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Abstract 

The thesis comprises a fundamental study of spherical premixed flame propagation, 

originating at a point under both laminar and turbulent propagation. Schlieren cine 

photography has been employed to study laminar flame propagation, while planar mie 

scattering (PMS) has elucidated important aspects of turbulent flame propagation. 

Thrbulent flame curvature has also been studied using planar laser induced fluorescence 

(PLIF) images. 

Spherically expanding flames propagating at constant pressure have been employed 

to determine the unstretched laminar burning velocity and the effect of flame stretch, 

quantified by the associated Markstein lengths. Methane-air mixtures at initial tem­

peratures between 300 and 400 K, and pressures between 0.1 and 1.0 MPa have been 

studied at equivalence ratios of 0.8, 1.0 and 1.2. Values of unstretched laminar burn­

ing velocity are correlated as functions of pressure, temperature and equivalence ratio. 

Two definitions of laminar burning velocity and their response to stretch due to curva­

ture and flow strain are explored. Experimental results are compared with two sets of 

modeled predictions; one model considers the propagation of a spherically expanding 

flame using a reduced mechanism and the second considers a one dimensional flame 

using a full kinetic scheme. Data from the present experiments and computations are 

compared with those reported elsewhere. Comparisons are made with iso-octane-air 

mixtures and the contrast between fuels lighter and heavier than air is emphasized. 
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Flame instability in laminar flame propagation become more pronounced at higher 

pressures, especially for lean and stoichiometric methane-air mixtures. Critical Peclet 

numbers for the onset of cellularity have been measured and related to the appropri­

ate Markstein number. Analyses using flame photography clearly show the flame to 

accelerate as the instability develops, giving rise to a cellular flame structure. The 

underlying laws controlling the flame speed as cellularity develops have been explored. 

PMS images have been analysed to obtain the distributions of burned and un­

burned gas in turbulent flames. These have enabled turbulent burning velocities to be 

derived for stoichiometric methane-air at different turbulent r.m.s. velocities and initial 

pressures of 0.1 MPa and 0.5 MPa. A variety of ways of defining the turbulent burning 

velocity have been fruitfully explored. Relationships between these different burning 

velocities are deduced and their relationship with the turbulent flame speed derived. 

The deduced relationships have also been verified experimentally. 

Finally, distributions of flame curvature in turbulent flames have been measured 

experimentally using PMS and PLIF. The variance of the distribution increases with 

increase in the r.m.s. turbulent velocity and decrease in the Markstein number. Reasons 

for these effects are suggested. 
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Chapter 1 

Introd uction 

1.1 General Introduction 

There is a continuing demand for increased energy efficiency of gas turbines and recip­

rocating engines, and a deepening concern over problems related to the environment, 

energy, and hazards. All these have, during the past few decades, stimulated a tremen­

dous burst of interest and research activities in the field of combustion. The simulta­

neous occurrence of chemical reaction and transport of mass, momentum, and energy 

makes analyses of these problems extremely complex. Moreover, practical flames are 

nearly all turbulent because of the requirement to produce high volumetric rates of en­

ergy production for efficiency and compactness. This further complicates combustion 

research even if one addresses the problem at a fundamental level in which practical 

difficulties might be neglected. 

It has become widely accepted that turbulent flames in spark-ignited gasoline 

engines can be treated as an array of laminar flamelets with no turbulence structure 

residing within them (Bradley 1992). The concept of laminar flame propagation and 

the effect of stretch on it forms an integral part of the understanding of turbulent 

flames. Turbulent burning parameters are usually compared with laminar combustioIl 

parameters, by normalizing the former with the latter to produce dimensionless groups. 

1 
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There is a dearth of reliable laminar burning data, especially at high pressure 

and temperature. Most of those data that exist for conditions above atmospheric 

pressure have been deduced from pressure measurements during explosions, with no 

visual observation of the flame. In consequence, the effects of any flame distortion and 

developing flame instability, which can enhance the burning rate, have been masked. 

In addition, pressure measurements yield the rate of mass burning rather than the 

rate of propagation of the flame into the cold mixture and experiments usually have 

been undertaken without addressing the effect of flame stretch. A close coupling exists 

between flame stretch, flame instability and burning velocity, and neglect of these may 

well explain the wide variation in the magnitudes of reported laminar burning velocities 

(Rallis and Garforth 1980, Bradley et al. 1996, Bradley et al. 1998). 

In the present study, flame propagation in methane-air premixtures is studied in 

both laminar and turbulent conditions. In the case of the former the experimental 

and theoretical studies cover the consequences of the onset of flame instabilities. In 

the case of the latter it includes a scrutiny of the most appropriate way of defining 

the turbulent burning velocity. Methane, the major component of natural gas, is the 

simplest and lightest of the hydrocarbon series. It can provide a useful contrast with 

the burning characteristics of the heavier hydrocarbons which include propane and 

octane. Moreover, the methane oxidation mechanism is well understood and its burning 

characteristics can be accurately modeled. Therefore, methane is well suited for the 

study of combustion at the fundamental level. 

1.2 Structure of a Laminar Planar Flame 

With the tremendous advances in both computing power and techniques, it is now 

possible to solve numerically the steady-state comprehensive mass, species and energy 

conservation equations with a complete reaction mechanism (Glassman 1996). Using 

the reaction mechanism and some thermodynamic and transport property data base, 

the temperature and concf'ntration profiles of all the species considered are estimated 
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and the mass burning rate of the flame (m = Puuz) is calculated as an eigenvalue of the 

problem and, since the unburned gas mixture density, Pu, is known. the unstretched 

laminar burning velocity, uz' is determined. This is an intrinsic property of a com­

bustible fuel-air mixture, and is defined as 'the velocity, relative to and normal to the 

flame front, with which the unburned gas moves into the front and is transformed into 

products under laminar flow conditions' (Heywood 1988). 

Shown in Fig. 1.1 is the distribution of some major species and temperature for 

a freely propagating planar stoichiometric methane-air flame at an initial temperature 

of 300 K and initial pressure of 0.1 MPa. It is computed using the Sandia PREMIX 

code (Kee et al. 1985) with the reaction mechanism of GRI-Mech (Frenklach ff ai. 

1995). The temperature profile, Tfl in Fig. 1.1(a) shows the existence of two layers 

of finite thickness, the preheat zone and the oxidation-layer. In the preheat zone, the 

temperature of the unburned mixture is raised by heat conduction from the reaction 

zone without significant energy release; while chemical energy of the mixture is released 

as heat in the oxidation-layer. Therefore, the curvature of the temperature profile 

(d2Tf/dx2 ) is positive in the preheat zone and negative in the oxidation-layer, with the 

transition occuring at the inner layer at a characteristic temperature, TO (Gottgens 

et al. 1992). This temperature was interpreted by Gottgens et ai. (1992) as the 

critical temperature at which the chemistry is 'turned on', and represents a balance 

point between radical production and consumption (Seshadri 1996). The value of TO 

was used by Gottgens et al. (1992) and Peters and Williams (1987) to correlate the 

laminar burning velocity, and by Seshadri (1996) to predict the flammability limit s of 

the reactant mixture. 

The laminar flame thickness, lSI, is a characteristic length for a given fuel-air mixt ure 

at a given initial condition. In the early asymptotic analysis of Zeldovich et ai. (198;»). 

~x which corresponds to the segment of the tangent spanning the temperature illtpr\';t\ 

between unburned gas temperat Ufl'. Tu , and adiabat ic flame temperature, Tb, wa.-; 

used to approximate lS[, and is shuwn by dotted lines in Fig. 1.1(a). Clearly, this is 
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not an absolute definition of the flame thickness as the inspection of the concentration 

profiles in Fig. 1.1 (b) suggests that different flame thicknesses might be defined based 

on the production or consumption of a particular species. Moreover, estimation of such 

flame thicknesses requires the computation of temperature profile and its derivatives. 

However, alternative characteristic flame thicknesses have been estimated such as: 

• diffusion length, 0D = Dijlul, where Dij is the mass diffusivity of the deficient 

reactant, i, with respect to the abundant reactant, j; 

• thermal length, 0T = DT IUl' where DT is the thermal diffusivity of the mixture: 

• hydrodynamic length, 0l = v IUl, where v is the kinematic viscosity of the mixture. 

These flame thicknesses can be related by the nondimensional Lewis number, Le, and 

Prandtl number, Pr, by: 0D = Le- 1 0T and 0l = Pr 0T' Lewis number is defined by 

DTIDij, and Prandtl number is defined by vIDT' The definition 0l = vlu[ is used 

throughout the present work. 

1.3 Laminar Burning Velocities 

For a non-planar flame, the mass rate of entrainment of unburned gas into the flame 

front, dmu/dt , is, in general, not the same as the rate of formation of the burned prod­

uct, dmb/dt , because of the finite flame thickness. Hence, two definitions of laminar 

burning velocity exist (Bradley et ai. 1996). One definition is based on the 'entrain­

ment velocity' of unburned mixture into the flame front and has been expressed by 

Rallis and Garforth (1980) as: 

1 dmu 
Un = -----

Apu dt 
(1.1 ) 

where, A is the flame front area. The spatial vdocity of the flanw front, also known 

as the flame speed, Sn, is readily measurable by observing the flamp's spatial temporal 

development. However, flame speed is not a unique property (If a combustible mixture 

but the sum of Un and the gas expansion vdocity, Ug' immediatel,\' adjacent to t 11(' 
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flame front: 

Sn = Ug + Un ( 1.2) 

Of the two terms on the right of Eq. 1.2, Ug is, in general, the larger and is a function 

of the densities of burned and unburned gas at any instant, as well as of the presence 

or absence of any constraining boundary. 

The second definition of laminar burning velocity, Unr, based on the appearance of 

burned products, has been computed for atmospheric methane-air mixtures by Bradley 

et ai. (1996) as: 

1 dmb 
Unr = ----

Apu dt 
( 1.3) 

Such a burning velocity is determined from measurements of pressure rise in closed 

vessels, as in the experiments of Metghalchi and Keck (1980), and Ryan and Lestz 

(1980). It is analogous, under turbulent conditions, to the mass burning velocity, Utr, 

introduced by Abdel-Gayed et ai. (1986). 

1.4 Flame Stretch and its Effects on Burning Velocities 

Practical flames do not conform to the idealized planar steady configuration. Instpad 

they can be wrinkled and unsteady, and can exist in flow fields that are nonuniform 

and unsteady. Therefore, a propagating flame front is subjected to strain and curvature 

effects which together constitute flame stretch and change the frontal area. Tiw rate 

of change of flame area with time constitutes flame stretch. Hence, the flame stretch 

rate, a, at any point on a flame surface is defined as the Lagrangian time derivative of 

the logarithm of the area, A, of an infinitesimal element of the surface surrounding the 

point (Williams 1985), 
dInA 

a= 
dt 

1 dA ( 1. -1) 
A dt 

Flame stretch can increase or decrease the flame speed significantly (BradlC'y' d al. 

1996, A ung et ai. 1997). However, a linear relationship between flame speed and 
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stretch rate has been reported in theoretical analysis (Matalon and ~latkowskv 1982. 

Clavin 1985), numerical computation (Bradley et ai. 1996) and experiment (Dowdy 

et ai. 1990, Aung et ai. 1997, Bradley et ai. 1998). A burned gas Markstein length, Lb 

is defined to account for the sensitivity of flame speed to stretch (Clavin 1985), such 

that: 

(l.5) 

where S8 is the unstretched flame speed, and is obtained as the intercept value of Sn 

at Q = 0, in the plot of Sn against a. 

Expressions of flame stretch rate in terms of the local characteristics of the flow 

field and flame curvature have been established by Chung and Law (1984), Matalon 

(1983), Candel and Poinsot (1990), Bradley et ai. (1992) and Bradley et ai. (1996). 

For a constant pressure flame propagation, total stretch rate is the algebraic sum of 

the stretch due to aerodynamic strain, as, and the stretch due to flame curvature, ac 

(Candel and Poinsot 1990): 

a = Qs + Qc (l.6) 

Hence, strain rate and curvature may be interchangeable in the description of the flame 

area evolution. However their contributions to the flame structure are not interchange­

able (Echekki and Chen 1996). The effect of strain rate and curvature on laminar flame 

propagation has been reviewed by Law et ai. (1997). 

The variation in burning velocity due to stretch is given by (Bradley et ai. 1996): 

Ul - Un = Lc Qc + Ls Qs (l. 7) 

in which Lc and Ls are Markstein lengths associated, respectively, with curvature and 

strain. 
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In general, the Markstein lengths are different for the two definitions of burning 

velocity (Bradley et al. 1996), hence, 

Uz - unr = Lcr ac + Lsr as ( 1.8) 

where, Lcr and Lsr are the Markstein lengths associated, respectively, with curvature 

and strain for Unr. 

A Markstein number is the Markstein length normalized by the flame thickness, 

OZ· Similarly, stretch rate can be normalized by a chemical stretch rate given by the 

reciprocal of the chemical life time, TC = ozluz, to give a Karlovitz stretch factor, K 

(Glassman 1996). Hence, Eqs. 1.7 and 1.8 become: 

and, 

Uz- Un 
----=--- = KcMac + KsMas Uz 

Uz - Unr 
----=--- = Kc M acr + KsM asr· 

ul 

(1.9) 

(1.10) 

Hence, Kc and Ks are the Karlovitz stretch factors due to curvature and strain respec-

tively. 

1.5 Evolution of Instabilities 

Law et al. (1997) have attributed the development of flame instabilities in the form 

of cells and ridges of characteristic sizes over the flame surface as 'perhaps one of the 

most beautiful and fascinating phenomena in the flame dynamics'. It has been long 

observed that the flame on a Bunsen burner may split up into triangular flamelets 

forming a polyhedral pyramid that sometimes even spins about its vertical axis (Smith 

and Pickering 1928). It is now well established that the manifestation of spontaneous 

flame instability is not unique and depends on a series of factors that includes mixt llre 

properties and the shape and size of the flame (Markstein 1951, Istratov and Librovich 

1969, Groff 1982, Zeldovich et al. 1985, Bradlry' and Harper 1994, Law et al. 19!j;). 
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1.5.1 Analysis of Instability in Planar Flame 

The seminal stability analyses of Darrieus and Landau (Williams 1985) treated the 

flame as a gasdynamic surface of discontinuity in density that propagates normal to 

itself at a constant speed and formulated the problem of hydrodynamic instability of a 

plane flame front. In their analysis, two dimensional quantities: the flame propagation 

velocity and the wave number, k (or wave leL.gth, A = 21r/k), were uniquely combined 

to give a dimensional growth rate, a. The analysis did not consider any characteristic 

length and hence the flame was unstable to disturbances of all wavelengths for gas 

expansion (0- > 1), where 0- is the density ratio defined by Pu/ Pb' Moreover, short 

wavelength perturbations (large k) grow faster than the long wave length perturbations 

and the growth rate of the perturbations becomes infinite as the wavelength approaches 

zero. Thus, instability of a flame should be revealed experimentally as small-scale 

perturbations which grow to large amplitudes. This is not observed experimentally 

(Zeldovich et al. 1985), and the experimentally observed uniformity of cell size rather 

suggests a maximum instability at a particular wave number (Markstein 1951). 

In Landau's analysis, a flame front was viewed as an infinitely thin surface separat­

ing burned and unburned gases. When the wavelengths of the perturbations become 

comparable to the diffusional-thermal thickness of the flame front, the idea of a flame 

as a surface of gasdynamic discontinuity loses is validity and this finite thickness has to 

be taken into the account; that is, the changes in its structure under the influence of the 

gasdynamic perturbations with the resulting change in the propagation velocity of the 

distorted flame in the premixture both become significant. To include the effect of the 

perturbations on the flame propagation velocity, Markstein (1951) proposed the effect 

of distortions of the flame structure be characterized by a phenomenological constant 

with the dimension of length, now known as the 'Markstein length'. This relates to the 

curvature of the flame front and the aerodynamic strain rate. The analysis yields an 

inner cut-off of wavelength, where a planar flame is stable to perturbations of shorter 

wavelength and unstable to those of long-wave length. This approach results in the 
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stabilization of short-wave length disturbances only when the phenomenological con­

stant has a certain sign. When the sign is reversed, the short-wave perturbations could 

provide an additional destabilizing factor (Sivashinsky 1983). 

Sivashinsky (1983) has reviewed the recent developments of flame instability, show­

ing that cellular instability in not a hydrodynamic, but a thermo-diffusive instability. 

The source of this instability has been called 'preferential diffusion'. Simply stated the 

thermal gradients in the preheat zone in a flame can be stabilizing or destabilizing de­

pending on the curvature of the flame and the Markstein number (Bradley and Harper 

1994). A high value of Markstein number is, to some degree, stabilizing and able to 

counter the underlying Darrieus-Landau instability. A negative Markstein number re­

sults in early instabilities. A heavy-fuel lean-flame is more stable than a heavy-fuel 

rich-flame. 

1.5.2 Growth of Instabilities in Spherical Flame Propagation 

The development of instability in a spherically expanding flame front is different from 

that in a planar flame, as the flame size of the former increases with time. The originally 

smooth spherical surface becomes wrinkled, with consequent increase in flame speed. 

This is because the growth of the amplitude of the distortions of the flame front surface 

is faster than the propagation rate of the flame sphere (Istratov and Librovich 1969). If 

the trough and crests in the flame surface increase slower than the near-linear increase 

in the radius of the sphere as a whole, then the flame front is smoothed out in time, 

despite the absolute increase in the amplitude of the distortions (Zeldovich et ai. 1985, 

Bechtold and Matalon 1987). Hence, a spherically expanding flame in a premixture is 

a bifurcation phenomenon, in which the flame becomes unstable at a radius, greater 

than a critical value, while remaining stable below that critical radius (Matalon and 

Erneux 1984). 

The time dependence of the disturbance during spherical flame propagation follows 

a power law, rather than one of the exponential growth rate which is inherent to the 
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planar flame. Zeldovich et ai. (1985) have shown by dimensional arguments that the 

rate of growth of the perturbation amplitude, ~ obeys the relationship: 

da a 
- f"V Un-
dt A (1.11) 

where, A is the disturbance wavelength. For a planar flame, A is constant and in­

tegration of Eq. 1.11 leads to an exponential law. For the spherical flame, however, 

the perturbation wavelength should be expanded in a spherical harmonic series, rather 

than an ordinary Fourier series, and the perturbation wavelength corresponding to a 

particular spherical harmonic increases in proportion to the radius of the sphere and, 

therefore, to the time (Zeldovich et ai. 1985). Hence, integration of -Eq. 1.11 leads to a 

power law. This implies that the perturbations grow more slowly in a spherical flame 

than in a planar flame (Minaev et ai. 1996). Istratov and Librovich (1969) used this 

fact to explain the difference between experimental and theoretical results. 

1.5.3 Regimes of Flame Propagation for Spherical Flames 

It is well established experimentally that under appropriate conditions, a spherically 

propagating premixed flame may become aerodynamically and thermo-diffusively un-

stable as a result of the effects of conduction, diffusion combined with flame stretch at 

the flame front (Groff 1982, Bradley and Harper 1994, Bradley et ai. 1998). At higher 

Lewis numbers it is initially thermo-diffusively stable, but as it propagates and the 

stretch rate reduces, instabilities eventually give rise to pronounced wrinkling of the 

flame at the larger radii (Bechtold and Matalon 1987). Such instabilities, which also 

develop at low Markstein number, M a, are predominantly hydrodynamic and are initi-

ated at a critical value of Peclet number, Pee, the flame radius normalized by the flame 

thickness, 6l . Below this critical value of Pee, flame stretch rate is sufficiently high t () 

maintain the flame stability and the flame surface is smooth (Bradley and Harper 1994, 

Bradley 1998). At the critical value, Pee, the developing instabilities take the form of 

cracks propagating across the flame surface (Bradley and Harper 1994). The forma­

tion of this instability illustrated by Bradley (1998) is shown in Fig. 1.2. A region of 
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high negative curvature in the flame surface, typically arising from interaction with a 

spark electrode, initiates a propagating crack. Such cracks are prone to cross-cracking 

at corners, until eventually they form a coherent cellular structure covering the entire 

flame surface. 

This first occurrence of a developed cellular structure is observed at a second 

critical number, Peel, which is usually much higher than the first critical number. Pee 

(Groff 1982, Bradley et al. 1998, Bradley 1998). It is accompanied by an increase 

in flame speed, as a result of the rapid increase in flame surface area. This observed 

flame acceleration is used to estimate the value of Peel, and is discussed in § 3.3. 

For values of Pe > Peel, the flame speed increases continuously as a consequence of 

the increasing wrinkled flame surface area. Measured values of flame speeds in large 

unconfined explosions (Lind and Whitson 1977, Makeev et al. 1983), when plotted 

against time, t, suggested to Gostintsev et al. (1987) a transition to a turbulent flame 

propagation at a third critical Peclet number, Pet. Gostintsev et al. (1987) surveyed 

the results of several experimental measurements of flame propagation in large scale 

explosions and suggested the value of Peb was between about 120,000 and 220,000, for 

the transition to a turbulent flame. In this regime they related the flame radius, I, to 

time by a law of the form: 

1 = 10 + A t3/ 2 (1.12) 

in which 10 is a datum flame radius and A2is an empirical constant that depends upon 

the mixture. A has the dimensions of rate of energy release per unit mass [J/(Kg.sec)]. 

1.6 Classification of Turbulent Premixed Flames 

Thrbulent flames found in practical devices cover a wide spectrum of phenomena which 

depend on the intensity of the turbulence, the temperature and pressure levels. t he reac­

tant air-fuel ratio and the fuel itself (Borman and Ragland 1998). Dimensional analysis 

reveals a range of premixed combustion modes in these practical devin)s. progressing 

from wrinkling laminar flamelet.s. to well-stirred react or:-;. These modes corresponds 
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to different regimes of combustions and require different approaches for understand-

ing and modeling (Matthews et ai. 1996). Classical premixed combustion diagrams 

(Borghi 1985, Peters 1986, Poinsot et ai. 1990) assume that a reacting flow may be 

characterized in terms of two non-dimensional numbers: 

1. The ratio of the turbulence integral length scale, L, to the laminar flame thickness, 

0[, and 

2. the ratio of the root-mean-square velocity fluctuation, u' , to the unstretched 

laminar burning velocity, ul' 

In these diagrams, different regime transitions are associated with specific lines corre-

sponding to constant values of some non-dimensional numbers. These non-dimensional 

numbers are: 

1. Turbulence Reynolds number, ReL, defined as: 

u'L 
ReL=­

v 

2. Turbulence Karlovitz number, K a, defined as (Poinsot et ai. 1990): 

( IdA) (u l
) K a = TC A dt :::: Tc ): 

(1.13) 

(1.14) 

3. Turbulence Damkohler number based on integral length scale, Da, defined as: 

Tm 
Da=­

Tc 

(1.15 ) 

, hence, characteristics flow time, Tm, is the life time of larger eddies in the flow 

(Turns 1996), and is defined as: 

L 
Tm =-, 

U 

(1.16) 
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Shown in Fig. 1.3 is such a diagram where the logarithm of u' /ul is plotted over 

the logarithm of L / 6[. Here the regimes of premixed combustion are identified as: 

1. Laminar flame regime, characterized by ReL < 1, 

2. Wrinkled flamelet regime, characterized by ReL > 1, Ka < 1 and u' < ul, 

3. Corrugated flamelet regime, characterized ReL > 1, Ka < 1 and u' > ul, 

4. Distributed reaction zone, characterized ReL > 1, Ka > 1 and Da > 1, 

5. Well stirred reactors, characterized by ReL > 1, K a > 1 and Da < 1. 

Originally, it was believed (Peters 1986) that the line, K a = 1, which is the Klimov­

Willi mas criterion, is the limit between the flamelet regimes and the distributed reaction 

zones. However, direct numerical studies of Poinsot et al. (1990) have suggested higher 

values of K a for this boundary, which is shown in Fig. 1.3 by broken lines. In this 

figure, the regime corresponding to the engine combustion is also shown by dotted lines 

as suggested by Matthews et al. (1996). Hence, it appears that the flame in normally 

operating spark-ignition engines fall within the flamelet regime. 

In the flamelet regime, turbulence does not affect the chemistry significantly be­

cause the characteristic residence time within the reaction zone is much smaller than 

the characteristic turnover time of the turbulent eddies. In this regime, propagating 

reaction fronts, which are wrinkled and convoluted by turbulence, can be identified. 

However, within the corrugated flamelet regime, flame peninsulas may become increas­

ingly important as the turbulence intensity increases and/or as the mixture becomes 

more dilute (Matthews et al. 1996). Hence, the effect of strain and curvature are im­

portant for the spark-ignition engine combustion simulations. The effect of strain have 

been widely used to correlate the turbulent burning velocity. 

Recently the analyses of turbulent flame in the flamelet regimes have involved the 

various spatial statistical properties of the flame surface. Hence, the flame surface area, 

flame curvature and orientation statistics provide a complete geometrical description 
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of the turbulent flame surface propagation (Lee et aZ. 1993). The flame surface area 

is important as an indicator of the degree of flame front wrinkling, as well as a means 

to measure the turbulent burning velocity. Flame stretch due to aerodynamic strain 

and curvature affects the turbulent flame propagation. Previously, only the effect of 

strain was used to correlate with the turbulent burning velocity (Bradley et aZ. 1992). 

probably because the overall effect of the flamelet curvature on the burning rate inte­

grates to zero for the symmetric curvature distribution (Becker et aZ. 1990). However, 

a non-linear relationship between curvature and stretch is now well recognized and as 

a result positive and negative curvature cannot be regarded as cancelling each other 

(Kostiuk and Bray 1994). 

1.7 Turbulent Flame Propagation in SI Engines 

In a turbulent premixture, the spark energy initiates reaction and a propagating flame 

front capable of overcoming the high geometric stretch. As the flame kernel grows 

and the influence of the geometric stretch is superseded by stretch due to aerodynamic 

strain, the flame is, at first, wrinkled by only the smallest scales of turbulence, whilst 

the larger scales convect the flame kernel without wrinkling the flame front significantly 

(Ting et aZ. 1995, Abdel-Gayed et aZ. 1987). Figure 1.4(a) shows schematically, small 

flame ball interactions. The small flame ball is wrinkled by the small scaled, closely 

spaced corrugations; while the largest eddies, have been described as 'wandering giants' 

that occasionally kick the flame around causing the flame convection (Ting et aZ. 1995). 

The large flame ball / small eddy interaction is shown in Fig l.4(b). The size of the 

eddy interacting with the initial flame kernel plays an important role in the early flame 

development. Early flame growth is of particular interest because it is critical to th(' 

complicated transient combustion process in a closed combustion chamber. Although 

most of the mass in the chamber burns in the later stage of the combustion, a large 

portion of the total combustion time is occupied by early flame growth (Checkel and 

Ting 1993). It is now widely accepted that the early flame development is the ke~· 

factor affecting the cycle-to-cycle variations in the engine (Shen ct al. 1996). 
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As the kernel continues to grow it becomes progressively wrinkled by larger length 

scales with an associated increase in the turbulent burning velocity as a result of the 

contribution of an increasingly larger portion of the turbulence spectrum (Ting et ai. 

1995), until the size of the kernel is sufficient to be affected by the entire turbulence 

spectrum. Eventually a fully developed turbulent flame ensues (Abdel-Gayed et ai. 

1987, Ting and Checkel 1997). However, a reverse effect, "de-developing turbulence", 

might occur as the flame approaches the walls - such that only progressively smaller 

scales of turbulence affect the flame propagation (Merdjani and Sheppard 1993). 

1.8 Turbulent Burning Velocity and their Correlations 

Unlike a laminar flame, which has a characteristic burning velocity that depends 

uniquely on the properties of the mixture and the initial condition, a turbulent flame 

has a propagation velocity that depends also on the flow field parameters. Turbulent 

burning velocity, utJ is defined as 'the velocity at which unburned mixture enters the 

flame zone in a direction normal to the flame' (Turns 1996). In this definition, the flame 

surface is represented as some time-mean quantity, recognizing that the instantaneous 

position of the high-temperature reaction zone may fluctuate widely. Experimentally, 

the value of Ut is usually measured from two-dimensional photographs of an essentially 

the three-dimensional phenomenon. Traditionally, turbulent burning velocity has been 

related to the r.m.s. turbulent velocity and both of these quantities have been normal­

ized by the laminar burning velocity. 

In a seminal work, Bradley et ai. (1992) have presented correlations of turbulent 

burning velocity from about 1650 experimental vahl(,s. obtained in burner and stirred 

bombs. This relationship between Ut/uL and uk/uL is shown in Fig. 1.5. Here. u~ is 

the 'effective' r.m.s. turbulent velocity influencing the flame. As the flame d('yelops 

this value tends towards U'. The full line curves in the figure show the eff('cts of flame 

straining by turbulent field in terms of the product of the Karlovitz stretch fact (II. K, 

and the Lewis number, Le. Previously (Abdel-Gayed et ai. 1987), the correlatiolls had 
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been presented in terms of K for two ranges of Le. However, Bradley et al. (1992) found 

that the experimental data correlated better with the product K Le than solely with K 

for two separate ranges of Le. The dashed lines represent values of RL/ Le2, which is the 

appropriate dimensionless group expressing turbulent Reynolds number effects. These 

were obtained from a rearrangement of the equation for the Karlovitz stretch factor. 

These correlations are relevant to both combustion in engines and gaseous explosions 

hazards, though the latter tend to have larger length scales. 

However, problems emerge in the definition of Ut. These are principally associated 

with definition of the mean flame area, with which the burning velocity must be coupled. 

Because of this, measured values of turbulent burning velocities deduced from pressure 

records can be different from those measured from schlieren-based photographs. Abdel­

Gayed et at. (1986) identified two burning velocities, one, Ut, based on the propagation 

rate of the flame front and another, Utr, a true burning rate based on the conversion 

rate to burned products. Further studies of these two definitions are important and 

form a part of the present work. 

1.9 Scope of the Thesis 

The thesis reports studies of spherically expanding premixed flames for different ini­

tial conditions of pressure, temperature and equivalence ratio under both laminar and 

isotropic turbulent conditions. Schlieren photography is used predominantly to study" 

the laminar flame propagation, while the planar Mie scattering (PMS) technique is 

used to study turbulent flame propagation. Flame surface contours of turbulent flames 

also are obtained using the planar laser induced fluorescence (PLIF) technique. The 

experimental techniques employed are described in Chapter 2. 

Measurements and the computational techniques for developing laminar burllillg 

velocities and Markstein numbers are discussed in Chapter 3, while the results thus 

obtained and comparisons of them with t.he results of others are prps('nted in Chapter 4. 

It is found that. laminar flames at high pressure more readily" lwcome cellular be,\'oIHI ;t 
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a certain critical size. The transition to a cellular flame and the subsequent increase in 

flame speed is presented in Chapter 5. 

After this study of laminar flames and their instabilities the structure of turbulent 

flames revealed by PMS is reported in Chapter 6. This leads to an examination of 

different ways of defining the turbulent burning velocity and the presentation of results 

also in the same chapter. 

Analyses of flame fronts using PMS and PLIF techniques are presented in Chap­

ter 7. These yield pdfs of curvature for a number of different condition. These pdfs are 

related to turbulent r.m.s. velocities and to the earlier work on flame instabilities. 

Chapter 8 draws conclusions from the work and makes some suggestions for further 

researches. 
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Chapter 2 

Experimental 

Apparatus and Techniques 

2 .1 Introduction 

Flame propagation in methane-air mixtures was studied at various initial pressures, 

temperatures and compositions under laminar and turbulent conditions in a combus­

tion vessel. Schlieren photography was used to study laminar flame propagation, while 

a planar mie scattering (PMS) technique was used to elucidate the important aspects 

of turbulent flame propagation. Thrbulent flame curvature also has been studied us­

ing planar laser induced fluorescence (PLIF) images. Apparatus common to these 

techniques is reported first and this is followed by the more specific apparatus and 

experimental techniques. Only brief descriptions are reported in those instances where 

detailed information exists elsewhere. 

2.2 The Combustion Vessel 

The experiments described in the present study were conducted in the fan-stirred com­

bustion vessel shown in Fig. 2.1. It is a 380 mm diameter spherical stainless steel vessel 

capable of withstanding the temperatures and pressures generated from explosions at 

initial pressures of up to 1.5 MPa and initial temperatures of up to 600 K. The vessel 
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has 3 pairs of orthogonal windows of 150 mm diameter and 100 mm thickness 1 made 

with schlieren quality glass. These windows provided the optical access required for 

the photographic and laser techniques used in the present study. Four ident ical, eight 

bladed, separately controlled fans, symmetrically disposed in a regular tetrahedron con­

figuration, created a central region of isotropic turbulence. The speed of each fan was 

accurately adjustable between 3.3 and 176 Hz (200 and 10000 rpm) via a solid state 

variable frequency converter unit. Details of the vessel have been described by Ali 

(1995) and the fan speed control mechanism was described by Scott (1992). 

The turbulence parameters within the vessel were calibrated by Bradley et ai. 

(1996)(b) using laser doppler velocimetry (LDV). The turbulence within the central 

region of the vessel was found to be uniform and isotropic with very low mean velocities. 

The r.m.s. turbulence velocity, u', was found to be represented by 

u' (m/s) = 0.001191s (rpm) (2.1 ) 

where Is is the fan speed. The integral length scale, L, obtained by a two point 

correlation, was found by Bradley et ai. (1996)(b) to be 20 mm and was independent 

of fan speed and pressure. 

A quartz pressure transducer, Kistler 701H, was mounted flush with the inner 

surface of the vessel to record the pressure rise prior and during an explosion. The 

transducer was connected to a Kistler Charge Amplifier, type 5007, which is then 

connected to a personal computer via an analogue to digital converter (ADC) board, 

DAS-50, supplied by Keithley Instruments Ltd. Mixture initial pressure was measured 

with a Druck PDC 081-0499 pressure transducer. This transducer could only withstand 

a maximum pressure of 1.5 MPa and was, therefore, isolated froIll the vessel before (tn 

explosion. 

The temperature was meiL'mred by a stainless steel sheat hed ty'pe K thermocouple 

of 1.5 mIll diameter, plac('d, exposed to the mixture, near the vessel surface. The 
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mixture temperature was read using a CAL 320 temperature controller. The unit was 

also used to control the heater during mixture preparation. 

2.2.1 Ignition System 

Ignition of the mixture was achieved via a standard 6.35 mm Minimag spark plug. 

It was mounted in the center of the vessel using a stainless steel tube in which was 

fitted a PTFE insulated high voltage lead. A Lucas 12 V transistorized automotive 

ignition coil system was connected to the spark electrode assembly. The cathode of the 

ignition circuit was connected to earth via the stainless steel tube and the main body 

of the vessel. The average spark energy of the system was determined by Bradley et al. 

(1996)(b) to be 23 mJ. For experiments undertaken at an initial pressure of 0.1 MPa, 

the ignition unit was found to operate reliably with a spark gap of 1 mm. However, 

to achieve a reliable breakdown at higher pressures, it proved necessary to reduce the 

gap to 0.6 mm. The ignition system failed to provide sufficient breakdown for rich 

(¢ > 1.2) methane-air mixtures at atmospheric pressure. Therefore, in the present 

study rich methane-air mixture was limited to ¢ = 1.2. 

2.2.2 Mixture Preparation 

Mixtures were prepared in the explosion vessel. Prior to filling, the vessel was evacuated 

to a pressure of less than 1 kPa and flushed twice with dry cylinder air to remove any 

residual products from the previous experiment. After further evacuation, the mixture 

components were added, methane of 99% purity first, to its respective partial pressure 

and then the vessel was filled to the required initial pressure with dry cylinder air, 

supplied by BOC. Throughout the filling process, the temperature of the mixture was 

maintained at within 5 K of the intended initial value. For laminar flame studies, the 

fans were kept running during the filling period only to ensure adequate mixing of the 

reactants and the fans were stopped for at least one minute before ignition to ensun' a 

quiescent premixture. However, the fans speed were maintained at within ± 10 rpm for 



25 

turbulent flame propagation study. Pressure and temperature were measured immedi­

ately prior to ignition, which was initiated only when the temperature was within 5 K 

of the intended value with 2% pressure tolerance. 

For explosions with an initial reactant temperature up to 358 K, the entire vessel 

was preheated by a 2 kW heater. However, for higher initial temperatures, it proved 

necessary to preheat the entire vessel with a purpose built bank of electrical heating ele­

ments totaling 8 kW. Once the vessel had attained the required temperature, the 2 kW 

heater element provided the required temperature control during mixture preparation. 

The external surfaces of the vessel were insulated to minimize heat loss. 

2.3 Diagnostic Techniques 

The experimental arrangement for laminar flame propagation studies using schlieren 

photography was described by Ali (1995), while arrangements for the PMS technique 

has been described by Bradley et al. (1996)(b). In addition, experiments using the 

PLIF technique were carried out by Dr. Robert Woolley of the School of Mechani­

cal Engineering, University of Leeds, and Dr. Russel Locket of Cranfield University. 

Flame front contour coordinates, with a spatial resolution of 0.157 mm/pixel, were also 

obtained by Dr. Woolley, using suitable image processing techniques. These flame 

coordinates were also analysed by the present author, in addition to the PMS image 

coordinates, to study the curvature distribution of the turbulent flame front. 

2.3.1 Schlieren Photography 

Spherically expanding laminar flames were studied using high speed schlieren cine pho­

tography at, typically, 6000 frames per second. Schlieren photography has an advantage 

of providing a readily definable flame surface in the images (Glassman 1996) at a certain 

isotherm. This isotherm depends on the initial temperature, pressure and composition 
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of the air-fuel mixture, as well as the curvature of the flame front (Rankin and Wein­

berg 1997). Therefore, a correction is required to estimate the cold front radii from the 

schlieren isotherm (Bradley et al. 1996) and is discussed in § 3.3. 

The experimental arrangement for laminar flame propagation studies is shown in 

Fig. 2.2. In addition to schlieren photography, pressure and CH emission, generated in 

the combustion process, also were routinely recorded. Both of these quantities give a 

qualitative idea of the mass burning rate of the combustion process (Mushi 1992 and 

Ali 1995). In the present study, the pressure and CH data were used to observe the 

repeatibility of experiments at similar initial conditions. 

A Spectra-Physics 10 mW He-Ne laser, model 106-1, with a beam diameter of 

0.65 mm and wavelength of 632.8 nm was used as the light source. The beam was 

expanded by an Olympus A40 microscope objective lens and a 150 mm diameter lens 

with focal length 1000 mm produced the 150 mm diameter parallel beam which passed 

through the vessel windows. From the vessel, the parallel beam passed through another 

150 mm diameter lens with a focal length of 1000 mm. This focused the beam to a 

0.65 mm pinhole placed at the schlieren focus. The divergent beam then passed into 

a Hitachi 16HM high speed cine camera which had a maximum speed of 10000 frames 

per second. The pin-hole blocked off some of the incident light and, because of the 

density gradient generated refraction in the flame, it caused an increase or decrease in 

the intensity of light passing through it. Therefore the flame reaction zone was readily 

visualized. The sequence of schlieren images of the expanding flame were recorded on 

Ilford FP4 16 mm high speed film. A sample of flame images thus obtained are shown 

in Figs. 3.1 to 3.3 and are discussed in § 3.3. 

Because the duration of an explosion was of the order of only a f('w milliseconds, it 

was vital that the spark and all instrumentation be precisely s)·nchronized. After mix­

ture preparation, the experiment was initiated by activating a t riggpr swit.ch at t arhpo 
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to a control unit to start the camera. When the camera had reached the pre-set fram­

ing speed, it sent a trigger pulse back to the control unit. Upon receiving the trigger 

pulse, the control unit transmitted a spark start pulse to the spark unit and also sent 

a signal to a personal computer through the analogue to digital converter (ADC) to 

start recording pressure and CH emission data. Prior to any explosion, the room lights 

were turned off to minimize the amount of extraneous light entering the camera and 

the photomultiplier (PM), which was used to record CH emission intensity. 

2.3.2 Planar Mie Scattering (PMS) Technique 

In the present study, PMS was used to reveal details of the two dimensional structure 

of three dimensional turbulent flames. The technique involved the recording of light 

scattered, without a change in the frequency of light, from small seed particles. The seed 

either evaporated, sublimed or burned as it crossed the flame front and consequently 

did not scatter light, while the seed in the unburned mixture scattered light, and so 

provided a planar section of the complex, three dimensional, flame front geometry. 

Scattered light was imaged perpendicular to the incident light. The cross section of 

the flame was identified as the frontier between the bright, unburned, and the dark, 

burned, regions in the illuminated zone (Durao and Heitor 1990). 

The selection of seed particles was important as it effects both the image quality and 

the measured location of the flame front. Different particles burn or sublime at differ­

ent temperatures and they have different scattering characteristics (Durao and Heitor 

1990). Scott (1992) investigated various seeding materials and methods of introducing 

them in a V-flame burner and in the present combustion vessel. He investigated oil 

droplets, alumina, stabilized zirconium oxides, magnesia and titanium dioxide particl('s 

and concluded that titanium dioxide provided the best light scatting characteristics. 

However, titanium dioxide particles are abrasive and tended to contaminate the win­

dow. Therefore, in the present study, tobacco smoke was used. \Virth ct ai. (1993) ami 

Pontoppidan (1995) highlighted the advantages of using tobacco smoke in their f'ngill(, 

studies and reported that. although the smoke wa." composed of particles with IIlean 
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diameter less than one micron, the particle concentration was sufficient to visualize the 

flow field. Moreover, Wirth et al. (1993) reported that tobacco particles were able to 

survive at high compression temperature before ignition and they burned out imme­

diately in the flame front to generate a good contrast between burned and unburned 

regions. In the present study, good quality of images of turbulent flame propagation 

were obtained using tobacco smoke. A sample of images obtained using this technique 

is shown in Fig. 6.1 and discussed in § 6.1. 

The arrangement for flame visualization using the PMS technique in turbulent 

flame studies is shown in Fig. 2.3. A copper vapor laser, model CUI5-A, made by Oxford 

Lasers, operating simultaneously at wavelengths of 510.6 nm (green) and 578.2 nm (dark 

yellow), was used as a lasing source. It had the advantage of a very high pulse rate 

(8-14kHz), with a short pulse duration (15 ns) and a relatively high pulse energy (2 mJ 

at 510.6 nm and 1 mJ at 578.2 nm at 5 kHz). The system consisted of a laser head, 

from which the laser output was obtained, the power supply and a control unit. Details 

of the system and its operation were described by Lee (1995). 

A thin laser sheet was obtained using a combination of spherical and cylindrical 

lenses as shown in Fig. 2.3. A 500 mm spherical Bi-convex lens focused the laser beam, 

and a 1000 mm Plano-convex cylindrical lens, shortly thereafter, expanded the beam in 

one plane to form a sheet with an estimated thickness of 0.5 mm. The laser sheet was 

passed along a vertical plane just in front of the spark plug in the center of the vessel 

and was Mie scattered from tobacco smoke particles. The scattered light was recorded 

and stored using a Kodak Ektapro HS Motion Analyzer, Model 4540. It consisted of 

an ultra high-speed video recording system, capable of recording 4500 full frames per 

second The light sensitivity of the video system was excellent and its sensitivity at 

the high gain setting was equivalent to ISO 3000. It had a 256x256 pixel sensor, with 

a 256 gray level response. A 510.6 nm interference filter was attached to the camera 

lens to prevent combustion generated light from obscuring the sheet images. 
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The electronic triggering features of the Motion Analyzer made it possible to store 

images prior to, after, and at both sides of the trigger pulse. In the present study, 

'center recording mode' was used in which images were recorded until the trigger signal 

was received and then 1536 additional frames were recorded after the trigger. Prior to 

triggering the spark, the copper-vapor laser was synchronized to the camera framing 

rate at 4.5 kHz. Upon receiving the spark signal through a control switch, the motion 

analyzer stored digital images in Dynamic Random Access Memory (DRAM) and these 

were available for immediate playback or for subsequent image processing discussed in 

§ 2.4.2. 

2.4 Data Processing 

Data processing techniques employed in the present study are discussed below. Analy­

ses of data obtained from schlieren photography is presented in Chapters 4 to 6, while 

the analyses of data from laser sheet images are presented in Chapters 6 and 7. 

2.4.1 Schlieren Photography 

Films, obtained using schlieren photography were developed in the school's photo­

graphic laboratory using a Bray Film Processor. Flame images were viewed with a 

Vanguard Projector which used a 16 mm back projection onto a translucent screen 

with a reading area of 30x50 cm for analysis of still and cine film from their blown 

up images (about 40 times). Films were analyzed by measuring three diameters of the 

flame image. Since the flame was almost circular, the difference in the three measure­

ments was usually less than 1 %. The average of the three measurements was used in 

subsequent analysis. 

A "channel shaped" metal marker, with two arms 60 mm apart was attached to the 

vessel window frame to provide the scale for the recorded images. Lengths measured 

on the projected images from the processed film were converted to actual lengths in 

the explosion using the marker calibration. 
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The time between exposures on the cine films was established usmg a timing 

mechanism which consisted of a light emitting diode (LED), flashing at 1 kHz, built 

into the high speed camera to produce a timing mark on the film at intervals of one ms. 

The distance between each timing mark was measured to derive the camera framing 

rate at that time. 

From these measurements, flame radius against time data were obtained and these 

were later analyzed to derive the laminar burning velocities and to quantify the effects 

of stretch on it. These are discussed in Chapters 3 and 4. Also the study of the 

transition to instability of an initially laminar flame is discussed in Chapter 5. 

2.4.2 PMS Technique 

After each explosion, the images stored in the camera memory were played back at 1 Hz 

and were recorded onto video tape by a VCR connected to the processor. These video 

images were later captured by a program 'VIDMEM' on a Silicon Graphics computer 

in a 'RGB' format with a resolution of 576x768 pixels. These images were cropped 

down to 400x400 pixels by the program 'IMGWORKS'. The cropped images were then 

converted into gray scale ones with 256 gray levels and the brightness was balanced 

by histogram equalization (Baxes 1994) before they were saved in the 'TIFF' format. 

The saved images were then analyzed using 'CANTATA', a suit of subroutines, within 

the signal and image processing software 'KHOROS', which was installed on the UNIX 

based SUN workstations. CANTATA was used because of its visual programming 

ability in which a sequence of operations can be linked to form a worksheet which 

provides fast, user friendly, image processing. 

The images obtained in the present experiments were 'noisy', due to the nonuni­

formity in pixel sensitivity, variations of the spatial distribution in laser intensity and 

nonuniform seeding. Hence, an initial processing sequence with CANTATA consisted 

of removing the noise by using a mask image and applying a Fourier transform (Baxes 

1994), and then normalizing the images by a background image taken just prior to 
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ignition. However, this processing was not always successful in removing all the noise 

from the images, specially at high levels of turbulence in which the smoke particle dis­

tributions deteriorated very rapidly and resulted in images with low contrast. This was 

especially true near the end of flame propagation. A further difficulty resulted from the 

very high non uniformity of the laser sheet in which its intensity was poor on one side. 

Therefore, it was difficult to select a suitable threshold value to convert these grey scale 

images into binary format in which each pixel classifies the associated small volume in 

the sheet as occupied by unburned or burned gas. 

Therefore, attempts were taken to extract the flame edge coordinates by tracing 

them with a mouse and then saving the coordinates as a text file for further analysis. 

However, facility to do this was not available in any commercial software. Therefore, 

an image viewer, 'IMAGE' was developed, by the present author', using the 'Visual 

Basic' programming language. It could view a bitmap of 400 by 400 pixels and could 

save the pixel coordinates of the flame contour when the mouse was traversed along 

the flame front. Flame coordinates thus obtained for flame images shown in Fig. 6.1 

are shown in Fig. 6.2 and are discussed in § 6.1. 

The resolution of the images was measured by imaging a ruler vertically in the 

focal plane. Using image processing, the number of pixels over the distance of 1 cm 

was then calculated to yield an image resolution of 0.32 mm per pixel. 
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Chapter 3 

Measurelllent of Lalllinar 

Burning Velocity and 

Markstein Length 

3.1 Introduction 

In recent years there has evolved a greater understanding of the effects of flame stretch 

on the laminar burning velocity. Several techniques for measuring the laminar burning 

velocity have been used and are reviewed critically elsewhere (Andrews and Bradley 

1972, Rallis and Garforth 1980). Some of these techniques do not readily yield infor­

mation on stretch and instabilities, and this makes them unsuitable for precise quanti­

tative studies. Because spherical flames have a number of advantages over other flames 

for burning velocity measurements, a number of experimental studies, at well defined 

stretch, have been undertaken in which such flames at variety of conditions (Bradley 

et ai. 1996, Bradley et ai. 1998, Bradley and Harper 1994, Dowdy et ai. 1990, Aung 

et ai. 1995, Aung et ai. 1997, Taylor 1991, Ali 1995, Brown et ai. 1996, Clarke et al. 

1995). Spherical flames, following spark ignition, are well suited for measurement pur­

poses because their flame stretch is uniform and unambiguously defined (Bradley et ai. 

1996, Dixon-Lewis 1990). In the pre-pressure period, in which no significant increase in 
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pressure is observed, flame speed is found directly from measurements of flame radius at 

different times by schlieren cine photography. Measurements at different stretch rates 

are used systematically to deduce the unstretched laminar burning velocity and the as­

sociated Markstein length. Observation of the flame surface has the further advantage 

of revealing the onset of instabilities, first as flame cracking and then as a developed 

cellular structure (Bradley and Harper 1994). A small Markstein length is indicative 

of both a small influence of flame stretch rate on burning velocity and early onset of 

instabilities (Bradley and Harper 1994). 

In the present study, the burning velocity and Markstein lengths of methane-air 

flames at ¢ = 0.8, 1.0 and 1.2 are measured between 0.1 and 1.0 MPa and 300 to 

400 K using spherically expanding flames. One dimensional planar flame struct ure 

and unstretched burning velocities also are computed using PREMIX code (Kee et al. 

1985) over the same range of initial conditions using a full kinetic scheme, GRI-Mech 

(Frenklach et al. 1995). Methods of analyzing the experimental data and a description 

of computational techniques are presented in the present chapter. Both experimental 

and modeled results are presented in Chapter 4. Results from present study are also 

compared with those of other researches in Chapter 4. 

3.2 Laminar Burning Velocity and Burning Rate for a 

Spherically Expanding Flame 

For a spherical expanding flame, the rate of entrainment of reactants at an initial 

unburned gas density, Pu, and radius, TU, is related to an associated burning velocity, 

Un, by (Bradley et ai. 1996): 

dmu 2 d [foru 
2 1 -- = - 41fTuPuun = -- 41fT pdT 

dt dt 0 
(3.1 ) 
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where, P is the density at radius r, and ru is the cold front radius defined in § 3.3. 

Hence, 

1 d [Ioru 
2 1 Un = -2--d r pdr 

rupu t 0 
(3.2) 

In Eq. 3.1, the gas within the sphere of radius ru might be regarded as comprised of a 

mixture of burned gas at its equilibrium adiabatic temperature, with a density of Pb, 

and unburned gas with a density of Pu. Thus, at a radius r and density p, the fraction of 

burned and unburned gas can be expressed as (Pu -p)/(Pu -Pb) and (P-Pb)/(Pu -Pb), 

respectively, enabling the left hand side of Eq. 3.1 to be written as: 

dmu d [Io ru 
2 (p - Ph ) Ioru 

2 (Pu - p) 1 -d = - -d 47rr Pu dr + 47rr Pb dr 
t to Pu-Pb 0 Pu-Ph 

(3.3) 

The first term on the right represents the rate of entrainment by the flame front 

of gas that remains unburned, the second the rate of formation of burned gas (Bradley 

et al. 1996). Hence, the laminar burning velocity associated with the appearance of 

burned product, Unr is: 

1 d [Io ru 
2 (p - Pb) 1 Unr = -2-- 47rr P _ dr 

rupu dt 0 Pu Ph 
(3.4) 

Invoking Eqs. 3.1 to 3.4, Un can be related to Unr by: 

1 d [Io ru 
2 (p - Pb) 1 Un = Unr + -2- dt r Pu _ dr 

rupu 0 Pu Pb 
(3.5) 

In Bradley et al. (1996), Un and Unr are related to the Sn by: 

(3.6) 

3.2.1 Flame Stretch and Markstein Lengths 

In the pre-pressure period, a spherical flame is subjected to stretch due to both cur­

vature, ac, and strain, as. In Bradley et al. (1996) their values were related t() thf' 
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corresponding cold front radius, ru, by 

Un 
ac=2 - (3.7) ru 

and, 

Ug 
as =2- (3.8) 

ru 

A Markstein length is associated with each term as shown in Eqs. 1. 7 & 1.8, reproduced 

here as Eqs. 3.9 & 3.10: 

(3.9) 

and, 

Ul - Unr = Lcrac + Lsras (3.10) 

3.3 Measurement of Laminar Burning Velocities and 

Markstein Lengths 

Laminar burning velocities and Markstein lengths are derived from measurements of 

spherically expanding flame images captured using high speed schlieren cine photogra­

phy at, typically, 6000 frames per second. Shown in Fig. 3.1 are such pictures obtained 

from an explosion of stoichiometric methane-air at an initial pressure of 0.1 MPa and 

temperature of 300 K. Initial flame kernel is slightly distorted, however, they regained 

a spherical shape soon. Flame propagation is essentially spherical, and the flame front 

is smooth and is easily identifiable from these pictures. However, smooth flames don·t 

occur at all conditions. Shown in Fig. 3.2 are schlieren photographs of a lean (4) = 

0.8) flame propagating in a premixture at 300 K and 0.5 MPa. They reveal the grainy 

appearance of cell formation and the formation of dimples along the flame front. assa-

ciated with thermo-diffusive and hydrodynamic instabilities (Groff 1982, Bradley· and 

Harper 1994, Bradley et al. 1998, Bradley 1998). The contrast in appearance between a 

cellular and noncellular flame is emphasized in Fig. 3.3. The cellular flame, in Fig. 3.3. 

shows the distribution of c('lls of different sizes as described by KUZlwtsov and \linacv 
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Minaev (1996) as a 'web' of cracks and cells. The transition to instability requires some 

time in which the cells continue to grow and divide during flame growth. Transition to 

instability is discussed in Chapter 5. 

The flame speed, Sn, is found from the measured flame front radius against time 

by 

S _ dru 
n - dt (3.11) 

where, ru is the cold front radius defined as the isotherm that is 5 K above the tem-

perature of the reactants. In Bradley et ai. (1996), it was shown to be related to the 

flame front radius that is observed by schlieren cine photography, r sch' by 

(
pu) 0.5 

ru = rsch + 1.95 °l Ph (3.12) 

Values of Pu and Ph are found from the properties of the equilibrated adiabatic products, 

computed using the thermodynamic data base by Burcat and McBride (1997). Values 

are validated against results obtained using detailed chemistry as described in § 3.4. 

Pure gas viscosities are computed using the kinetic theory of gases (Bird et ai. 1960), 

and the Lennard-Jones collision diameter, required to calculate the gas viscosity, is 

taken from Assael et ai. (1996), while the reduced collision integral is approximated by 

the Neufeld-Janzen equation (Neufeld et ai. 1972). Gas mixture viscosity is calculated 

using the semiempirical formula of Wilke (1950). Full details of the computations of 

thermodynamic and transport properties are presented in Appendix A. 

Equation 3.12 assumes that the schlieren edge results from an isotherm of -lGO K 

as suggested by Weinberg (1955). A more recent work by Rankin and Weinberg (lqq7) 

shows that for flames concave to the burned gas, as in the present work, a III ( liT :tp-

propriate isotherm is a function of flame radius and varies between 850 and 900 K. It 

proved difficult to derive an alternative form of Eq. 3.12 to account for this latest work. 

Instead, the distance between the' 460 K isotherm and that at 850 K is approximat ed 
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to be similar to that of a one dimensional planar flame. This is computed using GRI­

Mech which is discussed in § 3.4. Equation 3.12 is modified to include this additional 

thickness. 

Shown in Fig. 3.4 is the variations of TU with elapsed time from ignition for methane­

air mixtures at an initial temperature of 300 K and pressure of 0.1 MPa. Flame radius 

at a given time depends on the equivalence ratio. Flame speed is obtained by numerical 

differentiation of the radius against time data. In the present study, the Savitzky-Golay 

algorithm (Savitzky and Golay 1964, Press et al. 1992), presented in Appendix B, IS 

used for the data smoothing and numerical differentiation. 

Shown in Fig. 3.5 is the variation of Sn with Tu for a stoichiometric mixture with 

an initial temperature of 300 K and pressure of 0.1 MPa. Experiments are shown 

by the crosses and the solid line is Eq. 1.5. Experiments display some scatter of a 

periodic nature. Similar oscillations have been reported for iso-octane-air mixtures and 

attributed to acoustic disturbances (Bradley et al. 1998). These oscillations are not 

studied in the present work. At approximately 5 mm radius, the flame speed attains 

a minimum value as the effects of the spark decay and before normal flame chemistry 

develops (Bradley et al. 1996). Shown in Fig. 3.6 is the variation of Sn with Tu for a 

stoichiometric methane-air mixture with an initial temperature of 300 K and pressure 

of 0.5 MPa. In this case the effect of the transition from spark to fully developed 

flame propagation is not evident as for the previous case in Fig. 3.5. This is due to 

the differing effect of the flame stretch which is discussed in § 4.2. Therefore, in thc 

present study, flames with radii less than 6 mm are considered, on the basis of the 

computational study of Bradley et al. (1996) not to be fully developed and arc not 

used in further analysis. 

Shown in Fig. 3.7 is the variation of Sn with (), for a stoichiometric mixture at 

0.5 MPa with an initial temperature of 300 K. At high rates of stretch (small flame 

radius), the flame speed is high. As the flame expands the flame speed slowly redu('('s 
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as does the flame stretch. As stretch is further reduced a point is reached where the 

flame becomes unstable and cellularity develops, and this is associated with an increase 

in flame speed. This phenomenon is observed for lean and stoichiometric methane-air 

mixtures at high pressures and is discussed in Chapter 5. The point at which the 

flame speed begins to accelerate rapidly with decreasing stretch defines a critical Peclet 

number, Peel, given by the flame radius at the onset of flame acceleration, normalized 

by the flame thickness (Bradley et ai. 1998, Bradley 1998). In Chapter 5, values of 

Peel are related to the onset of flame cellularity. 

Clavin (1985) suggested that a linear relationship exists between flame speed and 

the associated stretch, and this has been verified by numerical modeling (Bradley et al. 

1996), and experimental works (Aung et al. 1997, Bradley et al. 1998). In the present 

study, a linear relationship is found to exist, over a wide range of radii that excludes 

the spark affected and cellular flame regions, and is shown in Fig. 3.7. Hence, the 

value of Lb is obtained as the slope of the plot of Sn against 0', while Ss is obtained 

as the intercept value of Sn at 0' = O. The unstretched laminar burning velocity, uz' is 

obtained from consideration of mass conservation of an assumed infinitely thin flame. 

Hence, ul is deduced from Ss using: 

Pb Uz = Ss-
Pu 

(3.13) 

Equation 3.13 is valid only at infinite radii for which the curvature can be neglected. 

For smaller radii, necessary to determine Un as a function of 0', Eq. 3.13 is modified t () 

gIve 

(:3.1.1) 

Here S is a generalized function and depends upon the flame radi us and dcnsi t y. ratio. 

It accounts for the effects of flame thickness on the mean densit y of the burned ga.s<'s. 
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Bradley et ai. (1996) computed a generalized expression for S from modeled methane­

air flames at 0.1 MPa and 300 K over a range of equivalence ratios. The general 

expression is 

(3.15) 

and this expression is used in the present work. In addition to its validity at 0.1 MPa and 

300 K for methane-air mixtures, Eq. 3.15 has been confirmed by Gu (1998) to be valid 

for propane-air mixtures at the same conditions. Although it has not been validated at 

alternative temperatures and pressures, it is unlikely that its use will result in serious 

errors as it predicts the appropriate trends in flame thickness as a function of pressure 

and temperature. Moreover, it plays no role in the determination of Ut and Lb' 

Values of ul are deduced from Ss using Eq. 3.13. Values of Un are computed using 

Eqs. 3.14 and 3.15. Values of Unr are calculated using Eq. 3.6 and Markstein lengths 

are evaluated using Eqs. 3.9 and 3.10, employing multiple linear regression (Bradley 

et ai. 1996). 

3.4 Computations of Burning Velocities 

In the present study, unstretched laminar burning velocities of a freely propagating, 

one-dimensional, adiabatic premixed flame are computed using the Sandia PREMIX 

code (Kee et ai. 1985). This uses a hybrid time-integration/Newton-iteration technique 

to solve the steady-state comprehensive mass, species and energy conservation equa­

tions. The CHEMKIN code (Kee et ai. 1989) evaluated the thermodynamic properties 

of the reacting mixture and processed the chemical reaction mechanism. The chemical 

reaction mechanism of GRI-Mech 1.2 (Frenklach et ai. 1995) is used to describe the 

methane oxidation chemistry in terms of 177 elementary reactions of 32 specie~. Trans­

port properties are processed by the Sandia transport ~oftware package, which provided 

for a full Dixon-Lewi~, multi-component, dilute gas treatment of th(' gas-phase tra.Il~­

port (Kee et ai. 1986). Computations covered methane-air mix\ urt's at equival(,l1c(' 

ratios between 0.6 and 1.2, and initial tempcratur('~ and pressures betw(,(,Il 30() and 
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400 K and 0.1 and 1.0 MPa. Sufficient grid points are allowed (usually 500) to ensure 

a converged solution. 

In a parallel work, Gu (1998) has modeled the propagation of a time dependent 

stretched spherical flame. Because of the increased computing power required to model 

the time dependent influence of stretch, it is necessary, to reduce the number of species 

and to eschew 'full mechanisms'. Therefore the four-step reduced mechanism of Mauss 

and Peters (1993), based on 40 elementary reactions, is employed. The basis of such 

a scheme relies on sensitivity analysis and sufficiently valid steady-state and partial 

equilibrium assumptions. When an intermediate species is formed at a rate slower than 

that at which it is consumed and its concentration remains relatively small, it is assumed 

to be in a steady-state. The general governing conservation equations and detailed 

numerical procedure are presented in Bradley et al. (1996). A time increment of 1 J.lS 

is used. Profiles of temperature, velocity and concentrations of seven non-steady-state 

species are stored every 0.2 ms for subsequent post-processing. The burning velocities 

are calculated as described in § 3.3. 
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Fig. 3.1. Laminar flam propagation in a toi hiom tri m han if mL' ur (t n 
initial temp ratur of 300 K and pre liT of 0.1 IPa. Fir t figur 
park ignition and th 1 t fram corre pond to 22. 4 m . Th tim int rv 1 b \\' Il 

th figur ar 0.76 m . (nl r third fram i hown) , 
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Fig. 3.2. Laminar flame propagation in a 1 an m than -air (¢ = O. ) ( l (11 

initial t mp ratur of 300 K and Pr ur of 0.5 MPa. Fir t figur rr 
park igniti n and tim int rval b tw n th figur Ill' v ry four 11 

frame i hown). 
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(~) 

Fig. 3.3. Schlieren photograph of methane-air flam Tu = 3 
not llular at ¢ = 1.0 Pu = 0.1 MPa an ; ( ) , 11 1 r on 

.5 MPa. 
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Chapter 4 

Results and Discussions of 

Laminar Burning Velocity 

Measurements 

4.1 Introduction 

In the present study, spherically expanding flames propagating at constant pressure 

are employed to determine the unstretched laminar burning velocity and the effect of 

flame stretch as quantified by the associated Markstein lengths. Methane-air mixt ures 

at initial temperatures between 300 and 400 K, and pressures between 0.1 and 1.0 MPa 

are studied at equivalence ratios of 0.8, 1.0 and 1.2. This is accomplished by the analysis 

of the photographic observation of flames in a spherical vessel as discussed in Chapter :~. 

Results are reported in the present chapter and power law correlations ar!' sug­

gested for the unstretched laminar burning velocity as a function of initial pressurp, 

temperature and equivalence ratio. Zeldovich numbers are derived to express the clrt'ct 

of temperature on the mass burning rate and, from this, a more general corr('latioll of 

unstretched laminar burning velocity, based on theoretical arguments, is present('d f(l! 

methane-air mixtures. Experimental results are compared wit h modeled predict iOlls 

as discussed in Chapter 3. The results of the present work are compart'd with t 1111:--1' 

49 



50 

of other researches. Comparison also is made with iso-octane-air mixtures, reported 

elsewhere, to emphasize the contrast in the burning of lighter and heavier hydrocarbon 

fuels. 

4.2 Influence of Stretch on Flame Speed and Burning 

Velocities 

In the present study, laminar flame speed in methane-air premixture is obtained from 

measured radius against time data as discussed in § 3.3. Shown in Figs. 4.1 to 4.10 are 

the variations of flame speed, Sn, with flame radius, Tu, for different initial conditions 

of equivalence ratio, pressure and temperature. For each condition, results from two 

explosions are presented. In addition to the initial condition, flame radius has great 

effect on the flame speed. This additional dependency of flame speed on flame radius is 

a result of flame stretch, 0:'. From Sn and Tu, corresponding values of Q are estimated 

and are discussed in § 3.2.1 and § 3.3. From the values of Sn and Q, values of S5, til 

and various Markstein lengths and numbers are obtained as discussed in § 3.3. 

Shown in Fig. 4.11{a) are the variations of Sn with Q for ¢ = 0.8, 1.0 & 1.2 at 

an initial pressure of 0.1 MPa and an initial temperature of 300 K. The flame speed 

is greatest for the stoichiometric mixture, and that is followed by that at ¢ = 1.2 

and then at ¢ = 0.8. Here, stretch has an adverse effect on the flame speed which is 

indicative of a positive Lb as discussed below. Shown in Fig. 4.11(b) are the variations 

of Sn with 0:' for different initial temperatures for stoichiometric mixtures :It an initial 

pressure of 0.1 MPa. Flame speed is found to increase significantly with increase in 

initial temperature. Stretch has a similar adverse effect on flame speed as observed in 

Fig. 4.11{a). However, as shown in Fig. 4.11{c), at high pressure (0.5 and 1.0 !\lPa) the 

effect of stretch on the flame speed is more complex than for 0.1 i\lPa. Flame speed 

is found to decrease significantly with increase in pressure. :-'1\ lreover. two r('gimes of 

combustion are clearly demonstrated. In thl' first, at stretch rates above approxim:tt('ly 

120 ,-;-1, there is an increase of Sn with n. indicative of a negativ{' Lb' In the second 
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regime, at low stretch rates (large radii) there is a rapid increase in flame speed with 

reduced stretch rate as a result of the onset of a cellular structure and this is discussed 

in Chapter 5. 

Values of Lb are obtained from the slopes of the curves in Fig. 4.11 as discussed 

in § 3.3. For all measured conditions, Lb increases with ¢ as presented in Fig. --1.12. 

At pressures between 0.1 and 0.5 MPa, increasing the pressure results in a dramatic 

decrease in Lb, but between 0.5 and 1.0 MPa there is little variation in Lb. Moreover, 

at high pressures, Lb is negative for lean and stoichiometric mixtures as demonstrated 

by the increase of the flame speed with stretch in Fig. 4.11(c). The effect of increasing 

the temperature is not clear, but is small. Values of Lb for different experimental 

conditions are presented in Tables 4.1 to 4.3. 

The four Markstein numbers M as, Mac, M asr and M acr are calculated from the 

experimental values of Ss and Lb as discussed in § 3.3. The values of the Markstein 

numbers obtained from the present study are presented in Tables 4.1 to 4.3. All appear 

to be influenced in a similar way by equivalence ratio, temperature and pressure and 

therefore, for brevity, only values of M asr are shown in Fig. 4.13. This Markstein 

number is important as the stretch due to strain dominates over stretch due to curvature 

and is discussed in § 5.2. Similar trends with pressure and temperature are observed 

for M asr as for Lb' 

Shown in Fig. 4.14 are the variations of Un and Unr, with stretch for different 

equivalence ratios, initial temperatures and initial pressures. Values of Un and Unr are 

obtained using Eqs. 3.9 & 3.10, and is discussed in § 3.3. The difference between Un 

and Unr, can be clearly seen. The rate of mixture entrainment, Un, always increases 

with stretch. In contrast, Unr, the burning velocity related to t he product ion of burncd 

gas, is usually reduced by stretch. The processes of mixturt' entrainment and burned 

gas production occur in different parts of the flame, Un is defined at tll(l front of tIl!' 

flame and Unr at the back. The difference between Un and Unr expresses the inflw.'J1c(' 
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of flame thickness. The value of (un - unr) is largest at small radii (large stretch) 

where the flame thickness is of a similar order to that of the flame radius. The rich 

condition, ¢ = 1.2, gives the largest differences between Un and Unr. In Fig. 4.14(b), it 

is evident that the initial temperature has little effect on (un - unr). However, as the 

initial pressure increases, the flame thickness decreases, as does the difference between 

Un and Unr as shown in Fig. 4.14(c). Values of Un increase with Q. However, values of 

Unr decrease with a for 0.1 MPa explosions while their values increase with Q at higher 

pressures. 

The response of the two burning velocities to stretch varies with pressure, temper-

ature and equivalence ratio. The matter is further complicated because their responses 

to flow strain and to flame front curvature are not the same. This is represented by the 

different Markstein numbers presented in Tables 4.1 to 4.3. Indeed, their responses to 

strain and curvature can be quite opposite and this underlies the importance of quoting 

all four Markstein numbers. An interesting case is the stationary spherical flame, in 

which the total stretch acting on the flame is zero because stretch due to strain and due 

to curvature have the same magnitude but opposite signs (Bradley et al. 1996). Yet, if 

the Markstein numbers for each effect are not equal, the net result of both effects will 

not be zero. 

4.3 Laminar Burning Velocity and their Correlations 

Shown by the symbols in Fig. 4.15 are the variations of measured unstretched laminar 

burning velocity with temperature and pressure at different ¢. These are obtained from 

measurements at different stretch rates as discussed in § 4.2 using the method discussed 

in § 3.3. In all cases, increasing the temperature or reducing the pressure increa. .. '-;<' til<' 

burning velocity. The simplest correlation of burning velocities is through til(' empirical 

expression of Metghalchi and Keck (1980): 

(
TU)QT (Pu)j3p 

'UI = 'Ul,O To Po 
(-t 1) 
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Here, ul,O is the unstretched laminar burning velocity at a datum temperature and 

pressure of To and Po, respectively. In the present study these are 300 K and 0.1 ~fPa. 

The parameters aT and j3p, which depend upon ¢, when optimized for the experimental 

data in Fig. 4.15 give: 

ul 
[ T, ] 2.105 [ ] -0.504 

= 0.259 1t ~ (m/s) for ¢ = 0.8 

[T, ] 1.612 [ ] -0.374 
= 0.360 1t ~ (m/s) for ¢ = 1.0 (4.2) 

[T, r·ooo 
[ ] -0.438 = 0.314 1t ~ (m/s) for ¢ = 1.2 

These equations are represented by the solid lines in Fig. 4.15. Here, the standard 

deviations of the difference between experiments and Eq. 4.2 are 0.008, 0.011 & 0.014 

mls for ¢ = 0.8, 1.0 & 1.2 respectively. 

4.4 Burning Mass Flux and Zeldovich number 

Although Eqs. 4.2 are reasonable correlations of the effect of pressure and temperat.ure 

on laminar burning velocity, they are essentially empirical, with no theoretical basis. 

Peters and Williams (1987) have derived an asymptotic structure of the flame and 

expressed the mass flux, (Puul), in a square root form and shown that, provided that 

TO remains constant: 

(4.:3) 

Hence, R is the universal gas constant and TO is a characteristic temperatu[(> and 1:-; 

discussed in § 1.2. Gottgens et al. (1992) have computed values of T° mmwrically 

and shown them to be primarily a function of pressure. \",dues of TO are pres(,llt!~d ill 

Table 4.4. 
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Equation 4.3 can be rewritten as: 

E __ d2(ln(Puu l)) 
R - d(lITb) (4.4) 

Integration of this gives 

(4.5) 

where, (C)p is an empirical constant. Rearrangement gives: 

exp[0.5(C)p] [ E 1 
ul = exp ---

Pu 2RTb 
(4.6) 

The slope of the plot of 2In(puul) against 11Tb for different pressures yield the 

values of E I R for the corresponding pressures. Shown in Fig. 4.16 is the variation of 

2In{puul) with 11Tb obtained from the experimental data in Fig. 4.15. In each case, 

the symbols are the experimental results and the solid lines are linear curve fits through 

all data at the same pressure. The gradient of these yield EI R. Gottgens et a1. (1992) 

have shown that E IRis a function of ¢; however, the functionality is weak and may be 

neglected over the small range of ¢ used here. Some scatter clearly is evident, probably 

a result of the influence of the unburned gas temperature upon the mass flux. This 

demonstrates that (C)p is influenced by the initial pressure, and to a lesser extent, the 

initial temperature. Values of E I Rand {C)p are tabulated in Table 4.4 with a single, 

mean, value of E I R at each pressure. 

Equation 4.6 gives an alternative correlation of laminar burning velocities to that 

presented by Eq. 4.2. Calculated laminar burning velocities using Eq. ·1.6 together with 

the values in Table 4.4 are shown in Fig. 4.15 by the dotted lines. The difference between 

calculated velocities and the experiments have standard deviations of 0.018, 0.011 and 

0.012 m/s for initial pressures of 0.1, 0.5 and 1.0 MPa, respectively. Although thp 

deviations from the experimental data are marginally higher for Eq. 4.6 t han for Eq. 4.2, 
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agreement is good and the former has more physical relevance than the later. The good 

agreement for Eq. 4.6 supports this use of the theoretical basis for the correlation of the 

laminar burning velocity. However, more coefficients are required than for the simple 

correlation in Eq. 4.2. 

From values of E / R, the reduced activation energy, {3, designated as the 'Zeldovich 

number' in 1983, can be calculated as (Clavin 1985): 

(4.7) 

It represents the sensitivity of chemical reactions to the variation of the maximum flame 

temperature, and the inverse of it physically denotes an effective dimensionless width 

of the reaction zone (Bradley 1990). More recently, another form of Zeldovich number, 

Ze, has been defined by Seshadri and Williams (1994) as: 

(4.8) 

The values of Ze can be estimated using the corresponding value of TO, and are pre-

sented in Tables 4.1 to 4.3. 

Shown by the symbols in Fig. 4.17 are the variations of {3 with ¢ at 300 K and 

0.1 MPa, 0.5 MPa and 1.0 MPa. Computed results of Gottgens et al. (1992) at an initial 

pressure of 0.1 MPa are represented by the solid curve in Fig. 4.17. Both experimental 

and computed values of {3 attains a minimum near to a stoichiometric mixture where 

the value of Tb is at a maximum. Although Gottgens et al. (1992) predict('d highPr 

values than the present ones, they both follow a similar trend. Because an increase 

in pressure drives the inner layer temperature to a higher value, this has the effect of 

increasing the global activation energy and hence (3 increases. Bradley et al. (1998) 

also observed this effect in their experimental study of iso-octane-air mixturps. 
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4.5 Comparisons between the Present Computed and 

Measured Values 

Shown in Fig. 4.18 are calculations of 2ln(Puud using GRI-Mech kinetics in a one 

dimensional flame. Here, the mass flux is plotted against the reciprocal of Tb, in order 

to determine the activation energies as in § 4.4. The symbols are obtained from the 

computations and the solid lines are a linear curve fit through the data at pressures 

of 0.1 and 0.25 MPa. A linear fit through the calculated values is reasonable and this 

allows the determination of the activation temperature- in the same way as that for the 

present experiments in § 4.4. The modeled value of E/ Rat 0.1 MPa is 13000 K and this 

is in good agreement with experiments (Table 4.4). The value at 0.25 MPa is 14000 K 

and, although no experimental value is available at this pressure, interpolation of data 

in Table 4.4 would suggest good agreement with experimental expectations. However, 

at 0.5 and 1.0 MPa, a single linear curve fit does not accurately represent the calculated 

values. 

Spherical flame propagation was computed by Gu (1998) using reduced chemistry 

as described in § 3.4. Shown in Fig. 4.19 are the measured and computed flame speeds 

plotted against stretch for three equivalence ratios with initial temperature and pres-

sure of 300 K and 0.1 MPa. Agreement between them is good, particularly for the 

stoichiometric mixture. Shown in Fig. 4.20 is the flame speed plotted against stretch 

for different initial pressures and temperatures. For flames at 0.1 MPa with initial 

temperature of 400 K, the computation predicts higher values of flame speed than do 

the experiments. However, it exhibits the same slope and hence, yields similar values of 

Lb. For higher pressure flame propagation (0.5 and 1.0 MPa), the prediction of flame 

speeds is in good agreement with experiment at high stretch rates (small radii), but 

agreement is not so good at low stretch. This might be explained, to some extent, by 

the inability of the model to predict flame speed enhancements due to the appearance 

of cells. The reduced mechanism gives good qualitative agreement over the whole range 

of experimental conditions. Quantitative agreement is satisfactory at near atmospheric 

," ,. 
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conditions and further work is required to produce an adequate reduced scheme for 

other conditions, especially for higher initial temperatures. 

4.6 Comparisons with other work 

Experimental data for stretch free burning velocities of methane-air mixtures at above 

atmospheric conditions are sparse. However, the sources of such data at atmospheric 

conditions are increasing. Shown in Fig. 4.21 are unstretched burning velocities at 

300 K and 0.1 MPa as a function of equivalence ratio. Data from the present work 

together with those from other sources are shown. Experimental data are presented 

in Fig. 4.21{a) and modeled data, together with the present experimental results. are 

presented in Fig. 4.21{b). 

Spherically expanding flames have been used by Taylor (1991), Ali (1995), Aung 

et ai. (1995) and Clarke et ai. (1995). In the first three cases, they obtained flame 

radii as a function of time from schlieren images and then systematically determined the 

unstretched burning velocity from the measured flame speed at different stretch rates 

by extrapolating to zero stretch. In the last case, temporal pressure records obtained 

under micro gravity conditions were converted into radius against time data using the 

thermodynamic analysis of Lewis and von Elbe (1987), and burning velocity is reported 

for low stretch ( 80 l/s) at a flame radius of the order of 50 mm. Vagelopoulos et al. 

(1994) used a twin-flame configuration established in counterflow by impinging two 

identical, nozzle-generated flows of the combustible mixture onto each other. By map­

ping the flow field using laser Doppler velocimetry (LDV), they identified the minimum 

in the velocity profile as a reference upstream burning velocity and the velocity gra­

dient ahead of the minimum point as the strain rate experienced by the flame. They 

used a linear extrapolation to zero stretch to yield the unstretched burning velocity. 

Yamaoka and Tsuji (1984) also used counterflow double flames. In their system, in 

which a premixed flame was stabilized in the forward stagnation region of a porous 

cylinder, two different regimes occurred depending on whether the mixture ejection 
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velocity was more or less than the burning velocity. A plot of flame position versus the 

mixture-ejection velocity was initially linear, but this linearity was destroyed suddenly 

and discontinuously at the critical ejection velocity, which was the burning velocity. 

They reported burning velocities for low stretch conditions by utilizing a large cylinder 

radius of 60 mm. Flat flame burners were used by Van Maaren et at. (1994) and Haniff 

et at. (1989). Van Maaren et at. (1994) obtained the burning velocity using a heat flux 

method for zero stretch conditions, while Haniff et at. (1989) used particle tracking 

and reported the burning velocities for low stretch (less than 100 l/s). 

There is good agreement between values obtained by the different measurement 

techniques. This clearly demonstrates an improvement in consistency, when compared 

with earlier measurements of burning velocity (Andrews and Bradley 1972). This is 

due to the recognition of the influence of stretch and the resulting corrections for it, 

and also because of the advances in the measurement techniques. 

Shown in Fig. 4.21(b} are modeled unstretched laminar burning velocities compared 

with the present experimental results. The modeled results of other workers include the 

computations by Gottgens et ai. (1992) who used detailed numerical calculations and 

a detailed kinetic mechanism of 82 elementary reactions; Bui-Pham and Miller (1994) 

used a mechanism consisting of 239 reactions involving 53 chemical species (including 

up to C6 chemistry); Bradley et ai. (1996) used a reduced kinetic, C1, scheme of Mauss 

and Peters (1993) involving 8 non-steady-state species and 40 reactions; F'renklach et al. 

(1992) used a detailed reaction mechanism consisting of 149 elementary reactions; and 

Warnatz et ai. (1996) used a detailed reaction mechanism consisting of 231 elementary 

reactions. There is good agreement between the present experiments and the modeled 

data of Bradley et ai. (1996). Bui-Pham and Miller (1994) and Gottgens et al. (1992) 

predicted values higher than the present experiments at all measured equivalence ratios. 

All other works are in reasonable agreement with the experiments for lean mixtures. 

Except for the data of Warnatz et al. (1996), the agreement is not so good for rich 

mixtures. 
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Shown in Fig. 4.22 is the effect of pressure on ul from available experimental 

and modeled data. The present experiments are represented by the correlations given 

by Eq. 4.2 and are shown by the solid curves. Present modeled data, using GRI­

Mech, are indicated by the dotted curves. In all cases except for rich mixtures at high 

pressure, the modeled data are higher than those of the measured. Experimental values 

reported by Law (1988) are in good agreement with the present experimental results 

for both lean and stoichiometric mixtures. However, for rich mixtures the agreement 

is moderate. Kobayashi et al. (1997) and Peters and Williams (1987) reported a much 

stronger effect of pressure. The predicted values reported by Warnatz et al. (1996) 

are in good agreement with our experimental results for all the pressures considered. 

However, results of Mauss and Peters (1993) and Bui-Pham and Miller (1994) predicted 

. much higher values of burning velocities at higher pressures. Computed results for lean 

mixtures (Fig. 4.22(b)) by Gottgens et al. (1992) are in good agreement with the 

present experimental values at up to 0.5 MPa, but lower values are predicted at higher 

pressures. 

4.7 Comparison with iso-octane 

In the present work, iso-octane data from Bradley et al. (1998) are used as a representa­

tive heavier hydrocarbon to provide a contrast with methane. Shown in Figs. 4.23 and 

4.24 are the effects of pressure and temperature on the measured burning velocities of 

lean and stoichiometric methane-air and iso-octane-air mixtures. An increase in pres­

sure decreases the laminar burning velocity, but iso-octane-air mixtures are less effected 

than are methane-air mixtures. Laminar burning velocity increases with temperat ure 

and, again, iso-octane-air mixtures are less responsive to temperature variatioIls than 

are the methane-air mixtures. 

These two fuels respond to flame stretch differently. Shown in Fig. ~.25 are, for the 

two fuels, the measured variations of Lb and 1\1 asr with ¢. Bot h of these paramct (~rs 
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increase with equivalence ratio for methane-air mixtures, while they decrease for iso­

octane-air mixtures. Here, methane-air flames with 4> > 1.05 are more affected by 

stretch than are the iso-octane-air flames at the same equivalence ratio. Conversely, iso­

octane-air flames with 4> < 1.05 are more sensitive to flame stretch than the methane-air 

flames at the same equivalence ratio. Shown in Fig. 4.26 are values of Lb plotted against 

pressure at an initial temperature of 358 K. For both mixtures, Lb drops rapidly at 

pressures between 0.1 and 0.5 MPa and becomes nearly constant at higher pressures. 

However, values of Lb for iso-octane-air mixtures are higher than those of methane-air. 

Moreover, at high pressure for both of these fuel, the values of Lb are near to zero. 

Hence, both of these fuel are less affected by flame stretch at engine conditions where 

the cylinder pressures are quite high. 
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Table 4.1. Experimental results for methane-air mixtures at an initial pressure of 
0.1 MPa. 

Expt. ¢ Tu a ul Lb Mas Mac Masr Macr (3 Ze 

rD. (K) (m/s) (mm) 

E43 0.6 302 5.530 0.119 0.21 -4.97 -1.97 1.43 0.77 6.16 9.14 

E44 0.7 301 6.129 0.205 0.74 -4.40 -0.52 2.71 1.96 5.70 9.53 

E32 0.8 300 6.684 0.250 0.64 -5.05 -0.52 2.66 1.86 5.33 9.83 

E41 0.8 300 6.684 0.280 0.78 -4.57 0.22 3.20 2.36 5.33 9.83 

E23 0.8 358 5.571 0.372 0.61 -3.59 -0.42 2.98 2.31 5.07 9.87 

E26 0.8 402 5.161 0.487 0.48 -3.07 -0.64 2.87 2.29 4.89 9.93 

E46 0.9 300 7.153 0.344 1.14 -3.68 1.72 4.61 3.74 5.05 10.06 

E40 1.0 301 7.461 0.368 1.00 -4.41 1.34 4.24 3.36 4.87 10.19 

E30 1.0 301 7.461 0.358 0.90 -4.77 0.87 3.86 2.99 4.87 10.19 

R04 1.0 360 6.324 0.473 0.65 -3.92 -0.01 3.37 2.64 4.67 10.28 

R16 1.0 360 6.324 0.503 0.91 -2.82 1.12 4.48 3.74 4.67 10.28 

E33 1.0 404 5.693 0.561 0.82 -2.35 0.69 4.21 3.57 4.53 10.38 

E25 1.0 404 5.693 0.567 0.98 -1.73 1.38 4.85 4.20 4.53 10.38 

E45 1.1 300 7.510 0.368 1.69 -2.40 3.72 6.35 5.41 4.90 10.17 

E29 1.2 300 7.366 0.318 2.65 -0.20 5.39 8.32 7.07 5.05 10.05 

E37 1.2 302 7.322 0.321 1.82 -2.44 3.32 6.11 5.21 5.05 10.05 

E27 1.2 360 6.255 0.453 1.86 0.11 4.04 7.35 6.60 4.81 10.13 

E36 1.2 361 6.239 0.427 2.23 0.91 4.76 8.12 7.39 1.81 10.13 

E28 1.2 403 5.662 0.545 1.94 1.69 4.81 8.24 7.57 4.0;) 10.23 

E42 1.2 399 5.712 0.545 2.02 1.97 5.05 8.50 7.85 4.66 10.22 
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Table 4.2. Experimental results for methane-air mixtures at an initial pressure of 
0.5 MPa. 

Expt. ¢ Tu a ul Lb Mas Mac Masr Macr {3 Ze 

ID. (K) (m/s) (mm) 

E31 0.8 302 6.710 0.116 -0.61 -9.87 -5.48 -2.17 -2.94 8.07 13.35 

R12 0.8 306 6.592 0.122 -0.64 -10.19 -5.87 -2.51 -3.26 8.05 13.34 

R11 1.0 301 7.561 0.190 -0.39 -10.66 -5.01 -1.93 -2.79 7.31 13.90 

R01 1.0 301 7.561 0.201 -0.24 -9.57 -3.94 -0.85 -1.71 7.31 13.90 

E09 1.2 300 7.394 0.166 0.32 -5.11 0.41 3.42 2.55 7.66 13.66 

E10 1.2 297 7.463 0.166 0.49 -3.89 1.48 4.61 3.77 7.67 13.66 

E03 0.8 358 5.729 0.153 -0.25 -6.97 -3.93 -0.42 -1.06 7.68 13.32 

E04 0.8 360 5.701 0.161 -0.19 -6.68 -3.63 -0.12 -0.77 7.67 13.32 

R02 1.0 350 6.574 0.263 -0.28 -8.84 -4.96 -1.49 -2.20 7.04 13.94 

R03 1.0 359 6.423 0.274 -0.33 -9.43 -5.59 -2.08 -2.79 7.01 13.94 

E01 1.2 355 6.352 0.240 0.03 -5.78 -2.09 1.41 0.71 7.32 13.68 

E02 1.2 358 6.304 0.235 0.11 -5.14 -1.43 2.06 1.36 7.33 13.65 

R13 0.8 401 5.188 0.219 -0.38 -7.89 -5.49 -1.95 -2.52 7.41 13.33 

E38 0.8 401 5.188 0.202 -0.37 -7.52 -5.13 -1.58 -2.15 7.41 13.33 

R15 1.0 404 5.768 0.320 -0.50 -10.78 -7.72 -4.14 -4.78 6.79 1-1.00 

E39 1.0 397 5.860 0.313 -0.18 -7.31 -4.25 -0.68 -1.31 6.82 14.00 

E15 1.2 404 5.666 0.286 -0.26 -7.92 -4.83 -1.27 -1.91 7.04 13.72 

E16 1.2 404 5.666 0.281 0.06 -4.95 -1.87 1.69 1.05 7.04 13. 7~ 
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Table 4.3. Experimental results for methane-air mixtures at an initial pressure of 
1.0 MPa. 

Expt. <P Tu a ul Lb Mas Mac Masr Macr j3 Ze 

rD. (K) (m/s) (mm) 

E13 0.8 310 6.529 0.088 -0.50 -10.68 -6.34 -2.98 -3.74 8.22 12.97 

E14 0.8 311 6.509 0.083 -0.67 -11.80 -7.42 -4.09 -4.85 8.21 12.97 

R09 1.0 297 7.702 0.144 -0.38 -12.09 -6.42 -3.32 -4.17 7.46 13.55 

RIO 1.0 302 7.581 0.150 -0.25 -10.76 -5.11 -2.00 -2.85 7.44 13.54 

Ell 1.2 300 7.413 0.101 0.31 -4.70 0.73 3.83 2.98 7.84 13.29 

E12 1.2 305 7.300 0.106 0.40 -3.82 1.63 4.71 3.86 7.81 13.28 

E05 0.8 358 5.734 0.120 -0.60 -11.17 -8.18 -4.63 -5.26 7.86 12.93 

E06 0.8 359 5.724 0.122 -0.42 -9.56 -6.56 -3.02 -3.65 7.85 12.93 

R05 1.0 356 6.501 0.205 -0.29 -10.52 -6.67 -3.15 -3.85 7.16 13.55 

R06 1.0 359 6.451 0.206 -0.32 -10.90 -7.05 -3.53 -4.23 7.14 13.55 

E07 1.2 359 6.309 0.156 0.29 -2.72 0.96 4.48 3.78 7.-iI 13.27 

E08 1.2 358 5.156 0.151 0.16 -4.28 -0.60 2.91 2.22 7.47 13.27 

E21 0.8 404 5.156 0.157 -0.06 -5.47 -3.08 0.47 -0.10 7.56 12.90 

E22 0.8 404 5.156 0.150 -0.28 -7.95 -5.56 -2.01 -2.58 7.56 12.90 

E17 1.0 401 5.830 0.238 -0.04 -6.12 -3.05 0.53 -0.10 6.93 13.59 

E18 1.0 402 5.817 0.234 -0.21 -8.66 -5.58 -2.01 -2.04 6.93 13.58 

E19 1.2 402 5.691 0.202 -0.04 -5.93 -2.99 0.58 -0.04 7.21 13.29 

E20 1.2 402 5.691 0.220 0.01 -5.21 -2.27 1.30 0.68 7.21 13.29 
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Table 4.4. Values of E j Rand (C)p for ¢ = 0.8, 1.0 & 1.2. 

Pu Tu TO t EjR (C)p 

(MPa) (K) (K) (K) 

300 3.811 

0.1 358 1220 12530 3.995 

400 4.092 

300 8.674 

0.5 358 1329 19030 8.797 

400 8.893 

300 9.531 

1.0 358 1386 19480 9.724 

400 9.846 

tGottgens et al. (1992). 
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Chapter 5 

Evolution of Instabilities in 

Spherically Expanding Flames 

5.1 Introduction 

From both theoretical and experimental considerations, a spherical flame originated 

from a point ignition source and propagating in a premixture provides a convenient 

means of studying the development of flame instability. This arrangement has the 

advantage of being geometrically simple and excluding heat losses by thermal conduc­

tion, interaction with vessel walls and other undesirable factors which may affect the 

phenomena (Zeldovich et ai. 1985). Moreover, the size of the flame sphere limits the 

perturbation wavelength range which is also growing in time, and thissetsdefinable lim­

its to the critical wavelengths associated with the instability (Istratov and Librovich 

1969). 

The experimental studies of Lind and Whitson (1977) and Makeev et ai. (1983) 

are important in that they cover large unconfined explosions related to explosion Ila/­

ards. They clearly show how the flame speed increases \vith flame radius. Gostints('v 

et ai. (1987) reviewed these and other results and suggested the self-turbularizat ion 

and fractalization of the initially laminar flame as its radius increased. Bradlr~, and 

Harper (1994) suggested the first stage of a developing instability is the propagat ion 

81 
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of surface 'cracks' across the flame surface. The onset of these correspond with the 

onset of instabilities as predicted by the linear theory of Bechtold and Matalon (1987). 

However, experiments show that a further delay occurs before the transition to a com­

pletely developed cellular flame occurs (Groff 1982, Matalon and Erneux 1984, Bradley 

and Harper 1994, Bradley et ai. 1998). Bradley (1998) extended this concept and 

suggested that the smallest unstable wavelength at a given Peclet number is always 

greater than that suggested by the theory of Bechtold and Matalon (1987). With this 

approach he was able to predict flame speeds in fair agreement with those correlated 

by Gostintsev et ai. (1987). The expression so derived is similar to one obtained in a 

recent Lagrangian analysis of Ashurst (1997). 

In the present study, transition to cellular flames is studied using flame pho­

tography, as discussed in previous chapters. Experimental results clearly show the 

acceleration of the flame, and how such flames become fully developed cellular flames 

after a certain value of Peclet number has been attained. 

5.2 Experimental Correlation for Onset of Cellular 

Instability 

A spherically expanding flame is subjected to stretch due to both curvature and aero­

dynamic strain and these have a stabilizing effect on the flame front. The effect of 

stretch on laminar burning velocity is discussed in § 1.4 and § 4.2. Shown in Fig. 5.1 

are experimentally derived variations of the Karlovitz stretch factors due to curvature 

and strain, Kc and K s, with Peclet number for a stoichiometric methane-air mixture 

at an initial temperature of 300 K and initial pressure of 0.1 MPa. The effect of Ks 

is dominant over that of Kc. Moreover, as reported in Tables ~.1 to ~.3, th~ values 

of Macr and Masr are found to be nearly equal for methane-air mixtures. Hence, the 

single value of M asr represents the total effect quite well, as demonstrated in Fig. 5.2 
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and Eq. 1.10 might be approximated by: 

Ul - Unr 
---'----:::::: KMasr 

ul 
(5.1 ) 

where, K is the sum Kc and Ks. In the stability analysis in § 5.4, the relevant Markstein 

number is taken to be M asr. 

For methane-air mixtures at high pressure, the initial flame speed, after the effects 

of ignition have decayed, is given by Eq. 1.10 and the flame surface is smooth. However, 

as it propagates, at a critical Peclet number, Peel, it become cellular. The estimation 

of Peel is described in § 3.3. Flames which have higher values of M asr have a higher 

values of Peel' Shown in Fig. 5.3 are critical Peclet numbers plotted against M asr for 

methane-air mixtures obtained from the present study and for iso-octane-air mixtures 

from Bradley et ai. (1998). A straight line fit describes them well and is: 

Peel = 1 77 M asr + 2177 (5.2) 

This correlation is valid for all the present experiments in which instability is observed. 

5.3 Flame Propagation at Large Radii 

Shown in Fig. 5.4 are the flame radii plotted against time in the large scale methane-air 

explosions reported by Lind and Whitson (1977). These were designed to observe the 

effects of flame instability in atmospheric methane-air mixtures at 298 K. Also plottpd 

are the flame radii against time data measured in the present experiments for an initial 

temperature of 300 K and an initial pressure of 0.1 MPa. The experimental points arp 

shown by the symbols. No instability is observed for explosions in the present work 

at this initial condition. From Eq. 5.2, the critical radius for a stoichiometric flame 

at an initial temperature of 300 K and an initial pressure of 0.1 MPa is calculated to 
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be 127 mm, much larger than is possible within the pre-pressure period in the present 

vessel. The corresponding value of Peel is marked on in Fig. 5.4. 

Gostintsev et ai. (1987) have analysed the data of Lind and Whitson (1977) and 

reported that in the later stages the flame radius to proportional to t3/ 2. The data 

of Lind and Whitson (1977) for methane-air mixture show different growth rate for 

horizontal and vertical radii. The straight lines shown in Fig. 5.4 give exponents of 

t equal to l.24 for horizontal propagation and l.32 for vertical propagation. In the 

present study flame propagation is much slower than is predicted by the t3/ 2 rule and 

follows Eq. 1.10. Figure 5.4 clearly shows the evidence that the flame spread law in the 

present work can blend with that in the large explosions as the flame becomes 

progressively larger. In the present study, cell formation is only observed for methane­

air mixtures at higher pressures. Clearly, at least two regimes of flame propagation 

can be observed. The first follows Eq. 1.10 (curvature is important in the very early 

stage), the second is affected by flame instabilities and is analysed in the next section, 

following the theoretical framework of Bradley (1998). 

5.4 Theoretical Analysis of Unstable Spherical Flame 

Propagation 

Instability criteria have been developed for the spherical symmetric flames and 

analyses have shown how amplitudes of the surface perturbations can increase with 

flame radii and time (Istratov and Librovich 1969, Zeldovich et ai. 1985. Bechtold and 

Matalon 1987, Bradley and Harper 1994, Bradley 1998). Bechtold and ~latalon (1987) 

and Bradley and Harper (1994) analyzed the perturbation of a spherical flame that 

incorporates the global flame stretch and related the amplitude, a, of the pert urbation 

relative to the flame front radius, I, where the flame has propagated beyond an initial 

value '0, significantly larger than the flame thickness, bl . Hence, a is expressed to 



85 

develop with relative to r as: 

w(l+ n ) a = aoR PelnR (5.3) 

Here, ao is the initial dimensionless amplitude of the perturbation, R is r fro, w is 

a growth rate parameter which depends on (7, while f2 depends upon both this and 

the Markstein number. Effectively, Eq. 5.1, but with no separation of curvature and 

aerodynamic strain contributions, is incorporated in the analysis. 

The logarithmic growth rate, A, of the amplitude of the perturbation with respect 

to the Peclet number can be derived as (Bradley 1998): 

A(n) = dln(a/ao) = w (1 -~) 
dlnPe Pe 

( 5.4) 

A negative value of A(n) indicates a stable flame, a positive value an unstable flame. 

On the right side of the equation the first term, w gives the contribution to the growth 

rate of the Darrieus-Landau (D-L) instability, while the second, (-wf2/ Pe), gives the 

contribution due to combined effect of stretch due to curvature and aerodynamic strain. 

Further details are given by Bradley (1998). 

In a spherically expanding flame, the stabilizing effect of stretch decreases with 

increase in flame radius. Hence, an initially stable flame can become unstable as it 

grows bigger than a certain size. Shown in Fig. 5.5 are values of A(n) calculated by the 

author for (7 = 7.5 and M a = 4, when Pe increases from 200 to 600. The value of .4(n) 

becomes just positive at Pe '" 411, and A(n) is positive for Pe > 411. This defines the 

critical value of the Peclet number 1 Pee, and the critical spherical harmonic, ne· For 

Pe > Pee, the regime of instability is bounded by two values of n: the lower one is 

defined by nI, the upper one by ns and, the value of n where A(n) becomes maximum 

defines, nm, as shown in Fig. 5.5. 
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Shown in Fig. 5.6 are the values of n normalized by nc plotted against Pel Pee 

for M a = 4. The ratio, nslnc increases linearly with Pel Pec, while the ratio, nzlne 

remains essentially constant. Theoretically, the peninsular of instability has a lower 

bound nzlnc and an upper bound nslnc, while the middle curve gives values of nmlnc 

at which A(n) is a maximum. However, experimentally time lags between Pee and Peel 

were observed for propane-air mixtures (Groff 1982), iso-octane-air mixtures (Bradley 

et al. 1998) and for methane-air mixtures in the course of the present studies. To 

incorporate this time lag, Bradley (1998) in the fractal analysis of flame instability 

introduced a new upper limit of instability as fnslnc, where f is a numerical constant, 

less than unity and this limit is shown in Fig. 5.6 by a dotted line. The value of f is 

found by equating fnslnc to the lower bound value (nzlnc)el at Pe = Peel. Bradley 

(1998) derived an expression for the flame speed, by means of a fractal analysis that used 

the limiting unstable wavelengths as inner and outer cut-offs. This led to a relationship 

between Peclet number and time given by: 

Pe 

where, 

(
nc) f (ns) Peo = Peel - - - - Pec 
nZ K, nc el 

and, 

K, - (nc) f ( d(ns/nc) ) , 
- nZ d(Pel Pee 

In dimensional form, 

where, 

3/2 
T = To + A t 

K,1/3 t 
}

3/2 

(5.5) 

when t = 0 (5.6) 

a constant. (5.7) 

(5.t;) 

(5.9) 
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The time, t, appearing in Eq. 5.5 can also be normalized by a chemical time, given 

by ozluz· The normalized time, t, is given by: 

- t 
t=--

ozluz v 

Hence, Eq. 5.5 can be written as: 

Pe 

where, 

Peo + [0.544 a 3/ 2 j P:
c 
1 r 3/2 

Peo + B t 3/2 

B = [0.544 a3
/
2 j " 1 

Pee 

and, the constant B can be related to A, in Eqs. 5.8 and 5.9 by: 

Values of B calculated from Bradley's (1998) listing of A are given in Table 5.1. 

(5.10) 

(5.11 ) 

(5.12) 

(5.13) 

The analysis of Bradley (1998) is only applicable to positive values of Ma. For 

negative values of M a it is found experimentally in the present work that the flame 

exhibited the cracking instability from the moment of initiation, in agreement with the 

theory of Bechtold and Matalon (1987). Effectively, Pee = a and Bradley's analysis 

is no longer applicable in detail, although the principles of the inner and outer cut.-off 

in the fractal analysis still apply and it is assumed that the form of Eq. 5.11 is :-;j ill 

applicable. 

5.5 Experimental Determination of the Constant, B 

Equation Eq. 5.11 is expressed as: 

( 5.1·1) 
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When Pec = 0, Be is the experimentally determined at l = 0 when Pe = Peo. Here, 

Peo is the experimental value of Pe when the flame becomes cellular and is taken as 

the value of Peel measured in the present experiments and l is given by: 

l = (t - to)uf 
v 

(5.15) 

Hence, t is the time measured from spark ignition and to is the time associated with 

radius, TO, which corresponds to Peo. 

Experimental values of (T - To) are plotted against (t - to) in Figs. 5.7 to 5.10 

for various initial conditions. From these plots it is possible to derive values of the 

dimensionless parameter Be and these are plotted against l in Figs. 5.11 and 5.12, for 

lean and stoichiometric methane-air mixtures, respectively. It appears that the values 

tend to an asymptotic value for the mixture as the flame propagates. 

In general, as the cellular structure first develops with some rapidity at low values 

of l there is a significant enhancement in values of Be above the anticipated theoretical 

values of B. The value of Be rapidly reaches a peak during the critical cell formation 

period and declines thereafter towards what would apparently be an asymptotic value, 

Beoo. The most probable physical explanation is that the value of f in Eq. 5.7 is 

initially high and then declines to a steady state value. This suggests that just after 

the onset of cellularity the range of effective unstable wavelengths is greater than it 

would have been in a steady state for those conditions. When the cells form initially 

they do so rapidly (making up for 'lost time'). Thereafter the rate of formation declines 

towards a steady state value. 

The initial high value might also be associated with the zero time problem. As 

zero time is set at the onset of cellularity, which is related to a power law of time, the 

effect of zero time is very significant. The resultant term Bel3/2 is not abnormally 

high, rather it is quite gradual and the high value of Be is a 'mathematical artifact' of 

the conditions. 
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Shown in Fig. 5.13 are the values of Beoo obtained for various initial conditions, 

plotted against M asr, taken from Table 5.2. A value of Beoo is obtained from a plot of 

Be against l by linear extrapolation as the value of Be corresponding to l/l ~ O. Also 

shown in Fig. 5.13, are the values of Beoo for some mixtures calculated from Bradley 

(1998), and reported in Table 5.1. The value of Beoo decreases with increase in ft.! asr, 

although there is scatter that suggests that probably other parameters are required for 

a correlation, in addition to M asr. 
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Table 5.1. Calculated values of A and B. Values of A, namely AG, of Gostintsev et 
al. (1987) is also given. 

Mixture a ul v.105 Ma A AG B 

(m/s) (m2 Is) 

10% CH4-air 7.456 0.385 1.574 4.02 8.04 5.7 0.245 

4% C3H8-air 7.915 0.38 1.726 5.0 8.13 7.1 0.24 

36.4% H2-air 6.673 2.75 2.36 12 275 166 0.178 
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Table 5.2. Experimental results for flame instability in methane-air mixtures. 

Expt. ID Pu Tu ¢ a v.106 ul Masr Peel Beoo 

(MPa) (K) (m2/s) (m/s) 

E31 0.5 302 0.8 6.711 3.181 0.116 -2.17 1078 0.52 

R12 0.5 306 0.8 6.711 3.181 0.122 -2.51 1115 0.427 

E03 0.5 358 0.8 5.729 4.322 0.153 -0.42 1662 0.479 

E04 0.5 360 0.8 5.729 4.322 0.161 -0.12 1081 0.41 

R13 0.5 401 0.8 5.199 5.225 0.219 -1.95 937 0.334 

R11 0.5 301 1.0 7.585 3.187 0.190 -1.93 1096 0.451 

R01 0.5 301 1.0 7.585 3.187 0.201 -0.85 1734 0.432 

R02 0.5 350 1.0 6.439 4.331 0.263 -1.49 1427 0.355 

R03 0.5 359 1.0 6.439 4.331 0.274 -2.08 1927 0.371 

R15 0.5 404 1.0 5.820 5.237 0.320 -4.14 1455 0.45 

E39 0.5 397 1.0 5.820 5.237 0.313 -0.68 1929 0.351 

E13 1.0 310 0.8 6.728 1.588 0.088 -2.98 1104 0.538 

E14 1.0 311 0.8 6.728 1.588 0.083 -4.09 872 0.53 

E05 1.0 358 0.8 5.734 2.161 0.120 -4.63 1599 0.451 

E06 1.0 359 0.8 5.734 2.161 0.122 -3.02 1615 0.41 

E21 1.0 404 0.8 5.201 2.615 0.157 0.47 1813 0.316 

E22 1.0 404 0.8 5.201 2.615 0.150 -2.01 1681 0.339 

R09 1.0 297 1.0 7.629 1.59 0.144 -3.32 1507 0.409 

RIO 1.0 302 1.0 7.629 1.59 0.150 -2.00 1797 0..114 

R05 1.0 356 1.0 6.467 2.165 0.205 -3.15 2263 0.307 

R06 1.0 359 1.0 6.467 2.165 0.206 -3.53 2292 0.318 

E17 1.0 401 1.0 5.843 2.62 0.238 0.53 2517 0.293 

E18 1.0 402 1.0 5.843 2.62 0.234 -2.01 1988 0.305 
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Chapter 6 

Analysis of Turbulent Burning 

Velocities using PMS 

6.1 Introduction 

This chapter describes how planar Mie scattered (PMS) images of turbulent flame front 

can be used to obtain the distribution of burned gas and turbulent burning velocities. It 

also discusses the different ways in which turbulent burning velocity might be defined. 

PMS images obtained during explosions in a fan-stirred vessel, in which the turbulence 

is isotropic, enable the distribution of unburned and burned gas to be measured, at 

all stages of the explosion, at different mean radii. A sufficient number of explosions 

enables valid average values to be obtained of these quantities, as a function of radius 

and time, for a spherically expanding flame in the turbulent premixture. 

In the present work, two dimensional laser sheet images across a complete diametral 

plane are acquired by Mie scattering from tobacco smoke particles. Shown in Fig. 6.1 

are such images obtained from an explosion of stoichiometric methane-air mixture at an 

initial pressure of 0.1 MPa, initial temperature 300 K, with an isotropic r.m.s. t urbuient 

velocity, u', of 0.595 m/s. The flame wrinkling caused by different scales of t urbuience 

are clearly evident. Flame front coordinates are obtained by hand-tracing from images 

which have a spatial resolution of 0.32 mm/pixel. This is discussed in ddail ill § 2..l.2. 
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Shown in Fig. 6.2 is the sequence of flame front profiles for the explosion. These 

coordinates are analysed in detail to measure turbulent burning velocities, reported 

in this chapter and to measure the distribution of flame front curvatures reported in 

Chapter 7. 

6.2 Definition of Turbulent Burning Velocity 

For spherical turbulent flame propagation, a mass rate of burning can be expressed in 

the form: 

dm 2 
- = -41fR· PuUt dt l 

(6.1 ) 

where Ri is a mean general radius associated with the burning velocity, Ub Pu is the 

unburned gas density and m is the mass of gas changing from unburned to burned. 

However, problems arise in defining burned and unburned and, because of the finite 

thickness of the flame brush, also in selecting the most appropriate value of ~. In the 

present study, a thin planar sheet cutting the mean spherical flame kernel is considered. 

This is shown in Fig. 6.3 and the general radius, ~, lies between a root radius, Rr and 

a tip radius, R t . The inner, root, circumference of radius Rr embraces the burned gas 

entirely, whilst the outer, tip, circumference of radius Rt has nothing but unburned gas 

outside it. Two dimensional planar sheet photographs of Mie scattering of laser light 

are used to examine the different reference radius, Ri, and m in Eq. 6.1 and, finally, 

the definitions of burning velocity. 

The definition of turbulent burning velocity depends upon the definition of a somp-
. -.". 

what arbitrary flame front. The value of the radius ~ can be defined in a number of 

ways, some of which are given below: 

1. For a mean cross section through the kernel, the area of unburned gas inside a 

circumference of radius Ra , is equal to that of burned gas outside that circumff'r­

ence. The present treatment is of planar sheets. This definition has been applied 

to schlieren 2D photographs of 3D turbulent flames (Abdel-Gayed et ai. 1 QS6, 

Checkel and Ting 1992). 
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2. The volume of unburned gas inside a circumference of radius Rv, is equal to that 

of burned gas outside that circumference. Hamamoto et aZ. (1996) in studies 

involving schlieren photography and simultaneously measured ion probe currents 

equated these two volumes of gas in the burning zone. 

3. The mass of unburned gas inside a circumference of radius Rm, is equal to that 

of burned gas outside that circumference. 

In the schlieren-based measurements of turbulent burning velocities, the mean 

radius of the two dimensional projected area of the three dimensional flame must lie 

somewhat between the value of Ra from the planar sheet and R t . Because of the 

blurring effect of the overlapping series of two dimensional images the value is probably 

closer to R t than Ra. In the present study, a number of possible ways of defining the 

actual flame front radius are explored by introducing a factor, ~, to represent a radius, 

R~, defined as: 

(6.2) 

Hence, 

Ra if ~ = 0 

Rt if ~ = 1 

Three intermediate values of ~(= 0.25, 0.50 & 0.75) are also considered, in addition to 

the radii defined earlier. 

It is necessary to define the masses of unburned and burned gas a..c;sociated with 

the different zones. Let mui be the mass of unburned gas within the general perimeter 

of radius ~, muo the mass of unburned gas outside perimeter radius ~ but wit hin 

that of Rtl mbi the mass of burned gas inside the perimeter of ~, mbo the mass \ If 

burned gas outside the perimeter of ~ but within Rt , and mu is the ma.'-Is remaining 

outside Rt . The definitions of these masses are also shown in Fig. 6.3. 
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Mass conservation implies that: 

dmui dmuo dmbi dmbo dmu 
dt + dt + dt + dt + ill = 0 (6.3) 

Three possible definitions of turbulent burning velocities are now considered: 

1. A burning velocity that measures the mass rate of production of burned gas: 

d [mbi + mbo] _ 4 R2 
dt - 7r i PuUtr (6.4) 

where Utr is the turbulent burning velocity associated with the production of 

burned gas. Here Ri can be defined as anyone of the radii previously discussed. 

2. A burning velocity that measures the mass rate of consumption of unburned gas: 

d [mui + muo + mu] - -4 R~ 
dt - 7r 1, Puut' (6.5) 

where, Ri is again the radius defining the arbitrary flame front and uti is the 

turbulent burning velocity associated with the consumption of unburned gas. 

Because the interpretation of the planar sheets allows of only two categories of 

gas, unburned and burned, it follows from Eq. 6.3 that, provided ~ is the same 

in Eqs. 6.4 and 6.5, Utr = ut'. 

3. A burning velocity that measures the mass rate of consumption of unburned gas, 

but assumes that only gas outside the sphere of radius ~ is considered to be 

unburned: 

(6.6) 

This is an apparent mass rate of consumption of unburned gas. It is apparent 

because 'unburned' is here defined also to include the mass mbo between R;, 

and R t . As it is assumed to be unburned its contribution to the ma...<;s rate of 

consumption is for a mass of mboPu/ Ph. With R;, equal to an appropriatf' \';due 
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between Ra and Rt, Ut corresponds to many of the measurements of the Leeds 

group. 

6.3 Analysis of the Sheet Images 

In the present study of methane-air turbulent flame propagation, the analysis of PMS 

images and associated coordinates is based on the following assumptions: 

1. A mean radius can be defined of an essentially spherical flame. This implies 

identifying the centroid of the sphere. 

2. The structure of the field is isotropic at any given radius. 

3. The reaction zone of the laminar flamelets is negligibly thin. Thus, the 2D image 

consists purely of unburned and burned gaseous regions. 

4. The unburned and burned gas densities (Pu and Pb) are fixed at the initial cold 

and adiabatic values, respectively. 

5. The sheet revealed by the laser scattering is of infinitesimal thickness and mea­

sured quantities are a function of flame radius only. 

The proportions of unburned and burned gas densities are measured as a function 

of radius at different instants during several explosions. In Fig. 6.4 '0' is the centroid 

of the flame kernel volume. Consider a plane perpendicular to the vertical line through 

the centroid and the ring, radius r from '0', thickness or, as shown in Fig. 6.4. The 

radius in the horizontal plane is r sin a, where a is the angle with the vertical axis. The 

ring has a volume 

= 27fr sin a roa or (6.7) 

Let a(r) be the average volume fraction at radius r occupied by' unburned gas. It 

follows that the volume of unburned gas within it must be 

= a(r) 27frsina roa or 
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The total volume of unburned gas within the spherical shell of radius r, thickness 6r is 

Hence, the mass of unburned gas within any general radius R. m . is 
.. <-Z' lil' 

Similarly, the mass of burned gas within any general radius 14, mbi' is 

(6.9) 

(6.10) 

(6.11) 

The integrations of Eqs. 6.10 and 6.11enable all the mass terms that appear in Eq. 6.3 

to be evaluated. 

6.4 Implementation 

Figure 6.4 and Eqs. 6.10 and 6.11 show how the masses of burned and unburned can 

be found for any plane through the flame kernel. To obtain the fullest information 

at all radii the plane should pass through the centroid of the kernel and extend to 

Rt. This is achieved by analyzing two dimensional laser sheet images obtained across a 

complete diametral vertical plain just ahead of the spark plug, as described in Chapter 2. 

Implementation of the approach outlined in the previous sections is undertaken in four 

stages with three FORTRAN programs: 

1. sigma. for 

2. radii. for 

3. burnvel. for 

These programs require a data file C filename. inf' in addition to the series of files con-

taining the flame coordinates. Hence C filename' is the common name of the S('ql1PIl(,(' 

of images and this file contains the following data: 
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• the number of files in the sequence, 

• the initial time delay between the spark and the first image in the sequence, 

• the inter-image time spacing, 

• the scaling factor for both 'x' and 'y' coordinates, 

• the unburned and burned gas densities of the mixture, and 

• a sequence list of file names containing the flame edge coordinates. 

6.4.1 Estimation of a as a function of r 

Flame edge coordinates are first analysed by sigma. for to generate a(r) as a function 

of r. To accomplish this, sigma. for at first reads the flame coordinates for a flame 

image, scales it using the scale factor, calculates the centroid of the image's burned gas 

region and translates the coordinates with respect to the centroid. These coordinates 

are then transformed into polar coordinates and values of Rr and Rt determined as: 

Rr min{ri' i = 1,2,·· . , N} (6.12) 

max{ri' i = 1,2,· .. , N} (6.13) 

where, N is the number of coordinates for the flame image. Then for each radius, r, 

starting from Rr with an increment of 1 mm, a function c( 0) Ir is generated which is 

zero for an unburned and unity for a burned zone. Hence, the value of a(r) is obtained 

as: 

1 1027r 
a(r) = 1 - -2 c(O)lr dO 

7rr 0 
(6.1~) 

Once a is determined for Rr < r < R t , a(r) is fitted for r as 

(6.15) 
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The coefficients 'a' are written to a file filename. out, along with Rr and R t for each 

sequence of the flame images. 

The estimation of a(r) as a function of r is demonstrated in Fig. 6.5, where a 

hypothetical square flame of 50 mm length is considered. After estimating the values 

of Rr and Rb the program generates a profile of c(8)lr for a number of radii, R, where 

Rr < r < Rt. It is accomplished by moving along the circumference of a circle of a 

given radius, r, and assigning a value of unity in a burned zone, and, otherwise a value 

of zero, as shown in Fig. 6.5. The value of a(r) is obtained from Eq. 6.14. Values of 

a{r) thus obtained are fitted to a third order polynomial and are shown in Fig. 6.5. 

6.4.2 Estimation of Different Flame Radii 

For each flame image, radii. for derived values of Ra, Rm and Rv using a(r). Their 

values are estimated as follows: 

• Ra is estimated from the flame coordinates as: 

Ra=H (6.16) 

Hence A is the area of the burned gas in the flame images and is estimated by , , 

numerical integration using the 'Trapezoidal Rule' (Press et ai. 1992). 

• Rm is estimated by equating mui in Eq. 6.10 and mbo in Eq. 6.11, and its value 

is computed using the 'Bisection Method' (Press et ai. 1992). 

• Rv is estimated by equating m ui(I4)/Pu from Eq. 6.10 and 47r J~t(1-a(r))r2dr 
from Eq. 6.11, and computing its value using the 'Bisection Method' (Press et ai. 

1992). 

• R~ is estimated for ~ = 0.25, 0.50 & 0.75 in Eq. 6.2. 

Estimated flame radii are written to a file filename. rad. 
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Shown in Fig. 6.6 are the changes, for a single explosion, in a(r), with radius, r, 

at two different elapsed times for explosion of a stoichiometric methane-air premixt ure 

at an initial temperature of 300 K at 0.1 MPa pressure. Clearly, as the flame kernel 

grows following ignition, the flame brush thickness, defined as (Rt - Rr ), increases as 

the flame experiences more of the turbulence spectrum. It is also noted that at the 

greater time the flame brush thickness exceeds the integral length scale L (= 20 mm). 

Figure 6.6 shows values for different reference radii at elapsed times of 7.51 and 

15.51 ms, calculated using radii. for. Clearly, Rr and Rt correspond to a(r) = 0 and 

1.0, respectively. Ra is found to correspond to a(r) ~ 0.5, while Rm corresponds to 

a(r) < 0.5. Rv corresponds to a(r) > 0.5, as a result of the density difference between 

burned and unburned gases, and because for two consecutive spherical shells, with 

the same thickness, the shell with the larger radius occupies more volume. Shown in 

Fig. 6.7 are the variations of six reference radii with time, estimated from the sequence 

of flame images. The increase in flame brush thickness is clearly observed. All six 

reference radii increase with elapsed time, although the values of Rr have the largest 

scatter. These values of reference radii are later used to estimate turbulent burning 

velocities and flame speeds. 

6.4.3 Estimation of Utr 

It has already been demonstrated in § 6.2 that with the binary recording of burned or 

unburned gas Utr = ut'. This is confirmed numerically in Fig. 6.8 where it can be seen 

that d[mb~~mbO] = - d[mui+cituo+mu]. Hence, only the values of Utr are estimated for 

different radii. The values of the masses are estimated by the program burnvel. for. 

Shown in Fig. 6.9 by the symbols are the values of Utr and ut' plotted agaiIlst 

elapsed time from ignition for different reference radii, with the value of til shown b\' 

the broken line. Because d[mb~~mbQ] does not depend on the definit ion of radii, from 

Eq. 6.4 it can be seen that Rtutr is constant. Therefore, the highest value of tLtr is 

associated with the smallest radius, Rr and the smallest value of titr is associated wit h 
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Rt· Interestingly, for R t and R~=O.5' the turbulent burning velocity is lower than 

the laminar burning velocity, while conversely, Rr yields a much higher value. This 

graphically shows the importance of the way in which the reference radius is defined. 

6.4.4 Estimation of Ut 

For each flame image, burnvel. for also computes the values of mu, mbo and muo for 

different values of R~. Shown in Figs. 6.10 to 6.12 are the values of these masses as a 

function of time for different values of ~, while Fig. 6.13 shows (muo + mu + mbo ~). 

In Fig. 6.10, mu is independent of ~, and the values of muo and mbo are zero for 

~ = 1, (R~ = Rt ). Their value increase as ~ decreases. However, mu remains as a 

dominating factor in determining the value of Ut. Hence, Ut is obtained by using Eq. 6.6 

and numerical differentiation employs the Savitzky-Golay algorithm (Press et al. 1992). 

Shown in Fig. 6.14 are variations of Ut with time for different values of~. The values 

of Ut are a maximum for ~ = 1, while they are a minimum for ~ = O. For ~ = 0, the 

value of Ut does not increase with time. 

6.5 Relationshi p of Ut to Utr 

Adding Eqs. 6.4 and 6.6 and using Eq. 6.3, it can be shown Ut and Utr are related by: 

(6.17) 

Three conditions are considered: 

1. When Ri = Rr then mui = 0, and the second term on the right of Eq. 6.17 is a 

maximum. Clearly Utr > Ut· 

2. When ~ = R t then mbo = 0, and Ut > UtI" 

3. The condition for Ut = Utr is: 

drnui 
dt 

d( 7nboPu/ Pb) 
<it 

(til8) 
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For a given Ri, let Vui = volume occupied by mui and Vbo = volume occupied 

by mbo. Then 

d(VuiPu) _ d{VboPbPu/ Pb) 
dt dt 

(6.19 ) 

and 

dVui _ dVbo 
dt dt 

(6.20) 

Clearly if Vui = Vbo at all times (for a consistent definition of ~) this condition 

is met and Ut = Utr. This condition is the defines ~ = Rv in § 6.2. 

The relationship udRv) = utr{Rv ) has been verified from the experimental data 

and an example of this is shown in Fig. 6.15. Values of Ut (Rv) are plotted against 

Utr(Rv) with data from four different explosions of stoichiometric methane-air mixtures 

with u' = 0.595 m/s. Within the limits of experimental error, the agreement is very 

good. 

6.6 Expressions for the Flame Speed 

The total volume of burned gas at a given time, if concentrated in a sphere of radius 

Rs, is 

4 3 4 3 
-7r RS = -7r Rr + Vbi + Vbo 
3 3 

(6.21) 

It may also be expressed in terms of the volume ~7r R~ as follows: 

4 3 4 3 
-7r RS = -7r Rv + Vbo - Vui 
3 3 

(6.2:2) 

For the condition Ut = Utr, Vui = Vbo and it follows from Eq. 6.22 that Rs = R\'. III 

general, the mass rate of production of burned gas is given by 

( ti.23) 
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With Ut = Utr, 14 = Rs = Rv and from Eq. 6.23, the corresponding turbulent flame 

speed, can be written as: 

dRv Pu 
--= - Ut 
dt Ph 

( 6.24) 

Otherwise, 

dRs _ Pu (Ri) 2 
ill - Pb Rs Utr (6.25) 

Equation 6.24 also has been verified using experimental data and an example IS 

shown in Fig. 6.16, where values of dRv/dt are plotted against udRv)Pu/Pb, using 

data obtained from four different explosions of stoichiometric methane-air mixtures at 

u' = 0.595 m/s. The experimental results satisfies the relationship quite closely; the 

observed scatter probably arises from the numerical methods employed in estimating 

these values. 

6.7 The Role of Turbulence Spectrum 

As the flame propagates after spark ignition, the flame front is at first wrinkled by 

the smallest scales of turbulence - larger length scales merely convecting the kernel 

bodily. During this period, the r.m.s. turbulent velocity effective in wrinkling the 

flame is u~, « u'). However, as the kernel continues to grow it becomes progressively 

wrinkled by the larger length scales until eventually the size of the kernel is sufficient 

for it to experience the entire turbulence spectrum. The effect of turbulence (embodied 

in u~) on flame wrinkling and the turbulent burning velocity is then fully developed 

and equal to u' (Abdel-Gayed et al. 1987, Bradley 1990). Abdel-Gayed et al. (1987) 

derived a nondimensional power spectrum from laser-doppler measurements of isotropic 

turbulence in a fan-stirred fan. They assumed the frequency band affecting flame 

propagation to extend from the highest frequency to a threshold frequency given by 

the reciprocal of the time elapsed from ignition. 
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Scott (1992) improved the nondimensional power spectrum by replacing the di­

mensionless frequency with a dimensionless wave number, kry, defined as: 

(6.26) 

,where k is the wave number and 'fJ is the Kolmogorov length scale. The wave number 

provides the link to the time scale. At the elapsed time, tk, measured from ignition, 

the corresponding value of k, is given by: 

(6.27) 

Here s is the mean cold gas speed and in the fan-stirred vessel, where there is no mean 

velocity, it is related by Abdel-Gayed et al. (1987) to u' by: 

(6.28) 

'fJ is related to the turbulent Reynolds number, R A' defined by u' AI v, and the Taylor 

microscale, A, by: 

(6.29) 

RA and A are related to integral length scale, L, by: 

A A 

L RA 
(6.30) 

where A is a numeric constant. Scott (1992) suggested that a value of A of 16, with 

bounds of ± 1.5, gives the best fit to the spectral measurements, over a wide range of 

the data reported by McComb (1990). Values of v and L, required to estimate RA, for 

the initial conditions studied in the present work, are presented in Table 6.1. 

These values of S(k'11)' measured over a wide range of physical situations, reveal 

that the spectra at the higher wavenumbers collapse to a universal form of k-5/ 3 

(McComb 1990) and, as the Reynolds number decreases, the spectra show shorter 
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ranges of universal behaviour. Scott (1992) studied measured spectra for a wide range 

of Reynolds numbers and produced a universal best fit correlation to those for S(kry) 

as a function of kTJ and R A: 

(6.31) 

The agreement between Eq. 6.31 and the data of other researches is excellent, as can be 

seen from Fig. 6.17, where the symbols are the measured values reported in McComb 

(1990) and the lines corresponds to the values obtained from the correlation. 

Using the approach followed by Abdel-Gayed et ai. (1987), at an elapsed time of 

tk' the r.m.s. turbulent velocity effective in influencing flame propagation. u~, is given 

by: 

{ 
0.5 00 }1/2 , ,15 - - -

uk = u R). A~ S(k1J}dk1J (6.32) 

Values of u~/u' are obtained at different values of kTJ by numerical integration of 

Eq. 6.32 using Eq. 6.31. Shown in Fig. 6.18 are such variations of uk/u' plotted against 

k;Jl for a range of values of RA. Hen~e, the values of uk/u' for different tk are esti­

mated using Eqs. 6.26, 6.27 and 6.32 and are plotted in Fig. 6.19, for the experimental 

conditions of the present study. 

6.8 Results and Discussions 

The present study involves spherically expanding premixed flames of stoichiometric 

methane-air mixtures at initial pressures of 0.1 MPa and 0.5 MPa, at three different 

r.m.s. turbulence velocities, u', of 0.595, 1.19 and 2.38 mis, all at 300 K. For each 

condition the data are the averages from four different explosions. The initial conditions 

and the relevant data are presented in Table 6.1. 

Turbulent burning velocities and the associated reference radii and ma.,",s(!S a.re 

computed from the measured values of a as a function of r for each set of flame images. 
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as discussed in § 6.4.1. Typical values of a at different reference flame radii have been 

shown in Fig. 6.6 for one explosion. Averaged values of a as a function of r for different 

elapsed times in four different explosions are now shown in Figs. 6.20 and 6.21 for 

0.1 MPa at u' = 0.595 m/s and 0.5 MPa at u' = 2.38 mis, respectively. Different 

reference radii are obtained from the averaged values of a(r), as discussed in § 6.4.2, 

and these are shown in Figs. 6.22 to 6.27 plotted against elapsed time, for the different 

conditions of Table 6.1. In all cases the flame brush thickness increases with time and 

radius. 

Shown in Fig. 6.28 are the values of Utr/ul for the different reference radii, plotted 

against U~/Ul' for stoichiometric methane-air mixtures at 0.1 MPa with u' = 0.595 m/s. 

The values of Utr/ul for all reference radii increase with UJ)Ul. The highest values of 

Utr/ul are associated with the smallest radius, R r. Conversely, smaller values of Utr/ul 

are associated with R~=O.5 and R t . At the lowest values of U~/Ul' these values of 

Utr/ul are even less than unity. Hence, only the reference radii of R a, Rm and Rv are 

further considered and only the values of Utr corresponding to Rv are reported. Values 

of Utr for other reference radii can be obtained from flame radii presented in Figs. 6.22 

to 6.27, as UtrR[ is a constant (§ 6.4.3). 

Shown in Fig. 6.29 and 6.30 are the values of utr(Rv)/ul plotted against U'/ul 

for stoichiometric methane-air mixtures at 0.1 MPa and 0.5 MPa respectively at three 

different level of turbulence intensity at an initial temperature of 300 K. In all cases, 

turbulence enhances the mass burning rate. 

It is fruitful, on the basis of the present work, to examine which definitions of 

radius and burning velocity appear to be in the best agreement with the correlations of 

turbulent burning velocity presented by Bradley et al. (1992). For values of (K Le)B 

between 0.01 and 0.63, they suggested turbulent burning yelocitiesarc correlated by 

Ut = 0.88 (KLe)-O.3 (U~) 
ul 8 uL 

( G.33) 
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Here, 

(6.34) 

with a value of A, in Eq. 6.30, equal to 40.4, as reported by Abdel-Gayed et al. {1984}. 

Equation 6.33 is plotted in Figs. 6.29 to 6.35. Over much of the present range of 

conditions, the empirical expression is close to the present correlation of Ut based on 

Rv. It follows that the correlation is a good representation of both the mass rate of 

burning and the progress of the advancing flame front. 
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Table 6.1. Initial conditions and corresponding turbulence parameters for PMS studies 
of premixed turbulent stoichiometric methane-air flames at an initial temperature of 
300 K. Integral length scale for all the conditions is 20 mm. Kinematic viscosity, v, 

is 1.597.10-5 m2 Is and 3.187.10-6 m2 Is for initial pressures of 0.1 and 0.5 MPa, 
respectively. 

Pu Pu Ph Uz u' 17 A R)., RL (K Le)S 

(MPa) (Kglm3) (Kglm3) (m/s) (m/s) (mm) (mm) 

0.10 1.1083 0.1481 0.36 0.595 0.142 2.930 109 746 0.0157 

0.10 1.1083 0.1481 0.36 1.19 0.085 2.072 154 1491 O.O~-H 

0.10 1.1083 0.1481 0.36 2.38 0.050 1.465 218 2982 0.12:)6 

0.50 5.5504 0.7318 0.19 0.595 0.043 1.309 244 373~ 0.0252 

0.50 5.5504 0.7318 0.19 1.19 0.025 0.926 346 7468 0.0713 

0.50 5.5504 0.7318 0.19 2.38 0.015 0.655 489 14936 0.2016 
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Fig. 6.1. Flame imag for the propagation in a toi hiom tri m han 
t n initial t mp ratur f 300 K and pr ur of .1 1P "i h an i 

tur ul n v locity of 0.5 5 m/ . 

ir mi.· tur 
tropi Llll . 
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Fig. 6.2. Flame coordinat s for the flame imag shown in Fig. '. L 
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Fig. 6.3. Definition of different masses for a flame images. 
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Fig. 6.6. Changes in a with increasing elapsed time from ignition. Flame brush 
thickness defined by (Rt - Rr) and estimated values of Ra , Rm & Rv are also shown. 
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Fig. 6.8. Rate of the appearance of burned gas and the disappearance of the unburned 
gas with elapsed time. 
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Fig. 6.14. Variation of Ut with elapsed time for different values of ~. 
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Fig. 6.16 . Experimental relationship between Rv / dt and Ut (Rv). 
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Fig. 6.22 . Variation of various reference flame radii with elapsed time from ignition 
for stoichiometric methane-air mixture at 0.1 MPa with u' = 0.595 m/s. 
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Fig. 6.24. Variation of various reference flame radii with elapsed time from igni tion 
for stoichiometric methane-air mixture at 0.1 MPa with u' = 2.38 m /s . 
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Fig. 6.26, Variation of various reference flame radii with elapsed time from ignition 
for stoichiometric methane-air mixture at 0.5 MPa with u' = 1.19 m/s. 
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Fig. 6.28. Variation of Utr/U[ with Uk,/Ul for different reference flame radii for to i­

chiometric methane-air mixture at 0.1 MPa with u' = 0.595 m/s. 
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Fig. 6.30. Variation of utr(Rv )/ul with U~/Ul for stoichiometric methane-air mixture 
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Fig. 6.32. Variation of utlu[ with u';)u[ for different reference flame radii for stoichio­
metric methane-air mixture at 0.1 MPa with u' = l.19 m/s. 
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Fig. 6.34. Variation of Ut/ul with U'r)Ul for different reference fl ame radii for stoichio­
metric methane-air mixture at 0.5 MPa with u' = 0.595 m/s . 
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Chapter 7 

The Curvature of Prelllixed 

FlaITles in Isotropic Turbulence 

7.1 Introduction 

In the wrinkled laminar flame let regime, flame thickness and the characteristic chemical 

time within the flame are much smaller than the turbulence length and time scales, 

and the flame front may be considered as an interface separating cold reactants and 

the burned products. Using laser sheet imaging techniques it is possible to visualize the 

turbulent flame surfaces, and derive the curvatures of the flame front from the flame 

images. This reveals information about the response of the flame to the turbulent flow 

field and also gives insights into the influence of flame shape on flamelet burning. 

Many computational studies (both two and three dimensional, with and without 

heat release) have derived the distributions of flame front curvature and studied its 

influence (Haworth and Poinsot 1992, Bray and Cant 1991, Shepherd and Ashurst 1992. 

Echekki and Chen 1996 and Rutland and Trouve 1993). The W(lYS in which the burn 

rate of a methane-air flame is affected by the curvature have been st udied by Echekki 

and Chen (1996) by DNS with reduced chemistry. Curvature strongly influences th(' 

distribution of fast diffusing radicals such as H, the concent 1'a t ion of which incr('ases 
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in regions of negative curvature, as a consequence of flame focusing. This results in a 

further increase in local displacement speed of the flame. 

The chapter reports the studies of flame front curvature using laser sheet images 

and PMS and PLIF techniques. PLIF images are analysed to obtain flame curvatures of 

turbulent iso-octane-air flames, while PMS images are used to study methane-air flames. 

The sequence of PMS images also are analysed to show the effect of the developing flame 

front curvature. 

7.2 Calculation of Flame front curvature 

Analytically, flame front curvature, H, can be calculated from the flame coordinates, 

(x, y), from (Lee et al. 1992): 

(7.1) 

However, the use of an independent variable, s, has been reported by Lee et al. (1993) 

to improve this procedure, since the flame curvature can be analyzed regardless of the 

slope and complexities of the flame contour. Here, s, is the distance along the flame 

front from a fixed origin located on it. The curvature, H, is obtained from (Lee et al. 

1993, Haworth and Poinsot 1992): 

(7.2) 

The flame curvature is positive if the flame element is convex towards the reactant. 

The flame coordinates obtained from digital images require some smoothing of the 

flame edge. In the present study, the Savitzky-Golay algorithm (Savitzky and Golay 

1964, Press et al. 1992) is used for data smoothing and differentiation. This algorithm 

is briefly reported in Appendix B. Data smoothing and numerical differentiation are 
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performed by a program savi t . for, written for the present study and embodying a 

subroutine savgol. for from Press et ai. (1992). Shown in Fig. 7.1 are the raw flame 

coordinates and the smoothed values using this algorithm. The smoothing clearly re­

duces digital effects. Shown in Fig. 7.2 are the values of H for the input data of a 

digitized sine wave, in which the theoretically estimated values of H are shown by 

the solid line and the computed values, using the Savitzky-Golay algorithm, by sym-

boIs. Clearly, the algorithm estimates H quite accurately, although some values of H 

are slightly less than those estimated theoretically. Equispaced flame coordinates as 

required for savi t . for were obtained by cubic spline interpolation of the raw flame 

coordinates using subroutine spline. for and splint. for from Press et al. (1992). 

7.3 Estimation of Probability Density Function (pdf) 

The probability density function of a random variable, u, is defined such that the 

probability of finding u between x and x + dx is pdf(x)dx. The pdf is normalized to 

the condition (Frisch 1995): 

! pdf(x)dx = 1. 

Hence, its value is estimated from a probability distribution function, F(x), as: 

pdf(x) = dF(x) 
dx 

(7.3) 

(7.4) 

The probability distribution function, F(x), is also a function of the the random vari-

able, u, defined as (Kuo 1986): 

F(x) Prob{u < x} (7.S) 

F{x) is always a real-valued, non-negative and non-decreasing function. It can 1)(' 

estimated from a given number of observations by calculating the number frequcncy" 

in a number of bins and estimating the cumulative fraction up to.f. HeBce, the pdf 

is estimated by numerical differentiation of F{x). The estimation ()f pdf of H for a 
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stoichiometric methane-air flame at an initial pressure of 0.1 MPa, with u' = 0.595 m/s~ 

is shown in Fig. 7.3, where it is compared with a gaussian distribution. 

7.4 Development of Curvature in Spherically Expanding 

Flame 

The experimental conditions studied are summarized in Tables 7.1 and 7.2. The flames 

observed are not fully developed (§ 6.7). As a flame grows in size it is subjected to 

the influence of larger length scales of turbulence. Curvatures have been measured 

throughout this temporal development. Shown in Fig. 7.4 is the development of flame 

contours of a stoichiometric methane-air flame from ignition, with u' = 0.595 m/s. The 

persistence of a 'history' can be seen clearly, whereby features generated in the early 

development of the flame are still evident on the flame surface after as long as 15 ms. 

Shown in Fig. 7.5 are the pdfs of curvature, normalized by flame thickness, 6[, H 6[, for 

the same flame with time. The pdfs spreads with the passage of time, with an increase 

in the variance, and remain symmetric about near-zero curvature. 

From such flame curvature pdfs, it is possible to compute the positive, negative, 

and overall mean flame curvatures, (H+ 6l ), (H- 6l ) and (H 6l ). Shown in Fig. 7.6 are 

values of (H+ 6l), (H- 6l ) and (H 6l) plotted against time for four different explosions 

with u' = 0.595 m/s. The positive and negative values of curvature clearly increase 

with time while the mean remains close to zero. Shown in Fig. 7.7 are the values of , 

variance of nondimensional curvature, obtained from these four different explosions. 

It is evident from Figs. 7.6 and 7.7 that the curvature increases with time. However. 

this increase, associated with u~, is much less significant than that due to the increase 

in the overall turbulent r.m.s. velocity, u'. Hence, the global quanti t y of u' is used 

to identify the primary effect of turbulence on flame front curvature, rath('r than the 

developing value of uk· 
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7.5 Experimental Results 

Results are presented for both the PMS and PLIF techniques. Because a pixel with 

PMS represents an actual distance of 0.32 mm and a pixel with PLIF represents one 

of 0.157 mm, the latter is more accurate. These resolutions are not comparable to the 

laminar flame thickness to guarantee the complete accuracy of the pdfs. Nevertheless, 

certain overall conclusions can be drawn. 

Shown in Fig. 7.8 are the pdfs of curvature, from four different explosions, all 

found using the PMS technique for stoichiometric methane-air mixtures at an initial 

pressure of 0.1 MPa and initial temperature of 300 K, with u' = 0.595 m/s. The pdfs 

of curvature are nearly symmetrical with a gaussian distribution and a mean of small 

negative value. The four different explosions have consistent pdfs. 

Figure 7.9 gives the pdfs of curvature for stoichiometric methane-air mixtures fOf 

three values of u', at an initial pressure of 0.1 MPa and initial temperature of 300 K. 

The pdfs are symmetric with respect to a very small negative mean value. The width 

(variance) increased with increase in u', commensurate with increased flame wrinkling. 

The mean value approaches zero with increase in u'. 

Figure. 7.10 displays four representative flame edges for stoichiometric iso-octane­

air mixtures at increasing values of u', this time using the PLIF technique. The flames 

become increasingly wrinkled as the flame speed is increased. At high levels of tUf­

bulence long deep cuts of unburned gas can be observed, possibly the result of vOftex 

tubes burning in the flame front, in which case high curvature would be present in a 

plane normal to the sheet (Shepherd and Ashurst 1992). The pdfs of cun'ature for each 

value ofu' are commensurate with Fig. 7.10 and are shown in Fig. 7.11. Again, as u' 

increases the pdfs are broadened and the probability of a zero or near Z('ro CUfvatufc 

decreases, as for the methane-air mixtures. The effect of u' in dispersing the fiamc 

front curvature pdfs is again clearly revealed. 
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A similar effect of u' on curvature pdfs is observed at 0.5 MPa, as shown in Fig. 7.12, 

where pdfs for stoichiometric methane-air mixtures using PMS at three values of u' are 

plotted. Again, the pdfs are symmetric with respect to a very small negative mean 

value, while the width (variance) increased with increase in u'. However, the increase 

in the variance in not as marked as for the explosions at 0.1 MPa. 

The influences of pressure and equivalence ratio on the curvature pdfs are compared 

in Fig. 7.13 for methane-air mixtures using PMS. The pdfs of normalized curvature 

are displayed for stoichiometric methane-air mixtures at both 0.1 MPa and 0.5 MPa 

initial pressure, and also for a lean (¢ = 0.8) methane-air mixture at 0.1 MPa initial 

pressure. In all the cases the initial temperature is 300 K. Here, nondimensional pdfs 

are symmetric with respect to a very small negative value. However, the flame at 

0.5 MPa has the lowest variance. Values of Markstein number, M asr, are also shown 

for each condition. 

Figure 7.14 shows the flame edges of stoichiometric, rich and lean iso-octane-

air flames obtained using PLIF at 0.1 and 0.5 MPa with u' = 1.19 m/s. The pdfs 

of curvature are shown in Fig. 7.15. That for stoichiometric iso-octane-air flame at 

0.5 MPa has the lowest variance, similar to the methane-air flame at 0.5 MPa, in 

Fig. 7.13. For 0.1 MPa flames, curvature pdf of the stoichiometric flame has the lowest 

variance. Shown in Fig. 7.16 are curvature pdfs obtained from PLIF for three different 

iso-octane-air equivalence ratios at 0.1 MPa and with u' = 0.595 m/s. Values of M asr 

are also given on these two figures. 

7.6 Discussion 

There are many factors that influence the pdf of curvature. In so far as this pdf is 

a measure of the flame wrinkling, and hence of turbulent burning velocity, it might 

by anticipated that, in dimensionless terms, as with Ut/U[, it is affected by the flame 

wrinkling factor ui)U[ and also the product of K M asr· Here, K is the Karlovitz stretch 

factor and is discussed in Chapter 6. It is difficult to isolate these variables and" 1udy 
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each one separately. The influence of uJ)UZ seem to be clearly revealed in Figs. 7.9. 

7.11 and 7.12, which show an increasing variance of HoZ as uJ)U[ is increased. The 

increase in the flame wrinkling with increasing turbulence is to be anticipated. As other 

researches have also found the pdf is slightly skewed towards negative values (Shepherd 

and Ashurst 1992, Haworth and Poinsot 1992 and Rutland and Trouve 1993). 

The influence of M asr is less clear. This parameter varies with equivalence ratio 

and pressure, as does also the pdf of H oZ. A complicating factor is that o[ has been 

given throughout by v/uZ' This expression is simplistic, with the result that errors 

in it create errors in H oZ. This is perhaps most serious for the pressure changes. In 

addition, because of the limited spatial resolution at high pressure, where o[ is smaller 

the higher values of curvature may not be resolved accurately. This may contribute to 

the more peaked pdfs that occur at high pressure in Figs. 7.13, 7.15 and 7.16. 

To reduce this effect it is useful to examine the influence of M asr at constant 

pressure. A consistent trend in Figs. 7.13, 7.15 and 7.16, is that for the same pressure, 

the lowest values of M asr is always associated with the greatest variance of the pdf. 

This increase in variance of H 0z as M asr decreases might be anticipated, because 

H 0z is inversely proportional to the localized Peclet number. When the curvature is 

small the flame is less stable and this is particularly so at low values of M asr· That is 

to say, such curvatures cannot be stabilized and the variance of H 0z will increase. This 

effect will be more marked, the smaller the value of M asr and this is observed. It is to 

be noted that the value of HoZ corresponding to (Pecl)-l or the smallest normalized 

cell curvatures is quite small. 
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Table 7.1. Summary of results for methane-air data obtained using PMS imaging at 
an initial temperature of 300K. 

Expt. Pu ¢ ul °l Masr u' A K HOt var(Hod 
rD. (MPa) (m/s) (mm) (m/s) (mm) 

MOl 0.1 1.0 0.36 0.0443 4.1 0.595 2.93 0.025 -0.0003 0.0104 
M02 0.1 1.0 0.36 0.0443 4.1 0.595 2.93 0.025 0.0000 0.0096 

M03 0.1 1.0 0.36 0.0443 4.1 0.595 2.93 0.025 -0.0003 0.0092 

M04 0.1 1.0 0.36 0.0443 4.1 0.595 2.93 0.025 0.0001 0.0099 

M06 0.1 1.0 0.36 0.0443 4.1 1.19 2.07 0.071 -0.0002 0.0127 

M09 0.1 1.0 0.36 0.0443 4.1 1.19 2.07 0.071 0.0001 0.0110 

M10 0.1 1.0 0.36 0.0443 4.1 1.19 2.07 0.071 0.0001 0.0115 

M12 0.1 1.0 0.36 0.0443 4.1 1.19 2.07 0.071 -0.0001 0.0120 

M13 0.1 1.0 0.36 0.0443 4.1 2.38 1.46 0.200 -0.0003 0.0170 

M15 0.1 1.0 0.36 0.0443 4.1 2.38 1.46 0.200 0.0000 0.0174 

M16 0.1 1.0 0.36 0.0443 4.1 2.38 1.46 0.200 -0.0003 0.0158 

M18 0.1 1.0 0.36 0.0443 4.1 2.38 1.46 0.200 -0.0005 0.0153 

M52 0.5 1.0 0.19 0.0168 -1.4 0.595 1.31 0.040 0.0001 0.0065 

M53 0.5 1.0 0.19 0.0168 -1.4 0.595 1.31 0.040 0.0000 0.0067 

M55 0.5 1.0 0.19 0.0168 -1.4 0.595 1.31 0.040 -0.0001 0.0064 

M56 0.5 1.0 0.19 0.0168 -1.4 0.595 1.31 0.040 0.0001 0.0059 

M59 0.5 1.0 0.19 0.0168 -1.4 1.19 0.93 0.113 0.0002 0.0055 

M67 0.5 1.0 0.19 0.0168 -1.4 1.19 0.93 0.113 0.0000 0.0067 

M68 0.5 1.0 0.19 0.0168 -1.4 1.19 0.93 0.113 0.0001 0.0065 

M69 0.5 1.0 0.19 0.0168 -1.4 1.19 0.93 0.113 0.0000 0.0064 

M72 0.5 1.0 0.19 0.0168 -1.4 2.38 0.65 0.321 -0.0002 0.0069 

M73 0.5 1.0 0.19 0.0168 -1.4 2.38 0.65 0.321 0.0000 0.0070 

M74 0.5 1.0 0.19 0.0168 -1.4 2.38 0.65 0.321 -0.0001 0.0076 

M77 0.5 1.0 0.19 0.0168 2.9 2.38 0.65 0.321 0.0001 ().()()7:2 

M22 0.1 0.8 0.259 0.0615 2.9 0.595 2.93 0.0-18 0.0000 0.01.'>2 

M23 0.1 0.8 0.259 0.0615 2.9 0.595 2.93 0.048 -0.0005 0.0169 

M24 0.1 0.8 0.259 0.0615 2.9 0.595 2.93 0.048 0.0004 0.0158 

M25 0.1 0.8 0.259 0.0615 2.9 0.595 2.93 0.048 0.0000 0.0 1.~),-) 
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Table 7.2. Summary of results for iso-octante-air data obtained using PLIF imaging 
at an initial temperature of 358K. 

Expt. Pu ¢ ul 8Z Masr u' A K H8l var(H8z) 
ID. (MPa) (m/s) (mm) (m/s) (mm) 

L582 0.1 1 0.45 0.0438 6 0.595 3.25 0.018 -0.0007 0.0099 

L583 0.1 1 0.45 0.0438 6 0.595 3.25 0.018 -0.0002 0.0111 

L584 0.1 1 0.45 0.0438 6 0.595 3.25 0.018 0.0000 0.0146 

L587 0.1 1 0.45 0.0438 6 l.19 2.30 0.050 0.0029 0.0201 

L588 0.1 1 0.45 0.0438 6 l.19 2.30 0.050 -0.0002 0.0187 

L589 0.1 1 0.45 0.0438 6 1.19 2.30 0.050 0.0001 0.0201 

L590 0.1 1 0.45 0.0438 6 3.57 1.33 0.261 -0.0001 0.0263 

L591 0.1 1 0.45 0.0438 6 3.57 l.33 0.261 -0.0007 0.0250 

L592 0.1 1 0.45 0.0438 6 3.57 l.33 0.261 -0.0020 0.0276 

L593 0.1 1 0.45 0.0438 6 3.57 1.33 0.261 -0.0002 0.0254 

L595 0.1 1 0.45 0.0438 6 5.95 l.03 0.562 -0.0026 0.0339 

L596 0.1 1 0.45 0.0438 6 5.95 l.03 0.562 -0.0009 0.0306 

L597 0.1 1 0.45 0.0438 6 5.95 l.03 0.562 0.0011 0.0308 

L702 0.5 1 0.32 0.0123 3 1.19 1.03 0.044 -0.0001 0.0096 

L703 0.5 1 0.32 0.0123 3 1.19 1.03 0.044 0.0003 0.0093 

L704 0.5 1 0.32 0.0123 3 1.19 1.03 0.044 0.0001 0.0092 

L707 0.5 1 0.32 0.0123 3 3.57 0.59 0.231 -0.0002 0.0106 

L708 0.5 1 0.32 0.0123 3 3.57 0.59 0.231 -0.0002 0.0100 

L709 0.5 1 0.32 0.0123 3 3.57 0.59 0.231 0.0001 0.0098 

L553 0.1 0.75 0.38 0.0530 13 0.595 3.29 0.025 0.0018 0.0181 

L554 0.1 0.75 0.38 0.0530 13 0.595 3.29 0.025 0.0007 0.0172 

L555 0.1 0.75 0.38 0.0530 13 0.595 3.29 0.025 -0.0011 0.017;) 

L558 0.1 0.75 0.38 0.0530 13 l.19 2.33 0.071 0.0000 0.0229 

L560 0.1 0.75 0.38 0.0530 13 1.19 2.33 0.071 0.0009 0.0223 

L562 0.1 0.75 0.38 0.0530 13 3.57 1.34 0.371 -0.0035 (l.I )"2q5 

L710 0.5 0.75 0.23 0.0175 4 1.19 1.04 0.087 -0.0028 0.0118 

L711 0.5 0.75 0.23 0.0175 4 1.19 1.04 0.087 0.0000 0.0096 

L712 0.5 0.75 0.23 0.0175 4 1.19 1.04 0.087 0.000·1 0.0122 

L418 0.1 1.4 0.32 0.0595 -1 0.595 3.20 0.035 -0.0002 0.0223 

L419 0.1 l.4 0.32 0.0595 -1 0.595 3.20 0.035 -0.0015 0.0247 

L422 0.1 1.4 0.32 0.0595 -1 1.19 2.2G 0.098 0.0003 0.0309 
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PLIF data for Iso-octane-air mixture 
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Fig. 7.1. An illustration of the smoothing performed by Savitzky-Golay algorithm on 
a digitized flame edge. 
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Fig. 7.4. The temporal development of a stoichiometric methane-air flame at 
u' = 0.595 mls at 0.1 MPa initial pressure and 300 K initial temperature. 
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Fig. 7.6 . Positive, negative and mean flame curvatures of a developing stoichiometric 
methane-air flame at u' = 0.595 mls at 0.1 MPa initial pressure and 300 K initial 
temperature. 
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Fig. 7.8 . Curvature pdfs obtained from four different explosions for stoichiometric 
methane-air for u' = 0.595 m/s at 0.1 MPa initial pressure and 300 K initial tempera­
ture. 
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Fig. 7.10. Flame edges of stoichiometric iso-octane-air flam at 0.1 MPa initial pr ur 
and 358 K initial temperature over a rang of u' u ing PLIF. 



151 

45 
PLIF data for iso-octane-air mixture 

40 f-

Pu = 0.1 MPa, Tu = 358 K, ¢= 1.0 
35 - o 

o .' 
. d. 

30 -

o u' = 0.595 m1s 
o u' = 1.190 m1s 

t:::,. u' = 3.570 m1s 
+ u' = 5.950 m1s 

?25 -
'--'" 20 -

0 : 0 
: 0 . 00 '. 

4-. 
o 
~ 15 -
0.. 

10 -

.0 0 . 
# " •• 

~: t:::,. t:::,. .. .• 
.. 0 .I::J,. ••.. t:::,.. R:. 

. :t:,. Lt' .' 
~.+ ++' + ' + '-t ~ 

¢t'.'.' 0 ~.~ . 
.ttI;.4Q o · · o ·t, . 

5 - ~' o ' .. o·.·.o ·! · ±·t · 0 . . .+:y t ·p 0 .' o. 0 '.0 ~~ K . 
o -++~tt8·g· t:i .·0[~ · · bQ.g· g .8~.+-++. 

I I I I I I I I I 

-0.10 -0 .08 -0.06 -0.04 -0 .02 0 .00 0 .02 0.04 0 .06 0 .08 0.10 

Fig. 7.11. Curvature pdfs for stoichiometric iso-octane-air flame at 0.1 MPa initial 
pressure and 358 K initial temperature over a range of u' using PLIF. Symbols d not 
experimental data, lines are Gaussian fits. 
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PMS data for methane-air mixture: T = 300 K 
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Fig. 7.13. Curvature pdfs for methane-air flame for u' = 0.595 mls over a range of 

pressures and equivalence ratios. 
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PLIF data for Iso-octane-air mixture 
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Fig. 7.15. Curvature pdfs for stoichiometric iso-octane-air flame at u' 1.19 mls ov r a 
Tange of pressure and equivalence ratio. 
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Chapter 8 

Conel us ions 

The present thesis comprises a fundamental study of spherical premixed flame propa­

gation originating at a point under both laminar and turbulent propagation. Schlieren 

cine photography has been employed to study laminar flame propagation, while planar 

mie scattering (PMS) has elucidated important aspects of turbulent flame propagation. 

Turbulent flame curvature has also been studied using planar laser induced fluorescence 

(PLIF) images. 

Effects of flame stretch on laminar burning velocities of methane-air mixtures have 

been studied experimentally and numerically over wide ranges of pressure, tempera­

ture and equivalence ratio. Spherically expanding flame speeds, were measured, from 

which the corresponding laminar burning velocities were derived. Unstretched la.minar 

burning velocities of freely propagating, one dimensional, adiabatic, premixed flames 

were computed using the Sandia PREMIX code using GRI-Mech reaction mechanism. 

Two definitions of burning velocity were explored and their response to stretch due to 

curvature and flow strain quantified by appropriate Markstein numbers. Data from the 

present experiments and computations are compared with t hose reported elsewhere 

Comparisons are made with iso-octane-air mixtures and the contrast between fuels 

lighter and heavier than air is emphasized. 
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Flame instability in laminar flame propagations becomes more pronounced at high 

pressures, especially for lean and stoichiometric methane-air mixtures. Critical Peclet 

numbers for the onset of cellularity were measured and related to the Markstein number, 

M asr· Flame photography clearly shows the flame to accelerate as the instability 

develops, giving rise to a cellular flame structure. 

PMS images have been analysed to obtain the distributions of burned and unburned 

gas in turbulent flames. Turbulent burning velocities have been derived from these for 

stoichiometric methane-air at different turbulent r .m.s. velocities, at initial pressures of 

0.1 MPa and 0.5 MPa. A variety of ways of defining the turbulent burning velocity have 

been fruitfully explored. Relationships between these different burning velocities are 

deduced and their relationship with the turbulent flame speed derived. The deduced 

relationships have also been verified experimentally. 

The major conclusions of the study are: 

• Measured unstretched burning velocities of methane-air increase with decreasing 

pressure and increasing temperature. These values are in good agreement with 

the reported data obtained from a· variety of experimental and computational 

techniques. It would appear that the mathematical models are less successful 

at higher pressures. A general power law correlation of unstretched burning 

velocities in terms of pressure and temperature is presented. 

• The global activation energies for the mass burning rate were experimentally 

determined. Correlations of laminar burning velocities are established using these 

energies. Zeldovich numbers for methane-air mixtures are calculal ed froIll the 

activation energies. They are found to increase with pressure. There is a slight 

variation with ¢, with a minimum value of {3 for near-stoichiometric mixtur('s. 

• Two different stretched burning velocities have been recognized, one bas<'o 011 the 

disappearance of the unburned mixture, and another based on the appearance of 

the burned products. These have different values for a given flame sl r('teh and 
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the difference increases with flame thickness as initial pressure decreases. They 

show different sensitivities to stretch rate and the associated Markstein numbers 

have been measured. 

• Effects of flame stretch on laminar flame speeds are found to be substantial, with 

variations up to 35% in the stretched burning velocity for a variation in stretch 

between 400 and 100 (s -1). This highlights the significance of flame stretch on 

laminar and, hence, by implication, turbulent burning velocities. 

• Markstein numbers for methane-air mixtures are found to increase with equiva­

lence ratio. They decrease with initial pressure, but only up to 0.5 MPa. They 

are less sensitive to initial temperature. 

• Comparisons between the present methane-air data and those of iso-octane-air, 

presented elsewhere, show that flame stretch has opposite influences on both the 

burning rate and the stability of the two fuels. 

• The predictions of chemical kinetic models are, in general, satisfactory for lean 

mixtures but less so for rich mixtures, particularly at high pressures. Flame 

instability, which can wrinkle the flame and also increase the burning velocity, is 

not predicted by these models. 

• Flame instability, with associated flame acceleration, is observed for the methane­

air flames at higher pressures, especially for the lean mixtures. Its intensity 

decreases with increase in equivalence ratio and Markstein number. A linear 

relationship is established between the critical Peclet number, Peel for the onset 

of cellularity and M asr for both methane-air and iso-octane-air mixtures. 

• Flame speeds are found to be slower in the present study t han predicted b~· the 

t3/2 rule, which is more valid for large scale unconfined explosions. How('vcr, then' 

is clear evidence that the flame spread law in the present work tends towards that. 

in the large scak explosions. 
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• A variety of ways in which turbulent burning velocities might be defined has been 

scrutinized. In the analyses different masses and reference radii are considered 

in predictions of turbulent burning velocities. The reference radius, Rv, which 

satisfies the condition that the volume of unburned gas inside a circumference of 

this radius is equal to that of burned gas outside that circumference, is found to be 

most suitable radius to define the turbulent burning velocity. With this reference 

radius, all three definitions of turbulent burning velocities attain identical values. 

• The study of flame curvature distributions show these to become more dispersed 

as the r.m.s. turbulent velocity increases. A decrease in Markstein number also 

increases this dispersion, in line with the flame stability studies. 

The following observations are made with regard to future work: 

• The present studies have covered laminar methane-air burning velocities and 

Markstein numbers for equivalence ratios between 0.8 and 1.2. Because of the 

increased tendency to burn lean in engines, further measurements should be made 

for leaner mixtures. 

• Flame speeds have been measured as cellular instability begins to develop. Other 

workers have made measurements in large scale explosions. There is a need for 

measurements at intermediate scales. 

• Measurements of turbulent burning velocities simultaneously with schlieren pho­

tography and laser sheet images would strengthen (or weaken) the correlations 

suggested in the present work. 

• The influence of pressure, Karlovitz stretch factor and t-.larkstein number on 

curvature pdfs of turbulent flames are not completely clear. Further ('xpprimcnts 

are required to separate the influences of these variables. 



Appendix A 

Estimation of Thermodynamic 

and Transport Properties 

A.I Introduction 

For the processing of the experimental data from flames, an associated family of trans-

port, thermodynamic and thermo-chemical parameters are required. Procedures to 

evaluate them are well established (Bird et ai. 1960, Assael et ai. 1996), and a brief 

overview of such techniques to estimate the properties required in the present st udy is 

reported in this appendix. 

A.2 Thermodynamic Properties 

For a real gas or mixture of gases, the value of any thermodynamic property, x, can 

be written as the sum of an ideal-gas term and a residual term (Assael et ai. 1996): 

x = X ig + X res (.\.1 ) 

where X res is defined as the difference between the actual value ()f the thermodYllamic , 

property X and the value X ig that would prevail in a hypothetical ideal gas ;tt t hI' 

same thermodynamic state. The residual term becomes insignificant for dilute ga .. "('~ or 

their mixture (Assael et al. 1996). 
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A.2.1 Compressibility factor 

The compressibility factor, Z, is widely used to express the deviation of actual gas 

properties from the ideal gas law. For methane-air mixtures, Z is computed using the 

Lee-Kesler scheme (Lee and Kesler 1975) that expresses Z as a function of 3-parameters: 

• reduced pressure, Pr{= PIPer), where Per is the critical pressure, 

• reduced temperature, Tr{ = T /Ter ), where Ter is the critical temperature, 

• acentric factor, w, which represents the non-sphericity of a molecule. 

In this scheme, Z of any fluid or fluid mixtures is related to the compressibility factor 

of a simple fluid, Zo, and the compressibility factor of a reference fluid, Zr, by: 

Z = Zo + (w/wr){Zr - Zo) 

Here, Wr = 0.3978, and Zo and Zr have been represented by the same equation: 

and, 

z = [irV] 

where B 

c 

D 

1 + B + ~ + ~ + ~4 2 [f3 + ~ 1 exp [- ~ 1 v v v Tr v v v 

for 0.3 < Tr < 4 & 0.01 < Pr < 10 

bl - b2/Tr - b3/T? - b4/T~ 

C! - C2/Tr - C3/T~ 

Constant Simple Fluid Reference Constant Simple Fluid Reference 

bl 0.1181193 0.2026579 c3 0.0 0.016901 

b2 0.265728 0.331511 c4 0.042724 0.041577 

b3 0.154790 0.027655 dl * 104 0.155488 0.48736 

b4 0.030323 0.203488 d2 * 104 0.623689 0.0740336 

cl 0.0236744 0.0313385 {3 0.65392 1.226 

c2 0.0186984 0.0503618 'Y 0.060167 0.03754 

(A.2) 

(A.3) 
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Hence, to calculate the values of Z for both the simple and reference fluids, Eq. A.3 is 

solved for the dimensionless volume, v, and Z is calculated from the reduced pressure 

and temperature as Z = {Pr /Tr )v. The mixture properties are defined as the mole-

fraction-weighted averages of the pure-component values: 

(AA) 

The physical constants required to compute Z, along with the Lennard-Jones potential 

parameters, required to estimate some transport properties, are presented in Table A .1. 

The computed values of Z for methane-air mixtures with pressures between 0.1 

and 1.0 MPa at 300 K, suggests that the ideal gas law approximates the real gas 

properties with error less than 0.4 % (At 300 K and 1.0 MPa, Z = 0.9962). Therefore, 

in methane-air property calculations only ideal-gas values are considered. 

Table A.1. 
Physical constants and Lennard-Jones potential parameters for reactant g~"es. 

Compound name M ~ rffIa 
a t:/~B 

kg/kmol 
w nm 

Methane 16.0436 190.55 4.599 0.011 0.3758 148.6 

Nitrogen 28.0130 126.20 3.390 0.039 0.3798 71.4 

Oxygen 32.0000 154.60 5.040 0.025 0.3467 107.6 

A.2.2 Heat capacities and Enthalpies 

For each species i, polynomial curve fits of the type used by NASA are used to calculate 

the following standard molar thermodynamic properties as (Burcat and i\1cBride 1 YY7): 

(;\.5) 

HT,i _. ai2 T + ai3 T 2 + ai4 T 3 + ai5 T 4 + azG 
---ad+ 4 r.: T RT 2 3 Q 

(.\ . (i) 
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Hence, Cp,i is the molar heat capacity at constant pressure, and HT i is the absolute , 

enthalpy of species i and is related to its standard heat of formation ~fHo . by 
298,1 

(Burcat and McBride 1997): 

HT,i = ~fH298 . + {T C . dT. 
,2 1298 p,2 

For a gas mixture, properties are: 

N 

Cp = LXiCp,i 
i=l 

where, xi is the mole fraction of species i. 

N 

H = ""' x·HT . ~ t ,t 

i=l 

(A.i) 

(A.8) 

Values of coefficients aij for CH4, CO, C02, H, H2, H20, 0, 02, OR, N2 and NO 

are obtained from Burcat and McBride (1997), and are presented in Table. A.2. In this 

data base, the thermodynamic and thermo-chemical data are represented as two sets of 

polynomial coefficients for each species. The first set reproduces data at temperatures 

above 1000 K, the second set for those below 1000 K, and the same value is reproduced 

by both sets at 1000 K. 

A.3 Equilibrium Composition and Flame Temperature 

Adiabatic flame temperature is the maximum temperature generated from chemical 

reactions under equilibrium condition, and serves as the key factor to effect the density 

ratio, a. Its value is computed with the assumptions of negligible work and friction, 

and no heat loss. With these assumptions, the combustion process at constant pressure 

reduced to an isoenthalpic (dH = 0) one and thus simplified the computation. How('Y('r, 

the equilibrium combustion product composition and temperature are interrelated. and 

an iteration process is employed to evaluated them. 

A.3.1 Computation Method 

A computer program, prprty. for, is developed to calculate the properties of equilib­

rium combustion products of methane-air combustion for a given equivalence ratio. ¢, 



Table A.2. 
Coefficients for species thermodynamic properties from Burcat and McBride(1997). 

Species T range,K ail ai2 ai3 ai4 ai5 

CO 1000-5000 0.30484859E+01 0.13517281E-02 -0.48579405E-06 0.78853644E-10 -0.46980746E-14 

300-1000 0.35795335E+01 -0.61035369E-03 0.10168143E-05 0.90700586E-09 -0.90442449E-12 

CO2 1000-5000 0.46365111 E+O 1 0.27414569E-02 -0.99589759E-06 0.16038666E-09 -0.91619857E-14 

300-1000 0.23568130E+01 0.89841299E-02 -0.71220632E-05 0.24573008E-08 -0.14288548E-12 

H 1000-5000 0.25000000E+01 O.OOOOOOOOE+OO O.OOOOOOOOE+OO O.OOOOOOOOE+OO O.OOOOOOOOE+OO 

300-1000 0.25000000E+01 O.OOOOOOOOE+OO O.OOOOOOOOE+OO O.OOOOOOOOE+OO O.OOOOOOOOE+OO 

H2 1000-5000 0.29328305E+01 0.82659802E-03 -0.14640057E-06 0.15409851E-10 -0.68879615E-15 

300-1000 0.23443029E+01 0.79804248E-02 -0.19477917E-04 0.20156967E-07 -0.73760289E-11 

H2 O 1000-5000 0.26770389E+01 0.29731816E-02 -0.77376889E-06 0.94433514E-10 -0.42689991E-14 

300-1000 0.41986352E+01 -0.20364017E-02 0.65203416E-05 -0.54879269E-08 0.17719680E-11 

N2 1000-5000 0.29525407E+0 1 0.13968838E-02 -0.49262577E-06 0.78600091E-1O -0.46074978E-14 

300-1000 O. JS :309628E+0 1 -0.12365950E-03 -0.50299339E-06 0.24352768E-08 -0.14087954E-11 

N() 1000-5000 3.26071234E+00 1.19101135E-03 -4.29122646E-07 6.94481463E-11 -4.03295681 E-15 

:Hl(J-1000 4.211)G91)06E+00 -4.63988124E-03 1.10443049E-05 -9.34055507E-09 2.80554874E-12 

() 1000-5000 2.5·tHj:3G07E+OO -2.73162486E-05 -4.19029520E-09 4.95481845E-12 -4.79553694E-16 

300-1000 ].16826710E+00 -3.27931884E-03 6.64306396E-06 -6. 12806624E-09 2.11265971E-12 

(h 1000-5000 ;). (j(j(jOG01):3 E+ 00 6.56365523E-04 -1.41149485E-07 2.05797658E-11 -1.29913248E-1S 

:300-1000 i:L 7824S(i:~(jE+()0 -2.09673415E-03 9.84730200E-06 -9.68129508E-09 3.243721):3GE-12 

()11 1 ()()()- soon 2.8:~~(i·l(j(J7E+O() 1.10725586E-03 -2.93914978E-07 4.20524247E-11 -2.42169092E-15 

:HlO-I000 ]. ~)92() 1 ;),1:3 E+ 00 -2.401:31752E-03 4.61793841E-06 -3.88113333E-09 1.36411470E-12 

ai6 

-0.14266117E+05 

-0.14344086E+05 

-0.49024904E+05 

-0.48371971E+05 

0.25473660E+05 

0.25473660E+05 

-0.81305582E+03 

-0.91792413E+03 

-0.29885894E+05 

-0.30293726E+05 

-0.92393753E+03 

-0.10469637E+04 

9.92143132E+03 

9.84509964E+03 

2.92260120E+04 

2.91222592E+04 

-1.21597725E+03 

-1.06304:35GE+()3 

:3.0 /1:30;)K52E+(J:) 

:L61508056E+03 

~ 

~ 
~ 
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at any initial pressure and temperature. The species included in the product mixture 

are: CO, C02, H, H2, H20, 0, 02, OH, N2 and NO. Therefore the overall chemical 

equation can be expressed by: 

€<jJCH4 + (0.209502 + 0.7905N2) = vIN2 + v2 0 2 + v3CO + v4 H 2 + v5C02 

+ v6H20 + v7H + v80 + vgNO + vIOOH 

where, € is the molar fuel-air ratio, and vi is the stoichiometric coefficient for species i. 

Atom balancing yields the following four equations: 

0: 0.419 = (2X2 + x3 + 2x5 + x6 + x8 + xg + xIO)N 

N: 1.581 = (2Xl + xg)N 

(A.9) 

(A.I0) 

(A.ll) 

(A.12) 

where N( = LtD 1 vi) is the total number of moles and Xi are the mole fractions satis­

fying the condition: 

(A.13) 

The introduction of six equilibrium constants for six non-redundant reactions pro­

vide the required equations, ten unknown mole fractions, Xi, and the total number of 

moles, N. The equations are: 

1 
H Kl= 

X7· p1 / 2 

-H2 ~ ~ X4 2 
(A.14) 

1 O· K2= 
X8· p1 / 2 

-02 ~ 1/2 2 x2 

(A.15 ) 

1 1 K3= 
xIO 

"2H2 + "2 02 ---" OH 1/2 1/2 ~ 

x2 .x4 

(A.16) 

1 1 
NO K4 = 

xg 

2N2 + "2 02 ~ 1/2 1/2 ~ 

Xl .x2 

(A.17) 

1 
H2 O K5= 

x6 
H2 + "202 1/2 

x2 .X4· P 
(A.l8) 
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(A.19) 

Hence, the equilibrium constants, K, are expressed as a function of temperature by 

(Olikara and Bowman 1975): 

B 
logK = Aln(Tj1000) + - + C + DT + ET2 

T 
(A.20) 

and the constants A, B, C, D, E are generated from the curve fit to the equilibrium 

constants given JANAF tables and are presented in Table A.3. 

Table A.3. 
Constants to compute the equilibrium constants, K 

A B C D E 

Kl 4.321680E-01 -1.124640E+04 2.672690E+00 -7.457440E-05 2.424840E-09 

K2 3.108050E-01 -1. 295040E+04 3.217790E+00 -7.383360E-05 3.446450E-09 

K3 -1.417840E-01 -2.133080E+03 8.534610E-01 3.550150E-05 -3.102270E-09 

K4 1.508790E-02 -4.709590E+03 6.460960E-01 2.728050E-06 -1.544440E-09 

K5 -7.523640E-01 1.242100E+04 -2.602860E+00 2.595560E-04 -1.626870E-09 

K6 -4. 153020E-03 1.486270E+04 -4.757460E+00 1.246990E-04 -9.002270E-09 

A.3.2 Solution Procedure 

To calculate the adiabatic flame temperature, an initial gauss for Tad = 2500K is 

made and the equilibrium product composition is computed by prprty. for, which 

solves Eqs. A.9 to A.19 by a modified Fortran routine lnsrch.for from Press f't ai. 

(1992) using the Newton-Raphson method. The initial estimate of mole fractions to 

start the iteration procedure is the non-dissociated composition as suggested by H<,!'­

wood (1988). Once the mixture composition is determined, the difference IH't WI'('11 the 

product and the reactant enthalpies are calculated. and a modified estimate of Tad is 

made. The iteration process is repeated until Tad converged to the specified a.ccuracy. 

The equilibrium product composition is then calculated for this Tad' Prod lIet d(,llsi ty 
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is calculated from the composition, assuming the ideal gas law, because the adiabatic 

flame temperature is much higher than the critical temperature of the mixture, and 

the ideal gas law is applicable. 

A.3.3 Equilibrium Temperature and Product 

Shown in Fig. A.I are the adiabatic flame temperatures and the major species as a 

function of equivalence ratio. The solid lines represent the values obtained from the 

method outlined in § A.3.1, while the points represent values obtained using PREMIX 

code (Kee et ai. 1985) with GRI-Mech (Frenklach et ai. 1995) as outlined in § 3.4. 

The negligible discrepancy between these results suggests that equilibrium tempera-

ture and composition, required to calculate the density ratio, computed from a small 

number of equations are quite accurate. As shown in Fig. A.l, the major products 

of lean methane-air combustion are H20, C02, 02 and N2; while for rich combus-

tion, they are H20, C02, CO, H2, and N2' Consequently, (shown in Fig. A.2 and 

Table. A.4), the maximum flame temperature occurs at a slightly rich equivalence ratio 

(¢ = 1.05), owing to lower mean specific heats of the richer products (Glassman 1996). 

As the pressure is increased in a combustion system, the adiabatic flame temperature 

increase's and so does the amount of dissociation. This observation is expected from 

Le Chatelier's principle (Glassman 1996). The effect is greatest at the stoichiometric 

mixture where the amount of dissociation is greatest and dissociation increases with 

increase in temperature in the combustion system. Shown in Fig. A.3 is the density ra­

tio a as a function of equivalence ratio for different initial pressurps and temperatures. , , 

For a given equivalence ratio, the density ratio decreases as temperature is increased 

while it is less sensitive to pressure variations. 

A.4 Evaluation of Diffusive Transport Coefficients 

A transport property X, where X may be the viscosity Jl, the thermal conductivity k. 

the diffusion coefficient D or the thermal diffusivity CY, is written most conveniellt 11' a.." 
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Table A.4. 
Equilibrium Product Composition and temperature of Methane-Air Combustion. 

¢ 0.6 0.6 0.6 1.0 1.0 1.0 1.4 1A 1.-1 

Pu (MPa) 0.1 0.1 1.0 0.1 0.1 1.0 0.1 0.1 1.0 

Tu (K) 300 400 300 300 400 300 300 400 300 

Species 

CO 0 0 0 .0088 .0108 .0052 .0750 .0762 .0751 

CO2 .0591 .0591 .0591 .0853 .0832 .0893 .0442 .0430 .0442 

H 0 0 0 .0004 .0005 .0001 .0003 .0005 .0001 

H2 0 0 0 .0030 .0037 .0017 .0603 .0591 .0603 

H2O .1181 .1181 .1182 .1838 .1824 .1864 .1779 .1790 .1781 

N2 .7424 .7421 .7425 .7091 .7077 .7115 .6422 .6421 .6423 

NO .0016 .0021 .0016 .0020 .0024 .0017 0 0 0 

0 0 0 0 .0002 .0003 .0001 0 0 0 

02 .0785 .0782 .0785 .0047 .0056 .0027 0 0 0 

OH .0002 .0004 .0001 .0027 .0033 .0015 0 0 0 

Tad 1665 1741 1666 2225 2274 2267 1965 2038 1966 

the sum of three contributions (Assael et al. 1996): 

(A.21) 

Here, Xo(T) represents the dilute-gas value of the property, ~X(Pn· T) the excess value 

of the property and ~cX (Pn, T) the critical enhancement. For dilute gas condi t i()Il~, 

the contribution of the last two terms are zero and in the present study, only the dilute 

gas properties are evaluated based on the discussion in § A.2.1. 

AA.l Dynamic Viscosity 

The dynamic viscosity at an absolute temperature T of a pure gaseous speci('~ i I d' 

molecular weight Mi is given by the kinetic theory expression (cf. Bird rt ai. 1960) hy: 

(.\.22) 
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where, O'i denotes the Lennard-Jones collision diameter, 0(2,2)' which is a collision 

integral normalized by its rigid sphere value and kB is the Boltzmann constant. If 

a Lennard-Jones-6-12-potential is assumed, the reduced collision integral 0(2,2) is a 

unique function of the reduced temperature T* which is the ratio of the absolute tem-

perature T and the depth of the intermolecular potential, E i.e., T* = kBT/E. Its value 

is approximated using the Nuffield-Janzen equation (Neufeld et aI. 1972): 

1.16145 0.52487 2.16178 
(T*)O.14874 + exp(0.7732T*) + exp(2.43787T*) 

_ 6.435 * 10-4 (T*) 0.14874 sin [ 18.0323 (T* ) -0.7683 - 7.2371] (A. 23) 

The dynamic viscosity of the gas mixture is calculated using the semi-empirical 

formula of Wilke (1950) from the respective viscosity, J-Li, and the mole fractions, Xi, of 

the component species according to 

N 
J.Li 

J.Lmix = L N 
(A.24) 

i-IlL - 1 + - X .cI> .. 
Xi ) 1.) 

j=l 
j=l=i 

where the correction factors cI>ij are calculated from the molar weights and the dynamic 

viscosities by (Strehlow 1984): 

[ 
M ]-! [ (.)! (M.)~]2 cI> .. = _1_ 1 + _i 1 + J.L1.. J 

1.) 2J2 Mj J-L) 1. 

(A.25 ) 

Mixture kinematic viscosity, v, is obtained by dividing the mixture dynamic vis­

cosity, J.Lmix' by the mixture density, Pu. Shown in Fig. A.4 are the variations of v as 

a function of </> for methane-air mixtures at 300 K and 0.1 ~lPa. 
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A.4.2 Thermal Conductivity and Diffusivity 

Thermal conductivity ki of a pure gaseous species i is related to I·ts d .. . , , ynamlc VISCOSIty 

I-ti by the modified Eucken correlation (cf. Bird et al. 1960): 

k·M· 177 
t t = 1.32 + -:-=-_:-. __ 

l-tiCvi (Cpi/ R) - 1 (A.26) 

The thermal conductivity of the mixture is calculated from the respective conduc­

tivities ki using a semi-empirical formula of Mason and Saxena (1958) 

N 
k . -L: k i 

mIX -
. N 
t=l 1 + 1.065 '"' x .cp .. 

Xi ~ J lJ 
j=l 
ji=i 

where iPij is defined in Eq. A.25. 

The thermal diffusivity, DT of the mixture is given by: 

D - kmix 
T - PuCp 

(A.27) 

(A.28) 

Shown in Fig. A.4 are the variations of DT as a function of </> for methane-air mixtures 

at 300 K and 0.1 MPa. 

A.4.3 Mass Diffusivity 

Multi-component diffusion coefficients are very difficult to compute and, in practice, 

they are approximated by the binary diffusion coefficients (Strehlow 1984). Hence, the 

binary diffusion coefficient is the mass diffusivity of the deficient reactant with respect 

to the abundant reactant (Clavin 1985). Its value is dependent on the properties of 

both species and can be calculated from the kinetic theory of gases (cf. Bird et al. 

1960) by: 

Dij = 0.0018583 

T3(k+~) 
pcr[jn(l,l) 

(:\ .29) 
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Hence, the mean molecular parameters aij and f.ij are approximated from the param­

eters of the molecules using the combination rules (Assael et al. 1996): 

a'+a' '/, J 
aij = 2 and (A.30) 

The reduced collision integral 0(1,1) appeared in Eq. A.29 is a function of re­

duced temperature Ttj = kBT/f.ij and is approximated by the Nuffield-Janzen equation 

(Neufeld et ai. 1972): 

1.06036 0.19300 1.03587 
(T*)O.15610 + exp{0.47635T*) + exp{1.52996T*) 

1.76474 
+------

exp{3.89411T* ) 
(A.31) 

Shown in Fig. A.4 are the variations of binary diffusion coefficients as a function of ¢ 

for methane-air mixtures at 300 K and 0.1 MPa. 
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Appendix B 

Savitzky-Golay Method for 

N urnerical Differentiation 

In the present study, Savitzky-Golay algorithm (Savitzky and Golay 1964, Press et al. 

1992) is used for data smoothing and differentiation. This is a low pass filter and 

is applied to a series of equally spaced data values Ii - !(xi), where Xi - Xo + i6 

for some constant sample spacing 6 and i = ... - 2, -1,0, 1,2, .... Hence, smoothed 

function, 9i, is computed by a linear combination of itself and some number of nearby 

neighboring points as: 
nR 

9i = L enIi+n (B.1 ) 

n=-nL 

Here n L is the number of points used "to the left" of data point i, while, n R is the 

number used to the right. This algorithm can also be used for numerical differentiation. 

Hence, differentiation of order s is obtained as: 

nR 

L enIi+n 
dS9i n=-TlL 

dxs = (s -1)! [~](s-l) 
(8.2) 

In Savitzky-Golay algorithm, the value of the coefficients en are obtaincd by usil1~ 

a least square fit a polynomial of degree m to all (nL + nR + 1) poinb in a moving 
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window for each point Ii, and then set 9i to be the value of the polynomial at position 

i. This algorithm is reviewed by Press et al. {1992}. 

In the present study, data smoothing and numerical differentiation is carried 

out by a program savi t . for written by the present author which uses a subroutine 

savgol. for from Press et al. {1992}. Data smoothing and numerical differentiation 

using this algorithm is excellent and examples are shown in Figs. 7.1 and 7.2. 
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