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Abstract

The mitigation of the steady-state heat loading to plasma-facing components in the

divertor structures is an essential prerequisite for the operation of next-generation

conventional and tight aspect-ratio Tokamaks. Currently, the most attractive means

of reducing this heat loading is the so-called “detached” regime, which is the primary

focus of this study.

This thesis describes work that was carried out on the MAST tokamak to accurately

characterise the plasma conditions within divertor plasmas, and to test the validity of

those measurements. To assist in this study, an interpretive code, OSM [1], has been

upgraded with additional numerical schemes to ascertain the dominant mechanisms

governing parallel scrape-off layer transport including flux expansion, dynamic viscosity

and cross-field drift motion in attached conditions. It has been found that the invoca-

tion of flux expansion, parallel viscosity and diamagnetic drift motion assist the OSM

numerical scheme to converge in the presence of (static+dynamic) parallel pressure

gradients often observed between the outboard midplane and lower outer divertor leg.

It has also been found that the ion pressure, which is currently unknown, could resolve

the observed pressure discrepancy.

Line-of-sight spectroscopy of high-n Balmer emission lines has been used to as-

certain line averaged Te and line integrated ne during the detached phase of MAST

discharges with high spatial resolution (≈ 7mm) to determine electron static pressure

profiles along flux contours. Furthermore, narrow-bandwidth imaging spectroscopy of

Dα, Dγ , CII and CIII emission during the onset and sustainment of detachment has

been carried out with high temporal (5kHz) and spatial (≈ 3mm) resolution. These

data have been combined with ion flux measurements to the divertor target plates

using embedded Langmuir probes (6-9mm radial resolution) and upstream Thomson

scattering measurements of ne, Te. The data was input into the OSM code, coupled

with the kinetic neutral transport code EIRENE [2], to check the experimental data

set for internal consistency. The experimental data collected has been used to re-

construct the plasma conditions within the detached divertor leg, heavily constrained

by experimental data. EIRENE calculations with re-constructed plasma conditions are

able to reproduce experimentally observed Dγ/Dα line emission ratios to within a factor
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of 2 within the recombining region.
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Chapter 1

Introduction

In this chapter, a brief introduction to fusion as a potential future energy source is

given. This is followed by an overview of the Tokamak concept, with particular at-

tention focused on the spherical Tokamak, MAST. An introduction to plasma-surface

interactions and their role in magnetic confinement fusion research is given. Finally,

an overview of the organisation of this thesis is given.

1.1 Introduction to Fusion

For the majority of the 20th century, the term electricity generation was almost syn-

onymous with the burning of fossil fuels. However, as the scarcity of this resource

diminishes and issues such as energy security and environmental impact are given

greater importance, other methods of electricity generation are being sought. Nuclear

fusion offers the possibility of large-scale electricity generation with none of the draw-

backs associated with CO2 production and fuel scarcity with fossil-fuel based energy

sources. Furthermore fusion reactors produce no long-lived radioactive waste, unlike

modern nuclear fission power plants. The heart of a nuclear fusion reactor is likely to

contain a superheated mixture of Deuterium and Tritium plasmas. The hot core of this

plasma is such that the conditions are favourable for energy-releasing reactions to take

place, heating the plasma and facilitating electricity generation. The reactions with

the greatest likelihood within a thermonuclear reactor are [3]:
2
1D+

3
1 T→

4
2 He +

1
0 n + γ (17.6 MeV) (D-T fusion)

2
1D+

2
1 D→

3
2 He +

1
0 n + γ (3.27 MeV) (D-D fusion)

2
1D+

2
1 D→

3
1 T+

1
1 H+ γ (4.03 MeV) (D-D fusion)

2
1D+

3
2 He→

4
2 He +

1
1 H+ γ (18.3 MeV) (D-He

3 fusion)

The figure below shows the cross sections for each of the above reactions. The

cross-sections for the two D-D fusion reactions are very similar, and the curve shown in

the graph is the sum of the two. Given the stronger likelihood of D-T fusion reactions

1
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Figure 1.1: Fusion cross-sections as a function of Deuteron energy, courtesy of the JET
image database.

occurring at lower Deuteron energy, fusion reactors will exploit this mechanism as

the primary source of fusion reactions. Two approaches of exploiting nuclear fusion

for energy production are based on inertial and magnetic confinement. In inertial

confinement devices, pellets containing a mixture of deuterium and tritium are heated

using high energy laser pulses or particle beams to initiate a burning fusion reaction.

In magnetic confinement devices an ionised gas, or plasma, is contained within a

vacuum vessel housing magnetic field coils which are used to confine the plasma.

Several categories of magnetic fusion device exist, including the reversed field pinch, the

stellerator and the tokamak. The work in this thesis concentrates on research carried

out on a magnetic fusion device based on a variant on the tokamak design known as

the spherical tokamak.

1.2 Introduction to Tokamaks

The word Tokamak originates from a Russian phrase meaning “toroidal chamber and

magnetic coil”. As the name implies, the Tokamak was originally a Russian design,

which had significant advantages over alternative plasma confinement designs of the

day, and became accepted by researchers as a promising route to an eventual fusion

reactor.

One of the most prominent features of the Tokamak design are the large toroidal

field coils that produce a strong magnetic field “around” the Tokamak. Despite the
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Figure 1.2: Schematic representation of a Tokamak, courtesy of the JET image
database.

strong field created by these coils, they alone are not adequate to confine a plasma for

a meaningful amount of time. In order to improve plasma confinement, an electrical

current is induced within the plasma by the flux from the primary transformer circuit

running through the centre of the device. The plasma itself acts as the secondary of

the transformer, thus inducing an electrical current. This current has two purposes:

firstly, the magnetic field produced by the current, known as the poloidal field, adds a

twist to the field lines, which increases plasma confinement significantly. Secondly, the

current acts to heat the plasma by ohmic heating, by exploiting its electrical resistance;

unfortunately, this effect also results in the plasma current decaying, meaning it must be

constantly replenished given a finite plasma resistance. Despite the plasma producing

its own poloidal field, external coils are needed to manipulate this field to shape the

plasma and to stabilise the plasma in the vertical and horizontal directions.

The Tokamak gained popularity in fusion research circles due to its relatively simple

design and good plasma confinement properties. However, interactions between the

plasma and the interior surfaces are unavoidable, and can create significant problems for

long-pulse or steady-state operation if the consequences of plasma-surface interactions

are not mitigated.
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1.2.1 The Spherical Tokamak

The spherical Tokamak (ST) is a variation of the original Tokamak design, where

the plasma has a more spherical shape, as opposed to the torus shape observed in

conventional machines. The first spherical Tokamak, START (Small Tight Aspect

Ratio Tokamak) was built at Culham in Oxfordshire with the aim of exploring claims

that reducing plasma aspect ratio (the ratio of the plasma major and minor radii, R/a)

can have beneficial effects [4]. The experiments carried out on START showed that the

ST design has some important advantages in terms of having the ability to operate at

a high confinement efficiency, or β, defined as:

β =
plasma pressure

magnetic pressure
=
2μ0p

B2
(1.1)

The value for β is constrained to be below a limit imposed to ensure the plasma is

stable against magnetohydrodynamic (MHD) instabilities. A numerical analysis carried

out by Sykes and Troyon determined that a maximum value for β in a Tokamak can

be expressed, roughly, as [5]:

β ≤ βmax ≡ 0.072

(
1 + κ2

2

)

ε (1.2)

where κ is the plasma elongation and ε is the inverse aspect ratio. Therefore,

for a given plasma elongation, a spherical Tokamak plasma is resilient against MHD

instabilities at a higher value of β. This is important as β is a measure of the

confinement efficiency of a magnetic fusion device, which is related to the cost per

unit power of electricity production from a fusion power plant.

Experiments on START have reached average β ≈ 40% [6], which is significantly

higher than experimentally observed values on conventional aspect ratio Tokamaks for

which ε is large. This remarkable result sparked worldwide interest in the spherical

Tokamak design that has persisted to the present and is likely to continue for some

time. The successor to START at Culham is the Mega Ampère Spherical Tokamak

(MAST) which is currently operating. The engineering specifications of both MAST

and START are noted in table 1.1.

The spherical Tokamak concept is being developed with two goals in mind: a

component test facility and a spherical Tokamak power plant. Much research needs

to be carried out before either of these goals are realised, as research into spherical

Tokamaks is in its infancy compared to that of conventional aspect ratio devices.
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START MAST

Major Radius (m) 0.32 0.7

Minor Radius (m) 0.25 0.5

Elongation ≤ 4 ≤ 3
Aspect Ratio ≥ 1.2 ≥ 1.3

Plasma Current (MA) ≤ 0.31 ≤ 2
Toroidal Field (T) ≤ 0.5 ≤ 0.63

NBI Heating Power (MW) 1 5

Pulse Length (s) ≤ 0.06 ≤ 1
Plasma Volume (m3) 0.5 8

Table 1.1: Engineering parameters of START and MAST Tokamaks.

1.3 Plasma-Wall Interactions

When a plasma and a solid surface meet, plasma-surface interactions (PSI) are the inev-

itable outcome. The term plasma-surface interactions covers a wide array of behaviour,

from physical and chemical sputtering, trapping of fuel atoms within material surfaces

(retention), deposition and fuel recycling. The repercussions of PSI are widespread,

having a significant effect on the performance and feasibility of a fusion power source.

Tokamaks take means to ensure that the effects of these interactions are localised to

structures designed to withstand their effects and mitigate their impact on the hot

plasma core. The two most popular approaches are limiters and divertors, which will

be discussed further in the following section.

1.3.1 Limiter and Divertor Configurations

In a simplified magnetic fusion device, such as that shown in figure 1.2, a plasma

contained within a vacuum vessel would, come into contact with the inner wall of

the device due to cross-field transport mechanisms. This contact between plasma and

surface results in the release (sputtering) of atoms that make up the wall into the

plasma, thereby degrading the purity of the plasma. Accumulation of impurities has

detrimental effects such as fuel dilution and an increased quantity of the energy stored

within the plasma being emitted as radiation, having a cooling effect.

An early means of minimising plasma-surface interactions was to have an element

protrude radially outward from the wall into the plasma, thereby significantly reducing

the plasma flux to the wall of the vacuum vessel. Such an element is known as a limiter.

Limiters have advantages in terms of mechanical simplicity and limiting the plasma flux

to the walls of the vacuum vessel, but they also have some significant drawbacks.

A limiter effectively dictates the radial extent of the plasma by using an object

in contact with the plasma. A region radially outboard of the surface of the limiter,

known as the scrape-off layer (SOL) is created by cross-field transport. By assuming
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Figure 1.3: Schematic of a Tokamak limiter

that the sole cross-field transport mechanism is due to diffusive processes, the radial

extent of the SOL is given by:

λSOL =

(
D⊥L‖

cs

)1/2
(1.3)

where D⊥ is the radial diffusion coefficient, L‖ is half the distance along an open

field line between where it intersects material surfaces and cs is the plasma sound

speed, calculated using cs =
√
2T/mi, where T is the plasma ion or electron tem-

perature, which are assumed to be equal here. For example, if T = 25eV, L = 20m,

D⊥=1m
2s−1, λSOL ≈ 2.3cm. The relative thinness of the scrape-off layer leads to

large heat and particle fluxes on the surface of the limiter, potentially resulting in

significant sputtering. As the limiter is in direct contact with the plasma, this can lead

to significant impurity accumulation in the main plasma.

The divertor concept overcomes the main drawback associated with limiters as-

sociated with direct contact between the primary surface designed to accept heat and

particle fluxes in the scrape-off layer. In most Tokamaks with a divertor, this is achieved

by diverting the poloidal magnetic field so as to allow the region with intense plasma-

surface interactions to be localised in a region away from the core plasma.

A divertor is created by altering the magnetic field of the plasma such as to create

a “null” in the poloidal field and creating a region where plasma radially outward

of the last closed flux surface is directed into a region away from the core plasma.

This configuration has numerous advantages over limiters, such as reducing plasma

contamination, increasing the connection length with the poloidal field null, access to

the high-confinement mode (H-mode) and an operating regime which can significantly

reduce the particle and power flux to plasma-facing materials - detachment. Although

there have been signs of detachment behaviour taking place in Tokamaks with limiters,

the positive effects of detachment are generally observed in Tokamaks with divertors.
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Figure 1.4: Schematic of a Tokamak divertor

1.3.2 Divertor Detachment

One of the principal advantages of the Tokamak divertor configuration is to allow access

to the so-called detached regime [7]. In a detached divertor scenario, the heat flux to

material surfaces in direct contact with the plasma decreases as the particle flux to

the surface increases. Precisely why this occurs is unclear, but previous research on

diverted Tokamaks have shown that two processes play a role: plasma recombination

and ion-neutral friction [8].

When a plasma ion impacts on a solid surface, the surface will be imparted with

energy from the ion, resulting in sputtering, but also the ion will recombine with

electrons on the surface of the material to form an electrically neutral atom. This

process is known as recycling. The newly-born atom is then free to move throughout

the Tokamak, unimpeded by the presence of the electromagnetic fields used to confine

the plasma. When the atom comes into contact with the plasma, it is ionised to form the

ion and electron. In doing so, the plasma expends some energy, the ionisation energy

of the atom, in carrying out this process. This has the effect of cooling the plasma. If

many such interactions occur between a plasma and a flux of incident neutral atoms, it

can lead to the formation of temperature gradients in the plasma. The result of this is

that the plasma adjacent to the plasma core is hotter than that close to the divertor,

due to proximity to surfaces where recycling takes place.

As the flux of plasma ions to a surface is steadily increased, an increasing number

of neutral atoms are created due to recycling processes. Interactions (collisions) with

these atoms and their ionisation removes momentum and energy from the plasma,
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ultimately slowing and cooling the plasma reaching the solid surface. Therefore, it

seems possible that with enough recycling and ionisation processes taking place over

a confined volume, that the plasma could cool to such a degree that it becomes too

cold to be a plasma, and cool ions away from solid surfaces begin to recombine with

ambient electrons to become neutral atoms. This is an extremely simplified description

of divertor detachment - where a plasma incident on a solid surface cools to such a

degree that the particles incident on solid surfaces are mostly no longer plasma ions, but

neutral atoms. This has the effect of increasing the area of interaction between energetic

particles and solid surfaces, as neutral atoms are not constrained to follow magnetic

field lines. In addition, increasing quantities of energy is dissipated as radiation as

plasma ions recombine to form atoms.

Detachment is critical for the operation of next-step fusion devices such as ITER to

moderate the steady-state heat loading to plasma-facing components in the divertor.

Extrapolating from existing fusion devices, the peak power loading in the ITER divertor

is predicted to exceed 20MWm−2 in the absence of any power moderation mechanism

such as impurity seeding or detachment [9]. This is twice the engineering limit of the

steady-state heat flux the divertor plates are designed to withstand. As a result, the

ITER baseline divertor design assumes that the peak steady-state heat load to the

divertor plates will be reduced to approximately 5MWm−2. This requirement will be

met using a combination of impurity seeding and divertor detachment.

This thesis will concentrate on measurements taken on the MAST Tokamak where

part of the divertor is in the detached state. Interpretation of these measurements is

assisted by an Onion-Skin Model (OSM) code, which has been enhanced with a more

stable numerical solver and a more developed physics model. The chapters that follow

will give a brief overview of divertor physics, the MAST Tokamak and experimental

investigations on detachment carried out there, and finally code assisted interpretation

of the data collected using OSM and a summary of the results yielded by this study.

1.4 Thesis Summary

In chapter 2, a general overview of pertinent aspects of divertor physics is presented,

together with a simple analytic model of the tokamak scrape-off layer. Emphasis is

placed on divertor operating regimes and the transition to, and characteristics of, the

so-called “detached” phase, a principal subject of this study.

Chapter 3 explains some of the pertinent features of the MAST Tokamak to this

study in greater detail. This is followed by an overview of the principal diagnostics used,

including modifications to the diagnostic hardware and/or data analysis procedures

created as a result of this work.
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Chapter 4 contains details of modifications carried out to the OSM transport equa-

tions such as terms arising from magnetic flux expansion, parallel viscosity and cross-

field drift motion in order to explain a pressure drop routinely observed between the

outboard midplane and the lower outer strike point. This chapter also outlines a study

into accurate calculation of electrostatic fields supported by the plasma, including the

calculation of parallel and cross-field currents and their influence on plasma transport

via the ~E × ~B drift.

Chapter 5 summarises work carried out to characterise a partially detached dis-

charge on MAST using a wide array of plasma diagnostics including Thomson scat-

tering, Langmuir probes, line-of-sight and narrow bandwidth imaging spectroscopy.

Checks for consistency within the data set are outlined, together with explanations for

inconsistencies when they arise between data from different diagnostics. Finally, the

data collected is input into the interpretive OSM-EIRENE code to simulate the ratio

of Dγ and Dα line intensities and are compared with experimental observations.

Chapter 6 outlines the main conclusions of this study and suggests future avenues

of investigation to continue this work.

Appendix A describes the numerical schemes developed as part of this study to

facilitate development of the conservation equations used in the OSM plasma transport

model, and to allow calculation of plasma potential profiles and electric fields.



Chapter 2

Divertor Physics

In this chapter, an overview of some theoretical aspects of divertor physics is presen-

ted including the effects of divertor geometry on the scrape-off layer (SOL), divertor

operating regimes and how plasma in the SOL is simulated using modelling codes.

2.1 Divertor Geometry

As with many engineering concepts, there exists some considerable diversity in the

design of Tokamak divertors. Often, differences exist due to advances in our under-

standing of plasma behaviour in divertors of other machines, or it can be motivated by

research objectives, such as maximising access to diagnostics. Broadly, divertor designs

can be ascribed to fall into one of two categories, either open or closed (figure 2.1).

If a divertor is closed, it has a greater capability to capture neutral atoms created by

recycling processes taking place at the surfaces of the divertor, and trap the majority

of them within a defined volume. Such a design can also offer advantages in terms

of ensuring that fewer impurities created in the divertor escape with the possibility

of contaminating the plasma core. Also, access to the detached divertor regime re-

quires a lower ion flux to divertor surfaces because of divertor closure. This has the

effect of requiring a lower particle density in the plasma core to attain the detached

state [10]. Pumping efficiency of impurities and recycled atoms is improved within a

closed divertor, as the pressures of theses species increases in a confined volume. One

drawback, however, is that by closing a divertor, diagnostic access, especially to imaging

systems, reduces. This has the effect of imposing difficulties on researchers who wish

to understand the behaviour of plasmas in closed divertor geometries, as structural

components can often impede lines of sight across the divertor region.

Conversely, open divertors have fewer structural components to contain neutral

atoms and impurities, and therefore can permit significantly greater diagnostic access.

For plasma physics researchers examining the divertor, this can be a great advantage;

10
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however, this comes at the cost of being less able to contain impurities and attain the

state of divertor detachment.

Figure 2.1: Simplified examples of open (left) and closed (right) divertor designs.

The performance of a divertor in terms of trapping created impurities and neutrals

with the divertor is largely due to the degree of divertor closure. However, access to

the detached divertor state is not a simple function of closure, and has a more subtle

relationship with the geometry of the divertor as a whole.

Figure 2.2: Distribution in the particle source, and energy sink, due to the ionisation
of recycled neutrals from horizontal and vertical divertor target plates.

An important consideration is also the angle of inclination of the divertor target

plates to magnetic field lines. It has been observed that the majority of recycled

neutrals depart a divertor surface with a trajectory parallel to the surface normal [11].

The inclination of the target plate with respect to magnetic field lines is important

therefore in determining the likely location of where the neutrals are re-ionised in the
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plasma. Figure 2.2 describes the different likely locations where neutrals are to be re-

ionised from horizontal and vertical target plates. Neutrals created on a vertical target

are likely to have a horizontal trajectory, passing through the magnetic separatrix,

along which much of the heat and particles is transported. The ionisation of neutrals

in the vicinity of the separatrix will have a cooling and fuelling effect, raising the plasma

density and reducing it’s temperature. Such conditions are beneficial for reaching the

detached divertor state. Experiments conducted on Alcator C-Mod confirmed that the

core density required to detach the plasma at the magnetic separatrix was reduced

by 40% by changing the divertor target inclination from horizontal to vertical [10].

Conversely, neutrals created from horizontal surfaces are likely to undergo a vertical

trajectory, resulting in their ionisation taking place away from the magnetic separatrix.

As a result, the cooling and fuelling effects of neutral ionisation will take place on field

lines that transport plasma with less power and fewer particles. This leads to more

heat being transported to the target, and more impurities created by erosion of the

divertor surface.

It must be noted, however, that although a vertically inclined target has been found

to promote divertor detachment of field lines close to the magnetic separatrix (so-called

“partial detachment”) a less profound effect is observed with respect to detachment of

the whole plasma in the divertor region. On ASDEX-Upgrade, the density limit, which

has been shown to be correlated with uncontrolled divertor detachment [12, 13], was

shown to be unchanged after the Div I divertor was replaced with the Div II, which

offered a greater degree of closure [12]. Similar behaviour has also been observed during

the evolution of the JET divertor [14].

2.2 Sheath Physics and the Plasma/Surface Boundary

The transport of plasma ions toward a solid surface, whether in a divertor or elsewhere,

is dominated by the presence of an electrostatic sheath which has profound implications

on how particles, momentum and energy are transported from a plasma to a solid

surface [15]. The sheath arises due to the higher thermal velocity of electrons compared

to ions (by a factor of
√
mi
me
). As a result, a buildup of negative charge accumulates

on the surface, resulting in an electric field, known as the ambipolar electric field, that

accelerates ions toward it and repels electrons in order to maintain quasi-neutrality.

The net result of this field is to equalise the fluxes of ions and electrons to the surface,

and hence a detailed understanding of sheath physics is critical in understanding how

plasmas and solid surfaces interact.

An important theoretical result, initially derived by Bohm, helps shed light on the

nature of particle transport within the sheath, known as the Bohm criterion [16]. A

simplified derivation of this result follows. Take a plasma in a 1-D system that contains
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cold stationary ions, i.e. Ti = 0. Within the sheath, there exists a region of net positive

charge, due to an attractive negative potential brought about by an accumulation of

electrons at the surface, see figure 2.3.

n/no

Plasma

Plasma

Solid

Sheath

Electric

Potential

Plasma 

Fluid

Velocity

Ion and

Electron

Density 0

-L x = 0 L

~1/2

1

1

ni

ne

ne 
=

 
ni


in Plasma

p/po

1

~10 λD Wide

Vse~-
 kTe

2e

Vf~
  -3kTe

e

  |v|/cS

JG
98

.4
19

/1
4c

(or B
 

=
 

0)
B

V

Plasma

Pressure

p

 

=
 

pe
 

+
 

pi

Figure 2.3: System description in a simplified derivation of the Bohm criterion, curtesty
of the JET image database.

It can be assumed, that the electrons are approximately Maxwellian, as they exist

within a confining potential. Therefore, the electron density within the sheath can be

given by a simple Boltzmann relation:

ne(x) = nsee
e(φ−φse)
kTe (2.1)

where φse refers to the electrostatic potential at the sheath edge. Using a statement

of conservation of energy, the following expression can be made:

1

2
miv

2
se = −eΔφpre−sheath = −eφSe (2.2)

This result can be combined with a statement of particle conservation

nivi = constant (2.3)
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and Poisson’s equation:

∇2φ = −
e

ε0
(ni − ne) (2.4)

to give

∇2φ = −
e

ε0
nse

[(
φse

φ

) 1
2

− e
e(φ−φse)
kTe

]

(2.5)

if a parameter Φ is defined:

Φ = φse − φ (2.6)

where Φ is taken to be positive, the following expansions can be made:

(
φse

φ

) 1
2

≈ 1 +
1

2

Φ

φse
= 1−

1

2

Φ

|φse|
(2.7)

e
e(φ−φse)
kTe ≈ 1−

eΦ

kTe
(2.8)

yielding

∇2Φ ≈
enseΦ

ε0

(
e

kTe
−

1

2|φse|

)

(2.9)

from the above equation, some important properties of the sheath can be de-

termined. Firstly, given the solution to (2.9) should be non-oscillatory, the following

constraint exists:

e

kTe
≥

1

2|φse|
(2.10)

1

kTe
≥
1

miv
2
i

(2.11)

vse ≥

√
kTe

mi
= cs (2.12)

Therefore, ions exiting the sheath must do so at a speed greater than or equal to

the plasma sound speed, cs. Furthermore, the length scale of the sheath, Ls, can be

derived by examining (2.9) and making a further simplification [8]:

Φ

L2s
≈
enΦ

ε0

e

kTe
(2.13)
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Ls ≈

(
ε0kTe
e2n

) 1
2

(2.14)

where the term on the right-hand side is known as the Debye length. If Te is taken

to be 30eV and n as 1 × 1019m−3, Ls ≈ 13μm. This gives an indication that the

sheath region is very thin compared to the length scales ions traverse from a Tokamak

midplane to a divertor surface, which is normally 10’s of metres.

The final part of this section concentrates on how the electrostatic sheath affects

heat transport. When considering electrons in the sheath, there is a flux of electrons

toward the solid surface that have sufficient energy to overcome the Coulomb barrier

created by the positive charge in the sheath. Such electrons must have energy of

at least |eφsheath|. Any electrons reflected away from the surface by the sheath do not

contribute to a heat flux to the surface. Therefore, it could be surmised that the sheath

acts as a filtering mechanism to block the passage of low energy electrons toward the

solid surface. The result of this is that the high-energy tail of the electron energy

distribution is lost to the surface, effectively “cooling” the electrons.

The energetic electrons lost to the surface contribute to the negative charge on the

wall that accelerates ions toward it. Therefore, the energy lost by the electrons is effect-

ively heating the ions. As more ions impinge on the surface, more electrons are required

to regenerate the sheath, and so this mechanism acts to constantly transfer energy from

electrons to ions. Therefore, the total amount of heat that can be transported across

the sheath corresponds to a proportion transported by high-energy electrons able to

surmount the sheath potential and ions which are accelerated by the sheath. Overall,

the total power flux to a surface can be given by:

q = γskTeΓse (2.15)

where Γse is the particle flux at the sheath entrance and γs is the sheath heat

transmission coefficient, which can be approximated by [8]:

γs ≈
2.5Ti
Te
+

2

1− δe
− 0.5 ln

[(

2π
me

mi

)(

1 +
Ti

Te

)

(1− δe)
−2
]

(2.16)

where δe is the secondary electron emission coefficient, given by the number of

incident electrons to a surface minus the number of reflected or back-scattered electrons

[8]. If Ti = Te, which is the case when frequent energy-exchange collisions between

ions and electrons take place, and δe = 0 is assumed, γs ≈ 7.



16 CHAPTER 2. DIVERTOR PHYSICS

2.3 The Two-Point Model

A simplified model exists to relate the plasma conditions upstream of the divertor to

those at a divertor target, known as the two-point model [8] (as the plasma conditions

at only two locations are considered). This simple model can be used to estimate the

divertor plasma conditions given those close to the plasma core, which can be useful

in planning edge physics experiments. The simplified geometry used in the two-point

model is outlined in figure (2.4).
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Figure 2.4: Description of the geometry setup in the two-point model. The model is
largely insensitive to the “upstream” location, assuming along-field gradients in density
and temperature are negligible away from divertor targets. Curtesy of the JET image
database.

In the two-point model, magnetic field lines are effectively “straightened out” such

that an open field line begins at an upstream location and terminates at some known

distance along the line. The location of the upstream position is unimportant assuming

that gradients in the quantites of interest are ignorable except in a region adjacent to

the divertor targets. The main assumptions of the two point model are:

1. Particle balance for specific field lines is enforced. In other words, cross-field

transport is ignored in the model. Furthermore, ions that impinge on a solid

surface and recombine to form neutrals are re-ionised on the same field line in a

region close to the divertor target.
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2. Plasma flow is assumed to be negligible except in a thin region where ionisation

processes take place adjacent to the divertor targets. In this region, the plasma

accelerates from stagnation just before the entrance to the ionising region to the

plasma sound speed when entering the sheath.

3. Pressure balance is enforced along individual field lines. Effects of viscosity, from

any source, are neglected.

4. Power balance is enforced on individual field lines. As the plasma is assumed

stagnant over the majority of the field line, parallel heat conduction is assumed

to be the sole heat transport mechanism.

5. The only heat source present in the field line is located at the upstream location,

and all of this heat is transported to the divertor target.

The above statements can be summarised in the following mathematical statements:

nkTe + nkTi +minv
2
i = constant (2.17)

The first two terms in (2.17) define the static pressures of the ion and electron

species, the final term defines the dynamic pressure due to the ions. Therefore, assuming

that Te = Ti and that plasma flow only takes place at the target, the following

relationship holds:

2nukTu = 2ntkTt +mintv
2
i,t (2.18)

This expression can be further simplified by incorporating the Bohm criterion,

taking v2i,t =
2kT
mi
, yielding:

2nTTt = nuTu (2.19)

Taking the parallel heat conduction density
(
Wm−2

)
to be:

q‖,cond = −κ0T
5
2
dT

ds
(2.20)

This term can be integrated with respect to the along-field distance, s, to give:

T (s) =

[

T
7
2
0 −

7

2

q‖,condL

κ0

] 2
7

(2.21)

where T0 is an integration constant, the plasma temperature at a reference location.

Using (2.21), the temperature upstream can be related to that at the divertor target:

T
7
2
u = T

7
2
t +

7

2
q‖

L

κ0e
(2.22)
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Finally, using the assumption that no power loss mechanisms exist along field lines,

the power source upstream must equal the power delivered to the target across the

sheath, hence:

q‖ = qt = γntkTtcst (2.23)

This completes the equations that make up the two-point model.

2ntTt = nuTu (2.24a)

T
7
2
u = T

7
2
t +

7

2

q‖L

κ0e
(2.24b)

q‖ = γsntTtcst (2.24c)

where nu (m
−3) and q‖ (Wm

−2) are taken as input, γs ≈ 7 and κ0e is given by [8]:

κ0e =
30692

Zi lnΛ
≈ 2000 (2.25)

where Zi is the ion species charge and lnΛ is the Coulomb logarithm, which can

be taken as approximately 15-17. L is the connection length, which is half of the

along-field distance between two plasma-facing surfaces bounding the field line. The

two-point model is now composed of a closed system of three unknowns; Tt, Tu and

nt. Of course, this need not be the case, provided enough information is known about

the plasma in question to reduce the problem to three unknowns, the two-point model

equations can be closed.

2.4 Divertor Operating Regimes

2.4.1 The Sheath-Limited Regime

At moderate values of upstream density, the plasma in the SOL of a Tokamak can be

said to be in the sheath-limited regime. The characteristics of this state are [8]:

1. Parallel temperature gradients of ion and electron species are negligible, i.e.

∇‖Te,i ≈ 0.

2. Recycling taking place at the divertor targets takes place at moderate levels, due

to low upstream density.

3. The effects of volumetric recombination and ion-neutral friction are so small as

to be ignorable.
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4. Electrostatic sheaths are the dominant heat sink for the SOL.

Such conditions lend themselves well to two-point modelling, as many of the as-

sumptions made in the formulations in the model hold in this operating regime. As a

result, the sheath-limited regime is also known as the simple scrape-off layer (SOL).

The absence of strong recycling taking place at divertor targets and the absence of

parallel ion and electron temperature gradients are linked; the ionisation or recycling

neutrals, and also charge-exchange interactions, have a cooling effect on ions in the SOL

and hence generate the parallel gradients. The lack of parallel temperature gradients is

concerning when considering the sheath-limited regime in terms of Tokamak operations.

If no (or only very weak) energy sinks exist, such that the temperature of plasma species

is a constant along field lines, the heat imparted onto plasma-facing components is

mediated only by the electrostatic sheath, hence the name sheath-limited regime. As

a result, physical sputtering of plasma-facing components in a fusion reactor will be at

its greatest when the SOL is behaving in this way. Therefore, despite the advantages

offered by the apparent simplicity of the sheath-limited regime, it is considered to be

the least beneficial.

2.4.2 The Conduction Limited Regime

The defining feature of the conduction-limited regime is the presence of temperature

gradients parallel to magnetic field lines. The sign of these gradients, starting upstream

and finishing at the divertor target, are always negative, which has obvious advantages

in terms of reducing sputtering of plasma-facing components. In order for these gradi-

ents to form, it is normally necessary for parallel heat conduction to dominate over

convection as the primary heat transport mechanism in the SOL.

How this situation comes about is best considered by examining the distribution of

particle sources in the sheath-limited and conduction-limited regimes. In the sheath-

limited regime, the particle source for a given field line in the SOL originates from

cross-field transport upstream of the divertor targets. As a result, particle flows are

generated in the upstream region, resulting in the majority of the power entering the

field line being transported by convection, as is the case in the sheath-limited regime,

see figure 2.5. Conversely, if the main particle source were due to ionisation of neutrals

close to the divertor surface, the flows in the SOL would be significantly diminished,

meaning that conduction becomes the primary heat transport mechanism. A direct

result of this change in heat transport mechanism is the necessity for the existence

of parallel temperature gradients in order to facilitate heat transport. This alteration

in the distribution of the SOL particle source is what is thought to bring about the

transition from the sheath-limited to the conduction-limited regime. Note that in both

regimes, power enters the SOL upstream of the divertor surface.
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Figure 2.5: Distribution of particle sources in the sheath-limited regime (top) and
conduction-limited regime (bottom) [8], courtesy of the JET image database.

During a Tokamak pulse, the particle source close to the divertor surface would be

provided by the ionisation of recycled neutrals. As a result, as the recycling rate, which

is linked to the particle flux reaching the surface, is linked to the upstream density, it

is this parameter which increases to bring about a transition from the sheath-limited

to conduction limited regime.

2.4.3 Detachment

Divertor detachment, as defined by Matthews [7] is described as the, “state in which

large pressure gradients (static plus dynamic) are observed parallel to the magnetic field

with consequently low plasma power and ion fluxes to the material surfaces bounding

the system.” The statement that pressure gradients exist parallel to field lines, at all,

creates a clear distinction between the detached and aforementioned states. Clearly,

consideration of divertor detachment with a two-point model would require significant

corrections in order to account for pressure loss mechanisms. This could lead to the

conclusion that a simple analytic model of the SOL might struggle with handling

this additional complexity; as it turns out, it also poses significant challenges for

sophisticated computer simulations.

However, the definition of detachment goes on to describe the most attractive

feature of this operating regime, the reduction in power and ion fluxes to material

surfaces. As a result, divertor detachment is an important means of handling the

large steady-state heat loads predicted in next-step devices such as ITER. Due to the

complexity of the detached state, it will be explored in greater depth in the following

section.
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2.5 Properties of Detached Plasmas

The presence of divertor detachment is defined [8] by the following observations:

1. An increase of ion saturation current measured at the divertor targets, roughly

as n2u, followed by a decrease. This is known as the ‘roll-over’.

2. Dα radiation emitted from the divertor targets continues to increase even when

the ion saturation current is decreasing.

Another important characteristic of divertor detachment is a low electron temperat-

ure, of the order of 1eV. Measurement of electron temperatures in detached plasmas is

normally problematic as standard Langmuir probe analysis methods are not well suited

to cold plasmas [8]. As a result, probes tend to provide an overestimate of the electron

temperature, meaning that alternative, spectroscopic, methods must be employed [17].

A routine measurement on Tokamaks is the so-called degree of detachment (DoD),

which is defined as [18]:

DoD =
Γcalct
Γmeasuredt

(2.26)

where Γmeasuredt and Γcalct are empirically measured and analytically calculated ion

fluxes to divertor target plates, respectively. The reasoning behind this figure of merit

is that the ion flux to a divertor target in the conduction-limit regime scales, roughly,

as:

Γmeasuredt ∝ n2u (2.27)

therefore, as a plasma makes the transition from the conduction-limited to the

detached regime, the ion flux to the divertor target should initially scale with n2u before

reaching a maximum level and roll-over when detachment has been established. This

behaviour for a JET discharge is shown in figure 2.6.

Another striking feature of detachment which has already been alluded to is the

loss of pressure conservation along magnetic field lines. This is not observed in other

divertor operating regimes, which makes it unique to detached plasmas. A simplified

representation of divertor detachment is given in figure 2.7, where an ion, emerging in

a hot plasma upstream of the divertor, moves parallel to magnetic field lines into the

divertor region, which is detached. As a result of detachment, the neutral pressure is

high, and so the ion undergoes multiple momentum-loss collisions. In order for neutrals

to be able to effectively remove momentum from the plasma, they collide with the walls

of the divertor chamber. It is now possible to understand why pressure is no longer

conserved along magnetic field lines; in order for neutrals to be able to effectively
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Figure 2.6: Evolution of a discharge on JET. The upstream density was continually
ramped throughout the discharge, producing a “rollover” in the ion flux measured at
the inner divertor target [18].

remove momentum from the ions, the neutrals must loose their momentum to material

surfaces [19].
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Figure 2.7: Schematic of a simplified description of detachment. An ion emerging
upstream in the hot, ionising zone moves into the elastic collision zone and undergoes
momentum loss collisions with ambient neutrals [7].
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A property of detached plasmas that stems from their low temperatures are signs

of volumetric ion-electron recombination. This has the effect of lowering the ion

and electron densities and increasing the neutral density. Due to this effect, it is

another common feature of detached plasmas that as the ion flux to divertor surfaces

is decreasing, the neutral pressure increases. An important signature of recombination

processes is the presence of high-n Balmer emission lines [20], which can also yield line

integrated electron density and temperature measurements.

2.5.1 Stability of Detachment

Experiments on many Tokamaks, including JET [18], DIII-D [21], TCV [22] and others

have yielded observations of an unstable dense, radiating region known as a MARFE

(Multifaceted Asymmetric Radiation From the Edge [23]) in cases of uncontrolled

divertor detachment. The presence of a MARFE is widely seen as a precursor to

L-mode density-limit disruptions [9], which can be the cause of termination of many

fully detached divertor plasmas.

As divertor detachment proceeds, the recombining region expands as the neutral

density in the divertor increases, cooling incident ions and electrons to the point where

they too recombine. The result of this volumetric recombination is an expanding barrier

of neutrals between the plasma and the divertor plate, which, if given sufficient time,

can reach the x-point. An example of such a series of events is shown in figure 2.8,

taken from [24], where a radiating zone, forming in the divertor, subsequently moves

towards the x-point, resulting in a density-limit disruption. This is a large drawback of

the detached state: if unimpeded, detachment can lead to an uncontrolled termination

that results in a significant transient heat load to plasma-facing components.

Hutchinson [25] carried out an analytic study of detachment and MARFE formation,

assuming pressure conservation and analysing the behaviour of the steady-state heat

conduction equation. As a result of this study, he notes that the range of densities over

which the thermal front remains in the divertor leg is around 20% in main chamber

density from the detachment threshold. Exceeding the density range results in a

MARFE localised at the x-point over a larger density range.

Another issue in terms of detachment stability can be seen by examining the

opposite extreme: a burst of hot plasma entering a detached divertor leg, such as due

to an ELM [26], [27]. The effect of large heat pulses entering the cold plasma region

is to ionise the neutrals close to the divertor target, and hence diminishes evidence of

detachment, albeit transiently. As a result, the cold plasma region does not remove

all incident energy from an ELM and some does reach plasma-facing components. The

fraction of ELM energy dissipated is a function of ELM type, degree of detachment and

divertor geometry. This does demonstrate, however, that although detachment is an
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Figure 2.8: Bolometer data taken during a JET discharge. At 56.4s, most of the
radiation is concentrated in the divertor region. At subsequent times, the radiating
region moves upwards toward the x-point [24].

extremely useful operating regime in terms of reducing the steady-state heat loading,

and heat loading between ELMs, of plasma-facing components in a Tokamak, it may

not mitigate transient heat loads due to large ELMs.

2.6 Edge Physics Modelling

Computer models of Tokamak plasmas can be broadly sub-divided into two categories:

interpretive and predictive. Interpretive models are intended to offer greater insight into

experimental measurements by pooling the data collected, and using the information

to apply boundary conditions and constraints on a physical model. Where a disparity

between the model and experimental data exists, extra numerical terms are incorpor-

ated in the model to ensure that the plasma simulation converges toward experimental

measurements where provided. The reasons for using interpretive models are twofold:

to better understand an experiment, and to test the validity of a physical model. An

example of an interpretive code applied to the boundary plasma of MAST is outlined

in the next section.

Predictive models, on the other hand, consist of a widely diverse group of codes

that is far too complex to treat fully in this section. In brief, the majority of predictive

models are based on the fluid models that treat the plasma as a 2D or fully 3D system.

They are intended to provide greater insight into plasma behaviour and experiments by

allowing the user to simulate experiments for which no experimental data exists, and

so has great appeal. The necessity for such codes arises as design efforts for next-step

devices intensify, as interpretive codes, by definition, are not intended to study plasmas

formed in Tokamaks that do not yet exist. At present, the most widely used predictive

edge fluid codes used on Tokamaks are B2-SOLPS [28], EDGE2D [29] and UEDGE [30],
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which include sophisticated numerical schemes that allow the codes to model plasma

conditions using complex systems of conservation laws of particles, momentum and

energy.

Furthermore, as plasma theory develops and computers become faster, predictive

codes are able to capture a wider array of plasma behaviour than was previously

possible. Perhaps one of the greatest challenges for predictive codes is the accurate

simulation of the mechanisms that drive cross-field transport. At present, it is believed

that this transport arises primarily due to a combination of drift motion and turbulence,

which significantly complicates efforts to accurately simulate plasma behaviour in the

SOL of Tokamaks. However, predictive codes such as BOUT [31] and TOKAM-3D [32]

have incorporated turbulence models in a 3D geometry and are providing greater insight

into the effects of turbulent motion. Other codes, however, require cross-field transport

coefficients to be input by the user, which cannot be known when running a simulation

in predictive mode, which can place a limit on the accuracy of the results produced.

2.7 The Onion-Skin Model

The Onion-Skin Model (OSM) is based upon the onion-skin method of Stangeby [8],

whereby plasma transport is treated along a series of nested magnetic flux tubes,

resulting in a 2D distribution of plasma fluid properties. In this method, parallel (to

magnetic field lines) and cross-field transport can be effectively de-coupled from one

another, and treated independently of one another. Consequently, this simplification

allows the application of simpler 1D transport equations and numerical schemes, as

opposed to their more complex 2D counterparts. Information regarding the 2D nature

of plasma transport is handled in the method by the choice of boundary conditions. In

the OSM code, boundary conditions are provided by measurements of plasma properties

such as ion flux to target plates, density, temperature, etc, which are normally provided

at different flux tubes. In the code used in this study, there is no explicit requirement

that the plasma solution be self-consistent, as this relies upon the self-consistency of

the experimental data input into the code. This explicit reliance on experimental

data means that OSM is an interpretive code, used to provide greater insight into

experimental data collected by different diagnostics.

In the original OSM model used in this study, the particle and momentum transport

equations are:

d

ds
(nvi) = Sp (2.28)

d

ds

(
ne (Te + Ti) +minv

2
i

)
= Sm (2.29)
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Figure 2.9: Output of an OSM simulation of MAST discharge 13018 at 250ms [33].

in the model, ions have temperature Ti (eV) and electrons have temperature Te

(eV), the ion and electron species densities are equal, n, by quasineutrality1 and the

parallel ion velocity is vi (ms
−1). A relationship between ion and electron temperatures

are assumed, Ti = γTe, where γ is taken to be known. Sources (and sinks) of particles

and momentum are given by Sp (m
−3s−1) and Sm (kg m

−2 s−2) respectively. As the

transport equations to be solved on each flux tube are two coupled ordinary differential

equations, the requirement exists for one boundary condition each for density and

parallel ion velocity to be provided to ensure the solution is unique. These boundary

conditions are provided by experimental data. Studies carried out comparing an OSM

model (OSM2) with a 2D edge transport code EDGE2D [34] showed good agreement

between the two codes when carrying out simulations on the same plasma. Figure 2.9

shows an output of a OSM simulation on an ohmically heated MAST discharge, where

plasma properties at the divertor plates were determined using Langmuir probes and

the plasma density and temperature at the midplane were measured using the MAST

Thomson Scattering diagnostic.

1This is not strictly the case, as quasineutrality requires the difference between the ion and electron
densities to be small as opposed to nonzero, but for the present study, this difference it taken to be
zero. Furthermore, the presence of ionized impurities results in more electrons than ions being present
in the plasma.
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2.8 Summary

The different divertor operating regimes, sheath-limited, conduction-limited, high re-

cycling and detached, have been briefly reviewed in terms of their effects on plasma

transport in a Tokamak SOL. Greater understanding of SOL transport along and across

field lines is provided by simulation codes of varying complexity, which often require

user-provided information regarding the strengths of cross-field transport mechanisms.

Interpretive codes, such as OSM, can be used to deduce SOL transport using data

collected from diagnostic data of a given plasma at different flux tubes, which implicitly

include information concerning cross-field transport.



Chapter 3

The Mega Ampère Spherical

Tokamak

In this chapter, a more detailed description of MAST and magnetic equilibria is given.

Descriptions of the relevant diagnostics are described, together with diagnostic equip-

ment and data analysis techniques developed in this study for characterising low tem-

perature, high density plasmas in a Tokamak divertor.

3.1 Introduction to MAST

The MAST machine [35] comprises a stainless steel vacuum vessel, intended to sustain

a high-vacuum environment within its interior and to support large magnetic field coils

and to facilitate diagnostic access to the plasma (figure 3.1). The toroidal field is

generated by 24 external coils that subtend from the top and bottom of the machine,

extend radially beyond the machine’s outer wall, and form a closed loop within the

centre column. Within the centre column also resides a solenoid, known as P1, through

which electrical currents are ramped. The electromotive force generated couples to the

plasma and drives a current that heats and confines the plasma by the generation of a

poloidal magnetic field.

The divertor magnetic geometry is generated by the divertor, or P2, coil, in which

a current is driven in the same direction to the plasma current to oppose the poloidal

magnetic field and create a field “null” known as the x-point. The P2 coil is also used

to counter some of the effects of the solenoid fringing field and to control the position

of greatest plasma-surface interaction known as the strike point. The induction P3 coil

is used to allow an induction-compression scheme of initiating a plasma to reduce the

flux required from P1 during the start-up phase of a discharge. The P4, P5 and P6

coils are used for plasma shape control, to counter the “hoop force” [36] pushing the

plasma out to larger radial positions due to the plasma current and to maintain vertical

28
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stability (in the case of P6).

Figure 3.1: Engineering schematic of the MAST vessel, courtesy of the MAST design
office.

A typical plasma pulse on MAST lasts for 0.5-0.6s, which is limited by the finite

inductive flux that can be generated by ramping current in P1, magnetohydrodynamic

(MHD) and vertical instabilities.

3.2 Edge & Divertor Physics on MAST

3.2.1 The MAST Divertor

The divertor is of an open configuration (figure 2.1), composed of 96 discrete tiles

made up of fine-grain EK98 graphite [37]. Carbon-based plasma-facing components are

common in Tokamaks due to their low Z (and hence low radiated power in the plasma

core), thermal properties and sublimate rather than melt when exposed to strong heat

loads. The divertor geometry facilitates significant diagnostics, particularly optical

diagnostics that require unimpeded lines of sight from viewing windows mounted on

the vessel wall to the divertor plasma.

3.2.2 Plasma Equilibria

The geometry of MAST plasmas broadly fall into three categories: upper single-null,

where the primary x-point is close to the upper divertor, lower single-null, where the
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primary x-point (magnetic flux surface closed to the magnetic axis of the machine)

is close to the lower divertor, and double-null (figure 3.2). Distinction between these

equilibria is made using a parameter δRsep [38], which is the distance between the

two magnetic separatrices as measured at the mid-plane at the low-field side, where

δRsep > 0 denote the primary separatrix being the upper.

Despite the apparent symmetry in the layout of MAST’s structural components,

aspects of plasma physics such as the Shafranov shift, ∇B and other drifts, plasma

properties at the divertor strike points display a large asymmetry. In MAST, the ratio

of the power flux to the outer and inner targets is typically around 20-40 in connected

double-null discharges, where δRsep ≈ 0 [39, 40]. In highly disconnected double-null

discharges, where the x-points lie on different flux surfaces, δRsep 6= 0,this ratio falls to

approximately 4. An asymmetry exists in the power arriving at the upper and lower

divertor targets due to the ∇B drift, which under normal configuration is directed

downwards [40].

Figure 3.2: Three broad categories of MAST magnetic equilibria exist, lower and upper
single-null (left red and blue shapes, respectively) and double null (right shape.)

An overview of the most commonly used terms referring to Tokamak magnetic

geometry is given in figure 3.3.

3.3 Edge Diagnostics

3.3.1 Langmuir Probes

MAST is equipped with over 700 Langmuir probes embedded in the divertor targets

and the centre column for measuring electron temperature, density, ion saturation

current and (approximate) power arriving at the probe. Before the MAST Langmuir

probe system is explained in greater detail, the principles underlying the operation and
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Figure 3.3: An overview of some commonly used terms referring to Tokamak magnetic
geometry. The scrape-off layer (SOL) is a region that extends radially from the
separatrix to the wall, however, normally only a thin region close to the separatrix
is simulated in modelling codes.

interpretation of data from Langmuir probes will first be reviewed.

The most straightforward Langmuir probe configuration is a single conductor im-

mersed in a plasma and connected to a power supply. Normally, such probes are

operated by connecting the probe to a sweeping bias voltage, and the current through

the probe is recorded. An idealised current-voltage characteristic of a swept probe

immersed in a plasma is shown in (3.3.1). Due to the formation of electrostatic sheaths,

it not possible for an unbiased probe to access the conditions of the plasma, and so it

is important to consider the presence of the sheath when analysing probe data.

If a probe is biased sufficiently negatively, an electrostatic sheath cannot form at

the surface of the probe, as all incident electrons are repelled from the probe surface.

As a result, only incident ions, which are accelerated by the negative potential, reach

the surface of the probe and are collected. In this circumstance, the current reaching

the probe is the ion saturation current.

If the probe is left unbiased, the presence of the electrostatic sheath will act to

equalise the fluxes of ions and electrons to the probe surface. As a result, the probe

will not draw any current from the plasma. The potential of such an unbiased probe is

called the floating potential, as the probe is essentially electrically floating at this point.

If the random Maxwellian particle flux is given by:
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Figure 3.4: Schematic of a typical current-voltage characteristic recorded from a
Langmuir probe immersed in a plasma.

Γ =
1

4
nv̄ =

1

4
n

√
8kTe
πme

(3.1)

where n is the particle density and v̄ is the mean particle velocity, then by employing

the Boltzmann relation to electrons incident on an electrically floating probe, the

electron flux is given by:

Γe =
1

4
nsecse

eφf
kTe (3.2)

where φf is the floating potential of the surface, cs is the plasma acoustic velocity

and nse is the electron density at the sheath edge ≈ 1
2ne, roughly half the electron

density in the bulk plasma. The ion flux to the probe can be approximated by the

one-way Maxwellian flux given in (3.1). Therefore, for a floating probe, Γe = Γi,

giving:

eφf

kTe
=
1

2
ln

[(
2πme
mi

)(

1 +
Ti

Te

)]

(3.3)

If the probe is biased strongly positively, the probe will attract all incident electrons

and repel incident ions from its surface. The current drawn from the probe in this

configuration is known as the electron saturation current. As shown in (3.3.1), the

electron saturation current is often significantly larger than the ion saturation current.

This poses difficulties in terms of experimentally determining the electron saturation

current, which can damage the probe surface. The total current emitted by a Langmuir

probe can be approximated by [41]:

Ip = I
+
sat

(

1−
e (φbias − φf )

kTe

)

(3.4)

The floating potential φf and the ion saturation current I
+
sat can be determined from
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the current-voltage characteristic recorded at the probe, allowing Te to be ascertained

by fitting (3.4) to the data prior to the probe entering electron saturation. The electron

density, ne can then be calculated using the expression for the ion saturation current

(assuming the Bohm criterion when Te=Ti [8]):

j+sat = enecs (3.5)

where the relationship between I+sat and j
+
sat is given by:

j+sat =
I+sat
Acoll

(3.6)

where Acoll is known as the collecting area of the probe, given by the projected area

of the probe along magnetic field lines. Furthermore, the value of the plasma potential

can be approximated by [42]:

φp = φfl + 2.5
Te
e

(3.7)

where φp is the plasma potential, φfl is the floating potential and Te is the electron

temperature (eV). The Langmuir probe system on MAST [43] is operated whereby

the probes are multiplexed such that groups of 16 probes are driven by a single power

supply. Each probe is swept with a waveform scanning from -200V to 0V (with respect

to the floating potential) with a 65μs period, so an individual probe is swept every

≈1ms. The spatial resolution of the Langmuir probe diagnostic depends upon how the

diagnostic is configured (i.e. which probes are connected to power supplies). It can be

taken that in this study, the spatial resolution lies between from 6mm-9mm at the lower

inner and outer strike points. The data is analysed by determining jsat from the probe I-

V characteristic, and fitting this characteristic (which does not enter electron saturation

region) with (3.4) to obtain Te, ne is calculated using (3.5), assuming Ti = Te.

3.3.2 Spectroscopy

The two principal spectroscopic diagnostics commissioned by the author for this study

are based on the Czerzy-Turner (CZ) design and have 1000mm and 300mm focal

lengths. The spectrometers were manufactured by Princeton Instruments, with model

numbers AM-510 and SP2300i respectively, with optics designed to image multiple light

sources. The AM510 spectrometer is fitted with an 1800 grooves/mm grating, giving

a linear dispersion of ∼0.13Å and an instrument function ∼0.4Å wide (full-width half-

maximum) with a slit width of 100μm. The SP2300i spectrometer was commissioned

during this study, and is fitted with a rotatable turret containing three gratings of

ruling density 300, 600 and 1200 grooves/mm. The notable feature of the SP2300i

spectrometer is its detector, an electron multiplication CCD (EMCCD), a Princeton
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Instruments ProEM 1024b. This combination of detector and gratings allow spectra

to be recorded with ranges from 138-29nm with spectral resolution ranging from 0.3-

0.06nm (FWHM, 25μm slit width). This sensitive detector, coupled with the optically

fast (f/3.7) SP2300i increases the diagnostic signal:noise ratio, permitting measurement

of weak spectral lines. The input optics into the spectrometer were designed in order

to couple an extended light source to the spectrometer with minimal losses, whilst

ensuring that the cross-talk between adjacent input fibres was reduced.

Figure 3.5: Input optics for SP2300i spectrometer

All lenses used in the input optics are assembled from quartz, to ensure good light

transmission at near-UV wavelengths. A field lens is positioned close to the fibre

bundle to reduce ray divergence from the input fibres, increasing the light reaching the

focussing lenses. Two chromatically corrected lenses are used to focus the light onto

the spectrometer input slits to ensure good image quality and hence reduce cross-talk

between adjacent fibres. An aperture was placed in front of the focussing lenses in order

to give a wider input acceptance angle to match that of the input fibres, by reducing

the effective lens diameter.

Spectroscopy is an important means of diagnosing low-temperature plasmas, as

light emitted from ion-electron recombination events taking place at low temperatures

can be used to infer the electron temperature. If the ions and electrons are in coronal

equilibrium, the population N of a given state of principal quantum number n is given

by [17]:

N ∝
n2

T
3
2
e

exp

(
13.6

n2Te

)

(3.8)

Therefore, measurements of the intensity of Balmer emission lines can facilitate a

measurement of the electron temperature Te. Measurements of the chord-integrated

electron density ne are made possible by careful analysis of the shapes of Deuterium

Balmer emission lines due to the high electron density in detached plasmas.

In high-density, low-temperature plasmas, a spectral line shape can become domin-

ated by Stark broadening [44]. This form of line broadening is brought about by electric

microfields generated by Coulomb interactions between an ion and its neighbours.

These microfields manifest as a perturbation of the ionic energy states and result in a
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shift in the radiation emitted by electrons residing within the ion’s energy states. The

gross effect of these perturbations is a spectral line broadening closely resembling a

Lorentzian profile which dominates over Gaussian thermal broadening. Passive spec-

troscopic techniques to characterise plasmas are attractive due to their comparatively

low cost (compared with a Thomson scattering diagnostic, for example) and ease of

experimental setup. Difficulties arise in data analysis, however, as analysis of Stark

broadened lines often involves comparing line widths to tabulated values to calculate

the electron density, or fitting experimentally observed line shapes to theoretically

calculated profiles, such as in [45]. In this study, the latter approach has been adopted

in order to make the data analysis procedure as robust as possible.

Figure 3.6: Spectrum of high-n Balmer emission lines emanating from the lower inner
strike point from shot 23930 at 190ms.

The onset of detachment on MAST can be detected using filtered photomultiplier

tubes (PMTs) were used to measure the brightness of Dα and Dγ spectral lines with a

low probability of detector saturation. Light input into the photomultiplier tubes was

collected using a vessel-facing lens to focus light onto an optical fibre. The fibre was

input into a beam-splitter, which served as input into two PMTs, filtered for each of the

spectral lines. Due to the relatively poor quantum efficiency (v10%) of PMTs, detector

saturation is more easily avoided compared with more sensitive detectors, such as CCDs.

Furthermore, the temporal resolution of the PMT-based line ratio measurement is 65μs,

facilitated by signal amplification within the detector. The temporal resolution of the

PMTs used is limited by the analogue-to-digital converter, and is very high compared

with several milliseconds for CCD-based measurements.
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3.3.3 Spectroscopic Te Determination

In recombining plasmas, the line averaged (along a spectroscopic line of sight) electron

temperature can be measured by measuring the intensities of spectral line in the

recombination spectrum. The absolute intensity of a spectral line (measured in m−3s−1)

brought about by an electronic transition from a state with principal quantum number

j to one of state i is given by [46]:

Iij = njAij (3.9)

where j > i, Aij is the spontaneous transition probability from state p to k, and

nj is the population density of state j. Consider an atom in which the populations of

states with principal quantum number i and j are due to three processes [47]:

1. Spontaneous recombination

This is the recombination of an ion with a free electron of momentum p.

H+ + e− → H+ hν (3.10)

The rate of this process can be given by:

Rrec,s(p) = nj+1ne (p)A (3.11)

where nj+1 is the density of singly ionised atoms (where state j corresponds to

neutral atoms), ne (p) is the density of free electrons of momentum p per unit

momentum interval, given by the Maxwell-Boltzmann distribution and A is the

probability per unit time of this event occurring.

2. Induced recombination

This is a similar process to spontaneous recombination, except it is initiated by

a photon of energy hν , its rate is given by:

Rrec,i(p) = nj+1ne (p) f (ν)Bji (3.12)

where f (ν) is the radiation density at frequency ν, given by the Planck distri-

bution and Bj,i is the probability per unit time per unit spectral radiance of this

occurring.

3. Photoionization

In this processes, a photon is absorbed by a bound electron, causing the formation

of an ion
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H + hν → H+ + e− (3.13)

The rate at which this occurs can be given by:

Rpi = njf (ν)Bij (3.14)

where Bij is the probability per unit time per unit spectral radiance of this event

occurring.

In thermal equilibrium, the rate of recombination and ionization must equalise to

ensure detailed balance. This can be expressed as:

Rrec,s(p) +Rrec,i(p) = Rpi (3.15)

or

njne (p)Aji + njne (p) f (ν)Bji = nif (ν)Bij (3.16)

Taking the population densities of states i and j to follow the Boltzmann distribu-

tion [47]:

ni

nj
=
gi

gj
exp

(
−hν
kBT

)

(3.17)

where gi and gj are the statistical weights of states of states i and j respectively,

it can be shown that [48]:

Bij

Bji
=
gij

gji
ge

(
4πp2

h3

)

(3.18)

and

Aji

Bji
=
8πhν3

c3
(3.19)

and using the following statements of the Maxwell-Boltzmann and Planck distribu-

tions:

ne (p) =
ne4πp

2

(2πmkBT )
3
2

exp

(
−p2

2mkBT

)

dp (3.20)

f (ν) =
2hν3

c2
1

e
hν
kBT

−1
(3.21)
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then (3.16) can be re-cast as [49]:

njne

ni
=
(2πmkBTe)

3
2

h3
2gj
gi
exp

(
hν

kBTe

)

(3.22)

where ge = 2 (allowing for two electron spin states) was used. Taking the logarithm

of (3.22) yields a straight line:

log

(
nj

gj

)

=

(
1

Te

)
13.6

j2
+ log

(
nih

3ne

gi (2πmkBTe)
3
2

)

(3.23)

where hν = 13.6
j2
has been used, as the ionisation energy of state j in the case of

energy level transitions in hydrogen isotopes. Therefore, determination of nj using

(3.9) and measurements of Iij together with (3.23) allow Te to be determined.

Assuming that the errors in the atomic data are small compared with those arising

from errors in the experimental data, the dominant source of uncertainty in the eval-

uation of Te is in the measurement of nj . As nj is computed from the integrated line

emission, it is important to consider the degree to which noise effects the determination

of the upper state population density. The total noise in the measurement of the shape

of a spectral line with a CCD sensor arise due to several contributions. So-called dark

current arises in CCDs due to electrons generated within the sensor due to thermionic

emission as it warms up during use. The Princeton ProEM camera used in collecting

data for Te determination included Peltier cooling to reduce dark noise. Dark noise was

removed during data analysis by subtracting frames where the camera was not exposed

to light from the data. Photon (or shot) noise is generated by the random nature

of light detection. As the detection of an individual photon is given by the Poisson

probability distribution function [50], the number of photons detected will differ from

one exposure to another in the presence of a constant intensity light source with all

other sources of noise eliminated. The magnitude (standard deviation) of photon noise

is given by the square root of the number of photons collected.

Other sources of noise tend to be due to the electronics within the camera system.

Analog-to-digital conversion of the electrons generated by the CCD is one such source,

which increases if signal amplification is required to boost the signal generated by

weak light sources. Other sources of electrical noise associated with camera control,

readout, and power supply can manifest as additional sources of noise. Provided that

the experimental setup remains fixed whilst measurements are taken, these sources of

noise can be quantified and assumed to be invariant during an experiment. In the

experimental setup used in this study, the readout noise from the CCD camera is taken

to be 10.1 counts, determined using the manufacturer’s calibration when the camera was

(recently) constructed. Combining the shot noise due to N photons, σp and electrical
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noise inherent in the camera σe yields:

σn =
√
σ2p + σ

2
e =

√
fN + σ2e (3.24)

where f is the number of counts per photon, measured by carrying out an absolute

intensity calibration, using a source of known spectral radiance. Using this information,

the error in Te is calculated when σn is added to and subtracted from the data. The

uncertainty in Te is then taken to be average deviation of these calculated electron

temperatures from Te calculated from the raw data, as shown in figure 5.14.

In order for this analysis to be valid, the high-n Balmer states must be in thermal

equilibrium with background electrons. The lowest-n line for which this method is

valid was calculated by Griem [51], by assuming that equilibriation takes place if the

collisional depopulation rate of the state is ten times the radiative decay rate. This

leads to the expression:

ncr =

[
10

2
√
π

z7

ne

(
α

a0

)3]
2
17 (

Te

z2EH

) 1
17

(3.25)

where z is the ion charge (taken to be 1), α is the fine structure constant (=1/137),

a0 is the Bohr radius (≈ 0.53Å), EH is the Rydberg energy (13.6eV) and all other terms

have their usual meanings. Equation (3.25) calculated for various plasma parameters

yields figure 3.7. For plasma conditions Te ≈ 1eV, ne ≈ 1020 m−3, intensities of Dβ
(n=4) and higher-n lines are good candidates to use in this analysis. It is preferable

to use lower-n lines in order to achieve good photon statistics, but not low enough to

invalidate the analysis method outlined.

3.3.4 Spectroscopic Line Integrated ne Determination

In high density plasmas, the emission of photons can be interrupted by the presence

of nearby free ions and electrons due to collisions and the generation of electric fields.

As part of this study, the effects of Stark broadening on the widths of high-n Balmer

emission lines was investigated using results from a Model Microfield Method (MMM)

code [45]. In this model, the perturbations of free ions and electrons on the emitting

ion are treated separately, generating their own plasma microfields. The evolution

of the microfields is modelled as a stochastic process, with fluctuation times being

the reciprocal of the ion and electron plasma frequencies. As a result, the electron

microfield evolves significantly more quickly (by a factor of ≈60), the average electron

microfield is evolved to allow the code to evolve on the longer ion timescale. At each

time step, the microfields are assumed to take a constant value, calculated using ion

and electron field distribution functions. Unlike calculations carried out by Griem [52],
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Figure 3.7: Calculation of the lowest-n state that can be taken to be in partial local
thermodynamic equilibrium with free electrons.

the effects of moving perturbing ions is included in the calculation.

The plasma parameters over which this analysis can be applied is limited by the

Inglis-Teller limit [53] (figure 3.8), which quantifies the highest resolvable upper prin-

cipal quantum number line nmax before they start to merge to form a continuum. As

Stark broadening is more pronounced at higher density, line broadening increases as

the Inglis-Teller limit decreases. A concise form of this limit is:

log ne = 29.26− 7.5 log nmax (3.26)

A further constraint is that the mean interelectronic distance is smaller than the

electron Deybe length. The mean interelectronic distance, r0 (m), is defined as:

4

15
(2π)

3
2 r30ne = 1 (3.27)

which limits the range of applicable electron densities and temperatures to [45]:

r0

λd
=
(
8.34× 10−5

) n
1
6
e

T
1
2
e

< 1 (3.28)

For all plasma conditions of interest in this study, this criterion is satisfied.

In high density divertor plasmas, such as those observed in Alcator C-Mod, the

Inglis-Teller limit is approximately 11 for ne ≈ 1.8×1021m−3 [17]. If spectroscopic data

is available for the region of the spectrum where the emission lines form a continuum, it

is possible to estimate the electron density by using the Inglis-Teller limit and knowledge
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Figure 3.8: Calculated Stark broadened spectrum of Deuterium high-n Balmer lines,
ne = 5.0× 1019m−3, Te = 1eV.

of the position of the shortest wavelength series emission line before a continuum is

formed. However, at lower density divertor conditions, such as ne ≈ 1 × 1020m−3,

nmax ≈ 17. The low brightness of such high-n lines can prohibit measurements of the

continuum in lower density conditions without making sacrifices in terms of temporal

resolution, as higher exposure times become necessary to acquire data.

In this study, line-integrated ne measurements were made by analysing the shape of

the Dε (397nm) line and comparing them to theoretically calculated line shapes calcu-

lated by a code documented in [45]. An example Stark broadened spectrum calculated

by the code is shown in figure 3.8. In order to account for (albeit small) Doppler

broadening of spectral lines, Te = 1eV is used, and calculated Doppler broadened line

shapes are convolved with the calculated Stark broadened line shape. Account must

also be taken of the instrumental broadening of the spectrometer making the line shape

measurement. The measured instrument function for different slit widths is recorded

in the region where the instrument function can be well approximated by a Gaussian

profile. In order to do this, the measured line shapes are then fitted to Gaussian

profiles, and the line width (FWHM) is recorded for a number of slit widths. It is then

possible to calculate the instrument function for reasonable (≤ 100nm in this case) slit

widths. For a given slit width and calculated Stark+Doppler broadened line shape, the

theoretical profile is convolved with the calculated instrument function and fitted to a

given spectral line in a least-squares manner.

Experimental uncertainties in the fitting procedure take into account the accuracy

of the line shape calculation (≈ 10% [45]) and a the sensitivity of the line shape to
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deviations from the density calculated from the fitting procedure. It was found that

with the more accurate measurement of the spectral line shape afforded by the AM510

spectrometer results in a reduced degree of uncertainty in the calculated line integrated

density(≈ 15%). Conversely, the less accurate line shape measurements taken with the

SP2300i instrument result in 10% greater uncertainty in the line integrated density

calculated by the fitting procedure.

Figure 3.9: The uncertainty in least-squares fitting of the Balmer line shape is calculated
by considering the sensitivity of the calculated line shape to the input line integrated
density. Left: results of a Stark broadening analysis carried out on SP2300i data, right:
Stark broadening analysis of AM510 spectrometer data.

The magnetic field of MAST will also have an effect on the shape of recorded

spectra via Zeeman splitting of spectral lines. Zeeman splitting occurs when electronic

transitions occur in the presence of a magnetic field that effectively splits atomic energy

levels [47]. According to Griem [51], the magnitude of Zeeman splittings are of the

order of the electron cyclotron frequency, which allows the relative wavelength shift to

be calculated as:

ωce

ω
≈
Δλ

λ
(3.29)

Δλ ≈

(
eB

me

)(
λ

2πc

)

λ (3.30)

For the MAST magnetic field (taken to be 1T) the wavelength shift over the

Deuterium Balmer series would range from 0.04nm for Dα (656nm) and 0.01nm at the

continuum (taken to be 365nm). Therefore, as the properties of high-n Balmer lines

are of interest in this study, the effects of Zeeman splitting on the measured spectra can

be taken as negligible. This estimate is in qualitative agreement with another method

of calculating the effect of Zeeman splitting, by taking the intervals of the split lines to

be [52] in the Paschen-Back limit (valid for strong fields of the order of 10’s of Tesla):
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Δωz = (ni − 1)

(
eB

2mc

)

(3.31)

where ni is the initial quantum number of the electronic transition producing the

line. Comparing this to estimated Stark broadening widths, it can be shown that for

Balmer lines, line broadening due to the Stark and Zeeman broadening effects become

comparable at magnetic fields exceeding 1T.

The effects of neutral perturbers gives rise to resonance and Van der Waals broad-

ening, the effects of which are not accounted for in the theoretical calculations of

Stark broadened line shapes. Resonance broadening is due to collisions with neutral

atoms of the same species, in this case, neutral Deuterium atoms, however, in order for

resonance-broadening to have a significant effect (of the order of tenths of Angstroms)

the density of neutral perturbers must be of the order of 1024 m−3 in the case of Dγ

emission [54]. Therefore, the effects of resonance broadening on high-n Balmer emission

lines in Tokamak conditions are significantly below the resolution of the diagnostics used

in this study. Van der Waals broadening arises due to the interaction of the emitting

ion with Van Der Waals forces due to neighbouring atoms. However, like resonance

broadening, the effects of Van der Waals broadening in Tokamak conditions is a minor

contribution to the overall line shape [55].

Finally, natural line broadening is due to the small spread in the energy ΔE of

quantum states due to the Heisenberg uncertainty principle [48]:

ΔEΔt ≈ h̄ (3.32)

where Δt is given by the lifetime of an atom in an excited state. Therefore, using

the wavelength broadening Δλ of a spectral line due to this effect is:

Δλ ≈
λ2

2π

(
1

Δti
−
1

Δtf

)

(3.33)

where Δti and Δtf are the lifetimes of the initial and final states respectively. Given

that for Balmer series transitions, Δti,f are of the order of 10
−8s, the natural line width

is very small, approximately 10−4Å.

3.3.5 Thomson Scattering

One of the principal diagnostics on MAST is the Thomson Scattering system [56]. The

diagnostic is based on the scattering of light emitted from 8 30Hz 1.6 Joule lasers

directed into the plasma. The light is collected with a collection lens and directed into

optical fibres, where it is analysed with polychromators. From analysis of the scattered

light, electron density and temperature profiles can be obtained with high spatial and
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temporal resolution.

Figure 3.10: Laser path (red) collection optics of the MAST core (green) and edge
(purple) Thomson scattering systems.

The MAST Thomson Scattering system offers the flexibility to provide temperature

and density profiles with a temporal resolution of approximately 4.2ms if the lasers are

fired evenly, or can be fired quick succession to measure 8 plasma profiles in bursts

with a 5μs spacing. Data from 120 spatial locations are recorded from radial locations

ranging from 0.24-1.5m with 10mm resolution. Some notable applications of Thomson

Scattering on MAST has been in the diagnosis of filaments [57], pedestal evolution [58],

the structure of magnetic islands and sawteeth.

Thomson Scattering data is used in this study as a measurement of upstream

electron density and temperature profiles in the edge of MAST plasmas, to facilitate

modelling efforts. This information is extremely important in order to ascertain the

role and magnitude of gradients in plasma properties in the plasma boundary, and as

a strong constraint on interpretive modelling codes.

3.3.6 Infrared Cameras

Infrared (IR) cameras have been deployed in a wide variety of scenarios with the purpose

of ascertaining the surface temperature of an object with high temporal resolution. On

Tokamaks, IR cameras have become a standard diagnostic to measure the temperature

of, and heat flux to plasma-facing components. Such measurements are increasingly

important in order to derive experimental scalings for the heat flux to plasma-facing

components in order to estimate their magnitude in next-step devices such as ITER.

As noted in a previous section, Langmuir probes offer the possibility of estimating the



3.3. EDGE DIAGNOSTICS 45

Figure 3.11: Data taken from the MAST Thomson scattering diagnostic on shot 24703
at 212ms.

net power to the surface of the probe, which if embedded in a divertor tile, is strongly

related to the power incident on the surface of the divertor. However, this power is

estimated only with knowledge of the electron contribution to the incident power, and

so approximations are needed to estimate the ion contribution. IR cameras, conversely,

can be used to infer the net heat flux to a plasma-facing surface, irrespective of the

plasma species transporting the power. However, interpretation of surface temperatures

and heat fluxes to surfaces by IR thermography is complicated by the effects of surface

layers with poor thermal contact with the bulk material and the presence of dust.

Recent investigations into IR analysis using long and medium wavelength cameras [40],

have since improved the reliability of these measurements on MAST.

In detached divertor conditions, broad-band bremsstrahlung emission from electro-

magnetic interactions between plasma ions and electrons can result in contamination

of measurements of surface temperatures and heat fluxes using infra-red cameras. To

ascertain if such contamination is likely in MAST plasmas, the blackbody photon flux

was compared a line-integrated bremsstrahlung emission through 1m of homogeneous

plasma (figure 3.12). The bremsstrahlung emission spectrum was integrated between

4.5μm→5μm, corresponding to the bandpass of the filter used in MASTs medium

wavelength IR camera. This calculation has a number of associated uncertainties,

such as the surface blackbody emissivity (assumed here to be unity), and plasma
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Figure 3.12: Simulated blackbody photon flux from a 350K perfect blackbody compared
with a line integrated (path length = 1m) bremsstrahlung photon flux through a
homogeneous plasma, varying electron temperature and density.

conditions in a Tokamak divertor leg are not necessarily uniform. Furthermore, the

effects of electron-neutral bremsstrahlung emission [59], which could be significant at

high neutral pressures. However, the calculation does suggest that, under detachment-

like conditions, bremsstrahlung emission could complicate IR measurements of surface

temperatures, as observed on other devices [18].

3.3.7 Visible Imaging

MAST is equipped with several visible imaging diagnostics. Their purpose varies from

general plasma and machine monitoring to narrow-band imaging spectroscopy. This

study concentrates solely on the latter purpose, as imaging spectroscopy is an important

means of characterising plasma behaviour, in particular in divertor detachment, where

diagnosics such as Langmuir probes are less effective.

The narrow-band imaging diagnostic used in the MAST divertor is DivCam. Light

enters DivCam through an aperture that is positioned in front of a MAST window.

From here, the light passes through telecentric optics to make the principal rays parallel,

before passing into a beam-splitter to divide the input light. This split light then passes

through a field lens, focussing the light that passes through a filter wheel containing

narrow-band optical filters before reaching two CCD detectors.

The CCD detectors are monochrome 1024x1024 chips with 7.4μm square pixels with

an interline-transfer architecture to avoid smearing during readout. Operating in full-

frame mode, the camera is capable of 48Hz frame rate. Using 2x2 binning, however, the
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Figure 3.13: CAD model of DivCam.

frame rate can be doubled to 96Hz, at the loss of spatial resolution in the horizontal

and vertical directions. The principal applications of DivCam are for characterising

the MAST boundary plasma using Deuteriun Balmer (Dα, Dβ , Dγ and Dδ) and He I

emission lines [60] and the monitoring of divertor strike-point characteristics.

Figure 3.14: A MAST disruption in Dβ radiation as seen from the lower divertor.
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To capture events with greater temporal resolution, two high-speed Photron APX-

RS cameras can be used to replace two standard DivCam cameras for high-speed

imaging. Such capability is important when studying strongly time-dependent beha-

viour, such as edge-localiased modes (ELMs), sawteeth, or the evolution of detachment.

Photron cameras are not used routinely in conjunction with DivCam due to the inability

to couple two Photron APX-RS cameras to a DivCam unit, and, more importantly, the

decreased dynamic range of the APX-RS camera (maximum 10-bit) compared to the

Imperx cameras normally employed on DivCam (maximum 12-bit).

Quantitative analysis of DivCam data requires absolute calibration of the lens, filter

and camera configuration with a suitable light source and a Lambertian surface in order

to convert the signal levels recorded by the cameras for a given exposure time into a

photon flux across the field of view. This cannot be taken as uniform across the field

of view as vignetting strongly deteriorates signal levels at the edges of the detector.

Good characterisation of distortions brought about by the imaging optics is also

essential in order to ensure a good mapping between pixel locations on a camera and

locations seen on the MAST vessel. This mapping is calculated using the LEON code,

written for mapping the positions of the different digital cameras used on MAST. Armed

with this information, it is possible to reconstruct poloidal emission profiles of specific

lines as seen by the camera. The calculation of poloidal emission profiles from filtered

camera data amounts to solving the linear problem:

Ax = b (3.34)

where x is the poloidal emission profile, b is the measured brightness of each viewing

chord (pixel), and A is a matrix describing the relationship between x and b. In this

problem, the poloidal emission profile is over-sampled by the diagnostic, as the same

poloidal location is imaged by the camera at multiple locations. As a result, popular

algorithms for solving the above overdetermined linear problem are SVD (singular-

value decomposition), conjugate-gradient or maximum entropy. Problems can arise

when using SVD and conjugate-gradient based algorithms in enforcing a non-negativity

constraint, ensuring that the poloidal plasma emissivity is always greater than or equal

to zero. Maximum entropy-based algorithms inherently ensure that the solution is

non-negative, making it an attractive means of solving (3.34) with physically realistic

results [61].

3.4 Summary

The extensive diagnostic dataset on MAST including divertor Langmuir probes, IR

cameras, Thomson scattering and DivCam has been extended to include line-of-sight
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spectroscopy using a spectrometer developed during the course of this study. Data

analysis codes to measure line averaged electron temperatures and line integrated

electron densities have been developed using characteristics of recombining deuterium

emission spectra that are normally observed during detached divertor conditions. The

implications of detachment on the analysis of other diagnostics, such as IR thermo-

graphy, have been investigated.



Chapter 4

OSM Physics Additions

In this chapter, numerical enhancements made to the OSM code in this study (Appendix

A) have facilitated the use of a more sophisticated set of conservation equations that

capture additional physical mechanisms. These include thermoelectric and Pfirsch-

Schlüter currents, the effects of magnetic flux expansion, accurate calculation of the

plasma potential and cross-field drift motion. The intention of this study is to address a

loss of parallel pressure balance between the outboard midplane and lower outer divertor

target, which is frequently observed in MAST discharges.

4.1 The Original Model

The onion skin method, described in section 2.7, requires that the solution of the fluid

transport equations along nested flux tubes corresponds to experimentally determined

quantities at specific locations. In the original OSM model used in this study, equations

of particle (ion) and (total) momentum conservation are used:

∂Γi
∂s
= Sp (4.1)

∂

∂s

(

neTe + niTi +mi
Γ2i
ni

)

= Sm (4.2)

where s is the distance along a given field line, where s = 0m and s is a maximum

where flux tubes intersect the surfaces of Tokamak divertor tiles, Γi = niv‖,i, ne = ni

and Ti = γTe, where γ is a user-specified quantity, that can vary spatially. Sp is a

particle source (m−3s−1), Sm is a momentum source (kg m
−2s−2). Electron temperature

profiles along flux tubes are calculated by fitting measured values of Te at given locations

to a model that assumes that heat is transported via electron conduction. Consequently,

allowing Te to take prescribed values at specific locations is ensured during this fitting

process.

50
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Ensuring that the solutions to (4.1) and (4.2) coincide with numerous experimental

data points at arbitrary locations is handled using particle and momentum sources

known as fitting terms. These sources are not ascribed to a given physical mechanism,

and are calculated to ensure agreement between the calculated density and ion velocity

profiles with experimental measurements irrespective of the conservation laws or nu-

merical scheme used. For example, in order to ensure that the ion flux incident on two

surfaces bounding a field line calculated by OSM coincided with measured values, the

ion flux at one end of the flux tube (Γ0 when s=0) can be prescribed by an integration

constant when (4.1) is integrated along the flux tube. In order to ensure consistency

with experimental data at the other end of the integration domain (Γt when s=max),

the particle source Sp would need to satisfy the following requirement:

Γt =

∫ s=max

s=0
Sp.ds+ Γ0 (4.3)

The particle fitting source ensures that an analogous relationship for all experi-

mental data input into the code is upheld. A momentum fitting source also exists to

ensure that solutions for ne,ni coincide with experimental observations. Additional

particle and momentum sources can be calculated by the EIRENE kinetic neutral

transport code [2] to provide accurate 2D source distributions arising from ionisation

of neutrals within the plasma and volume recombination processes. Furthermore,

EIRENE can also used to calculate momentum sinks arising from ion-neutral friction

During OSM-EIRENE code runs, OSM and EIRENE are iterated to ensure convergence

between the two codes and hence to ensure appropriate fitting sources have been

calculated.

In the MAST implementation of OSM, information concerning the magnetic flux

equilibrium is provided by the EFIT code [62], which solves the Grad-Shafranov equa-

tion using data from primarily magnetic diagnostics as constraints. Additional con-

straints can be supplied to improve the quality of the magnetic reconstruction. This

information is passed to the DG-CARRE code [63], which calculates a quasi-orthogonal

mesh on which simulations are carried out.

4.2 SOL Potentials & Currents

4.2.1 SOL Potentials

Electrostatic fields arise in the scrape-off layer of Tokamaks as electrons, being highly

mobile, charge up surfaces in the vacuum vessel negatively. Consequently, the plasma-

material interface is influenced by an electrostatic sheath, as described in chapter 2.

Away from solid surfaces in the bulk SOL parallel and radial electrostatic fields drive
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radial and parallel motion respectively via the ~E × ~B drift. Models describing the

effects of the ~E× ~B drift must first begin with accurate calculations of the electrostatic

fields within the plasma. The magnitude of the electrostatic potential in a Tokamak

scrape-off layer can be calculated by the electron momentum equation. A simplified

form of this equation, described as Ohm’s law in [8], is given by:

−∇‖φ = ηj‖ − 0.71
dTe
ds
−
1

ne

dpe
ds

(4.4)

where ∇‖φ is the derivative of the electrostatic potential along a field line, j‖ is the

parallel current density flowing in the plasma (Am−2), η is the parallel electric resistivity

of the plasma (ohm.m), Te is the electron temperature (eV), ne is the electron density

(m−3), pe is the electron pressure (neTe) (Pa) and s is the distance along a field line

(m). Equation (4.4) facilitates the direct calculation of the electrostatic field via the

expression:

E = −∇‖φ (4.5)

where E is the electrostatic field (Vm−1). It is convenient to specify the boundary

conditions at the material bounding the plasma, which is either biased (to a known

potential) or floating. In the latter case, the following expression can be used to

calculate the floating potential at the sheath entrance, φsf (V) [8]:

φsf

Te
= 0.5 ln

[(

2π
me

mi

)(

1 +
Ti

Te

)]

(4.6)

where all terms are as defined above. Accurate calculation of the plasma potential

requires knowledge of the plasma current profile, j‖, which arises due to temperature

asymmetries at surfaces bounding magnetic flux tubes, known as thermoelectric cur-

rents, and Pfirsch-Schlüter currents [64]. The calculation of the magnitude of these

currents, and their effects on the plasma potential, are be elucidated in sections 4.2.2,

4.2.3 and 4.5.2.

4.2.2 Thermoelectric Currents

It was postulated by Harbour [65] that electrical currents along field lines in the SOL

could be generated naturally by Te asymmetries at the ends of field lines where they

intersect solid surfaces. As the sheath potential close to solid surfaces (equation 4.6) is

a function of Te and Ti, temperature differences at the ends of open field lines result in

a potential difference between it’s ends, with the plasma acting as a conductor between

them. Furthermore, an additional contribution to this current can come from electron

pressure gradient forces within the plasma. The resultant current driven along field
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lines due to these effects is known as the thermoelectric current. The form of the

thermoelectric current, j‖, used in this study originates from a derivation by Stangeby

[8], which is based on Ohm’s law:

e
j‖

σ
= −e

dφ

ds
+ 0.71

dkTe
ds
+
1

ne

dpe
ds

(4.7)

where σ is the parallel plasma conductivity, given by σ = 1/η, and all other terms

have their normal meanings. The first term on the RHS of (4.7) is to take into account

external biasing of one of the surfaces with respect to the other, grounded surface. The

second term is due to the effects of ion-electron collisions. The ion-electron collision

frequency (s−1) for momentum-loss collisions is given by [8]:

νmomei =
0.51e4 lnΛZine

3m
1
2
e ε2o (2πeTe)

3
2

(4.8)

The inverse νmomei with Te relationship means that ions suffer a greater collisional

drag on their motion from collisions with colder ions than with warmer ions. As a

result, momentum-loss collisions between ions and electrons have the effect of pushing

ions up electron temperature gradients. The final term is the electron pressure gradient

force.
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Figure 4.1: Illustration of thermoelectric currents flowing from the higher temperature
to the lower temperature target plates from [8].

A full derivation of the thermoelectric current equation is not given here, but

integrating (4.7) from the cold plate to the hot plate in figure 4.1 yields [8]:
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ĵ‖ = −γ

[
eV0

kTh
+

(
1

rT
− 1

)

(ln 2− 0.71 + lnα)

+ ln








1 + ĵ‖
(

1− rnr
1
2
T ĵ‖

) 1
rT







−
1

kTh

∫ c

h

1

n

dpe
ds

ds

(4.9)

where rT =
Th
Tc
is the ratio of the electron temperatures at the “hot” and “cold”

divertor plates, rn =
nh
nc
, analogous to rT but for electron density, α =

1
2

√
mi
πme
, V0 is

the biasing of the “cold” plate with respect to the “hot” one (V), and

ĵ‖ =
j‖

enhcsh
(4.10)

the thermoelectric current is normalised to the ion saturation current at the “hot”

plate,

γ =
σ̄‖kTh

e2L‖nhcsh
(4.11)

σ̄ =

[
1

L

∫ c

h

ds

σ

]−1
(4.12)

and L‖ is the connection length (m). Using ne, Te and Ti profiles from OSM, the

thermoelectric current was calculated along field lines in a grid for MAST shot 13018

at 250ms (figure 4.2) [66]. Equation 4.9 was solved using Ridders’ method [67] as

the derivative of 4.9 with respect to ĵ‖ is not required in this method, which increases

computational speed. Furthermore, this method only looks for solutions of 1D nonlinear

equations within specified bounds. In the case of solving equation 4.9, this is useful

because beyond two limits (ĵ‖=-1 and ĵ‖ =
1

rn
√
rT
), the function becomes zero and

infinity respectively. All information concerning plasma properties and the magnetic

equilibrium (required to calculate the connection length) were taken from a converged

OSM solution, whilst calculating the thermoelectic current at each iteration.

The simulation results are compared with measurements of the current density

in the SOL as measured by Langmuir probes embedded in the divertor targets. Good

agreement is observed between experimental data and the thermoelectric current model,

which is consistent with observations made on JT-60U [68], ASDEX-Upgrade [69],

COMPASS [70], JET [71] and others. For the case shown here, the dominant driving

term for thermoelectric current is the temperature asymmetry at the divertor targets.

The magnitude of the pressure gradient dependent term is an order of magnitude

smaller than those arising due to target temperature asymmetry. This is not atypical,
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Figure 4.2: Calculated (blue) thermoelectric currents using temperature and density
profiles from OSM for MAST shot 13018 at 250ms. Experimentally determined currents
at the divertor target plates measured by target Langmuir probes are also shown (red).
[66]

as observations on JET [71] showed that the pressure gradient term only plays a

significant role in the event of small target temperature asymmetries. In the discharge

and time modelled in this case, the ratio of the electron temperatures at the hot and

cold plates ranged from 1.0 to 5.0. In the former case, the pressure gradient term was

approximately one third as large as the temperature asymmetry term, compared to an

order of magnitude smaller in the latter case.

4.2.3 Pfirsch-Schlüter Currents

The Pfirsch-Schlüter current arises due to the statement of current conservation:

~∇.~j = 0 (4.13)

This states that a divergent current source must be balanced by another current,

such that the total current density is divergence free. Therefore, (4.13) can be re-cast

in terms of parallel and perpendicular current flows:

∇j‖ = −∇⊥j⊥ (4.14)
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The presence of the thermoelectric current suggests that other sources of current

must exist in the Tokamak SOL, in order to balance the divergence of parallel and

perpendicular currents. Previous studies [64] indicated that the dominant cross-field

current source in the SOL is due to diamagnetic drift motion. The specific details of

this drift will not be elucidated here, but will in section 4.5.2. The diamagnetic drift

velocity is given by:

vdia =
~B × ~∇p
nqB2

(4.15)

where ~B is the magnetic field vector, p is the static pressure (i.e. nT), q is the

charge of the fluid species of density n. Considering only electrons and a singly ionised

deuterium species, the current density due to this drift motion is given by:

jdia = (nievi,dia − neeve,dia) (4.16)

which, combined with (4.15) gives:

jdia =
~B × ~∇P
B2

(4.17)

where P = pi + pe and ~B is the magnetic field vector. The divergence of this

cross-field diamagnetic current is not closed by the thermoelectric current. Therefore,

according to (4.14) a parallel current must be invoked in order to satisfy current

conservation. A form of this parallel current suited to being incorporated into 1D

fluid models was given by Rozhansky [64]:

j‖(x) = j‖(x0)
BT (x)

BT (x0)
+
BT (x)B(x)

Bθ(x)

(
1

B2
dp

dr
(x)−

1

B2
dp

dr
(x0)

)

−
BT (x)B(x)

Bθ(x)

d

dr

∫ x

x0

1

B2(x′)

dp

dx′
dx′

(4.18)

where BT is the toroidal field strength (T), Bθ is the poloidal field strength (T), x is

a poloidal coordinate and x0 is a reference poloidal coordinate where the current density

j‖ is known. In this case, x0 is taken to be one of the divertor plates, as it is found in

MAST to resemble the thermoelectric current, as shown in the previous section. This

is a useful boundary condition in the calculation of j‖, as the thermoelectric current can

be calculated independently. The total current density j‖ was calculated for the same

MAST shot as for the thermoelectric current calculation. The result of the calculation

of j‖ is shown in figure 4.3. The parallel current is seen to reverse direction at the

outboard midplane due to an increase in the integrated poloidal pressure gradient term,

which is larger on the outboard side. This feature of the calculation was also observed
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by Rozhansky [64].

Figure 4.3: Results of the calculation of j‖ including thermoelectric and Pfirsch-Schlüter
contributions. a) Calculated j‖ 1cm inboard of the separatrix on the high-field side b)
j‖ 1cm outboard of the separatrix on the low-field side. [66] In this geometry, on the left
graph, s=0m is the position of the lower inner strike point and s=25m is the location
of the upper inner strike point. On the right graph, s=0 is the location of the upper
outer strike point and s=25m is the location of the lower outer strike point.

4.3 Flux Expansion Terms

The importance of terms in the fluid conservation equations relating to the effects of

varying cross-sectional area of magnetic flux tubes [72], also referred to as the magnetic

mirror force, was highlighted in a study by Kirk [73]. In this study, it was found

that terms describing the effects of flux expansion were up to 10 times greater in

magnitude in MAST compared to JET. Consequently, the additional transport terms

arising from flux expansion had a significant effect on the plasma solution, demonstrated

by performing code runs with and without these terms.

As a result, these flux expansion terms were incorporated into the OSM model used

in this study to better refine the transport model. By default, OSM does not include

information on the total magnetic field strength, only the ratio of the poloidal and total

field strengths is stored, as this is used to calculate the field line pitch angle, which

is required to calculate the along-field distance, s. Therefore, the equilibrium fitting

code EFIT [62], from which magnetic field components can be calculated (figure 4.4),

was coupled with OSM to provide additional information about the magnetic field and

it’s components. By default, EFIT calculations are carried out on a 65×65 rectangular

grid, so the computed magnetic field strength was calculated on the EFIT mesh, then

passed to OSM for interpolation onto the modelling grid in use. The interpolation was

carried out using cubic splines in two dimensions, with an algorithm explained in [67].

To check the EFIT calculation and interpolation were consistent with the modelling

grid, the ratio of the poloidal and total magnetic fields were also passed to OSM and
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Figure 4.4: Left: the total magnetic field strength in a typical MAST plasma with the
plasma boundary overlaid. Right: the ratio of the poloidal and total magnetic field
strengths calculated by EFIT.

interpolated onto the modelling grid, for comparison with the values passed to the code

in the original grid file. Good agreement was found (typically a 2% deviation) between

the two values.

The key step in the derivation of these terms is moving from scalar conservation

equations, such as that of particle conservation:

∂
(
nu‖

)

∂s
= Sp (4.19)

into a vector equation:

~∇.
(
nu‖~b

)
= Sp (4.20)

where ~b is a unit vector pointing along the magnetic field line. The difference

between these equations become apparent when 4.20 is expanded to give:

∂
(
nu‖

)

∂s
−
∇‖B

B
nu‖ = Sp (4.21)

using:

~∇.~b = −
∇‖B

B
(4.22)

where ∇‖ = b̂.~∇. There are also additional terms in the momentum conservation

equation arising from this effect, that are re-derived in a similar manner as for the
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particle conservation equation, yielding:

∂

∂s

(
neTe + niTi +miv

2
i

)
−
∇‖B

B
miv

2
i = Sm (4.23)

Conveniently, the corrections to the conservation equations that arise due to flux

expansion effects appear as lower-order terms from those they originated from, i.e. the

corrections to convective terms appear as sources. This allows these additional terms

to be easily incorporated into numerical schemes.

Figure 4.5: Left: the total magnetic field strength measured along a flux tube in a
lower single-null discharge. Right: Calculation of ∇‖B/B along the same flux tube. In
this geometry, s=0m is the location of the lower inner strike point and s≈29m is the
location of the lower outer strike point.

The effects of the flux expansion terms are explored by examining data from a

partially detached MAST discharge, shot number 24861 at 240ms. This shot was in a

lower single-null geometry, which is brought about by shifting the plasma downwards.

1MW of auxiliary heating was provided by a neutral beam injector. The lower inner

divertor target was partially detached by puffing D2 gas in a region close to the lower

inner strike point. The variation in the strength of the flux expansion terms can be

inferred from the variation of ∇‖B/B along a field line (figure 4.5). In order to judge

the effects of these additional terms, a comparison is made of the OSM plasma solutions

with the terms active and inactive in the code.

To test whether the additional terms had been implemented correctly, the flux

expansion terms were included as part of the left hand-side of the conservation equation

using a Runge-Kutta solver running OSM without EIRENE. This allows direct compar-

ison of the results from the numerical schemes without undue complexity. The results

were compared to results from the original OSM solver, where the additional terms

were included by treating them as sources (at the right hand-side of the conservation

equations) and iterating the solver until convergence was reached (figure 4.7). Both

numerical schemes agree very well, indicating that implementation of the additional

terms is equally acceptable. For the remainder of this section, the calculations carried

out use the Runge-Kutta OSM solver and the effects of flux expansion terms are
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Figure 4.6: Magnetic grid used in OSM-EIRENE modelling of MAST discharge 24861
at 240ms. The green line at z = 0 represents the domain over which electron density
and temperature were specified using Thomson scattering. The additional green line
is used to specify conditions within the private flux region. Ion fluxes to the divertor
targets are also specified using data from Langmuir probes embedded in the target
plates.
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Figure 4.7: Results from two OSM runs, the dashed lines indicate data taken from when
the flux expansion terms were expressed as sources, using the original OSM solver.
The solid lines indicate data from a run where flux expansion terms were part of the
conservation equations in a Runge-Kutta solver. Electron temperature profiles were
omitted, as they were interpolated from experimental data and hence not calculated in
the numerical solvers for ne, vi.

included as part of the conservation equation.

In the previous example, the effects of the additional terms, reflected by the mag-

nitude of the particle and momentum sources they bring about, is small compared to

other sources used in the code. However, in this test case, the particle sources due

to ionisation of neutrals was computed such that ion flow in the bulk of the SOL was

low. As the flux expansion correction terms are both functions of the ion velocity, this

directly influences the magnitude of these terms. To properly assess the importance of

these terms, OSM-EIRENE runs were carried out, which calculates realistic ionisation

sources based on atomic physics, and hence does not yield solutions with low ion flow

in the SOL. Figure 4.8 shows the results of an OSM-EIRENE calculation, iterated with

calculated particle and momentum sources arising from the flux expansion terms. A

striking feature of OSM runs on MAST is the pressure imbalance between upstream

locations and the divertor targets. This is a common feature of parallel scrape-off layer

profiles in attached MAST discharges that this work will help address.

In terms of particle balance, the flux expansion sources are relatively modest (figure

4.9) and only dominate over the other sources in the vicinity of the outboard midplane

and are comparatively strong in the vicinity of the inner divertor plate. Both of these

locations correspond to regions of high ∇‖B/B (figure 4.5), indicating the importance

of this term in the flux expansion correction terms.

The OSM-EIRENE solution, which includes flux expansion correction terms, still

has modest parallel flows (and hence parallel flux) in the bulk of the scrape-off layer,
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Figure 4.8: Results from an OSM-EIRENE run with flux expansion correction terms.
The points highlighted with squares indicate where diagnostic information has been
provided, either by target Langmuir probes or Thomson scattering in this case.

compared to measurements on other devices that suggest that ion flow in the bulk

of the SOL is ≈0.5 [74]. This indicates that these terms are significant even when

the ion flux may be underestimated. It is difficult to make a direct comparison of

the plasma density and parallel ion velocity with and without the correction terms

on, as the OSM fitting source term (solver fit in figure 4.9) varies to ensure that the

plasma solution agrees with the experimental data used as boundary conditions in

the code. Therefore, a useful comparison is the effect of the flux expansion terms on

solver fit. OSM-EIRENE runs with and without the flux expansion terms (figure 4.9)

show that solver fit (purple trace) is smaller when the terms are applied compared

to when they are not. This indicates that the numerical scheme needs to apply a

smaller correction to the conservation equations to make the plasma solution match

the supplied experimental data, by almost an order of magnitude.

The effects of the flux expansion terms in the momentum equation (figure 4.10) are

localised to the regions close to the divertor targets due to the correction term being

proportional to the square of the parallel ion velocity in this case, and linear in terms of

∇‖B/B. However, the correction term is larger at the inner strike point, where ∇‖B/B

is greatest. As the correction term is strongest at the locations where the OSM fitting

source is smallest, the effect on this source overall is low.

Finally, it is interesting to observe the effects of flux expansion correction terms

in the calculation of the electrostatic potential. Taking expressions for the parallel



4.3. FLUX EXPANSION TERMS 63

(a) Particle sources with flux expansion terms. (b) Particle sources without flux expansion
terms.

Figure 4.9: The distribution of particle sources along the separatrix flux tube in
MAST shot 24861. In this simulation, solver exp (green) is the particle source term
arising due to extra terms in the particle conservation equation due to magnetic field
variations. solver ion (red) and solver rec (blue) are particle sources and sinks arising
due to ionisation and recombination reactions, respectively. The dashed curves indicate
EIRENE sources and sinks from a previous code iteration, to check for convergence.
Note that the y-axis indicates the modulus of the particle source, as this axis has a
logarithmic scale.

component of Ohm’s law and current conservation, assuming no cross-field sources of

current, one gets:

−∇‖φ = η‖j‖ −
0.71

e

dkTe

ds
−
1

ene

dpe

ds
(4.24)

B∇‖

(
j‖

B

)

= 0 (4.25)

Expressions (4.24) and (4.25) can be combined to form one second-order ODE:

(a) Momentum sources with flux expansion
terms.

(b) Momentum sources without flux expansion
terms.

Figure 4.10: The distribution of momentum sources in MAST shot 24861. The
momentum source due to the flux expansion terms is given by solver exp (blue).
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Figure 4.11: Effects of parallel magnetic field gradient terms on the calculated
electrostatic potential and electrostatic field.
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(4.26)

Three terms in (4.26) are proportional to
∇‖B
B , which can significantly alter the cal-

culated potential distribution in the SOL (figure 4.11). A peak in the plasma potential

has been created by a peak in ∇‖B/B at s ≈ 10m, which roughly corresponds to the

location of the inboard midplane. Consequently, there exists a non-zero electrostatic

field in the vicinity of the peak.

4.4 Parallel Viscosity

An important step in the derivation of plasma fluid models is how a closed set of

fluid equations is obtained, which normally involves making assumptions about the

level of plasma collisionality. Terms relating to parallel viscosity arise from a fluid

closure scheme as described in a derivation of plasma fluid equations by Zawaideh [75],

which are used in OSM and are valid for highly collisional and collionless plasma

conditions. As the name implies, collisionality refers to how collisions between different

plasma species affect plasma transport. The word “collision” refers to very short-

range encounters between charged particles and the more frequent, but less strong,

electromagnetic interactions between more distant charged particles. When deriving

the fluid energy conservation equation, one is left with two unknowns, the pressure

in the parallel (along field lines) and perpendicular pressures, denoted p‖ and p⊥
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(and, by extension, parallel and perpendicular temperatures). Parallel viscosity can be

introduced to prevent taking higher-order moments of the kinetic equation by definition:

π =
2

3

(
p‖ − p⊥

)
(4.27)

where π is the parallel stress tensor. In this study, the ion component of the parallel

stress tensor retained after dropping small terms (terms including π [8]) is [75]:

πi = −
4

9
piτ⊥→‖

dv‖

ds
= −η‖

dv‖

ds
(4.28)

where pi is the ion static pressure (Pa), τ⊥→‖ is taken to be the ion-ion collision time

(s) and η‖ is the parallel viscosity coefficient, defined in (4.28), not to be confused with

the plasma electrical resistivity η in (4.4). Only the ion component of the parallel stress

tensor is retained as electrons are significantly more collisional than ions (i.e. small

τ⊥→‖), thereby being a small contribution to π (π = πi + πe) [72]. In the OSM model,

parallel viscosity manifests as an additional transport term in the momentum equation,

as viscosity is an explicit function of pressure. The parallel momentum conservation

including the effects of parallel viscosity is given by:

d

ds

(

neTe + niTi +miniv
2
i − η‖

dvi

ds

)

= Sm (4.29)

The negative sign of η‖ and the dependence on the parallel velocity gradient have

the effect of smoothing velocity gradients in the plasma solution. The effects of this

term are particularly pronounced at the plasma-surface interface where the plasma

ions accelerate to their acoustic velocity to satisfy the Bohm criterion. An additional

refinement of the model can be made by incorporating the additional terms of section

4.3, together with an additional term due to a flux expansion correction to parallel

viscosity:

∂

∂s

(

neTe + niTi +miv
2
i − η‖

∂v

∂s
+
∇‖B

B
η‖v

)

−
∇‖B

B
miv

2
i = Sm (4.30)

The effects of the additional transport terms arising from parallel viscosity are

ascertained, as before, by running OSM-EIRENE with and without the terms being

present in the conservation equations. In order to simplify the analysis, the comparison

made here is between an OSM run with the original model (i.e. no flux expansion

terms) and (4.30). As before, OSM-EIRENE was run with data taken from shot 24861

at 240ms using the same magnetic geometry as that used in section 4.3. Unlike before,

however, this comparison was made using the TVD-MUSCL time-dependent numerical

solver, as (4.30) is a convection-diffusion equation, which is best solved with a numerical
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Figure 4.12: The effects of dynamic viscosity on the separatrix ring of MAST discharge
24861 at 240ms. A significant effect is observed at the outer strike point where a
smoothing of the velocity profile has taken place, leading to higher ion velocities in the
outer divertor leg. In turn, this has led to a reduction of the density at the outer leg
and a consequent reduction in static pressure.

scheme such as this.

The results of the code runs (figure 4.12) indicate a drop in plasma pressure at the

outer strike point (high s) due to a drop in density. This is a result of the parallel

viscosity term reducing the steep gradient in parallel ion velocity in proximity to the

target plate by raising the velocity in the bulk of the SOL compared to the non-viscous

case. The pressure at the inboard strike point (s=0) is slightly raised by the additional

transport terms, although the effect on the plasma density is less pronounced than at

the outboard side, as πi is lower at the inner target.

An important consideration when discussing the application of parallel viscosity is

whether or not the plasma conditions under consideration are suitable for the model

being applied. In low collisionality conditions, τ⊥→‖ → ∞ and hence πi → ∞, which

is unphysical. To prevent this behaviour, kinetic models have suggested [8] a limit

of |πi| < 0.5pi be enforced. For the OSM-EIRENE run where parallel viscosity was

employed, it is found (figure 4.13) that πi never exceeds 0.5×pi, and so no limit was

applied to πi in this case.

A comparison of the particle sources used in the OSM-EIRENE code runs (figure

4.14) suggests that a reduction in solver fit is brought about by the introduction of the
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Figure 4.13: A comparison of the ion parallel stress tensor component, πi, and 0.5×
pi, the ion pressure. Kinetic modelling [8] suggests that |πi| < 0.5 × pi, which is
automatically satisfied in this case.

(a) Distribution of particle sources with parallel
viscosity included in the conservation equations.

(b) Distribution of particle sources without par-
allel viscosity included in the parallel conserva-
tion equations.

Figure 4.14: Comparison of calculated OSM-EIRENE particle sources (a) with and (b)
without parallel viscosity terms invoked. The introduction of the additional transport
terms reduces solver fit, indicating that the numerical scheme requires a weaker fitting
particle source for the solution to converge to imposed boundary conditions from
experimental measurements.
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parallel viscosity transport terms. A significant proportion (>90%) of this reduction

was brought about by the − dds
(
η‖
dv
ds

)
term in (4.30), indicating that the dds

(
∇‖B
B η‖v

)

is a less significant correction term.

4.5 Cross-Field Drifts

Elementary plasma theory states that if a charged particle has a force exerted upon it

which has a component normal to the magnetic lines of force, that particle will gain

an additional velocity component perpendicular to that direction, i.e. “drifting” across

field lines [76]. This idea extends to the fluid description of fluid behaviour, although not

with a 1:1 mapping between single-particle and fluid drift terms. In the scrape-off layer

of Tokamaks, cross-field drift motion has been found to explain asymmetries in particle

and power fluxes to inner and outer divertor strike points [8,77–79] during experiments

where the toroidal magnetic field has been reversed. During such experiments, it has

also been noted that scrape-off layer flows are strongly affected [74,80,81] due to parallel

flows induced by poloidal and radial drifts.

In the fluid description of plasma transport, the two principal sources of drift motion

are ~E × ~B and diamagnetic [76]. These processes give rise to drift velocities given by:

v
d, ~E× ~B =

~E × ~B

B2
=

~B ×∇φ
B2

(4.31)

vd,dia =
~B ×∇pe,i
qe,ine,iB2

(4.32)

where ~E and ~B are the electrostatic and magnetic field vectors (Vm−1, T) respect-

ively, φ is the electrostatic potential (V), pe,i is the static (electron or ion) species

pressure (Pa), qe,i is the species charge (C) and ne,i is the species density (m
−3).

The ~E× ~B drift arises from radial and poloidal electrostatic fields driving the motion

of ions and electrons along and across magnetic field lines respectively. The diamagnetic

drift is a fluid description specific drift term related to the ∇B and curvature drifts in

the single-particle description of plasma behaviour. As implied by equation (4.31), the

diamagnetic drift velocity, unlike ~E × ~B, is charge dependent, and so gives rise to an

electrical current. This is known as the Pfirsch-Schlüter current, referred to earlier in

this chapter.

Other drift transport terms also exist in the fluid description, such as the polar-

ization and centrifugal drifts as the plasma solutions calculated assume steady-state

plasma conditions in the former case, and is not thought to play a significant role in

scrape-off layer transport in the latter case [82].

With the introduction of a numerical scheme to solve for the electrostatic potential
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profile along field lines in section 4.2.1 and plasma solvers for ne,i, Te,i and v‖,i, it is

possible to incorporate the effects of cross-field drift motion into the OSM transport

model.

Figure 4.15: The coordinate system used in OSM drift analysis.

The geometry used to calculate the drift transport terms is described in figure 4.15.

In OSM, the primary coordinate is the distance along magnetic field lines, ŝ‖. In order

to incorporate 2-D drift motion, the drift terms were calculated using the poloidal θ̂,

radial (cross-field) r̂ and toroidal φ̂ coordinates (distances). These coordinates form

an orthogonal basis which facilitates the calculation of drift velocities and fluxes. In

this model, toroidal symmetry is assumed, so that no gradients in any quantities exist

in the toroidal φ̂ direction. The effects of drift motion are incorporated in the OSM

numerical scheme by calculating particle and momentum sources brought about by the

drift motion. These sources are then incorporated in the numerical schemes to solve

the particle and momentum conservation equations, and new sources are calculated,

and the process iterates until convergence is reached. The process of calculating the

relevant sources is explained in the following sections.

4.5.1 The E×B Drift

The particle conservation equation for the electron species can be modified to incor-

porate cross-field drift motion in a straightforward manner [8, 83]:

~∇.

(

nev‖,ib̂−
j‖b̂

e
+ ne~vd

)

= Sp (4.33)

where:
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veb̂ = v‖,ib̂−
j‖b̂

e
(4.34)

therefore, a particle source Sp,d can be calculated from an electron drift flux nevd

by:

S
p, ~E× ~B = −

~∇.ne~vd (4.35)

which can be expanded in the {r̂, θ̂, φ̂} coordinate system:

S
p, ~E× ~B = −

∂

∂r̂

(

−Bφ
∂φ

∂θ̂

)

−
∂

∂θ̂

(

Bφ
∂φ

∂r̂

)

−
∂

∂φ̂

(

−Bθ
∂φ

∂r̂

)

(4.36)

where the final term in (4.36) can be neglected due to toroidal symmetry. The final

step in the calculation is to calculate the projection of the poloidal component of the

drift source in the ŝ‖ direction to allow for consistency with the OSM numerical scheme,

which uses ŝ‖ as it’s primary coordinate. This is achieved by referring to figure 4.15:

θ̂ = ŝ‖ sin γ (4.37)

where:

sin γ =
Bθ
|B|

(4.38)

resulting in the total drift particle source:

S
p, ~E× ~B =

∂

∂r̂

(

Bφ
∂φ

∂θ̂

)

−
∂

∂ŝ‖

(
|B|Bφ
Bθ

∂φ

∂r̂

)

(4.39)

A similar analysis can be applied to the parallel ion momentum equation:

~∇.
(
miniv‖,i

(
v‖,ib̂+ ~vd

))
= Sm (4.40)

yielding a drift momentum source:

S
m,~E× ~B =

∂

∂r̂

(

miniv‖,i
∂φ

∂θ̂

)

−
∂

∂ŝ‖

(
|B|Bφ
Bθ

miniv‖,i
∂φ

∂r̂

)

(4.41)

The ~E× ~B particle and momentum sources were integrated into the OSM numerical

scheme by first calculating a plasma solution without the drift terms, calculating the

~E× ~B sources and calling the numerical solver once more. This process is iterated with

the EIRENE code until convergence is reached. In order to improve numerical stability,

the ~E × ~B sources in OSM-EIRENE are multiplied by a factor ranging between 0.01

and 1, which increases with each successive iteration. The code is then iterated with
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the factor set to 1 to ensure full convergence.

The source terms were calculated in a finite-volume manner, by linearly interpolat-

ing drift fluxes to cell edges both parallel and orthogonal to field lines and dividing the

difference between the incoming and outgoing drift fluxes by the parallel and cross-field

cell widths respectively. The calculation of the radial and poloidal ~E× ~B drift velocities

was checked against a simple analytic estimate of these quantities [8]:

v
pol
~E× ~B

≈
3Te
λTeB

(4.42)

vrad~E× ~B ≈
B

Bθ

Te
2L‖B

(4.43)

where λTe is the radial temperature fall-off length (m) and L‖ is the parallel

connection length (m), all other terms have their usual meanings. In the analytic

calculation of the poloidal ~E × ~B drift velocity, expression in (4.42) was modified to

take into account the poloidal variation in the temperature fall-off length. The modified

equation is:

v
pol
~E× ~B

=
3Te
λTeB

(B/Bθ)

(B/Bθ)u
(4.44)

where (B/Bθ)u and (B/Bθ) are the poloidal flux expansion, the ratio of the total to

the poloidal magnetic field strengths at the upstream location (taken to be the outboard

midplane) and at a given location, respectively. In this calculation, λTe is taken to be

2.5cm, which is indicative of radial temperature fall-off lengths observed on MAST [38].

With this correction term in place, the OSM and analytically calculated poloidal and

radial drift velocities agree quite well (figure 4.16). Previous studies [79,84] have shown

that the ~E× ~B drift velocity modifies the ion velocity (Bohm-Chodura) at the entrance

to the magnetic pre-sheath, requiring the total projected poloidal (i.e. parallel) velocity

be equal to the sound speed, cs. In the implementation of a drift model presented here,

the above condition is automatically satisfied, as the primary velocity in the code is

the parallel velocity, and anomalous particle and momentum sources can be calculated

such that vi = ±cs at the edge of the grid close to material surfaces.

Analysis of the effects of the ~E× ~B drift is complicated by experimental uncertainties

in the data used to constrain the OSM-EIRENE code. In order to assess their impact on

converged calculations, the code was run several times, shifting the ion flux specified

at the lower outer divertor plate (figure 4.17) as specified by Langmuir probe data.

The radial ~E × ~B drift velocity on the separatrix ring was compared when the code

had converged in each case, as the separatrix is most affected by such changes. The

analysis shows that modest shifts in the experimental data can result in wide scatter in

the converged drift velocities. For flux tubes in close proximity to the separatrix, the
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(a) Comparison of OSM calculated (black) and an
approximate calculation (red) of the poloidal ~E× ~B
drift velocities.

(b) Comparison of OSM calculated (black) and
approximate calculation (red) of thr radial ~E× ~B
drift velocities.

Figure 4.16: Comparison of analytical estimates and OSM calculations of ~E × ~B drift
velocities.

(a) Shifted ion saturation current profiles spe-
cified at the lower outer strike point.

(b) Radial ~E× ~B profile along the separatrix ring
calculated by OSM-EIRENE for different shifts
in the lower outer ion saturation current data.

Figure 4.17: Sensitivity analysis of radial ~E × ~B velocities to shifts in ion saturation
current profiles at the lower outer target.

scatter in the converged solution with shifting the Langmuir probe data is reduced. As

a result, this study will focus on the effects of the ~E× ~B drift on a flux tube adjacent to

the separatrix ring in the outer scrape-off layer displaced approximately 1mm radially

from the separatrix ring, as measured at the outboard midplane.

In the vicinity of the inner strike point, the ~E × ~B drift results in an increase in

particle density as the radial drift transports particles from the near-SOL into the far

SOL (figure 4.18). Conversely, particle density close to the outer strike point decreases,

as the radial drift motion transports particles from the far-SOL to the near-SOL. Such

behaviour is consistent with experimental observations from reversed field experiments

[79]. The effects on the ion flow profiles is more complex, as the mostly positive poloidal

~E× ~B velocity competes with parallel flow driven by EIRENE particle ionisation sources
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(a) Particle density profile in the near-SOL with
and without ~E × ~B drift terms.

(b) Ion velocity profile in the near-SOL with
and without ~E × ~B drift terms.

Figure 4.18: Near-SOL density and parallel Mach number profiles with and without
the effects of ~E × ~B drift motion.

and additional particle sources generated by radial drift motion. In the presence of

drifts, figure 4.18, the ion flow profile has characteristics in common with the poloidal

flow profiles observed in other machines [74]. For example, the ion flow is directed

toward the inner divertor (negative) across most of the SOL, except in the vicinity of the

outer divertor target. A strong peaking in the parallel velocity is observed at the outer

midplane, where radial gradients in ne, Te are greatest, and hence a strong radial electric

field exists. This in turn leads to strong particle and momentum source generation due

to the rapid spatial variation in the parallel ~E × ~B drift flux (figure 4.20). Contrary to

OSM solver behaviour when other terms are introduced into the conservation equations,

the introduction of sources due to ~E × ~B drift motion caused an increase in the solver

fitting source, required to ensure the plasma solution is in agreement with experimental

data, by approximately a factor of five. A possible explanation for this behaviour is

that in the fluid model of plasma transport, the ~E× ~B drift is seldom found in isolation

of other drifts, such as the diamagnetic drift. As a result, it could be that additional

drift terms, combined with ~E × ~B, are required to ease solver convergence towards

measured values.

In terms of explaining the pressure drop between the outboard midplane and the

lower outer divertor target, the ~E × ~B drift has quite a weak influence on the pressure

profile overall, except in the vicinity of the outer midplane (figure 4.19), where the total

pressure is elevated. The stronger drift effects on field lines closer to the separatrix may

result in a more pronounced influence on the pressure profile, which may go some way

towards explaining the pressure drop. On the flux tube under consideration, however,

the ~E × ~B drift cannot explain the observed pressure decrease from the outboard

midplane to the lower outer target.
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Figure 4.19: Variation in total (ion+electron) plasma pressure along a field line close to
the magnetic separatrix, both with and without ~E× ~B terms included in the calculation.

(a) Distribution of particle sources in the near
SOL with the inclusion of ExB drift sources.

(b) Distribution of momentum sources in the
near SOL with the inclusion of ExB drift
sources

Figure 4.20: Particle and momentum sources in the near SOL in MAST, including ExB
drift motion.
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4.5.2 The Diamagnetic Drift

In a similar manner to section 4.5.1, the particle source due to the electron diamagnetic

drift can be derived. Starting with the expression:

Sp,dia = −~∇. (neve,dia) = −~∇.

(
~B × ~∇pe
−eB2

)

(4.45)

which can be expanded to give:

Sp,dia =
∂

∂r̂

(

−
Bφ

eB2
∂pe

∂θ̂

)

+
∂

∂θ̂

(
Bφ

eB2
∂pe
∂r̂

)

=
∂

∂r̂

(

−
Bφ

eB2
∂pe

∂θ̂

)

+
∂

∂ŝ‖

(
Bφ

eBθ|B|
∂pe
∂r̂

) (4.46)

In this model, it is assumed that the diamagnetic (or Pfirsch-Schlüter) current is

the sole means of driving cross-field current, an additional source arises due to the

−~∇.

(
j‖b̂

e

)

term in (4.33). Therefore, using the current conservation equation:

∇‖
(
j‖b̂
)
+∇⊥j⊥ = 0 (4.47)

where j‖ and j⊥ are the parallel and cross-field current densities respectively, this

can be expressed in the form:

∇‖

(
j‖b̂

e

)

+ ~∇. (nivi,dia − neve,dia) = 0 (4.48)

where vi,dia and ve,dia are the ion and electron diamagnetic velocities respectively.

This can be expressed in the form

∇‖

(
j‖b̂

e

)

= −~∇.

(
~B × ~∇P
B2

)

(4.49)

where P = pe+ pi. This can be expanded in a manner similar to (4.46) to facilitate

Combining (4.45) and (4.49) yields the electron conservation equation with diamagnetic

drift terms:

~∇.
(
nev‖,ib̂

)
= Sp − ~∇.

(
~B × ~∇pe
−eB2

)

+ ~∇.

(
~B × ~∇P
B2

)

(4.50)

A diamagnetic drift term is not present in the parallel momentum equation as

a cancellation occurs between this term and a viscosity term arising from Lamor

rotation (gyro rotation), known as the diamagnetic cancellation [72, 85]. Unlike the



76 CHAPTER 4. OSM PHYSICS ADDITIONS

~E × ~B drift, the diamagnetic drift is known to be mostly divergence free, meaning

that the overall drift motion should not significantly alter the fluxes to plasma-facing

components. However, the divergent part of the diamagnetic drift is proportional to
∇‖B
B , meaning that a larger diamagnetic drift flux would be expected to reach plasma-

facing components in a spherical Tokamak geometry. In the OSM model used here, the

target flux will be unaffected by the presence of drift sources, as the numerical scheme

is designed to constrain these fluxes to take prescribed values from experimental data.

The OSM-EIRENE code was run with the calculated particle sources in (4.50) and

iterated until convergence was reached, analogous to the implementation of the ~E × ~B

drift. The diamagnetic drift sources, however, are less sensitive to small mis-alignments

between the magnetic grid and the Langmuir probe data at the lower outer target

plate. As a result, the separatrix ring is analysed in this section. For the purposes of

comparison, OSM-EIRENE was run with the same input data but with the diamagnetic

source terms turned off in order to ascertain their effects. The density profile along the

separatrix ring (figure 4.21) shows that the density has been re-distributed from the

inboard to the outboard side, where the diamagnetic source terms are stronger. This

is due to stronger radial pressure gradients existing on the outboard side, which is a

consequence of the Shafranov shift and the “ballooning” nature of cross-field transport,

being stronger on the low-field side. As expected, the integral of the particle source is

small (<7% of the total particle source), reflecting that the diamagnetic drift is mostly

divergence-free, even in a spherical Tokamak geometry. In addition, the sign of the

diamagnetic particle source is positive on the low-field side, suggesting that particles

are entering the plasma core via cross-field transport from the scrape-off layer. The

reverse occurs at the low-field side midplane (figure 4.24). This is in agreement with

the basic characteristics of the diamagnetic drift [8].

In terms of addressing the parallel pressure imbalance observed in MAST dis-

charges, the addition of the diamagnetic drift terms served to raise the total pressure

in the vicinity of the outboard strike point (at large s). As a result, the pressure

discrepancy between the outboard midplane and the outer divertor target has reduced.

Furthermore, the introduction of diamagnetic drift terms, resulted in a reduction in the

anomalous particle source term by approximately 20%. The electrical current arising

from the diamagnetic drift will also influence the calculated parallel potential profiles

via the η‖j‖ term in (4.24). When the presence of the diamagnetic current source Sj is

included in (4.26), which manifests as a −ηSj term on the right-hand side, the resulting

potential profile is only slightly affected (figure 4.23). This is because the contribution

of electrical currents in (4.24) is weighted by the plasma electrical resistivity, η‖, which

is normally small, approximately 3 × 10−5 ohm.m when Te = 10eV.

Accurate calculation of drift behaviour close to divertor plates in MAST is difficult
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Figure 4.21: Electron (or ion) density profile along the separatrix ring for MAST shot
24082 at 240ms. The density profile when the diamagnetic source terms are turned
on (black) is significantly different to the density profile with no drift terms turned on
(red).

(a) Ion mach number profile along the separatrix
ring, with and without diamagnetic drift terms.
The velocity profile is strongly influenced by the
presence of the separatrix, in the vicinity of which
the flow accelerates.

(b) Total pressure profile along the separatrix
ring in OSM-EIRENE runs with (black) and
without (red) diamagnetic drift terms turned on.

Figure 4.22: The effects of the diamagnetic drift on parallel Mach number and pressure
profiles along the separatrix ring.
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Figure 4.23: Parallel electrostatic potential profiles along the separatrix ring with
(black) and without (red) diamagnetic current sources included in the calculation.
Diamagnetic particle sources were included in both calculations.

due to the high poloidal flux expansion at the outer target locations (normally between

5 and 6) decreasing radial grid resolution. Furthermore, close proximity to where the

grid terminates reduces scope to interpolate plasma conditions to calculate accurate

gradients. As a result, the numerical algorithm uses a first-order approximation of the

derivative operator at cells adjacent to divertor surfaces, thereby reducing the accuracy

of the cross-field drift source calculation. Following an analysis by Chankin [86], no

modifications of the boundary conditions specified by experimental data are carried out

to accommodate the effects of the diamagnetic drift.

4.6 Ti = Te Assumption

Energy-exchange collisions that take place between ions and electrons have the effect

of heating ions and cooling electrons. Consequently, ion temperature measurements in

diverted Tokamaks report Ti > Te [87, 88]. These processes are represented in the ion

and electron energy equations as a source and sink of energy respectively [8]:

Qeq =
3me
mi

niνeqe (Te − Ti) (4.51)

where:

νeq ≈ 2.9× 10
−12ni lnΛT

3/2
e (4.52)

is the ion-electron energy exchange collision frequency (s−1), lnΛ is the Coulomb

logarithm (≈ 17). McCracken [89], showed that for electrons and ions to be in thermal

equilibrium, assuming that the electrostatic sheath is the principal cooling mechanism

for electrons, the following criterion must be satisfied:
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Figure 4.24: Distribution of the diamagnetic particle source, and it’s parallel and radial
components, along the separatrix ring of MAST shot 24861 at 240ms. The diamagnetic
drift acts as a particle source at the high-field midplane and a sink at the low-field side
as particles are transported from the main plasma into the SOL in the former case and
from the SOL into the main plasma in the latter case.

L‖ne

T 2e
≥ 1.0× 1017 (4.53)

where L‖, Te and ne have their usual meanings, and the constant on the RHS

has units of (m−2eV −2). In plasma conditions taken from MAST discharge 24861,

Te ≈ 25eV , ne ≈ 2.0 × 1019 m−3, Lc ≈ 15m, which indeed satisfies the criterion in

(4.53). More detailed modelling of lower density MAST discharges [73], indicated values

of Ti/Te > 2, perhaps suggesting that the assumptions made in the previous analysis

are not entirely valid on MAST due to the presence of other energy loss mechanisms

taking place in the MAST SOL, such as ionisation and charge-exchange interactions

with main chamber neutrals.

In order to more accurately assess the implications of Ti 6= Te on the OSM plasma

solution, a number of OSM-EIRENE runs were made with varying (specified) values

of Ti/Te, which was held constant along field lines. This behaviour is consistent with

prior OSM2 modelling [73], where electron and ion energy conservation equations were

solved to calculate Ti and Te. Figure 4.25 shows the density and pressure profiles on

the separatrix ring for geometry and experimental data taken from MAST discharge

24861 at 240ms. Ti/Te is increased from 1 to 3, covering the range of expected values

from previous modelling of heat transport in MAST scrape-off layer [73]. In terms of

explaining the pressure imbalance between the upstream and target plasma conditions,

increasing Ti/Te increases this imbalance, as the target ion flux is constrained by

Langmuir probe data at the divertor targets, so increasing Ti increases the target ion

sound speed, and consequently reduces the particle density in the vicinity of the target
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(a) Density profiles close to the magnetic separat-
rix in MAST shot 24861 assuming different values
for Ti/Te.

(b) Total (ion+electron) pressure profiles
close to the magnetic separatrix in MAST shot
24861, assuming different values for Ti/Te.

Figure 4.25: OSM-EIRENE simulations of the effects of varying Ti/Te (γ).

plates. The electron density and temperature are specified at the inboard midplane

by Thomson scattering measurements, hence the identical values of particle density at

that location. Poloidal variations in Ti/Te, which are not accounted for in this simple

analysis, would alter the pressure balance along field lines and may help to explain

the apparent pressure drop observed here, for instance, if Ti/Te were 2 and 3 at the

outer midplane and lower outer target plate respectively. However, knowledge of the

poloidal variations in Ti/Te would require measurements of both quantities at multiple

locations, which is not currently possible on MAST. It has also been noted that varying

Ti/Te from 1 to 3 reduces the particle fitting source by factors of 1 and 1.5 respectively.

4.7 Summary

The new numerical schemes developed for use with OSM have been used to incorporate

a more advanced plasma transport model into the code. These were used to assess the

impact of different transport terms on density and parallel ion velocity profiles and to

find an explanation for an anomalous pressure drop that occurs between the outboard

midplane and the lower outer strike point, even in attached conditions.

It has been found that the thermoelectric current is largely responsible for the

plasma current detected at the divertor target plates, which has been observed on

large aspect ratio Tokamaks, but not in STs. Study of transport terms arising from

flux expansion found that they had a significant impact on the numerical solver’s

convergence properties, requiring fitting sources almost an order of magnitude smaller

to allow the plasma solution to coincide with experimental measurements. The flux

expansion terms were also found to alter the parallel potential profile, which formed

a peak near the inner midplane as a result of ∇‖B/B being high in this region.

However, the flux expansion terms could not explain the pressure drop between the
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outer midplane and target.

Parallel viscosity was found to have the effect of smoothing the parallel ion velocity

profile and consequently reducing the plasma density in the vicinity of the divertor

target plate. This resulted in an increased pressure drop in the vicinity of the lower

outer target plate, but not of sufficient magnitude to explain experimental observations.

The viscosity transport terms did, however, assist in solver convergence, by reducing

the solver fitting particle source by approximately a factor of 2.

Poloidal and cross-field drift motion was incorporated into the OSM numerical

scheme by representing the effects of drifts as additional source terms. Iteration between

the numerical solver and the drift source calculation was required in order to reach

convergence. It was found that the ~E × ~B drift sources are very sensitive to small

shifts in ion saturation current profiles specified at the divertor targets using Langmuir

probe data, so an analysis was carried out on an adjacent flux tube in the near-SOL.

The calculated drift velocities were in good agreement with simple analytical models

and that the additional sources led to an increase in plasma pressure at the outboard

midplane and the vicinity of the lower outer divertor target. However, the ~E × ~B

drift terms also elevated the anomolous particle fitting source term by approximately

a factor of 5.

The diamagnetic drift source calculation appeared to be slightly more robust with

regard to small displacements in the Langmuir probe data at the target plate. The

diamagnetic drift source was found to be mostly divergence free, in agreement with basic

properties of diamagnetic drift motion. These terms also brought about a significant

decrease in the pressure differential between the outboard midplane and the lower outer

divertor target, whilst reducing the anomalous particle fitting source by 20%. It was

also observed that Pfirsch-Schlüter currents had a modest effect on the potential profile

calculation. Finally, it has been found that uncertainties in the ion temperature at the

midplane and divertor targets are unlikely to explain the observed pressure drop. The

effects of the additional phyiscal mechanisms on solver performance and in explaining

the pressure discrepancy between the outboard midplane and the lower outer divertor

target are summarised below:

Physical Mechanism Solver Convergence Pressure Discrepancy

Flux expansion Improved (×5) Small effect

Parallel viscosity Improved (×2) Increased

~E × ~B drift Negative (×5) Increased

Diamagnetic drift Improved (×1.2) Reduction

Ti 6= Te Improved (×1→ ×1.5) Unknown



Chapter 5

Detachment on MAST

In this chapter, experimental data of detached divertor conditions on MAST is presen-

ted from Thomson scattering, Langmuir probes and divertor imaging and line-of-sight

spectroscopy. The analysis and interpretation of the data is discussed, in particular

how uncertainties arise and how they influence conclusions that can be drawn from the

data. The information collected is input into the interpretive OSM-EIRENE code to

investigate consistency between the data collected from different diagnostics and attempt

to clarify the physical mechanisms that give rise to divertor detachment on MAST. The

quality of the OSM-EIRENE plasma solution is verified using comparisons between

simulated and experimental observations of the strength of Dγ/Dα emission line ratios.

5.1 Introduction

Initial studies into divertor detachment on MAST were carried out by Tabasso [90] in

L-mode discharges with 600kA plasma current and 750kW of auxiliary heating provided

by a neutral beam injector. In these experiments, the core (line averaged) density was

increased from 3×1019m−3 to 7.0×1019m−3 by increasing the gas fuelling rate from

piezo valves located at the midplane and upper and lower divertor regions. This study

was carried out when the MAST original divertor was in place (figure 5.1), which

consisted of 12 radial ribs.

Using the target Langmuir probes in swept mode the ion saturation current, electron

density and temperature were measured at the target plates and spectrometers were

used to monitor Dα and Dγ emission from the outer strike point. The outcome of the

study was an indication that detachment was occurring at all divertor strike points as

the density was ramped, with degrees of detachment of 22 and 6 at the inner and outer

strike points respectively. Analysis of the ratio of Dγ and Dα emission at the outer target

indicated a decrease as the core density was increased, followed by an increase as the

plasma made the transition to detachment. This observation is contrary to observations

82
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Figure 5.1: The original MAST divertor (used prior to 2004) and the current improved
divertor. [37]

on other devices such as JET [91], ASDEX-Upgrade [92] and Alcator-Cmod [93] and

no explanation was given for this behaviour. Furthermore, as the divertor diagnostics

available at the time were limited, the quantity of data collected was insufficient to

make conclusions on the physical mechanisms that gave rise to detachment in this case.

In this chapter, analysis of data from a wide array of high-quality diagnostic data

is presented from shot 25028 at 312ms, with an emphasis placed upon examining the

plasma conditions within the detached lower inner divertor leg. The data is examined

for self-consistency and how the data is interpreted in terms of consistency with obser-

vations of detached plasmas made on other devices. This study is complementary to

those carried out on the NSTX spherical tokamak [94–96], where the operating space

over which detachment of the inner divertor leg has been extensively examined.

5.2 Two-Point Modelling

The two-point model, explained in chapter 2, can be used as a tool to predict the

upstream plasma conditions that could give rise to detachment at the target. How-

ever, the basic two-point model loses validity in detached conditions, as presumption

pressure conservation, to name one example, is no longer valid. Therefore, a number

of corrections are required before the two-point model can be used for this purpose.

To account for momentum loss processes, taken to be charge-exchange and radiative

recombination, a momentum loss term fm is included in the momentum conservation

equation [11]

2ntTt = fmnuTu (5.1)
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where nt, Tt, nu, Tu are the plasma density and temperature at the target and

upstream locations respectively. The form of fm is given by:

fm = 2

(
α

α+ 1

)α+1
2

(5.2)

α =
〈σv〉i

〈σv〉i + 〈σv〉m
(5.3)

where 〈σv〉i is the rate coefficient for ionisation and 〈σv〉m is the rate coefficient

for momentum loss processes. The form of fm used here is based on work by Self and

Ewald [97], where analytic solutions for the electron density an isothermal 1D plasma

with ionisation and friction procceses at the entrance to a recycling region. Using

atomic data from ADAS [98], the magnitude of fm can be calculated:

Figure 5.2: Ionisation, charge-exchange and radiative recombination rate coefficients
from ADAS for the calculation of the momentum-loss term fm

At typical attached target conditions, Te > 10eV , fm is small, as would be ex-

pected. However, when Te < 10eV , fm becomes increasingly smaller, indicating that

momentum-loss processes become more frequent, and hence have a stronger effect on

target conditions, as the target temperature drops. The effects of molecular processes

are not included in this model, which reduces fm below Te = 10eV , however, it has been

noted [11], that the results of the two point model are similar irrespective of whether

molecular effects are included in the calculation of fm.

Refinements of the power balance equation can be made by including the effects of

hydrogen line radiation emitted before a recycled atom is ionised. This term is given

by:

qHrad = entcs,tεrad (5.4)

where cs,t is the ion acoustic velocity and εrad is given by an empirical approximation

[99]:
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εrad = 17.5 +

[

5 +
37.5

Te

(

1 +
0.2533

Te

)]

log

(
1021

ne

)

(5.5)

This formula is valid when ne < 10
21m−3 and Te > 17.5eV . In this study, the

approximation of εrad is used in conditions that satisfy the condition on ne but not Te as

the solution approaches detached conditions. Therefore, the use of this approximation

is an additional source of error in the predictions made using this model. An additional

source in the power balance equation arises from the ionisation potential energy (13.6eV

in the case of hydrogen) and half of the binding energy of a hydrogen molecule (≈2.2eV)

that is deposited on the divertor target plate as heat when incident ions strike the target,

recombine to form atoms, which form molecules on the surface [11]. The magnitude of

this term is given by:

qpot = enecs,tεpot (5.6)

where εpot is approximately 15.8eV, which is a constant. Finally, the effects of im-

purities emitting line radiation over the connection length L‖ can also be approximated

and incorporated into this model. Le [100] calculated a term in the two-point model

to account for line radiation due to carbon impurities, which will be adopted here. It

results in a modified form of the power balance equation:

qt = qu (1− frad,c) = entcs,t (γTt + εrad + εpot) (5.7)

where

frad,c = 1−

√

1−
14

3

ccLzn2uL‖

qu
(5.8)

cc is the concentration of carbon atoms and Lz is the radiation constant, which can

be approximated as [101]:

Lz = 1× 10
−31(Te > 8eV ) (5.9)

Lz = 7× 10
−35T

7
2
e (1 < Te < 8eV ) (5.10)

These corrections result in the following set of equations:

T
7
2
u = T

7
2
t +

7quL‖

2κ0
(5.11)

2ntTt = fmnuTu (5.12)
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qu (1− frad,c) = entcs,t (γTt + εpot + εrad) (5.13)

Unlike the basic two-point model, the additional corrections introduced here neces-

sitate the use of a numerical solver to calculate Tu, Tt, nt for a given qu, nu, as fm has

no analytical form. However, the inclusion of these additional terms capture some of

the processes that play a role in the conduction-limited and detached divertor regimes.

In this study, a Newton-Raphson method is used to solve the above equations, where

a finite difference approximation of the Jacobian is computed according to [67]. The

upstream power flux qu is calculated according to [11]:

qu =
1

4πa
√
κN

PSOLq95
λp

(5.14)

where a is the horizontal plasma minor radius, κ is the elongation (the ratio of

the vertical and horizontal minor radii), N is the number of poloidal field nulls, q95

is the safety factor at normalised magnetic flux = 0.95, PSOL is the power crossing

the magnetic separatrix (W) and λp is the 1/e falloff length for power incident on the

divertor strike point (m).

The detachment threshold was estimated in a lower single-null plasma where qu ≈

4.1×106Wm−2, q95 = 2.8, a = 2m, κ = 1.8, λp = 2.5cm, L‖ = 12.5m and with a uniform

carbon concentration in the plasma of 1%. The upstream density was ramped from

1×1018m−3 to 1.8×1019m−3 with a constant auxiliary heating power of 1MW upstream.

The onset of detachment was observed by calculating the ion saturation current arriving

at the lower inner divertor target plate as the density was increased (figure 5.3). The

calculations predict the sheath-limited regime prevails until the density reaches ≈ 5.0×

1018 m−3, followed by a transition to the conduction-limited regime. The onset of

detachment, indicated by a saturation and subsequent decrease in the ion saturation

current, is found to occur at an upstream density of ≈ 1.0 × 1019m−3. Without the

additional correction terms presented in this section, the onset of detachment is not

predicted.

Analysis of the power balance during the density ramp (figure 5.4) indicates an

increase in hydrogenic line radiation at higher upstream densities and lower target

temperatures. A deficit in the model appears beyond the onset of detachment, where

hydrogen line radiation is calculated to decrease as upstream density increases and

target temperature decreases, although as Te < 1eV in this region (not shown), it is

beyond the range of validity for this simple model. The quantity of heat convected

across the sheath (green curve) is shown to decrease strongly as the upstream density

decreases, due to a drop in the target temperature.

The extensions to the two-point model presented here qualitatively describe what
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Figure 5.3: Two-point model simulation (equations 5.11-5.14) of the ion saturation
current at the lower inner target plate of MAST during a density ramp experiment.

are thought to be the dominant mechanisms that bring about the detached divertor

state. The model is able to reproduce some experimentally observations such as a

“rollover” in ion saturation current to divertor target plates and increased radiation at

the onset of detachment. However, given that it is thought that the dominant physics

governing detachment is not fully accounted for and the sensitivity of detachment to

the 2D/3D divertor geometry, the results of this section are intended only as a rough

estimate for the detachment threshold.

5.3 Experimental Observations

5.3.1 Operational Limits

Over the course of this study, divertor detachment has been studied using different

fuelling configurations to alter the plasma conditions at the lower inner divertor leg

to assess it’s effect on the onset and sustainment of detachment. A brief overview of

some of the shots examined in this study are given in table 5.1, with plots of some

of the pertinent data collected for a subset of these shots in figure 5.7. The onset of

detachment was initially ascertained by examining the ratio of Dγ and Dα emission

from the lower inner strike point (third trace from the top, figure 5.7). This ratio is a

common detachment diagnostic, as it is a sensitive indicator of the presence of volume

recombination [91] which is a signature of the onset of detachment. The principle behind

this diagnostic is illustrated in figure 5.5. When the energy level populations of electrons

within ionic energy states are dominated by excitation interactions, the value of Dγ/Dα

is normally ≈ 1.0 × 10−2 with a relatively weak density dependence for densities

exceeding 1 × 1019m−3. In detachment-like conditions (Te <1eV), recombination

processes begin to dominate over excitation, significantly altering the value of this ratio

to ≈ 0.1, an order of magnitude increase. Hence, the ratio of Dγ/Dα line intensities
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Figure 5.4: Power balance as calculated by a two-point model during a density ramp
experiment. The power arriving upstream is transported and lost along field lines
by convection and radiated by line radiation by impurities respectively. The onset of
detachment is brought about by an increase in hydrogenic line radiation as the target
temperature drops.

can be used to detect the presence of recombination mechanisms inherent to detached

plasmas, but also offers a means of estimating Te. In shots presented in figure 5.7, the

onset of detachment is related to the duration of fuelling from the lower inboard side.

Removing this fuelling source in a discharge (shot 24867) causes the plasma to revert

to attached conditions (and the onset of H-mode in that case). Moreover, retaining

lower inboard gas fuelling throughout the discharge (shot 25028) appears to sustain

detachment.

The principal discharges under investigation are shots 25028 and 25029, the latter

being similar to the former, with the same discharge parameters. Both discharges had a

nominal plasma current of approximately 650kA, the electron density and temperature

at the separatrix at the high field side of 1.0 × 1019m−3 and 10eV respectively. The

core density was held constant for most of the discharge in order to keep the divertor

conditions constant throughout the detached phase. This facilitates 2D line-of-sight

spectroscopy measurements as the divertor leg sweeps across the spectrometer viewing

chords. 1MW of auxiliary heating was applied using a neutral beam injector. A Hugill

diagram [102] of the the discharge evolution is shown in figure 5.6. The discharge

begins at the bottom leftmost position on the diagram and proceeds in the direction

of increasing Murakami parameter (x-axis). At the onset of detachment, the shot is

close to the density limit [6, 103], a reflection of the role of divertor detachment in the

onset of density limit disruptions [104]. At approximately 240ms, data from soft X-ray

cameras indicated the onset of sawtooth behaviour, indicated by rises and “crashes”

in soft X-ray emission. Although not always a fatal instability, sawteeth bring about
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Figure 5.5: Left: photon emissivity coefficients of Dα (red) and Dγ (black) line
emission due to excitation (solid lines) and recombination (dashed lines) processes.
Right: calculation of Dγ/Dα intensity ratio (black) and from purely excitation (red)
and recombination (purple) processes, calculated by the ADAS codes [98], assuming a
uniform electron density of 1 × 1019m−3.

oscillations in temperature and density profiles [105], as a result, data taken during

sawtooth activity was not used in this study.

Figure 5.6: Hugill diagram indicating the trajectory of MAST discharge 25028 through
parameter space.

5.3.2 Thomson Scattering

Upstream density and temperature profiles were measured using a newly upgraded

Thomson scattering diagnostic (figure 5.8) [56], that measures such information at

approximately 1cm resolution, with a nominal temporal resolution of nearly 4ms. As

the diagnostic information collected is input into a time-independent plasma transport
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Figure 5.7: Summary of three discharges carried out during this study. Shot 25028
(black) had a detached lower inner divertor leg due to strong D2 puffing in the vicinity
of the leg. Shot 24862 (red) was a repeat of shot 24861 (similar to 25028) with inboard
gas fuelling turned off at 150ms. This shot enters a dithering H-mode at 210ms. Shot
24867 (blue) was fuelled using the outboard gas fuelling system, resulting in the divertor
leg being attached throughout the discharge. This shot enters H-mode at 250ms.
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Shot Description Data Recorded

24861 Detachment at lower inner leg Probe data (100-250ms)
using D2 puffing at 200ms, 1MW NBI DivCam (Dα,Dγ)

25028 Repeat of 24861 Probe data (150-400ms)
DivCam (Dα,Dβ ,Dγ ,Dδ)

25029 Repeat of 24861 Probe data (150-400ms)
DivCam (CII,CIII,Dβ ,Dδ)

24862 Repeat 24861, no D2 puffing at 150ms Probe data (100-250ms)
DivCam (Dα,Dγ)

24869 Repeat 24862 Probe data (100-250ms)
DivCam (CII,CIII)

24866 Repeat 24861, continually ramping Probe data (100-250ms)
core density DivCam (Dα,Dγ)

24867 Repeat 24861 using outboard fuelling Probe data (100-250ms)
only DivCam (Dα,Dγ)

24868 Repeat 24867 Probe data (100-250ms)
DivCam (CII,CIII)

Table 5.1: Description of the principal discharges in this study.

Figure 5.8: Layout of the principal diagnostics used in this study. The diagnostics
directed towards the lower divertor were toroidally displaced.
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code, data from before and after the time of interest are collated. The collated data is

then filtered to remove any data collected ±1ms from sawtooth activity and averaged,

producing a radial profile of ne and Te that is input into OSM-EIRENE (figure 5.9).

The collation of data from times close to that of interest increases the number of data

points used in the averaging process and thereby increases the quality of the dataset.

Data collected from the high-field side midpane is used in this study due to it’s close

proximity to the detached region, thereby placing a stronger constraint on the OSM-

EIRENE plasma solution where it is needed most. Furthermore, there is reduced scatter

in the data at the high-field side, helped by measurements here being in a region of

positive magnetic field curvature [106].

5.3.3 Target Langmuir Probes

Measurements of ion saturation current were recorded at the lower inner and outer

divertor target plates at a spatial resolution of 6mm and 9mm respectively and temporal

resolution of approximately 1ms, as described in section 3.3.1. During the design

of the detachment shot, the divertor P2 coil waveform was optimised to keep the

lower inner strike point within the coverage of the Langmuir probes for as long as

possible. This became necessary as the P1 solenoid flux swing causes the strike point

to “sweep”upwards in the case of the lower inner strike point, at a rate of ≈ 1ms−1.

Data was recorded for longer than the detached phase of discharges 25028 and 25029,

from 150ms to 400ms. Data was only recorded over the period when the plasma struck

a sufficient number of probes for measurements in both the near-SOL and private flux

regions. Furthermore, no data was used that was in the vicinity of sawtooth activity.

The onset of detachment manifests as a strong reduction in ion flux to the lower

inner strike point within a region between the private flux region and the separatrix,

as shown figure 5.10. Accurate assessment of the location in ion flux using Langmuir

probe data alone is difficult due to spatial resolution of the probes combined with the

flux mapping calculated by EFIT. The outer strike point however appears attached,

with no noticeable reduction in ion flux to the target plate. The inner target plate

profile is indicative of partially detached conditions, where the region of reduced ion

flux is confined to a region close to the private flux region. Similar ion flux profiles

were observed in a prior detachment study on MAST [90], although on other machines

such as Alcator C-Mod, the reduction in ion flux to the target plate was less well

localised [107] and manifests as a reduction in the overall ion flux profile. Target electron

temperature data was not the subject of further analysis as research on other Tokamaks

have demonstrated inconsistency between Thomson scattering [108] and spectroscopy

[109] and Langmuir probe Te measurements , where the latter is believed to be the less

accurate measurement. Furthermore, the set-up of the MAST Langmuir probe data
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Figure 5.9: Thomson scattering data used to constrain an OSM-EIRENE simulation
of partially detached discharge 25028 at 300-324ms.
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acquisition limits the minimum resolvable electron temperature to 3-5eV [110], which

is above the electron temperatures expected in detachment.

An interesting feature of the probe data at both targets is how little the profiles

vary with time. This is clearly advantageous from a modelling point of view, as the

Langmuir probe data does not constrain the time within the shot it is best to carry out

a simulation run. The data input into OSM-EIRENE was sampled from shot 25028 at

300-325ms, with the raw and smoothed profiles shown in figure 5.11.

Figure 5.10: Langmuir probe ion saturation current data recorded at the lower inner
and outer strike points during shot 25028. The data appear to vary little during the
detached phase, permitting the use of time-averaged data in interpretive modelling.

5.3.4 InfraRed Thermography

A filtered (4.5− 5μm) IR (Medium Wavelength - MWIR) camera was used to observe

the lower inner strike point and in a region that intersects the lower inner divertor leg.

The information collected (figure 5.12) shows two emission bands at the lower inner

strike point, supporting observations made by Langmuir probes of a reduction in ion

flux at the strike point. Furthermore, the divertor leg can also be observed with this

camera. This behaviour has not been observed before with this camera on MAST, and

it is believed to be caused by broad-spectrum Bremsstrahlung emission generated by

strong D2 puffing in the vicinity of the divertor leg, section 3.3.6. If this gas puffing

is not used, as in the case of shot 24862, this emission from the divertor leg is not

observed. Consequently, it is not possible to accurately measure the divertor heat flux

evolution during a detached discharge.
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Figure 5.11: Time-averaged Langmuir probe data input into OSM-EIRENE. The data
was collated from shot 25028 from 300 to 325ms, where the black line, which is a moving
average, is input into the code.

Figure 5.12: Left: frame recorded from the MWIR camera from shot 24861 at 312ms.
Two emission peaks can be seen at the strike point, confirming observations made with
the Langmuir probes. The divertor leg can also be clearly seen. This does not occur
when D2 puffing close to the divertor leg is turned off, as in shot 24862 at the same
time (right).
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Figure 5.13: Spectroscopic view tangency locations (green) directed at the lower inner
divertor leg, as shown in an EFIT reconstruction (red), calculated in the middle of a
spectrometer’s acquisition cycle. The dashed red lines indicate the EFIT calculated
divertor leg locations at the start and end of the acquisition cycle, with a black arrow
indicating the strike point sweeping direction.

5.3.5 Divertor Line-of-Sight Spectroscopy

As described in chapter 3, two high-resolution spectrometers were used to measure line

integrated density and line averaged temperature of plasma in the recombining region.

The vessel-facing optics were positioned such that the line of optical fibres were aligned

along the separatrix flux tube during the recombining phase of the discharge (figure

5.13), as this permits measurements of the electron static pressure balance along the

flux tube. Furthermore, measurements of adjacent flux tubes are made possible as the

divertor leg sweeps past the spectrometer lines of sight. To facilitate this measurement,

the divertor plasma conditions were not altered throughout the detached phase.

As divertor detachment was initiated by D2 puffing in the proximity of the region

of interest, contamination of spectroscopic data by broad-spectrum molecular emission

was a concern. This emission manifested as a wavelength-dependent baseline, which was

subtracted from absolutely (intensity) calibrated data [46] by measuring the baseline

signal in the line-free regions 382-386nm, 392-395nm and 400-408nm (figure 5.14, two

regions shown for clarity) and fitted the baseline to a quadratic function to subtract this

baseline from the spectrum. The resultant spectrum was then interpreted as outlined in

section 3.3.3 to determine line-averaged electron temperatures along the lines of sight.

This analysis was carried out for 15 out of 20 total lines of sight using the available

300mm focal length spectrograph. Measurements using the 1000mm spectrograph,

where 5 vessel-facing fibres were input, were unable to determine Te due to limited

spectral range (≈12nm). The measured Te profile when the lower divertor leg was
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coincident with the spectrometer lines of sight (figure 5.15) reveal a profile with little

variation along the leg. This observation is consistent with others made at DIII-D [111].

Line integrated electron densities were measured by measuring the shape of the Dε

line (397nm) and fitting observed line shapes to convolutions of measured instumental

broadening and theoretical Stark broadened profiles [45], as described in section 3.3.4.

Measurements made on earlier MAST discharges found that line integrated density

measurements made using only the Dε line agreed, to within experimental uncertainties,

with observed densities calculated using observations of the shapes of Dη (383.5nm) and

Dθ (379nm). Measurements of Dζ (389nm) line shapes, although measured by both

spectrometers during shot 25028, could not be used in the data analysis procedure due

to the presence of a nearby He recombination line that could not be resolved from the

line of interest. Data from all 5 channels in the 1000mm focal length spectrometer and

4 out of 18 channels in the 300mm focal length spectrometers were used in this analysis.

Off-axis aberrations in the 300mm instrument degraded spectral resolution and resulted

in asymmetrical line shapes beyond the four most on-axis chords, preventing this form

of analysis being carried out. The density profile measured during shot 25028 is shown

in figure 5.15. The density profile increases with increasing proximity to the divertor

target plate, clearly indicating a loss of pressure balance along field lines, consistent

with the definition of divertor detachment. These observations, however, suggest that

plasma pressure increasing with decreasing distance to the divertor target plate, as

opposed to decreasing, as is normally anticipated [7, 8, 18]. However, the dynamic, i.e.

miniv
2
i , pressure is unknown along the divertor leg, and therefore the total parallel

pressure balance is unknown. The effect of photon reflections from the centre column

and variations in plasma emission over the lines of sight also introduce an additional

uncertainty in spectroscopic measurements of ne, Te in close proximity to the strike

point. The former explanation is likely to only have a weak effect on the measured

signal since the centre column is lined with graphite. The latter effect may explain

the line integrated density data point at R = 0.365m, where the density is higher than

expected, but the line of sight is furthest away from any surfaces. These sources of

uncertainty have not been accurately assessed, and future work is required to better

understand how they affect the measurements made in this study. Furthermore, the

temporal resolution of the AM-510 and SP2300i spectrometer detectors were 20ms and

14ms respectively, and hence take spectra during sawtooth activity. This prohibits

the filtering of data to remove the effects of sawteeth, which will reduce the plasma

emissivity of high-n Balmer emission lines as a heat pulse from the sawtooth temporarily

raises Te and reduces the rate of ion-electron recombination reactions and reducing the

measured signal. As a result, the effects of sawtooth activity is relatively mild on this

diagnostic, which is less sensitive to plasma conditions during a sawtooth crash, and so
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Figure 5.14: Raw data analysis to determine electron temperature from Balmer line
ratios using data from the spectrometer line of sight adjacent to the lower inner strike
point. The average baseline was calculated in line-free regions to reduce the effects of
broadband emission.
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Figure 5.15: Line averaged electron temperature and line integrated density meas-
urements during the recombining phase of shot 25028, measured using line-of-sight
spectroscopy of high-n Balmer emission lines. Radial location indicates the R co-
ordinate of the view used (figure 5.13). The strike point is indicated by a dashed
vertical line.

the data will be “weighted” towards the detached plasma conditions.

The data collected was plotted as a function of vertical distance between the chord

tangency location and that of the separatrix flux tube, as calculated by EFIT, to

facilitate interpolation of the density and temperature data where the separatrix was

exactly in the centre of the spectrometer viewing chord. This data was then input into

the OSM-EIRENE code for further analysis.

5.3.6 Imaging Spectroscopy

Narrow-bandwidth imaging spectroscopy (section 3.3.7) has been used during the onset

and sustainment of detachment to determine the spatial structure and evolution of

divertor spectral line emission. The principal spectral lines of observed and the filter

bandwidth used (full-width at half-maximum, nm) are Dα (656nm, 3nm) Dγ (434nm,

1.5nm), CII (514nm, 3nm) and CIII (465nm, 1.5nm). Dα and Dγ emission intensities

are useful constraints for simulation codes modelling detachment, as they are sensitive

to volume recombination processes [91,112]. Data was also collected using 98Hz frame

rate cameras of Dβ (486nm, 1.5nm) and Dδ (410nm, 5nm) emission using the remaining

DivCam channel with Imperx IPX-1M48-L cameras. CII and CIII line intensities

are sensitive to Te (figure 5.16) and hence can be used to constrain OSM electron

temperature profiles. The Dα, Dγ , CII and CIII data was recorded using a Photron

APX-RS camera with a 5kHz frame rate, and telecentric optics allowing a spatial

resolution of approximately 3mm. The recorded information of plasma emission at the
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lower inner strike point was subsequently tomographically inverted, to calculate the

spectral emission from a poloidal cross-section of the plasma, at a spatial resolution of

approximately 5mm. Data from the outer strike point was also recorded, but was not

further interpreted, as toroidal discontinuities in the divertor structures degrade the

quality of tomographic inversions [60].

For example, the onset of detachment as seen in CII emission (figure 5.20) manifests

as a reduction in emission at the vicinity of the strike point, as the plasma in this region

cools. During the detached phase, the lack of CII emission in the vicinity of the strike

point imposes an upper bound on the local electron temperature, Te ≤ 1eV due to a

rapid reduction in the CII species below this temperature (figure 5.16). Similarly, ADAS

data can be used to infer that the CIII emission zone lies roughly within 3eV ≤ Te
≤ 10eV, allowing Te contours to be formed at the periphery of these zones. The

evolution of detachment of the inner divertor leg results in movement of CII and CIII

emission zones away from the strike point towards the x-point (figure 5.17), indicating

a reduction in Te along the divertor leg with time. The effects of sawtooth behaviour

on the data analysis was mitigated by not using frames within ±1ms of a sawtooth

crash.

Figure 5.16: The fractional abundance of carbon charge states as a function of plasma
electron temperature, using data from the ADAS codes [98].

The interpretation of Dα and Dγ data is complicated by high D2 densities brought

about by strong puffing in the vicinity of the divertor leg. Consequently, molecular

processes enhance Dα and Dγ emission, although these processes are a significantly

larger contribution to Dα than Dγ . Figure 5.30 shows the results of an EIRENE

simulation of shot 25028 at 312ms, where the contribution of different atomic and

molecular processes contribute to Dα and Dγ emissivities. It can be seen that the

molecular contribution to Dα is stronger than that of Dγ emission. In terms of analysing

this data in terms of line ratios of Dγ/Dα intensities, molecular processes will reduce
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Figure 5.17: The evolution of CII and CIII emission during the detached phase of shot
25029. The data plotted is light intensity along the separatrix, as shown in 5.21.

such line ratios and volumetric recombination processes will increase them. Narrow-

bandpass imaging of Dα and Dγ lines during the detached phase of shot 25028 (figures

5.18, 5.19) indicate the presence of a recombining region (high Dα and Dγ intensity)

in the vicinity of the strike point. Between the x-point and the strike point, there

is a region of elevated Dα emission, which is thought to be a consequence of strong

D2 puffing in this region (figure 5.18) resulting in more molecular dissociation events

occurring.

Comparison of Dα and Dγ line intensities along the inner divertor leg (figure 5.22)

have been computed by relatively calibrating the camera data such that, in attached

conditions, the ratio of Dα and Dγ line intensities are unity. This allows the presence

of volume recombination processes to be determined when Dγ/Dα > 1 (figure 5.5).

The calibration was carried out using data from shot 24867 at 430ms, which is similar

to shots 25028 and 25029, but the fuelling location was changed to the low-field side.

Consequently, plasma entered H-mode and the divertor plasma displayed no signs of

detachment. Calibration data was taken between ELM bursts to reduce the influence

of these transients on the calibration. The attached plasma calibration data (blue trace

in figure 5.22) shows a departure from Dγ/Dα=1 in the vicinity of the strike point (R

≈ 0.01m) possibly due to the presence of localised carbon line emission in this region,

within the bandpass of the Dγ filter used in this study (figure 5.23).

The detached plasma data (figure 5.22, black trace) indicate a strong departure

from attached conditions in the vicinity of the strike point (R ≈ 0.1m), with elevated

Dγ emission suggesting volumetric recombination processes are taking place. Towards

the x-point, the plasma appears to be mostly hotter and in an excitation-dominated

regime, indicated by Dγ/Dα = 1.
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Figure 5.18: Tomographically inverted Dα (656nm) data from shot 25028 at 312ms,
concentrating on the inner divertor leg with a magnetic equilibrium from EFIT.
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Figure 5.19: Tomographically inverted Dγ (434nm) data from shot 25028 at 312ms,
concentrating on the inner divertor leg with a magnetic equilibrium from EFIT. Unlike
Dα data, there is an emission peak close to the D2 gas puffing location at R = 0.28m,
Z = -1.23m.
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Figure 5.20: Tomographically inverted CII (514nm) data from shot 25028 at 312ms,
concentrating on the inner divertor leg with a magnetic equilibrium from EFIT.
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Figure 5.21: Tomographically inverted CIII (465nm) data from shot 25028 at 312ms,
concentrating on the inner divertor leg with a magnetic equilibrium from EFIT.
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Figure 5.22: Ratio of Dγ/Dα line intensities during shot 25028 at 312ms (black) and
during an attached reference frame from shot 24867 at 340ms (blue) as measured by
DivCam. The data has been relatively calibrated such that Dγ/Dα=1 in the divertor
leg for attached conditions.

Figure 5.23: Survey spectra taken from the lower inner strike point from shot 24867
at 439ms (top) and shot 25028 at 314ms (bottom). The bandpass of the Dγ filter is
indicated by the blue dashed curve.
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5.4 Interpretive Detachment Modelling

5.4.1 OSM Setup

In order to calculate an OSM plasma solution for shot 25028 at 312ms, ion flux data

collected by the divertor Langmuir probes (figure 5.11) was input into the code. Small

shifts in the data were applied to account for mis-alignment between the modelling grid

and the ion flux data to ensure that the peak in the ion flux to the lower outer strike

point corresponded with the location of the magnetic separatrix (at ψn=1). Upstream

ne, Te data was taken from the Thomson scattering diagnostic (figure 5.9) to constrain

the plasma solution at the high-field side, closest to the detached lower inner divertor

leg. As explained in section 5.3.1, the experimental data was manually filtered to ensure

that perturbations to the measured data from sawtooth activity was removed by not

using data within ±1ms of a sawtooth crash.

Spectroscopic measurements of line integrated ne and line averaged Te (figure 5.15)

were used to constrain the OSM plasma solution in proximity of the lower inner divertor

target. As outlined in section 5.3.5, the effects sawtooth activity could not be so

easily removed from the data, as the integration times of the spectroscopic detectors

used exceeds the sawtooth period. However, it was also noted that the effects of

sawteeth should be mild, as the measured line emission will be predominantly from the

recombining plasma. The analysed ne, Te profiles from the raw data were interpolated

to extract temperature and density profiles along the magnetic separatrix, and to

facilitate mapping of the experimental data onto the OSM modelling grid. The use

of line-integrated density and line-averaged temperature profiles neglects the effects of

density and temperature variations along the spectroscopic lines of sight and possibly

the implications of changing path length as the spatial extent of the recombining region

changes due to sawtooth activity. Alignment of the lines of sight with the separatrix flux

tube reduce the degree of varying plasma conditions along the line of sight, however.

Tomographically inverted spatial distribution of CII (514nm) and CIII (465nm)

emission can be used to create approximate Te contours using figure 5.16 and obser-

vations of the periphery of CII, CIII emission regions in figures 5.20 & 5.21. The

Te contours input into OSM in this study are shown in figure 5.24. The presence of

features in the data due to mechanisms other than plasma line emission are highlighted.

Their cause can be ascribed to photon reflections from stainless steel surfaces, such

as mounting brackets for magnetic field coils, and the limited extent of the camera

view relative to the inversion mesh. Alignment between the inverted data and EFIT

equilibria is not perfect, however, due to reduced coverage of magnetic diagnostics in

the vicinity of the lower inner strike point. Slight improvement in agreement between

EFIT and the inverted data was found by imposing additional constraints from the
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Figure 5.24: Approximate electron temperature profiles constructed using tomograph-
ically inverted CII (514nm) and CIII (465nm) emission data. The areas highlighted in
green are most likely artefacts of the inversion process. The green area highlighted in
the top figure is due to the inversion mesh being poorly covered by the camera view.
The green area highlighted in the bottom figure is due to photon reflection from a P3
coil bracket.



5.4. INTERPRETIVE DETACHMENT MODELLING 109

Thomson scattering diagnostic, which shifted the EFIT reconstruction by ≈1cm. The

results of this reconstruction are plotted over the inverted data (figures 5.18-5.21).

Temperature contours formed using the periphery of the CII emission regions (cor-

responding to Te ≈ 1eV and 3eV at the low and high Te sides of the C1+ abundance

curve) are in agreement with the onset of the CIII emission region. These temperature

contours are only approximate, and transport effects, which are not present in the

ADAS calculations in figure 5.16, introduce additional uncertainties in the location of Te

contours. There is, however, disagreement between CIII emission and Te measurements

at the midplane from Thomson scattering, which indicate Te ≈ 5eV at the high-field

side midplane. If this were the case, CIII emission should be visible in the vicinity of

the high-field side midplane (figure 5.16), which is not supported by the data (figure

5.21). An explanation for this discrepancy is that the minimum detectable Te measured

by Thomson scattering is ≈ 5eV [113]. Therefore, it is possible that Te < 5eV, in

accordance with CIII emission data.

Inverted Dα and Dγ emission are used in this study as a check on the quality of

the OSM-EIRENE plasma solution by comparison of calculated Dα and Dγ emissivities

from EIRENE. As in the case of CII and CIII data, the inverted data contains artefacts

from the inversion process, such as a horizontal line at Z=-1.4m in figures 5.18 & 5.19.

Analysis of inverted Dγ (434nm) emission is complicated by the presence of as yet

unidentified emission within the bandpass of the Dγ filter used in this study. There

are some features in common between Dγ and CII inverted data, such as measured Dγ

emission at Z = -1.43, R = 0.29 close to the strike point below the separatrix, perhaps

suggesting that this emission has a component arising from CII species.

5.4.2 Results

The data summarised in this chapter was input into OSM and interpolated onto the

magnetic grid (figure 5.25) in order to constrain the plasma solver as much as possible,

and to verify the plasma solution (and, by extension, its constraints) by comparing

simulated Dγ/Dα emissivity line ratios with experimental observations. There are,

however, still numerous free parameters not constrained by the code, principally the

parallel ion velocity and the ion temperature (pressure) along the divertor leg. Ti=Te

has been imposed upstream and at the divertor targets. The numerical solver here is

the original numerical scheme, as solver extensions such as cross-field drift motion,

significantly hinder solver convergence in the recombining region. Particle sources

and sinks due to ionisation and recombination reactions respectively calculated from

EIRENE are included in the particle balance equation. Momentum sinks due to ion-

neutral friction were not included in the momentum balance equation in order to

ascertain the properties of the momentum fitting source using EIRENE ionisation and
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Figure 5.25: Magnetic grid used to simulate MAST shot 25028 at 312ms. The green
lines indicate where experimental data has been used to constrain the OSM plasma
solution, with the exception of ion flux data as measured by Langmuir probes embedded
in the divertor targets.
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recombination particle sources and sinks. It is left for future work to investigate the

role of the EIRENE momentum sink on the plasma solution.

The converged OSM-EIRENE plasma solution for the lower inner divertor leg is

shown in figures 5.26 & 5.27, with the EIRENE calculated Dα and Dγ emissivities shown

in figure 5.28 due to atomic and molecular processes outlined in table 5.2. The plasma

solution close to the lower inner strike point (figure 5.26) is heavily constrained to

follow ne profiles specified by Stark broadening measurements, and Te profiles specified

by high-n Balmer line ratio measurements (figure 5.15), CII (514nm figure 5.20) and

CIII (465nm, 5.21) emission contours. The detached divertor target manifests as a

strong particle recombination sink. Convergence to experimentally determined electron

static pressures in this region involves invoking a very strong fitting momentum source

in close proximity to the target plate, which subsequently decreases to bring about a

pressure drop with increasing distance from the strike point specified by experimental

data.

The simulated EIRENE Balmer emission is in good qualitative agreement with the

inverted DivCam data in terms of the shape and spatial extent of the emission peak

at the strike point. There is, however, a strong Dα and Dγ emission region due to the

D2 gas puff at the top of the vertical target, which is not seen in the inverted camera

data. There is a region of elevated Dγ emission in this vicinity in figure 5.19, however,

there is also CII emission in this region (figure 5.20), suggesting this signal could be

due to carbon contamination. Analysis of the processes that give rise to this emission

(figure 5.31) indicate a strong molecular contribution. Simulations have shown that

the presence of the gas puff is unchanged if Te is varied from 1eV to 5eV close to

the gas puff, suggesting that the discrepancy is not due to inaccuracies in the plasma

solution. Another possibility, therefore, that the molecular densities calculated by

EIRENE are not an accurate reflection of the experimental conditions. Benchmarking

of the EIRENE simulation, other than the manner described, in the vicinity of the

inner strike point is difficult as other calculated quantities such as atomic and molecular

densities are not measured in this region on MAST.

Comparing measured with simulated Dγ/Dα line emission ratios along the separat-

rix in the vicinity of the lower inner strike point (figure 5.29) shows good agreement

in the spatial extent of the recombining region, indicated by Dγ/Dα > 1. As with

the inverted camera data, the EIRENE Balmer emissivities were calibrated such that

Dγ/Dα=1 in attached conditions, calculating using emissivities calculated close to the

x-point, which showed no signs of volume recombination. Within the recombining

region, the level of agreement is within a factor of 2. This is an encouraging indication

that the OSM plasma solution is an accurate representation of the plasma under

examination. This result is also in agreement with interpretive modelling efforts at
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Alcator C-Mod [114], which revealed discrepancies between EIRENE calculated and

observed Dγ emissision by a factor of ≈ 2, although in that case, absolute line intensities

were being directly compared.

It is unlikely that the discrepancy has the same cause as the appearance of the

D2 gas puff in the EIRENE calculations. The dominant mechanism for the creation

of Balmer photons is recombination in the detached region (figure 5.30), in contrast

to molecular dissociation processes close to the gas puff (figure 5.31). The influence

of experimental uncertainties in the experimental data used to constrain the plasma

solution and their relation to uncertainties in calculated Balmer emissivities remains

unresolved and will be a subject of future work on this subject.

Close to the divertor target, there is a strong divergence between the calculated

and simulated line ratios. The source of this discrepancy may be due to contamination

of the observed spectral emission lines due to spectral emission other than Dγ within

the bandpass of the filter used. This hypothesis is supported by Dγ/Dα measurements

taken as an attached reference for relative calibration purposes (figure 5.22), where the

emission ratio increases significantly above 1 in close proximity to the divertor strike

point.

Index Reaction Notes

1 e+H+ → H+γ Radiative volume recombination

2 e+e+H+ → e+H 3-body volume recombination

3 e+H → 2e+H+ Atomic ionisation

4 H+H+ →H+H+ Elastic collisions between atoms
(including charge-exchange)

5 e+H2 → e+H+H Dissociation

6 e+H2 → 2e+H+H+ Dissociative ionisation

7 e+H2 → 2e+H
+
2 Molecular ionisation

8 H+ + H2(ν)→H+H+ Ion conversion

9 e+H+2 → H+H Dissociative recombination (MAR with reaction 8)

10 e+H+2 →e+H+H
+ Dissociation (MAD with reaction 8)

11 e+H+2 →2e+H
++H+ Dissociative ionisation (MAI with reaction 8)

Table 5.2: Neutral collision processes included in EIRENE as set up for this study [115].

5.5 Summary

An extensive experimental dataset has been collected to characterise the plasma con-

ditions within a partially detached discharge on MAST. These include measurements

of upstream ne, Te upstream of the recombining region with unprecedented (≈ 1cm)

spatial resolution with a newly upgraded Thomson scattering diagnostic. Ion flux

to the divertor target plate was measured using embedded Langmuir probes with
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Figure 5.26: Overview of the converged OSM-EIRENE plasma solution along the
separatrix ring, along the lower inner divertor leg. ne and Te close to the divertor
target were constrained using line-of-sight spectroscopy of high-n Balmer emission lines.
Towards the x-point, Te was constrained using CII and CIII emission contours.
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Figure 5.27: OSM plasma solution for shot 25028 at 312ms. The electron temperature
close to the lower inner divertor leg is low (≤1eV), whereas the electron density increases
in this region.
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Figure 5.28: OSM-ERIENE calculated Dα and Dγ emissivities. The D2 gas puff is
clearly visible in both emission lines, contrary to experimental observations.
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Figure 5.29: Comparison of tomographically inverted Dγ/Dα emission measured by
DivCam and an OSM-EIRENE simulation.

Figure 5.30: Breakdown of Dα (left) and Dγ (right) emission in terms of atomic and
molecular physics processes (table 5.2) along the separatrix flux tube, calculated by
EIRENE.

Figure 5.31: Breakdown of Dα (left) and Dγ (right) emission in terms of atomic and
molecular processes along a flux tube intersecting the lower inner D2 gas puff (located
at s ≈ 0.3m), calculated by EIRENE.



5.5. SUMMARY 117

6mm-9mm spatial resolution. Line integrated ne and line-averaged Te along the lower

inner divertor leg with a spatial resolution of 7mm were measured using a line-of-

sight spectroscopy diagnostic developed during this study. Imaging spectroscopy of CII

(514nm), CIII (465nm), Dα (656nm) and Dγ (434nm) emission lines were carried out

and tomographically inverted using a damped conjugate-gradient method [60].

The OSM-ERIENE code was initially used to check the experimental data for

signs of internal consistency for data originating from the different diagnostics. It has

been found that the data collected was broadly consistent, within uncertainties and

the capabilities of the diagnostics used. The plasma solution generated was directly

compared with measurements of the ratio of Dγ and Dα line emissivities, and agreement

was found within a factor of 2 within the recombining region. The deviation of measured

and simulated Dγ and Dα line emission close to the divertor target is likely due to CII

line radiation within the bandpass of the Dγ filter used.



Chapter 6

Conclusions and Future Work

6.0.1 Conclusions

The work presented in this thesis represents efforts to better understand particle and

momentum transport in the MAST Tokamak in in attached and detached divertor

conditions using the interpretive OSM-EIRENE code. To assist these modelling efforts

in detached plasmas, experimental data from a large number of diagnostics were used to

act as constraints and boundary conditions for the code. The nature of detached plas-

mas (low Te, high ne) necessitated the modification and development of spectroscopic

diagnostics and analysis codes that are capable of producing profiles of line integrated

electron density and line averaged electron temperature along magnetic flux surfaces.

The interpretive OSM-EIRENE code was first applied to the problem of explaining a

drop in total plasma pressure routinely observed between the outer midplane and lower

outer divertor in attached conditions. The undertaking of this study necessitated the

implementation of new numerical solvers in order to solve more complex conservation

laws as different aspects of plasma transport were invoked to address the problem.

It was found that magnetic flux expansion terms do not address the pressure drop

directly, but significantly reduce, by a factor of 5, “fitting” sources required for the

OSM plasma solution to coincide with experimental observations. This suggests that

the inclusion of these additional transport terms represent a more exact description of

parallel transport in the MAST SOL.

Parallel dynamic viscosity was introduced into the OSM equations, which resulted

in a small increase in the pressure drop between the midplane and the divertor overall,

but also reduced the magnitude of fitting source terms by a factor of 2. The use of

kinetic limits on the viscosity model used was investigated, finding that the plasma

conditions in MAST are such that the standard description of parallel viscosity can be

invoked in this case.

The effects of cross-field drift motion on the pressure discrepancy was also explored.

118
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This required the formulation of a stable numerical method capable of solving the

combined Ohm’s law and current conservation equations to high accuracy. Closer

examination of the conservation equations revealed that flux expansion terms had a

strong effect on parallel plasma potential profiles in the region where ∇‖B/B was large.

Invoking diamagnetic drift terms led to a reduction in the observed pressure drop and a

reduction in solver fitting sources by 20%. Conversely, introduction of the ~E × ~B drift

resulted in an increased pressure drop and an increase in solver fitting sources by a

factor of 5. It was also found OSM-EIRENE calculations involving ~E× ~B sources were

very sensitive to small shifts in the experimental data used as boundary conditions for

the code.

The effects of varying the ion temperature with respect to the electron temperature

were also investigated, varying Ti/Te from 1 to 3. It was found that over this range,

solver fitting sources were reduced by factors of 1 to 1.5 respectively. It was also found

that some values of Ti/Te were found to explain the pressure drop, assuming this ratio

varied poloidally.

Experiments were led to achieve the detached divertor state on MAST for the first

time since the installation of a new divertor in 2004. The experiments were successful

at low neutral beam heating power (≈ 1MW). To ascertain the plasma conditions in

the detached lower inner divertor leg, a multi-chord imaging spectrometer was deployed

with new input optics designed to increase spectral performance and reduce cross-talk

between channels. Data analysis codes were written to ascertain the line averaged

electron temperature within the detached divertor leg using the intensity of high-n

Balmer emission lines. Measurements of line-integrated electron density were made

using measurements of the widths of Stark broadened high-n Balmer emission lines, and

a new analysis code based on theoretical calculations of Stark broadened spectral line

shapes at Tokamak-relevant densities. With these advancements, parallel electron static

pressure profiles were measured along the separatrix field line during the detached phase

of a MAST discharge with high (≈7mm) spatial resolution. This data was combined

with upstream ne, Te data recorded upstream of the recombining region provided by

a recently upgraded Thomson scattering diagnostic, with 1cm radial resolution. Ion

fluxes to the divertor target plates were measured with high (6-9mm) radial resolution

using Langmuir probes embedded in the divertor target plates. The Langmuir probe

data revealed a localised reduction in the target ion flux, which has not been reported

on other diverted Tokamaks. Narrow-bandwidth imaging of Dα, Dγ , CII and CIII

spectral lines at high spatial (≈3mm) and temporal (5kHz) resolution were recorded

and tomographically inverted with a spatial resolution of ≈ 5mm.

Tomographically inverted CII and CIII data were used to impose constraints on

Te at the edge of the emission regions, using atomic data from the ADAS codes. The
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analysed experimental data was input into the OSM-EIRENE code to simulate Dγ

and Dα emissivities in the recombining region. The results of the simulation were

checked against experimental observations to verify the quality of the OSM plasma

reconstruction. The calculated and inverted Dγ/Dα line ratios agreed within a factor

of 2 across the recombining region, indicating the OSM plasma solution is a reasonably

accurate representation of the plasma under investigation. The visibility of a D2 gas

puff in EIRENE simulations not supported by experimental observations. Methods for

resolving this discrepancy will be the subject of future investigations.

6.0.2 Future Work

The work presented here is an example of how an interpretive modelling code can be

used to investigate the effects of different transport terms on attached plasmas, and to

re-reconstruct the plasma conditions within detached plasmas, and assess the accuracy

of that reconstruction. A clear avenue of future investigation is to broaden the scope of

this study to investigate the effects of plasma transport terms on detached plasma

reconstructions and their agreement, or otherwise, with experimental observations.

Such work may elucidate the physics governing detachment and it’s onset, which

remains an important open question that must be addressed to ensure the longevity of

ITER and its successors.

In terms of future experimental work, the validation of the He line ratio tech-

nique [60] by applying the method to detached plasmas and comparison with results

from techniques outlined in this thesis could yield new insights into the formation

and conditions within detached plasmas with unprecedented detail. Expanding the

diagnostic dataset to include HeII, C-D and D-D emission could further constrain the

model used here, and perhaps offer insight into the discrepancy between OSM-EIRENE

simulations and observations presented here. Attempting divertor detachment in H-

mode discharges, such as studies carried out on ASDEX-Upgrade [116] could also yield

new insight. Data from additional diagnostics, such as ion temperature measurements

using Retarding Field Energy Analysers or otherwise could address a key uncertainty in

the simulations of detached plasmas in general. Furthermore, measurement of the ion

flow field using Mach probes or Doppler spectroscopy in the entrance to the recombining

region could help resolve another key uncertainty in our knowledge of detached plasmas.

Future modelling studies will focus on the role of impurities (principally carbon) in

detachment, by introducing additional species in the OSM transport equations in order

to assess their role in particle, momentum and power balance. The OSM numerical

scheme will be further refined to include a heat transport model for both ion and elec-

tron species, in order to gain better insight into the heat transport mechanisms during

detachment and in the hope of resolving the currently open question concerning the
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ion temperature profile in the plasma under investigation. Incorporation of momentum

loss terms due to ion-neutral friction from the EIRENE code would also be a valuable

addition to the modelling efforts presented here.



Appendix A

OSM Solver Development

This appendix describes the numerical enhancements that have been made to OSM

during this study. New means of solving particle and momentum conservation equations

give the OSM code additional stability and the ability to extend the conservation equa-

tions used. A new numerical code has been developed to calculate accurate solutions to

the combined Ohm’s law and current conservation equations in a highly stable manner.

A.1 The Runge-Kutta Method

The original OSM numerical scheme as outlined in section 4.1 was designed specific-

ally to solve the particle and momentum conservation equations by integrating the

respective particle and momentum sources and solving the equations algebraically. This

method, although simple to implement and extremely fast, would sometimes calculate

complex solutions tot the conservation equations and hindered the implementation of

more advanced transport equations. To remedy the latter drawback, a numerical solver

based on the Runge-Kutta method [117] was implemented to handle more complex

conservation laws. Runge-Kutta refers to a family of methods which originate from the

simpler Euler method, which states:

yn+1 = yn + hf (xn, yn) (A.1)

where yn is a quantity at some given spatial (or temporal) step, h is the step size,

f (yn) is the spatial (or temporal) gradient of the quantity, calculated at point yn and

yn+1 is the quantity at the next step. The Euler method divides an integration domain

into a number of steps, of size h, and the solution is advanced, one step at a time,

over the integration domain. This method is first order accuracy, as stepping from one

location to the next involves retaining the first two terms in a taylor series expansion

of y about step n. This means that the error in the estimate of yn is of the order of the
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Figure A.1: Principle of the Euler method, yn+1 = yn + hf (xn, yn)

square of the stepsize, h2. To increase the accuracy of this method, higher-order terms

in the Taylor series expansion could be preserved in the calculation of yn+1, which is

the reasoning behind the Runge-Kutta methods.

The method used in this study is a 5th order algorithm based on the Cash-Karp

Runge-Kutta method described in [67]. As part of the algorithm, the step size is

automatically adjusted such that the accuracy of the solution, compared with one

produced by a 4th order method meets a pre-set requirement set by the user. In order to

implement a Runge-Kutta solver with OSM, the particle and momentum conservation

equations must be re-cast in the form of gradients in density and parallel ion velocity:

dn

ds
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n
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)
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Boundary conditions are provided by specifying values for density and parallel ion

velocity at the start of the integration domain. In order to check for consistency,

the results provided by this method were checked with those provided by the original

algorithm for the primary separatrix flux tube for MAST shot 24861 at 240ms as defined

in chapter 4 (figure A.2). The two numerical schemes give similar converged solutions

when the same original OSM particle and momentum conservation equations are input

used in the Runge-Kutta solver.

A.2 The Finite-Volume Method

The finite-volume method [118] is a means of discretising partial differential equations

to reduce them to a system of algebraic equations, like the Runge-Kutta method,

except the details of how the equations are formed is altered. Figure A.3 outlines
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Figure A.2: Comparison of OSM solutions calculated with the original and Runge-
Kutta algorithms with the same geometry and boundary conditions.

how space is discretised in the finite-volume method. As opposed to the Runge-Kutta

method earlier, which is an example of a method based upon finite differences, the

finite-volume method consists of solving conservation equations within cells distributed

to fill the simulation domain.

Figure A.3: Geometry used in the finite-volume discetisation. Uppercase letters
indicate computational cells, lowercase letters indicate cell faces.

As opposed to the finite difference method, where quantities of interest are calcu-

lated at nodes and conservation equations dictate how the solution evolves from one

node to the next, the finite volume method requires the segregation of the simulation

domain into a series of cells. At the centre of each cell, the quantity of interest is

calculated, by relating the fluxes of a quantity entering and leaving cell faces, and the

source/sink rate of that quantity. Such a method is well-suited to solving flow problems

in fluid dynamics, where it is applied frequently. This form of spatial discretisation also

exists in OSM, and so finite-volume methods are well suited for this application.

To calculate the value of a given conserved quantity at cell P (figure A.3), the

methods employed in this study use information from cells connected to the east (e)

and west (w) faces of the cell. Precisely how the algebraic equations are formed is now

described in the stationary (time-independent) case.

Consider a convection-diffusion equation:

∂ (ρφ)

∂x
=

∂

∂x

(

Γ
∂φ

∂x

)

+ S (A.4)
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by integrating over the control volume V and using the divergence theorem:

∫

V

∇. ~A dV =
∫

A

~A.n̂ dA (A.5)

gives

∫

A

ρφ dA =

∫

A

(

Γ
∂φ

∂x

)

dA+

∫

V

S dV (A.6)

Therefore, taking V = A.dx and that the area A is a constant over the integration

domain, this yields:

[ρφ]e − [ρφ]w =

[

Γ
∂φ

dx

]

e

−

[

Γ
∂φ

dx

]

w

+

∫
S dx (A.7)

in this study,

[

Γ
∂φ

∂x

]

e

= Γe

(
φE − φP
δxPE

)

(A.8)

[

Γ
∂φ

∂x

]

w

= Γw

(
φP − φW
δxWP

)

(A.9)

The form of [φ]e and [φ]w are dependent on the finite-volume scheme chosen.

Integration of the source term S is trivial if, as in the case of this study, it is assumed to

be constant across the control volume. This method is then applied to a computational

grid, where linear methods are used to calculate φ at every location.

A.2.1 The Hybrid Scheme

The hybrid scheme [119] was devised to solve general stationary (time-independent)

convection-diffusion problems, using the accuracy of second-order central differencing

and the stability of the first-order upwind scheme. As a result, it has been incorporated

into OSM to solve Ohm’s law (A.10) and current conservation (A.11) equations, to

calculate electrostatic potential profiles along field lines.

−∇‖φ = ηj‖ −
0.71

e

dkTe

ds
−
1

en

dpe

ds
(A.10)

∇‖

(
j‖

B

)

= Sj (A.11)

where η‖ is the plasma electrical resistivity (ohm.m)
(
≈ 2.7× 10−8Te(keV)−

3
2

)
, j‖

is the electrical current density (Am−2), φ is the electrostatic potential (V) and pe is

the electron static pressure (Pa). Combining these equations and eliminating j‖ yields

a single convection-diffusion equation where φ is the only unknown:
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∇2‖φ−

(
1

η
∇‖η +

1

B
∇‖B

)

∇‖φ =0.71∇
2
‖Te − 0.71∇‖Te

(
∇‖B

B

)

−
0.71

η
∇‖Te∇‖η

+
1

ne
∇2‖pe −

1

n2e
∇‖pe∇‖ne −

1

ηne
∇‖pe∇‖η

−
1

ne
∇‖pe

(
∇‖B

B

)

− ηSj

(A.12)

Furthermore, by using the relation:

~E = −~∇φ (A.13)

where ~E is the electrostatic field (Vm−1) and all other terms have their usual

meanings, the electrostatic field can be calculated from the resultant electrostatic

potential profiles.

The versatility of this scheme can be demonstrated by taking a stationary convection-

diffusion equation:

d

dx
(ρuφ) =

d

dx

(

Γ
dφ

dx

)

(A.14)

where ρ is a mass density (kg/m3), u is a flow velocity (ms−1), Γ is a diffusion

coefficient (m2s−1) and φ is an unknown quantity. The properties of a system described

by convection-diffusion equations, such as (A.12), can be described by the Peclet

number, defined as:

Pe =
ρuΔx

Γ
(A.15)

where Δx is the grid spacing (m). Therefore, the Peclet number is the ratio of

the rate of convection and the rate of diffusion of the quantity φ in the system, and

is related to the stability of some numerical schemes, as will be demonstrated. If a

second-order central differencing scheme is applied to this problem, [ρφ]e and [ρφ]w
terms in (A.27) are discretised as follows on a regularly-spaced grid:

[ρuφ]e = ρeue

[
(φP + φE)

2

]

(A.16)

[ρuφ]w = ρwuw

[
(φW + φP )

2

]

(A.17)

where the extrapolation of the unknown quantity to the cell faces is calculated by

linear interpolation. In the following analysis, it is assumed that ρe = ρw = ρ and
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ue = uw = u for simplicity. To remove this constraint, the (known) mass density

and velocity is linearly interpolated between cells in a similar way to φ. The overall

numerical scheme, in the absence of sources and sinks, can now be cast as:

ρu

[
(φP + φE)

2

]

− ρu

[
(φW + φP )

2

]

= Γ

(
φE − φP

δx

)

− Γ

(
φP − φW

δx

)

(A.18)

The stability of this numerical scheme can be ascertained by varying ρ,Γ and u in

order to change the Peclet number of the conservation equation.
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Figure A.4: Central differencing scheme used to solve a convection-diffusion problem
(blue) compared to the analytic solution (red). The left figure shows a mildly diffusive
case with Peclet number 1.25, in the right figure, the diffusive term has been weakened,
increasing the Peclet number to 6.25, causing the solver to become unbounded.

When Pe = 1.25, the central differencing scheme produces a smooth profile in

good agreement with the analytic solution to the problem (figure A.4). However, when

|Pe| ≥ 2, the scheme becomes unstable and the solution produced unphysical. The

reason for this behaviour is related to the boundedness of the scheme, which states that

the value of φ should be bounded by it’s boundary conditions. A necessary condition for

a scheme to be bounded is that the coefficients of the terms in the discretised equations

should have the same sign [118], normally positive. If the coefficient of the east cell

calculation, φE , is considered, for it to be positive for a positive flow velocity,

ρuΔx

Γ
< 2 (A.19)

This can be re-cast as Pe<2, explaining the apparent loss of stability of the scheme

at high Peclet numbers. An alternative to the second-order central scheme is the first-

order upwind. In this scheme, the [ρφ]e and [ρφ]w terms in (A.27) are calculated using:

[ρuφ]e = ρeueφP (ue > 0) (A.20)
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[ρuφ]w = ρwuwφW (uw > 0) (A.21)

alternatively,

[ρuφ]e = ρeueφE (ue < 0) (A.22)

[ρuφ]w = ρwuwφP (uw < 0) (A.23)

The main advantage of the first-order upwind scheme over the previous scheme is

significantly enhanced stability, at the cost of reduced accuracy compared with the

second-order central scheme, for low Peclet numbers. This is because the solution

always satisfies the requirements for boundedness, resulting in the scheme being stable

for all Peclet numbers. The first-order upwind scheme also smears out the presence of

strong gradients in the solution (or “shocks”), thereby limiting its usefulness to cases

where only smooth solutions are expected (figure A.5).
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Figure A.5: The first order upwind differencing scheme applied to the same problem
(blue) compared to the analytic solution (red). The scheme remains stable for all Peclet
numbers, albeit at lower accuracy compared to the second-order central scheme for low
Peclet numbers.

The hybrid scheme is a combination of the first-order upwind and second-order

differencing schemes. For each cell, second-order central differencing is employed only

if the scheme is stable (Pe<2), if not, the first-order upwind scheme is employed. The

result is a scheme that is selectively more accurate where the Peclet number is low,

and less accurate at higher Peclet numbers, but always stable. As stated above for

the first-order upwind scheme, the ability of the hybrid scheme to resolve shocks that

may be present in the solution is limited; and so it is best used in scenarios where the

solution is highly unlikely to display such behaviour.

The application of the Hybrid scheme to the solution of Ohm’s law and the current
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Figure A.6: The hybrid differencing scheme applied to the test problem (blue) compared
to the analytic solution (red). Combining the accuracy of the central differencing and
the stability of the upwind scheme can provide accurate results for problems with any
Peclet number.

conservation equation in MAST shot 24861 at 240ms produces electrostatic potential

profiles in the scrape-off layer and private flux region. Discontinuities in φ exist

close to material surfaces (at the edges of the simulation domain) as the plasma is

accelerated by the pre-sheath electric field to satisfy the Bohm criterion. In this region,

depending on the plasma conditions, the Hybrid scheme uses the 1st order upwind

discretisation in order to maintain stability. Elsewhere in the solution, the electrostatic

potential is smoothly varying, and so the solver uses the more accurate 2nd order central

differencing scheme. Previous studies have shown that the Hybrid scheme produces

reasonably accurate solutions when applied to 1D steady-state calculations only, and

that significant artificial viscosity can occur if this scheme is used in higher dimensional

time-varying contexts [120]. As a result, solution of the particle and momentum

conservation equations are not attempted with this method.

Figure A.7: Calculation of the electrostatic potential and electrostatic field for the
plasma properties calculated in the steady-state solution shown in figure A.12.
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A.2.2 Time-Dependent Equations

Typically, finite-volume methods use linear operations in order to solve for a given

quantity on a computational grid. Such methods are well-suited to solving systems of

linear conservation laws, but less so if one or more is non-linear, which occurs frequently

in fluid dynamics. Consequently, finite-volume (and other numerical schemes that

rely on linear methods) rely on iterative schemes such as Newton-Raphson [121] when

dealing with non-linear conservation laws.

As the OSM conservation equations are non-linear, an iterative scheme known as

the pseudo-transient method [118] is used in this study. The method evolves a system

of conservation laws in time until a steady-state is reached, which corresponds to the

time-independent solution. Including time dependency in the original OSM equations

yields:

∂ne

∂t
+
∂Γe
∂s
= Sp (A.24)

mi
∂Γi
∂t
+
∂
(
neTe + niTi +mi

Γ2

ni

)

∂s
= Sm (A.25)

where ne = ni (Γi = Γe) and Te = γTi as assumed previously (section 2.7).

Including time-dependent behaviour in the finite-volume method requires a simple

alteration of (A.27) to include an approximation of the time derivative operator. A

common choice is:

∂φ

∂t
→

φt+1 − φt

Δt
(A.26)

so a time-dependent finite-volume method can be cast as:

φt+1 − φt

Δt
+ [ρφ]te − [ρφ]

t
w =

[

Γ
∂φ

dx

]t

e

−

[

Γ
∂φ

dx

]t

w

+

∫
St dx (A.27)

Convergence with this method is reached when balance is achieved between the

convective and diffusive fluxes and sources. As a result,

φt+1 − φt → 0 and the solution does not alter as time advances. Therefore, careful

monitoring of how the solution behaves between consecutive time steps is important

when monitoring whether the method has converged to a steady-state solution.

When solving time dependent systems of conservation equations, either implicit or

explicit methods can be used. Explicit methods use information about a given quantity

at the current time step to calculate the evolution of the solution to a subsequent time

step. This method has the advantage of being more straightforward to implement,

but care needs to be taken to ensure the numerical scheme remains stable, as will be
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elucidated later. Implicit methods mostly use information from the time step the solver

is advancing towards, which is unknown, to advance the solution to a subsequent time

step. The application of implicit numerical schemes is generally more complex, as a

matrix inversion is required at each time step. However, implicit methods lack the

constraint of stability criteria imposing a limit on the maximum permissible time step,

which allow them to be more computationally efficient. However, implicit schemes are

generally more difficult to implement for non-linear systems of conservation laws. The

finite-volume solver used in this study is semi-implicit, meaning that the convective

terms in the conservation equations are treated with an explicit scheme, and diffusive

terms are treated with an implicit scheme.

Figure A.8: The CFL condition limits the time step to prevent information from cells
passing into adjacent ones

The principal limit on the admissible time step in the explicit calculations carried

out in this study is the so-called Courant-Friedrichs-Lewy (CFL) condition [122]. In a

system with no diffusive fluxes, information can only travel through the computational

domain at a finite speed. If information propagates through a domain at speed v,

see figure A.8, then a time step larger than Δxv will result in information from one cell

passing into a neighbouring cell. If a numerical scheme only considered information from

one cell when making the calculation to advance the cell’s contents through time, the

information would be lost from the system if the CFL condition was not met. Therefore,

in order to maintain the stability of an explicit numerical scheme, the following criterion

is best obeyed:

0 ≤
vΔt

Δx
≤ 1 (A.28)

A.2.3 The MUSCL Scheme

MUSCL is a finite-volume discretisation of convective terms in partial differential equa-

tions. The full title of the scheme is the Monotone Upwind Schemes for Conservation

Laws, formulated to provide accurate and stable solutions to systems of equations in

the presence of steep gradient phenomena such as shocks [123]. In similar fashion to

the hybrid scheme noted above, the MUSCL scheme utilises a second-order accurate

discretisation where it is safe to do so, i.e. when the scheme is stable, but reduces
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the accuracy of the solution in regions where it is unstable. Unlike the hybrid scheme,

however, the transition from second-order to first-order is not sudden, and is brought

about by the application of special functions known as flux limiters. The purpose of the

limiter is to impose a limit on the permissible gradient on the solution, as steep gradients

resolved by second-order schemes are normally accompanied by spurious under- and

overshoots as the scheme becomes unbounded. The flux limiters used here are not

related to kinetic limits applied to fluid equations to prevent unphysical behaviour, such

as that applied to electron heat conduction in the limit of low SOL collisionality [8].
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Figure A.9: Sweby diagram [124] indicating the effects of different flux limiters as a

function of r, given by ri =
φi−φi−1
φi+1−φi

. The MinMod limiter is the most aggressive at
suppressing slopes in the solution, whereas the Superbee limiter is the least so.

The amplitude of some widely used flux limiters as a function of r, the backward-

difference gradient in the solution divided by the forward difference gradient, is shown

in figure (A.9). The purpose of these limiters is to make the numerical scheme total

variation diminishing, where the total variation is defined as:

TV (φ) =
∑

i

|φi+1 − φi| (A.29)

and a numerical scheme is total variation diminishing if:

TV (φi+1) ≤ TV (φi) (A.30)

In order to satisfy this condition, the scheme must not create any local extrema, and

the value of a local minimum must be non-decreasing and that of a maximum must be

non-increasing. The purpose of such schemes is to eliminate over- and undershoots that

high-resolution numerical schemes create where the solution contains steep gradients
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(A.10).
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Figure A.10: In the presence of sharp discontinuities in the solution, some numerical
schemes exhibit under- and overshoots (left). TVD schemes, however, are designed to
resolve discontinuities without such behaviour.

In this study, the MUSCL scheme is employed to discretise the convective terms in

time-dependent fluid particle and momentum conservation equations. This scheme is

particularly apt when applied to the plasma boundary of Tokamaks, where the particle

flux can experience a strong discontinuity close to material surfaces as the plasma

accelerates to satisfy the Bohm criterion. The calculation of the convective flux in the

MUSCL variant used in this study is based on the Kurganov-Tadmor (KT) scheme [125].

In applying the KT scheme, it is necessary to re-cast the conservation equations in

the following form:

∂φ

∂t
+
∂F

∂s
= S (A.31)

where φ is a vector of unknown quantities, F is a vector of the convective flux of

each unknown quantity, and S, is the source or sink of φ. The convective term is then

discretised to yield:

∂φ

∂t
+
1

Δxi

[
F ∗
i+ 1
2

− F ∗
i− 1
2

]
= S (A.32)

where F ∗
i+ 1
2

and F ∗
i− 1
2

are scheme-dependent fluxes of φ entering and leaving the

cell across it’s surfaces, respectively. In the KT scheme, these fluxes are given by:

F ∗
i+ 1
2

=
1

2

[

F

(

φ+
i+ 1
2

)

+ F

(

φ−
i+ 1
2

)

− ai+ 1
2

(

φ+
i+ 1
2

− φ−
i+ 1
2

)]

(A.33)

F ∗
i− 1
2

=
1

2

[

F

(

φ+
i− 1
2

)

+ F

(

φ−
i− 1
2

)

− ai− 1
2

(

φ+
i− 1
2

− φ−
i− 1
2

)]

(A.34)

where ai± 1
2
is the maximum absolute value of the local information propagation
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speed, given by:

ai± 1
2
= |max (λi, λi±1) | (A.35)

where λi is a vector of the eigenvalues of the Jacobian of the flux vector F and

φ+
i+ 1
2

,φ−
i+ 1
2

,φ+
i− 1
2

and φ−
i− 1
2

are given, on an evenly-spaced grid, by:

φ+
i+ 1
2

= φi+1 −
φ(ri+1)

2
(φi+2 − φi+1) (A.36a)

φ−
i+ 1
2

= φi +
φ(ri)

2
(φi+1 + φi) (A.36b)

φ+
i− 1
2

= φi −
φ(ri)

2
(φi+1 − φi) (A.36c)

φ−
i− 1
2

= φi−1 +
φ(ri−1)

2
(φi − φi−1) (A.36d)

where φ(r) is a limiter function and φi is an unknown quantity to be calculated at

the centre of cell i. To test the accuracy and suitability of this numerical scheme for

handling non-linear conservation equations, the solution of inviscid Burgers’ equation

(A.37) was calculated with a sinusoidal wave as an initial condition, as in [125].

∂u

∂t
+ u

∂u

∂x
= 0 (A.37)

This common test problem is known to develop a shock at T = 1s, as a result, a

comparison between the analytical and computed solutions was made at T = 2s (figure

A.11). The agreement between the two solutions is good, even around the shock, where

the sharpness of the discontinuity has been smoothed partly by the application of the

flux limiter, but also because of the grid resolution used in this simulation. Running the

code with finer grid resolution steepens the discontinuity close to the shock, although

also requiring smaller time steps in order to maintain stability.

A.3 The Time-Dependent Original Model

The time-dependent version of the original OSM model is given by:

∂ne

∂t
+
∂Γe
∂s
= Sp (A.38)

mi
∂Γi
∂t
+
∂
(
neTe + niTi +mi

Γ2i
ni

)

∂s
= Sm (A.39)

where, as before, ne = ni and Γe = Γi. Using the MUSCL scheme to discretise the
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Figure A.11: Comparison between the analytical and computed solutions of the inviscid
Burgers’ equation after the formation of a shock.

convective term and a Runge-Kutta method to carry out time-stepping, it is possible

to calculate (A.38) and (A.39) the stationary solution of the equations via the pseudo-

transient method. In order to formulate the above equations to be compatible with

the MUSCL scheme, the above model is re-cast into the form of a convection equation

(A.31) as follows:

φi =

[
ni

miΓi

]

(A.40a)

Fi =

[
Γi

ni(Te + Ti) +
miΓ

2
i

ni

]

(A.40b)

Si =

[
Sp

Sm

]

(A.40c)

and the eigenvalues of Fi are given by:

λi =




Γi
ni
+
√
Te+Ti
mi

Γi
ni
−
√
Te+Ti
mi



 (A.41)

where all terms above have their usual meanings. Initial “guessed” profiles of ne and

Γe are used to commence the time-stepping procedure, and the quantities of interest are

evolved in time until they relax to a state where the time evolution no longer alters the

system. At this point, it can be said that the solver has converged upon the stationary

solution of the equations.

To carry out the aforementioned time-stepping, a low-storage Runge-Kutta scheme

known as the SHK (Sommeijer, van der Houwen and Kok) method is used [126], which

is given by:
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φ∗i = φ
n
i − α1τLhφ

n
i (A.42a)

φ∗∗i = φ
n
i − α2τLhφ

∗
i (A.42b)

φ∗∗∗i = φni −
1

2
τLhφ

∗∗
i (A.42c)

φn+1i = φni − τLhφ
∗∗∗
i (A.42d)

where α1 =
1
4 and α2 =

1
3 ,τ is the time interval over which the solution ρ is being

stepped and Lhρ
n is the spatial discretisation of ρ. The SHK method was designed for

convection-diffusion problems, and offers good stability in convection dominated flows.

Imposition of boundary conditions is treated by exploiting the assumption that the

parallel ion velocity at the divertor plates is at least the local sound speed [8] when

Ti 6= Te. In this numerical scheme, it is assumed that the parallel ion velocity is equal

to the sound speed at the cell surface intersecting a material surface at the end of a flux

tube. As two first-order partial differential equations are considered, for a flux tube

terminated by material surfaces at both ends, this condition is sufficient to calculate a

unique solution to the conservation equations (A.38) & (A.39).

Figure A.12: Comparison of steady-state electron density (left) and ion Mach number
(right) in the primary separatrix of MAST shot 24861 at 240ms.

Comparison of the solutions calculated using the original and MUSCL solvers reveals

a similarity between the ion velocities and a systematic decrease in electron density

with the MUSCL solver. The cause of the dissimilarity is due to the nature of the

limiter, reducing the gradients found in the solution to maintain stability. A careful

choice of limiter can reduce the difference between the answers yielded by the two

methods to some degree, but the presence of a limiter result in differences between the

calculated solutions. In the MUSCL scheme, the solution evolves from a trial solution to

a steady-state in a few milliseconds (≈3-4ms), which is consistent with the notion that

information is propagated through the solution at the local sound speed, ∼ 104ms−1.
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Figure A.13: Density and ion velocity evolution during a TVD-MUSCL solver run
Evolution of electron density (left) and ion velocity (right) profiles with time. The
solution relaxes from a guessed profile to a steady-state solution after ∼3ms.

Figure A.14: Comparison of the steady-state electron density (left) and ion Mach
number (right) computed with the TVD MUSCL solver using different flux limiters.

The effects of different flux limiters on the steady-state plasma solution was found by

running OSM with the same initial conditions, but with different flux limiters enabled.

In order to get a sense for how the solution varies, limiters were chosen at the two

extremes of the Sweby diagram, namely the MinMod and Superbee limiters, and with

the van Leer limiter, that lies approximately mid-way between the two extremes in

the 2nd order TVD region (figure A.9). The solutions yielded (figure A.14) show that

the calculated density using the linear particle conservation equation are very similar

with all of the limiters, but the ion Mach number diverges at the inner divertor leg (s

≈ 4m) briefly, before converging beyond s ≈ 9m. An explanation for the divergence

between the plasma solutions occurring at this location is that the numerical scheme

is asymmetrical in space, and so the numerical solver behaves differently approaching

steep gradients (at the high s target) compared with relaxing from them (at the low s

target).
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A.4 The Extended Time-Dependent Model

The handling of diffusive transport terms in a finite-volume is more straightforward in

terms of spatial discretisation, as such terms do not suffer from instabilities that are

common for convective terms. However, it isn’t practical to use an explicit formulation

of diffusive transport, as the stability criterion scales roughly as 1/ (Δx)2, compared

with 1/Δx for convective transport. Therefore, on finely-spaced grids where Δx is

small, the number of time steps required to reach convergence rises significantly. There-

fore, it is necessary to use an implicit formulation for such terms. The incorporation

of diffusive transport into the original OSM model (A.43) allows the effects of parallel

viscosity to be explored, the effects of which are elucidated in section 4.4.

mi
∂Γi
∂t
+

∂

∂s

(

neTe + niTi +mi
Γ2i
ni

)

−
∂
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(
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∂
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(
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= Sm (A.43)

where η is the parallel diffusion coefficient, given the diffusive term can be expanded

to give:
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(A.44)

where the coefficients in font of ∂Γi∂s and
∂ni
∂s are both calculated at the current time

step, and the partial derivative of the ion flux Γi and ion density ni are calculated im-

plicitly. As a result, this calculation somewhat reduces the accuracy of time-dependent

calculations, but does not affect the steady state solution reached when the numerical

solver converges. Implementing diffusive terms in OSM in this way has been found

to have no effect on the solver solutions in the case of zero diffusion coefficient, and

agree well with an explicit implementation (not shown). It has also been found that

this implementation has no adverse effects on the time step required to ensure solver

stability.
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