
 

 

Pulverised Biomass Flame 
Propagation 

 
 
 

 

Muhammad Azam Saeed 

 

 

 

 

 

            Submitted in accordance with the requirements for the degree of 

Doctor of Philosophy 

 

 

 

 

 

The University of Leeds  

School of Chemical and Process Engineering 

 

June, 2016 

 



-2- 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



-ii- 
  

The candidate confirms that the work submitted is his own, except where work 

which has formed part of jointly-authored publications has been included. The 

contribution of the candidate and the other authors to this work has been 

explicitly indicated below. The candidate confirms that appropriate credit has 

been given within the thesis where reference has been made to the work of 

others. 

 

 

 

 

This copy has been supplied on the understanding that it is copyright material 

and that no quotation from the thesis may be published without proper 

acknowledgement. 

 

 

 

The right of Muhammad Azam Saeed to be identified as Author of this work has 

been asserted by him in accordance with the Copyright, Designs and Patents 

Act 1988. 

 

 

 

 

 

 

 

 

 

© 2016 The University of Leeds and Muhammad Azam Saeed 



-iii- 
  

List of publications 

 A list of publications are listed below that are part of this present study. The 

contribution from each individual for each joint publication is explicitly explained.  

 Muhammad Azam Saeed, Clara Huéscar Medina, Gordon E. Andrews, 

Herodotos N. Phylaktou, David Slatter and Bernard M. Gibbs, Agricultural 

waste pulverised biomass: MEC and flame speeds. Journal of Loss 

Prevention in the Process Industries, 2015. 36(0): p. 308-317. 

The candidate as primary author for this publication led the experimental 

procedure and writing up of the publication. Clara Huescar Medina and David 

Slatter as co-authors participated in carrying out the experiments. Prof. Gordon, 

Dr. Phylaktou and Prof. Bernard were co supervisors of the research work, 

participated in the analysis of results and proof-read the publication. 

 Muhammad Azam Saeed, Clara Huéscar Medina, Gordon E. Andrews, 

Herodotos N. Phylaktou, David Slatter & Bernard M. Gibbs. Agricultural 

waste pulverised biomass: Lean flammability and flame speeds in Tenth 

International Symposium on Hazards, Prevention, and Mitigation of 

Industrial Explosions. 2014. Bergen, Norway.  

The candidate as primary author for this publication led the experimental 

procedure and writing up of the publication. Clara Huescar Medina and David 

Slatter as co-authors participated in carrying out the experiments. Prof. Gordon, 

Dr. Phylaktou and Prof. Bernard were co supervisors of the research work, 

participated in the analysis of results and proof-read the publication. Prof. 

Gordon presented this paper in the conference as an oral presentation. 

 Muhammad Azam Saeed, Gordon E. Andrews, Herodotos N. Phylaktou & 

Bernard M. Gibbs. Global kinetics of the rate of volatile release from 

biomasses in comparison to coal, in 1st Chemistry in Energy Conference 

(1st CEC), Royal Conference of Chemistry Conference, 2015: Edinburgh, 

UK. (Published in ‘Fuel Journal’)  

The candidate as primary author for this publication led the experimental 

procedure and writing up of the publication. Prof. Gordon, Dr. Phylaktou and 

Prof. Bernard were co supervisors of the research work, participated in the 

analysis of results and proof-read the publication. Prof. Gordon presented this 



-iv- 
  

paper in the conference as an oral presentation. This paper is now published in 

the Fuel Journal. 

 Muhammad Azam Saeed, Gordon E. Andrews, Herodotos N. Phylaktou, 

David Slatter, Clara Huéscar Medina & Bernard Gibbs. Flame propagation 

of pulverised biomass crop residues and their explosion characteristics. 25th 

International Colloquium on the Dynamics of Explosions and Reactive 

Systems (ICDERS). 2015. Leeds, UK.  

The candidate as primary author for this publication led the experimental 

procedure and writing up of the publication. Also the candidate presented this 

paper as an oral presentation in the conference. David Slatter as co-author 

participated in carrying out the experiments. Clara Huescar Medina guiding in 

learning software for extracting explosibility results. Prof. Gordon, Dr. Phylaktou 

and Prof. Bernard were co supervisors of the research work, participated in the 

analysis of results and proof-read the publication. This paper is accepted for 

Journal of Combustion, Science and Technology and in the publishing phase. 

 Muhammad Azam Saeed, Gordon E. Andrews, Herodotos N. Phylaktou & 

Bernard M. Gibbs. Effect of steam exploded treatment on the reactivity of 

wood sample. Proceedings of the 8th Int. Conference on Sustainable Energy 

and Environmental Protection (SEEP2015). 2015. Paisley, Scotland, UK.  

The candidate as primary author for this publication led the experimental 

procedure and writing up of the publication. Prof. Gordon, Dr. Phylaktou and 

Prof. Bernard were co supervisors of the research work, participated in the 

analysis of results and proof-read the publication. Prof. Gordon presented this 

paper in the conference as an oral presentation. This paper is now published in 

the International Journal of Hydrogen Energy. 

 Muhammad Azam Saeed, Herodotos N. Phylaktou, Gordon E. Andrews & 

Bernard M. Gibbs. Reactivity of biomass crop residues based on MEC and 

flame speed. Proceedings of the 14th International Symposium on Handling 

and Hazards of Materials in Industry, ANQUE+ICCE+BIOTEC+14th 

HANHAZ. Madrid, Spain. ISBN: 978-84-697-0726-5  

The candidate as primary author for this publication led the experimental 

procedure and writing up of the publication. Prof. Gordon, Dr. Phylaktou and 

Prof. Bernard were co supervisors of the research work, participated in the 

analysis of results and proof-read the publication. 



-v- 
  

 Muhammad Azam Saeed, Gordon E. Andrews, Herodotos N. Phylaktou, 

Hamed Sattar, Clara Huescar-Medina, David Slatter, Herath, P. & Bernard 

M. Gibbs. Improvements to the Hartmann dust explosion equipment for MEC 

measurements that are compatible with gas lean limit measurements. 10th 

Asia-Oceania Symposium on Fire Science and Technology (10th AOSFST). 

2015. Tsukuba, Japan.  

The candidate as primary author for this publication led the experimental 

procedure and writing up of the publication. Also the candidate presented this 

paper as an oral presentation in the conference. This paper was written based 

on the current along with the previous experimental results of Hamed Sattar, 

David Slatter, P Herath and Huescar Clara Media as co-authors for this 

publication. Prof. Gordon, Dr. Phylaktou and Prof. Bernard were co supervisors 

of the research work, participated in the analysis of results and proof-read the 

publication. This paper is in the publishing phase for the journal of Procedia 

Engineering on the Elsevier Science Direct system. 

 Muhammad Azam Saeed, Aysha Irshad, Gordon E. Andrews, Herodotos 

N. Phylaktou & Bernard M. Gibbs. Agricultural waste biomass energy 

potential in Pakistan. Proceedings of the International Bioenergy (Shanghai) 

Exhibition and Asian Bioenergy Conference, European Biomass and Energy 

Conference (EUBCE), 2015. Shanghai, China, DOI: 

http://dx.doi.org/10.5071/IBSCE2015-1CO.1.2  

The candidate as primary author for this publication reviewed the literature and 

performed some calculations for the biomass waste based on statistics. Aysha 

Irshad as co-author performed the energy calculation for wood, seed oils and 

banana trees. Both the candidate and Aysha were involved in writing up of the 

publication. Prof. Gordon, Dr. Phylaktou and Prof. Bernard were co supervisors 

of the research work, participated in the analysis of results and proof-read the 

publication. Prof. Gordon presented this paper as oral presentation in the 

conference. 

 Nieves Fernandez-Anez, David J. F. Slatter, Muhammad Azam Saeed, 

Herodotos N. Phylaktou, Gordon E. Andrews, Javier Garcia-Torrent (20150. 

Ignition sensitivity of coal / waste / biomass mixtures. Proceedings of the 8th 

Int. Conference on Sustainable Energy and Environmental Protection 

(SEEP2015), 2015, Paisley, Scotland.  

http://dx.doi.org/10.5071/IBSCE2015-1CO.1.2


-vi- 
  

The candidate participated in training the primary author (Nieves Fernandez-

Anez) on the experimental unit and use of software for extracting results. David 

was involved in supervising during the experimental phase. Nieves followed the 

writing up of the publication. Dr. Phylaktou, Prof. Andrews and Dr. Javier were 

co-supervisors of the research work, participated in the analysis of results and 

proof-read the publication. 

 Muhammad Azam Saeed, Gordon E. Andrews, Herodotos N. Phylaktou, 

Bernard M. Gibbs, Richard Walton & Lukasz Niedzweicki. (2016). Flame 

propagation of coarse wood mixture: raw and torrefied. Proc. 8th 

International Seminar on Fire and Explosion Hazards (ISFEH8), Heifei, 

China. USTC Press. 

The candidate as primary author for this publication led the experimental 

procedure and writing up of the publication. Also the candidate presented this 

paper as an oral presentation in the conference. Prof. Gordon, Dr. Phylaktou 

and Prof. Bernard were co supervisors of the research work, participated in the 

analysis of results and proof-read the publication. Ricard Walton and Lukasz 

Niedzweicki provided the raw and torrefied materials for this work. They also 

assisted in writing the torrefaction process adopted for the studied torrefied 

sample. 

 Muhammad Azam Saeed, David Slatter, Gordon E. Andrews, 

Herodotos N. Phylaktou & Bernard M. Gibbs. Flame speed and Kst 

reactivity data for pulverised corn cobs and peanut shells. 11th 

International Symposium on Hazards, Prevention, and Mitigation of 

Industrial Explosions. 2016. Dalian, China. 

The candidate as primary author for this publication led the experimental 

procedure and writing up of the publication. David Slatter helped in the carrying 

out the experimental work. Prof. Gordon, Dr. Phylaktou and Prof. Bernard were 

co supervisors of the research work, participated in the analysis of results and 

proof-read the publication.  

 Muhammad Azam Saeed, David Slatter, Gordon E. Andrews, 

Herodotos N. Phylaktou & Bernard M. Gibbs. The burning velocity of 

pulverised biomass: The influence of particle size. 7th International 

Conference on Safety and Environment in the Process & Power Industry. 

2016. Ischia, Italy. (Accepted for oral presentation) 



-vii- 
  

The candidate as primary author for this publication led the experimental 

procedure, compiled data and writing up of the publication.  David Slatter helped 

in the carrying out the experimental work. Prof. Gordon, Dr. Phylaktou and Prof. 

Bernard were co supervisors of the research work, participated in the analysis 

of results and proof-read the publication. This paper will be included in the 

Chemical Engineering Transaction Journal. 

Conference posters 

 Muhammad Azam Saeed, Gordon E. Andrews, Herodotos N. Phylaktou 

& Bernard M. Gibbs. Influence of biomass pellet composition on the 

pulverised pellet flame propagation and minimum explosible 

concentration. 25th International Colloquium on the Dynamics of 

Explosions and Reactive Systems (ICDERS). 2015. Leeds, UK. 

The candidate led the experimental work and presented them in the form of 

poster in the conference. Prof. Gordon, Dr. Phylaktou and Prof. Bernard 

participated in the analysis of results and proof-read the publication. 

 Muhammad Azam Saeed, Aysha Irshad, Gordon E. Andrews, 

Herodotos N. Phylaktou & Bernard M. Gibbs. Biomass energy potential 

in Pakistan. 1st Biomass Emission Conference. 2015. Leeds, UK. 

The candidate and Aysha performed the calculations and presented in the form 

of poster in the conference. Prof. Gordon, Dr. Phylaktou and Prof. Bernard 

participated in the analysis of results and proof-read the publication. 

 

 

 

 

 

 

 

 

 

 



-viii- 
  

 

 

Acknowledgements 

I am extremely grateful to my supervisors, Prof. Gordon Andrews, Dr. Herodotos 

Phylaktou and Prof. Bernard Gibbs for their guidance during the course of the 

past years, for many hours of discussions and for trusting me and giving me 

confidence to undertake this research.  

I am grateful to the University of Engineering and Technology, Lahore, Pakistan 

for awarding me Faculty Development Program Scholarship to pursue my PhD 

study. I am also grateful to Energy Program (EPSRC, ESCR, NERC, BBSRC 

and STFC, Grant EP/H048839/1) for financial support for part of this project, 

and to all sample suppliers: Sea2Sky Energy UK Ltd and Zilkha Biomass 

Energy. 

I would also like to thank all of my colleagues: Hamed Sattar, Clara Huescar 

Medina, Dave Slatter, Aziz Alarifi and Aysha Irshad. I wish them all the best for 

the future. 

I am also most grateful to Bob Boreham, Adrian Cunliffe, Sara Dona, Ed 

Woodhouse and Susanne Patel for their patience, help and advice with all 

technical issues, which were numerous. 

Very special thanks to my parents who have given me every opportunity in life 

and who, together with my brothers and sisters, have been an endless source 

of encouragement. I am also grateful to the rest of my family and friends both in 

Pakistan and the UK. The best reward is to spend time with all of them. 

 

 

 

 

 

 



-ix- 
  

Abstract 

A resource analysis for Pakistan has demonstrated that abundant crop 

residues offer a viable, and environmental-friendly alternative to currently 

inadequate, oil-based power generation. Similarly, in many countries there is 

legislative pressure and incentives to replace coal with biomass, in electricity 

production. Efficient and safe exploitation of such biofuels requires data on 

flame propagation rates and explosibility characteristics.  

Crop residues (bagasse, rice husk, wheat-straw, corn-cob and peanut-shell) 

and different raw and thermally treated woods were tested using the modified 

Hartmann tube and the modified 1 m3 explosion vessel. The modified Hartmann 

tube was operated for varying ignition delays using a digital timer. A 

hemispherical disperser with drilled pipe was calibrated for the testing of fibrous 

and coarse size biomass mixtures. 

Thermogravimetric analysis data from these materials enabled the application 

of two different models for the determination of volatile release kinetics. 

Biomass samples were found to have lower activation energies with higher 

volatile release rates at low temperatures, compared to coals. 

Despite their higher ash content, pulverised crop-residues showed leaner 

minimum explosible concentrations (0.2-0.5 equivalence-ratio) than woods (0.3-

0.7) - depending on particle size. Biomass samples were more sensitive to 

explosion than coal, resulting in flame propagation in coarse-size-range 

fractions (300-500-µm) that was not experienced with coals. Maximum 

explosion pressures of near 9 barg were measured for the fine size fraction (less 

than 63-µm) samples, with no less than 7 barg for coarse size fraction (less than 

1 mm). 

Milling of thermally treated biomass samples resulted in higher fines fraction 

than untreated biomass, for the same sieve size and this was considered as 

one of the reasons of the higher reactivity (higher flame speed and higher 

deflagration index of these samples).  

The detailed data from this work are usable in the design of safe and efficient 

combustion systems for power generation from crop residues and other 

biomass fuels. 
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Chapter 1 INTRODUCTION  

In this chapter, the historical dominancy of different energy sources is explained. 

The feasibility of biofuels for extraction of energy with their pros and cons and 

the techniques to avoid biomass related problems are discussed. Energy 

conversion routes of biomass and their applications are presented. The risks of 

fire and explosion associated with these biofuels are briefly discussed. In the 

end, the project background with the lists of UK’s Biomass Power-Plants 

(current and planned) is presented. Finally the objectives of the work are 

presented briefly. 

1.1  Background of energy sources in practice  

For thousands of years, biomass was the important energy source known to 

mankind. The fossil fuels had taken over that role during the last centuries. At 

the end of the 19th century, the use of coal started to increase. After World War 

II, inexpensive gasoline became available leading to an increasing oil usage. 

Fossil fuel reserves cannot last longer due to the increasing energy 

requirement. Also the combustion of fossil fuels have proven to be harmful for 

the environment due to hazardous emissions. Concentration of carbon dioxide 

(CO2), causing global warming, increased in the atmosphere due to the large-

scale utilization of fossil fuels. The energy community started to look for the 

substitutes of fossil fuels as all the estimated fossil fuels energy sources in the 

world last for 70-80 years on average and the energy sources have to be shifted 

to the others. This transition towards a low carbon energy demands the detailed 

assessment of new source before its application. Careful considerations and 

efforts are needed to modify/change the existing technology suitable for the new 

fuel [1]. 

1.2  Greenhouse gas emissions 

Fossil fuels are the main source of hazardous GHG’s emissions causing serious 

threats to the environment. The Kyoto Protocol is an international binding 

agreement under the United Nations to commit its parties for reducing overall 

emission of CO2 [2]. During its first period, it was committed by 37 industrialized 

countries and European Community to reduce the GHG’s emission to an 

average of 5% against 1990 level. In the second agreement, it is committed 

reducing the GHG’s emission up to 18% against 1990 in the period of eight 

years from 2013 to 2020.  
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Table 1.1: Four Carbon budgets to meet the target for GHG’s reduction [3] 

Budget  Carbon budget 

level 

% reduction below 

base year 

1st carbon budget 2008-2012 3018MtCO2e 23% 

2nd carbon budget 2013-2017 2782MtCO2e 29% 

3rd carbon budget 2018-2022 2544MtCO2e 35% by 2020 

4th carbon budget 2023-2027 1950MtCO2e 50% by 2025 

The ‘Climate Change Act’ established a target for the UK in 2008 that aims to 

reduce UK’s GHG’s up to 80% by 2050 from the baseline year of 1990 [3]. To 

monitor and regulate the progress in the reduction of carbon credits, four carbon 

budgets consisting of five years each were established that are presented in 

table 1.1 [3]; 

1.3  Role of renewable energy sources  

In the current era, the scope for renewable energy has emerged to have 

significant potential as it is environment friendly and economically desirable 

especially for agricultural countries. There are different renewable energy 

options e.g. solar, hydro, wind, biomass, geothermal etc. [4]. Adoption of local 

available renewable sources for energy generation is therefore increasing. 

In the US, about a 13% share of electricity was generated from renewable 

sources in 2014 as shown in Figure 1.1 [5]. In the UK, provisional calculations, 

using a methodology set by the EU renewable directive, showed that a 7% share 

of energy consumed in 2014 was from renewable sources compared to 5.6% in 

2013 (About a 25% increase) [6].  

The UK has already initiated shift away from coal power plants to renewable 

biofuels. According to DUKES, the percentage of electricity from renewable fuel 

was 10.7% in 2012 which increased to 13.8% in 2013 (About 29% increase 

based on 2012) [6]. The electricity generation using different shares of 

renewable energy is shown in fig 1.2. 
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Figure 1.1: US Shares of renewable sources for electricity generation in 2014 

[5] 

 

Figure 1.2: UK’s electricity generation from different renewable sources [6] 
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1.4 Role of bioenergy for sustainable conversion 

Renewable energy in 2014 was utilised for various applications as shown in 

Figure 1.3 [6]. Biomass conversion to energy is an appropriate and reliable 

source of energy after balancing their consistent growth with consumption. 

Biomass samples do not require much time for their growth as used for fossil 

fuels and follow the cyclic process. Due to the short time period of their ‘carbon-

cycle’, they are CO2 neutral fuels [1]. Utilization of the renewable biofuels has a 

vital contribution for achieving these targets. According to the EU Commission’s 

recent report, the conclusion was drawn that the use of different types of 

biomass reduce GHG’s emissions by 55 to 98% even when transported 

internationally [7].  

In fact, in May 2007, the UK’s government published its biomass strategy 

coupled with the Energy White Paper for the intention of government to expand 

the utilization and application of the biomass as the renewable source of energy 

that includes 

 A EU target of 20% renewable energy by 2020 

 From April 2008 to 2010, the transport fuel obligation program of 5% of 

UK forecourt fuel to make up from renewable source.  

 

 

Figure 1.3: UK’s share of renewable sources for electricity generation in 2014 
[6] 
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Digest of the United Kingdom’s Energy Statistics estimated 30% share of Coal 

in national grid electricity in 2014 [6]. Burning of this coal in the power generation 

plants is the biggest source of carbon emissions. These coal power plants are 

scheduled to either close or switch to other renewable fuel, to meet the 

environmental regulations. Biofuels are the most appropriate substitute of coal 

for the existing coal power generation plants. 

Biomass is recognized as ‘material originates from living and recently dead 

biological materials e.g. wood, agricultural residues and animal remainder’. A 

major share of this biomass is used as cattle’s feed-stocks. Some of the woody 

biomass is used in the wood industries for construction. There are still 

thousands of tonnes of this biomass mainly agricultural waste without any use 

and incinerated or dumped for disposal whereas some is left on land to replenish 

soil fertility.  

According to UK Department of Business, Enterprise and Regulatory Reforms 

(BERR), the UK’s energy crops include short rotation coppice, Miscanthus 

(Elephant Grass), willow and poplar, Reed Canary Grass and Oil Seed Rape. 

The largest and most effective Brigg renewable straw fired power station is in 

Cambridgeshire, UK [8]. This 36MW plant has the generation capacity of over 

270GWh/y that facilitates to approximately 80,000 homes for heating and 

lighting. The total yearly straw consumption of this Power station is 200,000 

tonnes collected from the farms located in the radii of 50mile [8]. 

Agricultural countries like Pakistan have enormous amounts of crop residues. 

Some of this biomass are needed for soil fertility but a large amount has no end 

use. These waste residues after some pre-treatments can be a viable option as 

fuels for the electric power generation. There is a detailed Pakistan statistics 

and calculations of these crop residues in the second chapter.  

In practice energy is used by farmers in planting and harvesting crops. So the 

process is not strictly carbon neutral and auditing this upstream CO2 leads to 

figure on the sustainability of biomass or the efficiency of the CO2 reduction. 

The EU and USA have drawn up sustainability criteria for biomass and any 

biomass used for power generation has to meet the approved sustainability 

criteria considering emission for upstream activities. Similar procedures would 

have to be adopted in Pakistan to ensure that the production of biomass was 

sustainable. 
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1.4.1 Compositional analysis of biomass 

The main components of biomass include cellulose, hemicellulose, lignin, 

proteins, lipids, simple sugars, starches, water, HC, ash and other compounds. 

The main elemental components of the biomass include carbon, hydrogen, 

oxygen, nitrogen, sulphur and some of the alkali metals. Generally all the dry 

(moisture free) biomass materials contain the carbon, as the principal 

component, in between 30-60%. Oxygen the 2nd largest component and 

hydrogen, the third largest component in between 4-6% with remaining nitrogen 

and sulphur usually below 1% [9].  

Biomass materials contain high amount of oxygen and hydrogen compared to 

coal as shown in Van Krevelen plot in Figure 1.4. The chemical characterization 

of a number of biomasses was compiled and listed by Vassilev et al. (2012) in 

the review paper [10]. Also biomass materials contain higher volatiles than 

coals. There are discrepancies in the biomasses depending on their type and 

origin. These oxygenated biofuels with higher volatiles make them very reactive 

[11].  

 

Figure 1.4: H/C v. O/C molar plots for biomass in comparison to different types 
of coal samples 
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1.4.2 Challenges and techniques to improve biofuels for its exploitation 

Biofuels can be employed for various application after refining its properties 

using different pre-treatments as shown in Figure 1.5. There are some issues 

related to handling of these biomass due to low bulk density and high moisture 

content [12]. Transporting raw biomass with relatively high water content, high 

ash content (for agricultural biomass) and low bulk density would be 

prohibitively expensive. To overcome this problem biomass is washed to reduce 

ash, dried using external heat and densified by being formed into pellets [13]. 

Some thermal treatments are also applied for more refinement depending on 

their use.  

The compact shape of pellet or briquetted biomass enables more biomass to 

be stored in a fixed volume and hence increase the energy density of the 

transport costs. As pellets are pre-pulverised at source and only need to be 

broken up in the coal mills, they are the preference for large scale use in 

pulverized coal power stations. However, for smaller power generation steam 

cycles using briquettes of dried compressed biomass is more practical. There 

are two types of densification available: simple compression of dried biomass 

into briquettes, as available in China, and pulverisation of the biomass into a 

powder which is dried and then compressed into pellets [14, 15].  

Biomass based on wood is generally low in ash, but biomass based on 

agricultural wastes, as advocated in this work have variable ash content. Ash is 

a problem as it reduces the CV per kg of biomass. However, its main problem 

is the ash consists of various metals such as potassium, iron, magnesium, 

manganese, sodium etc. and this creates boiler fouling and corrosion problems.  

Some typical biomass ash and water contents from the work of the author are 

shown in table 1.2. Some of the agricultural waste are very high in ash and this 

would have to be refined by applying some pretreatments. Also a special feature 

of biomass ash that was not well known and this is that milling of the biomass 

into a finer powder <63 µm, concentrates the ash in the finer fraction.  

The alkaline earth metals are released from the soil into the biomass in the 

growing process and potassium is one of the key ingredients in agricultural 

waste ash. For the utilization of agricultural waste biomass for power 

generation, washing is applied to reduce these alkali metals.  
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Table 1.2: Water and Ash Content of a Range of Biomass [17-19] 

 

Simply washing by water or acid leaching techniques are the effective in 

controlling the alkali metals release from biomass [16]. Simple water leaching 

can reduce alkali metals of up to 70-80% [16]. 

Thermal treatments like ‘Torrefaction’ can be carried out by heating the 

biomasses in the absence of air or in an inert environment at a temperature in 

the range of 200-3000C for small time duration (20 minutes). The resultant 

process gives a very dry biomass and drives off some volatiles [20], that may 

be used for the heating requirements of the process. The main effect is to 

destroy the fibrous nature of woody biomass and makes the fibers brittle. The 

material is more easily pulverized in coal mills at power plants. A further benefit 

of torrefaction is to enhance the calorific value and to reduce the moisture 

contents. However there is small enhancement of ash that has to be controlled 

by performing it in combination with washing. This extensive pretreatment of 

biomass can lead to better boiler performance and hence to a higher thermal 

efficiency of the power generation plant.  

The consistency in the supply of biomass to the power generation plants is 

another challenge. Utilization of some crop residues as power plants feedstock 

is also dependent on their seasonal harvesting that also depends on the 

environmental conditions. After their harvesting, their collection and safe 

Biomass 
H2O 

(% mass) 

Ash 

(% mass) 

CV 

(MJ/kg) 

Rice Husk 7.7 17.9 15.2 

Rice Husk <63µm 6.56 31.2 14 

Bagasse 7.2 20.1 15.6 

Bagasse (<63µm) 6.85 23.4 15.05 

Wheat Straw 6.8 22.8 14.5 

Wheat Straw <63µm 3.98 49.2 13.93 

Lycopodium 1.6 4.1 29.6 

Corn flour 11.6 3.8 16.4 

Walnut Shells 4.95 6.3 18.75 

Pistachio nut shells 2.7 8.3 17.8 

Pine wood 4.27 4.4 19.2 
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storage for a period of utilization requires short and long term planning. This 

includes the incentives to the local farmers and rural developments to 

encourage them for the targeted collection and transportation using local 

transports to a common storage point in the power generation plant. There 

should be strategies to keep the fertility of the soil for continuous utilization of 

land for harvesting. Biomass materials with small compositional variations can 

be consumed as mixture as also demonstrated in this research work. All of these 

planning and strategies should also have backing and support by the 

Government to ensure the process streamlined. 

 

Figure 1.5: Biomass energy conversion routes using different technologies 
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Also the biomass materials are very reactive and need careful attention in 

handling, storing, conveying, milling and combustion. Lots of fire/explosion 

incidents involving pulverised biomass dust have been reported in the literature 

as detailed in Chapter 03. This is because of the scarce established data of its 

explosibility characteristics [17, 18, 21-24].  

1.4.3 Fire/ Explosibility hazards of biomass 

Biofuels are very reactive and carry fire and explosion hazards in pulverized 

form. Different explosibility parameters need to be evaluated for these solid 

dusts for safe working environment and for the design of the emergency 

systems that activate to overcome/suppressing the hazards for post explosion 

events. Also the existing methodologies have some flaws in accurately 

determining the explosiblity hazards or are incapable for fibrous biomass. These 

existing techniques needs to be modified and refined to acquire the reliable 

explosibility measurements.  

The use of biomass in pulverized form gives the efficient combustion with the 

least excess air. However, the use of pulverised biomass as a fuel in power 

generation is relatively new and started as co-firing with coal. However, there 

are now large scale 100% pulverized biomass combustion steam generation 

plant as shown in table 1.3. There is a dearth of data on the fundamental 

combustion properties of pulverised biomass, in terms of data on flame 

propagation rates that are necessary for burner design. Also there are 

fundamental safety problems for which there is a lack of data. Flash back of 

biomass in the supply tubes is a problem due to its enhanced reactivity relative 

to coal, which this work will demonstrate. Also biomass dust explosions can 

occur in biomass storage silos, in transfer lines from pulverisers to the burners 

and in the pulveriser system. 

1.5  Project background 

There is a great concern in the energy security and the environmental threats 

for air pollution. In the Britain, major share of electricity comes from the burning 

of coal. All the electricity generated from power stations utilizing coal are 

scheduled to close or switch to other renewable fuels, to meet the environmental 

regulations. As biomass energy application reduces carbon dioxide emissions 

55 to 98% even when transported to long distances compared to fossil fuels. 

Utilization of biomass (crop residues, woody and thermally treated) reserves 
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without any end-use can play a vital role in keeping the coal power generation 

plants in operation.  

As shown in table 1.3, the current, planned and proposed power plants in the 

UK utilizing biomass are listed with the generation output. Many of the plants 

have adopted retrofit systems without considering the fire/explosibility hazards 

associated with the pulverized biomass fuel. This improper retrofitting is very 

dangerous and has serious risks involved. The massive use of the renewable 

biomass have to be favoured only in the safe working boundaries. The accurate 

knowledge of the explosibility data and the flame propagation mechanism needs 

to be explored as this is also required for the design of the protecting systems. 

The existing methodologies needs to be refined and modified for the accurate 

measurements of explosibility hazards of fibrous biomass. Also effect of 

different parameters, acting actively or passively, on the pulverised biomass 

flame propagation needs to be established. Especially the effect of particle size 

that has major influence on the explosibility hazards. Laboratory based 

methodologies are only suitable for fine sized dust particles that cannot be 

applied for commercial power generation plants. Besides raw biomass testing, 

thermally treated biomass samples gaining attention need to be assessed and 

compared with raw biomass samples.  

The release of the volatiles in the propagation of flame plays a vital role for the 

burning of the dust particles. The kinetics for the release of volatiles needs to 

be investigated for agricultural waste and woody biomass samples. Also the role 

of fine sized particles along-with coarse particles needs to be studied. Fire and 

explosibility data of new biomass fuels needs to be established for their safe 

application in the power generation with minimum risk of danger. Also the 

existing methodologies for dust explosibility measurements have flaws giving 

inaccurate results that needs to be refined for reliable measurements of 

explosibility characteristics. 
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Table 1.3: UK’s Biomass power stations (Current & Planned) [25] 

Current 

Project Location Company Fuel Output 

Balcas Timber Enniskillen, NI Balcas Wood 2.5 MWe 

Balcas Timber Invergordon Balcas Wood 8 MWe 

Eccleshall Biomass Eccleshall, Staffs  Miscanthus 2.6 MWe 

Ely Ely, Cambridgeshire EPRL Straw 38 MWe 

Eye Eye, Suffolk EPRL Poultry litter 12.7 MWe 

Glanford Scunthorpe, N Lines EPRL MBM, Poultry litter 13.5 MWe 

Goosey Lodge Northants  Biomass 16 MWe 

Grainger Sawmill Enniskeane, Ireland  Wood 2 MWe 

Newry Biomass Newry, NI Kedco Wood 2 MWe(+2 MWe) 
CHP 

PDM Group Widnes, Cheshire PDM Group Food residues 9.5 MWe 

Slough Heat and Power Slough, Berks SSE Wood+Fibre 35 MWe+12 MWe 

Stevens Croft Lockerbie, Scotland E.ON Wood 44 MWe 

Thetford Thetford, Norfolk EPRL Chicken litter 38.5 MWe 

Tilbury B Tilbury, Essex RWE Wood pellets 750 MWe 

Tyrone Strabane, NI Tyrone Energy Recycled wood 2.1 MWe 

UPM Caledonian Irvine, Scotland UPM Papermill residues 26 MWe 

UPM Shotton Shotton, Wales UPM Papermill sludge 20 MWe 

West Field Fife, Scotland EPRL Chicken litter 9.8 MWe 

Western Wood Energy Port Talbot, Wales Eco2 Wood 14 MWe 

Wilton 10 Middlesborough Sembcorp Wood 30 MWe 

Total    1090.2 MWe 

In Planning 

Project Location Company Fuel Output 

Avonmouth Avonmouth Helius Pellets 100 MWe 

Billingham Teesside Gaia Power Recycled wood 45 MWe  

Blackburn Meadows Sheffield E.ON Wood 25 MWe 

Brigg North Lincolnshire Eco2 Straw 40 MWe 

Castle Cary Castle Cary Bronzeoak Wood 12.7 MWe 

Drax Yorkshire Drax Pellets 2000 MWe 

Dundee Dundee Forth Energy  Wood 100 MWe 

Enfield Biomass London Kedco Wood 12 MWe CHP 

Ferrybridge Nr. Castleford SSE Multifuel, RDF 68 MWe 

Grangemouth Grangemouth Forth Energy Wood 100 MWe 

Hollyhead Hollyhead Anglesey 
Aluminium 

Wood 300 MWe 

Ironbridge Ironbridge E.ON Pellets  1000 MWe 

Rosyth Rosyth Forth Energy Wood 100 MWe 

Mendlesham Mendlesham, Suffolk Eco2 Straw 40 MWe 

Nevis Power Newport Welsh Power Biomass 50 MWe 

Pollington Pollington Dalkin Bioenergy  52 MWe 

Portbury Docks Bristol E.ON Wood 150 MWe 

Rosyth Rosyth Forth Energy Wood 120 MWe 

Rothes Distiller CoRD Rothes Moray Helius DDG 7.2 MWe CHP 

Sleaford Lincolnshire Eco2 Straw 40 MWe 

Stallingborough Stallingborough 
Lines 

Helius/RWE 
npower 

Wood 65 MWe 

Tansterne Hull GB Bio Straw 12.5 MWe 

Tees Rep Tesco Middlesborough MGT Power Wood 300 MWe 

Tibury Biomass Tilbury RWE npower Pellets 870 MWe 

Tilbury Green Power Tilbury Express Energy Biomass & SRF 60 MWe 

Markinch CHP Fife RWE npower Wood residues 49.9 MWe CHP 

Tyne REP Tyneside MGT Power Imported wood 295 MWe 

Wetwang Yorkshire E yortks Power Wood & Straw 15 MWe 

Total    5319.3 MWe 

Proposed 

Project Location Company Fuel Output 

Blyth Blyth RE Systems Wood 100 MWe 

Claycross Derbyshire Kedco Wood 12 MWe CHP 

Drakelow Drakelow E.ON Wood  

Greenpower 54 Wolverhampton Express Energy Biomass & SRF 30 MWe 

Hull Hull Dong  300 MWe 
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Peterborough Peterborough Peterborough RE Agricultural waste 66 MWe 

Southampton Southampton Helius Pellets 100 MWe 

Thetford Wood Thetford EPRL Wood 40 MWe 

Total    648 MWe 

1.6  Objectives of the present study 

The objective of the present study includes 

 Feasibility and statistical analysis of Pakistani crop residues as a source of 

energy for the rural development and the challenges for their effective 

utilization. 

 Study of kinetic models for the volatiles release rate at low heating 

Thermogravimetric analysis. 

 Determination of the minimum explosible concentration (MEC) of the 

agricultural waste residues and other biomass dusts as a function of particle 

size distribution using the modified Hartmann tube.  

 Calibration of the modified Hartmann tube for the optimum ignition delay for 

explosibility measurements representative to fully dispersed concentration.  

 Determination of the explosibility parameters like MEC, maximum explosion 

pressure, flame speed, burning velocity and Kst for different Pakistani and 

other biomass dusts using the modified ISO 1m3 vessel. 

 Testing and comparison of explosiblity hazards of fine and coarse particle 

sized mixture  

 For all selected powders, comprehensive analysis of raw and post explosion 

residues including proximate and ultimate analyses, particle size 

distribution, calorific value measurement, Scanning Electron Microscope for 

surface morphology. true density, porosity and surface area analysis to 

understand the flame propagation mechanism. 

 Model for the propagation of flame in fine and coarse sized range fractions 

1.7 Thesis structure 

This research work focussed on the use of biomass specially the crop residues 

with no significant use with their flame and explosibility characteristics for their 

safe exploitations.  

In the first chapter, the adverse environmental impacts of the fossil fuels and 

the role of renewable energy particularly the biofuels for the generation of clean 
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energy is explained. The possible challenges for the effective utilization of 

biomass mixtures are also mentioned.  

Second chapter is particularly related to Pakistan, for the feasibility and 

statistical analysis of the crop residue waste as feedstock, in the power 

generation. 

Third chapter is related to the hazards involved in the handling, processing and 

flame propagation of pulverised biomass mixture (dust). Different parameters, 

affecting the flame propagation rate and explosibility characteristics, are listed 

and explained based on the findings in the literature. 

The fourth chapter includes the description of the analytical techniques and 

experimental method for the testing of pulverised biomass flame propagation. It 

incorporates the modifications to the existing methods for their refinement and 

testing of fibrous and coarse biomass mixtures. 

Fifth chapter is related to the kinetic study of the volatile release rate of biomass 

in comparison to the coals. It also includes the chemical characterisation of the 

selected biomass samples for this research work. 

Chapters 6 and 7 include the experimental results from the modified Hartmann 

tube and modified 1m3 vessel for selected biomass samples (crop residues, 

woods and thermally treated woods) for different size fractions. Different 

explosibility characteristics results are listed and compared with coal in 

combination with the effect of particle size.        

Chapter 8 is the conclusions based on this research work and the future plan is 

listed to expand it further. 
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Chapter 2 ENERGY REPORT ON PAKISTAN 

Pakistan has a major electricity supply problem with urban areas having a 

very intermittent supply of electricity. The supply gap at periods of high 

demand is 6 GW. Pakistan has a large agricultural economic sector and 

produces a substantial amount of waste material that has little current 

economic use. This work shows that these agricultural wastes are a 

significant energy resource that could be used to generate electricity using 

relatively small biomass generator sets that could take all the waste biomass 

from the surrounding agricultural area. Pakistan currently imports most of the 

oil used for electricity generation. The costs of this result in high cost 

electricity and bio-electricity could be generated competitively in Pakistan. It 

was estimated, based on a 30% thermal efficiency of electric power 

generation, that the annual production of crop residues have the potential to 

generate 76% of the annual electricity requirements of Pakistan. For this to 

come from agricultural wastes in farmland, transport costs would have to be 

minimised. It is proposed that a series of about 10MWe plants should be 

established (which are commercially available) with all farms in about a 10km 

radius delivering their agricultural solid waste to the plant at the farmers cost 

with direct payment by the power generator. 

2.1 Introduction 

The current total population of Pakistan is about 190 million, with an annual 

growth of 1.9%. It is much larger than any individual European country. Pakistan 

currently faces a crisis of electrical energy supply with demand outstripping 

supply and frequent power cuts. Pakistan has over 30% of its 55 million 

population with no access to electricity [26]. The summer monsoon season has 

a peak electricity demand [27], due to the extensive use of air conditioning.  

People in urban areas are facing 6-12 hours load-shedding whereas in the rural 

areas, it is worse. According to official statistics there is no electricity shortage, 

as the total production potential of energy in Pakistan was 94.65 billion KWh in 

2014 utilizing all the available sources, whereas the energy consumption was 

70.1 billion KWh [28]. However, this electricity consumption is the amount paid 

for and is not the real amount of electricity used. In reality at times of peak 

demand there is insufficient supply of electricity. 

The trend in supply and demand for electricity in Pakistan is shown in Figure 
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2.1 for 2008 – 2015 [29]. Every year in there was an electricity delivery shortfall 

and this has got worse in recent years. The production of electricity has 

increased each year since 2008 but the demand is increasing faster [29]. The 

shortfall of electricity was 6 GW in 2012 and ranged from 4 to 6 GW between 

2008 and 2015. The main reason for this shortfall in electricity is the line losses 

and electricity theft. Also 45% of the total electricity generated is wasted as 

revealed by the water and power ministry [29]. Figure 2.2 is an example of the 

electricity theft in Pakistan, where there is no control of connections to the grid 

distribution. The new Government of Pakistan has taken actions against this 

and a task force is dealing to tackle this.   

Pakistan has reduced its demand for imported oil for transportation by utilizing 

compressed natural gas as fuel for road transport vehicles [30]. Pakistan 

generation of electricity is currently dominated by hydro, oil and natural gas [31]. 

The electricity supply shortfall is worst in winter when hydro plants start losing 

capacity due to the freezing temperature of hydro reservoirs. This leads to a 

demand for more electricity from gas plants to balance the gap between supply 

and demand. In summer, the high consumption of electricity due to the use of 

air conditioners in the hot humid climate, compels the government to import 

large amounts of furnace oil for the diesel electric power generation. This cost 

is not affordable for the Government and the import cost of the furnace oil 

destabilizes the economy. Industrial investors are not willing to invest in 

factories in Pakistan as the electric power supply cannot be guaranteed. About 

60 to 70% of the local textile industry has shifted to China, Bangladesh and India 

[32]. 
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Figure 2.1: Pakistan yearly energy scenario [29, 33] 

 
 

Figure 2.2: An example of distribution losses due to electricity theft in Pakistan 
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2.2  GHG emissions from electricity generation  

2.2.1 Fossil fuels 

The major source of greenhouse gases in Pakistan is from the combustion of 

fossil fuels in electricity generation power plants and road vehicles, 151.6 MMT 

in 2010 [34]. The major component of GHG’s was carbon dioxide [35]. Figure 

2.3 shows the fuel sources of electric power in Pakistan in 2011. Expensive fuel 

oil accounts for 35% of electricity generation [33]. The other major fuels are gas, 

hydro and nuclear. There is currently no use of biomass to generate electricity 

and negligible use of coal. During 2011-2012, 19.2 million metric tons of 

petroleum products of worth US $15.2 billion were imported, 40 % of which was 

used for the generation of electricity [36]. Little attention has been given to the 

renewable electricity options, including the use of biomass. As the limited fossil 

fuels reserves start to be depleted [37] and no new reserves of fossil fuels have 

been discovered, the Government of Pakistan is now showing an interest in the 

renewable energy options and especially bio based energy options. 

 

  

Figure 2.3: Fuel sources of electricity generation in Pakistan in 2011 [31] 
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2.2.2 Renewable energy in Pakistan 

The current status of fossil fuel in Pakistan is shown in Table 2.I. More than half 

of the proven reserves have been consumed. The limited reserves of oil and 

natural gas force Pakistan to seriously consider renewable sources of energy. 

Farooq and Kumar [38] assessed the potential of renewable source of energy 

for Pakistan. They studied the current and the future potential of solar, wind, 

small hydro and biomass. The statistics of each renewable source was 

estimated and calculations for generation of electricity generation potential were 

carried out. The total technical potential of solar based electricity was estimated 

to be 358 TWh in 2010 with a projected potential of 708 TWh for 2050. Clearly 

Solar is a renewable energy source that should be developed in Pakistan, but 

there is currently no infrastructure to install solar panels and no government 

subsidy to do so. Wind energy potential is mainly in the southern coastal areas 

of Pakistan and Farooq and Kumar [38] estimated the potential wind electrical 

power generation to be 34 TWh per year. The total potential of small 

hydroelectricity was identified to be 3 GW.  

 

Table 2.1: Fossil fuels reserves statistics in Pakistan 

 

 

 

 

 

Oil Natural 

Gas 

Coal 

Million Tonnes of Oil Equivalent 

’MTOE’ 

Resource potential 3622 6849 78450 

Proven recoverable reserves 130 1067 845 

Cumulative production so far 88 568 89 

Remaining recoverable reserves 41 499 797 

Annual Production 3.3 29.3 1.6 

Reserve to Production ratio (# of 

years)  

12 17 528 
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Farooq and Kumar [38] estimated the total potential of bio based electricity 

generation to be 20.3 TWh for 2010 and the projected potential for 2050 was 

55.6 TWh. They used an assumed thermal efficiency of the biomass electricity 

plants to be 30%, which is conservative but realistic for small scale plant. A 30% 

thermal efficiency of small scale biomass steam generation electricity 

generating plant has also been assumed in the present work. However, it is 

shown in the present work that Farooq and Kumar [38] underestimated the 

current potential of biomass electricity in Pakistan. Biomass energy was rated 

by Farooq and Kumar [38] at the top of the list of the various renewable energy 

technologies for the generation of electricity. 

If all of these renewable fuels were utilized then the current reliance on fossil 

fuels could be minimized [38]. The Government of Pakistan has taken steps 

towards liquid biofuel utilization in transport fuels by approved a policy to have 

the minimum 5% by volume of biodiesel in diesel and targeted this to increase 

to 10% in 2025 [39]. This is essentially the European policy with the 

implementation date for 10% biofuels five years later than Europe. However, 

there is currently no policy on the encouragement of biomass for electric power 

generation. 

Among the various renewable energy sources, bio based energy is attractive 

for Pakistan, as substantial agricultural biomass residues are generated each 

year and their disposal is already a problem [40, 41]. The size of these residues 

is estimated in the present work based on the published yields of food crops. 

Renewable biomass is a very important alternative source of energy 

contributing 10-14 % of the energy needs of world today [42]. Pakistan is a major 

agricultural country with multiple crops produced every year as a result of its 

favorable climate. More than 70% of the population of Pakistan live in rural areas 

and are farmers [43]. Urban areas of Pakistan generate ~20 MT/yr of solid 

wastes, ~82.12 MT/yr of crop residue and over 365 MT/yr of animal manure 

[44]. 

Agriculture is the mainstay of Pakistan’s economy. It accounts for 24% of the 

GDP and employs 48.4% of the total labour force. Agriculture contributes to 

growth as a supplier of raw materials to industry as well as a market for industrial 

products and also contributes 60% to Pakistan’s export earnings [45]. 
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Pakistan is in a geographic location that has all the climates. The cool dry winter 

season is from December to February and from March to May, there is a warm 

spring, then from mid-May to November is summer and the monsoon season 

[27]. There are two principal crop seasons in Pakistan namely “Kharif”, with 

sowing beginning in April and harvest between October and December and 

“Rabi” beginning in October-December and ending in April-May. Rice, sugar 

cane, cotton, maize and millet are Kharif crops, while wheat, gram, tobacco, 

rapeseed, barley and mustard are Rabi crops. 

2.3  Previous estimates of biomass energy potential in Pakistan 

Amur and Bhattacharya [46] estimated biomass and their residues for various 

applications in Pakistan. The major application of biomass is in the household 

sector which is 86% of total biomass energy. The traditional cooking stoves 

employed in rural areas of Pakistan are currently the major end users of 

biomass energy and utilizes 80% of current bioenergy. About 64% of the 

population in Pakistan is utilizing biomass for cooking [26]. In proposing an 

increased use of agricultural waste biomass for electric power generation in this 

work, we are referring to agricultural wastes that are not currently used for 

domestic cooking.  

Mirza et al. [47] surveyed the potential of biomass to contribute to Pakistan’s 

energy needs and concluded that biomass was a potential source of significant 

energy in Pakistan. They advocated that biomass based energy could be made 

more efficient using advanced co-generation (power and heat) technology. 

However, as Pakistan has a negligible building heating requirement and a 

significant building cooling requirement, the advocacy of CHP is inappropriate 

as it needs a heating load greater than the electric power demand in order to 

achieve the best overall thermal efficiencies of around 80%.   

Mirza et al. [47] advocated that municipal solid waste and nutrients could be 

utilized in electric power generation. The use of municipal waste for power 

generation is established technology, but needs capital investment to build the 

plants and reduce waste going to landfill. However, animal dung is a dispersed 

source of fuel and needs collecting by farmers. The transport cost to distance 

large power generation plants is not realistic and hence it has the same issues 

as the utilization of agricultural wastes that are discussed in this work. Plants 

that can burn agricultural waste biomass can also burn dried animal dung. It will 
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be shown in this work that agricultural waste biomass and waste wood biomass 

in Pakistan are a much greater resource than those discussed by Mirza et al. 

[47]. 

Bhutto et al. [48] demonstrated biomass as a major renewable source of energy, 

with some issues in implementing, as it has a lower calorific value with slow 

burning compared to coal or hydrocarbon fuels. They presented biomass 

statistics and the scope of contribution to energy output. The possible 

transportation means for the biomass were elaborated. The potential energy 

conversion of these biomasses was estimated using assumed electric power 

conversion efficiencies, depending on the type of biomass and the 

route/technology used.  

The existing and future projects of the generation of biogas from the animal 

dung were discussed by Bhutto et al. [48]. Although biogas can be generated 

by anaerobic digestion from animal waste, it is a very high capital cost intensive 

solution to the energy crisis. Current costs are approximately £5B per GW of 

generating capacity, roughly the same as offshore wind generation costs. Also 

the process costs more for small scale of the plant and for a 100 cow farm is 

about £100K for 10 kW electric, which is roughly 10 times the current cost of 

solar electric energy. Advocating expensive solutions to the Pakistan energy 

problem is not helpful. The direct burning of biomass to generate steam and 

then electricity in small scale power plants, which is advocated in the present 

work is considered to be a lower cost option, that would nevertheless require 

Government funding to make the local generation of electricity strategy, that is 

advocated, work in a large number of areas. 

Currently there is little industrial application of biomass. The purpose of this work 

is to demonstrate that the potential for biomass electricity in Pakistan is greater 

than has been estimated in previous publications. It is advocated that biomass 

generation of electricity should be adopted as a major part of the Government 

of Pakistan’s renewable energy policy. 
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Figure 2.4: Pakistan land distribution [49] 

2.4 Biomass energy resources in Pakistan 

2.4.1 Distribution and share of biomass materials 

Figure 2.4 shows the major uses of the 80M ha of land in Pakistan [49]. 44M 

ha is identified agricultural land, but there is a large proportion (>40%) of range 

land, which has potential for an expansion of this sector, particularly as grazing 

land. 

Figure 2.5 classifies the proportion of different crops in Pakistan [50]. Five major 

crops: wheat, cotton, sugar cane, rice and maize account for about 87% of 

fertilizer consumption [49]. Wheat accounts for about 45% of fertilizer use 

followed by cotton with a share of 23%. Sugar cane is the third crop; nutrient 

use per ha is highest for this crop. 
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Figure 2.5: Percentage of crop area under various crops [50] 
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Table 2.2: Summary of Agricultural Waste Resources in Pakistan (Updated from 
[48, 51]) 

Name of the crop 
Annual produc-
tion 1000 MT* 

Type of residue 

Crop to 
residue ratio 
residue/kg 

crop 

Total 
residue 
1000 
MT 

Energy Potent-
ial 

MTOE** 

Rice 61601 

Husks 0.2(3) 1232 0.529 

Stalks 1.5(3) 9241 3.973 

Straw 1.5(3) 9241 3.973 

Cotton lint and 
cotton seed 

66051 

Boll shell 1.1(3) 7266 3.124 

Husk 1.1(3) 7266 3.124 

Stalks 3.8(3) 25100 10.791 

Wheat 25,2141 
Pod 0.3(3) 7564 3.252 

Stalks 1.5(3) 37820 16.260 

Sugar 
cane 

55,3091 
Bagasse 0.33(3) 18252 7.847 

Top and leaves 0.05(3) 2766 1.189 

Maize/Corn 4270.91 
Cobs 0.3(3) 1281 0.551 

Stalks 2(3) 8542 3.672 

Millet 3041 

Cobs 0.33(3) 100 0.043 

Husks 0.3(3) 91 0.039 

Stalks 2(3) 607 0.261 

Barley 71.21 Stalks 1.3(3) 93 0.040 

Dry chilly 2031 Stalks 1.5(3) 304 0.131 

Walnuts 10.41 Shells 0.5(E) 5.2 0.002 

Pistachio nuts 0.71 Shells 0.5(E) 0.4 0.0002 

Pine nuts 212 
Cone 50(4) 1050 0.451 

Shells 0.3(E) 6.3 0.003 

Peanuts 87.91 Shells 0.3(E) 26.4 0.011 

Coconut 10.11 Shells 0.5(E) 5.1 0.002 

Castor oil seed 41 
Residue after oil 

extraction 
0.55(E) 2.2 0.001 

Peaches and 
nectarines 

54.41 Pit 0.5(E) 27.2 0.012 

Papayas 7.81 Seeds 0.2(E) 1.6 0.001 

Plums and sloes 54.51 Pit 0.3(E) 16.4 0.007 

Rape 
seed 

1951 
Residue after oil 

extraction 
0.5(E) 97.4 0.042 

Sun 
flower seed 

4041 
Residue after oil 

extraction 
0.5(E) 202.2 0.087 

Total 59.42 

Biomass energy conversion efficiencies(5) 20% 

Transmission and distribution losses(6) 20% 

Total energy available 9.51 

Energy consumption per year (6) 6.37 

Total energy available from a year collection of residues = 1.5 years 
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(1) [52], (2) [53], (3) [51], (4) [54], (5) [12] 
(6) [28], (E) Estimated this work 
* Annual production data for the year 2012- except for pine nut shells where 1994 data is used 
** 1 MTOE = 11.6 TWh [55] 

2.5 Yearly growth of crops and the electricity generation potential 

2.5.1 Agricultural waste crop residues potential for electricity generation 

The statistics for growth of biomass can be explained on the basis of three main 

terms: the area available, the production and the crop yield [56]. Crop area is 

the surface of land on which a crop is grown. In general, the area measured for 

cadastral purposes includes, in addition to the area cultivated, headlands, 

ditches and other non-cultivated areas may give additional crop growing areas. 

Crop production is obtained by multiplying the average yield per unit of area by 

the corresponding crop area harvested. 

Crop yield is the measurement of the amount of a crop that was harvested per 

unit of land area. This measurement is often used for a cereal, grain or legume 

and is normally measured in metric tons per hectare (or kilograms per hectare). 

Crop yield can also refer to the actual seed generation from the plant. For 

example, a grain of wheat yielding three new grains of wheat would have a crop 

yield of 1:3. It is also referred to as "agricultural output".  

The production of most of the crops in Pakistan with their respective residues 

and their energy potential is summarised in Table 2.2, which is based on the 

present work and previous estimates [24, 38]. Energy potential is calculated 

assuming heat capacity of 18MJ/kg for all the biomass and assuming a very 

poor thermal efficiency of the power generation plant of 20%. It can be seen in 

Table 2.2 that if Pakistan collects all the residues for a year, these are alone 

sufficient to fulfil the requirements for energy production for up to 1.5 years (this 

calculation assumes 100% collection efficiency).  
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Figure 2.6: Production trends of major crops in Pakistan [57] 

Table 2.2 shows that the most import agricultural waste crops in Pakistan for 

power generation are rice, cotton, wheat, sugar cane and maize. However, the 

other smaller amounts such as nut shells are significant as the process of 

collection of this biomass is already organised for the production of nuts. Thus 

the nut shells are all in one place and could be used for power generation there. 

Nut shells pulverise in a sumilar way to coal as they are brittle and Sattar et al. 

[18] has shown that they are quite reactive and will propagate flames. 

Tables 2.3 shows that four of the main crops which are abundantly grown in 

Pakistan are sugarcane, wheat, rice and maize [28, 57]. Figure 2.6 shows the 

trends in production of these four main crops in Pakistan from 2007 to 2012. 

The residues obtained from these major crops are enormous, as shown in 

Tables 2.2 and 2.3, but are currently wasted. Utilization of these residues for 

biomass energy is a valuable potential source of renewable electricity.  

Figure 2.6 shows that sugarcane is a major crop in Pakistan and has the 

greatest yield per hectare. During 2010-11, the area under sugarcane cultivation 

was 1,029,000 hectares which is 4% of the total cropped area. Sugar cane 

waste, which constitutes 10% of the sugarcane, is currently burnt in the fields. 
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During 2010-11, around 64 MMT of sugarcane was grown in Pakistan, which 

resulted in biomass waste generation of around 6 MMT. The bioenergy potential 

of cane waste is around 9.5 TWh per year [58]. 

For each 10 tonnes of sugarcane crushed, a sugar factory produces nearly 3 

tonnes of wet bagasse [20]. Since bagasse is a by-product of the cane sugar 

industry, the quantity of production in each country is in line with the quantity of 

sugarcane produced [59]. There are more than 70 sugar producing factories in 

Pakistan that are generating million of tonnes of bagasse and should be the 

basis of electric power generation from this waste [60]. Utilization of bagasse in 

cogeneration could enable sugar mills to provide 700 MW surplus power to the 

national grid [61]. The potential annual electricity production from bagasse has 

been estimated to be 5700 GWh [62]. 

Table 2.3 shows different biomass crop residues production for Pakistan in the 

year 2010-2011 that were calculated from the production mass of the food part 

of the crops [57] and using crop to residue ratios [48]. The residues of biomass 

were conservatively assumed to be collected with a 35% collection efficiency 

[38]. Table 2.3 shows that the total energy that could be produced from these 

four biomass samples in Pakistan with 30% electrical generator efficiency was 

40 TWh/y and this is 56% of the demand for electricity in Pakistan.  

Similarly calculations performed by my research fellow ‘Aysha’ showed that 

unused woody biomass, oilseed crop residue and banana tree wastes have the 

potential to generate 9.5%, 2.4% and 8.2% respectively of the annual electricity 

demand in Pakistan. 
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2.6 Comparison of energy estimates of bioenergy electricity potential in 

Pakistan 

A comparison of the energy estimates for different renewable feedstocks 

were presented in table 2.4. It was observed that solar renewable sources have 

the greater potential for the generation of electricity. Different biomass 

resources also have the potential to contribute a major share for electricity 

Table 2.3 : Yearly Energy yield from four major crop residues 

Major Crops Crops 

Production 

(x103) 

‘tonnes’ 

Crop 

wastes 

Residue 

to Crop 

ratio 

Residue 

Production  

(x103) 

‘tonnes’ 

Collection  

 (x103) 

‘tonnes’ 

Calorific 

Value 

‘MJ/Kg’ 

Heat 

Contents  

(x106) 

‘GJ’ 

Rice 4823.3 

Husks 0.2 964.7 337.63 15.16 5.12 

Stalks 1.5 7234.95 2532.23 10.05 25.4 

Straw 1.5 7234.95 2532.23 10.05 25.4 

Wheat 25213.8 

Pod 0.3 7564.14 2647.45 14.49 38.4 

Stalks 1.5 37820.7 13237.2 16.5 218.4 

Sugar-cane 55308.5 

Bagasse 0.33 18251.8 6388.13 15.63 99.8 

Top and 

Leaves 
0.05 2765.4 967.9 18.4 17.8 

Maize/Corn 3706.9 

Cobs 0.3 1112.0 389.22 16.12 6.3 

Stalks 2 7413.8 2594.83 14.65 

38 

 

Total heat contents of the four major biomass residues ‘GJ/y’ 4.7x108 

Total energy obtained TWh/y 1300 

With 30% Efficiency TWh/y 40 

Total average requirement in Pakistan in 2014 TWh/y [28] 70 

Almost 56% of the annual demand for electricity can be met by the utilisation of agricultural waste in Pakistan for an 

electrical generator steam turbine thermal efficiency of 30%. 
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requirement in Pakistan. Farooq and Kumar (2013) estimated a low electricity 

potential from biofuel resources for 2010 and therefore projected inappropriate 

for 2050. However the actual potential of these biofuels for electricity generation 

was much greater as in this work, only four major crops were considered for the 

utilization of their unused residues with electricity potential of 40 TW h. After 

including with the wood, oilseed and banana waste, then the total electricity 

potential was estimated to be around 54.2 TWh which has a share of 76% of 

annual Pakistan electricity requirement for 2014.    

2.7  Cost comparison 

Among the different renewable energy technologies, biomass conversion to 

energy is one of the most economical and simple technology. The size of the 

plant for the biomass conversion to energy can be built in the 1-20 MW capacity 

range or higher [44]. The use of smaller plant sizes is advocated so that they 

can be located where the waste biomass resources are. This enables the 

transport costs to be minimized. 

Figure 2.7 shows the comparison of the cost of renewable energy options for 

various regional areas in the world [63]. The large colored bars represent the 

typical LCOE (Levelized Cost of Energy) range by technology and the colored 

horizontal lines the weighted average. Biomass renewable energy is lower 

capital cost than wind energy and considerably lower than diesel electric power 

generation. Biomass energy thus has significant potential in Pakistan. 
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Table 2.4: Previous estimates in comparison to current calculations for 
bioenergy 

 

 

Authors Year 
Published 

Feedstock Electric TWh 
Estimated 

 

Projected  
Electric 

TWh 

Electrical 
efficiency 

Farooq and 
Kumar [38] 

2013 Solar (PV+ 
thermal) 

358 (2010) 
 

708 (2050)  

Wind 
energy 

34 (2010) -  

Field crop 
residues 

9.93 (2010) 21 (2050) 30% 

Animal 
waste 

9.2 (2010) 23.57 
(2050) 

30% 

MSW 1.13 (2010) 11 (2050)  

Memon [64] 2006 Crop 
residues 

35.5 (2005) 51.5 
(2030) 

30% 

 
 
 

Amur & 
Bhattachary

a [46] 

 
 
 
 

1999 

Major crop 
residues 

88 
(293.5 

thermal) 
(1994) 

 

142.1 
(473.7 

thermal) 
(2010) 

30% 

Woody 
fuels 

27.8 (92.56 
thermal) 
(1994) 

26 electric 
(86.82 

thermal) 
(2010) 

 

 Awam & 
Rashid [62] 

2012 Biogas 
from 

livestock 
residues 

55 – 106 
Biogas 

 

 
 

Biogas 
from 

fibrous 
residues 

5.7   

This work 2014 data Residues 
of four 
major 
crops 

40  
(54.2 

considering 
residues+woo

d+oilseed+ 
banana 
waste) 

 
30% 
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2.8  Local electric power generation in small units  

Figure 2.8 shows the overview of the envisaged small scale biomass power 

generation based in the locality in which the agricultural waste materials are 

generated so that the transportation costs are minimised. A radius of 10 km 

around a small power plant would have sufficient waste biomass material to 

operate a 10 MW power plant. 

The summation of the above four main agricultural waste materials in 

combination with woody biomass could generate a total of 76 % of Pakistan’s 

electricity supply. The peak electricity demand is 20 GW and about 15GW could 

be generated from biomass. If 10 MW small scale biomass electric power plants 

are installed then to meet the 15GW peak demand 1500 units would be 

required. The total farmed land area in Pakistan is 240,000 km2 and all the 

waste biomass is assumed to come from this area. This would give a farmed 

area of 160 km2 to supply the biomass for each 10 MW power plant. This is a 

square around the power plant of 13 km and would give a journey length of 

almost 7km for the most distant farmer. This is a practical distance for animal 

driven carts to transport the biomass to the plant and hence is feasible from a 

low cost transport viewpoint. 

Pakistan has already made a start on a biomass electric generation strategy 

and Tables 2.5 and 2.6 list the biomass power plants which are being built 

(Table 2.5) and co-firing (Table 2.6) for the generation of the electricity [65]. 

Most of these power plants are establishing by the private investors or the 

industrial stakeholders. Three of the biomass plants are of the above size of 

about 10 MW for the biomass feedstock to come from farm agricultural waste in 

easy animal powered transport distance of the plant. Other power plants are 

larger and being built to supply power to the industry that has generated the 

biomass waste. 

As Pakistan has substantial coal reserves, and if these are exploited and coal 

fired power-plants built then these can be used for co-firing with waste biomass. 

Some of the cogeneration projects using biomass under considerations in 

Pakistan generating heat and power simultaneously are presented in Table 2.6 

[66].  
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Figure 2.7: Cost comparisons of different energy options [63] 

 
 

Figure 2.8: Imaginary layout of small plant in the vicinity of agricultural land 
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National Electric Power Regulatory Authority ‘NEPRA’ has taken a landmark 

decision of supporting bagasse based co-generation projects. In order to attract 

the sugar mills to generate 3GW of potential biomass electricity through the use 

of waste bagasse. An IRR (Internal rate of return) of 18% will be given as an 

incentive which is 3% higher than the IRR allowed to thermal projects on RFO 

(Residual Fuel Oil)/Gas [33].  

 
 
 
 
 
 
 
 
 

Table 2.5: Biomass Poer plants in Pakistan in progress [65]            

Location of 
Plant 

Power 
generation   

Size of Plant 
(fuels 
utilization) 
 ‘tonnes’ 
( x103) 

Agricultural 
crops 

Sponsorship & 
Cost in $ 

Biomass 
supply source 

Jhang, Punjab 12 MW 
(Steam 
turbine) 

90-110 at 70-
80% plant 
capacity factor 
in a year 

Cotton stalk, rice 
husk, sugarcane 
trash, bagasse, 
wheat chaff and 
other crops as 
multi-fuel sources 

Lumen Energia 
Pvt Ltd    
U.S $ 14.38 
Million on debt / 
equity ratio of 
80:20 

Rice & Sugar 
factories in the 
vicinity  

Mirwah 
Gorchani 
Town, 
Mirpurkhas, 
Sindh. 

12 MW 
(Steam 
turbine) 

Open yard 
storage:24.5 

(equivalent to 
45days full 
load 
operation), 
Covered 
storage: 

2.2(Equivalent 
to 4 days full 
load operation) 

Primary fuels: 
Bagasse, Rice 
husk 
Secondary fuels: 
Cotton Stalks, 
Wood Chips 

Investors from 
US and local 
entrepreneurs 
the SSJD 
Bioenergy 
Generation 

Al-Abbass 
sugar Mills Ltd, 
Tharparkar 
Sugar Mills 
Ltd,Digri Sugar 
Mills Ltd, 
Najma (Thar) 
Sugar Mills 
Ltd,Mirpurkhas 
Sugar Mills Ltd 

Faisalabad, 
Punjab 

12 MW ------- rice husk, corn 
cob, cotton sticks, 
agricultural by-
products 

M/s Masood 
Textile Mills 

    ------- 

Mardan, 
Khyber 
Pakhtunkhwa 

200 MW ------- ------- M/s Greensure 
Environmental 
Solutions (Pvt) 
Ltd 

TMA, Mardan 

Matli, Sindh 9 MW ------- Biogas (Based on 
sugar molasses) 

Pak Ethanol 
(Pvt) Ltd 

    ------- 

http://www.aedb.org/BioMass.htm
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2.9 Conclusions 

Pakistan is one of the developing countries which are struggling hard to meet 

the demand for electric power generation. Pakistan currently relies on fossil fuel 

sources of energy that are expensive and bad for climate change. Renewable 

and sustainable biomass was shown to have the potential to generate 76% of 

the peak demand for electricity in Pakistan. Sugarcane, wheat straw, rice husk 

and maize are the main agricultural waste materials that could generate 56% of 

Pakistan’s electricity. It was concluded that utilization of these local resources 

for power generation are the feasible option for agricultural countries like 

Pakistan as they are cheap and available in enormous amount without any end 

use. 

 

 

 

 

Sr. 
No. 

Project Sponsor/Company 
Name 

Feedstock Location Net Capacity  
(MW) 

1 JDW 
Cogeneration 
Project 

JDWP/JSML Bagasse/Coal Near Rahim Yar 
Khan, Punjab 

80 

2 Ramzan 
Cogeneration 
Project 

Ramazan 
Energy/Sharif 
Group, Ramaz 
Sugar Mills 

Bagasse/Coal  Bhawana, Jhang 
Road Chiniot, Punjab 

100 

3 Janpur 
Cogeneration 
Project 

Janpur Energy/RYK 
Mills 

Bagasse/Coal Janpur, District Rahim 
Yar Khan, Punjab 

60 

4 Fatima 
Cogeneration 
Project 

Fatima 
Energy/Fatima 
Sugar Mills 

Bagasse/Coal Sanawan, Kot Addu, 
Muzaffargarh, Punjab 

100 

5 Chishtia 
Cogeneration 
Project 

CPL/CSML Bagasse/Coal Sillanwali - Sahiwal 
road District 
Sargodha, Punjab 

65 

6 Dewan 
Cogeneration 
Project 

Dewan Energy Ltd Bagasse/Coal Dewan City 20 Km 
from Sujawal on 
Sujwal-Badin Road, 
Sindh 

120 

7 Etihad 
Cogeneration 
Project 

Etihad Power 
Generation Ltd 

Bagasse/Coal Karamabad District 
Rahim Yar Khan 
Punjab 

60 

Table 2.6: Biomass Co-generation Power plants in Pakistan in progress [66] 
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Chapter 3 REVIEW OF DUST EXPLOSION LITERATURE  

This chapter focuses on the description of different explosibility hazards 

associated with dust particles. The dust explosion and its mechanism are 

explained in comparison to gas explosion. The fire and explosion hazards 

associated with dust and a database of dust incidents are listed. Different 

parameters used to characterize the dust are mentioned and standard 

equipment adopted to measure the explosibility parameters are explained. The 

theory of dust flame propagation and different factors affecting its mechanisms 

are summarized. The discrepancies in the physical properties of biomass are 

the key reasons to define a unique criterion for biomass. The low bulk density 

of biomass require higher cost for its transportation. The pelletizing and 

torrefaction are the pre-treatments applied for the easy handling and storage of 

biomass for various applications as discussed previously. Findings of the works 

led by various researchers in the areas of dust explosion are summarized. 

Different parameters affecting the dust explosion are discussed one by one at 

the end of the Chapter. 

Dust is considered as tiny particles which may settle due to their own weights 

but remain airborne. According to previous National Fire Protection Association, 

2007 (NFPA) statement [67], ‘Any finely divided particle of size 420 µm or 

capable of passing through the U.S. No. 40 Standard sieve is considered to be 

a dust’. According to NFPA-13 [68], combustible dust is defined as ‘A finely 

divided combustible particulate solid that presents a flash fire hazard or 

explosion hazard when suspended in air or the process-specific oxidizing 

medium over a range of concentrations’.  

These finely divided particles pose less hazards in settled condition but present 

a greater explosion hazards when suspended in the form of a cloud 

accompanied with some oxidizing medium (Figure 3.1). Settled particles 

undergo slow burning with slow generation of heat whereas there is 

instantaneous burning of dust cloud called dust explosion with high bulid up of 

pressure if contained in some confined space.  
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Figure 3.1: Dust air suspension 

3.1 Combustion & Explosion 

Combustion is the oxidation of the substance releasing heat and combustion 

products. Explosion is defined as the sudden release of heat with the generation 

of pressure waves in the confined volume. Explosion is the uncontrolled 

combustion with the release of destructive pressure waves depending on the 

combustible fuel and confinement. All the explosible materials must be 

combustible but all the combustible materials might not necessarily be 

explosible. 

Fire is the visible phenomenon of combustion that follows the principle of the 

fire triangle comprising of fuel, oxidizing agent (air/oxygen) and ignition source 

(electrical/chemical) (Figure 3.2(a). The combustion proceeds with the oxidation 

of fuel releasing heat of combustion and the combustion products. Explosion 

follows the explosion pentagon (Figure 3.2(b) comprising of; 

 fuel (combustible dust)                 

 oxidizing medium (Air/ Oxygen)  

 Ignition source (Electrical/ Chemical)      

 dispersion of fuel in oxidizing medium   

 confinement to some degree  

Airborne Dust Particle                       Oxidant 
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Figure 3. 2: a) Fire triangle b) Explosion pentagon 

3.2 Dust explosion 

A dust explosion is defined as the sudden flare up due to the release of pressure 

waves as a result of chemical reaction of the explosible solid dust particles. 

The dispersion of the dust as a cloud or suspension results in the effective 

interaction of the dust particles with the oxidizing agent that favours the rapid 

burning of the dust. As shown in Figure 3.3, a 1mm layer of settled dust of 

concentration 500 kg/m3 when dispersed forms a cloud of 100 kg/m3 in a 5 m3 

confined volume. The burning of the particles causes the rapid build-up of 

pressure in confined space. The expansion of the pressure waves, if restricted 

with weak confinement results in the destruction. This expansion effect is due 

to the propagation of the flame with heat release. The explosion strength in the 

laboratory scale equipments is determined in adiabatic conditions with no heat 

loss to the surrounding. The flame speed range in the small enclosure varies in 

order from one metre per second to hundreds of metre per second [69]. 

 Slow burning 

 Slow release of energy 

 No/less sound 
      

 Fast/Flash burning 

 Rapid release of energy 

 Less/Medium/Loud sound 

 Pressure waves in confined 

space resulting destruction 

(a) (b) 
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Figure 3.3: (a) 1mm settled dust layer of bulk density 500kg/m3  (b) Formation 
of cloud of concentration 100g/m3 in a 5m3 room from the settled dust [70] 

3.3 Comparison of gas and dust explosions 

There are a number of differences between the gas and dust explosions on the 

basis of explosion characteristics [71, 72]. The dust explosion differs from the 

gas explosion in the following ways; 

 Gas explosion is a homogeneous reaction whereas the dust explosion 

follows the homogeneous reaction with the release of volatiles and 

heterogeneous reaction with the solid char. 

 The reaction zone in the dust cloud is relatively thicker than the gas cloud 

due to heterogeneous reaction. 

 Dusts have variable particle size and shape whereas the gas have 

uniform molecules. 

 Analogies exist between different gas combustion reactions whereas 

there is a significant discrepancy among different dusts due to wide 

variations in their properties. 

 Difficulties in proper mixing with the oxidant and the degree of uniformity 

of the dust with the oxidizing agent have strong dependence on the 

explosion whereas for gases, this is not a big problem.  

 There are some phenomena that happen with dust, such as 

agglomeration and generation of electrostatic charges that affect the 

explosion. 
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 Turbulence in the dust explosion has a significant role in ensuring the 

particles to remain suspended unlike gas explosion. 

Two main differences were highlighted as [73, 74] 

 Explosive gases have specified combustible concentration ranges 

whereas flame propagation in the dust cloud is not bound to the 

flammable dust concentration range. A stationary layer of dust may also 

exhibit a role in the sustained flame propagation due to presence of 

trapped oxygen in the pores.  

 The basic physics in the cloud generation and sustainment for the dust 

and gas is very different.   

With respect to dust explosion, the main property of the dust explosion is the 

size of the particles which influences the surface area available for the reaction. 

The decrease in the size of the particles results in the increase in the surface 

area and the ease in the release of the volatiles. The higher the release of 

volatiles, the faster the reaction. This work has shown that the speed of flame 

propagation is a strong function of the particles size. Larger size particles of 

biofuels can be exploded as dust cloud in contrast to coals that don’t support 

the flame propagation for coarse particle sizes. 

3.4 Flame propagation of dust cloud 

The generation and spreading of the flame through the dust cloud is dependent 

on the uniformity of the dust cloud. The non-uniform propagation of flame was 

experienced due to the irregularities of the dust cloud. The flame propagation 

depends on a number of factors such as composition of the dust, fuel to oxidant 

ratio, size of the particles, turbulence and uniformity of the suspension, 

temperature and pressure conditions and quenching distance. The results 

revealed that the peak flame speeds for solid dusts were measured at excess 

of the stoichiometric fuel concentration (concentration of the fuel higher than the 

stoichiometric concentration). This behaviour of solid dust is in contrast with 

gases that have their maximum flame speed at near stoichiometric 

concentration. Another point of contrast is observed that the weighed 

concentration of the dust does not fully participate in the dust explosion and a 

substantial amount remains unburnt after the explosion. Following this work, 

flame propagation in the confined vessel revealed the presence of a proportion 

of unburnt mass as indicated by post explosion residue analysis. Explosion wind 
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drives some of the particle towards the vessel wall resulting in an unburnt layer 

sticking to the wall or dropping off some of the particles after hitting the wall as 

explained later in this work. This unburnt mass was accounted to determine the 

actual representative burnt concentration in this work.  

On the basis of the severity of the explosion, the dust explosions are categorized 

as;  

3.4.1 Deflagration 

According to NFPA (2013), propagation of a combustion zone at a velocity that 

is less than the speed of sound in the unreacted medium ahead of flame front 

is recognized as Deflagration. 

3.4.2 Detonation 

If the speed of the flame as a result of explosion is higher than the speed of 

sound (supersonic), it is known as detonation. Pressure waves generated in the 

detonation are known as shock waves. 

3.5 Primary and secondary explosions 

In the primary explosion, the explosion pentagon results the generation of 

pressure waves due to burning of the dust particles. The dust explosion 

transmits the pressure waves through the atmosphere causes disturbance of 

the settled/deposited dust and blows this dust to form a secondary suspension 

as shown in Figure 3.4. The ignition of these secondary suspensions of dust by 

the propagating flame is the secondary explosion. The secondary explosion is 

a more devastating and a bigger hazard than the primary explosion. The basic 

principle of the protection of dust explosion is the avoidance of this secondary 

explosion with good housekeeping. 
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Figure 3.4: Dust explosion from settled dust layer [75] 

The initiation of the dust explosion is achieved by the ignition source or 

achieving the auto-ignition temperature. The minimum ignition temperature is 

not a fundamental property of the dust and depends on the size and shape of 

the instrument used. It also depends on the moisture contents and size of the 

particles. Auto ignition temperature is achieved by minimum ignition energy that 

initiates the dust explosion. The existing experimental methods included the 

introduction of a spark of known ignition energy in the dust cloud to observe 

whether ignition occurs or not. Some methods have used a low energy (as low 

as 0.1mJ) synchronized capacitive spark for the determination of minimum 

ignition energy however later it was realized to have some hidden error in it [76]. 

The minimum ignition temperature is measured in a modified Godbert-

Greenwald Furnace apparatus as shown in Figure 3.5 [77]. It consists of a silica 

furnace tube mounted vertically in a thermally insulated metal case. The 

temperature of the silica furnace tube is varied by an externally heated electric 

winding. The top of this tube after a 90o bend is linked with the dust holder, 

mounted horizontally. The dust holder is connected with the dispersion air 

reservoir. The bottom of the silica tube is open to the atmosphere. The furnace 

temperature is maintained to approximately 1000oC thermostatically and the 

dust is dispersed by the dispersing air through the furnace. The ignition is 

detected by the observation of the flame at the bottom of the tube. The ignition 

is detected by the lowering of the furnace temperature until the difference is less 
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than 10oC are obtained for the dust cloud to be ignited. This temperature is 

called the minimum ignition temperature.  

There are lots of hazards associated with the handling of the dust. A number of 

dust fires and explosion incidents have happened in the past and on average, 

one dust incident happens each day [78]. The summaries of some of the recent 

incidents related to dust fire and explosion are listed in Table 3.1 below (also in 

Appendix A). 

 

 

Figure 3.5: Godbert Greenwald Furnace Apparatus 
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Table 3.1: Summaries of recent dust fire/explosion incidents 

Date Type Plant Summary 

July  
17, 2015 

Fire + 
explosion 

Bosley wood flour 
mill, Macclesfield 

 Fire and explosion in wood flour mill resulted four causalities.  
 Cause of the incident is still under investigation.   

February 
05, 2015 

Fire Boyne City wood 
pellet factory 

 Fire broke out in a dust collector. 
 Suppression activated but failed to put out all the fire. 
 No injuries were reported. 

April 
28, 2014 

Fire + 
explosion 

German Pellets 
plant in Woodville 

 Dust caught fire inside silo and resulted explosion affecting another 
silo next to it. 

 No injuries were reported. 

March 
29, 2014 

Fire Energex American 
plant 

 An office and sawdust storage warehouse damaged. 
 One firefighter was injured only. 

September 
03, 2013 

Fire + 
explosion 

Rotokawa wood 
pellet plant, 

 Fire and explosion originated inside the silo and duct system. 
 No injuries were reported. 

April 
09, 2013 

Fire Charleston Pellet 
plant 

 Fire caught by the pellets started in the pellet plant 
 No injuries were reported. 

April 
05, 2013 

Fire Dewys 
Manufacturing in 

MARNE, 
Mich.(WOOD) 

 Five fire departments were called to Dewys Manufacturing in Marne 
after a fire sparked Friday morning. 

 The fire started just in a dust collecting unit in the building.  
No one was hurt and the fire did not spread to any other part of the 
structure. 

April 
01,2013 

Explosion Glendale Heights 
sheet metal plant 

 

 Two people were hurt in an apparent explosion at a Glendale 
Heights sheet metal plant. 

 It happened around noon at the Northstar Metal Products facility in 
the 500-block of Mitchell. 

 Smoke was seen coming from inside the building, but no exterior 
damage was immediately apparent. 

 An employee said, it appeared aluminium dust in the company's 
grinding room might have ignited to trigger the explosion, but the 
exact cause is still under investigation. 

March 
18,2013 

Fire Rochester 
industrial plant 

 Dust inside the ductworks caused a fire at Spaulding Composites 
Inc. 

 There were smoldering fires throughout the ducts 
 None of the workers or firefighters sustained injuries from the fire 

March 
14,2013 

Fire Barefoot Pellet, 
Troy, PA 

 Fire broke out shortly in a dry storage shed at Barefoot Pellet 
Company in Troy Township. 

 One worker suffered smoke inhalation 
 It was believed that a malfunction occurred in a front end loader, 

catching sawdust in the storage shed on fire. 

March 
04,2013 

Fire Point Wakefield, 
Australia 

 The Country Fire Service (CFS) says the fire was reported at a hay 
processing plant at Bowmans 

 At the height of the fire, 18 fire fighters and five fire trucks attended 
the blaze, which is burning about 100 metres from the nearest 
building. 

 Spontaneous combustion has been identified as the cause of the 
blaze. 

February 
11,2013 

Fire Oakley Paper 
Plant 

Kreamer, PA 

 District Fire Chief Gregory A. Potter said the fire started in the 
ventilation system of the one-story paper plant. 

 No one was hurt. 
 The cause of the fire was determined to be debris in the vents above 

the roller drying system. 

February 
05,2013 

Fire DALTON, Ga. 
Chemical Plant 

(AP) 

 Fire broke out in the sawdust collection system at a woodworking 
plant 

 No injuries have been reported. 
 Fire-fighters dealt with the blaze about a mile away. 

February 
01,2013 

Fire Redmond wood 
pellet plant 

 An extensive fire in exterior ductwork caused damage to a 
Redmond wood pellet plant 

 No injuries were reported 

January 
28,2013 

Explosion Tandil Argentina 
grain silo 

agricultural plant 

 An explosion in a grain silo at an agricultural plant killed 1 and 
injured another 

 

January 
04,2013 

Fire Huntingdonshire 
straw factory 

 Three tonnes of straw caught fire in a tub grinder. 
 The straw was removed from the machine and separated to put out 

the fire, which was accidental and believed to be caused by metal 
in the grinder. 

 This is the fifth time a fire has broken out at the straw processing 
factory in 18 months 
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3.6 Operations involving dust 

The operations, in which dust are generated or handled are comprised of [73]; 

1. Size reduction (e.g. Crushing, Grinding, Cutting) 

2. Conveying—manual or mechanical (e.g. Belt conveyer, Rotary conveyer, 

Pneumatic conveyer etc.) 

3. Pneumatic separation 

4. Settling chambers (e.g. Sedimentation, Clarifying vessel) 

5. Cyclones (Dry or Wet cyclone) 

6. Filters (e.g. filter through septum, rotary filter, Plate filter) 

7. Scrubbers 

8. Electrostatic precipitator 

9. Driers (e.g. Tray driers, Rotary driers, Fluidized bed driers, Pneumatic 

driers, Spray driers) 

10. Screening and classifying operations 

11. Mixing and blending operations 

12. Storage 

13. Packing 

14. Dust fired heaters. 

Dust is generated in the handling means as shown in Figure 3.6. It was 

observed that approximately 14.8% of dust was generated during grinding [54]. 

There should be a proper term for specifying the level of dust particles in a 

volume of air. Dustiness is defined as ‘number of particles per litre of air’.  
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Figure 3.6: Generation of dust in handling of biomass [79] 

The industries involved in the handling of the dust are as follows; 

 Woodworking 

 Plastics 

 Agricultural 

 Coal mining  

 Chemical, including dyestuffs 

 Foodstuff, human and animal 

 Metals 

 Pharmaceuticals 

etc. 

For the safe operation of handling dusts in many industries, it is necessary to 

characterize the dust for their explosibility characteristics using the standard 

reliable techniques. 

3.7 Dust explosion testing equipment 

The first equipment adopted for measuring the burning properties of dust was 

the Explosion tube. According to US Bureau of Mines classification of the test 

apparatus, three test apparatuses were recognized for the dust explosion tests. 
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Figure 3.7: Hartmann tube 

 Vertical tube (Dispersion of dust vertically upward)  

 Horizontal tube (Dispersion of dust in the horizontal direction) 

 Inflammator (Dispersion of dust vertically downward) 

The closed tube is known as a ‘Bomb’ and the open tube from the top covered 

with some venting material known as a ‘Hartmann tube’, were employed by the 

US Bureau of Mines for determining different explosible parameters. The most 

experimental works has been performed on a 20L and 1 m3 vessels. The 

universally adopted standard ISO 1 m3 vessel was recognized as the approved 

testing equipment for the determinations of the explosibility measurements [73].    

The Hartmann tube apparatus, as shown in Figure 3.7, was primarily employed 

for ‘go’ or ‘no go’ screening tests to determine whether the dust can ignite or 

not. For some weak explosive dusts, spark ignition is possible to fail due to the 

small ignition energy. Later it was modified to measure the minimum ignition 

energy by varying spark energy. Huescar et al., (2013) further modified the 

Hartmann tube to measure the minimum explosible concentration (MEC) using 

some suitable ignition criteria [19]. The Hartmann tube due to its small size, 

requires only small amounts of materials to be tested. It is more time efficient 

and portable. There are still many influencing factors depending on the accurate 

determination of the explosion characteristics. The presence of a pre-existing 
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spark under or over-estimates the combustion characteristics due to stratified 

concentration at the time of ignition. Due to its small diameter, the wall effects 

are more severe in it which acts as quenching in the propagation of flame. 

However there were no dispersion problems associated with the fibrous dust 

and was found to be the only unit suitable for testing of fibrous dust.  

20 L sphere as shown in Figure 3.8 is called the small version of big ISO 1 m3 

vessel that has chemical igniters having higher ignition energy. The spark is 

activated in the centre of the vessel. The wall effect on the propagation of the 

flame is associated with the strong chemical igniter [80]. Dahoe et al. (1996) 

found that it was only suitable for the chemical igniter of 2.5 kJ energy or smaller 

than this due to the interaction of flame with the wall. Different dispersion 

devices like moving hose and rebound nozzle are used on the side or bottom of 

the vessel to increase dispersion.  

The most accepted standard ISO 1 m3 vessel is known as the universal vessel 

for the dust explosion tests and is shown in Figure 3.9. The results obtained for 

the explosibility data using this device are more reliable. According to dust 

standards, any test failing on the Hartmann tube or 20L sphere must be 

validated on the ISO 1m3 vessel. The chemical igniter of strong ignition energy 

(10Kj) is used to ignite the dusts. This result in the generation of spherical flame 

with no wall effects. However due to its large size, a huge amount of dust is 

required to undertake tests. It is also more time consuming than the others dust 

explosion methods. There is a provision of different designed dispersers that 

can be used. However these dispersers after designing need proper calibration 

compared with the standard C ring disperser and no major work has been done 

for the calibration of these dispersers. 

The summary of some of the units that have been adopted for the determination 

of the explosibility parameters are mentioned below in table 3.2. 
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Figure 3.8: Pittsburg laboratory 20L chamber [81] 

 

Figure 3.9: Vertical cross section of Fike 1m3 vessel [81] 
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Table 3.2: Summary of some equipment’s used for dust explosibility testings 
[73] 

Author Year Equipment Description 

Holtzwart 
and von 
Meyer 

1891 50 cm3 
capacity 
glass tube 

Pair of Platinum electrode for spark, 
Short compressed air blast generated 
dust cloud in the area of spark  

Engler 1907 250-500 cm3 
capacity 
Glass flask 

--------- 

Trostel and 
Frevert 

1924 1.4 L 
capacity 
explosion 
bomb 

Small cup for dust at the bottom and air 
was injected from the bottom via tube to 
blast the dust heap with 180 degree 
rotation facing downward. 

Hartmann 
et al. 

1943 1.2 L vertical 
cylinder 

Air was introduced axially from the 
bottom and deflected into dust by a 
small conical hat, Explosibility 
measurements published by US Bureau 
of Mines based on this unit 

Meek and 
Dallavalle 

1954 60 L 
chamber 

Dust was introduced through funnel 
shaped cup, tailored with special 
dispersion cone. 

Carpenter 
and Davies 

1958 275 cm3 
combustion 
vessel 

Detached dust dispersion cup of 2cm 
diameter at the bottom  

Helwig 1965 43 L closed 
bomb 

Air was blasted through 100cm3 whirling 
cylinder in the fluidization chamber 

Nagy et al. 1971 1 L to 14 m3 Used different air blast methods 

Moore 1979 1 to 43 L 
three 
different 
vessels 

--------- 

Enright 1984 1 to 20 L 
three 
different 
vessels 

--------- 

Bartknecht 1971 1 m3 Dust was dispersed through U or C ring 
disperser.  

Siwek 1977 20 L Starting with 5L, 10L and then finishing 
to 20L to have comparative results as 1 
m3 vessel. 

Cashdollar 
and 
Hertzberg 

1985 20 L Included interchangeability dust 
dispersion system 
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Table 3.3: Explosibility characterisation of dust and influencing factors

 Minimum explosible concentration 

 Maximum explosive pressure 

 Maximum rate of pressure rise 

 Flame speed and burning velocity 

 Minimum ignition energy 

 Minimum ignition temperature 

 Limiting oxygen concentration 

 Shape/surface area  

 Particle size distribution 

 Inert (Moisture+Ash contents) 

 Volatile matter 

 Porosity of the sample 

 Fluidity of fuel/Inter particle forces  

 Some alkaline metals as catalyst 

 Oxidizing medium 

 Temperature and Pressure 

 Turbulence level 

 Uniformity and dispersion 

 Humidity level 

 Ignition energy 

 Congestion level 

 

Different explosible dusts are characterised by their explosibility characteristics. 

Determination of the explosibility characteristics is a function of physical 

properties of the fuel, methodology adopted and the process conditions as listed 

in table 3.3. Physical parameters favouring the effective propagation of a flame 
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include higher surface area with a larger proportions of fine particles, minimum 

inerts, higher volatile yield with porous structure for its fast release, ease of fuel 

dispersibility and the presence of some alkaline metals which catalysing the rate 

of flame propagation, however it is still not well established. Similarly, the 

process conditions affect the measurements of explosibility characteristics. 

Comparison of these properties for different fuels should be based on the same 

process conditions for distinguishing the fuels. Measurement of these 

explosibility properties for varying oxygen concentration (oxygen limited or 

oxygen rich environment) yield different results. Similarly, initial temperature, 

pressure, humidity, ignition energy, turbulence level and congestion will directly 

or indirectly affect the measurements results. The influence of these parameters 

on the explosibility characteristics will be explained in detail later in this chapter.    

Also the improper experimental methodology may under or overestimate the 

burning properties of dust. The existing design and their experimental 

methodologies still have some limitations. Most of these methods are applicable 

for uniform shaped symmetrical particles without any dispersion problems. 

However for biomass materials, the fibrous nature and high voluminous dust 

makes it difficult for their testings. Improvements were made in the modified 

Hartmann tube and 1 m3 vessel in this area as part of this work.  

Old version of the Hartmann tube were refined for reliable measurements of 

explosibility characteristics especially minimum explosible concentration. The 

poor ignition criteria and visual observation of flame propagation was refined 

based on physical measurements. It was further refined as will be discussed in 

detail in the corresponding chapter. 

The standard 1 m3 vessel with a 5L dust pot was not suitable to test the wide 

range of concentration and for low bulk density fibrous biomass dust, it was 

more limited for testing of concentration. This 5L pot was extended to a 10L 

volume by placing another 5L pot in series to accommodate high voluminous 

biomass dusts. This 10L volume was calibrated by varying dispersion pressure 

to result in the same turbulence level as that with standard settings [82]. The 

optimum dispersion pressure was measured to be 10 bar for the 10L pot instead 

of 20bar (for 5L pot) for producing same turbulence giving comparable results 

of explosibility characteristics [82]. Also testing of irregular shaped 

coarse/fibrous dust resulted in choking/Plugging in the standard C-ring 

disperser and small spherical dispersers, they were only suitable for uniform 



-53- 
  

fine dust with d90<100µm based on laser diffraction technique. Standard 

procedure defined in the EN 14034-2:2006 (E) states that ‘the starting 

concentration for explosibility testing should be 500 g/m3. After this, the 

successive concentrations should be with an increment of 250 g/m3 above and 

50% below this 500 g/m3 in a sequence as shown below’; 

…..,1000, 750, 500, 250, 125, 60, 30, 15……. g/m3 

Based on this, if a concentration of 125 g/m3 ignites and the next 60 g/m3 fails 

to ignite, then the safe side of minimum explosible concentration is 60 g/m3. But 

with this, there is a significant error in these measurements. As if the actual lean 

limit is 90 g/m3 then there is an error of almost 33% in the measurements. 

Similarly after 60 g/m3, the next successive concentration is 30 g/m3 however if 

the actual lean limit is say 40 g/m3, then there is still an error of 25%. This may 

be one of the reason for very lean limits of HCO dust in comparison to HC fuels. 

As the gaseous explosion measurements have percentage error of less than 

1% for tube methods. In this work, the successive concentrations tested near 

the lean side were narrow for more accurate determination of MEC and ignored 

the statement of 50% or 250 g/m3 successive concentration. However, some of 

the dusts, because of their limited amount were tested based on this standard 

procedure as mentioned in the EN 14034-2:2006. 

The concentration of the dust usually represented as g/m3 is classified as. 

 Minimum explosible concentration  

The minimum concentration of dust, in the presence of excess oxidizing agent, 

that can sustain the explosion in accordance with the standard. According to 

NFPA 68-13, ‘The minimum concentration of a combustible dust cloud that is 

capable of propagating a deflagration through a uniform mixture of the dust and 

air under the specified conditions of test’. 

 Stoichiometric concentration 

The concentration of dust that is sufficient to consume the entire oxidizing agent 

under the specified condition of test.  

 Worst case concentration  

The concentration of dust, that gives the maximum explosion rate under the 

specified condition of test. It may be also called the most reactive concentration. 
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 Maximum explosible concentration 

The maximum concentration of dust in the presence of limiting oxidizing agent 

that can sustain the explosion as specified by Standard under the specified 

condition of test. It is similar to upper flammability limit as used for gaseous 

mixtures. 

3.8  Hazard Index 

The extent of the explosive nature of the dust is specified by the Hazard index 

which was established by the US Bureau of Mines. This hazard index is used to 

compare the sensitivity and severity of explosibility hazard of different dusts. 

Different ratios are used to measure the Hazard index. The hazard index or 

index of explosibility of the dust can be obtained by multiplying the ratios as 

shown in eq. 3.1. 

𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝑒𝑥𝑝𝑙𝑜𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝐼𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝐸𝑥𝑝𝑙𝑜𝑠𝑖𝑜𝑛 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦             [3.1] 

Ignition sensitivity and explosion severity are the empirical dimensionless ratios 

for classifying the dust hazards by comparing with the explosibility 

characteristics of standard reference Pittsburgh coal sample. Minimum ignition 

temperature, minimum ignition energy and minimum explosible concentration 

are used to measure the ignition sensitivity whereas maximum explosion 

pressure and maximum rate of pressure rise are used to measure the explosion 

severity of the selected dust in comparison to Pittsburgh coal sample (Table 

3.4).   

𝐼𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
(𝑀𝑖𝑛.𝑖𝑔𝑛.𝑡𝑒𝑚𝑝.×𝑀𝑖𝑛.𝑖𝑔𝑛.𝑒𝑛𝑒𝑟𝑔𝑦×𝑀𝑖𝑛.𝑖𝑔𝑛.𝑐𝑜𝑛𝑐.)𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑑𝑢𝑠𝑡

(𝑀𝑖𝑛.𝑖𝑔𝑛.𝑡𝑒𝑚𝑝.×𝑀𝑖𝑛.𝑖𝑔𝑛.𝑒𝑛𝑒𝑟𝑔𝑦 ×𝑀𝑖𝑛.𝑖𝑔𝑛.𝑐𝑜𝑛𝑐.)𝑠𝑎𝑚𝑝𝑙𝑒 𝑑𝑢𝑠𝑡
        [3.2] 

𝐸𝑥𝑝𝑙𝑜𝑠𝑖𝑜𝑛 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 =
(𝑀𝑎𝑥.𝑒𝑥𝑝𝑙𝑜𝑠𝑖𝑜𝑛 𝑝𝑟𝑒𝑠𝑠.×𝑀𝑎𝑥.𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑟𝑖𝑠𝑒)𝑠𝑎𝑚𝑝𝑙𝑒 𝑑𝑢𝑠𝑡

(𝑀𝑎𝑥.𝑒𝑥𝑝𝑙𝑜𝑠𝑖𝑜𝑛 𝑝𝑟𝑒𝑠𝑠.×𝑀𝑎𝑥.𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑟𝑖𝑠𝑒)𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑑𝑢𝑠𝑡
    [3.3] 

Based on the ignition sensitivity and explosion severity, different dusts were 

classified for their degree of hazard severity as weak, moderate, strong and 

severe by Jacobson et al. (1961) [83] as shown in Figure 3.10. 
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Table 3.4: Explosibility data of standard pittsburgh coal  

Minimum explosible concentration 55 g/m3 

Minimum ignition energy 0.06 J 

Minimum ignition temperature 610oC 

Maximum explosion pressure 5.7 barg 

Maximum rate of pressure rise 158.6 bar/s 
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  0.5 

Explosion severity 

Figure 3.10: Degree of hazard severity based on explosion severity and ignition 
sensitivity 

Most of these explosibility properties were determined using the Hartmann dust 

explosion equipment except the minimum ignition temperature that was 

measured using Godbert Greenwalt furnace [77].  

Further classification based on the explosion severity of the explosible dusts 

was done using dust constant Kst measurements as explained below. 

3.9 Cube root law 

Idealized isothermal treatment predicts that the maximum rate of pressure rise 

is inversely proportional to the radius of the confined vessel that is the cube root 

of the confined vessel volume. The cube root law is also known as the volume 

normalized method, used as a scaling method for the dust explosions [73]. 

Mathematically it is expressed as, 
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𝐷𝑒𝑓𝑙𝑎𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 𝑜𝑟 𝑑𝑢𝑠𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑘𝑠𝑡 =
𝑑𝑃

𝑑𝑡
𝑉1/3                                             [3.4] 

It is strictly valid as a scaling relationship under the following hypothetical 

circumstances; 

1) Both the test vessels should have the same mass burning rate when rate 

of pressure rise reaches its peak value. ( i.e. Same products of the 

burning velocity, same flame area, same density of the unburnt mixture) 

Necessary things for the validity of this assumption are; 

 Geometrically similar vessels 

 Central point ignition with negligible energy input by the igniter  

 Identical flow properties (Same turbulence level) 

 Changes in the unburnt mixture (Pressure, Temperature and turbulence) 

caused by the expansion of the flame front towards unburnt mixture are 

similar in both the vessels 

 No significant net flow in the vessel at the time of ignition (it disturbs the 

growing spherical flame) 

2) Thickness of the flame should be negligible as compared to the radius of 

the explosion vessel.( Non spherical flame results uneven propagation of 

the flame front that reaches the inflexion point and quenching results due 

to the effect of walls) 

In Figure 3.11, the Pressure time plot in the dust explosion is shown. First, 

injection of dust in the evacuated vessel raises the pressure to ambient 

atmospheric pressure and then explosion of the dispersed dust cloud results in 

the build-up of pressure in the confined vessel that quenches after reaching the 

wall as shown. 
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Figure 3.11: Pressure-time record of a dust explosion test [84] 

Maximum rate of pressure rise is measured using the slope for the steep rise of 

explosion pressure. Later this peak rate of pressure rise is volume normalised 

by multiplying it with the cube root of the vessel volume. These values are the 

quantitative determination of the explosion severity (Table 3.5) and are used in 

the protection design.  

 

Table 3.5: Explosion severity classification based on Pressure rise (Pmax) and 
deflagration index (Kst) 

Hazard Class Kst (bar m/s) Pmax (bar) Explosion 

severity 

St.1 ≤200 10 Moderate 

St.2 201-300 10 Strong 

St.3 ≥300 12 Very strong 
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Dusts with higher values of the deflagration index and higher explosion pressure 

are extremely hazardous and require accurate and reliable protection design for 

safe working environment [68]. 

Hertzberg and Cashdollar (1987) gave the relationship for the propagation of 

the fireball generated spherically due to central point ignition using the spherical 

constant volume vessel e.g. 20L sphere related as [85]; 

𝑃(𝑡) − 𝑃𝑜

𝑃𝑚𝑎𝑥 − 𝑃𝑜
= 𝑘

𝑉(𝑡)

𝑉𝑜
                                                                                                                 [3.5] 

Here the proportionality constant ‘k’ is a correction factor accounting the 

compressibility difference between burnt and unburnt mixture. 

P(t)= Pressure development of the fire ball at any time ‘t’ 

Po=Initial pressure in the constant volume vessel 

Pmax=Maximum explosion pressure 

V(t)= Volume of the expanding fire ball in constant volume vessel at any time ‘t’ 

Vo= Constant volume of the vessel 

For spherical propagation of the fireball, 

 
𝑉𝑡

𝑉0
= [

𝑟(𝑡)

𝑟0
]3                                                                                                                               [3.6]  

Where  

r(t)= Variation in the radius of fireball during its propagation at time ‘t’ 

r0= Radius of the fixed constant volume vessel 

Flame speed can be estimated by placing ‘Sb t’ in place of ‘r(t)’ where Sb is known 

as the flame speed of the fireball. 

Flame speed can be related with the turbulent burning velocity using the 

following relation as; 

𝑆𝑏 =
𝜌𝑢

𝜌𝑏
𝑆𝑢                                                                                                                                [3.7] 

Here ρu= Density of unburnt gas and ρb is the density of the burnt gas at 

constant pressure. 
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3.10 Types of flames  

There are two types of flame [86] 

3.10.1 Nusselt flames 

Pure heterogeneous combustion occurring at the surface of individual particles 

and is sustained by diffusion of oxygen towards the particle surface. 

3.10.2 Volatile flames 

Local homogeneous combustion of the released volatiles mixed with the 

oxidant. It is the homogeneous flame of a single phase. 

Using pulverized biomass for wide applications require its explosibility 

characteristics to be accessed as these are very reactive and carry fire and 

explosion hazards. Biomass are so diverse in their chemical characterisation 

depending on their type and local conditions of their origin. Vessilev et al. (2012) 

compiled the chemical characterisation of a number of biomass of different 

types from various studies as shown in Figure 3.12. It can be seen in Figure 

3.12 that the range of O/C molar ratio is 0.1-0.9 whereas for H/C molar ratio is 

0.7-2.4. These biomass after some suitable pre-treatments can be refined for 

their consistent properties as discussed before. These biomass as a continuous 

feedstock for renewable generation of energy can be used as a substitute of 

coal in the existing coal power generation plants. The objective of this research 

work is to focus on various types of biomass for measuring the explosion 

characteristics for their safe exploitation. 



-60- 
  

 

Figure 3.12: Elemental molar ratios of different types of biomass in comparison 
to different classes of coal  

It was showed that the maximum flame speed occurred at equivalence ratio ‘Ø’ 

of ~ 2 compared with Ø ~1.05 for hydrocarbon gas/air mixtures [18, 22]. It occurs 

for all HCO type dusts due to possible gasification for rich concentration 

mixtures [73]. This was not realized in the dust explosion literature, as the dust 

concentrations had not been expressed in terms of Ø, but only as g/m3 [24]. To 

determine Ø, the elemental analysis of the fuel is required so that the 

stoichiometric Ø as g/m3 can be calculated, as will be described later in this 

work for stoichiometric calculations.  

Similarly the reactivity of biomass was measured to be greater than coal 

samples. Two thermally treated biomass and their raw samples were tested on 

the modified Hartmann tube and the results were compared with the coal 

samples. Lean flammability results in terms of equivalence ratio showed that 

biomass materials (treated and untreated) were more reactive than the 

kellingley coal [19]. The reactivity of the torrefied biomass is affected by the 

torrefaction condition. The severe the torrefaction condition, the less would be 

the volatiles but there would be enhancement in the brittleness that on crushing 

gives more fine particles (and ash in the finer size fraction). So, the torrefaction 

severity results the loss of volatiles of the biomass but the explosibility is 
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counterbalance due to the augmentation in the number of fine particles due to 

more brittleness [87].  

3.11 Effect of size and shape of the particles 

Effect of particle size is an additional parameter for the degree of freedom to 

specify the dust explosion. Changing the particle size affects the lean flammable 

limits of the fuel. There is some characteristic diameter (minimum diameter) of 

the dust below which the lean limit of that dust become independent on the size 

of the particle. Similarly there is also an upper limit of the diameter at which the 

flame propagation ceases due to absorption of heat by the excess surface [85]. 

The shape of the particles also has a strong impact on the severity of the dust 

explosion. The regular shaped particles have low explosbility index than the 

irregular shaped particles due to low surface area of the regular shaped 

particles [88]. 

Nifuku & Katoh (2001) studied the particle size’s effect on the minimum ignition 

energy for the ignition of dust. They observed that the reduction in the size of 

the particle facilitates the burning of the particles due to high exposed surface 

area. They also observed that the average particle concentration in the dust-air 

suspension is also strongly dependent on the minimum ignition energy and the 

ignition sensitivity of the particles [89]. Burning rate of dust particles is directly 

proportional to its surface area. Compression of a spherical particle of diameter 

5 microns into a 0.2 micron thickness of flake with a length of 20 microns results 

in the augmentation of the surface area by 8 times [73]. 

Gao et al. (2013) studied the effect of particle size distribution on the 

propagation of the flame using Octadecanol dust. The flame was visualized by 

high speed camera combined with band width filter. It was concluded that the 

flame developed by fines was regular shape and continuous due to high release 

of the volatiles whereas the flame developed by coarse particles was discrete 

and discontinuous due to less release of volatile and burning of the solid 

particles. Flame imaging revealed that the flame colour changed to blue as the 

particle size varied from fine to coarse [90]. 

The particle size distribution and the volatiles have a significant influence on the 

reactivity of the biomass. It has been determined that the biomass comprising 

of coarse particles greater than 150 microns sustain the flame propagation. The 

reactivity of the biomass increases as the size of the particles is reduced that 
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increase the expose surface area of the particles. The coarse particles burn in 

the presence of fines as the fines have more surface to volume ratio. It was 

noted that the biomass particles are not spherical but elongated cylinder like 

shape that have higher surface to volume ratio. The higher reactivity of the 

biomass dust reflect the release of volatile might include some reactive gases 

like Hydrogen or Carbon Monoxide having equivalence ratio smaller than the 

hydrocarbon gases. It is assumed that the variation of the characteristics of the 

biomass particles like size, shape, density with the process conditions like 

temperature influence the reactivity of the biomass particles in terms of release 

of volatile quantity and reactive species [91]. 

Eckhoff (2013) explained the effect of nm sized particles along with 

agglomeration phenomenon on the explosion severity. Decrease in size of the 

particles intensifies the explosion severity however most of the nm size particles 

have the tendency to agglomerate due to strong inter-particles forces that 

results in the formation of bigger particles counter-balancing the increased 

reactivity. So, the existing preventive design of explosion for micron sized 

particles should be suitable with nm sized particles [92].   

3.12 Flammable limits of the dust 

Coal and biomass fuels have specified lower limit of flammability but no upper 

flammability limit. As the concentration of the fuel is increased, it acts as an inert 

in suppressing the dust explosion with only 50% of the nominal dusts take part 

in the explosion whereas the other 50% remains unburnt. So it is agreed that 

some amount of the biomass may be burnt in the higher concentration leaving 

the remaining amount unburnt. However some attempts have been done to 

predict the upper flammability limit.  

The concentration of the dust also plays a vital role in the propagation of the 

flame. The flame thickness increases as the concentration of the dust starting 

from the lean limit increases and starts to decrease again as the concentration 

is much higher than the stoichiometric concentration. The concentration of the 

dust near the minimum explosible concentration develops the thinner flame 

having a thickness of approximately 10cm whereas at higher concentration, the 

thickness of the flame is about 50-100cm [69]. 

Deguingand & Galant (1981) employed a weak spark ignition for the 

determination of the upper flammable limit and found apparent upper flammable 
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limit of coal dust to be ~4kg/m3 which was in fact more an ignitability limit rather 

than flammable limit because of weak ignition source [93]. 

Eckhoff, Fuhre & Pedersen (1987) used the Hartmann bomb (closed tube) for 

the measurements of the flammability limits of low moisture maize dust. The 

minimum explosible concentration was measured to be 70g/m3 at the ambient 

temperature and pressure whereas the maximum explosible concentration was 

estimated to be probably somewhere in the concentration range of 1500-

2500g/m3. In a specially constructed top vented steel silo of volume 236m3, the 

most/worst explosive concentration for maize starch was found to be 600-

700g/m3 whereas the minimum explosible concentration was estimated to be of 

the order of 100g/m3 [94]. Wolanski (1992) found that increasing the 

concentration reduced the flame temperature below its limit value and 

postulated that the dusts do not have an upper flammability limit [95]. Mintz 

(1993) used the technique of reducing oxygen content and enhancing the 

particle size to calculate the upper flammability limit of some of the dusts [96]. 

Cashdollar & Chathrathi (1993) used 20 L chamber and 1 m3 vessel for 

determining the minimum explosible concentration of gilsonite, bituminous coal 

and anthracite coal using different igniters. They observed that the 20L chamber 

with 2500 J igniter and 1 m3 vessel with10 kJ igniter gave the comparable results 

for the minimum explosible concentration. High ignition energy greater than 

2500J in 20L chamber resulted in the overdriven of the measurements. 

The lean limit of the Pittsburgh seam bituminous coal was determined to be 

90g/m3 with an error of ±0.01 kg/m3 and rich flammability limit could not be 

judged even at concentration up to 4kg/m3 using 20L vessel [97]. The lean limit 

of Pittsburgh coal was higher than the previous measured results (55g/m3) using 

the Hartmann tube showing the discrepancies in the experimental result. 

Cashdollar (2000) used a 20 L chamber with 2500J igniter and found that for 

high volatile coal dust and polyethylene showed an explosion even at 

concentration beyond 4kg/m3 [98].   

Yuan et al. (2012) proposed a new method to calculate the minimum explosible 

concentration based on the combustion duration time rather than the maximum 

pressure. The maximum pressure for different concentration of coal in Siwek 

20L sphere was found to depend on the ignition time delay. Measurement of 

MEC were not reliable without having the optimized ignition time delay. On the 
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other hand, the combustion time instead of maximum explosion pressure was 

not much dependent on the ignition delay time. Concentration-combustion time 

graph having a peak value for a given sized dust, resulted the more reliable 

MEC [99]. 

3.13 Effect of turbulence & the burning velocity on explosion 

3.13.1 Burning velocity 

It is defined as ‘the velocity of the burning zone relative to the unburnt zone that 

causes compression of the unburnt zone and enhance the turbulence’. 

Burning velocity is classified as laminar burning velocity and turbulent burning 

velocity. These are very important parameters in the design of a burner. Lots of 

work has done in estimating the burning velocity of the dusts. There are some 

peculiar features in the dust burning velocities which were identified by many 

researchers. It is difficult to stabilize the laminar dust flame without significant 

cooling due to emission of radiations as explained by Lee (1987& 1988). 

Cooling reduces the actual temperature of the flame less than the adiabatic 

temperature and the system approaches towards non-adiabatic condition. The 

average burning velocity is lower for this non-adiabatic flame. It was showed 

experimentally that the burning velocity for Aluminium air cloud increased with 

the decreasing particle diameter [86]. 

Nagy, Conn and Verakis. (1969) derived an expression of temperature and 

pressure dependence for the adiabatic flame propagation in a spherical vessel 

related as [100] 

𝑇𝑢 = 𝑇𝑜 (
𝑃

𝑃𝑜
)

(𝛾𝑢−1)
𝛾𝑢

                                                                                                           

                                     [3.8] 

𝑇𝑏 = 𝑇𝑚 (
𝑃

𝑃𝑚
)

(𝛾𝑏−1)
𝛾𝑏

                                                                                                                                                             

[3.9] 

Here Tu the mixture burning temperature 

        To the initial temperature 

        Tb the temperature of the combustion product  

        Tm the overall temperature when flame reaches the vessel wall  

        P/Po the pressure ratio relative to initial pressure 
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        P/Pm the pressure ratio relative to maximum explosion pressure 

        ɣb and ɣu are the specific heat ratios of burnt and unburnt mixtures 

respectively. 

Laminar burning velocity of the coal air dust flame at atmospheric pressure 

showed the following results [101]; 

 Peak burning velocity was measured at rich dust concentration higher 

than the stoichiometric concentration. 

 Peak burning velocity was proportional to the specific surface area. 

 Decreasing the particles diameter moved the peak burning velocity 

towards the lean side concentration instead of rich side with the peak 

increased towards the lean side concentration. 

 Higher the volatiles (smaller diameter particles), higher the peak burning 

velocity towards the lean side. 

 Oxygen enhancement or the formation of hybrid mixture increased the 

burning velocity. 

 Steady, laminar Flame thickness of the coal dust particles was directly 

proportional to the size of the dust particles. 

 Measured peak flame temperature was measured in the range from 1000 

to 1500K that was smaller than the real flame temperature. 

 The extent of the release of volatiles from the coal was proportional to 

the coal dust concentration.  

Model for the coal dust combustion in air was proposed including the following 

three stages [85].  

1. Heating and release of the volatiles. 

2. Mixing of the volatile with the air to form the gaseous mixture 

3. Gas phase burning of this mixture. 

For small particles and low dust concentration, the stage 3 would be the rate 

limiting step whereas for larger diameter particles and higher dust 

concentration, heating to release sufficient volatile (stage 1) would be the rate 

limiting step. 
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Table 3.6: Works done for burning velocity measurements [73] 

Author Year Material Parameter Findings 

Kaesche-
Krischer 
and Zehr 

1958, 
1959 

Lycopodium
-air and 
Polyvinyl 
alcohol-air 

Burning 
velocity 

 Stable Lycopodium/air flame for 
concentration range 200 to 500g/m3  

 Flame was blue similar to the rich 
HC mixtures.  

 High burning velocity for high 
volatiles and enhanced oxygen 
ignition. 

Mason 
and 
Wilson 

1967 Lycopodium
-air  

Burning 
velocity 

 Similar results as that of Kaesche-
krischer,    

 Temperature was measured at 
140g/m3 dust and found that at 2mm 
below the flame front, the 
temperature was 300-350K 
whereas at 1.5mm above the flame 
front, the temperature was 1800K 
which is also in complete 
agreement with Kaescher,1958 

Ballal  1983 Coal-air Burning 
velocity 

 Free fall explosion tube with Zero 
gravity condition.  

 Laminar burning velocity were 
measured to be 0.11-0.25m/s 
depending on the volatile 
proportion.  

 Universally accepted relation is 
proposed which is the total 
quenching time for the laminar dust 
flame is equal to the sum of the time 
of devolatalization and the time for 
the gas phase chemical reaction.  

 Burning velocity was found to be 
strongly dependent on the particle 
size, concentration, volatiles, heat 
losses and a mass transfer number 
of the particle 

Bradley et 
al. 

1986 graphite 
with 
methane-air 
and coal air 

Burning 
velocity 

 Theoretical calculation of the 
laminar burning velocity. 

Proust 
and 
Veyssiere 

1988 Maize 
starch 

Burning 
velocity 

 A laser tomography system was 
used to control the homogeneity of 
the dust cloud.  

 The quenching distance was 
determined to be 7 mm which was 
the minimum at about 
stoichiometric conc. of 235 g/m3.  

 Laminar burning velocity was 
determined as 0.27m/s. 
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Different researchers measured the burning velocity using various techniques 

are listed in table 3.6. 

Modelling of gas and dust explosions requires knowledge of the laminar burning 

velocity, UL, which is a major area of research for gas flames. For dust flames 

there is no agreed methodology for its measurement and hence no agreed 

values that can be used in explosion protection design or in pulverised biomass 

burner design. Andrews and Bradley (1972) [102] showed that there were 

systematic errors in most methods of determining the laminar burning velocity 

of gases and these were related to the finite thickness of the flame and the 

assumption of an infinitely thin flame in many of the measurement methods. As 

the flame thickness of dust flames is greater than gas flames, the measurement 

problems for SL for dusts are likely to be greater than for gas flames. Some 

recommended values of burning velocity for gases using measurement 

methods with low errors were recommended by Andrews and Bradley [102] and 

adopted by the NFPA-68 (2013) in their gas explosion protection standard [68]. 

For dusts no data base exists for laminar burning velocities, as few 

measurement methods exist, due to the need for turbulence to keep the dusts 

in suspension. The lack of a reference standard for the measurement of SL 

contrasts with the area of gas flammability limits, where standards do exist [97]. 

In gas or dust explosion protection using venting or suppression there has 

always been a legal requirement to take into account, in the vent design 

process, the reactivity of the most reactive mixture that the vent is a protection 

against. In the absence of agreed methods to determine SL an alternative and 

less fundamental parameter has been used for many years known as 

deflagration parameter, K. For gases this is usually referred to as KG and for 

dusts Kst. It should be noted that if the pressure rise is expressed relative to the 

initial pressure, Pi, then 

𝐾

𝑃𝑖
=

(
𝑑𝑃
𝑑𝑡

)𝑚𝑎𝑥

𝑃𝑖
 𝑉

1
3          ′ 𝑚/𝑠′  

How dP/dtmax is measured is detailed in a European Standards for gas [103] 

and dust [104] explosions. Also required to be measured is the peak explosion 

pressure and there are standards on how to do this [105]. These reactivity 

parameters are embedded in the European standards for gas [106] and dust 

venting [107], but are not used in the wider area of combustion modelling. The 
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measurement procedures for the dust reactivity, Kst, require the ISO standard 

[108] 1m3 spherical explosion vessel to be used to determine Pmsx and dp/dtmax 

and this is one of the experimental equipment used in the present work.  

The standard dust explosion techniques are based on a turbulent injection 

process as turbulence is required to keep the dust dispersed. The average 

turbulence can be calibrated by undertaking laminar gas explosions and then 

operating the air injection system into a premixed gas air mixture to generate 

the same turbulence as occurs in the dust explosion [109, 110] and this method 

was used in the present work to calibrate the turbulence in the new injection 

systems for coarse fibrous biomass.  

For gases KG is measured in a laminar explosion in a 5L spherical vessel and 

Bartknecht [111] has published KG for a wide range of gases in a 5L sphere and 

these values are quoted in the design standards [106]. Till 2012 the KG reactivity 

parameter for gases and Bartknecht’s list of values of KG was part of the gas 

venting design standards in the USA [112] but have been replaced by a more 

fundamental gas venting design procedure based on SL as the reactivity 

parameter [68]. However, they have not chosen to regulate how SL is measured 

but have specified a reference value for propane, 0.46 m/s that the 

measurement method must be corrected to. Dust standards also continue to 

use Kst as the reactivity parameter for dust, due to the lack of reliable data for 

dust SL. The problem with the KG approach to gas reactivity is that it is 

dependent on the vessel volume [24, 112, 113], which is a reflection of the 

dependence of laminar flame propagation on the distance from the spark [114], 

due to self-acceleration of the flame caused by the formation of cellular flames. 

The procedures of Chippett [114] are used to increase SL due to this effect in 

the USA gas venting standards [68], but there is no procedure to take this into 

account in the European gas venting standards [106]. 

Andrews and Phylaktou [24] showed that for gases the KG/Pi and SL gas 

reactivity parameters are linearly related by eq. 3.10. They also showed that for 

reasonable values of SL and adiabatic Pm/Pi the predicted values of KG were in 

reasonable agreement with experimental KG measurements. 

𝐾𝐺

𝑃𝑖
= 3.16 (

𝑃𝑚𝑎𝑥

𝑃𝑖
− 1) 𝑆𝐿𝐸𝑃                                                                                             [3.10] 
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Where Ep is the constant pressure expansion ratio which is the unburnt gas to 

burnt gas density ratio. For dusts, Ep could be determined as the ratio of peak 

pressure to initial pressure in a closed vessel dust explosion [110, 112]. It is 

quite difficult to calculate expansion factor for dust as it is influenced by the 

water and ash content as well as the elemental composition of the dust. This 

approach was used in the present work. The key assumption in the derivation 

of eq. 3.10 is that the explosion flame speed is constant across the vessel 

diameter with no account taken of the rise in pressure, P, and temperature, T, 

in the later stages of the explosion. The change in SL with T and P was 

computed by Bradley and Mitcheson [115] and the results show that the final 

value of SL would only be 20% higher than the initial value which is a relatively 

small error. Kumar [116] has derived an equation similar to eq. 3.10 that 

includes the P and T dependence of SL but give similar values to those from eq. 

3.10. Sattar et al. [110] showed for the first time experimentally that KG and SL 

were linearly related as eq. 3.10 predicted, but only if both reactivity parameters 

were measured in the same explosion vessel. They showed that the ISO 1 m3 

vessel was the ideal vessel size to measure SL and was the minimum size that 

made the common assumption of an infinitely thin flame to be valid for the 

closed vessel explosion technique. Sattar et al. also showed that the ISO 1 m3 

explosion vessel could be used for gas explosions to measure the constant 

pressure explosion laminar flame speed using arrays of exposed junction 

thermocouple to determine the flame arrival time. The infinitely thin flame front 

assumption then enables the laminar burning velocity UL to be determined by 

eq. 3.11. 

𝑈𝐿 =
𝑆𝐿

𝐸𝑃
                                                                                                                               [3.11]   

Sattar et al. [110] used this approach to determine the maximum burning 

velocity of methane-air to be 0.42 m/s which they showed to be in good 

agreement with a wide range of other measurements using reliable techniques 

[102]. This approach was adapted for determining the laminar burning velocity 

of dust air mixture and is applied to a range of pulverised biomass in the present 

work, using the measured Pm/Pi in the ISO 1 m3 vessel for Ep [98]. 

3.13.2 Laminar burning velocity of dusts  

    The most common method of burning velocity measurements is to use the 

vertical tube method with dust falling from the top and ignition at the bottom. 
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Proust and Veyssiere [117] showed that laminar flames could be achieved, but 

Andrews and Bradley [102] showed that this method did not give reliable values 

of laminar burning velocity for gas/air mixtures and the same is likely for 

dusts/air explosions. Improvements to the method were made by using the dust 

particle motion ahead of the flame to determine the gas velocity ahead of the 

flame, so that the burning velocity was the difference between the flame speed 

up the tube and the gas velocity ahead of the flame [118], a technique that 

Andrews and Bradley first used for gas flames in closed vessel explosions using 

a hot wire anemometer to measure the gas velocity ahead of the flame [102]. 

The dust burning results of Proust and Veyssiere [117] from this method showed 

considerable data scatter of the order of +/-100% and hence did not 

demonstrate a methodology that could be relied on for dust explosion reactivity 

characterisation. Their maximum laminar burning velocity results for maize 

starch was 0.3 m/s, but Wolanski [119] reported a value of 0.55 m/s for maize 

starch using a similar technique, but using a larger diameter tube. Proust and 

Veyssiere [117] also showed a very poor correlation between the Kst measured 

in the ISO 1 m3 equipment and laminar burning velocity using the tube method.  

Mazarkiewicz and Jorisade measured the maximum laminar burning velocity of 

cornstarch at 0.14 m/s. Nagy and Veritas [120] developed a method to use the 

Hartmann vertical tube dust explosion equipment to measure the maximum 

laminar burning velocity for a wide range of materials with maximum burning 

velocities in the range 0.02 – 0.1 m/s, which are very low values. Dahoe et al. 

[121] reported the maximum laminar burning velocity of cornflour as 0.63 m/s 

and Smoot et al. [122] determined the maximum laminar burning velocity of 

lignite as 0.31 m/s for 10 µm particles and 0.21 m/s for 33 µm particles. 

Dahoe et al. (2002) established the efficient and reliable method for the 

determination of the laminar burning velocity. The laminar burning velocity was 

measured by ‘Laser Doppler Anemometry’ [121]. In this method, the burner was 

used to produce a stable flame of the cornstarch and utilizing a suitable 

parameter as ‘Markstein length’ that accounted the variation due to the stretch 

in the propagation of the flame. The Markstein length is the dust property and is 

fixed for a given dust flame. Due to insufficient knowledge of its dependence on 

the physical and chemical properties of dust, the theoretical and experimental 

determination of this Markstein length was not specific and need more work in 

accurately determining the laminar burning velocity [121]. 
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Phylaktou et al. [123] measured the laminar burning velocity of several dusts, 

for the maximum reactivity mixtures, using the ISO 1 m3 spherical vessel. They 

increased the ignition delay between the start of dust injection and the firing of 

the ignitor. The reference time delay is 0.6s after the start of air flowing into the 

vessel [111]. The ignition delay was increased in stages up to 4s delay, by which 

time the injection turbulence had decayed to laminar conditions. Unfortunately 

in most cases, before laminar conditions had been achieved the peak 

overpressure started to fall, indicating that significant proportions of the dust 

injected had fallen out under gravity. This then resulted in the concentration of 

the mixture that the flame propagated through varying with time. However, this 

method indicated that the laminar burning velocity for maize starch was 0.25 

m/s, derived from their value for the laminar flame speed and their measured 

peak pressure and using Eq. 2. For biscuit flour the laminar burning velocity was 

0.20 m/s, for a coal it was 0.17 m/s, for milk powder it was 0.14 m/s and for resin 

powder, which is mainly a hydrocarbon dust, it was 0.48 m/s which is typical of 

high MW hydrocarbon gas burning velocities. However, this method had the 

weakness of the result being an extrapolation of the curve fit of the laminar flame 

speed as a function of the ignition delay to infinite delay and although the above 

laminar burning velocity data are reasonable it is difficult to make a case for the 

absolute accuracy of this method of measurement. 

Sattar et al. [110] developed an alternative method for using the ISO 1 m3 dust 

explosion equipment for laminar burning velocity measurements, which has 

been used in the present work for pulverised biomass. This method determined 

the mean turbulence levels in the ISO 1m3 dust explosions, for the standard 

ignition delay, using laminar and turbulent methane/air explosions to determine 

the turbulence enhancement factor and then applied this to the measured 

turbulent dust/air flame speeds to determine the laminar flame speed and then 

the laminar burning velocity was calculated with the expansion ratio determined 

from the measured peak to initial pressure ratio [98]. This work measured the 

maximum laminar burning velocity of cornflour as 0.55 m/s, walnut shell dust 

(an agricultural waste biomass) as 0.55 m/s and Kellingley coal as 0.17 m/s. 

Sattar et al. [110] also showed that measurements of Kst and UL on the same 

ISO 1 m3 equipment gave a good linear correlation between the measured Kst 

and UL. 
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3.14 Role of turbulence 

There are two types of turbulence in the explosion which are; 

 Turbulence before combustion 

Turbulence generated by the dispersion of the dust by some flowing medium 

(small effect on the dynamics of explosion) 

 Turbulence after combustion 

Turbulence generated in the unburnt mixture by the expansion of flame front 

due to the combustion (More strong effect on the dynamics of explosion) 

The turbulence generated by the expanding flame in the unburnt zone has major 

influence on the dynamics of explosion and a little work is done to drive the 

expression for this type of turbulence. Alternatively, Instead of observing the 

change due to the turbulence generated after combustion, the burning velocity 

was examined. 

The effect of the induced turbulence for dispersing the dust in the closed vessels 

was investigated on the basis of the turbulent to laminar burning velocity and 

the maximum rate of pressure rise. It was revealed from the experiments that 

the increase in the ignition delay results in the decay of pre-explosion turbulence 

and the severity of the explosion was reduced. The mixture of corn-starch-air 

and Methane air were tested in the 6, 26 and 950 litres closed vessel with the 

varying ignition delay [124]. It was determined that the combustion of corn-

starch have the maximum explosion pressure rise close to the corresponding 

lean methane-air mixture (5-5.5%) at the low turbulence intensities (u’<1m/s) 

and to the corresponding rich methane-air mixture (>7.5%) at the high 

turbulence intensities. It was also observed that the effect of turbulence is 

significant in the corn-starch air mixture as compared to Methane air mixture 

[124]. 

Stoichiometric and thermodynamic considerations like adiabatic flame 

temperature are of limited use for combustible dust-air suspension as reactions 

are incomplete with some portion of the dust not participating in the flame 

propagation. Turbulence has a dominant effect in experimentally determining 

the burning rates of the dust explosion. The geometry and flame structure for 

laminar dust flames are not stable and poorly defined for burners as explained 

by Lee (1988). For cornstarch-air mixture, lowering the turbulence intensity in 
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the constant volume vessel reduced the explosion pressure indicating the less 

burnt mass [125] & [126]. 

Amyotte & Pegg (1989) observed higher burning velocity at higher turbulence 

levels lead to increased rates of combustion and reduce heat loss to the walls 

[127]. They demonstrated the quantitative effect of turbulence on the 

explosibility parameters of the dust explosion. The effect of ignition delay on the 

maximum rate of pressure rise for lycopodium dust of size approximately 30µm 

was presented for a series of ignition delays from 40ms to 900ms using dust 

concentrations of 0.1-1kg/m3. It was observed that the  

 Maximum rate of pressure rise decreases with increasing ignition delay 

for fixed dispersion pressure  

 Higher air pressure from reservoir for the dispersion of dust results in the 

higher maximum rate of pressure rise for short ignition delay (40-180ms), 

approximately constant maximum rate of pressure rise at moderate 

ignition delay (180-200ms) and at further higher ignition delay (>200ms), 

it starts decreasing. 

 The root mean square velocity which is a measure of turbulence 

decreases with the increase in the ignition delay. 

For this work, a systematic approach was developed to see the effect of 

turbulence on the ignition properties in the Hartmann bomb. A parameter 

Kst/Kst,max was also established to measure the turbulence decay parameter.  

The trend of the particle falling freely based on the semi-analytical mathematical 

modelling in the dust propagating flame under the influence of various forces. 

The thermophoretic force has the key and dominating role as the particle 

approaches to flame leading to a stagnant zone where the particle velocity is 

zero and due to the strong thrust force, the particle velocity trend is reversed 

[128]. 

Serafin et al. (2013) used the modified Spherical apparatus 0.25m3 to study the 

effect of turbulence on the explosion severity of the dust explosion. In this work, 

five dusts (Wheat flour, Brown flour, powdered sugar, Meant bone powder and 

Torula yeast) were utilized to see the effect of the turbulence on the explosibility 

parameters such as maximum pressure and the rate of pressure rise. It was 

experienced from the experimental results that the enhancing of the turbulence 

by increasing the speed of the stirrer placed in the Explosion vessel results in 
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the augmentation of the explosibility parameters. The effect of turbulence on 

maximum pressure is more pronounced for powdered sugar and the wheat flour 

and on maximum rate of pressure rise for all the dusts except meat bone 

powder. It was concluded that enhancing the turbulence for some dusts can 

double the explosion outcomes than that at the static condition. So, the design 

of the vent for the safe operation of the explosion tests in the laboratory and 

commercial scale should include the effect of the turbulence [129]. 

There are number of methods available for the investigation of the turbulence 

in the gas and solid dispersed cloud such as [73] (Among all these, the most 

versatile method is ‘Laser Doppler Anemometer’); 

 Hot wire or hot film anemometer 

 Laser Doppler anemometry  

 Flow visualization by means of small particles (<1micron) as ‘markers’ 

 Flow visualization by thermal markers (Successive heating of gas volume 

by hot wires , Poor spatial resolution) 

 Acoustic anemometer 

 Electric discharge anemometer 

 Cold wire anemometer 

In the presence of turbulence, the uniformity of the dust concentration is affected 

due to the local variation and particle size distribution due to vortices [130]. As 

shown in Figure 3.13, the burning of solid particles in the vertical duct is 

accompanied under different phenomena. Suitable level of turbulence with good 

uniformity results in good combustion with less unburnt particles. The uniformity 

of the dust air dispersion has a significant influence on the combustion 

properties of the dusts as the ignition in the vertical tube without proper ignition 

delay may result in the discrepancy in the local variation of the uniformity which 

may results the under or overestimation of the ignition properties. This area is 

part of this research work and will be discussed later under the Hartmann 

results. 
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Figure 3.13: Flame propagation of lycopodium air mixture in vertical duct [131] 

3.15 Effect of Oxygen concentration 

Higher concentration of oxygen gives the higher maximum explosion pressure 

and maximum rate of pressure rise. As quoted by Eckhoff (2003), ‘reduction in 

maximum explosion pressure is proportional to the reduction in the oxygen 

content, as would be expected from thermodynamic considerations’. 

Pakistani biomass and coal were studied by TGA in the low (1%) and high 

oxygen concentration (3%) environment. It was found that the conversion of the 

biomass char and coal in the high oxygen concentration environment was 

higher [132]. The maximum explosion pressure was observed to fall much 

sharply at lower oxygen concentration than at higher oxygen concentration [70]. 

Similarly the oxygen enriched environment boosts up the explosion severity as 

demonstrated by the combustion of coal in the oxygen enhanced environment. 

The higher concentration of oxygen in the dust cloud lowers the minimum 

explosible concentration of the dust, the minimum ignition temperature, 

minimum ignition energy and enhances the peak explosion pressure, peak rate 

of pressure rise, speed of the combustion and the temperature of the 

propagating flame [133]. 
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Mittal (2013) determined the limiting oxygen concentration of the coal dust using 

the 20 L explosion vessel. Different tests were performed by varying the 

concentration of the oxygen by the partial pressure method. The oxygen 

analyser was also used to verify the oxygen concentration. It was determined 

that the limiting oxygen concentration has a direct influence on the explosibility 

of the dust and the explosion severity can be suppressed by reducing the 

amount of oxygen with the enhancement of inert gas [84]. 

3.16 Effect of initial pressure 

Cashdollar and Hertzberg (1985) used 20L explosion vessel to study the effect 

of initial pressure on the flame propagation of Polyethylene dust [134]. Initial 

pressure was tested from 0.5 to 2.5 bar and a linear dependence of initial 

pressure on the lean flammability limit similar to gaseous mixtures was 

observed.as shown in the Figure 3.14.  

Garcia & Torrent (1998) studied the effect of initial pressure and the turbulence 

on the severity of the biomass dust explosion. It was inferred that the turbulence 

(higher injection impulse 2-3.5MPa depending on the concentration) has more 

vibrant role in enhancing the maximum rate of pressure rise in 1 m3 vessel than 

the higher initial pressure (1-1.5MPa) [135]. Increasing the initial pressure with 

higher amount of dispersing air consumes more mass of dust.  

Two dust deposits pot in series were introduced in this work to increase the air 

density for increasing initial dispersing pressure. For irregular shape and low 

density of biomass, the irregularities affected the flame front propagation due to 

inhomogeneous dust cloud formation. 

It was also observed that at very high initial pressure, the rate of pressure was 

levelled off. This was due to increasing particles to particle closeness and high 

bulk density. High turbulence accelerates the movement of the particles 

resulting more interaction with the oxygen leading to fast propagation of flame 

even at high initial pressure. So a strong safety measures is needed to be 

established. The limestones and oxygen are the most influential parameters to 

impede and accelerate respectively the dust explosion [136]. 
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Figure 3.14: Linear dependence of MEC of Polyethylene dust with initial 
pressure [134] 

3.17 Effect of moisture contents 

The Hartmann bomb was used to investigate the effect of the moisture contents 

on the rate of pressure rise. It was observed that higher mass after certain 

concentration and the moisture contents, lower the rate of pressure rise with the 

same injection pressure. This was due to the poor dispersibility of the higher 

mass of dust with higher concentration and the agglomeration phenomenon due 

to the high moisture contents. It was concluded as the generalized statement 

that the correlation to study the effect of moisture contents on the rate of 

pressure rise does not reflect the genuine effect. It was because of the high 

influence of the turbulence with the variation of the ignition delay that affect the 

quality of the dust dispersion [137]. 

Yuan et al. (2014) studied the effect of moisture content on the explosion 

parameters [138]. Three coal samples of micron sized were tested on 20L Siwek 

vessel with 5Kj igniter as shown in Figure 3.15. It was found that increase in the 

moisture content directly influence in reducing the explosion parameters Pmax, 

dP/dt,max and increasing the MEC. Coal samples with fine particle size 

distribution after moisture content of approximately 12.5% showed sharp 
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decrease in explosion sensitivity and severity whereas for coarse particle size 

distribution, there was a linear relationship of moisture content and explosion 

parameters. This was due to strong inter-particle forces among fine particles 

with increase in moisture resulting formation of agglomerate of large size 

demonstrated by SEM images [138]. Experimental findings are summarized in 

table 3.7 as shown below. 

 

 

Figure 3.15: 20L Siwek explosion vessel [138] 
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Table 3.7: Effect of moisture content on explosion parameters for different sized 
coal samples for range of most reactive concentrations (500-700g/m3) [138] 

  500 g/m3 600g/m3 700g/m3  

Coal dust Moisture 
content 
(wt%) 

Pex 
(bar) 

(dp/dt)ex 
(bar/s) 

Pex 
(bar) 

(dp/dt)ex 
(bar/s) 

Pex 
(bar) 

(dp/dt)ex 
(bar/s) 

MEC 
(g/m3) 

No. 1 

43–75 μm 

2.4 5 239 4.8 256 4.6 271 43 

 
5 4.9 211 4.7 241 4.5 248 51 

 
10 4.3 124 4.1 135 4 148 66 

 
12 3.5 84 3.3 93 3 102 – 

 
13 3 68 2.7 75 2 83 103 

No. 2 

75–125 μm 

2.4 4.8 180 4.6 188 4.5 195 45 

 
5 4.6 168 4.4 174 4.3 180 55 

 
10 3.7 113 3.7 120 3.5 132 74 

 
12 3.6 92 3.4 96 3.1 105 – 

 
13 3.4 79 3 83 2.3 90 90 

No. 3 

125–550 μm 

2.4 3.6 94 3.5 101 3.5 111 57 

 
4 2.9 68 3 75 3 87 75 

 
5 2.3 60 2.6 64 2.5 75 86 

3.18 Effect of igniter and ignition energy 

Cashdollar and Chatrathi (1993) measured the apparent lean flammability limits 

of gillsonite and bituminous coal using different ignition energies on 20 L and 1 

m3 vessels. The results as shown in Figure 3.16 were restricted to three data 

points for 1 m3 vessel whereas there were six data points plotted using 20 L 

sphere. Minimum explosible concentration of the selected dust samples were 

measured to decrease with increase in ignition energies until a critical value is 

achieved after that ignition energy becomes irrelevant for MEC measurements. 

It was also noted that MEC were leaner using 20 L vessel compared to 1 m3 

vessel for the same ignition energy that was due to overdriven effect in the small 

20L vessel later explained by Dahoe et al. (1996). 
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Figure 3.16: Effect of ignition energy on the measurement of MEC for gillsonite 
and bituminous coal using 20L and 1m3 vessels [139] 

The accurate determination of the MIE has strong dependence on lower limit of 

ignition energy of the apparatus. Randeberg et al. (2005) established the most 

advance method for the determination of MIE using synchronized spark down 

to the order of 0.03 mJ [76].  

Janes et al. (2008) studied the comparison of the measured minimum ignition 

energy obtained from MIKE 3 and Hartmann apparatus. The main factors 

affecting the minimum ignition energy are the delay between the dispersion of 

the dust and the spark over, dispersion method, spark characteristics (type, its 

duration and energy) and the nominal amount of dust/particles placed on the 

disperser. They concluded on the basis of experiments performed with a 

number of dusts (Polymer, biomass, coal, metals) using these two units that the 

minimum ignition energies obtained from MIKE 3 unit was equal or smaller than 

the Hartmann unit in the range of energies 1-10 mJ and above 100 mJ. So, it 

was concluded that the MIKE 3 unit was more effective and efficient in the 

discrimination of the dust on the basis of their ignition sensitivity. However, other 

parameters like particle size distribution, the method of dispersion, 

concentration in the region of ignition due to the varying turbulence by varying 



-81- 
  

the ignition delay are also the influential parameters for the determination of the 

minimum ignition energy [140]. 

The effect of the type of igniters and the ignition energy on the explosibility 

parameters were investigated by Gao et al. (2013) [141]. It was observed that 

the chemical igniters with different ignition energies overdrive the results 

whereas the electrostatic igniters of different ignition energies underdrive the 

results. Chemical igniters in comparison to electrostatic igniters act as booster 

in achieving the maximum overpressure quickly and have higher deflagration 

index. Ignition energies have direct effect on the measurements of the 

explosibliity parameters.  

Kuai et al. (2013) pointed out the flaw in the European Standard to 

accommodate the effect of ignition energy in the explosion severity. A variation 

of the ignition energy offsets the accurate prediction of the explosion parameters 

results. The authors proposed that the explosion parameters should be 

evaluated at the critical ignition energy and for this, two methods were 

proposed; one was ‘flame thickness method’ and the second was ‘induction time 

method’ instead of relying on pressure-time graph. The estimation of the 

explosion parameters at this value of critical ignition energy gave the more 

reliable results. Inappropriate ignition energy have more pronounced effect on 

carbonaceous materials where the combustion takes place after the release of 

volatiles and ignition energy has strong dependence on the kinetics of release 

of volatiles [142]. 

3.19 Heat transfer mechanism in dust explosion 

A radiative ignition model was developed theoretically for the solid fuel by 

Kashiwagi (1974). The effect of the in-depth absorption of the radiation and 

exposure time on the solid fuel was investigated. It was found that the role of 

gases have major influence in the ignition of the solid fuels. These pyrolysis 

gases have some activation energy related to the lower limit and the upper limit 

for ignition and beyond this domain, no ignition was predicted [143]. 

A thermal radiation theory for plane flame on a burner based on coal dust flame 

had been used. Some assumption were used that are; 

 Unidirectional flow  

 No mixing of the burnt particles with the unburnt mixture. 
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Heat liberated ahead of the flame by the heat transfer mode ‘radiation’ that is 

first absorbed by the dust particles then heat is lost from the dust particles to 

the ambient air through heat transfer mode conduction. The absorbed and loss 

heat results the ignition temperature of the dust to be achieved. The volatiles 

and non-volatiles contents of the dust were included for the stoichiometric 

calculations means the complete involvement of all the coal dust particles [69]. 

Proust (2006) explored some fundamental aspects related to ignition and flame 

propagation of dust clouds. In his work, it was revealed that the radiation energy 

has insignificant role in the propagation of the flame rather than this energy is 

lost in the combustion process. The propagation of flame by the heterogeneous 

burning (particles burning leading to pyrolysis) due to conduction phenomenon 

was suggested with a constraint of particle size less than 100 microns. This 

argument was verified by employing ‘Tomographic techniques’ as explained on 

the basis of characteristics time scale [117]. It was concluded that radiative heat 

transfer in the metallic dust flame propagation is a vital driving force due to 

extremely high flame temperature [144].  

3.20 Explosion behaviour of the hybrid mixtures 

The propagation of flame in the nicotinic acid-gas air hybrid mixture was studied 

in the open tube [145]. Stages of flame propagation was classified in four 

different phases. Initial phase 1 was spherical with the development of flame. 

Phase 2 was the propagating flame reaching the wall, phase 3 was the steady 

state flat propagating flame and the phase 4 was the oscillating flame at the 

end. It was concluded that development of flame in phase 1 without any 

significant effect of the turbulence depicted the laminar burning velocity and the 

phase 3 depicted the higher burning velocity with the significant influence of the 

turbulence. The phases 2 and 4 were ignored due to the wall effect and the 

venting effects. It was also concluded that the effect of turbulence needed to be 

accounted for the accurate determination of the stretched flame [145]. 

The sensitivity of the hybrid mixture on the explosion severity was investigated 

using modified 20L and Hartmann tube. It was observed that the hybrid mixture 

containing as low as 1% vol. explosive vapours were more sensitive than the 

pure dust cloud. It was found that introduction of the explosive vapour in the 

dust-air mixture results in the drastic change in shifting the rate limiting step 

from boundary diffusion to homogeneous gas phase reaction. However different 
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models (Bartknecht and Le Chatelier) proposed for interpreting the results due 

to these changes are not always conservative due to influential parameters 

[146]. 

The explosion behaviour of the hybrid mixture of nanometre sized carbon black 

particles and the propane gas was investigated using 20L explosion vessel 

[147]. Due to very fine particles, SEM reflected some agglomeration of the 

carbon black particles. This hybrid mixture was different than other hybrid 

mixtures as it was not ignited for the concentration of solid and liquid fuel lower 

than their flammability limits contrast to other hybrid mixtures. Incremental 

addition of the propane gas higher than the LEL to the carbon black particles 

resulted in the enhance explosion with less ignition delay time [147].  

Khalil (2013) work rejected the null hypothesis that the severity of the Hydrogen-

air mixture is always greater than the heterogeneous mixture of activated 

carbon-hydrogen and air having the same amount of hydrogen as in the binary 

mixture. He concluded that the hybrid mixture of Activated carbon-Hydrogen-air 

mixture have higher deflagration index than the respective binary mixture of 

Hydrogen and air having the same concentration of the Hydrogen. Therefore a 

more safety measure was needed to be applied for the hybrid mixtures [148].  

3.21 Role of pyrolysis in dust explosion 

The propagation of the dust flame is strongly dependent on the composition of 

the dust. It was experienced that the coal dusts containing volatiles less than 

12.5% are non-explosive dusts. The biomass contains higher volatiles contents 

than coals and flame propagation initially supported by these volatiles, may 

build up sufficient heat to compel the char particles to be burnt in the explosion. 

The rate of volatile release of the dust vary with the particle size of the dust. 

Fine particles of dust contribute efficiently with fast release of volatiles due to 

high exposed surface area [69]. 

For actual modelling of flame propagation, the composition of the burning 

mixture and its variation with flame progression needs to be accounted. Release 

of volatile with the exposure of spark also alter the composition of the remaining 

dust. Dahoe (2000) and Dahoe et al. (2001) first demonstrated the variation of 

composition in the pre-heating zone due to liberation of volatile components just 

before the ignition [126, 149]. 
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To express the burning rate of the dust, the key parameters are turbulent 

burning velocity and volumetric heat release rate. There are lots of difficulties in 

accurately defining and measuring the burning velocity, even for gases [150]. 

This is because of the difficulty in sharply identifying the area of the burning 

zone due to strain propagation of flame causing compression in the unburnt 

zone. 

The rapid pyrolysis of the agricultural residues was performed at 800 and 

10000C using free fall reactor [151]. It was concluded that reduction in the size 

of the crop dusts favour the higher heating rate with high yield of Hydrogen 

whereas low yield of solid char. Also cracking of the biomass residue, at higher 

temperature resulted higher volatiles and low char yield. 

The surface morphological study of the explosion residues spotted the blowing 

holes confirming the release of volatile in the combustion of coal and Cork dust 

[152]. It was assumed that these volatiles were responsible for the propagation 

of the flame. 

By proposing one dimensional single particle pyrolysis model, role of pyrolysis 

gases in the organic dust explosion was studied. Rate limiting steps for the 

combustion of the organic dust was strongly dependent on the particle size 

distribution and the combustion conditions as also validated by experimental 

approach using modified Godbert-Greenwald furnace for pyrolysis under argon 

atmosphere with gas chromatography as the gas analysing instrument. It was 

assumed that the generation of volatiles from pulverized combustion of biomass 

have major role in enhancing the reactivity of the biomass [153]. 

Flame propagation behaviour of Octadecanol dust was studied for different 

particle size distribution. The flame was visualized by high speed camera 

combined with band width filter. Photographic results showed that the flame 

developed by fines is regular shape and continuous due to high release of 

volatiles whereas the flame developed by coarse particles was discrete and 

discontinuous due to less release of volatile and burning of the solid particles. 

The colour of the flame also changed to blue with the burning of coarse particles 

showing the incomplete combustion of coarse size particles [90].  

Burhene, Damiani & Aicher (2013) studied the influence of the biomass 

feedstock moisture contents and the pyrolysis temperature on the Pyrolysis 

gases and the yield of the char produced. The Norway spruce wood chips were 
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employed with an initial moisture content of 2.4%, 16.4% and 55.4% and 

pyrolysed at temperature of 500 and 800oC in the tubular batch reactor. It was 

observed that the increase in the moisture content result in the higher yield of 

the condensable gases and low yield of char at both lower and higher pyrolysis 

temperature, However the gaseous products at the low pyrolysis temperature 

decreased with the moisture contents because of the loss of the CO2 with the 

higher moisture contents going into the condensable gases whereas at the 

higher pyrolysis temperature, the non-condensable gaseous products 

increased with the feedstock moisture contents due to the higher generation of 

the CO. The surface features of the produced char were also analysed in terms 

of pore (meso and macro sizes) and BET surface area. It was observed that 

initial moisture contents have a little effect on the produced char reactivity. 

However, at the low pyrolysis temperature, the char showed higher reactivity 

but at higher temperature, the char reactivity decreased. This was assumed as 

might be due to the thermal annealing effect [154].  

3.22 Protection techniques for the dust explosion 

There are number of safety measure that can be taken to ensure the protection 

from the dust explosions such as; 

 Discourage the formation of the dust cloud 

This can be done by two ways; 

i. Depleting the amount of fuel in comparison to the oxidant to such 

an extent that it cannot support explosion 

ii. Depleting the amount of oxidant in comparison to the fuel to such 

an extent that it cannot support explosion 

 Elimination of any ignition source in the area of dust cloud that is capable 

of igniting the dust cloud 

 Apply some explosion protection measures to mitigate the ignition 

i. Explosion suppression (Inerting techniques) 

ii. Explosion containment (Explosion resistant construction) 

iii. Explosion relief venting (By means of rupture disc/pressure relief 

flaps etc.) 

iv. Explosion isolation measure 
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The most attractive and adopted protection method is to prevent the ignition of 

the dust cloud [69]. Other methods include the elimination of the ignition source 

and the reduction of the oxidizing agent to fuel ratio. The lowering of the oxidant 

to fuel ratio is achieved by introducing the inert material that dilutes the dust 

cloud so that, the level of oxygen does not support the flame propagation. The 

amount of inert use for the suppression of the dust explosion depends on the 

nature and composition of dust and the selection of the inerting material.  

Two inerting gases such as nitrogen and carbon dioxide are the most likely to 

be available. These gases have little different inerting effect due to difference in 

density and the specific heats. The carbon dioxide is more effective as inert than 

nitrogen however; the difference in inerting capabilities is very small.  

Beside the inert gas, there are number of diluents used to prevent dust 

explosion such as carbonates, bicarbonates, sulphates, halides, oxides and 

dioxides. The term diluent is referred to the inert dust. The diluent added to the 

combustible dust acts as heat sink and retards the build-up of heat necessary 

to sustain the dust explosion. It was observed that for the pure coal dust, the 

addition of 5% diluents can reduce the flame speed of up to 20 to 50% whereas 

the addition of 40% diluents can reduce the flame speed of up to 50 to 90% [69]. 

Kletz outlined some of the inherent safe process design techniques [155]. He is 

known as the father of the inherent safe process design concept. Example of 

the inherent safe operation is the flow of mass through silos and hopper instead 

of funnel flow (first central column flow then redial flow start to the centre) that 

is inherently safe operation. 

Different parameters studied by various researchers and their findings were 

summarised in table 3.8. 
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Table 3.8: Different parameters Studied by Various Researchers 

Scientist Year Equipment Material Effect of Effect on Results 

Dyduch et 
al. 

2016 20L, 1 m3  Transient 
flow velocity 

Explosibility 
characteristics 

Large discrepancy in 
explosibliity characteristics 
from different experimental 
methods was due to 
difference in transient flow 
velocity as measured using 
Bi-directional velocity probe 
(BDVP). 

Li et al. 2016 20L  Coal samples Particle size 
and 
dispersibility 

Explosibility 
characteristics 

Small particle size and small 
dispersibility yielded more 
volatiles, that affect the flame 
propagation with higher Pmax 
and dP/dt,max.  

Soundarara-
jan et al. 

1996 20L Iron sulphide Particle size Pm and dP/dt Higher the particle size, lower 
the explosibility 
characteristics and vice versa 

Sweiss and 
Sinclair 

1985 - Natural and 
synthetic organic 
dust 

Particle size LOC Limiting oxygen conc. 
decreased with decreasing 
particle size down to 100 
microns and below 
100microns, it became 
independent on dp. 

Wiemann 1984 - Brown coal Particle size LOC Small influence of dust 
particles size on LOC. 

Addai et al. 2016 Modified 
Goldbert 
Greenwald 
furnace and 

Combustible 
solids (Toner, 
Lycopodium, 
Starch, Niacin, 
brown coal) and 

Inert 
concentration 

Ignition 
sensitivity (MIT 
and MIE) 
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Hartmann 
tube 

inert (Magnesium 
oxide, Sand and 
Ammonium 
sulphate  

Walther and 
Schacke 

1986 20L ISO 
vessel 

Polymer material Oxygen 
content 

Maximum 
explosion 
pressure 

Max. permissible conc. for 
inserting cloud of polymer 
was independent on initial 
pressure over the range 1-
4bara. Trend over this was 
represented by  
Pmax=0.35*P0 * (vol% of O2) 

Hartmann 1948 Godbert-
Greenwald 
furnace 

Pittsburg coal 
dust<74micron 

Oxygen 
content 

Minimum 
ignition 
temperature 

Increase in MIT with the 
reduction in the vol % of 
oxygen. 

Ballal 1980 
 

Various 
materials(Ti, C, 
Al, Mg) of mean 
particle diameter 
of 45µm 

Oxygen 
content 

Minimum 
electric spark 
ignition energy 

Increase in the oxygen 
content resulted the smooth 
decrease in the minimum 
ignition energy 

Glarner 1948 
 

Melamine, Pea 
Flour, 
Lycopodium 

Oxygen 
content 

minimum 
ignition energy 

As the reduction in oxygen 
content approached the limit 
for flame propagation, a 
much steeper rise in MIE was 
observed. 

Zabetakis 1965 
 

Gaseous HC in 
air 

Initial 
temperature 

MEC Linear relationship between 
ignition temperature and 
minimum explosible 
concentration was proposed. 

Wiemann 1987 1m3 closed 
vessel with 
10 kJ 
chemical 
igniter 

Peat, Beech, 
Coals, Methyl 
Cellulose 

Initial 
temperature 

MEC Reduction of ignition 
temperature resulted in the 
increase in the MEC 
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Glarner 1983 20 L vessel 
with 10 kJ 
igniter. 

Coals, 
Lycopodium, 
Melamine 
polymer 

Initial 
temperature 

MEC Reduction of ignition 
temperature resulted in the 
increase in the MEC 

Glarner 1984 
 

Lycopodium, 
Maize, 
Starch,Mud,Pea 
flour, Melamine 
polymer, 
Cellulose 
Herbicide.Oye C 

Initial 
temperature 

Minimum 
electric spark 
ignition energy 

Decrease in initial 
temperature of dust cloud 
resulted in the increase in 
MIE (A common 
convergence point was at 
100oC and 0.088mJ is 
indicated for organic 
materials.) 

Wiemann 1987 1m3 closed 
vessel  

Bituminous coal Dust 
concentration
,Initial 
temperature, 
Initial 
pressure 

Pmax and dP/dt 1) Low temperature resulted 
reduction in Pmax due to the 
reduction of O2 conc. per unit 
volume of dust cloud at given 
Pi. 2) The trend for dP/dt 
showed the involvement of 
complex kinetics. 3) Peak 
Pmax & Dust conc. giving peak 
pressure was proportional to 
the initial pressure                                                                                                                                                                                                     

Walther and 
Schacke 

1986 20L Polymer material Initial 
pressure 

Pmax Increase in the initial 
pressure approximately 
resulted in the linear increase 
in the peak pressure. 

Bartknecht 1978 Const. 
volume 
vessel 

Starch Initial 
pressure 

Pmax Increase in the initial 
pressure approximately 
resulted in the linear increase 
in the peak pressure. 
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Pedersen 
and Wilkins 

1988 15 L closed 
bomb 

Sub-bituminous 
coal 

Initial 
pressure 

Pmax and dP/dt Approximately linear 
relationship (linear increase) 
was predicted. 

Hertzberg 
and 
Cashdollar 

1988 
 

Coal,Polyethylen
e and Methane 

Initial 
pressure 

MEC MEC increased with 
increasing the initial 
pressure. (More increase 
with coal, Almost similar 
change of Polyethylene and 
Methane) 

Engler 1885 0.25 m2 
Wooden 
explosion 
box 

Hybrid mixture, 
Charcoal, 
Methane 

vol % of gas  ignition 
sensitivity 

Addition of 2.5 vol % of 
methane in charcoal dust that 
is lower than the lean limit; 
resulted explosion. 

Reeh 1979 
 

Hybrid mixture, 
Coal dust, 
Methane 

vol % of gas  volatiles of 
coal for flame 
propagation 

Critical minimum content of 
volatiles requirements was 
decreased with the addition 
of Methane. Flame 
propagation needs 14% 
volatile with no methane, 
13% volatile with 1% 
methane, 12% volatiles with 
2% methane and only 9% 
volatile for 3% methane.) 

Cardillo and 
Anthony 

1978 
 

Hybrid mixture, 
Propane, 
Polypropylene, 
Polyethylene and 
Iron 

vol % of gas  MEC of dust An empirical correlation was 
developed relating MEC of 
dust and propane. It was 
observed that addition of 
1%propane resulted in the 
reduction in iron conc. from 
200 to 100g/m3. 

Franke 1978 
 

Hybrid mixture, 
Methane, coal 
and air 

vol % of gas  MIE Appreciable reduction in MIE 
of the order of 100 was 
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observed with the addition of 
methane from 0% to 3%. 

Pellmont 1979 
 

Hybrid mixture, 
Propane, PVC, 
Polyethylene, 
Cellulose and 
Hansa Yellow. 

vol % of gas  MIE  Linear decrease in MIE with 
increase in vol % of propane.  

Foniok 1985 
 

Hybrid mixture, 
Methane, Coal 

vol % of gas  MIE Reduction in MIE with the 
addition of gas. (A reduction 
of the most sensitive 
concentration of coal 
(volatiles=31%) from 750 to 
200g/m3 was observed with 
the addition of methane from 
0 to 3.5 %.) 

Nagy and 
Portman 

1961 28 L closed 
vessel 

Hybrid mixture, 
Coal, Methane 

2vol% of 
methane 

Pmax and dP/dt Hybrid mixture resulted the 
high Pmax and dP/dt 

Ryzhik and 
Makhin 

1978 
 

Hybrid mixture, 
Coal, Methane 

vol % of gas  Ignition 
behaviour 

A reduction of the induction 
time was observed for the 
ignition of the hybrid mixture. 

Reeh 1978 
 

Hybrid mixture, 
Coal, Methane 

vol % of gas  Explosion 
violence 

Influence of methane addition 
on the explosion severity was 
significant at the initial phase 
of explosion. 

Bartknecht 1978 
 

Hybrid mixture, 
PVC dust, 
Methane 

vol % of gas  Explosion 
violence 

High violence as the vol % of 
methane was increased. 

Dahn 1986 20 L closed 
bomb 
vessel  

Hybrid 
mixture,Xylene, 
Toluene, 
Hexane and 
Waste dust 

vol % of gas  Explosion 
violence 

High vol % of gas resulted 
high violence of the explosion 
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Chapter 4 EXPERIMENTAL METHODOLOGY 

This chapter focuses on the techniques employed for the chemical 

characterization of the samples. Different analyzers techniques are described 

in detail with the methodology adopted. Different analyses  are performed 

include Ultimate analysis, TGA proximate analysis, Bomb calorimetry, Bulk and 

true density, Particle size distribution, BET surface area, Ash characterization 

and Scanning electron microscopy (SEM). Some unit operations like sieving 

and milling were also performed and explained briefly.  

Testing of the biomass crop residues was performed on the modified Hartmann 

dust explosion tube and modified ISO 1m3 vessel. The modified Hartmann tube 

was used for the measurements of the minimum explosible concentration, rate 

of pressure rise and flame speed. The distribution and development of the flame 

was also monitored, frame by frame, using a high speed camera. The modified 

Hartmann tube was also operated for different ignition delays in combination 

with photographic imaging. Detailed experimental methodology of the modified 

Hartmann tube is presented to measure the reactivity of the solid dusts.   

ISO 1 m3 vessel was used for the measurements of explosibility indices such 

as maximum explosion pressure relative to ambient atmospheric, deflagration 

index ‘Kst’, turbulent, laminar flame speed and burning velocity. Complete 

analysis of the post explosion residue was also performed and the results were 

compared with the raw samples to study the flame propagation mechanism. 

This ISO 1m3 vessel was used with different calibrated dispersers due to the 

inability of the standard C ring disperser to effectively disperse the fibrous 

biomass dusts. A calibrated hemispherical disperser was also utilized to study 

the effect of particle size on the reactivity of dusts as it has the same method as 

Hartmann for dispersing the dust from the open hemispherical cup placed inside 

the vessel at the bottom of the vessel. Experimental methodology for the 

modified ISO 1m3 vessel along-with the calibration procedure of hemispherical 

disperser was explained in detail. 

Finally the significance of the modified Hartmann tube for minimum explosible 

concentration measurement was explained in comparison to other experimental 

methodologies. It was concluded that the modified Hartmann tube gives good 

resolution as that of gas flammability testing for the measurement of minimum 

explosible concentration than the modified ISO 1m3 vessel. However, the 
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ignition delay affects the measurement of reactivity and an optimum ignition 

delay for the fine fraction of biomass was found to be in the range 50-120ms.    

4.1  Raw and treated samples tested 

Biomass crop waste were used primarily for this research work. However some 

woody and treated biomass samples were also tested and compared with the 

raw samples. Most of the agricultural waste samples including sugarcane 

bagasse, wheat straw, rice husk, corn cob and peanut shell were sourced from 

Pakistan based on the higher production of their respective crops. Some portion 

of these agricultural wastes are used as food for cattle however a big residual 

portion is left on land as waste and disposed without making use of it. Some 

wood pellets that are the feedstock of boilers were also tested using modified 

Hartmann tube. A 20kg sample of steam exploded pine wood pellets was 

provided by Zilkha biomass energy along-with a small portion of its raw pine 

wood (10g) for Hartmann testing. Also a 15kg sample of mixed woods 

containing spruce, fir and pine with its torrified sample were provided by 

Renewable fuel technologies for testing on modified ISO 1m3 vessel. All these 

samples were milled and sieved to specific sizes (Listed later in table 4.2) before 

testing for explosibility characteristics. A detailed list of biomass and its treated 

samples with their origin/suppliers is shown in table 4.1. 

4.2  Chemical characterization  

Selected solid samples were characterised for elemental, TGA proximate, 

Particle size distribution using Laser diffraction technique, Calorific value using 

bomb calorimetry, bulk and true density. Some crop residues were also 

analysed for the ash characterisation using X-ray flouresence technique. 

Scanning electron microscopy was also performed of the raw and post 

explosion residue samples. Stoichiometric concentration were also calculated 

based on elemental and TGA analysis in terms of Air to fuel ratio by mass. 
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Table 4.1: Biomass and treated samples for reactivity measurements 

Sample Origin/Supplier Specifications 
(As received) 

Bagasse Pakistan (Local plant) <1 mm 

Wheat straw ⸗ <1 mm 

Rice husk ⸗ <1 mm 

Corn cob ⸗ <0.5mm 

Peanut shell ⸗ <0.5mm 

Pine wood pellets Blazer wood, Clifford Jones 
Timber, UK 

4-20 mm 

HW Sawdust wood 
pellet 

Duffield wood pellet, Yorkshire, 
UK 

4-20 mm 

Construction wood 
waste 

Dalkia wood pellet 4-20 mm 

Raw pine wood chips Zilkha biomass energy  

steam exploded pine 
wood 

⸗ 4-20 mm 

Raw SPF wood mixture Renewable fuel technologies <3 mm 

Torrefied SPF wood 
mixture 

⸗ <3 mm 
(302.9oC, 7min) 

4.2.1 Ultimate analysis 

The elemental analysis of biomass crop residues was carried out using a Flash 

2000 Thermo Scientific Analyser. It consisted of a reactor in which the small 

amount of sample (< 4 mg) was burnt at 1800°C and converted to the respective 

combustion gases like CO2, H2O, NO2 and SO2. These combustion gases were 

then passed through the chromatographic column using carrier gas (nitrogen) 

where they are separated before passing through a thermal conductivity 

detector (TCD) and a flame photometric detector. Different elements were 

quantified with the output signal proportional to the concentration of the 

elemental oxides present in the mixture. The results were obtained as a 

percentage of individual elements with oxygen found by subtraction method 

using the following eq; 

%𝑂 = 100 − (%𝐶 + %𝐻 + %𝑁 + %𝑆 + %𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 + %𝐴𝑠ℎ) 
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Each sample was tested in duplicate provided the percentage deviation <5% 

and the average of the two readings was taken. Calibration of this Thermo 

Scientific flash 2000 was routinely done using standard samples of known 

elemental analysis. 

4.2.2 Proximate analysis 

Proximate analysis was carried out using a Shimadzu TGA-50 thermo 

gravimetric analyser. It consisted of a mass balance attached to a ceramic 

sample pan in a furnace. It recorded the weight loss with time and temperature 

that helped in quantitative determination of the moisture content, volatiles, fixed 

carbon and ash contents. The release pattern of a material within three stages 

mentioned in Figure 4.1;  

 

 

Figure 4.1: % Weight loss and temperature vs. time: TGA plot 
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A temperature program was set for the TGA analysis as; 

 The sample was heated up under a nitrogen environment from ambient 

temperature to 110oC at the rate of 10oC/min and maintaining it at 110oC for 10 

minutes. This results in driving off the moisture content from the sample, giving 

the mass of moisture content in the sample.  

 The temperature was then heated further at a rate of 25oC/min up to 910oC 

with a hold time of 10 min to release the volatile loss.  

 After this, air was introduced, to completely burn out the remaining sample. 

This mass loss here was known as the fixed carbon content of the material.  

 The remaining inert material left after this was the ash content (Calculated 

by difference method). 

This TGA equipment was operated with a relatively slow heating rate and this 

might give a slower volatile release than that of actual flame heating. The 

sample to be tested was also small, in a crucible and packed together, 

producing more of a layer than particles, all of which may underestimate 

(reduce) volatile release. However, existing methods for determining the volatile 

content of coal or biomass also involve slow heating rates and so the results 

are comparable with other measurements. 

4.2.3 Calorific value by Bomb Calorimeter 

A Parr 6200 Oxygen Bomb Calorimeter was used for the determination of gross 

calorific value. Calorific value was measured by comparing the heat released 

from the sample with that of standard material. A representative sample of 

nearly 1g was first pelletised using Specac Hydraulic Manual press. This pellet 

was then placed in the small crucible that was held in the bomb head. A loop of 

fused wire placed above the sample without touching the sample and crucible. 

The bomb head was secured with the bomb cylinder and screwed tightly with 

no air leakage. Bomb was then filled with oxygen to a pressure of 25 bar and 

placed in the chamber in the calorimeter containing 2kg water with a thermistor 

and stirrer in the water. The lid of the bomb calorimeter was then closed and 

ignition activated through the fused wire. Sample was burnt in a high-pressure 

oxygen atmosphere in a metal pressure vessel or bomb.  

The energy released by the combustion is absorbed within the calorimeter and 

the resulting temperature change was recorded and used to measure the 
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heating value of sample. The bomb calorimeter was routinely calibrated using 

ten measurements of standard benzoic acid pellets of known calorific values.  

Calorific values were also calculated for biomass samples based on elemental 

analysis using OLS correlation with percentage errors less than 5%; 

CV (kJ/kg) = 1.87%C2 – 144%C – 2802%H + 63.8%C%H + 129%N + 

20147  

Where %C, H and N were on as received basis. 

4.2.4 Particle size distribution 

The particle size distribution was performed on a Malvern Mastersizer 2000, 

using the laser diffraction technique. The range of particle size distribution was 

from 0.1-1000 µm. Small amount of sample was first well mixed in a suitable 

medium (normally deionised water) with few drops of reagent ‘IGEPAL’ if 

necessary to avoid the formation of large clumps. This well mixed mixture of 

sample was added in the dispersion unit which is fitted with a stirrer and an 

optical lens. The particles in the cell were passed through a focused laser beam 

which scatters the light at an angle that is inversely proportional to the size of a 

particle. This angular intensity of the scattered light is measured by a series of 

photosensitive detectors. The stirrer was set to a rotating speed of 2000 rpm for 

better dispersion. The laser beam was passed through the dispersion and the 

map of scattering intensity versus angle was used to calculate the particle size. 

Measurements of particle size distribution were taken for 10 runs with three 

repeats giving a total of 30 measurements. Particle size distributions were 

measured in terms of d10, d50, d90, d3,2 and d4,3 as the average of these 30 runs. 

Here d10, d50 and d90 show the average particle sizes of the 10%, 50% and 90% 

of the cumulative volume respectively whereas d3,2 and d4,3 show the surface 

mean and volume mean diameters respectively.  

4.2.5  Bulk and true density 

Bulk and true densities of solid fuels are important properties to consider for 

their transportation. For the measurement of bulk density, a measuring cylinder 

of around 25 ml was used. The empty cylinder was first weighed after cleaning 

thoroughly. Solid fuel in powder form for less than 63µm fraction was added in 

this cylinder gradually with gentle tapping of the cylinder until it was filled to 25 

ml. After filling the cylinder to 25 ml, the mass of the cylinder with solid powder 
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was measured again and the net mass of solid powder was calculated after 

subtracting the empty cylinder mass. This tapped mass of solid powder when 

divided with 25 ml volume gave the value of bulk density. Each sample was 

repeated ten times and the average value was considered as bulk density with 

a percentage error less than 10%.  

True or particle density is known as the actual particle density excluding spaces. 

A micromeritics AccuPyc 1330 gas displacement pycnometer was used for the 

true density measurement for less than 63µm fraction. The unit contains a 

calibrated cell that was filled with powdered. This cell was then pressurised 

causing the compression and then the pressure was released. This process was 

repeated couple of times and the average value of actual true density was 

displayed using the actual particle volume excluding the void spaces of the 

measured mass. 

4.2.6 BET surface area    

Surface areas of the solid fuel plays an important role in their reactivity. Higher 

surface area results in more interaction of the oxidizing agent with particles 

facilitating the oxidation reaction. A Micromeritics Tristar 3000 surface area and 

porosity analyser was used. Sample of around 0.3g was first filled in a clear 

sample tube using a flexible tube to avoid particle deposition on the wall of the 

sample tube. The nitrogen flow needle was placed in the sample tube  after pre-

set degassing temperature of 120oC in the degassing Flow Prep 060. After 4 

hours, the sample tubes were weighed again to measure the net degassed 

mass of the respective sample. These sample tubes were then attached using 

fittings with the main Tristar unit after filling the 4 L Dewar with liquid nitrogen. 

Sample name and net mass of the degassed sample were entered for the 

corresponding sample tube pot. The unit was then started to measure the BET 

surface area, pore volume and pore diameter. This unit cools the sample using 

liquid nitrogen and allows inert gas to adsorb on the particle surface. Number of 

gas molecules adsorbed were then plotted against actual to saturation pressure 

of the adsorbed gas. BJH adsorption and desorption isotherms were plotted and 

based on BET calculations, the surface areas, pore diameter and pore volume 

of the respective samples were calculated.  

4.2.7 Ash analysis 

 Ash formation 
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An empty dish was heated in the furnace to (550 ± 10) °C for at least 60 min. 

The dish was then removed from the furnace. It was allowed to cool on a heat 

resistant plate for 5 to 10 min and then transferred to a desiccator without 

desiccant and allowed cooling to ambient temperature. When the dish was 

cooled, weighed to the nearest 0.1 mg and recorded the mass. Then known 

mass of material was placed over the empty dish and put in the muffle furnace 

after weighing. The temperature was first raised to 110oC and waited for enough 

time until sample was fully dried. The percentage moisture content was 

calculated. Then temperature was increased to 550oC and gave a minimum time 

of 120 minutes. After this the dish was removed and placed in the desiccator for 

5-10 minutes. Weighed the burnt (ash) material with the dish and ash on dry 

basis was determined by the following formula; 
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                                                                   [4.1] 

Where  

m3= Mass of ash plus dish 

m2= Mass of dish plus test sample 

m1= Mass of an empty dish 

Mad= %age moisture contents of the test sample 

 Furnace method for ash fused beads and XRF for ash 

characterisation 

The following procedure was adopted to characterize the ash compositions. 

‘Weigh 0.5g ± 0.0005g of standard or sample ash (ground to pass 100 µm) into 

a Pt/Au crucible, add 5.0g ± 0.005g of flux, and 0.05g lithium bromide.’ 

Mixed these dry ingredients and placed in the dish. Heat the mixture in a furnace 

at 1250oC with continuous swirling after 3, 6 and 9 minutes. After 9 minutes, the 

empty casting mould was placed in the furnace to preheat it before placing the 

molten mixture in it. Then after 3 minutes, the molten sample was poured into 

the casting mould ensuring the lip of the fusion dish just touches the surface for 

complete transfer. This casting mould was then placed in the heat sink for about 

5 minutes. The molten mixture started solidifying forming a disc that was 

removed from the casting mould with gentle tapping. If there were any cracking 
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or crystallisation observed, the whole process was repeated with different 

proportions having higher amount of flux to 7.5g ± 0.005g as mentioned in the 

established procedure. 

The XRF technique utilizes the X-ray beam to remove the inner orbital electron 

of the specific element that makes the element unstable. Specific photon energy 

of specific intensity is released when the outer orbital electron is shifted to the 

inner orbit to fill the gap of missing electron. The intensity of the photon and 

number of photons of specific fluorescent radiation were utilized to detect and 

quantify the elements in the ash. It was found that crop residue biomass 

samples showed higher mass fraction of silica with the major contribution in the 

Rice husk samples and remaining elements with varying proportions in the 

different biomass.  

4.2.8 Scanning electron microscopy 

A Carl Zeiss EVO MA15 Scanning Electron Microscope was used to study the 

surface morphology of the raw and post explosion residue samples from 

modified 1m3 vessel. Solid dust sample was placed on the stub using double 

sided sticking carbon tab. These stubs after placing dust are brushed to remove 

the weakly attached dust particles. To prevent the excessive charging on the 

solid particles, the sample stubs were placed in Emscope SC coating unit for 

gold coating before projecting the electron beam onto the sample for SEM 

imaging. These gold coated stubs at the different samples were then placed into 

the unit sample holder using small screws. After this, a high vacuum was 

created by lowering the pressure to <10mbar and an electron beam was 

focussed onto the sample. After adjusting the resolution and brightness for the 

specific working distance, the static images were captured for different 

magnifications focussing different areas of sample. The dust holder was then 

moved for the next sample stubs and the surface morphological study was 

performed for the other sample. This process was continued until all the 

samples images were captured and saved for different magnifications using 

specific settings. SEM images for post explosion residue in comparison to the 

raw sample help to study the mechanism of flame propagation.  

4.3 Sieving & Milling 

An analytical Sieve Shaker was used to separate the particles on the basis of 

their sizes. Different mesh # sieves were arranged in descending order from 
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bottom to top i.e. smaller mesh size sieve was at the top and highest mesh size 

sieve was at the bottom above pan. This stack of sieves was then fixed on the 

Analytical sieve shaker vibrating surface with the tightening screws. A mixture 

of biomass was placed on the top most sieve leaving 1/3rd space for free 

movements of particles. The suitable vibrating speed and time of sieving was 

set for the distribution of the respective mixture into varying size fractions. After 

this sieving time, different sized fractions were collected on each sieve with the 

size smaller than the pore size of the upper sieve and larger than the pore size 

of the lower sieve on which it resides.  

The milling was performed prior to sieving for the as received selected biomass 

samples on a Shredder unit cutting mill in the Geography Department to reduce 

the size lower than 500 µm. Some samples were further milled in the ultrafine 

grinder to less than 63 µm.  

Different raw and treated biomass samples were prepared for different size 

ranged fractions as shown in the table 4.2 below, with different colours scheme, 

to be tested on the modified Hartmann tube and the 1m3 vessel. The complete 

concentration profile for different size range fractions on the modified 1m3 vessel 

could not be drawn due to limited amount of dust samples. 
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Table 4.2: Sieved sizes of the selected samples tested on the modified 
Hartmann tube or/and modified 1m3 vessel 

4.4 Explosibility test using the modified Hartmann tube 

There are a number of systematic approaches for the determination of the 

explosibility parameters like Hartmann, 20L sphere and 1m3 vessel. The 

modified Hartmann tube as developed by Huescar Medina et al. (2013) and 

refined further in this work as the most appropriate approach for biomass dust 

that are difficult to characterize on the standard ISO 1m3 vessel due to 

dispersion issue. The modified Hartmann is 322mm long and 61mm inside 

diameter vertical tube, closed from the bottom as shown in Figure 4.2 and 4.3 

as schematic diagram. The confinement was provided by covering the top end 

with a special Aluminium foil (99% purity) of 0.020mm thickness fixed with a 

locking ring. The three thermocouples at distances 50mm, 100mm and 150mm 

from the electrodes were fixed to measure the time of arrival of the flame. A 

pressure transducer was located at the top before venting to record the 

pressure. The continuous arc was activated by the electrical spark box. The 

Substances Size fractions used ‘µm’ 

<63 63-
75 

63-
150 

63-
500 

75-
150 

150-
300 

300-
500 

<500 <1000 

Bagasse (B)          

Rice husk (RH)          

Wheat straw 
(WS) 

         

Yellow pine 
wood (YPW) 

         

Steam 
exploded wood 
(BP) 

         

Corn cob (CC)          

Peanut shell 
(PS) 

         

Pine wood 
pellet (Blz) 

         

HW sawdust 
(Dfl) 

         

CWW 1 (Dk 1)          

CWW 2 (Dk 2)          

SPF raw          

SPF torrefied          

                       Hartmann tube 
                       ISO 1m3 
                       Tested on both 
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injection pressure of air was lifted up to 7 barg as it gives the good repeatability 

results. It was reliably used for the measurements of the minimum explosible 

concentration after setting a reasonable criterion of detection of flame to 

100mbar pressure or/and 100mm distance from ignition point. The results 

obtained were comparable with the standard ISO 1m3 vessel with little 

repeatability errors. 

4.4.1 Repeatability of the tests and the explosion criteria 

As shown in Figure 4.4, the pressure of the air without any dust goes to 

maximum 0.36bar using a pre-set of 7bar dispersion pressure through the small 

reservoir of 50ml in the pressure line. Aluminium foil used as a venting disc was 

confirmed to have consistent bursting pressure for a number of repeat tests. As 

Figure 4.11, displays the three repeat tests of the same concentration in 

comparison to air giving a consistent rise in pressure with an average bursting 

pressure of 1.53 bar of the venting disc. Explosion criteria was based on the 

resemblance with the criteria of the lean flammability limit of gases and flame 

detachment. High speed video photography showed that the detachment of 

flame was supported with a clear pressure rise of 100 mbar and detection of 

flame by thermocouples to 100 mm distance. So, it was considered to use the 

explosion criteria as flame propagation to at least 100 mm distance or/and the 

pressure rise to 100 mbar or above due to explosion.   

 

Figure 4.2: Modified Hartmann dust explosion tube
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Figure 4.3: Schematic diagram of modified Hartmann dust explosion tube 

The reactivity of the dust was measured with the rate of pressure rise from the 

Pressure-time trace and flame speeds using a linear array of three 

thermocouples above the spark. For the three repeated tests, the rate of 

pressure rise results were measured in the last 2ms interval of the pressure time 

curve as shown in Figure 4.4 giving the consistent results. 
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Flame propagation was detected from the variation of voltage signals of the 

linear thermocouples array above the spark. The time of the flame arrival to 

these thermocouples was recorded and plotted against thermocouple 

distance from spark as shown in Figure 4.5. The slope of this plot was 

considered as the flame speed and an average of the three repeat tests was 

recognised as the corresponding flame speed of the respective 

concentration. For rich concentration, this flame speed was recognised to be 

for the post explosion event after the diffusion of air (See Appendix J).  

A detailed procedure for the flammability testing of material is explained 

below;  

1 Make sure that the modified Hartmann unit is operated inside the 

fume cupboard.  

2 Turn on the modified Hartmann unit and clean the Hartmann tube if 

necessary.  

3 Secure the venting disc (Aluminium foil) with the locking ring at the 

top of the modified Hartmann tube. 

4 Open the mushroom shaped cup for two anti-clockwise turns.  

5 Distribute the weighed sample on the mushroom shaped cup 

uniformly.  

6 Lock the Hartmann tube with the bayonet fitting with screws 

tightening. 

7 Make the connections of electrodes to power supply. 

8 Adjust the dispersion pressure to 7 bar using compressed air 

line/cylinder regulator and bleed valve on Hartmann unit. 

9 Earth the thermocouples and close the door of the fume cupboard. 

10 Start acquisition of data through the data logger and activate the spark 

by pressing the arc button using remote handset that results 

dispersion of dust through the pre-existing constant arc. 

11 After the test, close the air flow and turn off the Hartmann unit.  

12 Disconnect spark electrodes from transformer and earthed wires  

13 Unlock the Hartmann tube and remove the venting cover.  

14 Clean the Hartmann tube thoroughly and repeat the procedure again 

for next test.  

15 Each concentration is repeated three times and the successive 

concentration is decreased until a lean limit is obtained with 0% 

explosion probability (no explosion) for the three repeat tests.  
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Figure 4.4: Pressure-time trace of ignition of dust in comparison to air 

 

 

Figure 4.5: Thermocouple distance vs. time of flame arrival for flame speed 

measurements 
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4.4.2 Time sequence for ignition delay 

The dispersion of the dust cloud with the existence of the pre-spark ignition 

results in the combustion of the stratified mixture of the dust cloud as 

revealed by photographic analysis of flame propagation. So, the dust 

concentration at the time of ignition might not be the same as that of the 

nominal dust concentration.  

Ignition with suitable ignition delay provides sufficient time for dispersion and 

distribution of the particles in the tube prior to ignition. The timing sequence 

for the ignition delay (ID) was controlled by a digital timer regulating the time 

duration for the activation of the spark after the dispersion of air as shown in 

Figure 4.6. This modified Hartmann tube with the ignition delay was first 

tested for a standard Propane gas with known lower flammability limit. Then, 

it was employed for the standard dusts of known minimum explosible 

concentration (MEC) from the other reliable units.  

 

  

      Figure 4.6: Modified Hartmann dust explosion tube 

 

 

 

Digital time 

controller for ID 

Bleed valve 

Vent (Aluminium foil) 

secured with locking ring 

Pressure gauge 

Spark electrodes 
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4.5 Explosibility tests on the modified 1 m3 vessel 

The explosibility parameters for the selected biomass dusts and their particle 

dependence was also tested on a modified ISO 1m3 explosion vessel as 

shown in Figure 4.7. The standard dust injection system uses a ‘C’ ring 

disperser inside the explosion vessel. A pre-weighed quantity of dust is 

placed in the external 5L dust pot. This pot is then pressurised to 20bar to 

pneumatically drive the dust to the main vessel. The main vessel is 

maintained under vacuum to 933 mbar so that the addition of the air dust 

mixture from the dust pot is at atmospheric pressure prior to ignition. The 

dust pot is connected to the main vessel via a delivery pipe having a fast 

acting pneumatic gate valve. Opening of this valve allows the dust air mixture 

to disperse through the C ring disperser in the vessel. After an optimum 

ignition delay of 0.6s for C-ring disperser, the strong chemical ignitor 

activates the spark. A suitable timing of the valve (valve off timing) results 

the timely closing of the fast acting gate valve to avoid the leaking of pressure 

going to dust pot. The dust cloud propagates the flame causing a build-up of 

pressure. After the explosion, it is allowed to cool and dilute suitably before 

purging (See Appendix F for tick sheet procedure). The instrumentation 

diagrams for the main control unit and dust explosion rig are shown in 

Appendix B and C. 

The dust containing fibrous particles that occur in woody and plant biomass 

after milling [73] would not pass through standard C ring disperser. The ‘C’ 

ring will only allow small spherical type particles to pass. Nut shell dusts are 

biomasses that do operate with the standard C ring dust injector [18], as nut 

particles are fractured in milling in a similar way to coal. For woody biomass 

and plant based biomass, a new disperser was required and a spherical grid 

injector was developed and calibrated, similar to an explosion suppressant 

injector. This would disperse the woody and plant biomass milled to <63µm, 

but would not disperse larger particle sizes.  

Different designs of other dispersers are shown in the existing literature of 

standards but no detail is provided on their calibration. At Leeds University, 

calibration of these dispersers was performed based on determining 

optimum ignition delay and valve off timing of the disperser giving the same 

explosibility characteristics with the same mass burning as that of the 

standard C ring using standard dusts. The ignition delay for the spherical 

disperser with the 10L dust injection pot was calibrated against the standard 

C ring disperser using cornflour to have an ignition delay (between start of 



-109- 
  

injection and ignition) of 0.5s, compared with the standard C ring delay of 

0.6s. Similarly the hemispherical cup was also calibrated for an optimum 

ignition delay of 0.5s and a valve off timing 0.64s using standard corn flour 

and a Colombian coal sample. These modified ISO vessel dust injection 

systems were used in the present work.  

A further problem with woody and plant pulverised biomass was the low bulk 

density, which resulted in the standard 5L external dust injection pot being 

too small to hold a sufficient mass of biomass powder. To overcome this, the 

existing 5L pot used with the ISO 1 m3 dust explosion vessel was extended 

to 10L volume with a 5L pot extension. The 10L external pot was calibrated 

to give the same flame speed and Kst as the 5L dust injection pot with the C 

ring disperser using cornflour as a reference dust [82]. The air pressure in 

the external vessel was reduced from 20 bar for the 5L vessel to 10 bar for 

the 10L vessel, so that the total mass of external air to disperse the dust 

remained the same [82].  

 

Figure 4.7: Standard ISO 1m3 dust explosion vessel 
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4.5.1 Deflagration index and flame speed measurements 

The ISO 1 m3 dust explosion vessel was modified to enable the flame speed 

to be determined using a linear array of mineral insulated exposed junction 

type K thermocouples as shown in Figure 4.8. These measured the time of 

flame arrival as the time of the first measureable temperature rise. The dead 

time was minimal due to the size of the thermocouple exposed junction, 

0.5mm, and for a flame speed of 1 m/s this is a 0.5ms uncertainty in flame 

arrival time which is the same for each thermocouple and hence not an error 

in the determination of flame speed. The thermal lag in the thermocouple 

response is irrelevant as the aim was not to measure the flame temperature, 

but the time of flame arrival. Three linear thermocouple arrays were used to 

determine the flame speed in three directions at 90o to each other. If the three 

flame speeds are similar than a spherical flame propagation is achieved and 

this was then a valid measurement of the spherical flame speed (See 

Appendices D and E).   

It was demonstrated for turbulent gas flames in the present experimental 

equipment that repeat measurements of flame speed and burning velocity 

can be made with a 95% confidence of +/- 8%. For dust explosions they 

showed that the spherical flame speed repeatability was a 95% confidence 

of 16% of the mean value. The greater data variability was due to the extra 

variability of the dust dispersion in addition to the randomness of turbulence. 

 

Figure 4.8: Array of thermocouples and igniter 
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The thermocouple arrays were all in the first half of flame travel where the 

pressure rise is low. In a spherical vessel when the flame is half way across 

the vessel the volume burnt is 1/8 but the mass burnt is about 1/50 or 2% 

and the pressure rise is proportional to the mass burnt. Thus the flame speed 

in this work and the burning velocities derived from this were at constant 

pressure [110]. Also shown in Figure 4.9 is an example plot of the flame 

arrival time vs. distance for the three arrays of type K thermocouples. Figure 

4.16 shows that the flame propagation was reasonably symmetrical, which 

means that the flame propagation was reasonably spherical. Average of the 

slope for these arrays of thermocouples was considered as the flame speed 

of the respective concentration.  

Two Keller type-PAA/11 piezo-resistive pressure transducers were mounted 

in the explosion vessel to record the explosion pressure history and one 

pressure transducer was placed in the 10L dust pot. The response time of 

these pressure transducers was less than 1ms and their factory calibration 

accuracy was certified at <1%. The error in the determination of the 

deflagration index, Kst (=dP/dtmaxV1/3), was also < 1%. 

 

Figure 4.9: An example of flame speed measurement 
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The main cause of variation in the measurement of Kst was the variability of 

turbulence and the randomness of the dust dispersion. Sattar et al. (2014) 

showed from repeat tests using cornflour dust that the 95% confidence 

interval for the measured Kst was 12% of the mean value. This was better 

than the 16% confidence of the measurement of flame speed, as the rate of 

pressure rise is a mean measurement that essentially surface averages the 

flame propagation. The flame speed measurements were carried out on 

three radial lines and hence would show more variability than the rate of 

pressure rise repeatability. 

Figure 4.10 shows, for the present fibrous type agricultural waste biomass, 

an example of the pressure trace and rate of pressure rise measurements. 

The pressure time plot was converted to rate of pressure rise after applying 

some degree of smoothing. This was then changed to normalised the rate of 

pressure rise independent to the size of the vessel using the expression as; 

𝐷𝑒𝑓𝑙𝑎𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥, 𝐾𝑠𝑡 =
𝑑𝑃

𝑑𝑡
 (𝑉)1/3 

Figure 4.11 shows an example of the repeat tests of the same concentration 

as part of this research work. It can be noted that the percentage error of 

pressure and rate of pressure rise was less than 10% in accordance with the 

standard [104]. It shows the good repeatability and this was checked 

routinely during the research work.  

A feature of the biomass dust explosions was that only about half of the dust 

was burnt. At the end of the experiment when the vessel was opened there 

was a large quantity of unburnt powder on the floor of the vessel. This 

indicates that all the dust placed in the external pot does not all take part in 

the explosion and so there is uncertainty over the concentration of the dust 

that the flame propagated through. At the end of each dust explosion the 

debris was collected using a standard vacuum dust extractor into a bag filter. 

The bag filter was weighed before and after the extraction to determine the 

mass of dust that was not burnt. Analysis of this large quantity of explosion 

debris showed that it was mainly the original dust [18, 82, 110]. This showed 

that the concentration injected was not the concentration that the flame 

propagated through. The measured weight of unburnt dust enabled the mass 

of dust that burnt in the test to be determined and from this, the burnt dust 

equivalence ratio could be determined.  
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Figure 4.10: An example of pressure-time history and rate of pressure rise 

 

Figure 4.11: An example of pressure-time history and rate of pressure rise 

The weight of dust remaining after the explosion included the ash from the 

biomass dust that did burn. As the ash fraction of the dust was known, the 

weight remaining could be corrected for this, using Eqs. 4.2. This then allows 
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the equivalence ratio of the dust that did burn to be determined using Eq. 

4.3. 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑏𝑢𝑟𝑛𝑡 𝑚𝑎𝑠𝑠 =
(𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑚𝑎𝑠𝑠−𝑉𝑒𝑠𝑠𝑒𝑙 𝑟𝑒𝑠𝑖𝑑𝑢𝑒)

1−𝐴𝑠ℎ 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 
                                               [4.2]  

𝐵𝑢𝑟𝑛𝑡 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝑆𝑡𝑜𝑖𝑐ℎ𝑖𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝐴𝑖𝑟 𝑡𝑜 𝐹𝑢𝑒𝑙 𝑏𝑦 𝑚𝑎𝑠𝑠

𝐴𝑐𝑡𝑢𝑎𝑙 𝐴𝑖𝑟 𝑡𝑜 𝐹𝑢𝑒𝑙 𝑏𝑦 𝑚𝑎𝑠𝑠
               [4.3] 

The accuracy of this correction for the unburnt mass of injected biomass is 

poor as it is difficult to ensure that all the unburnt biomass was collected, the 

weighing of the unburnt biomass in the filtered collection bags had <1% error. 

To account for uncollected unburnt material 5% was added to the collected 

mass as a reasonable estimate of the amount left in crevices inside the 

vessel or lost during purging. Repeat tests indicate that the measurement of 

the unburnt mass had a repeatability of 5% of the measured value. The dust 

that did not burn was analysed in the same way as the raw dust and this 

showed that it was predominantly unburnt original dust. 

  

 

Figure 4.12: Types of dispersers a) & b) Spherical dispersers c) Rebound 

nozzle d) Hemispherical dispersing cup 
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The source of this unburnt dust was the explosion induced wind entraining 

the relatively large dust particles ahead of the flame and eventually carrying 

them onto the wall where they were compressed by the pressure rise. After 

the pressure fell due to heat losses at the end of the explosion, this wall dust 

fell onto the floor of the vessel, where it was collected after the explosion 

[18]. There was some evidence of partial pyrolysis of the outer layer of this 

dust, but this was a small effect and only made a small change in the 

composition of the residue dust from the original dust [91]. 

 

There are two approaches for the dispersion of dust. One is placing the dust 

outside in the external dust pot and pressurizing it with air. The air pressure 

results the flow of dust from the dust pot to the disperser that is inside the 

main vessel with the opening of the pneumatic valve in the delivery pipe 

connecting the pot with the disperser as shown in Figure 4.7. In the second 

approach, the dust is placed inside the main vessel in a round cup 

(hemispherical disperser) and a puff of air produces the transverse motion 

that results in the generation of dust cloud. This disperser was suitable for 

the testing of coarse size fractions of dust; designed and fabricated by 

another Ph.D. student (David Slatter). This hemispherical cup with drilled 

pipe was further calibrated in this work before testing it for coarse particle 

sized fractions.  

One of the modifications in the hemispherical cup is to place the cover with 

tiny holes that will help to distribute the dust uniformly. However it was 

experienced that the size of the holes are not enough to disperse all the dust 

and a sufficient amount of dust does not participate in the propagation of the 

flame. The increase in the size of the holes/ increasing the number of holes 

to provide enough flow area for the dust also failed to effectively disperse the 

dust. Finally it was hemi-cup without any cover with a drilled pipe which 

resulted in good uniform dispersion giving even propagation of the flame. 

The re-design for the hemispherical disperser is shown below in Figure 4.13.  

For the testing of the gaseous mixture, the partial pressure technique was 

used. The main vessel was evacuated first and the barometer was used for 

producing the specified mixture of gases that balanced by the addition of air 

to achieve the total pressure of atmospheric pressure. For the ignition of 

gaseous mixture, a spark igniter was recommended and found to be suitable 

to avoid buoyancy effects due to the strong chemical igniter. 
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Figure 4.13: Re-design of the hemispherical disperser 

4.5.2 Calibration of the drilled pipe hemisphere dispersers 

Dispersion of the coarse fraction of solid dust using the hemispherical cup 

with a drilled pipe required more force of the dispersion air to lift the particles 

transversely for dispersion. It was found that dispersion pressure of 20 bar 

instead of 10 bar for 10L dust pot resulted in a higher mass dispersion and 

burning comparable to the standard C ring disperser. The main vessel was 

maintained at further low vacuum for this new settings so that the addition of 

air from the external pot results in the pressure being atmospheric just before 

ignition. Standard C ring disperser with the optimum ignition delay of 0.6s 

was found to have turbulence factor in the range of 4.0-5.5 [110, 156, 157]. 

Turbulence factor was measured with 10% Methane using the following 

formula as; 

𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝐾𝑔,𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒

𝐾𝑔,𝑙𝑎𝑚𝑖𝑛𝑎𝑟
                                                                         [4.4] 

The turbulence factor for different designed dispersers were measured for 

different ignition delays as shown in Figure 4.14. It was found that the 

calibrated spherical grid disperser had a maximum comparable turbulence 

factor for 0.5s ignition delays whereas for drilled pipe hemisphere a wide 

range of ignition delays (0.5-0.7) were found to give turbulence factor 

comparable to the standard C ring and literature results. It was decided to 

base the calibration on standard corn flour dust explosibility results for 

optimum ignition delay for the drilled pipe hemisphere. 

Standard corn flour dust was tested for the most reactive concentration of 

750g/m3 on different ignition delays using the drilled pipe hemisphere. 

Explosibility characteristics in terms of deflagration index (normalized rate of 
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pressure rise), maximum to initial pressure ratio and percentage mass burnt 

was compared with the results of the standard C ring disperser as shown in 

Figure 4.15. It was noticed that decreasing the ignition delay from 0.7s to 

0.5s showed a good comparison with the standard C ring disperser. Based 

on this, 0.5s ignition delay was found to be reasonable. 

As shown in Figure 4.16, pressure traces using standard C ring and drilled 

pipe hemisphere for most reactive concentration of corn flour. Similar trends 

of rise and decay of pressure after reaching maximum for the calibrated 

settings of drilled pipe hemisphere was analogous with standard C ring 

disperser.    

 

Figure 4.14: Turbulence factor for different designed dispersers for different 

ignition delays 
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Figure 4.15: Explosibility characteristics of corn flour using drilled pipe 

hemisphere for different ignition delays in comparison to standard C ring 

disperser 

 

Figure 4.16: Comparison of pressure trace of corn flour for drilled pipe 
hemispherical disperser in comparison to standard C ring 
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Figure 4.17: Explosibility characteristics of Colombian coal for the most 
reactive concentration using calibrated ignition delay of drilled pipe 
hemisphere in comparison to standard C ring 

Later, one of the fine Colombian coal sample was also tested for the most 

reactive concentration at the same calibrated ignition delay of 0.5s and 

compared with the standard C ring. It also showed a very good comparison 

with the standard C ring disperser as shown in Figure 4.17 and thus 0.5s 

was selected as the optimum ignition delay for drilled pipe hemisphere with 

turbulence factor of 4.7.  

4.5.3 Pressure loss and dust layer thickness 

Pressure time history of the burnt dust cloud was recorded using two piezo-

resistive pressure transducers in the main vessel. The higher the rate of 

pressure rise means the fast propagation of the flame. Pressure time history 

for fine bagasse dust was plotted in comparison to 10% turbulent Methane 

as shown in Figure 4.18. Burning of fine bagasse dust in comparison to 

Methane gas was slower due to the time lag in releasing enough volatile. 

This time lag was found to increase with coarse size fractions due to less 

exposed surface. Flame propagation quenches after touching with the walls 

that acts to absorb the heat. As shown in Figure 4.18, the pressure starts to 

decay after reaching to the maximum. As it was explained before that during 

propagation of flame, a proportionate mass was pushed against the wall. 

This mass after hitting the wall forms a thin or thick layer on the wall leading 
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to mass drops down in the vessel depending on the concentration and type 

of dust. This layer acts as an insulating medium and lowers the decay of 

pressure. In contrast to dust explosion, pressure decay for gaseous mixture 

was much faster due to quick cooling after direct contact with vessel wall 

without the existence of this insulating layer. This pressure loss after 

reaching to the maximum can be computed for 10% drop of maximum 

pressure as demonstrated in Figure 4.18.  

Also this rate of pressure loss is a strong function of dust layer thickness and 

maximum flame temperature. After reaching the maximum explosion 

pressure with maximum mass burning, the maximum flame temperature 

remains almost constant. After further increase in concentration, the rate of 

pressure loss solely depends on the dust layer thickness with smaller decay 

rate for higher dust layer thickness. 

 

 

Figure 4.18: Pressure time history of fine bagasse dust in comparison to 
methane and rate of pressure loss determination 
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4.6 Comparison of 1m3 vessel and modified Hartmann tube for the 

measurement of minimum explosible concentration 

The minimum explosible concentration (MEC) or lean explosion limit (LEL) 

is important in dust and gas explosion safety [97, 158]. For leaner 

concentrations than the MEC, the mixture is not flammable and explosion 

protection measures are not required. How close to the limits it is safe to 

operate, without explosion protection, is usually separately regulated and 

operation at 25% of the limits is quite a common requirement in the UK HSE 

guidance [24]. The MEC for dusts should be measured to the same accuracy 

with the same definition of the lean limit as for gas/air explosions [97] and 

currently this is not the case [158]. For gases the LEL has historically been 

defined as the lowest concentration at which an explosion can occur [159, 

160] and the same criteria has historically been applied to dust MEC 

determination [73], which is a literal interpretation of the term MEC, the 

minimum concentration at which an explosion can occur. The majority of the 

LEL data in the literature was measured as the leanest mixture that did 

propagate a flame. Indeed the reference LEL data in the European standard 

[97] is for this definition of LEL, the leanest mixture that did propagate a flame 

[97, 161]. However, in recent European standards these definition of LEL 

and MEC have not been used [97, 161] and have been changed to the 

mixture that will not ignite at a specified interval from the mixture that did 

ignite, although this is not mentioned in the EU closed vessel explosion LEL 

method [97]. 

In the tube method the LEL should be determined with a resolution of 10% 

of the LEL for gaseous concentrations >2% or 0.2% for concentrations below 

this [97], which is an increased error. The value for the last ignition should 

be reported and the concentration gap that was tested with no ignition should 

be within 10% of the last positive ignition. The standard essentially sets the 

LEL at up to 10% below the concentration that had a measured flame that 

propagated. In equivalence ratio, Ø, terms hydrocarbon–air mixtures have a 

lean limit that is about Ø=0.5 and so the resolution of this limit is Ø<0.05. 

Most reported LEL for gases resolve the lean limit better than this and 

normally report to 0.01Ø. In dust concentration terms the <0.05Ø resolution 

for a pure hydrocarbon dust such as polyethylene is < 4 g/m3 and for a 

cellulose or biomass type dust with a stoichiometric A/F ratio of 6/1 by mass 

(200 g/m3) it would be a resolution of the MEC to <10 g/m3.   

The resolution for the determination of the MEC for dust is very coarse in the 

European dust explosion MEC standard [158]. The requirement is to test the 
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dust air mixture with the following concentrations of dust: for <500 g/m3 each 

successive concentration tested is 50% of the previous one and above 500 

g/m3 the concentration is increased in 250 g/m3 increments [158]. This 

means that for most dusts the only concentration tested in the near limit 

mixture region are 1000, 750, 500, 250, 125, 60, 30, 15 and 7.5 g/m3. The 

principle is that if for example there is an explosion with >0.3 pressure rise 

at 60 g/m3 and there is no explosion with >0.3 bar pressure rise at 30 g/m3, 

then the MEC is 30 g/m3 and there is no requirement to test intermediate 

concentrations and hence determine the actual MEC. This is why in 

tabulations of dust MEC there are so many dusts with MEC of 15, 30, 60 or 

125 g/m3 [73]. 

For a pure hydrocarbon dust such as polyethylene, the stoichiometric 

concentration is 80 g/m3 and the lean limit would be expected to be 40 g/m3 

if the dust behaved like a gas, but the reported value is [68] 30 g/m3, 0.37Ø 

due to the above methodology being used, whereas the actual limit is likely 

to be closer to 40 g/m3, 0.5Ø. In the worst case with say an actual limit of 55 

g/m3 reported as 30 g/m3 the error is 25 g/m3 or a (25/80) 31% error. For 

cellulosic dusts such as biomass a typical stoichiometric A/F is 6/1 [24] on a 

dry ash free basis (daf) which is 200 g/m3. An actual lean limit of 55 g/m3, 

0.27Ø, would be reported as 30 g/m3, 0.15Ø. This is the origin of some of 

the ultra-lean MEC reported for dusts [68, 73], which are in reality simply 

inaccurate measurements allowed by the European standard [158].  

It is not reasonable to adopt a different safety standard for dusts than for 

gases and this work aims to show that the modified Hartmann dust explosion 

equipment can give a better accuracy on the MEC determination than using 

the standard 1 m3 method. This is because it is easier and lower cost to do 

more tests with greater resolution of the MEC. Also the MEC  from modified 

Hartmann tube [162] is similar to that for the vertical tube LEL European 

standard method [97]. 

As shown in table 4.3, the comparison of MEC in terms of g/m3 for different 

dusts was presented. MEC for a number of dusts were also converted to 

equivalence ratio as shown in table 4.4. It was observed that modified 

Hartmann tube resulted in much leaner MEC compared to other 

experimental methods that again focus on importance of ignition delay for 

the modified Hartmann tube.   
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Table 4.3: Comparison of MEC measurements in g/m3 

Dust Hartmann 

[163, 164]  

1 m3 

or 20 L [73] 

1 m3 

[68] 

Sugar 45 60  60 

Milk Powder 50 60  60 

Aluminium 30    6 µm 

40   17 µm 

30 22-29 µm 

6   < 10 µm 

60    41 µm 

30      29 µm 

Cellulose 55 60    51 µm 60     33 µm 

Wheat Starch 45 60      20 µm 30 

Lycopodium 

This work 

22 

22 

 30 

14 (burnt) 

Polypropylene 30 – 35 30    25 µm 30 

Polyethylene 

This work 

30 

15   63 µm 

30  <10 µm 30    <10 µm 

Sulphur 20 30     20 µm 30 

Peat 100 60-125 125 
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 Table 4.4: MEC for gases, vapours and dusts in terms of Ø 

Gas/Dust A/F 

Ø=1 

daf. g/m3 

Ø=1 

MEC 

Ø 

Method 

Methane 17.2 70 0.46 EU Tube [97] 

Propane 15.7 76 0.43 Tube [165] 

Ethylene 14.8 90 0.38 EU Tube [97] 

Polyethylene 14.8 81 0.25 

0.37 

Hartmann [164] 

1 m3 [73] 

n-Hexane 15.2 79 0.46 EU Tube [97] 

1,3,5 TMB 70 0C   0.50 EU Tube [97] 

Hydrogen 34.5 34.8 0.12 Tube [165] 

CO 3.45 350 0.41 Tube [166] 

Ethanol 9.0 133 0.48 Tube [165] 

PMA 7.27 165 0.18 1 m3 [73] 

PMMA 8.26 145 0.21 Hartmann [163] 

PET 7.18 167 0.24 Hartmann [163] 

Cellulose 5.12 234 0.24 Hartmann [163] 

Wood 5.24 229 0.20 Hartmann [164] 

Torrefied Wood 7.17 167 0.20 Hartmann [87] 

Torrefied 

Norway Spruce 

6.61 

8.70 

181 

138 

0.17 

0.22 

Hartmann [87] 

Wood 95 µm 5.63 213 0.14 1 m3 [167] 

Bark 57 µm 6.03 199 0.14 1 m3 [167] 

Forest Residue 102 µm 4.78 251 0.22 1 m3 [167] 

Bagasse 6.45 186 0.27 Hartmann [17] 

Rice Husks 6.24 192 0.35 Hartmann [17] 

Wheat Straw 6.03 199 0.55 Hartmann [17] 

Corn Cob 5.34 225 0.22 Hartmann  Unpublished work) 

Peanut Shells 6.78 177 0.18 Hartmann (Unphublished 

work) 

Lycopodium 10.4 115 0.18 

0.12 

Hartmann 

1 m3 

Corn flour 5.64 213 0.27 

0.34 

Hartmann 

1 m3 

Pine Wood Dust 6.39 189 0.2 

0.14 

Hartmann 

1 m3 

Walnut Shells 6.75 178 0.19 

0.24 

Hartmann 

1 m3 

Pistachio Nut Shells 6.22 193 0.20 

0.18 

Hartmann 

1 m3 

Colombian Coal 11.18 107 0.39 

0.43 

Hartmann 

1 m3 
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4.7 Conclusions 

Different analytical techniques necessary to explain the experimental results 

were explained briefly. Experimental methodologies of the modified 

Hartmann tube and modified ISO 1m3 vessel for the determination of 

explosiblity indices and other characteristics were also explained. Modified 

Hartmann tube with ignition flammability criteria similar to gas lean 

flammability limit was developed giving the comparable results to that of the 

standard methods. The improvements in the existing methods to test the 

fibrous and high voluminous biomass dust were discussed. A small grid 

spherical disperser was calibrated previously for optimum settings but this 

still was not suitable for coarse size fractions greater than 63µm sieve size. 

A new drilled pipe hemispherical disperser was calibrated to test different 

sized fractions of biomass for this research work. A higher dispersion 

pressure (20bar with 10L volume) was found to be necessary to lift more 

mass for coarse size fractions resulting higher dispersion. Optimum 

calibration settings were determined using standard corn flour and fine 

Colombian coal sample. The measurement of MEC for dust needs to be 

improved so that it is as accurate as that for gases. It was shown that a 

closed vessel gas explosion, of similar size to the vertical cylinder used in 

the dust explosion Hartmann equipment, could determine the MEC with 

agreement with the European gas flammability standard. A 1 m3 cylindrical 

vessel for gas explosions LEL determination did not give agreement with the 

accepted LEL and the error was at least 20% richer. Detailed work on 

determination of optimum ignition delay will be discussed in the experimental 

chapter. 
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Chapter 5 CHEMICAL CHARACTERISATION AND FLAME 

PROPGATION MODELS OF BIOMASS VOLATILE  

The chemistry involved in the propagation of pulverised biomass flames is 

not well understood. All biomass fuels release volatiles at a much lower 

temperature than coal and the proportion of volatiles is much greater than 

for coal, typically 80% compared to 30%. Thus, the rate of release of volatiles 

from biomass fuels is much more important in the pulverised fuel flame 

propagation than it is for coal, where the rate of char oxidation is more 

important. The rate of release of volatiles from dry biomass follows three 

stages: the first stage for typically 10% of the volatiles occurs over 200 – 

300oC, the second stage of about 70% of the total volatile mass occurs over 

the temperature range 300 – 400oC. Finally, there is a slow loss of volatiles, 

accounting for remaining 20% of volatiles, over the temperature range 400 – 

900oC. Stagg’s quick approximation method was used to determine the 

kinetics for the rate of volatile yield. Biomass samples were found to have 

lower activation energies and higher rate of release of volatiles in 

comparison with coal samples, up to 300 – 400oC. Similar release rates were 

found for the 3rd stage of volatile release. The release of volatiles at low 

temperatures potentially makes the pulverised biomass fuel more reactive 

and one consequence is shown in the measurement of minimum explosible 

concentration, MEC. A good correlation was found between activation 

energies and the MEC, determined on the modified Hartmann equipment. 

There is currently little understanding of the composition of the volatiles 

released at low temperatures from biomass, as most publications are for 

pyrolysis conditions at high temperature. It is possible that the volatiles are 

a mixture of mainly H2, CO and CH4 and the likely proportions of these were 

calculated from the elemental and thermo-gravimetric analysis. This was 

done for a range of biomasses and this showed that the most important 

volatile gas is likely to be CO and that CH4 yield is very low. This means that 

the conventional model used in coal combustion of char plus methane 

combustion is not applicable to biomass combustion. 

5.1 Introduction  

Pulverised biomass combustion in existing pulverised coal power 

stations is one of the most cost effective routes to greenhouse gas 

(GHG) reductions in electric power supply. In 2014 5.8% of the UK’s 

supplied electricity was generated from pulverised biomass mainly 

used in existing coal fired power stations [6]. This was a 25.7% 

increase on 2013 and in 2014 was 19.69 Mtoe [6]. It was the fastest 
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growing renewable electricity source between 2013 and 2014. In spite 

of its growing use, the mechanism of combustion of pulverised biomass 

has received relatively little study. The properties of biomass are quite 

different from those of coal and these will result in different burning 

mechanism. Perhaps the greatest difference between the two fuels is 

the much higher proportion of volatile matter in biomass. The rate at 

which volatiles are released from biomass and the global kinetics of 

this volatile release are studied in the present work, with the aim that 

the global kinetics can be incorporated into CFD modelling of biomass 

combustion. 

Biomass fuels have a lower bulk density, higher volatile content, lower 

calorific value and higher moisture content than coal and a greater fire 

and explosion risk [22, 168]. Woody biomass fuels have a more 

variable composition than coal [1, 9, 10, 42, 73, 78, 83] and they are 

also more difficult to mill due to their fibrous structure.  

A wide range of biomass sources from wood to agricultural wastes are 

studied in the present work, some of which were supplied in pellet form 

but were crushed to extract the original pulverised biomass. The 

agricultural biomass was milled and sieved in the laboratory. A 

characteristic of biomass is its fibrous structure, which makes biomass 

difficult to mill in equipment designed for the milling of brittle coal.  

Thermally treating the biomass by heating at around 260–320oC, is a 

process known as torrefaction. This causes (among other changes) the 

biomass to become brittle and easier to mill. An alternative thermal 

treatment process that also destroys the fibrous structure is “steam-

explosion” treatment which involves heating to similar temperatures 

with hot steam at high pressure and then releasing this pressure so 

that the water absorbed in the biomass ‘explodes’ out shattering the 

biomass. Steam exploded biomass is often referred to as ‘black pellets’ 

as the final fuel pellets are black. Both types of thermally treated 

biomass were included in the present study for comparison. The parent 

wood was yellow pine and this is also included in the study [169]. 

The high volatile content of biomass and thermally treated biomass and 

its ease of release make biomass more reactive than coal. One 

measure of this increased reactivity is the lean flammability limit or 

minimum explosible concentration (MEC) [78] and this was the method 

used in the present work using the modified Hartmann dust explosion 
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equipment. This equipment was modified to enable the flame 

propagation speed (another reactivity parameter) to be determined.  

The high reactivity of biomass is also shown in the large number of 

explosion and fire incidents in pulverised biomass production, storage 

and utilisation in power plants. Many biomass fire/explosion incidents 

have occurred in the past and are still happening [78, 170]. The 

detailed investigations of these biofuels need to be assessed properly 

before their adoption and retrofitting of the plants [42, 73]. The present 

work gives both reactivity information in the form of the rate of volatile 

release and the MEC.  

Biomasses are more reactive and have different chemical 

characterisation than coal [9, 83]. They have higher volatile yield and 

lower fixed carbon content compared to coals [1, 10]. The adoption of 

biomass as a partial or complete replacement for coal requires the 

measurement of the chemical and physical properties and the 

chemistry involved in their conversion. Particle size and the heating 

rates greatly affect the rate of release of volatiles due to the thermal 

inertia of the particles. The rate of release of volatiles is a critical 

parameter for the stability of the pulverised fuel flames on burners.  

It has been observed that decreasing the particle size and increasing 

the heating rate results in an increase in the rate of release of volatiles 

up to a critical point [1, 10]. It was observed that biofuels of coarse 

particle size range of 300-500 µm were still explosible in contrast to 

coals of similar particle size [17, 19, 171, 172]. Woody biomasses 

showed a decrease in the MEC with a decrease in particles size. 

However, the ash derived crop residues when milled enriched the finer 

fraction with more ash contents. The enhanced yield of ash in the finer 

fraction acts as an inert and counterbalances the effect of particle size 

on the lean flammability limit (LFL) [17].  

The minimum explosible concentrations of the biomasses are found to 

be much leaner than for coal and even hydrocarbon gases in terms of 

equivalence ratio [17-19, 22, 23, 87, 110]. Most of the data on the MEC 

in the literature are expressed in terms of g/m3, which when converted 

to equivalence ratio helps to compare the results with equivalent LEL 

data for other fuels [24]. Most hydrocarbon fuels have their lean 

flammability limits at half of their stoichiometric concentration. 

Oxygenated fuels such as biomass were found to have their MEC 
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much leaner than the LEL for gaseous hydrocarbons [17-19, 22-24, 87, 

110]. It was also observed that coal and biomass fuels have no upper 

flammability limit. Deguingand & Galant [93] employed weak spark 

ignition for the determination of the upper flammable limit and found 

apparent upper flammable limit of coal dust to be ~ 4 kg/m3, which is 

more an ignitability limit rather than a flammability limit because of the 

weak ignition source. Wolanski [95] found that increasing the 

concentration reduces the flame temperature below its limit value and 

also observed that the dusts do not have upper flammability limit.  

The kinetics for volatile yield and their chemical characterisation will 

help to understand the mechanism of flame propagation in pulverised 

biomass. A range of biomass samples including woody and agricultural 

biomass were investigated for the release of volatiles using thermal 

gravimetric analysis (TGA) and their devolatilisation kinetics were 

derived using Stagg’s [173-175] quick approximation method. Two 

different models, as developed by Staggs [173-175], were applied for 

the kinetic study of these biomasses: Series Reaction Model and 

Competitive Reaction Model.    

5.2 Research materials 

Second generation biomass crop residues including sugarcane bagasse, 

rice husk, wheat straw, corn cobs and peanut shells were sourced from 

Pakistan. They were collected from the local mills of the respective crops 

and milled locally to less than 1 mm prior to export to UK. Other woody 

biomass such as yellow pine and its steam exploded black pellets were 

supplied by Zilkha biomass energy for this research work. Other woody 

biomass that were the feedstocks of boiler as Hardwood (HW) sawdust, Pine 

wood pellet, Construction waste wood (CWW) for two different batches were 

supplied by local power plants. All these fuel samples were further milled and 

sieved to study the reactivity and explosion hazards associated with these 

biomass in association with particle size dependence.    

5.3  Determination of the stoichiometric A/F 

A consequence of the variable composition of biomass is that the 

stoichiometric A/F by mass for biomass is variable. This has important 

consequences for burner control of excess air. In the literature on 

biomass combustion, particularly that relating to the explosion hazards, 

pulverized biomass concentrations are always expressed in units of 

g/m3 and until the work of Andrews and Phylaktou [24] there was no 
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conversion of concentration into equivalence ratio or the mixture 

concentration relative to the stoichiometric concentration. In contrast 

all publications on combustion for gas/air mixtures express the mixture 

concentration in terms of equivalence ratio. The stoichiometric A/F can 

be computed by carbon, hydrogen and oxygen balance from the 

elemental composition of the biomass. The stoichiometric A/F can be 

converted to g/m3 at ambient volumetric conditions using the density of 

air as 1200 g/m3 and the conversion from the stoichiometric A/F is 

given in Eq. 5.1. 

Concentration gfuel/m3
air = 1200 / A/Fstoichiometric              

[5.1] 

For example for a typical wood with a stoichiometric A/F of 6 the 

concentration is 200 g/m3. In contrast, a pure hydrocarbon (gas, liquid 

or solid) has a stoichiometric A/F of about 15 and a concentration of 80 

g/m3.The stoichiometric A/F of the selected samples were calculated 

by carbon, hydrogen and oxygen balance utilizing the elemental H/C 

(y) O/C (z), N/C (w) and S/C (k). The stoichiometric F/A is given by Eq. 

5.2.  

𝐶𝐻𝑦𝑂𝑧𝑁𝑤𝑆𝑘 + 𝑎𝑂2 → 𝑏𝐶𝑂2 + 𝑐𝐻2𝑂 + 𝑑𝑁𝑂2 + 𝑒𝑆𝑂2 

𝑆𝑡𝑜𝑖𝑐ℎ𝑖𝑜𝑚𝑒𝑡𝑟𝑖𝑐 (
𝐹

𝐴
) =

(12 + 𝑦 + 16𝑧 + 14𝑤 + 32𝑘)

[(1 +
𝑦
4

) −
𝑧
2

+ 𝑤 + 𝑘] ∙ 137.9
                             [5.2] 

The stoichiometric actual A/F can be calculated from the stoichiometric 

A/F on a daf basis using Eq. 5.3.  

Actual( A/𝐹) = 𝑆𝑡𝑜𝑖𝑐ℎ𝑖𝑜𝑚𝑒𝑡𝑟𝑖𝑐( 𝐴/𝐹)[1 − (𝑥𝑤 + 𝑥𝑎)]                           [5.3]                  

Where xw and xa are the mass fractions of the moisture and ash 

contents in the sample respectively. 

5.4  Chemical characterisation 

The chemical characterisations of selected biomass samples are 

shown in Table 5.1. This includes the elemental analysis, the proximate 

analysis, the calorific value and the stoichiometric A/F on a daf and 

actual basis. Biomass samples were found to have lower carbon 

contents in the range of 46-57% compared to coals that have much 

higher values. Similarly %hydrogen content of most of the biomass 

were measured to be higher except CWW2 compared to coal samples. 

Important feature of this renewable biofuel is that they have negligible 
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amount of nitrogen and sulphur as shown in table 5.1; that are 

problematic for combustion due to the release of hazardous NOx and 

SOx. Also these biomass fuels showed higher oxygen contents due to 

inherent oxygen in their structures and for that reason, described as 

oxygenated fuels.  

Proximate analysis showed higher volatile and lower fixed carbon 

contents compared to coal samples. Moisture and ash contents vary 

depending on the type of biomass. For example, agricultural crop 

residues were found to have higher moisture and ash contents 

compared to woody biomass which have less inert as shown in table 

5.1. Three agricultural waste bagasse, rice husk and wheat straw were 

again analysed for the finer fractions that showed an interesting feature 

of enriching ash in that fraction. This was due to brittle nature of ash 

that mills along with the biomass and enrich the finer fraction during 

sieving. For this reason, these finer fraction showed higher proportion 

of ash in the proximate analysis changing the other proportions 

accordingly.    

Due to the presence of inherent oxygen, biofuels have lower 

stoichiometric air to fuel (A/F) ratio than coals. Studied biomass 

samples showed stoichiometric A/F on dry ash free basis range from 

5.4 to 7.5. This stoichiometric A/F ratio were also changed to actual 

stoichiometric ratio after incorporating %ash and moisture contents.  

Heating values of these biofuels especially crop residues were less due 

to high moisture and ash contents. They have less energy density due 

to their voluminous nature in contrast to coals having higher heating 

contents.  

Similarly the bulk and true particle density were also presented in table 

5.2 for the selected biomass samples. Utilizing these values of 

densities, the porosity of these solid fuels were also calculated. Results 

showed a wide difference of actual particle and bulk densities with high 

porosities. A possible reason for this is the highly irregular fibrous 

structure leaving intra-particle spaces in packing. BET surface area 

results were also included in table 5.2 showing variation from 0.84-1.96 

m2/g. Surface area of the steam treated sample increased compared 

to untreated raw pine wood due to generation of more fine sized 

particles. 
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Figure 5.1 shows the H/C ratio against O/C for different biomasses and 

coals. Proportions of these components of biomass vary from one 

biomass to another and as they have quite different H/C and O/C ratio 

the variability of biomass is mainly due to the variability of the 

constituent components of biomass. Also included in Figure 5.1 is the 

composition of the main constituents of biomass: cellulose, 

hemicellulose and lignin (based on chemical formulae of C6H10O5, 

C5H10O5 and a mixture of C9H10O2, C10H12O3, C11H14O4 for lignin 

respectively [176, 177]).  

The stoichiometric A/Fdaf are shown as a function of H/C in Figure 5.2 

and this shows the wide variation with biomass composition. Also 

shown is that the stoichiometric A/F of hemicellulose is 3.15 and 9.56 

for Lignin and these cover the entire spectrum of biomass 

compositions. This again shows that biomass composition variability is 

controlled by the varying cellulose, hemicellulose and lignin 

proportions. 

 

 

Figure 5.1 Atomic H/C vs. O/C molar ratios of biomass and coal samples in 

comparison to pure Cellulose, Hemicellulose and Lignin  
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Table 5.1: Chemical Characterisation of the selected biomass and coal 

samples 

Biomass 

C H N S O VM FC H2O Ash 

Calorific value, 

CV 

Stoich 

A/F 

Stoich 

A/F 

MJ/kg daf. actual 

% mass dry basis 
% mass daf. 

basis 

% mass ar 

basis 
actual        daf g/g 

Bagasse (B) 43.6 5.7 1.0 0.1 28.0 92.3 7.7 7.2 20.1 15.6           21.5 7.5 5.4 

B<63µm 38.2 4.9 0.9 0.1 30.8 86.7 13.3 6.8 23.4 -                6.4 4.4 

Rice Husk (RH) 40.2 5.1 0.9 0.0 34.4 83.7 16.4 7.7 17.9 15.2           20.4 6.2 4.5 

RH<63µm 32.5 4.5 1.1 0.2 28.3 83.1 16.9 6.6 31.2 -            6.1 3.8 

Wheat Straw 

(WS) 
38.2 4.9 1.0 0.1 31.3 86.2 13.8 6.8 22.8 14.5           20.6 6.4 4.5 

WS<63µm 23.9 3.1 0.5 0.0 21.2 82.7 17.3 4.0 49.2 

 

-                 

   

6.0 2.8 

Corn Cobs  (CC) 41.6 5.4 1.0 0.1 42.4 82.5 17.6 7.1 8.8 14.8           17.6 5.4 4.5 

Peanut Shell (PS) 49.1 6.0 1.4 0.0 35.0 78.1 21.9 7.0 8 18.2           21.4 6.9 5.9 

Steam exploded 

wood (BP) 
51.3 5.6 0.4 0 39.9 78.6 21.4 4.4 2.7 20.4             22.0 6.3 5.8 

Yellow pine 

(YPW) 
50.1 6.0 0 0 42.1 83.4 16.5 5.4 1.7 20.0           21.5 6.1 5.7 

Pine wood pellet 

(Blz) 
50.3 5.9 0.5 0 38.8 84.6 15.4 6.7 4.3 19.2            21.6 6.4 5.7 

HW Sawdust (Dfl) 49.5 5.8 0.4 0 41.8 85.6 14.4 6.0 2.4 19.4            21.2 6 5.5 

CWW1   

(Dk 1) 
48.8 5.2 0.6 0..0 31.8 89.9 10.1 4.9 13 18.3            22.3 7 5.7 

CWW2   

(Dk 2) 
49.4 4.6 0.4 0.2 42.8 94.1 5.9 6.7 2.4 19.1           21.0 5.6 5.1 

Kellingley Coal          

(K Coal) 
66.1 4.2 2.4 2.3 5.6 36.9 63.3 1.7 19.1 25.0           31.6 11.6 9.2 

Colombian Coal          

(C Coal) 
68.8 4.4 2.2 0.7 8.1 41.3 58.6 3.2 15.3 26.4           32.4 11.2 9.1 

 

Table 5.2: Bulk and particle densities with the porosity of biomass samples 

 B RH WS CC PS BP  YPW Blz Dfl Dk 1 Dk 2 

Bulk density 
(Kg/m3) 

204 382 318 284 320 437 229 199 210 240 196 

True density 
(Kg/m3) 

1671 2203 1702 - - 1752 1678 1757 1784 1675 1695 

Porosity (%) 88 83 81 - - 75 86 89 88 86 88 

BET surface area 
(m2/g) 

0.96 - 1.96 - - 1.6 1.55 0.84 1.46 - - 
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Figure 5.2 Molar H/C v stoichiometric A/F by mass of selected 
biomasses 

Besides analytical methods, Sheng and Azevedo (2002) proposed a model 

based on extended CPD to measure the proportions of Cellulose, 

hemicellulose and lignin contents [176]. The proposed correlations were 

based on H/C, O/C and VM for large number of biomass samples with 

correlation coefficient roughly 90% using eq. 5.4 and 5.5. The proportions of 

hemicellulose was determined by the difference method after deducting the 

percentage mass of cellulose and lignin from total of 100. 

𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 = −1019.07 + 293.810 (
O

C
) – 187.639 (

O

C
)

2

+ 65.1426(HC) −

19.3025 (
H

C
)

2

+ 21.7448(VM) − 0.132123(VM)2                                       [5.4]                             

𝐿𝑖𝑔𝑛𝑖𝑛 = 612.099 + 195.366 (
O

C
) – 156.535 (

O

C
)

2

+ 511.357(HC) −

177.025 (
H

C
)

2

− 24.3224(VM) + 0.145306(VM)2                                       [5.5]   

It was assumed in this work that based on elemental and TGA analysis, 

these components proportions can be estimated based on simple pyrolysis 

decomposition of biomass into these components as; 

               CHxOy (Biomass) → a Cellulose + b Hemicellulose + c Lignin 
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Figure 5.3: Chemical components based on elemental balance and 
correlations for a number of biomass samples 

These components can also be expressed as CHO if there elemental 

compositions are known. However for different biomass materials, the 

elemental molar ratios exist for a range for these components especially for 

hemicellulose and lignin with multiple compounds structure.  

An iteration procedure was followed using solver method in Excel to estimate 

the percentages of cellulose, hemicellulose and lignin contents after 

converging the molar ratios within the existing range of their molar ratios. A 

good comparison was found for estimation of % cellulose and % 

hemicellulose contents using the correlations (Eq. 5.4 and 5.5) in 

comparison to the predicted using elemental balance. The % lignin contents 

were dispersed widely with poor correlation coefficient as shown in Figure 

5.3.   

Also it was found from pyrolysis experiments that these chemical species in 

pure form release for specific temperature ranges: Hemicellulose for 220-

315oC, Cellulose for 315-400oC and Lignin for >400oC [178]. However for 

biomass samples with complex overlapping structure and presence of ash 

cause hindrance for the release of these components [179]. Based on actual 

variation of daf TGA plots for different biomass samples, these chemical 

components were measured with their temperature ranges. However these 

are just the estimation assuming the free and independent release of these 
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component without any influence from other component that is not true in 

reality. The calorific values in Table 5.1 are reduced for biomass with a high 

water and ash content such as agricultural waste material. If the water is 

removed and a process to remove the ash is used, such as acid water 

washing, then the higher calorific value on a daf results, which is also shown 

in Table 5.1. The increase in CV for agricultural waste biomass on a daf basis 

is considerable and for these high ash fuels, acid washing to remove ash 

components such as potassium will be essential; as the reduction in flame 

temperature from the low CV will make good heat transfer in boilers difficult. 

It is known that the CVdaf of biomass is correlated to the elemental analysis 

and Eq. 5.6 [180] is a common relationship used for this.  

𝐶𝑉ℎ𝑖𝑔ℎ𝑒𝑟 = 1.87%𝐶2 − 144% − 2820%𝐻 + 63.8%𝐶 × %𝐻 + 129%𝑁

+ 20147                                                                                         [5.6] 

A consequence of Eq. 5.6 is that a high oxygen content of biomass, 

which reduces the % of all the other components, reduces the CV. 

Lignin has the lowest oxygen content at 21.3% with hemicellulose the 

highest at 55.0% and cellulose at 49.8%. A high CVdaf thus occurs for 

biomass with high lignin content and a low CV occurs for biomass with 

high hemicellulose content. 

 

Figure 5.4: % Chemical components based on TGA plots vs. average 
temperature of number of biomass samples 
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5.5 Volatile matter determination 

Figure 5.5 shows that the normalised TGA release of volatiles was 

similar for all biomass and yet had significant differences, which are 

shown more clearly in the rate of mass loss plots in Figure 5.6. The 

release of volatiles for the coal samples was found to occur at a much 

higher temperature compared to biomass samples, as shown in 

Figures. 5.5 and 5.6. Biomass samples release 80-90% of their 

volatiles in the temperature range of 350-450oC, whereas for coal 

samples the release of volatiles was only about 30%. Figure 5.6 shows 

that the peak rate of release of volatiles from biomass is higher than 

for coal and occurs at lower temperatures. Also for some biomass 

samples, there were two sharp peaks observed showing the 

decomposition of hollo-cellulose at lower temperature with subsequent 

lignin decomposition at higher temperature. Decomposition of these 

components depends on their overlapping structure and level of ash 

contents in the sample [178, 181]. 

 

 

Figure 5.5 % yield of volatiles vs. temperature for biomass samples in 

comparison to coals 
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Figure 5.6 Rate of volatile loss vs. temperature for biomass samples in 

comparison to coals 

Similarly the combustion of char for biomass samples was quicker than the 

coal materials as shown in Figure 5.7. This was due to higher volatile yield 

in biomass leaving behind more porous structure having higher surface area. 

This active surface of biomass has fast combustion reaction due to more 

diffusion and interaction with oxygen. Crop residue biomass samples despite 

of having higher ash were containing more reactive char than the woody 

biomass due to more porous and soft structure compared with woody 

biomass samples. Effect of pre-treatment like steam explosion increased the 

reactivity of char for the yellow pine wood sample. Rate of char combustion 

have greater influence on the reactivity of coal as they have higher char yield 

compared to biomass samples. Colombian coal showed much higher 

reactivity of char than Kellingley coal with fast burning rate as shown in 

Figure 5.7. 

5.6  Correlations of biomass volatile fraction 

Table 5.1 shows that on a raw particulate basis the volatile fraction (VF) of 

all the biomass studied varied from 60.7 – 85.5% on an as received basis 

and on a dry ash free (daf) basis it varied from 78.1 – 94.1%. Although all 

biomass have a high VF there is significant difference in the VF for different 

biomass. The use of the daf VF was because the water and ash content were 

variable and considered to have little influence on the volatile release.  
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Table 5.3: TGA peak volatile rate and corresponding temperature of biomass 

and coal samples 

Samples 
Max. volatile yield 

rate (10-3) (1/s) 
Temperature (oC) 

Bagasse (B) 446 369.9 

Rice husk (RH) 437 353 

Wheat straw (WS) 450 341.4 

Corn cob (CC) 354 344 

Peanut shell (PS) 338 376 

Yellow pine wood (YPW) 436 389 

Steam exploded wood (BP) 444 375 

Pine wood pellet (Blz) 441 391 

Hardwood sawdust (Dfl) 429 386 

Kellingley Coal (K Coal) 309 485 

Colombian Coal (C Coal) 270 483.6 

 

 

Figure 5.7 % loss of char vs. time of biomass and coal samples 
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Figure 5.8 shows the data of the volatile fraction against H/C molar ratio of 

the biomass and coal samples. It shows that biomass samples with higher 

H/C ratio produce higher volatile fraction in contrast to coal samples. The 

data scatter for biomass is large and could not be correlated. Figure 5.9 

shows the volatile fraction plotted as a function of the O/C molar ratio. This 

again shows that biomass samples have higher volatile fraction and O/C 

compared to coal samples. For biomass samples, the O/C is the dominant 

factor in the volatile fraction this would imply that CO was the main 

component of the volatile gases. Pyrolysis of biomass samples also showed 

the major proportions of CO that increase further for fast/flash pyrolysis 

employing higher heating rate and higher temperature [151, 182]. The 

measured CV and the volatile fraction are reasonably well correlated, as 

shown in Figure 5.10. As the volatile fraction of biomass increases Figure 

5.9 shows that the oxygen content also increases. A limiting condition of 

100% volatiles that are all CO is shown in Figure 5.10 to be not far below the 

extrapolated line. There would be some hydrocarbons as well, but CO is 

likely to dominate the volatile gas composition. 

5.7  Computation of volatile composition by elemental balance 

If the composition of the volatiles is assumed to be exclusively CO, CH4 and 

H2 then the relative amounts can be computed from the elemental and TGA 

proximate analysis. The results of this computation are shown in Table 5.4 

for two different assumptions. The first computation assumes that under very 

rapid heating in flames all the biomass becomes volatile and the mean 

composition of the released gases is the same as the biomass elemental 

composition. The second computation assumes that the fixed carbon 

determined by TGA does not appear in the gas phase and hence the mean 

carbon content of the volatiles is reduced from that in the biomass.  

The results are shown in Table 5.4 where there are negative amounts for a 

gas, this indicates that an elemental balance could not be achieved and 

hence there must be other gases present than the three assumed. However, 

there are only a few cases of negative values and so in most cases the 

simple three gas assumption may be valid. 
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Figure 5.8 Correlation of %VM (daf) with molar H/C of selected biomass and 
coal samples 

 

Figure 5.9 Correlation of %VM (daf) with molar O/C of selected biomass and 
coal samples 



-142- 
  

 

Figure 5.10 Correlation of CV with the % volatile matter of selected biomass 
and coal samples 

Table 5.4 shows that if the mean composition of the biomass volatiles is the 

same as the solid biomass (daf) then CO varies between 63 – 83% by mass 

and CH4 varies between 15 and 39% with little hydrogen. However, for coal 

the assumption results in impossible amounts of methane, high hydrogen 

and low CO. Thus, as is well known, this model is not realistic for coal but it 

could be for biomass. If the fixed carbon is not turned into volatile with rapid 

flame heating, then the predictions are much more sensible for coal with 56% 

CO and 49% CH4. In modelling of coal combustion the volatiles are often 

assumed to be methane. For biomass the predicted CO is increased from 

the previous case to 70 – 100% roughly and lower CH4 is predicted in the 

range 0-30%. Some hydrogen is also predicted for some biomass. Both 

cases could be reasonable for biomass. The low level of char in biomass 

combustion in explosions and furnaces indicates that assuming the mean 

composition of the volatiles is the same as that of the biomass, may be 

reasonable and some CFD models of biomass combustion make this 

assumption. 
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Table 5.4: Computation of the volatile composition based on elemental 

balance and the assumption of CO, CH4 and H2 as the only gases in the 

volatiles 

 

Table 5.5: Ash Characterisation of the selected three crop residues using X-
ray fluorescent method 

 

 

Biomass Including FC with the Volatiles Volatile excluding FC  

Formula  Stoich. 

A/F  

CO 

% 

CH4 

% 

H2 

% 

Formula  Stoich. 

A/F  

CO 

% 

CH4 

% 

H2 

% 

Rice Husk 

(RH) 

CH1.53O0.64 6.15 76% 24% 0% CH2.10O0.97 4.85 92% 2% 7% 

Bagasse (B) CH1.57O0.48 7.46 63% 39% -2% CH1.73O0.57 6.96 70% 30% 0% 

Wheat Straw 

(WS) 

CH1.53O0.61 6.35 74% 26% 0% CH1.95O0.85 5.29 87% 8% 5% 

Corn Cobs 

(CC) 

CH1.57O0.77 5.40 83% 15% 2% CH2.35O1.25 3.87 101% -12% 10% 

Peanut Shell    

(PS) 

CH1.46O0.53 6.88 68% 34% -2% CH2.56O1.15 4.46 98% -7% 10% 

Steam 
exploded 

wood (BP) 

CH1.31O0.58 6.31 72% 29% -2% CH1.46O0.66 5.91 77% 22% 0% 

Yellow pine 
wood  

CH1.44O0.63 6.12 75% 25% 0% CH1.86O0.86 5.18 87% 8% 5% 

Pinewood 
pellet 
(BLZ) 

CH1.40O0.58 6.45 72% 30% -1% CH2.03O0.95 4.84 91% 2% 6% 

Hardwood 
sawdust 

(DFL) 

CH1.41O0.63 6.06 75% 25% 0% CH1.97O0.93 4.90 90% 4% 6% 

Kellingley 
Coal 

(K Coal) 

CH0.75O0.06 11.59 13% 109% -22% CH1.39O0.39 8.07 56% 49% -5% 

Colombian 
Coal   

(C Coal) 

CH0.77O0.09 11.18 17% 103% -20% CH1.37O0.40 8.01 56% 49% -5% 

 
Al2O3 BaO CaO Fe2O3 K2O MgO MnO P2O5 SiO2 SrO TiO2 Others 

 % mass 

WSash 10.5 0.04 5.4 0.6 9.5 2.2 0.2 0.7 59 0.05 0.9 11 

RHash 1.3 0 2.3 0.9 2.1 0.4 0 0.6 87 0.01 0.01 5 

Bash 9.1 0.1 9.4 3.5 5.2 3.1 0.6 1.7 48 0.2 0.7 19 
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Ashes of three crop residues bagasse, rice husk and wheat straw were 

analysed using X-ray fluorescence technique. The results showed as % 

proportion of mass in the respective sample. The siliceous contents were 

measured to be in higher proportions in all these sample and especially in 

rice husk. The reason of these higher siliceous minerals was found to be due 

to admixture of soil during their collection. After silica oxide, the next higher 

proportions were found to be Alumina, potassium oxide and calcium oxide 

with rest of the mineral oxide in negligible amounts. Presence of these 

minerals cause powerful corrosive action and are very problematic. 

However, some of these metallic oxide like Alumina and Magnesium oxide 

act to catalyse the combustion of biomass. These biomass samples 

especially agricultural wastes need to be processed for the reduction of 

these ash minerals before their application.  

5.8  Stagg’s quick approximation method for kinetic data from TGA 

Stagg’s [173-175] quick approximation method was used to determine the 

kinetic data for the rate of volatile’s yield from a solid that is applicable for 

low temperature TGA analysis. Two different models were developed: the 

Series Reaction Model and the Competitive Reaction Model. The model 

assumption, for both the series and competitive reaction models, were a first 

order reaction, as in Eq. 5.7, and Tc/∆Tc>>1, where Tc is the characteristic 

temperature (temperature for 50% of the mass fraction i.e. c=0.5) and ∆Tc= 

Characteristic temperature range. 

𝑅𝑎𝑡𝑒 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ′𝑘′ = 𝐴𝑒
(

−𝑇𝐴
𝑇𝑠

)
                                                                                      [5.7] 

Where TA is the activation temperature, A is pre-exponential factor and TS is 

the solid material temperature 

𝑇𝐴 = −
𝑇𝐶

2

𝑐. ∆𝑇𝐶 . log(𝑐)
                                                                                                      [5.8] 

𝐴 =

(𝐻 × 𝐸𝑥𝑝 (
𝑇𝐴

𝑇𝑐
))

𝑐 × ∆𝑇𝑐
                                                                                                     [5.9] 

 Here ‘H’ is heating rate. 

Tc and ∆Tc are adjusted until the integral of the residual error approaches 

zero using GRG non-linear solving method in the ‘Solver’ option in Microsoft 

Excel. 
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5.8.1 Series reaction model 

Figure 5.5 shows that the rate of release of volatiles from dry biomass 

follows three stages: the first stage occurs over 200– 300oC and 

accounts for typically 10% of the volatile loss. The second stage is the 

rapid mass loss of about 70% of the total volatile mass over the 

temperature range 300 – 400oC. Finally, there is a slow loss of volatiles 

accounting for about 20% of the volatile loss over the temperature 

range 400 – 900oC. These three stages were present in the coal 

samples but at much higher temperatures. In this proposed simple 

model, the rate of release of volatiles was split into two stages and the 

first stage combines the initial first and second stages. Cellulose and 

hemicellulose in the biomass break down in the lower temperature 

range release the primary volatiles. In the later stage, some remaining 

contents of cellulose and hemicellulose decompose, possibly to tar, but 

it is mainly hard lignin that partially decomposes, depending on the 

heating rate and temperature. This later volatile loss is due to the 

higher decomposition temperature of lignin. 

 

 

Figure 5.11 Series Model for rate of volatile release 

 

 

 

 

 

 



-146- 
  

Table 5.6: Predicted Kinetics for two phases in TGA volatile’s loss in series 
reaction model 

 

 

Figure 5.12 Predicted % yield of volatiles vs. temperature for two phases in 

comparison to experimental TGA result 

Materials Activation energy ’E’ 

(KJ/mol) 

Activation energy 

(MJ/kg) 

Rate Constant ‘k’ (s-1) MEC 

1st phase 2nd phase 1st phase 2nd phase 1st phase 2nd phase Eq. 

ratio 

Bagasse 87.0 38.2 4.1 1.8 1.7E+5e10468.8/T 0.7e4593.4/T 0.27 

Rice husk 83.1 38.9 3.4 1.6 1.2E+5e9999.1/T 0.7e4682.1/T 0.35 

Wheat straw 93.3 36.8 3.9 1.6 1.2E+6e11218/T 0.7e4425.8/T 0.55 

Corn cob 71.0 40.7 2.7 1.6 1.5E+4e8545.6/T 0.6e4902/T 0.22 

Peanut shell 63.0 35.5 2.8 1.6 1.5E+3e7578.4/T 0.7e4269.7/T 0.18 

Yellow pine 
wood (YPW) 

88.4 32.4 3.8 1.4 1.6E+5e10631.1/T 0.8e3716.2/T 0.35 

Steam 
exploded 
wood (BP) 

68.2 35.3 3.0 1.6 3.7E+3e8208.4/T 0.7e4251.1/T 0.2 

Pinewood 
pellet (BLZ) 

98.5 31.9 4.3 1.4 1.0E+6e11854.4/T 0.8e3841.3/T 0.46 

Hardwood 
sawdust (DFL) 

85.7 34.2 3.6 1.4 1.0E+5e10310.3/T 0.8e4114.3/T 0.36 

Colombian 
Coal 

105.6 39.8 7.4 2.8 2.6E+5e12703.6/T 0.6e4790.9/T 0.39 

Kellingley Coal 111.0 38.1 8.1 2.8 5.6E+5e13352.3/T 0.7e4586.4/T - 
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With slow heating rate and low temperatures, there is some char 

residue left. It is possible that in propagating flames in pulverised 

biomass, where heating rates are much higher than in a TGA, that the 

fixed carbon will be less and the yield of CO will be higher. 

The ‘Series Reaction Model’ mechanism is shown in Figure 5.11 and 

involves two routes to the release of volatiles: directly from the original 

biomass and via low temperature pyrolysis that produce material, such 

as tar, that subsequently decomposes to release volatiles. Kinetic 

equations for the release of volatile from these two phases are given 

by Eqs. 5.10 and 5.11. The production of char is given by Eq. 5.12. 

𝑑𝑚

𝑑𝑡
= −𝑘1 𝑚                                                                                                       [5.10] 

𝑑𝑚′

𝑑𝑡
= −𝑘2 𝑚′                                                                                                    [5.11] 

𝑚3 = (𝑚′ − 𝑚2)                                                                                                 [5.12] 

The rate of release of volatiles for the two phases was predicted using 

this model and compared with the experimental TGA results for slow 

heating rate of 25oC/min as shown in Figure 5.12, for one of the 

biomass in Figure 5.5. The fit to the data by the model was very good 

for the first two phases of the volatile release, showing that modelling 

them as one first order volatile release reaction was valid. The fit to the 

last stage of volatile release was not as good, but was reasonable. It is 

the good fit to the rapid volatile release phase that is important as this 

is the most important stage in flame propagation.  

Activation energies and rate constants obtained from this Series 

Reaction model are given in Table 5.6 for all the biomass and the coal 

samples. The activation energies in Table 5.6 showed lower activation 

energy for biomass fuels than coal. Higher activation energies reflect 

higher energy requirements for the release of volatiles. 

The lean limit MEC of the selected biomass samples as determined 

using the modified Hartmann explosion tube are compared with these 

activation energies in Table 5.6. Activation energies for the first phase 

showed a good correlation with the MEC as shown in Figure 5.13. 

Table 5.6 shows that activation energies for the second phase were 

approximately similar and hence the late release of volatiles is not 

contributing to the difference in the rate of volatile release and the MEC 

differences for different biomasses. This is to be expected as it is the 
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initial volatile release that is going to control the flame propagation rate 

and hence the MEC. 

Figure 5.13 shows poor agreement with the trend for wheat straw (high 

MEC) and Bagasse (low MEC) for similar activation energy. One 

explanation for this could be differences in the ash content, but Table 

5.1 shows that there is little difference in ash. Bagasse has more 

volatiles and a lower MEC than would be expected. It is possible that 

there are particle size differences with the pulverised bagasse being 

coarser than that for wheat straw in the modified Hartmann tests. All 

the biomasses were milled and sieved below 63 µm and the size 

distributions for the particles used in the MEC tests are shown in Table 

5.7. Previous works by the authors [17-19, 21-23, 110, 169] have 

shown that particle size does affect the MEC. However, Table 5.7 

shows that the size difference between bagasse and wheat straw were 

small. Hence, the reason for these two biomasses not following the 

trend of the other biomass in Figure 5.13 is not known and further work 

is required over a wider range of biomass samples. 

 

 

Figure 5.13 Correlation of MEC with activation energies based on the 

series reaction model for volatile’s loss of biomass samples 
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Table 5.7 Particle size distribution in the MEC tests 

In addition to the rate of volatile release activation energy on MEC as 

a reactivity parameter, its impact on flame propagation parameters was 

investigated. In the modified Hartmann equipment the concentration of 

biomass dust was varied to determine the peak reactivity concentration 

in terms of the rate of pressure rise prior to the bursting of the vent at 

the top of the vessel. The correlation of this with the volatile release 

activation energy is shown in Figure 5.14. This shows no correlation 

between the rate of pressure rise and the activation energy. This was 

unexpected as the rate of flame propagation is often modelled as the 

release of volatiles followed by combustion. It is likely that flame 

propagation is controlled by the rate of heating of the particles by 

conduction and radiation from the flame front. The release of volatiles 

is a consequence of this heating and not the cause of the heating.  

Similarly the activation energies for the first main stage of volatile release 

were plotted against % inert as shown in Figure 5.15. There were two 

independent correlations further observed similar to the plot of % inert 

against MEC as will be discussed further in chapter 6. Increase in level of 

ash plus moisture content have more profound effect on woody biomass than 

on the crop residue sample and showed higher activation energies for 

sample having more inert. The activation energy requirement for the release 

Samples d(0.1) d(0.5) d(0.9) Surface mean 

diameter d3,2  

Volume mean 

diameter, d4,3 

 µm 

Bagasse (B) 24.3 125.6 356.0 70.2 201.5 

Rice husk (RH) 13.6 191.6 563.8 33.5 247.7 

Wheat Straw (WS) 18.8 126.1 441.5 78.0 213.4 

Corn cob (CC) 45.0 372.6 777.8 98.1 394.1 

Peanut shell (PS) 24.3 176.1 698.5 63.5 282.4 

Steam exploded wood (BP) 13.0 54.8 162.3 30.3 75.9 

Yellow pine wood (YPW) 30.7 198.3 629.6 77.2 287.1 

Pine wood pellet (BLZ) 33.0 180.4 569.2 68.4 245.6 

HW sawdust (DFL) 28.0 184.2 576.3 56.2 247.3 

Colombian Coal (C Coal) 6.8 28.1 85.2 14.7 40.1 

Kellingley Coal (K Coal) 5.0 25.5 65.3 12.0 30.9 
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of volatiles play an important role for the propagation of flame and higher 

inert suppresses the reactivity of biomass. 

 

Figure 5.14 Correlation of the activation energy for volatile release with the 

initial rate of pressure rise in the modified Hartmann tube 

 

Figure 5.15 Effect of inert on activation energy for volatile yield of biomass 
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5.8.2 Competitive reaction model 

In this reaction model, the slow heating rate in the TGA is assumed to 

result in the competitive reactions shown in Figure 5.16. The model 

assumes that heating results in the release of tars with some primary 

volatiles that form secondary volatiles with the build-up of some char. 

This model has no direct production of volatiles from the original 

biomass, which is a key feature of the Series Reaction model. This 

model may be more applicable for crop residues with higher ash 

contents that retard the release of volatiles [181]. Even at higher 

heating rate, the release of volatiles slows down under the influence of 

ash. The net effect is the release of volatile matter with some residual 

char contents mainly composed of ash.  

The kinetic equations for the release of volatile for these phases are 

given below; 

𝑑𝑚1

𝑑𝑡
= −𝑘1𝑚1                                                                                                     [5.13] 

𝑑𝑚2

𝑑𝑡
= −(𝑘2 + 𝑘3)𝑚2                                                                                       [5.14] 

𝑑𝑚3

𝑑𝑡
= 𝑘3𝑚2                                                                                                        [5.15] 

 

 

Figure 5.16 Competitive Reaction Model for rate of volatile release with the 

build-up of char 
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Table 5.8 Predicted kinetics for TGA volatile’s loss in competitive reaction 
model 

 

An example of the data fit for the competitive reaction model to the TGA 

results is shown for pine wood in Figs. 5.17 and 5.18. The fit to the volatile 

release is better for the competitive reaction model. The kinetic data derived 

from the competitive reaction model fits to the TGA data for all the biomass 

and coal samples is shown in Table 5.8. However, the final stage of the 

volatile loss is not the critical contribution to the flame propagation and Table 

5.8 shows that the kinetics of this stage are similar for biomass for K1 and K3 

but are significantly different for K2. This implies that the dominant route in 

first two stages of the volatile loss is as good as for the series reaction model 

in Figure 5.12. However, the fit to the final stage of this model to volatiles is 

the same as for the series model, direct evolution of gases from the biomass 

with subsequent pyrolysis of these gases. The route via tar and char was not 

a major difference between the biomass. 

 

Activation energy ‘E’ ‘KJ/mol’ (MJ/kg) Rate Constant ‘k’ (s-1) 

Materials m1 m2 m3 k1 k2 k3 

Bagasse 40 (1.9) 89 (4.2) 65.6 (3.1) 1.0e4.0E+4/T 1.7E+5e8.9E+4/T 1.0E+3e6.5E+4/T 

Rice husk 41.1 (1.7) 84.3 (3.5) 34 (1.4) 1.0e4.1E+4/T 1.2E+5e8.4E+4/T 1.8e3.4E+4/T 

Wheat straw 39.2 (1.7) 94.5 (4.0) 32.6 (1.4) 1.0e3.9E+4/T 1.1E+6e9.4E+4/T 1.9e3.2E+4/T 

Corn cob 39.8 (1.5) 72.4 (2.8) 32.6 (1.3) 1.0e3.9E+4/T 1.4E+5e7.2E+4/T 1.8e3.2E+4/T 

Peanut shell 40.3 (1.8) 60.9 (2.7) 35 (1.6) 1.0e4.0E+4/T 6.2E+2e6.0E+4/T 1.7e3.5E+4/T 

Yellow pine  

wood (YPW) 

38.4 (1.6) 86.4 (3.7) 38.5 (1.6) 1.0e3.8E+4/T 7.9E+4e8.6E+4/T 1.8e3.8E+4/T 

Steam 

exploded  

wood (BP) 

41.8 (1.8) 65.6 (2.9) 36.7 (1.6) 1.0e4.2E+4/T 1.5E+3e6.6E+4/T 1.8e3.7E+4/T 

Pinewood 

pellet (BLZ) 

36 (1.6) 100.6 (4.4) 38.4 (1.7) 1..0e3.6E+4/T 1.2E+6e1.0E+5/T 1.8e3.8E+4/T 

Hardwood 

sawdust (DFL) 

39.2 (1.7) 84.4 (3.6) 38.4 (1.6) 1.0e3.9E+4/T 6.0E+4e8.4E+4/T 1.8e3.8E+4/T 

Colombian 

Coal 

62.4 (4.4) 332.6 (23.5) 80.2 (5.7) 80.8e6.2E+4/T 148.4e3.3E+5/T 1.0e8.0E+4/T 

Kellingley Coal 30.9 (2.2) 182 (13.2) 83.4 (6.1) 0.16e3E+4/T 1.0E+10e1.8E+5/T 5.1E+3e8.3E+4/T 
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The dominance of the direct release of volatiles from the biomass in the three 

stage process is shown for pine wood in Figure 5.19. This shows that the 

added complexity of the competitive reaction model is not justified and the 

series reaction model is adequate for modelling the volatile release and for 

correlation of the MEC. The correlation of the MEC data with the volatile 

release kinetic fit to the TGA data for the competitive reaction model is shown 

in Figure 5.20. 

 

 

Figure 5.17 Fit of the competitive reaction model for the % yield of volatiles 

from pine wood as a function of temperature in comparison to TGA 

experimental result 
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Figure 5.18 Comparison of the data fit by the competitive reaction model with 

the experimental results for rate of volatile yield 

 

Figure 5.19 Competitive reaction model showing the three routes to volatile 

release and char and tar formation 



-155- 
  

 

Figure 5.20 Correlation of MEC with the direct biomass volatile release from 

the competitive reaction model 

This is very similar to the results in Figure 5.13 and the results for wheat 

straw and bagasse being well of the correlating line are also present. 

Thermally-treated biomass, known as steam exploded biomass or a black 

pellet, that has more fines with regular shaped particles like coal, was found 

to have lower activation energy for volatile release as compared to most of 

the biomass samples. This was because the prime action of the thermal 

treatment is to break up the fibres in biomass to yield finer particles which 

facilitate the easier evolution of volatiles.  

5.9  Conclusions 

1. Biomass composition by elemental and proximate analysis is 

extremely variable and this leads to significant variability in the 

stoichiometic A/F by mass. 

2. If CO, CH4 and H2 were assumed to be the only gases released 

during low temperature heating of biomass then it could be shown 

through CHO balance that CO was the most important gas. It is 

possible that for biomass with rapid heating, a greater proportion of 

volatiles will be released and the limiting condition of no fixed carbon 

in flame combustion was used to show that this would decrease the 
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CO and increase the CH4 yields, but this model would not be 

appropriate for coal.  

3. Correlations for the volatile proportion of biomass were investigated 

and the H/C and CV were the best correlators, athough there was 

significant data scatter. 

4. Two kinetic models based on TGA analysis showed that biomass 

fuels were more reactive than coal due to the lower energy required 

to release the volatiles.  

5. For the series reaction model, the activation energies of the biomass 

samples were lower than the coal samples due to the fast release 

of volatiles. 

6. The competitive reaction model also predicted low activation 

energies for biomass samples.  

7. The low energy required to release the volatiles in biomass fuels was 

considered to be due to the soft and porous structure of the 

agricultural biomass.  

8. MEC data showed that biomasses that release volatiles more easily 

have leaner MEC and hence are more reactive. However, there 

were some anomalous results for bagasse and wheat straw that did 

not fit this trend with no obvious reason for the difference. 

9. There was no correlation between the initial rate of pressure rise in 

the modified Hartmann explosions and the volatile release 

activation energy. This indicates that it is the heating of the particles 

by conduction and radiation that controls the rate of propagation. 

The release of volatiles is a consequence of this heating and not the 

cause. 
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Chapter 6 MODIFIED HARTMANN RESULTS FOR 

EXPLOSIBILITY CHARACTERISTICS  

This chapter includes the tests performed on the modified Hartmann dust 

explosion tube. Different size fractions dusts were employed on the modified 

Hartmann tube at zero ignition delay to study the effect of particle size on the 

lean flammability limits. High ash crop residues showed little higher lean limit 

for the finer fraction than the next coarse fraction. This was due to high brittle 

ash milled to a finer size; sharing greater proportion of the finer fraction. Also 

TGA analysis of the finest fraction crop residue revealed that it contains 

higher ash contents than the other samples. With very coarse fraction, it was 

found that they either did not ignite or ignited with a higher lean flammability 

limit. The reason for this was the reduction in release of volatiles in the 

available time leading to heterogeneous reaction of the solid air mixture 

delaying the development of sustainable flame that ultimately quenches after 

touching with the wall. 

The effect of ignition delay on the flame propagation of fine fractions of 

biomass was also presented. The ignition delay with the modified Hartmann 

tube was achieved by commissioning an electronic circuit activating with the 

pressing of the arc button. Initially propane gas was tested to study the effect 

of ignition delay on the lean flammability limit. Then it was tested with 

standard polyethylene, Lycopodium, corn flour, walnut shell and pistachio 

nut shell.  

The modified Hartmann tube was also used for the measurements of aerosol 

combustion as aerosols were supposed to behave in a similar way to the fine 

dusts. The experimental methodology was changed a number of times for 

injection and dispersion of aerosols. Low boiling diesel and glycerol were 

used to study the aerosol combustion behaviour. Flame propagation of 

stoichiometric and lean concentrations of diesel was also studied and 

compared photographically using high speed camera. 

6.1  Explosibility results of agricultural waste pulverised biomass and 

particle size effect 

6.1.1 Agricultural waste pulverised biomass: MEC and flame speed 

The reactivity, in terms of the maximum rate of pressure rise before the vent 

bursts for the three crop residues is shown in Figure 6.1 as a function of the 

equivalence ratio Ø. A critical feature of the burner operation and its safety 

assessment is to know the worst case most reactive mixture Ø, as explosion 
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protection measures require them to be designed for the most reactive 

mixture. Thus determining and understanding the mixture condition where 

this occurs is important and has been neglected in the literature.  

Figure 6.1 shows that maximum reactivity for most of the sized fractions were 

at an  equivalence ratio (Ødaf) of 1.3-1.5. For wheat straw dusts with particle 

size <63µm and 63-75µm, the peak reactivity was Ødaf=1.4 and for rice husk 

dusts of the same size range, the peak reactivity was similar at Ødaf=1.5. 

Similarly for bagasse of the same size range, the peak reactivity was Ødaf= 

1.25. Most hydrocarbon gases have a peak reactivity at Ø=1.05. For rice 

husk and wheat straw dusts the reactivity was higher for 63-75µm dusts and 

this was because of the increase in ash content as the dust was milled finer. 

For bagasse, this did not occur and the <63µm dust was the most reactive, 

probably due to the lower ash content of this fine dust.  

Figure 6.2 shows that there was a reasonable correlation (R2=0.8) between 

the rate of pressure rise prior to the vent bursting and the flame speed for 

the tested biomass. However, the correlation between different biomass in 

terms of the relative reactivity was not good. The rate of pressure rise 

showed that rice husk dust and bagasse dust had similar peak reactivity, 

which was roughly twice that of wheat straw dust. The pressure rise 

measures the mean mass burning rate and hence takes into account the 

shape of the flame. The flame speed measurements are made on the 

centreline of the vessel and this may not be the mean flame speed.  

There are no previous measurements to our knowledge on this type of 

agricultural waste biomass with <63µm particle size, but the present results 

indicate that there could be fire and explosion hazards associated with these 

agricultural waste materials due to their high volatile content that enhances 

their reactivity. As shown in their chemical characterisation, the main reason 

that wheat straw could be less reactive is that for the fine powders the volatile 

matter is very low at 39% compared with 52% and 61% for rice husks and 

bagasse respectively. Wheat straw also had the highest ash content in the 

<63µm dust and this will reduce the dust reactivity. 



-159- 
  

 

Figure 6.1 Rate of pressure rise (dP/dt) as a function of equivalence ratio 
and particle size 
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Figure 6.2 Rate of pressure rise (dP/dt) vs. flame speed for different sized 
fractions of crop residues 
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6.1.2 Explosibility characteristics of varying size fractions Corn cobs 

and peanut shells 

Corn cobs and peanut shell agricultural wastes were split into different size 

range fractions like <63 µm, 63<PS<150 µm, 150<PS<300 µm and 

300<PS<500 µm to study the effect of particle size on the reactivity of these 

crop wastes. Modified Hartmann experimental results showed increase in 

sensitivity of explosion with decreasing particle size. For example for peanut 

shell dust, it was found that lean limit in terms of equivalence ratio was 0.18Ø 

for the finer fraction of size<63 µm, 0.22Ø for the fraction of size 63<PS<150 

µm and 0.33Ø for the fraction of size 150<PS<300 µm as shown in Figure 

6.3. The coarser fraction of size 300<PS<500 µm was found to be non-

explosible. The most reactive mixture was found to change with the particle 

size. Finer fractions were found to have worst concentration of 1.25Ø 

whereas for coarse fraction, it exceeded to around 1.8Ø in terms of 

equivalence ratio. Peak flame speed was determined to be 2 to 3.2 m/s for 

coarser to finer size fractions.  

As shown in Figure 6.3, corn cob dust showed roughly same lean limit of 

0.2Ø for size fractions <63 µm and 63<CC<150 µm, and reactivity decreased 

for coarser fractions. Lean limit was found to be 0.34Ø for the size fraction 

150<CC<300 µm and around 0.7Ø for 300<CC<500µm size range. 

The most reactive mixture was found to be at equivalence ratio around 1.4 

closer to stoichiometric concentration for the finer fraction. For coarse size 

fractions, the most reactive concentration could not be measured even at 

equivalence ratio of 2.8. The flame speed was determined to be in the range 

0.75 to 2.3m/s. 
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Figure 6.3 Rate of pressure rise for different sized fractions of peanut shell 
and corn cob 

Minimum explosible concentration was defined as the last leaner 

concentration that ignites in the excess amount of air. Extra safe condition 

represents the last concentration that does not ignite and is followed in this 

work as MEC. In the modified Hartmann tube measurements, the probability 

of the explosion could be determined. As shown in Figure 6.4, the probability 

of explosion against the MEC were plotted. For example, MEC for 0% 

explosion probability meant no explosion for three repeated tests whereas 

the concentration for 100% explosion probability meant the explosion for all 

the three repeated tests. Sometimes, it is desirable to quote the 

concentration for 0% explosion probability as the lean limit for extra safe 

working conditions. Explosion probability based on 0%, 50% and 100% for 

all the agricultural residues were plotted as shown in Figure 6.4.  
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Figure 6.4 Probability of explosion vs. Equivalence ratio of selected biomass 
residues 

6.2  Explosibility characteristics and size dependence on the flame 

propagation of woody biomass 

Four woody biomass that were the feedstock of the boiler in the local mill in 

the UK were tested for their exposibility characteristics. These woody 

biomass were supplied in the form of pellets that were milled and sieved to 

three different size range fractions to study the role of fine and coarse particle 

in the flame propagation. Sieved sizes were classified as <63µm, 63-500µm 

and <500µm. SEM images of these sieved woody samples showed fibrous 

and porous structure (See Appendix H). 
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Figure 6.5 Size dependence of wood on flame propagation 

The reactivity in terms of the maximum rate of pressure rise before the vent 

bursts for each wood samples is shown in Figure 6.5 as a function of the 

equivalence ratio. Pine wood pellet and HW sawdust as shown in Figure 6.5 

a) and b) showed the lean limit of the finer fraction at an equivalence ratio of 

0.46Ø and 0.36Ø respectively. For coarser fraction with no fines (63-500µm), 

lean limits were exceeded to 0.72Ø and 0.8Ø for pine wood and HW sawdust 

respectively. However, the fraction involving fine and coarse particles, were 

found to be in between of finer and coarse fraction in terms of their lean 

limits. It was also found that the most reactive concentration was a function 

of fine particles as the fraction<63µm with more fines, have worst 

concentration near to stoichiometric concentration whereas the fraction with 

least fine 63-500µm had the higher most reactive concentration. The most 

reactive concentration for pine wood pellet sample was found to be 1.42Ø 

for <63 and <500µ size fractions and even higher than 3.80Ø for 63-500 size 

fraction. For HW sawdust sample, the most reactive concentration was found 

to be 1.82Ø for <63µm size fraction and higher than 3.5Ø for 63-500 and 

<500µm size range fractions. 

For construction wood waste batch 1 sample as shown in Figure 6.5 c), the 

lean limit and most reactive concentration of the leaner size fraction (<63µm) 

were determined to be 0.67Ø and 1.33Ø in terms of equivalence ratio 

respectively. For the coarser size fraction (63-500µm), the lean limit was 
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determined to be 0.85Ø and the most reactive concentration was observed 

to be even higher than 3.54Ø in terms of equivalence ratio. For the fraction 

of size (<500µm) containing mixture of fine and coarse particles, the lean 

limit and most reactive concentration were determined to be 0.78Ø and 1.8Ø 

respectively.  

Similarly for the second batch, the lean limits of the size fractions <63, 63-

500, <500µm were determined to be 0.38Ø, 0.75Ø and 0.69Ø respectively. 

The most reactive concentrations for size fractions <63 and <500µm were 

determined to be same (1.56Ø in terms of equivalence ratio) and for size 

fraction 63-500µm, the most reactive concentration was found to be higher 

than 3.0Ø equivalence ratio.  

From these results, it was summarized that the finer sized fractions have the 

lean limit lower than the coarser fractions. The fractions comprising of fine 

and coarse particles (<500µm) were leaner than 63-500µm fraction that 

shows the strong influence of fine particles on the sensitivity of ignition. The 

most reactive concentration was observed to shift to a more rich 

concentration with the increase in the size of the particles. It was concluded 

that careful consideration should be taken in the handling of these boiler 

feed-stocks and generation of fine particles due to wearing and tearing in the 

handling of wood pellets can cause the explosibility threats to the working 

environment. 

6.2.1 MEC as a function of average particle size 

Combustion of solid fuel is strongly dependent on the size range of the 

fractions. A fraction with coarse particles requires longer time for pyrolysis 

and enough generation of volatile to sustain the flame propagation. Fine 

particles turn to volatiles instantaneously facilitating the combustion. A 

detailed study of the effect of particle size on the propagation of flame for 

agricultural waste residues and woody samples was carried out as explained 

above. MEC in terms of equivalence ratio were plotted (using the analysis of 

as received sample) against the average particle sizes for varying size range 

fractions for agricultural waste and woody biomass as shown in Figure 6.6 

and 6.7 respectively. It was observed that for most of the agricultural wastes, 

the lean limits become independent of particle size below the average 

particle size of 80µm. However, for some agricultural wastes, carrying more 

ash contents in the finer fractions, showed higher lean limits. This was due 

to counterbalance effect of inert in increasing the lean limits of the finer size 
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fraction. Also there was a sharp increase of lean limit for average particle 

size above 220µm.  

However for woody biomass carrying less inert, lean limits decrease 

gradually with the decrease of particle size making it more reactive than the 

coarse size fractions. These woody samples showed gradual change of lean 

limits for even very higher average particle size of 250µm. After this size, 

trend in the change of MEC started to change sharply depending on the 

woody sample. 

 

 

Figure 6.6 Effect of average particle size on minimum explosible 

concentration of agricultural waste biomass  
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Figure 6.7: Effect of average particle size on minimum explosible 

concentration of woody biomass samples 

6.3  Effect of steam explosion pre-treatment on the reactivity of pine 

wood 

Thermal treatment processes such as torrefaction aim to break up the fibrous 

nature of woody biomass and make it more brittle so that it can be more 

easily milled alongside coal or on its own in the same mills as used for coal. 

The intention would be for these thermal treatment processes to be based 

at the source of the biomass alongside the palletisation plant. They have the 

advantage of nearly zero water in the biomass, a higher pellet density and 

less tendency for the pellet to fracture and form dust clouds in transport. The 

net result will be a higher energy carrying capacity for ships of fixed volume 

capacity and hence cheaper transport costs of the fuel. At present it is not 

clear whether the potential advantages of torrefied biomass outweighs the 

increased cost of manufacture, for power generation. 

Biomass materials have low bulk density, fibrous in nature and have low 

heating values [2, 3]. The cost of transporting raw biomass from source to 

the power generation plant for milling is too high. Thermal pre-treatment of 

the biomass potentially can reduce these transport costs. Torrefaction is one 

of the advanced and attractive pre-treatment that gives the following benefits 

[4, 5]. Torrefied biomass are more compact (Higher bulk density), have a 
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higher heating value and are more easily pulverised as the biomass fibres 

are broken up by the thermal treatment. Torrefaction results in a significant 

loss of volatiles from the biomass depending on the torrefaction conditions; 

these are usually recycled to provide the heat for the torrefaction process. 

Thermally treated biomass materials are often referred to as bio coal as they 

are closer in properties to coal than to the original biomass. 

An alternative thermal treatment to torrefaction is ‘steam explosion’. This is 

a commercial process at the pilot plant stage, that treats the woody biomass 

with pressurised hot water (1.2-1.7MPa, 170-250oC) for a short time (up to 

10 mins.) and then releases the pressure to flash vaporise the water and this 

process inside the woody biomass structure shatters the particles into finer 

fractions [6, 7]. These steam exploded biomass materials are transformed 

into pellets known as ‘Steam exploded pellets’ for the easiness of 

transportation. They are often referred to as ‘black pellets’ due to their black 

colour. 

The new structure of biomass has similar properties to that of torrefied 

biomass. The steam exploded biomass process has potentially a lower 

energy consumption than that of torrefied biomass with a lower loss of 

volatiles. The steam exploded process is intended to have a lower tar 

formation and less cracking of the raw biomass material. The resultant 

pellets potentially have a higher proportion of the original biomass energy 

than for torrefied biomass. The steam exploded biomass treatment and 

palletisation process produces a pellet with an externally sealed outer 

surface due to the treatment process. This leaves them less sensitive to 

absorb water than for torrefied biomass. The biomass fibres in the pellets 

are destroyed and the pellets are easily pulverised, which are similar to the 

benefits of torrefied biomass. Steam exploded biomass is potentially a lower 

cost product than torrefied biomass and is potentially a better product in 

terms of energy content as a proportion of the original biomass energy on a 

daf basis. 

The steam exploded sample as shown in Figure 6.8 and 6.9 have an MEC 

leaner than its raw material making it more reactive. The lean limits in term 

of equivalence ratio for steam exploded and raw sample were found to be 

0.20Ø and 0.39Ø respectively. However, the most reactive concentration for 

both of these materials was found to be at the same equivalence ratio of 

1.32Ø based on both rate of pressure rise and flame speed, as shown in 

Figure 6.8 and 6.9. The maximum flame speeds was determined to be about 
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2.5 m/s for both of these materials reflecting the same rate of flame 

propagation.  

It was concluded that steam exploded biomass, in spite of losing some 

volatiles in the thermal process, was more reactive due to opening of active 

sites as a result of transformation of the structure by the volatile outgassing 

and the breakup of the fibrous structure of the biomass.  

The surface morphology was investigated using SEM imaging, as shown in 

Figure 6.10. The raw biomass had fibrous particles with wide variation in the 

particle size distribution, whereas the steam exploded sample had less 

variation in the particle size distribution. Both samples were milled and 

sieved to less than 63 µm, but the steam exploded biomass showed a 

greater fine fraction than the raw biomass as shown in particle size 

distribution (Appendix I). The leaner MEC for the steam exploded sample 

was due to the increase in the exposed surface area that resulted from the 

thermal treatment and the reduction in particle size, which increased the rate 

of heating of the biomass particles. This gave a faster release of volatiles 

which was responsible for the leaner MEC. 

 

 

Figure 6.8 Rate of pressure rise of raw pine in comparison to its steam 

exploded 



-170- 
  

 

Figure 6.9: Linear flame speed of steam exploded pine in comparison to its 

raw 

 

Figure 6.10: SEM images of raw pine wood in comparison to its steam 

treated sample 
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6.4  Effect of inerts (ash+moisture on the reactivity of biofuels 

Presence of inerts in the form of moisture and ash contents resist in the fast 

propagation of flame. This result in the delay in the formation of a 

combustible mixture due to evolution of volatiles. As the moisture is the final 

combustion product and the ash is the residual inert mass after combustion, 

so the existence of these inerts in the sample would suppress the 

combustion. To study the effect of inert on the lean flammability limits,  

%ash+moisture of selected agricultural residues in combination with other 

biomass and woody biomass samples were plotted against their 

corresponding MEC as measured using modified Modified Hartmann tube 

as shown in Figure 6.11. For three agricultural waste having higher ash 

contents, separate analysis of <63µm were used to calculate the actual MEC 

that are different from the values quoted before due to different actual air to 

fuel ratio due to the higher ash contents in the finer fraction. The higher MEC 

of woody biomass compared to agricultural wastes show a separate 

correlation with greater influence of inert on the lean flammability limit. 

Biomass nut shells showed a consistent low inert and therefore negligible 

variation of lean limits however agricultural wastes showed a clear variation 

of MEC with % inert. Despite the higher inerts, these agricultural waste 

showed low MEC compared to wood samples.  

Relative results for varying size fractions of the selected biomass samples 

using the modified Hartmann tube give a good idea of dependence of particle 

size on the reactivity. However, the absolute values for explosibility 

characteristics need to be determined using standard ISO 1m3. Some dusts 

are not explosible on the modified Hartmann tube due to the weak ignition 

source but this does not mean that they are non-explosible until they are 

tested on ISO vessel. Similarly, the pre-existing spark sometimes ignites the 

underdeveloped dust cloud yielding inaccurate explosibility results. So, to 

avoid the hazards of marginal explosible dusts, it was better to use lean 

flammability limits as the concentration for 0% explosion probability.   

Figure 6.12 showed the range of lean limits for different biomass samples 

based on non-ignited and last weakly ignited concentration. It was found that 

selected biomass samples have their lean flammability range from 0.2 to 0.7 

in terms of equivalence ratio. Similarly the difference in lean explosibility 

limits based on ignited and non-ignited concentration for various size range 

fractions was presented in table 6.1. 
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Figure 6.11 Effect of inert on minimum explosible concentration of biomass  

 

Figure 6.12 Lean flammability limits based on ignited and non-ignited 

concentrations 
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Table 6.1: MEC based on ignited and non-ignited concentration for different 

size range fractions 

Samples Avg. 
size 
‘µm’ 

MEC (Equivalence ratio) 

Conc. that did 
not ignite 

Last conc. 
ignited 

Bagasse (B) 
 

    

B<63 31.5 0.27 0.28 

63<B<75 69 0.27 0.28 

75<B<150 112.5 0.27 0.28 

150<B<300 225 0.37 0.42 

300<B<500 400 0.74 0.77 

Rice husk (RH) 
 

    

RH<63 31.5 0.35 0.37 

63<RH<75 69 0.28 0.31 

63<RH<150 106.5 0.37 0.42 

150<RH<300 225 0.85 1.13 

300<RH<500 400  - -  

Wheat straw (WS) 
 

    

WS<63 31.5 0.55 0.69 

63<WS<75 69 0.47 0.5 

75<WS<150 112.5 0.47 0.5 

150<WS<300 225 0.69 0.72 

300<WS<500 400 - - 

Corn cob (CC)    

CC<63 31.5 0.22 0.25 

63<CC<150 106.5 0.2 0.22 

150<CC<300 225 0.34 0.35 

300<CC<500 400 0.7 1.4 

Peanut shell (PS)    

PS<63 31.5 0.18 0.22 

63<PS<150 106.5 0.22 0.25 

150<PS<300 225 0.33 0.36 

300<PS<500 400 0.91 1.81 

Pine wood pellet (Blz)    

Blz<63 31.5 0.46 0.47 

Blz<500 250 0.65 0.68 

63<Blz<500 281.5 0.72 0.76 

Hardwood sawdust (Dfl)    

Dfl<63 31.5 0.36 0.4 

Dfl<500 250 0.51 0.55 

63<Dfl<500 281.5 0.8 0.84 

Construction wood waste 1 (CWW1)    

Dk 1<63 31.5 0.67 0.71 

Dk 1<500 250 0.78 0.81 

63<Dk 1<500 281.5 0.85 0.88 

Construction wood waste 2 (CWW2)    

Dk 2<63 31.5 0.38 0.39 

Dk 2<500 250 0.69 0.72 

63<Dk 2<500 281.5 0.75 0.78 
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6.5 Measurement of flame speed using high speed photography 

A high resolution photographic camera was used to study the propagation of 

the flame using the modified Hartmann tube. A frame rate of 5000 fps was 

selected to visualize the development and propagation of the flame, frame 

by frame. For flame speed calculations, the initial time was taken for the 

appearance of the spark and the final time was taken for 100mm propagation 

of flame as detected from second thermocouple above spark. The relative 

variation of time was recorded and the flame speed was calculated by 

dividing the travelled distance of 100mm with the time taken as shown in 

Figures 6.13-18 for different samples. 

 

 

Figure 6.13: Flame speed measurement of bagasse (<63µm) at 0ms ignition 
delay  

Flame speed=100 / (116.6-60.2) = 1.77m/s 

 

 

 

 

 

 

 

 

     0ms             60.2ms             82.2ms                   116ms             116.6ms        
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Figure 6.14: Flame speed measurement of hard wood sawdust (<63µm) at 
0ms ignition delay  

Flame speed =100 / (83.4-5) =1.27m/s 

 

 

Figure 6.15: Flame speed measurement of pinewood pellet (<63µm) at 0ms 
ignition delay 

Flame speed =100 / (85.2-4) =1.23m/s 

    0ms           5ms         60.8ms        74.2ms          82.8ms           83.4ms
      

    0ms     4ms      56.4ms        77.4ms            84.6ms    85.2ms      
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Figure 6. 16: Flame speed measurement of steam exploded wood (<63µm) 
at 0ms ignition delay 

Flame speed =100 / (89.6-5) =1.18m/s 

 

 

 

Figure 6.17: Flame speed measurement of yellow pine wood (<63µm) at 0ms 
ignition delay 

Flame speed=100 / (86.6-8.8) =1.28m/s 

 

 

   0ms           5ms      54.8ms        75.8ms         88.8ms       89.6ms      

      0ms          8.8ms           62ms         78.6ms           86ms    86.6ms      
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Figure 6.18: Flame speed measurement of Colombian coal (<63µm) at 0ms 
ignition delay 

Flame speed=100 / (119-27) =1.08m/s 

6.6  Ignition delay for the modified Hartmann tube 

At zero ignition delay, the pre-existing spark in the dispersion process ignites 

the under-developed dust cloud and the lean limits determined at this 

condition are not consistent. There should be enough time for the dust cloud 

to establish before the activation of the spark for the accurate determination 

of the MEC for the dust. 

To calibrate the modified Hartmann tube for the optimum ignition delay, it 

was first tested with Propane gas, a heavier gas which showed ~ 130 sec 

diffusion time, without any air push from the base to the spark (11cm). This 

concentration of the Propane was varied from 23ml to 17ml with a fixed 

longest ignition delay of 4 s. It was observed that all the volumes of propane 

ignited apart from the experiment using 17ml did not and this was confirmed 

by repeating this ten times. This fixed volume was admitted to THE modified 

Hartmann tube with a step ignition delay of 200ms starting from 100ms. The 

results showed that at the lower ignition delay, there was improper 

distribution of this volume of Propane in the modified Hartmann tube and it 

showed explosion due to rich localized concentration near the spark. The 

higher the ignition delay resulted the reduction in the intensity of the 

explosion with low dP/dt. This was because at higher ignition delay, the 

propane gas disperses in the tube with air and distribute uniformly in the 

entire column. A stage was reached when there is uniform local 

      0ms        27ms          46ms            119ms              119.6ms        
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concentration of the Propane in the entire column which is reported at an 

ignition delay of 4s. It was concluded that 1.7% of propane is the lower 

flammability limit as also reported in the German literature [183].  

Based on these results, it was assumed that the modified Hartmann tube 

requires an optimum ignition delay for a fixed size range dust. 

6.6.1 Tests with Propane 

First the diffusion rate of propane was found with a free flow of propane 

movements without the air injection. The quantified propane gas (that is 3% 

of the volume of modified Hartmann tube) was slowly entered from base into 

the middle of the modified Hartmann tube using 50mL syringe through a 

septum. From the base, it diffused into the stationary atmospheric air in the 

upward direction. The ignition point is located at a height of 110mm from the 

base and was activated with a short time interval. The time was recorded for 

the delay in the ignition of the propane gas (Time taken to reach the spark 

point from the bottom of the modified Hartmann tube). This time delay of 

130s is known as the time for the free diffusion of propane gas vertically 

upward in the air. Using this, the diffusion velocity was calculated as,  

Diffusion velocity of propane=110/130 = 0.85mm/s 

As the diffusion time is very large, so it was assumed that even with air 

injection, it requires enough time for the proper mixing of propane and air to 

fill up the whole tube and form a uniform mixture. It was also noted that the 

initial pressure in the tube at the time of ignition is a function of the ignition 

delay. 

Initial pressure= f (ignition delay)                                                                             [6.1] 

So a correction was applied on the calculation of the actual concentration of 

the propane burnt with a specified ignition delay. This was done using the 

following expression  

PiVi=PsVs                                                                                                                             [6.2] 

Where  

Pi=Ignition pressure at the time of the spark (measured from the P-t graph) 

Vi=Volume at the time of ignition (Volume of the modified Hartmann tube) 

Ps= Standard pressure (1.013bar) 

Vs = Standard corrected volume  
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So, volume at standard condition was found using the above equation and 

then the concentration of the propane was calculated using the following 

expression 

𝐴𝑐𝑡𝑢𝑎𝑙 % 𝑜𝑓 𝑃𝑟𝑜𝑝𝑎𝑛𝑒 =
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑃𝑟𝑜𝑝𝑎𝑛𝑒 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒
                                   [6.3] 

The different volumes of propane were tested in the modified Hartmann tube 

with a pre-existing spark until a lean limit is obtained. The lean limit of 

propane at no ignition delay was found to be 0.8% with an injection volume 

of 11ml. The pressure at ignition time with no ignition delay was observed to 

be higher than the atmospheric pressure that is corrected for the standard 

condition. Different volumes of propane, each with an increasing ignition 

delay were injected in the modified Hartmann tube (assuming no leakage of 

propane due to higher density and low diffusion rate) that lower the ignition 

pressure. A suitable ignition delay was needed for the uniform mixture to be 

formed before ignition. The injected volume varied from 10ml to 17ml with 

the variation in the lean limit found to be a strong function of the ignition 

delay. 

 

 

Figure 6.19 Effect of ignition delay on LFL of high density Propane 
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Figure 6.20 Concentration variation for fixed ignition delay of 4s 

It was revealed that the lower volume of propane from 11ml to 16ml was 

igniting with the lower ignition delay (Lean limit, 0.8% at 0ms with injected 

volume of 11ml, 0.92% at 700ms with injected volume of 12ml, 1.1% & 1.15% 

at 900ms with injected volumes of 13ml & 14ml respectively, 1.37% at 

1300ms with injected volume of 15ml and same 1.37% at 2300ms at injected 

volume of 16ml) and do not ignite with the increasing ignition delay. As, it 

can be seen in Figure 6.19, that increasing the ignition delay will increase 

the lean flammability limit for the different injected volumes. It means that for 

an injected volume, insufficient low ignition delay will ignite the local rich 

mixture of propane that is not distributed in the whole 1L modified Hartmann 

tube. So, an optimum ignition delay was necessary in the formation of unified 

mixture of propane with air for testing of its flammability limits.  

An arbitrary ignition delay of 4000 ms was selected and the same procedure 

was repeated as shown in Figure 6.20. It was observed that at this ignition 

delay, the lean limit of propane was measured to be 1.7% (injected volume 

of 17ml). Also higher injected volume than 17ml were igniting with ignition 

delays of 4000, 5000 and even at 6000 ms. So, on this basis, it was decided 

that the 4s ignition delay is the highest ignition delay for the proper diffusion 

and mixing of 17ml injected volume of propane for 1L modified Hartmann 

tube. This means that a higher injected volume than 17mL is sufficient to 
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form an ignitable mixture even if given sufficient delay time for its mixing and 

diffusion. It was confirmed by repeating the tests ten times at the ignition 

delay of 4s with the injection volume of 17ml, that this concentration of 

propane 1.7% is the actual lean limit of propane as also supported by 

German standard of gas flammability limits [183]. 

6.6.2 Polyethylene results at different ignition delays (0, 50, 100, 120 & 

150ms) 

The test performed on the modified Hartmann tube at no ignition delay 

showed that the minimum explosible concentration of the high molecular 

weight (53-75 microns) Polyethylene was 7.4g/m3 (equivalence ratio=0.09) 

as shown in Figure 6.21. The minimum explosible concentration for an 

ignition delay of 50ms was found to be around 14.8g/m3 (equivalence 

ratio=0.18). Also the peak rate of pressure rise for 50ms ignition delay was 

higher than that at no ignition delay but as the concentration is approached 

towards the minimum explosible concentration, the rate of pressure rise for 

50ms fell below than the rate of pressure rise at no ignition delay. This high 

peak rate of pressure rise was probably due to the higher turbulence level. 

For the higher ignition delay of 100 and 120ms, the minimum explosible 

concentration was measured to be same 14.7 g/m3 but the peak rate of 

pressure rise dropped significantly. This might be due to turbulence decay of 

some proportion of mass. For further high ignition delay of 150ms, minimum 

explosible concentration was increased to 29.6g/m3 (Equivalence=0.37) with 

small rate of pressure rise. This very higher ignition delay resulted in a higher 

turbulence decay and most of the particles were believed to be burnt during 

the settling stage. 

The reported values of the Polyethylene dust has a lower flammability limit 

of 20 g/m3 (Equivalence ratio=0.25). As our criteria for minimum explosible 

concentration was based on the concentration with 0% ignition probability for 

the three consecutive tests. So, based on this, the optimum ignition delay 

was measured to be 50-120ms for Polyethylene dust (See Appendix K).           

Figure 6.22 shows the position of the spark on the pressure time plot of 

Polyethylene dust for different ignition delay timings. It was observed that for 

no ignition delay, the spark activates before dispersion of the dust and the 

dust cloud propagates in the tube through the pre-existing spark. It was 

observed that for 50 ms ignition delay, the spark appears in the 

underdeveloped dust cloud propagating in the tube having high turbulence 

with more steep peak. It was found that for 100 and 120 ms, spark appears 
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after the dust cloud is almost fully dispersed at the reflection point of the 

pressure time curve and the later rise of pressure was due to explosion. It 

was noted with further increase of the ignition delay (to 150 ms) that the 

pressure drops slightly after achieving the maximum before the appearance 

of spark. It was concluded that a suitable ignition delay was necessary for 

the determination of the flammability characteristics however, the ignition 

delay is a function of physical properties of the dust and especially particle 

size. For the higher particle size, it takes longer to evolve enough volatiles 

to sustain flame propagation as will be demonstrated later. Flame 

propagation of fine sized pine wood and thermally treated pine was also 

studied photographically for ignition delay (See Appendix L) that showed 

more luminous flame for an ignition delay of 120ms.  

 

 

Figure 6.21 Effect of ignition delay on the lean limit of Polyethylene dust 
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Figure 6.22 Position of spark on Pressure time curve for varying ignition 
delays  

Different biomass samples were tested for different ignition delays on the 

modified Hartmann tube as shown in Figure 6.23. Most biomass samples 

showed slightly higher minimum explosible concentration at 50ms except 

Lycopodium compared to 0ms ignition delay. For further higher ignition 

delay, polyethylene and walnut shell showed consistent lean limit till 120ms 

independent on ignition delay, however lycopodium, pistachio nut shells and 

corn flour were measured to explode at much higher concentration giving 

higher minimum explosible concentrations. So, based on these results, it 

was concluded that lean flammability concentrations are very lean for 0ms 

ignition delay due to burning of the stratified mixture as was also revealed by 

flame propagation of Propane. MEC increased to a slightly higher 

concentration at 50ms for most of the dust. This ignition delay of 50ms 

showed the higher turbulence level as shown in Figure 6.21 for polyethylene 

and Figure 6.22 through spark position. For higher ignition delays, different 

dusts reacted differently depended on their physical properties (Figure 6.23). 

As some CFD modelling work on the modified Hartmann tube also revealed 

the optimum ignition delay in the range 60-120ms for combustion of uniform 

ID=0ms ID=50ms ID=100ms 

ID=120ms ID=150ms 

Spark 
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dust cloud [184-186], so it was concluded that optimum ignition delay for 

modified Hartmann tube is 50ms or above but smaller than 120ms as there 

will be decaying of turbulence after this ignition delay.  

6.7 Particle distribution of fine and coarse sized fractions in the 

modified Hartmann tube for 0 and 120ms ignition delays 

Distribution of fine and coarse sized fractions of bagasse were also analysed 

as shown below. Fine <63µm and coarse 150-300µm samples of bagasse 

were ignited at 0 and 120ms ignition delays. For 0ms ignition delay, pre-

existing spark can be observed before the dispersion of dust in the tube. The 

fine size fraction of bagasse was dispersed uniformly and ignited with less 

time delay due to instantaneous release of volatiles as shown in Figure 6.24 

and 6.25. Similarly this instantaneous burning showed a more glaring flame 

for the fine size fraction. It was found that for 0ms, the underdeveloped dust 

cloud was igniting. For coarse size fraction of bagasse, there was an 

irregular flame with more stratified burning as shown in Figure 6.26 and 6.27. 

Bigger particles were observed to glare independently due to local burning 

of volatiles. Bigger particles travelling faster resulted more delay for 

combustion at 0ms as the volatiles consumed locally without building up 

flame (Figure 6.26). The developed cloud at 120ms, showed less delay time 

and the appearance of the spark resulted the evolution and burning of this 

cumulative volatiles (Figure 6.27). 

Turbulent flame speeds for fine and coarse size bagasse dust at 0 ms and 

120 ms ignition delays were measured using frame to frame analysis in the 

photographic study as shown in Figures 6.24-27.  
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Figure 6.23: MEC vs. ignition delay for different biomass dust 

 

Figure 6.24: Distribution of fine sized bagasse particles in the modified 
Hartmann tube at 0ms ignition delay  

Dust           Propagation             Max. solid    Vent rupture           Burnt  
introduction                              distribution             mixture 

Timings from activation of spark 

   0ms                   14.8ms    67.4ms             69.6ms           
180.4ms  
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Figure 6.25: Distribution of fine sized bagasse particles in the modified 
Hartmann tube at 120ms ignition delay 

 

Figure 6.26: Distribution of coarse sized bagasse particles in the modified 
Hartmann tube at 0ms ignition delay 

Dust                 Propagation      Max. solid        Vent rupture       Burnt 
introduction                         distribution                                  mixture 

Timings from introduction of dust 
0ms  17ms                  80ms                 91ms                    94ms 

    Dust               Propagation     Max. solid      Vent rupture           Burnt  
introduction                                distribution             mixture  

Timings from activation of spark 

 0ms            55ms                   420ms              1056ms           
1273ms  
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Figure 6.27: Distribution of coarse sized bagasse particles in the modified 
Hartmann tube at 120ms ignition delay 

6.8  Aerosol combustion in the modified Hartmann tube 

The modified Hartmann tube for dust explosions was also used to investigate 

flame propagation in liquid aerosols as there is no developed methodologies 

so far for the measurements of explosibility properties of aerosols. It was 

considered that this equipment could be modified for use with liquid fuels, as 

there is no agreed methodology for measuring flame propagation properties 

of liquid aerosols. The 7 barg air pressure generates a sonic flow of the air 

and it was considered that if this impinged on a small liquid pool of aerosol 

in the dispersion cup of the modified Hartmann tube, then it would easily 

atomise the fuel in the same way that air blast atomisation works. However, 

when this was experimented with the air jets, if simply smeared the liquid 

over the surface of the mushroom shaped cup and did not atomise the liquid.  

It was decided that the sonic air flow had to pass through the liquid and direct 

it vertically to generate the shear mechanism that occurs in air blast 

atomisation. Consequently the mushroom shaped cup at the base of the 

modified Hartmann tube that directs the air onto the dust, was removed and 

the liquid for the test was inserted directly into the air jet supply tube. This 

tube had a 90o bend downstream of the solenoid valve that controlled the 

Dust                      Propagation      Max. solid         Vent rupture           Burnt 
introduction                             distribution                           mixture  

Timings from introduction of dust 
0ms                          13ms                   93.6ms                  191ms                192.6ms 
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start of the air flow. The liquid sat at this bend and directed air blast dispersed 

it in the Hartmann Perspex tube in the form of tiny droplets. 

The procedure for investigating liquid aerosol explosions discussed above, 

was shown to work provided that the amount of diesel necessary to be 

flammable was carefully calculated and injected into the test. The procedure 

was to calculate the stoichiometric quantity of diesel using a typical diesel 

H/C of 1.9 which gives a stoichiometric A/F of 14.3. The mass of air after 

injection of the compressed air and before the vent burst is 1L at 1.35 bara 

and at atmospheric temperature, taken as 293K, is 1.605g and thus 0.112 g 

of diesel is required. Using a diesel density of 820 kg/m3 this is 0.137 x 10-6 

m3 of diesel or 0.137 mL. An accurate digital pipette was used to inject this 

quantity and to vary the equivalence ratio. The result was a very violent 

explosion for initially cold liquid diesel. This explosion was more violent than 

any dust explosion for coal or biomass or food products carried out on dust 

explosions. 

The results are shown in Figure 6.28 for the lean side of stoichiometric. If the 

aerosol behaved as a premixed gas then a lean limit at 0.45 of stoichiometric 

would be expected using the European definition of flammability. The 

explosion tests at 0ms ignition delay showed the lean flammability limit of 

diesel as low as 0.15 in terms of equivalence ratio. Later, the actual lean limit 

of around equivalence ratio 0.45 was tested for varying ignition delay. It was 

found that the actual lean concentration did not explode at 70ms ignition 

delay for three repeat tests and propagated a weak flame at 60ms. So, the 

optimum ignition delay for aerosol combustion was measured to be 70ms 

based on no explosion for the three repeated tests. This ignition delay is well 

in the range of optimum ignition delays of fine solid dusts.  

Photographic studies shown in Figure 6.29 and 6.30, using high speed 

videos, revealed that the ignition of stoichiometric mixture of diesel is much 

stronger and luminous in comparison to the one near to lean concentration 

with the pre-existing spark. Also stoichiometric combustion of diesel aerosol 

propagated the flame quicker with vent rupture at less time delay compared 

to lean concentration. It was also found that for 0ms ignition delay, stratified 

mixture of diesel was burning with various zones of high and low luminosity 

that also support the use of optimum ignition delay for aerosol combustion.  

Further work was proceeded at 70ms ignition delay that was supposed to be 

the optimum ignition delay. The concentration was increased starting with 

lean concentration of 0.45 in terms of equivalence ratio. Unfortunately, the 
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increasing concentration of diesel did not support explosion until an 

equivalence ratio of 1.5 ignited mildly. Probably this ignition delay was higher 

as there was direct air blast without mushroom shaped cup. It was 

considered that the ignition delay of 60ms might have been considered 

giving weak ignition of actual lean mixture. This work had to stop due to 

ongoing building construction but will be commenced in future. 

A rich concentration was also tested that showed a delay in explosion for 

increasing concentration that was assumed due to cool flame mechanism 

(See Appendix L).  

Specific proportion of coal diesel mixtures has proved to act as two in one 

fuel with high % volatile (See Appendix G) assisting efficient burning that will 

be studied later as future tasks. 

 

 

Figure 6.28: Reactivity of diesel aerosol for different ignition delays based on 

rate of pressure rise  
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Figure 6.29: Flame propagation of stoichiometric concentration of diesel in 

modified Hartmann tube 

 

Figure 6.30: Flame propagation of lean concentration of diesel in modified 

Hartmann tube 

 

    0ms       4.7ms        5.2ms         6.1ms      6.8ms        7.3ms       9.8ms 

Vent rupture 

  0ms        1.7ms       7.3ms        9.7ms     10.1ms      10.9ms      12.1ms 

Vent rupture 
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6.9 Conclusion 

From the experimental work on the modified Hartmann tube, it was 

concluded that particle size is an important parameter in the determination 

of the reactivity of solid biofuels. Based on the experimental results, it was 

concluded that the fine particles actively take part in combustion with instant 

release of volatiles in contrast to coarse particles. Flame propagated through 

the dust cloud of fine particles with less time lag. Peak reactivity was 

measured to be near stoichiometric concentration that shifts to rich 

concentration for coarse size fraction. The greater the size of the particles, 

the richer the concentration for peak reactivity. Increase in the particle size 

reduced the reactivity due to retardation of fast release of volatiles. The 

presence of fines with coarse particles facilitated the flame propagation. The 

presence of inert in the biomass especially for agricultural waste, 

counterbalance the effect of fine particles in enhancing the reactivity. 

Reactivity of solid fuels is also a strong function of ignition delay as the 

inappropriate ignition delay results the combustion of a stratified mixture of 

dust cloud. This work has demonstrated for the first time that an optimum 

ignition delay of 4s was necessary to achieve the actual lean flammability 

limit of propane. It was found using standard polyethylene dust along-with 

other biomass dusts, that an optimum ignition delay 50ms or above was 

suitable to ignite the dispersed cloud having higher turbulence. The 

distribution of particles and the ignition of fine particles in comparison to 

coarse was also monitored frame by frame using high speed camera that 

showed uniform and luminous flame propagation of fine and irregular and 

stratified local burning for coarse fraction. Aerosol fuels were also tested with 

some modification in the dispersion scheme of the modified Hartmann tube 

as there is no existing developed methodology for testing of aerosols flame 

propagation properties. Diesel propagated the flame with high rate of 

pressure rise but resulted the similar problem of stratified burning giving 

ultra-lean limit. Flame propagation was compared for stoichiometric and lean 

concentration showing efficient and luminous burning of stoichiometric 

mixture with higher time lag for lean mixture. More work is needed to study 

the flame propagation of aerosol with the determination of optimum ignition 

delay. 
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Chapter 7 EXPLOSIBILITY CHARACTERISTICS OF RAW 

AND TREATED BIOMASS SAMPLES USING MODIFIED 

1m3 VESSEL 

Tests were performed on the modified ISO 1 m3 vessel. Bagasse and wheat 

straw samples of very fine size of smaller than 63µm were tested using a 

small calibrated spherical grid disperser that was able to effectively disperse 

this size fraction. Rice husk crop residue with adequate amount was split into 

different sieve sizes to study the effect of particle size on the explosibility 

characteristics. Calibrated hemispherical cup with a drilled pipe was used to 

disperse the varying size fractions. Two more residues (corn cobs and 

peanut shells) for mixed fine and coarse sized particles with sieve size 

smaller than 500µm were tested using the same hemi-cup disperser. Steam 

exploded pine wood was also split into different sized fractions to study the 

effect of particle size along with the steam explosion treatment. Lastly, the 

very coarse fractions of SPF wood mixture and its torrefied sample of very 

coarse sieve size of smaller than 1000µm were tested. Experimental results 

showed that biomass residues have high fire and explosibility hazards in 

their handling. Sensitivity of explosion increased with the lowering of particle 

size. Post explosion samples were also analysed in detail that showed 

almost same characterisation of the fine fractions but a small variations in 

the coarse fractions chemical characterisation.   

7.1  Explosibility characteristics of 2nd generation agricultural wastes 

sourced from Pakistan 

Pakistan is a country with almost 2/3rd of its population involved in agricultural 

sectors. This agricultural sector accounts of around 21% of country’s GDP 

[187] and around 20 % of their export [188]. The agricultural sector generates 

large amount of surplus residues that can be employed for rural 

developments. These dispersed residues are priceless fuel for small and 

medium sized power generation plants. The only investment needed on 

manpower to collect, transformed these residues into large bales and 

transported to a common point. Small power industries within 10 km radii for 

collecting of these residues as their feedstock are an efficient and 

economical power cycle. There are four major crop residues in the country 

that have the potential to fulfil more than 50% of country’s energy demand 

based on 2014 energy requirement [189]. However, these biofuels have fire 

and explosibility hazards associated with them. Measurements of 

explosibility characteristics will help in proper designing of safety instruments 

to undercover these hazards for safe working environment.  
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7.1.1 Reactivity of fine samples of sugarcane bagasse and wheat 

straw  

7.1.1.1 Turbulent flame speed and laminar burning velocity 

The average flame speed for bagasse and wheat straw in comparison to the 

two coal samples is shown as a function of the burnt dust equivalence ratio 

in Figure 7.1. The range of mixtures investigated for wheat straw was less 

than that of bagasse because less wheat straw material was sent from the 

source in Pakistan. The maximum turbulent flame speeds were determined 

as 3.8m/s and 3.0m/s for bagasse and wheat straw dusts respectively, 

showing that bagasse was more reactive than wheat straw. The reason for 

this is the higher volatiles, higher hydrogen and lower oxygen content of 

bagasse compared with wheat straw, as shown in the chemical 

characterisation.  

If the two biomasses are compared at the same burnt equivalence ratio, such 

as at Ø = 1 in Figure 7.1, then the flame speeds are the same at 3.0 m/s. 

Bagasse has an increase in reactivity relative to wheat straw only for rich 

burnt equivalence ratios. Figure 7.1 shows that selected samples have the 

comparative peak flame speed as Kellingley coal but lower than the flame 

speed of Colombian coal. The main reason was the higher ash contents in 

the biomass samples that acted as inert solid mass in suppressing the flame 

propagation. Colombian coal had the lowest ash content and the highest CV 

of all four fuels and this was part of the reason, it was most reactive. The 

similar flame speeds of the two biomass samples with Kellingley coal, in spite 

of the much lower CVs, indicates that the fuel CV is not the determining factor 

in the flame speed.  

The peak flame speed for wheat straw dust was at an equivalence ratio of 

stoichiometric (Ø=1), but for bagasse dust and both coal samples it was at 

Ø ~2.0. This is difficult to explain as for wheat straw there was a clear 

reduction in the flame speed for burnt dust equivalence ratios >1, as 

expected for gas explosion flame speeds [110]. However, the wheat straw 

results are more unusual as most dusts continue to have high reactivity for 

rich mixtures as for bagasse and the two coal samples in this work [24, 73]. 

The occurrence of a high reactivity for rich dust/air mixtures was not 

commented on until this was pointed out by Andrews and Phylaktou (2010), 

as explosion results had never previously been expressed in equivalence 

ratio terms.  
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Figure 7.1 Flame speeds of Bagasse (B) and Wheat straw (WS) in 

comparison to Kellingley coal (K Coal) and Colombian coal (C Coal) as a 

function of the burnt equivalence ratio, Ø. 

A possible explanation of this phenomenon is the action of the explosion 

induced wind ahead of the flame on dust particles that have a wide size 

distribution. This is the case in the present work and it was shown above that 

the size range for both agricultural dusts ranged up to 400 µm for d90% with 

some particles larger than this. The flame speeds of about 3 m/s will have 

an unburnt gas velocity ahead of the flame of about 2.7 m/s, due to the 

expansion of the burnt gases. This gas velocity will entrain the particles 

ahead of the flame. The fine size particles will travel with the gas velocity 

ahead of the flame and eventually some will be compressed on the wall. 

These finer particles will propagate the initial flame front. However, the larger 

particles will lag the gas velocity due to drag effects and eventually these will 

be overtaken by the flame front. These large particles will then be flash 

heated by the burnt gases and as the mixture is rich, these large particles 

will be gasified releasing CO and hydrogen and the expansion of these 

gases on release will increase the pressure. High CO in the burnt gases for 

rich walnut shell dust explosion was measured by Sattar et al. (2012b). There 

is insufficient oxygen for these gasification gases to be burnt. The richer the 

mixture, the more large particles are gasified behind the flame front and 

hence the flame speed keeps increasing due to volume release and 



-195- 
  

expansion of gasification gases from the large particles. It is shown below 

that a consequence of this is that the peak pressure remains high for all the 

rich mixtures tested. However, the reason for the flame speeds to be reduced 

for wheat straw cannot be explained if this is the mechanism for bagasse. It 

will be shown below that the other reactivity parameter, Kst, does not support 

the reduction in reactivity for rich mixtures shown by the flame speed 

measurements for wheat straw. 

The laminar burning velocity of the pulverised dust/air mixtures may be 

determined [110] from the turbulent flame speed. The laminar flame speed 

is first determined by using the calibrated turbulence factor (β= 

turbulent/laminar flame speed ratio) for the spherical flame injector, which 

was calibrated at β = 4.0 [82]. The laminar flame speed can then be used to 

determine the laminar burning velocity by dividing the flame speed by the 

constant pressure expansion ratio, E. In the present work this was taken as 

the measured Pm/Pi as advocated by Cashdollar (1996) [171]. These results 

are shown in Figure 7.2 and show very low laminar burning velocities that 

would be very difficult to measure without the turbulence in these 

experiments, as the flame would be strongly influenced by buoyancy, as for 

gas explosions with these low laminar burning velocities [190].  

The low reactivity of the biomass and coal dusts relative to gases is easily 

seen by comparing the values of the turbulent flame speeds in Figure 7.1 

with the laminar flame speeds of methane air, which has a peak value of 

about 3.0 m/s in large vessels, as used in the work [102]. The present 

turbulent flame speeds are only just higher than the laminar flame speeds 

for hydrocarbon-air gas explosions. With a turbulence factor of 4 for the 

calibrated small spherical disperser, this gives laminar flame speeds roughly 

¼ those of hydrocarbon-air mixtures.  

In pulverised coal burners, the air is preheated to about 600K using an 

exhaust heat exchanger and the laminar burning velocity increases as the 

square of temperature [191]. This gives a factor of 4 increase in the burning 

velocity at 600K compared with 300K. Thus the turbulent flame speeds in 

Figure 7.1 will be close to the laminar flame speeds at 600K. 
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Figure 7.2 Variation of the laminar burning velocity with Øburnt of bagasse (B), 
wheat straw (WS), Kellingley coal (K Coal) and Colombian coal (C Coal) 

7.1.1.2 Heat Release Rate per Flame Area, MW/m2 

The maximum heat release rate of these crop residue dusts was determined 

using Eq. 7.1 [168]. 

𝐻𝑅𝑅 (
𝑀𝑊

𝑚2
) =

(𝑆𝑓𝑡.𝜌𝑢.𝐺𝐶𝑉)

𝐸(1 + 𝐴
𝐹⁄ )

                                                                                      [7.1]  

Where Sft= Turbulent flame speed (m/s), ρu= density of air (kg/m3), GCV= 

Gross calorific value (MJ/kg), E= Expansion Ratio and A/F=Air to fuel ratio 

by mass.  

The expansion factor E, is the unburnt gas to burnt gas density ratio at the 

constant pressure of the flame speed measurements. However, dust flame 

temperature and density are not easy to calculate with ash and water present 

and the constant volume expansion ratio is often used for E, which is 

measured by Pmax/Po values [171].  

The HRR results are shown in Figure 7.3 which shows that the HRR 

increases with burnt gas equivalence ratio and continues to increase in the 

rich region. This is mainly driven by the flame speed measurements in Figure 

7.1 which continue to go faster for rich mixtures. There is no decrease in the 

flame speed or HRR in the rich region as would occur for rich gaseous 

mixtures. For 20% excess air, the heat release rate for the biomass fuels 
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was 1.5 MW/m2 for bagasse and 1.7 MW/m2 for wheat straw, compared with 

2.5 – 4 MW/m2 for the two coal samples. For the stoichiometric Øburnt, the 

biomass HRR was about half of that of coal for the same turbulence level. 

This difference in HRR/m2 arises from differences in the turbulent flame 

speed, expansion ratio, stoichiometric A/F and CV in Eq. 7.1. The lower CV 

and stoichiometric A/F for biomass compared to coal roughly cancels out in 

Eq. 7.1 and the main differences in HRR were due to flame speed and 

expansion ratio differences. 

The peak heat release rate for the biomass fuels was 3.8 MW/m2 for bagasse 

and 2.3 MW/m2 for wheat straw, compared with 6.5 – 7 MW/m2 for the two 

coal samples. However, the peak heat release for both coal samples 

occurred at a leaner mixture than for the biomass samples. This is likely to 

be due to the lower volatile fraction and the lower release of gasification 

products for rich mixtures with coal. Coal has to gasify carbon or char which 

requires a high residence time, whereas biomass is predominantly gasified 

volatiles from the particles, as chemical characterisation shows a much lower 

fixed carbon in biomass particles.  

 

 

Figure 7.3 Heat release rate as a function of burnt equivalence ratio for crop 
residue dusts 
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The values of HRR in Figure 7.3 are in the range of existing coal furnaces 

with 20% excess air, where 1-5 MW/m2 is typical [9, 192] which are lower 

HRR than the current peak HRR measurements for the two coal samples, 

but similar to their values for 20% excess air. Thus, it may be concluded that 

the turbulence conditions and turbulence flame propagation rates in the ISO 

1 m3 vessel are comparable with those for conventional coal plants for the 

same equivalence ratio. Although the two biomass results have a lower HRR 

than coal but their values are within the range that current coal combustion 

plants operate. Hence, biomass should be capable of being using as an 

alternative fuel without major changes to the coal combustion equipment. 

The lower HRR for biomass will result in pulverised flames with a longer 

flame and this has been observed on pulverised coal power plants retrofitted 

for biomass combustion (personal communication Drax power station). 

7.1.1.3 Minimum Explosible Concentration (MEC) 

The lean flammability limit, LEL, or minimum explosible concentration, MEC, 

for dusts in the ISO 1 m3 spherical explosion vessel has been conventionally 

determined on the basis of the injected concentration. When about 50% of 

the mixture does not burn it is clear that the injected concentration is not the 

appropriate concentration to base the MEC. Also the ISO procedures for 

MEC determination only require the following concentrations to be 

tested: ….1000, 750, 500, 250, 125, 60, 30 and 15 g/m3. The MEC is defined 

as the dust concentration that does not explode. Thus, if say 60 g/m3 

explodes and 30 g/m3 does not then the MEC is 30 g/m3 and there is no 

requirement in the standards to test intermediate concentrations. This is why 

tables of MEC for dusts have lots of materials with MEC of 60 or 30 g/m3 

[73]. This is a poor accuracy procedure and it is not sensible to have such a 

crude method for the determination of MEC for dusts.  

In the tube method for the determination of gas/air flammability limits, the 

LEL should be determined with a resolution of 10% of the LEL for gaseous 

concentrations >2% or 0.2% for concentrations below this [97]. The 

concentration gap that was tested with no ignition should be within 10% of 

the last positive ignition. The standard essentially sets the LEL at up to 10% 

below the concentration that had a measured flame propagation. In 

equivalence ratio, Ø, terms where for hydrocarbon –air mixtures the lean limit 

is about Ø = 0.5, the resolution of this limit is Ø < 0.05. Most reported LEL 

for gases resolve the lean limit better than this and normally report to 0.01Ø. 

In dust concentration terms the 0.05Ø resolution for a pure hydrocarbon dust 
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such as polyethylene is 4 g/m3 and for a cellulose or biomass type dust with 

a stoichiometric A/F ratio of 6/1 by mass (200 g/m3) it would be a resolution 

of the MEC to 10 g/m3, with normally better resolution than this [97]. This is 

a much better resolution of the MEC then is required in the legislated dust 

explosion MEC procedures. In the present work the MEC was determined 

as the leanest mixture that just did not explode. 

The determination of the mixture concentration at the lean flammability limit 

is difficult in the ISO 1 m3 vessel as in addition to the unburnt injected dust 

there is additional unburnt material due to the convective rise of the flame 

kernel near the lean limit [190], which leads to a combustion inefficiency loss 

of particulate material. The procedure of deducting the mass of residue from 

the injected mass would result in an extremely lean concentration at the 

MEC. Sattar et al. (2012a, b) introduced a procedure where the fraction of 

the dust that burnt at the maximum reactivity was assumed to be the fraction 

that burnt at all mixtures if there was no buoyancy. This procedure was used 

in the present work and on this basis it was found that bagasse dust had a 

lean limit at the burnt equivalence ratio of 0.22Ø and wheat straw dust had 

MEC of 0.29Ø, as shown in Figs. 7.1 and 7.3. The leaner MEC for bagasse 

is a further indication that bagasse was more reactive than wheat straw. 

These lean limits are in good agreement with other woody biomass dusts 

and are much lower than for the coal and hydrocarbon dusts [91]. 

The MEC for bagasse and wheat straw were also determined before using 

the modified Hartmann equipment [17]. This gave the lean limit as 0.22Ø for 

bagasse and 0.35Ø for wheat straw (for <63µm samples). For materials with 

a low ash and water content, such as corn cobs and peanut shells, the MEC 

was close to 0.2Ø, as found in the present work for bagasse and wheat 

straw. The MEC for bagasse and wheat straw for the modified Hartmann 

equipment was correlated with other results as a function of water and ash 

inert mass in the dusts [17]. The present MEC results for bagasse and wheat 

straw are compatible with those previously measured on the modified 

Hartmann equipment. For dusts, such as the present agricultural residues 

with high ash content, Bartknecht (1993) has shown that the lean 

flammability limits for gases and low reactivity dusts are sensitive to the 

ignition energy, with high ignition energy giving a leaner MEC [113]. 

However, more work is required on a more reliable method of determining 

the MEC as both the current methods have experimental errors [193]. 
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7.1.1.4 Deflagration Parameter, Kst 

The deflagration parameter, Kst = dP/dtmaxV1/3, is shown in Figure 7.4 (a) as 

a function of the burnt equivalence ratio. Figure 7.4 (a) shows that Kst was 

higher for bagasse dust in comparison to wheat straw dust, in agreement 

with the flame speed results. The bagasse Kst results were still increasing at 

Øburnt of 2.5, whereas the flame speed in Figure 7.1 had levelled out at Øburnt 

= 2.5. Thus it is not clear whether the maximum reactivity Øburnt had reached 

its maximum value. For wheat straw dust Figure 7.4 (a) shows that Kst was 

very similar to that of bagasse up to an Øburnt of 1, but that for richer mixtures 

Kst was lower for wheat straw than bagasse and reached a peak Kst of 82 at 

Øburnt of 1.5. At this Øburnt bagasse had a Kst of 90 and was still increasing to 

its maximum of 103 at Øburnt of 2.7.  

However, the limited amounts of pulverised wheat straw dust restricted to 

operate with richer mixtures and confirm that a Kst of 82 was the maximum 

value. Similarly the comparison with coals has the same trend as that of 

flame speed. Wheat straw dust had a similar Kst to Kellingley coal. The peak 

Kst for bagasse and Colombian coal were at the same burnt equivalence 

ratio, but Columbian coal had a significantly higher peak Kst at 129 compared 

to 103 bar m/s for bagasse. 

 

 

Figure 7.4 Reactivity of the selected residues in comparison to Kellingley 

coal (K Coal) and Colombian coal (C Coal) (a) Kst vs. burnt equivalence ratio 

(b) Pm/Pi vs. burnt equivalence ratio 

 

a b 
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The ratio of the maximum pressure to the initial pressure is shown in Figure 

7.4 (b) as a function of the burnt equivalence ratio. This is the measured 

expansion ratio for constant volume combustion that has been used in the 

laminar burning velocity determinations discussed above. The ratio was 

slightly higher at 8.8 for bagasse dust than wheat straw dust, where the peak 

was 8.5. However, for both dusts the peak pressure occurred at the same 

Øburnt of 1.5. The higher peak pressure rise indicates that bagasse had a 

higher flame temperature than wheat straw and this would be expected as 

chemical characterisation shows that the measured calorific value and 

volatile content was higher for bagasse and the ash content lower. Both 

these agricultural residues and coals have a good comparison for Pm/Pi; 

however there was more mass burning and higher Pm/Pi for agricultural 

residues in comparison to coals. 

The turbulent flame speed and Kst are both parameters that measure the 

mixture reactivity and should be linearly correlated [24]. Kst is shown as a 

function of the measured turbulent flame speed in Figure 7.5. The level of 

agreement is relatively poor, but there is a correlation (R2=0.85-0.95). For 

wheat straw for example there are three data points with Kst 75 – 82 bar m/s, 

but with a wider variation of the turbulence flame speed of 2.2 - 3 m/s. 

 

 

Figure 7.5 Correlation of Kst and turbulent flame speed of bagasse (B), 
wheat straw (WS), Kellingley coal (K Coal) and Colombian coal (C Coal) 
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A curious feature of the bagasse results was that for mixtures richer than 

Øburnt of 1.5, Pm/Pi decreased as Øburnt increased whereas Kst continued to 

increase. The peak flame temperature was at Øburnt = 1.5 as that was where 

the peak pressure occurred. The model given above can explain these 

results. This is that large particles lag behind the flame front and are 

pyrolysed in the burnt gases and this heating reduces the burnt gas 

temperature and the pressure falls. The rich mixture has no oxygen and thus 

gasifies the large particles releasing CO and H2. The sudden volume 

expansion of these pyrolysed large particles results in an increase in the 

peak rate of pressure rise and hence in Kst. The increased mass into the 

burnt gases without heat release cools the burnt gases and the peak 

pressure falls.  

7.1.1.5 Particle Size Distribution and SEM Analysis 

Although all the particles in the present work were sieved below 63µm the 

laser scatter method of particle sizing showed that there was still a 

significantly wide size distribution, as shown in the volume size distribution 

in Figure 7.6. Both figures compare the raw biomass size distribution with 

that of the residue left after the explosions. The bagasse particle size was 

slightly lower than wheat straw, which would be a further reason for the 

reactivity to be higher. There were reduced fines in the biomass residues, 

but this difference was insufficient to conclude that the flame had propagated 

only in the fines. The mean size distributions for10%, 50% and 90% of the 

size distribution are shown in Table 7.1. The size distribution for the two coal 

samples are also shown in Table 7.1 and these shows that coals were much 

finer fractions than all the biomass samples. 

The size distributions in Figure 7.6 and Table 7.1 show that in spite of sieving 

to <63µm the biomass particles were relatively coarse and only the coal 

particles were substantially below the 63µm sieve size. This implies that the 

biomass particles were long cylinders with a diameter <63µm but a length 

greater than this, whereas the coal particles were more cubic. SEM analysis 

of the biomass particles, as shown in Figure 7.7 for the raw biomass and the 

residues, show that there were many large particles that were long cylinders. 

The laser light scattering particle size method interprets these as spheres of 

equivalent light scatter. The SEM analysis in Figure 7.7 shows little 

difference between the raw biomass and the biomass residue after the 

explosion. This also shows that the residue was predominantly the original 

material with a similar size distribution. 
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Table 7.1: Mean Size of the biomass (bagasse, wheat straw), their post 

explosion residues and coal samples 

 

 

Figure 7.6 PSD of selected crops and their post explosion residues Left: 

Bagasse dust (B) & Right: Wheat straw dust (WS) 

 

 

 

 

Sample d (10%) d (50%) d (90%) d3,2 d4,3 

 µm 

Bagasse 24.3 125.6 356 70.2 201.5 

Wheat straw 18.8 126.1 441.5 78.0 213.4 

Bagasse residue 35.0 150.8 408.9 73.9 193.3 

Wheat straw residue 35.6 154.9 464.5 72.0 209.0 

Colombian Coal 6.8 28.1 85.2 14.7 40.1 

Kellingley Coal 5.0 25.5 65.3 12.0 30.9 
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Figure 7.7 Surface morphology comparison of crop residue samples and 
their post explosion residues 

7.1.1.6 Elemental and Proximate analysis of post explosion residues 

in comparison to their raw 

As shown in table 7.2, the chemical characterisation of the post explosion 

residues in comparison to raw samples were compared. It was found that 

post explosion residues have around same elemental proportions in terms 

of percentages with slight decrease of hydrogen contents. Also the TGA 

proximate analysis showed decrease of volatile due to corresponding 

increase of fixed carbon or ash in the post explosion residues. This slight 

variation of the chemical characterisation in the post explosion residues was 

due to the inclusion of ash/fixed carbon due to burnt mass proportion.  

As a conclusion based on these results, lean flammability limits for these 

crop residues were lower at 0.2-0.3Ø compared with gaseous hydrocarbons. 

Peak turbulent flame speeds were 3-4m/s and Kst were 82 and 103 bar m/s. 

These reactivity parameters were similar to those for woody biomass and 

similar to two coal samples. These crop residues can be used for the 

generation of electricity in pulverised flame power plants after some pre-

treatments. 

a) Bagasse                               b) Post explosion residue 

c) Wheat straw                         d) Post explosion residue 
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Table 7.2: Chemical Characterisation of raw bagasse and wheat straw in 

comparison to post explosion residues  

 

7.1.2 Explosibility characteristics of coarse fraction of corn cob and 

peanut shell<500µm 

Two crop residues ‘Corn cob’ (CC) and ‘Peanut shell’ (PS) were investigated 

as they are typical of waste agricultural products in Pakistan. These 

agricultural residue samples were milled at source in Pakistan and it was this 

milled sample that was used in the explosions after sieving to <500µm. 

These coarse agricultural wastes were compared with fine milled <63µm 

coal samples and this is the main reason that these coals were 

comparatively more reactive as is shown in the results. 

Biomass Bagasse 

(B) 

Post 

explosion 

residue B 

Wheat 

straw 

(WS) 

Post 

explosion 

residue 

WS 

% C (dry) 43.6 45.0 38.2 31.3 

% H (dry) 5.7 4.6 4.9 3.2 

% N (dry) 1.0 0.9 1.0 0.8 

% S (dry) 0.1 0.0 0.1 0.0 

% O (dry) 28.0 31.4 31.3 23.1 

% H2O  7.2 2.3 6.8 3.6 

% VM (daf.) 92.3 78.4 86.2 73.5 

% FC (daf.) 7.7 21.7 13.8 26.4 

% Ash 20.1 17.6 22.8 40.1 

CV (MJ/kg)  15.6  - 14.5  - 

Stoich. A/F (g/g) 7.5 6.6 6.3 6.4 

Actual stoich. 

conc. (g/m3) 

221.1 226.8 272.2 334.6 
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7.1.2.1 Chemical characterisation of post explosion residues of coarse 

corn cob and peanut shell in comparison to their raw samples 

Table 7.2 shows the elemental and TGA analysis of the post explosion 

residues for the most reactive concentration, in comparison to their 

respective raw samples. For the corn cob residues the composition was very 

close to the original raw material for all parameters measured. In contrast 

the residues from the peanut shell dust explosions were significantly 

different. The biggest difference was the increase in ash, which is expected 

as the ash from the material that burns should accumulate with the residue 

alongside the material injected that did not burn. If only about 50% of the 

original material burns then the ash in the deposits should be about double 

that in the raw material and this occurs for the PS residues. The lack of an 

increase in ash for the CC is difficult to explain, apart from being a fly ash or 

measurement error. The PS residues had a significant decrease in volatiles 

and increase in fixed carbon together with a decrease in O content. This 

indicates some low temperature pyrolysis has occurred, with similar results 

to torrefaction. Why these two biomass behaved differently is not known. 

However, the post explosion residue is concluded to be predominantly the 

same as that of raw biomass. 
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Table 7.3: Chemical characterization of the post explosion residues in 

comparison to their raw corn cob and peanut shell samples 

 

7.1.2.2 Particle size distribution and surface morphological study of 

milled corn cob and peanut shell in comparison to their explosion 

residues 

Table 7.4 shows the particle size distribution of the raw biomass (sieved to 

<500µm) and the post explosion residues. The two size distributions were 

very similar, again indicating that the residue was predominantly the original 

raw biomass. There was an increase in the proportion of fines and a 

decrease in the proportion of coarse material in the residues for both 

biomasses. However, for CC the surface average size decreased in the 

Biomass Corn cobs 

(CC) 

Post 

explosion 

residue CC 

Peanut 

shell (PS) 

Post 

explosion 

residue PS 

% C (dry) 41.6 43.0 49.1 48.4 

% H (dry) 5.4 5.4 6.0 5.2 

% N (dry) 1.0 1.0 1.4 1.5 

% S (dry) 0.1 0.0 0.0 0.0 

% O (dry) 42.4 41.3 35.0 28.8 

% H2O  7.1 6.2 7.0 5.8 

% VM (dry) 74.7 72.1 71.4 61.8 

% VM (daf.) 82.5 79.4 78.1 73.6 

% FC (dry) 15.9 18.6 20.0 21.4 

% FC (daf.) 17.6 20.6 21.9 25.5 

% Ash 8.8 8.7 8.0 15.1 

CV (MJ/kg)  16.7  17.2  19.7  19.2  

Stoich. A/F 

(g/g) 

5.4 5.5 6.8 7.3 

Actual stoich. 

conc. (g/m3) 

264.2 256.4 204.6 207.8 
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residue whereas for the PS the surface averaged size increased in the 

residue, but the changes were relatively small.  

Table 7.4 shows that the raw biomass size distributions as milled were 

relatively coarse with over 50% of the mass >373µm for CC and >176µm for 

PS. The distribution of sizes in the samples and residues are shown in the 

SEM images in Figure 7.8. There is no evidence in the size distribution or in 

the SEM images of the raw biomass and their residues, that only the fines 

burn in the explosion as also proved with minor difference of % 

fraction<100µm in table 7.4. The conclusion is that the fines and coarse 

material burn approximately with equal effectiveness and this was not 

expected. SEM in Figure7.8 of molten layers of the burnt mass showed the 

formation of some ceno-spheres so there was some pyrolysis of the 

biomass.  

A physical model of the turbulent biomass flame front that fits the above 

evidence is that the explosion induced wind blows the dust ahead of the 

flame and eventually this dust is compressed into a layer on the walls. The 

flame then impinges on the wall and partially pyrolysis the outer layer, but 

the inner layer remains the original biomass with the original size distribution. 

After the explosion this residue falls off onto the floor of the vessel [18, 22, 

194]. At the turbulent flame front the action of the explosion induced wind is 

for the fines to follow the gas flow and the coarse particles to lag behind and 

be enveloped in the products of reaction of the fines. The coarse material is 

then gasified in the hot combustion products of near stoichiometric burning 

of fines. This model explains why rich mixtures can burn with high pressure, 

as will be shown in the results. In these biomass samples there are sufficient 

fines for lean mixtures to burn and to give a relatively lean MEC. However, 

the temperature is still sufficient to ignite the coarse particles and for lean 

overall mixtures they can then burn as there is surplus oxygen. For rich 

overall equivalence ratios the coarse particles are gasified by heating in the 

products of rich combustion. 
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Table 7.4: Chemical characterization of the post explosion residues in 

comparison to their raw samples  

7.1.2.3 Kst and Pm/Pi results 

The Kst, Pm/Pi, ST and UL results as a function of Øburnt are shown in Figs. 

7.9-12 for the two biomass samples sieved to <500µm with comparison with 

two coals milled and sieved to <63µm. The coal samples had higher values 

of Kst mainly due to their much smaller particle size. Corn cobs were more 

reactive than peanut shells with higher Kst and ST, but the higher Pm/Pi for 

CC resulted in the maximum laminar burning velocities being lower for CC. 

The increase in reactivity by the change in Kst for CC relative to PS was much 

larger than that based on the turbulent flame speeds. This was not expected 

and could be due to the measurement being based on the reactivity close to 

peak pressure in the explosion, whereas the flame speeds were measured 

in the initial near constant pressure flame propagation. The pressure rise in 

the explosions are shown in Figure 7.9 and show that despite of the low 

reactivity of the coarse biomass, the pressure rise was high and would be 

completely destructive if it occurred inside an enclosure such as pellet silo 

or pulveriser mill or pellet manufacturing plant. Also a peak pressure close 

to the theoretical maximum for gas explosions indicated that complete 

combustion of the fine and coarse biomass had occurred.  

Figs. 7.9 and 12 show that the minimum explosible concentration (MEC) for 

CC and PS were 0.6 and 0.82Øburnt respectively. These lean limits were 

higher than the Kellingley (Øburnt=0.48) and Colombian coal samples 

(Øburnt=0.39). This difference was caused by the differences in the particles 

Materials d (10%) d (50%) d (90%) Surface 

weighted 

mean 

Fines 

particles 

<100µm 

 µm % share 

Corn cob 45.0 372.6 777.8 98.1 19 

Post explosion 

corn cob 

48.4 239.6 668.3 92.1 22 

Peanut shell 24.3 176.1 698.5 63.5 39 

Post explosion 

peanut shell 

32.4 180.9 648.6 75.3 35 
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size which was sieved to <63µm for the two coal samples and <500µm for 

the two biomass samples. Table 7.4 shows that PS were finer than CC and 

both had a very wide size distribution with 50% of the mass of size > 370µm 

for CC and 180µm for PS. The model that explains the present results, 

whereby large particles are pyrolysed in the burnt products of an initial flame 

front based on fine particle combustion, also can explain why the MEC is 

relatively rich for coarse biomass particles. If the MEC of the fine fraction is 

taken as that measured for biomass sieved to <63µm, which is about 

0.2Øburnt, then the overall mixture has to be rich enough at the limit to give 

0.2Øburnt in the fine fraction. It will also be assumed that the fine fraction that 

burns can be taken as <100µm. For CC Table 7.4 shows that the fine fraction 

is 19% of the total mass and this would predict an MEC for the overall mixture 

of 0.62Øburnt which is very close to that measured. For PS the fine fraction 

was 39% and this would give the MEC as 0.5, which is much leaner than the 

measured MEC of 0.82Ø. 

The pressure rise in Figure 7.10 is driven by the temperature of the burnt 

gases and a maximum pressure ratio of 7 for PS indicates about 2100K as 

the burnt gas temperature. The peak pressure for CC was higher at 8 

indicating a burnt gas temperature of 2400K. This higher peak pressure for 

CC was unexpected as Table 7.3 shows that the GCV was much lower. For 

the two coal samples the Colombian coal had a 6% higher GCV than the 

Kellingley coal and there was a similarly higher peak pressure. The other 

unusual feature in Figure 7.10 is that the peak pressure for biomass occurs 

at 2.4Øburnt compared with 1.3Øburnt for coal. At Øburnt=1 both the biomass 

had the same peak pressure ratio of 5.5 and hence the same burnt gas 

temperature. The mechanism for large size particles to react behind the 

flame front for rich mixtures, as discussed above, postulates that the large 

particles are gasified in the rich overall mixture but with a temperature 

generated by near stoichiometric combustion in the fine particles that burn 

first. The release of gasified gases, CO and hydrogen, by the large particles 

will cause the pressure to increase in the chamber, not due to flame 

temperature increases but due to gas volume addition. If a simple 

assumption is made that all the mass of CC injected after Øburnt=1 was 

converted into CO with no change in the temperature at stoichiometric, then 

it may be shown, using the C content of the biomass in Table 7.3, that the 

5.5 pressure ratio at Øburnt = 1 would increase to 7 at Øburnt = 2.5. This is the 

pressure found for PS but for CC it was 8. This difference is probably due to 

the assumption of constant flame temperature, which is the temperature 
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derived from the initial burning of the fines. As more mass is added, more 

fines occur and hence the temperature will rise and this is likely to account 

for the additional pressure ratio increase to 8 for the CC biomass. 

 

 

Figure 7.8: Scanning Electron Microscopy of the post explosion residues in 

comparison to their respective corn cob and peanut shell samples 

Peanut shell Post explosion Peanut shell 

Corn cob Post explosion Corn cob 
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Figure 7.9: Kst v. Øburnt of corn cob and peanut shell in comparison to 

Kellinglely coal and Colombian coal samples 

 

Figure 7.10: Pm/Pi v. Øburnt for CC, PS and coal of corn cob and peanut shell 

in comparison to Kellinglely coal and Colombian coal samples 
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Figure 7.11: Turbulent flame speed, ST v. Øburnt of corn cob and peanut shell 

in comparison to Kellinglely coal and Colombian coal samples 

 

Figure 7. 12: Laminar burning velocity v Øburnt.of corn cob and peanut shell 

in comparison to Kellinglely coal and Colombian coal samples 
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7.2 Dependence of particle size on the explosibility characteristics of 

raw rice husk and steam exploded pine wood samples 

7.2.1 Reactivity results of different sized fractions of rice husk 

agricultural waste 

Rice crop is one of the top grown crops in Pakistan each year. According to 

Pakistan’s federal committee on agriculture (FCA), a target of 7 million tons 

production of milled rice was set for the year 2015 due to sufficient water 

availability and normal weather condition [195]. US department of agriculture 

(USDA) estimated the rice production in Pakistan for 2013-2014 (November-

October) to be 6.7 million tons and that production raised to 6.9 million tons 

for 2014-2015. However this rise of 3% was not confirmed by ‘National 

Space Agency of Pakistan (SUPARCO) and United Nation’s food and 

agricultural organization [195]. The production of milled rice for last five years 

is shown in Figure 7.13. This showed the increase of production each year 

except 2012 due to damage by flood. This crop along with its enormous 

residues has the potential of changing lifestyle for rural development [196].  

 

 

Figure 7.13: Production of milled Rice in Pakistan for the successive years 

[28] 
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Variation of particle sizes of these crop residues has strong influence on its 

burning characteristics. More fine particles with more expose surfaces 

facilitate the fast release of volatiles that were understood to play an 

important role in flame propagation. Utilization of these crop residues with 

coal or independently requires detailed investigation of its burning properties 

along with particle size dependence before their exploitation. This work aims 

to provide burning characteristic of rice husk crop residues for varying size 

range fractions.  

7.2.1.1 Size specifications of the experimental materials 

Excessively grown rice husk crop residue (RH) was imported from Pakistan 

for this experimental work. About 18 kg rice husk crop residue was first milled 

there in Pakistan before its transportation. After import to UK, it was milled 

further to less than 500 µm using Retch 100 ultrafine grinder and sieved into 

following size range fractions; less than 63 µm, 63-150 µm, 150-300 µm, 

300-500 µm and less than 500 µm. It was noticed that proportion of fine 

fraction collected from sieving was small as compared to the coarse fraction, 

so some more milling of coarse fraction was performed using 80 micron sieve 

and sieved to get enough amount of fine fraction (<63 µm) for 1m3 testing.  

Sieved fractions of different size ranges were analysed on Malvern 

Mastersizer 2000 for their actual sizes as shown in Figure 7.14. It can be 

observed based on particle size distribution that the actual particle size range 

for different sieved samples is much wider in contrast to their sieved sizes. 

This is due to the elongated particles of biomass able to pass axially through 

sieves. This area had not given enough attention and most of the models 

were developed considering biomass as fixed regular shape that is not true. 

It was noticed that the proportion of fine particles decreased with increasing 

sieved size. As for sieve size <63µm, the proportions of fines for actual size 

≤63 µm is 20% that decreased to 11% for higher sieved size 63-150µm. For 

very high sieve size, there were still some fines but in negligible proportions. 

Sieved size sample of rice husk 0-500µm, showed the distribution for 

proportions of different sized particles. In this work, reactivity of different size 

range fractions of rice husk were compared and investigated for their flame 

propagation behavior. Reactivity were measured based on minimum 

explosible concentration (MEC), maximum rate of pressure rise (dP/dt, max), 

deflagration index (Kst) and turbulent and laminar flame speed. Tests could 

not be extended for very rich side due to limited sample’s stock.. 
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Figure 7.14: Particle size distribution of varying size fraction rice husk (RH) 

 

7.2.1.2 Deflagration index vs. burnt equivalence ratio 

Figure 7.15 showed deflagration index vs. burnt equivalence ratio for 

different sized fractions of selected rice husk residue. It was found that sized 

fraction with higher fines have higher peak deflagration index showing fast 

burning of particles. Also the peak deflagration index shifted to rich 

concentration for the coarse sized fraction.  

Peak deflagration index was measured to be in the range of 33-83 bar m/s 

depending on the proportions of fine particles present. Very coarse fractions 

of size ranges 150-300 and 300-500 µm failed in propagation of flame. This 

is because of the delay in turning the coarse particles to volatiles to sustain 

the flame propagation.   

7.2.1.3 Peak pressure relative to atmospheric pressure vs. burnt 

equivalence ratio 

Maximum rise of explosion pressure relative to ambient were measured and 

displayed against burnt equivalence ratio in Figure 7.16. Peak pressure 

relative to atmospheric were measured to be in the range of 7.3-7.45 bar. It 

showed that very coarse fraction like 150-300 µm and 300-500 µm did not 

ignite however sized fraction containing enough fines such as 63-150 µm 

and smaller than 500 µm propagated the flame. So, the presence of fines 
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facilitated the flame to propagate and helped the burning of some proportions 

of coarse particles giving almost same peak rise of pressure but at higher 

equivalence ratio as compared to fine fractions.   

7.2.1.4 Turbulent flame speed vs. burnt equivalence ratio 

Flame speeds were measured from the plot of thermocouple distance vs. 

time of flame arrival for different concentrations. Fine fraction of sieved size 

<63 µm showed an average peak turbulent flame speed of 4.6 m/s whereas 

the sized fraction with less fines showed lower flame speed. It meant that the 

fines accelerated the flame due to their efficient burning. Coarse particles 

with longer delay in their burning resulted slow propagation of flame with less 

flame speed as shown in Figure 7.17. 

 

 

Figure 7.15: Kst vs. burnt equivalence ratio for different sized fractions of rice 

husk (RH) 
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Figure 7.16: Pm/Pi vs. burnt equivalence ratio for different sized fractions of 

rice husk (RH) 

 

  

Figure 7.17: Flame speed vs. burnt equivalence ratio for different size 

fractions of rice husk (RH) 
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7.2.1.5 Analysis of rice husk post explosion residues 

7.2.1.5.1 Ultimate and proximate analysis of post explosion residues  

Table 7.5 showed the ultimate and TGA analysis of post explosion residues 

for the most reactive concentration of different sized fractions. Elemental 

analysis showed almost same composition for all the sized fractions as that 

of raw sample. However the TGA analysis showed drop in volatiles that was 

found to be higher for fine fraction in comparison to coarse. This was 

because of more release of volatiles from fines due to their more exposed 

surfaces. Similarly the ash contents were increased in the post explosion 

residues and there was significant increase of ash for the post explosion 

residue of fine fraction. This increase of ash in the finer fraction resulted the 

reduction in its calorific value. Stoichiometric air to fuel ratios were calculated 

to be almost same but actual stoichiometric concentration was much higher 

for the post explosion residue of fine fraction due to enhancement of ash.   
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Table 7.5: Chemical characterization of the post explosion residues in 

comparison to raw rice husk 

 

7.2.1.5.2 Particle size distribution 

Cumulative plots for particle size distribution showed the increase in size for 

the fine fraction post explosion residue. This was due to formation of large 

fused ash layers in the sample. However, for the coarse fractions the trend 

were different as sized fraction (63-150 µm) showed increase in size of post 

explosion residue for 10% cumulative volume but almost same for 50 and 

90% of the cumulative volume. Coarse fraction containing least fine (<500 

µm) showed reverse trend with reduction in size of the post explosion residue 

as shown in Figure 7.18 that was due to partial burning of coarse particles 

leaving small sizes after the flame propagation. 

Biomass Raw rice 

husk 

Post explosion Rice husk (RH) 

residues   

 RH<63µm RH(63-

150µm)  

RH<500µm                   

% C (dry) 40.2 26.7 38.1 37.5 

% H (dry) 5.1 3.5 4.9 4.2 

% N (dry) 0.9 0.8 0.5 0.5 

% S (dry) 0.0 0.0 0.0 0.0 

% O (dry) 34.4 22.1 32.8 31.2 

% H2O  7.7 4.8 5.8 5.6 

% VM (dry) 67.5 41.9 61.0 64.9 

% VM (daf.) 83.7 78.8 80.0 88.6 

% FC (dry) 13.2 11.3 15.2 8.5 

% FC (daf.) 16.4 21.3 19.9 11.6 

% Ash 17.9 44.6 22.3 25.2 

CV (MJ/kg)  15.2  13.9  15.6  15.7  

Stoich. A/F (g/g) 6.1 6.3 6.1 6 

Actual stoich. 

conc.  (g/m3) 

262.3 376.4 273.6 289.0 
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Figure 7.18: Cumulative analysis of different sized fractions of rice husk in 

comparison to respective post explosion residues 

7.2.1.5.3 Surface morphological study 

Scanning electron microscopy was performed as shown in Figure 7.19 on 

the rice husk and post explosion residues. Raw sample of rice husk was 

observed to have wide variation in particle sizes and shape. Also the 

particles were observed to be thin that resulted fast release of volatile. It was 

found that the post explosion residue for <63 µm sample had molten ash with 

formation of ceno-sphere indicating higher siliceous minerals in the ash 

contents as also found in ash characterisation. Most of the particles in <63 

µm sample were burnt 100% in the propagation of flame in contrast to coarse 

fractions. 
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Figure 7.19: Scanning Electron Microscopy of Rice husk and its post 

explosion residue 

7.2.1.5.4 Comparison of modified ISO 1 m3 explosion vessel and 

previous modified Hartmann tube results [17] 

MEC of rice husk were presented against the average particle sizes for 

different size range fractions as shown in Figure 7.20. It was noticed that for 

fine fraction MEC was slightly lower in the current study of 1m3 

measurements in comparison to modified Hartmann tube results. However 

for coarser fractions, the trend was opposite with more lean limits using 

modified 1m3 results. This difference was due to an error in the dispersion of 

dust with pre-existing spark in the modified Hartmann tube that result the 

burning of stratified mixture not reflecting the actual mixture feed. This issue 

Raw Rice husk 

Post explosion residue 
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of modified Hartmann tube was high lighted before and an optimum ignition 

delay was recommended for the modified Hartmann dust explosion tube. 

Also the dispersion of dust in both units had different mechanism that might 

also have altered these results. It was still believed that modified Hartmann 

tube was a more suitable unit for the measurements of minimum explosible 

concentration.  

In this work, different size range fractions of rice husk were tested using the 

modified ISO 1m3 vessel with a calibrated hemispherical disperser. The 

objective was to study the flame propagation behaviour of fine and coarse 

size range fractions. The results showed that the fine fraction containing 

more fine actively participate 100% in the propagation of flame. However, 

the coarse fractions behaved differently with preferential burning of fine and 

partial burning of coarse particles with delay resulting less flame speed and 

rate of pressure rise. The pressure rise due to explosion were almost same 

showing almost same burning but the rate of burning for coarse fraction was 

slow in comparison to fine fractions. Size analysis of the raw and post 

explosion residues also showed different behaviour of coarse fraction with 

reduction in size of the post explosion residue in contrast to the fine fractions. 

The rice husk can be employed as a practical fuel with less milling required 

due to their ability to propagate the flame for even coarse size range. 

 

Figure 7.20: MEC comparison of different size fractions rice husk using 

modified 1 m3 vessel and Hartmann tube measurements 
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However, the time lag in the combustion of coarse particles should be 

focused that might be reduced with some pre-treatment before their 

applications. 

7.2.2 Reactivity results of different sized fractions of steam exploded 

pine wood 

Some thermal pre-treatments such as ‘torrefaction’ and ‘steam explosion’ 

were applied that increased the brittleness of these biofuels leading to their 

easy milling. These thermal pre-treatments resulted in the shattering and 

altering of biomass structure causing small changes in their compositions 

[20, 197]. These thermally treated biomass samples are sometimes called 

‘biocoal’ as they are in black color. The torrefied and steam exploded 

biomass were high quality fuels and pelletized for their easy transportation. 

The thermally treated fuel pellets mill in a similar way to coal and can be 

easily used to replace coal for the existing facilities. However, combustion 

characteristics of these treated biofuels need to be studied with particle size 

dependence as they don’t need to be milled as fine as coal due to high 

volatiles yield and their fast release making them more reactive. In this work, 

explosion characteristics of steam exploded pine wood were tested for 

different size range fractions to study the effect of particles size on the flame 

propagation behavior. Post explosion residues for different size range 

fractions were also analysed and compared with the steam exploded sample 

to study the flame propagation model.   

7.2.2.1 Experimental materials 

Raw pine wood sample after pre-treatment known as ‘Steam explosion’ were 

received in the form of pellets for this research work. Around 20 kg of these 

pellets were milled using Retch 100 ultrafine grinder to less than 500 µm and 

sieved for different size range fractions such as <63 µm, 63-150 µm, 150-

300 µm and 300-500 µm. 

 Also particle size distributions of raw and steam exploded pine wood with 

different sieved sizes were presented in Figure 7.21. It was found that the 

fineness of raw pine wood was increased after steam explosion treatment. 

This increase in fineness of the steam exploded pine wood was due to 

shattering of structure and increase in the brittleness of the particles. Also 

the coarse particle size fraction of this steam exploded pine wood 

approached to the same particle size distribution as that of raw pine wood.   
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Figure 7.21: Particle size distribution of varying sized fraction steam 

explosion pine in comparison to its raw fine pine wood 

7.2.2.2 Results and discussion  

Reactivity’s of different size ranged steam exploded fractions were 

measured in terms of rate of pressure rise, flame speed and maximum rise 

of pressure due to burning relative to ambient pressure. Complete 

concentration profile could not be obtained due to limited amounts of sized 

fractions.  

7.2.2.2.1 Deflagration index vs. burnt equivalence ratio 

Figure 7.22 showed the deflagration index (Kst) of different size ranged 

fractions of steam exploded pine wood against burnt equivalence ratio. It was 

found that fine particles had fast rate of propagation of flame with higher 

deflagration index compared to coarse sized fraction. Also it was found that 

the least reactive concentration was leaner than the coarse fractions. The 

coarse fraction with higher average particle size (300-500 µm) did not 

explode even for 1500 g/m3 nominal concentration. Based on the trends of 

the coarse fraction, it can be assumed that coarse fraction required very rich 

concentration for their most reactive concentration.  
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Figure 7.22: Kst vs. burnt equivalence ratio for different sized fractions steam 

exploded pine wood (BP) 

Flame development and propagation was mainly due to release of volatiles 

that was with some delay due to thicker particle surface of the coarse 

particles. This enough release of volatiles for sustained development of 

flame needed higher amount of dust in the available time for the volatile 

release. Fine particles had more exposed surface area and they released 

higher volatiles yield efficiently resulting higher rate of pressure rise. Figure 

7.22 showed the peak deflagration indices for the tested concentrations of 

these limited fractions to be in the range of 43-122 bar m/s with the higher 

value for the fine fraction. Very coarse fraction of size range 300-500 µm 

failed to ignite due to limited release of volatiles with existing concentration.  

7.2.2.2.2 Peak pressure relative to atmospheric pressure vs. burnt 

equivalence ratio 

Ratio of maximum pressure due to instantaneous burning relative to ambient 

pressure were plotted against burnt equivalence ratio for different sized 

fractions of steam exploded pine wood as shown in Figure 7.23. It was 

noticed that fine fractions were burning more with higher rise of pressure as 

compared to coarse fraction (150-300 µm) that was levelling at lower peak 

pressure ratio of around 7 bar. The finer fraction (< 63 µm) showed a peak 

pressure ratio of around 8.6 bar with a further rise for higher concentration 

that could not be tested due to limited amount of dust.  
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Figure 7.23: Pm/Pi vs. burnt equivalence ratio for different sized fractions 

steam exploded pine wood (BP) 

Similarly, the size fraction having moderate size 63-150 µm giving the peak 

pressure ratio in between fine and coarse fractions. It meant that the 

presence of fines facilitated the propagation of the flame with higher mass 

burning. Very coarse fraction of size 300-500 µm could not be converted into 

enough gas for the flame propagation. 

7.2.2.2.3 Turbulent flame speed vs. burnt equivalence ratio 

Turbulent flame speed were also plotted for these different sized fractions 

against burnt equivalence ratio as shown in Figure 7.24. Flame speeds 

showed the same trend as deflagration index (Kst) for different burnt 

concentrations. Peaks flame speeds were measured to be in the range of 

1.4-5.4 m/s with higher flame speed for the finer fraction. A greater proportion 

of fines resulted in the quick release of volatiles with their maximum rate of 

combustion. Increasing the sieved size showed a declined slope due to delay 

in the evolution of volatiles from the coarse particles for flame propagation. 

Also, less mass burning of coarse fractions showed a reduced flame speed 

until a very coarse sized fraction (300-500 µm) that could not support the 

propagation of flame.  
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Figure 7.24: Turbulent flame speed vs. burnt equivalence ratio for different 

sized fractions steam exploded pine wood (BP) 

7.2.2.3 Analysis of rice husk post explosion residues 

7.2.2.3.1 Ultimate and proximate analysis of post explosion residues  

Post explosion residues of the most reactive concentration from different 

sized range fractions were analysed and compared with raw steam exploded 

pine wood as shown in table 7.6. It was found that the residue samples had 

almost same elemental and TGA analysis with only the significant difference 

of ash and volatile contents. This addition of ash in the residue was due to 

burnt mass proportion forming combustion products of carbon dioxide and 

water. Carbon dioxide and some of the water vapours were discharged in 

the purging process leaving ash behind enriching the unburnt mass left in 

the vessel. It was found that more ash was found in the post explosion 

residue of finer fraction due to more mass burning whereas comparatively 

less ash was measured in the coarser fraction indicating less burning of 

coarse particles. The reduction of volatiles was due to relative enhancement 

of ash proportion in the residue samples as the highest increase of ash in 

the finer fraction resulted the maximum reduction of volatiles.  
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Table 7.6: Chemical characterization of the post explosion residues of 

different sized fractions in comparison to raw steam exploded pine 

7.2.2.3.2 Surface morphological study 

Scanning electron microscope imaging were also compared for the finer 

samples of the raw pine wood with its steam exploded and the post explosion 

residue sample as shown in Figure 7.25. It was found that there were 

enrichment of fines in the steam exploded pine wood that actively 

participated in the flame propagation. The residue sample showed fused and 

molten ash with some of the mass unburnt that was exactly same as that of 

the original material. Also the elemental and TGA analysis revealed the 

same unburnt mass as the original. For the coarse fraction, there were 

formation of holes observed on the surface indicating the role of volatiles in 

Biomass Steam 

exploded 

pine 

wood 

(BP) 

Post explosion residues of steam 

exploded pine wood   

BP<63µm BP(63-

150µm)  

BP(150-

300µm)                   

% C (dry) 51.3 50.6 49.7 49.6 

% H (dry) 5.6 5.5 5.6 5.7 

% N (dry) 0.4 0.4 0.3 0.4 

% S (dry) 0.0 0.0 0.0 0.0 

% O (dry) 39.9 34.8 37.0 37.9 

% H2O  4.4 4.8 4.7 5.8 

% VM (dry) 76.4 67.5 71.2 71.9 

% VM (daf.) 78.6 73.9 76.9 76.8 

% FC (dry) 20.8 23.8 21.4 21.6 

% FC (daf.) 21.4 26.1 23.1 23.2 

% Ash 2.7 8.2 7.02 6.1 

CV (MJ/kg) 19.5 19.6 19.3 19.3 

Stoich. A/F (g/g) 6.3 6.8 6.5 6.4 

Actual stoich. 

conc.  (g/m3) 

205 202.8 209.1 212.8 
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the flame propagation. However, the fine fractions contributed fully leaving 

inert behind for the most reactive concentration.  

 

 

Figure 7.25: Scanning Electron Microscopy of raw pine, steam exploded pine 

and post explosion residue of steam exploded pine wood 
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7.2.2.4 Comparison of modified ISO 1 m3 vessel and previous modified 

Hartmann tube results  

MEC were close to each other based on modified Hartmann tube and 1 m3 

vessel measurements. Also it was noticed that the rate of pressure rise in 1 

m3 vessel was of the order of 6 as compared to Hartmann measurements. 

There was quick quenching in the Hartmann tube due to small diameter tube 

giving less rate of pressure rise compared to 1 m3 vessel. Also it reflected 

that the most reactive concentration was at an equivalence ratio of around 

1.8 based on both experimental techniques for extrapolated prediction of 1 

m3 vessel results.  

Effect of average particle size on the minimum explosible concentration of 

the selected steam exploded pine wood on the modified 1 m3 vessel was 

compared with other biomass samples based on previous modified 

Hartmann tube measurements as shown in Figure 7.27. It was found that 

steam exploded pine wood showed the leaner concentration (equivalence 

ratio of ~0.2)than the other raw biomass samples for the finer fraction of 

average particle of 31.5 µm. However with increasing particle size, the 

sensitivity of explosion reduced drastically than the raw biomass samples. 

Previous Hartmann results were based on pre-existing spark overestimating 

the lean limits and needs improvements in its methodology as explained in 

other work [193]. Detailed assessment of these renewable fuel based on 

explosibility characteristics were carried out before their employment for safe 

working environment. 
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Figure 7.26: Comparison of rate of pressure rise from 1 m3 vessel and 

modified Hartmann tube measurements against equivalence ratio for fine 

fraction of steam exploded wood< 63 µm [169] 

 

Figure 7.27: Effect of average particle size of selected biomass samples on 

the minimum explosible concentration (MEC) [17] 
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7.2.2.5 Conclusions 

In this work, different size range fractions of steam exploded pine wood were 

tested to investigate the flame propagation behaviour and the effect of 

particle size. It was revealed that steam explosion treatment enhanced the 

proportions of fines compared to raw pine wood with more fibrous and 

elongated particles. Explosiblity results concluded that the finer fraction with 

more fines participated actively with greater mass burning and higher flame 

speed. Increasing the size of the fraction reduced the intensity of combustion 

with less flame speed and deflagration indices. Very coarse fraction 

containing no fines failed to propagate the flame due to delay in the burning 

of these coarse particles. Also the post explosion residues showed the same 

analysis as that of original steam exploded pine wood with the addition of 

ash due to burnt particles affecting the relative proportions of volatiles 

reduction. This work confirmed the severity of reaction with reduction in sizes 

and vice versa that need to be accessed fully before their adoption as fuel 

for the power generation plants. 

7.3  Explosibility characteristics of coarse SPF wood mixture in 

comparison to its torrefied sample<1000µm 

The raw biomass sample was a proportionate mixture of three woody 

biomass: Spruce (S), Pine (P) and Fir (F) that is referred to as the SPF 

sample with R referring to the raw sample and T to the torrefied sample. The 

torrefied biomass was manufactured in a pilot plant (Renewable fuel 

technology) with a 0.5 tonne per day production capacity of torrefied 

pulverised biomass, which was tested in the present work. This material was 

normally passed to a pellitizer process and sold into the thermal heating 

market as ‘biocoal’.  

The torrefaction process that was used in this work [198] heats biomass by 

direct contact with hollow hot flat surfaces (trays), which at steady state 

operated at 303oC on the top surface and 290oC on the bottom surface. The 

biomass was injected cold into the torrefier and heat transferred from the 

trays by conduction, the biomass particles would be at a lower temperature 

than the trays for most of the residence time, but would reach equilibrium 

with the tray temperature before the torrefier exit. On the top side of the trays 

biomass is moved through the reactor by paddles, that are attached to a 

rotating shaft and this process gives uniform contact of the particles with the 

hot surface and a uniform torrefaction of each particle. The mean residence 

time of biomass particles inside the reactor was 7 minutes, which is typical 
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of other torrefaction processes [199]. Biomass moving through the reactor is 

traveling down the reactor from one tray to another, being slowly torrefied 

until it reaches the output chute. A gaseous by-product, torgas, is formed 

during the torrefaction process, which surrounds the biomass and prevents 

oxidation and this prevents explosion and self-ignition hazards. The torgas 

is removed from the torrefier, burnt with air and the hot exhaust gases flow 

through the hollow plates to deliver the heat required by the torrefaction 

process. Heat is recovered from the plate outlet gases in a counter current 

heat exchanger which preheats the combustion air and this recovers the 

latent heat of the water from the torgas burner. The torrefaction process 

requires no external energy input, apart from during start up. 

The raw and torrefied biomass samples were of coarse particle size 

distribution of < 3 mm that were sieved to <1 mm for this research work. 

7.3.1 Explosibility results 

7.3.1.1 Deflagration index, Kst and Pm/Pi against burnt equivalence 

ratio 

The Kst as a function of Øburnt are shown in Figure 7.28 for SPFR and SPFT. 

The peak Kst was 24 and 36 bar m/s for raw and torrefied wood mixture 

respectively. Although the peak Kst occurred at a similar Øburnt of 3.0 the 

torrefied SPF had higher Kst at all Ø and was much more reactive for <Øburnt 

of 2.5. No lean mixture flame propagation for either raw or torrefied biomass 

were found. Thus biomass with coarse particle size, whether raw or torrefied, 

will only burn if the overall Ø of the mixture is rich and the highest reactivity, 

Kst, is for rich mixtures. This does not occur for gaseous mixtures and is 

unique to coarse dusts, particularly biomass dusts. 

A mechanism for coarse biomass powders to burn in a propagating flame is 

proposed to explain these results, which is an extension of that used to 

explain why about half of the intial dust does not burn in the explosion [21, 

22, 194]. The action of the wind, induced by the expanding spherical flame, 

on particles ahead of the flame with a variable size distribution is to blow the 

smallest particles close to the gas velocity with the larger particles lagging 

due to drag effects. The flame front is driven by the finer particles and the 

larger particles then lag behind and are heated to ignition by the hot burnt 

gases from the flame front. The mixture has to be very rich for the finer 

particles ahead of the flame to burn with only <20% of the total mass of 

particles in the size fraction that will burn easily. A flammable mixture of 20% 
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fine particles with ØMEC of 0.4 needs Øburnt of at least 2.0 for the overall 

mixture to burn. With this model the larger particles are gasified in the rich 

mixture of the hot burnt gases from the flame burning in the finer fraction. 

This releases CO [18] and H2 which has insufficient oxygen to burn, but the 

volume release keeps the explosion pressure high for rich mixtures. 

 

Figure 7.28: Kst v. Øburnt for raw SPF in comparison with torrefied SPF 

 

Figure 7.29 Pm/Pi v. Øburnt for raw SPF in comparison with torrefied SPF 
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The maximum explosion pressure, Pm, to the intial pressure, Pi, is shown in 

Figure 7.29 as a function of Øburnt. This shows that at the maximum Kst Ø the 

peak pressure ratio was 7.4 for SPFT and 7.3 for SPFR. These are large 

pressure rises indicating that all the coarse mixture had burnt and also shows 

that despite of the low reactivity of these mixtures, as shown by their low Kst, 

the overpressure was high and would destroy any process plant enclosure 

used in the processing of this material. These pressure rises were lower than 

for fine particles of biomass, where for similar biomass composition Pm/Pi 

was about 8.5 [18, 22, 200, 201]. 

7.3.1.2 Flame speed and burning velocity measurements 

The measured turbulent spherical flame speeds, ST, for SPFR and SPFT are 

shown in Figure 7.30 as a function of Øburnt. These measurements of the 

mixture reactivity are very similar in their dependance on Øburnt as for the Kst 

results in Figure 7.28. However, the two peak ST for the raw and torrefied 

biomass were very similar at close to 1.0 m/s compared with a significant 

difference in Kst in Figure 7.28. This difference may be due to ST being 

measured in the constant pressure period of the explosion and Kst is 

measured just before the peak pressure. Figure 7.30 also shows that for rich 

mixtures the flame speed remains high as the fuel concentration increases.  

This is considered to be explained by the model of the coarse biomass flame 

front with the flame driven by the finer particles in the mixture and the cosrse 

particles gasified behind the flame front. As more fuel is added, the Ø of the 

fine fraction flame increases and the temperature of this initial combustion 

increases this then results in more fast gasification of the coarse fraction and 

the gas volume release in the gasification reactions increases which causes 

the pressure to remain high even though for gases the pressure would fall 

for richer mixtures. 
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Figure 7.30 Turbulent flame speed vs. Øburnt for raw SPF in comparison with 

torrefied SPF 

7.3.1.3 Minimum explosible concentration, MEC 

The MEC of the coarse SPF raw and torrified biomasses were determined 

from Figs. 7.28-7.30 to be 2.3 and 1.4 Øburnt respectively. These lean 

flammability limits were much higher than other biomass for finer sieved 

fractions, where mixtures as lean as 0.2Ø were flammable [19, 87, 169, 202]. 

The explanation for the richer MEC with coarse biomass is that given above. 

The flame propagated in the fine fractions blown ahead of the flame by the 

explosion induced wind and the coarse particle drag leads to these particles 

burning behind the initial fine particle flame front and being gasified in the 

burnt gases. For the raw SPF particles Table 7.7 shows that the fine fraction 

is 11% of the total mass and the overall MEC is then 1.8Ø, which is close to 

the measured MEC. For the torrefied coarse SPF biomass the fine fraction 

is 15% and if the fine only MEC is 0.2Ø then the overall MEC is 1.3Ø, which 

is in good agreement with the measured MEC.  

7.3.2 Analysis of post explosion residues 

SEM images of the raw and torrefied biomass as shown in Figure 7.31 and 

7.32 were compared with their respective post explosion residue of the most 

reactive concentration. Both fuels had a wide range of particle size and 

shapes. Post explosion residues revealed volatile release holes in the larger 
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particles, which increased the porosity of the particles. The SEM analysis of 

the residues showed the fused layer of ash from the burnt particles, but the 

particle size was very similar to the original raw or torrefied biomass.The 

particle size distributions are summarised in Table 7.7 and this shows that 

torrefaction reduced the particle size by 20% on a d10 basis and 18% on an 

surface mean diameter (SMD) and increased the proportion of fines 

(<100µm). The analysis of the residue after the explosion showed that for 

the torrefied material it was almost identical to the original dust in terms of 

the size distribution in Table 7.7 and the composition in Table 7.8. The 

increase in the ash in the residue was due to the ash of the burnt biomass 

as well as the unburnt biomass. For raw biomass there was a decrease in 

the particle size in the residue. The origin of this unburnt biomass was due 

to the action of  the explosion induced wind ahead of the flame front in 

blowing particles away from the flame and eventually onto the vessel wall, 

where they fell onto the floor of the vessel at the end of the explosion. While 

on the wall they acted as an insulating layer that reduced the rate of vessel 

cooling, as shown by the reduction in the rate of pressure loss [194]. 

 

 

Figure 7.31: SEM images of SPFR and its post explosion residue 

SPF raw wood mixture (SPFR) 

SPF raw post explosion residue   (SPFR residue) 
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Figure 7.32: SEM images of SPFT and its post explosion residue  

 

Table 7.7: Comparison of particle size distribution of SPF raw and torrefied 
wood mixture in comparison to their post explosion residues with sieve 
size<500 

Biomass d10 d50 d90 dsmd or d3,2 d4,3  Fines particles <100µm 

 µm  % share 

SPFR 91 451 866 184 466  15 

SPFR residue 69 288 747 124 351  17 

SPFT 73 347 785 151 389  14 

SPFT residue 78 343 781 164 388  14 

 

 

 

 

 

 

 

SPF torrefied wood mixture (SPFT) 

SPF torrefied post explosion residue (SPFT residue) 
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Table 7.8: Properties of the raw and torrefied SPF samples and the explosion 
residues 

7.4 Overall analysis of pulverised biomass flame propagation  

7.4.1 Explosion pressure rise for different size range fractions for 

same nominal concentration 

For different size fractions of same dust ‘steam exploded wood (BP)’, it was 

found that fine fraction with particle size<63µm propagated the flame quickly 

with sharp rise of explosion pressure. For coarse fraction of size 63-150µm 

with same nominal concentration of 750g/m3, the rise of explosion pressure 

was slower compared to fine fraction. Fine particles with the ability to turn to 

volatiles due to more surface area resulted almost homogenous combustion 

of their volatile. For coarse size fraction, the time lag of conversion of big 

particles to gas resulted the slow build-up of pressure as shown in Figure 

7.33. As a result, the mass burning of the coarse size fractions was low 

generating less explosion pressure. 

The steep slope of the explosion pressure for fine fraction ends up at some 

specific peak explosion pressure after that it quenches and pressure decay 

starts. For coarse size fractions, the peak explosion pressure was observed 

to stay constant for small time interval before the quenching starts. This was 

due to the gasification of the coarse particles that continues; adding the 

pressure in the net explosion pressure.     

As shown in Figure 7.34, the pressure time histories of three different 

biomass dusts for same nominal concentration but wide variation of their 

Biomass %C %H %N %O %VM %FC 

 

%H2O 

 

 

%Ash 

 

 

CV 

MJ/kg 

CV 

MJ/kg 

Stoich. 

A/F 

g/g 

Stoich. 

g/m3 

 Dry basis Dry basis As rec. daf. actual daf actual 

SPFR 49.0 6.8 1.1 40.3 79.6 17.6 7.8 2.6 19.9 17.8 6.4 187 

SPFR 

residue 

49.2 6.1 1.1 39.8 77.5 18.8 6.8 3.5 19.8 17.8 6.3 212 

SPFT 52.8 6.7 1.1 40.3 77.7 18.8 4 3.2 21.7 20.1 7.05 183 

SPFT 

residue 

53.2 5.6 1.3 31.7 68.0 23.7 4.2 7.8 21.3 18.7 7.3 187 
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average particle sizes were plotted. It was noticed that with increase in 

particle size from <63 to <1000µm, the build-up of explosion pressure for 

very coarse size fraction can be separated into two different sections. For 

coarse fraction of size <1000µm, the explosion pressure progressed very 

slowly with only 7.5% rise of pressure. In this time interval, the rise of 

pressure for peanut shell<500µm was almost 50% whereas for very fine 

fraction of bagasse<63µm, the explosion pressure reached to peak in half of 

this time interval. This stage mainly involved heating of coarse particles to 

generate volatile and a very small rise of pressure for <1000µm might be due 

to the gasification of coarse particles. In the second stage for <1000µm 

sample, the flame propagated through the gaseous mixture with 92.5% rise 

of pressure. Due to slow burning of coarse particles, the overall actual burnt 

equivalence ratio was smaller with less build-up of pressure compared to fine 

size fractions as shown in Figure 7.34. 

 

 

Figure 7.33: Comparison of explosion pressure of fine and coarse size 

fraction of steam exploded wood for same nominal concentration 
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Figure 7.34: Pressure history plots for varying size fractions of biomass dusts 

7.4.2 Dust layer thickness and rate of pressure decay 

The explosion pressure increases with the burning until the flame quenches 

after touching with the vessel wall. Increase in the dust concentration raises 

the explosion pressure and higher flame temperature. It was noticed that 

after achieving most reactive concentration, further increase in concentration 

results in the slight reduction in the explosion pressure with almost constant 

explosion pressure for equivalence ratio depending on particle size 

distribution as shown in Figure 7.35. For higher concentration, the flame 

temperature almost remains constant with slight reduction of explosion 

pressure. As explained previously, the unburnt dust mass was pushed 

against wall during flame propagation. This mass forms a thin or thick layer 

with the wall and acts as insulating medium. This insulting layer acting as a 

barrier between the flame and the vessel wall affects the pressure loss. For 

the most reactive concentration, a further increase in concentration with 

constant adiabatic temperature resulted in a dropping of the pressure decay 

rate due to the direct effect of insulating layer thickness. The fine size fraction 

showed a sharp drop in the rate of pressure loss after the most reactive 

concentration, whereas the coarse sized particles continue to gasify with the 

drop of rate of pressure loss for very rich burnt equivalence ratio. 
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An attempt was made to calculate the dust layer thickness considering a 

uniform flame thickness for the unburnt mass. It was found that an increase 

in concentration resulted in the thicker insulating dust layer for different 

biomass dust as shown in Figure 7.36. Also, it can be observed that MEC is 

a strong function of particle size distribution with higher MEC for coarse size 

fractions. For very coarse size fractions (<500 or/and <1000µm), the MEC 

were higher than their stoichiometric concentration. It meant that for very 

coarse particles, more mass was required (higher than stoichiometric) to 

generate flammable mixture. This was due to the very slow evolution of 

volatiles from coarse particles as had already been explained above. 

As presented in Figure 7.35 and 7.36, the increasing particle size shifts the 

most reactive concentration toward rich flammability limit. Also the 

flammability hazards associated with coarse particles were weak compared 

to fine particles but existed in contrast to coal samples. Mixing of the fine 

particles with the coarse particles act as a catalyst in speeding up the overall 

flame propagation. A higher proportion of fines in the sample increased the 

fire or/and explosion hazards with peak explosibility characteristics.  

 

 

Figure 7.35: Rate of Pressure loss for different sized fractions biomass vs. 

burnt equivalence ratio 
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Figure 7.36: Actual burnt equivalence ratio vs. dust layer thickness for 

different biomass dusts 

In Figure 7.37 and 7.38, peak turbulent flame speed and peak laminar 

burning velocity of selected biomass samples in combination with other 

biomasses were plotted against d50 obtained from Laser diffraction 

technique. There is a significant variation in the peak turbulent flame speed 

and laminar burning velocity for the different biomass compositions and the 

cause of this is thought to be related to the differences in particle size. 

Most of the samples were sieved to <63µm size, but based on actual d50, 

they were dispersed for a wide range of particle size. Biomass nut shell with 

regular and very fine particles were found to give the highest peak turbulent 

flame speed of up to 12m/s for corn flour and Lycopodium [18, 110]. Coal 

samples, despite of having comparable size with the nut shell biomass 

showed less severity in flame propagation. This is because of the higher 

inerts and less volatiles in their structures. Torrefied wood samples as tested 

by Clara et al.[168, 200, 201] were found to have less peak turbulent flame 

speed due to higher particle size in terms of d50 as shown in Figure 7.37. 

Biomass crop residues with more irregular shaped coarse fibrous particles 

have very small peak turbulent flame speed. The minimum value of peak 

turbulent flame speed of 1m/s was measured for SPF raw wood mixture with 

50% proportions of particle size around 450µm. The range of SL as shown 
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in Figure 7.38 is from 0.32 m/s for cornflour to 0.025 m/s for the SPF wood 

mixture in raw and torrefied form. This high SL for cornflour is well below the 

value of 0.65 m/s measured by Dahoe et al. [121] but is similar to the SL of 

0.25 m/s from the results of Phylaktou et al. [123]. The most reactive 

standard biomass was walnut shells with an SL of 0.27 m/s. Most of the 

biomass had SL in the range 0.1 – 0.15 m/s and these are much lower values 

than for hydrocarbon gases where the maximum SL is about 0.4 m/s [102]. 

In the end, the comparison of explosibility characteristics of different biomass 

including agricultural waste, nut shells, raw and torrefied wood were 

presented as shown in table 7.9. It was found that nut shell biomass having 

regular shape fine particles were more sensitive to explosion with higher 

bursting pressure. On the other hand, agricultural waste for the same particle 

size despite higher levels of inert ash were proven to be equally reactive as 

that of nut shell with higher explosibility hazards. However with increasing 

particle size, the explosibility threats of biomass materials were reduced but 

still existed for particle size as high as <1000µm. 

 

 

Figure 7.37: Peak turbulent flame speed as a function of d50 for different raw 

and treated biomass in combination with coals 
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Figure 7.38: Peak laminar burning velocity as a function of d50 for different 

raw and treated biomass in combination with coals 

It was also noticed that the thermal treatment of these biomass refine their 

properties with augmentation of their explosibility hazards. All the biomass 

samples tested were classified as Class 1 dust with Kst<200 bar m/s. Peak 

bursting pressure were recorded to be maximum 9.4 bar for Walnut shell. 

The least bursting pressure was measured to be 7.1 for coarse fraction of 

corn cob<500µm that is comparable with the coarser SPF wood and torrefied 

samples<1000µm. Turbulent flame speeds were measured to be 12m/s as 

maximum for corn flour and 1 m/s as minimum for coarse SPF wood mixture. 

Laminar burning velocities were measured to be small as compared to HC’s 

gaseous mixture. Explosibility characteristics of most of the fine biomass 

samples were comparable with fine coal samples whereas the rest of the 

biomass can be thermally processed to refine their burning properties before 

their applications. So, these biomass were proved to be a good substitute of 

coals without significant changes in the existing coal power plants. Especially 

the agricultural waste without any major end use can be focussed in this 

regards. These agricultural waste should be dealt first in reducing the inert 

ash prior to feeding to the burner. 
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Table 7.9: Comparison of the explosibility characteristics of selected 

samples (with complete concentration profile) with others 

Samples Øpeak 

Kst 

Peak 

Pm/Po 

Peak 

Kst  

bar 

m/s 

Peak 

ST, 

m/s 

Peak  

UL, m/s 

Refs. 

Bagasse, 

B<63µm 

2.7 8.8 103 3.79 0.11 [21] 

Wheat Straw, 

WS<63µm 

1.6 8.5 82 3.0 0.13 [21] 

Corn cob, 

CC<500µm 

1.7 8.0 60 1.3 0.03 This 

work 

Peanut shell, 

PS<500µm 

1.13 7.1 25 1.3 0.04 This 

work 

SPF Raw 

SPFR<1000µm 

4.4 7.3 28.0 1.0 0.03 [203] 

SPF torrefied 

SPFT<1000µm 

2.9 7.4 35.7 1.05 0.03 [203] 

Pistachio nut 

shells<63µm 

2.4 9.3 82 3.7 0.27 

Extrapolated 

[18] 

Walnut 

shells<63µm 

2.8 9.4 98 5.1 0.13 [18] 

Corn flour 

<63µm 

2.6 9.2 156.4 12 0.32 [110] 

Pine 1<63µm 4.2 9.0 109 3.7 0.1 [87] 

Spruce<63µm 1.9 8.8 81 3.4 0.09 [201] 

Torrefied 

Norway 

spruce<63µm 

3.9 9.1 110 4.6 0.12 [200] 

US Pine 

2<63µm 

2.5 9.0 105 4.5 0.11 [200] 

Torrefied 

southern 

pine<63µm 

2.0 8.8 115 4.4 0.12 [200] 

Colombian 

coal<63µm 

2.6 8.2 129 5.2 0.16 [168] 

Kellingley 

coal<63µm 

2.3 7.9 78.2 3.1 0.12 [168] 
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Chapter 8 MAIN FINDINGS AND FUTURE WORK  

Pakistan has a large agricultural sector and produces a substantial amount 

of waste material that has little current economic use. At the same time 

Pakistan has a major electricity supply problem. This work showed that 

agricultural wastes are a significant energy resource that could be used to 

generate electricity using relatively small biomass generator-sets that could 

take all the waste biomass from the surrounding agricultural area if proper 

planning and strategies are made. Pakistan currently imports most of the oil 

used for electricity generation. The cost of this result in a high cost of 

electricity. It is shown that bio-electricity could be generated competitively in 

Pakistan. It was estimated, based on 30% thermal efficiency of an electric 

power generation, that the annual production of crop residues have the 

potential to generate 76% of the annual electricity requirements of Pakistan. 

To minimise transport costs it is proposed that a series of about 10MWe 

plants should be established (which are commercially available) with all 

farms in about a 10km radius delivering their agricultural solid waste to the 

plant at the farmers cost with direct payment by the power generator. 

A similar approach could be adopted in other countries around the world. An 

additional advantage of the use of biomass as fuel is the reduction in carbon 

footprint in power generation and indeed legislation in many countries, 

including the UK, is incentivising the use of biomass in partial or full 

replacement of coal in power generation.  

The change of fuel from coal to pulverised biomass, and the use of biomass 

only in new plants, requires consideration of the combustion characteristics 

of biomass for efficient design of the burners but also for operational safety 

of the storage, conveying and combustion facilities for biomass. The existing 

methods for the testing of explosibility characteristics are not suitable for 

fibrous biomass and coarse size fractions. Modified Hartmann with ignition 

delay under or overestimates the explosibility characteristics that are not 

related with the representative concentration. At no ignition delay, the 

relative reactivity of different size fractions can be studied only as 

demonstrated in this work. However further work suggested to use an 

ignition delay suitably within 50-120 ms. Standard 1 m3 vessel was also 

modified to operate it for the testing of fibrous biomass dust and coarse size 

fraction. A hemispherical disperser with drilled pipe was designed previously 

and calibrated in this work using reference samples; corn flour and 

Colombian coal to get the optimum settings of ignition delay, dispersion 

pressure and valve off timings for comparative results of explosibility 
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characteristics as that of the standard system. Such data is scarce in the 

literature and it was one of the major objectives of this project to provide data 

for crop residues (bagasse, rice husk, wheat-straw, corn-cob and peanut-

shell) and different raw and thermally treated woods. 

8.1 Volatile release models 

Two models were used to gain an understanding of the volatile release 

kinetics from biomass utilising TGA data at slow heating rates. Kinetic 

parameters were measured in terms of activation energy and pre-

exponential factor considering 1st order reaction. Two distinct phases of 

volatile release were identified that were because of the hemicellulose and 

cellulose decomposition at low temperature with mainly hard lignin 

decomposition at higher temperature.  

In the first, “series reaction”, model, the primary release of volatiles from 

initial decomposition of hemicellulose and cellulose content form a major 

proportion of volatiles. Kinetic parameters were varied of this initial phase of 

volatile loss for different biomass samples with almost same kinetics for the 

second phase. It was found that biomass samples have lower activation 

energies (63-98 KJ/mol) than the coal samples (106-111 KJ/mol) for the 

release of major proportion of volatiles.  

In competitive reaction model, it was proposed that the formation of char 

influences the release of volatiles and there were competitive reactions 

occurring side by side. Activation energies of volatile release under 

competitive reactions were again found to be lower for biomass samples (61-

101 KJ/mol) compared to coal samples (182-333 KJ/mol). The difference in 

activation energies suggests that biomass is of the order of twice more 

reactive than coal. 

Both approaches clearly showed the small energy requirement for fast 

release of volatiles from biomass at low temperatures. This was attributed to 

the soft and porous structure of biomass particles compared to coal. A good 

linear correlation was found between activation energy of the volatile release 

rate and minimum explosible concentration. 

8.2 Explosion characteristics of varying sized biomass fractions 

(crop residues and woods) 

Explosibility characteristics of different biomass fuels (crop residues and 

wood powders) were measured for different size range fractions and the 
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results were compared with Colombian and Kellingley coal samples, in the 

modified Hartmann tube and the 1m3 explosion vessel.  

Based on Hartmann results, the bagasse, rice husk and corn cob samples 

were found to explode for particle size distribution as coarse as 300-500µm. 

Coal samples would not explode at this particle size. It was also 

demonstrated that the proportion of fine particles within the mixture play an 

important role in the flame propagation. It was found that fraction with a larger 

proportion of fines size particles were sensitive to explosion showing a lower 

MEC. There was a longer time delay in the evolution of sufficient volatiles in 

larger size fractions, resulting in larger dust concentrations needed to 

achieve enough volatiles within the airborne (residence) time of the particles. 

Also the most reactive concentration giving higher rate of pressure rise was 

higher for coarser fraction compared to fine size fraction.  

Crop residues were shown to sustain flame propagation even in the 

presence of 50% ash due to sufficient release of volatiles that was again 

never experienced with coal.  

Based on 1m3 vessel results, bagasse and wheat straw for size <63 µm, 

were found to be more reactive than the two selected coal samples having 

the same sieve size (< 63 µm). Minimum explosible concentration for these 

crop residues were leaner (0.22-0.29 equivalence ratio) than coal (0.39-0.49 

equivalence ratio) whereas the maximum explosion pressures were 

comparable or higher (8.5-8.8 bar). The deflagration index and maximum 

flame speed for bagasse and wheat straw were 103 bar m/s, 3.8 m/s and 82 

bar m/s, 3.0 m/s respectively despite of their higher ash contents.  

Peanut shell and corn cob of higher sieve size <500µm were found to have 

comparable rise of pressure (7-8 bar) as that of coal samples, however the 

minimum explosible concentration exceeded from the coal samples due to 

their coarse sizes.  

Post explosion residue samples showed almost the same chemical 

characterisation as the original samples. The increase of ash in the post 

explosion residue due to addition of ash from the burnt mass resulted in the 

corresponding proportional drop of volatile content.  

Rice husk samples were additionally tested at higher size fractions and the 

MEC increased with increasing size fraction. However, the maximum 

explosion pressure remained fairly steady at 7.3-7.5 barg, but the 
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concentration at which this was achieved was richer for coarser size 

fractions.   

Post explosion residues analysis revealed that for finer fractions there was 

greater mass burnt with correspondingly more ash content in the residue.  

For coarse particles there was an increase in char left in the residue.  

It was concluded that particle size plays an important role in the rate of 

release of volatiles that are responsible for the flame propagation. It was 

found that the smaller the size of the particles, the more severe the 

explosion.  

In agreement with the earlier volatile release kinetics work, the modified 

Hartmann tube and 1 m3 vessel confirmed the findings of higher volatile yield 

from biomass compared to coal. SEM image analyses supported the concept 

of more porous structure for biomass and the elongated cylindrical particle 

shape (compared to a more spherical for coal). It was concluded that 

biomass samples do not need to grind as fine as coal to acquire the same 

explosion severity.  

The higher reactivity of biomass may result in flashback in the burner for 

improper air flow rate and the higher feeding rate of biomass powder lift off 

the flame resulting the unsteady flame. 

8.3 Flame propagation of steam exploded sample compared to raw 

pine 

Steam exploded treatment on pine wood sample enhanced the brittleness 

with minor loss of volatiles. Raw pine wood sample after steam exploded 

treatment was more reactive with leaner minimum explosible concentration 

of 0.2 equivalence ratio compared to 0.39 for raw pine for same sieve size 

of less than 63µm. Rate of pressure rise for steam exploded pine was higher 

compared to raw pine wood. Most reactive concentration remained almost 

same at equivalence ratio of ~1.3. Also the flame speed were measured to 

be higher for steam treated pine compared to its raw pine with almost similar 

peak turbulent flame speed of ~2.5 m/s for raw and steam exploded pine. 

Chemical analysis of the pine wood and its steam exploded sample showed 

nearly same volatile yield with almost same total inert. However, the 

presence of higher proportions of fine in the steam exploded sample 

increased the rate of volatile release resulting quick build-up of pressure.   

Later this steam exploded sample was tested on 1 m3 explosion vessel for 

different size range fraction and similar trends were observed as expected 
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with leaner minimum explosible concentration (MEC) for finer fraction. 

Complete concentration profiles could not be obtained for finer sized 

fractions due to limited amount however, the very coarse fraction of size 150-

300 µm propagated the flame with maximum explosion pressure of around 

7 bar. The maximum deflagration index and peak turbulent flame speed were 

measured to be 42 bar m/s and 1.4 m/s respectively. 

Steam explosion treatment refined the fuel with more brittle structure leading 

their easy milling. However, the more fines generation after milling make it 

more reactive than raw biomass sample. Implementation of this steam 

exploded black pellet, a refined advanced fuel, for power generation without 

the knowledge of its flame propagation rate and explosibility characteristics 

is threats for their safe exploitation. Higher reactivity of these steam exploded 

wood with their strong particle dependence demands more safety and 

careful consideration for their applications as substitute of coal for power 

generation.   

8.4 Flame propagation of coarse size wood mixture in comparison to 

its torrefied sample   

Coarse size SPF wood mixture of size less than 1 mm was tested using 

modified 1 m3 vessel for its explosibility characteristics in comparison to its 

torrefied sample. This was the largest size range fraction tested ever on lab 

scale. It was found that this very coarse fraction of wood mixture propagated 

the flame with significant rise of pressure. The maximum rise of pressure of 

about 7.5 bar with this size fraction was not expected. It was found that the 

presence of fines with coarse particles facilitated the flame propagation. Also 

the lighter coarse particles of this SPF wood mixture suspended for longer 

time to evolve sufficient volatiles.  

Torrefied sample of this SPF wood mixture was more sensitive to explosion 

with leaner minimum explosible concentration (1.4 equivalence ratio for SPF 

torrefied compared to 2.3 for SPF raw). Also the torrefied sample showed 

greater deflagration index (~36 bar m/s) compared to its raw wood mixture 

(28 bar m/s).  

Post explosion residue analysis also showed more mass burnt of torrefied 

sample with greater ash in the residue sample. SEM imaging of the post 

explosion residues showed appearance of holes on the larger sized particles 

that revealed the release of volatiles from the surface of coarse sized 

particles. So, overall it was concluded that fine particles contribute fully 

whereas volatiles play an important role for the burning of coarse sized 
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particles. In a mixture of fine with coarse sized particles, flame propagates 

preferentially with fines and later sustained with release of volatile from 

coarse sized particles.   

Number of factors influencing the flame propagation rate can be related as; 

𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∝
(𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑒) × (𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑖𝑛𝑒𝑠)

(𝐼𝑛𝑒𝑟𝑡) × (𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑠𝑖𝑧𝑒)
×

(𝑆𝑜𝑓𝑡 𝑝𝑜𝑟𝑜𝑢𝑠 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒)

(𝐻𝑎𝑟𝑑 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒)
 

Changes in the experimental methods can be used for the standardisation 

of testing of irregular shape coarse size dust mixtures. Based on these 

findings, it was concluded that biomass samples (crop residues and woods) 

are more reactive than coal samples despite of higher ash (especially for 

crop residues) and coarse size distribution. Fine particles along-with coarse 

particles play an important role for sustaining the propagation of flame. 

Coarse size fraction with higher proportion of fine was proved to be 

hazardous with higher flame propagation rate. Thermal treatments like 

torrefaction and steam explosion refine the biomass resulting their easy 

milling, generating more fines, exhibiting higher fire/explosibility hazards. So, 

the raw and especially thermally treated biomass not need to be milled as 

fine as that of coal to acquire the same flame propagation rate. This research 

work presented and established the flame propagation rate and explosibility 

characteristics results for crop residues and woody biomass materials with 

their particle size dependence.  

8.5 Future work 

Based on the experimental findings, there are several areas to be explored 

further as future work. 

With the increased use of biofuels specifically as substitute of coal, various 

types of biomass materials particularly the low cost agricultural waste, can 

be employed. However, due to variability in the composition, each adopted 

fuels should be tested for its explosibility characteristics. Their distributions 

and effect of ignition delay on the modified dust explosion vessels needs to 

be studied. In the conventional processes, a high temperature and flash 

heating can significantly affect the kinetics for the volatile release. Kinetics 

of volatile release for the thermally thick and thermally thin biomass materials 

in combination with the effect of heating rate has to be investigated that has 

direct influence on the reactivity. The intermediate gaseous phase, due to 

pyrolysis and gasification with their characterisation, can help to understand 

the flame propagation mechanism.  
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The raw biomass after pre-treatments like torrefaction and steam explosion 

have significant reduction of particle size distribution posing greater 

fire/explosibility hazards. So, the flame propagation rate and explosibility 

characteristics should be studied as a function of the particle size. Similarly 

hybrid mixtures, using different proportions of different fuels, to achieve the 

best combination for efficient burning fuel are set as future plans. These 

future plans are split and listed below;  

 Effect of ignition delay in the modified Hartmann for the testing of 

more biomass dusts.    

 Kinetic study of biomass fuels in comparison to coal for high heating 

rate to see the effect of volatile release rate. 

 Kinetic study for different sized fractions of biomass for high heating 

rate.  

 Study the instantaneous volatile release at high temperature 

comparable to furnace conditions. 

 Chemical characterisation of volatile for same conditions as that of 

furnace (higher heating rates and higher temperature).  

 Study the role of hemicellulose, cellulose and lignin contents on the 

chemical characterisation of volatiles. 

 Determination of most reactive concentration for coarse size fraction 

with complete concentration profile.  

 Testing of coarse size range fraction of size similar to feedstocks in 

the conventional power generation plants. 

 Study the effect of pre-treatments on biomass by testing different 

torrefied and steam exploded samples for varying treated conditions. 

 Determination of explosibility characteristics of other agricultural 

waste and woody biomass.  

 Study the influence of metallic components in ash content that act to 

catalyse the flame propagation. 

 Study the testing of hybrid mixture by considering different HC’s fuel 

with biomass. 
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Appendix A  

List of dust fire/explosion incidents 

Dust fire incidents  
Date Facility Details of incident Internet ref 

1 05/04/2013 Marne, MI  Fire on the dust 
collection 

http://www.woodtv.com/dpp/news/local/ottawa_c
ounty/fire-sparks-at-manufacturing-plant  

2 14/03/2013 Troy, PA Fire in a storage shed  http://thedailyreview.com/news/blaze-occurs-at-
barefoot-pellet-in-troy-twp-one-worker-
reportedly-suffers-smoke-inhalation-1.1458850 

3 05/02/2013 Franconia, PA, 
Dalton, Ga., 
chemical plant 

Fire in the sawdust 
collection 

http://www.timesfreepress.com/news/2013/feb/0
5/fire-reported-dalton-ga-chemical-plant/ 

4 24/06/2012 Jaffrey Wood 
pellet plant, New 
England, USA 

Fire (fourth since 
2008) 

http://industrialfireprevention.blogspot.co.uk/201
2/05/pellet-plant-facing-osha-fine-on-fire.html 

5 27/04/2012 New England 
wood pellet 
plant, Jaffrey, 
New England, 
Canada 

Fire by the ignition of  
sawdust 

http://www.unionleader.com/article/20120427/N
EWS07/120429861 

6 4/3/2012 Upper Leacock 
silo fire, 
Ironstonnes 
Mills, East 
Lampeter, PA, 
USA 

Fire in the sawdust 
storage silo 

http://www.witmerfire.com/fullstory.php?157763  

7 23/02/2012 Geneva wood 
pellet Mill, 
Strong, Franklin 
County 

Fire in the storage  http://www.sunjournal.com/news/franklin/115917
7 

8 01/01/2012 Wood-pellet 
manufacturing 
plant , Wiggins 
MS 

Fire http://www.fireworld.com/IncidentLogs/tabid/101/
articleType/ArchiveView/Year/2012/Month/1/curr
entpage/8/Default.aspx 

9 09/11/2010 Havco wood 
products , Scott 
County, MO 

Fire on sawdust in a 
silo 

http://www.kfvs12.com/story/13475742/another-
fire-at-havco-wood-products-overnight 

10 08/09/2010 Enligna 
Canada’s wood 
pellet mill Upper 
Musquodoboit 
Halifax Nova 
Scotia 

Fire on sawmill 
chipping waste 

http://www.canadianbiomassmagazine.ca/conte
nt/view/1935/57/ 

11 28/06/2010 South Molton 
Chipboard 
factory, UK: 
wood processing 
factory. 

Fire in the silos http://www.edp24.co.uk/news/fire_at_south_molt
on_chipboard_factory_1_430441  

12 21/04/2010 Wayerhaeuser, 
Grande 
Prayerie- pulp 
plant sawdust 
explosion & fire 

Fire in sawdust due to 
friction 

http://www.dailyheraldtribune.com/2010/04/21/fri
ction-sawdust-start-fire-at-weyerhaeuser 

13 03/01/2010 Elkhart County, 
IN: Fire broke 
out in a wood 
chip pile. 

Fire http://www.osha.gov/dsg/combustibledust/expert
_forum_summary_report.pdf 

14 20/11/2009 Adelanto, CA: A 
silo caught fire at 
a wood products 
plant. 

Fire in the silo http://www.vvdailypress.com/articles/adelanto-
15809-factory-fire.html 

15 23/10/2009 Pellet Factory 
Wismar, 
Germany 

Fire http://fireworld.com/IncidentLogs/tabid/101/articl
eType/ArchiveView/month/10/year/2009/Default.
aspx 

16 24/08/2009 Klamath Falls Wood dust fire http://www.fireworld.com/IncidentLogs/tabid/101/
articleType/ArchiveView/Year/2009/Month/8/curr
entpage/2/Default.aspx 

http://www.woodtv.com/dpp/news/local/ottawa_county/fire-sparks-at-manufacturing-plant
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http://www.fireworld.com/IncidentLogs/tabid/101/articleType/ArchiveView/Year/2012/Month/1/currentpage/8/Default.aspx
http://www.kfvs12.com/story/13475742/another-fire-at-havco-wood-products-overnight
http://www.kfvs12.com/story/13475742/another-fire-at-havco-wood-products-overnight
http://www.edp24.co.uk/news/fire_at_south_molton_chipboard_factory_1_430441
http://www.edp24.co.uk/news/fire_at_south_molton_chipboard_factory_1_430441
http://www.dailyheraldtribune.com/2010/04/21/friction-sawdust-start-fire-at-weyerhaeuser
http://www.dailyheraldtribune.com/2010/04/21/friction-sawdust-start-fire-at-weyerhaeuser
http://www.osha.gov/dsg/combustibledust/expert_forum_summary_report.pdf
http://www.osha.gov/dsg/combustibledust/expert_forum_summary_report.pdf
http://www.vvdailypress.com/articles/adelanto-15809-factory-fire.html
http://www.vvdailypress.com/articles/adelanto-15809-factory-fire.html
http://fireworld.com/IncidentLogs/tabid/101/articleType/ArchiveView/month/10/year/2009/Default.aspx
http://fireworld.com/IncidentLogs/tabid/101/articleType/ArchiveView/month/10/year/2009/Default.aspx
http://fireworld.com/IncidentLogs/tabid/101/articleType/ArchiveView/month/10/year/2009/Default.aspx
http://www.fireworld.com/IncidentLogs/tabid/101/articleType/ArchiveView/Year/2009/Month/8/currentpage/2/Default.aspx
http://www.fireworld.com/IncidentLogs/tabid/101/articleType/ArchiveView/Year/2009/Month/8/currentpage/2/Default.aspx
http://www.fireworld.com/IncidentLogs/tabid/101/articleType/ArchiveView/Year/2009/Month/8/currentpage/2/Default.aspx
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17 24/06/2009 Inverness, UK: 
Fire broke out at 
a wood chip 
factory,1 injuring  

Fire http://www.fireworld.com/IncidentLogs/tabid/101/
articleType/ArchiveView/month/6/year/2009/Def
ault.aspx 

18 31/06/2009 Ferry hill, UK: 
Fire was 
reported at a 
wood chip 
factory. 

Fire http://www.fireworld.com/IncidentLogs/tabid/101/
articleType/ArchiveView/month/6/year/2009/Def
ault.aspx 

19 02/05/2009 Westwood Fibre 
products, 
kelowna, BC, 
Canada 

Fire in dust particles http://www.castanet.net/news/West-
Kelowna/46698/Another-fire-at-Westwood 

20 18/09/2008 Granulles de lac 
Mauricie, 
Atikokan, ON  

Fire http://www.pellet.org/linked/2011-07-
24%20g%20murray%20pfi.pdf 

21 17/09/2008 Kremmling 
Pellet Plant, 
Collorado 

Fire http://www.skyhidailynews.com/article/20081027
/NEWS/810289971 

22 21/06/2008 Vancouver, B.C. Fire http://www.fireworld.com/IncidentLogs/tabid/101/
articleType/ArchiveView/Year/2009/Month/8/curr
entpage/2/Default.aspx 

23 20/06/2008 Pellet Mill, 
Corinth, Maine 

Fire in the dust  http://woodpelletguru.blogspot.co.uk/2008/05/pel
let-mill-fire.html 

Dust explosion incidents  
Date Facility Details of incident Internet ref 

1 28/01/2013 Tandil, 
Argentina 

Explosion in a grain 
silo 

http://www.lu22radiotandil.com.ar/index.php/info
rmacion-general/49-locales/7286-tras-el-
accidente-en-la-planta-de-silos-desde-uatre-
aseguran-que-qes-el-momento-de-acompanar-
a-las-familias-y-respetar-su-dolorq 

2 11/06/2012 Amagerværket, 
Vattanfall, 
Denmark 

Explosion in the silo http://ing.dk/artikel/129164-eksplosion-skete-
under-rensning-af-silo 

  3 23/04/2012 Lakeland Mill 
Vancouver 

Explosion & fire 
fatalities by the 
ignition of  sawdust 

http://news.nationalpost.com/2012/04/28/fatal-
sawdust-blast-in-b-c-comes-after-five-explsions-
at-similar-plants-since-2009/ 

4 08/03/2012 Laurinburg wood 
pellet mill, 
Laurinburg, NC 
Canada 

Dust Explosion & Fire 
in the silo 

http://www.carolinalive.com/news/story.aspx?id=
728305 

5 20/07/2011 Waycross, 
Jacksonville, 
Georgia, USA 
(incident after 1 
month 
operation) 

Flash type explosion 
in the dust 

http://jacksonville.com/news/crime/2011-06-
21/story/explosion-damages-waycross-plant-no-
injuries-reported 

6 06/01/2011 Tolko Soda 
Creek Mill, 
Williams Lake 

Wood dust Explosion 
& Fire 

http://www.vancouversun.com/news/sawmill+bla
st+went+unreported/6550344/story.html 

7 25/10/2010 Pinskdrev plant Dust Explosion & Fire 
in silo 

http://charter97.org/en/news/2010/10/26/33260/ 

8 23/04/2010 Creative 
Biomass, Kimble 
Place, Fitchburg 
, Biomass silo 

Dust Explosion & Fire 
in silo 

http://lifeasajournalist.blogspot.co.uk/2010/06/no
body-hurt-in-dust-explosion.html 

9 13/04/2010 Wood-Mode Inc 
KREAMER, PA. 

Dust explosion & Fire 
in silo 

http://dailyitem.com/0100_news/x27405087/Dust
-fire-fourth-since-2003-at-plant 

10 03/04/2010 Kreamer PA Saw dust explosion http://www.lewistownsentinel.com/page/content.
detail/id/518520.html 

11 06/03/2010 Forest Bio 
Products wood 
processing plant 
Perthshire, 
Scotland 

Dust Exlosion & Fire http://www.pressandjournal.co.uk/Article.aspx/16
34354?UserKey= 

12 24/08/2009 Williams Lake 
BC wood pellet 
facility 

Dust Explosions and 
Fire 

http://www.fireworld.com/IncidentLogs/tabid/101/
articleType/ArchiveView/Year/2009/Month/8/curr
entpage/2/Default.aspx 

13 08/08/2009 Pellet mill 
strong, Maine 

Dust Explosion & Fire 
due to the use of 
unapproved spark 

http://www.reliableplant.com/Read/23313/OSHA
-cites-Maine-pellet-mill 

14 01/08/2009 Pacific 
Bioenergy Pellet 
facility, Prince 

Dust Explosion & Fire http://woodworkingnetwork.com/ComDust-
explosion-rips-BC-wood-pellet-mill/2010-12-

http://www.fireworld.com/IncidentLogs/tabid/101/articleType/ArchiveView/month/6/year/2009/Default.aspx
http://www.fireworld.com/IncidentLogs/tabid/101/articleType/ArchiveView/month/6/year/2009/Default.aspx
http://www.fireworld.com/IncidentLogs/tabid/101/articleType/ArchiveView/month/6/year/2009/Default.aspx
http://www.fireworld.com/IncidentLogs/tabid/101/articleType/ArchiveView/month/6/year/2009/Default.aspx
http://www.fireworld.com/IncidentLogs/tabid/101/articleType/ArchiveView/month/6/year/2009/Default.aspx
http://www.fireworld.com/IncidentLogs/tabid/101/articleType/ArchiveView/month/6/year/2009/Default.aspx
http://www.castanet.net/news/West-Kelowna/46698/Another-fire-at-Westwood
http://www.castanet.net/news/West-Kelowna/46698/Another-fire-at-Westwood
http://www.pellet.org/linked/2011-07-24%20g%20murray%20pfi.pdf
http://www.pellet.org/linked/2011-07-24%20g%20murray%20pfi.pdf
http://www.skyhidailynews.com/article/20081027/NEWS/810289971
http://www.skyhidailynews.com/article/20081027/NEWS/810289971
http://www.fireworld.com/IncidentLogs/tabid/101/articleType/ArchiveView/Year/2009/Month/8/currentpage/2/Default.aspx
http://www.fireworld.com/IncidentLogs/tabid/101/articleType/ArchiveView/Year/2009/Month/8/currentpage/2/Default.aspx
http://www.fireworld.com/IncidentLogs/tabid/101/articleType/ArchiveView/Year/2009/Month/8/currentpage/2/Default.aspx
http://woodpelletguru.blogspot.co.uk/2008/05/pellet-mill-fire.html
http://woodpelletguru.blogspot.co.uk/2008/05/pellet-mill-fire.html
http://www.lu22radiotandil.com.ar/index.php/informacion-general/49-locales/7286-tras-el-accidente-en-la-planta-de-silos-desde-uatre-aseguran-que-qes-el-momento-de-acompanar-a-las-familias-y-respetar-su-dolorq
http://www.lu22radiotandil.com.ar/index.php/informacion-general/49-locales/7286-tras-el-accidente-en-la-planta-de-silos-desde-uatre-aseguran-que-qes-el-momento-de-acompanar-a-las-familias-y-respetar-su-dolorq
http://www.lu22radiotandil.com.ar/index.php/informacion-general/49-locales/7286-tras-el-accidente-en-la-planta-de-silos-desde-uatre-aseguran-que-qes-el-momento-de-acompanar-a-las-familias-y-respetar-su-dolorq
http://www.lu22radiotandil.com.ar/index.php/informacion-general/49-locales/7286-tras-el-accidente-en-la-planta-de-silos-desde-uatre-aseguran-que-qes-el-momento-de-acompanar-a-las-familias-y-respetar-su-dolorq
http://www.lu22radiotandil.com.ar/index.php/informacion-general/49-locales/7286-tras-el-accidente-en-la-planta-de-silos-desde-uatre-aseguran-que-qes-el-momento-de-acompanar-a-las-familias-y-respetar-su-dolorq
http://ing.dk/artikel/129164-eksplosion-skete-under-rensning-af-silo
http://ing.dk/artikel/129164-eksplosion-skete-under-rensning-af-silo
http://www.carolinalive.com/news/story.aspx?id=728305
http://www.carolinalive.com/news/story.aspx?id=728305
http://jacksonville.com/news/crime/2011-06-21/story/explosion-damages-waycross-plant-no-injuries-reported
http://jacksonville.com/news/crime/2011-06-21/story/explosion-damages-waycross-plant-no-injuries-reported
http://jacksonville.com/news/crime/2011-06-21/story/explosion-damages-waycross-plant-no-injuries-reported
http://www.vancouversun.com/news/sawmill+blast+went+unreported/6550344/story.html
http://www.vancouversun.com/news/sawmill+blast+went+unreported/6550344/story.html
http://lifeasajournalist.blogspot.co.uk/2010/06/nobody-hurt-in-dust-explosion.html
http://lifeasajournalist.blogspot.co.uk/2010/06/nobody-hurt-in-dust-explosion.html
http://dailyitem.com/0100_news/x27405087/Dust-fire-fourth-since-2003-at-plant
http://dailyitem.com/0100_news/x27405087/Dust-fire-fourth-since-2003-at-plant
http://www.lewistownsentinel.com/page/content.detail/id/518520.html
http://www.lewistownsentinel.com/page/content.detail/id/518520.html
http://www.fireworld.com/IncidentLogs/tabid/101/articleType/ArchiveView/Year/2009/Month/8/currentpage/2/Default.aspx
http://www.fireworld.com/IncidentLogs/tabid/101/articleType/ArchiveView/Year/2009/Month/8/currentpage/2/Default.aspx
http://www.fireworld.com/IncidentLogs/tabid/101/articleType/ArchiveView/Year/2009/Month/8/currentpage/2/Default.aspx
http://www.reliableplant.com/Read/23313/OSHA-cites-Maine-pellet-mill
http://www.reliableplant.com/Read/23313/OSHA-cites-Maine-pellet-mill
http://woodworkingnetwork.com/ComDust-explosion-rips-BC-wood-pellet-mill/2010-12-27/Article.aspx?oid=1294395&fid=WWN-ARTICLES
http://woodworkingnetwork.com/ComDust-explosion-rips-BC-wood-pellet-mill/2010-12-27/Article.aspx?oid=1294395&fid=WWN-ARTICLES
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George, BC, 
Canada 

27/Article.aspx?oid=1294395&fid=WWN-
ARTICLES 

15 29/01/2009 Eibenstock, 
Germany: An 
explosion 
destroyed a 
plant that makes 
wood pellets. 

Dust Explosion & Fire http://www.fireworld.com/IncidentLogs/tabid/101/
articleType/ArchiveView/month/1/year/2009/Def
ault.aspx 

16 01/03/2009 Northeast 
Pellets in 
Ashland 

Dust Explosion & Fire http://www.pressherald.com/archive/fires-put-
maine-pellet-mills-on-hot-seat_2009-08-23.html 

17 04/01/2009 Pellet Facility 
Ettenheim, 
Germany 

Dust Explosion http://dustexplosions.blogspot.com/2009/01/stau
bexplosion-german-pellet-mill.html 

18 19/12/2008 Pacific 
Bioenergy Pellet 
facility, Prince 
George, BC, 
Canada 

Dust Explosion & Fire http://forestindustries.eu/content/explosion-
pacific-bioenergy%E2%80%99s-pellet-plant-
prince-george-bc  

19 08/10/2008 New England 
Wood Pellets 

Dust Explosion & Fire http://dustexplosions.blogspot.com/2008/08/woo
d-pellet-dust-fire-non-issue.html 

20 22/08/2008 AJ Stove and 
Pellets in 
Marion, PA 

Dust Explosion http://dustexplosions.blogspot.com/2008/08/woo
d-pellet-plant-dust-explosion-again.html 

21 15/08/2008 Corinth Wood 
Pellets 

Dust Explosion & Fire http://dustexplosions.blogspot.com/2008/08/woo
d-pellet-dust-fire-non-issue.html 

22 11/08/2008 New England 
Pellet Plant 
Jaffrey pellet 
plant New 
Hampshire 

Dust Explosion & Fire http://www.thebostonchannel.com/news/171550
15/detail.html 

23 15/07/2008 AJ Stove and 
Pellets in 
Marion, PA 

Dust Explosion http://dustexplosions.blogspot.com/2008/08/woo
d-pellet-plant-dust-explosion-again.html 

24 01/07/2008 Westwood Fibre 
products, 
kelowna, BC, 
Canada  

Dust Explosion & Fire http://www.castanet.net/news/West-
Kelowna/46698/Another-fire-at-Westwood 

25 01/03/2008 Pacific 
Bioenergy Pellet 
facility, Prince 
George, BC, 
Canada 

Dust explosion http://www.princegeorgecitizen.com/article/2010
1218/PRINCEGEORGE0101/312189993/-
1/PRINCEGEORGE/explosion-closes-down-
pellet-plant 

Pellet’s fire Incidents  
Date Facility Details of incident Internet ref 

1 09/04/2013 Charleston, AR Fire in the pellets http://www.arkansasonline.com/news/2013/ap
r/11/fire-damages-charleston-plant-20130411/  

2 27/02/2012 Tilbury biomass 
power station, 
UK 

Fire in biomass pellets 
after starting in a hopper 

http://www.guardian.co.uk/uk/2012/feb/27/firefi
ghters-essex-power-station-blaze 

3 16/12/2010 Wood-pellet 
factory in 
Barnstead, NH, 
USA  

Fire on wood pellet http://www.firehouse.com/news/10464625/nh-
firefighters-again-called-to-wood-pellet-plant 

4 12/04/2010 New England 
wood pellets/ 
Norbord 

Fire in the dust deposit 
in bagging department 

http://www.wbng.com/younews/59726207.html  

5 29/07/2009 Pellet Mill, 
Rumford, RI 

Fire in the pellets http://www.fireworld.com/IncidentLogs/tabid/1
01/articleType/ArchiveView/month/7/year/200
9/Default.aspx 

6 01/01/2009 Lantmännen’s 
silos in 
Kristinehamn, 
Norway 

Fire in the pellet silo http://www.aga.com/international/web/lg/aga/li
ke35agacom.nsf/docbyalias/cust_high_lantm  

7 20/05/2008 Corinth Wood 
Pellets 

 Fire in the pellets http://dustexplosions.blogspot.com/2008/08/w
ood-pellet-dust-fire-non-issue.html 

Fire/ Explosions in Conveyers  
Date Facility Details of incident Internet ref 

1 12/08/2012 810MW Avedore 
power plant in 
Copenhagen 

Fire on conveyors http://www.canadianbiomassmagazine.ca/cont
ent/view/3583/57/ 

2 02/05/2012 Wood pellet 
wharehouse 
Port of Panama 

Fire on conveyors http://www.newsherald.com/articles/port-
102429-fire-city.html 

http://woodworkingnetwork.com/ComDust-explosion-rips-BC-wood-pellet-mill/2010-12-27/Article.aspx?oid=1294395&fid=WWN-ARTICLES
http://woodworkingnetwork.com/ComDust-explosion-rips-BC-wood-pellet-mill/2010-12-27/Article.aspx?oid=1294395&fid=WWN-ARTICLES
http://www.fireworld.com/IncidentLogs/tabid/101/articleType/ArchiveView/month/1/year/2009/Default.aspx
http://www.fireworld.com/IncidentLogs/tabid/101/articleType/ArchiveView/month/1/year/2009/Default.aspx
http://www.fireworld.com/IncidentLogs/tabid/101/articleType/ArchiveView/month/1/year/2009/Default.aspx
http://www.pressherald.com/archive/fires-put-maine-pellet-mills-on-hot-seat_2009-08-23.html
http://www.pressherald.com/archive/fires-put-maine-pellet-mills-on-hot-seat_2009-08-23.html
http://dustexplosions.blogspot.com/2009/01/staubexplosion-german-pellet-mill.html
http://dustexplosions.blogspot.com/2009/01/staubexplosion-german-pellet-mill.html
http://forestindustries.eu/content/explosion-pacific-bioenergy%E2%80%99s-pellet-plant-prince-george-bc
http://forestindustries.eu/content/explosion-pacific-bioenergy%E2%80%99s-pellet-plant-prince-george-bc
http://forestindustries.eu/content/explosion-pacific-bioenergy%E2%80%99s-pellet-plant-prince-george-bc
http://dustexplosions.blogspot.com/2008/08/wood-pellet-dust-fire-non-issue.html
http://dustexplosions.blogspot.com/2008/08/wood-pellet-dust-fire-non-issue.html
http://dustexplosions.blogspot.com/2008/08/wood-pellet-plant-dust-explosion-again.html
http://dustexplosions.blogspot.com/2008/08/wood-pellet-plant-dust-explosion-again.html
http://dustexplosions.blogspot.com/2008/08/wood-pellet-dust-fire-non-issue.html
http://dustexplosions.blogspot.com/2008/08/wood-pellet-dust-fire-non-issue.html
http://www.thebostonchannel.com/news/17155015/detail.html
http://www.thebostonchannel.com/news/17155015/detail.html
http://dustexplosions.blogspot.com/2008/08/wood-pellet-plant-dust-explosion-again.html
http://dustexplosions.blogspot.com/2008/08/wood-pellet-plant-dust-explosion-again.html
http://www.castanet.net/news/West-Kelowna/46698/Another-fire-at-Westwood
http://www.castanet.net/news/West-Kelowna/46698/Another-fire-at-Westwood
http://www.princegeorgecitizen.com/article/20101218/PRINCEGEORGE0101/312189993/-1/PRINCEGEORGE/explosion-closes-down-pellet-plant
http://www.princegeorgecitizen.com/article/20101218/PRINCEGEORGE0101/312189993/-1/PRINCEGEORGE/explosion-closes-down-pellet-plant
http://www.princegeorgecitizen.com/article/20101218/PRINCEGEORGE0101/312189993/-1/PRINCEGEORGE/explosion-closes-down-pellet-plant
http://www.princegeorgecitizen.com/article/20101218/PRINCEGEORGE0101/312189993/-1/PRINCEGEORGE/explosion-closes-down-pellet-plant
http://www.arkansasonline.com/news/2013/apr/11/fire-damages-charleston-plant-20130411/
http://www.arkansasonline.com/news/2013/apr/11/fire-damages-charleston-plant-20130411/
http://www.guardian.co.uk/uk/2012/feb/27/firefighters-essex-power-station-blaze
http://www.guardian.co.uk/uk/2012/feb/27/firefighters-essex-power-station-blaze
http://www.firehouse.com/news/10464625/nh-firefighters-again-called-to-wood-pellet-plant
http://www.firehouse.com/news/10464625/nh-firefighters-again-called-to-wood-pellet-plant
http://www.wbng.com/younews/59726207.html
http://www.fireworld.com/IncidentLogs/tabid/101/articleType/ArchiveView/month/7/year/2009/Default.aspx
http://www.fireworld.com/IncidentLogs/tabid/101/articleType/ArchiveView/month/7/year/2009/Default.aspx
http://www.fireworld.com/IncidentLogs/tabid/101/articleType/ArchiveView/month/7/year/2009/Default.aspx
http://www.aga.com/international/web/lg/aga/like35agacom.nsf/docbyalias/cust_high_lantm
http://www.aga.com/international/web/lg/aga/like35agacom.nsf/docbyalias/cust_high_lantm
http://dustexplosions.blogspot.com/2008/08/wood-pellet-dust-fire-non-issue.html
http://dustexplosions.blogspot.com/2008/08/wood-pellet-dust-fire-non-issue.html
http://www.newsherald.com/articles/port-102429-fire-city.html
http://www.newsherald.com/articles/port-102429-fire-city.html
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Fire/Explosions (Spontaneous combustion)  
Date Facility Details of incident Internet ref 

1 14/03/2013 Troy, 
PA;Barefoot 
wood pellet plant  

Fire broke out in a 
storage shed  

http://thedailyreview.com/news/blaze-occurs-
at-barefoot-pellet-in-troy-twp-one-worker-
reportedly-suffers-smoke-inhalation-
1.1458850 

2 03/08/2012 Green Circle 
Bio-Energy's 
wood pellet 
facility Panama 

spontaneous 
combustion 

http://www.canadianbiomassmagazine.ca/cont
ent/view/3550/57/ 

3 31/10/2011 Storage area 
Port of Tyne, UK 

Fire http://www.journallive.co.uk/north-east-
news/todays-news/2011/10/31/firefighters-
battle-huge-biomass-fire-at-port-of-tyne-
61634-29689277/  

Fire/Explosions in Venting and duct work  
Date Facility Details of incident Internet ref 

1 18/03/2013 Gonic, NY, 
Rochester 
industrial plant  

Dust ignition in the 
venting 

http://www.unionleader.com/article/20130318/
NEWS07/130319007&source=RSS 

2 11/02/2013 Kreamer, PA, 
Oaklay paper 
plant 

Fire in the empty 
sawdust silo 

http://www.local12.com/news/local/story/Two-
Alarm-Fire-At-Oakley-Paper-
Plant/uNjjSvbgnUKtks5oY-iOiw.cspx?rss=30 

3 01/02/2013 Vivescia, France Overheated grain silo 
fire 

http://champagne-
ardenne.france3.fr/2013/02/02/menace-
autour-d-un-silo-de-grains-acy-romance-
192701.html 

4 07/09/2010 Mingo County, 
WV: Fire broke 
out in a wood 
processing 
plant. 

wood Dust fire in 
ventilation 

http://wvgazette.com/News/201009071154  

Fire/Explosions in Grinders  
Date Facility Details of incident Internet ref 

1 01/04/2013 Glendale 
Heights sheet 
metal plant, IL 

Aluminium dust ignition 
explosion in grinding 

http://abclocal.go.com/wls/story?section=news
/local&id=9048672 

2 04/01/2013 Tilbrook, UK: Straw caught fire in  
grinder 

http://www.huntspost.co.uk/news/latestnews/fi
re_breaks_out_at_huntingdonshire_straw_fact
ory_1_1784402  

3 28/02/2011 Portsmouth, NH: 
A fire in a wood 
chip crushing 
machine spread 
through a power 

Fire http://www.fosters.com/apps/pbcs.dll/article?A
ID=/20110301/GJNEWS_01/703019953/-
1/FOSNEWS 

Miscellaneous  
Date Facility Details of incident Internet ref 

1 21/01/2012 Babine Forest 
Products mill 
injuring 19, 
Burns Lake BC 

By natural gas leakage http://foresttalk.com/index.php/2012/01/21/exp
losion-destroys-babine-forest-products-
injuring-19/ 

2 21/12/2011 Pinnacle Plant 
Houston BC, 
Canada. 
(several fires 
since 2006) 

Under Investigation http://www.cftktv.com/news/Story.aspx?ID=16
30036 

3 30/11/2011 Kremmling 
Pellet Plant, 
Collorado 

No reason is mentioned http://www.skyhidailynews.com/article/201111
30/NEWS/111139999 

4 20/10/2011 New England 
wood pellet 
plant, Jaffrey, 
New Hampshire, 
USA 

Fire in cooling tower http://www.unionleader.com/article/20111020/
NEWS07/710219950/0/FRONTPAGE 

5 27/04/2011 Pinnacle Plant 
Houston BC, 
Canada. 
(several fires 
since 2006) 

No reason Is mentioned http://foresttalk.com/index.php/2011/04/04/exp
losion-at-pinnacle-pellet-in-armstrong-b-c/ 

6 04/04/2011 Armstrong pellet 
plant, Pleasant 
Valley Road, 
Swan Lake , 
Canada 

Under Investigation http://www.firedirect.net/index.php/2011/04/bla
st-fire-at-plant/ 

http://thedailyreview.com/news/blaze-occurs-at-barefoot-pellet-in-troy-twp-one-worker-reportedly-suffers-smoke-inhalation-1.1458850
http://thedailyreview.com/news/blaze-occurs-at-barefoot-pellet-in-troy-twp-one-worker-reportedly-suffers-smoke-inhalation-1.1458850
http://thedailyreview.com/news/blaze-occurs-at-barefoot-pellet-in-troy-twp-one-worker-reportedly-suffers-smoke-inhalation-1.1458850
http://thedailyreview.com/news/blaze-occurs-at-barefoot-pellet-in-troy-twp-one-worker-reportedly-suffers-smoke-inhalation-1.1458850
http://thedailyreview.com/news/blaze-occurs-at-barefoot-pellet-in-troy-twp-one-worker-reportedly-suffers-smoke-inhalation-1.1458850
http://thedailyreview.com/news/blaze-occurs-at-barefoot-pellet-in-troy-twp-one-worker-reportedly-suffers-smoke-inhalation-1.1458850
http://thedailyreview.com/news/blaze-occurs-at-barefoot-pellet-in-troy-twp-one-worker-reportedly-suffers-smoke-inhalation-1.1458850
http://www.journallive.co.uk/north-east-news/todays-news/2011/10/31/firefighters-battle-huge-biomass-fire-at-port-of-tyne-61634-29689277/
http://www.journallive.co.uk/north-east-news/todays-news/2011/10/31/firefighters-battle-huge-biomass-fire-at-port-of-tyne-61634-29689277/
http://www.journallive.co.uk/north-east-news/todays-news/2011/10/31/firefighters-battle-huge-biomass-fire-at-port-of-tyne-61634-29689277/
http://www.journallive.co.uk/north-east-news/todays-news/2011/10/31/firefighters-battle-huge-biomass-fire-at-port-of-tyne-61634-29689277/
http://www.unionleader.com/article/20130318/NEWS07/130319007&source=RSS
http://www.unionleader.com/article/20130318/NEWS07/130319007&source=RSS
http://www.unionleader.com/article/20130318/NEWS07/130319007&source=RSS
http://www.local12.com/news/local/story/Two-Alarm-Fire-At-Oakley-Paper-Plant/uNjjSvbgnUKtks5oY-iOiw.cspx?rss=30
http://www.local12.com/news/local/story/Two-Alarm-Fire-At-Oakley-Paper-Plant/uNjjSvbgnUKtks5oY-iOiw.cspx?rss=30
http://www.local12.com/news/local/story/Two-Alarm-Fire-At-Oakley-Paper-Plant/uNjjSvbgnUKtks5oY-iOiw.cspx?rss=30
http://champagne-ardenne.france3.fr/2013/02/02/menace-autour-d-un-silo-de-grains-acy-romance-192701.html
http://champagne-ardenne.france3.fr/2013/02/02/menace-autour-d-un-silo-de-grains-acy-romance-192701.html
http://champagne-ardenne.france3.fr/2013/02/02/menace-autour-d-un-silo-de-grains-acy-romance-192701.html
http://champagne-ardenne.france3.fr/2013/02/02/menace-autour-d-un-silo-de-grains-acy-romance-192701.html
http://champagne-ardenne.france3.fr/2013/02/02/menace-autour-d-un-silo-de-grains-acy-romance-192701.html
http://wvgazette.com/News/201009071154
http://abclocal.go.com/wls/story?section=news/local&id=9048672
http://abclocal.go.com/wls/story?section=news/local&id=9048672
http://abclocal.go.com/wls/story?section=news/local&id=9048672
http://abclocal.go.com/wls/story?section=news/local&id=9048672
http://abclocal.go.com/wls/story?section=news/local&id=9048672
http://www.huntspost.co.uk/news/latestnews/fire_breaks_out_at_huntingdonshire_straw_factory_1_1784402
http://www.huntspost.co.uk/news/latestnews/fire_breaks_out_at_huntingdonshire_straw_factory_1_1784402
http://www.huntspost.co.uk/news/latestnews/fire_breaks_out_at_huntingdonshire_straw_factory_1_1784402
http://www.fosters.com/apps/pbcs.dll/article?AID=/20110301/GJNEWS_01/703019953/-1/FOSNEWS
http://www.fosters.com/apps/pbcs.dll/article?AID=/20110301/GJNEWS_01/703019953/-1/FOSNEWS
http://www.fosters.com/apps/pbcs.dll/article?AID=/20110301/GJNEWS_01/703019953/-1/FOSNEWS
http://www.cftktv.com/news/Story.aspx?ID=1630036
http://www.cftktv.com/news/Story.aspx?ID=1630036
http://www.skyhidailynews.com/article/20111130/NEWS/111139999
http://www.skyhidailynews.com/article/20111130/NEWS/111139999
http://www.unionleader.com/article/20111020/NEWS07/710219950/0/FRONTPAGE
http://www.unionleader.com/article/20111020/NEWS07/710219950/0/FRONTPAGE
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7 10/3/2011 Pacific 
Bioenergy Pellet 
facility, Prince 
George, BC, 
Canada 

Fire in pipe connecting 
two cyclones 

http://www.canadianbiomassmagazine.ca/cont
ent/view/2352/57/ 

8 17/12/2010 Pacific 
Bioenergy Pellet 
facility, Prince 
George, BC, 
Canada 

Explosion resulting fire 
due to Plant’s fibre 
drying system ignition 
by spark 

http://foresttalk.com/index.php/2011/01/06/cau
se-of-explosion-at-pacific-bioenergy-pellet-
plant-determined/ 

9 07/12/2010 Michigan Fuel 
pellet plant, 
Holland, 
Michigan USA 

Fire on pelletizing 
machine 

http://www.hollandsentinel.com/news/x117101
5614/Fire-starts-in-machinery-at-wood-pellet-
plant  

10 02/12/2010 The Ainsworth 
Lumber Co. 
Ltd.‘s OSB plant, 
Mile House BC 
Canada 

Explosion in the dryer 
area 

http://foresttalk.com/index.php/2010/12/02/ain
sworths-100-mile-osb-plant-operating-again-
after-explosion/ 

11 18/11/2010 Ainsworth OSB 
Plant 100 Miles 
House British 
Columbia 

Under Investigation http://foresttalk.com/index.php/2010/11/18/ain
sworth-osb-plant-in-100-mile-house-still-down-
after-last-weeks-explosion/  

12 16/09/2010 Pine Bluff Fibre 
resources wood 
pellet facility, 
Maryland USA 

Under Investigation http://www.chem.info/News/2010/09/Safety-
Sawdust-Explosion-Fire-Guts-Plant/ 

13 18/07/2010 Lakeshore 
Wisconsin wood 
pallets and wood 
pellets 

Suspicious fire  http://www.jsonline.com/news/wisconsin/9953
5874.html 

14 30/03/2010 TinmberTech, 
Prairae Avenue 

Undermines Explosion http://wnewsj.com/main.asp?SectionID=49&S
ubSectionID=156&ArticleID=183186  

15 04/02/2010 Waste to Energy 
Plant Jamesville, 
New York 

Dust explosion in filters http://www.cnycentral.com/news/news_story.a
spx?id=438837  

16 08/08/2009 Geneva Wood 
Fuels LLC wood 
pellet 
processing, 
Maine USA 

Blast in the dryer in the 
start-up mode 

http://www.dailybulldog.com/db/features/pellet
-mill-damaged-in-massive-explosion/ 

http://www.hollandsentinel.com/news/x1171015614/Fire-starts-in-machinery-at-wood-pellet-plant
http://www.hollandsentinel.com/news/x1171015614/Fire-starts-in-machinery-at-wood-pellet-plant
http://www.hollandsentinel.com/news/x1171015614/Fire-starts-in-machinery-at-wood-pellet-plant
http://foresttalk.com/index.php/2010/11/18/ainsworth-osb-plant-in-100-mile-house-still-down-after-last-weeks-explosion/
http://foresttalk.com/index.php/2010/11/18/ainsworth-osb-plant-in-100-mile-house-still-down-after-last-weeks-explosion/
http://foresttalk.com/index.php/2010/11/18/ainsworth-osb-plant-in-100-mile-house-still-down-after-last-weeks-explosion/
http://www.jsonline.com/news/wisconsin/99535874.html
http://www.jsonline.com/news/wisconsin/99535874.html
http://wnewsj.com/main.asp?SectionID=49&SubSectionID=156&ArticleID=183186
http://wnewsj.com/main.asp?SectionID=49&SubSectionID=156&ArticleID=183186
http://www.cnycentral.com/news/news_story.aspx?id=438837
http://www.cnycentral.com/news/news_story.aspx?id=438837
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Appendix B 

 

Main Control Panel
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Appendix C 
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Dust Explosion Rig 

Appendix D 

                                      

 

 

 

C.2: Schematic of the thermocouple 

arrangement in vessel (Horizontal arrangement) 

C.1: Schematic of the thermocouple 

arrangement in vessel (Vertical arrangement) 
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Appendix E 

Thermocouple Distances 

Direction: Forward Direction: Backwards Direction: Downwards 

Thermocouples Distance 

from 

Spark 

[mm] 

Distance 

between 

adjacent 

thermocouples 

[mm] 

Thermocouples Distance 

from 

Spark 

[mm] 

Distance 

between 

adjacent 

thermocouples 

[mm] 

Thermocouples Distance 

from 

Spark 

[mm] 

Distance 

between 

adjacent 

thermocouples 

[mm] 

Spark 0 0 Spark 0 0 Spark 0 0 

1 68 68 9 7 7 14 78 78 

2 132 64 10 69 62 15 125 47 

3 198 66 11 131 62 16 200 75 

S4 261 63 12 199 68 17 256 56 

5 329 68 13 265 66 18 306 50 

6 397 68       19 376 70 

7 460 63       20 444 68 

8 522 62       21 500 56 

            22 556 56 
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Appendix F 
Date Test No. Description 

Previous Test No. Authorised by 

Operation Tick Instruction/State   State/Action     

A. Initial state               

System purged           

Spark power OFF             

Ignition discharged             

20" port open           

B. Chemical ignitors             

See SPECIAL PROCEDURES 
for handling chemical ignitors 

   Ignitor energy =    

  Number used =  

  Total energy =  

Trim ignitor leads (if required)               

Fit to electrodes   Wire in parallel   Wear safety goggles 

Close 20" port   Procedure given in [CONSTRUCTION] 

      dust name         

     Kst           

     dust concentration required (g/m3) =      

      dust weight required [conc. x 1.138] (g) =     

Weigh out dust sample   Actual weighed mass (g) = m =       

      Actual conc. [actual mass/1.138] (g/m3) =     

Open dust pot               

Check DV1 closed   Pour dust sample into pot        

Close dust pot   Procedure given in [CONSTRUCTION] 

C. Data Acquisition               

Power to Microlink               

Wavecap computer ON               

Load Wavecap             

Check Valves Closed             

RV1                 

RV2                 

AV2                 

AV3                 

VBV2            

DV1     Red indicator horizontal       

DV2                 

DV3                 

VBR1            

VBV1                 

Check Disconnected             

CP2                 

CP3                 

Connect                 

Push to connect P2 to RP2               

D. Control panel check             

Closed                 

CV1                 

CR2                 

CV2                 

CR3                 
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VAV1                 

AV1                 

FR2                 

FV2                 

4WV                 

E. Pretest Conditions           

Power to barocel               

Open AV2               

Open RV2               

2WV to Test   Ambient P =         

      Ambient T =         

      Humidity =         

Power to audible P alarm               

F. Operating State               

F1. Evacuation                 

Close AV2               

Open VBV2               

Open VBR1               

Start Vac    Vac to < 900 mbara       

Close VBV2               

Stop Vac                 

Close VBR1   Allow P to settle 
 Is leak rate < 2 mbar/min? 
YES                                             NO 
 If NO see [SPECIAL PROCEDURE] 

      

      

      

F2. Air filling               

Record required P   Final pre-ignition P mbara (A) = 

     Air injection P rise mbara (B) = 

     Pre-injection P mbara (A-B) =                                          

Open AV2 for initial air fill   Fill to 10 mbar less that pre-injection P  

Close AV2   Record actual metered Barocel P = 

Close RV2               

2WV to close        

F3. Disconnect               

P2 from RP2               

G. Dust-pot Air Filling        

Open CA1               

Check AIR bottle PG1 > 
30 bar                 

Set PG2 to 25 bar by CR4               

Connect CP2 to AIR 
bottle            

Open DV3               

Open CV3           

Open and control CV3   meter air to dust-pot to P of 22 bar on gauge 

Close DV3               

Close CV3               

Disconnect CP2               

Check power off to DV1                 

Set PG2 to 10 bar by CR4               

Connect CP3 to AIR 
bottle                 

H. System Check               
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Power DV1            

Check all valves Closed               

Open CV3               

Check CP3 connected                 

Check DV2 Closed               

Check DV3 Closed               

I. Ignition Sequence             

Connect ignition lead to spark box             

Power to spark box               

All to control room               

Connections to sequence gen               

Power to sequence gen               

Lock doors               

Time delay sequence No. Time From       

Time units = 1             

   2             

   3             

    4             

Arm datalogger           

Reset Sequence generator        

Start Sequence generator               

Data logging ends               

Save data                 

J. Data check           

Reset Sequence generator               

Load test results   Thermocouple and Pressure data indicate ignition?   

      YES   NO    

      If no igntion see [SPECIAL PROCEDURE]   

P2Kel   P1 =  
P1 - P2 = 

    P2 =  

P53670   P1 =  
P1 - P2 = 

    P2 =  

Dust pot final P =                

K. System Purge                

Open dump vessel valve to 
ambient        

Slightly open VBV1        

Connect P2 to RP2               

Close the barocel by the valve behing the main control panel     

Open RV2               

Open VBV2               

Start Vacuum pump   After 2 min open the barocel valve          

Open AV2  Wait for at least 15min     

Close dump vessel valve to ambient   

Disconnect P2 to RP2    

Unbolt 20" port    

Close VBV2    

Turn off pump   Allow test pressure to reach ambient  

Give little crack to 20"door until the O-ring in place falls  

Open VBV2        

Turn on the vacuum pump Wait for 10-15min           

NOTE: Keep the vacuum pump running at all time till the completion of howering  
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L. Dust Pot and Vessel Cleaning           

Open dust pot              

    Weigh out an empty vacuum bag W1 =      

Attach vacuum bag to the vacuum 
cleaner              

Hover out all the residue from dust pot (if there is any)         

 

Weigh out the vacuum bag after hovering W2 =  
Weight of residue in dust pot W2 - W1 = W3 = 
Mass explode m - W3 = W4 
Actual conc of dust explode W4/1.138 =   
 

Open 20" port               

   Weigh out an empty vacuum bag W5 =      

Attach vacuum bag to the vacuum 
cleaner             

Hover out all the residue from the 
vessel             

 

Weigh out the vacuum bag after hovering W6 =  
Weight of residue in the vessel W6 - W5 = 
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Appendix G 

 

F.1: Rate of volatile rate vs. temperature for different coal-diesel mixtures 

 

F.2: % volatiles loss vs. temperature for different coal-diesel mixtures 
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Appendix H 
 

 

G.1: SEM images of Pinewood pellet (Blz) for different magnifications 
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G.2: SEM images of HW sawdust (Dfl) for different magnifications 
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G.3: SEM images of Construction waste wood 1 (CWW1) for different 

magnifications 
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G.4: SEM images of Construction waste wood 2 (CWW2) for different 

magnifications 
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Appendix I 
 

Particle size distribution of pine wood in comparison to its steam 

exploded wood and Kellingley coal samples 
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Appendix J 
 

Pressure trace with thermocouples signals in Hartmann test 
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Appendix K 

 

J.1: Flame propagation of polyethylene dust for 120 ms ignition delay 

 

 

J.2: Flame propagation of polyethylene dust for 80 ms ignition delay 

 

 

 

 

  0ms      26.4ms    44.6ms     64.6ms     78ms      78.6ms     
79.2ms 

  0ms       19.8ms      25.8ms      33.4ms     45.8ms     46.6ms    46.8ms 
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J.3: Flame propagation of polyethylene dust for 50 ms ignition delay 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  0ms     14.6ms      21.8ms       24.2ms      30ms      30.6ms     
30.8ms 
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Appendix L 

                                                                                                            Vent burst 

       

K.1: Flame propagation of yellow pine wood for 0 ms ignition delay 

  

                                                                     Vent burst 

                 

K.2: Flame propagation of yellow pine wood for 120 ms ignition delay 

 

 

 0ms    18ms   64.8ms  79.8ms  86ms  86.4ms  86.6ms 

0ms  15.6ms 45.4ms 58.8ms 100ms  100.8ms 101ms  
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                                                                  Vent burst 

 

K.3: Flame propagation of steam treated yellow pine/black pellet (BP) for 0 

ms ignition delay 

 

                                                                  Vent burst 

                                                                                    

K.4: Flame propagation of steam treated yellow pine/black pellet (BP) for 

120 ms ignition delay 

 

 

0ms   27.4ms    55ms    73ms     88ms 89.4ms  89.6ms 

 0ms   18ms     25.6ms 30.4ms  47.8ms  48.8ms  49ms 
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Appendix M 

Diesel test on modified Hartmann tube 

 

L.1: Flame propagation of diesel air mixture (Eq. ratio= 2.25) using 

modified Hartmann tube 

 

L.2: Flame propagation of diesel air mixture (Eq. ratio= 4.5) using modified 

Hartmann tube 

   0ms      7.6ms     9.2ms    10.6ms     11.7ms    12.1ms       20ms 

Vent 

bursting 

 0ms      18.6ms     30.6ms     32.8ms     34.9ms     35.7ms   36.3ms   49.9ms    

Vent bursting 
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L.3: Flame propagation of diesel air mixture (Eq. ratio= 10.5) using 

modified Hartmann tube 

 

0ms    7.1ms     25.8ms    48.7ms  53.4ms   55.1ms   56.5ms   57.3ms  76.4ms 

Vent 
bursting 


