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Abstract

Membrane systems, also known as P systems, constitute an innovative compu-
tational paradigm inspired by the structure and dynamics of the living cell. A
P system consists of a hierarchical arrangement of compartments and a finite
set of multiset rewriting and communication rules, which operate in a maximally
parallel manner. The organic vision of concurrent dynamics captured by mem-
brane systems stands in antithesis with conventional formal modelling methods
which focus on algebraic descriptions of distributed systems. As a consequence,
verifying such models in a mathematically rigorous way is often elusive and in-
deed counter-intuitive when considering established approaches, which generally
require sequential process representations or highly abstract theoretical frame-
works. The prevalent investigations with this objective in the field of membrane
computing are ambivalent and inconclusive in the wider application scope of P
systems.

In this thesis we directly address the formal verification of membrane systems
by means of model checking. A fundamental distinction between the agnostic
perspective on parallelism, advocated by process calculi, and P systems’ emblem-
atic mazimally parallel execution strategy is identified. On this basis, we establish
that an intuitional translation to traditional process models is inadequate for the
purpose of formal verification, due to a state space growth disparity. The obser-
vation is essential for this research project: on one hand it implies the feasibility
of model checking P systems, and on the other hand it underlines the suitabil-
ity of this formal verification technique in the context of membrane computing.
Model checking entails an exhaustive state space exploration and does not derive
inferences based on the independent instructions comprising a state transition.
In this respect, we define a new sequential modelling strategy which is optimal
for membrane systems and targets the SPIN formal verification tool.

We introduce elementary P systems, a distributed computational model which
subsumes the feature diversity of the membrane computing paradigm and distils
its functional vocabulary. A suite of supporting software tools which gravitate
around this formalism has also been developed, comprising of 1. the eps modelling
language for elementary P systems; 2. a parser for the eps specification; 3. a
model simulator and 4. a translation tool which targets the Promela specification
of the SPIN model checker.

The formal verification approach proposed in this thesis is progressively demon-
strated in four heterogeneous case studies, featuring 1. a parallel algorithm appli-
cable to a structured model; 2. a linear time solution to an NP-complete problem;
3. an innovative implementation of the Dining Philosophers scenario (a synchro-
nisation problem) using an elementary P system and 4. a quantitative analysis
of a simple random process implemented without the support of a probabilistic



model.
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Chapter 1

Introduction

Parallel computation is a topic of ever increasing significance, powerfully moti-
vated by practical concerns and deeply captivating with its scientific elaborations
and philosophical implications. Whilst distributed systems are nowadays ubiqui-
tous, pertaining nearly all technological innovation, research efforts have almost
exclusively targeted the disruptive effect of concurrency on sequential computa-
tion. Formal modelling methods, most notably the family of process calculi, have
concentrated on reconciling the perceived concurrent, unrequlated dynamics, with
traditional algebraic constructs, used to characterise sequential transitions. These
developments were prompted by 1) the necessity for a mathematical framework
as basis to formal reasoning in this context, but also 2) to tackle the complexity
of sizeable models by systematic construction.

On the opposite front, more audacious and less practically concerned en-
deavours have advanced different views on parallelism. The quest for effective
computability amidst a mutable plurality of entities has sought inspiration and
even physical support in natural phenomena and the living world. The abstract
models constellated of this insight have originated the field of natural computing.
Artificial neural networks, DNA computing, cellular automata, computational
systems biology and quantum computing are a few of the representative exam-
ples in this category. In order to gain a more profound, scientific understanding
of parallel dynamics, bio-molecular interactions and other natural phenomena
were subject to an unmediated projection into a formal mathematical context.
Membrane systems are a typical example of this approach.

A P system (or membrane system) is a parallel computational model inspired
by the structure and functioning of the living cell. The calculus performed by
P system models is expressed as multiset or string rewriting and communica-
tion, and is distributed across a hierarchical structure of compartments. A P
system formally captures a very distinctive vision of concurrency in the so called
mazximally parallel execution strategy. This entails that all applicable rewriting



and communication rules are executed exhaustively (i.e. for as long as they are
applicable) as part of a single, monadic transition.

Formal verification is an aspect generally overlooked when computational
models so often described as unconventional are considered. Whilst established
verification techniques, such as model checking and automated theorem prov-
ing, are immediately applicable to distributed systems which map algebraically
to process models, it is often cumbersome and indeed counter-intuitive to exer-
cise an existing approach outside its ordinary application scope. The problem is
generally reduced to finding an adequate projection to an equivalent sequential
model. The difficulty often arises from the incompatibility between the input
model required by the verification tool (model checker, theorem prover) and the
abstract model subject to examination. The set of primitives offered by a tool’s
input specification can be misleading; a naive mapping to these may compromise
the feasibility of the verification process.

In the context of membrane computing model checking was the preferred for-
mal verification technique, employed in various studies. The outcome of these
investigations was mixed and at times, inconclusive. On the one hand, the ap-
proach was proved successful for P system models with a single compartment
and restricted configurations, and on the other hand, the so called state explosion
problem was an immediately acknowledged deterrent in circumstances where a
better performance was expected. Moreover, the case studies examined are in-
sufficient to infer the feasibility and perhaps non-scalability of model checking
P systems, more generally. Whilst there are many clues and very informative
results to be drawn from these undertakings, the matter remains irresolute.

In this thesis we directly address the formal verification of membrane systems
by means of model checking. The principal objectives and contributions of this
research project are to:

1. Identify a key distinction between conventional formal models of distributed
systems and membrane computing with its emblematic maximal paral-
lelism;

2. Establish the inadequacy of process models as means of expressing P system
transitions for the purpose of formal verification;

3. Introduce elementary P systems, a computational model which a) subsumes
the feature diversity exhibited by the membrane computing paradigm and
b) distils its functional vocabulary;

4. Define a formal verification approach based on SPIN model checking, opti-
mal for membrane systems (in the context of sequential computation);



5. Design the eps modelling language which allows for an unambiguous and
concise representation of an elementary P system;

6. Develop a suite of software tools in support of our formal verification ap-
proach, comprising:

e a parser for the eps specification;
e a simulator for elementary P systems;

e an automatic translation tool which takes an elementary P system
expressed in the eps notation and targets a sequential Promela model,
required by the SPIN model checker.

7. Demonstrate the suitability of our approach on four distinct case studies,
featuring:

e a distributed algorithm for a structured model (counting the child
nodes in a DAG);

e a linear time solution for an NP-complete problem (Subset Sum);

e an innovative implementation of the Dining Philosophers scenario us-
ing elementary P systems;

e an implementation of a simple random process (a biased coin toss
experiment) using a non-probabilistic model.

This thesis is structured as follows:

In chapter 2| we review the key mathematical concepts and data structures
pertaining to membrane computing and present P systems extensively, as a dis-
tributed and parallel computational model. We next survey the most prominent
P system variants with their distinctive features in chapter [3] The fundamental
concepts which typify the membrane computing paradigm are identified. The
variants which concretise this paradigm are presented with emphasis on expres-
sive power, complexity and application scope, whilst contrasts with the traditional
model are also highlighted.

Chapter [4 addresses the notion of formal verification and provides a detailed
analysis of the model checking technique. The two supporting formalisms, Biichi
automata and temporal logic, are also formally described. The advantages, prac-
ticability and inherent limitations of model checking are determined, from the
perspective of model checker software tools which automate this technique. SPIN
is presented as a leading formal verification tool and in particular, an efficient,
open source LTL model checker. Next, a set of prevalent investigations on model
checking P systems are scrutinised, highlighting the ambivalence which surrounds



this topic. The last section of the chapter reveals an essential incompatibility be-
tween the algebraic representation of distributed systems, promoted by process
calculi, and the expansive, unitary maximally parallel transition featured by P
systems. On this basis, a new sequential modelling approach optimal for mem-
brane systems is introduced. Its principles are outlined in this chapter (|4)), whilst
details of its implementation are discussed in chapter [6]

In chapter [5| we introduce elementary P systems, a computational model
rooted in the context of membrane computing which subsumes the diversity and
potency of its kindred models. The following chapter describes the formal verifi-
cation approach by means of SPIN model checking, proposed in this thesis. The
set of tools which support this methodology comprises the eps modelling lan-
guage and parser, the epss model simulator and the eps2spin translation module.
These pertain to elementary P system models and are extensively documented
in section Lastly, chapter [6] exemplifies the approach set forth with the ac-
companying software tools on a simple P system model which generates numbers
from the Fibonacci series.

In chapters[7], [8] [9] [10] we demonstrate the feasibility of our formal verification
approach and its suitability over four heterogeneous case studies which target:
1. a structured model; 2. a computationally hard (NP-complete) problem, 3. a
synchronisation problem and 4. a non-probabilistic model of a simple random
process.

Finally, we present a summary of our findings, concluding remarks and ensuing
paths of development in chapter |11}



Chapter 2

P Systems

2.1 Preliminaries

We begin this chapter with a review of key mathematical concepts and data
structures pertaining to membrane computing. The notation used throughout
this thesis is specified together with any conventions customary to P system
models.

A string over an alphabet V (a finite and non-empty set of symbols) is a
sequence of symbols from V. The empty string is denoted by A. The length of
a string x is denoted by |z| and is equal to the number of symbols it contains.
The number of occurrences of symbol a € V in a string « is expressed as |z|,.
Thus, for an alphabet V' = {a,b,c}, a, ababb, ccc are strings, with |ababb| = 5,
lababbl, = 3 and |A\| = 0. If an alphabet V' = (a4, as, ..., a,) is ordered and x is
a string over V, then ¥y = (|2|a,, |T|ay, -+, ||, ) I8 the Parikh vector of x. For
example, if V' = (a, b, c), then Wy (ababbc) = (2,3, 1).

A multiset over a finite set U of symbols is a mapping M : U — N, where N is
the set of non-negative integers. For an element a € U, M (a) represents the multi-
plicity of a in M. The support of M is defined as supp(M) = {a € U | M(a) # 0}.
If supp(M) = ), then M is the empty multiset, denoted by . Typically, finite
multisets are expressed as {(ai, M (a1)), (az, M(az)), ..., (an, M(ay,))}, however, in
the context of membrane computing, the string notation is preferred and com-
monly adopted: w = a}"“a}"®) M) and any permutation of w are repre-
sentations of M (a; € U,1 < i <n). If U is ordered, U = (ay, as, ..., a,), then the
Parikh vector of w is the ordered set of multiplicities (M (ay), M(as), ..., M (a3)).

Given U = {a,b,c}, then {(a,?2),(b,3),(c,1)}, {(b,2)} and A are multisets
over U. More concisely, the non-empty multisets can be expressed as a?b®c (or
cta?b?, or b3ca? etc.) and b?, respectively. Moreover, for an ordered U = (a, b, c),
Uy (a?b®c) = (2,3,1), Uy (b?) = (0,2,0) and ¥y (N) = (0,0,0).

A graph is an ordered pair (V, F), where V is a finite set of vertices (nodes)



and F is a set of unordered pairs from V' called edges. The order of a graph
(V, E) is given by the cardinality of V', |V|, whereas the size is denoted by |E].

2.2 P systems

A P system [77], also known as a membrane system, is a distributed and parallel
computational model inspired by the structure and dynamics of the living cell.
A P system consists of a hierarchical arrangement of compartments, each having
associated a multiset of objects and a finite set of evolution rules.

The key feature of P systems is the so called membrane structure which resem-
bles the partitioning of biological entities as generally perceived. The membrane
plays the role of a delimiter, and circumscribes a discrete region of computational
space. Figure illustrates the structure of a P system using a Venn Diagram
and a rooted tree, respectively. Membrane 1 is called the skin membrane, it de-
lineates the the outermost compartment and it is identified by the root of the
tree.

) N

2

_ o
Mo )

3 W
N
\_ J 0

Figure 2.1: A membrane structure example, depicted as a Venn Diagram and a
rooted tree. The structure can also be concisely encoded as [[ 2] Is[[ |5[[ 7] ]s]6]4]1-

Each compartment contains a finite multiset of objects which can be trans-
formed (evolve) into other objects, can pass to neighbouring compartments or can
dissolve the membrane they are contained in. These transformations are formally
captured by rewriting, communication and dissolution rules, respectively.

A multiset rewriting rule is a transition © — v where u, v are multisets of
objects from the system’s alphabet. Such a rule is applicable in a compartment
1 if and only if there exists a multiset w in ¢, such that v C w. The execution
of this rule results in the subtraction of u from w and the production of v. For
instance, a3bc®> — b%d* takes three a, one b and two ¢ objects and creates two



bs and four ds. The rule is only applicable in compartments containing at least
three copies of a, one of b and two of c.

Communication between regions is denoted in rewriting rules by multisets
with target indicators. These ascribed markers specify which region is to receive
the multiset emitted by a compartment. By convention, we refer to a transition
of the form u — wv;,,., where u, v are multisets of objects from the alphabet
O and tar € (in,out) as a communication rule. If such a rule is executed in a
compartment ¢ and tar = out, then v is sent to the region outside of ¢; if tar = in,
then v is to be passed to one of its direct descendants (inner regions), non-
deterministically chosen. A communication rule is applicable in a compartment ¢
if and only if uw C w and, if tar = in, then there exists at least one compartment
residing in ¢ which can be selected as recipient.

A P system membrane may also be dissolved, discharging the multiset content
of the compartment it delineates into its parent region. Dissolution is achieved by
rules which bear the (reserved) symbol §, suffixing a (possibly empty) right hand
side multiset in a rewriting or communication rule: a — bd, a — bcyyd, t — 6
are examples of dissolution rules. On this basis, one may consider dissolution as
an extension over the basic transition rules having a particular side effect.

One of P systems’ most representative features is called mazimum parallelism
and denotes a distinctive rule execution strategy. This property entails that all
transitions which can occur during a computational step, will do so in paral-
lel. Whilst compartments demarcate independent computational spaces operating
concurrently, P system parallelism persists inside membranes, requiring atomic
terms, that is, objects or multisets of objects from O, synchronise their transfor-
mation. More precisely, all the evolution rules associated with a P system will
be executed simultaneously and exhaustively, in one computational step, across
the system’s compartments. A more profound treatment of maximal parallelism
is presented in Chapter [4]

Formally, a P system of degree m > 1 is defined as:

II=(0,H, p,w,..Wm, Ry, ..., R, to)
where:
1. O is the alphabet of objects;
2. H is the ordered alphabet of membrane labels;

(t is a membrane structure of degree m;

- W

W1, ..., Wy, € OF are multisets of objects associated with the m regions of y;

5. Ry, ...R,, are finite sets of evolution rules associated with the m regions of
H



6. ig € H U {e} specifies the input/output region of II, where {e} ¢ H is a
reserved symbol which designates the environment.

A P system evolution rule can be generically expressed as:

?
UV — TYinZoutO

where v, x,y, z are multisets of objects from O, in, out are target indicators and
0 ¢ O is a special marker which can be optionally appended to indicate membrane
dissolution (7 symbolises zero or one occurrence of § in the definition above). More
specific instances derived from this form resemble the rewriting, communication
and dissolution rules described earlier:

e rewriting, when z # X\, y = A\, z = X\ and ¢ is omitted;
e communication, when y # X\ or z # A and ¢ is absent;

e dissolution, when ¢ is present;

Remark 2.1. Although  can accompany any rule which is subject to maximally
parallel execution, dissolution can only occur once, since this involves the mem-
brane, a singular entity, rather than multisets of objects. Importantly, this does
not restrict rewriting and communication rules to a single application, nor does
it impose additional constraints on the rule itself.

Since the membrane structure and the multisets associated to each region are
the sole volatile elementsﬂ a P system configuration is generically defined as a
tuple which envelops these components:

Cn = {u, (w1, ..., wm) }

A P system transition is defined as the passage between two successive con-
figurations C' = (C’. A sequence of transitions C; = Cy = ... = (), is
called a computation of II. Naturally, a model which exhibits non-deterministic
behaviour will involve multiple such sequences.

A P system computation halts when no further rule can be applied in its
final configuration C}. The multiset of objects present in the designated output
region iy when the system reaches this state, constitutes the result (output) of
this computation. If the system’s alphabet O is ordered, then the Parikh vector
U, of the multiset in region ¢ can instead be considered as output.

We next illustrate membrane systems with a simple example (Fig. .

%0

Tt is important to highlight that the collection of multisets associated to each compartment
of a P system is not sufficient to identify a configuration of this system. This is because an
empty multiset A is not equivalent to a dissolved compartment and cannot be used as such.



a
a— a by,

p
b — Aoyt

p—np
p—nod

- J

Figure 2.2: Depiction of IIz; as a Venn Diagram

1_[Fib = (O, H7 M, Wi, Wa, Rla R27 ZO)

where:
O ={a,b,p,n},
H={1,2},
p=[l]1,

wi = a, wy =p,

Ry ={a— a by},

Ry = {b — Gou; p —> n p; p—>n 0},
io = 1.

[Ty, consists of two compartments, labelled 1 and 2, denoting two nested
regions. The alphabet O consists of four objects and the initial configuration
of the system is {u, (w1, ws)}, where p is its initial membrane structure and w,
wy are the initial multisets of regions 1 and 2 respectively. For clarity, we will
henceforth refer to the compartments labelled 1 and 2 by o; and o5 respectively.
The execution of Ilg;, proceeds as follows:

Step 1 The presence of one object p enables both rule p — np and p — nd
in compartment oy. This is a standard non-deterministic construct which
implicitly prompts for non-deterministic choice. Suppose the former rule
is selected and executed, yielding both a p and an n objects. Because p



Step 2

Step 3

Step 4

Step b

will not be lost after this step’s rule application, the term is conventionally
referred to as a catalyst. Since there was only one p, subsequent applications
of any of the two rules which require a p are not permissible. The multiset
wy does not contain any b objects and consequently rule b — a,,; is not
applicable this step. In compartment labelled 1, rule a — ab;,, is applied
once, assimilating the single a object and producing another a but also a b
which is sent to one of its inner compartments. In this particular example,
region 2 is the only possible destination for b. Hence, the system’s resulting
configuration after this first step comprises multisets a and bpn in the two
nested compartments o1 and o9 respectively: C, = {[[ |2]1, (a,bpn)};

Starting again in compartment o9, we assume rule p — np prevails in the
non-deterministic selection requiring one p object; p persists across config-
urations so long as compartment oy remains undissolved and ensures an n
is generated each computational step. Since an object b is now available
in o9, rule b — ay,; can and must be applied, emitting a single a to its
parent region 1. Rule a — ab;, is executed once in compartment 1, repli-
cating a and inserting a b into its only child compartment - a transition
identical to the one in the preceding step. The resulting configuration is

Cy = {[[ J21, (a®, bpn®) };

We apply the same rules selected in step 2 for compartment o, in exactly
the same way, since the multiplicities of b and p are unchanged - implicitly,
we have also maintained the non-deterministic choice resolution, that is, in
favour of the non-destructive rule. In compartment o; on the other hand,
the communication rule a — ab;,, will be applied two times, yielding two
as in the respective region and two bs sent to oo. Cs = {[[ |2]1, (a®, b*pn?)};

We consider another step during which rules are executed analogously to
Step 3; a —> b;, is applied three times whereas b — a,,; expends the two
bs and sends two as to region 1. Cy = {[[ |2]1, (a®, b®pn*)};

At this point, we suppose p — nd is selected in region 2, the effect of
which is to dissolve the compartment and release its content to the parent
region 1. This is accomplished after all rewriting and communication rules
have been applied across the two compartments. More precisely, the five
bs emitted to oy as a result of rule a — ab;,, are finally incorporated into
o1, despite the fact they were produced during the same step. Naturally, as
soon as a compartment is dissolved, its associated rules become irrelevant.
Since the single rule in compartment oy, a — ab;,, requires a recipient to
send a b object, it too becomes inapplicable when region 2 is invalidated.
Consequently, the computation halts at this step with the resulting final
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configuration Cs = {[ |1, (a®6°n°)}. Compartment oy is also the designated
output region of Iy, as indicated by i, which entails that multiset a®b°n®
is the output of computation ¢} = Cy — (3 = Cy = Cs.

Table illustrates the outcome of each computational step described above,
for convenient scrutiny.

Step/Compartment o1 09
0 a P
1 a bpn
2 a® bpn?
3 a’ b>pn3
4 a® b3pnt
) a®bonb #

Table 2.1: Listing of a five step computation of Il

Observation 1. Each computational step Iz, generates the next number in the
Fibonacci series, encoded as the multiplicity of object a in compartment o.

Observation 2. The system Il z;, may never halt. The only possible transition to
a final configuration, determined by rule a — nd, is subject to non-deterministic
choice.

Observation 3. Every Ilg;, halting computation outputs a multiset m, such that
the following relation always holds: Fib(|m|,) = |m|,, where F'ib is a mapping
between a natural number &k and the kth element in the Fibonacci series, and |z|,
denotes the multiplicity of symbol y in multiset x.

P systems are computationally universal models. This has been initially
demonstrated in [77] by simulation of matriz grammars with appearance check-
ing [34]. It was shown that P systems with two membranes containing rules with
priorities and one catalyst are sufficiently expressive to generate the recursively
enumerable sets of natural numbers. Subsequent attempts [69,84] proved, by
reduction to register machines, that priorities for P system evolution rules are
not required to achieve universality.

P systems, with their suite of primitives but also the transitions employed,
are evocative of other discrete, distributed models. Petri Net [71] transitions are
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also described in relation to a structured computational space, which is that of
a bipartite graph, and operate concurrently on multiplicities of atomic tokens.
Cellular automata [85] feature a grid structure of cells which execute a fixed set
of instructions simultaneously. This resembles the the finite set of evolution rules
ascribed to P system compartments which are also applied in parallel.

Another parallel rewriting model which appears kindred with membrane sys-
tems is L-systems [62]. Inspired by the growth patterns of various types of algae,
L-system grammars were introduced to formally describe multicellular develop-
ments. A most noteworthy trait of L-systems is the ezhaustive execution of
production rules. L-system rewriting rules operate on and generate strings; these
differ from P system evolution rules whose subject is the multiset, but may also
include the compartment the rules are applied in (dissolution rules).

Whilst a deeper analysis of the similarities and contrasts between related
models may be an interesting undertaking, within the scope of this thesis it is
sufficient to acknowledge the contexts membrane systems are situated in, namely:

1. nature inspired formal models and
2. distributed and parallel computational models.

We anticipate, the most pertinent distinction is to be identified between P
systems and process algebra such as CSP and 7-calculus whose reconciliatory
treatment of parallelism exerted a resolute, almost exclusive influence on the for-
mal verification of distributed systems.

Ever so frequently said to be inspired by the living cell, P systems are not simply
an indeterminate, linear abstraction of biological entities and their inherent trans-
formations, but rather a powerful synthesis of concepts and ideas with profound
influences. Without trespassing into a philosophical domain, we can infer that
membrane systems are the scientific expression of an organic vision of dynam-
ics. All transient entities envisaged are consubstantial in their transformation.
A transition is not an individualized and isolated event, proper to a singular
process, but rather a monadic transmutation to which entities, in their plurality,
collectively participate.

It is this rather stylistic observation which is not only relevant but indeed
consequential in our interpretation of parallelism and the sequential modelling
approach set forth in this thesis (Chapter ).
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Chapter 3

The membrane computing
paradigm

Since its emergence in 1998 [77], membrane computing has received remarkable
and sustained attention, resulting in a proliferation of computational models
which gravitate around a central concept. These developments do not constitute
an evolutionary stage (in the strict sense) in this branch of natural computing,
the traditional P system model has not been superseded nor does it stand as
a prototype. In an effort to characterise this flux of realisations in its distinc-
tive occurrence, perhaps it is not inadequate to speak of model transfiguration
in an abstract formal context. Each P system variant is defined as a unique ar-
rangement of primitives and novel semantics, widening the application scope or
aggregating functional elements more concisely, but never dissociates itself cat-
egorically from its stem. Rather, a model can be viewed as an individualised
embodiment of a computational paradigm. Collectively, P system models 1) con-
cretise the membrane computing paradigm and, in their diversity, 2) substantiate
it at the same time.

We proceed with a survey of the most prominent ideas and developments
in the field on membrane computing. The principal objective of this examina-
tion is to identify the models’ distinctive functional components, their expressive
power and complexity on the one hand, but also the presence and permanence
of key concepts which typify the computational paradigm instantiated. In this
respect, more detailed descriptions and remarks on the novelties, advantages and
potential incongruities are preferred over complete reproductions of mathematical
definitions (references to the relevant works are provided).

Proofs of universality for models, their application scope and efficiency in
tackling specific problems are also highlighted. Several examples have been se-
lected to illustrate the model semantics more clearly, but also to demonstrate the
noteworthy algorithms which underpin a P system variant, some of which are
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revisited and re-imagined in our case studies. A discussion on how this cluster of
computational models can be interpreted will conclude this chapter.

In terms of notation, we use lower-case letters to denote objects (elements)
of a set or multiset and upper-case for set identifiers. A P system’s alphabet of
objects is symbolised by O, whereas compartments are referred to by the Greek
letter o and a subscript ¢ € N. A set of transition rules is generally denoted by R,
or R; if the rules are bound to a compartment ;. The initial multiset of objects
present in a compartment o; is marked as w;.

3.1 P systems with permitting and forbidding
contexts

All traditional evolution rules (multiset rewriting, communication and dissolu-
tion) featured by transition P systems are inherently conditional instructions
since they depend on the presence of the left hand side multiset in the compart-
ment they are executed. Communication rules also require an eligible recipient
region for each multiset with a target indicator. Whilst these innate constraints
are sufficiently powerful to express more complex conditions over a number of
auxiliary steps, a simpler alternative was propounded whereby designated mul-
tisets can be appointed to regulate the execution of rules. These multisets are
generally referred to as promoters (or activators) and inhibitors. A rule of the
form a — b|. —; residing in a compartment ¢ with contents w; (a,b, z,t,w; are
multisets over the alphabet objects O), is applicable if and only if 1. z C w; and
2. t € w; and 3. a C w;. The third of the predicates is generic to rewriting
rules and is always re-evaluated as the multiset w; depletes, allowing for an ex-
haustive execution. The first two conditions which relate to z and t respectively
are assessed prior to any other requisite and their validity is sustained for the
entire computational step. Hence, a rule a — b|,s will execute at least three
times, provided the number of as in the compartment is initially greater or equal
to three and no other rule expends a objects. Conversely, if |w;|, < 3 at the
beginning of the step, the rule is inapplicable. As underlined in this example,
the multiset a® is interpreted as a shallow guard over w;, the multiset content of
compartment 7. The mechanism is shallow or static because its evaluation does
not ripple any changes in w; (which is the subject operand in the comparison), it
is not considered for repetitive executions of the rule and cannot be modified in
response to computational developments during subsequent steps.

Rules with promoters and inhibitors were extensively used in P system based
static sorting algorithms [13}/16],26], in conjunction with symport/antiport com-
munication which is described in the following section.
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3.2 P systems with symport/antiport commu-
nication

Whilst the traditional rewriting and communication rules confer ample compu-
tational power on P systems to achieve universality, an interesting question was
posited in an attempt to identify a more restrictive set of primitives for this pur-
pose: are basic communication rules alone sufficiently expressive transitions to
simulate Turing machines? This perhaps foreseeable inquiry, given the distributed
nature of P system models, was decisively addressed in a study, revealingly titled
The Power of Communication: P Systems with Symport/Antiport [75]. Symport
and antiport rules mathematically abstract the transfer of chemicals through cel-
lular membranes:

e When two chemicals pass together into or out of a region, the process is
referred to as symport and can be formally expressed as (ab, in) and (ab, out)
respectively, where a and b are objects from a P system alphabet O;

e Chemicals which pass in opposite directions symbiotically are said to oper-
ate in antiport, defined as (a,in;b, out), where a,b € O;

The single object transfer (a,in) or (a,out) is also considered in this context
as a uniport rule.

Symport (and implicitly uniport) rules are applicable in a P system com-
partment if the objects required to complete the transfer are available, that is,
included in the compartment’s inner multiset. Antiport rules elevate P system
communication to synchronised bidirectional transfer and consequently require
the respective objects be present inside and outside the compartment the rule is
evaluated in. Specifically, if (a,in;b, out) is a rule of compartment o;, then at
least an object b must be present in ¢; and at least an a must exist in the region
containing o; in order to apply this rule.

It was demonstrated in |75] that P systems with symport/antiport rules and
minimum five membranes are capable of simulating matriz grammars with ap-
pearance checking [35] and hence computationally universal. Furthermore, it was
shown that the number of membranes can be reduced to two if complex antiport
rules, such as (ab, in; cd, out), are utilised.

We next illustrate symport/antiport rules together with promoter objects in
a static sorting algorithm presented in [26]. The P system employed comprises n
nested membranes [...[[|1]2...]n, where n is the number of positive integers to be
sorted. Each integer is encoded as the multiplicity of an object a present in a
compartment o;, 1 < i < n. During a computational step, a pair of rules referred
to as a comparator is applied between neighbouring compartments alternately,
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until the system reaches a stable configuration over a, that is, the distribution of a
objects accross the system remains unaltered by any subsequent rule application.
At this point, the n numbers are ordered with the lowest integer residing in
the outermost region and implicitly, the highest integer pushed to the innermost
compartment.

The two rules which effectively perform a parallel swap operation between
unsorted integers in adjacent compartments can be formally expressed as:

Ry = {(a,in;a,out)|, > (a,in)|,}

where a € O, p is promoter and the > symbol indicates a priority relation.
Specifically, the antiport rule, if applicable, must always precede the symport
rule. Both rules are guarded by an activator p whose absence prohibits their
execution. By allowing promoters inside either odd or even compartments at one
time, the comparator rules are coordinated across adjoining compartments and
achieve the goal of transferring the higher multiplicity to the inner region. The
alternating application of these rules characterises the P system algorithm, which
is often referred to as odd-even sorting.

To enable the promoter p to switch between odd and even compartments,
the uniport rules (p,in) and (p, out) are essential. These supplement the afore-
mentioned comparator rules for odd compartments, establishing the following
sequence:

Ry = {(p,in) > (a,in;a, out)|, > (a,in)|, > (p,out)}

The priority relation denoted by > does not impede rules of a lower rank (in
such a sequence) from executing if a high priority rule is inapplicable - this is
generally regarded as the weak interpretation of fixed priorities in the context of
membrane computing. If there is no p to be sent to a compartment o; via rule
(p,in), then the antiport rule (a,in; a, out)|, can still be executed in o;, provided
the rule conditions are satisfied (there is at least one a inside the compartment
and an activator p is present)ﬂ.

Figure depicts the initial configuration of a static sorting P system exam-
ple with an array of n = 6 natural numbers, [5,3,8,4,1,7]. These are distributed
as multiplicities of object a across six nested compartments as follows: w; = a”, p,
wy = a', wg = a*,p, ws = a¥, ws = a3, p, wg = a®. We underline that w; represents
the multiset of the innermost compartment, o;; in our schematic depiction, each

'In this scenario, it is not strictly required to impose a priority between the rules affect-
ing promoter p, since there is only one instance of this object shared between two adjacent
compartments. More precisely, a single rule of this type can be executed per computational
step. We have opted, however, for a faithful reproduction of the odd-even sorting algorithm
introduced in [26].
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Figure 3.1: A set of six nested compartments depicting the membrane structure
of our odd-even sorting example. The arrows denote a child-parent relationship
between compartments.

Step/Compartment | o 09 O3 o4 o O
0 a’,p a at,p| a® |a*p| o
1 a’ a,p a® |at,p| @ |adp
2 a’,p| a® a,p a® |atp| @
3 a® |d"p| a,p at | adp
4 ad,p| o |ad°p| o a,p a’
) a® |ad"p| a® |a*p| & a,p
6 ad,p| o |adp| a* |ap a

Table 3.1: The execution trace of an odd-even sorting algorithm based on P
system with symport and antiport rules.

rectangle denotes a compartment with the specified multiset content, whereas the
arrows suggest containment and point towards the parent compartment.

Each odd membrane is associated rule set Ry, whereas R; is sufficient for
the even compartments. The outermost compartment (o,) does not require any
rules, regardless of n being odd or evenll-].

The odd compartments will commence execution since they contain one p
which activates the comparator rules. The uniport rule (p,in) is skipped since
there are no external ps to transfer inside the membrane. The antiport rule
exchanges k copies of a between compartment pairs (0;, 0;11), 1 <i < n—1, where
k =min(|als,,|als,,,), that is, the minimum between the two multiplicities. The
remaining a objects in o;,; (if any), will be absorbed by o;, using the uniport
(a,in). Finally, p is sent out to the parent compartment which is to perform
the same exchange with its own parent (left aligned compartment in figure
during the next computational step.

Table [3.1]lists the execution trace (i.e. the system’s configurations) for the six
steps required to sort the encoded integers. In this example, it can be observed

I'The outermost compartment must never include a promoter p in its initial state if n =
2k + 1.
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that after five steps the P system reaches a stable configuration on a, which is the
stipulated halting condition. Whilst we can generally affirm that a maximum of n
steps are necessary to sort n natural numbers using an odd-even sorting P system
(indeed this is the concluding remark in [26]), the computational time 7" required
can be expressed more accurately in terms of the offset of an integer relative to
its index in the sorted sequence. More precisely, the system requires a number of
steps that is equal to the maximum offset found in the array. If a number x is
situated at index ¢ in the initial sequence (configuration), and its location in the
sorted array is at index j, then its offset is A, = abs(i — j), where abs stands for
the absolute value of a number. On this basis, T" equates to maz(A,, ), 1 <k <n
computational steps.

Symport/antiport communication has been a pivotal development, deeply
influential and persistently investigated in the context of membrane comput-
ing. Whilst the computational power (Turing completeness) of P systems with
symport/antiport rules was independently demonstrated in various configura-
tions [42}43]/46], the rules have also been incorporated into other variants (as we
will see next) and studied in conjunction with alternative execution strategies,
notably minimal parallelism [29}45].

3.3 Tissue and Population P systems

P system transitions are enacted in a structured computational space. The orig-
inal model, inspired by the eukaryotic cell, envisaged a hierarchical arrangement
of chambers which identify separate regions in this space. Whilst a tree-like struc-
ture of compartments is a perfectly suitable environment for maximally parallel
transitions and concurrent computation in general, it appeared restrictive and
inflexible when P systems were considered as a modelling framework in other
scientific contexts. Indeed, not all entities (whether organic or inorganic, macro
or micro) are organised in a precisely determined structure and it is often the
case that structural change is intrinsic to the abstract model they are subject to.
Moreover, the ability to devise a concise and intuitive mapping is a decisive con-
siderationﬂ which effectively requires a one to one correlation between P system
compartments and physical entities - the individuals of a colony for instance.
Tissue P systems [63] address these concerns by extending the tree-like mem-
brane structure to that of a graph. Whilst this may be perceived as a generalisa-
tion of the structure of compartments (i.e. a tree can be thought of as a specific

1Since P systems are computationally universal, they can model any deterministic dynamic
which can be computerised. This, however, may require elaborate encodings over multiple
objects and across several compartments depending on the complexity of the subject being
modelled. The necessity to introduce intricacy in a model is (almost) never desired.
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directed acyclic graph where each node, excepting the root, has a single parent),
it is important to underline that tissue P systems do not represent a general
form of the traditional model. Since the target indicators (in, out) are no longer
applicable, communication rules in tissue P systems have been associated with
communication channels, symbolised by the edges between nodes, as opposed
to compartments. This approach, a hallmark of tissue P systems, allows for a
concise design of object exchange between connected compartments, requiring no
more than the set of channels which constitutes the membrane structure.

Initially, tissue P systems were investigated as purely communicative models
[76], however a series of extensions followed. We examine one of the original (and
prevalent) definitions, that is of tissue P systems with channel-states, and iterate
over the related developments that have branched off this model.

A tissue P system with channel states and symport/antiport rules [44] is a
construct:

IT = (07 K7 Wi, eeey Wi, E7 Ch7 (Si,j>(i,j)60h7 (R(i,j)>(i,j)€ch7 ZO)

where O is the finite alphabet of objects, K the set of channel states, wy, ..., wy,
are finite multisets of objects from O initially present in the respective com-
partments 1,...,m; E denotes the finite set of objects arbitrarily available in the
environment, which is usually labelled 0; ch C {(7,j)|i,7 € {0,1,...,m},i # j} is
the set of channels between compartments, or between a compartment and the
environment. Each channel symbolised by the ordered pair (i, j) is associated
a state s(;;) € K and a finite set of symport/antiport rules R; ;. A rule from
R jy is of the form (s,z/y, s’), with s,s" € K, and z,y, € O*. Accordingly, such
a communication rule has the capacity to change the state of the channel in ad-
dition to exchanging objects between compartments (or with the environment).
1o designates the output compartment of II.

The usage of states on communication channels confers versatile conditioning
for symport/antiport rules and generally allows for a more controlled execution.
There is, however, a pronounced incompatibility which prompts for a restriction
(or other reconciliatory measures) when considering the maximally parallel execu-
tion strategy. Since maximal parallelism requires all applicable rules be executed
exhaustively, there may be rules on a channel R, contending to change the
state s(; ;) of that channel to different values during the same step. This was
resolved in various instances by applying only rules which solicit a transition to
the same state (non-deterministically chosen). However, a more conventional al-
ternative was also considered involving an adjustment on the execution strategy:
mazximal parallelism with sequential behaviour on channels [44] requires that at
most one rule per channel per step is applied. A more stringent provision still is
the sequential mode [41], which imposes that a single channel and a single rule

19



are non-deterministically selected during each computational step. This was in-
vestigated in antithesis with the asynchronous [41] strategy according to which
an arbitrary number of channels and rules (for the selected channels) can be ac-
tive at each step. The referenced studies are instructive of how various execution
strategies pertain to tissue P systems and reinforce the modelling potential of
this variant. Complementary, the model’s computational power and complexity
have also been extensively investigated [9-12]. Specifically, it was demonstrated
that tissue P systems with simple antiport rules or symport rules of size two in
two compartments are sufficient to achieve universality.

The execution strategy was not the sole element to induce variation in tissue
P systems. Substantial research also focused on developments which include
rewriting rules alongside symport/antiport communication. The models defined
in this respect are generally referred to as Evolution-Commaunication (or EC) P
systems and constitute a class of their own (we investigate one prominent variant
in more detail, in section . Additionally, tissue P systems with string objects
and rewriting rules have also been examined [66], motivated by the modelling
requirement of more complex macromolecules, such as DNA and RNA, which are
usually depicted as strings.

Population P systems [19] are a noteworthy extension of tissue P systems and
its principal objective was to allow structural mutation. Whilst the edges of a
graph appeared as an intuitive abstraction for communication channels between
more complex biological entities (but not exclusive), these were not sufficiently
expressive to succinctly model the behavioural dynamics of societies or metapopu-
lations. Population P systems introduced bond making rules to allow the creation
of new channels during a computational step. A bond making rule is denoted as
(i, ;y,7) and its application results in a new undirected communication channel
between two compartments ¢ and j, when ¢ contains at least one object z and
j # 1 includes a y.

Population P systems employ a maximally parallel execution strategy for
rewriting and communication rules. During each computational step, however,
all connections (edges in the graph structure) are removed and re-instated as stip-
ulated by the applicable bond making rules. Hence, the membrane structure is
transformed in parallel with any other executable instruction and, as a mutable
collection of elements, it is included in a system configuration C; for a step 1.
Since there are no link destruction rules, no conflicting scenarios are identified -
the repeated execution of a bond making rule is equivalent to a single execution
and hence, inconsequential.

Interestingly, one may consider tissue P systems with channel states capable
of emulating a dynamic structure by alternation of two states, one correspond-
ing to an active channel and its complement, the inactive state. In this respect,
communication rules can be prohibited execution if the channel is in an inac-
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tive state. Bond making rules, however, are applied independently of any other
rule and are only conditioned by the presence of multiset in the two designated
compartments (7, j in the above expression). Similarly to promoter objects, the
multisets required are not consumed when the rule is applied.

A noteworthy case study based on population P systems (with slight varia-
tions) investigates a model of quorum sensing behaviour in a Vibrio fischeri bac-
terium [20]. Additionally, we mention the modelling principles presented in [21]
for describing metapopulations using P systems as formal framework.

3.4 Spiking neural P systems

Spiking Neural P system (SN P systems), introduced in [54], directly abstract
from the nervous cells (neurons) and their interactions, particularly the commu-
nication by means of electrical impulses of identical shapes, called spikes. Whilst
they preserve the same internal structure as their kindred Tissue P system vari-
ant, the graph which represents the set of synapses between neurons is directed
and generally referred to as synapse graph. Another notable particularity is the
singleton alphabet O = {a}, where a can be associated a multiplicity and like-
wise borrows the biological term spike. There are two types of rules which can
be applied by a neuron o;: (a) firing rules of the form E/a® — a;d and (b)
forgetting rules expressed as a® — A;d. A firing rule can be guarded by a regu-
lar expression E over a and as such, may only execute if a® € L(FE) (the regular
language defined by F).

One element which further underpins the model’s faithfulness to neural phys-
iology is the constant d which accounts for the so called refractory period of
neurons, during which the cell cannot emit or receive spikes and is thus consid-
ered closed or inactive. d can be attached to both rules and indicates the number
of computational steps the cell becomes closed for, after the respective rule was
applied.

A firing rule, when executed inside a neuron o;, removes ¢ spikes from o;
and emits one spike to all forward connected neurons o, (i,j) € syn (the set
of synapses). A firing rule propagates electrical spikes to neighbouring compart-
ments independent of the number spikes required on the left hand side; it is the
number of recipients which determines the output of the rule. Notably, Spiking
Neural P systems is the first model to feature such rules, where communication is
envisaged as a radial dispersal of discrete entities, as opposed to correlated inter-
compartmental rewriting exercised by cell-like and tissue P systems; the concept
will complement traditional multiset rewriting in a more complex development,
described in the next section.

A forgetting rule on the other hand can only execute in o; if o; contains
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precisely s spikes and no firing rules are applicable. It operates by removing s
spikes from o;.

SN P systems were persistently investigated as language recognisers and gen-
erators [27,28] but also as efficient computational devices for solving intractable
(NP-complete) decision problems, such as Subset Sum [60,/61], SAT and 3-SAT
[57].

3.5 Neural and Hyperdag P systems

Neural P systems (nP systems) [69] constitute the first P system class to syncretise
a semantically eclectic mix of elements advanced by other variants. The model is
noteworthy for its orchestration of multiple execution strategies and augmented
communication scope. Specifically, nP system compartments are assigned a pro-
cess mode o € {min, par, max} and a transfer mode 3 € {one,repl, spread}. The
man and max labels correspond to minimal and mazimal parallelism respectively,
strategies described in the preceding chapter. The par directive allows arbitrary
executions of an arbitrary selection of applicable rules in a compartment. Impor-
tantly, both the process and transfer modes are fixed instructions and cannot be
changed (for nP systems) as the system transitions to new states.

The 8 = one mode accounts for traditional communication rules which emit
a multiset m of objects from the alphabet O to one recipient only. Since Neural
P system compartments are linked by directed arcs (the membrane structure re-
sembles a directed graph), a target compartment is non-deterministically selected
when more than one prospective recipient are available. By contrast, the repl tag
requires the emitted multiset m be replicated to all forward connected compart-
ments. Finally, spread induces non-deterministic division of m into sub-multisets
which are dispersed to arbitrary neighbours (outward linked compartments).

In addition to individual execution strategies and transfer modes, nP system
compartments are also attributed a set of states () such that at each computa-
tional step, only rules associated with the state s € () the compartment is in
are applicable. More formally, a rule can be expressed as st — s'z’y, where
s,8 € Q, xr,x' € O* and y € O is a multiset sent to neighbouring compart-
ments according to the transfer mode [ of the compartment the rule executes in.
Notably, a rule, if applied can also change the state of its compartment concomi-
tantly, however, this transition (s... — §'...) is always singular and not regulated
by the process mode a.

A single system compartment can be designated as the output cell, which can
solely send objects outside the computational context (generally referred to as
the environment). The system halts when no further transitions are possible (i.e.
a deadlock is reached) and the result of the computation is the Parikh vector of
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the multiset accumulated in the system’s environment.

Neural P systems, whilst not a prominent formalism with immediate ap-
plications, have had a catalytic influence in the emergence of other elaborate
variants which aim to integrate heterogeneous primitives, in particular Kernel
P systems [48]. Moreover, the model provides the foundational basis for Hy-
perdag P systems (hP systems) [80,/82], an extension primarily investigated for
its modelling potential and expressive power in the context of computer net-
working. By constraining the model’s membrane structure to that of a directed
acyclic graph (DAG), communication between compartments can be channelled
effectively, without resorting to contrived implementations. A series of network
discovery algorithms devised with hP system primitives have demonstrated [81]
efficacy and intuitive design. The principal addition which accompanies the DAG
structure is the directional label affixed to multisets in communication rules. Since
DAG nodes (vertices) can be ordered alongside an axis, three distinct relations
can be derived from this arrangement: parent-child, child-parent, sibling-sibling.
These relations refine Neural P system communication rules, allowing a more fo-
cused replication and transfer of objects from a compartment. Formally, an hP
system rule can be expressed as: st — 2" U4V W YgoZour Where:

e 5,5 are states from the set of states Q;

e 1,2’ are multisets over the alphabet O, essentially the constituents of a
rewrite operation;

e u; denotes a multiset destined to parent compartments;

e v, is a multiset which is to be sent to child compartments;

e w,, is a multiset which targets sibling compartments;

® Y, is a multiset which could be received by all connected compartments;
e 2, denotes a multiset to be expelled into the system’s environment;

Each multiset emitted to neighbouring compartments, as indicated by its as-
sociated tag, will respect the transfer mode [ which now applies on the restricted
set of compartments. Specifically, if 8 = repl, then a multiset uy will be replicated
to all parent nodes, vy would be replicated to all child nodes and analogously for
Wes, Ygo. Conversely, if § = one, then only one of the respective nodes (parent,
child, sibling) will be non-deterministically chosen as the recipient.

The so called process mode is also retained and can be associated with states
from @ in addition to compartments. More precisely, a process mode need not
be fixed from the start (the initial configuration) and operates dynamically in hP
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Figure 3.2: A directed acyclic graph example. The child count via broadcasting
hP system algorithm is demonstrated on this configuration.

systems where state transitions may switch between the three execution strategies
in .

We further illustrate Hyperdag P systems with an example (adapted from [81])
which will be revisited and elaborated into a dedicated case study.

We consider an hP system with alphabet O = {a}, compartments o;...09
arranged in a DAG structure, depicted in figure [3.2] where a numbered vertex
7 indicates compartment o; and each arrow represents a directional link between
nodes. Each compartment is associated the same set of rules:

1. spa — s1py, with o = min, 5 = repl;
2. 50p — sipycy, with o = min, 8 = repl;
3. s1p — s1, with a = max.

All nine compartments start in state so with root nodes (i.e. nodes without
a parent) oy, o9 including a non-empty multiset a. Each compartment awaits an
object p which prompts an acknowledgement c to all its parent nodes. The same
rule further propagates p to child compartments and performs the transition to
state s; at which point any remaining p objects will be destroyed (using rule 3)
since they are no longer relevant. We note the transfer mode g = repl for the first
two rules which indicates that objects are always broadcast to all connected nodes
in the respective direction. Additionally, a = min prevents multiple executions
of the second rule in case two or more p objects are received simultaneously - in

24



Step/Compartment | o4 09 o3 o4 | 03 o | o7 | os | o9
0 Soa | So So So | So So | So | So | spa
1 51 Sop | Sop | So | So Sop | So | So | s1
2 sice | 81 s1C | Sop | Sopp | S1P | Sop | So | s1€
3 Si1CC | S1CC | S1CC | S1 S1 S1C | S1 Sop | S1€
4 Si1CC | S1CC | S1CC | S1 S1C S1C | S1C | S1 S1C

Table 3.2: The execution trace of the child count via broadcasting algorithm
applied on the DAG depicted in figure

our example, this occurs at step 2 in compartment o5. Conversely, the maximal
parallelism assigned to rule 3 disposes of all superfluous ps in one step.

The algorithm completes when all compartments have reached state s; and
the remaining p objects have been cleared. This is achieved after a maximum
h + 1 steps, where h is the height of the graph. In its final configuration, each
node (compartment) will contain a number of ¢s that is equal to the number of
its child nodes.

We conclude our treatment of Hyperdag P systems with a remark evinced
by the presented example: hP system communication rules do not require an
existing recipient to execute, the left hand side multiset condition common to all
P system variants, together with the state guard are the only requirements to be
satisfied. Rule 2 (sopp — s1p,c+) executes in compartment og despite the fact
there are no child nodes to send p to.

3.6 P systems with active membranes

P systems with active membranes |78 extend the maximally parallel dynamics
of traditional models, onto the membrane structure itself. Membrane creation
and division naturally complement the dissolution rules transition P systems
are endowed with, and provide means of expanding the computational space to
accommodate new multiset instances over the same alphabet. Formally, division
rules are expressed as [a];' — [b]32[c];?, where a, b, ¢ are multisets over a system
alphabet V| h is a membrane label and ey, e9,e3 € {+, —,0} represent electrical
charges bound to membrane h. Applying such a rule transforms multiset ¢ and
its parent compartment on the left hand side into two new compartments with
the same label h containing multisets b and ¢ respectively and possibly different

polarization (e; and e3). Furthermore, the existing contents of the compartment
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initiating the division is replicated to the nascent regions signified by the right
hand side of the rule.

P systems with active membranes employ a conventional tree like structure of
compartments, however, the concept of electrical charges or polarization was also
introduced (as specified in the above definition) in order to distinguish between
three states a membrane can situate in. Communication and division rules have
the capacity to change the polarization of a membrane and hence determine
subsequent execution. A rule which stipulates an electrical charge e may only be
applied in a compartment with label h if h bears the charge e: [a]f — [[7a is a
communication rule which sends one a outside compartment 1 and changes the
polarization + to — concomitantly; the rule can only be applied when membrane
1 has the positive charge +.

The single most important quality of this P system variant is its ability to
generate an exponential computational space in linear time. This is achieved by
executing the emblematic membrane division rules concurrently: every step, a
compartment may be dividedﬂ and its contents replicated and/or mutated in
one atomic procedure. This approach, frequently referred to as “trading space
for time”, was employed extensively and almost exclusively for solving computa-
tionally hard problems which currentlyﬂ require exponential resources (in space,
time or both). Linear time solutions have been devised for all well known NP-
complete decision problems, demonstrating the efficacy of maximal parallelism
in conjunction with membrane creation: SAT, 3SAT [47,/67,|78|, the Knapsack
problem [58,|68], 2-Partition [50], 3-COL [37.,/49], Subset Sum [36439.|70].

We illustrate the exponential growth of compartments by membrane division
in figure [3.3 which depicts the first 4 computational steps of a Kernel P system
solution to the Subset Sum problem we presented in [39]. The outlined instance
of the problem considers a set A = {3, 8,25,23,5, 14,30} of positive integers with
the stipulated sum S = 55. Each level in the hierarchy represents a configuration
of the system at a given step. We also note the dashed arrows symbolize division
in this diagram and not the parent-child relationship between compartments in
a tree-like membrane structure. Each number is represented by the multiplicity
of the object z, whilst the presence of a indicates the compartment is active and
no answer has been found on the respective path. The approach is described in
detail and formally documented in [39].

Notably, division rules for their powerful semantics also disturb the regularity
of the maximally parallel execution strategy, at least in its pure interpretation.
Division rules operate on compartments, a consideration which entails the fol-

IDivision rules generally transform one compartment into two disjoint regions, however
extensions to this model have investigated the possibility and potential of an arbitrary expansion
of the computational space per step.

2 At the time of writing, the P = NP conjecture is unresolved.
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Figure 3.3: Generating an exponential computational space in linear time for a
Kernel P system based solution to the Subset Sum problem

lowing: 1. division rules are restricted to a single application per compartment
per step; and 2. since the newly created compartments inherit (a copy of) the
multiset produced by their parent during the very same step, a clear precedence
of traditional multiset rewriting and communication over division rules can be
observed. Indeed, it is confirmed in [7§]: “we may suppose that first the evo-
lution rules of type (a) are used, changing the objects, and then the division is
produced [...]T]

3.7 The membrane computing paradigm

The P system models examined in this chapter evince the diversity, the novelty
and complexity infused in the membrane computing paradigm. The great variety
of features and extensions is a testament to the inspirational quality exhibited
by membrane systems, which gave rise to a remarkable creative momentum. One
research direction which ensued can be characterised as explorative or expansive,

LOur remark underlines the qualitative distinction between typical multiset transition rules
and division rules, which is evinced by the maximally parallel execution strategy. Stylisti-
cally, we find the interplay between compartments (context) and multisets (content, substance)
organic and consistent with other P system innovations, although, from a very strict logical
perspective it may seem unharmonious. Evidently, there is no question about the logical con-
sistency of the model.
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seeking to extend established models in innovative ways, introducing new prim-
itives and elevated semantics. The aim was to generally enhance the expressive
power of P systems, allowing for elegant solutions to specific problems/scenarios.
Tissue and Population P systems as well as P systems with active membranes
are eminent examples of this class.

The complementary tendency, of equal significance, was to identify a more
restrictive set of primitives amidst newly emerged variants and establish their ex-
pressive power and complexity in isolation. This impulse sought to refine existing
models and determine the functional significance of key elements more sharply.
The study on the power of communication by symport/antiport rules [75] dis-
cussed earlier, as well as numerous investigations on the efficiency of Spiking
Neural P systems and the universality results of the traditional P system model
are noteworthy examples of this research direction.

Finally, a third category can be identified in this flux of developments. Models
such as Neural P systems, Hyperdag P systems and Kernel P systems integrate
an eclectic mix of elements and reconcile their often incongruous semantics in an
effort to establish a unified and coherent modelling framework in the context of
membrane computing. We have nominated these attempts as syncretic.

Whilst these diverging paths of development have engendered a diversity of
related computation models, the originating concepts were also implicitly sub-
stantiated. We conclude this chapter by stating the most conspicuous features
which typify the membrane computing paradigm:

1. A structured, distributed computational space;
2. Multisets of objects as

(a) atomic terms in parallel transitions and

(b) persistent data in delineated sectors of the computational space called
compartments;

3. Intra-compartmental transition rules, generally known as (multiset) rewrit-
ing rules;

4. Inter-compartmental transition rules, often referred to as communication
rules;

5. An execution strategy which orchestrates the application of rules.
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Chapter 4

Formal Verification

Formal verification complements formal specification and development with the
purpose of improving robustness and reliability of a model in a mathematically
rigorous way. In contrast to other means of asserting program correctness and
consistency, formal verification conveys a categorical response to an examination,
by proving or disproving a correctness claim. The methodology generally requires:

1. an abstract mathematical model of the system,
2. an unambiguous representation of a set of properties to be verified,

3. a means of asserting whether the system complies with the stipulated prop-
erties/correctness claims.

The two most common approaches to formal verification are model checking
and automated theorem proving. Each method presents both advantages and
disadvantages which generally determine the suitability of one over the other
in specific contexts. Whilst an ample and accurate comparison of the two ap-
proaches, documenting the criteria one should consider prior to selection, is itself
a momentous undertaking, in this project we specifically address the formal ver-
ification of P systems by means of model checking.

The absence of an established semantic framework which parallel systems
(such as membrane systems) can non-reductively map to is one primary consid-
eration in this regard. A second aspect which motivates this research project is
the ambivalence induced by various proceedings with similar objectives - these
will be detailed later in this chapter. Is model checking a viable formal verifica-
tion approach for P systems generally, or is it appropriate for particular variants
or isolated cases only? What makes a P system model a suitable candidate for
model checking? What are the limitations of model checking membrane systems,
in contrast to other formalisms? These are some of the questions we commit to
answering in this thesis.

29



4.1 Model checking

Model checking is a formal verification technique primarily used to prove the
validity of finite-state reactive systems. In contrast to deductive systems which
entail the systematic construction of mathematical proofs to assert program cor-
rectness, model checking is an exhaustive approach whereby the complete state
space of the program is investigated. The technique was pioneered in the 1980s
by Clarke & Emerson, and Queille & Sifakis [30,31,40,/79] who showed that it can
be feasible to check all possible computations of a concurrent program. The key
insight in their approach is that both the model subject to verification and the
correctness claim can be expressed as non-deterministic finite automata (NDFA).
The verification problem is hence reduced to one in automata theory: a program
P satisfies a property « if the intersection of the languages accepted by the cor-
responding automata, Ap and A_,, is empty. If a common string is found, then
the computation accepting this input is a counter-example which invalidates the
correctness claim.

A correctness claim is generally specified using temporal logic, a formalism
developed by Amir Pnueli in 1977 [74]. Time related modal expressions such as
‘the system will eventually halt’” or ‘the system never deadlocks’ can be elegantly
formulated using designated temporal logic operators, F (finally) and G (globally)
respectively. Linear time temporal logic (LTL) [74] is one of the prominent formal
frameworks in this respect. LTL consists of a finite set of atomic propositions
P ={po,p1, .-, Pn}, the logical operators — and V, and the temporal operators X
(next) and U (until). Formally, the set ® of LTL formulae over P is inductively
defined as:

e Vpe P, pe d;
e If o and (8 are formulae in @, then so are ~a, a VvV 3, Xa and a U £.

We can interpret the computation of a program as a (possibly infinite) se-
quence Py, Py, ... of subsets from P, that is, a sequence of truth evaluations for
atomic propositions in P. Such a sequence M : N — 2F satisfies an LTL formula
« at instant i (relation denoted as M,i = «) as follows:

o M,ilE=p,pe P, iff pe M(i);

o M,iE —a, iff M1}~ o

o MiiEaVp iff Mi=«aor M,i | p;
o M ik Xa,iff Mi+1FE o
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e M,iEaU g, iff 3k > 1, such that M,k =S and Vj,i <j <k, M,j | a.

The additional logic operators are defined in relation to the primary elements
of LTL:

e aAf=(-aV-p);
e a— f=-aVf,

e atr B=(a—B)A (B a)
o true=pV —p, p € P;

o false = —true.

Furthermore, there are three derived temporal operators which are based on
the ‘until’ (U) operator. Their validity is described as follows:

o M,iEF «iff 3k, k > i, such that M,k = «;
o MiEGaiff Vk, k>, M,k | o

e MiFaRPpBift Myil= G §or dk > 1, such that M,k = « and Vj,i <
J<k MjEpB

More succinctly, the operators can be defined in relation to U:

o ' a=true U a (a eventually becomes true);
e Ga=-F -a= false R a («a is always true).

e a R f=-(-a U —f) (P remains true until and including the point when
« becomes true. § must hold indefinitely if o never becomes true);

For the purpose of verification, finite state reactive systems as well as (negated)
temporal logic formulae are translated to Biichi automata [22]. A Biichi automa-
ton is a non-deterministic finite state automaton which takes infinite words as
input.

Formally, a Biichi automaton is a tuple:

A=(Q,%,0,1,F)

where:

@ is a finite set of states;
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Y is a finite set of symbols which represents the alphabet of A;
0:@Q x X — @ is the transition function of A;

I C @ is the set of initial states of A;

F C @ is a finite set of final (or sometimes called good) states;

A Biichi automaton accepts an input w if at least one of the infinitely occurring
states over w is in F'. The language recognized by A, denoted L(A), is the set of
all infinite words accepted by A. More generally, Biichi automata recognize the
omega-regular languages - regular languages with infinite words.

The model checking problem is reduced to the construction of the product
automaton of the two Biichi automata (corresponding to the reactive system and
property expressed as a temporal logic formula) which identifies the intersection
of their accepted languages. Specifically, a formula « is satisfied by a program P if
the intersection of the languages recognized by the Bichi automata corresponding
to =« and P is empty. Formally, this is stated as follows:

Let P be a program, o a formula and Ap and A-, the constructed Biichi automata
for P and —a respectively. Then all computations of P satisfy o if and only if
L(Ap) N L(A-,) = 0.

4.2 Model checker tools

One of the most fruitful advantages of model checking is the fact that it can be
completely automated. The technique outlined in the preceding section has been
implemented by numerous software tools to provide mainstream means for formal
verification. The two most important aspects model checker tools focus on are:

e generating a system’s state space efficiently and

e state storage strategies which also facilitate optimal retrieval for an overall
efficient traversal of the state graph.

In order to achieve an efficient state space expansion, a model checker generally
employs an ‘on the fly’ construction approach, such that all reachable states are
generated progressively, when and if required in a particular verification instance
(‘run’). The model’s state space construction and traversal is hence determined
not solely by the problem size, but also by the type of properties whose validity
is to be asserted. A ‘finally’ claim, for instance may be satisfied by a fractional
subset of a system’s state space; the ‘on demand’ approach is a remarkable en-
hancement in such cases.
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The second topic of significance model checker tools are inherently concerned
with arises from the fact that systems often exhibit recurrent states - this is al-
ways the case with reactive systems whose state transitions can only be modelled
by Biichi automata (or other formalisms which allow infinite inputs). Thus, a
model checker must first traverse the state graph constructed up to present and
establish whether a state already exists, in which case a duplicate will not be
added. It is implicit that a model’s state space is a graph whose vertices corre-
spond to unique states of the system. The state search operation is of primary
importance and as such, considerable effort is invested in optimising the algo-
rithms and data structures which store the state space (modelled as a directed
graph) but also facilitate a speedy retrieval of state data. To this end, model
checkers employ hash tables coupled with efficient hashing and compression algo-
rithms. This is often supplemented by partial order reduction techniques which
are essential to models of concurrent systems. Since a model checker reconciles
parallel state transitions inherent to distributed systems by interleaving atomic
instructions, it is frequently the case that not all independent paths are pertinent
to the verification process. A partial order reduction strategy essentially prunes
irrelevant paths resulted from process interleaving. Additionally, some model
checkers also include BDD (binary decision diagram) based storage techniques to
further optimise the execution of the verification procedure.

The methods utilised to improve and optimise the model checking approach
also hint at the infamous drawback associated with the technique. Model check-
ing is not scalable for distributed systems. The verification problem becomes
intractable due to the exponential state expansion, relative to the number of
processes of a system. This is a direct consequence of parallel transitions be-
ing reduced to interleaved instructions, which entails that all state combinations
between the processes must be considered in the global state graph.

The intransigent state explosion problem may seem as contradictory to our
earlier affirmation, regarding the prevalence and suitability of model checking for
reactive, concurrent programs. In practice, formal verification by model checking
is used to demonstrate the correctness of a methodology, the implementation of
an algorithm or protocol, a segment of an application (i.e. a sub-routine, module,
etc) and not reducible instances of a problem. This does not imply that model
checking is generally applicable and permanently viable, however.

The state explosion problem can also be avoided by model construction when
the system does not require a translation to a traditional process model (i.e. a
model whose atomic instructions are interleaved). We anticipate, this is precisely
the case with membrane systems.
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4.3 The SPIN model checker

Developed by Gerard J. Holzmann in the 1990s, SPIN [8,52] is a leading formal
verification tool, widely used by both scientists and software engineers. Originally
designed for verifying communications protocols, SPIN is particularly suited for
modelling concurrent and distributed systems by means of interleaving atomic
instructions. The tool can be used to validate the logical consistency of a speci-
fication, identify deadlocks, report race conditions and incompleteness.

A model checker requires an unambiguous representation of its input model,
together with a set of correctness claims, generally expressed as temporal logic
formulae. SPIN features a high level modelling language, called Promela (process
meta language), which specializes in concise descriptions of concurrent processes
and inter-process communication. A practical and highly convenient aspect of
the tool is its complementary support for embedded C code as part of the model
specifications. This confers outstanding flexibility in describing the behaviour of
a system in its state transitions.

Correctness properties can be specified in SPIN as:

e process invariants using assertions;

e linear temporal logic (LTL) formulae;

e Biichi automata;

e general omega-regular properties in the syntax of SPIN never claims.

Whilst SPIN is a fully featured LTL model checker, it can also be used to
verify more basic safety and liveliness properties which can be expressed using
an alternative notation [6].

Other notable merits of SPIN include its support for multi-core computers, an
‘on the fly’ construction of the global state graph, support for mixed communi-
cation (both synchronous and asynchronous) between processes, efficient partial
order reduction techniques for the verification of concurrent systems.

As a mature, established, open source software verification tool, SPIN is also
the model checker of choice for this research project. Its performance but also
its support for embedded C code which can effectively hide more complex, com-
pound instructions and, generally support the implementation of ‘unconventional’
concepts such as maximal parallelism, are just two of the reasons which motivate
our selection.
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4.4 P systems and model checking

An initial investigation on the feasibility of model checking membrane systems [33]
suggests that it is theoretically possible to verify P system models with bounded
multiplicities on objects. Specifically, the paper focuses on the decidability of the
model checking problem for traditional P systems. The experiments conducted
(using two verification tools, SPIN and Omega) appear inconclusive however, in-
dicating the method is impracticable for most properties: “Unfortunately, SPIN
could not finish any run within one hour [...]”. A liveliness property was presented
as an unexpected exception of this analysis. Indeed the concluding remarks ad-
dressed the necessity for improved modelling strategies: “more research is needed
for both approximation methods to create a more efficient encoding” [33]. It
is important to emphasize that each compartment was mapped to an individ-
ual Promela process and communication rules are implemented using rendezvous
message passing between processes.

An interesting approach to LTL model checking in the context of membrane
computing is presented in [14]. The paper demonstrates an executable algebraic
specification of transition P systems for the Maude [32] rewriting engine. The fo-
cal point of this undertaking is the algorithmic implementation of the maximally
parallel multiset transitions, inherent to membrane systems, in rewriting logic,
executable by Maude. Whilst the question of formal verification is peripheral to
this study (only two simple properties were examined), it was nevertheless shown
that LTL model checking can be achieved in this setting, using an implementa-
tion of P system operational semantics in conjunction with Maude’s linear time
temporal logic module, both expressed in a consistent rewriting logic notation.
The tool automates the parallel execution of the two specifications, yielding a
result to verification enquiry.

No performance metrics or more general remarks on the feasibility of this
approach in an extended context can be derived from this investigation. It is
notable, however, that this represents the first (and only, to the best of our
knowledge) work which does not consider a translation of P systems to process
models, a conventional requirement for model checking distributed systems.

A separate course of development [5556,59] diligently pursued a general so-
lution to model checking membrane systems using SPIN. The most remarkable
aspect of the proposed methodology is the hybrid modelling technique, pertaining
the system subject to verification and the correctness claims. Although the mod-
els investigated are supported by a single Promela process, the global reachability
graph is abounded with irrelevant states (referred to as ‘intermediate’ states [56]),
that is, states which correspond to atomic instruction interleavings, but are not
part of the set of possible configurations of the P system. In order to disregard the
superfluous states generated by the model checker, a boolean variable is included
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(in the state vector) which evaluates to true if the state is a genuine P system
state and false otherwise. This synthetic distinction is then utilised in the LTL
formulae to preserve the consistency of the verification process for a particular
property. For instance, a formula G @ = 0 may be invalidated if the intermediate
steps are considered, however it is proved faithful to the computations of a P
system if adjusted accordingly: G a = 0V —pSystemState, where pSystemState
is the flag which differentiates between intermediate and genuine states. A com-
plete translation strategy (pertaining all LTL temporal operators) is formally
documented in [56]. A variety of properties have been verified across several (re-
stricted) instances of a P system mode]H7 demonstrating the correctness of the
approach on the one hand, and acknowledging its severely undermined scalability
on the other hand. Moreover, the study also features a performance comparison
(i.e. using the same models and properties) between SPIN and NuSMV [4], a
symbolic model checker based on binary decision diagrams. The study indicates
that SPIN is significantly more efficient for the purpose of LTL model checking,
in the context of the two case studies.

Finally, in [38] we presented an extrapolation of this technique, applicable to
Kernel P systems with multiple compartments. Despite the fact enhancements
were also introduced in an attempt to exclude (hide) ancillary computational
paths from the global state graph generated by the model checker, we have con-
cluded that only an approximate formal analysis can be conducted on such mod-
els, using SPIN’s BITSTATE mode (also referred to as supertrace interpretation).

The following observations are apposite to our proposed modelling approach,
described in the following section:

1. All summarised undertakings which target a dedicated model checker tool
(i.e. excluding the Maude rewriting engine) promote a mapping to a stan-
dard process model, whereby each individual compartment is associated a
separate process, whose atomic instructions are interleaved to account for
the parallel behaviour of the model.

2. With the exception of the latter investigation (targeting Kernel P systems),
all referenced case studies consider traditional (cell-like) P systems with one
or two compartments and are generally restricted instances. This is to say
that there is no integrated approach which pertains the membrane computing
paradigm in its computational model diversity.

1Since a translated P system model is decorated with auxiliary variables necessary to express
certain LTL formulae, it must always be bounded to satisfy the requirement of having a finite
state space.
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4.5 Sequential models for parallel systems

Membrane systems are often referred to as unconventional computational models;
the membrane computing paradigm the models substantiate is widely regarded as
singular. Since the term ‘unconventional’ suggests more than candid novelty, it is
natural to ask what are the key determinants for this status? Is this classification
justified or insubstantial? What is the convention P systems diverge from?

Whilst membrane systems are indeed an irregular convergence of concepts
with direct biological correspondences (membrane, cell, tissue, symport-antiport,
dissolution, etc), into an abstract formal model that is computationally universal,
we believe a P system’s originality is identified in the vision of parallelism it
implements.

The conventional models for distributed systems were conceived in response
to a practical concern, namely, how could the asynchronous dynamics of distinct
entities be modelled by sequential computation. The answer was, of course, to
abstract away time. The primary objective of such endeavours was to reconcile
an agnostic view of parallelism algebraically. If no time related inferences can
be made (i.e. it is assumed that it cannot be known how two distinct transitions
execute in time, relative to each other), a mathematical model must be capable
of expressing all possible computations of an aggregate system which subsumes
the behaviour of individual processes. This modelling approach became gener-
ally known as process calculus (or process algebra) and includes the CSP (Com-
municating Sequential Processes) [51], CCS (Calculus of Communicating Sys-
tems) |64], ACP (Algebra of Communicating Processes) [18], and 7-calculus [65]
amongst other formalisms. Parallelism is not directly affirmed in process calculiE],
but rather acknowledged, inferred and reconciled operationally. The parallel com-
position operator epitomises the algebraically constructive means of expressing
concurrency. The result of a formula P || @ (using CSP notation [51]), which
denotes the parallel composition of two processes P and (), is another process
R whose specification must account for all possible ways the composite can ad-
vance. This is captured by the following equational statement, applicable when
the alphabets of P and ) are disjoint:

(@a=P)[0=Q)=(a= (Pl (b=Q)[b=(e—=P)]Q)

The two processes must synchronise on events which are common to their
alphabets. Thus, for an event ¢ € aP and ¢ € a@) (is in the alphabet of P and

LA remarkable aspect which echoes the agnostic perspective assumed, is the minimalist
title of each formalism: a plurality of independent sequential processes is explicit, however,
parallelism is not addressed as a generic concept.
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@, respectively), then the P || @ can only advance if the two processes engage in
event ¢ simultaneously:

(c=P)l(c=Q)=c— (Pl Q)

The semantics of this operation can also be described in terms of the traces of
R, relative to the operands P and (). A CSP trace of the behaviour of a process
is a finite sequence of symbols which records the events the process has engaged
in, up to some moment in time [51]. The traces of P || @ are defined as:

traces(P || Q) = {t|(t | aP) € traces(P) A (t | aQ) € traces(Q) Nt € (aP U aQ)*}

where (¢ [ aP) denotes a trace t restricted to the alphabet of P.

Whilst an algebraic formal representation of distributed system dynamics is
essential to the formal reasoning of concurrent behaviour, the intrinsic cost of this
reduction is the non-deterministic choice introduced in the resulting process for
each pair of asynchronous transitions. It is this projection to non-deterministic
branching which inevitably leads to an exponentiation of the number of states
for a parallel composite process.

To illustrate this consequence, we consider three simple, deterministidﬂ CSpP
processes with disjoint alphabets:

P0:a1—>a2—>STOP.
P1:b1—>STOP
P2201—>CQ—>63—>STOP.

The processes can be represented as state transition systems, as depicted in
fig [4.1] The state space of the process R = Fy || Py || P» is defined by the set of
state tuples Sg = {(s:, Sj, k) | si € Sp,, S; € Sp,, Sk € Sp,}, where Sp, denotes
the set of states of P,. Thus, the number of states of the composite process R is
equal to the product of cardinalities of its constituents: card(Spg,) x card(Sp,) X
card(Sp,) = 24.

Membrane systems are situated in direct antithesis to the reductive modelling
approach of process calculus. Rather than reconciling concurrent dynamics to
sequential, algebraic constructs, P systems elevate all individual object trans-
formations to a single, atomic transition. In this respect, a P system’s maximal

IThe purpose of this example is to illustrate the combinatorial expansion of states which
arises due to the reduction of parallel, asynchronous transitions to non-deterministic choice in
a sequential process. The non-deterministic choice in a individual process simply increases the
number of states one must consider in the combinatorial expansion.
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Figure 4.1: State transition systems for three processes.

parallelism is, as its name implies, expansive: a compartment with three a objects
will execute a rule a — a2, b three times, in a single, indivisible unit of time; the
same compartment will apply the rule nine times in the next computational step.
This execution strategy is extrapolated to multiple compartments which gener-
ally constitute a membrane structure. Each atomic instruction, regardless of the
locus of execution, participates organically to a P system’s unitary transition.
There is always a single progression that is exercised and that is the sequence
of configurations of the P system - the single identified sequence overarches the
model in its entirety; there is no sequential behaviour attributed to individual
compartments (functional units).

This distinctive, ‘unconventional’ parallelism has direct implications to the
system’s state space construction and evaluation. We consider a simple, determin-
istic P system, comprising of three compartments, whose individual transitions
are precisely reflected by the state transition systems in fig (.1}

ey = (O, H, jt, Woy, Wery s Wogy Rogs Roys Roys 10)

where:
O ={a,b,c,d};

H = {0—07 01, 02};
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= [[[ J2]1]o;

— 2 — 43 —
Woy = A%, Wy, = Q7 Wey = @;

R,, ={a —b; b — ¢}

R, ={a — b}
R,,={a—b; b — c;c — d}
19 = €.

We note that II., halts after precisely three steps with configuration Cs =
{[[[]sl2]1, (¢*,b,d)}. The state space of Il is captured by the expression: Sy, =
{(Sizs Sjzs Skw) | Sizw € SogwsSjz € Sovas Sk € Sopw, 0 < @ < 3}, where Sy, , is
the set of states corresponding to a compartment o; at computational step .
The number of states the P system (as a whole) can situate in is exactly four;
this is generally given by the compartment with the maximum number of states:
mazx(card(Sy, ), card(S,, ), card(Sy,)), where card(S,, ) denotes the cardinality of
the set of states corresponding to o,,.

We clarify our decision to exclude non-determinism from the above examples
and concluding remarks. Non-deterministic choice introduces a combinatorial
state expansion in a sequential model, regardless of the formalism utilised and
the concurrent behaviour of the system. The argument we have forwarded aims
to delineate the two general views on concurrency more sharply and evince a
very practical consequence of a non-reductive approach to parallelism (i.e. one
whereby independent transitions are not reduced to non-deterministic strands).
Non-deterministic choice, as a modelling concept, is hence extraneous to our
hypothesis.

The key implications with respect to formal verification are the following:

Proposition 1. Although membrane systems are inherently distributed models,
their projection to traditional process models (as advanced by process calculi) is
inadequate. The interpretations of parallelism promoted by the two formalisms
stand in direct opposition.

Proposition 2. Model checking is a particularly suitable formal verification tech-
nique for P systems due to the mon-exponential state expansion, relative to the
number of compartments, the model exhibits.

The exclusion of instruction interleaving between the compartments of a P
system enables us to avoid the state space explosion problem for deterministic
models. Evidently, P systems featuring non-deterministic selection for multi-
set transition rules will relentlessly generate an exponential state space. Our
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thesis simply deprecates the modelling of concurrent dynamics by means of non-
deterministic transitions (for membrane systems), which equate to interleaved
instructions when considering a model checker tool that operates sequentially.

We therefore introduce a new sequential modelling strategy for P systems,
targeting SPIN’s Promela specification. The approach diverges from conventional
process modelling and reflects the outcome of this examination. We outline its
principles below; a more detailed description of the mapping to Promela data
types and procedures is presented and exemplified in chapter [0}

e A single SPIN process supports the execution of a P system and implicitly,
all compartments it consists of;

e The inter-compartmental exchange of objects is represented as a pair of
update instructions, similar to rewriting rules, and not by native inter-
process communication routines in Promela;

e Each set of rules associated to a P system compartment is evaluated and
applied exhaustively in succession. This is because the order in which com-
partments are selected for rule application is irrelevant - the same P system
state will be reached;

e All atomic instructions which constitute a complex P system rule are con-
cealed; All applicable P system rules which collectively define a state tran-
sition should be treated by SPIN as a single, indivisible (i.e. atomic) func-
tional unit.

Parallel transformation is not implied in membrane systems but rather it is
affirmed as a transition sui generis. It is characterised as maximal or expansive
because all possible mutations can occur independently, as part of the same, sin-
gular transition. We have underlined the significance of this consideration for the
purpose of model checking. The sequential modelling approach set forth in this
thesis is a decisive element for the feasibility of model checking P systems.

Finally, we wish to re-affirm that the distinction we have forwarded in this
chapter, between the two interpretations of parallelism is not one of value nor
functional efficacy. We do not discuss the functional capacity to model concur-
rent dynamics nor the computational equivalence between process calculi and P
systems. We have concluded that process models are inadequate not on the basis
of deficiency, but due to the conceptual disparity with membrane computing, on
the notion of parallel transitions. The two formalisms are examined as antithetic
modelling paradigms, one which aims to preserve the sequential aspect of com-
putation for an individual process in a context where multiple processes co-exist

41



and may interact; and the other promoting an organic, unitary transition across
all mutable elements of a system. Our assertion is, of course, circumscribed in
the objective of this research project, that is the formal verification of P systems
by model checking, and its relevance is described therein. One need not consider
a CSP process as identified by its traces in all circumstances, however, when the
goal is the exhaustive investigation of a program’s state-space, this is an essential
requirement.

We also note that by ‘inadequate’ it is not implied that process calculi are
incapable of representing P system transitionsﬂ nor does this suggest a qualita-
tive inferiority of CSP (and other other process calculi) in their representation
of the (present) notion of parallelismﬂ computationally. Rather, it expresses a
profound incongruity between the individual transitions of processes in process
algebra and the atomic transitions of P system compartments: a direct mapping
between membranes with associated multiset rules and processes with actions
is erroneous. We concede, this argument is not scientifically formulated (since it
was not scientifically derived), however its consequences (for the purpose of model
checking) can be ascertained within a scientific framework, which is an objective
of this research project.

"'Whilst traditional process algebra do not have provisions for initiating an arbitrary number
of processes during one transition, there are indeed models (e.g. ambient calculus [24]) apt for
simulating the maximally parallel execution strategy of P systems.

2We do not present our views on parallel dynamics as a generic concept in this thesis. We
acknowledge, however, process calculi, P systems, Petri nets and other formalisms mentioned in
chapter |2| as models which articulate a perspective on this concept, as perceived scientifically.
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Chapter 5

Elementary P systems

An elementary P system (EPS in short) is a computational model which aims to
capture the membrane computing paradigm in its nuclear essence and subsumes
the feature diversity and potency of its kindred models into a single formalism.

Whilst research in membrane computing has already advanced a series of mod-
els which aggregate an eclectic mix of primitives, common to select classes of P
systems (earlier, in chapter [3| we have called these developments syncretic), the
variants defined in this respect instilled complex semantics in an attempt to rec-
oncile the irreducible functional diversity inherited. As consistent formal models,
P system variants such as Neural P systems, Hyperdag P systems or Kernel P
systems are convenient modelling frameworks with outstanding expressive power
in specific contexts. The coherent linear mapping to atomic elements of a mathe-
matical model is not gratuitous when the abstract model must cater for complex
ontologies and structures. The intricate semantics derived in such models are
particularly detrimental when formal verification is a set primary objective.

Elementary P systems represent an effort to distil the P system functional vo-
cabulary whilst preserving fundamental concepts which constitute the bedrock of
membrane computing. EPS models were designed with an aspiration to minimise
the set of primitives and apply simple, coherent semantics. Moreover, elemen-
tary P systems effectively integrate distinctive features of the most prominent
variants (such as promoters/inhibitors, membrane creation/division, dissolution,
targeted, replicated communication etc), allowing for effortless, intuitive trans-
lations. Not all concepts, however, are explicitly present - that is, they are not
expressed through dedicated primitives, but rather derived from the core com-
ponents and their operational capacity. Generally, expressive power is retained
not with the provision of various specialised, irreducible abstractions, but rather
by augmenting the significance (semantics) of the existing primitives in specific
configurations.

In this chapter we present elementary P systems extensively, as a distributed
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and parallel computational model rooted in the context of membrane computing.

5.1 Definition

An elementary P system is a three tuple:
ell = (O,C, R)
where

e (O is a finite set of symbols denoting objects - the system’s alphabet;

e (' is finite set of non-empty compartments and represents the model’s initial
configuration;

e R is a finite set of multiset transition rules.

A compartment denotes a multiset data structure which persists across the
system states. The concept diverges from its original significance found in tra-
ditional P system models where a compartment is itself a discrete entity which
houses a multiset and has a unique label. An EPS compartment is by contrast
incorporeal, directly identified by its multiset and it is not uniquely addressable.
The reflexive binding and unity between a compartment and its multiset in el-
ementary P systems makes this distinction diaphanous and as such, a reference
to a compartment ¢ € C' is generally regarded as a reference to ¢’s associated
multiset. Examples: (a?,b%), (z,y, 2°), (t'°).

Since compartments are the sole volatile components of an EPS, they collec-
tively constitute the configuration of the system at a particular computational
step. Thus, a configuration M is equal to the set Cj, the set of compart-
ments C' at step 7. An ell computation is defined as a sequence of configurations
M —= M = ... = MM

A multiset transition rule specific to elementary P systems can be generically
represented as scope : lhs — rhs, where scope designates the set of compart-
ments the rule is applicable to; the lhs (left hand side) term denotes a non-empty
multiset over O which is to be ‘consumed’ from the compartment the rule is
applied in; the rhs (right hand side) is a multiset complex which denotes the
outcome of this transition relative to both the compartment the rule is applied
in and the P system as a whole.

More formally, a scope is a pair (p,!q), where p, ¢ are multisets over O. We
say a compartment ¢ is congruent with a scope s (¢ = s) if and only if:

1. Vz € p,|p|ls < cf, and
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2. Y € lal. > Icl..

where [pls, |¢|. and |¢|, denote the number of occurrences (the multiplicity) of
symbol x in multisets p, ¢ and ¢ respectively.

Conversely, ¢ # s if any of the aforementioned conditions are not satisfied.
We exemplify scopes and scope congruence: (a, b?,c®) = (a); (a,b?, ¢°) = (a, b, c);
(a,0?,c°) = (1*,c5,!d); (a,b* ) # (la); (a,0?,c°) #£ (a,b?!c); (a,b% ) #
(1°, ).

A scope is considered to be empty if both p and ¢ are empty multisets (p = A
and ¢ = \). An empty scope is never explicitly stated but rather the absence
of a scope in a construct can be envisaged mathematically as (A, !\) (that is
to say, the concept is ancillary and not strictly required, however it underpins
the logical consistency of the model). An empty scope matches all non-empty
compartments:

Vee Coe=(\1\) & c] >0

The rhs term can be formally described as a union of target products:

rhs = Umtarget

where each M40 15 a multiset destined to a particular compartment or set of
compartments. The target denominates the recipients of the multiset outcome m,
either directly or indirectly with the following indicators (for clarity and concise-
ness we assume an arbitrary rule » € R executing in an arbitrary compartment

ceO):

e self - implies the multiset m is to be contained by the same compartment
¢ the rule is executed in;

e all - signifies that all non-empty compartments in C, except for ¢ (self),
will receive a copy of m;

e new - indicates that multiset m is sent to a new, empty compartment which
is not yet part of C'. Such a latent compartment is available to each existing
c € C, at each computational step, however it is only instantiated if at least
one rule with target new is applied;

e scope - a pair of multisets (p,!q) which serves as a selection criterion across
the set of compartments C: a copy of m is emitted to all compartments
¢ € C congruent with scope (p,!q). If scope = (A,!\) - the empty scope,
then the indicator is semantically equivalent to all.

We illustrate these definitions with the following examples:
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1. a — (b?,€)sa ¢ - a multiset transition rule which takes one a and outputs
two b and one e objects in the compartment the rule was applied to. For
convenience, the rule can also be written as: a — b% e, thus omitting
the target indicator; We also note the absence of a preceding scope which
equates to global availability of this rule for an EPS ell;

2. (m,n?) : a,b% e — Tyap, Yoy, 2k2, - the rule is applicable in compartments
with at least one m and two n objects, expending one a, two bs and one e
and producing an z in the current compartment, broadcasting two ys to all
other compartments in C' and lastly, sending one z to compartments with
at least two k objects and no ts;

3. (¢,1¢*) © T — Ynew, Wm, w?, is applicable in compartments with exactly
one ¢; the rule consumes one z and sends one y to a latent ‘new’ com-
partment (an in-depth treatment of this concept will follow), a w object to
compartments which contain a minimum of one m and two ws to compart-
ments with no ms, respectively.

It is apparent that an elementary P system transition concentrates the dy-
namics intrinsic to most P system models, formally expressed as multiset rewrit-
ing, communication and membrane division/creation rules. For instance, a rule
a — b, ¢* can be clearly regarded as a multiset rewriting rule whilst z — v, re-
sembles targeted communication. As evident as this correspondence may be, the
disparities are also prominent: a scope is not semantically equivalent to the notion
of promoters and inhibitors (featured by P systems with permitting/forbidding
contexts), nor is this an ancillary conditional, similar to the states of Hyperdag
P systems; communication is not solitary - objects are propagated radiantly to
all or a restricted subset of compartments in the system; new membranes are
not created in the traditional sense where they inherit the content of the parent
compartment, but rather additional compartments are assumed in a latent phase
and instantiated as objects are channelled to it.

All rules declared for an EPS model are executed in a maximally parallel man-
ner. The emblematic execution strategy, in conjunction with multiset transition
rules, is considered the foremost novelty of membrane computing and hence, one
of the elementary constituents of this model. Since all rules operate on multisets
of objects, no additional stipulations are required to clarify the model semantics
when compartment expansion or reduction is considered.

Whilst the a — a/,.,, may be reminiscent of the membrane division rules
characteristic to P systems with active membranes, it is important to emphasize
that a transition to the new compartment participates to the maximal parallel
rule execution similarly to any other contending rule. It is not an exceptional
mutation exerted by a higher entity in the system (a membrane division rule is
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considered a structure changing rule and is applied on the compartment itself;
consequently a membrane division rule may execute once and only once per step)
and does not fracture the homogeneity of the maximal parallel execution strat-
egy. Objects are transferred to the new compartment analogously to multiset
communication. The instantiation of a quiescent compartment is implicit and
occurs if at least one object has been inserted within. In contrast to P systems
with active membranes, the content of the parent compartment is not copied into
the newly created membrane.

Elementary P systems do not feature membrane dissolution rules. Compart-
ments may, however, be invalidated and cease to be elements of the system’s set
C. This occurs when the respective compartment is devoid of content, that is,
equal to the empty multiset A. In fact C' by definition cannot contain empty
compartments, (A). In EPS we prefer to say a compartment is detached from
the system. We recall that membrane dissolution is a very specific concept in
the traditional P system model: the execution of a dissolution rule effectively
transfers a compartment’s multiset content to its parent. When a compartment
is detached from ell this simply signifies that it is no longer addressable and
therefore vacuous. On the one hand there are no rules which can execute inside,
since all rules are assigned to compartments by scope congruence at each step, on
the other hand there are no communication rules which can deliver objects to this
compartment, again because there is no scope which identifies (\). Hence, the
functional relevance of the multiset is doubly amplified in elementary P systems:

1. The presence of a multiset in a quiescent compartment achieves its instan-
tiation and complementary

2. the absence of a multiset of objects in a compartment translates to its
detachment from ell.

We remark that C' can never become empty (@) - this is a corollary of the
types of rules employed and their format:

1. Objects can be reduced by multiset rewriting but never completely depleted
since

2. the right hand side of a rewriting rule must be a non-empty multiset;

3. An elementary P system with a singular compartment cannot execute any
communication rules.

Furthermore, C' must initially consist of at least one compartment. Having
C = () has no meaning.

One of the primary objectives of elementary P systems is to provide a suf-
ficiently abstract formal model which may accommodate the feature diversity
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exhibited by the membrane computing paradigm. To this end, the exclusion of
an explicit membrane structure from an EPS is perhaps the most remarkable,
if unexpected, commitment. Whilst incorporating a definite structure of com-
partments offers conciseness and clarity of expression for communication rules
in particular, the coordination (out, here, in, siblings, parent, child) is also in-
tuitive and allows the formulation of powerful semantics (for instance, division
and dissolution rules refer to the parent compartment to include or, respectively
exclude to, entire multisets of objects). A fixed structure, explicitly stated by a P
system constituent (generally denoted by p), may, however, reduce the modelling
scope not just because of a potential incompatibility in the distribution of com-
partments, but more importantly, due to the specificity of the rules employed.
This is indeed detrimental to our goal of defining an abstract P system generic
type.

The resolution adopted in elementary P systems was to freely admit any dy-
namic structure of compartments, inferred by scoped communication rules. Since
scope congruence is a predicate applied on multisets of objects, no additional el-
ements (such as arcs/channels with states, labels or nesting configuration) are
required to guide the transfer of objects between compartments. The complex-
ity of the system is effectively reduced by allowing existing, simple primitives
to express a membrane structure by construction. On the one hand, EPS com-
partments are indeterminate - rules are dynamically allocated each step based on
scope congruence and hence, conditioned by the multiset content at that step;
and on the other hand, object transfer is channelled using the same congruence
principle on compartments - the constraints imposed by a scope in the right hand
side component of a rule give shape to a possibly dynamic structure which can
be deemed as implicit to ell. In chapter [7] we demonstrate how elementary P
systems can model communication in a directed acyclic graph (DAG) structure.

An EPS halts when no further rules can be applied. The output of a halting
computation is represented by the system’s final configuration M. Whilst more
specific values can be designated as a calculation result within this configuration,
the model does not encompass any markers or filters to achieve this reduction.
These can be formulated in various ways, independently. For example, one may
consider an algorithm whose outcome is the number of ¢ objects across com-
partments whose content does not include root or leaf objects. This could be
expressed as |(Iroot, leaf )|, utilising the concept of scope to identify a restricted
set of compartments in C'.

We next examine the functional correspondences between EPS and the prin-
cipal P system models surveyed in chapter [3|
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5.2 Elementary P systems and membrane com-
puting

Whilst a morphological comparison between elementary P systems and the funda-
mentals of the membrane computing paradigm is instructive and generally implies
a functional congruity, in this section we aim to define these correspondences more
clearly, determine the less apparent limitations of EPS primitives and illustrate
translation patterns between established P system variants (chapter [3) and EPS.

5.2.1 Membrane structure

The membrane structure is of key significance for P systems which feature com-
munication, membrane dissolution or division rules. Relational data about the
compartments of a model is utilised to effect a targeted multiset transfer. In
a hierarchical structure of compartments (traditional P system models, P sys-
tems with active membranes, Hyperdag P systems), objects can be passed be-
tween child, parent and sibling compartments, whereas a graph-like membrane
structure (Tissue, Neural, Spiking Neural, Population P systems) restricts the
exchange of objects to linked compartments only (i.e. compartments which share
a channel or edge). In elementary P systems, communication is freely admitted
between any two compartments, using scope addressing. In order to designate
one or more recipients, a scope element must accompany the multiset which is
to be sent. The recipients are determined based on scope congruence during
each computational step, facilitating the design of a highly general and dynamic
compartment structure which is inferred by scope addressing in communication
rules. Thus, in order to emit objects to a particular compartment o;, the mul-
tiset associated to o; (i.e. its content) must uniquely identify o; in the context
of C, the set of compartments of an EPS ell. A basic approach to this end is
to consider a unique identifier (object in the set O of ell) for each compartment
o; of the model. This is of course limited to EPS models which do not exhibit
membrane instantiation - the P system’s alphabet is a finite set of symbols and it
is pre-established. Alternatively, one may utilise the multiplicity of a particular
object as an identifier and rules with scopes of the form (a®,!a®™!) to refer to
a compartment with precisely x number of a objects. On this basis, multiset
communication via an individual (directed) channel (i, j) can be represented by a
rule (a®,!a®™) : m — m’<ay’!ay+1>, where multisets a” and a? encode identifiers ¢
and j respectively. Since membrane instantiation is a concurrent operation, it is
impossible to retain uniquely identified compartments indefinitely, using object
multiplicities. Uniqueness can, however be guaranteed for a restricted number of

instantiated compartments: consider a rule (a) : a — a2, executing in a com-
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partment (a') - such a model will expand exponentially for ten computational
steps, yielding a unique number of as in each instantiated compartment. Whilst
limited, the technique does allow for single compartment referencing and chan-
nelled communication. This constitutes an advantage over P systems with active
membranes where each newly create compartment must bear a label from a finite
set H, which entails that unique compartment identifiers in P system with active
membranes require an exponential increase in the cardinality of H and division
rules applying the labels.

In a hierarchical structure, communication rules generally target parent or
child nodes. The parent-child relationship can be encoded by a pair of objects
(ps, cp;), such that each parent compartment o; in C' is associated the object
p; and every child of o; will consist of an object c¢p;. In this setting, the child
compartment may transfer objects to its parent using rules of the form (cp;) :
a — agp,), whilst the converse can be achieved with (p;) : @ — acp,). Moreover,
communication between sibling compartments will employ the same cp; object as
a target indicator: (cp;) : @ — a(ep,y. Chapter (7] demonstrates this strategy in
a dedicated case study and examines variations which may be advantageous in
specific circumstances. We underline the contrast between EPS and traditional P
system semantics for communication rules with multiple recipients: an EPS will
replicate the object to all scope congruent compartments, whereas a recipient is
non-deterministically chosen in traditional P system models. We will address this
incongruity later in this section.

Since compartments are directly identified by their associated multiset, any
membrane structure that is based on these identifiers is implicitly mutable. Im-
portantly, structural mutation is attained by multiset rewriting and communi-
cation and not via specialised rules, such as link (channel) creation/destruction.
New compartments are assumed ‘instantiated” when objects are emitted using the
new target indicator, in the same maximally parallel manner and not via mem-
brane creation/division rules with distinctive semantics. It is sufficient to add
or remove a objects from a compartment o; to prohibit the execution of a rule
(a®la®) i m — M4y qui1y- Likewise, applying (p;) : p; — p; will invalidate
the parent-child relationship encoded with the pair (p;, ¢p;). The relation can be
later re-established with a rule (p}) : p; — pfl]

!Since p; and p, are considered unique compartment identifiers in the context of an EPS, the
scopes (p;) and (p}) prefixing these rules are in fact redundant. Nevertheless, the presence of a
scope adds clarity and emphasises that execution of the respective rule is bound to a particular
compartment.
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5.2.2 Multiset rewriting rules

The multiset rewriting rules of elementary P systems are semantically equivalent
to rewriting rules featured by traditional P system models. Formally, these are
distinguished in a broader context with the self marker, however this is con-
ventionally omitted when contextual clarity is not compromised. Generally, a P
system rewriting rule v — v, with u, v multisets of objects over the system’s
alphabet, has an identical representation in EPS and is applicable under the same
conditions (i.e. the compartment must comprise a multiset w, such that u C w).

5.2.3 Multiset communication rules

As described earlier, EPS communication rules employ scope addressing in order
to channel a multiset to one or more recipients. We also note that if there are
no scope congruent compartments for at least one targeted multiset my which
comprises the right hand side of a communication rule, the rule is inapplicable.
This restriction holds for all P system variants with communication or rewrite-
communication rules, excepting Hyperdag P systems. In order to simulate the
exceptional behaviour of the latter model, one may fracture a communication rule
with n segments a — a;<8i>, 1 <4 < n, into n individual rules with a distinct
left hand side object to ensure each rule executes the correct number of times:
T — a;<5i>, where x; is a multiset with a single distinct object. A rule a —
X1, T, ..., T, must supplement this set of separate instructions and it must always
execute in a dedicated step, preceding the application of the aforementioned n
rules. Furthermore, a procedure is also required to re-generate y copies of the
multiset a, where y = min(zy,xs,...,2,), that is the minimum left hand side
remainder of the n rule execution; all remaining z1, xs, ..., x3 objects must also
be disposed of during the following step. Thus, a minimum of two auxiliary
computational steps are necessary to simulate this behaviour, together with n
objects for each targeted multiset in each communication rule. The procedure
is of course cumbersome, however, in concrete scenarios such semantics could be
implemented using a mixture of features promoted by the EPS formalism. For
instance, in order to isolate rules and dismiss the necessity for n distinct objects,
we can distribute the n rules to n compartmentd!] Since elementary P system
communication is expansive (i.e. a multiset is replicated to all scope congruent
compartments), the n compartments can be simultaneously signalled to execute
the independent communication rule associated.

Whilst object communication by replication is sufficient to represent the § =
repl transfer mode of Hyperdag and Neural P systems, its semantics is incompat-

'In order to associate each rule to a compartment, identifiers based on object multiplicity
can be utilised, rather than distinct objects.
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ible with the more traditional non-deterministic recipient selection, featured by
the majority of the variants. In elementary P systems, non-determinism can only
be expressed using two or more rules which expend at least one common object.
More formally, v — v and v/ — v/, with u, v multisets over the alphabet O,
are subject to non-deterministic selection if and only if:

1. Both rules are associated to and applicable in the same compartment o; € C
and

2. unu # 0.

Consequently, non-deterministic target selection must be encoded by means of in-
dividual communication rules with the same left hand side multiset. A P system
rule v — wu;, which transfers multiset v to a random child compartment requires
in EPS that all child compartments are uniquely identified such that references
to these can be drawn. For each child compartment o;, a multiset a* will serve
as an identifier and n mutually exclusive rules u — w1411y, 1 < @ < n asso-
ciated to the parent of o; will emit multiset v to a non-deterministically chosen
0;. Employing the same technique, one may also prompt non-deterministic com-
munication on groups of compartments in EPS. It is sufficient to have multiple
child compartments congruent to the same scope which may resemble a range of
multiplicities: © — U1 103), U — Ue31q7y. The two rules ensure that either
u is transferred to all compartments with less than three as, or it is sent to all
compartments with at least three but no more than 6 a objects. This can not be
easily achieved with other P system variants.

Antiport rules constitute another class of specialised instructions whose po-
tential was evinced in several P system variants. Antiport communication can
be interpreted as a synchronised exchange of objects between two compartments:
(@in, bour) Will execute in a maximally parallel context as long as there is an a
object to extract ‘in’ (from a parent membrane) and a b object to send ‘out’; that
is, the rule will execute k£ times, where £ is the minimum of the multiplicities of a
and b in the respective compartments. In elementary P systems, such a rule can
be specified as a triple:

L (x) :a — ay;
2. (y) :a,b — byy;
3. (y,1b) 1 a — a.

These must be applied over three distinct steps and require unique compartment
identifiers in order to achieve the outcome of a single antiport rule. EPS com-
munication, on the other hand, is advantageous in scenarios where the minimum
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between a particular multiplicity and n others is required. This can be com-
puted in parallel having n compartments identified by a y object, each encoding
the result as the multiplicity of an object ¢: (z) : @ — ayy, (y) : a,b — ¢
On this basis, n min procedures can be computed in two computational steps
(irrespective of n).

5.2.4 Permitting and forbidding contexts

Many P system models feature an ancillary control logic, based on elements that
are immutable during the execution of a computational step. A promoter (also
referred to as activator) is a multiset over a P system’s alphabet, ascribed to a
particular rule. The presence of the multiset denoted by the promoter in a com-
partment o; enables the execution of this rule and conversely, its absence prohibits
the rule from being applied in ¢;. The predicate ensued from this interpretation
is evaluated once for each computational step and its boolean outcome persists
regardless of how the o;’s encapsulated multiset is manipulated during one step.
A promoter directly translates to an elementary P system scope: a — b|, is
equivalent to (z) : @ — b. Both activator and scope multisets are mutable enti-
ties and can be subject to rewriting/communication rules. An inhibitor, however,
invalidates the execution of a rule when the multiset it denotes is included in the
compartment the rule is associated with: a — b|-, is inapplicable if o; contains
multiset z. Importantly, this does not equate to the EPS scope construction (!z)
which evaluates each object and its multiplicity in z against a compartment multi-
set separately (the semantics have been formally defined in the previous chapter).
Formally, z € t /4 t = (!z) in elementary P systems. In order to reproduce the
behaviour of an inhibitor —z on a rule a — b, for each object-multiplicity pair
lz]" in z we require a rule (lz]") : @ — b. Alternatively, one may consider a
two step procedure whereby the presence of the multiset z in the compartment
is first determined: (z) : ¢ — ¢, t; subsequently, the rule (!t) : @ — b can be
applied if the multiset z was not encountered. Additionally, the auxiliary object
t must be disposed of, if produced: ¢t — nil.

5.2.5 Membrane dissolution

Elementary P systems do not feature dissolution rules. We recall that a tradi-
tional P system membrane is considered ‘dissolved” when a rule with the symbol ¢
is applied, resulting in the transfer of the compartment’s multiset into its parent.
By contrast, an EPS compartment is said to be ‘detached’ from the model when
it is no longer addressable by any scope, that is, its associated multiset is empty.
In order to achieve this outcome, a communication rule a — a'<8> is required for
each object a which may identify the compartment. Evidently, the scope s must
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find at least one congruent compartment which is to receive the content, otherwise
a cannot be expelled. Whilst the strategy is highly general, it may be sufficient in
some scenarios to employ a reduced number of rules if the multiplicities of objects
are constantﬂ by grouping objects in the left hand side multiset of a rule. Since
EPS compartment detachment is not a distinctive operation with specific seman-
tics, but rather a consequence of a particular local state (a compartment being
identified by an empty multiset), the feature has limited functional relevance and
thus isolated use cases. Membrane dissolution is essential to most variants hav-
ing rules statically bound to compartments, immediately pruning execution of a
fixed set of instructions. By contrast, elementary P system compartments can
be regarded as ‘polymorphic’ - the subset of rules applicable on compartments
is re-evaluated each step. This promotes the re-use of operational compartments
as opposed to dissolving and creating of new membranes of a different kind (i.e.
with a different label).

5.2.6 Membrane division

Advanced by P systems with active membranes (and their extensions), mem-
brane division is one of the most prominent features of the membrane computing
paradigm. The parallel execution of membrane division rules can generate an ex-
ponential computational space in linear time - a potential extensively investigated
for solving NP-complete problems, as we have seen in chapter [3] In addition to
expanding the set of compartments of a P system model, division rules will also
replicate a compartment’s multiset content (after multiset rewriting and commu-
nication rules have been applied) to the emerging membranes. Whilst the number
of compartments one can divide into is not restricted to two, it must, however,
be constant (i.e. one cannot divide into an arbitrary number of compartments).

Since elementary P systems aspire to a reduced set of primitives with simpli-
fied semantics, compartment expansion is effected by rules with structural and
semantic similarity to multiset rewriting and communication. Each compartment
in the model’s set C' is associated a non-operational ‘quiescent’ compartment,
which is only instantiated when a multiset is found to identify it. An EPS in-
stantiation rule resembles a typical communication segment (ascope, @an) With a
reserved target indicator (denoted by new in our formal definition) and is an
equal contender to the maximally parallel execution strategy. A single applica-
tion of such a rule is sufficient to activate the quiescent compartment. There is a
single quiescent compartment associated with each operational compartment in
C' (each computational step) and consequently, EPS compartment expansion rate

I This is expected to occur frequently in elementary P system models, since objects have
an amplified significance and may denote compartment identifiers, indices, state identifiers,
boolean flags etc.
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is at most a product of two per step. In contrast to membrane division semantics,
the remaining content of a membrane is not replicated to the emerging compart-
ment, nor is the compartment which triggered the instantiation dissolved in the
process. In order to effectively copy the content of a compartment o to another,
one may include communication rules of the form x — x, x,, where s is a scope
which uniquely identifies the target compartment, and z is an object which may
be included in o. If the emerging compartment is the intended recipient, then
we substitute the scope s with the ‘new’ indicator: x — , X,,. Since rules are
dynamically assigned to compartments on the basis of scope congruence, there is
no requirement to ascribe a type identifier (i.e. membrane label) or polarisation
symbol (4, —, 0) to indicate the behaviour of the instantiated compartment. In
chapter 8] we demonstrate a linear time solution to the Subset Sum problem us-
ing EPS compartment instantiation. The algorithm employs the aforementioned
technique for replicating the existing content of a compartment, in addition to
emitting distinctive objects (which designate the system’s state) to a quiescent
compartment.

5.3 The semantics of elementary P systems

Elementary P systems are inherently parallel computational models, featuring
primitives which advocate not only parallel multiset rewriting and communica-
tion, but also parallel expansion via compartment instantiation. A formal de-
scription of these operations by principles and methods immanent to this class
of models is a contentious matter and, in the author’s opinion, unattainable at
this stage. Whilst, in computer science, the ‘sequential-parallel” dichotomy may
be regarded as a standard characterisation of dynamics in a qualitative sense,
the concept of ‘parallelism’ (in this context) does not bear the same specificity
nor rigorous (formal) account of its significance as its counterpart. Rather, ‘par-
allelism’ frequently appears as a label to indicate non-sequential behaviour, or
dynamics of multiple entities in a distributed system. It is through the perspec-
tive of sequential computation that parallel transformation is generally perceived
and formally defined. Our approach for describing the semantics of elementary
P systems is conventional in this respect.

In this section we define the the maximally parallel transition of elementary
P systems using structural operational semantics 73], a formal framework first
proposed by Gordon Plotkin in the 1981 [72|. This methodology is particularly
effective in describing the behaviour of a system in terms of its components.
Specifically, individual transitions are defined as a set of inference rules of the
form £remises. which compositionally describe the computations of a program as

conclusion’
a deductive tree. Structural operational semantics have been successfully used
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in the context of membrane computing, most notably in [15,17,[23]. The formal
descriptions presented in these studies are all pertinent to traditional P systems,
with an extension to accommodate rule priorities documented in [17]. To the best
of our knowledge, the (various) strategies advanced in the aforementioned papers
have not been applied on any of the P system variants surveyed in this thesis.

Complementary to the operational approach to EPS semantics, the support-
ing procedures captured by routines such as rar (random applicable rule), apply
(apply a particular rule) or predicates like isRuleApplicable are formally described
in a denotational style [83]. Both descriptions relate to the same EPS data struc-
ture definitions, however, the ancillary procedures are more concisely (and per-
haps intuitively) represented using a notation that resembles that of functional
programming languages.

We begin with a definition of the abstract syntax of the model’s constituents as
BNF (Backus-Naur Form)-like statements. We note that many of the structures
declared to this end also comprise auxiliary elements which constitute intermedi-
ate, local states derived from subsidiary sequential transitionsﬂ

A multiset can be inductively defined as:

wi=¢€|wh
whi=ala:w

where a is a symbol from a finite EPS alphabet which excludes € and “:’ denotes
the well known cons operator.
A compartment is provisioned as a multiset triple:

¢ = (W, w;,wn)
where w; ::= w represents an intermediate store (or multiset buffer) which collects
all productions destined for this compartment; and w, ::= w is also a multiset

accumulator to be committed to an new (instantiated) compartment if non-empty.
Next, a list of compartments is described as:

Cu=¢l|c:C

A scope is essentially a pair of multisets which are evaluated in predicate func-
tions to establish scope congruence. A targeted multiset is a multiset with an
associated scope structure. Targeted multisets represent dedicated segments of

!An alternative to distributing auxiliary elements across an EPS structure would be to
contrive an isolated state store component which accompanies the pristine EPS model. This
however, requires its own traversal procedures which would compromise clarity in other ways.

o6



an elementary P system rule featuring multiset communication and are clustered
into a list (7).

scope = (w, lw)

W = (w, scope)

T:i=¢|w:T

The syntax of an EPS rule (r) resembles the expression used in our formal
definition (section , however, the multiset productions (i.e. rule right hand
side) are condensed into a structure which consists of a multiset targeting the
compartment the rule executes on (w), a set of targeted multisets (T'), w™ := w
to be replicated to all compartments in the model and W™ ::= w a multiset
destined for the quiescent compartment. Since EPS rules are not pre-allocated
to compartments, we can also group these into a single list (R) and include this
in the ell composite.

r = scope : wt — (w, T, w, wrew)

R:=¢|rR

An elementary P system structure encompasses two sets of compartments, C
and C;. This partitioning strategy is instrumental in expressing the ezhaustive
execution of EPS rules: a compartment c is included in C' for as long as there are
applicable rules on ¢; if no further rules can be applied, then ¢ will be ‘moved’
to C;. In other words, the two sets C' and C; are required to distinguish between
‘exhausted’ and operational compartments. This distinction is apparent in the
first two inference rules (1 and 2) of our semantics. In addition to the set of
rules R which is the sole immutable element of ell, w, ::= w is a multiset which
collects all replicated productions of rules with w® # €. This outcome is globally
accumulated and is required for newly instantiated compartments.

ell == (C,C;, R,w,)

The EPS maximal parallel transition (denoted by == ) is defined on the basis
of two distinct computational phases:

a : All applicable rules are executed on operational compartments in ell’s
set C' and their productions buffered (temporary stored) in the ancillary
multisets w;, w, (for each compartment) and w,. This operation continues
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until all compartments in C' have been ‘exhausted’ (and thus relocated to
C") - that is, until C' becomes empty (¢);

£ : All accumulated productions are committed to the compartment’s base
multiset w and the supporting multisets (w;, wy, w,) are depleted (i.e. re-
set). For each compartment with a non-empty w,, an additional membrane
identified by w,, + w ] is instantiated and added to the set C' (of ell). Con-
versely, if a committed compartment remains empty (w = €), then it is not
further included in C.

(¢:C,Ci, Rywy), rar(R,c,C,C;) — r, apply(r,c,C, Ci,w,) — (¢, C", Cl W)

(c:C,Ci, Rywy) = (c : C",C!, R, )

(c:C,Cy,R), rar(R,c,C,C;) — €
(c:C,Ci,R,wy) == (C,c: Ci, R, w,)

2.

<C7 C’i) Ra Wa> :0‘> <E7 01/7 Rv w;)
ell = eIl

3.

(€, Ci, Rywg), commit(Cy,w,) — C”

<O7 Cia R7 wa> é <C/7 €, R, 6)

<C7 Cia R7 wa> é <C/7 €, R, €>

9. 3
ell; = ell’

ell == ell;, ell; L et

6. .
ell == ell’

The first three statements (1, 2 and 3) in the above listing describe the a tran-
sition of an elementary P system ell to an intermediate configuration ell;. This is
achieved by an exhaustive execution of all applicable rules in R: if there exists an
applicable rule r, randomly selected from R, then this rule will be applied and the
compartment is retained in C' (as operational). The rar (random applicable rule)

!The operator ‘+’ signifies multiset addition or concatenation in this expression.
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and apply functions are formally defined in subsequent listings, in this section.
We note that the outcome of apply is observed on the compartment the rule is
effected on and possibly on other compartments in C' or C; via communication
rules, as well as w, if the rule channels objects to all existing compartments in
ell.

The second rule (number 2) infers that a compartment is to be considered
‘exhausted’ (non-operational) when no further random applicable rule can be
found (i.e. rar yields €). In this case, the compartment is relocated to C;. When
all compartments in C' have been ‘exhausted’ (C' = ¢€) and no other rule in the
model can execute, then ell is considered to be migrated to the intermediate
configuration (inference number 3).

The following two rules (4 and 5) illustrate the § transition - the commit
phase during which all multiset productions accumulated are applied to the com-
partments of ell. Furthermore, new compartments (w, # €) are also appended
to C' whilst empty compartments (w = €) are pruned from the set. The ‘commit’
procedure is also described in a denotational style in the following listing.

Finally in rule 6, an EPS maximally parallel computational step is defined as
a sequence of the two transitions o and f.

We next present the semantics of the three functions rar, apply and commit
using a simplified notation that resembles functional programming languages.
There are no explicit type annotations for the parameters or return values of these
procedures, however, by convention we use variable names or terms which reflect
the syntax definitions presented earlier, where appropriate. Essential predicates,
such as isRuleApplicable or isCompartmentInScope are also included as are
all supporting rules, regardless of generality (concat, add, subtract etc). We
also note that some of the statements are not declared generically and are only
pertinent to this context (i.e. the complete semantics of EPS). For example,
multiset subtraction (subtract) does not ascertain whether the first operand (to
be subtracted from) includes (or equals) the second, a condition sine qua non for
objects whose multiplicities can only be represented as natural numbers. This is,
of course, not required because the evaluation (semantic rule includes) precedes
all references to this rule, permitting this level of specificity.

Whilst the listing is devoid of obtrusive descriptions, comments prefixed with
‘#’ accompany sections which may be less intelligible or require clarification. In
addition to a standard if ... then ... else ... clause, we also assume true and
false as the two boolean values, whilst && and || denote the logical and and or
operators, respectively.

# Random applicable rule, selected from a set R and
# evaluated on compartment ¢, and sets C' and Cj
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rar(R,c,C,C;) = rarProc(R,c,C,C;,€)

rarProc(e,c,C,C;,rg) = 15
rarProc(r : R,c,C,C;,r5) =
if isRuleApplicable(r,c,C, Cy)
then rarProc(R,c,C, C;,ndsA(r,rs))
else rarProc(R,c,C,C;, 1)

# Non deterministic selection when y is not ¢
ndsA(z,y) =
ify==ce
then x
else nds(x,y)

# Non deterministic selection
nds(xz,y) = x
nds(z,y) =y

isRule Applicable(scope : w — {(w, T, w¥ wme¥) ¢, C, C;) =
isCompartmentInScope(c, scope) &&
includesMultiset(c,w) &&
atLeastOneRecipient For EachTar (T, concat(C, C;))

isCompartmentInScope({w,w;,w,), scope) = isScopeCongruent(w, scope)

# An empty multiset is (by design) not congruent with any scope
isScopeCongruent (e, scope) = false
isScopeCongruent(w™, (wy, lw,)) =

includes(w™, wy,) && doesNotIncludeSegmentOf (w™, wy)

# Multiset inclusion predicate
includes(w, €) = true
includes(w, a : ws) = includesSymbol(w, a) && includes(subtractSymbol(w, a), w;)

includesSymbol(e,a) = false
includesSymbol(a : w,a) = true
includesSymbol(b : w, a) = includesSymbol(w, a)

subtractSymbol (e, a)
subtractSymbol(a : w,
subtractSymbol (b : w,

a)
a) =

subtmctS ymbol(w, a)
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# Second condition which must be satisfied for scope congruence
doesNotIncludeSegmentOf (w,€) = false
doesNotIncludeSegmentOf (w, a : wy) =
if includesSymbol(w,, a)
then doesNotIncludeSegmentOf (subtractSymbol(w, a),w,)
else
not(includesSymbol(w, a)) &&
doesNotIncludeSegmentOf (subtractSymbol(w, a),w,)

not(true) = false
not( false) = true

includes Multiset({w, w;, wy), ws) = includes(w, wy)

at LeastOneRecipient For EachTar(e, C') = true
atLeastOneRecipientFor EachTar(t : T,C) =
at LeastOne Recipient(t, C') && atLeastOneRecipientFor EachTar(T,C)

at LeastOneRecipient(t,e) = false
at LeastOneRecipient({w, tar),c: C') =
isCompartmentInScope(c,tar) || atLeastOneRecipient({w,tar),C)

concat(C,€) = Cy
concat(Cy,c: Cy) = ¢ : concat(Ch, Cy)

apply(scope : W — (Wl [T, Wi W) e, C, Cy w,) =
let ¢ = applyInstantiation(w™”, apply Rewrite(w™s — wel/ )
let (C', C1)y = apply AllCommunication(applyT arCommunication(T, C, C;),w,)
return (c',C", C!, add(w™, w,))

applyInstantiation(w™™, (w, w;, w,)) = (W, w;, add(W™™, wy,))

# Multiset addition, equivalent to string concatenation for

# this representation of a multiset

add(wy, €) = w;

add(wy, a : wy) = a : add(wy, ws)

apply Rewrite(w'™ — w™ (w, wi,w,)) = (subtract(w'™, w), add(w** , w;), w,)

# Multiset subtraction
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subtract(wy, €) = w;
subtract(wy, a : we) = subtract(subtractSymbol(wy,a),ws)

# Apply communication rules which replicate to all EPS compartments
apply AllCommunication(C, C;, w) = (addToAll(C,w), addToAll(C;,w))

addToAll(e,w) = €
addToAll(c : C,w) = addToCompartment(w, c) : addToAll(C,w)

addT oCompartment(w?, (w, w;, w,)) = (w, add(wWP, w;), wy)

applyTarCommunication(e, C, C;) = (C, C;)
applyTarCommunication(T, C, C;) = (applyTarList(T, C'), applyTar List(T, C;))

applyTarList(e,C) = C
applyTarList(t : T,C) = applyTar List(T, applySingleTar(t,C))

applySingleTar(t,e) = €
applySingleTar({w, scope),c: C) =
if isCompartmentInScope(c, scope)
then addToCompartment(w,c) : applySingleTar({w, scope), C)
else ¢ : applySingleTar({w, scope), C)

# The rule assumes that € : C' = C such that if there is no

# instantiation and ¢ = € is returned, then ¢: C' = C

commit(e,w,) = €

commit(c : Cj,w,) =
commitInstantiation(c,w,) :
(pruneCompartment(commitCompartment(c)) : commit(C;,w,))

commitInstantiation({w,w;, €),w,) = €
commitInstantiation({w, w;, w,), w,) = (add(wy,,w,), €, €)

pruneCompartment({e,w;,w,)) = €
pruneCompartment({(w*, w;, w,)) = (W, wi, wy)

commitCompartment({w, w;, w,)) = (add(w, w;), €, €)

Having defined elementary P systems, their features described and exemplified
and having established the relevance of this model in the context of membrane
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computing - morphologically and functionally, we next demonstrate, in chapter [6]
the formal verification approach which substantiates this thesis. The polyvalent
case studies presented in the following chapters also illustrate modelling principles
pertinent to EPS and highlight conversion strategies for other P system variants.
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Chapter 6

Model checking Elementary P
systems

The formal verification approach set forth in this thesis does not diverge from
conventional methodology. One key contribution for achieving this goal is the
provision of an abstract formal framework which incorporates the substrate of
membrane computing but also translates to an optimal process model required
by a model checker tool. Complementary, describing P system semantics, partic-
ularly its emblematic maximal parallel execution strategy, in terms of concurrent
sequential processes according to the principles defined in chapter [ establishes
the feasibility of model checking membrane systems.

The four distinct stages which comprise our approach can be iterated as fol-
lows:

1. Formal modelling with elementary P systems;

2. Automatic conversion of the EPS model to a process meta language (Promela)
specification required by SPIN;

3. Construction of a set of properties we wish to verify, specified as LTL for-
mulae;

4. Formal verification of the produced formulae against the converted EPS
model, using the SPIN model checker.

6.1 Software tools and the eps specification

The methodology proposed and demonstrated in this thesis is accompanied by
a suite of tools which mediate the transition between the steps identified in the
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above listing. Specifically, a library (referred to as eps-tools) of software modules
centred around elementary P systems was developed to facilitate:

1. Model analysis via guided simulations of an EPS model;

2. Automatic model translation to SPIN’s Promela specification according to
the principles advanced in this thesis.

In addition, eps-tools also integrate a parser for a simple specification lan-
guage designed to express elementary P systems in a unambiguous and intuitive
manner. Both the simulation and conversion programs accept (and require) the
epsﬂ modelling language as input format.

The restricted set of primitives promoted by elementary P systems is reflected
in the concise syntax of the language. An EPS model definition consists of a
sequence of statements which are either compartment declarations or rule ex-
pressions. Each compartment is composed of a non-empty multiset encoded as
a parentheses enclosed, comma separated sequence of object identifiers. These
can be prefixed by a numerical value which denotes the object’s multiplicity: (a,
2b, 3c); (x, y); (10 t);. The absence of a multiplicity indicator implies the
presence of a single object.

Each eps statement ends with a semicolon ‘;” whilst spaces within declarations,
wrapping operators or multiset values, are ignored by the parser.

A rule is expressed as scope: 1hs -> rhs;, where scope and lhs are mul-
tiset terms and expanded accordingly. The rhs operand is a comma delimited
succession of multiset products of the form:

1. [ms] corresponds to communication by broadcasting to all compartments
of ell; ms is the multiset of objects that is propagated across C.

2. [ms @ scope] where ms and scope are multisets of object; ms represents
the outcome of the rule whereas scope indicates (by congruence) the com-
partments in C' who will receive a copy of ms;

3. [ms *] denotes a transition of ms to the quiescent compartment associated
with ¢ € C' where the rule is applied in.

4. ms stands for simple multiset rewriting; the product of the rule does not
leave the compartment - the implicit target indicator of ms is self.

We illustrate EPS rule expressions with the following examples, tabulated in
0. 1]

'We note the symbolic distinction between the lower cased ‘eps’ and the upper-case ‘EPS’.
The eps term denotes the name of the specification language for elementary P systems and also
prefixes the supporting software tools (eps-tools, eps simulator, eps2spin etc), whereas ‘EPS’ is
a shorthand expression for ‘elementary P systems’ and is used interchangeably.
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EPS rule Equivalent expression in the eps specification
a—)b,c3,m<n> a->Db, 3c, [m@nl;
(m,n?) : & — yau m, 2n: x —> [y];

(m, b, )t 2,y — T, Yau, Yom, )

m, !(b, 2¢): x,y ->x, [yl, [y @m, !f];

<'Z> Y — Yalls Tnew

lz: y => [yl, [x *];

Table 6.1: EPS rules and their equivalent expression in the eps specification

In addition to prefixing individual rules with scope multisets, the eps language
also allows a collection of rules under the same scope to be expressed more suc-
cinctly. The construct is referred to as scope closure and is nothing more than
a syntactic reduction, there is no augmentative logic applied to the conditional

element. For instance:

e, f: {
12f: p -> q;
m, 'z: {
In: p —> [q];
n, !2n: p -> [q *];
}
}

is functionally equivalent to:

e, £, 12f: p > q;
e, f, m, '(n, 2): p -> [q];

e, f, m, n, !'(z, 2n): p -> [q *];

Another significant aspect of this notation is the inferred alphabet of objects.
A specific declaration of the objects found in compartment multisets, scopes or
rule terms is not necessary - the system alphabet is compiled ‘on the fly’.

We conclude our discussion of the eps modelling language with a complete
Extended Backus-Naur Form (EBNF) specification in the following listing:

eps = {eps statement};
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eps statement = [space_c], statement unit
| statement unit, [space_c], eps statement;

space_c = [space | (comment, space_c)];

space = ‘ ’ | 7line end? | {space};
comment = ‘/*’, anything except comment end, ‘*/’;

anything except comment end = [-‘*/’]
| (-“*/?), anything except comment end;

statement unit = compartment | rule | scoped rule | scoped rule set;
compartment = ‘(’, multiset, ¢)’;

multiset = multiset unit

| multiset unit, [space_c], ¢

,”, [space_c], multiset;
multiset unit = [number], identifier;

number = digit - ‘0’
| digit - ‘0°, {digit};

digit = 70-97;

identifier = letter
| identifier, [letter, digit | ‘_’];

letter = 7a-zA-77;

rule = multiset, [space_c], ’->’, [space_c], (multiset | target multiset);
target multiset = ‘[’, [space_c], multiset, [space_c], [target], ‘]1’;
target = ’Q@’, [space_c], (scope | ‘x’);

scope = scope unit

| scope unit, [space_c], ¢

,”, [space_cl, scope;

scope unit = multiset unit
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| “!’, [space_c], multiset unit

| “t’, [space_c], ‘(’, multiset, ¢)’;
scoped rule = scope, [space_c]l, ‘:’, rule;
scoped rule set = scope, [space_c], ‘:’, [space_c], ‘{’,

{[space_c], rule statement, [space_cl}, ‘}’;
rule statement = (rule | scoped rule), [space_c], °;’
| scoped rule set;

Whilst an EPS model simulator is of great convenience when designing more
elaborate algorithms and generally for analysing the behaviour of a modelled
system, the key utility featured by our library is the EPS translation tool, which
automatically generates a process model (Promela specification) suitable for SPIN
model checking. The software program implements a relatively simple model
transformation, which is indeed a merit of the minimal set of primitives employed
by elementary P systems. The so called state vector comprises a single array of
compartment data structures. These envelop two lists of length A_SIZE, that is,
the size of the alphabet of objects O. Each index in a list represents a multiset
object whereas the value at index ¢ equates to the multiplicity of the object
encoded by ¢ in a particular compartment. The Promela code below illustrates
this structure and also includes the declaration of the compartment array.

typedef Compartment {
short x[A_SIZE] = 0;
short y[A_SIZE] = 0;
bit rulesApplicable[RULE_COUNT] = O;
}
Compartment C[MAX_COMPARTMENTS];
short C_COUNT = 3;

An additional auxiliary element in the type definition above is a list of boolean
variables whose values indicate which rules are applicable to a particular com-
partment at a certain step. These are computed and stored before the rules
are selected for application, at the beginning of each step. The RULE_COUNT and
MAX_COMPARTMENTS constants symbolise the number of rules the P system employs
and the maximum number of compartments defined for this experiment, respec-
tively. For models with no compartment instantiation rules, MAX_COMPARTMENTS
will be equal to C_COUNT, which represents the initial number of compartments in
the array C.
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Scopes and rules are directly translated into C code and interspersed with the
Promela declarations and the core functional unit. This is a fruitful feature offered
by the SPIN model checker: not only is the C code seen as atomic instruction
blocks by SPIN, but it also confers flexibility for implementing more complex
procedures in a familiar programming language.

Each scope encountered in the EPS model is a predicate effectively referenced
by index in the C code generated. For example, the following is a standard C
function which returns true if the compartment identified by cIndex contains at
least one b object and false otherwise.

bool isInScopeO(short cIndex) {
short *x = now.C[cIndex].x;
return (x[_b] >= 1);

Such a routine (isInScope;) is created for every scope in ell, regardless of
whether it is used for rule allocation or as a target indicator. Compound predi-
cates can be subsequently queried at a higher level. For instance:

bool isRulelApplicableTo(short cIndex) {
return isInScopel(cIndex)
&& atLeastOneInScope2(cIndex) ;

asserts whether a rule with associated index 1 can be applied in a compartment
whose index is passed by the parameter cIndex. Since communication rules re-
quire at least one valid (scope congruent) recipient, a second predicate is necessary
to determine the applicability of this rule. This is reflected by the latter term of
the conjunction, atLeastOneInScope2(cIndex)H.

Scope predicates are also referenced in rule application procedures. The fol-
lowing listing demonstrates a communication rule which extracts one a object
from the cIndex compartment and sends a copy of a to all membranes congruent
with some scope whose index is 2.

void applyRulel(short cIndex) {
now.C[cIndex] .x[_a] -= 1;
for(short i = 0; i < now.C_COUNT; ++i) {

!The argument cIndex is required to exclude the compartment identified by this index
from the scope congruence search. At least one region other then cIndex congruent with scope
Scope2 must exist to validate the applicability of Rulel.
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if(i !'= cIndex) {
if (isInScope2(i)) {
now.C[i].y[_a] += 1;
}

We note the now identifier which is simply a reference to the state vector, pro-
vided by SPIN. We recall our Compartment data type definition which includes two
arrays, x and y. Whilst x represents the multiset currently present in compart-
ment cIndex, y acts as a buffer which temporarily stores the multiset productions
destined to this compartment. More precisely, all rewriting and communication
rules with a yield for cIndex will provisionally store this yield in y and after all
possible rules have been applied during the respective step, the vector y is com-
mitted to the persistent multiset encoded by x. y is immediately reset (filled with
0) after each commit. This strategy is strictly necessary in the implementation
of maximal parallelism as a sequential process.

In order to make the generated code more legible, the objects of the alphabet
O are denoted by more intuitive identifiers, specified as macros. These are always
successive numbers starting from 0, as they are utilised as indices for the vectors
x and y

#define _a O
#define _b 1
#define _c 2

To reduce the risk of a naming collision, the convention adopted for object
identifiers is the underscore prefix.

The core of the EPS execution algorithm tailored for the SPIN model checker
is best illustrated by a pseudo-code representation. This is depicted in listing
[6.1] and concludes our description of the EPS to Promela translation strategy. In
this listing, we draw attention on the pre-computed set of applicable rules R; for
each compartment ¢ of an EPS (line 4). On the one hand, this is an important
optimisation which prevents the unnecessary repetitive evaluation of the ‘appli-
cable’ predicate on the global set of rules R - rule applicability is subsequently
determined in the scope of R;. On the other hand, the pre-computed set R; is also
utilised to ascertain whether a rule contends (competes) with another for execu-
tion. T'wo or more rules are considered to compete with each other for execution
in a compartment if and only if:

1. the rules are applicable in the respective compartment and
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11

12
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15
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19

2. the intersection of their left hand side multisets is non-empty.

For example, rules @ — b and a,b — ¢ are contenders for object a in a multiset
(a, b, c), whereas ¢ — a,b, k does not compete with the first two for execution.
If a rule can be executed independently of other rules from the same set R;, then
this rule will be applied exhaustively (i.e. as long as it remains applicable). This
consideration further prunes away the states generated as a result of inconsequen-
tial interleaving]l] of atomic instructions: non-deterministic choice is only required
for competing P system rules.

We also note that a complete code listing as generated by our software tool is
provided in the appendix of this thesis.

for each computational step {
execute the following as an atomic instruction {
for each compartment c_i in C {
establish the set of applicable rules R_i for c_i;
repeat {
non-deterministically select an applicable rule from R_i:
if such a rule exists {
if the rule does not compete with any other rule from R_i
then apply rule exhaustively;
else
apply rule once;
} else
break repeat and continue with the next compartment in C;

commit buffered productions to respective compartments in C;

}

Figure 6.1: Pseudo-code summarising the behaviour of the algorithm generated
for SPIN model checking.

The eps-tools library has been implemented using Javascript |7] in its entirety
and is based on the Node.js [3] runtime which, importantly, ensures consistent
cross-platform operability. The code developed can easily be adapted to run in
a browser with an HTML architectured graphical user interface. Not only is

Interleaving is inconsequential when it yields spurious system states. Strictly speaking, the
outcome is severely counter-productive, particularly when model checking is a set objective.
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Javascript one of the most versatile scripting languages at this time, but also its
related JSON [2] notation offers a significant advantage for concise specifications
and portability. The initial version of our simulator required an EPS model be
expressed as a JSON document, a feature still retained in eps-tools, although the
preferred input is now the eps modelling language.

6.2 Generating the Fibonacci sequence of num-
bers
We start with a simple example whose purpose is manifold:
1. Ilustrate elementary P systems and
2. The eps modelling language;
3. Demonstrate the epss simulator and
4. eps2spin translation tool;
5. Introduce the SPIN based model checking method on EPS;

6. Emphasize the difference between standard and efficient modelling of max-
imally parallel multiset rewriting in SPIN’s process meta language;

We consider the following elementary P system:
elly, = (O,C, R)
where
O ={a,b,c,x}
C = {(a,2), (b, ), (c)}
R={({):x — z,24; (c): 0 —> 24}

An initial remark on this model is the use of objects a, b, ¢ as compartment
identifiers. We underline the absence of membrane labels whose role is substituted
by the multiset contained in the compartment. a, b and c are constant throughout
the execution of elly; since they are not subject to any rules and hence, never
transformed. Rule (b) : © —> x,x4; will always be applied in compartments
containing at least one b and in this example (b, ) satisfies this condition each
computational step.
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On the same note, we can infer that a is not strictly necessary since there are
no rules which address compartments with a objects, nor are there any communi-
cation rules with scopes relating to a. There is indeed no functional necessity for
a however, its inclusion confers clarity on the model, specifically when referring
to the compartment it is contained by. For convenience, we will subsequently
address the three compartments in C' with scoped constructs (a), (b) and (c)[]

The execution of ellt;, proceeds as follows:

Step 1 : Rule (b) : ¥ — z, x4 is applied once in compartment (b,z) since a
single x is present. The rule yields one x which is retained inside the
membrane and another x is replicated to all other compartments, that is
(a,x) and (¢). The absence of x objects in (¢) prohibits the execution of

rule (c) : & — 2. MM = {(a,2?), (b,x), (¢, ) };

Step 2 : Rule (b) : * — x, x4 executes in the same manner as in the preceding
step, however rule (c) : © — w4 will also be applied once, given the
presence of an = in (¢). The outcome of this rule is an x emitted to all
compartments containing at least one b - in this example the recipient is a
singleton. M; /" = {(a, 2%), (b, 22), (c, z)}:

Step 3 : Rule (b) : @ — x, x4 is applied twice during this step, expending the
two s and broadcasting two copies to (a) and (c); rule () : © — )
executes once, sending an z to (b). M ¥ = {(a, %), (b, ), (¢, 22)};

Table lists the first five configurations of ell;,.

An immediate observation is that ell;; cannot have any halting computations.
The two rules will be applied indefinitely, generating successive numbers in the
Fibonacci series. The following relation can be identified in the sequence of
configurations illustrated so far: |[(a)|, = [(b)|» +[(c)|.. More plainly, the number
of x objects in the compartment identified by scope (a) is equal to the sum of the
xs in (b) and (c) respectively. As such, the three compartments hold sequences
of size three from the Fibonacci series of numbers.

To verify these observations we first express our EPS model using the eps
language syntax (Fig. [6.2).

To simulate the specified model, the following command is run from a com-
mand line terminal:

node epss Fibonacci.eps —n 10

1Scope congruence is always applied by EPS on its entire set of compartments C' and
generally equates to a set of compartments. In unequivocal instances where it is always a single
compartment that is congruent to a scope o, then we will refer to this compartment by o.
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Step/Compartment | (a) ) | (o)

0 a,x | bx c

1 a,z®> | b,x | c,x

a,z® | b,2® | c,x

a,z® | b,x® | c,x

2
3
4 a,z® | b2’ | c,x
5}

a,z'3 | b,2® | c,x

Table 6.2: Execution trace of an EPS based algorithm for generating the Fi-
bonacci sequence of numbers

(a, x);
(b, x);
(c);

b: x > x, [x];
c: x => [x @ b];

Figure 6.2: elly;, expressed in the eps modelling language

where Fibonacci.eps is the file name for the implementation of elly; and -n is
a parameter which denotes the number of steps to simulate. Other parameters
allow for various output formats (in addition to plain text) and fine grained detail
in its reporting (an option known as verbosity). A complete description of the
tool and its options is available at [1]. The plain text output generated by the
aforementioned command, that is, a ten step computation of ell;, is provided in
appendix [A]

A fully automated conversion to a Promela specification is achieved by exe-
cuting:

node eps2spin Fibonacci.eps -o Fibonacci.pml

where the -0 parameter followed by Fibonacci.pml designates the output file the
model is generated to. For reference, we include a complete listing of the gener-
ated Promela code for this particular example, in appendix [B]
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Next, the properties expressed as LTL formulae are appended and the .pml
(Promela) file supplied as input to the SPIN executable:

spin -run -a Fibonacci.pml

All experiments presented in this thesis have been performed using SPIN
version 6.4.3 on a 2.4 GHz Intel Core i7 MacBook Pro with 8GB of DDR3 RAM.

Property There exists an elly;, computation which generates the value
21 (the sixth number in the Fibonacci series)
LTL F |{a)], = 21

SPIN LTL | <> (c[0].x[x] == 21)

Description | The state where the multiplicity of object x in the compart-
ment 0 ((a)) is eventually reached.

Evaluation | Time Memory States | State vector

True 0Os 128.730 MB 8 88 bytes

Result

Table 6.3: Property Pppl

The initial two verification instances (Tables[6.3] and attest the existence
of specific numbers in the set of computable values of elly;. The significance
of these experiments is not derived from the properties submitted, but from the
possibility to prove their validity against a system with infinite states. We recall
that ell;; never halts, its computation of Fibonacci numbers is perpetual. For
this particular model, the non-terminating computation translates to an infinite
number of states, which appears as an infringement of a basic requirement of the
model checking technique. SPIN, however, generates its state graph ‘on the fly’
which implies that only states associated with a relevant computational path will
be created. This strategy not only confers great efficiency to the verification pro-
cess, but also makes the investigation of so called reachability properties feasible.
Generally, in order to prove the validity of a property (expressed as an NDFA), it
is sufficient to traverse a subset of the model’s possible states, if and only if the
property is faithful to the model. The search remains exhaustive, all paths must
be visited, however, it need not descend to infinite depth in the state space when
the temporal logic formula does indeed hold.

The following four properties (Tables[6.5] 6.7} [6.8] and assert the validity
of our model more generally. The leading G (globally) operator requires all
system states be visited in order to prove the constancy of a relation. elly;,
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Property There exists an elly;, computation which generates the value
34 (Fib(7)) and the preceding values generated are less than
or equal to 21 (F'ib(6)).

LTL [{a)]. <21 U [{a)], = 34

SPIN LTL | (c[0].x[x] <= 21) U (C[0].x[x] == 34)

Description | The state where the multiplicity of object x in the compart-
ment 0 ((a)) is eventually reached and in all preceding states,
this multiplicity cannot be more than 21. The property effec-
tively states that there is no other number generated between
21 and 34, before the multiplicity 34 is reached. Importantly,
the verification result does not guarantee that values in this
range are not computed beyond this step, that is, model check-
ing is impervious to the monotony of a computable function.

Evaluation | Time Memory States | State vector

True 0s 128.730 MB 9 88 bytes

Result

Table 6.4: Property P2

however, exhibits an infinite number of states and as such we can only verify
the aforementioned properties on a finite subset of states from elly;’s infinite
set. Since this may be a frequent requirement in specific contexts, the eps2spin
conversion tool allows the introduction of a global restriction which is embedded
in the generated Promela code, but not required in the EPS model. The —n
parameter effectively limits the computation to a set number of steps:

node eps2spin Fibonacci.eps -o Fibonacci.pml -n 20

The resulting configuration features a slice of the infinite state space and can
thus be verified exhaustively by LTL formulae which entail ‘always’ or ‘never’
claims. Evidently, the interval between the computational states can be manually
adjusted to reflect a segment of interest; for instance, it may be important to
investigate computation between steps 50 and 100.

Properties Pr;3,4, 5,6 have been successfully validated by SPIN for a 20 step
computation of ellt;. In table we list the experimental results obtained in
the case of Prj3 with an extended 30, 40 and 50 computational steps. It can
be observed that the number of states generated by the model checker is equal
to 2 x step_count + 5, that is linear to the number of P system states. We also
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note the constancy of the time and memory required to conduct the verification
process, confirming the scalability of the approach for this scenario. Rather, it
is SPIN’s integer data type 32 bit representation which limits the scope of this
investigation (32 bit integer is the largest numeric type available in Promela).

Property It is always the case that the Fibonacci relation holds for any
sequence of three numbers generated by ellf; (in the respec-
tive compartments).

LTL G (@)= = (D)« + [
SPIN LTL | [J (c[0].x[x] == c[1].x[x] + c[2].x[x])

Description | The globally operator ensures that for all computational paths,
that is, all states generated by SPIN, the aforementioned rela-
tion holds. The leading number computed by ells; is always
encoded as the multiplicity of object = in (a), its predecessor
in (b) and the second preceding number in (c).

Evaluation | Time Memory States | State vector

True 0Os 128.730 MB 45 88 bytes

Result

Table 6.5: Property Pri3

Step count | States | Time Memory State vector
30 65 Os | 128.730 MB | 152 bytes
40 85 Os | 128.730 MB | 152 bytes
50 105 Os | 128.730 MB | 152 bytes

Table 6.6: Verification of Py;3 for 30, 40 and 50 maximum computational steps.

A noteworthy observation is the constancy of the number of unique states
generated by SPIN for Py;3—5. This is reported as 45, despite the fact that some
properties can never be invalidated past a certain state (for instance, the number
1597 can never again be generated after step 15). The behaviour, however, is
consistent with the model checking technique, namely all possible states of the
model must be addressed; there are no inferences derived from the construction
of the model, such as the strictly increasing monotony of the function which
generates each multiplicity, which could prune the superfluous search operation.
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Property | elly; never computes numbers in the 144 (Fib(10)) - 233
(Fib(11)) interval.

LTL G [(a)], < 144 V [(a)], > 233
SPIN LTL | [1 (c[0].x[x] <= 144 || c[0].x[x] >= 233)

Evaluation | Time Memory States | State vector

True 0Os 128.730 MB 45 88 bytes

Result

Table 6.7: Property Pr4

Property The 15" number in the Fibonacci series is 1597.
LTL G (step = 15 — [(a)|. = 1597)

SPIN LTL | [1 ((step == 15) -> (C[0].x[x] == 1597))

Description | The property guarantees that in all cases (on all computa-
tional paths), ell; computes the multiplicity 1597 during step
15.

Evaluation | Time Memory States | State vector

True 0Os 128.730 MB 45 88 bytes

Result

Table 6.8: Property Py 5

This is one of the advantages other formal verification methods (i.e. automated
theorem proving) feature, in contrast to model checking.

Property Py;6 (Table is only relevant if the computation exceeds the
number steps required for generating Fibonacci numbers greater than the one of
interest (2000000). Indeed, the MAX_STEPS constant which restricts computation
to the number of steps indicated by its value, has been specified as 50 for this
property. Furthermore, the short datatype to which variables are bound to by
default in the eps2spin translation has been upgraded to int, a necessary substi-
tution required for representing numbers greater than 32767. This modification
is reflected in the state vector which has increased to 152 bytes (76 percent).

We next amend our initial ellt; model and include a compartment whose role
is to count the number of steps elapsed (analogously to the Fibonacci example
presented in chapter . This is achieved by accumulation of n objects, one
generated per step. Since we wish to isolate the emission of z objects from (b),
we also change rule (b) : @ — x, x4 to (b) : @ — x,xy), that is x will only

78



oo ~ (=2} ot [ w [ -

Property 2,000,000 is not a Fibonacci number.
LTL G |{a)|. # 2000000
SPIN LTL | 1 (c[o].x[x] !'= 2000000)

Description | Given a finite state vector, it is convenient to formally deter-
mine whether a value is part of a function’s codomain.

Evaluation | Time Memory States | State vector

True 0Os 128.730 MB | 105 152 bytes

Result

Table 6.9: Property Py6

be replicated to compartments without p objects. The system’s alphabet now
includes the two additional symbols p,n: O = {a,b,c,x,p,n}. The updated
model, ell’;, is illustrated by the eps code in Fig. .

(a, x);
(b, x);
(c);
P);

b: x > x, [x @ !p]l;
c: x > [x @ b];
p > p, n;

Figure 6.3: Modified ell;, eps model to include a counter compartment

We highlight the use of catalyst p in the rule p — p,n (which requires no
scope since p is always available in one compartment only). This constitutes
a design pattern for modelling singular (or a fixed number of) transitions per
computational step in elementary P systems. Generally, when a rule is required
to execute no more than k times each step, a catalyst object with multiplicity &
can be employed to limit this execution to this end. If £ = 1, then the rule is
effectively applied in the minimal parallelism (min) process mode. If arbitrary
execution is required (par), then additional rules can be utilised to define non-
deterministic mutations of k¥ during each step. For instance, p — p?; p — p;
p?> — p, when executed in maximal parallel mode can introduce an arbitrary
number of p objects within a specific (extensible) range.

The principal purpose of eH}ib is to demonstrate the absence of interleaving
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from our translated P system model. It is precisely this aspect of our approach
which eliminates the exponential state space expansion which arises due to the
manner in which parallel instructions are considered by process algebras. Earlier
in chapter [d, we have showed this to be inadequate for modelling maximally
parallel transitions customary to P systems. The state space could still grow
exponentially if the system exhibits non-deterministic behaviour, however, not
because parallelism is reduced to non-deterministically distributed execution of
processes, which translates to interleaved system states.

In this respect, we remark the same number of states generated by SPIN when
model checking property F [(a)|, = 21 against both eIl and ell;;, (Table ,
despite the increase in compartments and number of rules. Whilst the state vector
reflects the memory required by the additional compartment and objects p and n
(56 bytes), the number of states (8) is identical to the one reported for the very
first experiment (Pj;1, Table |6.3)).

Property | There exists a computation which generates the multiplicity 21
(the sixth number in the Fibonacci series)

LTL F [{a)]. = 21
SPIN LTL | <> (c[0].x[x] == 21)

Evaluation | Time Memory States | State vector

True 0Os 128.730 MB 8 144 bytes

Result

Table 6.10: Property Pg;7

Finally, property asserts the reachability of the state when the tenth
number in the Fibonacci series is computed and this occurs precisely after step
ten and no sooner. We highlight the difference between a model where transitions
are interleaved during a single step]] and our approach by running experiment
P8 again, however, this time rule applications are not interpreted as a single
atomic procedure, but rather they are allowed to generate system states. The
time required is insubstantial for such a small example, however the number of
states generated by SPIN is 644, that is 52 times higher than that of our original
model.

!The number of states generated if all instructions across all system compartments are
interleaved and each rule application generates a system state is much higher. In this example,
we emphasize the effect of intra-compartmental interleaving which is restricted to a single step.
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Property The tenth number in the Fibonacci series will eventually be
computed and no greater number is generated up to this point.

LTL (Ka)le < 144 A [(p)]n < 10) U (|(p)|n = 10 A [(a)|. = 144)

SPIN LTL | (c[0].x[x] < 144 && C[3].x[n] < 10) U (C[3].x[n] ==
10 && C[0].x[x] == 144)

Description | The LTL formula can be translated as: the multiplicity of n
and z, in compartments (a) and (p), will remain lower than
144 and 10, respectively, until the point where the tenth num-
ber in the Fibonacci series is computed; this equates to a state
where both |(a)|, is 144 and |(p)|, equals 10.

Evaluation | Time Memory States | State vector
Result

True 0Os 128.730 MB 12 144 bytes

Table 6.11: Property P8
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Chapter 7

Structured modelling with
elementary P systems: counting
the number of child nodes in a

DAG

7.1 Objectives

In order to demonstrate the modelling potential of elementary P systems, but
also highlight translation strategies and design patterns pertinent to the repre-
sentation of other membrane system variants, we consider the Hyperdag P system
example illustrated in section [3.5 of chapter [3] We recall the algorithm originally
presented in [81] is a parallel child-node counting technique using ‘broadcasting’
rules in a DAG structure. Since EPS communication rules emit multisets of ob-
jects by replication to all eligible (by scope congruence) compartments, it can be
concluded that EPS rules are a generalisation of broadcasting rules which may
only target child, parent or sibling nodes. These directional labels are based on
the (permanent) parent-child relation denoted by the edges of the DAG. By con-
trast, an EPS has no provision for supplementary elements to explicitly designate
a graph, tree or DAG like structure of compartments, and as such, a structure
can only be inferred by the set of communication rules assigned to a model.

It turns out that elementary P systems are at least as efficient in modelling
a DAG-like distribution of nodes (compartments) as Hyperdag P systems, and
by implication all variants which feature a graph (or more specific) membrane
structure.

In this chapter we present an EPS node counting algorithm which echoes the
example of section [3.5] Not only do we emphasize the versatility and efficiency
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of EPS modelling by preserving the intuitive node - compartment mapping, a re-
strictive set of rules and dismissing the extraneous set of edges (which Neural-like,
Hyperdag, Tissue, Population, Kernel P systems employ), but also demonstrate
our formal verification approach on a structured mode]ﬂ.

7.2 EPS Model

Figure 7.1: A DAG structure modelled by ellgq,q

We consider the following elementary P system for an instance of the problem
with V = 9 nodes connected as illustrated by Figure and 1 <17 < N:

BHdag = (O, C, R)
where
O = {niv a,c,s,q, Pni7 Cnl}u
C=A{

(n1, s,q,a, Png, Png),
(na, s, q, Png, Pns,Cny),

1By structured model, it is referred to a model which faithfully maps a certain arrangement
or distribution of entities in an abstract manner. Evidently, all computational models can be
considered intrinsically structured (i.e. a sequence of elements can be regarded as a structure
due to the regularity of its distribution), however this does not entail structure modelling.
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(ns, s,q, Pns, Png,Cny),
(n4, s,q,Cna),

(ns, s, q, Png, Cny, Cng),
(ng, s, q, Pny, Cnz, Cng),
(n7,s,q, Png, Cng),

(ns, s,q,Cns, Cnz),

(ng, 8,4, a, Png)

(i) :{
qg,a — A(Cny)s
(@) : s — c(pny;
}.
}

Similarly to the example in the precedent chapter, objects n;,1 <i < N are
included in each compartment and are representative of the node they model. A
uniform set of rules R is defined by scope reference to n;.

The parent-child relations which confer the DAG-like membrane structure
to ellgeq are denoted by specific objects in O: for each ordered pair (,j) which
represents an arrow in our illustration, we include a Pn; object in node ¢ and a Cn;
object in node j. This inclusion of Pn; and Cn,; in the respective compartments
marks node 7 as a parent of j and, conversely, compartment j as a child of node
i. In ellzq, we can identify node n, as the parent of ny and ng, by the presence
of objects Pny and Png in (n4), but also the inclusion of one Cn; object in both
(ny) and (ns).

In this particular example, a static structure is exercised, however, the map-
ping facilitates structural mutations by simple transformation (rewriting) of Pn
and Cn objects. Moreover, a bi-directional labelling scheme is not strictly re-
quired; it may be sufficient in some instances to only use Cn; (‘child of n;’)
objects which imply the parent n; or conversely, Pn; (‘parent of n;’). In such
cases, less data is required to encode the link between two compartments, in con-
trast to the traditional requirement of a pair (7, ) in a set £ of edges. On the
other hand, an arbitrary number of connections between two nodes can be conve-
niently specified, by employing additional objects from O: Ls; and Ley may be
used to represent the start and respectively, the end of a link of type k between
two distinct compartments.

Having defined the initial configuration of ellg,, with a consistent mapping
scheme, the rule set can be expressed concisely, using the same index 7,1 <7 < N
denoting an iteration of length N. Specifically, there are two rules associated
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Step/Scope | (n1) | (n2) | (n3) | (na) | (ns) | (ne) | (n7) | (ns) | (no)
0 s,q,a | s,q | s,q | s,q 5,q s,q | s,q 5,q |s,qa
1 s | sqalsqgal sq s,q | s,qal sq 5,q s
2 s, c? s,q,a | s,q,a s,q,a | s,q s,c
3 s, c? c? c? q,a a a,c a’/s,q | s,c
4 s,c? c? c? q,a a,c a,c c a?,q s, ¢

Table 7.1: Execution trace of ellg,,

with each compartment 7, one which emits a single a object to direct descendants
¢,a — a(cn,y and a second which sends an acknowledgement (object ¢) to all
parent nodes when ‘visited’ by a: (a) : s — c(pp,). Strictly speaking, the model
does not consist of two rules only, but rather of 2 x N rules of the same form.
This provision is expanded iteratively by simple substitution of ¢ in n;, Cn;, Pn;
with literals in the range [1 .. N]. An elaborated listing of elly,, expressed in the
eps modelling language is available in appendix [C]

Using objects to encode connections between compartments may not be the
most efficient strategy in all circumstances. It is certainly convenient for models
with a small number of nodes (such as the DAG in Fig. since this permits a
more compact rule expression, however if the problem scales to a million nodes or
more, then memory considerations are not to be neglected particularly because
these ancillary objects will be part of the state vector in the translated Promela
model. More precisely, the approach is not scalable although the DAG structure is
static. For such large models, minimising the size of the state vector is imperative.

Elementary P systems offer flexibility in this respect, by means of communi-
cation rules with scope resolution. A rule (a) : s — c¢(pp,) can be translated
to k rules of the form (a) : s — ¢(,,), where ny, is a parent node of (n;) where
the rule executes in. Whilst having a larger set of rules will reduce the perfor-
mance of the procedure generating the system states, the set remains constant
and can be pre-computed for static structures. Rather than referencing relation
indicators (Pn;, Cn;), the rules target individual nodes directly, invalidating the
requirement for additional objects in O and implicitly in the model’s state vector.
Any decrease in the size of a system state is of consequence and it is not always
necessary to resort to a drastic (or optimal) reduction. A hybrid approach may
also be adequate and can be achieved for example, by including either a ‘parent
of” symbol (Pn;) or ‘child of” symbol (Cn;) in the relevant compartments, as
described earlier.
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Computation in ellg,, proceeds with the application of the first rule, ¢,a —
a(cn;y in Toot nodes (i.e. nodes without a parent), since these own an a object
in the initial configuration. The same rule executes during each step in each
compartment with at least one child node, advancing deeper in the hierarchy.
Simultaneously, the presence of a also triggers rule (a) : s — ¢(pp,) in compart-
ments with at least one parent node, the effect of which is to emit a ¢ object
to all parents of the respective compartment. We underline the use of auxiliary
q and s objects with the purpose of minimising the execution of the two rules.
Indeed, it is always the case that each rule, if applicable, will execute once and
once only, regardless of the number of a objects present in the compartment.
This approach represents a pattern useful for enforcing singular execution of a
multiset transition rule.

We remark that ‘acknowledgement’ rules will never execute in root nodes and
complementary, ‘broadcasting’ rules are inapplicable in leaf (terminal) nodes.

The four step simulation of ellg,, is listed in Table [7.1] The system halts
after exactly four steps and, more generally, a halting configuration is observed
after H steps, where H is the height of the DAG. We note that only the volatile
objects have been included in listing for a more concise representation; the
node markers and parent-child indicators are permanently present during the
computation. The outcome of ellg,, is denoted by the multiplicity of object ¢ in
each node. More precisely, a halting configuration will consist of a number of ¢
objects that is equal to the number of child nodes, in each compartment (n;) in

C.

7.3 Verification results

The following properties formally assert the correctness of our model. Since the
computation terminates after four steps, the Promela model generated has been
capped at ten steps - this is required for formulae with reference to the step
variable which is always incremented regardless of whether any P system rules
were applied, and thus leads to an infinite set of states. This restriction does
not undermine the verification process - the P system’s computation and step
increment are disjoint procedures executed in parallel.

We also note the 1224 byte state vector has been specified to accommodate
the compartment data structure, in response to SPIN’s requirement for additional
memory. For a ten step execution, the verification process did not require more
than the default 128.782 MB.
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Property

If a node n; is visited at a particular step, then n; will ac-
knowledge all its parent nodes by sending a ¢ object.

LTL

(F step =1 A |[(n3)|a > 0) = (F step = 2 A [{ng)]s = 0 A
[(n1)]c > 0)

SPIN LTL

(<> (step == 1 && C[2].x[a]l > 0)) -> (<> (step ==
&& C[2].x[_s] == 0 && C[0].x[_c] > 0))

Description

The property is verified for a particular instance (node ng,
between steps 1 and 2), however the behaviour may be gen-
eralised by verifying the same property for all child nodes in
ellgag. The left hand side term of the implication identifies
the state where ns receives an a object from its parent n,
whilst the right hand side accounts for the reachibility of the
following step (step 2) where n3 has depleted its s object and
has sent a ¢ back to its parent compartment. Importantly,
this behaviour is not conclusively demonstrated by the clause
|(n1)]. > 0, it may very well be that the multiplicity of ¢ is
always greater than 0 due to other nodes sending the cs and
not ng in particular. It is indeed the case, that the execution
of rule (a) : s — c¢(py,) is inferred by the absence of ob-
ject s, whilst a second property (illustrated in Table will
confirm the presenece of the expected number of cs in every
parent compartment.

Result

Evaluation | Time Memory States | State vector

True 0s 128.782 MB 8 1224 bytes

Table 7.2: Property Py,ql
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Property

All child nodes (non-root nodes) will eventually be visited.

LTL

F step > 0 A [(n1)]s = 0 A [(n2)|ls = 0 A [{n3)]s = 0 A
[(na)|s = O A [(ns)ls = 0 A [{ng)ls = 0 A [(nr)]s = 0 A
[(ns)]s = 0 A [(ng)|s = 0

SPIN LTL

<> (step > 0 && C[1].x[s] == 0 && C[2].x[.s] == 0 &&
C[3].x[s] == 0 && C[7].x[_s] == 0 && C[5] .x[_s] ==
&% C[8].x[_s] == 0)

Description

The absence of s objects in a node translates to a visited node
who has also sent an acknowledgement to its parent (there
is a single s associated with each node and no additional s
objects can be produced). The property stipulates that a state
where all child nodes have a multiplicity of 0 for object s will
eventually be reached.

Result

Evaluation | Time Memory States | State vector

True Os 128.782 MB 10 1224 bytes

Table 7.3: Property Pyqq2

Property

The algorithm eventually computes the number of child nodes
for each vertex in the DAG.

LTL

F (|(n)]e = 2 A [(ng)|le = 2 A [(n3)]c =
A (ns)le = 1A [(ne)le = 1 A [{n7)e =

[{no)le = 1)

SPIN LTL

<> (C[0].x[c] == 2 && C[1].x[.c] == 2 && C[2].x[.c] ==
2 && C[3].x[c] == 1 && C[4].x[.c] == 1 && C[5].x[_c]
== 1 && C[7].x[.c] == 0 && C[8].x[_c] == 0)

Description

The multiplicity of object ¢ in each compartment 7,1 <7 < N
will eventually reflect the number of child nodes of <.

Result

Evaluation | Time Memory States | State vector

True 0Os 128.782 MB 10 1224 bytes

Table 7.4: Property P43
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Property

The algorithm will reach the halting configuration - the out-
come of the computation - after no more than four steps.

LTL

G step < 4V (|(n)]le = 2 A |{n2)|le = 2 A [(ng)le = 2 A
[(na)]e = 0 A [(ns)le = 1A [(n6)|e = 1A [(n7)]e = 1A [{ng)]e =
0 A ’<n9>|c:1)

SPIN LTL

(1 (step < 4 || (CLO].x[c] == 2 && C[1].x[.c] == 2 &&
Cl2] .x[.c] == 2 && C[3].x[c] == 1 && C[4].x[c] ==

&% C[5].x[c] == 1 && C[7].x[.c] == 0 && C[8].x[.c] ==
0))

Description

The property can also be formulated as: it is always the case
that the system’s configuration (identified as the solution to
this problem) is a stable one after the first four steps.

Result

Evaluation | Time Memory States | State vector

True 0s 128.782 MB 25 1224 bytes

Table 7.5: Property P44

89




~ [} ot [ w N -

Property Py,,5 (Table [7.6) is noteworthy since it references a variable gSum
which is not part of our model. Similarly to the step identifier, gSum is an aux-
iliary element added to the state vector to store a computed or derived attribute
of interest in ellgq,. It represents the sum of all ¢ objects across compartments
in C and it is calculated using a C function, listed in Fig [7.2 We recall that
C fragments in Promela can address the state vector using the (dereferenced)
pointer now. Thus, now.C[i].x[_q] represents the value of x at index _q for com-
partment C; in the state vector, or in simple terms, the multiplicity of ¢ in node
n;. For each state, ¢Sum is computed such that it can be referenced from an LTL
formula (as illustrated in Py,g5).

This technique is practical for buffering computed values which would oth-
erwise be cumbersome or impossible to express in LTL. For instance we cannot
apply mathematical functions such as the square root or a derivative with LTL
syntax, nor can we include C procedures as part of the temporal logic formulae.
Had we not used ¢Sum, all nodes would have had to be referenced individually
in a rather lengthy summation (C[0].x[_q] + C[1].x][_q] + C[2].x[-q] + C][3].x[-q]
+ Cl4]x[q] + C[5].x[.q] + C[7].x[q] + C[8].x[_q]).

We conclude this remark and chapter by stating that an eps2spin generated
Promela model is not intended to be unalterable, minimal or even optimal for
the problem being modelled. On the contrary, the translation is designed to be
intelligible, intuitive and easily modifiable, either to include ancillary procedures
and variables into the state vector as we have shown in Py,,5, or to optimise
the state transition function, or to isolate and analyse particular segments of the
system.

void computeQSum() {
short qSum = O0;
for(int i = 0; i < now.C_COUNT; ++i) {
gSum += now.C[i].x[_ql;
}

now.qSum = gqSum;

Figure 7.2: A C function which computes the sum of all g objects in ellg,, for a
given system state.
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Property

There are precisely two leaf nodes in the DAG structure which
underpins ellz,,.

LTL

G step <4V gSum = 2

SPIN LTL

[] (step < 4 || qSum == 2)

Description

Since all nodes are eventually visited and all visited nodes fur-
ther propagate an a object to their direct descendants consum-
ing the only ¢ available in each compartment, we can identify
leaf nodes in ell by searching for compartments which have
not applied the q,a — a(cp,) rule and have consequently re-
tained the object q. More precisely, a compartment containing
a ¢ in the halting configuration represents a leaf node in ell.
Hence, the number of leaf nodes in ell is equal to the sum of ¢
objects across compartments in C' - this is computed for each
system state and stored in the state vector with the reference
qSum.

Result

Evaluation | Time Memory States | State vector

True Os 128.782 MB 25 1224 bytes

Table 7.6: Property Py
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Chapter 8

Solving the Subset Sum problem
in linear time

8.1 Objectives

A most fruitful and persistently investigated property of P systems featuring
membrane division or creation rules is the ability to increase a computational
space exponentially, by executing these rules in parallel. The most prominent ap-
plication scope of such models is unequivocally the complexity class NP-complete
of computational problems. We have enumerated some of the developments based
on P system with active membranes in section of chapter [3] The referenced
case studies present linear time solutions to computationally hard problems and
essentially employ the same strategy for generating the computational space re-
quired to achieve this performance.

The Subset Sum problem is representative for the NP-complete class because
it evinces the underlying necessity to consider all combinations of distinct ele-
ments of a finite set, in order to produce a result. Consequently, such a problem
requires exponential computational resources, either in the temporal (number of
computational steps) or spatial (memory) domain, assuming P # N P.

The Subset Sum problem is stated as follows:

Given a finite set A ={ay,...,a,}, of n elements, where each element a; has an

associated weight, w;, and a constant k € N, it is requested to determine whether
or not there exists a subset B C A such that w(B) = k, where w(B) =}, _pw;.

The Subset Sum problem appoints all combinations of integers as subsets of
the initial set A, or more accurately, the set of weights respective to elements in
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A. Tt is thus transparent that the number of sums to be evaluated is equal to
the cardinality of the power set of A, or, more precisely 2" — 1 if we exclude the
irrelevant empty set. Since our elements are in fact integers, optimisations have
been considered, leveraging the intrinsic order relation between numbers, coupled
with efficient sorting algorithms to avoid generating all possible subsets [53]. This
did not, however, manage to reduce the complexity of the problem to a non-
exponential order.

In this chapter we present a linear time solution to the Subset Sum problem
using elementary P systems. A modelling strategy for generating an exponential
computational space by parallel membrane instantiation is described, emphasiz-
ing how membrane division rules can be expressed with EPS transition rules. In
doing so, we demonstrate that elementary P systems are as capable of imple-
menting efficient solutions to NP-complete problems as other P system variants,
most notably, P system with active membranes. Moreover, it is shown that model
checking is a suitable verification technique for such models due to the fact that
the requirement for exponential space (i.e. memory required by state vector) does
not entail an exponential number of states for deterministic algorithms. This im-
plies that the traversal of the state space is not undermined by the combinatorial
calculation the solution requires.

8.2 EPS Model

We consider the following elementary P system algorithm for solving the Subset
Sum problem in linear time. The definition below references n as the cardinality
of the set A of integers, 1 < i < n; w; is weight of the ith element in the set A
and £ is the constant whose equality to a subset sum is to be determined.

ellgum = (0,C, R)

where

0= {e,Y,N,a,Ti,f,xf,S,p,q};

C={
(e,p,q),
(p>r1>
%
R={
(e,!Y,N) : {
q —>4,S5;

(s"t1y:p — N;
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}

(If):
(aF 1) p — f, fau, Yieys
{10 : {
T = Tig1, @ Tig1, 0 Prews
r, — a"n, af ;
(Irp) 1 a — a, Gpew;
}
f — f;

}
}

We initially examine an instance of the Subset Sum problem with A =
{1,12,6,11,7,2}, where the weight w of each element in A is given by its in-
teger value (i.e. wg = 6) and k& = 25. Expanding the formal model defined above,
by iteration over i for n =6 (i = 1..5), yields precisely the EPS required for this
instance, expressed using the eps modelling language in the following listing.

(e, p, Q)3
(p, rl);
e, 'Y, IN: {
q —> q, S;
7s: p => N;
}
1f: {
25a, !26a: p —> £, [f], [Y @ e];
125a: {

rl -> r2, a, [r2, p *];
r2 -> r3, 12a, [r3, p *];
r3 -> r4, 6a, [r4, p *];
rd -> r5, 1la, [r5, p *];
r5 -> r6, 7a, [r6, p *];
r6 -> 2a, xf;

1r6: a -> a, [a *];
}

xf > f;
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To achieve a linear time performance for the NP-complete problem, ellg,,,
implements a parallel expansion of the computational space by means of mem-
brane instantiation. We recall that a new, quiescent compartment is initiated
(activated) when at least one rule with a target indicator new is applied in an
operational membrane. The compartment triggering the instantiation is not lost
(detached) as a result of this process and continues to be part of the set C. This
contrasts with P systems with active membranes, were membrane division rules 1.
duplicate the remaining content of the original compartment o to the two newly
created regions and 2. relinquish ¢ with its label and additional state elements
(such as electric charges).

The model elly,,, features two compartments in its initial configuration. The
purpose of the compartment containing one e object ((e)) is to collect a ‘yes’
answer or to generate a ‘no’ answer by the end of the computation. A ‘yes’
assertion to the investigation is indicated by the Y object, whereas N denotes a
negative response. The rule ¢ — ¢, s increments the multiplicity of object s in
(e), effectively counting the number of steps. If n 4 1 steps have lapsed and no
answer has been computed by this time, then rule (s"™!) : p — N generates a
N object pronouncing that a subset of A whose weight is equal to the constant
k does not exist. Both rules are only applicable in the absence of an answer (Y,
N) to the enquiry, as indicated by the scope closure (e, Y, N).

The second compartment is primarily a container of a objects whose multi-
plicities encode the weights and sum of weights associated to elements from the
set A. The (!f) top level scope ensures that all rules enveloped only execute if
a solution to the problem has yet to be found. More precisely, if a compartment
is found to contain precisely k objects a ((a*,!a**1)), then an f object is gener-
ated and also propagated to all compartments in ell,,,, signalling the discovery
of a sum equal to k£ and immediately halting the computation. The same rule
p — [, fau, Y also sends a Y object to the output compartment identified by
(e).

If the multiplicity of a in a particular compartment o is strictly lower than
k, then one of the rules requiring r; is executed, instantiating a compartment
by sending a p object with target new and also adding the next weight in the
form of a* objects to o. Rule (Ir,) : a — a, a,e, replicates the existing a
objects in a compartment to a newly instantiated one, if 7, is not present to
prohibit this action. In other words, during each computational step (excepting
the last), every compartment consisting of a objects will duplicate its content
to a new instance and include a number of as that is equal to the weight of
the next element in A. This expansion is illustrated in Figure for the first
three computational steps of ell,,,. This depiction does not reflect a complete
configuration at any given step but rather focuses on the accelerated computation
attained by the parallel instantiation of EPS compartments (operational regions).
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Figure 8.1: Generating an exponential computational space using elementary P
systems.

In this respect, we acknowledge the absence of object p in each circle representing
a compartment and the transitions observed in (e) - the output compartment. We
also highlight the fact that a single compartment is created per step - indicated
by the dashed arrow, whilst the persistence of ‘initiator’ membranes is symbolised
by plain arrows.

We further stress the importance of rule a — a, a,., which identifies an
operational pattern with frequent recurrence when such expansive dynamic is
exercised in EPS. In order to equate the semantic significance of a membrane
division rule (emblematic to P systems with active membranes), it is necessary
to replicate the content of an EPS compartment to its quiescent counterpart.
This is achieved by applying rules of the form x — x, .., for each x object in
O' C O in a maximally parallel manner. Hence, not only can an EPS simulate
membrane division, but also it provides for more controlled replication of objects
at the expense of additional rewriting rules.

ellgy, reaches a halting configuration when

1. all compartments bearing a objects also include an f and
2. (e) contains at least one Y or N.

If a sum equal to k is not found, then each compartment produces an f by
executing the rule r, — a"“, f, preventing any further rule application. The
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result of the computation is construed from the presence of Y or N objects in (e)
which are mutually exclusive.

Remark 8.1. The EPS algorithm embodied by elly,,, will reach a halting config-
uration after a maximum n + 2 steps, where n is the size of the instance being
modelled, that is the cardinality of the set of elements A.

Remark 8.2. The algorithm requires no more than 2"~! 4+ 1 compartments to
generate an answer to the Subset Sum problem. If a solution is found, i.e. a subset
whose sum is equal to k, then the number of compartments utilised is mazimum
2ster=1 4+ 1 where step represents the computational step the solution was found
at. It may be the case fewer compartments are generated since computation on
invalid paths, that is paths with |a| > k, is immediately pruned.

Remark 8.3. The number of Y objects in the output compartment identified by
(e) is equal to the number of subsets whose sum is k found during the same com-
putational step. It is possible that more such subsets can be identified, however,
ellyn will halt after the first subset is encountered. Since each subset sum is
computed in parallel, it may be the case that multiple k& values are identified
during the same step, yielding more than one Y in (e).

8.3 Verification results

The following properties affirm the validity of our EPS based algorithm in a
formal manner. All statements evaluate to true when verified against the trans-
lated Promela model. We note that the eps2spin conversion tool cannot infer
the maximum number of compartments required by the model until a halting
configuration is reached, nor can it determine whether the P system is halting or
not. Since SPIN requires a fixed size state vector (it cannot dynamically allocate
memory for newly generated elements), it is important that the user specifies the
MAX_COMPARTMENT COUNT and MAX_STEPS constants via arguments to the eps2spin
command:

node eps2spin SubsetSumYes.eps -o SubsetSumYes.pml -n 10 -x 129

where n is the number of steps we restrict the model to and x is the maximum
number of compartments the system may require.

Since it is known that a maximum of n + 2 steps are required to compute an
answer to problem, it is sufficient to limit the number of steps of our model (an
instance with n = 6) to ten (or any number greater than eight). We remark that
the state vector is of constant size (12424 bytes) for all experiments, a requirement
that was accommodated with the SPIN directive DVECTORSZ=12500. Additionally,
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the memory utilised by the model checker is always 131.576 MB, the base value
pre-computed by SPIN based on the hash table structures employed and the state
vector.

We also note that the total number of states SPIN reports is not precisely equal
to the number of steps of ell,,,,, which is the ideal scenario for purely deterministic
algorithms. The translated model always consists of auxiliary states due to the
limitations of SPIN on hiding - that is marking certain states as irrelevant and
excluding these from the search process. For instance, it is impossible to specify
an initialised complex data model such as the one an elementary P system is
projected to, in the initial state of the system. To overcome this shortcoming,
the step variable is initialised as -1 and only becomes 0 after the model has been
initialised with the respective values reflecting the initial configuration of the
EPS. It is always the case, however, that one state is superfluously included in
state graph, which represents the pre-initialisation stage, step -1.

Whilst there are other constructs which inevitably pollute the model’s gener-
ated state space, it is important to note that at most a linear increase is observed
as a result of the translation between the two specifications (EPS and Promela)
and the ancillary states introduced. This is vital to our approach as it determines
the feasibility of model checking such systems.

We also include the experimental results of three extended instances of the
Subset Sum problem in Table [8.3] Property Pi,,,2 was successfully verified on
these models and whilst an increase in memory for models with a greater cardi-
nality of A is notable, the time reported by SPIN remains insignificant. It was,
however, noticed that SPIN does take more time to perform a pre-search initial-
isation and this varies considerably, based on the state vector size. This is not
reported by the tool as part of the verification process.
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Property If there is at least one compartment containing & number of
as, then a ‘yes’ answer is computed.

LTL (F card({(a*)) > 0) — (F |{e)|y > 0)
SPIN LTL | <> (kIndex > -1) -> <> (C[0].x[.Y] > 0)

Description | The SPIN LTL formula employs a variable kIndex to store
the index of the first compartment which features precisely
k objects a. If such an index is greater than -1, then the
designated output compartment (e) must receive a Y object
indicating the affirmative response to the decision problem.
The procedure which computes kIndex is listed in Fig[8.2

In the LTL formula above, card denotes the cardinality of the
set of compartments congruent with scope (a*), that is the
number of compartments with precisely £ objects a.

Evaluation | Time Memory States | State vector

True 0Os 131.576 MB 16 12424 bytes

Result

Table 8.1: Property Payml

void findK() {
now.kIndex = -1;
for(short i = 0; i < now.C_COUNT; ++i) {
if(now.C[i] .x[_a] == 25) {
now.kIndex = i;
break;

Figure 8.2: A C function which searches for a compartment containing precisely
k = 25 objects a. The index is stored in the state vector. The negative index -1
corresponds to the case where no such compartment can be found.

99



Property If a ‘yes” answer is computed then, there is at least one com-
partment having the multiplicity of a equal to k.
LTL G ([{e)]ly > 0 = card({a*)) > 0)
SPIN LTL | [1 (c[0].x[.Y] -> kIndex > -1)
Description | The property represents the complementary implication of
P.,m1. The combination of the two formulae demonstrate that
the algorithm computes an affirmative answer if and only if
there exists at least one compartment whose multiplicity of a
objects is equal to k.
Evaluation | Time Memory States | State vector
Result
True 0s 131.576 MB 25 12424 bytes
Table 8.2: Property Psym?2
Set A k | States | Time Memory State vector
Ay ={5,8,7,6,9,0,1} 36 18 0s | 133.722 MB | 11240 bytes
Ay ={3,8,18,25,12,17,22,9,10} | 124 22 0.06s | 217.407 MB | 62040 bytes
Az = Ay U {39,42,30,44, 45,40} | 70 45 0.03s | 184.744 MB | 84048 bytes

Table 8.3: Verification of Pk,,,2 for various configurations (A, k).

Property At least one solution to the problem will be observed after
precisely 6 computational steps.

LTL F step =6 A [{e})|y >0

SPIN LTL | <> (step == 6 && C[0].x[.Y] > 0)

Description | The number of solutions identified during a step equates to
the multiplicity of Y present in (e). Thus, it takes five steps
to generate a subset whose sum is £k = 25 and an additional
step to halt computation and emit the Y object indicative of
an affirmative response.

Evaluation | Time Memory States | State vector

Result

True 0Os 131.576 MB 14 12424 bytes

Table 8.4: Property Pym3
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Property

It takes at least six steps to compute a solution to the problem.

LTL

[{e)ly =0 U step=16 A [{e)|y >0

SPIN LTL | c[0].x[.Y] == 0 U (step == 6 && C[0].x[.Y] > 0)

Description | Whilst the preceding property (Table M verifies the exis-
tence of a solution after six steps, the formulae expressed
above stipulates that no solution can be found during the first
six computational steps of ell,,,.

Evaluation | Time Memory States | State vector

Result

True 0Os 131.576 MB 14 12424 bytes
Table 8.5: Property Pi,mn4

Property | A ‘no’ answer to the decision problem is never computed.

LTL G |{e)|]x =0

SPIN LTL | [1 (c[0o].x[.N] == 0)

Evaluation | Time Memory States | State vector

Result

True Os | 131.576 MB 14 12424 bytes
Table 8.6: Property Psymb

Property No more than 31 compartments are required for this particular
instance to reach a halting configuration.

LTL G compartmentCount < 31

SPIN LTL | [ (C_COUNT <= 31)

Description | The C_COUNT variable represents the number of compartments
at a certain step and is part of the state vector. When com-
partment instantiation is employed, C_COUNT will increase to
reflect the expansion.

Evaluation | Time Memory States | State vector

Result

True 0s | 131.576 MB 25 12424 bytes

Table 8.7: Property Pj,,,6
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Property

The number of compartments utilised is equal to 25" + 1, for
0 < step < n — 2 in this model.

LTL

G step > 4 V compartmentCount = stepExp

SPIN LTL

[ (step > 4 || C_COUNT == stepExp)

Description

The LTL formula makes reference to an exponential expression
of step which is computed by an ancillary C procedure (List-
ing . The validity of this property demonstrates the expo-
nential growth of the computational space achieved by EPS
compartment instantiation. This growth is reduced at step
four when two compartments of elly,,, have generated values
(weight sums) that are greater than k = 25, preventing sub-
sequent instantiation on the respective paths. Consequently
the total number of compartments required for a halting con-
figuration is less than 25?1 + 1 = 33 - a statement proven
by Paum6 (Table[8.7).

Result

Evaluation | Time Memory States | State vector

True 0Os 131.576 MB 25 12424 bytes

Table 8.8: Property Pj,n,7

void stepExp() {
now.stepExp = 1;
for(short i = 0; i < now.step; ++i) {
now.stepExp *= 2;

}

now.stepExp += 1;

Figure 8.3: An auxiliary C function which computes the expression 25 + 1 for

elleyum.
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We now consider a second instance to the problem, having the same set of
elements A = {1,12,6,11,7,2}, however the constant k is required to be 35. As
we will see in the outcome of our verification, there is no subset B C A such that
w(B) = 35.

The eps model pertinent to this scenario is almost identical to the one pre-
sented earlier, since r; rules generate the same number of as at each step and the
cardinality of A remains n = 6. The only adjustment required is the scope and
scope closure which refer to the constant k. We recall that elementary P systems
do not provide any means for sequential substitutions or pre-processing, rather
they implement a pure maximally parallel transition paradigm. Consequently,
the value of k£ must be explicitly stated as a multiplicity and cannot be used as
a variable in a scope construct.

(e, p, @3
(p, r1);
e, 1Y, IN: {
q -> 9, n;
Tn: p -> N;
}
If: {
35a, !36a: p -> £, [f], [Y @ el;
136a: {

rl -> r2, a, [r2, p *];
r2 -> r3, 12a, [r3, p *];
r3 -> r4, 6a, [r4, p *];
rd -> r5, 1la, [r5, p *];
r5 -> r6, 7a, [r6, p *];
r6 -> 2a, xf;

1r6: a -> a, [a *];
}

xf -> f;

Evidently, the absence of an internal iterative expansion in EPS does not entail
that various instances of the problem must be devised manually. On the contrary,
most examples presented in this thesis were subject to numerous experiments in
various configuration and as such, model generators were the preferred and much
more efficient technique to create the systems. A model generator is simply a
linear parametric expansion of the formal definition of the system. Its role is to
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perform the symbol substitutions in objects expressed as indexed identifiers or
static references (such as 74, a* etc). This transformation is effectuated once only
and is irrelevant to the P system model and its functioning; it is a method of
convenience since it allows us to express an EPS more concisely.

We initially verify the very first two properties described earlier, P;,,,1 and
Pym2 which must hold regardless of the answer eventually computed for the
Subset Sum problem. Whilst their validity was proved by SPIN in the same
insignificant time lapse (under one second), the number of states required for
the first property is 25, in contrast to 16 reported for the ‘yes’ instance. This is
consistent with our expectation, since the ‘finally’ (F') statements do not descend
to the same depth when a Y object is found and kIndex > —1; the formula
is deemed valid at this point. Conversely, if kIndex is never assigned a value
greater than —1, then the complete state space for elly,,, must be generated and
traversedl

Property If a compartment having the multiplicity of a equal to k is
never found, then a ‘no” answer is eventually generated.

LTL (G kIndex = —1) — (F |{e)|ny > 0)
SPIN LTL | ([1 (kIndex == -1)) -> (<> (C[0].x[.N] > 0))

Description | The ‘no’ answer to the decision problem is denoted by the pres-
ence of an N object in the output compartment (e). Since it
is this compartment only which generates N, the multiplicity
of N can be maximum one. This contrasts with the number
Y objects which can be present in (e), reflecting the number
of subsets found at a given step to contain k objects a.

Evaluation | Time Memory States | State vector

True 0s 131.576 MB 18 12424 bytes

Result

Table 8.9: Property Py,m8

'We underline SPIN’s advantage of generating the state space ‘on the fly’; LTL formulae
using the finally operator (F) may only require a subset of states the model exhibits. The
search remains, of course, exhaustive for this sector of the computation, that is the collection
of states pertinent to the verification.
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Property | The instance does not yield a solution to the problem and con-
sequently, a ‘no’ answer is computed after n 4+ 2 (8) steps.
LTL F step =8 A [{e)|y >0
SPIN LTL | <> (step == 8 && C[0].x[.N] > 0)
Evaluation | Time Memory States | State vector
Result
True 0s 131.576 MB 18 12424 bytes
Table 8.10: Property Pium9
Property It takes a minimum of n+2 (8) steps to compute a ‘no” answer
to the problem.
LTL [{e)|x =0 U (step =8 A [{e)|y > 0)
SPIN LTL | c[0].x[.N] == 0 U (step == 8 && C[0].x[.N] > 0)
Description | The property asserts that not only is a ‘no’” answer computed,
but also such an answer can only be generated after eight
steps, importantly, after all combinations have been verified
in time that is linear to the size of the problem n = 6 (there
are an additional two steps required to reach the halting con-
figuration).
Evaluation | Time Memory States | State vector
Result
True 0Os 131.576 MB 18 12424 bytes

Table 8.11: Property Piy,,10

105




Property

A ‘yes’ answer is never computed.

LTL

G [{e)ly =0

SPIN LTL

[J (cfo].x[.Y] == 0)

Description

In conjunction with Pi,,,5, this property validates the claim
that ‘yes” and ‘no’” answers are mutually exclusive, for the two
models investigated. Notably, the formula does not entail that
the P system cannot by construction generate both a Y and
an N in one computation, which is of course the case with
ellgum. Since we are verifying two different instances of a
decision problem (whose answers can either be ‘yes” and ‘no’
and are immutable), it is impossible to formally demonstrate
this claim for all possible instances of the Subset Sum problem
using model checking.

Result

Evaluation | Time Memory States | State vector

True 0Os 131.576 MB 25 12424 bytes

Table 8.12: Property Pium11

Property

No more than 33 compartments are required to reach a halting
configuration.

LTL

G compartmentCount < 33

SPIN LTL

[1 (C_COUNT <= 33)

Description

Since k = 35 is much higher than for the previous scenario
(25), the sum of weights will not exceed this value until after
the computational space has expanded to 2" + 1 compart-
ments, which is the maximum required by a computation of
elleum.

Result

Evaluation | Time Memory States | State vector

True 0Os 131.576 MB 25 12424 bytes

Table 8.13: Property Pium12
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Chapter 9

The Dining Philosophers problem

9.1 Objectives

P systems are inherently distributed models because they exercise multiset tran-
sition rules across multiple compartments - clearly delineated sectors of com-
putational space. The term membrane (in membrane computing) itself implies a
permeable separation between two distinct regions where transformations can oc-
cur independently. Such systems can also be described as concurrent since there
is no time unit distinction between (perceptibly) individual transitions taking
place within and across disjoint computational spaces.

One of the compelling topics which circumscribes concurrent computation is
the problem of synchronisation and, strictly related, starvation. Ensuring the
correct and continuous functioning of a distributed system is a matter of decisive
significance which must be primarily addressed. More specifically, a requirement
to avoid a deadlock, a state where two or more processes compete for resources
but cannot advance since these are mutually held, is intransigent for systems with
distributed, communicating nodes. This requirement has been captured and is
eloquently evinced in the Dining Philosophers problem, originally introduced in
1965 by Edsger Dijkstra and subsequently adapted to its present formulation by
C. A. R. Hoare [51]. The problem is described as follows:

Five silent philosophers sit at a round table with bowls of spaghetti. Forks are
placed between each pair of adjacent philosophers. Each philosopher must alter-
nately think and eat. However, a philosopher can only eat spaghetti when he has
both left and right forks. Each fork can of course be used by one philosopher only
at a time. After he finishes eating, he must put down both forks such that they
become available to others. A philosopher can take the fork on his right or the one
on his left as they become available, but cannot start eating before acquiring both.
It is required to design a concurrent algorithm which excludes any possibility of
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reaching a deadlock.

The problem often specifies an additional requirement, commonly referred to as
starvation avoidance or inclusion of a fairness property. This stipulates that no
philosopher can continuously consume spaghetti such that his neighbours at the
table are permanently deprived of at least one of the necessary forks. This is
especially important when considering an infinite supply of spaghetti and hence,
a philosopher may be perpetually blocked from eating.

Formal verification is paramount in asserting the correctness of protocols for
distributed models or frameworks regulating the dynamics of systems which entail
a plurality of entities. In particular, model checking is one of the principal tech-
niques for validating systems whose process interaction may lead to unacceptable
states, such as a deadlock.

In this chapter we present an innovative EPS based solution to the Dining
Philosophers problem. Our modelling approach diverges from traditional strate-
gies by considering ‘personalities’ or pre-established (static) behavioural patterns,
as opposed to using a mediator (arbiter) or any form of sequential regulator (queu-
ing scheme). On the one hand, the algorithm requires no central authority after
initialisation, it is purely distributed and parallel, and on the other hand, it
remains faithful to the problem requirements since philosophers do not commu-
nicate to achieve their goal. Furthermore, it is formally demonstrated by SPIN
model checking that one distinction in the behavioural pattern of N philoso-
phers with finite units of spaghetti is sufficient to avoid a deadlock and implicitly,
starvation.

9.2 Model

The design of our EPS model for the Dining Philosophers problem assumes the
following ontological statements:

1. Two entities with different coordinates in at least one dimension (i.e. space,
time etc) are distinct and coexist in a plurality.

2. The dynamics of two distinct entities can never be equivalent outside of
a restrictive context. If such a context is considered, then there exists an
outer context where the distinction is actual and can be exerted into an
inner context.

The two highly general affirmations insist that there is an inherent variation in

a plurality, or if a limited perspective is considered where any distinctive influences
on the dynamics of its entities are not discernible, then dissimilarities can be
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introduced from an external context. If we are to consider N > 1 philosophers,
then, by the very fact they coexist in a plurality it is entailed there are aspects
which influence their behaviour such that no two philosophers act identically. If
we project the N philosophers into a scientific context and consider the same
abstract model for each individual, then we are also able to ‘inject’ a property to
one or more philosophers that is distinct within the group.

The following definition represents an elementary P system model of N dining
philosophers distributed and operating as specified above:

erhil = {O, C, R}

where, for an instance phily of the problem with N > 3 philosophers each having
a bowl of 3 spaghetti units and a patience value of 3; N forks, 1 < i < N and
j=(N—-2+1i) mod N+ 1:

0= {Ph'élmﬂ,S,f, fi7paQarPiaz}

C = {(Phil;, p®, s, q)s, (Fy, f)i}
R—{

(Phily) : {
Jis [ivs —> iy, Jirps
(s) :{
(fillfi) A
&0 — ¢, 7P (1), 7P (1y);
(Ip) :+ {
fi — f{Fi);
Ji — fyy;
q — q,p%
}
}
}
}

(F) A
[Py — fi (Phaty);
[,r Py — [i (phaty);
(L) A
rP, — z;
rP; — z;
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}

Each philosopher i is identified by a compartment with precisely one object
Phil; whilst each fork location on the table is represented by a compartment
congruent with the scope (F;), that is, consisting of one object F;. The behaviour
of a philosopher, expressed by the set of rules within the scope closure (Phil;),
can be summarised as follows: If Phil; has remaining spaghetti units and 1. has
acquired both his adjacent forks, he will immediately consume one spaghetti unit
(denoted by one object s) and return the two forks to their respective positions.
Otherwise, if 2. a single or no fork has been acquired, then attempt to pick up
the missing fork(s). Each philosopher may continue attempting to acquire the
necessary forks as long as his patience allows it. When a philosopher runs out of
patience waiting for the missing fork(s) to become available, then he will return
the fork held in his possession if any, and shall re-start the process of acquiring
both forks with ‘renewed’ patience. This repetitive pattern is followed until the
philosopher has exhausted all units of spaghetti in his bowl.

The patience of a philosopher, denoted by the object p in our model, consti-
tutes a personality trait and it is the one configurable element during a supposed
initialisation stage. For each attempt to acquire a necessary fork, the multiplicity
of p is decremented (i.e. the philosophers patience is gradually lost) and eventu-
ally, if there is one fork in his possession, it is returned to its original location.
This anthropomorphic behaviour ensures that resources (i.e. forks) are never
held indefinitely and always restored to their original state (forks are returned to
their respective (F})). Consequently, starvation is avoided by behavioural com-
plementarity and not due to a governing entity which arbitrates the distribution
of resources. As we will see in section [9.4] a deadlock can only occur in a sterile
environment where all philosophers exhibit the same personality trait (that is,
the same patience value) and may block each other indefinitely.

Since any two neighbouring philosophers compete for the same fork, it is non-
deterministically decided who is the next recipient of a fork f at F;, between Phil;
and Phil;yq (for 1 < ¢ < N). This arbitrary ‘allocation’ is effected in the (F;)
compartments, which also discard any requests/attempts that can’t be fulfilled
(because the fork has already been acquired). Since elementary P systems cannot
destroy objects, a rule of the form rP, — z translates a request object rP; to
an auxiliary z, such that no failed attempt to acquire the fork persists between
two consecutive steps. The multiplicity of object z thus represents the number
of unsatisfied requests for a particular fork.

It is important a philosopher always returns one fork to his left and the other
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Figure 9.1: Depiction of ell,,; for an instance phils of the dining philosophers
problem

to his right hand side, once he has finished eating or if he runs out of patience. To
preserve this consistency, a fork object (f) always bears the index of its location
(compartment F;) when delivered to a philosopher: f,rP — f; (ppi,y. The
philosopher can then return f; to its corresponding compartment F;, where the
index is not relevant: f; — fir). The distribution of philosophers and forks
on an envisaged round table is depicted in figure (9.1, The bi-directional arrows
indicate that EPS communication rules are only applied between a philosopher
compartment and the two fork compartments in front of it; there is no interaction
between any two philosophers at the table.

The following listing represents the eps code derived by expanding the formal
model definition for an instance of the problem with N = 5 philosophers and
forks. The number of spaghetti units and patience value has been retained as 3
for all philosophers, although this can be configured as well. A compact rendition
consisting of compartments Phil; and F} is provided below, whilst a complete
listing is available in appendix [D]

(Phill, 3p, 3s, q);
(F1, £);

Phill: {
f1, f5, s > [f @ F1], [f @ F5];
s: {
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1£f1 | 1£f5: {
9, p => q, [rP1 @ F1], [rP1 @ F5];
Ip: {
f1 -> [f @ F1];
f5 -> [f @ F5];

q > q, 3p;

F1: {
f, rP1 -> [f1 @ Philil];
£, rP2 -> [f1 @ Phil2];

1f: {
rP1 -> z;
rP2 -> z;
}

}

We also illustrate the first ten computational steps (Fig and , as out-
put by our eps simulator, of ell,,; in the aforementioned configuration. For
conciseness, only mutable objects of the multisets in (Phil;) and (F;) have been
included in the two listings. Objects Phil; and F;, 1 < i < N have been omitted,
since their presence in the respective compartments is permanent. Nevertheless,
all objects across all system compartments (the set C') collectively constitute the
configuration of ell,;; at a particular step.

9.3 Extensions

The model exemplified in the previous section is a ‘minimal’ representation of our
proposed algorithm. Whilst it portrays a paradigm whereby the behavioural pat-
tern of a philosopher, which can be individualised by specifying (pre-establishing)
a patience value, is decisive for avoiding starvation, there are various considera-
tions which can be accommodated by simple extension of our basic model.
Suppose we wish to specify that an arbitrary number of spaghetti units is to be
consumed by a philosopher when he acquires both forks. A rule (!t°) : f;, fj, s —
t could be included in addition to the existing f;, fj,s — f(r,, fir;). The former
will expend one s object (spaghetti unit) without returning the forks, as long
as the maximum number of spaghetti units he can consume in succession is not
greater than the multiplicity of ¢ (5), which can also be included as a configurable
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Step/Scope (Phily) (Phily) (Phils) (Phily) (Phils)
0 p’,q,8° P’ q s p’,q,8° p’,q,8° p’,q,8°
1 P’ q,8° P’ q, 8 P’ q,8° P’ q,8° P, q,8°
2 fs,0,0,8% | f1, f5,0, 4, 8° P q; s fo, fspiq,8° | p,q,8°
3 fs,q,8° P g, s q, 5" p:q, s q,8°
1 fi,0%q, 8% q, 8 fa, f3,0%, ¢, 8° q, 8 fa, 0% q, 8%
5 furtas* | plg s P, q, 8 p’,q, 8 fa, 0% ¢, 8%
6 fupq,8° | ptg, s P, q, 8 P48 | fa, 50,08
7 fi,q,8° fa,p,4,8° f3,0,4,8° p:q, s p:q, s
8 f5: 04,8 | fa,q, 8 fs, 4,8 f1, 4,8 q, 8
9 [, 0% 0,8° | f1,0°,q,8° P, q, 8 p’,q, 8 p’,q, 8
10 f0,0,8° | fi,07,q,8° P, q, 8 P, q, 8 P, q, 8

Table 9.1: Ten step simulation of ell,,; with N =5 and p(i) =3,1 <i < N -
Philosopher compartments

personality attribute. Since a non-deterministic choice occurs between the two
rules, the resulting behaviour is that one or more, up to a maximum five spaghetti
units can be arbitrarily consumed during one step[l]

Another noteworthy adjustment is the inclusion of a refractory period after
patience has been exhausted or spaghetti has been eaten. This would account
for the so called thinking time as indicated by the problem statement and can be
included as a w object with pre-defined multiplicity. A scope closure (lw) is used
to circumscribe the present rules, such that a philosopher is completely neutral
and does not initiate any actions when he is in a thinking state. Each step, the
multiplicity of w decrements by one, simulating a time lapse of |Phil;|,, units:
¢, w — ¢q. The rule employed to replenish the patience of a philosopher will also
generate the h thinking time units associated: ¢ — ¢, p?, w". Additionally, such
a technique can be utilised between subsequent attempts to acquire the fork(s)
to account for other factors of randommness. Moreover, the patience property
could also be altered based on fork acquisition. For instance a philosopher could

!The multiplicity of ¢ can be reset by an ancillary rule which executes when the forks have
been returned. Further dynamics can be infused into the system, by removing arbitrary ¢
objects each time the forks are returned.
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Step/Scope (F1) (Fy) (F3) (Fy) (Fs)
0 f f f f f
1 fyrPy,rPs f,rPs,rPs f,rPs,rPy fyrPy,rPs f,rPs,rPy
2 rPE rPy r Py, 1P} rP: rP, rPy,rP? rP2 rpP
3 f,rp, 23 f,rPs, 23 f,rpPs, 23 f,rPs, 23 rPs,rP, 23
4 rPy, 23 rPy, 23 rPy, 23 rPy, 23 f, 25
5 rPy, 2t f, 24 f, 2 r Py, 2* f,rPy,rPs, 2°
6 rPL,rPy, 25 | fyrPy,rPs, 2t | firPs,rPy 2t | rPyrPs,2° | rP?rPs, 20
7 TPy, rPy, 2" | rPyrP2 2 | f,rP3,rP? 2t f,rPy, 27 f,rpP, 28
8 f,rPy, 20 rPy 1Py, 2" rPs,rPy, 2" rPs, Py, 27 rPs, 28
9 rP, 2° f,2° f,2° f,2° rP, 2°
10 TP TPy, 20 | frPy, Py, 2 | forP3,rPy, 2% | f,rPy,rPs, 2% | rPy,rPs, 210

Table 9.2: Ten step simulation of ell,,; with N =5 and p(i) =3,1 <i < N -
Fork compartments

gain m patience after he had successfully retrieved both forks. Conversely, each
successive return of the fork in possession would replenish an increased or reduced
number of p objects.

Importantly, these inclusions do not introduce the risk of a deadlock unless,
collectively, they allow all philosophers at the table to operate identically, indef-
inately.

Whilst traditional P systems employ finite multisets of objects in transition
and communication rules, one may consider an infinite supply of spaghetti by
continuous mutation (multiplication) of s objects. More precisely, during each
step, x > t spaghetti units are added to a philosopher’s bowl, where ¢ is the
maximum number of spaghetti units that can be consumed per step. To avoid
starvation in this particular scenario and perhaps introduce a fairness constrain,
it is required to convert the (F;) compartments into ‘stateful’ components. A fs;
object can be generated each time the fork at F; has been sent to philosopher
Phil;. After a number of consecutive allocations y, it is enforced that the fork
will be deterministically assigned to Phil; instead, if both a rP; and rP; objects
are present: (rP;,rP;,!fs!) © f,rPi — fsi, Li, fi (prayy and (rP,r Py, fs5)
[,rP; — fs;, Ly, fi (prir;y- Whenever a fs; marker is generated, the multiplicity
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of fs; can be reset since the Phil; allocation sequence (if there was one) had
been broken, and vice-versa: (L;) : {fs; — z; L, — z} and (L;) : {fs; —
z; Lj — z}, where L; denotes the last philosopher Phil; the fork was acquired
by and z is simply utilised as a nil like object, irrelevant to the subsequent
computationﬂ It is therefore the case that no philosopher is allowed to acquire
the fork for more than y consecutive times, when requested by two philosophers
simultaneously. The number can exceed y if the prospective contender is in a
thinking state for more than the time required to acquire the fork ' > y times
by his neighbour.

An alternative strategy which compels equilibrium is to simply grant the fork
to the philosopher whose number of requests (attempts to acquire it) is greater.
This entails that rP;, r P; objects are never discarded, but instead their difference
determines the next fork recipient. Since philosophers in ell,;; do not continu-
ously request the fork when they consume spaghetti units, the ratio rP;/rP; can
not constantly equate to one.

Evidently, the fork compartments (F;) are now associated with logic which
infringes the neutrality they originally aspired to. Indeed, the fork compartments
can be regarded as arbiters which keep a record of who the fork was last assigned
to and how many times, but more importantly these compartments implement
a procedure to determine who the next fork recipient should be. By contrast,
in our initial approach, (F;) compartments are state-less and have no functional
significance other than to house a non-deterministic selection between two com-
peting requests. The compartment is used to neutrally denote the fork location
and has no functional logic ascribed to it.

9.4 Verification results

We begin this section by remarking that although elly; does not guarantee a
halting configuration - the philosophers may repeat the same actions each step
and receive a single fork only by non-deterministic choice, with infinite recurrence
- the system has nevertheless a finite number of states. Consequently, no ancillary
provisions are required by the model to restrict the computation in any way
(such as limiting the number of steps), the primary requirement for SPIN model
checking is satisfied.

Whilst the standard Promela translation reflects this property outright, a
simple adjustment to the five fork related procedures results in a significant op-

IThe accompanying rules may require amendments as well, to ensure this procedure is not
enforced unnecessarily, that is if the philosophers do not contend for forks, then the fs; and L;
objects are ignored and the request is satisfied accordingly, still tracked however by generating
a fs; object.
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timisation. We recall that elementary P systems cannot destroy objects and
consequently a rule of the form rP;, — z is employed to dispose of requests
rP;. If philosophers eventually exhaust their spaghetti (i.e. a deadlock does not
occur), then the production of z objects is also eventually halted. The detrimen-
tal consequence is, however, the greatly increased number of states SPIN must
generate due to the variable multiplicity of z. For each incremental update of
|(Phil;)|,, a new state is created, whereas, in the absence of this auxiliary object,
an existing state would be revisited. In other words, rules of type rP;, — z in-
troduce unnecessary disparity between system states which in turn significantly
increases the model checker’s search space.

The issue has been addressed by eliminating the creation of z objects from
the Promela model. Rather than cumulating the number of failed attempts to
pick up a fork, each request object is discarded by assigning a zero multiplicity
directly, in the C procedure: now.C[cIndex].x[ rP1] = 0;.

Property All philosophers will attempt to acquire the forks on the left
and right hand sides simultaneously during the first step.

LTL G (step=1) = ([(F)|rp, = LA [(FD)]rp, = 1A [(F2)|rp, = 1
NIED ey = 1A [(E3)ep, = LA [(E3)]epy = 1A [(F)|rp, =
LA KED e, = 1A [(F5)|rp, = 1)

SPIN LTL | [J ((step == 1) -> (C[5].x[.rP1] == 1 && C[5].x[_rP2]
== 1 && C[6].x[rP2] == 1 && C[6].x[_rP3] == 1 &&
C[7] .x[rP3] == 1 && C[7].x[_rP4] == 1 && C[8] .x[_rP4]
== 1 && C[8].x[rP5] == 1 && C[9].x[rP5] == 1 &&
C[9] .x[_rP1] == 1))

Description | The property guarantees the concurrent behaviour of the
model, proving that during the first step all (F;) compart-
ments, 1 < i < N will receive rP; requests (the multiplicities
of rP; will be one) from their adjacent (Phil;) membranes,
each symbolising a philosopher.

Evaluation | Time Memory States | State vector

True 1.25s | 157.950 MB | 19639 | 1496 bytes

Result

Table 9.3: Property Ppuil

The first nine properties documented in this section (Pl - Ppri9) have been
verified for the instance described in section [0.2] that is N = 5 philosophers and
forks with each philosopher having associated precisely 3 spaghetti units and 3
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Property A fork can never be shared by any two philosophers. (Veri-
fication for adjacent philosophers 1 and 2, having fork f; in-
between. The generalisation is attained by repeated assertion
for instances i, 1 <i < N).

LTL G ~(|(Phily)|s, = 1 A [{Phily)|y, = 1)
SPIN LTL | [1 (1(C[0].x[£1] == 1 && C[1].x[£1] == 1))

Description | The multiplicity of object f; cannot be equal to one in both
compartments (Phil;) and (Phil;) at the same time.

Evaluation | Time Memory States | State vector

True 1.22s | 157.950 MB | 19639 | 1496 bytes

Result

Table 9.4: Property P2

patience objects. It is of course the scenario where a deadlock can be encountered,
an affirmation sustained by property P,n;9 (Table . These nine formulae
confirm the correct behaviour of the model on the one hand, but also identify the
problem inexorably associated with the dynamics of distributed system, that is
the deadlock state.

The following three properties (Tables |9.12] 9.13] and [9.14]) are asserted on
a similar instance of the problem, however philosopher 1 is initialised with (and
regenerates) a patience value of 4 instead of 3. In this respect, it is proved
that a deadlock cannot occur since all philosophers will eventually exhaust their
spaghetti. Moreover, a minimum of 19 steps are required for a successful computa-
tion of ell,;;, whose halting configuration is precisely the state where |(Phil;)|s =
0 for 1 <7 < N. The following theorem is inferred and effectively demonstrated
by formal verification:

Theorem 9.1. A single distinction in the philosophers’ behavioural pattern is
sufficient to discard the possibility of a deadlock occurrence.

The final properties, P13 and P,p;14 pertain to a configuration of the model
where two philosophers (Phil; and Phils) are associated a patience value of 4. It
has been discovered that the minimum number of steps required to reach the final
(accepted) state is reduced to 17 (from 19). Moreover, a successful computation
is eventually attained after no more than 45 steps.

There are many ramifications to the study presented in this chapter. On the
one hand, it would be interesting to conduct a series of experiments to identify
the optimal personality configuration (the harmony configuration) such that a
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Property Fork f; is only available to philosophers (Phil;) and (Phils).

LTL G (|(Phily)|y, = 0 A [(Phils)|;, = 0 A [(Phily)|;, = 0)
SPIN LTL [1 (C[2].x[_£f1] == 0 && C[3].x[_f1] == 0 && C[4].x[_f1]
== 0)

Description | The property equates to a permanent multiplicity of 0 for
object fi in all compartments other than (Phil;) and (Phily).
Extrapolating the property to all philosopher - fork triples
demonstrates the arrangement of forks amidst philosophers
illustrated in Figure[9.I]and, in conjunction with the preceding
claim (Table [9.4), underpins the consistency of our model.

Evaluation | Time Memory States | State vector

True 1.24s | 157.950 MB | 19639 | 1496 bytes

Result

Table 9.5: Property P,ui3

minimum number of steps is required for the five philosophers to deplete the
spaghetti in their bowls. What would the worse-case scenario (the maximum
number of steps required to eventually reach the acceptance state) be in this
case?

On the other hand, the model extensions described in the preceding section
are also valid paths of investigation. A performance evaluation of the model
checking technique is particularly valuable when considering supplementary non-
deterministic dynamics in the algorithm, such as the arbitrary thinking time or
variable patience replenishment.

For the purpose of this thesis, we have demonstrated a modelling approach
based on elementary P systems for a representative synchronisation problem, but
also the feasibility and pertinence of SPIN model checking for concurrent systems
specified using an EPS formal model.
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Property

If a philosopher with outstanding spaghetti has acquired a sin-
gle fork and has run out of patience, then he will immediately
return this fork and ‘replenish’ his patience (Verification is
conducted for philosopher Phil; and fork fs; it is generalised
by model checking the same property for all philosophers and
all forks individually.)

LTL

G ((Phil)|, = 0 A [(Phili)|, > 0 A [(Phili)|;, > 0 A
[(Phily)] s, =0 = X (|(Phily)| s, = 0 A [(Phily)], > 0))

SPIN LTL

[ «(cfo].x[p] == 0 && C[0].x[-s] > O && C[0].x[_f5]
> 0 && C[0].x[_f1] == 0) -> X (C[0] .x[_f5] == 0 &&
clol.x[pl > 0))

Description

The property validates a crucial aspect of this algorithm,
namely that each philosopher will eventually return a fork
if he was unsuccessful in acquiring both after a set amount
of time, or more plainly, for as long as he is patient. Thus,
when the number of p objects is 0, the philosopher cannot
wait any longer and by the next state (operator X), the ac-
quired fork is no longer in his possession. It is important
to specify the singular fork condition in the left hand side
term of the implication, that is, the other expected fork is

not present in the compartment which identifies philosopher

Result

Evaluation | Time Memory States | State vector

True 1.37s | 158.837 MB | 20290 | 1496 bytes

Table 9.6: Property P4
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Property

Having acquired both forks, a philosopher will immediately eat
one unit of its remaining spaghetti. (The property is docu-
mented for philosopher Phil, and the case when there are three
units of spaghetti remaining. Its generalisation is derived when
asserted for all Phil;;1 <i < N) and 1 < j < 3 spaghetti.)

LTL G ((|[{Phils)|f, = 1 N [{Phily)|s, = 1 A [(Phily)|s = 3) — X
(I(Phily)|s = 2))
SPIN LTL | [1 ((C[1].x[_£f1] == 1 && C[1].x[£2] == 1 && C[1].x[_s]
== 3) -> X (C[1].x[s] == 2))
Evaluation | Time Memory States | State vector
Result
True 1.18s | 158.542 MB | 20015 | 1496 bytes
Table 9.7: Property P,pi5
Property | If an available fork is solicited, then it is immediately delivered
(object is sent) to one of the adjacent philosophers. (Property
verified for F3)
LTL G (((KE)|rp, > 0V [(EF3)|rp, > 0) A [(F3)[f = 1) = X
(I(F5)|; = 0))
SPIN LTL | [1 (((c[7].x[xP3] > 0 || C[7].x[xrP4] > 0) &&
Cl7].x[£f] == 1) -> X (C[7].x[£f] == 0))
Evaluation | Time Memory States | State vector
Result
True 1.27s | 165.046 MB | 24537 | 1496 bytes

Table 9.8: Property P,i6
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Property | A philosopher will never acquire its adjacent forks once all
spaghetti units have been depleted. (Verification for philoso-
pher Phily)

LTL G ([(Phily)|s = 0 — (|(Phily)|s, = 0 A [(Phily)|s, = 0)

SPIN LTL | [1 (c[0].x[.s] == 0 -> (C[0].x[_f1] == 0 && C[0].x[_f5]
== 0))

Evaluation | Time Memory States | State vector

Result

True 1.17s | 157.950 MB | 19639 | 1496 bytes
Table 9.9: Property Ppui7

Property A philosopher cannot eat spaghetti unless both forks have
been acquired. (Verification for Phils).

LTL G (|(Phily)|s = 3 A ([(Phils)|s, = 0 V [(Phily)|s, =0)) - X
(|(Phily)|s = 3)

SPIN LTL | [1 ((C[1].x[-s] == 3 && (C[1].x[_f1] == 0 ||
Cl1].x[£f2] == 0)) -> X (C[1].x[_s] == 3))

Description | Both left hand side and right hand side fork objects (f; and fo
in this case) must be present in the philosopher’s compartment
in order to consume s (spaghetti) objects. This is illustrated
in the above property by the constant multiplicity three of
object s inside (Phily) between two consecutive states, when
either f; or f5 is missing.

Evaluation | Time Memory States | State vector

Result

True 1.37s | 160.907 MB | 21660 | 1496 bytes

Table 9.10: Property P,ui8
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Property

There exists a possibility of starvation, such that philosophers
can never finish their spaghetti.

LTL

F (step > —1 A [(Phili)|s = 0 A |(Phily)], = 0 A [(Phils)|, =
0 A (Phil))|s = 0 A [{(Phils)|, = 0

SPIN LTL

<> (step > -1 && C[0].x[.s] == 0 && C[1].x[.s] == 0 &&
Cl2] .x[s] == 0 && C[3].x[s] == 0 && C[4].x[s] == 0)

Description

Since a deadlock in the strict sense represents a halting con-
dition for P systems, starvation is signified by an infinite re-
currence of a system state (or set of states) which is not final
or accepted for the modelled problem. The property speci-
fied in this table identifies starvation by consequence, that is,
the unattainable state where all philosophers have depleted
the units of spaghetti. Since there is no existential quanti-
fier in LTL to express the formula directly (i.e. there exists a
path where it is never the case the philosophers deplete their
spaghetti), we can infer this assertion by the ‘False’ evalua-
tion of an eventually statement. More precisely, the negative
implication can be translated as: It is not the case that all
philosophers will eventually consume their spaghetti entirely.
The step > —1 term is necessarily appended to the conjunc-
tion in the finally claim, to indicate that only states which
succeed the initialisation stage are pertinent to the verifica-
tion process. At step -1 all arrays inside type definitions are
initialised with a value of zero which would render the prop-
erty incorrectly valid. This state is always extraneous to the
search conducted by SPIN and its exclusion is explicit in the
LTL formula.

Result

Evaluation | Time Memory States | State vector

False 0.01s | 128.830 MB 6 1496 bytes

Table 9.11: Property P49

122




Property

All philosophers will eventually deplete (consume) their
spaghetti units, if at least one philosopher is more (or less)
patient than the others.

LTL

F (step > —1 A [(Phili)|s = 0 A |(Phily)], = 0 A [(Phils)|, =
0 A [(Phil))|s = 0 A [{Phils)|, = 0

SPIN LTL

<> (step > -1 && C[0].x[s] == 0 && C[1].x[s] == 0 &&
C[2].x[s] == 0 && C[3].x[.s] == 0 && C[4].x[_s] == 0)

Description

The very same formula validates the algorithm, confirming
the reachability of the acceptance state, which is the moment
when all philosophers have zero s objects remaining in their
representative compartment. The occurrence of a deadlock is
therefore disproved when philosopher Phil; starts with (and
replenishes) a patience value of 4, rather than 3. The overall
conclusion drawn is that one distinction in the behavioural
pattern (or personality) of an entity is sufficient to avoid a
deadlock in the proposed model.

Result

Evaluation | Time Memory States | State vector

True 5.05s | 182.488 MB | 36541 | 1496 bytes

Table 9.12: Property P10
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Property

It takes a minimum of 19 steps to reach a halting configura-
tion, that is the state where all philosophers have consumed
their spaghetti.

LTL

G ((step > —1 A step < 19) — (|(Phily)|s = 0 A [(Phily)|s =
0 A [(Phils}], = 0 A |(PhiLy)]. = 0 A |(Phily)], = 0)

SPIN LTL

[1 ((step > -1 && step < 19) -> ! (C[0].x[-s] == 0 &&
C[1].x[s] == 0 && C[2].x[.s] == 0 && C[3].x[s] ==
&& C[4] .x[_s] == 0))

Description

We recall that it is impossible to formulate a claim which
identifies a single path in the search tree using linear time
temporal logic, directly. It is with CTL’s existential quanti-
fier that such a property can be formally expressed. We can
devise, however, the property’s complement and prove its fal-
lacy. Thus, it is sufficient to demonstrate it is not always
the case that all states between 0 and 19 do not satisfy the
halting condition, that is all philosophers must have depleted
their spaghetti units. The counter-example which SPIN finds
to disprove our claim is precisely the path the this accepted
state.

The formula in this table is the expression of the negated prop-
erty we wish to verify. A secondary affirmation is required to
support the claim for minimal requirement, and this is illus-
trated in the following depiction The property entails
that for the first 18 computational steps, it is indeed the case
that philosophers cannot all exhaust their spaghetti.

Result

Evaluation | Time Memory States | State vector

False 1.68s | 174.210 MB | 30719 | 1496 bytes

Table 9.13: Property P11
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Property

The philosophers cannot all exhaust their spaghetti during the
first 18 computational steps.

LTL

G ((step > —1 A step < 18) — (|(Phily)|s = 0 A [(Phils)|s =0
A [(Phils)|s = 0 A |{(Phils)|s = 0 A [(Phils)|s = 0))

SPIN LTL

[ ((step > -1 && step < 18) -> !(C[0].x[s] == 0 &&
Cl1].x[s] == 0 && C[2].x[-s] == 0 && C[3].x[.s] == 0 &&
cr4].x[s] 0))

Result

Evaluation | Time Memory States | State vector

True 3.15s | 207.470 MB | 53967 | 1496 bytes

Table 9.14: Property Ppp;12

Property

It takes a minimum 17 computational steps to reach an ac-
ceptance state, when two philosophers have increased patience
values (of 4).

LTL

G ((step > —1 A step < 18) — (|(Phily)|s = 0 A [(Phily)|s =
0 A [{Phils)]s = 0 A [(Phili)]s = 0 A |(Phils)], = 0)

SPIN LTL

[1 ((step > -1 && step < 18) -> 1(C[0].x[s] == 0 &&
C[1].x[s] == 0 && C[2].x[_s] 0 && C[3].x[_s]
&% C[4].x[_s] == 0))

Description

The same deductive pattern is applied for a different instance
of the problem with patience(l) = 4 and patience(3) = 4
as opposed to 3. The validity of this experiment suggests a
certain variation in the ‘personality’ of philosophers may lead
to improved ‘efficiency’ in resource sharing.

Result

Evaluation | Time Memory States | State vector

False 0.42s | 142.429 MB | 8958 | 1496 bytes

Table 9.15: Property Pppi13
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Property A maximum of 45 steps is required to reach an acceptance
state which is also a halting configuration.

LTL G ((step < 45) V ([(Phily)|s = 0 A [(Phily)|s = 0 A
|(Phils)|s = 0 A |(Phily)|s = 0 A |(Phils)|s = 0))

SPIN LTL | [1 (step < 45 || (C[0].x[.s] == 0 && C[1].x[.s] == 0 &&
Cl2] .x[s] == 0 && C[3].x[s] == 0 && C[4].x[s] == 0))

Description | The step variable is always incremented whenever at least one
rule has been in applied in ell, ;.

Evaluation | Time Memory States | State vector
Result

True 0.53s | 145.238 MB | 10928 | 1496 bytes

Table 9.16: Property P14
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Chapter 10

Quantitative analysis of
non-probabilistic models: A
biased coin toss example

10.1 Objectives

In this chapter we present a formal verification approach suitable for stochastic
models, whose behaviour is generally investigated by means of probabilistic model
checking. The software tools which facilitate such examinations in an automated
way, must be capable of computing probability updates for each state transition.
As such, the model checker not only generates a system’s complete state space,
but also performs the probability calculus relevant to the random process the
model implements.

A probabilistic model checker asserts the validity of a property with direct
reference to the probability of the underlying state (or states) being reached.
Properties such as: An event z will eventually occur with probability p or What
is the probability that process p1 terminates before process p2¢ not only express
a behavioural trait of the model, but also convey quantitative information about
its weight or likelihood.

A distinct goal of this project was to investigate the viability and relevance of
our formal verification approach for probabilistic models. Whilst elementary P
systems cannot directly implement such models, it turns out that a basic quan-
titative analysis can nevertheless be formally conducted on EPS instances, us-
ing LTL model checking with SPIN. A biased coin toss example underpins the
methodology described in this chapter and is sufficient to emphasize the inherent
limitations of this strategy.
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10.2 EPS Model

We consider the following EPS model implementing a biased coin toss experi-
ment, where the probability of a ‘heads’ result is 0.7 and complementary, a ‘tails’
outcome will occur with 0.3 probability.

Hcoin = {Ov Ca R}

where
O = {C7 h’ t7p’ b};
C={(e,p};

R=A{
c— h,c;
c—1t,c
(h) :p — Tp;
(t) : p — 3t;
t—T,b;
h — H,b;

¥

The following listing accompanies the formal definition of ell.;, with its rep-
resentation in the eps notation, as required by the eps-tools parser.

(c, pP);

-> h, c;
->t, c;
h: p -> 7p;
t: p -> 3p;
t -> T, b;
h -> H, b;

The model consists of a single compartment with two main procedures:

1. A non-deterministic choice between the two outcomes, heads and tails, of
the coin toss and
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2. Probability update rules which are applied in accordance to the event that
has occurred.

The first two rules, ¢ — h,c and ¢ — t,¢, symbolise a coin toss which
non-deterministically results in either heads or tails. The object ¢ represents the
coin and is utilised as a catalyst in both rules, whilst objects h and ¢ denote the
probabilistic events heads and tails of the coin toss experiment, respectively.

We underline the fact that, although two probabilistic events are being mod-
elled in ell,,;,, the model itself is not probabilistic as it does not provide any
means for specifying the likelihood of each event (i.e. each rule generating a h
or t object). We recall that stochastic P systems augment multiset rewriting and
communication with kinetic stochastic constants which, in conjunction with the
multiplicities of objects on the left hand side, can be used to dynamically compute
the probability associated with each rule. By contrast, elementary P systems do
not include such provision and the occurrence of probabilistic events is reduced to
non-deterministic selection in our model. As we will see in the following section,
this is indeed sufficient to perform a basic quantitative analysis for this type of
random process, by LTL model checking.

The next two rules (h) : p — 7p and (h) : p — 3t represent the proba-
bility updatesﬂ which reflect the sequential occurrence of any of the two events.
Since heads and tails are independent events, the simplified multiplication rule
is used to compute the probabilities for each subsequent coin toss. For in-
stance, if the probability of the heads event is P(heads) = 0.7 and the prob-
ability of tails is P(tails) = 0.3, then the probability of obtaining the sequence
(heads, tails, heads) over three coin tosses is equal to the product P(heads) X
P(tails) x P(heads) = 0.147. Figure depicts the complete probability dis-
tribution of our coin toss experiment, for three consecutive tosses. Each arrow
represents the occurrence of a probabilistic event (heads or tails) whereas the
vertices envelop the probability of this occurrence.

We note that P systems generally operate with objects whose multiplicities
are represented by positive integers. Consequently, it is not possible to specify
probability values (rational numbers) as multiplicities without resorting to an
artifice: the computed probability product is simply divided by 10°, where b
represents the total number of decimal places introduced in the multiplication.
For example, if P, = 0.05 and P, = 0.95, then each time a multiplication with
P, is effected, two b objects are generated, whereas, for a P, product, one b is
added. The EPS rules which support this technique in our model are t — T, b
and h — H,b. The outcome of these rules, together with the p yield from
the previous rewrites, suggest that either a tails (T') or a heads (H) event has

Importantly, the updates we are referring to do not apply on the initial probabilities
P(heads) and P(tails); these are constant values because the two events are independent.
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Figure 10.1: Expanded probability distribution for the biased coin toss experi-
ment modelled by ell..;,

occurred with a probability of p/10°. This is formally captured in the following
remark:

Remark 10.1. The EPS model, ell.,;, computes the probability of an arbitrary
sequence of outcomes from {heads, tails} in a coin tossing experiment. The se-
quence is not directly represented or recorded, however, the number of heads and
tails outcomes is encoded by the multiplicities of objects H and T respectively.
The probability of a sequence containing x heads and y tails is denoted by the
ratio |(c)|,/101/lb at the computational step where |{c)|y = = and |{c)|r = v.

Whilst an ell.,;, computation pertains to a specific probabilistic event se-
quence, a model checker must generate a system’s complete state space such
that any verification (i.e. search operation) undertaken is exhaustive. The non-
deterministic choice between the two coin toss events in our model achieves pre-
cisely this goal. We recall that non-deterministic branching equates to a combina-
torial state expansion in the context of model checking. All computational paths
exhibited by ell,,;, are therefore generated by virtue of the formal verification
method itself and not due to explicit productions in the mode]ﬂ. Consequently,
the model can be subjected to queries pertaining any such path, as if it were
interpreted by a probabilistic model-checker, however, it is the query types that

!Such an expansion is certainly supported by elementary P system, using membrane in-
stantiation, analogously to the Subset Sum example presented in chapter It is, however,
unnecessary if the primary objective of the experiment is formal verification by means of model
checking
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are inherently limited by the LTL model checker. This matter will be addressed
in more detail in the following section.

Step/Scope (c)
0 c,p
1 c,p,t
2 T,b,c,p3 t
3 T2,6% ¢,p°, h
4 H,T? b3 ¢, p%. h
5 H?, T2 b c,p*, h

Table 10.1: Five step simulation of ell..;,

Finally, we present a listing of the first five computational steps in an epss ex-
ecuted simulation (Fig. [10.1)). We draw attention on the interpretation of results
generated in each configuration: the presence of x objects H and y objects T in
the compartment does not signify that the computed probability is associated to
all scenarios of a certain length (i.e. number of coin tosses) which include x heads
and y tails outcomes, but rather this is the probability of a particular sequence
of x + y elements, with x heads and y tails occurrences.

10.3 Verification results

The EPS model which implements our coin toss experiment is non-halting and
exhibits an unbounded number of states. An adjustment is necessary, in order
to satisfy the model checker’s finite state space requirement. As exemplified in
earlier chapters, the maximum number of steps ell.;, is allowed to execute is
restricted to ten and as such, an exhaustive search performed by SPIN will be
implicitly bound to this constraint.

Another noteworthy amendment of decisive consequence is the substitution
of the default procedures generated by the eps2spin translation tool for the prob-
ability update rules: (h) : p — 7p and (t) : p — 3p. Whilst the repetitive
execution of these rules for very high multiplicities of p may itself raise concern
and is sufficient to motivate an optimised alternative, an exponential state growth
compromises the viability of the method entirely. This occurs due to the non-
determinism between one of the aforementioned rules and the creation of b and
T or H objects: t — T,b and h — H,b. A very simple solution is imple-
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mented which avoids the issue and re-establishes the feasibility of model checking
ell.pin. Since we know that the two probability updates are mutually exclusive
and each rule must exhaust the collection of p objects, we can substitute the
iterative rewriting in Promela’s sequential model of ell,;,:

now.C[cIndex] .x[_p] -= 1;
now.C[cIndex].y[_p] += 3;

with the following code:

short p = now.C[cIndex].x[_pl;
now.C[cIndex] .x[_p] = 0;
now.C[cIndex].y[_p]l += 3 * p;

This artifice reduces the number of applications of the respective procedure
(corresponding to rule (t) : p — 3p) to one, permanently. The rule will be
applicable once only per step since the number of ps becomes zero after its initial
application. In simple terms, we have substituted the repetitive summationﬂ of a
constant value with multiplication, in the Promela model.

The first three properties (Tables[10.2} (10.3|and [10.4)) are qualitative assertions
which underpin the correctness of the model. The following claims, P,.,;,4 — 7 ex-
plicitly address the validity of probabilities (numeric values) for specific sequences
of events. Such a sequence is represented by a unique computational path in our
model, which is naturally generated by SPIN in response to the non-deterministic
choice between the two events (heads and tails). Each system state produced by
the model checker includes a configuration of ell.,;, which primarily consists of:

e one or more objects from {H, T}, each symbolising the occurrence of a
probabilistic event, heads or tails, and

e a pair of values, whose fractional representation equate to the probability
of a sequence of events ending in this state.

Consequently, verifying the probability of a particular sequence entails the search
for a single state. It is for this reason that LTL model checking can be utilised
to conduct an albeit limited quantitative analysis.

Tt is important to underline that there is no concept of rule repetition (i.e. iteration) in
P systems: rules are applied in a maximally parallel manner, which entails a unitary state
transition. Thus, a rule p — 3p does not execute repetitively (sequentially) seven times in
a compartment with p7, rather seven simultaneous applications are effected during the same
computational step - there are no intermediate transitions.
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short HTS[MAX_STEPS] = 0;

Figure 10.2: Declaration of the heads/tails sequence array in the Promela model’s
state vector.

Since this example features independent events, the probabilities computed
for sequences with the same number of ‘heads’ and ‘tails’ outcomes are identical.
Hence, by specifying one H and one T" object in the LTL formula, we can enquire
about both (heads, tails) and (tails, heads) sequences. If there is a requirement
to identify a sequence explicitly, then the state vector is supplemented with an
array whose purpose is to progressively store the event occurrences (Fig.. In
doing so, each state is provided with complete information about the succession
of ‘heads’ and ‘tails’ results, up to its occurrence. Property P.,;,,6 (Table
demonstrates how such a state can be referenced in an LTL expression.

Finally, P..,7 (Table highlights a boundary which non-probabilistic
model checking techniques cannot transcend. [t is impossible to express a property
which requires a value be computed over ‘sibling states” generated by a traditional
model checker. In the context of our coin toss experiment, we cannot contrive a
formula for a statement such as: ‘The probability of the third toss resulting in
heads is 0.7”. The verification of such a property entails a summation of values
which span over multiple states (of the same depth). This functionality is gen-
erally not available to non-probabilistic verification tools (including SPIN) and
consequently, the range of properties which can be verified in adherence to this
methodology is inherently limited.

The study presented in this chapter demonstrates that, although elementary
P systems are not probabilistic modelling frameworks, they can be used to ex-
press random processes rigorously, for the purpose of formal verification by model
checking. Whilst the technique cannot aspire to the efficiency of specialised al-
gorithms pertaining probabilistic model checkers, it does present certain advan-
tages, such as the flexibility to implement the probability updates according to
any desired strategy, the ability to augment the system states with derived or
accumulated data which can be referenced in an LTL formula, and most notably,
the benefit of using the unaltered EPS formalism and associated software tools
which facilitate an automatic translation to the Promela specification.
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Property

At least one event of type heads or tails is registered in ell..;,
starting with step 2.

LTL

G (step <2V ({9)lr > 0 A [{c)|u > 0))

SPIN LTL

[1 (step < 2 || (CL[O].x[_-T] >0 || C[O].x[H] > 0))

Description

The occurrence of the two probabilistic events is denoted by
the presence of objects T (tails) and H (heads) in the compart-
ment identified by scope (c). Although a non-deterministic
choice between the two outcomes is performed during each
step (including step 1), the probability update can only be
computed one step after, since it is determined by the preva-
lent outcome. The event is always registered in conjunction
with the probability of its occurrence, denoted by the multi-
plicities of objects p and b.

Result

Evaluation | Time Memory States | State vector

True 0.01s | 128.827 MB | 2048 88 bytes

Table 10.2: Property Pl

Property

For a six step execution of ell,,;, there are five consecutive coin
tosses exercised and hence, a maximum of five ‘heads’ or ‘tails’
outcomes can be observed.

LTL

G (step=6) — (|(c)|r <6 A |{c)|m < 6)

SPIN LTL

[] (step == 6 -> (C[0].x[.T] < 6 && C[0].x[.H] < 6))

Result

Evaluation | Time Memory States | State vector

True 0.01s | 128.827 MB | 2048 88 bytes

Table 10.3: Property P2
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Property

From a sequence with one heads and one tails occurrence, the
next outcome immediately recorded (i.e. in the next state) is
either heads or tails, but not both.

LTL

G (Kalr =1 A[(e)]n =1) = X (([{)lr =2 A [)|u =1) v
({)lr =1 A Klu =2))

SPIN LTL

[1 «(cro].x[-T]
((cfo].x[.T] == 2 && C[0].x[_H]
== 2 && C[0] .x[.T] == 1)))

== 1 & C[0].x[H] ==1) -> X
== 1) || (c[0].x[H]

Description

The assertion of this property guarantees that there can only
be one outcome at a certain point in an event sequence, by
referencing the multiplicities of objects H and T in the com-
partment identified by scope (c) directly. Moreover, it is im-
plied that a coin toss result is generated each computational
step.

Result

Evaluation | Time Memory States | State vector

True 0.01s | 128.827 MB | 2056 88 bytes

Table 10.4: Property P.,i,3

Property

The probability of the first two tosses resulting in ‘tails’ is
0.09.

LTL

G ([{e)lr =2 A [()lu = 0) = ({e)lp =9 A ()] = 2)

SPIN LTL

[] ((Cl0].x[.T] == 2 && C[0].x[H] == 0) -> (C[0].x[p]
== 9 && C[0].x[-b] == 2))

Description

The unique configuration which identifies this state is under-
pinned by the presence of two T's and no H objects. The
probability of 0.09 is attested by the multiplicities of objects
p and b being equal to 9 and 2 respectively, denoting the frac-
tion 9/107%

Result

Evaluation | Time Memory States | State vector

True 0.01s | 128.827 MB | 2048 88 bytes

Table 10.5: Property P4
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Property

A sequence consisting of two heads and two tails events occurs
with 0.0441 probability.

LTL

G ([{)r =2 A [(a)|u = 2) = ({e)lp = 441 A [{0)]y = 4)

SPIN LTL

[1 ((cl0].x[.T] == 2 && C[0].x[H] == 2) -> (C[0].x[p]
== 441 && C[0].x[Db] == 4))

Description

The property is consistent for this model because the heads
and tails events are independent. This implies that all se-
quences of four elements having two ‘heads’ and two ‘tails’
outcomes occur with the same probability. Hence, it is suffi-
cient to specify the number of events of each type in a configu-
ration to determine the probability for an individual sequence.
The value is conveyed by the ratio 441/10%.

Result

Evaluation | Time Memory States | State vector

True 0.01s | 128.827 MB | 2048 88 bytes

Table 10.6: Property P.,ind
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Property

The sequence of events (heads,tails, heads, heads) occurs
with 0.1029 probability.

LTL

G (HTS[0) = H A HTS[1] =T A HTS[2| = H A HTS[3] =
H A step=5) = (|(c)], = 1029 A [{c)|, = 4)

SPIN LTL

(1 ((HTS[0] == _H && HTS[1] == _T &% HTS[2] == H &&
HTS[3] == H && step == 5) -> (C[0].x[b] == 4 &&
c[o].x[-p] == 1029))

Description

Since LTL model checkers do not generally provide state accu-
mulator functions, such that during traversal, the state vector
is not considered in isolation and formulae could also reference
values quantified along the search path (for instance, the sum
of all variables x on a particular path), it is required that all
progress made up to a certain point along the path be stored in
each individual state. Specifically, we have integrated an array
of length equal to the constant MAX_STEPS in order to support
the precise referencing of individual sequences (declaration is
depicted in Fig. . Each system state will thus provide
information about every ‘heads’ or ‘tails’ occurrence up to its
encounter: a predicate HT'S[1] = T asserts whether the sec-
ond coin toss in the sequence resulted in ‘tails’; HT'S[2| = H
posits that the third outcome in the sequence is ‘heads’.

As established previously (for property Peynb), it is not
strictly necessary to refer to the specific sequence to infer its
probability for independent events. The example is, however,
illustrative for cases where the order in which events occur is
consequential.

We also note, it is important to specify the length of the se-
quence in the LTL formulae, otherwise all sequences which
stem from this configuration will also be considered in the
search operation. This is achieved by inclusion of step = 5 in
the left hand side term of the implication, which requires that
only sequences of length four are inspected.

Result

Evaluation | Time Memory States | State vector

True 0.01s | 128.827 MB | 2048 88 bytes

Table 10.7: Property P..;,6
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Property

The probability of the sixth coin toss resulting in ‘heads’ is
minimum 0.000729 and maximum 0.117649, for a particular
sequence.

LTL

G (HTS[5) = H A step=="T) — (|{c)], = 6 A |{c)], > 729 A
[(c)], < 117649)

SPIN LTL

[J ((HTS[5] == _H && step == 7) —> (C[0].x[b] == 6 &&
Cl01.x[p] >= 729 && C[0].x[_p] <= 117649))

Description

The property uncovers an essential limitation of LTL model
checking: it is impossible to express a property which requires
a value be computed from multiple states. Thus, it was strictly
required to mention that it is a single sequence whose min-
imum and maximum probabilities of the heads event at the
sixth toss are 729/10% and 117649/10° respectively. Moreover,
due to the same limitation we can only stipulate inequalities
and not direct equivalence; for instance it is impossible to
verify a property stated as: The probability of the sixth coin
toss resulting in ‘heads’ is 0.7 or Given that the fifth coin toss
resulted in ‘tails’, the probability of the next outcome being
‘heads’ is 0.21.

We note the increased size of the state vector and total mem-
ory required by the model checker for this particular property.
Since the numbers generated exceed the size of the short data
type, all variables were elevated to the int type, to accommo-
date the high values generated (multiplicities of p).

Result

Evaluation | Time Memory States | State vector

True 0.01s | 129.022 MB | 2048 144 bytes

Table 10.8: Property P.,i,7

138




Chapter 11

Conclusions

In this thesis we have demonstrated the feasibility of model checking membrane
systems. A fundamental distinction between the conventional algebraic repre-
sentation of parallelism, promoted by process calculi, and the maximally parallel
multiset transitions inherent to P systems was identified. Whilst a process alge-
bra, such as CSP, reconciles an agnostic view on parallel dynamics with sequential
computation by reduction to non-deterministic branching, P systems feature an
expansive ‘maximal parallelism’ which integrates all independently executable in-
structions into a monadic state transition. On this basis, it is shown that process
models, which are ubiquitous to the formal verification of concurrent systems, are
decidedly inadequate for the representation of membrane systems. Since model
checking addresses the state space of a model and not the procedures which
generate this state space (i.e. its systematic construction), it stands as a par-
ticularly suitable verification technique for P system models. In this respect, an
efficient modelling approach for the SPIN model checker was introduced, whereby
compartments are not associated a distinct process, nor are these selected non-
deterministically for exhaustive execution (of applicable rules). This strategy
implicitly circumvents the exponential state expansion due to instruction inter-
leaving.

In chapter [5| we introduced elementary P systems, a distributed model which
subsumes the membrane computing paradigm and its vast functional vocabu-
lary. The minimal set of primitives integrated and their operational capacity are
sufficiently expressive to support the most prevalent P system variants on the
one hand, but also translate to a compact and intuitive Promela specification,
required by SPIN, on the other hand.

The formal verification approach proposed in this thesis is supported by sev-
eral software tools, bridging the theoretical domain of P systems with the prac-
tical method of automated model checking. The eps modelling language aims
to provide an unambiguous and concise EPS representation, using a very simple
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syntax. Our eps-tools module features a parser for the eps notation, a simulator
for elementary P systems and most importantly, a translation tool which targets
the Promela specification and implements the modelling principles postulated in
chapter [4

The methodology with the accompanying software tools was progressively
demonstrated over five heterogeneous case studies. The two principal objectives
of these undertakings were:

1. To emphasize the modelling potential of elementary P systems in the con-
text of membrane computing, identify semantic correspondences relative to
their kindred models and highlight noteworthy translation patterns;

2. To corroborate the suitability of model checking P systems in an extended
context, with a sharp focus on distributed and parallel computation. The
selection includes a structured model, a linear time parallel algorithm for
an NP-complete problem and an EPS implementation of a synchronisation
problem.

In chapter [f] we exemplified EPS modelling and verification on a simple al-
gorithm which generates numbers from the Fibonacci series. It was noted that
reachability properties can be verified for systems with infinite states, since only
a subset of their state space is required to prove their faithfulness. This holds if
the expected evaluation is ‘true’, that is, the model satisfies this property. Ad-
ditionally, we underlined the consequence of permitting instruction interleaving
(within compartments only). This was reflected in the number of superfluous
states generated by SPIN in the global reachability graph.

Next, we have shown in chapter [7| that elementary P systems are as efficient
at modelling structures of compartments as their kindred variants, in the ab-
sence of an ancillary provision in the model definition. Rather than including
a hierarchical membrane structure primitive (usually denoted by u) or a set of
communication channels resembling edges in a graph-like structure, object pairs
in select EPS compartments are used to encode directional and dynamic links
between them. Moreover, this encoding scheme also confers a certain flexibility
which allows a single object (symbol) to denote a reflexive relation between two
compartments (such as parent-child), effectively reducing the size of the state vec-
tor in the translated Promela model and thus mitigating the memory requirement
for model checking.

In chapter |8 we established that a computationally hard problem which re-
quires exponential resources (relative to the size of the problem, assuming P #
NP) does not entail an exponential number of states and is consequently no less
tractable to verify by means of model checking. An EPS based algorithm for
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solving the Subset Sum problem in linear time was presented and formally exam-
ined. An important quality of elementary P systems was emphasized, namely, the
resolute adherence of transition rules to the maximally parallel execution strat-
egy. Membrane instantiation is not achieved by rules applied on compartments
(similarly to membrane division rules), but rather a quiescent compartment is
assumed during each computational step and activated when it becomes the re-
cipient of a multiset of objects. The principle simplifies the semantics of EPS,
which accordingly translates to a coherent, more compact Promela model that
can be manipulated effortlessly.

In the following chapter (chapter E[) we presented an innovative implemen-
tation of the Dining Philosophers scenario, using elementary P systems. Our
solution was formulated on the basis that a sterile plurality of entities has no
observable dynamics, and if a projection into a mathematically abstract formal
domain is considered, then a synthetic distinction can also be introduced from
an external context. Hence, an individualised configuration, loosely referred to
as ‘personality’, can be used to determine the behaviour of each philosopher in-
dependently. The personality pattern may be inferred by a singular value, such
as the ‘patience’ in acquiring both forks, or may encompass other factors as well,
for instance a so called thinking time. The fact that the personality complex is
pre-computed and no central authority is required to arbitrate the distribution
of forks is of key significance. We have formally demonstrated by model checking
that a deadlock can indeed occur when all philosophers share the same person-
ality configuration and act identically, indefinitely. Conversely, if at least one
distinction exists in the philosophers’ behavioural pattern (the ‘patience’ value
of a single philosopher was increased from 3 to 4), then the possibility of a dead-
lock occurrence is dismissed. Importantly, our model assumed a finite supply
of spaghetti; details on how this implementation can be extended to accommo-
date infinite spaghetti units were also provided in section [9.3] Furthermore, we
have also described optimisation strategies applicable directly to the translated
Promela model. A very instructive and consequential practice was to discharge
the rules creating objects that are not pertinent to the verification process, espe-
cially if these compete non-deterministically for execution.

Finally it was shown (in chapter that although elementary P systems are
not probabilistic models, it is practically viable to conduct a formal quantitative
analysis on systems which implement a simple random process. A biased coin toss
experiment, featuring the two independent events, heads and tails, substantiates
our remark. A significant aspect of the study is the hybrid modelling approach
for capturing probability values for all possible sequential occurrences, that is,
all combinations of the two probabilistic events. On one hand, each ‘heads’
or ‘tails’ yield initiates a probability update rule in the model - the likelihood
of the occurrence is computed by the model itself; and on the other hand, all
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computational paths are generated by the model checker tool (SPIN) as a result
of the non-deterministic choice between the two independent events in our model.
Equally important is the inherent limitation of LTL model checking which was
pronouncedly revealed in this example: it is impossible to express a property
which requires a value be computed from multiple states situated on disjoint
computational paths. This finding circumscribes the suitability of our formal
verification approach for non-probabilistic models.

The methodology proposed and demonstrated in this thesis opens many doors
to further paths of research and development. On the one hand, formal verifica-
tion can accompany any future examination on novel P system algorithms and
modelling techniques. The sequential modelling principles submitted in this the-
sis constitute the theoretical foundation for any such undertaking, whilst the
elementary P system computational model, the eps modelling language and the
eps-tools software framework support the approach in a practical manner.

On the other hand, the set of tools which mediates P system formal models
and the model checking technique could be enhanced and supplemented. One
may consider the possibility of including LTL properties which relate to the ele-
mentary P system model and not directly to the encoded Promela representation.
Rather than addressing the multiplicities of objects in compartments using the
compartment data type and array - C[0].x[_a] - the eps language syntax could
be extended to allow for scope references, translatable to atomic propositions in
LTL and possibly supported by ancillary procedures: |z,!y|(a) could reference
the number of objects a across all compartments with at least one x and no
ys. Having the LTL formulae supplied together with the EPS model as input to
the translation tool promotes other (automated) optimisations, in particular the
exclusion of objects irrelevant to the verification of the respective properties.

Another fruitful undertaking worth considering is the projection to other
model checker tools. One noteworthy contender is nuXsmv [5,25], a relatively
new (released in 2014) symbolic model checker for the analysis of synchronous
finite-state and infinite-state systems.

Lastly, an in-depth performance analysis of the formal verification approach
set forth in this thesis is of exceptional value. Although the limitations of model
checking can generally be asserted relative to the number of processes and in-
terleaved atomic instructions, an assessment in the context of membrane com-
puting, specifically in terms of elementary P system compartments and rules, is
instrumental in determining the feasibility of the technique for various sizeable
models. Complementary, an investigation on its scalability for typical scenar-
ios (such as exponential compartment instantiation - the Subset Sum problem,
non-deterministic distribution of resources - the Dining Philosophers problem) is
also of interest. This could be achieved by directly considering the case stud-
ies presented in this thesis in various configurations. For example, a Subset Sum
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problem instance with a set A of 25, 50, 100 etc elements and multiple solutions; a
Dining Philosophers instance featuring 7, 9 ... philosophers and a varying supply
of spaghetti.
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Appendix A

A ten step simulation of an EPS
model which generates the
numbers in the Fibonacci series

Simulation started at step: O
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System halted. Maximum number of steps (10) reached.
Simulation ended at step: 10

145



L w [ =

© oo ~ [=2] ot

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Appendix B

Promela code for the Fibonacci
EPS model generated by the
eps2spin translation tool

/*

*

EPS: Fibonacci_distributed.eps
Generated: 3/7/2016, 9:46:57 PM
Converter version: 0.01

* %

*/

#define A_SIZE 4
#define _a O
#define _x 1
#tdefine _b 2
#define _c 3

#define MAX_COMPARTMENTS 3
#define RULE_COUNT 2

typedef Compartment {
short x[A_SIZE] = 0;
short y[A_SIZE] = 0;
bit rulesApplicable[RULE_COUNT] = 0;
}
Compartment C[MAX_COMPARTMENTS];
short C_COUNT = 3;
c_code {
#include<stdbool.h>
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68

// b
bool

// ¢
bool

// b
bool

bool

bool

void

bool

void

isInScopeO(short cIndex) {
short *x = now.C[cIndex].x;
return (x[_b] >= 1);

isInScopel(short cIndex) {
short *x = now.C[cIndex].x;
return (x[_c] >= 1);

isInScope2(short cIndex) {
short *x = now.C[cIndex].x;
return (x[_b] >= 1);

atLeastOneInScope2(short excludeSelfIndex) {
for(short i = 0; i < now.C_COUNT; ++i) {
if (i !'= excludeSelfIndex && isInScope2(i))
return true;
}
}

return false;

isRuleOApplicableTo(short cIndex) {
return isInScopeO(cIndex);

applyRuleO(short cIndex) {
short x = now.C[cIndex].x[_x];
now.C[cIndex] .x[_x] = 0;
now.C[cIndex] .y[_x] += x;
for(short i = 0; i < now.C_COUNT; ++i) {
if (i '= cIndex) {
now.C[i].y[_x] += x;

isRulelApplicableTo(short cIndex) {
return isInScopel(cIndex)
&& atLeastOneInScope2(cIndex);

applyRulel(short cIndex) {
short x = now.C[cIndex].x[_x];
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void

void

bool

bool

bool

bool

now.C[cIndex] .x[_x] = 0;
for(short i = 0; i < now.C_COUNT; ++i) {
if (i != cIndex) {
if (isInScope2(i)) {
now.C[i].y[_x] += x;

3

assertRuleApplicability () {

for(short i = 0; i < now.C_COUNT; ++i) {
now.C[i] .rulesApplicable[0] = isRuleOApplicableTo(i);
now.C[i] .rulesApplicable[1] = isRulelApplicableTo(i);

commit () {
for(short i = 0; i < now.C_COUNT; ++i) {
for(short j = 0; j < A_SIZE; ++j) {
now.C[i].x[j] += now.C[i].y[j]l; now.C[il.y[j] = O;
}

isLhsOApplicable(short cIndex) {
short *x = now.C[cIndex].x;
if(x[_x] <1 {

return false;

3

return true;

isRuleOApplicable(cIndex) {
return now.C[cIndex].rulesApplicable[0] &&
isLhsOApplicable(cIndex);

isLhslApplicable(short cIndex) {
short *x = now.C[cIndex].x;
if(x[_x] < 1) {

return false;

¥

return true;

isRulelApplicable(cIndex) {
return now.C[cIndex].rulesApplicable[1] &&
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isLhs1Applicable(cIndex) ;

}
}
proctype EPS(O) {
short 1i;
do
:: atomic {
c_code { assertRuleApplicability(); };
for(i: 0 .. C_COUNT - 1) {
do
:: c_expr { isRuleOApplicable(PEPS->i) } ->
c_code { applyRuleO(PEPS->i); I};
:: c_expr { isRulelApplicable(PEPS->i) } ->
c_code { applyRulel(PEPS->i); I};
:: else -> break;
od;
}
c_code { commit(); };
} od;
}
init {
atomic {
C[0].x[_a] = 1;
Cclo].x[_x] = 1;
Cl1].x[_b] = 1;
C[1].x[_x] = 1;
c[2] .x[_c] = 1;
run EPSQ);
}
}
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Appendix C

Elementary P system model
expansion for a DAG node
counting algorithm

(n1, s, q, a, p_n2, p_n3);
nl: {

q, a -> [a @ c_nl];

a: s => [c @ p_ni1];

(n2, s, q, p_n4, p_n5, c_nl);
n2: {

q, a => [a @ c_n2];

a: s -> [c @ p_n2];

(n3, s, q, p_nb5, p_n6, c_nl);
n3: {

q, a => [a @ c_n3];

a: s => [c @ p_n3];

(n4, s, q, c_n2);
nd: {
g, a —> [a @ c_n4];
a: s > [c @ p_n4];
}

(n5, s, q, p_n8, c_n2, c_n3);
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n5: {
g, a > [a @
a: s > [c @

(n6, s, q, p_n7,
n6: {
g, a > [a @
a: s > [c @

(n7, s, q, p_n8,
n7: {
q, a > [a @
a: s > [c @

(n8, s, q, c_nb,
n8: {
q, a > [a @
a: s > [c @

c_nb];
p_n5];
c_n3, c_n9);
c_n6l;
p_né];
c_nb);
c_n7];
p_n7l;
c_n7);

c_n8];
p_n8];

(n9, s, q, a, p_n6);
n9: {
q, a -> [a @ c_n9];

a:

s => [c @ p_n9];
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Appendix D

Elementary P system
representation of the Dining
Philosophers problem expressed
in the eps modelling language

(Phill,
(Phil2,
(Phil3,
(Phil4,
(Phil5,

5p, 3s, q);
3p, 3s, q);
3p, 3s, qQ);
3p, 3s, q);
3p, 3s, q);

(F1, £);
(F2, £);
(F3, £);
(F4, £);
(F5, £);

Fi: {

H

rP1 -> [f1 @ Phili];
rP2 -> [f1 @ Phil2];
: A{

rP1 -> z1;
rP2 -> z2;

rP2 -> [f2 @ Phil2];
, TP3 -> [f2 @ Phil3];
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rP2 -> z2;
rP3 -> z3;
}
}
F3: {
f, rP3 -> [£f3 @ Phil3];
f, rP4 -> [f3 @ Phil4];
1f: {
rP3 -> z3;
rP4 -> z4;
}
}
F4: {
f, rP4 -> [f4 @ Phil4];
f, rP5 -> [f4 @ Phil5];
1f: {
rP4 -> z4;
rP5 -> z5;
}
}
F5: {
f, rP5 -> [f5 @ Phil5];
f, rP1 -> [f5 @ Philil];
1f: {
rP5 -> z5;
rP1 -> z1;
}
}
Phill: {
f1, f5, s > [f @ F1], [f @ F5];
s: { !'f1 | 'f5: {
q, p => q, [rP1 @ F1], [rP1 @ F5];
p: {
f1 -> [f @ F1];
f5 -> [f @ F5];
q —> q, 5p;
}
1
}
Phil2: {
f2, f1, s > [f @ F2], [f @ F1l;
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67 s: { 'f2 | 'f1: {

68 q, p -> q, [rP2 @ F2], [rP2 @ F1];
69 Ip: {

70 f2 > [f @ F2];

71 f1 -> [f @ F1];

72 q ->4q, 3p;

73 }

74 1}

75 | }

76 Phil3: {

77 £3, f2, s > [f @ F3], [f @ F2];
78 s: { '£f3 | '£f2: {

79 9, p => q, [rP3 @ F3], [rP3 @ F2];
80 p: {

81 £f3 > [f @ F3];

82 f2 -> [f @ F2];

83 q ->4q, 3p;

84 }

85 1}

86 }

87 Phil4d: {

88 f4, £f3, s -> [f @ F4], [f @ F3];
89 s: { !'f4 | '£3: {

90 q, p -> q, [rP4 @ F4], [rP4 @ F3];
91 Ip: {

92 f4 -> [f @ F4];

93 f3 -> [f @ F3];

04 q ->4q, 3p;

95 }

96 1}

o7 | }

98 Philb5: {

99 f5, f4, s -> [f @ F5], [f @ F4];
100 s: { 'f5 | 'f4: {

101 9, p -> q, [rP5 @ F5], [rP5 @ F4];
102 p: {

103 f5 -> [f @ F5];

104 f4 -> [f @ F4];

105 q > q, 3p;

106 +

107 }r

108 }
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