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Abstract 

Sequencing of the genome of Propionibacterium acnes produced a catalogue of genes many of 

which enable this organism to colonise sites in human skin and survive a range of 

environmental challenges. However as yet, there is little understanding of the relationships 

and interactions between genes that give rise to an organism, which has major impact on 

human health and wellbeing as an opportunistic pathogen that causes infections beyond the 

skin. To provide a platform for better understanding gene regulation in P. acnes, this thesis 

shows using microarrays, reproducible genetic responses to external changes relevant to the 

skin environment in P. acnes can be studied using batch cultures. It then goes on to describe 

the generation of nucleotide-resolution maps of the primary and secondary transcriptome. The 

maps were produced by combining differential and global RNA sequencing approaches. Sites of 

transcriptional initiation, stable RNA processing and mRNA cleavage as well as riboswitches, 

small non-coding RNAs, vegetative promoters, and previously undetected genes were identified 

across the genome. In addition, evidence was obtained for the widespread use of leaderless 

mRNAs, which may be translated by specialised ribosomes. Preliminary evidence for the 

existence of the latter, in the form of particular ribosomal RNA processing, was obtained. The 

study also provided statistically robust evidence for pervasive transcription that is associated 

with both the sense and antisense strands of coding regions. Continuing annotation of the 

primary and secondary transcriptomes of pathogens will assist comparative and functional 

genomics approaches and may also aid the modelling of the disease process and therapeutic 

development. 
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Chapter 1 

1 General introduction 

1.1 Socio-economical impact of acne vulgaris 

The skin disorder acne vulgaris, commonly known as skin acne, affects all ethnic groups, all 

ages and both genders. There is a bias towards adolescents, up to 90% of the population from 

age 15 to 25 will have suffered from acne and more than 30% of sufferers retain scarring from 

acne lesion, the extent of the scarring depending on the severity of the infection (Zouboulis et 

01., 2005, Farrar & Ingham, 2004). There is a natural regression of the symptoms from age 27 

onwards; however, 5% of suffers experience chronic acne. Although most dermatological 

diseases are not life-threatening, the physical symptoms of acne vulgaris can affect greatly the 

psychologically of sufferers. Depression, anxiety and body-image disorders are significant 

psychological problems reported by patients. The extreme is suicidal tendencies. Case studies 

have also linked higher unemployment rate and a lower quality of life to acne vulgaris (Cunliffe, 

1986, Law et 01., 2010, Simpson, 1993). At the turn of this century, over 5 million visits to 

general practitioners and over 2 million prescriptions were ascribed per year to the treatment 

of acne in the US: at an annual cost of $1 billion (Stern, 2000). A more recent review has 

estimated that the annual cost of treating acne vulgaris in Germany is over (400 million (Radtke 

et 01., 2010). These reports suggest acne vulgaris is more than just a treatable, cosmetically 

related clinical condition. Further investigation in its management and cost-effective treatment 

is needed. 

1.2 Pathogenicity of acne vulgaris 

Despite the report of acne vulgaris dated as far as the 1890s (Mackenzie et 01., 1894). The exact 

aetiology for acne vulgaris is still unclear to date. The current hypothesis for acne vulgaris 

suggests it is multi-factorial disease that requires the combination of the following factors to 
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initiate the disease. These factors are increased sebum production, hyperkeratinisation of the 

follicles and formation of microcomedones, proliferation of P. oenes, and finally the 

inflammatory response of the host. 

1.2.1 Sebum production and the effect of hormones and stress 

The majority of acne vulgaris sufferers are the young adolescents, the release of hormone from 

the pituitary gland and androgen for development during puberty leads to the increase in 

sebum production (Pochi et 01., 1979). The human sebocyte contains receptors for hormones 

such as testosterone, progesterone and oestrogen, which modulate cell proliferation, sebum 

production and androgen metabolism (Zouboulis, 2004). Increase in sebum production has also 

been linked to increase in stress level. Substance P, an eleven amino acid peptide neuropeptide, 

binds to the neurokinin1 receptor, which has been shown to be involved in regulating emotion, 

stress and anxiety. It was shown that substance P increases the level of sebum production in 

human sebocytes by affection hormone production in the hypothalamic-pituitary-adrenal 

glands (Koo & Smith, 1991, Lee et 01., 2008). Other functional receptors found in human 

sebocyte are for the corticotropin-releasing hormone. The corticotropin-releasing hormone 

directly induces lipid synthesis in the sebocytes and increases expression of the enzyme ~5-3a­

hydroxysteroid dehydrogenase, which converts dehydroepiandrosterone to testosterone 

(Zouboulis, 2009). Another case study has shown a correlation between increased androgens 

production and males that suffers from chronic acnes (Holland et 01., 1998, Marynick et 01., 

1983). Premenstrual flares of acne in women is further evidence that acne vulgaris has a 

hormonal basis (Stoll et 01., 2001). 

1.2.2 Hyperkeratinisation and comedogenesis 

The second stage in acne development is the hyperproliferation of keratinocytes in the 

follicular duct, which leads to desquamation, the shedding of outer layers of skin (Cunliffe et 01., 

2004). Another consequence of hyperproliferation is obstruction of duct subsequent, which 

leads to enlargement of the follicle and the formation of microcomedones. Further 
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accumulation of keratinocytes and sebum causes the destruction of follicle structure and the 

formation of comedones. The cause of hyperkeratinisation can be of many origins. 

Inflammatory cytokines have been suggested to be one of the causes (Ingham et 01., 1992). 

Normal human keratinocytes do not produce interleukin-1a, but interleukin-la is readily 

isolated from comedones (Walters et 01., 1995, Ingham et 01., 1998). Another possible cause of 

hyperkeratinisation is the degradation of sebum by micro-organisms in the follicle lumen to 

increase the amount of free fatty acid. Free fatty acid has shown to enhance comedone 

formation in rabbit ear models (Kanaar, 1971, Kligman, 1968). The changes in lipid composition 

particularly the reduction of linoleic acid, a type of fatty acid, contribute to formation of the 

comedone (Wertz et 01., 1985, Downing et 01., 1986). Lower levels of linoleic acid decrease the 

barrier function of the epidermis and may make the comedone walls more permeable to 

inflammatory cytokines (Cunliffe et aI., 2004). A correlation effect of androgen on linoleic acid 

concentration has also been determined, as treatment using an anti-androgen cleared the 

symptoms of acne and returned the linoleic acid level in the skin back to a normal state 

(Stewart et 01., 1986). 

1.2.3 Proliferation of P. acnes - its role in the human skin microbial microflora and in 

inflammatory response 

P. acnes is a Gram-positive, microaerophile. It is also non-motile, non-spore forming and 

pleomorphic in cell morphology, but seen under the microscope as curved rods. Along with 

other cutaneous propionibacteria, Staphylococcus spp., Corynebacterium spp., and Micrococcus 

spp., P. aenes comprises the major microflora of human skin, and has a protective role in 

preventing over proliferation of pathogens (Noble, 1984, Holland et 01., 1981). The natural pH 

of skin ranges from 4.7 to 6.0, the slight acidity inhibits the growth of most pathogen, but does 

not affect the growth of resident skin flora. The number of P. acnes varies in different regions of 

the skin, ranging from 10-104 per cm2
• It is the dominant species found in hair follicles and in 

other sebum-rich areas of the skin (head, chest and back) (Bojar & Holland, 2004). 
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P. aenes growth is favoured by the increase in sebum that occurs when follicles become blocked 

(Toyoda & Morohashi, 2001). Thus, while P aenes is found on healthy skin naturally, it is 

consistently found at a higher density in comedones and acne lesions. Whether or not P. aenes 

is the sole causative agent of acnes vulgariS, it appears central to the disease process. P. aenes 

is thought to have more of a role in the inflammatory response. Neutrophiles have been 

detected in the ruptured follicles of acne comedone, a discovery that (Kligman, 1974) initiated a 

different field of investigation in which acne vulgaris is an inflammatory disease rather than a 

bacterial infection. The degradation of excess sebum causes an increased level of free fatty acid 

and squalene, a hydrocarbon that is a precursor for steroids, in the follicle duct, which irritates 

the follicle wall triggering an inflammatory response (Motoyoshi, 1983). P. aenes has been 

shown to be able to activate different types of innate immune response. Viable P. aenes is able 

to induce the production of interleukin and tumour necrosis factor-a, the initiation factors for 

comedogenesis (Graham et al., 2004, Ingham et aI., 1992). The destruction of the follicle 

structure exposes the skin cells to P. aenes, which causes the activation of macrophages though 

toll-like receptors. This causes the production and release of interleukin-12 and interleukin-8; 

the former activates natural killer cells while the latter is a chemoattractant for neutrophiles 

(Kim et al., 2002, Kim, 2005). P. aenes also has a T-cell mitogenic effect and can raise a specific 

immune response through activation of CD4+ lymphocytes (Jappe, 2003). 

1.2.4 Other contributing factors 

Researchers have carried out different case studies on other aspects of life that may contribute 

to the cause of acne vulgariS. Diet has been widely speculated as the second biggest cause of 

acne with endocrine imbalance as the number one cause. The intake of fatty acid influences the 

severity of acne symptoms. The intake of omega-6 fatty acid has a pro-inflammatory effect 

whereas omega-3 fatty acid has an anti-inflammatory effect on the follicles. Omega-3 fatty acid 

also decreases the level of insulin-like growth factor 1 (IGF-1) (Danby, 2010). IGF-1 stimulates 

the growth and differentiation of sebocyte; the level of sebum production correlates with IGF-1 

level in acne patients (Cappel et al., 2005). Milk and other dairy products contain various animal 
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hormones including estrogens, progesterone, androgen precursors such as 5a-androstanedione, 

5a-pregnanedione, and dihydrotestosterone which have been implicated in comedogenesis. 

Case studies have shown that there is a positive correlation between the increases in intake in 

milk for boys during teenage development and the severity of acne through a rise in 

testosterone level (Adebamowo et 01., 2008). Case studies were performed to investigate the 

association of acne with hereditary factors that might predispose people to the disease. 

Abnormalities in androgens and lipids in cases of hyperandrogenism have been linked to 

neonatal acne through the deficiency of 21-hydroxylase, an enzyme involved in the biosynthesis 

of steroid hormones and stress hormones (Ostlere et 01., 1998). A genetic component to acne 

vulgaris is also suggested by the finding that this disease is inherited by 78% of direct 

descendant and 75% of the second generation (Wei et 01., 2010). 

1.3 Treatment for acne 

Most treatments used to treat acne are based on drugs that have an anti-comedogenic, anti­

inflammatory or anti-microbial activity. Other therapies such as photodynamic therapy and 

topical agent derived from plant extracts approach the disease in a similar angle, ultimately 

aimed at reducing the population of microbes or level of inflammation. Equally important is the 

treatment of psychology factors that accompany acne. The successful treatment of acne takes 

months and maybe years; therefore, support and consultations are made available for 

depressed patients. In teenagers, even mild form of acne can cause significant level of distress 

as a result of comments from peers. 

1.3.1 Topical agents - benzoyl peroxide, retinoid and isotretinoin 

Benzoyl peroxide is a precursor of free-radical oxygen. Thiol-containing compounds such as 

cysteine initiate the breakdown of benzoyl peroxide. The free-radical oxygen penetrates the 

follicles and lowers the microbial count through a bactericidal effect. This broad spectrum agent 

is applied directly on acne lesion and has shown to be effect against mild acne (lyons, 1978). 
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Retinoid is a chemical related to vitamin A, a class of chemicals that influence cellular growth, 

differentiation and apoptosis. Retinoid has shown to be effective for managing 

hyperkeratinisation and inflammation of follicles (Rademaker, 2012). Retinoid is a ligand for 

retinoic-acid and retinoid X receptors. The two receptors normally form a heterodimer that 

upon binding the ligand enables recruitment of an activator complexed with RNA polymerase to 

regulate gene expression. Retinoid have been shown to directly or indirectly affect the 

expression of over 500 genes, the details of which have been documented (Balmer & Blomhoff, 

2002, Glass & Rosenfeld, 2000). Isotretinoin, being a derivative form of retinoid (13-cis retinoic 

acid), significantly reduces the activity and size of sebum glands. Isotretinoin binds to specific 

retinoic acid response elements in the promoter region of target gene to regulate the 

transcription of these genes. Isotretinoin reduces inflammation and it has been shown to have 

an inhibitory effect on the release of lysosomal enzyme from polymorphonuclear leucocytes 

(Camisa et 01., 1982). Lysosomal enzymes contribute to the damage of the follicular wall, which 

initiates the inflammatory response. Isotretinoin has no direct antimicrobial effect; its ability to 

control the microbial population likely occurs from the lowering of the follicular sebum 

concentration through reducing sebocyte activity (Rademaker, 2012). These compounds are 

normally applied as a topical agent. Oral isotretinoin is only prescribed in severe cases of acne 

vulgaris as it has been associated with severe depression, photosensitivity, foetal malformation 

and myalgias have been reported (Jacobs et 01., 2001). Topical benzoyl peroxide and 

isotretinoin are used in conjunction with antibiotics, as they still active against antibiotic­

resistant microbes. 

1.3.2 Antibiotics 

Oral antibiotics are used to treat more severe form of acne, and they work mainly by reducing 

the microbial count of the follicles, which then indirectly reduces the level of inflammation. 

Broad spectrum antibiotics against Gram-positive organism are used. These include first­

generation tetracyclines (tetracycline and oxytetracycline), second-generation tetracyclines 

(doxycline, minocycline and Iymecyline) (Simonart et 01., 2008), and macrolides (erythromycin, 
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clindamycin, and azithromycin) (Williams et 01., 2012). Both classes of antibiotic act by inhibiting 

translation, the former (tetracyclines) bind to 30S ribosomal subunit and the latter (macrolides) 

bind to 50S ribosomal subunit. Antibiotics are not the preferred form of treatment if a topical 

agent can manage the clinical condition. The broad-spectrum effect of antibiotics disrupts the 

gut composition of flora and leads to diarrhoea. Pseudomembrane colitis has been reported 

following the administration of clindamycin (Webster & Graber, 2008). Antibiotic action 

requires that bacterial cells are actively growing. However, P. acnes is a slow-growing organism 

and the course of treatment can take two months. It has been reported that patients seek relief 

from symptoms of acne vulgaris (redness or inflammation) in a aesthetic view more than the 

reduction in the number acne lesions (Jappe, 2003). As the inflammation reduces, the course of 

antibiotic is often not completed, thereby increasing the likelihood of new antibiotic-resistance 

P. acnes emerging. Cases of tetracycline and macrolide resistance in P. acnes have been 

reported across the globe (Eady et 01., 2003, Ross et 01.,2003, Eady et 01.,2006). 

1.3.3 Hormonal treatment 

Hormone treatment suppresses or reduces the amount of androgen. This treatment is usually 

for females that suffer from polycystic ovary syndrome or individuals with hyperandrogenism 

where they have a raised level of testosterone. Oral contraceptive contains cypoterone acetate 

and spironlactone, which are progesterone and oestrogen-containing compounds and bind 

selectively to androgen receptors to reduce their activity. Corticosteroids and inhibitors of 5a­

reductase are used to suppress the production of testosterone level. Flutamide is a non-steroid 

based anti-androgen, however due to its hepatotoxicity its use is limited (Nguyen & Su, 2011). 

1.3.4 Alternative treatment 

To reduce the effect of hyperkeratinisation, azelic acid is used to peel off the horny layer of the 

skin. Topical cream containing 20% azelic acid has the equivalent effect of 0.05% tretinoin. This 

equates to the same level of tretinoin prescribed for managing severe acne management. Thus 

same result can be achieved without the side effect of the tretinoin steroid. When azelic acid is 
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used in conjunction with benzoyl peroxide or tetracycline it has shown to be very effect in 

suppressing the microbial population and keratinisation of follicles. This can however render 

the skin more sensitive to UV light and experienced burning sensation (Gollnick, 1990). Some 

patients have also reported reddening of the skin and inflammation (Holland & Bojar, 1993). P. 

acnes naturally produces a pigment, porphyrin, to resist the effect of UV damage to the cell. 

Photodynamic therapies take advantage of this pigment and utilising laser with blue (415nm) 

and red (660nm) light, which is absorbed by porphyrin. In combination with benzoyl peroxide, it 

has shown to effectively reduce P. acnes population (Papageorgiou et al., 2000). Side effects of 

photodynamic therapy are little; patient reported some increase in skin sensitivity and 

inflammation. Main reason for photodynamic therapy not being routinely used is that it is a 

relatively expensive treatment. Plant extracts from Epimedium brevicornum, Malus pumila, 

Polygonum cuspidatum, Rhodiola crenulata and Dolichos lablab have shown to be effective in 

eradicating P. acnes biofilms. It has also been found that icariin, resveratrol and salidroside are 

the active compounds in the plant extracts. Further characterisation of these compounds could 

aid novel drug design (Coenye et al., 2012). 

1.4 P. Denes associated infection 

P. acnes has 3 main subtype; type I is associated with acne vulgaris and other dermal associated 

with the skin. Type II and III are associated with deep tissue infection, nosocomial and post­

surgical infection (Bruggemann, 2005). There are increasing numbers of reports stating the 

recovery of P. acnes from surgical sites, often followed a prosthetic joint surgery, neurosurgery, 

and spinal surgery (Butler-Wu et al., 2011, Dodson et al., 2010, Jakab et 01., 1996, McLorinan et 

al., 2005, Nisbet et al., 2007, Tunney et al., 1999). Prophylactic antibiotic treatment minimises 

infection by true skin pathogens (5. aureus, Streptococcus pyrogenes) and opportunistic 

pathogens (Staphylococcus epidermidis, P. aeruginosa, P. acnes). However, as P. acnes is slow 

growing, it can survive a course of antibiotic. As previously mention, reports of antibiotic 

resistance strain of P. acnes have increase in the past 10 years (Coates et al., 2002, Eady et aI., 

2003). The absence of other microbes, as the course of antibiotic ends, allows P. acnes to 
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successfully establish an infection. P. acnes has been recovered from prostheses, often in the 

form of biofilms (levy et 01., 2008, Ramage et 01., 2003), which are known to be recalcitrant to 

antibiotics (Coenye et 01., 2007). The studies of P. acnes infection have extended beyond the 

acne vulgaris. More detail role of P. acnes interactions with the host and biofilm growth model 

in associated with biomaterial have been initiated (Bayston et 01., 2007, Tafin et 01., 2012). 

1.5 Characterisation of P. Denes growth and the development of a skin-

equivalent model 

Much work on P. acnes physiology has been carried out at the University of leeds in the 

laboratory of Prof. Keith Holland. This included the development of a defined synthetic 

medium, the study of the varying skin-relevant conditions, e.g. pH, temperature and oxygen, 

and the development of a skin-equivalent model. 

P. acnes was originally cultivated by other labs using complex medium, such as brain heart 

infusion broth (Freinkel & Shen, 1969). While this allowed biochemical and physiological 

studies, such as the identification of free fatty produced through extracellular lipase activity as 

an irritant for skin follicles (Hassing, 1971), the study of cellular factors that induced 

inflammation was hampered by the complexity of the media. Components of complex media 

can themselves be antigenic or attract cells of the immune system. This was one of the reasons 

for developing a synthetic medium for the cultivation of cutaneous propionibacteria. Another 

reason was that it allowed the identification of factors essential for P. acnes growth, e.g. biotin, 

Vitamin Bs and Vitamin B6 (Holland et 01., 1979). P. acnes was found to secrete a range of 

degradative enzymes, lipases, hyaluronate Iyases, proteases and phosphatases, which can 

degrade the host tissue and are noted as virulence factors (Ingham et 01., 1979, Ingham et 01., 

1980, Ingham et 01., 1981, Ingram et 01., 1983). As P. acnes is normally resident in the skin 

microflora, Holland et al. aimed to determine the changes in specific skin-relevant variables or 

the combination of them that leads to increased activities of these degradative enzymes, and so 

changes P. acnes from being a benign part of the flora into a pathogen. The effect of varying pH, 
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oxygen, nutrient availability, on the growth rate, biomass and the secreted exoenzyme of P. 

acnes were investigated (Cove et al., 1983, Greenman & Holland, 1985, Greenman et al., 1981, 

Greenman et al., 1983). 

One condition that of the follicle that cannot be reproduced using liquid cultures is the high 

lipid, low water content. This prompted the development of a human skin equivalent model in 

which a dermal matrix of fibrin containing fibroblasts is seeded with human keratinocyte to 

generate a stratified epidermis (Holland et al., 2008). This skin model has been shown to 

support the colonisation of skin flora, S. epidermidis, P. acnes and Malassezia spp. The same 

skin equivalent model was used to assess the differences in gene expression of the 

keratinocytes using two-channel microarray from colonisation of a skin pathogen S. aureus. The 

study showed that there was an upregulation of diverse gene involved in the innate immune 

response including toll-like receptor 2, p defensin 4, peptidoglycan recognition proteins; 

proinflammatory cytokines including interleukins IL-1P, IL-1a, IL-17C, IL-20, IL-23A, tumour 

necrosis factor and Iymphotoxin P (Holland et al., 2009). 

1.6 Broad objective and specific aims of thesis 

As indicated in the previous sections, much of the published work on P. acnes describes clinical 

infections and the associated immunology, the rise of antibiotic resistance in hospital isolates 

and the development of new or improved therapies. In addition to contributing to all of these 

areas, research at the University of Leeds has established defined conditions for the reliable 

culture of P. acnes in the laboratory, including in the description of skin models. However, it 

was the successful use of microarrays to identify the innate response of keratinocytes to 

colonisation by S. aureus (Holland et aI., 2009) in particular that provided the catalyst for the 

work undertaken during this thesis. It demonstrated to those involved that much could be 

learned from analysing transcriptome data. The next logical step was to establish a platform for 

analysing the transcriptome of P. acnes, which the long-term view of being able study alongside 

equivalent data for colonised keratinocyte. The genome sequence of a clinical isolate of P. 
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aenes had been determined and annotated by others to produce an initial catalogue of genes 

(Brzuszkiewicz et 01., 2011, Horvath et 01., 2012, HunyadkOrti et 01., 2011, Voros et 01., 2012). 

The broad objective of this thesis was to utilise this expertise in culturing clinical isolates of P. 

aenes, to establish a platform for functional genomics, which can be defined as the 

investigation of the function of genes (and their products), revealed by genome sequencing, use 

high-throughput rather than more traditional 'gene-by-gene' methods. As described in the 

chapters that follow, a transcriptome platform has been established that can now be extended 

to investigate P. aenes growth not only in the skin equivalent model, but actual follicles. 

The specific aims were to: 

(1) establish the reproducibility of culturing P. aenes and induce a stress(es) that would 

produce a genetic response(s) that was at least in part predictable; 

(2) confirm using microarray technology that the response was reproducible and describe 

the nature of the overall response; and 

(3) map the primary and secondary transcriptomes of P. acne using deep RNA sequencing 

approaches, thereby improving our understanding of gene structure, and the underlying 

mechanisms that control gene expression. 
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Chapter 2 

2 Establishment of reproducible culture condition and 

transcriptional response 

2.1 Introduction 

This chapter describes fundamental steps towards establishing an experimental platform from 

which to study genome-wide responses of P. aenes, at the level of transcription, to challenges 

that this organism is likely to face within the skin environment. The first step was to obtain 

reproducible growth profiles. Two cultivation methods are used routinely in bacteriology, 

batch and continuous culture (Wanner & Egli, 1990, Novick, 1955, Monod, 1949, Harder & 

Kuenen, 1977). The former is a closed system, in which bacteria are supplied with a fixed 

amount of nutrient. This produces distinct phases that are temporally separated; lag, 

exponential growth, stationary and eventually death. During the lag phase, bacteria adapt to 

their surrounding environment, synthesising the necessary RNA and protein for reproduction, 

often exhibiting little or no growth. The exponential phase represents the doubling of the 

bacteria at their maximum rate for a given condition and appears as a straight line with a 

positive gradient when log values of cell numbers are plotted against time. In stationary phase, 

the growth of bacteria slows or halts due to a decline in the amount of available nutrients or 

the production of inhibitory secondary metabolites. The transition from stationary into death 

phase is often not clear from measurements of optical density as bacteria can persist in a viable 

but non-culturable state (Oliver, 2005). In contrast, continuous culture is an open system. It 

consists of a central culturing vessel into which media is pumped at a specific rate from a 

reservoir. This rate of nutrient feed controls the rate of growth. Culture volume is maintained 

by letting the excess volume flow out. This movement of liquid removes secondary metabolites 

or other elements that could affect growth of the culture. Variables such as atmosphere, pH 
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and temperature can also be monitored and kept constant, which in turn allows the culture to 

be maintained in a constant state (Brogden & Guthmiller, 2002). 

Planktonic culture although well established and commonly used in labs, rarely represents the 

bacteria in their natural state. It is proposed that some bacteria exist as single- or multi-species 

microcolonies surrounded by an extracellular matrix. This mode of growth model provides 

higher tolerance to environmental and chemical stresses (Hall-Stood ley et 01., 2004). 

Increasingly, bacteria are being cultivated to produce biofilms, which are typically characterised 

by slow growing cells that are firmly attached to each other and a substratum (Costerton et 01., 

1995, lindsay & von Holy, 2006). P. aenes has shown ability to adhere to different surfaces; 

published methods of producing P. aenes biofilms involve cultivation on prosthetic biomaterials 

such as silicon, steel and titanium or using flat-bottom 96-well microtitre plates (Ramage et aI., 

2003, Bayston et aI., 2007, Coenye et aI., 2007). The development of a simple biofilm model is 

also described in this chapter. The cell composition of biofilms is expected to be heterogeneous 

relative to continuous cultures or batch cultures during exponential growth (Hall-Stoodley et 01., 

2004, Stewart & Franklin, 2008). 

The second aim was to ensure that culture conditions could be altered to produce reproducible 

changes in the physiology of cells as measured at the level of transcription. P. aenes contains 

homologues of the KdpOE two-component signal transduction system, which in other bacteria 

has been shown to be involved in potassium sensing and osmoprotection (Csonka & Hanson, 

1991, Cholo et 01., 2009, Ballal & Apte, 2005). Two-component signal transduction system is 

one of the many mechanisms in which bacteria sense and adapt to the environment by 

regulation of gene expression (Capra & Laub, 2012). A basic two-component system is 

composed of a sensor kinase and its cognate response regulator. More complex signal 

transduction systems are referred as phosphorelay systems (Fabret et 01., 1999, Hoch, 2000), 

which include additional sensor kinases and response regulators to provide more stringent 

regulation of gene expression. The regulation of sporulation in Bacillus spp. is one such example 

(Molle et 01., 2003). Sensor kinase, often a membrane-associated protein, upon receiving a 
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specific stimulus in the N-terminal signal input domain initiates the autophosphorylation of the 

conserved histidine residue by the autokinase domain in the C-terminal end. The phosphoryl 

group is transferred to the conserved aspartate residue on its cognate response regulator. The 

phosphotransfer induces a conformational change to the response regulator and disrupts the 

interaction between the receiver domain and DNA-binding domain (Figure 2.1). 

SI~n.,)llnpul domain 

1:-----1 Cell membrane 

Sensor kinase -< 
Cytoplasm --

His~ I Autophosphorylation 

( 

P03 
Phosphotransfer 

PO] 

I 
Asp Regulation of 

Response regulator 

Figure 2.1 Schematic diagram of a basic two-component signal transduction system. The 

signal input domain is mostly, but not exclusively, associated with the cell membrane. The 

phosphotransfer and ATP-binding sub-domain of autokinase domain catalyse the 

autophosphorylation of conserved histidine residue. The phosphoryl group is transferred to 

conserved aspartate residue on the receiver domain of the response regulator, wh ich then 

activates the DNA-binding domain for binding of target genes 

The DNA-binding domain allows the response regulator to act as a transcription factor. When 

the response is no longer required, the sensor kinase can also exhibit phosphatase activity to 

dephosphorylate the response regulator to negate the response (Hsing et 0/., 1998, Stock et 0/., 

14 



2000). The gene encoding the sensor kinase and its cognate response regulator are generally 

adjacent to each other and are transcribed from the same promoter site. The phosphorylated 

response regulator can often exhibit an autoregulatory characteristic by binding to its promoter 

site and recruit RNA polymerase (Hoch et 01., 1995, Parkinson, 1993). 

The KdpOE two-component system is widely conserved in bacteria (Frymier et 01., 1997, Ballal & 

Apte, 2005, Xue et 01., 2011, Cholo et 01., 2009). It has been most studied in E. coli, but also in 

Salmonella typhimurium, Mycobacterium tuberculosis, Anabaena sp. and Staphylococcus aureus. 

Maintenance of intracellular potaSSium concentration is important for regulation of pH and 

activity of enzymes (Suelter, 1970). In a hypotonic environment «2mM potassium), the sensor 

kinase KdpO autophosphorylates the conserved histidine residue (Jung et 01., 2001), and this 

subsequently leads to the transfer of phosphate to the aspartate residue on the KdpE response 

regulator. The activated KdpE dimerises and binds to the promoter region upstream of the 

kdpFABC and upregulates its expression. The kdpFABC encodes for the Kdp-ATPase structural 

proteins (Altendorf et 01., 1994). KdpA positioned on the outer surface of membrane has a high 

affinity (Km of 2 ~M) for potassium ions, KdpB is the P-type ATPase for translocating the cation, 

KdpC is for assembly of the ATPase and KdpF is needed for protein stability but is not essential 

(Epstein, 2003, Ballal et 01., 2007). KdpOE is found constitutively expressed at low level. Under 

potassium limiting conditions, the expression of kdpFABC can increase in E. coli by 1000 fold 

(Hamann et 01., 2008). The reproducibility of the biological replicates generated in this 

investigation will be determined by using this predictable response as a control. 
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2.2 Materials and Methods 

2.2.1 P. Denes and its cultivation in synthetic media 

Propionibacterium aenes strain KPA171202 was obtained from Ulm University, Gottingen, 

Germany (Bruggemann et 01., 2004) and cultivated in an anaerobic workstation (MACS-MG-

1000, Don Whitely Scientific) at 34°C under 80% lv/v] N2, 10% lv/v] C02, and 10% lv/v] H2. All 

analyses were done using cells cultivated without shaking in 100 mL of modified Holland 

Synthetic Medium (HSM; (Holland et aI., 1979) in a 250 mL Erlenmeyer flask. Inocula were 

prepared in two stages. First a single colony isolated from the surface of reinforced clostridial 

agar (RCA) (Farrar et 01., 2007) was used to inoculate 10 mL of TYG broth (1.0% [w/v] !ryptone, 

0.5% [w/v] :least extract, 0.25% [w/v] D-glucose) in 30 mL plastic universals. After growing to 

stationary phase, an aliquot was used to inoculate 100 mL of TYG broth to an 00600 of 0.2. The 

culture was then incubated to an 00600 of 1.0, after which cells were harvested by 

centrifugation (3,000 x g for 20 min) and washed by resuspending in 10 mL of HSM pre-warmed 

to 34°C and then harvest was repeated. Finally, the cells were resuspended in 10 mL of pre­

warmed HSM and an appropriate aliquot was used to inoculate 100 mL of pre-warmed HSM to 

an 00600 of 0.2. To study the effects of a potassium down-shift, a 100 mL culture of P. aenes 

was prepared as previously described and grown to an 00600 of 1.0, after which the culture was 

separated into two equal halves and cells were harvested as described above. One half was 

washed using standard HSM, used to inoculate 100 mL of fresh HSM and reincubated. The 

other half was processed in the same way, except using HSM without potassium di-hydrogen 

phosphate and di-potassium hydrogen phosphate. After 1 h of reincubation, 12.5 mL of STOP 

solution (95% lv/v] ethanol; 5% lv/v] phenol, (Un-Chao & Cohen, 1991) was added to inhibit cell 

metabolism, and the cells were harvested by centrifugation. When necessary, cell pellets were 

stored frozen at -80°C. 

2.2.2 Generation of P. Denes biofllm 

The technique was adapted from the cellulose disk model described in the thesis of Dr. Victoria 

Ryder (Ryder, 2010). Inoculum for biofilm was prepared as above. Sterile nitrocellulose filter 
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disk (25 mm diameter, 0.22 ~m pore size, Millipore) was used as a substratum. A filter disc was 

steeped in a 10 mL liquid culture in TYG broth, prepared as described above. Inoculated discs 

were placed on RCA and incubated anaerobically at 34°C for 7 days. Non-adherent cells were 

removed by washing the disc in sterile saline (0.9% [w/v] NaCI) then return to incubation on 

fresh RCA. The process was repeated for 4 weeks or until sufficient growth was obtained. Upon 

harvesting the biofilm, non-adherent cells were removed by the washing step, disc was 

transferred to a Petri-dish containing 10 mL of sterile saline and 1.25 mL STOP solution. 

Attached cells were removed using a sterile spatula and transferred to a 25 mL Falcon tube. 

Cells were then harvested by centrifugation and pellets were stored at -80°C. 

2.2.3 Confocal and scanning electron microscopy of biofilm culture 

Biofilms were visualised using confocal laser scanning microscopy and low-temperature 

scanning electron microscopy (SEM), both of which were performed by Jackie Hudson, Leeds 

Dental Institute. The nitrocellulose disk was cut to approximately 1.0 cm2 with a scalpel. A 

sample was stained with LIVE/DEAD- BacLight™ Bacterial Viability kit (Invitrogen) to assess the 

proportion of viable cells in the biofilm and visualised under a 40 x wet mount with confocal 

laser scanning microscopy (Leica TeS SP2). The specimen was scanned for emission of the 

fluorescent dyes from 500 to 700 nm. Images were captured and collated in 10 ~m increments 

measured from the base of specimen until 500 ~m was reached. 

The biofilm was air-dried in a sterile Petri-dish for 48 h before visualising with low-temperature 

5EM (Hitachi S-3400N). A filter disc fragment was placed on a small pedestal with an adhesive 

platform and wetted with sterile water. The sample was placed on the stage and the chamber 

was set to atmospheric pressure of 50 Pa and at -20°e. 
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2.2.4 Isolation of bacterial RNA 

2.2.4.1. Kirby Mix 

Cell pellets of P. acnes were resuspended in Kirby mix (Kieser et al., 2000), 1.0 00600 unit of cells 

per 100 ~L of mix, and then transferred to Lysing Matrix B tubes containing fine silica beads 

(MP Biomedicals). Tubes were then placed in high-speed benchtop homogenizer (FastPrep·-24, 

MP Biomedicals; set at 6.5M/s). Cells were lysed by three cycles of homogenizing for 1 min 

followed by cooling in an ice-water bath for 1 min. Nucleic acid was extracted using an equal 

volume of acidic phenol: chloroform: isoamyl alcohol (SO: SO: 1), and then chloroform: isoamyl 

alcohol (49: 1). Nucleic acid in the aqueous phase was precipitated by adding NaCI to 150 mM 

and 2.5 x volumes of 100% [v/v] ethanol, then chilling at -20o e for 1 h, and finally harvesting by 

centrifugation (13,000 x g) for 30 min at 4°C. Nucleic acid pellets were washed twice with 700 

~L of 70% [v/v] ethanol, air dried for 5 min and resuspended in RNase-free water. To remove 

contaminating DNA, samples were treated with DNase I using conditions described by the 

vendor (Ambion) and extracted with phenol: chloroform as described above. The 

concentration and integrity of RNA samples was determined using a NanoDrop 1000 

spectrophotometer (Thermo Fisher Scientific) and gel electrophoresis (Sambrook & Russell, 

2006), respectively. 

2.2.4.2 RiboPure""-Baderia 

Protocol for RNA extraction using this commercial kit was carried out with a single modification 

to manufacturer's instruction; the cells were homogenised using the FastPrep·-24 benchtop 

homogenizer instead of the vortex adaptor (Ambion PIN AMI0024) suggested by the 

manufacturer. 

2.2.4.3 Lysozyme and mutanolysin 

Cell pellet of P. acnes was resuspended in 180 ~L of enzymatic lysis buffer (20 mM Tris-CI pH_8; 

2 mM fDTA; 1.2% lv/v] Triton X-laO) and added to the reaction mix, 20 ~L of either lysozyme 

(200 ng/~L) or mutanolysin (6.25 unit/~L). The suspension was incubated at 3rC for 1 h, with a 

gentle inversion after a 30 min interval. Then, 20 ~L of 10% [w/v] SDS was added and the 

18 



suspension was mixed by vortexing. Equal volume of phenol was added to the suspension 

before being transferred into a Lysing Matrix B tube. The remainder of the extraction protocol 

are as described in Kirby Mix extraction. 

2.2.5 Reverse-transcription polymerase chain reaction (RT-PCR) 

Complementary DNA was synthesised using SuperScriptll RT III (Invitrogen) with random 

hexamer (100 nM) and 200 ng of RNA template, the rest of the protocol were carried out as 

stated by manufacturer with no modification. The cDNA was diluted with RNase-free water to 

100 ilL. Primer pairs were designed for PPAOOI0 and PPA0015 using Primer3 

(http://frodo.wLmit.edu/), and ordered from Sigma-Aldrich. The sequences for the primers are 

as followed: PPAOOI0F: 5'-CCCGTACTGGTCAGCGTTTA-3'; PPAOOIOR: 5'­

GCCGTCTGCTIGTACAGGTI-3'; PPA0116F: 5'-CGGCAAGCAACTACTCATCA-3'; PPA0116R: 5'­

TAAAGATGATCGCCGAGAGC -3'. The PCR reaction was carried out using GoTaq4D DNA 

polymerase (Promega). The PCR master mix was prepared according to manufacturer's 

instruction with a final reaction volume of 25 ilL. Master mix was aliquoted to 0.2 mL tubes and 

the 2 ilL of the diluted cDNA template was added last. Tubes were briefly vortexed and the mix 

was pooled by brief centrifugation to collect the reaction mixture before placing in the thermal 

cycler (Techne). The program for the thermal cycler was as follows: initial denaturation of 95°C 

for 5 min and then 30 cycles of 95°C for 30 s, 60°C for 30 s, and 7rc for 30 s, before a final 

extension at 7rC for 5 min. Finished cycle were held at 4°C. 

2.2.6 Agarose lei electrophoresis 

The amount of agarose (Melford) required for the desired weight to volume ratio were 

measured into a 100 mL Erlenmeyer flask and suspended in 30 mL of 1 x TBE (Severn Biotech) 

and 3 ilL of 10,000 x SYBR-safe nucleic acid stain (Invitrogen). Agarose was melted by heating 

with microwave at highest power in 20 s intervals until fully dissolved. Gel was then casted and 

placed in an electrophoresis tank (Bio-Rad) topped with 1 x TBE running buffer. RNA samples 

were mixed with 2 x RNA loading dye (Ambion) before loaded onto the gel. 
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2.3 Results 

2.3.1 Reproducibility of batch culture 

Prior to the work described herein, empirical studies by the laboratory of Prof. Keith Holland 

had established a synthetic medium in which P. aenes grows well (Holland et al., 1979). The 

standard inoculums for such cultures were cells grown in a rich broth containing tryptone-yeast 

extract-glucose (TYG; (Farrar et al., 2007). Moreover, it was reported that the cells for inocula 

must be isolated during the exponential-growth phase to produce reproducible growth in 

Holland synthetic medium (HSM; Table S7; Keith Holland, pers. comm.). Thus, initial 

experiments focussed on defining growth profiles for P. aenes in static batch cultures of TYG 

and subsequently HSM (Figure 2.2). Strain KPA171202 was used for these studies as at the time 

it was the only P. aenes for which a genome sequence had been determined (Bruggemann et al., 

2004), and because it is a clinical isolate of type I P. aenes, recovered from an acne lesion and 

post-surgical infections. 

The growth of P. aenes in TYG broth was typical of batch culture, a short lag phase was followed 

by an exponential growth phase and then a stationary phase during which growth slowed and 

eventually stopped (Figure 2.2, panel A). The doubling-time and specific growth rate during 

exponential growth in TYG broth were 5.8 hand 0.119 h-t, respectively. Cells were isolated 

when the culture reached an 00600 of "'1.0 to produce inoculums for HSM. At this point a 

significant proportion of the maximum achievable biomass had been produced and the cells 

were still growing exponentially. 

Cells passaged into HSM appeared to grow exponentially without a discernible lag phase (Figure 

2.2, panel B). The doubling-time and specific growth rate during exponential growth in HSM 

were 6.2 hand 0.111 h-I
, respectively. These values are similar to those obtained above for 

cells grown in TYG broth. There are no published values on the maximum specific growth rate 

for the P. aenes strain in the medium used in this study. Characterisation of P. aenes growth 

physiology carried out by Holland & Greenman was on P. aenes strain P37 using continuous 

20 



culture (Greenman et aI., 1981, Greenman et aI., 1983, Cove et aI., 1983, Greenman & Holland, 

1985). Strain P37 is also a clinical isolate of type-I P. acnes. Holland & Greenman cultivated P. 

acnes P37 in semi-synthetic medium; tryptone, supplemented with vitamins and mineral salts. 

The maximum specific growth rate obtained was 0.21 h-i. The exponential phase in HSM was 

about 8 h longer than in TYG; the cells reaching a much higher final 00600. Cells cultured in 

HSM had a tendency to clump and settle in the bottom of the culture flask. Therefore, for 00600 

analysis the culture flask was swirled vigorously and withdrawn aliquots were vortexed 

thoroughly. 

2.3.2 Effect of potassium down-shift on P. Qcnes growth curve 

For cultures grown in HSM, the exponential phase exhibited slower growth after an 00600 of 2.0. 

Thus, an 00600 of 1.0 was judged to be mid-exponential and used for subsequent molecular 

analyses. Growth in exponential phase in HSM was monitored and a linear relationship 

between LOglO(OD6oo) and time was observed (data not shown). During the course of these 

experiments, the growth of P. acnes following potassium downshift was also investigated by 

inoculating cells into HSM to which potassium di-hydrogen phosphate (KH2P04) and di­

potassium hydrogen phosphate (K2HP04) had not been added (Figure 2.2, panel B). There was 

an initial concern that the culture would not grow after the downshift (Holland, pers. comm.). 

However, this proved not to be the case and the culture grew, albeit more slowly. There was 

no distinct exponential phase following the potassium downshift. Cells grew without a 

discernible lag phase, but their growth rate appeared to decrease steadily with time. It was 

concluded that the decreasing growth rate reflected the utilisation of phosphate reserves that 

were accumulated during growth on TYG. Inorganic polyphosphate have been found in cell to 

serve as an energy and phosphate store to resist environmental stress or starvation. From the 

annotated P. aenes genome, a gene cluster PPA0338 to PPA0340 was found, which encodes for 

the Pst phosphate transport permease and PPA0341, a phosphate-binding protein. Directly 

upstream of these genes, PPA0343 encodes polyphosphate kinase, which catalyses the 

conversion of terminal gamma-phosphate of ATP to polyphosphate (Gadd, 1990, Kornberg et 
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al., 1999). At the midpoint in the culture, the doubling-time and specific growth rate during 

exponential growth in HSM were 6.2 hand 0.111 h-t, respectively. The growth rate is at least 8-

fold slower after the potassium downshift. Moreover, in this medium cell clumping was more 

apparent. Indeed, cells formed a structure resembling a biofilm, a thin film that stuck to the 

bottom on the flask. As described above, this mode of growth may be induced to allow P. 

acnes to survive under stressful conditions. 
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Figure 2.2 Growth curves of P. acnes static batch culture in different liquid media. Panel A 

shows the average 00600 of 4 independent growth curves of P. aenes in TYG broth. Panel B 

shows the average 00600 reading of 5 independent P. aenes in HSM with and without added 

potassium, which are represented black and red points, respectively. For all panels, the error 

bars indicate standard deviation of the 00600 readings. The estimated time for the entry and 

exit of exponential phase are marked by the dashed vertical lines. 
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2.3.3 Continuous culture and biofilm production 

Cells harvested from cultures grown in batch using TYG broth, were also used to inoculate 

continuous culture vessel. Temperature, oxygen, and pH probes for the chemostats were 

initially calibrated with water. The unit was autoclaved and water was pumped out with 

pressurised gas and replaced with TYG or HSM. Cells from batch culture was harvested and 

used as an inoculum. Cells were resuspended in a small volume of the same medium as used in 

the chemostat and injected into the culture vessel with a needle. While it was relatively 

straightforward to establish a viable culture and then growth at a specific rate using TYG or 

HSM, similar attempts to establish a continuous culture using HSM in the absence of potassium 

phosphate proved unsuccessful (data not shown). This was due not only to the long doubling 

time, which was estimated to exceed 24 h, but the strong tendency of cells to form large 

clumps (approximately 2.0 mm) rather than disperse uniformly, even with the operation of the 

impeller. Therefore, the decision was taken to drop continuous culture in favour of batch. 

In response to the tendency of P. ocnes cells to clump during the initial experiments described 

above and the increasing amount of evidence that biofilms are important in colonisation and 

pathogenicity (Jahns et 01., 2012), it was decided that biofilms should be included in this study. 

The generation of P. ocnes biofilm has been published (Stepanovic et 01., 2000, Holmberg et 01., 

2009, Coenye et 01., 2007). The technique produces a submerged biofilm on the wells of a 

microtitre plate; stationary phase culture of P. ocnes grown in a rich broth (brain heart infusion 

medium/reinforced clostridial medium) was used to inoculate wells of a microtitre plate 

containing the culture medium. After 48 h incubation, culture broth was aspirated and non­

adhering cells where removed by washing the culture with sterile saline with agitation. This 

protocol would not yield sufficient biomass to isolate the amount of RNA needed for 

transcriptomic studies. Therefore, a mode of culture developed by Dr. Victoria Ryder (Leeds) for 

S. oureus was adopted in which cells are cultivated on nitrocellulose discs (25 mm) as a 

substratum and placed on solid medium. Discs were inoculated using an aliquot of cells from a 

liquid culture in TYG broth and then transferred onto reinforced clostridial agar where they 

were incubated for minimum of 7 days. As shown in Figure 2.3, P. ocnes adhered to the 
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nitrocellulose disc after washing with saline. Detachment of the P. acnes biofilm by degrading 

the extracellular matrix to harvest all the adherent cells was attempted (Figure 2.3, panel D). As 

the composition of the P. acnes biofilm extracellular matrix is unknown, a detachment method 

for Staphylococcus aureus and S. epidermidis biofilm was tested, using cellulase and sodium 

metaperiodate, respectively (Ryder, 2010). This technique however proved to be unsuccessful. 

Biofilm culture was liberated by manually scraping the surface of the disc. The biofilm was 

cultivated for a further three months, where a visible film like structure formed (Figure 2.3, 

panel F). 
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Figure 2.3 Nitrocellulose disc model of P. aenes biofilm culture. A nitrocellulose disc was 

inoculated with P. aenes grown in TYG broth as previously described. Panel A shows the biofilm 

grown on RCA after 1 week. Panel B shows the removal of non-adherent cells by saline washes. 

Panel C shows the attempt of detachment using cellulase. Panel 0 shows the detachment of 

biofilm material by manual scraping. Panel E shows the growth of P. aenes biofilm after 4 weeks. 

Panel F shows the growth biofilm after 3 months following a saline wash step. Cultivation and 

washing techniques were performed as described in Materials and Methods. 
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To check the biofilm still consisted of P. aenes and not a contaminant, saline washes were 

conducted weekly and non-adhering cells were spread onto reinforced clostridial and heated­

blood agar and incubated anaerobic and aerobic, respectively. The former only returned with 

colonies with the morphology expected of P. aenes, while the latter did not show any growth. 

After 4 weeks on incubation, the biofilms were washed and stained with commercial viability 

assay kit, LIVE/DEAD- BacligheM Bacterial Viability kit (Invitrogen) and then examined using 

confocal laser scanning microscopy. The kit contains two DNA-chelating fluorescent dyes. The 

first, SYTO-9, is membrane permeable and can therefore stain the DNA of viable cells as well as 

those with perturbed membrane structures. The second dye, propidium iodide can also enter 

the cell however is readily pumped out using the proton gradient of the cell membrane. 

Detection of propidium iodide by confocal microscopy indicates damaged cell membrane and 

proton gradient is lost and the cells are regarded to be non-viable. As shown in Figure 2.4, there 

is a mixed population of viable and dead cells but the majority appear viable. The same sample 

was desiccated and visualised using scanning electron microscopy. The specimen was placed on 

a stage, the chamber was chilled to -20°C and pressure lowered to 50 Pa. This low temperature 

and low pressure condition is similar to environmental scanning electron microscopy, where 

sample can be visualised without heavy metal coating. Figure 2.5 shows the comparison 

between the surface structure of the nitrocellulose substratum and the biofilm. The region of 

the image with higher cell density is shown by the increase in brightness. From the 1000 x 

magnification, the biofilm culture showed a combination of void and channel structures similar 

to what has been previously reported for a Pseudomonas biofilm. The structure of the biofilm 

often reflects on the nutrient availability; commonly biofilms possess a hollow or sponge-like 

core with channels leading to the surface allowing gaseous exchange and transportation of 

liquids throughout the depth of the culture (Stoodley et al., 1994, de Beer et al., 1994). At 

magnification of 5000 x and 10,000 x, these structures can be seen more clearly and formed 

from tightly ordered short rod-shaped cells. 
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Figure 2.4 Confocal laser scanning microscopy of P. acnes biofilm. Biofilm that was been grown 

for 4 week was stained with LlVE/DEAD® BacLight'M Bacterial Viability kit (Invitrogen) to assess P. 

aenes viability using confocal laser scanning microscopy. The image was captured every 10 ~m 

from the base of the biofilm until 500 ~m was reached. All panels show a top-down view of the 

stained biofilm, with the captured images collated. Panel A and B show viable cells stained 

green with SYTO-9 and dead cells stained red with propidium iodide, respectively. Panel C 

shows the overlay of the two dyes. 
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Figure 2.5 Scanning electron microscopy of the nitrocellulose substratum and P. acnes biofilm. 

The surface of biofilm was visualised using low-temperature, low-pressure scanning electron 

microscopy. Panel A and B show the surface of a new nitrocellulose disk and a nitrocellulose 

disk on which a biofilm has been cultivated for 4 weeks, respectively. Each vertical panel shows 

the specimen with increasing magnification (100 x, 1000 x, 5000 x, and 10,000 x). The labelling 

(white text) at the bottom left of each image indicates from left to right the associated voltage, 

working distance, signal name (from camera) and atmospheric pressure. 

2.3.4 Quality and yield of RNA isolation 

To isolate RNA of suitable quantity and quality for transcriptome analysis, a commercial nucleic 

acid-extraction kit, a protoplasting approach and a published protocol were tested. In all cases, 

prior to harvesting cells, a mixture of 5% phenol in ethanol was added to cultures to a final 

concentration of 0.625% phenol to quench cellular metabolism (Lin-Chao & Cohen, 1991). The 

different protocols utilised the same batch of cells, harvested around 1.0 00600 from TYG broth. 

The commercial kit was RiboPure™-Bacteria (Ambion). The associated extraction method 

involved homogenising cells suspended in RNAwlZt a phenol containing lysis buffer, with Zirconia 

beads. Chloroform was added to the lysate and the aqueous phase withdrawn. Nucleic acid was 

then isolated by precipitating with ethanol, and captured by glass-fibre filtration. PreCipitated 

nucleic acid on the glass fibre was washed with 'Wash Solutions' provided by manufacturer and 

eluted with pre-heated 'Elution Solution'. Extracted nucleic acid was further treated with DNase 

I (Ambion) to obtain only the RNA. RNA extraction using this kit produced good quality RNA, as 

judged by comparison with a sample of E. coli total RNA (Figure 2.6). However, the percentage 

RNA recovered from cells was low: only 5.6 Ilg of a theoretical amount of 50 Ilg was isolated 

from 1.0 00600 units of cells (Neidhardt et al., 1987). In addition, the glass-fibre filter that is 

central to this kit does not capture small RNAs smaller than 200 nt (Figure 2.6), which are now 

known to have a major role in regulation gene expression in bacteria (Wassarman, 2002). 

Also attempted was the extraction of RNA from protoplasts generated by incubating washed 

cells in a mixture of lysozyme and mutanolysin (Calandra & Cole, 1980). These enzymes degrade 
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peptidoglycan, more specifically the hydrolysis of the ~ 1-4 linkage between N-acetylmuramic 

acid and N-acetyl-glucosamine. The protoplasted cells were then lysed using silica beads 

(Lysing Matrix B) and Homogeniser Fastprep-24, and then total nucleic acid was extracted using 

phenol-chloroform and precipitated. The RNA produced by this method was degraded: instead 

of tight bands corresponding to 23S and 16S rRNA, a smear of smaller RNA fragments was 

detected (Figure 2.6). The source of the RNA degrading activity was not investigated, as 

experiments conducted in parallel indicated that a protocol developed for Streptomyces (Kieser 

et 01., 2000, Van Dessel et 01., 2004) yielded P. acnes total RNA of sufficient quality and quantity 

(Figure 2.6). Bands corresponding to 5S rRNA or tRNA were detected in addition to those for 

16S and 23S rRNA. Moreover, the yield obtained using this protocol was 3 fold higher than that 

obtained using the RiboPure-Bacteria kit. 

After potassium downshift and the biofilm culture, cells were shown to be still viable albeit with 

retarded growth. To determine if the integrity of P. acnes RNA under the established culture 

condition was still suitable for subsequent molecular analysis, RNA was isolated from culture 

under these conditions and analysed by gel electrophoresis: all were of good quality as judged 

by the presence of tight bands corresponding to the rRNAs (Figure 2.7). 
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Figure 2.6 Analysis of total nucleic acid isolated using different techniques by gel 

electrophoresis. P. aenes total nucleic acid was isolated using different techniques. The 

samples were loaded and analysed by gel electrophoresis; 1.2% [w/v] agarose. All protocols 

were carried out as described in Materials and Methods. Lane 1 contains purified E. cali RNA (a 

gift from Dr. Louise Kimel, while the rest contain P. aenes RNA. Lane 2 contains RNA isolated 

using the RiboPure™-Bacteria (Ambion); lane 3 and 4 contain total nucleic acid isolated using a 

protocol that incorporated mutanolysin and lysozyme, respectively, and lane 5 contains total 

nucleic acid isolated using Kirby mix (Streptomyces protocol). 
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Figure 2.7 Analysis of RNA isolated from P. aenes grown in liquid with and without potassium 

downshift and as a biofilm. All samples were analysed by electrophoresis using a 1.2% [w/v] 

agarose gel. All lanes contained P. aenes total RNA. lane 1 and 2 show total RNA isolated from 

cells without downshift and with downshift, respectively. lane 3 shows the total RNA isolation 

from a 4 week-old biofilm. For details of isolation procedures see text. 

2.3.5 Confirmation of kdp operon induction by RT-PCR 

Having identified conditions that produce reproducible P. aenes growth and a method for 

isolating high quality total RNA, the next step was to confirm that the potassium downshift 

induced the expression of the kdp operon, which as described in the introduction to this 

chapter encodes a potassium uptake system and an associated two component regulatory 

system (Ballal et 01., 2007). This was approached using RT-PCR analysis (Ballal & Apte, 2005). 

Primers were designed against PPA0116, a homologue of kdp8 (Figure 2.8) and PPA0010 (gyrA), 

which encodes DNA gyrase subunit A. The latter is considered a housekeeping gene and has 

been used previously by others as an internal control (Eleaume & Jabbouri, 2004) . RNA isolated 

from duplicate cultures of P. aenes with and without potassium downshift were analysed. The 
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downshift was mediated as outlined above by growing a culture to mid-exponential phase, 

harvesting the cells, splitting into two equal halves and washing and reincubating one half in 

standard HSM and the other in HSM to which potassium had not been added. After 1 h of 

reincubation, cell metabolism was quenched by adding phenol and total RNA isolated. 

As shown in Figure 2.8, the level of the kdp8 transcript is clearly higher following the potassium 

downshift, whilst the level of the gyrA transcript appears unchanged. Densitometric analysis of 

the gel revealed that the kdpA amplicon was 220-fold higher following potassium downshift 

(values normalised to gyrA amplicon). This represents a minimal fold change as the abundance 

of the amplicons corresponding to post-downshift samples probably plateaued prior to 

termination of the PCRs. Both the kdp8 and gyrA amplicons migrated as expected for their 

predicted size (179 and 85 bp, respectively). 
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Figure 2.8 Analysis of RT-PCR product from RNA isolated with and without potassium 

downshift. Complementary DNA was synthesised from equal amount of P. aenes RNA with and 

without downshift, and used as template for PCR amplification of segments of the target genes 

PPAOOi0 (gyrA) and PPA0116 (kdp8) and analysed by electrophoresis using a 2.0% [w/v] 

agarose gel. Panel A shows comparison between the gene organisation of kdp operon in E. coli 

and P. aenes. The direction of translation is indicated by the arrow. Forward and reverse primer 

binding site for the PPA0116 amplicon is boxed in blue and red, respectively. Panel B shows the 

result of electrophoresis . The different templates used in each lane of the PCR react ions are as 

indicated; lane M shows a 100-bp DNA ladder (Fermentas), lane 1 and 2 show product of PCR 

using genomic DNA and no template, respectively. Lane 3 and 4 show the product of PCR using 

cDNA synthesised from RNA without and with downshift, respectively. Lane 5 and 6 are as lane 

3 and 4 but of a biological replicate RNA samples. 
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2.4 Discussion 

The work described in this chapter was successful in growing P. aenes reproducibly in Holland 

synthetic medium (HSM) via batch culture (Figure 2.1), identifying a method for isolating high­

quality RNA in reasonable yields (Figure 2.7), and producing a predictable genetic response by 

means of a potassium downshift (Figure 2.8). This work provides a platform for investigating 

the response at the level of transcription of P. aenes to stresses encountered on the 

environment of the skin. Initially, it was thought that continuous culture would form the basis 

of physiological comparisons. Indeed, prior work has described the effects of glucose 

concentration, oxygen, temperature and pH in P. aenes in continuous culture in term of its 

biomass, maximum specific rate of growth, and extracellular enzyme production associated 

with the production of substance that may initiate inflammation (lipase, hyaluronate lyase and 

acid phosphatase) (Cove et 01., 1983, Greenman et al., 1981, Greenman et 01., 1983). However, 

when a condition results in slow growth, continuous culture is time consuming and can be 

particularly cumbersome should, for example, contamination occur. These drawbacks have to 

be outweighed by the ability to monitor and control multiple growth parameters. In the case of 

producing transcriptome data that can be mined to uncover mechanisms controlling cellular 

responses to physiological and environmental changes, most measurements have been made 

using batch cultures. An example of a transcriptome database dominated by results from cells 

grown in batch culture is the E. coli K12 database, which contains the results of over 3000 

microarray experiments and data from 85 publication and is curated by University of Stanford­

University of Princeton (Gollub et 01., 2003). Mining of E. coli transcriptome data from multiple 

experiments has identified network modules (sets of genes that are co-expressed under some, 

but not necessarily all, conditions) as well as new regulatory factors both cis and trans acting 

(De Keersmaecker et 01., 2006, Michoel et 01., 2009). Rather than to simply collect and analyses 

further samples from cultures in which growth was affected by altering other external 

parameters, such as pH and temperature, it was decided that the next priority would be to 

assess the extent to which the apparent reproducibility of growth in batch cultures is reflected 
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at the level of the transcriptome and to develop a pipeline of tools to analyse P. acnes gene 

expression and regulation. 

Although P. acnes is a unicellular organism, over the course of this study cells were found to 

clump, particularly when growing slowly. This provided a rational for the study of biofilm 

production. Previous work already indicated the ability of P. acnes to stick to biomaterial 

(silicon, steel titanium and plastic) by production of an exopolymer similar to the 

polysaccharide intercellular adhesion of S. aureus (Bayston et 01.,2007, Ramage et 01.,2003). By 

growing P. acnes on nitrocellulose disk, it was possible to produce a lawn of cells that were 

adhered to the surface of substratum. The viability of the biofilm culture was confirmed by 

fluorescence staining and confocal microscopy. High magnification under SEM revealed sheet­

and channel-like structure formed from P. acnes cells, confirming the formation of a biofilm 

(Figures 2.3 & 2.4). Biofilms are mostly composed of carbohydrates, the UDP-N­

acetylglucosamine-2-epimerase and glycosyl transferase has been hypothesised to playa role in 

synthesis of the glycocalyx polymer that constitutes P. acnes biofilm (Burkhart & Burkhart, 

2003). Indeed from the annotated P. acnes genome, it was found to posses UDP-N-acetyl-D­

mannosaminuronate dehydrogenase, UDP-N-acetylglucosamine2-epimerase, mannose-l­

phosphate guanylyltransferase, ExoA (succinoglycan biosynthesis protein), and various glycosyl 

transferases found in at least 3 gene clusters PPA125-134, PPA145-150, PPA1692-1700. 

Quorum-sensing is major part of regulating and initiating biofilm formation by synthesis of an 

autoinducer-2 signal molecule. This was shown by mutational studies of known biofilm forming 

organisms such as Streptococcus mutans, and Staphylococcus epidermidis (Merritt et 01., 2003, 

Xavier & Bassler, 2003, Xu et 01., 2006). Coeyne performed a comparative genome analysis of 

the P. acnes genome to that of Vibrio harveyi from which the quorum-sensing system, luxS, 

was first characterised (Coenye et 01., 2007). It was found that PPA0450 is a homolog to luxS, 

however genes involved in the signal transduction pathway of luxS were not found in P. acnes. 

Differential gene expression profiling of S. aureus biofilm and planktonic cultures using 

microarrays revealed gene clusters involved in cell wall synthesis, polysaccharide intercellular 

adhesins, and stress response proteins were significantly up-regulated. Over 200 hypothetical 
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genes with unknown function were also shown to be up-regulated (Resch et 01., 2005). Similar 

differential analyses were carried out in P. aeruginosa as the model biofilm forming organism 

with the aid of RNA-sequencing (Dotsch et 01., 2012). The work was able to develop multiple 

expression profiles of planktonic and biofilm cultures that correlated well to previously 

published work. In addition, over 600 putative transcriptional start sites and a 31 small RNA 

were reported to be expressed under biofilm conditions, which could not be identified by 

microarray analysis. It would therefore be interesting to compare the profile of gene 

expression in P. acnes biofilms not only with that of cells grown in liquid culture, but the 

biofilms of other bacterial species. 

Much of the work described herein also provides a platform for studying gene expression at the 

level of the proteome. Recent advances in mass spectrometry have dramatically increased the 

sensitivity, coverage and throughput of this approach (Cox & Mann, 2011, Wright et 01., 2012). 

Ultimately, it would be interesting to compare the results of analysing gene expression at the 

level of the transcriptome and proteome. Such comparisons have been done for other bacteria, 

including Streptomyces coelicolor, which like P. acnes is an actinomycete. Jayapal et 01. have 

shown the GroEL stress protein showed a discordant pattern in mRNA and protein expression 

level; the transcript level of groEL decreased with increased incubation time whilst the protein 

remains at a similar level of abundance throughout, suggesting post-translational modification 

of the protein allowing adaptation to different phases of growth (Jayapal et 01., 2008). Thomas 

et 01. investigated metabolic switches and adaptation of the bacterium to the deletion of phoP 

in S. coelicolor. They observed the change in carbon source from glucose to glutamate when 

phosphate was depleted; the level of enzymes involved in gluconeogenesis is high compared to 

the wild-type. The absence of the PhoP-regulated protein and its knock-on effect on oxidative 

phosphorylation resulted in an imbalance on the ratio of NAD/NADH. This led to the hypothesis 

that S. coeficolor utilises gluconeogenesis as a way to compensate for the imbalance in the ratio 

of NAD/NADH (Thomas et 01., 2012). Although proteomics adds another dimension to the 

analysis of gene expression, regulation at the level of translation, can still be detected at the 

level of transcription. For bacteria, it is well established that there is interplay between 
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translation and mRNA degradation (Yarchuk et 01., 1992). Changes that reduce the coverage of 

mRNA by ribosomes increase susceptibility to attack by ribonucleases (Carpousis et 01., 2009a). 

This is illustrated most recently by the finding that mRNAs bound by antisense RNAs that block 

translation are degraded more rapidly (Storz et 01., 2004, Masse et 01., 2003). This increased 

degradation although a secondary effect, which might reinforce effects on translation, is 

reflected at the level of transcript abundance. Thus, it cannot be assumed that differential 

gene expression observed at the level of the transcriptome reflects changes at the level of 

transcription initiation. For further details of bacterial gene regulation post-transcriptional 

initiation, readers are directed to several excellent reviews (Nogueira & Springer, 2000, Gold, 

1988, Arraiano et 01., 2010, Timmermans & Van Melderen, 2010). 
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Chapter 3 

3 Analysis of the global transcriptional responses of P. acnes to 

potassium-downshift 

3.1 Introduction 

The field of genetics up until the mid 1990's was largely focussed on identifying genes 

associated with specific phenotypes, such as the ability to undertake particular biochemical 

transformations or to facilitate transitions in the cell-cycle or developmental pathways. With 

the advent of genome sequencing and the cataloguing of thousands of gene families, the 

emphasis shifted towards discovering the function of previously uncharacterised genes and 

obtaining a more holistic view of how different genes interact to mediate cellular and 

developmental processes (Wang et 0/., 2009a). One approach was to describe the expression 

patterns of entire genomes, as genes that interact functionally tend to be co-expressed. This 

approach received a major boost with the description of DNA microarrays by the laboratory of 

Pat Brown in the 'Genome Issue' of Science (Schena et 0/., 1995). This technology, which 

allowed the expression of thousands of genes at the RNA level to be measured in parallel, far 

surpassed what had been achievable using nuclease mapping (Berk & Sharp, 1977), primer 

extensions (Shelness & Williams, 1985), dot blots (Kafatos et 0/., 1979) and macroarrays, its 

immediate predecessor (Wada et 0/., 1999). Over the last decade and a half, microarrays have 

been used extensively to study organisms ranging from bacteria to humans (Bier & Kleinjung, 

2001, Goldsmith & Dhanasekaran, 2004). 

Almost all of the microarrays that are used today are supplied by commercial manufacturers 

and contain probes that are synthesised in situ. Over the years, the density of probes has 

increased to allow transcriptional measurement to be extended to all regions of the genome, 

not just annotated genes. Indeed, arrays can now cover 3 Mbp with probes every 10 or so bp 
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on each strand. These high-density 'tiling' arrays enabled the discovery and study of 

untranslated regions, non-protein-coding RNAs, alternative transcriptional units and RNA 

processing. Today, single-nucleotide resolution is achievable using global RNA-sequencing 

(gRNA-seq), also called whole transcriptome shotgun sequencing (Mamanova & Turner, 2011). 

Currently, lIIumina Solexa is a popular platform for the actual sequencing steps of RNA-seq 

(Marioni et a/., 2008). However, as higher-throughput technologies are developed, these will 

replace lIIumina Solexa. Indeed, there are reports that single molecule direct RNA sequencing 

(DRSTM) technology is currently being developed by Helicos (Pushkarev et a/., 2009). 

The adoption of RNA-seq for transcriptomic studies will almost certainly lead to an unparallel 

expansion in the number of gene expression profiles, which for many model species, such as 

the bacterium Escherichia coli, are being collated in single compendia. This in turn should 

increase the power of computation approaches to identify the networks of gene interactions 

that mediate complex functions within the operational context of the whole cell. Moreover, 

single-nucleotide resolution should ease the identification of cis sequences shared by genes 

that are co-expressed. Having established growth conditions for P. aenes, this chapter first 

describes the use of microarrays to determine the extent to which reproducible growth is 

reflected at the transcriptome level and to chart the response of this organism to a model 

stimulus, potassium salt downshift. It then goes on to describe the adoption of a global RNA­

seq approach and its benefits over microarrays. 
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3.2 Materials and Methods 

3.2.1 Gene expression microarray 

Samples of total RNA were isolated and purified from duplicate cultures cultivated in HSM with 

and without potassium downshift (2 x cultures, 2 x conditions), as described in Chapter 2. The 

samples were then sent to Roche NimbleGen (Iceland), where they were analysed using their 

single-channel system and quadruplex chips; each of the arrays containing 12k probes; 16 

probes per target gene and two probe sets per array. The probes were 60mer oligonucleotides. 

The array design name was T1267747 _60mer for Propionibacterium acnes strain KPAl71202 

with probes designed using genomic data as detailed in NC_00608s. Probe intensities were 

collected and normalised using the algorithm Robust Multi-array Average (RMA) (Irizarry et 01., 

2003) also performed by Roche NimbleGen. For each of the four RNA samples, the normalised 

average probe intensity per gene for both probe sets was provided as a tabular delimited text 

file. Each of these data sets was then compared using M-A (ratio-intensity) scatterplots. For 

each A value, we calculated the average (Il) and standard deviation (0) of M in a moving 

window of 100 pairs that were sorted in ascending order of A. Upper and lower envelopes 

were defined by the equation: Il ± 30, and positions outside the envelope recorded, as 

described previously (Hovatta et 01., 2005, Marincs et 01., 2006). Details of specific comparisons 

are provided in the Results section. 

3.2.2 Rank Product analysis 

The statistical significance of the normalised probe intensity data were calculated using 

RankProdlt (http://strep-microarray.sbs.surrey.ac.uk/RankProductsl).This is an online tool that 

utilises the Rank Product/Rank Sum algorithm (Breitling et 01., 2004), which can identify 

differently expressed genes from two or more replicates. After the output was generated, lists 

of differentially expressed genes were obtained by sorting using the column 'probability of false 

positive value (pfp)' with the cut-off value of pfp < 0.15. 
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3.2.3 Global RNA sequencing 

The same RNA samples sent for microarray analysis were enriched for mRNA using 

MICROBExpress™-Bacteria oligocapture magnetic beads, as described by the manufacturer 

(Ambion). Global transcriptome sequencing was performed by Dr. Lira Mamanova (Well come 

Trust, Sanger Institute, Cambridge, UK) using enriched mRNA and a published methodology 

(Mamanova et 01., 2010a). Sequencing was done using an Iliumina Solexa platform. RNA 

sequences from the global analysis were processed in-house using Galaxy (Goecks et 01., 2010) 

and mapped to the genome using Bowtie 2.0 (Langmead & Salzberg, 2012) with custom 

parameter (-y -a -best -strata). 
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3.3 Results 

3.3.1 Analysis of the transcriptome for differentially expressed gene using gene expression 

array and Rank Product algorithm 

To obtain a global view of the P. aenes transcriptome in response to the potassium downshift 

(Chapter 2), total RNA samples were sent to Roche NimbleGen (Iceland), where they were 

analysed using their quadruplex chips and a two-channel system. Pairwise comparisons were 

then performed using M-A (ratio-intensity) scatterplots (Figure 3.1). Comparison of the results 

for the duplicate cultures without or with the potassium downshift (Figure 3.1, panels A and B, 

respectively) revealed that the vast majority of the M (ratio) values were close to 0, indicating 

that there was no major difference in the global gene expression of the two cultures. This is 

consistent with the high level of reproducibility which was obtained in cell culturing (Figure 2.2, 

Chapter 2). Similar results, with one important exception, were also obtained when gene 

expression was compared between cultures with and without potassium downshift (Figure 3.1, 

panels C and 0, respectively). The exception being that a small number of genes had M values 

well above the general scatter of points, i.e. had increased gene expression following potassium 

downshift. An initial inspection revealed that this group included genes of the kdp operon, as 

expected. Further analyses of changes in gene expression as a result of the downshift are 

described below. It should be noted that because each array contained a duplicate set of 

probes, each gene is represented by two pairs of M-A values. Our overall interpretation of the 

downshift data is that sampling after 1 hour allowed detection of a specific response, without 

sufficient time having elapsed for consequences on growth to be manifested. The re­

incubation period allowed sufficient time for P. aenes to respond to the potassium down-shift 

but not be affected by the removal of phosphate from the medium. 

Genes with altered expression as a result of the downshift were identified using two published 

approaches. The first was based on analysing the M-A scatterplots shown above, taking into 

account the scatter of points obtained when comparing biological replicates (Figure 3.1, panel A 

and B). The vast majority of the points in each comparison (with or without downshift) could 
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be contained with envelopes described by the equation ~ ± 30, where average (~) and standard 

deviation (0) of the M values are within a window of A values that slides from the lowest to 

highest value (i.e. moves left to right along the y-axis). No genes were found to be outside 

these 'noise' envelopes in both comparisons of the biological replicates (data not shown). In 

contrast, 32 genes were found to be outside the envelopes in each of the duplicate 

comparisons to determine the effects of the downshift (Figure 3.1, panels C and D). These 

genes and the corresponding fold changes are listed in Table 3.1. In addition, we analysed the 

microarray data using an online version of Rank Product algorithm (Laing & Smith, 2010), which 

detects differentially regulated genes in replicated microarray experiments. The filtering criteria 

for rank product analysis are based on the false positive discovery rate rather than a p-value of 

the comparison between two conditions. This is because with an increase in sample population 

there is also an increase in false discovery rate (Breitling & Herzyk, 2005). Many of the genes 

identified with altered expression by the analysis of the M-A scatterplots were also identified by 

Rank Product analysis (Table 3.1). These included all the genes of the kdp operon. Overall the 

analysis of the M-A scatterplots appears to have been more sensitive. In two cases, it identified 

all of the genes in a cluster with related function, while Rank Product did not (see PPA1287-90 

and PPA17S8-60). 
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Figure 3.1 M-A scatterplot of the gene expression values from microarray analysis. In panel A, 

the M values equal log2 (without-downshift sample 2/ without -downshift sample 1), and A 

equals (log2 without -downshift sample 2+ log2 without -downshift sample 1)/2. Panel B as A, 

but substituted values from with -downshift . In panel (, M values equals log2 (with­

downshift/without-downshift), and A equals (log2 with-downshift + log2 without-downshift)/2. 

Panel 0 as (, but biological duplicate. The circled region in panel ( and 0 highlight genes 

significantly upregulated from the effect of potassium down-shift. The red and blue pOints 

represent the upper and lower boundaries of the 'noise' envelopes. For each A value, the 

average (~) and standard deviation (0) were calculated from a sliding window of the 100 

corresponding A values. The upper and lower envelopes were defined by the equation: ~ ± 30. 
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Table 3.1 Genes showing significant change in expression with and without potassium 

downshift. 

Increase (+1/ Decrease (-I Fold change Probability offalse 

Gene Function expression in expression positive < 0,15 

PPA01l4 hypothetical protein + 201.4 + 

PPAOllS potassium-transporting ATPase subunit A + 242.3 + 

PPA01l6 potassium-transporting ATPase B chain + 224 + 

PPA01l7 potassium-transporting ATPase C chain + 69.1 + 

PPA01l8 two-component sensor, KdpO + 19.5 + 

PPA01l9 two-component response regulator, KdpE + 33.9 + 

PPA0120 hypothetical protein + 5.9 + 

PPA0476 glucosamlne-6-phosphate isomerase + 4.6 -
PPA0667 hypothetical protein + 2.5 -
PPAI091 hypothetical membrane associated protein + 3.1 -
PPA1092 protein with SuaS/ycIO/yrdC domain + 2.8 -

S'_methylthloadenoslne/S-adenosylhomocystelne 
PPA1093 + 2.4 -

nuciosldase 

PPAll0S phosphoglucomutase + 2.1 + 

putative glycerophosphoryl diester 
PPAI224 + 2.9 -

phosphodiesterase 

PPA1287 non-ribosomal peptide synthetase + 2.9 -

PPA1288 surfactin synthetase subunit 1 + 3.4 -

PPA1289 cysteine synthase/ornithine cyclodeamlnase + 3.6 + 

PPA1290 cystathionine beta-synthase + 4.1 + 

PPA1676 ferrous Iron transport protein A + 3.8 -

PPA1677 ferrous Iron transport protein B + 3.B -

PPA17SB outer membrane lipoprotein + 5.9 + 

PPA17S9 ABC transporter ATP-blndlng protein + 5.0 + 

PPA1760 ABC transporter aSSOCiated permease + 3.8 -

PPA2286 phosphoglucomutase/phosphomannomutase + 2.9 -

PPA2268 alanine dehydrogenase + 1.6 + 

PPAOO12 L-Iactate dehydrogenase - 2.3 -

PPA05S7 sodium-and chlonde-dependent transporter - 3.8 -

PPA0964 transcriptional regulator - 2.9 -

PPA1476 glycine betaine transport system permease protein - 2.1 -

PPA1807 hypothetical protein - 4.2 -
putative peptide transport system secreted 

PPA21S2 
- 3.0 -

peptide-binding protein 

PPA217S rare lipoprotein A (RlpAI family protein - 4.1 + 
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Analysis of the microarray data revealed that genes with the largest increase in expression were 

the structural components of the kdp operon PPA0115, PPA0116 and PPA0117 (242.3, 224 and 

69.1 fold respectively). The genes of the sensor kinase (PPA0118) and response regulator 

(PPA0119) were also expressed at a higher level (19.5 and 33.9 fold, respectively), but not as 

high as those of the structural components of the potassium-uptake system. The fold changes 

in the structural genes correlate well with the result of RT-PCR analysis described in Chapter 2, 

but lower than that reported for E. coli and Salmonella spp. (Frymier et aI., 1997, Hamann et aI., 

2008). In the absence of potassium downshift, the level of transcription of kdpDE is higher than 

the upstream genes of the operon. This would explain why, following potassium downshift, the 

fold increase associated with kdpDE is not as high. 

Unexpectedly, two adjacent genes were also found to be up regulated PPA0114 (201.4 fold) 

and PPA0120 (5.9 fold), both of which are annotated as encoding hypothetical protein. From 

the data alone, this suggests that PPA0114 and PPA0120 are part of the kdp operon in P. acnes, 

the remainder of which is highly conserved amongst bacterial species. Ancillary proteins have 

been identified in other bacteria, for example, the first gene in the kdp operon of E. coli 

contains a small protein (KdpF) that stabilise the KdpATPase-pump (Gassel et al., 1999). 

PPA0114 and PPA0120 are not however homologues of this E. coli protein. 

Genes encode protein involved in production of surfactants were also found to be up regulated. 

These genes encode non-ribosomal peptide synthetase (NRP5; PPA1287), cysteine 

synthase/orinithine cyclodeaminase (PPA1289) and cystathionine beta-synthase (PPA1290). 

The microarray data of the putative NRPS gene cluster (PPA1286 to PPA1291) showed a 3 fold 

increase in expression on average after potassium downshift. Studies of non-ribosomal 

peptides have shown that they can have high affinity for iron and fulfil a role as iron chelators in 

bacteria (Challis & Naismith, 2004). Other genes with increased expression were also linked to 

iron homeostasis; the ferrous iron transport proteins A and B (PPA1676 and PPA1677, 

respectively) showed on average a 4 fold increase. The simplest explanation is that K2HP04 and 

KH2P04 contained trace amount of contaminating iron, which when removed necessitates 
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increased production of an associated chelator and transporter. Interestingly, studies have 

reported that Pseudomonas spp. and S. aureus form biofilms under iron-limiting conditions to 

increase the acquisition of iron (Banin et al., 2005, lin et al., 2012). This may explain the earlier 

observation (Chapter 2) that cells tended to clump when cultivated in the absence of added 

phosphate, which was likely a source of iron. 

The sodium- and chloride-dependent transporter (PPA0557) and glYCine betaine transport 

system permease protein (PPA1476) showed a 3.7 fold and 2.2 fold decrease in expression. 

Glycine betaine is an important osmoprotectant (Robert 2000). It is likely that the observed 

changes reflect the reduced salt concentration of the media as a result of the potassium 

downshift, which would render the cells hypotoniC. Therefore, P. aenes would no longer need 

to accumulate glycine betaine to the same level. Reasons for the altered expression of the 

remaining genes remain obscure. 

3.3.2 Analysis of P. acnes transcriptome using global RNA-sequencing 

To obtain single nucleotide-resolution transcription maps of P. aenes before and after 

potassium downshifts, the RNA samples described above were also analysed using a new RNA­

sequencing approach that does not require a PCR amplification step (Mamanova et aI., 2010a). 

This was performed at the Wellcome Trust Sanger Institute by Dr. Lira Mamanova. Samples 

enriched for mRNA were fragmented by metal ion hydrolysis, dephosphorylated and then 

rephosphorylated to produce 5' -monophosphated ends to which an adaptor could be ligated; a 

sequencing adaptor was also ligated to the 3' end of RNA. The adaptors contained both DNA 

and RNA sequences; the former allows fragments to be attached to the flow-cell surface via 

hybridisation, while the latter allows the binding of an oligonucleotide that primes the synthesis 

of cDNA, which is then sequenced directly without peR amplification. The sequences, which 

were generated using an lIIumina Solexa platform, were then processed in Leeds using Galaxy 

(Goecks et aI., 2010), and mapped to the P. aenes genome using Bowtie 2.0 (Langmead & 

Salzberg, 2012). The number of times each position in the genome was read by gRNA-seq was 
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then calculated and the results viewed using the UCSC Microbial Genome Browser (Quinlan & 

Hall, 2010, Schneider et 01., 2006). This data provided an independent measurement of the 

response of P. oenes to the potassium downshift and extended the analysis to beyond 

annotated protein-coding genes. The later will be described in more detail in the next chapter. 

3.3.2.1 Comparison 0/ gene expression values between global RNA-sequencing and 

microarray. 

To determine to what extent the gRNA-seq data was comparable with the microarray results, 

the density of sequence reads (total number corrected for length) within the coding region was 

calculated for each gene. These density values were then plotted against the expression values 

determined using microarrays for the samples corresponding to before and after the potassium 

downshift. A positive correlation between the gRNA-seq and microarray data was obtained; 

however, there was a significant amount of scattering (Figure 3.2). Extreme outliers include 

PPA0971, PPA1877, and PPA2388, which are all annotated as hypothetical proteins. Expression 

of PPA0971 was 100 fold higher by gRNA-seq analysis. However, inspection of the sequencing 

data for PPA0971 using the UCSC Microbial Genome Browser revealed that the 3' coding region 

of PPA0971 overlaps that of a tRNA, which showed high level of expression (Figure 3.3, panel A). 

The expression of the tRNA gene did not complicate the analysis of the microarray data, as 

probes were not designed for the overlapping region. The above indicates that for a maximum 

value to be extracted from the gRNA-seq data it has to be viewed in the context of gene 

annotation. 

PPA1877 and PPA2388 are representative of genes found to have higher an apparent 

expression by microarray analysis. Visualisation of these and other genes using the Genome 

Browser found that expression was dominated by sequencing reads on the opposite, non­

coding strand (Figure 3.3, panel B and C). The apparent higher expression by microarray 

analysis reflects the fact that the NimbleGen service did not provide a strand-specific analysis. 

When the average gene expressions for gRNA-seq were calculated from both coding and non-
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coding strand, the two datasets showed tighter correlation and there was no gene found that 

showed higher expression by microarray analysis (Figure 3.2, panel C and D). PPA0971 is an 

outlier for the explanation provided above; the other data point PPA2027, which is to the right 

of PPA0971, also showed a significant increase in expression from the gRNA-seq data. For 

PPA2027, a tRNA overlaps with the coding region of PPA2027 on the opposite strand (data not 

shown) therefore increasing the average reads when both strands were used for calculation. 
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Figure 3.2. Scatter plot of average expression of protein coding genes from microarray and 

global RNA-sequencing. Start and end positions of the protein coding regions for P. aenes were 

obtained from NCBI database. The Average expression per gene was obtained by dividing the 

sum of the sequencing values, defined by the coding region, by the length of the respective 

gene. Panel A and B contained gene expression values from RNA isolation from P. aenes 

cultured in HSM without and with potassium downshift, respectively. The average gene 

expression values from gRNA-seq were calculated from the coding strand only. Panel C and D as 

A and B, except the average gene expression values from gRNA-seq were calculated using both 

coding and non-coding strand. The R2 value line indicates the correlation between the two 

dataset. The red and blue circles indicate the extreme outliers, where average gene expression 

values were significantly high in RNA-sequencing and microarray, respectively. 
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Figure 3.3. Global RNA-sequencing data of genes with significant difference in expression 

levels compared to microarray. Data obtained from gRNA-seq was processed as described in 

Materials and Methods and visualized using the UCSC Microbial Genome Browser. Tracks 

shown are the number of time each nucleotide has been sequenced. The forward and reverse 

strand are coloured in black and red, respectively. The numbers of sequencing reads are 

indicated on the left. Numbers at the top indicate the nucleotide position in the chromosome. 

Non-customised tracks provided show the protein coding, tRNA, rRNA and non-coding RNA 

region. Panel A, Band C show tracks for PPA0971, PPA1877, and PPA2388, respectively. 

3.3.2.2 Analysis 0/ potassium response by global RNA-sequencing 

Having confirmed the gene expression profile obtained from gRNA-seq is broadly comparable 

to microarray, the next step was to analyse further the genes identified as being differentially 

expressed by the microarray analysis. Analysis of PPA0114 and PPA0120 suggested that 

transcription of the kdp operon following downshift starts within the former. Consistent with 

this notion, analysis of the sequence immediately upstream of the leading edge of transcription 

revealed a possible -10 box promoter and a direct repeat that could be the binding site for KdpE 

(Figure 3.4, panel A). In light of the gRNA-seq data, PPA0114 does not appear to be part of the 

kdp operon. In the absence of potassium downshift PPA0120 appears to be transcribed 

independently of the upstream genes: there is a step increase in transcription immediately 5' to 

PPA0120. This suggests that this gene could function independently of the potassium uptake 

Systems. The increase in transcription following downshift may result from inefficient 

termination immediately downstream of kdpE (PPA0119). In the absence of potassium 

downshift, a leading edge can be detected upstream of kdpD. This likely corresponds to the 

promoter of a nested transcription unit that is obscured when transcription is induced from the 

promoter within PPA0114. 

Characterisation of the KdpE binding site in E. coli upstream of the kdpABC transcriptional start 

site, but not upstream of the kdpDE transcriptional start site further indicated an alternative 
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transcriptional regulation of kdpDE (Sugiura et 01., 1993, Sugiura et 01., 1992). In the presence of 

potassium, kdpDE was found to be transcribed as a transcriptional unit independent of kdpABC 

in E. coli. The transcriptional start site for the putative kdpD transcript in P. acnes correlated 

well with the work published in E. coli (75 bp upstream of the start codon of KdpO; (Polarek et 

01., 1992). Inspection of the 3' end nucleotide sequences of PPA0117 (KdpC) revealed a motif 

(TAAGGT) that resembles a -10 consensus sequence 14 bp upstream of the kdpD transcript 

(chromosome position 142112). However no motifs that resemble -35 consensus sequence 

could be found. This suggests kdpDE are regulated by a vegetative promoter, the poor matches 

to -35 consensus sequence limit the level of expression to a basal level as the cell only requires 

kdpOE to be expressed during osmotic shock. 

The gRNA-seq data also shows a transcriptional unit encompassing the putative NRPS gene 

cluster (PPA1286 to PPA1291) (panel B). Moreover, the fold increase in expression was similar 

to that detected using microarrays. In the absence of down-shift, a step increase in 

transcription was observed at the 5' end of PPA1287. This suggests independent regulation of 

the PPA1286-87 transcript from the PPA1291 transcriptional unit by a nested promoter. 

However, from the data alone, the step increase in transcription could correspond to a site of 

processing as well as transcriptional initiation. 

5S 



A 

-70 ( -50 
SWI codon of PPAOll~ I I 

137 230 GTGTTAGGAAAACGTCAGGATqcCGCACA~CCCATATFGGATCCGTAGG 
,1 S JI 

1 37 280 GAAGCGCGACAGCGGC CGGGTCACGCGGTTTCGATGGGTGGTGGTGCCAC 

..... 
". lOGO_ 

WIth~f'ljnf\ud 

B 

' -2OD'_ 

PPAO'II' = '10»»»»»»»») .,»H» »»»»») "PA01tO~ 
PPAOI1S »)H»» 

Sulo Z .. f-I-------
I "'50,1 '4>'001 14 .. 001 '4m,1 '435001 '440001 '445001 '450001 '455001 '460001 

Gaobtl RN ..... S~ 'IIrAthc:MA dot.I.K 

It: lJMtiHe 
Gf~bant ,,~ • ........ 

»»»»»~U»»»»»»)~) PPA0120 Pf 
ppA(nn )))))))))) 

""."., . 

..... " · 1 I 
Cfll 11'"'0001 ,"45001 ll!5000I,3S5$Ool,39I000I,,,,sool'H1000I'''1$OoI1:H1MKI01 13S85001 13!90001 13!15 OOI14_0o I1 4QO~ll"O'OODI14015OD11"OlOooI1.0l$OOI14G)Qool 

.. Ge!'lblinl RerSeq Ci""" A,.I'IOtaI'O"t 
"P""Z05(~(~~ ( PfA1Z07(«««(' (,««;((~q 

'-"" ....... 
WiIldcMKhift ...... 

See next page for figure legend 

56 



Fl,ure 3.4. Detection of P. tJCnes gene expression by global RNA-sequencing. Data obtained 

from gRNA-seq was processed as described in Materials and Methods and visualized using the 

UCSC Microbial Genome Browser. labelling as Figure 3.3. Panel A and B shows the putative kdp 

and non-ribosomal peptide synthetase cluster, respectively. Red arrows in panel A and B mark 

positions that suggest a separate transcriptional unit. The top insert of panel A shows the first 

100 bp nucleotide of PPA0114. The nucleotide coloured in red labels the putative start of the 

kdpABC transcriptional unit, denoted as +1. The double-ended arrow shows the putative 

binding site of PPA0119. The top inset shows the direct repeat sequence, putative -10 and -35 

regions are underlined. The bottom inset of panel A is a magnified view of PPA0118 and 

PPAOl19 at a different scale. 
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3.3.2.3 Idtmtlflcatlon 0/ differentially expressed genes by gRNA-seq 

The analysis described above demonstrates the sensitivity of the gRNA-seq approach. To 

determine if the downshift results in increased transcription of genes not covered by the 

NimbleGen arrays, the gRNA-seq data was analysed using an M-A scatterplot method (Figure 

3.5). The analysis was performed by comparing the sequence reads obtained at each nucleotide 

position with and without the potassium downshift. Forward and reverse strand were analysed 

separately (Panels A and B, respectively). Most of the M (ratio) values scattered around 0, and 

there was a clear group with M values greater than 0 (forward strand, panel A). This is 

consistent with the results of the microarray analysis; the most induced genes (kdp and NRPS 

operons) are encoded on the forward strand. Unexpectedly a large group with M values less 

than 0 for both strands was observed. To analyse the gRNA-seq further, an envelope was 

defined as described previously, and values above and below were selected for further analysis. 

The nucleotide positions corresponding to these values were then determined (UCSC Microbial 

Genome Browser). This analysis revealed that M values less than 0 corresponded to 'stacks' of 

short sequencing reads in the 'without-downshift' library (Figure 3.6). The origin of the stacks is 

unknown, but may be an artefact of gRNA-sequencing. The stacks were found throughout the 

genome on both strands (data not shown). The presence of these stacks complicates the 

screening of the gRNA-seq data for genes with altered expression as a result of potassium 

downshift. A set of rules to specifically eliminate stacks has not yet been defined. However, 

manual inspection of all the nucleotides positions with M values above the envelope did not 

identify any additional genes to those already identified by microarray analysis. 
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Figure 3.S M-A scatter plot of global RNA-sequencing reads. Generation of A and M 

values and the 'noise' envelope (red and blue trace) were as described in Figure 3.1, 

except using the sequencing reads. The average and standard deviation were calculated 

from a sliding window of the 5000 corresponding A values. Panel A and B show the 

comparison of the RNA-sequencing reads between RNA samples with and without 

downshift on the forward and reverse strand, respectively. 
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3.4 Discussion 

This chapter was successful in establishing that the conditions used to culture P. aenes (Chapter 

2) are sufficiently reproducible for specific genetic response(s) to be detected readily at the 

level of the transcriptome. Analysis of the microarray data using M-A scatterplots showed a 

high degree of similarity in the expression profile between biological duplicates (Figure 3.1). 

The genetic responses of potassium down-shift were also determined (Table 3.1). As expected, 

it revealed the increase expression of the Kdp system (PPA0115-PPAOl19), which is responsible 

for sensing and uptake of potassium. Unexpectedly, increased expression was also detected of 

genes involved in iron homeostasis via the synthesis of non-ribosomal peptide-based iron 

chelators (PPA1286-PPA1291) and the uptake of iron (PPA1676-PPA1677). It is postulated that 

the K2HP04 and KH2P04 that were removed were the source of trace amount of iron. The 

contamination of an AnalaR@-grade chemical with iron is precedent. Groups studying the iron 

regulation use iron-chelators to remove contamination from solutions used to make defined 

media. As mentioned above, the removal of an iron source may relate to the observation that 

cells tended to clump when cultivated following downshift, as physical association of cells 

increases iron acquisition (Banin et aI., 2005, Lin et aI., 2012). The up-regulation of genes for 

iron uptake from microarray data suggests physiologically, P aenes is preparing for biofilm 

formation. This can be investigated further by harvesting the cells for transcriptome analysis 

after longer exposure to the down-shift. During biofilm formation, cells are able to specialise 

their metabolism to behave as a community. Scarce nutrients can be concentrated and 

recycled within the depth of the biofilm. This mode of growth also causes slower metabolism, 

which reduces the amount of nutrient required (Hall-Stoodley et aI., 2004, Stewart & Franklin, 

2008). 

Global RNA-seq was also used to provide an independent measurement of the transcriptome 

profile, showing a clear positive correlation with the expression levels obtained from 

microarray (Figure 3.2, panel A and B). However, the increased resolution revealed important 

features not detected using microarrays. For example, it showed that PPA0114 is not part of . 
61 



the kdp operon. Transcription starts within, and not upstream of, this gene (Figure 3.4). It was 

also revealed that kdpD and kdpE (the sensory components) are transcribed independently of 

the uptake components prior to the potassium downshift, and suggested that PPA0120, the 

gene immediately downstream of kdpE, can be transcribed independently of the upstream kdp 

genes. In addition, the increased resolution allowed the identification of a direct repeat 

sequence that may be the binding site of KdpE. Further experiments will be required to confirm 

that this is the case. Viewing of the gRNA-seq data also confirmed that the genes identified by 

analysing values outside the 'noise' of M-A scatterplots did indeed have altered expression 

(data not shown). Thus, although this method has not been as widely adopted as Rank Product 

Analysis, it appears more sensitive. Rank Product analysis only detected some of the genes 

within regulated operons (Table 3.1). 

Another major advantage of gRNA-seq is the strand-specificity; the NimbleGen data was only 

specific for gene loci (Figure 3.2, panel C and 0; Figure 3.3). The gRNA-seq data was also as 

sensitive. NimbleGen have terminated its array service from June 2012, as the market is slowly 

being replaced by RNA-sequencing. Companies that provide transcriptome profiling are shifting 

towards RNA-sequencing and the improvement of the technology will make RNA-sequencing 

even more cost-effective. 

A limitation of the gRNA-seq approach (which is shared with microarrays) is that it does not 

readily identify nested transcription units. For example, the leading of the kdpDE transcription 

unit was obscured by upstream transcription upon potassium downshift (Figure 3.4). RNA-seq 

approaches have been developed to identify the 5' ends of nascent transcripts, differentiating 

them from those of processing and degradation intermediates. All the published differential 

RNA-seq approaches utilise a 5' -mono phosphate-dependent, 5' to 3' exonuclease 

(Terminator™ 5' phosphate-dependent exonuclease, TEX), and a pyrophosphatase (tobacco 

acid pyrophosphatase, TAP) (Sharma et al., 2010). TEX digests transcripts carrying a 5' 

monophosphate, leaving 5' hydroxylated and nascent triphosphorylated transcript untouched 

(He et al., 2010). Pyrophosphatase decaps nascent transcripts and convert RNA from 
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triphosphorylated to monophosphorylated form where sequencing adaptors can then be 

ligated (Levin et al., 2010). Determination of transcriptional start site has shown to add value to 

existing transcriptional networks as well as the construction of novel ones (Dotsch et aI., 2012, 

Sharma et aI., 2010). By understanding the locations of promoters, the transcription factor 

binding sites and consensus sequences for regulators can be elucidated to improve the 

understanding of transcriptional network (Salgado et al., 2013, Martin et al., 2010a). 

Differential RNA-seq analysis of the P. acnes samples is described in the next chapter. 
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Chapter 4 

4 Primary and secondary transcriptome analysis of P. Qcnes 

4.1 Introduction 

The 2.56 Mbp genome of P. acnes strain KPAl71202 contains 2,333 putative genes of which 87 

were annotated as encoding transcriptional regulators (Bruggemann et aI., 2004). Prior to the 

work reported here, no transcriptional start sites (TSSs) had been mapped experimentally. 

Other key aspects of gene regulation for which no information was available were mRNA 

turnover, which ensures translation follows programs of transcription, the generation of RNA 

components of the translational machinery, and the prevalence of small regulatory RNAs. The 

5' ends of primary transcripts of all class of RNA can be differentiated from 5' ends generated 

by cleavage steps in the processing or degradation of RNA. Studies of other bacterial systems 

suggest that most 5' ends of 'secondary' transcripts generated during processing or degradation 

will have a 5'-monophosphate group, while the vast majority of nascent transcripts of all classes 

will be synthesised with a 5' -triphosphate group (Carpousis et al., 2009b, Bechhofer, 2009, 

Belasco, 2010) 

To identify the 5' ends of primary transcripts, one half of the RNA sample was treated with 

tobacco acid pyrophosphatase (TAP), an enzyme that converts 5' -end triphosphates to 

monophosphate groups (Breter & Rhoads, 1979), prior to constructing and sequencing cDNA 

libraries of native 5' -end fragments. An increased number of sequencing reads from a 5' end 

following TAP treatment is an identifier of a TSS. By combining this differential approach with 

gRNA-seq, we present at single-nucleotide resolution maps of the primary and secondary 

transcriptomes of P. acnes, and demonstrate their utility in exploring gene regulation. To 

reduce the number of reads stemming from ribosomal RNAs, we removed much of the 23S and 

16S species in our samples using commercially available 'capture' oligonucleotides. Reads for 

these rRNA species were still obtained, but represented only 40% of the total. The 
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incorporation of a fragmentation step allowed the 5' ends of long as well as short RNAs to be 

characterised. Sequencing was done using the IIlumina Solexa platform. TSSs can be identified 

without erasing the secondary transcriptome using TEX (Terminator™ 5'-Phosphate-Dependent 

Exonuclease), which is reported to preferentially degrade transcripts terminating with a 5'­

monophosphate group. 
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4.2 Materials and Methods 

4.2.1 Differential RNA-sequencing 

The same RNA samples (before and after potassium down-shift in duplicate) used for 

microarray and gRNA-seq analysis were sent for dRNA-seq, data was generated by vertis 

Biotechnologie AG (Germany). The service included the construction of cDNA libraries before 

and after treatment with tobacco acid pyrophosphatase (TAP), and the alignment of RNA 

sequences to the genome, which was retrieved from NCBI (accession number AE017283). The 

5'-sequencing adaptor was ligated to transcripts prior to fragmentation, thereby allowing the 5' 

ends of both long and short transcript to be detected. RNA samples were enriched for mRNA 

using MICROBExpress™-Bacteria beads, as described by the manufacturer (Ambion). IIlumina 

solexa platform was used for the sequencing. Pairs of datasets were compared using M-A 

scatterplots as described in Chapter 3, except for each A value, we calculated the average (Il) 

and standard deviation (o) of M in a moving window of 5,000 pairs sorted in ascending order of 

A. Upper and lower envelopes were defined by the equation: Il ± 30, and positions outside the 

envelope recorded, as described previously (Hovatta et aI., 2005, Marincs et aI., 2006). Details 

of specific comparisons are provided in the Results section. 
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4.3 Results 

4.3.1 Transcriptional start sites 

Transcriptomes of duplicate cultures of P. oenes grown as described in Chapter 3 were analysed. 

The differential approach described here used 8 cDNA libraries; 2 replicates x 2 conditions x 2 

treatments (minus or plus TAP treatment). Three to six million reads were obtained for each 

library and mapped onto the P. oenes genome. For each library, for each position in the 

genome, the number of times it was the first nucleotide of a sequencing read was counted. For 

each replicate and condition, M-A scatterplots [where M = lOg2 (reads plus/minus TAP 

treatment), and A = (lOg2 plus + log2 minus)/2] revealed a population of values that centred 

close to an M value of 0, corresponding to sites of processing and degradation, and another 

with higher M values, corresponding to transcriptional start sites (Figure 4.1). The envelope of 

the population corresponding to sites of processing and degradation was defined using an 

established method (see Material and Methods). Nucleotide positions with M values above the 

envelope that contained sites of processing and degradation were then identified. To increase 

the power of our analysis, we combined the sequencing results before and after potassium 

downshift. Positions with M values above the envelope in each of the four experiments (2 

duplicates x 2 conditions) were designated positions of transcription initiation, and positions 

within 8 nt of each other were classified as belonging to the same T55. With regard to the latter, 

it is well established that many promoters can initiate transcription at more than one 

nucleotide position. For the few genes that showed a change in gene expression following 

potassium downshift, the stringency of the analysis was reduced to the condition under which 

transcription could be detected most readily. By this approach we identified 4,058 T55s (Table 

51). 

The majority of the reads that we obtained by differential RNA-seq (>99.5%) represented 

processing and degradation sites (PD5s). P. oenes encodes three endoribonucleases, RNase E 

(Ghora 8& Apirion, 1978), RNase Y (5hahbabian et 01., 2009) and RNase III (Robertson et 01., 

1968), and a dual endonuclease/5' to 3' exonuclease, RNase J (Even et 01., 2005, Mathy et 01., 
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2007), (Table 53) that could account for the large number of PD5s detected in the 

transcriptome. 
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Figure 4.1. M-A scatterplots of values from differential RNA-seq. Panels A and B show 

represent the data for cells cultured without and with a potassium downshift, respectively. 

Panels C and D, as A and B, except data is for a duplicate pair of cultures. The M values 

correspond to LOg2 (Plus/Minus) and A values to (Log2 Plus + Log2 Minus}/2, where minus and 

plus refer to the number of reads before and after treatment with TAP. For further details, see 

Materials and Methods. The red and blue points represent the upper and lower boundary of 
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the envelope containing sites of processing. The boundaries were defined by sorting the pairs 

of values in ascending order of A, and then calculating the average (~) and standard deviation 

(o) of M in a moving window of 5,000 pairs. Upper and lower envelopes were defined by the 

equation: ~ ± 30, and positions outside the envelope recorded, as described previously 

(Hovatta et aI., 2005, Marines et aI., 2006). 

Next we viewed the positions of the TSSs alongside the results of global RNA-seq, which reveals 

the 3', as well as 5', boundaries of transcripts and their abundance (Wang et 01., 2009b, 

Marguerat & Bahler, 2010). For each position in the genome, we determined the number of 

times it was read by global RNA-seq. Viewing the two sets of RNA-seq data side by side 

revealed that the TSSs we identified belong to all classes of functional RNA. We detected TSSs 

for mono- and poly-cistronic mRNA, transfer RNA, ribosomal RNA, and ubiquitous small RNAs 

(Figure 4.2). This included TSSs identified for the pqs locus, which encodes a two-component 

system thought to be involved in quorum sensing, using standard 5' RACE (Guan, 2011). 

Interestingly, the majority of TSSs we identified appeared to be associated with short 

transcripts of low abundance « 50 reads, see panel G). The functions of these transcripts are 

cryptic with a large proportion being found within coding regions on both the sense and 

antisense strands. Evidence for 'pervasive' transcription, a widespread phenomenon in 

eukaryotes (Jacquier, 2009, Marguerat & Bahler, 2010), is emerging in bacteria (Albrecht et 0/., 

2010, Beaume et 01., 2010, (ho et 01., 2009, Dornenburg et 0/., 2010, Filiatrault et 01., 2010, 

Georg et 01., 2009, Guell et 01., 2009, Jager et 01., 2009, lasa et 01., 2011, liu et 01., 2009, Martin 

et 01., 2010b, Mendoza-Vargas et 01., 2009, Mitschke et 0/., 2011, Rasmussen et 01., 2009, 

Sharma et aI., 2010, Toledo-Arana et 01., 2009, Wurtzel et 01., 2010). Of the TSSs we identified, 

1106 were associated with step increases in transcription that continued into annotated genes, 

as illustrated in Figure 5.2, or produced discrete RNAs of high abundance relative to flanking 

regions (Table S2). 
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Figure 4.2. TSSs associated with examples of different classes of RNA. Panels A, B, C, D, E, F 

and G show data corresponding to monocistronic mRNA (PPA0001/0002), polycistronic mRNA 

(PPA1308-1310), tRNA, rRNA, tmRNA, SRP RNA, and pervasive transcriptional start sites, 

respectively. The panels are screenshots from the UCSC Microbial Genome Browser (Schneider 

et aI., 2006). In each panel the tracks depict from top to bottom, the position of annotated 

genes (protein and, as appropriate, RNA coding), the number of times each nucleotide position 

was the first in sequence reads before and after treatment with TAP (dRNA-seq data), the 

positions of TSS identified by the analysis of M-A scatterplots (Table Sl), and the number of 

time each position was sequenced following fragmentation of the transcriptome (gRNA-seq). 

The numbers at the left of RNA-seq tracks indicate the scale of the sequencing reads, while the 

numbers at the top of each panel indicate the genome position. TSSs in black text were judged 

by viewing of the gRNA-seq data to be associated with step increases in transcription, while 

those in blue text were not. 
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4.3.2 Transcription and maturation of stable RNAs 

We find that the 45 tRNAs encoded by the P. acnes genome are organised as 41 transcriptional 

units (data not shown). In stark contrast to what has been found for B. subtilis (Dittmar et 01., 

2004), which along with E. coli is one of the main model systems in which tRNA processing has 

been studied in detail (Hartmann et 01., 2009), none of the P. acnes tRNA genes are part of the 

rRNA operons in P. acnes, of which there are 3. Another striking difference is that most P. acnes 

tRNA genes are transcribed individually: we only found one example of a tricistronic tRNA 

operon (Val, GAC; Cys, GCA; Gly, GCC), and two examples of dicistronic operons (Met, CAT; Thr, 

GGT; and Asp, GTC; Phe, GAA). Thus, co-transcription does not appear to be a major means of 

regulating stable RNA production in P. acnes, unlike the situation in B. subtilis. 
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Figure 4.3. Location of 3' processing sites for tRNA. Panels A, B, e and 0 show correspond to 

tRNAs Gin, TIG (PPA2415), Gly, eee (PPA2455), Ser, TGA (PPA2461) and Gly, Tee (PPA2438), 

respectively. For each panel, the tracks depict from top to bottom the position of annotated 

genes, the average of the dRNA-seq values before and after TAP treatment (combining values 

for the control and potassium-downshift sample), and values obtained by gRNA-seq. Vertical 

lines and arrows indicate the location of 3' side of CCA encoded in the genome and 3' 

processing sites, respectively. Remainder of the labelling, as Figure 4.2. 
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Analysis of our differential RNA-seq data revealed processing sites (i.e. 5' end sequences of 

intermediates) within several nucleotides of the annotated 3' end of 44 of the 45 P. aenes 

tRNAs (for examples, see Figure 4.3). This was a surprise, as just over half of the tRNA genes in 

P. aenes encode a CCA triplet at their 3' end. In current models of tRNA 3' processing in 

eubacteria, the 3' end of such tRNA is thought to be generated by the action of 3' exonucleases 

(Hartmann et aI., 2009). We detected processing immediately 3' to ends to which CCA could be 

added post-transcriptionally and 3' to template encoded CCA codons (see panels A and B, 

respectively). More surprising, the processing sites in approximately half of the tRNA 

transcribed with the CCA triplet removed this motif (see panel C and D), which is essential for 

tRNA function. However, the bulk of tRNAs have a CCA motif as detected by gRNA-seq. This 

apparent paradox can be explained, if following endonucleolytic cleavage another CCA triplet is 

attached post-transcriptionally. P. aenes has a homologue of tRNA nucleotidyltransferase, but 

to our knowledge this enzymes has only been associated with the attachment of CCA to tRNAs 

not transcribed with this motif at their 3' ends (Hartmann et aI., 2009). There is not obvious P. 

aenes homologue of tRNase Z (Table 53), the endonuclease that can generate the 3' end for the 

post-transcriptional attachment of the CCA in E. coli, B. subtilis and other bacteria (Hartmann et 

al., 2009). Thus, another 3' tRNA processing endonuclease remains to be identified in bacteria. 

This demonstrates the value of studying fundamental processes in bacteria out with accepted 

model species. P. aenes contains homologues of RNase PH and RNase 0, two 3' to 5' 

exonucleases involved in trimming tRNA, and tRNA nucleotidyl transferase (Table 53). 

Differential RNA-seq also identified mature tRNA 5' ends (Figure 4.3), which are generated by 

RNase P (Hartmann et aI., 2009), an endonuclease composed of a catalytic RNA and a protein 

(Table 53). 

For each of the three rRNA operons in P. aenes, two T55 were identified upstream of the 16S 

rRNA gene, an arrangement reported previously in E. coli (de Boer et al., 1979, Gilbert et al., 

1979, Young & Steitz, 1979) and B. subtilis (Stewart & Bott, 1983). For each operon, we also 

identified staggered cleavages in complementary regions that flank mature 16S and 23S rRNA 
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and facilitate extensive base-pairing (Figure 4.4). These cleavages are likely mediated by the P. 

Denes homologue of RNase III (Table 53), which is a well characterised double-stranded-specific 

endoribonuclease (Nicholson, 2003) with a wide-spread role in the maturation of ribosomal 

RNA (Deutscher, 2009). In addition to sites of putative RNase III cleavage, we identified sites 

corresponding to the mature 5' ends of all three ribosomal RNAs and the mature 3' end of 165 

rRNA. We also identified sites within one or two nucleotides downstream of the mature 3' end 

of 235 and 55 rRNA. Thus, the maturation of rRNA in P. aenes appears to make extensive use of 

endoRNases. All of the sites described above were associated with a step-change in transcript 

levels. Following endonucleolytic cutting, the mature 3' ends of P. aenes 235 and 55 rRNA 

trimming of short 3' tails. Regarding the generation of the mature 5' end of 165 rRNA, P. aenes 

has homologues of both RNase J and RNase E (Table 53), ribonucleases that mediate this 

function in B. subtilis and E. cali, respectively (Deutscher, 2009). Interestingly, we also 

identified cleavage sites within 165, 235 and 55 rRNA. These may represent steps in controlling 

the quality of rRNA (and ribosomes) or preventing rRNA accumulation in excess of ribosomal 

proteins. 
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Figure 4.4. Location of ribosomal RNA processing sites. Panel A shows an annotated view of 

the rrnA cluster. The vertical arrows at the bottom indicate the position of transcriptional start 

sites and major processing sites referred to in the text, respectively, Predicted RNase III sites 

are labelled. Short horizontal arrows indicate positions of complementary regions that facilitate 

extensive base-pairing- Panel Band C show the base-pairing sequences of the S'UTR and 3'UTR 

of 165 and 235 rRNA, respectively. The nucleotide position of the RNase III cleavage sites are 

shown and marked by vertical lines. Remainder of the labelling, as Figure 4_2. 
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Our approach was also able to identify specific cleavage sites in other classes of RNA. For 

example, we detected putative RNase III sites within a base-paired region of the 5' leader of the 

mRNA of pnp mRNA (Figure 4.5), which encodes a 3' to 5' exonucleases (Table 53). Cleavage at 

the equivalent sites in E. coli has been shown to produces 3' ends that are accessible by PNPase, 

thereby setting an autoregulatory mechanism that ensures that any increase in PNPase 

production is only transitory as it leads to increased degradation of pnp mRNA (Jarrige et 01., 

2001, Robert-Le meur & Portier, 1992, Robert-Le meur & Portier, 1994). This autoregulatory 

mechanism would appear to be evolutionarily conserved : experimental evidence for its 

existence in Streptomyces spp. has been obtained (Gatewood et 01., 2011) . 
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Figure 4.5. Location of RNA processing sites in 5' UTR of pnp mRNA. Panel A shows the RNA­

seq data, while panel B shows the location of the processing sites relative to the secondary 

structure of the 5' UTR as predicted using Mfold (Zuker, 2003). The labelling of panel A is as 

Figure 4.2. Panel B, the nucleotide positions are numbered relative to the T5S, wh ile the sites 

of processing are numbered relative to the genome. 
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4.3.3 Vegetative promoters 

To gain knowledge of vegetative promoters in P. aenes, we aligned with the aid of MEME 

(Bailey et al., 2009) the sequences upstream of 92 T55s associated with genes of the 

translational machinery (Figure 51). This revealed a hexanucleotide sequences GnTInG and 

TAnnnT centred on average -36 and -9 nt, respectively, from the centre of the T55s {Figure 4.6}. 

These sequences and their relative locations are similar to the consensus reported previously 

for 'vegetative' promoters of E. coli (Harley & Reynolds, 1987, Lisser & Margalit, 1993). 

Following convention established for E. coli, we will refer to the above P. aenes sequences as '-

35' and '-10' boxes, respectively. The consensus sequences of the equivalent boxes in E. coli 

promoters, TIGACA and TATAAT, are centred on average -33 and -10 nt, respectively, from the 

centre of the TSSs (Harley & Reynolds, 1987, Lisser & Margalit, 1993). The positioning of the -

35 box of E. coli closer to the TSS, means that the shared TnG (located in the 5' half of the E. coli 

box and in the 3' half of the P. acnes box) is on average in the same position relative to the TS5 

in both organisms. Thus, it appears that the sequence specificity of the housekeeping RNA 

polymerases in P. acnes and E. coli retain elements in common despite these organisms 

diverging over 300 million years ago. 
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A 

B 

Figure 4.6. The conserved sequences of promoters associated with the translational 

machinery. Panels A and Bare Weblogo representations (Crooks et 01., 2004) without and with 

changing the length of the spacer of individual promoters to maximise the alignment of the -35 

box (Figure 51). The combined height of nucleotide symbols shows the level of sequence 

conservation at a particular position, while the height of individual symbols within a stack of 

nucleotides indicates the relative frequency at that position. The nucleotide positions are 

numbered relative to the average position of TSSs. In panel B, this numbering only extends to 

the point at which gaps were introduced to maximise the alignment. 
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We next analysed the sequences upstream of the 1106 T55s associated with step increases in 

transcription. This revealed that the vast majority had appropriate positioned sequences 

matching the -10 box consensus. For example, using MEME, we identified 872 that matched 

the single most common sequence variant (TAnnnT). As an aside, this finding reinforces that 

the dRNA-seq approach described above identifies bona fide transcriptional start sites. 

Computation predictions of promoters in Propionibacterium and related genera that utilised 

the promoters identified here as a learning set will be presented elsewhere. Consistent with 

the analysis of the promoters of rRNA, r-protein and tRNA genes (Figure 51 and 4.6), the overall 

level of sequence conservation at the -35 position was considerably lower. Nevertheless, 

promoter sequences were identified that also matched the single most common sequence 

variant of the -35 box consensus (GnITnG). In addition to the promoters of rRNA, r-proteins 

and tRNA genes, this included elongation factor Tu (PPA1873), hypothetical proteins (PPA0201, 

1052, 1403, 1421, 1516, 1680, 1879, 1986), TetR family regulator (PPA0529, 1205), 3-oxoacyl­

ACO reductase (PPA1533), alanine dehydrogenase (PPA2274), cytochrom d ubiquinol oxidase 

subunit I (PPA0176), dihydrolipoamide acyltransferase (PPA0693), fructose-1,6-bisphosphate 

aldolase (PPA2024), isopentenyl-diphosphate delta isomerise (PPA2115), sodium/hydrogen 

antiporter (PPA2203), nitric-oxide reductase subunit B (PPA1975), polynucleotide 

phosphorylase (PPA1471), uridylate kinase (PPA1519) and translation initiation factor IF-2, IF-3 

(PPA1493, 1414). Moreover, these promoter were associated with some of the highest 

transcript levels (data not shown), consistent to the well-established finding that promoters 

with matches to a consensus tend to be 'strong' (Huerta & Collado-Vides, 2003). 

4.3.4 Uncovering multiple layers of regulation 

The identification of TSSs and promoter sequences alongside our high-resolution transcriptome 

maps provides a much improved platform for assessing the complexity of gene regulation. This 

is illustrated here using the P. acnes homologue of NdrR, a transcription factor that controls the 

expression of ribonucleotide reductases (RNRs) (Borovok et 01., 2004, Torrents et 01., 2007), and 

the pqs operon (Guan, 2011). By using MEME to compare sequences -60 to +15 relative to T55s 
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mapped for ndrR and genes encoding components of RNRs, we were able to identified probable 

binding sites for NdrR (referred to here as ndr-boxes). These binding sites overlapped some, 

but not all of the identified promoters: a pair of ndr-boxes overlapping the distal promoter of 

two for the ndrRJ operon and a single ndr-box overlapping the ndrAB promoter (Figure 4.7). 

Moreover, after constructing a position-weight matrix and scanning the entire genome of P. 

ocnes using PREDetector (Hiard et 01., 2007) we identified another pair of ndr-box far 

downstream of the ndrDG promoter. Our analysis shows that the transcription of ndrR and 

some of its targets are under the control of multiple promoters, only some of which are 

regulated by NdrR. 
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Figure 4.7. Transcription, promoters and cis-regulatory motifs within the ndr operons. Panels 

A, B, and C correspond to the ndrRJ (PPA1025-1026), ndrAB (PPA2121-2122), and ndrDG 

(PPA2137-2136) operons, respectively. For each of these panels, the tracks show, from top to 

bottom, the positions of annotated genes, the position of transcriptional start sites (Table 51) 

and the gRNA-seq data. The insets in each panel indicate the positions of predicted ndr-boxes 

and their sequences. Remainder of the labelling are as Figure 4.2. 

Perhaps more surprisingly, we also found evidence of post-transcriptional control: much of the 

transcription of the ndrAB operon appears to terminate before the first structural gene (Figure 

4.7). Consistent with this interpretation, the 5' UTR region of ndrAB is annotated as containing 

a cobalamin riboswitch (Griffiths-Jones et 01., 2005), a cis-regulatory element that is widely 

distributed in the 5' UTRs of cobalamin- (vitamin B12) related genes in eubacteria (Barrick & 

Breaker, 2007, Franklund & Kadner, 1997, Nahvi et 01., 2002, Vitreschak et 01., 2003). 

Interestingly, the 5' UTR of ndrDG, but not the ndrRJ operon is also annotated as containing a 

cobalamin riboswitch. Furthermore, the activity of the RNR encoded by ndrJ, which is co­

transcribed with ndrR, is cobalamin dependent (Nordlund & Reichard, 2006), and we can detect 

expression of cobalamin biosynthetic genes. Thus, the post-transcriptional control we have 

identified may bias RNR production towards NdrJ when cobalamin is available. 

Our results also lead us to propose that under the anaerobic conditions used for this study NdrR 

is active. The bulk of the transcription of ndrRJ appears to initiate at the distal promoter, not 

the proximal promoter overlapped by a pair of ndr-boxes, and we did not detect transcription 

initiation in the immediate vicinity of the pair of ndr-boxes located upstream of ndrDG. We did 

detect relatively high levels of transcription from an ndrAB promoter, but this is overlapped by 

only a single ndr-box. We also speculate that should a promoter exist in the Vicinity of the ndr­

boxes located upstream of ndrDG inactivation of NdrR will produce a transcript lacking a 

functional riboswitch, thereby removing the cobalamin regulation. The RNR encoded by the 

ndrDG operon is thought to function under anaerobic conditions. 
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The pqs locus contains a two-component system that is unusual in two regards. The genes of 

histidine kinase (HK) and response regulator (RR) are divergently transcribed, and the gene 

encoding histidine kinase is preceded by a gene predicted to encode an extracellular signalling 

peptide (EPS) (Figure 4.8). Prior to undertaking the approach described here we had studied 

the transcription of this locus by 5' RACE and qRT-PCR (Guan, 2011). This revealed single 

promoters upstream of the EPS and RR genes and suggested that the EPS and HK genes were 

co-expressed at different stages during batch culture. By comparison, our combined RNA seq 

approach revealed much more. It not only identified both of the promoters identified by 5' 

RACE and confirmed that transcription from EPS continues into RR, it identified a second TSS 

upstream of the EPS gene and identified a small antisense RNA overlapping the 5' end of RR 

transcript (Figure 4.8). Both of these new elements have now been incorporated into a 

continuing dissection of the pqs locus. 
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the boundaries for a potential antisense transcript for the PPA0945-0946 transcriptional unit. 
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4.3.5 Identification of potential sRNAs 

As indicated above, we identified a number of TSSs that were associated with step increases in 

transcription that did not continue into annotated protein-coding or stable RNA genes, but did 

produce discrete sRNAs of high abundance relative to the flanking regions. In addition to the 

ubiquitous bacterial sRNA, 6S RNA, tmRNA, SRP and the RNA component of RNase P (Figure 4.2), 

this group included 18 examples of what appears to be attenuation, the regulated termination 

of transcription upstream of structural genes (Henkin & Yanofsky, 2002), 41 examples of sRNAs 

antisense to the transcripts of protein-coding genes and 28 examples of sRNAs largely encoded 

within intergenic regions (Table S4). The presence of TSSs upstream of the latter indicates that 

they are not metastable decay intermediates of an mRNA. Examples of each of the sub-groups 

are shown in Figure 4.9. Our results indicate that, as is being found increasingly in other 

bacteria, sRNAs are likely to a major role in the regulation of gene expression in P. aenes. 
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Figure 4.9. Examples of P. acnes small RNAs. Panels A, B, C and D correspond to examples of 

riboswitch, cis-encoded antisense RNA, intergenic sRNA of unknown function, and metastable 

decay intermediates. For each of these panels, the tracks show, from top to bottom, the 

positions of annotated genes, the position of transcriptional start sites (Table 51) and the gRNA­

seq data. Labelling, as Figure 4.2. 

88 



4.3.6 Leaderless mRNAs 

While mapping T55s, we noticed several examples that coincided with start codons for 

translation (Figure 4.10). This prompted us to gauge the prevalence of leaderless mRNAs in P. 

aenes. The start codons of protein-coding genes, as annotated in the NCBI database (Pruitt et 

01., 2007), were collated and their positions mapped against TS5s associated with a step 

increase in transcription (Table 51). This revealed 50 instances of annotated start codons 

overlapping TT5s and another 88 where start codons followed TS5s within 10 nt (Table 55). The 

latter produce a 5' leader that is generally considered too short to recruit ribosomes via the 

canonical 5hine-Dalgarno interaction, which requires base pairing between the leader and a 

complementary sequence in the 3' end of 16S rRNA (Shine & Dalgarno, 1974, Shine & Dalgarno, 

1975). We also identified 15 instances of mRNAs with relatively short 5' leaders «20 nt) within 

which we were unable to detect 5hine-Dalgarno sequence using RBSfinder (Suzek et 01., 2001) 

(Table S5). From the above, we concluded that in sharp contrast to what has been found for 

nascent mRNAs in E. coli (Janssen, 1993), translation initiation in the absence of a Shine­

Dalgarno interaction appears to be prevalent in P. acnes. Analysis of the ontology of genes 

associated with 'leaderless' mRNA failed to identify enrichment of particular functions. We 

identified leaderless mRNAs associated with biosynthesis of cofactor (PPA1698, PPA1943), DNA 

metabolism (PPA2027), energy metabolism (PPA0661, PPA1376), phosphorus compounds 

(PPA0744), protein synthesis (PPA1344), regulatory functions (PPA1568) and the rest being 

hypothetical protein or unknown function (PPA0220, PPA0346, PPA0436, PPA1011, PPA1046, 

PPA1246 and PPA1899). The proportions of AUG, GUG, UUG start codons were 68%, 29% and 

3%, respectively. This is similar to the proportion reported for another actinomycete, 

Streptomyces coelicolor (Vockenhuber et 01., 2011). The mechanism by which leaderless mRNA 

is translated in actinomycetes has not been determined, to our knowledge. Very recently it has 

been shown that leaderless mRNAs can be generated post-transcriptionally by a stress-induced 

mRNase that is the toxic component of a toxin-antitoxin system (Vesper et 01., 2011). Should 

such processing also exist in P. acnes, the detection of the corresponding sites would require us 

to add a phosphorylation step to facilitate the cloning and sequencing of the 5' -hydoxylated 

fragments that are produced by toxin mRNases. 

89 



A 
scale 1 kill I 

the 1 13350001 13355001 13360001 13365 
~ Genban~ RefS~q Gene Ann olall0n, 

PPA1Zl6 ~ <<< «« « <((<< « «<<< « «« « « < 
PPAlZZ7 »»»»»» »»»»») »»»»»»» »»»») »»») »»»»» 

TAP enr\heCi FWO 
E~133513ZI E~l33S&<sl EN-133&<Zol 

EN-
gRNA-.. q W11I1 downslll1t FWD 

"RNA-seq 'oNith down' 2#. ,"s 27t. .t.; 
B 

C 

Scale 
chI 

PPAOZ81 

ZSO 

gRNA-seq will down' 

0_ 

3320001 
1 ~~1 -----------------------

3325001 3330001 

Genbank :'iiiiiii 
PPAOZ83 1 

PPA0282 »»»»»»»»»»»»»»»»»» 
TAP ennhed FWD 

EN-33Z1S31 

scat. ~co basnt-I ----------------
chr I 3572001 3573001 3574001 3575001 3576001 35770JI 3578001 3579001 3580001 

+I G.nbank Ref Seq Gene "'rrolabonl 
Pf'A0306 <):l<<<<< « < < «( < « < < « « <<< « « «« « « « (<< « « «« < (<< « « « « « « < (<< « « « «( « « « 

PPA0307 » »»» » »> 
TAP enriched REV 

EN-3SnS91 

o _ ............ I'1 ..... I1111111 ••••• IQRN~"'-!eqwith downlhll 9R~-.eqWthdawn_. at .24 5 f 5 a i e. --
100_~ 

o 
SCale 

chI ZI 685001 
1~~I-----------------------------------

Z16!loool z1895oo 1 
Genbink Ref Seq GQI\II Mnotal o~s 

PPAI995 a •••• ~ ••• iI •••• ~~ 
PPAl956 » » ») ' »» » »» »» ») »» »» » »»»») 

TAP ennlled FWD 
EN-2168990 I 

Figure 4.10. Leaderless mRNAs and transcripts of genes requiring reannotation. Panels A and 

B correspond to examples of leaderless mRNA, while C and D correspond to genes requiring 

reannotation . For each of these panels, the tracks show, from top to bottom, the positions of 

annotated genes, the position of transcriptional start sites (Table 51) and the gRNA-seq data. 

For C and D, the positions of alternative start codons and associated ribosome binding sites 

(RB5) are indicated. Labelling, as Figure 4.2. 
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4.3.7 Re-annotation of protein-coding genes and operon structures 

We also noticed that a significant proportion of TSSs associated with significant step increases 

in transcription were internal to the 5' half of annotated genes (for examples, see Figure 4.10 

panel A) suggesting that the actual gene might be shorter. Consistent with this notion, we have 

been able to find ribosome binding sites associated with appropriately spaced start codons 

downstream of many of these TSSs (Table S6) and homologues that lack sequences matching 

the 5' end of the original annotation (data not shown). Our combined RNA-seq approach also 

revealed many examples of operon structures that differ significantly from bioinformatics 

predictions (for examples, see Figure 4.10, panel B). This was not particular surprising: it is 

known that even the best bioinformatic approaches are not completely accurate (Chuang et 01., 

2012). Nevertheless, achieving accurate information on gene and operon structures is essential 

for gene expression and regulation to be modelled (Salgado et al., 2006) at the level of the 

whole cell (Karr et al., 2012a, Karr et al.). Our transcriptome approach and data should hasten 

the achievement of this goal for P. aenes. 
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4.4 Discussion 

Here we describe a differential RNA-seq approach that distinguished sites of transcription 

initiation without erasing the secondary transcriptome using TEX, an enzyme that in our hands 

can degrade a substantial proportion of 5' -triphosphorylated RNA under the conditions 

recommended by the vendor (Figure 52). With the advent of sequencing techniques that can 

provide in excess of 100 M reads (e.g. Iliumina Solexa) there is now no need to erase the 

secondary transcriptome in order to detect transcriptional start sites. We simply used TAP 

(Breter & Rhoads, 1979) to distinguish tri- from mono-phosphorylated 5' ends. This enzyme 

was used in earlier differential RNA-seq approaches, but to facilitate the cloning of 5' -fragments 

remaining after TEX treatment (Vockenhuber et aI., 2011, Sharma et aI., 2010). Other 

improvements were to fragment the RNA after the addition of the 5' adaptor to improve the 

efficient cloning of 5' ends from large transcripts, and to combine with a global RNA-seq 

approach that does not require an amplification step (Mamanova et al., 2010b). The latter 

allowed us to identify readily the 3', as well as 5' boundaries of transcripts. Moreover, by 

including biological replicates in our differential RNA-seq approach and applying a statistical 

analysis, we are confident in the assignment of the vast majority of T5Ss. In each comparison, 

only 10,000 of the 5,000,000 pairs of values (plus and minus TAP treatment) were outside the 

envelope of processing sites. Thus, the probability of a positions being outside the envelope in 

each of four comparisons is less than 1 in 62500000000. The latter number exceeds the total 

number of 5' ends that were identified. 

Our approach has already advanced enormously our understanding of gene expression and 

regulation. We have, for example, identified the positions of thousands of TSS and associated 

transcriptional units belonging to all classes of functional RNA, mono- and poly-cistronic mRNA, 

transfer RNA, ribosomal RNA, and ubiquitous small RNAs (Figure 4.2). This alone was identified 

as an important milestone along the route to understanding the cellular workings of P. acnes 

(Bruggemann et aI., 2004). In addition, from our data we have extracted patterns of stable RNA 

processing. identified a role for an endonuclease other than tRNase Z in the maturation of tRNA 
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3 ends (Figure 4.3 and 4.4), mapped sites of mRNA processing (Figure 4.5), identified features of 

vegetative promoters (Figure 4.6) and potential transcription factor binding sites (Figure 4.7), 

and discovered functioning riboswitches as well as an abundance of sRNAs (Figure 4.9). We 

have also shown how knowledge of the above can be used to build models of gene regulation 

that should inform experimental investigation (Figure 4.7). 

One of the surprises of our study was the prevalence of leaderless mRNAs in P. acnes, which is 

in stark contrast to the situation in E. coli, the main eubacterial system in which the translation 

of leaderless mRNA has been studied (Moll et 01., 2002, Malys & McCarthy, 2011). Indeed, only 

two examples of E. coli leaderless mRNA have been widely reported, the cl repressor gene of 

bacteriophage lambda (Walz et 01., 1976) and the tetR repressor of transposon Tn1721 

(Baumeister et 01., 1991). The association between leaderless mRNA and repressors within 

mobile genetic elements in E. coli has been extended to the repressors of the Rac, e14 and Qin 

prophages by our own deep RNA-seq analysis of the E. coli transcriptome (unpubl. result). We 

speculate that some aspect of the translation of these leaderless mRNAs may be important in 

controlling the mobilisation of the corresponding genetic elements. Recently, it has been shown 

that stress induces the production of specialised ribosomes that selectively translate a group of 

mRNAs made leaderless by MazF (Vesper et aI., 2011), an endoribonuclease of a toxin-antitoxin 

(TA) module. Like their mRNA targets, the specialised ribosomes are produced by MazF 

cleavage, which removes 43 nt from the 3' end of E. coli 165 rRNA (Vesper et aI., 2011). 

Intriguingly, we have mapped a processing site 53 nt from the 3' end of P. acnes 165 rRNA. This 

raises the possibility that specialised ribosomes, similar to those generated by MazF in E. coli, 

could mediate much of the translation in P. acnes. However, unlike the situation described for 

E. coli (Van Etten & Janssen, 1998, O'Donnell & Janssen, 2002, Brock et 01., 2008), the 

translation of leaderless mRNA in P. acnes does not appear to require that the start codon is 

AUG. As described above, a significant proportion of the leaderless mRNA in P. acnes have GUG 

(29%) and UUG (3%) in addition to AUG (69%) start codons (Table 55). 
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Very recently it has been shown that a 5'-terminal mono phosphate is required for the efficient 

translation of el leaderless mRNA in E. coli (Brock et aI., 2008), such 'decapped' ends can be 

produced by RppH (Deana et 01., 2008), an RNA pyrophosphohydrolase initially shown to 

initiate a pathway of mRNA decay in E. coli (Celesnik et 01., 2007). For the vast majority of 5' 

ends of leaderless mRNAs in P. oenes we could detect a proportion (-10% on average) that was 

5' monophosphorylated. Moreover, P. ocnes has a homologue of RppH (PPA0342). Thus, 

translation of leaderless mRNAs, and perhaps the initiation of mRNA degradation, in P. oenes 

could be dependent on decapping by an RNA pyrophosphohydrolase. Our study adds to a 

growing body of evidence that leaderless mRNAs are prevalent outside E. coli and its closest 

relatives and the notion that the mechanism of their translation may represent an ancient 

milestone in the evolution of gene expression (Moll et aI., 2002, Malys & McCarthy, 2011). A 

gene ontology analysis of leaderless mRNA in P. oenes revealed a wide distribution of cellular 

roles (data not shown). Thus, since the emergence of translation mediated by a 5hine-Dalgarno 

interaction, there does not seem to have been divergence in terms of cellular functions that are 

dependent on leaderless translation in P. oenes. It will be interesting to establish for P. oenes 

whether there is a correlation between leaderless translation and the level of gene expression 

as measured by protein levels or the response of genes under conditions of stress or both. 

Another surprise of our study was the finding that the majority of the TSS we identified were 

not associated with step increases in transcription that continued into annotated genes or 

produced discrete RNAs of high abundance relative to flanking regions (Table 51). This may 

represent 'pervasive' transcription, which is widespread in eukaryotes, where it has been 

shown to have an important role in regulating gene expression (Jacquier, 2009, Marguerat & 

Bahler, 2010). Evidence for pervasive transcription has already been obtained for several 

bacteria (Albrecht et aI., 2010, Beaume et aI., 2010, Cho et aI., 2009, Dornenburg et aI., 2010, 

Filiatrault et aI., 2010, Georg et al., 2009, Guell et aI., 2009, Jager et aI., 2009, Lasa et aI., 2011, 

Liu et aI., 2009, Martin et aI., 2010b, Mendoza-Vargas et aI., 2009, Mitschke et aI., 2011, 

Rasmussen et aI., 2009, Sharma et aI., 2010, Toledo-Arana et a/., 2009, Wurtzel et aI., 2010). 

This has largely been in the form of the identification of transcripts antisense to those of 
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annotated genes. Our study indicates that pervasive transcription in bacteria may stem as 

much from transcription of the coding strand as the non-coding strand of annotated genes. Of 

2930 TSS identified within annotated genes (and not associated with obvious transcription of a 

flanking gene), 1107 produced transcripts sense to the coding strand. Viewing the positions of 

all TSS not associated with step increases in transcription that continued into annotated genes 

or produced discrete RNAs of high abundance, revealed a wide genome distribution, the only 

bias we have detected so for is for the leading strand of replication. The mapping of TSS to 

specific sites indicates that the initiation of pervasive transcription is not completely random. 

Indeed, MEME analysis of sequence upstream of the TSS associated with pervasive 

transcription identified motif similar to the -10 consensus sequence for P. aenes vegetative 

promoter. 

An interesting question is whether or not every region of a bacterial chromosome is transcribed 

in every cell. In other systems, the abundance of RNase P and tmRNA, ubiquitous sRNAs, have 

been estimated at ca. 200 (Vioque et al., 1988) and 500 (Chauhan & Apirion, 1989, lee et al., 

1978, Glynn et 01., 2007) copies per cell, respectively. For these RNAs, we obtained 45,000 and 

120,000 reads, respectively providing an estimate of 225-240 reads per transcript per cell. This 

estimate appears to be reasonable: it yields 62,500 ribosomes per cell, which is within the 

range reported for E. eoli, when applied to the 15 million reads for 5S rRNA. The average 

number of reads obtained for an mRNA was 125 reads, which corresponds to an average of 1 

mRNAs per gene for P. aenes. The latter is similar to equivalent number that can be calculated 

for E. eoli from its known macromolecular composition. Assuming 70,000 ribosomes per E. eoli 

cell, an mRNA content that is 5% of the rRNA content, 4,500 protein coding genes, and an 

average mRNA length of 1.2 knt (which is 3.8 fold shorter than the combined length of 

ribosomal RNA) gives on average 3.0 mRNAs per gene (70,OOO x 0.05 x 3.8 + 4,500). 

Immediately downstream (within 50 nt) of TSS thought to be associated with pervasive 

transcription, we estimate the reads increased on average by 15. This equat~s to 0.08 

transcripts per cell. Thus, it appears that while not every region of the P. aenes genome will be 

represented simultaneously in the transcriptome, every region could be represented for lOs of 
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minutes during the 6 hour life-cycle of a P. acnes cell as it grows and then divides. We are not 

aware of any experimental evidence to indicate that pervasive transcription in bacteria is no 

more than a consequence of the broad-sequence specificity of RNA polymerases, which means 

these enzymes can initiate transcription from sub-optimal sites albeit at reduced frequency. 

Nevertheless, pervasive transcription maybe of evolutionary significance, allowing the 

transcription, and thus subsequent selection, of genes acquired horizontally. 

The analysis reported here, while producing step changes in our understanding of gene 

regulation. is far from exhaustive. We hope that our nucleotide-resolution maps will encourage 

others to search for additional factors controlling gene expression in an organism that is 

emerging as a significant opportunistic human pathogen, an association that is more than skin 

deep. For example, our data can be mined to identify Cis-regulatory signals that control 

transcriptional termination, initiation from the promoters of genes with shared cellular function, 

or indeed any other aspect of the life-cycle of RNA such as processing and degradation, and to 

predict the potential structures and targets of small RNAs. With regard to RNA degradation, we 

were unable to map a proportion of the RNA sequences ("'5%) to the P. acnes genome. This 

may reflect the addition of 3' tails by the P. acnes homologue of 3' to 5' exonuclease PNPase, 

which is known to work in reverse (Mohanty & Kushner, 2000). In systems where they have 

been studies, bacterial 3' tails facilitate more efficient 3' to 5' degradation (Andrade et 01., 

2009). 
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Chapter 5 

5 Concluding remarks and future work 

The work described in this thesis provides an improved platform from which to study P. acnes 

using functional and comparative genomics. It was successful in establishing culture conditions 

for P. acnes that are sufficiently reproducible (Chapter 2) for specific genetic response(s) to be 

detected readily at the level of the transcriptome (Chapter 3), and in producing nucleotide­

resolution maps of the secondary as well as primary transcriptome of this organism (Chapter 4). 

The latter was achieved using RNA sequencing protocols, which were either tested for the first 

time on bacteria (Chapter 3) or refined as part of this work (Chapter 4). From the 

transcriptome maps, it was possible to detect for the first time for P. acnes sites of 

transcriptional initiation, stable RNA processing and mRNA cleavage as well as the locations of 

riboswitches, small non-coding RNAs, vegetative promoters, and unannotated genes. In 

addition, these maps revealed the widespread use of leaderless mRNAs, which may be 

translated by specialised ribosomes, and the existence of pervasive transcription that is 

associated with both the sense and antisense strands of coding regions. Combined the above 

has produced a step change in our knowledge of P. acnes gene structure and regulation. Our 

knowledge is now sufficient that one can start to build meaningful models of gene regulation, 

as illustrated within this thesis using ndr genes (Chapter 4). Better knowledge of gene structure 

and function will also increase the power of comparative genomics. It is now possible, for 

example, to include in any comparison sRNA as well as protein-coding genes. 

One of our next steps will be to compare the transcriptome of P. acnes grown as a biofilm. In 

addition to adding to our knowledge of gene structure and regulation, it will be interesting to 

obtain an overview of the cell physiology of biofilms and compare with planktonic growth. 

Another PhD student in department, Thomas Forth, has developed a graphical tool that allows 

expression data for metabolic genes to be projected onto known metabolic pathways held 

within the Kyoto Encyclopaedia of Genes and Genome (KEGG) database (Kanehisa et 01., 2012), 
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thereby providing an overview of metabolism under the growth conditions for which the 

expression data was collected (Forth, 2012). Analysis of the P. aenes transcriptome data for 

cells grown in batch culture (Chapter 2) using KEGG projector 

(www.tomforth.co.uk/keggprojector) has been initiated. In addition, it would be interesting to 

add proteomic data to our analysis of P. aenes. There is not always a direct correlation 

between the transcriptome and proteome. Gene expression is determined not only by the 

cellular level of transcripts, but by the translatability of the mRNAs and the stability of the 

proteins. Thus, the physiological state of a cell is more accurately reflected by the proteome. 

The ability to deduce physiological state of the cell in different growth phases and stress 

responses from proteomic data was demonstrated in study carried out in 8. subtilis (Volker & 

Hecker, 2005). As mentioned in discussion section of Chapter 2, proteome analysis of phoP 

mutant in S. eoe/ie%r revealed the remodelling of its metabolism to utilise gluconeogenesis to 

balance the availability of phosphate and correct the imbalance of redox potential (Thomas et 

aI., 2012). 

While much can be learned about organisms by studying them in the laboratory, the ultimate 

goal is to study them in their natural environment, or under conditions as close to their natural 

environment as possible. For example, it would be interesting to know what genes are 

expressed (and are thus likely to function) when P. aenes is present within hair follicles both 

health and associated with acne vulgaris. Is the expression of some genes associated with 

inflammation? The difficulty of such analyses is that it requires transcriptome analyses to be 

carried out using small amount of biomass. The numbers of P. aenes found in the hair follicles 

are can reach -107 (Bojar 2004). This still corresponds to an amount of RNA that is 100 fold 

lower than that analysed here by RNA-seq. However, recent advances in sequencing 

technology have made possible single-cell transcriptome sequencing (CEL-Seq)(Tang et 01., 

2009). The technique starts with reverse transcription of the RNA using a primer that contains 

at its 5' end a T7 polymerase promoter. This promoter on the cDNA can then be used to 

generate transcripts that are sense to the original transcript. The transcripts generated by this 

linear amplification step are then fragmented and sequenced as per standard RNA-seq 

98 



methodologies. CEl-seq has been shown to be reproducible using different eukaryotic cell 

types (Hashimshony et al., 2012). Transcriptome sequencing of a single bacterium may be 

possible using this technique by adding a polyA tail on the 3' end bacterial mRNA. To my 

knowledge, single cell transcriptome sequencing on prokaryotic platform has not been reported. 

Amplification of the single cell bacterial transcriptome and subsequent analysis using 

microarray has been published (Kang et al., 2011). Briefly, short cDNA is synthesised from RNA 

samples using random hexamers. The cDNA is then circularised using DNA ligase and then 

amplified isothermally using ct>29 DNA polymerase and random hexamer (Hutchison et al., 

2005). Up to 35 IJ,g of cDNA was generated from a single cell, it was shown that the 

amplification of cDNA using this technique was able to detect 95% of the transcripts compared 

to non-amplified sample from a pool of bacteria using microarray (Kang et aI., 2011). Thus, 

technically it is now possible to analyse the transcription profiles of P. acnes colonising hair 

follicles. The transcriptome amplification technique currently limits to detection of expression 

by microarray as it does not yet offer strand specificity. My speculation would be that soon 

sequencing of single bacterium transcription will be made available. 

It should also be remembered that P. acnes is only part of a microbial community that colonise 

the hair follicle. Other members include Staphylococcus epidermidis, and other propionibacteria, 

it is accepted that P. acnes is not the sole agent that contribute to acne vulgaris (Holland et al., 

1978, Cove et al., 2006). Thus, any transcriptome profile of P. acnes in hair follicles should be 

accompanied by a metagenomic analysis (Grice et al., 2008). This would provide reference 

genomes on which to map transcriptome of the microbial community, meta-transcriptome. By 

studying the entire microbiota of hair follicles, association with acnes vulgaris are more likely to 

be found. Studies of the microbiota of the human gut have already revealed that flora 

composition can be affected by diets, and in turn affect the susceptibility of the host to diseases 

(Claesson et al., 2012). In type-2 diabetes patients, genes associated with methane metabolism, 

membrane associated sugar transport, branched-chain amino acid transport, drug resistance, 

and oxidative stress were expressed in abundance by members of clostridia, bacteriodes and E. 
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coli in their gut flora. This is in contrast to what was observed in the control (health) group 

where genes associated with butyrate biosynthesis, metabolism of cofactors and vitamins were 

expressed by members of flora including clostridiales and faecalibacteria (Qin et 01., 2012). The 

loss of butyrate production in type-2 diabetes patients correlated with increase in opportunistic 

pathogen found in the gut, this reinforced the hypothesis that the role of flora contribute to the 

susceptibility of disease (Qin et aI., 2012). Host (gender, age and disease) and environmental 

factor (clothing, hygiene, and lifestyle) no doubt affect the skin microbiota (Grice & Segre, 

2011). Similar type of analysis of the metagenomic profile of skin microbiota to acne vulgaris 

will give broader view of the population involved in the disease process. 

While transcriptomics will undoubtedly identify P. aenes genes that function (as judge by their 

expression) during growth a biofilm and as part of the microbiota of the skin, there is a yet no 

straightforward method for knocking out genes in P. aenes to confirm and study their 

importance to a particular process. While two publications report the disruption of genes in P. 

acnes via the delivery of cassettes on suicide plasm ids by electroporation (Cheong et 01., 2008, 

Sorensen et 01., 2010), it has not been possible despite considerable effort to establish this 

technique in Leeds (John Wright and Keith Holland, pers. comm.). That others have not cited 

these papers suggests that our experience might not be unique. As homologous recombination 

is ubiquitous in bacteria (Vos, 2009), it seems likely that the delivery of gene-disruption 

cassettes is the limiting step. Another possible means of delivering disruption cassettes is 

conjugation. Cosmids containing genes disrupted in E. coli have been transferred efficiently 

into various Streptomyces species (Gust et 01., 2004). The cosmids were engineered to contain 

the origin of transfer, plasmid RP4 (Matsushima et 01., 1994), which is highly promiscuous 

(Furste et 01., 1989). Plasm ids with this origin of transfer have even been transferred between 

E. coli and the yeast Saccharomyces cerevisiae. Ideally, disruption cassettes should be delivered 

via cosmids to maximise the length of flanking sequences and thus the possibility of the 

cassette replacing the target gene in the chromosome. However, as far as we are aware, a 

cosmid library of P. aenes DNA has not been constructed. Genes of interest to the laboratory 

include a putative quorum-sensing (PPA0945-0947), which includes a secreted signal peptide 

100 



that upon reaching a critical threshold is thought to be activate an associated histidine kinase 

that then activates an associated response regulator (Guan, 2011). Ultimately the P. aenes 

research community can aim towards generating a mutant library similar to the Keio collection 

for E. coli (8aba et 01.,2006). 

To determine the consequences of gene disruptions an infection model is required. A skin 

equivalent model, as described in Chapter 1, consists of a dermal matrix of fibrin containing 

fibroblasts is seeded with human keratinocyte to generate a stratified epidermis has been used 

to characterise host innate immune response upon inoculation of skin pathogens (Holland et aI., 

2009, Holland et aI., 2008). Animal model has used to determine the effect of treatment upon P. 

aenes infection. Mouse ear were inoculation with 3 x 106 of P. aenes or sterile saline as control. 

The infected mouse ear was examined before and after the treatment to determine the 

treatment efficiency (Fan et 01., 2012). 

These models could also be used as the basis of functional genomic approaches that are based 

on creating a library of random mutants and then determine those that are still able to survive 

and colonise. This approach has been used to identify genes of Salmonella typhimurium that 

were required for this organism, which causes typhoid, to survive in a mouse (Chaudhuri et 01., 

2009). The mutants were created using barcoded transposons. Barcodes present in the 

starting pool of mutants, but not recovered from the spleen of the infected mouse, marked 

bacterial genes required for survival and colonisation (Mazurkiewicz et 01., 2006). The 

development of a similar system, which is called signature-tagged mutagenesis, for P. aenes 

could produce a step change in our understanding of the bacterial factors required for 

colonisation of the skin and perhaps even aenes vulgaris. The latter would require the 

comparison of barcodes isolated from health follicles and those associated with disease. The 

prerequisite for this technique is a transposon that can integrate into P. aenes genome or an 

existing library of mutant. 
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6 Supplementary figures and tables 

Table 51. Transcriptional start sites identified for P. Denes. The corresponding values where 

above the upper envelope boundary in all of 4 experiments (see Figure 4.1). +Nucleotide 

positions within 8 nt of each other were classified as belonging to the same TSS. ·Whether a 

TSS was associated with a step increase in transcription of was judged by manual inspection of 

the global RNA-seq data. See excel file. 
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Table 52. Transcription start sites associated with discrete RNAs that do not cover annotated 

genes. This is a subset of the data shown in Table S1. +Transcripts judged to correspond to the 

5' UTR of mRNAs. ·Possible cis-encoded antisense RNA regulators of mRNA. 

Forward strand Reserve strand 

16650 1129092 112423 
69338-40 1220499 130158-60 

81851 1224843 157289 
95813 1248645 387710 
133015 1565719 453470-72 
145183 1566109 552464 
186527 1614866 574372 
199776 1654717 578506 
218860 1669453 778327 
252385 1674593 795754 

262666-69 1725349 947658 
267845-49 1920360 979898 

326577 1933084 1058658 
371740 1948896 1163170 
382217 1990644 1325267 
396972 2066299 1455988 
420176 2153965 1583971 
476077 2174792 1719382 
551864 2269893 1741332 

656880-83 2280058 1860031 
720186 2294577 1913792 
789397 2302239 2038206 
892305 2345611 2317705 
934712 2386888 
947536 2441486 
951357 2505019 
981381 2538808 
996061 2551263 
1078903 
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Table S3. P. Qcnes homologues of genes involved in RNA processing and degradation. 

PPAxxxx Description 

RNase E/G (NTO) PPA0826 Single-strand-specific endoRNase involved in RNA 
degradation and the processing of stable RNAs. PPA0826 
has extension on N-terminus 

RNase III PPA1452 Double-strand-specific endoRNase involved in processing 
of rRNA and mRNA. May initiate the cleavage of some 
mRNAs 

RNase P (RNA component) PPA0652 EndoRNase that processes 5' end of tRNA. Also processes 
its own catalytic RNA and cuts some mRNAs 

RppH PPA0342 RNA pyrophosphohydrolase that initiates degradation of 
some mRNA by hydrolysis of the 5'-triphosphate end 

RNase J PPA1467 RNase with dual endo and 5rn-3!il exo activity, has roles in 
the degradation of specific structural mRNAs. Does not 
appear to be critical for mRNA degradation in B. subtilis, 
not found in E. coli 

RNase Y PPA1014 Endonuclease involved in the degradation of mRNA in B. 
subtilis, not found in E. coli 

PNPase PPA1471 3' to 5' exoRNase and 3'-terminal and oligonucleotide 
polymerase. Functions in the degradation of various 
mRNAs and tRNA maturation 

oligoRNase PPA1642 Processive 3'-to-5' exoRNase specific for short 
oligoribonucleotides. Final enzyme in degraded RNAs to 
mononucleotides 

poly(A) polymerase or tRNA PPA2301 Responsible for oligoadenylation of 3' ends of RNA 

nucleotidyl-transferase molecules 

RNase PH PPA1674 3' to 5' exoRNase involved in 3' trimming of tRNAs. 

RNase 0 PPA1063 3'-5' exoRNase involved in the 3' processing of various 
stable RNA molecules. 

tRNase Z none EndoRNase that can generate the mature 3' end of tRNA 

nanoRNase none Functionally equiavalent to oligoRNase 

RNase BN none 3' to 5' exoRNase involved in 3' trimming of tRNAs as well 

as various short unstructured RNAs 

RNase T none 3' to 5' exoRNase responsible for 3' trimming of many 
stable RNAs, including tRNAs and 55 rRNA. Can 
compensate for lack of other 3' to 5' exonucleases in tRNA 
maturation 

RNase II and RNase R none 3' to 5' exoRNase that cleaves RNA from the 3' end to 
produce ribonucleoside 5'-monophosphates 

nanoRNase none Functionally equivalent to oligoRNase 
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Table 54. List of annotated and novel sRNAs in P. aenes. 

Antisense Riboswitch Intergenic region 

25506 + 981518 - 16650 + 148251 + 1642083 + 
48200 - 1062051- 33231 + 235787 + 1719380 -

54282 + 1202004 - 95813 + 525729 + 1815486 -

107414 + 1251316 - 199776 + 647993 - 1815487 -
226602 + 1543535 + 218860 + 764909 + 1933084 + 
234105 + 1573376 + 326577 + 788348 + 1996134 -

262666 + 1625671- 476077 + 931846 + 2038081 + 

350628 + 1731448 + 578506 - 947536 + 2048808 + 

419298 + 1747014 - 1129093 + 1058658 - 2048848 + 

429137 - 1892720 + 1163170 - 1248645 + 2050281 + 

447936 - 1902900 + 1220499 + 1372793 + 2126592 -
515180 - 2067110 - 1719382 - 1377440 - 2153965 + 

523981 + 2154770 - 1913792 - 1566109 + 2321632 -
525730 + 2154776 - 1920361 + 1642082 + 2551421 + 

586175 - 2286406 - 1933084 + 

601083 - 2286407 - 1972785 -

601251- 2338912 + 2294577 + 

662829 - 2354014 + 2538808 + 

690031 + 2354015 + 
776546 + 2386888 + 
885274 + 

(+/_) indicates sRNA located on the forward and reverse strand, respectively. +Ust is not 

exhaustive, functions are putative and await experimental investigation. Although represented 

by single nucleotide positions, 3' boundaries can be broad. 
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Table 55. List of leaderless mRNAs. 

Distance Distance 
Leaderless from start Leaderless from start 
mRNATSS Strand codon Gene mRNATSS Strand codon Gene 

85492 + 1 PPA0079 1332639 + 2 PPA1225 
219005 + 0 PPA0180 1335132 + 0 PPA1227 
264693 + 8 PPA0213 1439333 + 0 PPA1323 

275563* + 0 PPA0220 1486763 + 0 PPA1364 
301857 + 18 PPA0248 1580884 + 0 PPA1465 
310295 + 20 PPA0257 1614866 + 0 PPA1496 
312708 + 0 PPA0259 1677186 + 0 PPA1557 
332153 + 0 PPA0282 1687656* + 0 PPA1568 
357872 + 15 PPA0307 1789002 + 10 PPA1642 
383235 + 0 PPA0333 1851527 + 0 PPA1699 
396972 + 9 PPA0345 1875582 + 0 PPA1722 
453574 + 0 PPA0408 1924939 + 0 PPA1762 
544192 + 0 PPA0494 2070668 + 0 PPA1909 
565188 + 0 PPA0513 2103935* + 1 PPA1943 
581080 + 0 PPA0527 2113770 + 0 PPA1953 
619022 + 6 PPA0559 2124998 + 20 PPA1962 
620292 + 0 PPA0560 2200062* + 2 PPA2027 
632907 + 0 PPA0572 2262758 + 13 PPA2088 
636616 + 0 PPA0575 2270276 + 12 PPA2095 
649446 + 0 PPA0588 2285027 + 0 PPA2111 
651011 + 0 PPA0590 2343229 + 0 PPA2163 
701664 + 0 PPA0636 2359454 + 0 PPA2177 
707657 + 0 PPA0643 2365576 + 0 PPA2184 
712934 + 20 PPA0648 2367840 + 1 PPA2187 
719343 + 0 PPA0653 2380556 + 0 PPA2200 
720186 + 12 PPA0656 2383635 + 0 PPA2202 

744036 + 0 PPA0676 2388012 + 0 PPA2205 

795728 + 13 PPA0724 2420039 + 0 PPA2236 

802023 + 1 PPA0730 2430005 + 0 PPA2246 

843812 + 0 PPA0769 2441486 + 0 PPA2257 
977946 + 2 PPA0897 2453150 + 18 PPA2267 
1007244 + 0 PPA0924 2484814 + 0 PPA2289 
1025484 + 0 PPA0944 2486987 + 0 PPA2292 
1042580 + 0 PPA0959 

1094775* + 15 PPA1011 

1101306 + 3 PPA1017 
1131717 + 0 PPA1040 
1152133 + 2 PPA1060 
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Table 55 continued 

Distance Distance 
Leaderless from start Leaderless from start 
mRNATSS Strand codon Gene mRNATSS Strand codon Gene 

157289 1 PPA0130 1352429* 4 PPA1246 
160753 1 PPA0133 1364491 1 PPA1259 
213202 1 PPA0176 1378348 17 PPA1270 
307514 19 PPA0252 1468550* 1 PPA1344 
310324 1 PPA0256 1478097 1 PPA1354 
366974 1 PPA0314 1485284 16 PPA1360 
380907 1 PPA0330 1489728 1 PPA1366 

398318* 1 PPA0346 1492227 -1 PPA1368 
406992 17 PPA0357 1497174* 7 PPA1376 

412518 1 PPA0364 1507765 8 PPA1387 
480388* 1 PPA0436 1511081 1 PPA1390 
527105 1 PPA0475 1540932 1 PPA1421 
578338 1 PPA0523 1564809 1 PPA1447 
583253 1 PPA0529 1585728 19 PPA1467 
621885 -1 PPA0561 1633757 1 PPA1510 
625488 1 PPA0564 1652327 1 PPA1530 
629901 1 PPA0569 1654714 1 PPA1533 
635103 1 PPA0573 1669229 1 PPA1550 
664515 18 PPA0599 1762569 1 PPA1624 
689518 1 PPA0623 1766231 1 PPA1626 

696913 1 PPA0630 1787483 1 PPA1640 

706656 1 PPA0641 1833078 1 PPA1680 

712849 1 PPA0647 1849598 1 PPA1696 

712866 18 PPA0647 1851422 1 PPA1698 

727624* 1 PPA0661 1860031 1 PPA1705 

728897 1 PPA0663 1864065 1 PPA1710 

735523 3 PPA0667 1941266 1 PPAI776 

759849 1 PPA0689 1948769 1 PPA1785 

768211 19 PPA0694 1966431 1 PPA1801 

781355 1 PPA0708 2057156 1 PPA1896 

817762* 1 PPA0744 2060023* 10 PPA1899 

924594 1 PPA0845 2062981 1 PPA1903 
1069245 1 PPA0986 2062988 8 PPA1903 

1141827* 1 PPAI046 2112549 0 PPA1951 
1146258 1 PPA1052 2131829 11 PPA1968 
1160415 13 PPAI064 2134455 1 PPA1970 
1196203 1 PPA1104 2145840 1 PPA1977 
1198468 1 PPA1105 2160342 1 PPA1988 
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Table S5 continued 

Distance 
leaderless from start 
mRNATSS Strand codon Gene 

2174714 1 PPA2002 
2181571 1 PPA2008 
2187838 1 PPA2015 
2289917 1 PPA2115 
2305442 1 PPA2128 
2311086 1 PPA2133 
2410592 1 PPA2225 
2419928 1 PPA2235 
2427001 13 PPA2243 
2436830 0 PPA2251 
2493898 1 PPA2297 

*TSSs where no Shine-Dalgarno sequence was found using RBSfinder. 
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Table S6. List of genes requiring reannotation. 

Genes requiring reannotation 

PPAOO48 PPA0885 PPA1734 
PPAOO49 PPA0892 PPA1764 
PPAOO51 PPA0924 PPAl777 
PPA0120 PPA0934 PPA1794 
PPA0139 PPA0935 PPA1808 
PPAOl72 PPA0941 PPA1871 
PPA0199 PPA0946 PPA1906 
PPA0220 PPA0949 PPA1913 
PPA0228 PPA0965 PPA1947 
PPA0259 PPAI024 PPA1953 
PPA0275 PPAl102 PPA1954 
PPA0344 PPAl106 PPA1983 
PPA0353 PPA1l21 PPA1984 
PPA0358 PPA1l67 PPA1995 
PPA0360 PPAll71 PPA1996 
PPA0384 PPA1226 PPA2126 
PPA0408 PPA1267 PPA2151 
PPA0417 PPA1267 PPA2166 
PPA0482 PPA1310 PPA2183 
PPA0494 PPA1314 PPA2202 
PPA0496 PPA1329 PPA2251 
PPA0527 PPA1350 PPA2270 
PPA0671 PPA1364 PPA2292 
PPA0676 PPA1410 PPA2299 
PPA0690 PPA1416 PPA2314 
PPA0769 PPA1474 PPA2315 
PPA0774 PPAl712 PPA2341 
PPA0781 
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Table 57. Composition of Holland defined medium 

Solution I a,b 

Components Per 100m I (mg) 

L-Alanine 10 

L-Arginine 20 

L-Asparagine 10 

L -Aspartic acid 20 

L-Glutamic acid SO 

Glycine 10 

L-Histidine 10 

L-Isoleucine 10 

L -Hydroxyproline 10 

L-Cysteine 10 

L-Lysine 10 

L-Leucine 10 

Mineral salt Cocentration Vitamin 

components,t (g/looml) components" 

FeS04·7Hl O 1.0 Pyridoxine HCI 

MnSO •. 4Hl O 1.0 Nicotinic acid 

CaCl l ·2H2O 1.0 Pantothenic acid 

ZnCl l 0.25 Biotin 

CoCll ·6H2O 0.25 

CuS04·5H20 0.05 

t - Mineral salts were dissolved in l.OM HCI. 

* -Vitamins were dissolved in dH20 

a - Tween-80 added at 0.1% lv/v] of Solution I 

b - final pH of HSM is 5.6 

Concentration 

(g/100m1) 

1.25 

0.25 

0.125 

0.015 

L-Phenylalanine 10 c - Mineral salt and vitamin solutions added at 0.2% lv/v] of Solution I 

L-Methionine 10 

L-Proline 10 

L-Serine 20 

L-Threonine 20 

L-Tryptophan 10 

L-Tyrosin 10 

L-Valine 10 

Glucose 500 

PIPES 1000 

KlHPO. 350 

KHlPO. 350 

MgSO •. 7Hl O 20 

NaCI 200 

Sodium citrate SO 

(NH4hSO• 150 
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A 
PPA2411 - ThrCGT (LE ) 
PPA2412 - ThrTGT (LE ) 
PPA049S - rimJ (OV ) 
PPA2414 - AlaCGC (OV ) 
PPA241S - GlnTTG (OV ) 
PPAOS3S - ribso_ L2SP­
famprot (OV ) 
PPA2416 - LeuTAA (OV1 ) 
PPA2416 - LeuTAA (OV2 ) 
rRNAl - 16S-p1 (OV) 
rRNAl - 16S-p2 (OV ) 
rRNAl - 16S-p3 (OV) 
rRNAl - 16S (EN1 ) 
rRNAl - 16S ( EN2) 
rRNAl - 16S_ int (EN ) 
rRNAl - 23S (EN2 ) 
rRNAl - 23S (EN1 ) 
rRNAl - 23S int (EN1 ) 
rRNAl -2 3S=int (EN2) 
PPA0778 - rpsA (EN ) 
PPA0778 - rpsA (OV1 ) 
PPA0778 - rpsA (OV2) 
PPA0827 - 29 - rplU ­
rpmA (OV ) 
PPA2421 - AlaGGC(OV) 
PPA24 2 2 - As nGTT (OV) 
PPA242 3-Met CAT (OV) 
PPA242 7- ValCAC(OV) 
PPA2428 - Pro GGG (OV­
part of TU ) 
PPA2429 - ArgCCG (OV) 
PPA2430 - MetCAT (EN ) 
PPA2430 - MetCAT (OV) 
PPA2431 - ValTAC (OV) 
PPA243 7- LeuGAG (EN ) 
PPA2437 - LeuGAG (OV) 
PPA2441 - Hi sGTG (OV) 
PPA244 5- LysCTT (OV) 
PPA2446 - LeuTAG (OVl ) 
PPA2446 - LeuTAG (OV2) 
PPA24 52-GluTTC( LE ) 
PPA24 53-AspGTC(OV) 
PPA24 55-GlyCCC(OV) 
PPA24 56- Le u CAG( LE ) 
PPA2 4 57- ProGGG (OV) 
PPA2409 - AlaTGC(OV) 
PPA2410 - Se rGGA (LE ) 
PPA2 41 3- ArgCCT (LE) 
PPA24 20-Leu CAA (OV) 
PPA0898 - 3 0S- rps ­
S20 (OV ) 
PPA24 26-
GlyGCC_PPA24 25-
CysGCA_ PPA24 24 -
valGAC (OV) 
PPA1 253- r pmE (EN ) 
PPA2 432-Glu CTC( EN ) 
PPA24 33-Gln CTG(OV) 
rRNA2-5S(OV) 
rRNA2 -23S_i n t( EN I 
rRNA2 23S( EN ) 
rRNA2 16S-p2(EN) 
rRNA2- 1 6S_pl (OV) 
PPA1 413-
rpmL_ PPA14 12-
rplT (OV) 
PPA14 3S- r p lS(OV) 
pPA144 3- 1 PSP(OV) 

------CCAGCAAAAAGCGTGTTGGTTTCGTGAAGAGGTCATCGTGCCGGTATAGTTTTCGGGGCCTGCCG--
- - ----CTCGCCTCGGCATTGAGGTGATTGACGCCGCATCGGCGATATGTGCCACAATGTTCCACGTCGCC --
--- - -GCTACGCCCTAGCCGAGTCGCTGCCAGGCAGACGGCAGAACGCCCTCTAGGGTGATGCTATGGCG ---
--- - - GCCTACGCCGAATGATTCGTAGCATGGCGCGGGTTGCCCAGGTGTGGTAGCGTAGCCGCGTTGTT---
-----TTGAGCTTACTGAGCGTCGCTGCGTGGCCGAATTGCGATGCATGCTCTAAGGTTATGGGGACTCG---

---- --GGCCACGACCTGAGCTTGCCAGGTTGTGGCCCCCGCATCGCACGAGTAGACTGCCTTGAGCTTGG------- -----
---- --GACCGCTGAAGCGACGCCGTGCAGAAGTGTTGTGTGGAGGTGCCGTTATTATTGACGAGGTATGC--
-- - -TGGAGGTGCCGTTATTATTGACGAGGTATGCCGTCGTGCGACGGCAGGTAAACTTGTCGTCTCGG - ---
- -----AAGATGCGGCTGTTTTGTGGGTTTGTGTTGGTGGTGGGGGTGTGTGTAGTGTCTGTTTCTGGCTT--
--- -- - GGTGGGGTTGCTGGGGGCATGATTTGACGTTTGTGTGATGAGTGTTTAGGCTTCTGCGGGTCCTG - -
----GTGGTTTCGGCTGGTGTGGGCTGGGTTGTGTGATCTGGTTTGTGCTGGTATGGTTTTCCGGGCTG----
- - - -GCTGGCTGGTTCTGGGATCGTGGTTTTGTGGTTTCGGGGTTGGTGTGGTAGGGTTGGTCGGGTCG--- -
-- -- - CAATAGTTTTTGATGCATCTGTTTGTTGTGGATGTGTCGGATTTGTTTATGATTCCTTTGTGATT-- -
-- - ---TGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCTTCACGCATGCTACAATGGCTGGTACAGAG --
- - ---GCGTGCGTGTGTGCGTGGTGTGGTGTTCGTGTGGTGGTTGAGAACTGTATAGTGGATGCGAGTAT- --
--- -- --TGGGTTGTGGGGTATCACATGTGTGGTGGCCTGTGCGGTGCTGTGTTGCGTGCGTGTGTGCGTGG-
--- - - --CTCCGAATGCTGGCAAGTGTAGCGTGGCAGTGAGACGGCGGGGGATAAGCTTCGTCGTCGAGAGG-
--- - ---ATGCTCGTTACGCGCAGCAGGACGGAAAGACCCCGGGACCTTTACTATAGTTTGGTATTGGTGAT-
--- ---TTCCCGAATGCGGACGGGGTCCGAGGGAACGGATCCAGATGTAGGCTACCTTCTTGTATGATAGA--
- ----GCGGACGGGGTCCGAGGGAACGGATCCAGATGTAGGCTACCTTCTTGTATGATAGACCTCCTATT---
------ CCGTTAATGAAAAGAAGGTTGGTTGACCCTTCGTGGTTTCGGGTATTACGCTGGCTACTGCGTTG--

--- - -- CAGGGTGTGGGTGGATGGTCGTTTTGACCGTCCACCGCACGAAATGTAAAATGAGCAGCCGGTCC--

----- -TCCCGGTGCCCGTGGACGTCGATTTTGCAAAGGGGGCATGATCCGCTAAAGTTCTACGAGTCGCC --
--- --- - AGGGCGTGCACATGGCGTGATTTGTTTTCGCACGAGCGATGCTGCTAATGTTTCATCTTGCGCTA-
-------ACGTCAGGGTCAGCAACGCAAGGTGCTCGCGGACGTTTTACCCGGTAAGGTAGCTACTTGTCTCG -
- -- CCAGTAACGATGTTGTGGCCGGCTTGGACAAGCAGTGCTGGTTCTGGCATAGTTTCACCAGCAAC --- - -

-----GGATACCAATGGTATCCGTCTCTAGGGTCCAGCCCAAATCGGTCGGCTAGGGTAGAAAACCCAAG- - -

-----AGTGTCCATGCTCGCGATCTTGAATGGCGAGCAGCCCACCGGTGCGCTAAACTCCACAGGTGGTC---
----- CTGTGCGCCCTACGCGAACCCCTCGAGATCAGTGTGGTAGGGCGCCCGAGAATGAGTACCCACCA---
--- -ACCATTGGCTTTTCGGTCGGGCTTTCCCACATCTGATTTGTACTGCAACAGTGTGATCTGTATAG- ---
-----GTGCGATGATTCTCCACCCGGGAAGTGTGCTTCACGTGATAAATCGGTAGAGTAGGTGCACCTGG - --
--- - - ACTTCGGCCTGCGGGCAATCTGGCCCGTCGACAAGGTTCTCGGCGGTCATACTGAACAGATCTGA---
--------GGCGCTCAATGGACACTGATTTGCATTGCTGGCCGAAGGTCCATTACAGTTCTGTGACTGTCCGG 
-----GCCGGCGGGCGAGAAAGTCAAAGTTGCATTTCTGTTTCAGAAACAGATACCCTTCACGGGTTGCC---
----TCGGTCATGAGCTTGTCACCTCGATTTTGCATCATGACCGGAGTCCGCTAGTGTTGCTTGTTGTC - - --
-----GCAAAGAGGTTATGAAAGCCTACGGGGCCTACGGATCCAAGAACGTCTATGGTAAAGAGATCGTC- - -
----- TCGTCGACGTTGCTGAGGACGGTTCGTGCAAAGTCACCGAAGCCCAGTACAATGTTCGAGCCAAG---
-----AGGCCAGCATCCGGTGGGGCAATTTCTCGCCAGTGATATGACCTGGCTATGATGGCCCAGTTCGA---
-----TAACCCGGCATCCAGAGGTCGATTTCCCTTCAGGGTTACATCCTTGCTATATTTTTCGAGCTGCC-- -
----- CAACACTACTGAGGTGTGCGGGTTCGCACAGCTCTGACGTGGTGCGCTAAGCTATCTCAAGTCCT- - -
-----CGCAACAGAGAAGCTCCCTCAATTTCACTTCCATGCCATCTTCGTGCTACCATCTTTGGGTTGGG---
----- TCCCCGACCCTGACAGGGCCAGCTTGGCGCTTTCGACCAAGCTGGGTTAAAGTATGCGTCGGCCA- - -
----- ACGGCATTGCGCGAGGCTTCGACTCGCCCAAACCACCGCGCATCCTCTACACTATGGAGGTCCAC ---
----AACACACCACGACTCGCGGCCGAATTGGCGCCACGCGTCAAGTCCATGTACGCTACTTGGCGGAG ----
---TTTTACGACACTATGGGGTCTGAGGTTGGTCCAGGCGGCCCTGCCGGACTACTCTAGTAAGGCCC--- - -
---CCCAATCGACCCTCGTGAGCGGCGAATCGGCATCCGGGCGCAACTGTGGCACAATAGGCAAGCCG---------- -----
-----ATAACTCACAGAGGTCAACTGATTTGGGTCCAGCCGCATTGATTTGGTAGCGTGTCCTGTCGTGC---

----- CAAGGCGAGACGCCCACGTCGATTTGCATTGCCTGCGAAACATCCCCTAGAGTACTTTCTCGTCG- --

----CGAACCAGGATTGATGTCGTCAAGTGGACCGTGGCTGGCCGTCAGGGGTAAACTGACGCGCCGGT----
---AGCGCGGGAAACCAAATCCATGAAGTTGCACAGATAGCGGATGGATTGCTAGAG:TTTTCCAGCCC-----
-----GTGACAAGGAGTTTCGCCCTGATTTGCAAAGTTGGTGGATGGGCCATTAGAGTTTCTCGTCGTTG---
----TACGGCTCCCAGCCCCTTCACGGGTTGCGCCGTTTAATGTATGTGTTCTACTGTATGGTTTTCAG----
- GACCCCGGGACCTTTACTATAGTTTGGTATTGGTGATTGGGACGGTTTGTGTAGGATAGGTGGGA-------
----GTGGTGTGGTGTTCGTGTGGTGGTTGAGAACTGTATAGTGGATGCGAGTATCTTTAT1 GTAT----
---- TGTTTGGGATGTTTTCTTGTCGGGTTTGACGGCGGGGGAGGGTTCCGGTATGGTTTTCC~. GCTG----
----AAGCGCCTCGGCTGTTTTGTGGGTTTGTGTTGGTGGTGGGGGTGTGTGTAGTGTGTGTT~CCG----

----CCTCTCGCTACGTTTAGCCCC~TGGCGATGTCATCTCTTGCCGTACCATGAGCGAAGCGA----

-----GGCGGGCACGAGTGATGGTGGATTTGATGCCAGAGCCATGGGTATGGAAAAATACCGCGGTGTTG---
--- AGTCATCAGGTGAAGTCCGTCCCGGCTCGCGTCATCTGCCTATCTGTGGCACAATGTCGAGAGCT-----
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PPA1472-rpsO(LE) 
PPA1521-rpsB(OV) 
PPA2438-GlyTCC(EN) 
PPA2439-ProTGG(OV) 
PPA2440-ArgTCT(EN) 
PPA2440-ArgTCT(OV) 
rRNA3-5S(OV) 
rRNA3-23S_int2(EN) 
rRNA3-23S intl(EN) 
rRNA3-23S(EN) 
rRNA3-16S int(EN) 
rRNA3-16S~3(EN) 
rRNA3- 16S-p2 (EN) 
rRNA3- 16S-p1 (OV) 
PPA1783-rimI(OV) 
PPA1783-rimI(EN) 
PPA1802-
rpsI_PPA1803-
rplM(LE) 
PPA1852-rplN(OV) 
PPA1852-rplN(EN2) 
PPA1852-rplN(EN1) 
PPA1865-rpsJ(En) 
PPA1865-rpsJ(OV) 
PPA1876-
rpsG_PPA1878-
rpsL(LE) 
PPA2447-TrpCCA(OV) 
PPA2448-
MetCAT_PPA2449-
ThrGGT(OV) 
PPA2450-TyrGTA(OV) 
PPA2451-LysTTT(OV) 
PPA2458-SerCGA(EN) 
PPA2459-ArgACG(EN) 
PPA2460-SerGCT(OV) 
PPA2461-SerTGA(OV) 
PPA2227-
rplI_PPA2230-
rpsF(OV) 
PPA2353-rpmH(OV) 

---GGCAATATCTCATCTCGCATCAGGATTCGCGCCTAATGGGCAGAGTTGATATTCTCTCCCAGTTG-----
---AAGTGGCCGGGGTCAAGGGGAAGGTTAGCTTGATTGCCTCTTGGTGTCGTAAACTAATCGCGCAG-----
---TCGTGGCACACCCTGTCACTGTGAATGTGACGCCGACGGTCAATCCATGTATGCTATCGAGGTCC-----
---GAATCCCCGTCCTTGTGATGGCTCATTGGCCGAGCGGCGGGGTTTCCACTAAGCTATCGGTGTTC-----
----TGTTCGCTACTGGTTGGGGCCGGCTGGGCCATCAAGGCCGAACCCCGATAGTATGTCGAATATGG----
---CGGTGGGGTGGCGGGATCTGCGTGCGTCGAATCAGTCACGGGGACAGGCTAGGATGCCGAACAAA-----
---ATACGGCTCCCAGCCCCTTCACGGGTTGCGCCGTTTAATGTATGTGTTCTACTGTATGGTTTTCA-----
-GACCCCGGGACCTTTACTATAGTTTGGTATTGGTGATTGGGACGGTTTGTGTAGGATAGGTGGGA-------
AAGGTTGAGGCATGATGGGGAGCCCATGGTTGTGGGTGAGTGAGTGATCCTGTACTGTCGAGAAA-------­
----GTGGTGTGGTGTTCGTGTGGTGGTTGAGAACTGTATAGTGGATGCGAGTATCTTTATTGTTGTAT----
----GATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCTTCACGCATGCTACAATGGCTGGTACAG----
----TGTTTGGGATGTTTTCTTGTCGGGTTTGACGGCGGGGGAGGGTTCCGGTATGGTTTTCCGGGCTG----
----TGTTGCCGGTTGGTGGGTGTGGGTTTGTGTTGGTGGTGGGGGTGTGTGTAGTGTGTGTTGGGCCG----
---GACATTATCGACGTGTTGCCCGAACGTCGCGGGCTTTGGTGGTGCGAGGAATCCTCGAGAGAGGG-----
-----CCTGCCGGAGGACTTGGGACGGCGAGGCTGAGGTGAGGTTCGACGACTATCCTGGGTTCTCGTGG---
----ATCGTTACCTCCCACAGCTTTTGTTAGCCAGCGTGGCATCGCTGGTGGCATAGTCGCGGACGCTA----

---GCGGGAATCGACCGCCGCCCGGCGATTCGCTCTTCCCGCGGCACATGTGTAAAATACCCATGTTG-----

---CATCTTTGATGAGTCAACGCGACGACTGGCAATTTGTCGCGACGAGAGTTAAACTGCTGAAGTTG-----
----GGGGAGTAAGCGCCTTGGCTTGCGTTTCGTAGTTAGGCTAAGGCGGGCTAGCGTTGGAGGAGCCA----
----TGTGTGTGGGGACAGGGGGAGTAAGCGCCTTGGCTTGCGTTTCGTAGTTAGGCTAAGGCGGGCTA----
----GGCTCTCATGCGCACACTCCACCAGGCCACAGTTGTGGGGTTTTGCGATAACATTGGCGACTCCT----
AGTCGTTGTTGGGGTCTGACGGTCCTGATTTGCCTTGCTGGTTTGTCGGTGACACACTGTAGAAG--------

-----TGCTTTGTCGTAGCGTTGTCAGGTTTGACCCTCGCAATGCAGGGGGATACCCTGTTAAGGCATGT---

---TTGAAATGACTGCGGCCACCACCCGATGGATGGTTGGACGGAAGTTCTGTAGGCTTCTATCGTGC-----

-----GGTTGAGGAGACTCGGGTTCT~CCAACGGTCGAAAGCTCGTGTAGTTTTCTCATCCGTTG---

----CACGAGCCTCCATCCACTCGGAGAATCCCCGCTTCAGGGCAGCTCGGATACCGTTGATGTTGAAG----
---ATCGGCCGCCGAATACCCGGGTCGCTTCGCATGATGAAGGAAGCATCGCTACACTAGGGGAGCCC-----
----GGCGGTACCGCTGACATACCTGAACCTTAGTCACCTGTCGATCGTCGGTACGATCTATCAGATGT----
---TTCCGGGGACTGAATTACGCGAATTTGCATTACGGAATTGA--AGGCTGTAATG:TTTAGCAACGTGC---
-TGGGGCGCGTTGTCGCGGCCCGGAATTGGAGGGTTTGGGGTTG--AGAGAGTAGGCTGACACGGCAC-----
-ATGAGCGGGTCTAGGTCCGGGACGATGAATATGCCCGATGAAT __ TATGGCTAAGATGGGGCCACCG ___ --

---AATAGCCGTAGCAATGTGTTGAATTCGGAGAACGGCGGGTC __ GCCCGGTATCCTTCTTCACTAGCT---

-GGTCTGGCGGCGCAGGGTCATCAGTTTGCCGATAGCGACTCCG--ACAACGTAGAGTTGTTAAGTCG-----
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PPA1413-
rpmL_PPA1412-
rplT(OV) 
PPA1435-rplS(OV) 
PPA1443-rpsP(OV) 
PPA1472 -rpsO (LE) 
PPA1521-rpsB(OV) 
PPA2438-GlyTCC(EN) 
PPA2439-ProTGG(OV) 
PPA2440-ArgTCT(EN) 
PPA2440-ArgTCT(OV) 
rRNA3-5S(OV) 
rRNA3-23S_int2(EN) 
rRNA3-23S_intl(EN) 
rRNA3-23S(EN) 
rRNA3-16S_int(EN) 
rRNA3-16Sy3(EN) 
rRNA3-16Sy2(EN) 
rRNA3-16Syl(OV) 
PPA1783-rimI(OV) 
PPA1783-rimI(EN) 
PPA1B02-
rpsI PPA1803-
rplM(LE) 
PPA1852-rplN(OV) 
PPA1B52-rplN(EN2) 
PPA1B52-rplN(EN1) 
PPA1B65-rpsJ(En) 
PPA1B65-rpsJ(OV) 
PPA1876-
rpsG PPA1B7B­
rpsL(LE) 
PPA2447-TrpCCA(OV) 
PPA244B­
MetCAT_PPA2449-
ThrGGT(OV) 
PPA2450-TyrGTA(OV) 
PPA2451-LysTTT(OV) 
PPA245B-SerCGA(EN) 
PPA2459-ArgACG(EN) 
PPA2460-SerGCT(OV) 
PPA2461-SerTGA(OV) 
PPA2227-
rplI_PPA2230-
rpsF(OV) 
PPA2353-rpmH(OV) 

-------CCTCTCGCTACGTTTAGCCCCGATTTGTGGCGATGTCATCTC-TTGCCGTACCATGAGCGAAGCGA----

--------GGCGGGCACGAGTGATGGTGGATTTGATGCCAGAGCCATGG-GTATGGAAAAATACCGCGGTGTTG---
-----AGTCATCAGGTGAAGTCCGTCCCGGCTCGCGTCATCTGCCTAT--CTGTGGCACAATGTCGAGAGCT-----
-----GGCAATATCTCATCTCGCATCAGGATTCGCGCCTAATGGGCAG--AGTTGATATTCTCTCCCAGTTG-----
-AAGTGGCCGGGGTCAAGGGGAAGGTTAGCTTGATTGCCTCTTG------GTGTCGTAAACTAATCGCGCAG-----
-----TCGTGGCACACCCTGTCACTGTGAATGTGACGCCGACGGTCAA--TCCATGTATGCTATCGAGGTCC-----
-----GAATCCCCGTCCTTGTGATGGCTCATTGGCCGAGCGGCGGGGT--TTCCACTAAGCTATCGGTGTTC-----
------TGTTCGCTACTGGTTGGGGCCGGCTGGGCCATCAAGGCCGAA--CCCCGATAGTATGTCGAATATGG----
-----CGGTGGGGTGGCGGGATCTGCGTGCGTCGAATCAGTCACGGGG--ACAGGCTAGGATGCCGAACAAA-----
------ATACGGCTCCCAGCCCCTTCACGGGTTGCGCCGTTTAATGTAT-GTGTTCTACTGTATGGTTTTCA-----
-GACCCCGGGACCTTTACTATAGTTTGGTATTGGTGATTGGGACGG----TTTGTGTAGGATAGGTGGGA-------
AAGGTTGAGGCATGATGGGGAGCCCATGGTTGTGGGTGAGTGAGTG----ATCCTGTACTGTCGAGAAA-------­
------GTGGTGTGGTGTTCGTGTGGTGGTTGAGAACTGTATAGTGGA--TGCGAGTATCTTTATTGTTGTAT----
------GATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCTTCAC--GCATGCTACAATGGCTGGTACAG----
------TGTTTGGGATGTTTTCTTGTCGGGTTTGACGGCGGGGGAGGG--TTCCGGTATGGTTTTCCGGGCTG----
-------TGTTGCCGGTTGGTGGGTGTGGGTTTGTGTTGGTGGTGGGGG-TGTGTGTAGTGTGTGTTGGGCCG----
-----GACATTATCGACGTGTTGCCCGAACGTCGCGGGCTTTGGTGGT--GCGAGGAATCCTCGAGAGAGGG-----
-----CCTGCCGGAGGACTTGGGACGGCGAGGCTGAGGTGAGGTTC----GACGACTATCCTGGGTTCTCGTGG---
-------ATCGTTACCTCCCACAGCTTTTGTTAGCCAGCGTGGCATCGC-TGGTGGCATAGTCGCGGACGCTA----

-----GCGGGAATCGACCGCCGCCCGGCGATTCGCTCTTCCCGCGGCA--CATGTGTAAAATACCCATGTTG-----

-----CATCTTTGATGAGTCAACGCGACGACTGGCAATTTGTCGCGAC--GAGAGTTAAACTGCTGAAGTTG-----
-----GGGGAGTAAGCGCCTTGGCTTGCGTTTCGTAGTTAGGCTAAG---GCGGGCTAGCGTTGGAGGAGCCA----
-TGTGTGTGGGGACAGGGGGAGTAAGCGCCTTGGCTTGCGTTT-------CGTAGTTAGGCTAAGGCGGGCTA----
--------GGCTCTCATGCGCACACTCCACCAGGCCACAGTTGTGGGGTTTTGCGATAACATTGGCGACTCCT----
--AGTCGTTGTTGGGGTCTGACGGTCCTGATTTGCCTTGCTGGTTTGT--CGGTGACACACTGTAGAAG--------

-------TGCTTTGTCGTAGCGTTGTCAGGTTTGACCCTCGCAATGCA--GGGGGATACCCTGTTAAGGCATGT---

-TTGAAATGACTGCGGCCACCACCCGATGGATGGTTGGACGGAA------GTTCTGTAGGCTTCTATCGTGC-----

-------GGTTGAGGAGACTCGGGTTCTGATTTGCCAACGGTCGAAAG--CTCGTGTAGTTTTCTCATCCGTTG---

------CACGAGCCTCCATCCACTCGGAGAATCCCCGCTTCAGGGCAG--CTCGGATACCGTTGATGTTGAAG----
-----ATCGGCCGCCGAATACCCGGGTCGCTTCGCATGATGAAGGAAG--CATCGCTACACTAGGGGAGCCC-----
----GGCGGTACCGCTGACATACCTGAACCTTAGTCACCTGTCGAT----CGTCGGTACGATCTATCAGATGT----
-------TTCCGGGGACTGAATTACGCGAATTTGCATTACGGAATTGA--AGGCTGTAATGTTTAGCAACGTGC---
-----TGGGGCGCGTTGTCGCGGCCCGGAATTGGAGGGTTTGGGGTTG--AGAGAGTAGGCTGACACGGCAC-----
-----ATGAGCGGGTCTAGGTCCGGGACGATGAATATGCCCGATGAAT--TATGGCTAAGATGGGGCCACCG ____ _ 

-------AATAGCCGTAGCAATGTGTTGAATTCGGAGAACGGCGGGTC--GCCCGGTATCCTTCTTCACTAGCT---

-----GGTCTGGCGGCGCAGGGTCATCAGTTTGCCGATAGCGACTCCG--ACAACGTAGAGTTGTTAAGTCG-----

Figure S1. Sequence alignment of promoters associated with the translational machinery. 

Panel A shows ungapped sequences (+5 to -60) aligned to the '-10 box' (consensus sequence of 

TAnnnT), which was identified using MEME (Bailey & Gribskov, 1998) and an init ial search 

window of -1 to -15. Panel B as A, except gaps have been introduced 6 nt upstream of the -10 

boxes to maximise alignment to a second conserved hexanucleotide sequence (GnTTnG ), which 

was identified in the alignment shown in panel A. The second sequence is labelle as '-35 box'. 

Highlighting indicates nucleotide matches to the consensus sequences. 

114 



PPA1413-
rpmL_PPA1412-
rplT(OV) 
PPA1435-rplS(OV) 
PPA1443-rpsP(OV) 
PPA1472 -rpsO (LE) 
PPA1521-rpsB(OV) 
PPA2438-GlyTCC(EN) 
PPA2439-ProTGG(OV) 
PPA2440-ArgTCT(EN) 
PPA2440-ArgTCT(OV) 
rRNA3-5S(OV) 
rRNA3-23S inc2(EN) 
rRNA3-23S=intl(EN) 
rRNA3 -23S (EN) 
rRNA3-16S_int(EN) 
rRNA3-16Sy3(EN) 
rRNA3-16Sy2(EN) 
rRNA3-16Syl(OV) 
PPA1783-rimI(OV) 
PPA1783-rimI(EN) 
PPA1802-
rpsI_PPA1803-
rplM(LE) 
PPA1852-rplN(OV) 
PPA1852-rplN(EN2) 
PPA1852-rplN(EN1) 
PPA1865-rpsJ(En) 
PPA1865-rpsJ(OV) 
PPA1876-
rpsG_PPA1878-
rpsL(LE) 
PPA2447-TrpCCA(OV) 
PPA2448-
MetCAT_PPA2449-
ThrGGT(OV) 
PPA2450-TyrGTA(OV) 
PPA2451-LysTTT(OV) 
PPA2458-SerCGA(EN) 
PPA2459-ArgACG(EN) 
PPA2460-SerGCT(OV) 
PPA2461-SerTGA(OV) 
PPA2227-
rplI_PPA2230-
rpsF (OV) 
PPA2353-rpmH(OV) 

-------CCTCTCGCTACGTTTAGCCCCGATTTGTGGCGATGTCATCTC-TTGCCGTACCATGAGCGAAGCGA----

--------GGCGGGCACGAGTGATGGTGGATTTGATGCCAGAGCCATGG-GTATGGAAAAATACCGCGGTGTTG---
-----AGTCATCAGGTGAAGTCCGTCCCGGCTCGCGTCATCTGCCTAT--CTGTGGCACAATGTCGAGAGCT-----
-----GGCAATATCTCATCTCGCATCAGGATTCGCGCCTAATGGGCAG--AGTTGATATTCTCTCCCAGTTG-----
-AAGTGGCCGGGGTCAAGGGGAAGGTTAGCTTGATTGCCTCTTG------GTGTCGTAAACTAATCGCGCAG-----
-----TCGTGGCACACCCTGTCACTGTGAATGTGACGCCGACGGTCAA--TCCATGTATGCTATCGAGGTCC-----
-----GAATCCCCGTCCTTGTGATGGCTCATTGGCCGAGCGGCGGGGT--TTCCACTAAGCTATCGGTGTTC-----
------TGTTCGCTACTGGTTGGGGCCGGCTGGGCCATCAAGGCCGAA--CCCCGATAGTATGTCGAATATGG----
-----CGGTGGGGTGGCGGGATCTGCGTGCGTCGAATCAGTCACGGGG--ACAGGCTAGGATGCCGAACAAA-----
------ATACGGCTCCCAGCCCCTTCACGGGTTGCGCCGTTTAATGTAT-GTGTTCTACTGTATGGTTTTCA-----
-GACCCCGGGACCTTTACTATAGTTTGGTATTGGTGATTGGGACGG----TTTGTGTAGGATAGGTGGGA-------
AAGGTTGAGGCATGATGGGGAGCCCATGGTTGTGGGTGAGTGAGTG----ATCCTGTACTGTCGAGAAA-------­
------GTGGTGTGGTGTTCGTGTGGTGGTTGAGAACTGTATAGTGGA--TGCGAGTATCTTTATTGTTGTAT----
------GATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCTTCAC--GCATGCTACAATGGCTGGTACAG----
------TGTTTGGGATGTTTTCTTGTCGGGTTTGACGGCGGGGGAGGG--TTCCGGTATGGTTTTCCGGGCTG----
-------TGTTGCCGGTTGGTGGGTGTGGGTTTGTGTTGGTGGTGGGGG-TGTGTGTAGTGTGTGTTGGGCCG----
-----GACATTATCGACGTGTTGCCCGAACGTCGCGGGCTTTGGTGGT--GCGAGGAATCCTCGAGAGAGGG-----
-----CCTGCCGGAGGACTTGGGACGGCGAGGCTGAGGTGAGGTTC----GACGACTATCCTGGGTTCTCGTGG---
-------ATCGTTACCTCCCACAGCTTTTGTTAGCCAGCGTGGCATCGC-TGGTGGCATAGTCGCGGACGCTA----

-----GCGGGAATCGACCGCCGCCCGGCGATTCGCTCTTCCCGCGGCA--CATGTGTAAAATACCCATGTTG-----

-----CATCTTTGATGAGTCAACGCGACGACTGGCAATTTGTCGCGAC--GAGAGTTAAACTGCTGAAGTTG-----
-----GGGGAGTAAGCGCCTTGGCTTGCGTTTCGTAGTTAGGCTAAG---GCGGGCTAGCGTTGGAGGAGCCA----
-TGTGTGTGGGGACAGGGGGAGTAAGCGCCTTGGCTTGCGTTT-------CGTAGTTAGGCTAAGGCGGGCTA----
--------GGCTCTCATGCGCACACTCCACCAGGCCACAGTTGTGGGGTTTTGCGATAACATTGGCGACTCCT----
--AGTCGTTGTTGGGGTCTGACGGTCCTGATTTGCCTTGCTGGTTTGT--CGGTGACACACTGTAGAAG--------

-------TGCTTTGTCGTAGCGTTGTCAGGTTTGACCCTCGCAATGCA--GGGGGATACCCTGTTAAGGCATGT---

-TTGAAATGACTGCGGCCACCACCCGATGGATGGTTGGACGGAA------GTTCTGTAGGCTTCTATCGTGC-----

-------GGTTGAGGAGACTCGGGTTCTGATTTGCCAACGGTCGAAAG--CTCGTGTAGTTTTCTCATCCGTTG---

------CACGAGCCTCCATCCACTCGGAGAATCCCCGCTTCAGGGCAG--CTCGGATACCGTTGATGTTGAAG----
-----ATCGGCCGCCGAATACCCGGGTCGCTTCGCATGATGAAGGAAG--CATCGCTACACTAGGGGAGCCC-----
----GGCGGTACCGCTGACATACCTGAACCTTAGTCACCTGTCGAT----CGTCGGTACGATCTATCAGATGT----
-------TTCCGGGGACTGAATTACGCGAATTTGCATTACGGAATTGA--AGGCTGTAATGTTTAGCAACGTGC---
-----TGGGGCGCGTTGTCGCGGCCCGGAATTGGAGGGTTTGGGGTTG--AGAGAGTAGGCTGACACGGCAC-----
-----ATGAGCGGGTCTAGGTCCGGGACGATGAATATGCCCGATGAAT--TATGGCTAAGATGGGGCCACCG-----

-------AATAGCCGTAGCAATGTGTTGAATTCGGAGAACGGCGGGTC--GCCCGGTATCCTTCTTCACTAGCT---

-----GGTCTGGCGGCGCAGGGTCATCAGTTTGCCGATAGCGACTCCG--ACAACGTAGAGTTGTTAAGTCG-----

Figure S1. Sequence alignment of promoters associated with the translational machinery. 

Panel A shows ungapped sequences (+5 to -60) aligned to the '-10 box' (consensus sequence of 

TAnnnT), which was identified using M EME (Bailey & Gribskov, 1998) and an initial search 

window of -1 to -15. Panel B as A, except gaps have been introduced 6 nt upstream of the -10 

boxes to maximise alignment to a second conserved hexanucleotide sequence (GnTTnG), which 

was identified in the alignment shown in panel A. The second sequence is labelled as '-35 box'. 

Highlighting indicates nucleotide matches to the consensus sequences. 
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1 2 3 

-235 

-165 

-cspA 

- 5S & tRNA 

Figure 52. Degradation of S'-triphosphorylated RNA using TEX. Total P. aenes RNA was 

isolated as described in Materials and Methods. E. coli cspA transcript was synthesised by in 

vitro transcription using T7 RNA polymerase (Invitrogen) using condition stated by the 

manufacturer. 0.5 Ilg of cspA was added to 1.0 Ilg of total RNA and treated with TEX, reactions 

were purified by phenol :chloroform extraction and analysed using 1.2% [w/v] agroase gel 

electrophoresis. Lane 1 shows the control sample before treatment. Lane 2 and 3 shows the 

effect without (reaction buffer only) and with TEX treatment. 

115 



7 References 

Adebamowo, C. A., D. Spiegelman, C. S. Berkey, F. W. Danby, H. H. Rockett, G. A. Colditz, W. C. 
Willett & M. D. Holmes, (2008) Milk consumption and acne in teenaged boys. JAm Acad 
Dermatol 58: 787-793. 

Albrecht, M., C. M. Sharma, R. Reinhardt, J. Vogel & T. Rudel, (2010) Deep sequencing-based 
discovery of the Chlamydia trachomatis transcriptome. Nucleic Acids Res. 38: 868-877. 

Altendorf, K., P. Voelkner & W. Puppe, (1994) The sensor kinase KdpD and the response 
regulator KdpE control expression of the kdpFABC operon in Escherichia coli. Res 
Microbio/145: 374-381. 

Andrade, J. M., V. Pobre, I. J. Silva, S. Domingues & c. M. Arraiano, (2009) The role of 3 '-5 ' 
exoribonucleases in RNA degradation. In: Molecular Biology of Rna Processing and 
Decay in Prokaryotes. C. Condon (ed). pp. 187-229. 

Arraiano, C. M., J. M. Andrade, S. Domingues, I. B. Guinote, M. Malecki, R. G. Matos, R. N. 
Moreira, V. Pobre, F. P. Reis, M. Saramago, I. J. Silva & S. C. Viegas, (2010) The critical 
role of RNA processing and degradation in the control of gene expression. FEMS 
Microbiol Rev 34: 883-923. 

Baba, T., T. Ara, M. Hasegawa, Y. Takai, Y. Okumura, M. Baba, K. A. Datsenko, M. Tomita, B. L. 
Wanner & H. Mori, (2006) Construction of Escherichia coli K-12 in-frame, single-gene 
knockout mutants: the Keio collection. MolSyst BioI 2: 2006 0008. 

Bailey, T. L., M. Boden, F. A. Buske, M. Frith, C. E. Grant, L. Clementi, J. Y. Ren, W. W. li & W. S. 
Noble, (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 
37: W202-W208. 

Bailey, T. L. & M. Gribskov, (1998) Combining evidence using p-values: application to sequence 
homology searches. Bioinjormatics 14: 48-54. 

Ballal, A. & S. K. Apte, (2005) Differential expression of the two kdp operons in the nitrogen­
fixing cyanobacterium Anabaena sp. strain L-31. Appl Environ Microbio/71: 5297-5303. 

Ballal, A., B. Basu & S. K. Apte, (2007) The Kdp-ATPase system and its regulation. J Biosci 32: 

559-568. 
Balmer, J. E. & R. Blomhoff, (2002) Gene expression regulation by retinoic acid. J Lipid Res 43: 

1773-1808. 
Banin, E., M. L. Vasil & E. P. Greenberg, (2005) Iron and Pseudomonas aeruginosa biofilm 

formation. Proc Natl Acad Sci USA 102: 11076-11081. 
Barrick, J. E. & R. R. Breaker, (2007) The distributions, mechanisms, and structures of 

metabolite-binding riboswitches. Genome BioI. 8. 
Baumeister, R., P. Flache, O. Melefors, A. Vongabain & W. Hillen, (1991) Lack of as' noncoding 

region in Tnl721-encoded tetR mRNA is associated with a low efficiency of translation 
and a short half-life in Escherichia coli. Nucleic Acids Res. 19: 4595-4600. 

Bayston, R., W. Ashraf, R. Barker-Davies, E. Tucker, R. Clement, J. Clayton, B. J. C. Freeman & B. 
Nuradeen, (2007) Biofilm formation by Propionibacterium acnes on biomaterials in vitro 

and in vivo: Impact on diagnosis and treatment. J Biomed Mater Res 81A: 70S-709. 

116 



Beaume, M., D. Hernandez, l. Farinelli, C. Deluen, P. linder, C. Gaspin, P. Romby, J. Schrenzel & 
P. Francois, (2010) Cartography of methicillin-resistant S. aureus transcripts: detection, 
orientation and temporal expression during growth phase and stress conditions. Plos 
OneS. 

Bechhofer, D. H., (2009) Messenger RNA Decay and Maturation in Bacillus subtilis. Molecular 
Biology of RNA Processing and Decay in Prokaryotes 85: 231-273. 

Belasco, J. G., (2010) All things must pass: contrasts and commonalities in eukaryotic and 
bacterial mRNA decay. Nat. Rev. Mol. Cell. Bio. 11: 467-478. 

Berk, A. J. & P. A. Sharp, (1977) Sizing and mapping of early adenovirus mRNAs by gel 
electrophoresis of Sl endonuclease-digested hybrids. Cell 12: 721-732. 

Bier, F. F. & F. Kleinjung, (2001) Feature-size limitations of microarray technology - a critical 
review. Fresenius' journal of analytical chemistry 371: 151-156. 

Bojar, R. A. & K. T. Holland, (2004) Acne and Propionibacterium aenes. Clin Dermato/22: 375-
379. 

Borovok, I., B. Gorovitz, M. Yanku, R. Schreiber, B. Gust, K. Chater, Y. Aharonowitz & G. Cohen, 
(2004) Alternative oxygen-dependent and oxygen-independent ribonucleotide 
reductases in Streptomyces: cross-regulation and physiological role in response to 
oxygen limitation. Mol. Microbio/. 54: 1022-1035. 

Breitling, R., P. Armengaud, A. Amtmann & P. Herzyk, (2004) Rank products: a simple, yet 
powerful, new method to detect differentially regulated genes in replicated microarray 
experiments. FEBS Lett 573: 83-92. 

Breitling, R. & P. Herzyk, (2005) Rank-based methods as a non-parametric alternative of the T­
statistic for the analysis of biological microarray data. J Bioinform Comput BioI 3: 1171-
1189. 

Breter, H. J. & R. E. Rhoads, (1979) Analysis of NaI04-oxidized/NaBH4-reduced mRNA cap 
analogs by high-performance liquid anion-exchange chromatography and tobacco acid 
pyrophosphatase (EC 3.6.1.9). H-S Physiol. Chem. 360: 240-240. 

Brock, J. E., S. Pourshahian, J. Giliberti, P. A. Limbach & G. R. Janssen, (2008) Ribosomes bind 
leaderless mRNA in Escherichia coli through recognition of their 5 '-terminal AUG. RNA 

14: 2159-2169. 
Brogden, K. A. & J. M. Guthmiller, (2002) Polymicrobial diseases. ASM Press. 
Bruggemann, H., (2005) Insights in the pathogenic potential of Propionibacterium acnes from its 

complete genome. In: Semin Cutan Med Surg. Elsevier, pp. 67-72. 
Bruggemann, H., A. Henne, F. Hoster, H. Liesegang, A. Wiezer, A. Strittmatter, S. Hujer, P. Durre 

& G. Gottschalk, (2004) The complete genome sequence of Propionibacterium acnes, a 
commensal of human skin. Science 305: 671-673. 

Brzuszkiewicz, E., J. Weiner, A. Wollherr, A. Thurmer, J. Hupeden, H. B. Lomholt, M. Kilian, G. 
Gottschalk, R. Daniel, H. J. Mollenkopf, T. F. Meyer & H. Bruggemann, (2011) 
Comparative genomics and transcriptomics of Propionibacterium acnes. PLoS One 6: 
e21581. 

Burkhart, C. N. & c. G. Burkhart, (2003) Microbiology's principle of biofilms as a major factor in 
the pathogenesis of acne vulgaris. Int J Dermato/42: 925-927. 

117 



Butler-Wu, S. M., E. M. Burns, P. S. Pottinger, A. S. Magaret, J. L. Rakeman, F. A. Matsen, 3rd & B. 
T. Cookson, (2011) Optimization of peri prosthetic culture for diagnosis of 
Propionibacterium acnes prosthetic joint infection. J Clin Microbio/49: 2490-2495. 

Calandra, G. B. & R. M. Cole, (1980) Lysis and protoplast formation of group B streptococci by 
mutanolysin.lnfect Immun 28: 1033-1037. 

Camisa, c., B. Eisenstat, A. Ragaz & G. Weissmann, (1982) The effects of retinoids on neutrophil 
functions in vitro. JAm Acad Dermato/6: 620-629. 

Cappel, M., D. Mauger & D. Thiboutot, (2005) Correlation between serum levels of insulin-like 
growth factor 1, dehydroepiandrosterone sulfate, and dihydrotestosterone and acne 
lesion counts in adult women. Arch Dermato/141: 333-338. 

Capra, E. J. & M. T. Laub, (2012) Evolution of two-component signal transduction systems. Annu 
Rev Microbio/66: 325-347. 

Carpousis, A. J., B. F. Luisi & K. J. McDowall, (2009a) Endonucleolytic initiation of mRNA decay in 
Escherichia coli. Progress in Molecular Biology and Translational Science 85: 91-135. 

Carpousis, A. J., B. F. Luisi & K. J. McDowall, (2009b) Endonucleolytic Initiation of mRNA Decay 
in Escherichia coli. Molecular Biology of RNA Processing and Decay in Prokaryotes 85: 
91-135. 

Celesnik, H., A. Deana & J. G. Belasco, (2007) Initiation of RNA decay in Escherichia coli by 5 ' 
pyrophosphate removal. Mol. Cell 27: 79-90. 

Challis, G. L. & J. H. Naismith, (2004) Structural aspects of non-ribosomal peptide biosynthesis. 
CUff Opin Struct BioI 14: 748-756. 

Chaudhuri, R. R., S. E. Peters, S. J. Pleasance, H. Northen, C. Willers, G. K. Paterson, D. B. Cone, A. 
G. Allen, P. J. Owen, G. Shalom, D. J. Stekel, I. G. Charles & D. J. Maskell, (2009) 
Comprehensive identification of Salmonella enterica serovar Typhimurium genes 
required for infection of BALB/c mice. PLoS pathogens 5: e1000529. 

Chauhan, A. K. & D. Apirion, (1989) The gene for a small stable RNA (10Sa RNA) of Escherichia 
coli. Mol. Microbiol. 3: 1481-1485. 

Cheong, D.-E., H.-I. Lee & J.-S. So, (2008) Optimization of electrotransformation conditions for 
Propionibacterium acnes. J Microbiol Methods 72: 38-41. 

Cho, B. K., K. Zengler, Y. Qiu, Y. S. Park, E. M. Knight, C. L. Barrett, Y. Gao & B. O. Palsson, (2009) 
The transcription unit architecture of the Escherichia coli genome. Nat. Biotech. 27: 

1043-U11lS. 
Cholo, M. C., R. Anderson & E. J. van Rensburg, (2009) Potassium uptake systems of 

Mycobacterium tuberculosis: genomic and protein organisation and potential roles in 
microbial pathogenesis and chemotherapy. South AIr J Epidemiollnfect 23. 

Chuang, L. Y., H. W. Chang, J. H. Tsai & c. H. Yang, (2012) Features for computational operon 
prediction in prokaryotes. Briefings in Functional Genomics 11: 291-299. 

Claesson, M. J., I. B. Jeffery, S. Conde, S. E. Power, E. M. O'Connor, S. Cusack, H. M. Harris, M. 
Coakley, B. Lakshminarayanan, O. O'Sullivan, G. F. Fitzgerald, J. Deane, M. O'Connor, N. 
Harnedy, K. O'Connor, D. O'Mahony, D. van Sinderen, M. Wallace, l. Brennan. C. 
Stanton, J. R. Marchesi, A. P. Fitzgerald, F. Shanahan, C. Hill, R. P. Ross & P. W. O'Toole, 
(2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 
488: 178-184. 

118 



Coates, P., S. Vyakrnam, E. Eady, C. Jones, J. Cove & W. Cunliffe, (2002) Prevalence of antibiotic­
resistant propionibacteria on the skin of acne patients: 10-year surveillance data and 
snapshot distribution study. Br J Dermato/146: 840-848. 

Coenye, T., G. Brackman, P. Rigole, E. De Witte, K. Honraet, B. Rossel & H. J. Nelis, (2012) 
Eradication of Propionibacterium acnes biofilms by plant extracts and putative 
identification of icariin, resveratrol and salidroside as active compounds. Phytomedicine 
19: 409-412. 

Coenye, T., E. Peeters & H. J. Nelis, (2007) Biofilm formation by Propionibacterium aenes is 
associated with increased resistance to antimicrobial agents and increased production 
of putative virulence factors. Res Microbio/1S8: 386-392. 

Costerton, J. W., Z. lewandowski, D. E. Caldwell, D. R. Korber & H. M. lappin-Scott, (1995) 
Microbial biofilms. Annu Rev Microbio/49: 711-745. 

Cove, J., W. Cunliffe & K. Holland, (2006) Acne vulgaris: is the bacterial population size 
significant? Br J Dermato/102: 277-280. 

Cove, J. H., K. T. Holland & W. J. Cunliffe, (1983) Effects of oxygen concentration on biomass 
production, maximum specific growth rate and extracellular enzyme production by 
three species of cutaneous propionibacteria grown in continuous culture. J Gen 
Microbio/129: 3327-3334. 

Cox, J. & M. Mann, (2011) Quantitative, high-resolution proteomics for data-driven systems 
biology. Annu Rev Biochem 80: 273-299. 

Crooks, G. E., G. Hon, J.-M. Chandonia & S. E. Brenner, (2004) Weblogo: a sequence logo 
generator. Genome Res 14: 1188-1190. 

Csonka, l. N. & A. D. Hanson, (1991) Prokaryotic osmoregulation: genetics and physiology. Annu 
Rev Microbio/4S: 569-606. 

Cunliffe, W. J., (1986) Acne and unemployment. Br J Dermato/llS: 386. 
Cunliffe, W. J., D. B. Holland & A. Jeremy, (2004) Comedone formation: etiology, clinical 

presentation, and treatment. Clin Dermato/22: 367-374. 
Danby, F. W., (2010) Nutrition and acne. Clin Dermato/28: 598-604. 
de Beer, D., P. Stoodley, F. Roe & Z. lewandowski, (1994) Effects of biofilm structures on 

oxygen distribution and mass transport. Biotechnol Bioeng 43: 1131-1138. 
de Boer, H. A., S. F. Gilbert & M. Nomura, (1979) DNA sequences of promoter regions for rRNA 

operons rrnE and rrnA in Escherichia coli. Cell 17: 201-209. 
De Keersmaecker, S. c., I. M. Thijs, J. Vanderleyden & K. Marchal, (2006) Integration of omics 

data: how well does it work for bacteria? Mol Microbio/62: 1239-1250. 
Deana, A., H. Celesnik & J. G. Belasco, (2008) The bacterial enzyme RppH triggers messenger 

RNA degradation by 5' pyrophosphate removal. Nature 4S1: 355-U314. 
Deutscher, M. P., (2009) Maturation and degradation of ribosomal RNA in bacteria. Molecular 

Biology 0/ RNA Processing and Decay in Prokaryotes 8S: 369-391. 
Dittmar, K. A., E. M. Mobley, A. J. Radek & T. Pan, (2004) Exploring the regulation of tRNA 

distribution on the genomic scale. J. Mol. BioI. 337: 31-47. 
Dodson, C. c., E. V. Craig, F. A. Cordasco, D. M. Dines, J. S. Dines, E. Dicarlo, B. D. Brause & R. F. 

Warren, (2010) Propionibacterium acnes infection after shoulder arthroplasty: a 
diagnostic challenge. J Shoulder Elbow Surg 19: 303-307. 

119 



Dornenburg, J. E., A. M. DeVita, M. J. Palumbo & J. T. Wade, (2010) Widespread antisense 
transcription in Escherichia coli. Mbio 1. 

Dotsch, A., D. Eckweiler, M. Schniederjans, A. Zimmermann, V. Jensen, M. Scharfe, R. Geffers & 
S. Haussler, (2012) The Pseudomonas aeruginosa transcriptome in planktonic cultures 
and static biofilms using RNA sequencing. PLoS One 7: e31092. 

Downing, D. T., M. E. Stewart, P. W. Wertz & J. S. Strauss, (1986) Essential fatty acids and acne. J 
Am Acad Dermato/14: 221-225. 

Eady, E., J. Cove, K. Holland & W. Cunliffe, (2006) Erythromycin resistant propionibacteria in 
antibiotic treated acne patients: association with therapeutic failure. Br J Dermato/l21: 
51-57. 

Eady, E. A., M. Gloor & J. J. leyden, (2003) Propionibacterium acnes resistance: a worldwide 
problem. Dermatology 206: 54-56. 

Eleaume, H. & S. Jabbouri, (2004) Comparison of two standardisation methods in real-time 
quantitative RT-PCR to follow Staphylococcus aureus genes expression during in vitro 
growth. J Microbiol Methods 59: 363-370. 

Epstein, W., (2003) The roles and regulation of potassium in bacteria. Prog Nucleic Acid Re 75: 
293-320. 

Even, S., O. Pellegrini, l. Zig, V. Labas, J. Vinh, D. Brechemmier-Baey & H. Putzer, (2005) 
Ribonucleases Jl and J2: two novel endoribonucleases in B. subtilis with functional 
homology to E. coli RNase E. Nucleic Acids Res. 33: 2141-2152. 

Fabret, c., V. A. Feher & J. A. Hoch, (1999) Two-component signal transduction in Bacillus 
subtilis: how one organism sees its world. J Bacterio/181: 1975-1983. 

Fan, X., Y. Z. Xing, l. H. Liu, C. Liu, D. D. Wang, R. Y. Yang & M. Lapidoth, (2012) Effects of 420-
nm intense pulsed light in an acne animal model. J Eur Acad Dermatol Venereol. 

Farrar, M. D., K. M. Howson, R. A. Bojar, D. West, J. C. Towler, J. Parry, K. Pelton & K. T. Holland, 
(2007) Genome sequence and analysis of a Propionibacterium acnes bacteriophage. J 
Bacterio/l89: 4161-4167. 

Farrar, M. D. & E. Ingham, (2004) Acne: inflammation. Clin Dermato/22: 380-384. 
Filiatrault, M. J., P. V. Stodghill, P. A. Bronstein, S. Moll, M. Lindeberg, G. Grills, P. Schweitzer, W. 

Wang, G. P. Schroth, S. J. Luo, I. Khrebtukova, Y. Yang, T. Thannhauser, B. G. Butcher, S. 
Cartinhour & D. J. Schneider, (2010) Transcriptome analysis of Pseudomonas syringae 
identifies new genes, noncoding RNAs, and antisense activity. J. Bacteriol. 192: 2359-

2372. 
Forth, T., (2012) Reconstruction, visualisation and analysis of an experimentally parameterised 

metabolic model of the human acute malaria parasite Plasmodium !alciparum. In.: 
University of Leeds, pp. 

Franklund, C. V. & R. J. Kadner, (1997) Multiple transcribed elements control expression of the 
Escherichia coli btuB gene. J. Bacteriol. 179: 4039-4042. 

Freinkel, R. K. & Y. Shen, (1969) The origin of free fatty acids in sebum. II. Assay of the lipases of 
the cutaneous bacteria and effects of pH. J Invest Dermatol 53: 422-427. 

Frymier, J. 5., T. D. Reed, S. A. Fletcher & L. N. Csonka, (1997) Characterization of transcriptional 
regulation of the kdp operon of Salmonella typhimurium. J Bacterio/179: 3061-3063. 

120 



Furste, J. P., W. Pansegrau, G. Ziegelin, M. Kroger & E. Lanka, (1989) Conjugative transfer of 
promiscuous IncP plasmids: interaction of plasmid-encoded products with the transfer 
origin. Proc Natl Acad Sci USA 86: 1771-1775. 

Gadd, G. M., (1990) Heavy metal accumulation by bacteria and other microorganisms. Cell Mol 
Life Sci 46: 834-840. 

Gassel, M., T. Mollenkamp, W. Puppe & K. Altendorf, (1999) The KdpF subunit is part of the K+­
translocating Kdp complex of Escherichia coli and is responsible for stabilization of the 
complex in vitro. J BioI Chem 274: 37901-37907. 

Gatewood, M. l., P. Bralley & G. H. Jones, (2011) RNase III-dependent expression of the rpsO­
pnp operon of Streptomyces coelico/or. J. Bacterio/. 193: 4371-4379. 

Georg, J., B. Voss, I. Scholz, J. Mitschke, A. Wilde & W. R. Hess, (2009) Evidence for a major role 
of antisense RNAs in cyanobacterial gene regulation. Molecular Systems Biology 5. 

Ghora, B. K. & D. Apirion, (1978) Structural analysis and in vitro processing to p5 rRNA of a 9S 
RNA molecule isolated from an rne mutant of E. coli. Cell 15: 1055-1066. 

Gilbert, S. F., H. A. de Boer & M. Nomura, (1979) Identification of initiation sites for the in vitro 
transcription of rRNA operons rrnE and rrnA in Escherichia coli. Cell 17: 211-224. 

Glass, C. K. & M. G. Rosenfeld, (2000) The coregulator exchange in transcriptional functions of 
nuclear receptors. Genes Dev 14: 121-141. 

Glynn, B., K. Lacey, P. Palta, l. Kaplinski, M. Remm, T. Barry, T. Smith & M. Maher, (2007) 
Demonstration of the application of the tmRNA transcript of the bacterial ssrA gene as a 
molecular diagnostic target using a combination of NASBA and BiaCore technologies. 
International Journal of Antimicrobial Agents 29: S392-S392. 

Goecks, J., A. Nekrutenko, J. Taylor & G. Team, (2010) Galaxy: a comprehensive approach for 
supporting accessible, reproducible, and transparent computational research in the life 
sciences. Genome BioI. 11. 

Gold, l., (1988) Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev 
Biochem 57: 199-233. 

Goldsmith, Z. G. & N. Dhanasekaran, (2004) The microrevolution: applications and impacts of 
microarray technology on molecular biology and medicine (review). Int J Mol Med 13: 
483. 

Gollnick, H., (1990) A new therapeutic agent: azelaic acid in acne treatment. J Dermato/og Treat 
1: 23-28. 

Gollub, J., C. A. Ball, G. Binkley, J. Demeter, D. B. Finkelstein, J. M. Hebert, T. Hernandez­
Boussard, H. Jin, M. Kaloper, J. C. Matese, M. Schroeder, P. O. Brown, D. Botstein & G. 
Sherlock, (2003) The Stanford Microarray Database: data access and quality assessment 
tools. NucleiC Acids Res 31: 94-96. 

Graham, G. M., M. D. Farrar, J. E. Cruse-Sawyer, K. T. Holland & E. Ingham, (2004) 
Proinflammatory cytokine production by human keratinocytes stimulated with 
Propionibacterium acnes and P. acnes GroEL. Br J Dermato/150: 421-428. 

Greenman, J. & K. Holland, (1985) Effects of dilution rate on biomass and extracellular enzyme 
production by three species of cutaneous propionibacteria grown in continuous culture. 
J Gen Microbio/131: 1619-1624. 

121 



Greenman, J., K. T. Holland & W. J. Cunliffe, (1981) Effects of glucose concentration n biomass, 
maximum specific growth rate and extracellular enzyme production by three species of 
cutaneous propionibacteria grown in continuous culture. J Gen Microbio/127: 371-376. 

Greenman, J., K. T. Holland & W. J. Cunliffe, (1983) Effects of pH on biomass, maximum specific 
growth rate and extracellular enzyme production by three species of cutaneous 
propionibacteria grown in continuous culture. J Gen Microbio/129: 1301-1307. 

Grice, E. A., H. H. Kong, G. Renaud, A. C. Young, G. G. Bouffard, R. W. Blakesley, T. G. Wolfsberg, 
M. L. Turner & J. A. Segre, (2008) A diversity profile of the human skin microbiota. 
Genome Res 18: 1043-1050. 

Grice, E. A. & J. A. Segre, (2011) The skin microbiome. Nat Rev Microbio/9: 244-253. 
Griffiths-Jones, S., S. Moxon, M. Marshall, A. Khanna, S. R. Eddy & A. Bateman, (2005) Rfam: 

annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33: 0121-0124. 
Guan, S., (2011) A novel two-component signal transduction system in Propionibacterium aenes 

and its association with a putative extracellular signalling peptide. In.: University of 
leeds, pp. 

Guell, M., V. van Noort, E. Yus, W. H. Chen, J. leigh-Bell, K. Michalodimitrakis, T. Yamada, M. 
Arumugam, T. Ooerks, S. Kuhner, M. Rode, M. Suyama, S. Schmidt, A. C. Gavin, P. Bork & 
L. Serrano, (2009) Transcriptome complexity in a genome-reduced bacterium. Science 
326: 1268-1271. 

Gust, B., G. Chandra, O. Jakimowicz, T. Yuqing, C. J. Bruton & K. F. Chater, (2004) A Red­
mediated genetic manipulation of antibiotic-producing Streptomyces. Adv Appl 
Microbio/54: 107-128. 

Ha"-Stood'ey, L., J. W. Costerton & P. Stood ley, (2004) Bacterial biofilms: from the natural 
environment to infectious diseases. Nat Rev Microbio/2: 95-108. 

Hamann, K., P. Zimmann & K. Altendorf, (2008) Reduction of turgor is not the stimulus for the 
sensor kinase KdpO of Escherichia coli. J Bacterio/190: 2360-2367. 

Harder, W. & J. G. Kuenen, (1977) A review. Microbial selection in continuous culture. J Appl 
Bacterio/43: 1-24. 

Harley, C. B. & R. P. Reynolds, (1987) Analysis of Escherichia coli promoter sequences. Nucleic 
Acids Res. 15: 2343-2361. 

Hartmann, R. K., M. Gossringer, B. Spath, S. Fischer & A. Marchfelder, (2009) The Making of 
tRNAs and More - RNase P and tRNase Z. Molecular Biology of RNA Processing and 
Decay in Prokaryotes 85: 319-368. 

Hashimshony, T., F. Wagner, N. Sher & I. Yanai, (2012) CEl-Seq: single-cell RNA-Seq by 
multiplexed linear amplification. Cell Rep 2: 666-673. 

Hassing, G. S., (1971) Partial purification and some properties of a lipase from Corynebacterium 

acnes. Biochimica et Biophysica Acta (BBA)-Enzymology 242: 381-394. 
He, S., O. Wurtzel, K. Singh, J. L. Froula, S. Vi/maz, S. G. Tringe, Z. Wang, F. Chen, E. A. Lindquist 

& R. Sorek, (2010) Validation of two ribosomal RNA removal methods for microbial 
metatranscriptomics. Nature methods 7: 807-812. 

Henkin, T. M. & c. Yanofsky, (2002) Regulation by transcription attenuation in bacteria: how 
RNA provides instructions for transcription termination/antitermination decisions. 
BioEssays 24: 700-707. 

122 



Hiard, S., R. Maree, S. Colson, P. A. Hoskisson, F. Titgemeyer, G. P. van Wezel, B. Joris, L. 
Wehenkel & S. Rigali, (2007) PREDetector: A new tool to identify regulatory elements in 
bacterial genomes. Biochem. Biophys. Res. Commun. 357: 861-864. 

Hoch, J. A., (2000) Two-component and phosphorelay signal transduction. CUff Opin Microbio/3: 
165-170. 

Hoch, J. A., T. J. Silhavy & R. B. Bourret, (1995) Two-component signal transduction. ASM press 
Washington, DC. 

Holland, D. B., R. A. Bojar, M. D. Farrar & K. T. Holland, (2009) Differential innate immune 
responses of a living skin equivalent model colonized by Staphylococcus epidermidis or 
Staphylococcus aureus. FEMS Microbiol Lett 290: 149-155. 

Holland, D. B., R. A. Bojar, A. H. Jeremy, E. Ingham & K. T. Holland, (2008) Microbial colonization 
of an in vitro model of a tissue engineered human skin equivalent - a novel approach. 
FEMS Microbiol Lett 279: 110-115. 

Holland, D. B., W. J. Cunliffe & J. F. Norris, (1998) Differential response of sebaceous glands to 
exogenous testosterone. Br j Dermato/139: 102-103. 

Holland, K. & R. Bojar, (1993) Antimicrobial effects of azelaic acid. j Dermatolog Treat 4: 8-11. 
Holland, K. T., W. J. Cunliffe & c. D. Roberts, (1978) The role of bacteria in acne vulgaris: a new 

approach. Clin Exp Dermato/3: 253-257. 
Holland, K. T., J. Greenman & W. J. Cunliffe, (1979) Growth of cutaneous propionibacteria on 

synthetic medium; growth yields and exoenzyme production. j Appl Bacterial 47: 383-
394. 

Holland, K. T., E. Ingham & W. J. Cunliffe, (1981) A review, the microbiology of acne. j Appl 
Bacterial 51: 195-215. 

Holmberg, A., R. lood, M. Morgelin, B. Soderquist, E. Holst, M. Collin, B. Christensson & M. 
Rasmussen, (2009) Biofilm formation by Propionibacterium acnes is a characteristic of 
invasive isolates. Clin Microbiollnfect 15: 787-795. 

Horvath, B., J. Hunyadklirti, A. Voros, C. Fekete, E. Urban, l. Kemeny & I. Nagy, (2012) Genome 
sequence of Propionibacterium aenes type II strain ATCC 11828. J Bacterio/194: 202-203. 

Hovatta, I., K. Kimppa, A. lehmussola, T. Pasanen, J. Saarela, I. Saarikko, J. Saharinen, P. 
Tiikkainen, T. Toivanen, M. Tolvanen, M. Vihinen & G. Wong, (2005) DNA Mieroarray 
Data Analysis, p. 163. CSC - Scientific Computing Ltd, Helsinki. 

Hsing, W., F. D. Russo, K. K. Bernd & T. J. Silhavy, (1998) Mutations that alter the kinase and 
phosphatase activities of the two-component sensor EnvZ. j Bacterio/180: 4538-4546. 

Huerta, A. M. & J. Collado-Vides, (2003) Sigma70 promoters in Escherichia coli: specific 
transcription in dense regions of overlapping promoter-like signals. j Mol Bioi 333: 261-
278. 

Hunyadkurti, J., Z. Felt6ti, B. Horvath, M. Nagymihaly, A. Voros, A. McDowell, S. Patrick, E. 
Urban & I. Nagy, (2011) Complete genome sequence of Propionibacterium acnes Type IB 
Strain 6609. j Bacterio/193: 4561-4562. 

Hutchison, C. A., 3rd, H. O. Smith, C. Pfannkoch & J. C. Venter, (2005) Cell-free cloning using 
<1>29 DNA polymerase. Proc Natl Acad Sci USA 102: 17332-17336. 

123 



Ingham, E., E. A. Eady, C. E. Goodwin, J. H. Cove & W. J. Cunliffe, (1992) Pro-inflammatory levels 
of interleukin-la-like bioactivity are present in the majority of open comedones in acne 
vulgaris. J Invest Dermato/98: 895-901. 

Ingham, E., K. T. Holland, G. Gowland & W. J. Cunliffe, (1979) Purification and partial 
characterization of hyaluronate lyase (EC 4.2.2.1) from Propionibacterium aenes. J Gen 
Microbio/US: 411-418. 

Ingham, E., K. T. Holland, G. Gowland & W. J. Cunliffe, (1980) Purification and partial 
characterization of an acid phosphatase (EC 3.1.3.2) produced by Propionibacterium 
acnes. J Gen Microbio/U8: 59-65. 

Ingham, E., K. T. Holland, G. Gowland & W. J. Cunliffe, (1981) Partial purification and 
characterization of lipase (EC 3.1.1.3) from Propionibacterium aenes. J Gen Microbio/ 
124: 393-401. 

Ingham, E., C. Walters, E. Eady, J. Cove, J. Kearney & W. Cunliffe, (1998) Inflammation in acne 
vulgaris: failure of skin micro-organisms to modulate keratinocyte interleukin la 
production in vitro. Dermatology 196: 86-88. 

Ingram, E., K. Holland, G. Gowland & W. Cunliffe, (1983) Studies of the extracellular proteolytic 
activity produced by Propionibacterium acnes. J Appl Microbio/54: 263-271. 

Irizarry, R. A., B. M. Bolstad, F. Collin, l. M. Cope, B. Hobbs & T. P. Speed, (2003) Summaries of 
Affymetrix GeneChip probe level data. Nucleic Acids Res 31: e15. 

Jacobs, D. G., N. l. Deutsch & M. Brewer, (2001) Suicide, depression, and isotretinoin: is there a 
causal link? JAm Acad Dermato/4S: 5168-175. 

Jacquier, A., (2009) The complex eukaryotic transcriptome: unexpected pervasive transcription 
and novel small RNAs. Nat. Rev. Genet. 10: 833-844. 

Jager, D., C. M. Sharma, J. Thomsen, C. Ehlers, J. Vogel & R. A. Schmitz, (2009) Deep sequencing 
analysis of the Methanosarcina mazei Go1 transcriptome in response to nitrogen 
availability. Proc. Natl. Acad. Sci. USA 106: 21878-21882. 

Jahns, A. c., B. lundskog, R. Ganceviciene, R. H. Palmer, I. Golovleva, C. C. Zouboulis, A. 
McDowell, S. Patrick & O. A. Alexeyev, (2012) An increased incidence of 
Propionibacterium acnes biofilms in acne vulgaris: a case-control study. Br J Dermatol 

167: 50-58. 
Jakab, E., R. Zbinden, J. Gubler, C. Ruef, A. von Graevenitz & M. Krause, (1996) Severe infections 

caused by Propionibacterium acnes: an underestimated pathogen in late postoperative 
infections. Yale J Bioi Med 69: 477-482. 

Janssen, G. R., (1993) Eubacterial, archaebacterial, and eukaryotic genes that encode leaderless 
mRNA. Industrial Microorganisms: Basic and Applied Molecular Genetics: 59-67. 

Jappe, U., (2003) Pathological mechanisms of acne with special emphasis on Propionibacterium 
acnes and related therapy. Acta Derm Venereo/83: 241-248. 

Jarrige, A. c., N. Mathy & C. Portier, (2001) PNPase autocontrols its expression by degrading a 
double-stranded structure in the pnp mRNA leader. EMBO J. 20: 6845-6855. 

Jayapal, K. P., R. J. Philp, Y. J. Kok, M. G. Yap, D. H. Sherman, T. J. Griffin & W. S. Hu, (2008) 
Uncovering genes with divergent mRNA-protein dynamics in Streptomyces coelicolor. 
PLoS One 3: e2097. 

124 



Jung, K., K. Hamann & A. Revermann, (2001) K+ Stimulates Specifically the Autokinase Activity of 
Purified and Reconstituted EnvZ of Escherichia coli. J. Bioi. Chem. 276: 40896-40902. 

Kafatos, F. c., C. W. Jones & A. Efstratiadis, (1979) Determination of nucleic acid sequence 
homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids 

Res 7: 1541-1552. 
Kanaar, P., (1971) Follicular-keratogenic properties of fatty acids in the external ear canal of the 

rabbit. Dermato/ogica 142: 14-22. 
Kanehisa, M., S. Goto, V. Sato, M. Furumichi & M. Tanabe, (2012) KEGG for integration and 

interpretation of large-scale molecular data sets. Nucleic Acids Res 40: 0109-114. 
Kang, V., M. H. Norris, J. Zarzycki-Siek, W. C. Nierman, S. P. Donachie & T. T. Hoang, (2011) 

Transcript amplification from single bacterium for transcriptome analysis. Genome Res 
21: 925-935. 

Karr, J. R., J. C. Sanghvi, D. N. Macklin, A. Arora & M. W. Covert, (2012a) WholeCellKB: model 
organism databases for comprehensive whole-cell models. Nucleic Acids Res. 

Karr, J. R., J. C. Sanghvi, D. N. Macklin, M. V. Gutschow, J. M. Jacobs, B. Bolival, N. Assad-Garcia, 
J. I. Glass & M. W. Covert, (2012b) A whole-cell computational model predicts 
phenotype from genotype. Cell 150: 389-401. 

Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater & D. A. Hopwood, (2000) Practical streptomyces 
genetics. John Innes Foundation Norwich, UK. 

Kim, J., (2005) Review of the innate immune response in acne vulgaris: activation of Toll-like 
receptor 2 in acne triggers inflammatory cytokine responses. Dermatology 211: 193-198. 

Kim, J., M. T. Ochoa, S. R. Krutzik, O. Takeuchi, S. Uematsu, A. J. Legaspi, H. D. Brightbill, D. 
Holland, W. J. Cunliffe, S. Akira, P. A. Sieling, P. J. Godowski & R. l. Modlin, (2002) 
Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J 

Immuno/169: 1535-1541. 
Kligman, A. M., (1968) Pathogenesis of acne vulgariS. II. Histopathology of comedones induced 

in the rabbit ear by human sebum. Arch Dermato/98: 58-66. 
Kligman, A. M., (1974) An overview of acne. J Invest Dermato/62: 268-287. 
Koo, J. V. & l. l. Smith, (1991) Psychologic aspects of acne. Pediatr Dermatol8: 185-188. 
Kornberg, A., N. N. Rao & D. Ault-Riche, (1999) Inorganic polyphosphate: a molecule of many 

functions. Annu Rev Biochem 68: 89-125. 
Laing, E. & c. P. Smith, (2010) RankProdlt: A web-interactive Rank Products analysis tool. BMC 

Res Notes 3: 221. 
Langmead, B. & S. l. Salzberg, (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods 

9: 357-U354. 
Lasa, I., A. Toledo-Arana, A. Dobin, M. Villanueva, I. R. de los Mozos, M. Vergara-Irigaray, V. 

Segura, D. Fagegaltier, J. R. Penades, J. Valle, C. Solano & T. R. Gingeras, (2011) Genome­
wide antisense transcription drives mRNA processing in bacteria. Proc. Natl. Acad. Sci. 
USA 108: 20172-20177. 

Law, M. P., A. A. Chuh, A. Lee & N. Molinari, (2010) Acne prevalence and beyond: acne disability 
and its predictive factors among Chinese late adolescents in Hong Kong. Clin Exp 
Dermato/35: 16-21. 

125 



Lee, S. V., S. C. Bailey & D. Apirion, (1978) Small stable RNAs from Escherichia coli: evidence for 
existence of new molecules and for a new ribonucleoprotein particle containing 6S RNA. 

J. Bacterio/. 133: 1015-1023. 
Lee, W. J., H. D. Jung, H. J. Lee, B. S. Kim, S.-J. Lee & D. W. Kim, (2008) Influence of substance-P 

on cultured sebocytes. Arch Dermatol Res 300: 311-316. 
Levin, J. Z., M. Vassour, X. Adiconis, C. Nusbaum, D. A. Thompson, N. Friedman, A. Gnirke & A. 

Regev, (2010) Comprehensive comparative analysis of strand-specific RNA sequencing 
methods. Nat Methods 7: 709-715. 

Levy, P. V., F. Fenollar, A. Stein, F. Borrione, E. Cohen, B. Lebail & D. Raoult, (2008) 
Propionibacterium acnes postoperative shoulder arthritis: an emerging clinical entity. 
Clin Infect Dis 46: 1884-1886. 

Lin-Chao, S. & S. N. Cohen, (1991) The rate of processing and degradation of antisense RNAI 
regulates the replication of ColEl-type plasmids in vivo. Cell 65: 1233-1242. 

Lin, M. H., J. C. Shu, H. V. Huang & V. C. Cheng, (2012) Involvement of iron in biofilm formation 
by Staphylococcus aureus. PLoS One 7: e34388. 

Lindsay, D. & A. von Holy, (2006) Bacterial biofilms within the clinical setting: what healthcare 
professionals should know. J Hosp Infect 64: 313-325. 

Lisser, S. & H. Margalit, (1993) Compilation of Escherichia coli mRNA promoter sequences. 
Nucleic Acids Res. 21: 1507-1516. 

Liu, J. M., J. Livny, M. S. Lawrence, M. D. Kimball, M. K. Waldor & A. Camilli, (2009) Experimental 
discovery of sRNAs in Vibrio cholerae by direct cloning, 5S/tRNA depletion and parallel 
sequencing. Nucleic Acids Res. 37. 

Lyons, R. E., (1978) Comparative effectiveness of benzoyl peroxide and tretinoin in acne vulgaris. 
Int J Dermato/17: 246-251. 

Mackenzie, S., P. Abraham, J. Broom, M. Morris, H. R. Crocker, l. Roberts, J. F. Payne, H. Waldo 
& G. S. Taylor, (1894) A discussion on the etiology and treatment of acne vulgaris. Brit 

Med J 2: 688-692. 
Malys, N. & J. E. G. McCarthy, (2011) Translation initiation: variations in the mechanism can be 

anticipated. Cell. Mol. Life Sci. 68: 991-1003. 
Mamanova, l., R. M. Andrews, K. D. James, E. M. Sheridan, P. D. Ellis, C. F. Langford, T. W. Ost, J. 

E. Collins & D. J. Turner, (2010a) FRT-seq: amplification-free, strand-specific 
transcriptome sequencing. Nature methods 7: 130-132. 

Mamanova, l., R. M. Andrews, K. D. James, E. M. Sheridan, P. D. Ellis, C. F. Langford, T. W. B. Ost, 
J. E. Collins & D. J. Turner, (2010b) FRT-seq: amplification-free, strand-specific 
transcriptome sequencing. Nat. Methods 1: 130-U163. 

Mamanova, l. & D. J. Turner, (2011) Low-bias, strand-specific transcriptome lIIumina 
sequencing by on-flowcell reverse transcription (FRT-seq). Nat Pratac 6: 1736-1747. 

Marguerat, S. & J. Bahler, (2010) RNA-seq: from technology to biology. Cell. Mol. Life Sci. 61: 
569-579. 

Marines, F., I. W. Manfield, J. A. Stead, K. J. McDowall & P. G. Stockley, (2006) Transcript 
analysis reveals an extended regulon and the importance of protein-protein co­
operativitv for the Escherichia coli methionine repressor. Biochem. J. 396: 227-234. 

126 



Marioni, J. c., C. E. Mason, S. M. Mane, M. Stephens & Y. Gilad, (2008) RNA-seq: an assessment 
of technical reproducibility and comparison with gene expression arrays. Genome Res 18: 
1509-1517. 

Martin, J., W. Zhu, K. D. Passalacqua, N. Bergman & M. Borodovsky, (2010a) Bacillus anthracis 
genome organization in light of whole transcriptome sequencing. BMC Bioin!ormatics 11 
Suppl 3: S10. 

Martin, J., W. H. Zhu, K. D. Passalacqua, N. Bergman & M. Borodovsky, (2010b) Bacillus 
anthracis genome organization in light of whole transcriptome sequencing. Bmc 

Bioin!ormatics 11. 
Marynick, S. P., Z. H. Chakmakjian, D. L. McCaffree & J. H. Herndon, Jr., (1983) Androgen excess 

in cystic acne. N Engl J Med 308: 981-986. 
Masse, E., F. E. Escorcia & S. Gottesman, (2003) Coupled degradation of a small regulatory RNA 

and its mRNA targets in Escherichia coli. Genes Dev 17: 2374-2383. 
Mathy, N., L. Benard, O. Pellegrini, R. Daou, T. Y. Wen & C. Condon, (2007) 5 '-to-3 ' 

exoribonuclease activity in bacteria: Role of RNase J1 in rRNA maturation and 5 ' 
stability of mRNA. Cell 129: 681-692. 

Matsushima, P., M. C. Broughton, J. R. Turner & R. H. Baltz, (1994) Conjugal transfer of cosmid 

DNA from Escherichia coli to Saccharopolyspora spinosa: effects of chromosomal 
insertions on macrolide A83543 production. Gene 146: 39-45. 

Mazurkiewicz, P., C. M. Tang, C. Boone & D. W. Holden, (2006) Signature-tagged mutagenesis: 
barcoding mutants for genome-wide screens. Nat Rev Genet 7: 929-939. 

McLorinan, G. c., J. V. Glenn, M. G. McMullan & S. Patrick, (2005) Propionibacterium ocnes 
wound contamination at the time of spinal surgery. Clin Orthop Relat Res: 67-73. 

Mendoza-Vargas, A., L. Olvera, M. Olvera, R. Grande, L. Vega-Alvarado, B. Taboada, V. Jimenez­
Jacinto, H. Salgado, K. Juarez, B. Contreras-Moreira, A. M. Huerta, J. Collado-Vides & E. 
Morett, (2009) Genome-wide identification of transcription start sites, promoters and 
transcription factor binding sites in E. coli. Plos One 4. 

Merritt, J., F. ai, S. D. Goodman, M. H. Anderson & W. Shi, (2003) Mutation of luxS affects 
biofilm formation in Streptacoccus mutans.ln!ect Immun 71: 1972-1979. 

Michoel, T., R. De Smet, A. Joshi, K. Marchal & Y. Van de Peer, (2009) Reverse-engineering 
transcriptional modules from gene expression data. Ann N Y Acad Sci 1158: 36-43. 

Mitschke, J., J. Georg, t. Scholz, C. M. Sharma, D. Dienst, J. Bantscheff, B. Voss, C. Steglich, A. 
Wilde, J. Vogel & W. R. Hess, (2011) An experimentally anchored map of transcriptional 
start sites in the model cyanobacterium Synechocystis sp PCC6803. Proc. Natl. Acad. Sci. 
USA 108: 2124-2129. 

Mohanty, B. K. & S. R. Kushner, (2000) Polynucleotide phosphorylase functions both as a 3 '-> 5 
, exonuclease and a poly(A) polymerase in Escherichia coli. Proc. Natl. Acad. Sci. USA 97: 
11966-11971. 

Moll, I., S. Grill, C. O. Gualerzi & U. Blasi, (2002) Leaderless mRNAs in bacteria: surprises in 
ribosomal recruitment and translational control. Mol. Microbiol. 43: 239-246, 

Molle, V., M. Fujita, S. T. Jensen, P. Eichenberger, J. E. Gonzalez-Pastor, J. S. Liu & R. Losick, 

(2003) The SpoOA regulon of Bacillus subtilis. Mol Microbiol SO: 1683-1701. 
Monod, J., (1949) The growth of bacterial cultures. Annu Rev Microbio/3: 371-394. 

127 



Motoyoshi, K., (1983) Enhanced comedo formation in rabbit ear skin by squalene and oleic acid 
peroxides. Br J Dermato/109: 191-198. 

Nahvi, A., N. Sudarsan, M. S. Ebert, X. Zou, K. l. Brown & R. R. Breaker, (2002) Genetic control 

by a metabolite binding mRNA. Chem. BioI. 9: 1043-1049. 
Neidhardt, F. c., J. l. Ingraham, K. B. low, B. Magasanik, M. Schaechter & H. Umbarger, (1987) 

Escherichia coli and Salmonella typhimurium. Cellular and molecular biology. Volumes I 

and II. American Society for Microbiology. 
Nguyen, R. & J. Su, (2011) Treatment of acne vulgaris. Paediatrics and Child Health 21: 119-125. 

Nicholson, A. W., (2003) The ribonuclease III superfamily: forms and functions in RNA 
maturation, decay, and gene silencing In: RNAi: A Guide to Gene Silencing. G. J. Hannon 
(ed). Cold Spring Harbor, NY: Cold Spring Harbor laboratory Press, pp. 

Nisbet, M., S. Briggs, R. Ellis-Pegler, M. Thomas & D. Holland, (2007) Propionibacterium acnes: 
an under-appreciated cause of post-neurosurgical infection. J Antimicrob Chemother 60: 
1097-1103. 

Noble, W. c., (1984) Skin microbiology: coming of age. J Med Microbio/17: 1-12. 
Nogueira, T. & M. Springer, (2000) Post-transcriptional control by global regulators of gene 

expression in bacteria. Curr Opin Microbiol 3: 154-158. 

Nordlund, N. & P. Reichard, (2006) Ribonucleotide reductases. Annu. Rev. Biochem. 75: 681-706. 
Novick, A., (1955) Growth of bacteria. Annu Rev Microbio/9: 97-110. 
O'Donnell, S. A. & G. R. Janssen, (2002) leaderless mRNAs bind 70S ribosomes more strongly 

than 30S ribosomal subunits in Escherichia coli. J. Bacteriol. 184: 6730-6733. 
Oliver, J. D., (2005) The viable but nonculturable state in bacteria. J Microbio/43 Spec No: 93-

100. 
Ostlere, l. S., G. Rumsby, P. Holownia, H. S. Jacobs, M. H. Rustin & J. W. Honour, (1998) Carrier 

status for steroid 21-hydroxylase deficiency is only one factor in the variable phenotype 
of acne. Clin Endocrino/48: 209-215. 

Papageorgiou, P., A. Katsambas & A. Chu, (2000) Phototherapy with blue (415 nm) and red (660 
nm) light in the treatment of acne vulgariS. Br J Dermato/142: 973-978. 

Parkinson, J. S., (1993) Signal transduction schemes of bacteria. Cell 73: 857-871. 
Pochi, P. E., J. S. Strauss & D. T. Downing, (1979) Age-related changes in sebaceous gland 

activity. J Invest Dermato/73: 108-111. 
Polarek, J. W., G. Williams & w. Epstein, (1992) The products of the kdpDE operon are required 

for expression of the Kdp ATPase of Escherichia coli. J Bacterio/174: 2145-2151. 
Pruitt, K. D., T. Tatusova & D. R. Maglott, (2007) NCBI reference sequences (Ref Seq): a curated 

non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids 
Res. 35: 061-065. 

Pushkarev, D., N. F. Neff & S. R. Quake, (2009) Single-molecule sequencing of an individual 
human genome. Not Biotechno/27: 847-850. 

Qin, J., Y. li, Z. Cai, S. Li, J. Zhu, F. Zhang, S. Liang, W. Zhang, Y. Guan, D. Shen, Y. Peng, D. Zhang, 
Z. Jie, W. Wu, Y. Qin, W. Xue, J. li, l. Han, D. lu, P. Wu, Y. Dai, X. Sun, Z.li, A. Tang, S. 

Zhong, X. li, W. Chen, R. Xu, M. Wang, Q. Feng, M. Gong, J. Yu, Y. Zhang, M. Zhang, T. 
Hansen, G. Sanchez, J. Raes, G. Falony, S. Okuda, M. Almeida, E. leChatelier, P. Renault, 
N. Pons, J. M. Batto, Z. Zhang, H. Chen, R. Yang, W. Zheng, H. Yang, J. Wang, S. D. Ehrlich, 

128 



R. Nielsen, O. Pedersen & K. Kristiansen, (2012) A metagenome-wide association study 
of gut microbiota in type 2 diabetes. Nature 490: 55-60. 

Quinlan, A. R. & I. M. Hall, (2010) BEDTools: a flexible suite of utilities for comparing genomic 

features. Bioin!ormatics 26: 841-842. 
Rademaker, M., (2012) Isotretinoin: dose, duration and relapse. What does 30 years of usage 

tell us? Australas J Dermato/. 
Radtke, M. A., I. Schafer & M. Augustin, (2010) Pharmacoeconomy in acne - evaluation of 

benefit and economics. J Dtsch Dermotol Ges 8 Suppll: S105-114. 
Ramage, G., M. M. Tunney, S. Patrick, S. P. Gorman & J. R. Nixon, (2003) Formation of 

Propionibacterium acnes biofilms on orthopaedic biomaterials and their susceptibility to 
antimicrobials. Biomaterials 24: 3221-3227. 

Rasmussen, S., H. B. Nielsen & H. Jarmer, (2009) The transcriptionally active regions in the 
genome of Bacillus subtilis. Mol. Microbio/. 73: 1043-1057. 

Resch, A., R. Rosenstein, C. Nerz & F. Gotz, (2005) Differential gene expression profiling of 
Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl Environ 
Microbio/71: 2663-2676. 

Robert-Le meur, M. & c. Portier, (1992) Escherichia coli polynucleotide phosphorylase 
expression is autoregulated through an RNase III-dependent mechanism. EMBO J. 11: 
2633-2641. 

Robert-Le meur, M. & c. Portier, (1994) Polynucleotide phosphorylase of Escherichia coli 
induces the degradation of its RNase III-processed messenger by preventing its 
translation. Nucleic Acids Res. 22: 397-403. 

Robertson, H. D., R. E. Webster & N. D. Zinder, (1968) Purification and properties of 
ribonuclease III from Escherichia coli. J. BioI. Chem. 243: 82-&. 

Ross, J., A. Snelling, E. Carnegie, P. Coates, W. Cunliffe, V. Bettoli, G. Tosti, A. Katsambas, J. 
Galvan Perez Del Pulgar & O. Rollman, (2003) Antibiotic-resistant acne: lessons from 
Europe. Br J Dermato/148: 467-478. 

Ryder, V. J., (2010) The mutability of staphyloccal biofilms. In.: University of Leeds, pp. 
Salgado, H., S. Gama-Castro, M. Peralta-Gil, E. Diaz-Peredo, F. Sanchez-Solano, A. Santos­

Zavaleta, I. Martinez-Flores, V. Jimenez-Jacinto, C. Bonavides-Martinez, J. Segura-Salazar, 
A. Martinez-Antonio & J. Collado-Vi des, (2006) RegulonDB (version 5.0): Escherichia coli 
K-12 transcriptional regulatory network, operon organization, and growth conditions. 
Nucleic Acids Res. 34: 0394-0397. 

Salgado, H., M. Peralta-Gil, S. Gama-Castro, A. Santos-Zavaleta, l. Muniz-Rascado, J. S. Garcia­
Sotelo, V. Weiss, H. Solano-Lira, I. Martinez-Flores, A. Medina-Rivera, G. Salgado-Osorio, 
S. Alquicira-Hernandez, K. Alquicira-Hernandez, A. Lopez-Fuentes, l. Porron-Sotelo, A. M. 
Huerta, C. Bonavides-Martinez, Y. I. Balderas-Martinez, l. Pannier, M. Olvera, A. 
Labastida, V. Jimenez-Jacinto, l. Vega-Alvarado, V. Del Moral-Chavez, A. Hernandez­
Alvarez, E. Morett & J. Collado-Vi des, (2013) RegulonDB v8.0: omics data sets, 
evolutionary conservation, regulatory phrases, cross-validated gold standards and more. 
Nucleic Acids Res 41: 0203-213. 

Sambrook, J. & o. W. Russe", (2006) Agarose gel electrophoresis. CSH Protoc 2006: pdb. 
prot4020. 

129 



Schena, M., D. Shalon, R. W. Davis & P. O. Brown, (1995) Quantitative monitoring of gene 
expression patterns with a complementary DNA microarray. Science 270: 467-470. 

Schneider, K. L., K. S. Pollard, R. Baertsch, A. Pohl & T. M. Lowe, (2006) The UCSC Archaeal 
Genome Browser. Nucleic Acids Res 34: 0407-410. 

Shahbabian, K., A. Jamalli, L. Zig & H. Putzer, (2009) RNase V, a novel endoribonuclease, initiates 
riboswitch turnover in Bacillus subtilis. EMBO J. 28: 3523-3533. 

Sharma, C. M., S. Hoffmann, F. Darfeuille, J. Reignier, S. Findeiss, A. Sittka, S. Chabas, K. Reiche, J. 
Hackermuller, R. Reinhardt, P. F. Stadler & J. Vogel, (2010) The primary transcriptome of 
the major human pathogen Helicobacter pylori. Nature 464: 250-255. 

Shelness, G. S. & D. L. Williams, (1985) Secondary structure analysis of apolipoprotein II mRNA 
using enzymatic probes and reverse transcriptase. Evaluation of primer extension for 
high resolution structure mapping of mRNA. J BioI Chem 260: 8637-8646. 

Shine, J. & L. Dalgarno, (1974) 3'-terminal sequence of Escherichia coli 16S rRNA: possible role 
in initiation and termination of protein synthesis. P. Aust. Biochem. Soc. 7: 72-72. 

Shine, J. & L. Dalgarno, (1975) Terminal sequence analysis of bacterial rRNA: correlation 
between 3'-terminal polypyrimidine sequence of 16S RNA and translational specificity of 
ribosome. Eur. J. Biochem. 57: 221-230. 

Simonart, T., M. Dramaix & V. De Maertelaer, (2008) Efficacy of tetracyclines in the treatment 
of acne vulgaris: a review. Br J Dermato/158: 208-216. 

Simpson, N., (1993) Social and economic aspects of acne and the cost-effectiveness of 
isotretinoin. J Dermatolog Treat 4: 6-9. 

Sorensen, M., T. N. Mak, R. Hurwitz, L. A. Ogilvie, H. J. Mollenkopf, T. F. Meyer & H. 
Bruggemann, (2010) Mutagenesis of Propionibacterium acnes and analysis of two CAMP 
factor knock-out mutants. J Microbiol Methods 83: 211-216. 

Stepanovic, S., D. Vukovic, I. Dakic, B. Savic & M. Svabic-Vlahovic, (2000) A modified microtiter­
plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40: 
175-179. 

Stern, R. S., (2000) Medication and medical service utilization for acne 1995-1998. JAm Acad 
Dermato/43: 1042-1048. 

Stewart, G. C. & K. F. Bott, (1983) DNA sequence of the tandem rRNA promoter for B subtilis 
operon rrnB. Nucleic Acids Res. 11: 6289-6300. 

Stewart, M. E., R. Greenwood, W. J. Cunliffe, J. S. Strauss & D. T. Downing, (1986) Effect of 
cyproterone acetate-ethinyl estradiol treatment on the proportions of linoleic and 
sebaleic acids in various skin surface lipid classes. Arch Dermatol Res 278: 481-485. 

Stewart, P. S. & M. J. Franklin, (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 
6: 199-210. 

Stock, A. M., V. L. Robinson & P. N. Goudreau, (2000) Two-component signal transduction. Annu 
Rev Biochem 69: 183-215. 

Stoll, S., A. R. Shalita, G. F. Webster, R. Kaplan, S. Danesh & A. Penstein, (2001) The effect of the 
menstrual cycle on acne. JAm Acad Dermatol 45: 957-960. 

Stoodley, P., D. Debeer & Z. Lewandowski, (1994) Liquid flow in biofilm systems. Appl Environ 
Microbial 50: 2711-2716. 

130 



Storz, G., J. A. Opdyke & A. Zhang, (2004) Controlling mRNA stability and translation with small, 
noncoding RNAs. Curr Opin Microbio/7: 140-144. 

Suelter, C. H., (1970) Enzymes activated by monovalent cations. Science 168: 789-795. 
Sugiura, A., K. Nakashima & T. Mizuno, (1993) Sequence-directed DNA curvature in activator­

binding sequence in the Escherichia coli kdpABC promoter. Biosci Biotechnol Biochem 57: 

356-357. 
Sugiura, A., K. Nakashima, K. Tanaka & T. Mizuno, (1992) Clarification of the structural and 

functional features of the osmoregulated kdp operon of Escherichia coli. Mol Microbio/6: 

1769-1776. 
Suzek, B. E., M. D. Ermolaeva, M. Schreiber & S. lo Salzberg, (2001) A probabilistic, method for 

identifying start codons in bacterial genomes. Bioinformatics 17: 1123-1130. 
Tafin, U. F., S. Corvec, B. Betrisey, W. Zimmerli & A. Trampuz, (2012) Role of rifampin against 

Propionibacterium acnes biofilm in vitro and in an experimental foreign-body infection 
model. Antimicrob Agents Chemother 56: 1885-1891. 

Tang, F., C. Barbacioru, Y. Wang, E. Nordman, C. lee, N. Xu, X. Wang, J. Bodeau, B. B. Tuch, A. 
Siddiqui, K. lao & M. A. Surani, (2009) mRNA-Seq whole-transcriptome analysis of a 
single cell. Nat Methods 6: 377-382. 

Thomas, lo, D. A. Hodgson, A. Wentzel, K. Nieselt, T. E. Ellingsen, J. Moore, E. R. Morrissey, R. 
Legaie, W. Wohlleben, A. Rodriguez-Garcia, J. F. Martin, N. J. Burroughs, E. M. 
Wellington & M. C. Smith, (2012) Metabolic switches and adaptations deduced from the 
proteomes of Streptomyces coelicolor wild type and phoP mutant grown in batch culture. 
Mol Cell Proteomics 11: M111 013797. 

Timmermans, J. & lo Van Melderen, (2010) Post-transcriptional global regulation by CsrA in 
bacteria. Cell Mol Life Sci 67: 2897-2908. 

Toledo-Arana, A., O. Dussurget, G. Nikitas, N. Sesto, H. Guet-Revillet, D. Balestrino, E. Loh, J. 
Gripenland, T. Tiensuu, K. Vaitkevicius, M. Barthelemy, M. Vergassola, M. A. Nahori, G. 
Soubigou, B. Regnault, J. Y. Coppee, M. lecuit, J. Johansson & P. Cossart, (2009) The 
Listeria transcriptional landscape from saprophytism to virulence. Nature 459: 950-956. 

Torrents, E., I. Grinberg, B. Gorovitz-Harris, H. lundstrom, I. Borovok, Y. Aharonowitz, B. M. 
Sjoberg & G. Cohen, (2007) NrdR controls differential expression of the Escherichia coli 
ribonucleotide reductase genes. J. Bacteriol. 189: 5012-5021. 

Toyoda, M. & M. Morohashi, (2001) Pathogenesis of acne. Medical Electron Microscopy 34: 29-
40. 

Tunney, M. M., S. Patrick, M. D. Curran, G. Ramage, D. Hanna, J. R. Nixon, S. P. Gorman, R. I. 

Davis & N. Anderson, (1999) Detection of prosthetic hip infection at revision 
arthroplasty by immunofluorescence microscopy and PCR amplification of the bacterial 
16S rRNA gene. J Clin Microbio/37: 3281-3290. 

Van Dessel, W., lo Van Mellaert, N. Geukens, E.lammertyn & J. Anne, (2004) Isolation of high 
quality RNA from Streptomyces. J Microbiol Methods 58: 135-137. 

Van Etten, W. J. & G. R. Janssen, (1998) An AUG initiation codon, not codon-anticodon 
complementarity, is required for the translation of unleadered mRNA in Escherichia coli. 
Mol. Microbiol. 27: 987-1001. 

131 



Vesper, 0., S. Amitai, M. Belitsky, K. Byrgazov, A. C. Kaberdina, H. Engelberg-Kulka & I. Moll, 
(2011) Selective translation of leaderless mRNAs by specialized ribosomes generated by 
MazF in Escherichia coli. Cell 147: 147-157. 

Vioque, A., J. Arnez & S. Altman, (1988) Protein-RNA interactions in the RNase P holoenzyme 
from Escherichia coli. J. Mol. BioI. 202: 835-848. 

Vitreschak, A. G., D. A. Rodionov, A. A. Mironov & M. S. Gelfand, (2003) Regulation of the 
vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element. 

RNA 9: 1084-1097. 
Vockenhuber, M. P., C. M. Sharma, M. G. Statt, D. Schmidt, Z. J. Xu, S. Dietrich, H. Uesegang, D. 

H. Mathews & B. Suess, (2011) Deep sequencing-based identification of small non­
coding RNAs in Streptomyces coeficolor. RNA BioI. 8: 468-477. 

Volker, U. & M. Hecker, (2005) From genomics via proteomics to cellular physiology of the 
Gram-positive model organism Bacillus subtilis. Cel/ Microbio/7: 1077-1085. 

Voros, A., B. Horvath, J. Hunyadkurti, A. McDowell, E. Barnard, S. Patrick & I. Nagy, (2012) 
Complete genome sequences of three Propionibacterium acnes isolates from the type 
IA2 cluster. J Bacterio/194: 1621-1622. 

Vos, M., (2009) Why do bacteria engage in homologous recombination? Trends in microbiology 
17: 226-232. 

Wad a, J., K. Shikata & H. Makino, (1999) Novel approaches to unravel the genesis of 
glomerulosclerosis by new methodologies in molecular biology and molecular genetics. 
Nephrology, dialysis, transplantation: official publication of the European Dialysis and 
Transplant Association - European Renal Association 14: 2551-2553. 

Walters, C. E., E. Ingham, E. A. Eady, J. H. Cove, J. N. Kearney & W. J. Cunliffe, (1995) In vitro 
modulation of keratinocyte-derived interleukin-1a (IL-1a) and peripheral blood 
mononuclear cell-derived IL-1~ release in response to cutaneous commensal 
microorganisms. Infect Immun 63: 1223-1228. 

Walz, A., V. Pirrotta & K. Ineichen, (1976) Lambda repressor regulates switch between PR and 
PRM promoters. Nature 262: 665-669. 

Wang, Z., M. Gerstein & M. Snyder, (2009a) RNA-Seq: a revolutionary tool for transcriptomics. 
Nat Rev Genet 10: 57-63. 

Wang, Z., M. Gerstein & M. Snyder, (2009b) RNA-Seq: a revolutionary tool for transcriptomics. 
Nat. Rev. Genet. 10: 57-63. 

Wanner, U. & T. Egli, (1990) Dynamics of microbial growth and cell composition in batch culture. 
FEMS Microbiol Rev 6: 19-43. 

Wassarman, K. M., (2002) Small RNAs in bacteria: diverse regulators of gene expression in 
response to environmental changes. Ce1/109: 141-144. 

Webster, G. F. & E. M. Graber, (2008) Antibiotic treatment for acne vulgariS. Semin Cutan Med 
Surg 27: 183-187. 

Wei, B., y. Pang, H. Zhu, L. Qu, T. Xiao, H. C. Wei, H. D. Chen & C. D. He, (2010) The 
epidemiology of adolescent acne in North East China. J fur Acad Dermatol Venereo/24: 
953-957. 

132 



Wertz, P. W., M. C. Miethke, S. A. Long, J. S. Strauss & D. T. Downing, (1985) The composition of 
the ceramides from human stratum corneum and from comedones. j Invest Dermato/84: 
410-412. 

Williams, H. (., R. P. Dellavalle & S. Garner, (2012) Acne vulgaris. The Lancet 379: 361-372. 
Wright, P. (., J. Noirel, S. Y. Ow & A. Fazeli, (2012) A review of current proteomics technologies 

with a survey on their widespread use in reproductive biology investigations. 

Theriogenology 77: 738-765 e752. 
Wurtzel, 0., R. Sapra, F. Chen, Y. W. Zhu, B. A. Simmons & R. Sorek, (2010) A single-base 

resolution map of an archaeal transcriptome. Genome Res. 20: 133-141. 
Xavier, K. B. & B. l. Bassler, (2003) LuxS quorum sensing: more than just a numbers game. CUff 

Opin Microbio/6: 191-197. 
Xu, l., H. Li, C. Vuong, V. Vadyvaloo, J. Wang, Y. Yao, M. Otto & Q. Gao, (2006) Role of the luxS 

quorum-sensing system in biofilm formation and virulence of Staphylococcus 
epidermidis. Infect Immun 74: 488-496. 

Xue, T., Y. You, D. Hong, H. Sun & B. Sun, (2011) The Staphylococcus aureus KdpDE two­
component system couples extracellular K+ sensing and Agr signaling to infection 
programming. Infect Immun 79: 2154-2167. 

Yarchuk, 0., N. Jacques, J. Guillerez & M. Dreyfus, (1992) Interdependence of translation, 
transcription and mRNA degradation in the lacZ gene. j Mol 8io/226: 581-596. 

Young, R. A. & J. A. Steitz, (1979) Tandem promoters direct Escherichia coli rRNA synthesis. Cell 
17: 225-234. 

Zouboulis, (., A. Eady, M. Philpott, l. Goldsmith, C. Orfanos, W. Cunliffe & R. Rosenfield, (2005) 

What is the pathogenesis of acne? Exp Dermato/14: 143-143. 
Zouboulis, C. (., (2004) Acne and sebaceous gland function. Clin Dermato/22: 360-366. 
Zouboulis, C. (., (2009) Sebaceous gland receptors. Dermatoendocrino/l: 77-80. 
Zuker, M., (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic 

Acids Res 31: 3406-3415. 

133 


