMBR 70: 660-703. 

Young, R. M., J. K. Arnette, D. A. Roess & B. G. Barisas, (1994) Quantitation of 
fluorescence energy transfer between cell surface proteins via fluorescence 
donor photobleaching kinetics. Biophysical journal 67: 881-888. 

Zapun, A., T. Vernet & M. G. Pinho, (2008) The different shapes of cocci. FEMS 
microbiology reviews 32: 345-360. 

Zhang, H. M., Z. Li, M. Tsudome, S. Ito, H. Takami & K. Horikoshi, (2005a) An alkali-
inducible flotillin-like protein from Bacillus halodurans C-125. The protein 
journal 24: 125-131. 

Zhang, W., H. A. Campbell, S. C. King & W. Dowhan, (2005b) Phospholipids as 
determinants of membrane protein topology. Phosphatidylethanolamine is 
required for the proper topological organization of the gamma-aminobutyric acid 
permease (GabP) of Escherichia coli. The Journal of biological chemistry 280: 
26032-26038. 

Zhang, Y. H., C. Ginsberg, Y. Yuan & S. Walker, (2006) Acceptor substrate selectivity 
and kinetic mechanism of Bacillus subtilis TagA. Biochemistry 45: 10895-
10904. 

Zhang, Y. M. & C. O. Rock, (2008) Membrane lipid homeostasis in bacteria. Nature 
reviews. Microbiology 6: 222-233. 

Zhao, H., A. Pykalainen & P. Lappalainen, (2011) I-BAR domain proteins: linking actin 
and plasma membrane dynamics. Current opinion in cell biology 23: 14-21. 

Zhao, X. J. & H. C. Wu, (1992) Nucleotide sequence of the Staphylococcus aureus 
signal peptidase II (lsp) gene. FEBS letters 299: 80-84. 

Zhou, X., D. K. Halladin, E. R. Rojas, E. F. Koslover, T. K. Lee, K. C. Huang & J. A. 
Theriot, (2015) Bacterial division. Mechanical crack propagation drives 
millisecond daughter cell separation in Staphylococcus aureus. Science 348: 
574-578. 

Zieske, K. & P. Schwille, (2014) Reconstitution of self-organizing protein gradients as 
spatial cues in cell-free systems. eLife 3. 



 

355 
 

Zimmerberg, J. & M. M. Kozlov, (2006) How proteins produce cellular membrane 
curvature. Nature reviews. Molecular cell biology 7: 9-19. 

Zinchuk, V., O. Zinchuk & T. Okada, (2007) Quantitative colocalization analysis of 
multicolor confocal immunofluorescence microscopy images: pushing pixels to 
explore biological phenomena. Acta histochemica et cytochemica 40: 101-111. 

 

 

Chapter 9: Appendix 
 

9.1 Construction of mCherry and mRFPmars1 fusions with 

membrane proteins 
 

9.1.1 Construction of a PlsY-mCherry fusion in S. aureus 

In order to construct pAISH-plsY-mCherry, plsY (5’FW23/3’FW23) was amplified 

using SH1000 genomic DNA as a template and mCherry (5’FW24/3’FW24) was 

amplified using plasmid pMV158-mCherry (Dr. S. Mesnage, unpublished) as templates. 

DNA fragments were cloned into the HindIII/SwaI site of pAISH1 using Gibson 

Assembly (seeFig. 9.1A) and transformed into E. coli NEB5α. Recombinant plasmids 

were tested by restriction digest with EcoRV resulting in approximately 4500, 2500 and 

1000 bp fragments (Fig. 9.1C) and validated by DNA sequencing (GATC Biotech AG, 

Konstanz, Germany). The resulting plasmid, pAISH-plsY-mCherry was electroporated 

into RN4220 and from there transduced into SH1000. Genomic integration at the plsY 

locus was confirmed by PCR amplification of an approximately 900 bp fragment using 

one primer that binds at the beginning of plsY and one primer within the mCherry gene 

(5’FW23/Outward_mCherry) (Fig. 9.1D). No amplification of an approximately 900 bp 

fragment was seen using SH1000 genomic DNA as a template. The whole plsY gene 

was amplified with the use of primers 5’FW23/3’FW23 resulting in an approximately 

600 bp fragment to confirm the PCR and template. 

 

9.1.2 Construction of a CdsA-mCherry fusion in S. aureus 

In order to construct pAISH-cdsA-mCherry, cdsA (5’FW45/3’FW45) was amplified 

using SH1000 genomic DNA as a template and mCherry (5’FW45/3’FW24) was 

amplified using plasmid pMV158-mCherry (Dr.S.Mesnage, unpublished) as templates. 

DNA fragments were cloned into the HindIII/SwaI site of pAISH1 using Gibson 

Assembly (seeFig. 9.2A) and transformed into E. coli NEB5α. Recombinant plasmids 

were tested by restriction digest with PstI and HindIII resulting in approximately 4000, 

3000 and 1000 bp fragments (Fig. 9.2C) and validated by DNA sequencing (GATC 
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Biotech AG, Konstanz, Germany). The resulting plasmid, pAISH-cdsA-mCherry was 

electroporated into RN4220 and from there transduced into SH1000. Genomic 

integration at the cdsA locus was confirmed by PCR amplification of an approximately 

1000 bp fragment using one primer that binds at the beginning of cdsA and one primer 

within the mCherry gene (5’FW45/Outward_mCherry) (Fig. 9.2D). No amplification of 

an approximately 1000 bp fragment was seen using SH1000 genomic DNA as a 

template. The whole cdsA gene was amplified with the use of primers 5’FW45/3’FW45 

resulting in an approximately 800 bp fragment to confirm the PCR and template. 

 

9.1.3 Construction of a CdsA-mRFPmars1 fusion in S. aureus 

In order to construct pAISH-cdsA-mRFPmars1, cdsA (5’FW47/3’FW47) was amplified 

using SH1000 genomic DNA as a template and mRFPmars1 (5’FW48/3’FW48) was 

amplified using plasmid pTK-RFP (Prajsnar, 2009) as templates. DNA fragments were 

cloned into the HindIII/SwaI site of pAISH1 using Gibson Assembly (Fig. 9.3A) and 

transformed into E. coli NEB5α. Recombinant plasmids were tested by restriction digest 

with PstI and HindIII resulting in approximately 4000, 3000 and 1100 bp fragments 

(Fig. 9.3C) and validated by DNA sequencing (GATC Biotech AG, Konstanz, 

Germany). The resulting plasmid, pAISH-cdsA-mRFPmars1 was electroporated into 

RN4220 and from there transduced into SH1000. Genomic integration at the cdsA locus 

was confirmed by PCR amplification of an approximately 1000 bp fragment using one 

primer that binds at the beginning of cdsA and one primer within the mRFPmars1 gene 

(5’FW45/Outward_mRFP) (Fig. 9.3D). No amplification of an approximately 1000 bp 

fragment was seen using SH1000 genomic DNA as a template. The whole cdsA gene 

was amplified with the use of primers 5’FW45/3’FW45 resulting in an approximately 

800 bp fragment to confirm the PCR and template. 

 

9.1.4 Construction of a PgsA-mRFPmars1 fusion in S. aureus 

In order to construct pAISH-pgsA-mRFPmars1, pgsA (5’FW49/3’FW49) was amplified 

using SH1000 genomic DNA as a template and mRFPmars1 (5’FW49/3’FW48) was 

amplified using plasmid pTK-RFP (Prajsnar, 2009) as templates. DNA fragments were 

cloned into the HindIII/SwaI site of pAISH1 using Gibson Assembly (Fig. 9.4A) and 

transformed into E. coli NEB5α. Recombinant plasmids were tested by restriction digest 

with PstI resulting in approximately 7000 and 1000 bp fragments (Fig. 9.4C) and 

validated by DNA sequencing (GATC Biotech AG, Konstanz, Germany). The resulting 

plasmid, pAISH-pgsA-mRFPmars1 was electroporated into RN4220 and from there 

transduced into SH1000. Genomic integration at the pgsA locus was confirmed by PCR 

amplification of an approximately 1000 bp fragment using one primer that binds at the 
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beginning of pgsA and one primer within the mRFPmars1 gene 

(5’FW49/Outward_mRFP) (Fig. 9.4D). Amplification of an approximately 1000 bp 

fragment was also seen using SH1000 genomic DNA as a negative control template 

which could explained by non-specific DNA amplification. The whole pgsA gene was 

amplified with the use of primers 5’FW49/3’FW49 resulting in an approximately 600 

bp fragment to confirm the PCR and template. 
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Figure 9.1 Construction of a chromosomal plsY-mCherry fusion in S. aureus 

SH1000 
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A, Diagram illustrating the construction of pAISH-plsY-mCherry. B, Schematic 

overview of the native genomic region of plsY and post integration of pAISH-plsY-

mCherry. Black arrows indicate primer binding sites. C, pAISH-plsY-mCherry (Lanes 

1-2) and pAISH1 (Lane 3) were digested with EcoRV and separated by 1 % (w/v) TAE 

agarose gel electrophoresis. Bands of approximately 4500, 2500 and 1000 bp fragments, 

corresponding to pAISH-plsY-mCherry (Lanes 1-2), respectively, are marked by black 

arrows. Bands of approximately 4600, 3000, 1500 and 1000 bp fragments correspond to 

pAISH1 (Lane 3). D, Verification of pAISH-plsY-mCherry integration by PCR using 

primer pair 5’FW23/Outward_mCherry. PCR products were separated by 1 % (w/v) 

TAE agarose gel electrophoresis. A band of approximately 900 bp, marked by a black 

arrow, indicates pAISH-plsY-mCherry chromosomal integration (Lane 3). No DNA 

amplification is seen using genomic DNA from SH1000 (Lane 4). PCR amplification of 

the whole plsY gene using primer pair 5’FW23/3’FW23 results in a band of 

approximately 600 bp, marked by a black arrow (Lanes 1-2). 
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Figure 9.2 Construction of a chromosomal cdsA-mCherry fusion in S. aureus 
SH1000 
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A, Diagram illustrating the construction of pAISH-cdsA-mCherry. B, Schematic 

overview of the native genomic region of cdsA and post integration of pAISH-cdsA-

mCherry. Black arrows indicate primer binding sites. C, pAISH-cdsA-mCherry (Lanes 

1-2) and pAISH1 (Lane 3) were digested with PstI and HindIII and separated by 1 % 

(w/v) TAE agarose gel electrophoresis. Bands of approximately 4000, 3000 and 1000 

bp fragments, corresponding to pAISH-cdsA-mCherry (Lane 1), respectively, are 

marked by black arrows. Bands of approximately 7500, 2500 and 1000 bp fragments 

correspond to pAISH1 (Lane 2). D, Verification of pAISH-cdsA-mCherry integration 

by PCR using primer pair 5’FW45/Outward_mCherry. PCR products were separated by 

1 % (w/v) TAE agarose gel electrophoresis. A band of approximately 1000 bp, marked 

by a black arrow, indicates pAISH-cdsA-mCherry chromosomal integration (Lane 3). 

No DNA amplification is seen using genomic DNA from SH1000 (Lane 4). PCR 

amplification of the whole cdsA gene using primer pair 5’FW45/3’FW45 results in a 

band of approximately 800 bp, marked by a black arrow (Lanes 1-2). 
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Figure 9.3 Construction of a chromosomal cdsA-mRFPmars1 fusion in S. aureus 
SH1000 
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A, Diagram illustrating the construction of pAISH-cdsA-mRFPmars1. B, Schematic 

overview of the native genomic region of cdsA and post integration of pAISH-cdsA-

mRFPmars1. Black arrows indicate primer binding sites. C, pAISH-cdsA-mRFPmars1 

(Lane 1) and pAISH1 (Lane 2) were digested with PstI and HindIII and separated by 1 

% (w/v) TAE agarose gel electrophoresis. Bands of approximately 4000, 3000 and 1100 

bp fragments, corresponding to pAISH-cdsA-mRFPmars1 (Lane 1), respectively, are 

marked by black arrows. Bands of approximately 7500, 2500 and 1100 bp fragments 

correspond to pAISH1 (Lane 2). D, Verification of pAISH-cdsA-mRFPmars1 

integration by PCR using primer pair 5’FW45/Outward_mRFP. PCR products were 

separated by 1 % (w/v) TAE agarose gel electrophoresis. A band of approximately 1000 

bp, marked by a black arrow, indicates pAISH-cdsA-mRFPmars1 chromosomal 

integration (Lane 3). No DNA amplification is seen using genomic DNA from SH1000 

(Lane 4). PCR amplification of the whole cdsA gene using primer pair 5’FW45/3’FW45 

results in a band of approximately 800 bp, marked by a black arrow (Lanes 1-2). 
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Figure 9.4 Construction of a chromosomal pgsA-mRFPmars1 fusion in S. aureus 
SH1000 
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A, Diagram illustrating the construction of pAISH-pgsA-mRFPmars1. B, Schematic 

overview of the native genomic region of pgsA and post integration of pAISH-pgsA-

mRFPmars1. Black arrows indicate primer binding sites. C, pAISH-pgsA-mRFPmars1 

(Lane 1) and pAISH1 (Lane 2) were digested with PstI and separated by 1 % (w/v) TAE 

agarose gel electrophoresis. Bands of approximately 7000 and 1000 bp fragments, 

corresponding to pAISH-pgsA-mRFPmars1 (Lane 1), respectively, are marked by black 

arrows. Bands of approximately 9000 and 1000 bp fragments correspond to pAISH1 

(Lane 2). D, Verification of pAISH-pgsA-mRFPmars1 integration by PCR using primer 

pair 5’FW49/Outward_mRFP. PCR products were separated by 1 % (w/v) TAE agarose 

gel electrophoresis. A band of approximately 1000 bp, marked by a black arrow, 

indicates pAISH-pgsA-mRFPmars1 chromosomal integration (Lane 3). Amplification 

of an approximately 1000 bp fragment was also seen using genomic DNA from SH1000 

(Lane 4) which could be due to non-specific DNA amplification. PCR amplification of 

the whole pgsA gene using primer pair 5’FW49/3’FW49 results in a band of 

approximately 600 bp, marked by a black arrow (Lanes 1-2). 

  



 

366 
 

9.1.5 Construction of a PlsY-GFP (tetracycline resistance) fusion in S. 

aureus 

In order to construct pAISH-plsY-gfp, plsY (5’FW23/3’FW43) was amplified using 

SH1000 genomic DNA as a template and gfp (5’FW44/3’FW44) was amplified using 

plasmid pMUTIN-gfp+ as templates. DNA fragments were cloned into the HindIII/SwaI 

site of pAISH1 using Gibson Assembly (Fig. 9.5A) and transformed into E. coli 

DC10B. Recombinant plasmids were tested by restriction digest with NheI and SacI 

resulting in approximately 8000 and 750 bp fragments (Fig. 9.5C) and validated by 

DNA sequencing (GATC Biotech AG, Konstanz, Germany). The resulting plasmid, 

pAISH-plsY-gfp was electroporated into RN4220 and from there transduced into 

SH1000. Genomic integration at the plsY locus was confirmed by PCR amplification of 

an approximately 1000 bp fragment using one primer that binds in the genome upstream 

of plsY and one primer within the gfp gene (Inward_plsY/Outward_gfp) (Fig. 9.5D). No 

amplification of a 1000 bp fragment was seen using SH1000 genomic DNA as a 

template. 
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Figure 9.5 Construction of a chromosomal plsY-gfp (tetracycline resistance) fusion 

in S. aureus SH1000 

 

 



 

368 
 

A, Diagram illustrating the construction of pAISH-plsY-gfp. B, Schematic overview of 

the native genomic region of psY and post integration of pAISH-plsY-gfp. Black arrows 

indicate primer binding sites. C, pAISH-plsY-gfp (Lane 1) and pAISH1 (Lane 2) were 

digested with NheI and SacI and separated by 1 % (w/v) TAE agarose gel 

electrophoresis. Bands of approximately 8000 and 750 bp fragments, corresponding to 

pAISH-plsY-gfp (Lane 1), respectively, are marked by black arrows. A bands of an 

approximately 10000 bp fragment corresponds to pAISH1 (Lane 2). D, Verification of 

pAISH-plsY-gfp integration by PCR using primer pair Inward_plsY/Outward_gfp. PCR 

products were separated by 1 % (w/v) TAE agarose gel electrophoresis. A band of 

approximately 1000 bp, marked by a black arrow, indicates pAISH-plsY-gfp 

chromosomal integration (Lane 1). No amplification of an approximately 1000 bp 

fragment was seen using genomic DNA from SH1000 (Lane 2). 
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9.2 Codon-optimised sequences 

 

9.2.1 Codon-optimised sequence of mreD 

The sequence of mreD from S. aureus SH1000 was optimised for the use in E. coli 

using GeneOptimizer® (https://www.thermofisher.com/uk/en/home/lifescience/ 

cloning/gene-synthesis/geneart-gene-synthesis/geneoptimizer.html). The following 

figure (Fig. 9.6) shows the original sequence aligned with the optimised sequence. 

 

 

Figure 9.6 Nucleotide alignment of S. aureus SH1000 mreD with the optimised 

mreD sequence 

Sequence alignment of mreD from SH1000 (first row) compared to the codon-optimised 

mreD (second row). Green letters indicate translated codon into amino acids in the one 

letter format. Yellow bars indicate changes in the nucleotide sequence. 
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9.2.2 Codon-optimised sequence of eyfp 

The sequence of eyfp from plasmid pKASBAR-ezrA-eyfp (Wascnik, 2016) was 

optimised for the use in E. coli using GeneOptimizer® 

(https://www.thermofisher.com/uk/en/home/life-science/cloning/gene-

synthesis/geneart-gene-synthesis/geneoptimizer.html). The following figure (Fig. 9.7) 

shows the original sequence aligned with the optimised sequence. 

 

 

Figure 9.7 Nucleotide alignment of eyfp with the optimised sequence 

Sequence alignment of eyfp from pKASBAR-ezrA-eyfp (first row) compared to the 

codon-optimised eyfp (second row). Green letters indicate translated codon into amino 

acids in the one letter format. Yellow bars indicate changes in the nucleotide sequence. 

 


