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Abstract 

Avian egg albumen and whey protein concentrates from milk 
are widely used in the food industry as binder systems, emulsifiers, 
and foaming agents and for general consumption. In meat-like 
analogues such as Quorn, the whey protein concentrate and egg 
albumen are relied upon to produce tough gels with the application 
of heat. Like many food products, the heat-induced gelation of the 
protein molecules depend on the environmental conditions and other 
materials present in the system as well as any interactions between 
them. A study of a range of ingredients as well as environmental the 
factors of pH, material concentration and various blends of whey 
protein concentrate and albumen was initiated in the hope of 
quantifying the effect of the materials on gel structure. Texture 
Profile Analysis (TPA), stress relaxation, protein gel dissolution, 
colour measurement and confocal laser scanning microscopy (CLSM) 
were employed to assess, measure and quantify the relationships 
between the environmental factors and the added materials. 

The results obtained indkated that whey protein and albumen 
form an interpenetrating gel under normal conditions. The optimum 
ratio at which the combined binder exhibited it maximum values was 
of the order of 2:1 (whey/albumen). The pH of the media had the 
biggest effect on the gel properties. Alteration in pH close to the 
isoelectric point changes the gel from a fine-stranded network to one 
with a partkulate or filamentous network. Significant interactions 
were observed between all the main variables on at least one of the 
responses. Addition of hydrocolloids with large molecules in relation 
to the protein such as methyl cellulose and pectin led to phase 
separation. Methylcellulose induced a change in the gel from one 
that imbibed water to one that exuded water as the concentration of 
the material was increased up to 2%. With high methoxyl pectin, 
there was phase separation at pectin concentration of as little as 
0.5% and phase inversion at pectin concentration in excess of 0.5%. 
The starch products generally delivered the largest increase in the 
gel hardness, but there were changes to other gel properties 
depending on what type of starch was used. Milk-derived ingredients 
such as lactose, casein and glycomacropeptide (GMP) were not 
necessarily compatible with a whey protein/albumen gel. 

Dissolutions tests with protein perturbing agents such as DTE, 
SDS and urea showed that some of the added materials interfered 
with protein-protein gel formation by one of two ways (1) by 
blocking the formation of the bonds necessary to stabilize the 
protein structure and/or (2) interacting with the water molecules in 
preference to the protein molecules. In addition the CLSM 
mkrographs proved that there was indeed phase separation of the 
molecules when the conditions were not favourable. 
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CHAPTER 1 

INTRODUCTION 

1. 1 QUORNTM MEA T-FREE PRODUCTS 

In the 1950s, it was predicted that by the 1980s, there would be a 

world shortage of good quality protein. In response to this perceived 

threat, Lord Rank, of Rank Hovis McDougal (RHM), commissioned 

research into using starch products as a substrate for the conversion of 

single celled organisms into a high protein product suitable for human 

consumption. Following an extensive screening process, the 

filamentous fungus Fusarium venenatum, discovered in 1967, was 

isolated as the best candidate. Mycoprotein refers to the protein mass­

produced from the mycelia of the fungus Fusarium spp. Although 

originally conceived as a protein-rich food supplement for the predicted 

global famine, the food shortage never materialised. In 1980, RHM was 

given permission to sell mycoprotein for human consumption after a 

ten-year evaluation programme. In 1989, it was observed that almost 

half of the UK population was reducing their intake of red meats and a 

fifth of young people were vegetarians. As a result, Marlow Foods (set 

up by RHM) decided to market and sell Quom as a new healthy meat 

analogue, which was free of animal fats and cholesterol. Quom refers 

to the brand name for the range of foods sold by Marlow Foods 

containing mycoprotein. Quom products are sold mostly in Western 

Europe and consist of a range of meat-like cooking ingredients and 

ready meals. 

Mycoprotein is manufactured by growing the fungus in continually 

oxygenated water in large, sterile fermentation tanks. During the 

growth phase glucose is added as a food for the fungus, as are various 

vitamins and minerals to optimise the growth of the organism. After a 

period of time of continuous growth, the fungus cells are harvested as 

a 'broth'. Since the purine bases in nucleic acids are metabolized to 
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uric acid , an excess in the blood of which can give rise to gout, the 

ribonucleic acid (RNA) content of mycoprotein is reduced from 10% to 

less than 2% (dry weight) by rapidly heating the "broth". The heat 

process causes complete loss of cell viability and a leaching of most of 

the cell RNA into the supernatant. Following RNA reduction , the 

mycelia are recovered by a centrifugation dewatering process to 

produce a thick and viscous paste similar to bread dough. At this point, 

the paste that is collected has a water content of approximately 75%, 

and is denoted by the name mycoprotein. 

Figure 1. 1-A 

Overview of the Production of Mycoprotein 

To make Quom products, the mycoprotein mass is mixed with whey 

protein concentrate and/or avian egg albumen among other things, 

which act as a binder. It is then textured, giving it some of the grained 

character of meat, and processed further to yield mince, chunks etc. 

The texture is made possible mostly by the filamentous nature and the 

size and shape of the hyphae. In the texturized format, Quom products 

have a varying colour and a mild flavour resembling the imitated meat 

product, and are suitable for use as a replacement for meat in many 

dishes, such as stews and casseroles. The final Quom product is high 
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in vegetable protein and dietary fibre and is low in saturated fat and 

salt. The amount of dietary iron it contains is lower than that of most 

meat products. 

Figure 1.1- B 

Overview of the Manufacture of Quom Products 

Over the last the last ten years, the consumption of meat-free 

products has grown by almost 500%. (Meat-free in the context of this 

thesis refers to non-meat products that have been formulated to have 

mouth-feel and taste similar to meat. It does not include vegetable­

based products or pulses). By the end of 2006, it was estimated that 

the meat-free market was worth £156m and is estimated to grow to 

about £192m by 2011 (Mintel, 2006). Most of these products are 

consumed as part of a main meal. Changes in eating patterns mean 

that many people, whilst cutting down on the amount of meat 

consumed, especially red meat, are increasingly demanding meat-free 

products that still taste like and have the texture of meat. 

Quite a few different types of meat-free products are available in the 

UK and include those sold under the Cauldron™, Linda McCartneyTM , 

and TivafITM brands. Many of the meat-free products are made using 
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protein derived from plants as the raw material. The two main 

techniques by which meat-type analogues are made are by 

• manipulation of the proteins by physical means 

• manipulation of the proteins by the presence of other molecules. 

1.1.1 Meat-Like Analogues Derived By Physical 

Manipulation 

Physical manipulation is generally done by extrusion cooking of a 

soup of proteins. It involves the application of heat and pressure in the 

barrel of an extrusion cooker. The protein mass is worked by the 

screws within the extruder barrel. The work process causes the protein 

matrix to unfold. As the 'molten' protein mass is forced down the 

extruder barrel by the action of a series of co-rotating and counter­

rotating screws, it is subjected to intense pressure, which coupled with 

the high temperature, effectuates a change to the molecular structure 

(Yuryev et al., 1991). Due to the 'natural' attempts to reduce the 

entropy with the aim of attaining stability, the molecules aggregate. 

Aggregation takes place when the molten 'molecular soup' mass is 

forced into a setting zone of the extruder where it is transported by plug 

flow. At this time, the protein molecules re-align, the gentle flow leading 

to striations similar to the myofibril bundles found in muscle. 

The texture of meat analogues produced by extrusion cooking of 

protein tends to be one-dimensional. The use of other ingredients in 

addition to protein to provide texture not only is easier but also offers 

more chance for deliberate manipulation of gel characteristics at a 

molecular level. 

1.1.2 Meat-Like Analogues Derived By Ingredient 

Manipulation 

In the molecular approach method, reliance is placed on the 

functional characteristics, especially gelation and water-holding 

capacity (WHC), of the protein molecules to provide texture. Proteins 

such as egg albumen and whey protein will gel with the application of 

heat. Successful utilisation of these proteins as functional ingredients 
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requires a basic understanding that allows adjusting the mechanical 

properties of the resulting gel to yield a variety of textures. Gel 

mechanical strength and elastic modulus are directly affected by the 

concentration, conformation and type of molecules present. 

Mycoprotein is not a true globular protein in the manner of soya, 

wheat, egg and milk proteins but is a mass of inert cells of the 

Fusarium organism. It has a mycelium of narrow, branched and septate 

hyphae. This basis for a naturally fibrous (and therefore 'chewy') 

texture has been exploited in the formulation of meat analogues. In 

reality, mycoprotein can be described as an open-ended 'tube' of 

protein mass protected by the cellulose-based cell wall of the 

organism. 

The texture of many of these meat-free products is dependent on (1) 

the manner in which discrete particles are held within a continuous 

phase and (2) the ratio of discrete phase to continuous phase. The gel 

formed by the heat-induced gelation of proteins forms the continuous 

phase whilst the mycoprotein fibres constitute the discrete phase. For 

mycoprotein-based products, the characteristic meat-like texture arises 

from the 'fibre-gel' composite that is produced and not just the structure 

of the gel. 

1.2 Proteins 

Proteins are complex, high molecular weight organic compounds 

that consist of amino acids joined by peptide bonds 0Nu et al., 2007). 

Because of their dynamic structure and amphiphilic nature, they 

possess varying functional properties (Frejj-Larson et al., 1996). In 

effect, it can be said that they are amino acid chains that are folded into 

unique 3-dimensional structures. 

Protein synthesis is the multi-step process by which cells build 

proteins. It begins with amino acid synthesis followed by transcription, 

translation and then folding. 
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1.2.1 Amino acid synthesis 

Amino acids are the building blocks for the polypeptides known as 

proteins. Amino acid synthesis is the set of biochemical processes or 

metabolic pathways within the cell that build the amino acids from 

carbon sources like glucose. 

1.2.2 Activation 

The amino acids are loaded onto transfer-RNA molecules and 

transported to the ribosome for use in the process of translation. The 

amino acid is joined by its carboxyl group to the 3' OH of the transfer­

RNA by esterification. At this point the transfer-RNA is said to be 

'charged ' and the process is known as activation. 

Figure 1.2-A 

The Structure of Transfer-RNA 

3' 

Acceptor stem 

Anticodon loop 

Adapted from http://www.med.un ibs.itl- marchesi/protsyn.html 
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1.2.3 Transcription 

Transcription occurs in the nucleus. It is the process by which the 

DNA helix is unravelled. Messenger-RNA from the DNA nucleus is 

decoded to produce a specific polypeptide according to the rules 

specified by the genetic code. It is then transferred out of the nucleus 

to the cytoplasm where the ribosomes are located. 

1.2.4 Translation 

Translation proceeds in the ribosomes in an orderly manner. When 

the protein is "translated" from messenger-RNA, it is created from N­

terminus end to C-terminus end. Translation proceeds in phases: 

initiation, elongation and termination. 

Figure 1.2-8 

Protein Synthesis From mRNA and tRNA 

tAW, BIII1I!I"6 
.lmlno.l.oil to 
Rbor.oma 

Adapted from www.chemistryexplained .com/images/chfa_04_img 

IOlSJs.:IMt I"IXfI«~n§ 
llina .. :I:h Inlo 1110 

gt'Ioll1O PIal. In <ll>In 

Initiation involves the small subunit of the ribosome binding to the 5' 

end of messenger-RNA with the help of initiation factors. 

Elongation occurs when the next charged transfer-RNA in line binds 

to the ribosome along with an elongation factor. The ribosome 

continues to read codons from the 5' to the 3' end. The amino end of 

the amino acid on a charged transfer-RNA attaches to the carboxyl end 

of the budding chain during the elongation stage. Then the ribosome 
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moves to the next codon. The empty transfer-RNA is ejected and the 

peptidyl transfer-RNA is moved from the A site to the P site. 

Termination of the polypeptide happens when the A site of the 

ribosome faces a stop codon, at which point the polypeptide chain is 

released. 

After translation, modification of amino acids extends the range of 

functions of the protein. These modifications act on individual residues 

either by cleavage at specific points, deletions, additions or having the 

side chains converted or modified. Some of these include acetylation, 

phosphorylation, methylation, glycosylation, sulphation, deamidation 

etc. or making structural changes, like the formation of disulfide 

bridges. 

1.2.5 Protein Folding 

Initially proteins are long extended molecules. However, they soon 

begin to fold because of the many different type of forces acting upon 

them. The main driving force is for the hydrophobic portions of the 

protein chain to fold away from the outside water environment. The 

other motivating force is determined by the sequence of the amino 

acids, which drives the shape into which the protein is naturally folded 

due to the energy and entropy considerations. It includes a-helices 

and J3-sheets, which derive from the stabilisation of the particular chain 

conformations by hydrogen bonds between the amide groups of the 

polypeptide chains. It is known as its native state. The actual structures 

of the proteins themselves are determined and maintained by 

interactions between the different amino acids that form the 

polypeptide (Dalgleish & Hunt, 1995). There are four distinct aspects of 

the structure of a protein. 

- 8-



Chapter 1: Introduction 

1.2.5.1 Primary Structure 

The protein primary structure is a chain of amino acids and is the 

first stage after translation. It refers to the exact chemical composition 

of the biopolymer and to the sequence in which its sub-units are 

arranged . The primary structure of a biological polymer largely 

determines the three-dimensional shape that the molecule will assume 

in vivo. The primary structure is almost always stabilized by peptide 

bonds. 

Figure 1.2-( 

Lysozyme: An Example of Primary Structure 

COQ-

Adapted from users.rcn.com/ ... /BiologyPages/P/Peptide.gif 

1.2.5.1.1 Peptide bonds 

A peptide bond is a chemical bond formed between two molecules. 

It usually occurs between amino acids and is a dehydration synthesis 

reaction : the carboxyl group of one molecule reacts with the amino 

group of the other molecule, releasing a molecule of water (Fig.1.2-D). 

The resultant C-N bond is called a peptide bond and the ensuing 

molecule is called an amide. Amides can participate in hydrogen 

bonding as hydrogen bond acceptors or donors. 
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H 

Figure 1.2-D 

Formation of the Peptide Bond 
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Adapted from www.langara.bc.cal ... /Assetsipeptidebond.jpg 

1.2.5.2 Secondary Structure 

The secondary structure generally reflects how individual molecules 

in the biopolymer are connected to each other. It does not, necessarily 

refer to their actual position in the three-dimensional space; the actual 

positions are considered tertiary structure. It is the regular arrangement 

or specific geometric shape of the polypeptide chain to stabil ise the 

primary structure by hydrogen bonding between the amine and 

carboxyl groups. The formation of these secondary structures 

represents the manner in which the local entropy is decreased (Bryant 

and McClements, 1998). The stabilisation is partially dependent on the 

primary structure of the amino acid sequence, Secondary structures 

are locally defined, meaning that there can be many different 

secondary motifs present in one single protein molecule. There are two 

possible types of secondary structure: an alpha helix and a beta sheet. 

In the case of an alpha helix, the hydrogen bonding causes the 
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polypeptide to twist into a helix. With a beta sheet, the hydrogen 

bonding enables the polypeptide to fold back and forth upon itself like a 

pleated sheet (Fig . 1.2-E). 

1.2.5.3 Tertiary Structure 

The tertiary structure of a protein is its overall shape and is the final 

specific geometric shape that a protein assumes. In a solution, a 

protein will fold in a specific way as to assume the lowest possible 

energy level where by it does not have to put in energy to maintain its 

structure and this is what defines a stable protein In addition, although 

all protein molecules are simple un-branched chains of amino acids, it 

is generally by coiling into a specific three-dimensional shape that they 

are able to perform their biological functions (Minetti & Remeta, 2006) . 

Figure 1.2-£ 

Alpha Helix and Beta Pleated Sheet 

.1 ..... IIoIlx 

Adapted from student.ccbcmd.edu/ .. .Iimagesibetasheet.jpg 

An important type of chemical bond involved in stabilizing the tertiary 

structure of many proteins is the disulphide bond (See Section 

1.2.5.3.3). The final shape is determined by a variety of bonding 

interactions between the "side chains" on the amino acids. These 

bonding interactions may be stronger than the hydrogen bonds 

between amide groups holding the helical structure. As a result, 

bonding interactions between "side chains" may cause a number of 

folds, bends, and loops in the protein chain (Higman & Greene, 2006) . 

Invariably, the tertiary structure involves a combination of attractions 

between the alpha helices and the beta sheets. 
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Adapted from content.answers.com/main/contentlwp/enlthumb/ ... 

There are several types of bonding interactions between "side chains" 

and include hydrogen bonding, salt bridges, covalent bonds and non­

polar hydrophobic interactions (Sadeghi et a/., 2006). 

1.2.5.3.1 Hydrogen bonding 

The attraction of the partially positive end of one highly polar 

molecule for the partially negative end of another highly polar molecule 

is called a hydrogen bond. Hydrogen bonding occurs when a hydrogen 

atom is covalently bound to a small highly electronegative atom such 
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as nitrogen, oxygen, or fluorine. The result is a dipolar molecule. The 

hydrogen atom has a partial positive charge and will interact with 

another highly electronegative atom in an adjacent molecule 

particularly hydrogen, oxygen and fluorine. This results in a stabilizing 

interaction that binds the two molecules together. The hydrogen bond 

is therefore defined as a type of attractive inter-molecular force that 

exists between two partial electric charges of opposite polarity. 

Although stronger than most other inter-molecular forces, the hydrogen 

bond is much weaker than either of the ionic bond and the covalent 

bond. Within macromolecules such as proteins, it can exist between 

two parts of the same molecule, and figures as an important constraint 

on the overall shape of the molecule. Secondary and tertiary structures 

in proteins are often held together by hydrogen bonds (Whitfield at al., 

2005; Fitzkee & Rose, 2005). 

1.2.5.3.2 Salt bridges 

A salt or ion bridge is a specific type of weak electrostatic interaction 

in which a cation such as Na +, Ca2+, Mg2+ or A13+ simultaneously binds 

to the surface of two molecules, each of which has an opposite charge 

to the ion. It helps to stabilize the structure of the protein. 

1.2.5.3.3 Covalent bonding 

Covalent bonding is a form of chemical bonding characterized by the 

sharing of one or more pairs of electrons by two atoms, in order to 

produce a very strong attractive force, which holds the resultant 

molecule together. Atoms tend to share electrons in such a way that 

their outer electron shells are filled. 

The commonest type of covalent bond in proteins that contain 

sulphur is the disulphide bond. Disulphide bonds are very important in 

the folding, structure and conformation of the protein. When two amino 

acids bind to each other through their side chains, they normally do so 

through a disulphide bond (Schmidt, 1981). Disulphide bonds are 

formed principally by a thiol-disulphide reaction (Fig. 1.2-G). The 

particular side chain involved is the thiol group (-SH). Oxidation of the 
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thiol group yields a disulphide (8-8) bond. The presence of the 

disulphide bond is one of the main ways in which the tertiary structure 

of the protein maintained. Free thiol groups can also participate in thiol­

disulphide interchanges with disulphide bonds and often occur under 

alkaline conditions. 

The free thiol and disulphide groups in a native whey protein are 

located in the interior of the folded molecule and as such are generally 

unavailable for reactions (Cory & McClements, 1998). 

R 
I 
SH 

SH 
I 
R 

Figure 1.2-G 

Formation of DisulDhide Bond 

oxidation • + 

1.2.5.3.4 Hydrophobic interactions 

In this type of 'bond', water-repelling side chains group together and 

exclude water molecules. A hydrophobic molecule cannot establish 

hydrogen bonds with water, thus limiting the "freedom" of the water 

molecule for switching hydrogen bonds, which makes the whole area 

around the hydrophobic molecule energetically adverse. As one large 

area of this kind is energetically more auspicious than two smaller 

ones, thermodynamics favour hydrophobic molecules clustering 

together, even though hydrophobic molecules are not necessarily 

attracted to each other. Hydrophobic interactions are common in 

establishing the tertiary structure (Lau et al., 1984). The non-polar 

groups mutually repel water and other polar groups and results in a net 

attraction of the non-polar groups to each other. Overall, the 

hydrophobic interaction is a repulsive force. One of the characteristics 

of hydrophobic interactions is that they get stronger as the temperature 

is raised up to about 60-70°C after which they slowly begin to lose their 

strength (Cory & McClements, 1998). 
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1.2.5.3.5 Ionic or electrostatic interactions 

These are interactions that occur between ions or dipoles. They can 

be either attractive or repelling: like charges repel, while opposite 

charges attract. These bonds form when the electro-negativities 

between two atoms are large enough that one 'steals' an electron from 

the other. The now oppositely charged ions are attracted to each other. 

Electrostatic interactions are particularly sensitive to the ionic 

strength of the medium. The strength and range of the interactions can 

be reduced significantly in the presence of electrolytes because of 

electrostatic screening by the ions. They also generally tend to 

increase in strength with temperature (Cory & McClements, 1998). 

1.2.5.3.6 Van-c:ter-Waals interactions 

The term van der Waals force originally referred to all forms of inter­

molecular forces; however, in modem usage it tends to refer only to 

London forces: those forces which arise from induced rather than 

permanent dipoles. Van der Waals forces involve the attraction 

between temporarily induced dipoles in non-polar molecules as a result 

of the constant 'sloshing around' of the electrons in the molecule. This 

polarization can be induced either by a polar molecule or by the 

repulsion of negatively charged electron clouds in non-polar molecules. 

Over a series of interacting pairs of molecules, this will give rise to an 

attractive force. There is little change in the van der Waals interaction 

between the folded and unfolded state in solution (Bryant & 

McClements, 1998). 

1.2.5.4 Quaternary Structure 

Many proteins are actually assemblies of more than one polypeptide 

molecule, which in the context of the larger assemblage are known as 

protein subunits. Sometimes, quatemary structures are referred to as 

protein-protein interactions. The quaternary protein structure involves 

the clustering of several individual peptide or protein chains into a final 

specific shape. A variety of the bonding interactions including hydrogen 

bonding, salt bridges and disulphide bonds hold the various chains into 

- 15-



• 

Chtlpter 1: Introduction 

a particular geometry. In addition to these levels of structure, proteins 

may shift between several similar structures in performing their 

biological function. In the context of these functional rearrangements, 

these tertiary or quatemary structures are usually referred to as 

conformations and transitions between them are called conformational 

changes. In an aqueous environment, the proteins are held in their 

conformations by a number of different interactions such as previously 

described. 

Table 1.2-1 

Summary Of Type of Protein Molecular Interactions 

Type Sign Strength Range pH IOIlIC Temperature 

Strength 

Ionic - Vary depending on pH Yes Decreases Increases 
an ionic strength 

H2 bonds + Weak Short No No Decreases 

Van der Waals + Weak Short No No -
Disulphide + Very strong Strong Short Yes No 

1.3 Protein Denaturation 

Denaturation in proteins is a structural change usually caused by 

heat, acids, bases, detergents, or certain chemicals such as urea. 

Proteins denature when they lose their three-dimensional structure and 

thus their characteristic folded structure. Denaturation of proteins 

involves the disruption and possible destruction of both the secondary 

and tertiary structures and the bonds that hold these structures 

together. It is also possible for protein molecules to exist in the 

Intermediate state of a 'molten globule' where the secondary structure 

is maintained and the tertiary structure is lost (Ptitsyn, 1992). Since 

denaturation reactions are not strong enough to break the peptide 

bonds, the primary structure remains the same after a denaturation 

process (Cheftel et al., 1985). Shimada & Matsushita (1980) described 

the heat-induced gelation of a protein-water system as a two-stage 

process: the unfolding or denaturation of a native protein in an aqueous 
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solution, which is then followed by an aggregation step of protein­

protein interaction, resulting in a three-dimensional structure that forms 

the final networi( capable of holding relatively large amounts of water. 

A balance between the attractive and repulsive forces governs the 

heat-induced denaturation (Egelandsdal, 1980). The equilibrium is 

crucial in stabilizing the three-dimensional network of the resulting gel. 

(Mangino, 1992; Mleko at sl., 1997; Lupano, 2000). If the sum of the 

attractive forces between the molecules is weaker than the sum of the 

repulsive forces, then the molecules will generally remain in their native 

state either as individual molecules or as small aggregates (Kinsella & 

Whitehead, 1989). Kojima & Nakamura (1985) attributed the repulsive 

forces to surface changes and the attractive forces to various functional 

groups exposed by the thermal unfolding of the protein. Denaturation 

can however disrupt the normal a-helix and f3-sheets in a protein and 

uncoil it into a random shape. By exposing parts of the protein 

molecule that were previously buried, intermolecular interactions are 

initiated (Kella & Kinsella, 1988). 

The most common observation in the denaturation process is the 

precipitation or coagulation of the protein. The precipitation can be 

explained as follows. Because the structure of a denatured protein is 

loose, hydrophobic parts that were deeply buried in the native protein, 

will encounter the solvent (water). It is energetically unstable when the 

hydrophobic parts contact water and as a result, denatured proteins will 

aggregate with each other in order to prevent the hydrophobic parts 

from contacting with water. Denatured proteins will usually be 

precipitated because of their aggregation. Altering the process 

conditions of temperature and time can change the rates and 

mechanism of denaturation and aggregation (Schmidt, 1981: Boye at 

al., 1995). 

With whey proteins, configurational entropy is important. At relatively 

low temperatures less than 65°C, the hydrophobic effect dominates 

and so the globular state is favoured. At higher temperatures, the 

unfolded state is preferred (Doi, 1993). However, at normal processing 

temperatures of less than 100°C, the whey proteins only partially unfold 
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into a 'molten globule' state and do not necessarily undergo complete 

unfolding into the random coil configuration. (Bryant & McClements, 

1998). In this state the whey proteins tend to retain much of the native 

structure but with the formation of hydrophobic patches on the surface 

of the molecule. 

Protein denaturation manifests itself in several different forms. In 

enzymes. this may take the form of loss of catalytic activity due to the 

inability of substrates to bind to active sites. For egg white and some of 

the whey proteins. denaturation is often irreversible and takes the form 

of gel formation. 

1.3.1 Gel Formation 

In the native state. the balance of the forces between the molecules 

is such that the attractive forces are not strong enough to overcome the 

repulsive forces. Therefore. the molecules exist as individual entities or 

very small aggregates (Bryant & McClements. 1989). If the conditions 

are changed. it is possible to associate the long polymer chains into a 

three dimensional continuous network that is resistant to flow under 

pressure. The process is known as gelation (Boye at al., 2000). The 

process is of considerable importance in the food industry since it 

contributes significantly to the textural and rheological properties of 

various foods. 

The mechanism of protein gelation is still not fully understood. 

However, the most commonly accepted process involves two steps: an 

unfolding process followed by an aggregation step. 

1.3.1.1 Molecule unfolding 

Native globular proteins such as albumen or whey proteins have a 

characteristic secondary structure: they contain specific amounts of a­

helix. p-sheet and disordered peptide chain conformations (Kavanagh 

at a/ .• 2000). The reactive amino acids are located in the interior of the 

molecule. It is thus necessary to promote unfolding so that the reactive 

sites are exposed to the solvent and become chemically reactive (van 

Vliet et al .• 2004). Molecular unfolding is usually accomplished by the 

application of heat in an aqueous state which acts by first breaking the 
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hydrogen bonds, then uncoiling the polypeptide chains, thereby 

exposing the reactive sites (Mine, 1995). As the unfolding proceeds, 

the viscosity of the protein dispersion increases due to a rise in the 

molecular dimensions of the unfolding protein. In other instances, the 

heat treatment can result in the cleavage of existing disulphide bonds 

(Castimpoolas & Meyer, 1970) thus creating sites for new molecular 

bridging. With ~Iactoglobulin, heat exposes the hydrophobic amino 

acid residues and the reactive SH group of Cys 121 to the aqueous 

solvent (Kerstens at a/., 2005). 

1.3.1.2 Molecule aggregation 

After the initial unfolding step, the rate and extent of aggregation 

determines the appearance and properties of the gel. (Dalgleish & 

Hunt, 1995). Various studies have shown that there are essentially two 

types of aggregation: (1) linear aggregation at high net charge and (2) 

clumped random aggregation at low net charge (Dalgleish & Hunt, 

1995). More recently linear aggregation is referred to as a fine­

stranded or filamentous gel and random/clumped aggregation is 

referred to as a coarse or particulate gel. At high net charge, 

aggregation proceeds slowly relative to unfolding. As such, the 

molecules have more time to become oriented into an ordered 3D 

structure (Dalgleish & Hunt, 1995). However, at low net charge, 

aggregation proceeds rapidly relative to unfolding because the inter­

molecular repulsion is minimised. As such, a coagulum is produced 

and is characterised by high opacity, syneresis and low elasticity 

(Mulvihill & Kinsella, 1987). 

The balance of attractive and repulsive forces determines the extent 

of aggregation. If the attractive forces predominate, a coagulum or 

weak gel is formed with high syneresis. On the other hand, if weak 

forces prevail, no gel will be formed. Several factors affect the balance 

of forces and include pH, ionic strength, protein concentration, amino 

acid concentration, molecular weight, heating and cooling rates as well 

as the presence and type of other components. 
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One of the most common types of molecular aggregation is the 

formation of the disulphide bond when unfolding of the molecule occurs 

with the application of heat. It generally occurs via a thiol-disulphide 

reaction (See Section 1.3.3.2). 

Although generally favoured at alkali conditions, thiol-disulphide 

reactions can take place at ambient and acidic conditions, given 

sufficient time. A thiol is a compound that contains the functional group 

composed of a sulphur atom and a hydrogen atom (-SH). The 

functional group is also referred to as the sulphydryl group. The thiol -

disulphide exchange is a chemical reaction in which a thiolate group 

(S-) attacks a sulphur atom of a disulfide bond SS. In fact, the 

sulphydryl group in its protonated form is generally un-reactive: only 

thiolates attack the disulphide bond. The original disulphide bond is 

broken, and its other sulphur atom may be released as a new thiolate, 

carrying away the negative charge. 

Figure 1.3-A 

Thioiate Induced Sulphydryl ~ Disulphide Reaction 

Mixed-disulphide 

It is thought that aggregates or the strands of the gel network formed 

at the isoelectric pH are stabilized by disulphide bonds formed slowly 

during the curing of a ~-Iactoglobulin gel (Otte et a/., 2000). A similar 

study carried out by Vasbinder et al. (2003) also clearly showed that 

thiol-disulphide bonds could be formed under acidic conditions as 

demonstrated in yoghurt making. 

Gel formation itself is generally considered to be a two-phase 

process: the first phase is the formation of the primary spatial structure 

and the second phase is an increase in the amount of and/or stiffness 
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of the bonds in the gel resulting from the rapid formation of multiple 

hydrogen bonds (Mine, 1995; Goncalves et al., 2004). After gel 

formation, the spatial structure does not undergo major changes as 

shown by a constant permeability coefficient. Increase in stiffness is 

shown by an increase in the elastic modulus with heating time (Verheul 

& Roefs, 1998). However, more recently, a proposal was made to 

consider gel formation as a three-stage process i.e. 

1. an unfolding step, followed by 

2. a step of linear fibril aggregation, and then, 

3. a step of random association of the fibrils. 

Evidence for the existence of linear fibrils and their interaction was 

provided in an electron microscope study of a homogenous soya 

protein gel (Clark et al., 2001). Beveridge et 81., (1984) had suggested 

that the association of the fibrils in the last stage is accomplished by 

hydrophobic interactions, SH~SS interchange and SH oxidation within 

the aggregates and between aggregates and multiple hydrogen 

bonding. 

1.3.2 Coarse/Particulate Gels And Fine-Stranded Gels. 

Gels can schematically be divided into fine-stranded or 

aggregated/particulate gels. The type of network structure formed is 

important because it contributes to the characteristic texture of the food 

including its ability to hold water, fat and other components (Fig 1.3-B). 

An ordered association of molecules forms fine-stranded gels and 

the dimensions are often quite small so that the gels appear 

transparent or translucent. Conditions of strong electrostatic repulsions 

far from the isoelectric pH tend to favour the formation of fine-stranded 

gels by hindering or slowing the aggregation of the molecules. 

Particulate gels tend to be white and opaque and are formed in 

conditions of weak electrostatic repulsions close to the isoelectric point, 

which favours rapid aggregation of the unfolded molecules (Tavares & 

da Silva, 2003). Similar to other globular proteins, !3-lactoglobulin can 

form fine-stranded gels as well as particulate gels depending on the pH 

and salt concentration. In the absence of added salt, particulate gels 
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were formed on heating at pH 4-6 whilst fine-stranded gels formed 

below and above this pH range (Hermansson, 1994). In a study of the 

rheological properties of a mixed gel of ~-Iactoglobulin a.nd potato 

amylopectin, Olsson et al., (2003) reported that the temperature at 

which aggregation starts has an effect on whether the resulting gel is 

fine stranded or particulate: the lower the temperature of aggregation, 

the larger the molecular clusters leading to a thicker network. 

Figure 1.3-8 

Schematic Diagram For Fine-Stranded and Particulate Gel 
Formation 
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The mechanical properties of a gel network are defined by three 

factors: (1) the spatial distribution of the particles, (2) the strength of 

the interaction forces between the particles and (3) the structure of the 

particles themselves (Bremer et al., 1990). The strength of the gel and 

the degree of cross-linking will often be altered by the inclusi'on of non­

protein components. The gel properties will depend on the specific 

compound added and the type of interaction that takes plac.e between 
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the protein and the compound. If the molecules in the compound aid 

protein-protein interaction by forming bridges or cross-links, then the 

gel strength will increase. If at the same time it reduces the protein­

solvent interactions by reducing the net charge on the protein, then the 

water holding capacity may also be improved. If the extent of 

interaction is high or if the pH is close to the isoelectric point, its can 

lead to rapid aggregation which does not favour a highly cross-linked 

network (Artnfield, 1996). 

1.3.3 Factors Affecting The Gelation Of Globular Proteins 

1.3.3.1 The effect of pH 

The pH has an effect on the extent of protein-protein interactions 

because thiol activity changes with pH (Xiong & Kinsella, 1990). In a 

study carried out by Mangino et al. (1987) it was reported that at a low 

pH of 4.6, the resulting gel was weak and that the structure was 

maintained principally by hydrophobic and ionic interactions. At this pH 

value, near the isoelectric point, the charge on the protein is minimal 

leading to reduced expansion and reduced hydration (Chefiel et al., 

1985). At a higher pH of 8.0, however, the thiol groups become highly 

reactive faCilitating the formation of disulphide bridges. Even at low pH 

values, there is evidence that slow thiol/disulphide reactions can occur. 

(Shimada & Chefiel, 1989). 

The behaviour of whey protein is related to the isoelectric point 

because at pH values below the isoelectric point of 5.2, the total charge 

is positive. Above this value the total charge is negative (Turgeon & 

Beaulieu, 2001). 

In another study (Boye et al., 1995) it was observed that a sample of 

whey protein concentrate dispersion formed a weak gel at pH values 

between 4 and 6. The explanation was that the absence of repulsive 

forces led to low expansion and low hydration. At alkaline pH values 

however, the whey proteins underwent extensive denaturation and 

expansion and the gels trapped more water. Boye et al. concluded that 

whey protein concentrate has higher thermal stability at pH 3 than at 

pH 9 as represented by the reduced loss of the secondary structure. 
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Lowering the pH of whey protein concentrate inhibits unfolding of the 

protein and hence increases its stability to thermal denaturation. 

It was also observed in the Fourier Transform Infrared Spectroscopy 

(FTIR) used in this study that a-lactalbumin was denatured and formed 

aggregates at pH 3 and 5 but not at pH 7 or 9, whereas J3-lactoglobulin 

both denatured and formed aggregates at pH 3 and 9. Boye et al. 

(1995) concluded that at neutral pH and higher, the aggregation and 

gelation of whey protein concentrates is due mainly to molecular 

transitions involving only J3-lactoglobulin. At pH values below 7, both a­

lactalbumin and J3-lactoglobulin are involved in the gelation of the whey 

protein concentrate (Boye et al., 1995). 

1.3.3.2 The effect of heat 

Heat has a significant effect on most globular proteins. Heat 

treatment can result in the cleavage of existing disulphide bonds and 

the activation of buried sulphydryl groups through the unfolding of the 

protein molecule. The activation of these groups results in the 

formation of new inter-molecular disulphide bonds. As such, alteration 

of the heat treatment conditions by modification of time and 

temperature will affect the gel properties by changing the rate and 

mechanism of denaturation and aggregation (Boye et al., 1995). For 

any given protein, a critical concentration exists above which gelation 

will be observed due to improved efficiency of the molecular collisions 

(Bryant & McClements, 2000a). 

Studies with J3-lactoglobulin show that application of heat causes a 

free sulphydryl group in the molecule to become reactive thereby 

leading to a sulphydryl ~ disulphide exchange reaction with one of the 

intra-molecular disulphide bonds of an un-denatured molecule to 

produce a dimer. The result was the formation of an inter-molecular 

disulphide bond and a new free sulphydryl group is now available to 

propagate the reaction (Boye & Alii, 2000; Vasbinder at al., 2003). 

Heat induced aggregation of J3-lactoglobulin was shown by Ikeda 

(2003) to be a two-step process at neutral pH. Granular primary 

aggregates are formed first, followed by subsequent aggregation of 
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these primary aggregates regardless of the ionic concentration. 

However, it was thought that the growth and the aggregation of the 

primary particles in the matrix were found to be concurrent processes. 

1.3.3.3 The effect of ionic strength 

The presence of salts strongly affects the type of gels formed 

especially at pH values far from the isoelectric point, where the proteins 

carry a large net charge. Despite differences in studies, it is clear for 

instance that divalent ions influence protein-protein interactions by 

shielding or reducing electrostatic repulsion between the proteins and 

also by forming protein-cation-protein bridges (Ziegler & Foegeding, 

1990; Soye et al., 1995). At optimum levels, these intermolecular 

bridges remain intact under stress whilst absorbing and dissipating the 

stress energy and therefore contribute to gel strength and elasticity. 

Above the optimum level, the formation of the inter-molecular bridges is 

quicker, more random and less ordered so that weaker bridging 

between the larger aggregates predominates. These bridges are easily 

broken when stressed, thus aiding syneresis, reduced gel strength and 

reduced elasticity (Mulvihill & Kinsella, 1988). 

Boye at al. (1995) showed that there was a clear demonstration of 

the effect of NaCI on the gel characteristics of WPC. In the absence of 

NaCI, firm gels were obtained; below 1 M NaCI, the gels were soft. No 

gelation was observed when the concentration of NaCI was greater 

than 2M. It was concluded that the presence of NaCI raised the 

denaturation temperature of the WPC by reducing the number of 

hydrogen bonds. 

In another study to assess the influence of NaCI on whey protein 

isolate gelation, it was observed that no gel was formed when the 

concentration of the NaCI was below 60mM. When the concentration of 

NaCI in the medium was between 60mM to 150mM, the elastic 

modulus of the gel increased, the elastic recoverabiJity remained high 

and both water loss and lightness of colour remained low. Within this 

range, it was proposed that the gel network consisted mostly of fine 

strands. When the concentration of NaCI was increased· to a level 
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between 150mM to 200mM, elastic modulus and elastic recoverability 

decreased, while water loss and lightness of colour increased. In this 

range, it was postulated that the gel network changed from 

predominantly fine strands to particulates. At levels above 200mM, all 

four properties became insensitive to salt concentration 

(Chantrapomchai & McClements, 2002). The researches attributed 

these differences to the fact that at high salt concentrations, the strong 

natural electrostatic repulsion between the molecules, which would 

normally prevent them from coming into close proximity, is screened 

off. In effect, the primary impact of the NaCI is to reduce the range and 

length of the electrostatic interactions. Once all of the electrostatic 

interaction had been completely screened (at> 200mM), particle­

particle interactions and gel microstructure remains constant. 

When salt is added to a J3-lactoglobulin solution and heated to 

induce gelling, the critical gel concentration was shifted to lower values. 

In addition a decrease in the gel temperature was observed as the salt 

concentration was increased (Puyol et al., 2001). 

Another study, carried out by Barbut (1995), suggested that CaCI2 

was more effective than NaCI in increasing the gel strength of whey 

protein isolate. Barbut further reported that the increasing presence of 

NaCI also had the effect of increasing the size of the protein strands, 

thereby reducing the water holding capacity and the gel strength. 

There appears to be a clear and significant interaction between pH 

and the NaCI concentration. Increasing the NaCI concentration 

increased the gel strength and water holding capacity below pH 5, but 

resulted in weaker gels at pH values greater than 7. The variation in 

firmness is attributed to a shift in molecular structure from fine-stranded 

to particulate (Turgeon & Beaulieu, 2001). 

1.3.4 Multi-Component Gels - Inclusion of Other Materials 

In food systems, globular proteins rarely exist in isolation. They are 

usually surrounded by a complex mixture of different types of 

molecules such as salt, sugar, starches, surfactants, emulsifiers, fats, 

etc. Some of these compounds can form gels by themselves whereas 
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others do not. In addition they interact directly or indirectly with the 

proteins and can alter their functionality. 

When two or more different biopolymers are subjected to conditions 

of molecular unfolding and aggregation, a mixed gel results (Fig1.3-C). 

The degree of solubility, particle size and critical concentration 

determines the conditions of the gel. 

When the gelling agents are co-soluble and form separately 

continuous networks, a mixed gel is said to result. Mixed gels are often 

classified into one of three types: inter-penetrating, coupled and phase­

separated gels. Inter-penetrating networks are formed when the two 

components gel separately and form completely independent networks. 

The networks are continuous throughout the sample but there is little or 

no interaction. Coupled networks are formed in the presence of 

favourable intermolecular interactions between the different types of 

polymers. Phase separated gels are formed by incompatible polymers 

where the molecules either repel each other or show greater affinity 

towards the solvent than to each other (Morris, 1986; Tolstoguzov, 

1992). 

Figure 1.3-C 

Forms of Multi-component Gels 

Key 
A. pha.e .eparated gel with Inactive filler partlcl ... B • pha.e separated gel (multl-pha.e) 
C • pha.e .eparated gel with active filler particle.. D. coupled or co-polymerized gel with 
heterogeneous network. E· Interpenetrating gel network 
Adapted from Ziegler and Foegedlng, (1990) 

- 27-



Chapter 1: Introduction 

Even when there are non-gelling materials present, they can exert 

an influence on the textural characteristics because the molecules or 

particles tend to be situated in the pores between the gel network 

strands where they can either serve as active or inactive fillers (Fig. 

1.3-C). Active fillers are characterized by strong interactions between 

the filler particles and the gel matrix as they are fully incorporated into 

the network. The reinforcement effect becomes even more pronounced 

with greater amounts of the filler. By contrast, inactive fillers act as 

structure breakers because there is little affinity between the filler 

particles and the gel matrix. Increasing the volume fraction of these 

inactive fillers generally results in lower gel strength and causes the gel 

to become disrupted and weakened (Sok Line et al., 2005). 

Sometimes, depending on the conditions within the mixture, the same 

filler may be active or inactive. For instance, in an experiment carried 

out with locust bean gum and whey protein mixed systems at a pH 

value close to the isoelectric point of the whey, the resultant gel was 

weak, suggesting that the locust bean gum was an inactive filler. 

However at a neutral pH, the locust bean gum had a small but positive 

effect on the protein network formation (Tavares & Lopes da Silva 

2003). In a similar study using cassia gum at pH 7, a low concentration 

of the gum enhanced the aggregation rate and strength of the gel. At 

concentrations of the gum greater than 0.68%, the gels showed 

substantially lower moduli values (Gon~alves et al., 2004). 

1.3.4.1 Lecithin 

Lecithin is mostly a mixture of glycolipids, triglycerides and 

phospholipids. It is used commercially in SUbstances requiring a natural 

emulsifier and/or lubricant. In biochemistry, lecithin is often used as a 

synonym for pure phosphatidylcholine, a phospholipid that is the most 

abundant component of the lecithin. Lecithin is commonly extracted 

from egg yolk or soya protein and more recently from rapeseed. 

A study carried out by Ikeda & Foegeding (1999) showed that whilst 

lipids generally inhibit whey protein gelation by competing with 

hydrophobic interaction sites, the addition of lecithin to whey protein 
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dispersions increased the strength of the gels. It was postulated that 

the increase in gel strength was accomplished by the formation of 

protein-lecithin complexes. 

1.3.4.2 Emulsifiers 

An emulsifier is a surface-active agent, which stabilizes two or more 

normally immiscible liquid. 

The addition of surface-active agents has been shown to affect the 

mechanical properties and microstructure of whey protein gels. 

Samples of a protein gel containing surfactants such as glycerol 

monopalmitate (oil soluble) and polyoxyethylene sorbitan monolaurate 

(water soluble) showed less elasticity than gels that do not contain any 

surfactants. The reduced degree of flocculation of the droplets of the 

oil-soluble emulsifier reduces the elastic modulus of the heat-set gel. 

Due to the fact that the oil-soluble emulsifiers have similar reactivity as 

the protein molecules, they still have the ability to interact with the gel 

matrix. However as they will have reduced number of reactive sites, the 

emulsifier was only partly incorporated into the gel matrix, thereby 

contributing less to the mechanical properties of the resulting gel (Chen 

at al., 2000). 

In a water-soluble emulsifier, the droplets appear to completely lose 

their reactivity and functionality for building up a 3D network. The 

surface coated emulsion droplets are presented to the protein 

molecules as 'alien' units and therefore become excluded from the 

network, acting only as filler particles. 

1.3.4.3 Gluten 

Gluten is an amorphous mixture of protein found combined with 

starch in the endosperm of some cereals, notably wheat, rye and 

barley. It constitutes about 80% of the proteins contained in wheat and 

is composed of the proteins gliadin and glutenin. 

The addition of gluten alters the thermal stability of whey proteins 

making them more heat labile and increasing the gel strength and gel 

elasticity. The change is accomplished by increased hydrophobic 
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interactions and hydrogen bonding. When the pH is at 4.2, there are 

also some disulphide bonds formed (Lupano, 2000). 

1.3.4.4 Pectin 

Pectin is a linear polysaccharide of plant origin. The chemical 

structure is built up from polygalacturonic acid units linked by 0-(1-4) 

glucosidic bonds. Pectin can be partially esterified with methoxyl 

groups. The degree of methoxylation influences the behaviour of the 

pectin and is defined as the average number of methoxyl groups per 

percent of the galacturonic acid units. If the degree of methoxylation is 

greater than 50%, then it is referred to as high methoxyl pectin. 

Low methoxyl pectin induced gel formation at a lower protein 

concentration with whey protein than was observed for whey protein 

alone (Beaulieu at a/., 2001). The same study also showed that the gel 

strength was affected by the concentration and degree of 

methoxylation of the pectin. It was postulated that a phase-separated 

gel was formed due to the thermodynamic incompatibility between the 

two systems with both the pectin and the whey proteins competing for 

water and calcium. 

High methoxyl pectin will gel in the absence of Ca2
+ or under acidic 

conditions provided the water activity is low enough (Phillips & Williams 

1995). 

1.3.4.5 Carrageenan 

Carrageenans are a family of linear sulphated polysaccharides of 

alternating ~-1 ,3- and a-1 A-linked galactose residues extracted from 

red seaweeds. They are large, highly flexible molecules, which curl 

forming helical structures. This gives them the ability to form a variety 

of different gels at room temperature. They are widely used in the food 

and other industries as thickening and stabiliZing agents. There are 

three main commercial classes of carrageenan; 

• Kappa - forms a strong, rigid gel 

• Iota - forms a soft gel 

• Lambda - forms a gel when mixed with proteins rather than 

water 
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At low levels (0.1 %), K-carrageenan is compatible with whey 

proteins and can be uniformly distributed into the protein network. 

Under such conditions the gels with added carrageenan were very 

similar to gel samples made from whey protein concentrate only. When 

calcium was added, carrageenan increased the firmness and 

fracturability of the protein gels. However at high levels, the mixtures 

changed to become more like a typical K-carrageenan gel (Turgeon & 

Beaulieu, 2001). 

1.3.4.6 Soya proteins 

Legume proteins, such as soya protein belong to the globulin family 

of seed storage proteins called glycinin (115) and beta-conglycinin 

(75). Soya proteins are denatured in a manner similar to both egg 

white and whey proteins in that the hydrophobic amino acid side chains 

located inside the molecules are exposed to the outside by heating (Liu 

et al., 2004; Noh et al., 2005). The addition of 1 or 2% replacement of 

whey proteins with soya protein resulted in an increase in the storage 

modulus of the system. This implied that the mixed protein structure 

was more extensively cross-linked than the network of either protein 

alone. Further replacement of the whey with soya protein caused a 

decrease in the storage modulus of the structure due to phase 

separation. The maximum phase separation occurred at a 5: 1 (w:w) 

ratio of soya/whey proteins. The incompatibility is thought to be due to 

the differences in molecular weight (Comfort & Howell, 2002). 

1.3.4.7 Salts 

Salt, in chemistry, refers to any ionic compound composed of 

cations and anions so that the product is neutral. When salts are 

dissolved in water, they are called electrolytes and are able to conduct 

electricity. 

Salts affect the ionic nature of a gel network. They operate by 

screening the intra-molecular electrostatic repulsion and thereby 

reduce the extent of molecular unfolding (Baier & McClements, 2003). 

A study carried out by Arntfield (1996) demonstrated very clearly that 

the addition of magnesium and calcium ions to ovalbumin led to an 
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increase in the gel firmness. Arntfield postulated that the change was 

due to a modification of the attractive and repulsive forces. By choosing 

the optimal pH and salt concentration so as to maximize the protein­

protein interaction and at the same time reduce protein-solvent 

interaction, it is possible to increase gel strength. However these 

factors need to be balanced. 

Kuhn & Foegeding (1991) found that dialysed whey protein 

concentrate forms a stronger, more cohesive and less springy gel that 

was more sensitive to salt addition than non-dialysed whey protein 

concentrate. The conclusion was that salts can be used to alter the 

rheological properties of a heat induced whey protein gel. 

1.3.4.8 Sugars 

Scientifically, sugar refers to any monosaccharide or disaccharide. 

Monosaccharides are the simplest form of carbohydrates. They are the 

building blocks of disaccharides like sucrose and polysaccharides such 

as cellulose and starch. Monosaccharides contain either a ketone or 

aldehyde functional group and hydroxyl groups on most or all of the 

non-carbonyl carbon atoms. They form cyclic structures, which 

predominate in aqueous solution, by forming hemiacetals or hemiketals 

(depending on whether they are aldoses or ketoses) between an 

alcohol and the carbonyl group of the same sugar. 

A disaccharide is a sugar composed of two monosaccharides and is 

formed when two monosaccharides are joined by a glycosidic bond via 

a dehydration reaction that leads to the loss of a molecule of water. 

The glycosidic bonds can be formed between any hydroxyl groups on 

the component monosaccharide. Specifically, a glycosidic bond is 

formed between the hemiacetal group of a saccharide and the hydroxyl 

group of some alcohol. Glycosidic bonds are fairly stable but they can 

be broken chemically by strong aqueous acids. 

Bryant & McClements (2000) noted that the influence of sucrose on 

the gelation of a whey protein isolate was complex. Initially, the 

gelation time increased and the gelation rate decreased with sucrose 

concentration. However, at sucrose values greater than 6%, it was 
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observed that the gel time decreased and the gelation rate increased. 

The conclusion was that higher concentration of sucrose led to an 

increase in the collision efficiency i.e. the number of collisions that 

leads to protein aggregation. 

Lactose has also been shown to slow down the denaturation of 13-
lactoglobulin (Renard et al., 1999; Spiegel, 1999). Yamul & Lupano 

(2003) demonstrated that there was a positive linear relationship 

between the concentration of honey in the mixture and the denaturation 

temperature of whey protein dispersion. The Texture Profile Analysis 

parameters of firmness and elasticity as well as the relaxation time 

decreased with increasing concentrations of the honey. The conclusion 

was that the honey decreases the stability of the whey protein gel 

structure by forming hydrogen bonds with the whey protein molecules, 

thus decreasing the number of hydrogen bonds possible between the 

actual protein molecules. An increase in the number of hydrogen 

bonds generally leads to an increase in viscous behaviour of gels. 

Yamul & Lupano also postulated that honey increased the water 

holding capacity of the gels at all pH values by the same mechanism of 

forming hydrogen bonds with the water molecules. 

Sorbitol has a similar effect as sucrose in stabilizing the proteins 

(Baier & McClements, 2003). The conclusion from this study was that 

due to the preponderance of the hydroxyl groups, the interaction with 

the protein surface was almost certainly due to extensive hydrogen 

bonding. 

1.3.5 Milk Components 

Glycomacropeptides or casein macro peptides stems from the outer 

layer of the casein micelle. Chymosin action during the cheese making 

process cleaves the glycomacropeptides from the K-casein. The 

glycomacropeptides consists of a backbone of 64 amino acids. It has 

up to four sugar residues per molecule and a molecular weight of 7 

kDA (Tolkach & Kulozik, 2005). 
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1.3.6 Protein Perturbing Agents 

The amount of soluble protein in different solutions can provide 

useful information on the network structure and on the composition and 

types of bonds involved (Braga at al. J 2006). It is well established that 

the main contribution to biopolymer structure derive from four main 

kinds of molecular forces - covalent bonds, electrostatic interactions, 

hydrogen bonding and hydrophobic interactions (Chen & Dickinson, 

1999). SDS will generally break hydrophobic bonds, urea will attack 

hydrogen bonds, DTE will destroy covalent disulphide bonds and dilute 

NaCI solution will perturb electrostatic attraction between charged 

molecules. 

1.4 Avian Egg Albumen 

Avian egg from the domesticated hen Gallus domesticus is arguably 

one of the most commonly consumed food products in the world. The 

global annual production was estimated 703 billion pieces in 1997 

(USDA, 1997). It is also one of the most complex and complete foods 

found in nature. Virtually all minerals and vitamins with the exception of 

vitamin C are present in the albumen. The egg white, or the albumen, 

is the clear liquid contained within the egg. Unlike the egg yolk, it 

contains little fat. The biological role of the albumen in nature is to (1) 

serve as a physical buffer to the yolk and embryo, (2) inhibit microbial 

growth by the activity of lysozyme and proteinase inhibitors and (3) 

supply the embryo with water, protein and other nutrients. As a food 

material it possesses multiple functional properties such as foaming, 

gelling, binding and emulsification. 

The egg albumen consists of about 88% water and 12% solids of 

which 80-90% is protein. More than 40 types of protein have been 

isolated with a wide range of functionality. The main ones are 

ovalbumin, ovotransferrin, ovomucoid, lysozyme, globulins (G2, G3), 

and ovomucin. 
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1.4.1 Ovalbumin 

Ovalbumin is the major protein found in egg white (54%) and 

therefore, its behaviour dominates the overall performance of egg 

white. It belongs to the serpin class of proteinase inhibitors although 

unlike the majority of serpins it is unable to inhibit any proteases (Hunt 

& Dayhoff, 1980) Ovalbumin is classified as a phosphoglycoprotein 

since carbohydrate and phosphate moieties are attached to the 

polypeptide. Each molecule of ovalbumin contains four sulphydryl 

groups and one disulphide group (Li-Chan et a/., 1995). 

Ovalbumin has a molecular weight of 45 kDa (Li-Chan et a/., 1995). 

It is a monomer and the molecule consists of a polypeptide with up to 

two phosphate groups per mole and a side chain of mannose and 

glucosamine residues. It has been reported, however, that the 

phosphate groups are not evenly distributed across all the molecules 

and that the ovalbumin can be further purified into three fractions 

differing in phosphorous content (Vadehra & Nath, 1973) A1, A2 and 

A3, which contain two, one and no phosphate groups per molecule 

respectively (Mine, 1995). Ovalbumin is isoelectric at pH 4.6. The 

denaturation temperature is 84°C as measured by differential scanning 

calorimetry (Donovan & Mapes, 1976). 

Ovalbumin can exist in two forms: N-ovalbumin and the more stable 

S-ovalbumin (Huntington & Stein, 2001; Hammershoj et a/., 2002). The 

transformation from N-ovalbumin to S-ovalbumin occurs naturally and 

irreversibly during the storage of eggs (Vadehra & Nath, 1973). The 

conversion rate becomes more rapid with higher storage temperature 

and increasing pH (Huntington et a/., 1995). The S-ovalbumin is 

structurally more stable against denaturation than the N-ovalbumin 

because the molecule is more compact and has a more hydrophobic 

surface (Nakamura & Ishimaru, 1981). The consequence of this is that 

S-ovalbumin gels reach lower gel strengths compared to N-ovalbumin 

under conditions of constant heating (Egelandsdal, 1980). Hammershoj 

et al. (2002) confirmed that the presence of S-ovalbumin with its higher 

thermal stability results in a lower amount of protein unfolding and 
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participating in the gel network leading to a weaker gel. Fresh eggs 

therefore form a very soft, gritty gel with very low water holding 

capacity. The soft texture was reported to be due, in part, to the high 

carbon dioxide content, leading to the formation of carbonic acid and 

hence a pH closer to the isoelectric point of the albumen proteins 

(Hickson et al., 1982). Another study concluded that for optimal gel 

strength, eggs should be stored for 14 days at 4°C (Hammershoj et a/., 

2002). 

Most in-shell eggs for food processing tend to be stored, with and 

without cooling, prior to use. The gelling properties of egg albumen 

from different sources could thus be different even at the same protein 

concentration. 

1.4.2 Ovotransferrin (Conalbumin) 

Ovotransferrin is the second most dominant protein (13%) in egg 

albumen and is also a glycoprotein. Ovotransferrin has a molecular 

weight of 77 kDa (Li-Chan at al., 1995). It binds transition metals 

(Fe[III], Cu[III], AI[IIID very tightly and specifically with a binding log 

constant of about 15 at pH 7.0 and above. Ovotransferrin is a covalent 

dimer protein, composed of a N- and a C-terminal domain, each one 

binding one atom-ion of transition metal. Ovotransferrin is isoelectric at 

pH 6.1 - 6.3 and has 15 disulphide bridges but no phosphorous or 

sulphydryl groups (Li-Chan et a/., 1995). The denaturation temperature 

is 65°C as measured by differential scanning calorimetry (Donovan et 

al., 1975). 

1.4.3 Ovomucoid 

Ovomucoid is also a glycoprotein. It is the only trypsin inhibitor found 

in egg albumen and constitutes about 11 % of the egg white protein. It 

generally has a molecular weight of 28 kDa. Avian egg ovomucoid has 

nine disulphide bridges and no sulphydryl groups (Li-Chan at al., 

1995). Ovomucoid is very stable to extremes of temperature and acid. 

The isoelectric point is pH 4.1. 
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1.4.4 Lysozyme 

Lysozyme represents about 3.5% of the total albumen protein. It has 

a molecular weight of about 14 kDa. Lysozyme is isoelectric at a highly 

alkaline pH of 10.7. It is antibiotic in nature and it acts by lysing the cell 

walls of gram-positive bacteria. It has four disulphide bridges but no 

sulphydryl groups (Li-Chan et al., 1995) and is denatured at 75°C as 

measured by differential scanning calorimetry (Donovan et al., 1975). 

1.4.5 Ovomucin 

Ovomucin is a minor glycoprotein and represents about 1-3 % of the 

egg albumen. It is claimed to have a randomly coiled configuration but 

can be fractionated into a- (carbohydrate rich) and ~- (carbohydrate 

poor) fractions with molecular weight ranging from 135 - 720 kDa (Kato 

& 5ato, 1971). The isoelectric point is in the region of 4.5 - 5.0. The 

linked carbohydrate moieties tend to form extensive hydrogen bonds 

with water and give rise to the characteristic gel-like structure (Li-Chan 

etal., 1995). 

1.4.6 Globulins 

G2 and G3 globulins have been identified in egg white. They each 

comprise about 4% of the egg white proteins but have not been fully 

characterised. They are thought to be important in the foaming of egg 

albumen (Mine, 1995). 

Table 1.4-1 

Summary of the Characteristics of Proteins in Egg Albumen 

Protein Concentration Isoelectric Molecular Denaturation 

(%) pH weight (Da) temperature (DC) 

Ovalbumin 54 4.5 45000 84 

Ovotransferrin 12 6.1 76000 61 

Ovomucoid 11 4.1 28000 79 

Ovomucin 3.5 4.5 8.3 x10° Stable 

Lysozyme 3.4 10.7 14300 75 

G2 Globulin 4.0 5.5 4.5 x 10" 92.5 

G3 Globulin 4.0 4.8 66 

Adapted from LI Chan at aI., (1995) 
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1.4.7 Egg White Gelation 

On heating, egg albumen undergoes a series of changes in 

appearance. As the temperature rises from 5°C to 45°C, the viscosity 

is reduced. The egg albumen begins to lose fluidity at 60°C due to the 

denaturation of ovotransferrin (Woodward, 1990). At 63°C, albumen 

starts to become turbid, a procedure accompanied by precipitation. At 

66°C, the mixture becomes clear with a gelatinous mass appearing on 

the surface. By the time the temperature reaches 70°C, the familiar 

white coagulum is formed (Burley & Vadehra, 1989). Montejano et al. 

(1984) showed that there was a large increase in atbumen gel elasticity 

between 70 - 74°C. Only a minor increase in elasticity was observed 

between 74 - 89°C and the elasticity actually decreased from 89°C to 

91°C.The hypothesis proposed was that the development of elasticity 

coincided with protein denaturation and the initiation of aggregation 

while subsequent heating promoted the completion of the protein 

aggregation with increased protein cross-linking and gel strength 

enhancement. 

Depending on the pH and salt concentration, the physical properties 

of the albumen gels can be significantly altered. Woodward & Cotterill 

(1986) reported that as the temperature and duration of heating an egg 

albumen sample was increased, the hardness, springiness and 

cohesiveness of the gel was also increased. These properties were 

decreased however by the addition of salt. They also noted that at pH 

9, the gels had finer and more uniform microstructure than at pH 5 or 6 

and that the water holding capacity was greater. 

1.5 Whey Protein 

Whey is the liquid remaining after milk has been curdled; it is a by­

product of the manufacture of cheese or casein. Whey proteins mainly 

consist of a-lactalbumin, J3-lactoglobulin and serum albumin. 

Depending on the method of manufacture, it may also contain 

glycomacropeptides (GMP). 
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1.5.1 a-Lactalbumin 

a-Lactalbumin is an important component of the whey proteins and 

typically is about 25% of the whey protein. It has a molecular weight of 

about 14 kOa and the isoelectric point is between pH 4.2 - 4.5. It does 

not have any free thiol group that can serve as the starting point for a 

covalent aggregation reaction but has four disulphide bonds per 

monomer (Matsudomi & Oshita, 1996). As a result, pure a-lactoglobulin 

will not form gels upon denaturation and acidification. 

1.5.2 p-Lactoglobulin 

f3-Lactoglobulin is a protein with a molecular weight of about 18 kDA. 

It is usually about 65% by weight of most whey protein preparations. It 

generally exists as a dimer (between pH 5.2 - 6.0) but under conditions 

of very low pH « 3) and values above 6, it can exist as a monomer. As 

the pH of the medium is increased to between 3.4 and 5.2, the 

molecule becomes an octamer. The isoelectric point is 5.2. Native f3-

lactoglobulin has one thiol group and two disulphide bonds per 

monomer (Matsudomi & Oshita, 1996). 

1.5.3 Bovine Serum Albumin (BSA) 

BSA is a fairly large protein molecule with a molecular weight of 

about 66 kOa. It is about 8 -10 % of the whey protein content. The 

isoelectric point is about 5.8. eSA is generally very stable and although 

biochemically reactive, it contributes very little to the physical chemistry 

of whey protein. 

1.5.4 Glycomacropeptides (GMP) 

GMP is a highly acidic and hydrophilic peptide with a molecular 

weight of 7 kOa. It stems from the outer layer of the casein micelle. 

GMP often gets into whey due to result of the action of chymosin 

during cheese making, which cuts off the GMP from the K-casein at the 

outer layer. Depending on the degree and type of glycosylation and 

genetic variants, GMP exists as a variety of sub-fractions, which may 

be influenced by processing conditions. Up to four sugar residues per 
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molecule create a partially hydrophilic character, whereas the peptide 

chain possesses more hydrophobic properties (Tolkach & Kulozik, 

2005). Various studies have indicated that the molecular weight of 

GMP is pH dependent and can range up to 50 kDa at pH 7.0. One 

proposed explanation for the pH dependent change in molecular 

weight is that the GMP associates itself to form oligomers at neutral pH 

through non-covalent interactions and that these oligomers partially 

dissociate at lower pH values (Xu et a/., 2000). 

Table 1.5-1 

Summary of the Physical Characteristics of Whey Proteins 

Protein Isoelectric Molecular Concentration Denaturation 

pH weight (Da) (%) temperature (0C) 

p-Lactoglobulin 5.2 18400 60 78 

a-Lactalbumin 4.8 - 5.1 14200 22 62 

BSA 4.8 - 5.1 66000 5.5 64 

Immunoglobulins 5.5-6.8 500000 9.1 72 

1.5.5 Whey Protein Gelation 

Under normal conditions, whey proteins form a weak but elastic 

irreversible gel with the application of heat. Since ~-Iactoglobulin is the 

most abundant protein in whey, it is the primary gelling agent and 

dominates the thermal behaviour of the total whey system. On raising 

the temperature, the dimer structure dissociates into monomers 

(McKenzie & Sawyer, 1967). Above 60°C, the monomer is partially 

unfolded, thereby exposing the non-polar groups and the buried thiol 

group (Hoffmann & van Mil, 1999). Recent studies suggest that the 

unfolding of the proteins by heat begins at 40°C and proceeds slowly 

such that at 62°C, only 10% denaturation has occurred. Above 65°C, 

the degree of denaturation follows a linear relationship with 

temperature and is 95% complete at 85°C (Parris & Baginski, 1991). 

Once unfolded, aggregation then depends on the protein 

concentration and the pH. At alkaline pH, the aggregation step of gel 

formation is mainly attributed to ~-Iactoglobulin. The functional 
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properties of whey proteins depend on their composition as well as the 

degree of denaturation. Nevertheless there appears to be a synergistic 

effect between all the protein fractions of whey protein. For instance in 

a study carried out by Matsudomi et al. (1991), it was demonstrated 

that while an 8% a-lactalbumin solution did not gel, a combination of 

2% J3-lactoglobulin and 6% a-lactalbumin resulted in gelation, even 

though each protein individually could not form a gel at these 

concentrations. Proteins are denatured to some extent by the various 

processes used in their isolation and production and as a 

consequence, two protein ingredients with the same composition can 

exhibit very different functional properties due to the differences in the 

degree of denaturation (Bryant & McClements, 1998). 

The functionality of one component may be significantly altered by 

the presence of other macromolecules in the system. For instance, 

bovine serum albumen exhibits linear aggregation at pH 7 and low 

NaCI concentration. It possesses excellent gelling characteristics 

(Murata et al., 1993). J3-Lactoglobulin gel formed at pH>6 with no 

added salt forms small aggregates and is transparent (Stading et al., 

1992). 

According to the literature, in addition to the degree of unfolding, the 

structure and properties of whey protein gels will also vary depending 

on the type and kinetics of the aggregation process and the nature of 

the bonds - covalent or non-covalent. The covalent bonds are inter­

molecular disulphide bonds, which are formed in disulphide and 

sulphydryl exchange reactions. The non-covalent bonds are due to van 

der Waals forces, electrostatic interactions, hydrogen bonds and 

hydrophobic interactions (Roefs & de Kruif, 1994). 

Another important variable is the pH of the gelling medium. Soye et 

al. (1995) reported that whey protein was more extensively denatured 

by heating at the alkaline side of the isoelectric pH but more stable 

when heated at pH values on the acidic side of the isoelectric region. 

Fourier transform infrared spectroscopy also showed clearly that the 

whey protein loses more of its secondary structure and unfolds more 

extensively at pH 9 than at pH 3. 
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1.5.5.1 Cold setting 

Several studies have been reported in which cold gelation is induced 

with Ca2
+. First, a solution of native whey proteins is heated to a 

temperature where the molecules partially unfold. The properties of the 

solution are carefully controlled so that the proteins aggregate into 

filaments or strands but do not form a three-dimensional structure. The 

conditions required are low protein concentration and an absence or 

very low levels of salt (Hongsprabhas & Barbut, 1997a). Once the 

solution has been prepared in this manner, it is cooled down- and then 

used directly or dried into powder form and used later. After this unit 

operation, salt was added to induce gelation at temperatures below 

24°C. It is also known that calcium levels up to about 10mM increase 

the strength of whey protein gels due to the electrostatic interactions 

with the negatively charged and now unfolded protein molecules 

(Mulvihill & Kinsella, 1988). The gel formed by this method has a fine­

stranded structure, better water holding capacity and higher gel 

strength than one formed by the conventional heat-induced method at 

the same salt level. 

Van Camp et al. (1997) reported that whey protein gels formed at 

neutral and alkaline pH are stabilised by disulphide bonds. 

Hongsprabhas & Barbut (1996) reported that the polymerisation of 

whey proteins can occur via sulphydryl-disulphide interchange 

reactions and that the extent of the polymerisation is time-dependent. 

They also concluded that protein suspensions heated to 90°C as 

opposed to 70°C had more open conformation and interactions 

amongst the protein molecules, giving rise to a clearer gel. Clearer gels 

are usually formed when aggregation or polymerisation is slow (Taylor 

et al., 1994). Alting et al. (2003) observed that it is the number of thiol 

groups rather than the size of the aggregates that determines the 

hardness of cold set whey protein gels. 
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1.6 Synergies Between Egg Albumen And Whey 

Protein Gels 

In a study reported by Ngarize et a/. (2004), there was clear 

evidence of synergy between the molecules of whey protein and 

albumen in a mixture. For high deformation tests, the highest Young's 

Modulus was obtained for a sample of 10:5 whey/egg albumen mixture 

as compared to a 5:10 or 7.5:7.5 mixture. In addition, a calculated 

'interaction index' was highest for this mixture at 179% as opposed to 

56% and 16% for the other 2 samples respectively. 

The conclusion was that the synergistic effect depended on the 

degree of unfolding of the individual proteins in the mixture. 

1.6.1 Water Holding Capacity 

The permeability and hence the water holding capacity of a gel 

depends on the shape, number and size of pores in the network. If the 

spatial structure of the gel is changed, then it can become easier or 

more difficult for water to flow through the structure (Verheul & Roefs, 

1998). In general, the more open the structure, the lower the water 

holding capacity. Particulate gels tend to have a lower water holding 

capacity than fine-stranded gels (Hermansson, 1994). 

How well the water is held in the gel network can be determined by 

the manner in which the water exudes from the gel when subjected to 

physical compression. The effect of the physical force is to create 

minute cracks and flaws in the gel network. As more energy is supplied 

to the growing crack propagation, the propensity to fracture increases 

with the concomitant exudation of the water stored in the pores. 

The added ingredients can affect the gel in two ways. They may 

either (1) physically affect the microstructure of the gels by changing 

the way the gel is formed due to alteration of the unfolding and 

aggregation mechanics or (2) they may be in competition with the 

protein for the available water. 
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1.7 Food Texture 

There is no doubt that texture plays an important part in human 

appreciation of food. The textural characteristics of foods, resulting 

from a combination of physical and chemical properties, constitute one 

of the two main sensory attributes perceived by consumers (Turgeon & 

Beaulieu, 2001), the other being flavour. The diversity of food structure 

is based on the way in which specific interactions take place between 

the various biopolymers that make up the food system. Controlling 

these polymer interactions is of key significance in the development of 

novel foods and processes. Texture, in itself, is a group of physical 

properties that derive from the structure of the food material and the 

way in which its constituent ingredients interact. An understanding of 

the textural properties of a food material can be achieved by 

examination of its rheological behaviour and microstructure, as long as 

consumers can relate them to the perception of texture (Bourne, 2002). 

Correlations of instrumental analysis and sensory data are limited to 

individual products and often cannot be extrapolated to other products. 

Nevertheless, textural properties obtained from Texture Profile Analysis 

(TPA) measurements have been well correlated with the sensory 

evaluation of textural parameters (Lau at al., 2000) and are useful in 

routine analysis of gel texture. The perception of texture constitutes 

how the food quality is judged and is an important factor in whether the 

food is accepted or rejected. All the senses interact to make this 

judgement - sound, touch, smell, appearance. 

Scott-Blair (1958) categorized the instrumental techniques used to 

measure food texture into three groups - empirical, imitative and 

fundamental. 

1.7.1 Instrumental Techniques For Measuring Food 

Texture 

1.7.1.1 Empirical tests 

Empirical tests measure something physical under well-defined 

conditions. By their very definition, empirical tests are developed by 
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experimentation and observation and thus often lack a rigorous 

scientific basis (Rosenthal, 1999). However, this does not disqualify 

their use and in some sectors of the food industry empirical tests act as 

standards for assessing food quality. 

1.7.1.2 Imitative tests 

Imitative tests attempt to simulate the conditions to which the 

material is subjected in the mouth. One of such is the Texture Profile 

Analysis (TPA) created at General Foods in the 1960s. In a series of 

papers, Szczesniak (1963), defined a range of textural terms and 

established sensory standards that enabled anyone to consider each of 

the textural attributes at distinct, defined levels. 

1.7.1.3 Fundamental tests 

Fundamental tests measure well-defined, innate physical properties 

such as viscosity or elastic modulus. They do not depend on the shape 

of the test sample, the conditions of loading or the apparatus. Such 

tests are sCientifically rigorous and the data is expressed in scientific 

units. 

Nevertheless, food texture measurement is essentially a human 

experience. Whilst data can be collected from subjecting a food 

material to a physical test, results of such may not necessarily correlate 

with human perception of texture. 

1.7.2 Application Of Engineering Principles To Food 

Texture 

Instrumental methods for measuring texture are becoming 

increasingly important. Many of the mechanical tests commonly 

employed nowadays based on compression, tenSion, shear, stress 

relaxation and fracture mechanics were originally developed by 

engineers for application with materials utilised in construction such as 

steel and concrete (Szczesniak, 1963; Vincent, 2004). Such 

engineering materials are brittle and elastic. Food materials behave 

quite differently. Most foods, being biological in nature, do not act like 

engineering materials and will flow and change shape dramatically 
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under load: many times permanently (Rosenthal, 1999). In spite of 

these differences, Mohsenin (1970) advocated objective fundamental 

engineering definitions of the mechanical attributes associated with the 

texture of food materials. In engineering materials, the strength of the 

materials is often what is of concern. In foods however, most of the 

tests have to do with the structural weakness of the food material. 

The sensory assessment of food texture depends on the specific 

properties of the food: its arrangement into cells, fibres and pores and 

the interaction thereof during mastication. When eaten, food morsels 

are deformed in the mouth by biting and chewing. As a result of this 

deformation, the food material will respond differently to the stresses 

induced depending on its shape and size, its inherent properties, the 

rates of biting, chewing and orientation. In a mechanical test, a small 

piece of the material is deformed in a controlled manner and both the 

applied force as well as the displacement of the object is measured. A 

force-displacement curve can thus be obtained. Sample size can be 

eliminated as a variable by calculating the stress (force/area) and strain 

(change in dimension/original dimenSion). The concepts of stress and 

strain were developed for engineering materials that are normally 

brittle, stiff and elastic: large stresses result in very little strain. 

1.7.3 The Concept Of Deformation, Stress And Strain 

When a force is applied to solid matter, stress will develop in the 

material according to the nature of the force and the area over which it 

is applied. True stress is defined as the force per undeformed cross 

sectional area 

a =..£ 
Ao 

F is the applied force and Ao is the original, undeformed cross-sectional area. 

1.7.3.1 Stress 

Stress is the outward expression of the restoring force developed by 

stretching the inter-atomic bonds holding the material together. 
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For engineering materials where the modulus of elasticity is high, 

this is certainly true. However for inelastic or viscoelastic materials and 

when the deformation is large, the true stress can differ significantly 

from this nominal or engineering stress. (Tang et al., 1996.) The true 

stress or Hencky stress (E) is a ratio of the force and the cross 

sectional area of the deformed material and for such incompressible 

materials, a correction has to be made for the change in the area. 

1.7.3.2 Strain 

Strain is a dimensionless number and is a ratio of the shape before 

and after deformation 

Strain = Al 

l 
t.L is the deformation and L is the original length 

As with stress, small strain values are adequate. But in extensible 

materials where they can be deformation to very large strain values, a 

correction factor is often applied to compensate for the changes in 

dimension during stretching. The correction is referred to as the 

Hencky strain (EH) 

'H = In (ULo) 

L is the length after the stress has been applied and La is the length of the unstressed material. 

1.7.3.3 Deformation 

In a perfectly elastic solid, there is an immediate and finite 

deformation when a force is applied to the material. The change is 

instantaneous and as the force is increased, the amount of deformation 

increases directly in relation to the applied force. When the force is 

removed, the material recovers its original shape and size. In a 

perfectly viscous material, usually a liquid, the material begins to flow 

as soon as the deforming force is applied. The rate of flow is 

proportional to magnitude of the force applied. The material continues 

to flow as long as the force is applied. There is no recovery of shape 

when the deforming force is removed. In a perfect plastic material, 
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deformation does not begin until a certain value of stress is attained. 

Deformation is then permanent and there is no recovery of shape when 

the force is removed. 

In a visco-elastic solid, there is an instantaneous deformation when 

the deforming force is applied and then the material continues to 

deform as long as the force is present. When the force is removed, 

there is some recovery of the original shape (due to the elastic 

component) but not a full recovery (due to the viscous component). 

Most foods exhibit both elastic and plastic or flow behaviour 

simultaneously and are described as visco-elastic. A visco-elastic 

material has the following properties 

1. Hysteresis: as seen in the stress-strain curve. 

2. Stress relaxation occurs: constant strain decreases the stress 

3. Creep occurs: constant stress increases the strain 

Visco-elasticity differs from plastic behaviour/flow and therefore, 

their properties will depend on the rate of strain and how quickly the 

instrument measures the corresponding stress. When a force is applied 

to a visco-elastic food material, there is an immediate compression of 

the food sample, which is the instantaneous elastic deformation. The 

deformation is followed by a continuous but decelerating rate of 

deformation called 'creep'. When the force is removed, there is some 

recovery but the product does not recover its original shape and size 

(Boume, 2002). 

Plastic deformation and flow occur in certain materials that exhibit 

elastic deformation at low stresses until the material is stressed beyond 

its yield point, after which it flows like a liquid. At applied stresses 

greater than the yield stress, the internal structure may be disrupted 

thereby allowing fluid motion. 

Stress-strain relationships in the elastic region before failure can 

reveal the interactions among the functional components of the 

materials. The simplest model for elastic materials in small deformation 

is Hooke's law, which states that for materials under low to moderate 

strains, the stress and strain values are proportional and that when the 

stress is removed, the material instantly returns to its original form. 

- 48-



Chapter 1: Introduction 

Methods for obtaining stress-strain relationships in large deformation 

include uniaxial tension, uniaxial compression and torsion tests (Tang 

et al., 1997). Uniaxial compression tests are widely used for their 

simplicity. Tension tests are more difficult to perform because of the 

difficulty in mounting samples. Torsion tests are becoming increasingly 

popular (Diehl et al., 1979; Vigdorth & Ball, 1998). The experimental 

results from each of these tests often reflect different aspects of the 

behaviour of the food material and as such it may be possible to obtain 

more comprehensive information of the food by using· all three 

methods. These results are quite obvious in an experiment carried out 

by Mine (1996). There were clear differences reported in the 

rheological properties of gels made from succinylated ovalbumin as 

compared to ovalbumin. The succinylated ovalbumin gel showed lower 

residual strain i.e. they were more elastic, than the ovalbumin gel. 

1.7.4 Compression Tests 

Compression tests include texture profile analysis, stress relaxation 

and puncture tests. 

It is intended that in the present study, instrumental test methods will 

be used to characterise the differences between the albumen and 

whey protein gels. While various tests have shown that differing 

treatments produce diverse gel characteristics, what is not yet known is 

how well these tests correlate with human sensory 

perception/acceptability when applied to meat-free products. It will be 

foolhardy, in this context, to perform a series of tests that show 

significant differences in specific attributes but are imperceptible or 

unimportant in a human subject. Equally it is important to mention that 

a high correlation between attributes by itself does not necessarily 

confirm a cause and effect relationship. 

1.7.4.1 Texture Profile Analysis 

Texture Profile Analysis (TPA) is an objective method of analysis 

pioneered by Szczeniak (1963) and later refined by Bourne (1978) in 

which a mechanical device is used to compress a bite-sized piece of 

food. Following compression, the force-time curve resulting from this 
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simulation is analysed. TPA is based on the recognition of texture as a 

multi-parameter attribute. The test consists of compressing a bite-size 

piece of food two times in a reciprocating manner that imitates the 

action of the human jaw. From the curve, a number of textural 

parameters are derived that correlate well with sensory evaluation . 

Figure 1.7-A 

Typical Texture Profile Analysis Graph 
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In addition to these sensory standards, a compressive-force 

deformation instrument was described. A flat end plunger was used to 

compress the food sample. A two-bite cycle was used and the stress 

that developed in the food sample was measured as the sample was 

being compressed. After the first bite, the load was removed and the 

sample allowed to relax slightly. The second bite compressed the food 

sample again before allowing it to relax a second time. The resistance 

to deformation was monitored throughout this two-bite cycle . From the 

stress-strain TPA curve various parameters were calculated as shown 

in Fig. 1.7-A. 
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1.7.4.1.1 Hardness 

Hardness is defined as the force necessary to attain a given 

deformation and is a measure of the maximum peak attained during 

the first compression of the compression cycle. It is related to the 

strength of the gel structure under compression. The hardness does 

not necessarily occur at the point of deepest compression although it 

does for most products (Bourne, 1982). In sensory terms, it refers to 

the force required to compress a substance between molar teeth or 

between the tongue and the palate (Larmond, 1976). 

1.7.4.1.2 Fracturability 

Fracturability (or brittleness) is defined as the force at the first 

significant break in the compression cycle. It is a measure of the ease 

at which the gel fractures under an increasing compression load. In 

general, the smaller the deformation under given load, the greater the 

ability of the material to fracture. Stress and strain at the point of 

fracture are often important measurements taken during TPA and 

fracture studies. 

The fracture stress is the force required to fracture the material: a 

low value indicates greater fracturability. The fracture strain describes 

the deformability and may also give an indication of the cohesion 

properties: a higher value indicates greater deformability. In sensory 

terms fracture is a product of a high degree of hardness and a low 

degree of cohesiveness (Larmond, 1976). 

1.7.4.1.3 Springiness 

Springiness is related to the height the sample recovers during the 

time that elapses between the end of the first bite (compression) and 

the start of the second bite (compression). It is typically measured as 

the distance of the detected height of the product on the second 

compression (Length 2), divided by the original compression distance 

(Length 1). In reality, it is a measure of the elasticity of the product 

and is the rate and extent to which deformed material goes back to its 

undeformed state when the deforming force is removed. High 
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springiness will result when a gel structure is broken into a few large 

pieces during the first TPA compression, whereas low springiness 

results from the gel breaking into many small pieces. From a sensory 

point of view, it measures the degree to which a product returns to its 

original shape once it has been compressed between the teeth 

(Larmond, 1976). 

The importance of the springiness is also related to the way in which 

water is held within the gel structure. If a gel loses a lot of water during 

compression, then it will be difficult to return to its original shape. 

1.7.4.1.4 Chewiness 

Chewiness can be defined as the energy required in masticating a 

solid food to a state in which it is ready for swallowing. As mastication 

involves chewing, cutting, shearing, piercing, grinding along with saliva 

lubrication, it is a difficult parameter to measure directly. Chewiness is 

a product of hardness, cohesiveness and springiness. 

1.7.4.1.5 Cohesiveness 

Cohesiveness is a measure of the rate at which a product 

diSintegrates under mechanical action or the degree of difficulty in 

breaking down the gel's internal structure. Cohesive products keep 

their integrity in the mouth for longer periods (Adhikari et.a/., 2002). It is 

calculated as the ratio of the positive force area of the second 

compression (Area 2) to the first compression (Area 1). In sensory 

terms, cohesiveness refers to the degree to which a substance is 

compressed between the teeth before it breaks (Larmond, 1976). 

1.7.4.1.6 Resilience 

The resilience is a measure of how the sample recovers from the 

compression both in terms of speed and forces derived and has been 

referred to as a form of 'instant springiness'. It is a ratio of the area 

from the first probe reversal point (Area 5) to the crossing of the x-axis 

and the area produced from the first compression of the cycle (Area 4). 
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1.7.4.1.7 Gumminess 

Gumminess is very similar to chewiness but is defined differently as 

the energy required to disintegrate a semi-solid food to a state ready 

fro swallowing. It is a product of a low degree of hardness and a high 

degree of cohesiveness and is calculated as such from the hardness 

and cohesiveness terms. In sensory terms, it refers to the denseness 

that persists throughout mastication (Larmond, 1976). Gumminess is 

mutually exclusive with chewiness since a product would not be both a 

semi-solid and a solid at the same time. 

While the development of TPA has provided a valuable aid to 

assessing food texture, researchers state that care should be 

exercised in accepting the results for purposes other than comparative 

evaluation (Rosenthal, 1999). The reason is that although the 

technique imitates what goes on in the mouth, there are still some 

fundamental differences between what happens in a test rig and what 

actually happens during mastication. Examples include temperature 

control and lubrication by salivation. In addition, the relationship 

between some of the sensory characterises and the TPA parameters 

are not necessarily linear. 

1.7.4.2 Stress Relaxation 

Stress relaxation is defined as the decrease of stress with time in a 

material placed under finite and constant strain. It is calculated by 

subjecting a material to a specific level of deformation. The change in 

force is measured until a state of equilibrium is achieved. In many 

instances, the time taken to reach the asymptote value is excessive, in 

which case a lower value is taken as the relaxation time. In a perfectly 

elastic solid, all of the energy is stored and there is no stress decay 

due to the fact that the material will regain its original shape when the 

force is removed. On the other hand, in a perfectly viscous material, 

the stress eventually decays to zero, as the material is not able to 

recover its shape when the compressing force is removed. Most food 

materials demonstrate both viscous and elastic behaviour and are said 
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to be viscoelastic. In viscoelastic materials, the applied stress will level 

off to a value greater than zero but less than the force applied (Fig 1.7-

B). 

Figure 1.7-8 

Typical Stress Relaxation Plot 
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In a series of calculations conducted by Peleg & Moreyra (1979) two 

parameters were derived from the normalization stress relaxation 

curve. These parameters a (relaxation level/residual stress) and b 

(relaxation rate) were regarded as empirical shape characteristics of 

the experimental curve. While they of themselves are devoid of 

physical significance as absolute values, the numerical value of the 

constant a was defined as a measure of what portion of the initial 

stress is relaxed. It thus gives an indication of the general mechanical 

character of the material. When the a constant has a value near to 

zero, it corresponds to a more elastic solid. Higher values are indicative 

of viscous behaviour (Buffa et al., 2001). The constant b represents the 

steepness of the decay (1/b is the time to reach the level of a/2). 

Foods are materials and therefore have the mechanical properties of 

materials (Dobraszczyk & Vincent, 1999). The overall texture is 
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governed by a combination of mechanical and fracture properties. In 

material science, the objective is to apply some type of mechanical 

deformation to the food sample, measure the responses and then try to 

correlate the response with the results of a sensory panel. At the heart 

of the materials approach lies the idea that the mechanical properties 

of a food and its internal structure are correlated. As such the 

mastication conditions in the mouth are directly related to the perceived 

texture of that food during eating. Specifically, viscoelasticity is a 

molecular rearrangement. When stress is applied to a visco-elastic 

material, parts of the molecular chain change position. This movement 

or rearrangement is called creep. 

1.7.4.3 Creep 

Creep is the term used to describe the tendency of a material to 

strain, move or to deform permanently to relieve constant stress. Like 

stress relaxation tests, creep tests can provide information about 

texture in visco-elastic materials. In creep tests, the sample is 

subjected to compression up to a constant stress. As shown in Fig 1.7-

C, the creep curve can be subdivided into three distinct regions: OA, 

AB and BC. OA represents the region where elastic deformation 

occurs. If the stress is removed anywhere within this region, the 

sample will recover its original structure. The AB region represents the 

time-dependent retarded elasticity. During this stage, filaments and 

bonds in the structure begin to rupture as the rate of strain gradually 

increases. The proportion of breaking bonds increases until point B is 

reached. The BC region is a linear region associated with viscosity 

deformation in which some of the bonds are permanently ruptured. If 

the stress is removed after point C, there is a degree of recovery, 

depending on the extent of structural damage (Xu et al., 2008). 

1.7.5 Tensile Tests 

Tensile tests are not commonly used in foods, because when 

consumed by mastication in the mouth, compression, not tension is the 

most common force. They tend to be most commonly used when the 
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stickiness or adhesiveness needs to be assessed. Nevertheless, a few 

are in use as subsequently described. 

Guinee & O'Caliaghan (1997) performed tensile tests on Mozzarella 

cheese by melting the cheese on a horizontal platform. After the ends 

of the cheese were locked in position, a motorized winch drew the 

roller mounted half of the platform along the rail until the cheese sheet 

broke. The distance to which the cheese was stretched before it broke 

was measured. 

Reyes-Vega at al. (1998) measured the tearing strength of com 

tortillas by cutting strips, angling them at 45° from the vertical and 

pulling at a constant speed until rupture occurred. 

Olsson at al. (2000) described a method for tensile fracture test in 

which samples of j3-lactoglobulin gels were glued to plates covered 

with sandpaper and clamped to an Instron machine. The pieces were 

then stretched until fracture occurred. 

McEvoy et al. (1985) carried out a different type of test using ring­

shaped gelatin gel specimens. The tensile test was accomplished by 

hanging the ring sample over two dowel pins: one mounted on the 

transducer stage and the other on the driven stage of the test machine. 

Stress was calculated on the basis that the tension in each leg was half 

the measured force. Strain values were derived from the increase in 

ring circumference equalling twice the increase in pin separation. 

Scanlon & Long (1995) carried out a tensile test of I-shaped cuts of 

potato. The ends were attached to two parallel plates using high resin 

glue. Test pieces were than stretched until fracture occurred. 

1.7.6 Torsion Tests 

Torsion tests are those in which a force is applied that tends to 

rotate or twist the object around an axis with respect to the other parts. 

Tang at al. (1997) describe a torsion test performed on gellan gels in 

which both ends of the gel were fastened with cyanoacrylate glue and 

twisted at a constant strain rate in a Bohlin rheometer. The shear 

stress and the corresponding shear strain were then calculated. 

Studman & Yuwana (1992) developed a torsion test for measuring the 
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firmness of fruits by impaling the fruit on a spindle, rotating it against a 

rod and thus measuring the crushing strength of the flesh. 

Farouk et al. (2002) described a torsion test carried out on cooked 

meat batter gels. The samples were machined into a dumb-bell 

geometry and torsionally sheared to the pOint of failure in a device 

attached to a Brookfield viscometer. 

Diehl et al. (1979) designed a torsion test attachment for measuring 

structural failure in apple, potato and honeydew melon. The methods 

they developed allowed for the measurement of both engineering and 

Hencky stress and strain at failure. Ikeda & Foegeding (1999) 

performed the same test on whey protein isolate gels. 

Both Hamann et al. (1983) and Montejano et al. (1984) severally 

compared torsion and compression tests for egg albumen and modified 

egg albumen gels. 

The advantage of a torsion test is that it produces a pure shear 

stress and thus maintains shape and volume during the test. It also 

allows for the creation of tension, compression and shear in equal 

magnitudes (Bourne, 2002). 

1.8 Other Engineering Concepts As Applied To 

Food Materials 

1.8.1 Stiffness 

Stiffness is a measure of how difficult it is to deform a material and is 

expressed as the ratio between stress and strain (Young's Modulus, 

E). Although the Young's modulus of elasticity is often used to 

describe foods, there is a school of thought that this term should be 

preserved and only used in accordance with accepted rheological 

definitions. Since very few foods are perfectly elastic, it has been 

postulated that the term modulus of deformity (or Apparent Young's 

modulus) should be used for viscoelastic materials (Mohsenin & Mittal, 

1977; Bourne, 2002). 

E=2: 
E 
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For a spherical body under axial loading, the value of E can be 

calculated as 

F is the force corresponding to defonnation 0, d is the diameter and 11 is Poisson's ratio (Mohsenin, 

1978). 

Most materials demonstrate linear Young's Modulus at small strain 

values at which point they are behaving in an elastic manner and will 

return to its original dimensions once the stress is removed. Beyond a 

certain stress value, the limit of elasticity, the stress strain relationship 

becomes disproportionate and in some instances, non-linear. 

1.8.2 Strength 

The strength is the maximum stress at which the material breaks. It 

is often referred to as the yield point and is characterised by a yield 

strain and yield stress value. In some products, the fracture does not 

occur at the yield point. In such cases, the yield point refers to a 

Significant change in the slope of the stress-strain curve. 

1.8.3 Hardness 

Hardness is the maximum force obtained at a given deformation. 

The material mayor may not have fractured by the time the given 

deformation is attained. 

1.8.4 Toughness 

Toughness is defined as the resistance to cracking i.e. the energy 

required to propagate a fracture by a given crack area (Dobraszczyk & 

Vincent, 1999). As such a strong material is not necessarily tough. 

Glass and ceramics are strong: they require a large force to break but 

the deformation is small. Wood is tough but not strong: it breaks at a 

much lower force but at much greater deformation. Muscle is much 

weaker and breaks at a very low force but has high toughness as 

demonstrated by ability to stretch and deform. In a stress-strain curve, 
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toughness can be calculated as the total area under the stress-strain 

curve. This area is an indication of the amount of work per unit volume 

that can be done on the material without causing it to fracture. 

1.8.5 Poisson's Ratio 

Poisson's ratio is the ratio of lateral strain to axial strain and is 

defined by the following equation 

II = AD/D 

AUL 
where 0 is the width of the specimen and L is the length. flO and flL are the changes caused by the 

application of the stress. (Boume. 2002). 

If the volume is unchanged, the Poisson's ratio is 0.5. If less than 

0.5, the volume changes. Since water is virtually incompressible, foods 

with high water content have a Poisson's ratio close to 0.5. 

1.8.6 Fracture Mechanics 

The study of the fracture mechanics of foods is a useful branch of 

materials science that can yield information of more general interest. It 

can be a useful way of distinguishing between such concepts as 

hardness/crunchiness and crispness (Vincent, 2004). Fracture 

mechanics, as a field of study, is also quite useful to food structuring 

agents as it can be related to the sensorial perception of the 

consumers and is measurable by physical and mechanical properties 

(Turgeon & Beaulieu, 2001). Fracture is considered to occur when the 

bonds between the structural elements of a material break, resulting in 

catastrophic failure of the material (Rosenthal, 1999). Griffith (1921) 

stated that all materials contain minute cracks and flaws and that some 

materials are more sensitive to the presence of these cracks than 

others. In brittle materials, stress is concentrated locally around the 

crack tip, building up very high stresses and an excess of energy that 

allows the crack to propagate. In plastic materials, the stress around 

the crack is limited by flow, leading to intense deformation around the 

crack tip, resulting in blunting and preventing the crack from growing. 

For a crack to grow, energy must be supplied to it from the surrounding 
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stress material, where the energy is stored as strain. Fracture occurs 

when the rate at which the strain energy is released per unit crack 

exceeds the rate at which surface energy is absorbed in creating new 

fracture surfaces. Thus the critical energy for fracture is dependent on 

the stress, the mode of cracking, the elastic modulus and the sample 

geometry (Lowe et al., 2003). 

1.9 Microscopy 

Confocal Laser Scanning Microscopy (CLSM) is a relatively new 

optical tool that is being increasingly used in the food analysis 

(Durrenberger et al., 2001). Confocal microscopy offers several 

advantages over conventional optical microscopy. Some of these 

advantages include controllable depth of field, the elimination of image­

degrading out-of-focus information and the ability to collect serial 

optical sections from thick specimens without the need to slice 

(Mellema at al., 2000). The CLSM detects in-focus regions only; the out 

of focus parts appear black and this is why the application of CLSM is 

not limited to thin samples. The key to the confocal approach is the use 

of spatial filtering to eliminate out-of-focus light or flare in specimens 

that are thicker than the plane of focus. By having a confocal pinhole, 

the microscope is really efficient at rejecting out of focus fluorescent 

light. In CLSM, as opposed to conventional microscopy, the sample is 

moved relative to the microscope in order to obtain an image with 

enhanced resolution. The practical effect of this is that the image 

comes from a thin section of the sample. The resulting stack of images 

is then subjected to a deconvolution process, which is a newly 

developed procedure to de-blur the images. CLSM thus enables 

samples to be observed using minimal preparation procedures 

because of its unique optical sectioning capabilities and high spatial 

resolution. By scanning many thin sections through the sample, it is 

possible to build up a very clear three-dimensional image of the 

sample. 
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One of the other advantages of CLSM is that visualization of a 

sample can occur at ambient conditions and thus allows observation of 

the sample in its hydrated state. A further advantage is the possibility to 

follow, in situ, the dynamics of processes such as phase separation, 

coalescence, aggregation, coagulation, etc. (Durrenberger et al., 

2001 ). 

In a conventional wide field microscope, the entire specimen is 

bathed in light from a mercury or xenon source, and the image can be 

viewed directly by eye or projected onto an image capture device or 

photographic film. By contrast, the method of image formation in a 

confocal microscope is fundamentally different. Illumination is achieved 

by scanning one or more focused beams of light, usually from a laser 

or arc-discharge source, across the specimen. This point of illumination 

is brought to focus in the specimen by the objective lens, and laterally 

scanned using some form of scanning device under computer control. 

The sequences of points of light from the specimen are detected by a 

photo multiplier tube (PMT) through a pinhole (or in some cases, a slit), 

and the output from the PMT is built into an image and displayed by the 

computer. 

1.9.1 Labelling 

Although unstained specimens can be viewed using light reflected 

back from the specimen, they usually are labelled with one or more 

fluorescent probes. Biological materials rely heavily on fluorescence as 

an imaging mode. Many fluorescent probes are constructed around 

synthetic aromatic organiC chemicals designed to bind with a biological 

macromolecule such as protein. The fluorescent dyes are labelling 

agents that contain excitable structures that emit fluorescence after 

illumination by light of a specific wavelength. As such, the fluorescent 

dyes are useful in monitoring cellular integrity (live versus dead and 

apoptosis), endocytosis, exocytosis, membrane fluidity, protein 

trafficking, signal transduction and enzymatic activity. In addition, 

fluorescent probes have been widely applied to genetic mapping and 

chromosome analysis in the field of molecular genetics. 

- 61 -



Chapter 1: Introduction 

In certain instances. the naturally occurring fluorescence may be 

sufficient to generate a contrast. Foster et al. (1997) reported such a 

situation with the use gelatin as an emulsifier in a biopolymer emulsion. 

1.9.2 Procedure 

The CLSM procedure involves the following steps: 

1. Laser light of a specific wavelength emanates from a pinhole. 

2. The light is focussed onto a point in the sample where it excites 

the fluorescent molecules. 

3. The excited molecules re-emit a mixture of fluorescent and laser 

light at different wavelengths. 

4. A beam splitter separates the light mixture so that only laser light 

is allowed to pass through. 

5. The fluorescent light is focussed by the same lens onto a pinhole 

detector. 

6. The focal plane of the instrument is then moved by steps of a 

defined distance so that stacks of optimal sections are recorded. 

7. Computer controlled CLSM produces digital images that are then 

analysed and processed to compute either surface or volume 

rendered 3D reconstructions of the specimen. 

- 62-



Chapter 1: Introduction 

Figure 1. 9-A 

Schematic Diagram of CLSM Set-up 
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1.9.3 Use Of CLSM In Food Materials 

The use of CSLM for evaluating the microstructure of milk gels has 

been reported in quite a few studies. (Lucey & Singh, 1998). CLSM has 

also been used to quantify the specific changes in the fractal structure 

of rennet induced caseinate gels (Mellema et al., 2000) In this study, 

the fractal dimensionality, lower cut-off length and apparent pore size 

were calculated from the microscopic data and Rhodamine B was used 

as a label in the milk. 

In the study carried out by Durrenberger et al. (2001) yam 

parenchyma was stained with Acid Fuchsin and wheat protein was 

stained with Safranin O. The authors also reported on the observation 

of phase separation in amylose and amylopectin in freshly baked bread 

by CLSM. 

Other studies have been carried out with CLSM for observing the 

structure, cell size, cell shape, cell adhesion, internal air spaces and 

pore sizes of apples (Lapsley et al., 1992), grapes (Gray et al., 1999) , 

strawberries (Suutarinen et aI., 2000), maize and sorghum starch 

(Huber & BeMiller, 2000) and cheese (Buffa et al., 2001) . 
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In a recent study carried out by de la Fuente et al. (2004), CSLM 

was used to determine cluster/aggregate size and pore size distribution 

in a whey protein gel and also to assess the degree of phase 

separation between j3-lactoglobulin and K-carrageenan. 

Hemar et al. (2002) used CLSM to demonstrate phase separation in 

a milk and K-carrageenan combination gels while Roesch et al. (2004) 

also used CLSM to ascertain the pore sizes and phase separation in a 

milk/soy gel. In the former study, Fast Green CFC dye was used to 

stain the milk proteins. 

1.10 OBJECTIVES OF THE PROJECT 

Controlling food texture has always been a challenge in the food 

processing industry. Texture attributes are thus important factors and 

are determined, at a molecular level, by the interactions between 

proteins, fat, carbohydrates and water in the food matrix (Pereira et al., 

2003). The growing demand for food with improved nutritional 

attributes has forced the food industry to reduce the use of traditional 

ingredients such as sugar, fat and additives. New approaches are 

required to modulate the eating quality of food products. 

Particularly in the manufacture of Quom products, a wide array of 

ingredients are required to produce not just a meat-like product of 

adequate and acceptable fibrosity but one which also has succulence, 

firmness and good flavour. From product development activities at 

Marlow Foods, it is known that there is a high correlation between egg 

albumen/whey protein concentrate gel strength and product fibrosity 

but this connection has not been quantified. The interest in studying 

the influences and properties of albumen and whey protein concentrate 

gels is not just that they of themselves are able to create chewy 

textures, but because they are able to interact within their environment 

and contribute to the acceptability of the finished product. Whilst egg 

albumen and whey protein concentrates are typically used as binders, 

other ingredients such as flavourings, salts, lipids, hydrocolloids and 

polysaccharides are required to create an acceptable food product. By 
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the very nature of food, the physical interactions between the 

constituents as well as chemical reactions encountered during 

processing, it is inevitable that there will be interactions between these 

components. These interactions can cause altered functionality by 

affecting the conformation and molecular stability of the protein 

molecules. 

In Quom products, the protein gel forms a continuous phase whilst 

the mycoprotein constitutes the discrete phase. In effect, the 

mycoprotein based meat-free products are made as a fibre-gel 

composite in which the properties of the finished product are 

dependent not just on the manner in which discrete particles are held 

within a continuous phase, but also on the ratio of the discrete phase to 

the continuous phase. The molecular structure of the mycoprotein 

bundles is not changed substantially by normal processing methods. 

However, the molecular structure of the globular protein gel is affected 

by the heat processes and will contribute significantly to the 

organoleptiC qualities of the end product. 

1.10.1 Hypothesis 

It is hypothesized that the use of other ingredients can have an 

effect on the ability of the egg albumen/whey protein concentrate blend 

to function to its optimum capacity. Some of the other ingredients 

enhance gelation and water holding capacity while others are 

antagonistiC. It is therefore of considerable and practical importance to 

understand the role of ingredient interaction on the functional 

properties of a heat-denatured albumen/whey protein concentrate gel. 

It is entirely likely that the mechanism for change has to do with the 

physical state of the gel at the time of consumption. Various studies, as 

described in previous sections, have shown that protein gels may be 

particulate, fine-stranded or indeed, a combination of both. Quom 

products vary in quality. Although much of this is batch-to-batch 

variation, there is a general lack of understanding of how much the 

variables that alter the gel characteristics affect the finished product 

qualities. 
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It is intended that this research programme concentrate on these 

issues. For instance, are changes in the textural characteristics of 

Quom products, for instance, due to the micro and macro-molecules 

affecting the kind gel that is formed? Can texture be deliberately 

manipulated by careful selection of added ingredients and/or 

processing techniques? What degree of interaction exists between the 

whey protein concentrate and albumen as well as the other 

ingredients? 

The main objectives of this study are thus as follows: 

• Determine the effect of added macro- and micro- molecules on the 

gel characteristics of egg albumen and whey protein-based gels in 

a typical meat-free analogue. 

• Elucidate the relationship between whey protein concentrate and 

egg albumen in optimising gel strength. 

• Quantify the interaction between the binders (egg albumen and 

whey protein concentrate) and other ingredients in order to be able 

to predict product characteristics. 

• Characterise the types of bonds in a composite gel system using 

protein dissolution methods. 

It is expected that the achievement of these objectives will lead to the 

ability to predict the textural characteristics of a composite egg 

albumen and whey protein concentrate gel in food products requiring 

gel formation and specifically in mycoprotein-based· meat-free 

products. 
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MATERIALS AND METHODS 

2. 1 Raw Materials 

• Egg Albumen (87% protein db) supplied by Fiske Foods Ltd, 

Milton Keynes, UK 

• Whey Protein Concentrate Oragel80 (80% protein db, 4% 

lactose, 0.9% sodium) was obtained commercially from Armor 

Proteines Ltd, Saint Brice En Cogles, France 

• High methoxyl pectin OH 959ND (72% DE) and low methoxyl 

pectin MRS 160ND (35% DE) were supplied by Degussa Ltd, 

Newbury, UK. 

• Inulin was supplied by Calleva Food Solutions, Basingstoke, 

Hants, UK 

• Dextrose was supplied by Roquette Ltd, Corby, Northants, UK 

• Lactose, Cysteine Hydrochloride, Sodium chloride (NaCI) and 

Calcium chloride were supplied by IFF Ltd, Haverhill, Suffolk, 

UK. 

• Lecithin (Lecisoy 400) was supplied by Food Ingredient 

Technology Ltd, Beds, UK 

• Soya Isolate EX32 (Protein 86.0% db) was supplied by Solae 

Ltd, Copenhagen, Denmark 

• Rice Starch Remyline AX-DR was supplied by Kreglinger Ltd, 

Antwerp, Belgium 

• Hylon VII (70% amylose corn starch) and Novation 2700 (high 

amylopectin corn starch, 97% carbohydrate db of which sugars 

is 2%) were supplied by National Starch Food Innovation Ltd, 

Manchester, UK 

• Methylcellulose SGA50M was supplied by Dow Chemicals Ltd, 

Middlesex, UK 

• Casein EM17 (87% protein db, 0.5% lactose) and Bio-Pure 

GMP (82.5%protein db, 1.0% lactose) was supplied by Davisco 

Foods International, Le Sueur, Minnesota, USA 
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2.2 Chemicals 

The following chemicals used in the study were obtained from BOH 

Ltd, Lutterworth, Leicestershire UK 

• Tris (hydroxymethyl) methyl ammonium chloride 

• Oithioerythritol (OTE) 

• Ethylene diaminetetraacetic disodium salt (EDT A) 

• Urea 

• Whatman filter paper No 1 (110 mm) 

• Sodium dodecyl sulphate (SOS) 

• Rhodamine B 

• Hydrochloric acid (39% w/v) 

• Sodium hydroxide 

2.3 Equipment 

• UV Spectrophotometer (PU8620, Phillips Research, Redhill, UK) 

• Water Bath (Polystat CC1, Huber, Chippenham, UK) 

• Centrifuge (Centra MP4, International Equipment Company, 

Needham, Mass, USA) 

• Cellulose casing (Viskase GmBH, Oormagen, Germany) 

• High shear mixer (Model L4RT Silverson Machines Ltd, 

Chesham, Bucks, UK) 

• Steam oven (Rational Ltd, Luton, UK) 

• Texture Analyser TA XT-2 (Stable Micro Systems, Surrey, UK) 

• Ceramic hob (Neff T1213 BSH Home Appliances Ltd, Guernsey 

UK) 

• Homogenizer (Ultra Turrax T18 IKA, St Augustin, Germany) 

• Confocal laser scanning microscope (OMRXE TCS SP2 Leica 

Microsystems Heidelberg, Germany). 

• Hunter Lab colour meter (Minolta CE Model, York, UK) 

2.4 Preparation Of Buffers And Solutions 

I. Buffer #1 - 20mM Tris-Hel, 1 mM EDTA, pH 8.0 
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II. Buffer #2 - Buffer #1 with 2%(w/v) SOS 

III. Buffer #3 - Buffer #1 with 2%(w/v) SOS and 0.5 %(w/v) 

OTE 

IV. Buffer #4 - Buffer #1 with 6M Urea 

V. Buffer #5 - Buffer #1 with 6M Urea and 0.5 %(w/v) OTE 

VI. Buffer #6 - Buffer #1 with 0.5M NaCI 

2.5 Gel Preparation 

Solutions of protein (16% w/v) and any additions were prepared 

using deionised water produced by an ion exchange process. In the 

first set of experiments, the solutions were made up in accordance with 

the recipe shown in Table 2.5-1 below and in the second set of 

samples, they were made up in accordance with the format in Tables 

2.5-2 & 2.5-3. After initial mixing with a metal fork to wet the powders, 

the blends were subjected to high shear mixing a lab mixer with a fine 

emulsor screen head at speed setting 3000 for 120 s or until all the 

powders were fully dissolved. The pH of the solutions was adjusted 

accordingly using either 5M NaOH or concentrated sulphuric acid. The 

protein solutions were poured into 17 mm diameter cellulose casings 

and tied at both ends. Gelation of the protein samples was induced by 

heating the filled casings at 100°C in the steam oven for 20 minutes. 

After steaming, the gels were cooled down rapidly to below in a blast 

chiller to 5°C and held overnight at this temperature. 
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0.0 

21.3 
0.0 

Table 2.5-1 

Binder samples recipe 

42.7 

0.0 
21.3 

64.0 
0.0 

64.0 

42.7 
64.0 

Table 2.5-2 

336 
336 

336 
336 

336 
336 

336 
336 
336 
336 
336 

Protein samples preparation design matrix 

1.5: 1 

Sample 1 

Sample 4 
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Table 2.5-3 

Protein samples formulation 

Albumen Whey protein De-ionised water Added 

Sample No (g) (g) (g) ingredient# (g) 

1 38.4 25.6 336.0 0.0 

2 42.6 21.4 336.0 0.0 

3 45.8 18.2 336.0 0.0 
4 38.4 25.6 336.0 2.0 

5 42.6 21.4 336.0 2.0 

6 45.8 18.2 336.0 2.0 
7 38.4 25.6 336.0 4.0 
8 42.6 21.4 336.0 4.0 

9 45.8 18.2 336.0 4.0 
10 38.4 25.6 336.0 6.0 
11 42.6 21.4 336.0 6.0 
12 45.8 18.2 336.0 6.0 

13 38.4 25.6 336.0 8.0 
14 42.6 21.4 336.0 8.0 

15 45.8 18.2 336.0 8.0 

* All samples were prepared at pH 5 and pH 6 using either 37% Hydrochloric acid or 5M NaOH. 

# The following compounds were assessed following the pattern described in the table above 

• Inulin 

• High Methoxyl pectin 

• Low methoxyl pectin 

• Lactose 

• Dextrose 

• Methocel SG A50M 

• Hydrogen Peroxide 

• Cysteine Hydrochloride 

• Soya Protein Isolate 

• Calcium chloride 

• Lecithin 

• Oil 

• Glycomacropeptide 

• Rice Starch 

• Hylon VII (high amylose) 

• Novation 2700 (high amylopectin) 

2.6 Instrumental Texture Profile Analysis 

A two-cycle uniaxial compression - relaxation test sequence was 

performed using the texture analyser with a 25 kg load cell. The load 

cell was calibrated each time with a 5 kg weight. The equipment was 

set to zero automatically by lowering the plate until the bottom surface 

of the plate just contacted the table. Cylindrical gels sections (17 mm 

diameter) were cut into pieces of 25mm high (n =5 from each log) using 
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an adapted cheese cutter and were compressed between the 

stationary bottom platform and a moving upper plate of the texture 

analyser. The parameter settings for the TPA test profile were 

programmed as shown in Table 2.6-1. 

Table 2.6-1 

Settings for TPA test using SMS Texture Analyser TA XT-2 

Parameter Setting 

Test mode set to T.P.A 

Probe Aluminium SMSP/75 

Trigger force 5.0 g 

Pre test speed 10.0.0 mm/s 

Test speed 2.0 mm/s 

Relaxation time 5.0 s 

Compression depth 22.5 mm (90% deformation) 

Upward stroke speed 2.0 mm/s 

The parameter settings and the operation of the Texture 

Analyser instrument were automatically controlled through the 

computer with Texture Expert software version 2.54. The curves of 

force versus time provided direct and derived objective TPA 

measurements as described in Section 1.7.4.1. (See Appendix for 

typical curve) 

2.6.1 Modified TPA stress-strain curve 

The modified TPA curve was used to measure or calculate 

additional attributes that could not be done using the basic TPA plot. 

The modification was accomplished by using the software to convert 

the plot from a force-time XV plot to a stress-strain XV plot. A pictorial 

representation of the modified TPA plot is shown in Fig. 2.6.A. 

Initial modulus was calculated from the modified plot by 

measuring the slope of the linear section of the plot within the first six 

seconds of the compression cycle corresponding to a strain value of 

less than 20% (Fig. 2.6.A). Fracture stress and fracture strain were 

measured directly from the compression cycle y- and x-axis 

respectively at the point of fracture (Fig 2.6.A). 
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Figure 2.6-A 

Pictorial Illustration of Modified Stress-Strain TPA Curve 

Stress (N/mm') 

2.7 Stress Relaxation 

Using the Texture Analyser, the cylindrical gel sections (17 mm 

diameter x 25mm high) were compressed to a fixed load of 1500 g and 

held for 150 s. The parameter settings for the TPA test profile were 

programmed as shown in Table 2.7-1. 

Table 2.7-1 

Settings for stress relaxation test using SMS Texture Analyser TA XT-2 

Parameter Setting 

Test mode set to HLDD Force relaxation 

Probe Aluminium SMSP/75 

Trigger force 5.0 g 

Pre test speed 10.0 mm/s 

Test speed 2.0 mm/s 

Compression depth 22.5 mm (90% deformation) 

Post test speed 10.0 mm/s 

Calibration of the texture analyser was carried out as described 

for the TPA test in section 2.6. Force relaxation was monitored as a 

function of time. The stress-relaxation curves obtained were evaluated 

according to the analysis by Peleg (1979; 1980) and the a-value 
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(residual stress) and b-value (relaxation time) were obtained as 

responses. Peleg's constants are shown by the following equation 

_t_= 1 +j 
Y(t) ab a 

The a-value and the b-value were derived as direct measurements 

from the linearized stress relaxation plot as shown in Fig. 2.7-A. (See 

Appendix for typical plots) 

A RELAXATION CURVES 

O!-___ -====== 
o TIME 

Adapted from Peleg, 1979 

Figure 2.7-A 

Measurement of Pe/eg's Constants 

.a. NORMALIZED CURVES 
IN THE FORM: 

~ IF y.~ 

y(t). Fo-F(!) 
Fo 

THEN: J. • ~ + i. 
Y ob 0 

------------ ... 

OL.o-__ .&-. __ _ 

o TIMF ·TIME 

2.8 Expressible Water 

Expressible water was evaluated as follows. Filter paper was 

placed above and beneath the gel during the stress relaxation test. 

The change in weight of the paper was then measured. The increase in 

weight of the filter paper from expressed water is used to calculate the 

loss in weight from the gel plug (17 mm diameter x 25mm high; n =5 

from each log). 

2.9 Water Uptake 

Gel plugs of known weight were immersed in boiling water in an 

aluminium pan for 120 s. The pan of water was maintained at constant 
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conditions on the ceramic hob at setting 6. After 120 s, the plugs were 

patted dry with blotting paper and the change in weight was measured. 

Water uptake was calculated as the percentage change in weight. 

2.10 Colour 

Colour was measured using the Minolta Hunter lab. Calibration 

was carried out following the manufacturer's instructions using the 

black and white colour standardized tiles. Five individual readings were 

taken for L * dimension (variation of colour from white to black) a 

dimension (variation of colour from red to green) and the b dimension 

(variation of colour from yellow to blue) from each sample using the 

automatic measuring system. The geometric mean was calculated. 

2. 11 Statistical Analysis 

For all the tests described in sections 2.6 - 2.9 above, five 

replicate measurements were taken. The five individual data points 

were subjected to backward regression and the mean was calculated 

for the three data points that showed the smallest standard deviation. 

The raw data was then subjected to statistical analysis using Design 

Expert statistical software version 6 (Stat-Ease Inc, Minneapolis, USA) 

in which the variability in the data was partitioned. The statistical 

significance of each response was tested. It was accomplished by 

comparing the mean square with the estimated error to yield the p­

value for both the main variable and any interactions between the 

variables. An assessment was then made as to whether the p-value 

was statistically significant or not. 

2. 12 Protein Dissolution Experiments 

2.5 g of the gelled protein sample was dispersed in 25 ml each of 

the six buffer solutions in a test tube. The samples were homogenized 

at room temperature (Ultra Turrax) for 2 min. At the same time, non­

gelled samples were also prepared. All the samples i.e. heat gelled and 

non-heat gelled, were incubated for 1 hour in the water bath at 40°C. 
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The dispersed samples were centrifuged at 3000 x g for 20 min at 

ambient temperature and the supernatants were stored at 5°C until 

required for UV spectroscopy. 

The relative amount of protein in the supernatants was measured 

in 10 x diluted samples at 280 nm on the UV spectrophotometer. The 

corresponding buffers were also diluted and used as the reference. 

The flow cell had a path length of 10mm. 

2. 13 Confocal Laser Scanning Microscopy 

Images were recorded with an upright confocal laser scanning 

microscope (CLSM). Objective lenses 10 x (NA 0.3),20 x (NA 0.7) and 

63 x water-immersion (NA 1.2) were utilized. The samples were 

mounted on glass slides and protected by cover glass. The protein 

samples stained with the Rhodamine B were illuminated with GreNe 

laser at an excitation wavelength of 543 nm. The bandwidth for 

recording the emission of the fluorescent beams was set from 558 -

700 nm for Rhodamine B. The CLSM was operated in fluorescence 

mode. The images were recorded at the resolution of 1024 x 1024 and 

512 x 512 pixels. In the images, the protein molecules and aggregates 

appeared as bright patches while the water/non-protein phase 

appeared dark. 

2.13.1 Pre-gelled samples 

Samples of protein gels were prepared as described in section 

gel preparation section above. However, prior to the heat-induced 

gelation of the sample, the protein was stained by adding Rhodamine B 

to the protein mixture. The dye/protein ratio was 1 :2000. The dye binds 

non-covalently to the protein network (Alting et al., 2003). Following 

gelation and blast chilling as described in Section 2.5, the samples 

were cut into thin slices using a sharp blade in preparation for viewing 

under the microscope. 
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2.13.2 Samples gelled in situ 

Samples of protein and added compounds were prepared as 

described above. The protein was stained with fluorescent dye 

Rhodamine B, dissolved in water with a dye protein ratio of 1 :2000. 

The protein solutions were put into small metal cylindrical containers of 

volume approximately 80 /-lL and covered with a glass slip. The 

container was then situated on a Linkam PE 94 heating and cooling 

stage and heated at the rate of 10°C from 20 to 95°C. 
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CHAPTER 3 

THE RELATIONSHIP BETWEEN THE TYPE OF 

BINDER MAKE-UP AND pH 

Summary 
A combination of initial exploratory experiments including Texture 

Profile Analysis (TPA) , stress relaxation, expressible moisture and 

water uptake were applied and are discussed under the broad 

categories summarized in Table 3.1.1. 

Table 3.1-1 

Examples of Categories of Response Variables 

Category Typical variable 

Elastic Properties TPA Hardness, TPA Chewiness, Initial Modulus 
PlasticNlscous Properties TPA Cohesiveness, TPA Springiness 
Microstructure Water Uptake, Expressible Water 
Fracture Properties Fracture Strain, Fracture Stress 
Stress relaxation Residual stress (a-value), Stress relaxation rate 

Optical Properties Hunter LAB 

The data shown in this section was subjected to statistical analysis 

in which the effects of pH (numerical variable with data points 5.0, 6.0, 

7.0 and 8.0) and binder type (categorical variable of ratio of whey 

protein concentrate/albumen) were statistically partitioned and 

averaged over the data points. 

The results are discussed in the context of the experiments 

performed as described in Section 2. Residual stress (a-value) and 

stress relaxation rate (b-value) were measured as described in Section 

2.7. Expressible water and water uptake were measured as described 

in Section 2.8 and 2.9 respectively. All the TPA measurements were 

obtained from the force-time TPA curve as described in Section 2.6. 

Fracture stress and fracture strain were measured directly from the 

modified TPA curve as the intercept of the x- and y-axis respectively at 

the point of fracture as described in Section 2.6.1. The initial modulus 

was measured as the slope of the curve in the first six seconds of the 
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modified TPA curve as described in Section 2.6.1. The colour 

measurements were done by Hunter LAB as described in section 2.10. 

Results and Discussion 

3.1 Texture Profile Analysis 

3.1.1 TPA Hardness 

Gel hardness is related to the strength of the gel structure and is one 

of the first and most easily observed texture attribute. 

..-
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Figure 3.1.1 

The Effect of Binder Type and pH on Gel Hardness 
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Binder (16% Solids) 

Key 
100A = 100% albumen 
66A34W= 66% albumen plus 34% whey protein concentrate 
34A66W = 34% albumen plus 66% whey protein concentrate 
IOOW = 100% whey protein concentrate 
Points are means of 5 replicates. Error bars represent the 
standard deviation 

100W 

Figure 3.1 .1 shows four different binder mixtures and the effect on 

the gel hardness as measured by TPA. The maximum hardness 
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occurred at pH 6.0 with binder 66A34W. On either side of this sample 

in the plot, the gel was softer. 

Another observation from Fig. 3.1.1 was the interaction between pH 

and the binder composition. It is most evident at pH 7 and 8 where the 

plots overlap and depending on what binder was used, the hardness 

value was different. All binder types, with the exception of binder 

66A34W, produced harder gels at pH 8. Only with the 66A34W binder 

was the gel harder at pH 7.0 than it was at pH 8.0. Interestingly, at pH 

7.0 and 8.0, the 100W sample was just as hard as the 100A sample. 

Why? Was this due to extensive unfolding and an enhancement of the 

thiol~ disulphide reaction? 

At the acidic pH region of 5.0 and 6.0, the replacement of as much 

as 66% of the albumen with whey protein concentrate did not appear to 

affect the gel hardness significantly. The hardness was of similar 

magnitude to the 100A sample. Only when the albumen is replaced 

completely by the whey protein concentrate (100W) did the gel 

hardness drop significantly. It is most likely that there is a maximum 

concentration at which the amount of whey protein concentrate in the 

binder significantly reduces the gel hardness as compared to an all­

albumen gel. The maximum concentration will need to be determined 

for each relevant pH as further work. 

3.1.2 TPA Springiness 

The springiness of the gel samples demonstrated an unusual pattern 

as shown in Figure 3.1.2. At pH values from 5.0-6.0, the 66A34W gel 

had the highest springiness value of all four binders. However at pH 

7.0 and 8.0, the 66A34W gel had the lowest springiness value. In fact 

there was no significant difference between the 66A34W gel 

springiness at pH values of 7.0 or 8.0. All four binders exhibited almost 

the maximum possible springiness at pH 7 and 8. The implication of 

this phenomenon is that at these high pH values, the gel samples were 

exhibiting very low viscous properties and were showing elastic 

behaviour similar to near-perfect solids (Puvanenthiran et al., 2002). As 
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the pH was reduced further, a higher concentration of whey protein 

concentrate in the binder led to a reduction in springiness i.e. an 

increase in the viscous properties. Increased viscous behaviour of a 

gel is symptomatic of an increase in the effect of water. This suggests 

that less water is actually physically bound in the gel pores as the pH is 

reduced to more acidic values. 

Figure 3.1.2 

The Effect of Binder Type and pH on Gel Springiness 
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Just like the gel hardness, replacement of the albumen with whey 

protein concentrate at 66% (34A66W) and 100% (100W) did not 

change the springiness as long as the pH was 7.0 or 8.0. However it 

would appear that the magnitude of the effect of the whey protein 

concentrate on springiness was accelerated to larger values as the pH 
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was reduced further. The same is true at 34% replacement (34A66W). 

The gel springiness at pH 6 was not significantly differently from the 

66% (66A34W) but at pH 5.0, the springiness of the gel made with the 

34A66W binder was lower than the gel made from the 66A34W binder. 

Whether the change progresses further or stabilizes as the pH is 

lowered further away from the isoelectric point is unknown at this 

stage. 

3.1.3 TPA Cohesiveness 

Figure 3.1.3 shows that the cohesiveness of the gel samples was 

maximal with the 66A34W sample. At all other binder ratios, the 

cohesiveness did not change significantly. Moreover, at pH 5.0 and 6.0 

there was no difference in the cohesiveness of the gel samples. 

However, at the neutral and alkaline pH values, the cohesiveness of 

the 66A34W sample was significantly increased. Other binder ratios did 

not appear to exhibit any effects as the pH was altered. 

Neither the cohesiveness of the 100A sample nor that of the 1 DOW 

samples was affected at all by changes in the pH from 5.0 - 8.0 as 

shown by the overlapping error bars in Fig. 3.1.3. 
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3.1.4 

Figure 3.1.3 

The Effect of Binder TVDe and DH on Gel Cohesiveness 
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TPA Chewiness 

100W 

The overall pattern of the chewiness of the gel samples was very 

similar to cohesiveness (Fig. 3.1.4) and the two exhibit a high degree of 

correlation . The effect of the binder type on chewiness was maximal 

with the binder 66A34W. This was particularly evident at pH 7.0 and 

pH 8.0 where the gel chewiness was several times the value of the 

other binder mixes. 
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Figure 3. 1.4 

The Effect of Binder Type and pH on Gel Chewiness 
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Another noteworthy observation was that the chewiness of the 100A 

and the 1 DOW samples were not significantly different from each other 

at any of the pH values. Especially in the acidic pH region, the addition 

of whey protein to the albumen-based binder system (34A66W) did not 

change the gel chewiness. 

3.1.5 TPA Resilience 

At pH values of 6.0 and above, the 66A34W gel was the most 

resilient of all the binders for each pH group (Fig. 3.1.5). However at 
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pH 5.0, the resilience of the 66A34W gel was the same as that of the 

other binders and no significant differences were noted. 
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Figure 3. 1. 5 

The Effect of Binder Type and pH on Gel Resilience 
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The TPA resilience was significantly lower for the 100A and the 

100W binder as compared to the 66A34W at all pH values except pH 

5.0. In actual fact, at pH 6.0 and 7.0 the resilience of the binder 

samples 100A, 34A66Wand 100W was insensitive to pH. Only at the 

pH 8.0 were there any differences in resilience between these three 

samples. It is clear that there was some synergism between the ratio of 

whey protein concentrate and albumen and its effect on the resilience. 
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3_1.6 Initial Modulus 

As the pH was raised from 5.0 to 8.0, the initial modulus of all the 

samples declined as seen in Figure 3.1.6. The profiles of the plots for 

pH values in the acidic region (pH 5 & 6) were similar. In the same 

manner, the profile for the samples at pH 7 & 8 were also similar. 
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Figure 3.1.6 

The Effect of Binder Type and pH on Initial Modulus 
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It is to be noted though that at each pH category evaluated , the 

66A34W binder was generally the sample with the highest initial 

modulus. At all four pH values, the 66A34W sample actually had a 

significantly higher initial modulus than the 100A sample. The result 

showed that the introduction of whey protein concentrate to an 
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albumen binder system conferred increased elasticity to the overall gel. 

This is a major observation not previously reported. The 100W gel 

was the sample most significantly affected by pH as shown by the high 

degree of separation between the plots. It is also the sample in which 

the acidic pH values had the biggest effect in reducing the initial 

modulus. 

The results for initial modulus in the present test contrast with an 

experiment carried out by Ngarize et al. (2004). Although the test 

methods were broadly similar, Ngarize et al. (2004) found that in the 

mixed gels, the highest value of Young's modulus was observed with a 

10:5 whey/egg albumen mixture (43.3Pa) compared to 19.4 Pa and 

26.0 Pa for the 5:10 and 7.5:7.5 mixture of whey and egg albumen 

respectively. One or all of the following might explain the discrepancy: 

I. pH - Ngarize et al. (2004) did not state at what pH the tests were 

carried out. 

II. heating conditions - the samples in the Ngarize et al. (2004) study 

were prepared by heating at 90°C for 30 minutes as opposed to 

the present study where the heating was carried out at 100°C for 

20 minutes. There is evidence from initial experiments during the 

present study that extensive heating of whey and albumen gels 

can lead to gel shrinkage (not shown). 

III. whey protein isolate was used in the study by Ngarize et al. 

(2004). It was not stated how the isolate was produced. Burgess 

and Kelly (1979) reported that the method of whey protein isolation 

does affect the gelation depending on the degree of denaturation 

damage incurred during processing. 

3.1.7 Fracture Strain 

As the pH was increased, all the gel samples demonstrated 

increased fracture strain i.e. increased toughness (Fig. 3.1.7). The 

increased toughness was particularly evident with the 66A34W sample 

because at each pH value, the 66A34W was the least brittle i.e. the 

highest fracture strain of all four binder samples. The 100W binder 
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was the most significantly affected by the acidic pH. At neutral or 

alkaline pH values, the 100W gel sample had the same fracture strain 

value as the 100A binder. The observation demonstrates that in order 

to maintain the brittleness of an albumen gel in which some of the 

albumen has been substituted with whey protein concentrate at the 

same level, a higher pH may be required . This is because at the acidic 

pH , the 100W fractured at a significantly lower strain value than the 

100A and effectively became more brittle. The relationship between the 

fracture strain of the gel made from 100W binder and pH was not 

linear. 

Figure 3. 1.7 

The Effect of Binder Type and pH on Fracture Strain 
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3.1.8 Fracture Stress 

The pattern for the fracture stress graph (Fig. 3.1.8) was very similar 

to fracture strain . The peak for the fracture stress was found in the 

66A34W binder for each pH variable. 

Figure 3.1.8 

The Effect of Binder Type and pH on Fracture Stress 
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For each of the three other binders, there was no significant 

difference in the fracture stress at pH 7.0 or 8.0. However at pH 5.0 

and 6.0, the 100W had a fracture stress value significantly lower than 

either of the 100A and the 34A66W binder. In fact the fracture stress 
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value was close to zero. A likely explanation is that the same molecular 

factors were driving the changes in both the strain at fracture and the 

stress at fracture. Like the fracture strain, the relationship between the 

fracture stress of the gel made from the 1 DOW binder and the pH was 

not linear. 

3.2 Microstructure 

3.2.1 Expressible Water 

The expressible water for the 10DA gel sample (Fig. 3.2.1) was not 

significantly altered by the addition of whey protein concentrate as 

shown in the 66A34W and 34A66W samples. In fact, at these levels, 

there was hardly any expressible water at all. 

Figure 3.2.1 

The Effect of Binder Type and pH on Expressible Water 
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Neutral or alkaline pH appeared to help maintain the integrity of 

these gel samples and reduced the amount of expressible water. 

However, the 100W sample was different. At the acidic pH values, the 

amount of expressible water was considerable. The high expressible 

water was probably due to the extensive protein aggregation at the low 

pH. Aggregation of the protein molecules is favoured near the 

isoelectric point and can lead to tortuous or irregular paths in the gel 

microstructure (Lucey et al., 1998). Tortuous paths in turn, make gel 

networks more susceptible to damage when a force is applied and the 

expressed water cannot easily be re-absorbed when the force is 

removed (Verheul and Roefs, 1998; Chantrapornchai and McClements, 

2002). 

3.2.2 Water Uptake 

At the acidic pH 5.0, there was very high water uptake across all the 

binder samples (Fig. 3.2.2). The 100A sample showed water uptake of 

just over 5%. The water uptake was increased further when whey 

protein was introduced to the gel as shown in 66A34W and 34A66W. 

With the 100W sample, the water uptake was dramatically reduced. 

At the higher pH, water uptake was broadly similar across all 

samples with the exception of the 100W sample at pH 6.0 and pH 8.0. 

At pH 6.0, there was hardly any water absorbed into the gel and was 

quite a contrast to what happened to the binder at pH 8.0, where there 

was also a significant difference compared to the other binders. 

The water uptake and expressible water are related to 

microstructure and pore size. Differential pore sizes and the inversely 

correlated capillary pressure can affect the manner in which the gels 

absorb and hold water in the interstices. It also needs to be stated that 

the kinetics of the transport of water molecules through the gel 

structure will influence the amount of water lost. Water will flow more 

easily through gels with large interconnected pores than through gels 

with a fine stranded network (Chantrapornchai & McClements, 2002). 

High external pressure such as created by hot, aqueous surrounding 
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can create a pressure gradient that forces water into or out of the 

interstices. 

Figure 3.2.2 

The Effect of Binder Type and pH on Water Uptake 
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3.3 Stress Relaxation 

3.3.1 a-Value (Residual Stress) 

100W 

Although very small, there was a significant difference between the 

a-value of all four binder samples that was not affected by either the 

neutral or alkaline pH (Fig. 3.3.1). There was also a significant, albeit 

small, difference between the a-value of the gels made from the 100A 

and 100W binder at pH 7.0. When there was a blend of whey protein 

concentrate and albumen, as evinced by the 66A34W and the 34A66W 
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samples, the a-value was not affected at either pH 7.0 or 8.0. At pH 

5.0 and 6.0, the a-value of the 1 DOW sample was significantly affected 

at the acidic pH but the other binder mixtures were immune to a 

change in pH from 5.0 - 6.0. 

There was a significant shift in the a-value of the binder samples 

when the pH was altered from acidic to alkaline values. The a-value 

for the binder samples at pH 5.0 and 6.0 was significantly different from 

the a-value of the binder samples at pH 7.0 and 8.0 and even more so 

for the 1 DOW binder. 

Figure 3.3.1 

The Effect of Binder Type and pH on the a-value 
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The increase in the a-value of the 100W showed it was 

demonstrating increasingly viscous behaviour very close to what is 

predicted for water (1.0). What this likely meant was that much less 

water was bound up in the gel and as such the 'gel' was behaving like 

water in its exhibition of strong viscous behaviour. It exhibited less 

'solid properties' than the other gel samples. The high expressible 

water as shown in Fig. 3.1.9 corroborates this explanation. As the pH 

was increased and more unfolding of the protein molecules took place, 

more and more water is bound in the interstices and the gel was able 

to exhibit increased elastic behaviour. It in interesting to speculate 

whether the performance of the 100W binder would have become more 

elastic if the water was physically bound by other means with the use 

of hydrocolloids such as a starch or a gum. 

3.3.2 b-value (Stress Relaxation Rate) 

The magnitude of the b-value clearly followed the pH: as the pH was 

increased, so did the b-value (Fig. 3.3.2). 

At the neutral and alkaline values, the b-value was not greatly 

affected for any of the samples although there were statistically 

significant differences with the differing binders. The same was true for 

the acidic pH values with the binders 100A, 66A34W and 34A66W. 

However the b-value of the 100W sample was significantly reduced at 

acidic pH values. The same factors that affected the a-value were also 

at play with the b-value. 
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Figure 3.3 .2 

The Effect of Binder Type and pH on the B-value 
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The degree of deformation can have an effect on the residual 

forces in biological materials, particularly food samples. In general, it is 

accepted that at small deformation, many gels are linearly elastic and 

the relationship between stress and strain is fully characterised by 

Young's modulus. However at large deformation, the relationship 

between stress and strain becomes non-linear (Peleg & Calzada, 1979; 

McEvoy et aI. , 1985). Peleg and Calzada (1979) noted that there were 

two regions on the force deformation curve: a rate independent region 
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in the early stages of deformation (up to 5%) followed by a region in 

which an increase in deformation rate induces an increase in the force. 

They concluded that the characteristics of the stress relaxation test 

procedure could be explained by physical irreversible changes that 

occur during the deformation. Such changes include stress decay due 

to visco-elastic relaxation, internal hydrostatic pressure leading to 

water exudation, fracture of air containing cells and fracture of 

crosslinks (Mancini et al., 1999). During stress relaxation testing, if the 

strain is applied too quickly and outside of the elastic limit, cracking can 

occur. In a more recent experiment with gelatin gels at different 

concentrations, it was shown that at small deformations up to about 

10%, all investigated samples were fully elastic, but at large 

deformations in excess of 10%, there were the characteristic hysteresis 

loops in the plots, indicating visco-elasticity (Ding et al., 2008). 

Both the rate of deformation and the initial stress loading are 

important in characterising a visco-elastic material. In a study carried 

out using corn-based biodegradable extrudate, the effect of varying the 

stress was observed to be less important than the effect of the 

changing the crosshead speed on the visco-elastic parameters (Lui 

and Peng, 2007). In a previous study, it was shown that the initial 

stress loading had little effect on the a-value (residual stress). 

However, the initial stress had a tendency to affect the b-value: the 

larger the initial stress, the steeper the relaxation curve (Peleg (1979). 

In spite of the fact that stress relaxation testing is affected by 

uncertainty and discrepancy because of unavoidable stress decay, this 

simple test can help at characterising the differences in gel parameters 

or other textural quality parameters especially when the curves are 

normalized. In a study of different food materials, it was concluded that 

the test could be equally applied to materials that are regarded as 

linear or non-linear from a rheological point of view. It was also shown 

that both small and large deformations could be treated by the same 

stress relaxation and curve normalization procedure thereby making it 

possible to compare curves of different materials. Finally it was 
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concluded that despite the limitations, the visco-elastic parameters, a 

and b, were sensitive enough to indicate curve shape changes in foods 

subjected to different deformation histories (Peleg, 1979). Herrero and 

Careche (2005) also applied a stress relaxation test to frozen stored 

hake and reported a 90% correlation with the sensory assessment 

results. 

3.4 Optical Properties 

3.4.1 Hunter L-value (Lightness) 

Both the pH and the type of binder significantly affected the intensity 

of the gel colour (Fig. 3.4.1). At pH 5.0, 6.0 and 7.0, the 66A34W 

sample was generally the darkest as shown by the lower Hunter L 

score in each pH category, with the 100W sample being the lightest. 

However at pH 8.0 the converse occurred with the 66A34W sample 

now becoming the lightest and the 100W sample becoming very dark. 

The reason for the higher L-values is that more light was reflected from 

the larger aggregates (Resch et al., 2005). Therefore it can be 

concluded that the Hunter L-value - when there are no other factors at 

work such as added materials that can influence the colour - is 

inversely correlated with the aggregate size. 
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Figure 3.4 .1 

The Effect of Binder Type and pH on Gel Whiteness 
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3.4.2 Hunter a-value (red/green chromaticity) 

100W 

At each pH level, the 66A34W sample had the highest red hue as 

shown by the low Hunter-a value (Fig. 3.4.2). At pH 5.0, the 100A 

sample was Significantly less red than any other sample (+0.6) but by 

the time the pH had been adjusted to 6.0, the 100W binder (-1 .6) 

surpassed the 100A binder (-5.2) to become the least red sample at 

this pH. It was noted that this observation held true for the other pH 
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values and that only at pH 5.0 was the 100W binder less red than the 

100A binder. 
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The observations in the present study are in agreement with a 

theory proposed by Chantrapornchai and McClements (2002) that as 

the particles become larger, they will become redder (or less green). A 

reduction in pH closer to the isoelectric point favours aggregation and 

thus increases the particle size. 
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3.4.3 Hunter b (yellow/blue chromaticity) 

The yellow/green hue did not seem to be significantly affected by the 

type of binder as shown by the relatively flat lines in Figure 3.4.3. The 

pH definitely had an effect: at neutral and alkaline values the gel 

samples tended to be bluer as shown by the low b scores, whereas at 

the acidic values, the gel samples were more intensely yellow as 

shown by the higher b scores. 

Figure 3.4.3 

The Effect of Binder Type and pH on Gel Yellowness 
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At pH 7.0, the 100A binder was more yellow than the 100W binder. 

The observations here are also in agreement with a theory proposed 
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by Chantrapornchai and McClements (2002) that as the particles 

become larger, they will become more yellow (or less blue). A 

reduction in pH closer to the isoelectric point favours aggregation and 

thus increases the particle size. 

3.5 Conclusion/Key Findings 

I. Texture Profile Analysis appears to be an ideal test method to 

characterize the differences between heat-induced gel 

samples. 

II. The optimal ratio of whey protein concentrate to albumen 

appears to be about 1:2 for most of the key attributes. For 

the next series of experiments, this ratio was used as the 

starting point. 

III. Most combinations of whey protein concentrate and albumen 

produced a gel that was significantly different from a 100% 

whey protein concentrate gel. 

IV. There was a high degree of correlation between many of 

the TPA attributes. Therefore even though all the 

experiments and test methods will be used for further test, 

only the relevant ones from each group will be used for gel 

characterization. 

V. Optical properties were useful in characterizing gel quality. 

However the use of this response will be rather limited in 

future experiments due to added materials almost certainly 

influencing colour in their own right. 

VI. Stress relaxation was an effective way to characterize an 

potentially partition the viscous and elastic properties of 

a gel. It gives an idea as to how much 'unbound' water there 

is in the gel system and how the water influences the 

behaviour of the gel system. 
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CHAPTER 4 

THE EFFECT OF VARIOUS MATERIALS AND pH 

ON GEL CHARACTERISTICS 

Summary 

The results of the texture analysis of the prepared gels are 

described. Specific attributes were selected to cover the key 

categories as follows: 

Elastic properties - TPA Hardness 

PlasticNiscous properties - TPA Springiness, Stress relaxation 

Microstructure - Water Uptake and Expressible Water 

Fracture Properties - Fracture Stress and Fracture Strain 

The results are discussed in the context of the experiments 

performed as described in Section 2. Stress relaxation (a- value) was 

measured as described in Section 2.7. Expressible water and water 

uptake were measured as described in Section 2.8 and 2.9 

respectively. Hardness and springiness were obtained from the stress­

strain TPA curve as described in Section 2.6. Fracture stress and 

fracture strain were measured directly from the modified TPA curve as 

the intercept of the x- and y-axis respectively at the point of fracture as 

described in Section 2.6.1. 

The raw data shown in this section were subjected to statistical 

analysis using Design Expert (Stat-Ease Inc. Minneapolis USA) in 

which the variability in the responses to the effects of pH (numerical 

variable with data points 5.0, 6.0, 7.0 and 8.0) and binder type 

(categorical variable of ratio of whey protein concentrate/albumen) 

were partitioned. The statistical significance of each response variable 

was then tested, accomplished by comparing the mean square with the 

estimated error to yield the p-value. 
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Results and Discussion 

4.1 Instrumental Texture Analysis 

In this section, the results for the effects of three variables on 

various texture parameters are shown. The three variables were: 

I. binder type (ratio of whey protein concentrate to albumen), 

II. pH (values 5.0 and 6.0) and 

III. concentration of added material. 
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4.1.1 Hardness (See Table 4.1.1) 

The interaction between pH and the salt concentration was 

significant for NaCI (p<0.05) but not for the CaCI2. However, the pH 

and concentration of CaCb individually have a significant effect on the 

gel hardness (p<0.05). 

Table 4.1.1 

Analysis of Variance of Factors Affecting Gel Hardness 

Compound 

CaCI: 

Casein 

Cysteine 
Hydroclorlde 

Dextrose 

GMP 

pH 0.0468 pH:Binder Type 0.0005 
Bincmr Type oC 0.0001 pH: Concentration 0.1296 
Iconcenrrlllion oC D.DDD1 Binder Type:concentratlDn D.DD1 H 
[pH oC 0.0001 pH:Binder Type 0.5619 
Binder Type oC 0.0001 pH: Concentration 0.0067 
Icancentrlllion "D.DDlJ1 Binder Type:Concentrllllon D.DD44 
[pH 0.0001 pH:Binder T~e 0.0007 
8i1der Type oC 0.0001 pH: Concentration 0.0610 
Iconcentrlllion oC D.DDD1 Binder Type:Concentrllllon U.U[J62 
pH < 0.0001 pH:Binder Type c 0.0001 
Binder Type < 0.0001 pH: Concentration 0.0001 
[Concentrlllion 0.0003E1inder Type:Cancentration 0.6411 
[pH IC 0.0001 pH:Binder Type 0.0626 
Binder Type 0.0547 pH: Concentration 0.0013 
IConcentrllllon 0( U.UDU' Binder Type:Concerirlltlon 0.0138 

High AmyIo din [pH 0.0148 pH:Blnder Tvpe 0.0087 
pe Binder Type IC 0.0001 pH: Concentration 0.0159 

Starch IConcentratlon IC U.UUU1 Binder Type~oncentrlltion oC 0.0001 

High Amylose 
Starch 

pH oC 0.0001 pH:Blnder Type 0( 0.0001 
Binder Type 0( 0.0001 pH: Concentrlltion c 0.0001 
Concentniion oC D.D001 Binder Type:Concentration 0( 0.0001 
[pH 0.2862 pH:Binder Tvpe 0.0014 

HIgh Methoxyl Binder Type 0.2310 pH: Concentration 0.0631 
Pectin Icancentrlllion oC 0.0001 Binder Type:Concentrllltion 0.1031 

Hydrogen 
Peroxide 

Inulin 

lecithin 

pH 0( 0.0001 pH:Binder Type 0.0018 
Binder Type 0( 0.0001 pH: Concentration c 0.0001 
Iconcentration < 0.0001 Binder Type:Concentrlllion 0.0007 
[pH 0( 0.0001 pH:Binder Type "0.0001 
Binder Type c 0.0001 pH: Concentration oC 0.0001 
I concentration < U .uou, Binder Type: Concentrlllion c D .DDD1 
pH oC 1l.1l001 pH:Binder Tvpe c 0.0001 
Binder Type O.OOOS pH: Concentration 0( 0.0001 
[Concentration D.uOIl3 Binder Type:Concentrlltion 0( 0.0001 
pH 0.0041 pH:Binder Type 0( 0.0001 
Binder Type 4( 0.0001 pH: Concentration 0( 0.0001 
[Concentration 4( 0.DOD1 Binder Type:ConcentrllltlOn D.6749 
[pH 0.0030 pH: Binder Type 0.0242 

Methylcenulose Binder Type 0.0466 pH: Concentration 0.0013 

HaCl 

Rice Starch 

SoyIt Protein 
Isollte 

I..oncentrlllion 0( O.CCD1 iBinder Type:concentrllltion 0( 0.0001 
pH 0.0901 [pH:Binder Type oC 0.0001 
Binder Type c 0.0001 pH: Concentrlltion 0.0136 
I..oncentr.m:m 0.0205 [Binder Type:concentrlltlon 0.WD1 
pH 0.0001 pH:Binder Type oC 0.0001 
Binder Type 0.0007 [pH: Concentrlltion 0.0022 
.. oncentratlon 0( 0.0001 [Binder Type:Concentrlltion 0: 0.0001 
pH 0.0015 [pH:Binder Type 0.0015 
Binder ~e 0.0063 [pH: Concentrlllion 0.2060 
I..oncentrllltion 0( OlL001 [Binder Type:Concentrlltion 4( 0.OJl]1 
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For the three different starches, there was a significant interaction 

between all three pairs of variables (p<0.05). As it turns out, the effect 

of each of the individual variables was also significant (p<0.05). 

In the milk ingredient infused gels, i.e. glycomacropeptide (GMP) 

and casein, all three main variables individually influenced the gel 

hardness except for the binder type in the GMP gel, which was 

involved in a significant interaction with GMP concentration (p<0.05). 

There was no interaction between the dextrose concentration and 

binder type although both variables individually affected the hardness. 

Gel samples with high methoxyl pectin showed only one paired 

interaction between pH and binder type (p<0.01). The interaction was 

notable because the individual variables themselves were non­

significant. In the case of lecithin, the binder type and lecithin 

concentration severally had a significant effect on gel hardness but 

interaction between the two was not significant. 

There was no interaction between soya isolate concentration and 

the pH although individually these two variables affected the hardness. 

Likewise, the concentration of cysteine hydrochloride did not depend 

on the pH although the two variables independently had a significant 

influence on the gel hardness. 

4.1.2 Water Uptake (See Table 4.1.2) 

The binder type had no effect on the water uptake in the presence of 

NaCI and was not involved in any interaction with the two other 

variables. With CaCI2, on the other hand, there was significant 

interaction between all three pairs of variables (p<0.001). 

For both the high amylopectin starch and the rice starch, the binder 

type had no effect on water uptake. However the effect of binder type 

in the presence of the high amylopectin cannot be discounted because 

there was a significant interaction observed between the binder type 

and the pH (p<0.05). The same was true of the rice starch where the 

interaction of binder type and the other two variables was significant 

(p<0.001). 
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The binder type had no effect on the water uptake in the presence of 

casein or GMP. However, in both cases, there were significant 

interactions with at least one of the other variables (p<0.05). 

Table 4.1.2 

Analysis of Variance of Factors Affecting Water Uptake 
- . . _. .- . 

R:Zofmodel • Compound Variable I p-valuel Interactions Ip-value' 
pH c 0.0001 pH:Binder Type 0.0009 

:CaCl2 Binder Type 0.0022 pH: Concentration c 0.0001 0.90 
I Concentration < 0.UUU1 1~lnaerType:Concentrlllon U.UUJ2 
pH < 0.0001 ~:Binder~e 0.02B1 

C.seln Binder Type 0.0703 l2tt Concentration c 0.0001 0.96 
I Concentration c 0.UUU1 I ~inder Type: Concentrllion c u.ouu1 

Cyetelne 
pH <0.0001 pH:Binder Type 0.1304 
Binder Type e 0.0001 ~H: Concentration < 0.0001 0.95 

· Hydroclorlde 
I~oncentrllion < [J .1JIJI!1 1~lnaer ~ype:Conc~mrllDon U.0045 

~ c 0.0001 ~:Binder Type 0.0007 
!Dextros. Binder Type 0.2344 I pH: Concentration 0.1319 0.92 

l ... oncentration ~ [!:!inder Type:concent~on ~ 
pH c 0.0001 pH:Binder Type 0.0060 

GMP Binder Tvp_e 0.0890 I pH: Concentration e 0.0001 0.B7 
I ~oncentration eo.0~1 II:IInder ..!ype: Concemratlon ~&J'::' 

,High Amylopectin IpH < 0.0001 pH:Binder Type 0.0445 
Binder Type 0.196B pH: Concentration c 0.0001 0.94 

. Starch I ~oncertratlon <[J.w~ 1~I~er ~e~onc~~lon ~B2::'B 

· High Amylose 
pH < 0.0001 IpH:Blnder Type 0.0054 
Binder Type I( 0.0001 pH: Concentration 0.0214 0.95 

,Starch 
I ... oncentration < [J.uOO~ ~inder Type:Concem~ion ~5 

! High Methoxyl IpH < 0.0001 I pH: Binder Type 0.0448 

!Pectln 
Binder Type 0.224B pH: Concentration < 0.0001 0.94 
I ... oncentrlltion < u.ulJI.J1 @~er ~e:concent~on ~ 

• Hydrogen 
pH c 0.0001 pH:Binder Type 0.1094 
Binder Type 0.073S I pH: Concentration 0.0014 0.95 

: Peroxide 
I ... oncentration c O.OOQ,! Binder Type: Concentration c 0.1N01 

! pH < 0.0001 IpH:Binder Type 0.B3S0 
: Inulin Binder Type 0.0192 pH: Concentration 0.0320 0.91 

... oncentrllion cu.~ IBinder Type:Concentrlllon D.DDS9 
pH c 0.0001 pH:Binder Type O.OOBS 

; Lactose Binder Type 0.0250 IpH: Concentration c 0.0001 0.94 
Concentration O.OOO~ Binder Type~oncentration c 0.0001 
pH < 0.0001 ~H:Binder Ty~e c 0.0001 

: Lecithin Binder Type 0.0031 ~H: Concentration 0.0073 0.91 
~~centrlltion < D.DI.JLJ1 IBlnder lyp~cDncent~on ~ 
pH < 0.0001 pH: Binder Tvpe 0.OB74 

• Methylcellulose Binder Type 0.042B pH: Concentration < 0.0001 0.98 
... oncentrlllion < D.OUD1 I Binder "!ype: concemr.ion <~.UlIlJ'I 
pH c 0.0001 pH:Binder Type 0.0665 

!NaCI Binder Typ_e 0.0675 pH: Concentrlllion < 0.0001 0.92 
I ... oncertrllion <Q..ULIU1 BinderType~onc~~on D.221:iD 
IpH c 0.0001 !pH: Binder Type <0.OD01 

{Rice Starch Binder Type 0.1371 pH: Concentration < 0.0001 0.99 
... oncentr8tlon c U.UUU1 ~inderlY~e~onCentrlltlan ~ 

'Soya Protein ~ " 0.0001 :pH:Binder Type 0.3310 

ilsollte 
Binder Type 0.2889 I pH: Concentration ODDBS 0.B4 
... oncentrllltion [].~ Binder Type: ~oncentrllltlon OD7D5 

* P-Vtl'''s <O.O~OO .elictlft tiat ti • .,oel., nu·.,s tllfl sls.'ffctl.t 
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In the presence of dextrose, the binder type variable had no effect 

on its own but was involved in significant interactions with the other two 

variables (p<0.05). Owing to this observation, the effect of dextrose 

cannot be discounted. The oppOSite was observed for lactose where 

all three variables showed significant pair-wise interactions (p<0.01). 

The binder type of itself could not be shown to have an effect on 

water uptake in the high methoxyl pectin infused gel but was involved 

in a significant interaction with the pH (p<0.05) and thus will always 

have to be taken into account. With the methylcellulose, lecithin, inulin 

and cysteine hydrochloride infused gels, all three main variables 

Significantly affected the water uptake (p<0.05). 

For the soya protein isolate, only the pH, as an independent 

variable, affected the water uptake. The soya isolate concentration was 

involved in a significant interaction with the pH (p<0.01) and will need 

to be kept in the model for the purpose of maintaining hierarchy. 

4.1.3 Expressible Water (See Table 4.1.3) 

In the presence of virtually all the ingredients, the three variables 

exhibited significant interactions with each other in affecting the 

expressible water. There were only a few exceptions. For the milk­

based ingredients and the sugars except for GMP and lactose 

respectively, there was no interaction between pH and binder type. 

The binder type did not affect the expressible water with the cysteine 

hydrochloride gel but the interaction of binder type with the other two 

variables was significant (p<0.01 ). 
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Table 4.1.3 

Analysis of Variance of Factors Affecting Expressible Water 

Compound Variable [p-value' Interactions p-value' RZ of model 
pH '" 0.0001 pH:Binder Type tC 0.0001 

C8C12 Binder Type '" 0.0001 pH: Concentration 0; 0.0001 0.94 
I concentration '" 0.0001 I Binder Type: Concentration 0; 0.0001 
pH c 0.0001 [pH:Binder Type tC 0.0001 

Casein Binder Type < 0.0001 pH: Concentration '" 0.0001 0.99 
I Concentration 0; 0.0001 IBinder Type:Concentrlition J]~1!2 

Cysteine pH c 0.0001 [pH: Binder Type 0.0001 
Binder Type 0.3025 [pH: Concentrtllion '" 0.0001 0.98 

Hydrocloride ... oncentration < 0.0001 I Bnder Type: concentration '" 0.0001 
pH c 0.0001 [FlH:Binder Type c 0.0001 

Dextrose Binder Type c 0.0001 [pH: Concentrtllion c 0.0001 1.00 
I concentration II: 0.0001 I Bnder Type: concentration 0; 0.0001 
[pH II: 0.0001 [pH:Binder Type 0.0529 

GMP Binder Type tC 0.0001 [pH: Concentrtllion tC 0.0001 0.99 
\.oncentration tC 0.0001 I Binder TVpe: concentration 0( 0.0001 

High Amylopectin pH '" 0.0001 [pH:Blnder T~e c 0.0001 
Binder Type 0( 0.0001 pH: Concentrtllion c 0.0001 0.99 

Starch ... oncentration '" 0.0001 IBinder Type: concentration c O.lllJ01 

High Amylose 
pH 0( 0.0001 pH:Binder Type tC 0.0001 
Binder TYFle c 0.0001 [FlH: Concentration 0; 0.0001 0.98 

Starch Concentration < 0.0001 I Binder Type: concentrlltlon tC 0.0001 

High Methoxyl 
pH < 0.0001 [pH:Blnder Type 0; 0.0001 
Binder Type II: 0.0001 pH: Concentration tC 0.0001 0.99 

Pectin \.oncentration < 0.0001 I Blnc:ler T ype:£onc~ntrlltlon tC 0.0001 

Hydrogen pH c 0.0001 pH:Binder Type 0( 0.0001 
Binder Type < 0.0001 pH: Concentration 0; 0.0001 0.99 

Peroxide \.oncentratlon '" 0.0001 Binder TYFle:Concentration '" 0.0001 
pH < 0.0001 [pH:Binder Type 0; 0.0001 

Inulin Binder Type '" 0.0001 pH: Concentrtllion 0( 0.0001 0.99 
... oncentl'~on 0; 0.0001 I Binder TyFle:concentrlllion '" 0.0001 
pH '" 0.0001 pH:Blnder Type 0.2944 

Lactose Binder Type 0.0057 [pH: Concentrllltion 0.0012 0.94 
""oncentrlltion 0.0049 IBinder Type:concentrlllion 0; 0.0001 
pH '" 0.0001 [pH:Binder Type 0.0005 

Lecithin Binder Type c 0.0001 pH: Concentrllllion tC 0.0001 0.99 
... oncentrlllion 0( 0.0001 I Binder Type: concertrlllion tC 0.0001 
pH 0; 0.0001 [pH:Binder Type 0.0035 

MethylceUulose Binder Type tC 0.0001 pH: Concentration 0; 0.0001 0.99 
... oncertr~an 0; 0.0001 IBInc:ler Type:concentration 0; 0.0001 
pH tC 0.0001 [FlH:Binder Type '" 0.0001 

NaCI Binder Type tC 0.0001 [pH: Concentration c 0.0001 0.99 
. Concentrlllion 0; 0.0001 I Binder Type: Concentration tC D.DDD' 
,pH tC 0.0001 pH:8inder Type c 0.0001 

Rice starch Binder Type tC 0.OOD1 pH: Concentrlllian 0; 0.0001 1.00 
I Cancentrllltion 0; 0.0001 BlnderType:Conc~ntrlllion 0( 0.0001 

Soya Protein 
IpH tC 0.0001 I3H:Binder TYJ:le tC 0.0001 

·I.ol.e 
Binder Type <0.0001 IpH: Concentration tC 0.0001 1.00 
:Concertrllltion < 0.W01 I Blnc:ler Type: concentrlltion 0( O.WD'I 

* p-v.'.s <O.ODO uk.,. tt.t ft • •• fI.' "'.S.IlI sls"me."t 

4.1.4 Cohesiveness (See Table 4.1.4) 

Both salts had highly significant effects on the cohesiveness for all 

three main variables (p<0.01). 
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In the presence of high amylopectin starch, the effects of the binder 

type and the concentration of the starch could not be separated as they 

were both involved in a significant interaction (p<0.01). With the two 

other starches, all the variables individually had a significant effect on 

the gel cohesiveness (p<0.01). 

Table 4.1.4 

Analysis of Variance of Factors Affecting Cohesiveness 
~ ~ ~ ~ '''' . ,~~ " _,~ ___ "~ ~ _A"~ ~ __ ,~_ '''_~~~ ,- " _~y >.<,_m_ • 

RZo,model . Compound Variable p-value' Interactions Ip-value' 
pH 0.0337 pH:Binder Type < 0.0001 

CaCI2 Binder Type < 0.0001 pH: Concentration < 0.0001 0.75 
~oncentretJon < O.0ll!l~ I Binder Type: Concentration < [J.0001 
pH 0.0978 pH:Binder Type 0.0024 

Casein Binder Type 0.0305 pH: Concentration < 0.0001 o.Bo 
~ancentration <C 0.0001 I Binder Type: concentration <C 0.0001 

Cysteine pH 0.0035 pH:Binder Type 0.0577 
Binder Type 0.2379 pH: Concentration 0.0005 0.56 

Hydroclorlde 
~ancentratlon <C 0.0001 I Binder Type: Concentration 0.5623 
pH 0.0052 pH:Binder Type <C 0.0001 

iDextrose Binder Type 0.0064 pH: Concentration 0: 0.0001 0.69 
! Concentration 0.1487 Binder Type:Concentration 0.0001 

pH 0.0238 1j:lH:Binder Type 0.3384 
GMP Binder Type 0.0448 pH: Concentration < 0.0001 0.74 

,-ancentrlltlon <C 0.000' IB~aerType:Concentration <C 0.[]001 

; High Amylopectin pH 0.0002 j:lH:Binder Type 02516 
Binder Type 0.6278 I j:lH: Concentration 0.0723 0.4B 

Starch Concentration 0.1143 I Binder Type: Concentration 0.0039 

High Amylose pH < 0.0001 I pH: Binder Type 0.0008 
Binder Type 0.0001 pH: Concentration < 0.0001 0.74 

Starch 
~oncentration <C 0.0001 I Binder Type: concentration < 0.0001 

High Methoxyl pH <C 0.0001 pH:Binder Type 0.3483 
Binder Type 0.0004 I pH: Concentration < 0.0001 0.95 

Pectin ,-oncentration <C 0.0001 I Binder Type: Concentration 0.0005 

Hydrogen 
pH 0.0012 pH:Binder Type 0.0752 
Binder Type < 0.0001 pH: Concentration 0.0875 0.79 

. Peroxide ,-oncentration <C 0.0001 I Binder Type: concentration < 0.0001 
pH 0.0325 pH:Binder Type 0.0005 

. Inulin Binder Type 0.0019 pH: Concentration < 0.0001 0.64 
Concentration 0.DWi2 Binder Type:Concentration 0.0004 
pH 0.9053 IpH:Binder Type 0.0032 

. Lactoe. Binder Type < 0.0001 pH: Concentration 0.0006 0.74 
~oncentrlltion < 0.0001 I Binder Type: Concentration < 0.0001 
pH <C 0.0001 pH:Binder Type < 0.0001 

Leclhin Binder Type 0.0516 pH: Concentration 0: 0.0001 0.95 
Concentration <C 0.0001 Binder Type:Concentrlllion 0.0008 
,pH 0: 0.0001 IpH:Binder Type 0.0802 

. Methylcelluloe. Binder Type 0.0026 pH: Concentration 0.0004 0.B2 
i\.oncentrabon <C 0.000' Binder Type: Concentration < 0.0001 
ipH 0.0404 pH:Binder Type < 0.0001 

. NaCI Binder Type 0.0110 pH: Concentration 0.0015 0.69 
Concentration < 0.0001 Binder Type: concentration <0_.0001 
!pH < 0.D001 pH:Binder Type 0.2100 

Rice Starch Binder Type 0.0015 pH: Concenlniion 0.0002 0.B2 
I concentration < D.!llJD1 Binder Type:Concentratian < D.1XlD1 

Soya Protein pH 0.0225 pH:Binder Type < 0.0001 
Binder Type 0.0001 pH: Concentration 0: 0.0001 0.B4 

'isoille ! Concentrlllian <O.DD01 Binder Type:Concertrltion < 0.0001 
:* p-WllllfU <8.6M I_dletlrt titlt ti. m.d., rt,.ms tlIV siS_'flctl_t 
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With casein, the pH was involved in significant interactions with the 

other two variables (p<0.01), although singularly the pH had no effect. 

However with GMP, all three variables had individually significant 

effects (p<O.OS). 

For both sugars, at least one of the independent variables in each 

experiment was involved in a significant interaction: concentration for 

dextrose (p<0.001 ) and pH for lactose (p<0.001). 

Both high methoxyl pectin and methylcellulose expressed significant 

effects for all the three variables individually (p<0.01). The binder type 

did not seem to be significant with the lecithin-dosed gels. However it 

was involved in significant interactions with the other two· variables 

(p<0.001). With the cysteine hydrochloride gels, the binder type may be 

eliminated as a key variable in the gel cohesiveness; it did not have a 

significant effect on its own and was not involved in any significant 

interaction with either of the other two. However, it is to be noted that 

the R2 value for the model was 0.56, showing only moderate 

correlation. For hydrogen peroxide, all the main variables had a 

significant effect (p<0.001). 

4.1.5 Residual Stress (A-value) (See Table 4.1.S) 

Virtually all of the ingredients tested affected the residual stress. 

Both the main effects and the interactions were observed to be 

significant (p<0.001). The only non-significant interaction was between 

pH and binder type in the soya isolate sample (p>O.OS). For the other 

ingredients, even when there were non-significant effects of the main 

variables, they were involved in significant interactions. 
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Table 4.1.5 

Analysis of Variance of Factors Affecting Residual Stress 

, ....... 
Compound Variable p-valueA Interactions p-valueA R2 ofmodel 

pH 0( 0.0001 pH: Binder Type 0( 0.0001 
CaCI2 Binder Type 0( 0.0001 pH: Concentration 0: 0.0001 0.98 

Concentration 0( 0.0001 Binder Type:Concentration 0.0009 
pH 0: 0.0001 pH:Binder Type 0.0246 

Casein Binder Type 0: 0.0001 pH: Concentration 0( 0.0001 1.00 
Concentration 0: 0.0001 Binder Type:Concentration 0( 0.0001 

Cysteine pH 0( 0.0001 pH:Binder Type 0: 0.0001 
Binder Type 0.0240 pH: Concentration 0: 0.0001 1.00 

Hydroeloride Concentration 0( 0.0001 Binder Type: Concentration < 0.0001 
pH 0( 0.0001 pH:Bnder Type 0.0010 

: Dextrose Binder Type 0( 0.0001 pH: Concentration 0.0006 0.99 
Concentration 0.0107 Binder Type: Concentration 0.0011 

I pH pH:Binder Type 
'GMP Binder Type pH: Concentration 

Concentration Binder Type:Concentration 

. High Amylopectin pH 0( 0.0001 pH:Binder Type < 0.0001 
Binder Type 0( 0.0001 pH: Concentration 0: 0.0001 1.00 

starch Concentration 0( 0.0001 Binder Type: Concertratlon 0: 0.0001 

High Amylose pH 0( 0.0001 pH:Binder Type 0: 0.0001 
Binder Type 0( 0.0001 pH: Concentration 0( 0.0001 1.00 

'Starch Concentration 0( 0.0001 Binder Type:Concentratlon 0( 0.0001 

• High Methoxyl pH 0( 0.0001 pH:Binder Type 0.0004 
Binder Type 0.0004 pH: Concentration 0: 0.0001 0.94 

Pectin Concentration 0: 0.0001 Binder Type: Concernration 0: 0.0001 

'Hydrogen pH 0( 0.0001 pH:Binder Type 0.0023 
Binder Type 0( 0.0001 pH: Concentration 0: 0.0001 0.92 

Peroxide Concentration 0( 0.0001 Binder Type: Concernration 0: 0.0001 
pH < 0.0001 pH:Binder Type 0.0130 

• Inulin Binder Type 0: 0.0001 pH: Concentration 0( 0.0001 1.00 
Concentration < 0.0001 Binder Type:Concernration 0( 0.0001 
pH 0( 0.0001 pH:Binder Type 0.0082 

: Lactose Binder Type 0.8215 pH: Concentration 0.0252 0.95 
Concentration 0.0016 Binder Type: Concernration 0.0006 
pH 0( 0.0001 pH:Binder Type 0.0453 

,Lecithin Binder Type 0.0053 pH: Concernration 0: 0.0001 0.99 
Concentration < 0.0001 Binder Type:Concernration 0.0003 
pH < 0.0001 pH:Binder Type 0.0006 

Methylcellulose Binder Type < 0.0001 pH: Concernration 0( 0.0001 1.00 
I Concentration 0( 0.0001 Binder Type: Concentration 0( 0.0001 

I pH < 0.0001 pH:Binder Type 0.0013 
iNaCI Binder Type < 0.0001 pH: Concentration < 0.0001 1.00 

,-oncentration < 0.0001 Binder Type: Concentration < 0.0001 
pH 0( 0.0001 pH:Binder Type < 0.0001 

Rice starch Binder Type 0( 0.0001 pH: Concernration < 0.0001 1.00 
: 

Concentration < 0.0001 Binder Type:Concernration 0: 0.0001 

iSoya Protein pH <0.0001 pH:Binder Type 0.1579 
Binder Type 0( 0.0001 pH: Concentration 0.0251 0.ge 

,I.ollle Concentration <0.0001 Binder Type: Concentration 0( 0.0001 
it p-valws (O.O~OO j."'cflrt tiat tit .,0",1 rtr.,j flrt j'SljfjCfllt 
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4.1.6 Relaxation Rate (B-value) (See Table 4.1.6) 

Both salts showed significant interactions amongst all three 

variables (p<O.01). 

The binder type had no effect on its own in the high amylopectin 

dosed gel but was involved in a significant interaction with the 

Table 4.1.6 

Analysis of Variance of Factors Affecting Relaxation Rate 
-- ,.,,"" , ~ ... •• "" m' ..... -~- --

Compound Variable I p-value" Interactions p-value' Rtofmodel 

l2I! c 0.0001 [pH: Binder Type 0.0042 
CaCI2 Binder "!n!e 0.0477 pH: Concentration c 0.0001 0.98 

I ~oncentrlllion c 0.0001 [Binder Type:Concent~lon ~llJlO01 
~H c 0.0001 I pH: Binder Type 0.1496 

Casein Binder Type I( 0.0001 pH: Concentration I( 0.0001 0.94 
~oncentrlllion I( 0.0001 IBinder Type: Concentration < 0.lLD01 

cysteine pH c 0.0001 pH:Binder Type < 0.0001 
Binder T~e 0.0334 pH: Concentrlllion I( 0.0001 0.97 

Hydroelorlde Iconcentrlllion c 0.0001 IBinderType:concent~on <_0.0001 
pH 0.0031 pH:Binder Type 0.0263 

Dextrose Binder Type c 0.0001 I pH: Concentration 0.0255 0.75 
I Concentrlllion 0.1759 I Bnder Type: Concentration <JUl(J01 
pH IpH:Binder Type 

GMP Binder Type pH: ConcentratiDn 
I concentr.lon I Binder Type: Concentration 

High Amylopectin lilt! c 0.0001 I pH: Binder Type 0.2042 
Binder Type 0.4594 pH: Concentrlllion c 0.0001 0.9B 

Starch I concentrlllion c 0.0001 I Binder Type: concentration O.tl1S0 

High Amylose pH c 0.0001 pH:Binder Type c 0.0001 
Binder IYlle < 0.0001 pH: Concentrlllion < 0.0001 0.96 

Starch Concentration c 0.0001 IBlnder Type:Cancentration c 0.0001 

High Methoxyl pH 0.0260 pH:Binder Type < 0.0001 
Binder Type 0.0030 pH: Concentration < 0.0001 0.98 

Pectin I concentrlllian c D.DD01 IBinder Type:Concent~on ~U.UUD' 

,Hydrogen 
pH 0.1979 pH:Blnder Type 0.0299 
Binder~ 0.0039 IIlH: Concentrlllion 0.0219 0.79 

'Peroxide Concentration c 0.0001 Binder Type:Concentration c 0.0001 
IpH 0.0070 pH:Binder Type 0.4948 

Inulin Binder Type 0.0002 pH: Concentration 0.0215 0.93 
I concentrlllion c O.!lDD' Binder Type: concentration ~4 
pH < 0.0001 pH:Blnder Type c 0.0001 

Lactose Binder Type c 0.0001 pH: Concentration 0.004S 0.B3 
Concentrlllian < 0.0001 Binder Type:Concentrlllion 0.0001 
pH 0.9599 pH:Binder Type 0.7037 

Leeithin Binder Type < 0.0001 pH: Concentrlllion < 0.0001 0.B7 
~oncent~on <0.0001 :Binder Type: concentration < a.DOD' 
~ < 0.0001 pH:Binder Type c 0.0001 

• MethyleeUulose Blnder~e 0.0656 pH: Concentrlllion c 0.0001 0.9S 
IConcent~on < 0.DDD1 I Binder Type: Concentration c a.DOD1 

IFJli < 0.0001 pH:Binder Type 0.0123 
NaCI Blnder~e c 0.0001 IIlH: Concentration c 0.0001 0.92 

~oncel"lr.lon <_O.DDD' I Binder Type:concentrlllion <Q.QQQ1 
IpH c 0.0001 IpH:Binder Type 0.0140 

; Rlee Stareh Binder Type c 0.0001 pH: Concentrlllion < 0.0001 0.98 
~oncentr.lon < D.!lD01 IBinder Type:Conc~on c Il.DOD1 

. Soya Protein IpH c 0.0001 IIlH: Binder Type 0.9400 
Binder~ 0.4181 [pH: Concentration cO.OD01 0.75 

;I.ollite I concentrlllion 0.49S7 IBinderTyp~concentr~on 0( D.OD01 
• ,,-valas (O •• ~OO ."'ea,. rtar rt.III.".' ,.,.",s a,.. sls.ifiea.r 
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concentration of the starch (p<O.05). 

For dextrose, whilst the concentration by itself was of little 

consequence, the result of dextrose addition was observed in 

significant interactions with both the other two variables (p<O.05). 

Lactose exhibited significant interactions among all three main 

variables (p<O.01 ). 

In the methylcellulose gel, the binder type interacted significantly 

with the other two variables (p<O.001) although binder type, as a stand 

alone variable, had no effect. There were also significant interactions 

(p<O.05) between pH and concentration of the lecithin (lecithin gels) 

and pH with the concentration of hydrogen peroxide and binder type 

(hydrogen peroxide-dosed gels). 

Soya protein-infused gels showed two non-significant main effects­

binder type and concentration - but both were separately involved in 

significant interactions with the pH (p<O.001). 

4.1.7 Fracture Strain (See Table 4.1.7) 

While two of the main effects were clear of any interactions in the 

NaCI-dosed gel, all three variables were involved in significant 

interactions in the CaCl2-dosed gel (p<O.001). The binder type and 

concentration of the NaCI demonstrated significant interaction 

(p<O.001). 

All three starches and both milk-based ingredients exhibited 

interactions in all three variables (p<O.001), with the only exception 

being the pH/binder type interaction in the rice starch-dosed gel and 

the pH/concentration interaction in the GMP-dosed gel. 

High methoxyl pectin, methylcellulose, soya isolate, inulin, cysteine 

hydrochloride and hydrogen peroxide all showed significant effects for 

the main variables. There were also significant interactions for all three 

variables except for pH/binder type in methylcellulose and hydrogen 

peroxide gels. 

In the lecithin-dosed gels, the pH and binder type as main effects 

were individually significant but none of the interactions appeared to be 
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crucial. It should be noted though that this conclusion might be 

misleading, as the R2 for the model is very low at 0.38. There is no 

explanation for this observation at the present time, other than possibly 

experimental error. 

Table 4.1.7 

Analysis of Variance of Factors Affecting Fracture Strain 

Compound Variable Ip-value" Interactions p-value' Rz'ofmodel 
IpH ..: 0.0001 I pH: Binder Type ..: 0.oDD1 

CaCI2 Binder Type < 0.0001 pH: Concentration ..: 0.0001 0.96 
I Concentration < 0.00D1 I Binder Type: Concentration ..: 0.ODD1 
pH < 0.0001 pH: Binder Type 0.0039 

Casein Binder Type ..: 0.0001 ! pH: Concentration < 0.OD01 1.00 
Concentration < 0.0001 Binder Type: Concentration < 0.0001 

Cysteine IpH 0.0003 pH:Binder Type 0.7895 
Binder Type 0.0005 pH: Concentration 0.0461 0.65 

Hydroclorlde I Concentrfltlon < 0.000' iElinder Type: Concentrfltion 0.7'70 
pH 0.0249 pH:Blnder Type 0.0641 

Dextrose Binder Type 0.0004 : pH: Concentration 0.4759 0.39 
Concentration 0.2695 Bnder Type: Concentration 0.7149 
IpH ..: 0.0001 I pH: Binder Type 0.0170 

GMP Bnder Type < 0.0001 pH: Concentrlltlon 0.4488 0.95 
I Concentration < 0.0001 i Binder Type: Concentration < 0.[j001 

High Amylopectin pH 0( 0.00D1 IpH:Binder Type <0.0001 
Binder Type ..: 0.0001 jpH: Concentration < 0.0001 0.98 

SW'c:h Concentrlltion < 0.0001 Binder Type:Concentration <0.0001 

High Amylose pH ..: 0.0001 pH:Binder Type <0.ODD1 
Bnder Type < 0.0001 pH: Concentration <0.0001 0.9B 

Starch I concentrfltlon < 0.0001 : Binder Type: Concentration < OJlOO1 

High Methoxyl pH < 0.0001 'pH:Binder Type 0.0070 
Binder Type <O.DOO1 !pH: Concentration <0.0001 0.98 

Pedin Concentration < 0.0001 Binder Type: concentration < 0.0001 

Hydrogen IpH 0.0004 !pH:Binder Type 0.5366 
Binder Type < 0.0001 pH: Concentration < 0.0001 0.96 

Peroxide I concentrfltion < ll.O001 Binder Type: Concentrfltion < 0.0001 
pH < 0.0001 pH:Binder Type < 0.0001 

Inulin Binder Type 0.0039 pH: Concentration O.ODDS 0.94 
Concentration < 0.0001 Binder Type: concentration < 0.0001 
IpH < O.ODD1 : pH: Binder Type 0.1409 

Ladose Binder Type < 0.0001 pH: Concentrlltion 0( 0.0001 1.00 
I Concentration < 0.0001 ! Binder Type: Concentration ..: 0.0001 
pH 0.0129 pH:Blnder Type 0.0807 

Lecithin Binder Type 0.0033 pH: Concentration 0.4139 0.3B 
Concentration 0.2124 Binder Type: Concentration 0.5065 
pH ..: 0.0001 !pH:Binder Type 0.1136 

Methylcelulose Bnder Type < 0.ODD1 pH: Concentration < 0.0001 1.00 
... oncentration < 0.0001 I Binder Type:Concentrliltion < 0.0001 
pH < 0.0001 pH:Binder Type 0.2603 

NaCl Binder Type < 0.0001 I pH: Concentration 0.0695 0.92 
Concentration <O.ODD1 Binder Type:Concentration <0.0001 
pH < 0.0001 pH: Binder Type 0.1114 

Rice Starch Binder Type < 0.OD01 pH: Concentration 0( 0.0001 0.96 
Concentration < O,.l!001 Binder Type: Concentration 0( 0.000' 

Soya Protein pH < 0.0001 pH:Blnder Type 0.0092 
Binder Type < 0.0001 pH: Concentrlllion < 0.0001 0.92 

Isolate ... oncllntrillion 0.0227 Binder TyplI: cDncentration 0( D.DDD1 

* p-ytll,.l <'.HOO .flktl" rttlr rt • • ofl., "'.l tin lls"!!'ctl.r 
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4.1.8 Fracture Stress (See Table 4.1.8) 

Gels made with both salts showed major interactions between the 

variables. CaCI2 influenced interactions between all three pairs of 

variables, whilst with NaCl, only the pH/binder type did not exhibit any 

Table 4.1.8 

Analysis of Variance of Factors Affecting Fracture Stress 
'~'V ~ 

Compound Variable p-value" Interactions p-value' R%ofmodel 
pH < 0.0001 pH:Bincler Type 0.0045 

CaCI2 Binder Type c 0.0001 pH: Concentration 0.0103 0.97 
Iwoncentratlon < 0.000' Binder Type:~oncentratlon < 0.0001 
pH c 0.0001 pH: Binder Type 0.0031 

Casein Binder Type < 0.0001 pH: Concentration < 0.0001 0.9B 
,-oncentratlon < 0.0001 Binder Type: ~oncentrlltion <0.0001 

'Cysteine 
pH < 0.0001 pH:Binder Tvpe 0.0009 
Binder Type < 0.0001 pH: Concentration < 0.0001 0.99 

Hydroclorlde ,-oncentration < 0.0001 Ijlnaer I ype: ~oncentrBtlon < 0.0001 
pH < 0.0001 pH:Binder Tvpe 0.0054 

Dextrose Binder Type < 0.0001 pH: Concentration 0.0004 0.90 
,-oncentrltion 0.5J69 Binder Type: concentrlltlon 0.0002 

IpH c 0.0001 pH:Bincler Type 0.0023 
GMP Binder Type < 0.0001 pH: Concentration c 0.0001 0.95 

[ Concentrltlon < 0.0001 Binder Type:concertrlltlon < D.DIlD'I 

'High Amylopectin pH c 0.0001 pH:Binder Type < 0.0001 
Binder Tvpe <0.0001 pH: Concentration < 0.0001 0.97 

Starch I,-oncentratlon < 0.0001 IjlnderType:ConcentrlltlOn < 0.0001 

High Amylose pH < 0.0001 pH:Binder Type 0.0032 
Binder Type < 0.0001 pH: Concentration < 0.0001 0.94 

,Starch Concentration c 0.0001 Bincjer Type:Concentration < 0.0001 

'ligh Methoxyl pH 0.01B3 [pH:Bincler Type < 0.D001 
Binder Type < 0.0001 pH: Concentration < 0.0001 0.99 

. Pectin I Concentrlltlon c 0.DUD1 IBinder Type: Concentration < 0.0001 

Hydrogen pH < 0.0001 pH:Blnder Type 0.0004 
Binder Type < 0.0001 pH: Concentration < 0.0001 0.98 

Peroxide Concentration c 0.0001 IBinder Type: Concentration c 0.0001 
, pH < 0.0001 [pH:Binder Type < 0.0001 
ilnulln Binder Type <0.0001 pH: Concentration < 0.0001 0.94 

I,-oncentrltion <0.WU1 [Elin~er Type:Concentration < 0.0001 

pH <0.0001 pH:Binder Type 0.0107 
Lactose Binder Type <0.0001 pH: Concentration 0.0551 0.B6 

I,-oncentratlon < D.Du01 Binder Type: Concentration < 0.0001 

pH cO.0001 [pH:Binder Type 0.0003 
Lecithin Binder Type c 0.0001 pH: Concentrliltion 0.0008 o.BB 

I \.oncentrlltlon c 0.0001 BinaerType:concentration < oD001 
[pH c 0.0001 pH:Binder Type 0.DBB1 

Methykenulose Binder Type < 0.0001 pH: Concentration < 0.0001 0.95 
[Concentration <0.0001 Binder Type:Concentrlltlon <0.0001 
pH ",0.0001 pH:Binder Type 0.1988 

'HaCI Binder Type co.0001 pH: Concentration < 0.0001 0.91 
I concentration ",0.0001 Binder Type:concentration ",0.0001 
[pH ",0.0001 pH: Binder Type 0.0694 

Rice Starch Binder T~e c 0.0001 [pH: Concentration < 0.0001 0.95 
IConcentration ",0.0001 :Blnder Type:Concentrlltion <0.0001 

Soya Protein [pH ",0.0001 I pH: Binder Type 0.0003 
Binder Type ",0.0001 pH: Concentration <0.0001 0.94 

Isoillte [Concentration ",0.0001 I Binaer Type: Concentration <D.WD1 

* p-v.'.J <O.O~OO '.fI'c." tll.t til • • ofl.' "'.J.n J'S.,tlc •• t 
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interaction. 

All three starches and the milk-based ingredients showed similar 

significant interactions (p <0.01) except the rice starch in which there 

was no interaction between the pH and the binder type. 

The concentration of dextrose, as a variable, did not have a 

significant effect on the fracture stress on its own, but demonstrated a 

significant effect in its interactions separately with both the pH and the 

binder type (p<0.01). With lactose, all the main effects were significant 

(p<0.001) and so were the interactions (p<0.05) except for the pH and 

concentration of lactose. 

For high methoxyl pectin, methylcellulose, lecithin, soya protein 

isolate, inulin, cysteine hydrochloride and hydrogen peroxide, all the 

main variables and the interactions between these were significant 

(p<0.05). The one exception was the pH and binder type in the 

methylcellulose based gel, which was not significant. 

4.1.9 Springiness (See Table 4.1.9) 

All the main variables and the interactions for both salt-dosed gel 

systems were significant (p<0.05) as were the main effects and 

interactions for all the starch products except the binder type and 

concentration of the high amylose starch gel. 

The main variables were significant for both milk-based ingredients 

as well as all the interactions between the variables in the casein. 

However, with GMP, only the pH/concentration interaction was 

significant (p<0.01 ). 

The sugars exhibited differences. Of the three variables, the 

dextrose concentration was not significant on its own, but was involved 

in an interaction with the binder type (p<O.01). The other two variables 

individually showed significant effects. As for the lactose-dosed gels, 

the binder type, although not significant by itself, was involved in a 

significant interaction with the concentration (p<0.001). 

Likewise, the binder type in the pectin-infused gel did not have a 

significant effect on gel springiness, but was closely and significantly 
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associated with the other two variables. The only significant interaction 

in the lecithin gel was between the binder type and lecithin 

concentration (p<O.001), even though the binder type, by itself, did not 

affect gel springiness. Similarly, although pH showed no effect in the 

methylcellulose-infused gel, it was involved in a significant interaction 

with the concentration (p<O.001). 

The soya isolate, inulin and the hydrogen peroxide infused gels had 

significant main variables as well as interactions. 

Of the three variables in conjunction with cysteine hydrochloride, the 

binder type did not show any effect but was involved in a major 

interaction with the concentration (p<O.01). 

- 117-



Chapter 4: The effect of various materials and pH on gel characteristics 

Table 4.1.9 

Analysis of Variance of Factors Affecting Springiness 
,~ < ,~". " ' ~~ .. ""-~ .. - " .~ ~ 

Compound Variable p-value" Interactions p-value' RZofmodel 

IpH 4( 0.0001 pH:Binder Type 0.0162 
CaCI2 Binder Type 0.0074 pH: Concentrlllion 4( 0.0001 O.BS 

Iconcentrlltion 4( 0.uuu1 Itllnder Type: Concentrlllion 0.0004 
pH 4( 0.0001 pH:Binder Type 4( 0.0001 

Casein Binder Type < 0.0001 pH: Concentrlltion < 0.0001 0.97 
Iwoncentrlltion <0.0001 IBWderType:Concentrlltion < 0.0001 

Cysteine 
pH < 0.0001 IpH:Binder Type 0.0743 
Binder Type 0.0910 pH: Concentrlllion < 0.0001 0.93 

Hydroclorlde Iwoncentrlltion < O.OOD' IBinderType:Conce~rllt~n D.UDUS 
pH < 0.0001 pH:Binder Type 0.1922 

Dextrose Binder Type 0.0003 IpH: Concentration 0.0519 0.91 
Ilwoncentrlltion D.,22J IBinderType:conce~ration D.WD2 
pH <0.0001 pH:Binder Type 0.D92S 

GMP Binder Type <0.0001 pH: Concentration 0.0002 0.92 
I~oncentrlltion 0.0205 IBinderType:conce~ration 0.5013 

'tugh Amylopectin IpH < 0.0001 pH:Blnder Type O.OOOS 
Binder Type <0.0001 pH: Concentration < 0.0001 0.96 

Starch I ... oncentrlltion < 0.0001 Binder Type: Concentrlltion <J!.[J_DD1 

High Amylo.e pH < 0.0001 pH:Binder Type 0.0104 
Binder Type < 0.0001 pH: Concentrlltion 0.0053 0.96 

Starch IConcentrlltlon < 0.0001 Binder Type:Concentrlltion 0.2404 

High Methoxyl IpH < 0.0001 pH:Binder Type 0: 0.0001 
Binder Type 0.3263 pH: Concentration < 0.0001 0.92 

Pectin I Concentration <0.000' Binder Type:concentr8Uon < 0.0001 

Hydrogen 
pH 4( 0.D001 pH:Blndllr Type 0.0392 
Binder Type < 0.0DD1 pH: Concentration < OD001 0.92 

Peroxide Concentration 4( 0.0001 Binder Type:Concentration 0.0004 
IpH < 0.0001 pH:Binder Type 0.0019 

Inulin Binder Type 0.0027 pH: Concentration 0.DDB6 0.90 
I Concentration D.UOO' Binder Type: concentration 0.0054 
pH < 0.0001 pH:Binder Type 0.4039 

lactose Binder Type 0.B14B pH: Concentration 0.0360 0.86 
Concentration 0.034::1 tlinder Type: Concentrlltion 0.0003 
IpH or: 0.0001 pH:Binder Type 0.B639 

lecithin Binder Type 0.2Boo pH: Concentrlllion 0.oBB9 0.91 
I concentration or: 0.UUU1 Binder Type: Concentration 4( 0.0001 
pH 4( 0.0001 pH:Binder Type 0.1204 

Methylcellulose Binder Type 0.0005 pH: Concentration < 0.0001 0.95 
I Concentration 4( 0.D001 Binder Type:Concentration U.UDDII 
pH 4( 0.0001 ,pH:Binder Type < 0.0001 

N.CI Binder Type O.OOOB ~pH: Concentration 0.0176 0.9S 
IConcentrlltion 4( O.OOD1 I Binder Type:Concentrlltion O.O'SII 
pH < 0.D001 IpH:Binder Type < 0.0001 

Rice Starch Binder Type < 0.0001 pH: Concentration 4( 0.0001 0.97 
... oncentrlltlon < 0.0001 I Binder Type: concentration 0.0114 

Soya Protein pH < 0.0001 pH: Binder Type 4( 0.OD01 
Binder Type 0.0215 pH: Concentrlltion 0.0124 0.96 

Isolate ,-oncentriltion < 0.0001 I Binder Type:ConcentrlltiOn < D.UUU1 

• P-VO'IIfU <O.O:sOO .d'cOft rior riR .0dRI ftr.s.", S'JR'tlc.Rr 
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4.2 The Effect Of Dextrose 

Figures 4.2: A-F demonstrate very clearly the interaction between 

the amount of dextrose, pH and the binder ratio on the response 

variables. 

Elastic Properties 

In the present study, dextrose levels up to 2% did not change the 

elastic properties of the gel samples as shown by hardness at pH 5.0 

(Fig . 4.2-A). However, there appeared to be a tendency towards 

overall reduction in gel hardness as the amount of dextrose is 

increased from 0% to 2% at pH 6.0. 
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Figure 4.2-A 

Effect of Dextrose on Gel Hardness 
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Figure 4.2-A also shows how alteration of the ratio of whey protein 

concentrate to albumen in the binder changes the elastic properties of 

the gel. At pH 5.0 and at virtually all levels, increasing the amount of 

albumen significantly amplified gel hardness (p<0.05). The same 

outcome was not observed at pH 6.0 where changes to the amount of 

albumen in the binder in the presence of dextrose appeared to have no 

effect on the hardness. 
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The normal consequence of adding sugars is to decrease the 

mechanical properties of a protein gel (Renard et al., 1999). In an 

experiment carried out by Yamul & Lupano (2003), in which honey was 

added to a whey protein gel, it was concluded that the honey increased 

the firmness of the gel especially at low pH values of 3.75 but had no 

effect on gels prepared at pH 4.2 and 7.0. A previous experiment 

carried out by Boye & Alii (2000) examined the effect of various sugars 

on thermal denaturation of whey protein concentrate, although no 

texture measurements were carried out. The conclusion was that 

dextrose conferred thermal stability on both the a-lactalbumin and the 

~-Iactoglobulin. The stability was confirmed by an increase in the 

denaturation temperatures by 1.5°e and 7.re respectively. 

Plastic properties 

At up to 2% concentration, dextrose had very little effect on the gel 

springiness at each individual pH value (Fig 4.2-B). pH however had a 

clear effect as the springiness is generally higher at pH 6.0. 

The a-value of the gel, as shown by the Fig 4.3-G was also altered 

significantly by the pH. As the a-value is a measure of the 

plastic/viscous properties (Messens et al., 2000), this observation 

Figure 4.2-8 

Effect of Dextrose on Gel Springiness 
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confirmed that the addition of dextrose had no effect on the viscous 

properties of the binder systems. Neither did the binder type. 

Figure 4.2-G 

The Effect of Dextrose on a value 

Alb whey Alb whey 
0.95 -

- 1.5/1 
0.95 

pH = 5 pH = 6 -1 .5/1 
4 2/1 4 2/1 
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0.85 - 0.85 

..... - .a. 
0.75 - 1"- .... T 0.75 -1'- . 

0.65 - 0.65 - .... - ...tIlL .A ....... 
.,,- v - .. 

0.55 - 0.55 -

I I I I I I I I I I 
0 0.5 1 1.5 2 0 0.5 1 1.5 2 

Dextrose (%) Dextrose (%) 

Micro-structure 

The addition of dextrose did not seem to have much effect on the 

microstructure of the gels. As shown by Fig. 4.2-C. there was virtually 

no change in the water uptake. Expressible water, on the other hand, 

was reduced as the amount of albumen in the gel was increased at pH 

5.0 (Fig 4.2-0). The difference in expressible water between the gels of 

the binder samples was small but significant (p<0.05). Dextrose itself 

did not seem to contribute much to expressible water: its major effect 

appeared to be in an interaction with the albumen in the binder. When 

the albumen content was low (binder 1.5/1) dextrose had no effect as 

shown by the relatively flat line. As the albumen content of the binder 

was increased (211 and 2.5/1), dextrose initially propelled an increase 

in the expressible water at a concentration up to 0.5%. Increasing the 
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quantity of dextrose in the gel system led to a small but steady decline 

at concentrations up to about 1.5 - 2.0%. 

At pH 6.0, there was very little change in the expressible water and 

the ostensible interaction that was described between dextrose 

concentration and pH value 5.0 was not seen at pH 6.0. 
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The expressible water, as a measure of the water holding capacity, 

increases if the spatial structure of the gels makes it easier for water to 

flow out of the gel. Large pores inhibit the ability of the gel to 

immobilize water by way of capillary forces (Verheul & Roefs, 1998; 

Ikeda & Foegeding, 1999). 

Fracture Properties 

Both strain at fracture and the stress at fracture are plotted against 

the concentration of dextrose in Figures 4.2-E & 4.2-F respectively. 

The fracture properties were not generally affected by the presence of 

dextrose and only the gel made from the 1.5/1 binder was affected by 

pH. The exception to this observation is seen as a 

small effect on the fracture stress when there was a higher ratio of 

albumen in the binder and the pH was at 6.0. When the fracture stress 

of binder 2.5/1 was compared at the two different pH values, at all 

concentrations of dextrose, there was a small but significantly higher 

value at pH 6.0 than at pH 5.0. The postulation is that, in the presence 

of dextrose, pH had a bigger effect on the albumen (or one of its 

components) than it did on the whey protein concentrate (or one of its 

components) . 
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Figure 4.2--F 

Effect of Dextrose on Fracture Stress 
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4.3 The Effect Of Lactose 

Elastic Properties 

At both pH values tested , lactose did not have a consistently lasting 

effect on the gel hardness at concentrations up to 2% (Fig 4.3-A). 

When the lactose concentration was in excess of 0.5%, there was a 

significant drop in the gel hardness at both pH 5.0 and 6.0 for the 2/1 

gel. As the concentration of lactose was increased above 1.0%, the gel 

hardness increased slightly at pH 5.0 and more significantly at pH 6.0. 

A similar effect was observed for the 1.5/1 and 2.5/1 gels at pH 5.0 with 

the difference being that the tipping point occurred at a concentration of 

1.5% rather than 1.0%. 

..-... 
0> ......... 

Cf) 
Cf) 
W 
Z 
0 
0:: 
~ 
I 

Figure 4.3-A 

The Effect of Lactose on Gel Hardness 
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It suffices to note that at 2.0% lactose concentration there was no 

difference between the hardness of gel samples made from any of the 

three binders at each pH value. The gel formed at pH 5.0 (lactose 

concentration 2.0%) was significantly harder than the equivalent 

sample at pH 6.0. In section 3.1 .1, it was evident that when pH was the 

only variable, the higher the pH value between 5-8, the harder the gels. 

Lactose must therefore have had an ameliorating effect on gel 

hardness by interfering with the formation of a harder gel at a higher 
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pH value. In fact at a concentration of 2%, the gels formed at pH 5.0 

were harder than the gels formed at pH 6.0. 

Plastic Properties 

The springiness for the gel samples is shown as a function of the 

lactose concentration in Figure 4.3-8. The springiness was higher at 

pH 6.0 than at pH 5.0 irrespective of the amount of added lactose. The 

a-value showed no change with the addition of the lactose as shown in 

Fig 4.3-G. The implication of this observation is that the viscous 

properties of the binder systems stayed the same in the presence of 

lactose. 

Figure 4.3-8 

The Effect of Lactose on Gel Springiness 
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Both the water uptake (Fig 4.3-C) and the expressible water (Fig 

4.3-0) were significantly lower at pH 6.0 than at pH 5.0. It also 

appeared that the higher the level of the whey protein concentrate in 

the binder (1.5/1) . the more the amount of expressible water. There is 

an aberration observed when this is compared with the result of the gel 

sample with the lactose at 0.5% an observation that is difficult to 

explain . 
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Figure 4.3-( 

The Effect of Lactose on Water Uptake 
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Figure 4.3-D 

The Effects of Lactose on Expressible Water 
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Fracture Properties 

Fracture strain (Fig 4.3-E) falls rapidly in the presence of as little as 

0.5% lactose. Reduced fracture strain is indicative of increased 

brittleness. One of the reasons for increased brittleness in gels has 

been shown to be due to a network composed of relatively thin strands 

and small homogenous pores (Weijers et al., 2006). At increased 

concentration of lactose no further change was observed in the present 

study. The pH (within the range studied) had no discernible effect on 

the fracture strain. 

Figure 4.3-E 

The Effects of Lactose on Fracture Strain 
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Although lactose, like other sugars, inhibits the thermal gelation of 

the whey proteins, it is not known whether it does the same thing with 

the albumen proteins. The accepted mechanism by which sugars 

inhibit the thermal gelation is pair-wise hydrophobic interactions 

involving both the solvent and the protein (Garrett et al. , 1988). Tang 

et al. (1994) proposed an alternative mechanism by which lactose 

inhibits whey protein gelation through the formation of Schiff base 

products between lactose and the amine groups of the whey protein. 

There could be another reason for the change in fracture strain in 

the presence of lactose. Hill et aI., (1992) reported that when xylose 
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was heated in the presence of Bovine Serum Albumen (BSA), there 

was, amongst other observations, the formation of additional covalent 

bonds as evinced by the insolubility of the so-called Maillard gels in a 

solution of SOS + J3-mercaptoethanol. A further experiment identified 

that aggregates formed in a mixture of xylose and BSA heated at 95°C 

for up to 80 minutes involved non-disulphide covalent linkages resulting 

from the Maillard reaction (Easa et a/., 1996). In this study, a plot of the 

diffusion coefficient against molar mass suggested that the Maillard 

gels aggregates grew in a linear, 'string of beads', fashion most likely 

resulting in a fine-stranded gel. Fine stranded Maillard gels are more 

likely to be brittle and exhibit low strain at fracture (Mitchell and Hill, 

1995; Weijers et a/., 2006). 

In yet another similar experiment, soy protein isolate was heated 

with xylose resulting in gel formation. The resulting Maillard gels 

showed less syneresis, had a higher breaking force and were more 

elastic, as determined by stress relaxation, then the control gels. The 

differences were attributed to formation of additional covalent 

crosslinks due to the Maillard reaction, also evidenced by greatly 

reduced solubility in SOS + J3-mercaptoethanol (Cabodevila et a/., 

1994). 

Like the fracture strain, the effect of the amount of albumen in the 

binder only became obvious at the intermediate levels of lactose (1.0-

1.5%): increasing amounts of albumen led to an increase in fracture 

stress (Fig.4.3-F). 
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Figure 4.3-F 
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Schmidt et al. (1978) reported that dialysis of whey protein 

concentrate in order to reduce the protein/lactose ratio from 2: 1 to 

100:1 produced a gel of considerably increased strength . 

Most sugars tend to increase the gelation time and reduce the rate 

of gelation. The effect is thought to be due to the ability of these sugars 

to increase the surface free energy between water and a hydrophobic 

surface (Kulmyrzaev et al., 2000) . Bryant & McClements (2000b) 

suggested that this phenomenon occurs because sucrose increased 

the viscosity of the continuous phase and therefore slowed the 

movement of the aggregates. However they also observed that at high 

levels of sucrose (>6%), the gel time decreased, likely due to the 

increased efficiency of the protein-protein collision enhancing protein 

molecule aggregation. 

Schmidt et al. (1979) also observed that gels formed from dialysed 

whey protein concentrate (i.e. with the removal of lowest molecular 

weight components such as lactose) were more translucent, stronger, 

gummier and chewier than gels formed from non-dialysed whey protein 

concentrate. 
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Haggett (1976) showed that there is an interaction between pH and 

salt content. In a series of experiments Haggett (1976) proved that 

whey protein prepared from acid whey by dia-filtration had good gelling 

properties at pH 6.0 but poorer gels were formed at pH 8.5. The 

conclusion was that the lactose and the salts somehow collaborate at 

the acid ic pH with the whey protein molecules to beneficially modify the 

gel properties. 

4.4 The Effect Of High Methoxyl Pectin 

Elastic Properties 

Figure 4.4-A 

The Effect of High Methoxyl Pectin on Gel Hardness 
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As shown in Figure 4.4-A, the rising concentration of pectin led to a 

steep drop in gel hardness for all binder samples. There was an initial 

range «0.5%) in which there was no response. At both pH values, the 

effect of the pectin, in affecting gel hardness appeared to have been 

completed by the time the concentration reached 1.0%. Outside this 

region , the gel hardness became relatively insensitive to increased 

concentration of pectin. 
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A test carried out by Beaulieu et al. (2001) showed that increasing 

the degree of methoxylation in low methoxyl pectin had the effect of 

increasing the protein aggregation of a whey protein gel. Due to the 

fact that increased aggregation produces a particulate gel, it is perhaps 

no surprise that in Figure 4.4-A, the escalating concentration of pectin 

led to an increasingly softer gel. 

Another possible explanation may be that because of the affinity of 

pectin for water, the solvent may be preferentially partitioned between 

the protein and the hydrocolloid during the gelation process. Many 

pectin products gel when cold, therefore a higher molar concentration 

of the water may be accounted for in the pectin phase. Beaulieu et al. 

(2001) also reported that mixed gels of whey protein concentrate and 

pectin retain more water and were less brittle than pure whey protein 

concentrate gels. 

In an unrelated but relevant experiment, pectin was added to a milk 

system and coagulation was induced by rennet addition (Fagan et al., 

2006). It was observed that at 0.2% addition, the coagulation-firming 

rate was significantly reduced, but at 0.4% pectin the firming rate was 

significantly higher than when there was no pectin. The conclusion 

from this study was that at high levels of pectin, the casein micelle was 

fully coated with the pectin molecules and the natural attraction 

between the casein particles was obstructed. Another result of the 

casein micelle coating was that due to the reduced interconnectivity, 

there was an open network and large voids in the microstructure. The 

researchers concluded that the initial decrease in the coagulation­

firming rate might have been due to the increased viscosity of the milk 

caused by the addition of pectin (Fagan et al., 2006). In the present 

study, a similar increase in viscosity was visually observed with the 

addition of pectin to the binder system prior to the heat-induced 

gelation. However, it is unknown whether a similar mechanism is taking 

place whereby the pectin molecules similarly coat the whey protein 

concentrate and/or albumen molecules. 
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Plastic Properties 

Gel springiness was steadily reduced by the addition of the pectin to 

the binder at pH 5.0 (Fig 4.4-8) . At pH 6.0, there was a lag in reaction 

of the springiness to an increase in the concentration of the pectin, 

particularly with the samples 2/1 and 2.5/1. The reduction in value did 

not commence until a concentration of 0.5% had been achieved and 

appeared to have been completed by the time the pectin concentration 

reached 1.0%. After this point, additional pectin had no further effect on 

the springiness. 
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Figure 4.4-8 

The Effect of High Methoxyl Pectin on Gel Springiness 
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The change in the a-value as shown in Fig. 4.4-G varied inversely 

with the reduction in springiness. The a-value showed a significant 

increase as the amount of pectin was raised. The increase in the a­

value showed that the gel had become more viscous and less elastic. 

A higher a-value is also indicative of weak molecular interactions 

(Messens et a/., 2000). 
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The Effect of High Methoxyl Pectin on a - Value 
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Water uptake (Fig . 4.4-C) and expressible water (Fig. 4.4-0) were 

affected mainly by the pH. At pH 6.0, the effect of pectin on these two 

response variables was small. At pH 5.0 however, there was a steady 

reduction in the value of both properties as the quantity of the pectin 

was increased up to 2.0%. It is noteworthy that the expressible water at 

pH 5.0 experienced a sharp drop as the pectin was initially added 

(0.5%) after which the slope of the curve became less steep 
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The hypothesis is that the pectin molecules were acting as inert 

fillers within the gel matrix because of the fact that the residual stress 

was increased with increasing pectin concentration. Pectin has a high 

affinity for water (Tolstoguzov, 1991) and if the pectin has absorbed all 

or even most of the water before and during the steaming process or if 

the pectin molecules/strands have taken up residence within the 

interstices of the gel, then there may be a reduced amount of or even 

no 'empty' pores for the water to go to during the water uptake 

experiment. On the other hand, the high attraction of pectin for water 

may mean that pectin has an increasing tendency to form the 

continuous phase as the concentration is increased (DeMars & Ziegler, 

2001). Under these circumstances, it may well be that a pectin­

continuous gel was formed when the pectin was in excess of 0.5% with 

the protein gel forming a 'discrete' phase. 

Figure 4.4-D 

The Effects of Hiqh Methoxvl Pectin on Expressible Water 
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Fracture Properties 

The fracture properties exhibit an unusual pattern. At pH 5.0, the 

fracture strain (Fig. 4.4-E) experienced a steady reduction as the 

amount of pectin was increased. A decreasing fracture strain with the 

increasing amount of a compound is a typical effect of adding filler 

particles to a gel network (Brownsey et a/., 1987). The reduction in 
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fracture strain showed that the gel was more brittle and this is to be 

expected , especially if there was no interaction between the added 

ingredient and the gel network (Tavares & Lopes da Silva, 2003). 

When there is no interaction between the filler material and the gel 

network, the fracture strain is much less dependent on the volume 

fraction or the size of the filler particles (Ikeda & Foegeding , 1999). In 

the present study, however, at pH 6.0, there is a nadir at about 1.0 % 

pectin after which a shift occurred and the fracture strain started to 

increase. The likely explanation is that as pectin was added to the 

binder, the pectin molecules acted as inactive filler particles, in which 

the pectin gel was interspersed within the whey protein 

concentrate/albumen gel leading to increased brittleness. At the tipping 

point of 1.0%, there was an inversion, whereby the whey 

protein/albumen gel became the inactive filler in a pectin gel (Ikeda & 

Foegedding , 1999) or part of an inter-penetrating or phase separated 

gel (Boye et a/. , 2000). As such, the overall brittleness was reduced . 

However, the question remains as to why, in the present study, at 

pH 5.0 did the fracture strain continue to drop. Did the acid 

encourage the pectin strands to continue to stick together? 

Figure 4.4-E 

The Effects of High Methoxyl Pectin on Fracture Strain 

80 pH = 5 80 pH = 6 Alb whey 
Alb whey . 1.5/1 

. 1.5/1 - 70 . 211 70 
:::R 0 

. 2511 -Z 60 60 

~ 
50 50 I-en 

W 
0::: 40 40 

:::::> 
I- 30 30 () 

~ 
20 20 lJ.. 

10 10 

0 0.5 HM P 1. o/c 1.5 ectm 0 
2 0 0.5 HM Pebtin % 1.5 2 

- 137 -



Chapter 4: The effect of various materials and pH on gel characteristics 

The pH did not have an effect on the fracture stress (Fig. 4.4-F). In 

addition , the amount of pectin did not have any further effect once the 

concentration was in excess of 1.0% as shown by the 'flat-lining' in 

Fig.4.4-F. The reduction in fracture stress with increasing pectin (0-1 %) 

suggests that the pectin is almost certainly acting as an inert filler. Inert 

fillers are known to cause a reduction in stress (Lucey et a/., 1999). 

Other likely scenarios were that either an inter-penetrating pectin gel 

was produced or there was complete phase separation in which there 

was a pectin gel dispersed into a whey protein/albumen continuous gel 

or vice versa. 

The reduction in fracture strain or increase in brittleness with 

increasing amount of pectin may also be due to the fact that the 

strands in the network have thicker strands and large homogenous 

pores (Weijers et al., 2006). 

Figure 4.4-F 

The Effect of High Methoxyl Pectin on Fracture Stress 
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4.5 The Effect Of Inulin 

Elastic Properties 

As shown in Figure 4.5-A, neither the addition of inulin to the gel 

matrix nor a change in the pH of the medium appeared to have a 
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coherent effect on the gel hardness. At pH 5.0, there was a small but 

significant increase in the gel hardness for all three gel samples but 

on ly as the inulin concentration was raised from 0 - 0.5%, especially 

the 2.5/1 binder. In spite of this, the effect all but slowly dissipated as 

the concentration of inulin was increased. 

In an experiment carried out by Kim et al. (2001) , it was shown that 

the effect of pH on the structure of a pure inulin gel (25% w/v) was not 

different between pH 4-10. In another experiment carried out by 

Fagan et al. (2006) , the addition of an increasing amount of inulin (0 -

3%) to a milk system coagulated with rennet produced no change in 

the gel microstructure. The observation was attributed to the fact that 

because inulin is relatively short-chained, it was unable to form highly 

tangled polymer gel systems at low concentrations. 

Figure 4.5-A 

The Effect of Inulin on Gel Hardness 
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Like the gel hardness, inulin did not show a consistent effect on the 

springiness although a gel made at pH 6.0 was significantly higher in 

springiness than one made at pH 5.0 (Fig . 4.5-8) . The 1.5/1 gel sample 

had the lowest value of springiness of all the binders at pH 5.0 but at 

pH 6.0 there was no difference between the binder samples. The 
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observation suggests that there was an interaction between the inul in 

at pH 5.0 and the amount of albumen in the binder. A pertinent 

question to ask and which is deserving of further investigations is 

whether inulin functionality affected by pH? 

Figure 4.5-8 

The Effect of Inulin on Gel Springiness 
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Figure 4.5-G showed a slight reduction in a-value in the inulin gels at 

an inulin concentration of 0.5% especially at pH 6. There was no 

further change with increased inulin at either pH. The fact that there 

was no further change in the gel a-value with extra inulin , suggested 

that the inulin was acting as a filler and that its action in filling the pores 

was complete at a concentration of 0.5%. The a-values were higher at 

pH 5.0, showing that at this pH, the gels had more viscous properties. 
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Figure 4.5-G 

The Effect Inulin on a-Value 
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Water uptake was not significantly affected by the addition of inulin 

but there was a noticeable effect when the pH was altered . The water 

uptake was significantly higher at pH 5.0 for all binder types (Fig. 4.5-

C) than it was at pH 6.0. 

Figure 4.5-C 

The Effect of Inulin on Water Uptake 
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Expressible water was also significantly higher at pH 5.0 with the 

binder samples (Fig . 4.5-0). At this pH value, inulin addition appeared 

to have the small but significant achievement of reducing the 

expressible water when the concentration of the inulin was 0.5%. 

Above 0.5%, there was no evidence of any further change. In addition 

to the pH effect, an increase in the amount of albumen in the binder 

reduced the expressible water. At pH 6.0 and above 0.5%, the inulin 

had no effect on the expressible water. 

Figure 4.5-D 

The Effect of Inulin on Expressible Water 
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Fracture Properties 

Figure 4.5-E shows that the fracture strain was mostly unresponsive 

to inulin as only very small changes occurred up to 2% concentration. 

Figure 4.5-E 

The Effect of Inulin on Fracture Strain 
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The fracture stress of the 2.5/1 binder sample at pH 5.0 (Fig. 4.5-F) 

showed a small response to the ever-increasing amounts of inulin up to 

a concentration of about 1.0%. In reality, it was not sign ificantly 

different, by and large, to the response shown by the other binder 

samples. However, the reaction of the 1.5/1 sample to inulin at both pH 

values, although small , is worthy of note. At 0-0.5% inulin there was no 

reaction . A peak appeared at both pH values after which addition of 

further inulin reduced the fracture stress. What can be theorized from 

binder 1.5/1 in Fig. 4.5-F was that at 0.5% inulin, the whey protein 

concentrate/albumen gel was not affected by the inulin. As the inulin 

was increased further, it likely acted on the protein gel in one of three 

ways (1) by binding the water, (thus concentrating the dry protein) or 

(2) by acting as filler or (3) by forming a gel in competition with the 

protein. Such a gel is likely to be a phase-separated gel due to the 

inability of inulin to form a true gel (Hennelly et al., 2006) . 
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In addition, a pure inulin gel is known to exhibit increasing fracture 

stress as the concentration is increased (Bot et aI. , 2003). Therefore, it 

is quite possible that the reason why there is reduced fracture stress 

with concentration of inulin in excess of 1.0% in the 1.5/1 gel is due to 

the increasing influence of an inulin-rich phase in the gel matrix. 

Figure 4.5-F 

The Effect of Inulin on Fracture Stress 
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4.6 The Effects Of Rice Starch 

Elastic Properties 
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In Figure 4.6-A, when the concentration of rice starch is plotted 

against the resulting gel hardness, there is evidence that rice starch 

increases the gel hardness. At pH 5.0, the increase in gel hardness 

was observable immediately as soon as the concentration was raised 

from 0% to 0.5%. All the binders showed increased gel hardness. At 

the intermediate concentration (0.5-1.5%), there was a lag before 

another step change at 2.0% rice starch. At pH 6.0, no change was 

noted until the concentration of rice starch had reached about 1.5% for 

all three binder systems. There is an interaction between the rice 

starch , the pH and the binder type. As the proportion of albumen in the 

gel was increased, the hardness increased at pH 5.0 as evinced by the 
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2.5/1 binder being the hardest. A shift then occurs when the pH was 

changed such that the 1.5/1gel is the hardest at pH 6.0. 
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The Effect of Rice Starch on Gel Hardness 
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The performance of the rice starch in this manner is probably a 

combination of two factors. It is known that as the pH of the medium is 

shifted away from the isoelectric point, a firmer gel will result from the 

proteins because of the more favourable conditions for the sulphydryl 

to disulphide reaction . However at pH 5 in the present study, the acidic 

conditions probably affected the rice starch as well as the whey protein. 

Wang et a/., (2000) showed a clear effect of pH on rice starch viscosity. 

The researchers demonstrated that a rice flour paste displayed a lower 

viscosity profile at pH 4.10 than at pH 6.20. It was attributed to the fact 

that at pH 4.10, the rice starch granules, in the presence of heat, 

became fragile and broke down very quickly after acidification . The 

starch paste also showed less tendency of retrogradation and was 

ascribed to the short chain starch molecules that were too active to 

form an ordered crystalline structure. The increase in gel hardness at 

the higher pH may also indicate that the starch was behaving as active 

filler (Sok Line et a/. , 2005) . 

In an experiment carried out by Lee & Rhee (2007), it was shown 

that increasing concentration of rice starch leads to an increase in gel 
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hardness up to about 3% when the heating temperature was 90°C. A 

lower pH favours the production of an opaque, particulate gel. The 

hypothesis presented in this study may have been corroborated by 

another study carried out with cassava starch. In a series of 

experiments carried out by Aguilera & Baffico (1997) with whey protein 

concentrate and cassava starch, compression testing confirmed that 

reinforcement of the gel occurred when the starch concentration was 

between 10-25%. Microscopy revealed that the starch granules swelled 

first and thus removed water from the system, thereby 'concentrating' 

the whey protein solution that gelled later into one with a higher 

modulus than predicted for the nominal concentration. The resulting gel 

was, in effect, a continuous whey protein gel filled with particulate 

swollen cassava starch granules. Was the rice starch behaving in a 

similar manner in the present study? 

Plastic Properties 

Increasing the concentration of the rice starch did not have much 

effect on the springiness of the gel at pH 5.0. At pH 6.0, there was a 

steady increase observed for the gel springiness until the concentration 

reached about 1.0%, after which there was no further change (Fig. 4.7-

B). The observation is loosely in agreement with the work of Lee & 

Rhee (2007), although pH was not used as a variable in their study. 

They noted an increase in springiness up to 3% rice starch 

concentration, above which there was no further increase in the 

springiness. 

Figure 4.7-G shows a steady reduction in the a-value as the rice 

starch is increased at pH 5.0. The reduction is tantamount to an 

increase in the intermolecular interactions, corresponding to the 

increase in the gel hardness observed in Fig 4.7-A. At pH 6.0, there 

was only a limited change in the a-value at fracture between rice starch 

concentration of 0 - 0.5%. 
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Figure 4.6-8 

The Effect of Rice Starch on Gel Springiness 
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Figure 4.6-G 

The Effect Rice Starch on a - Value 
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Micro-structure 

Both the water uptake and the expressible water were progressively 

reduced as the amount of rice starch was increased (Figs. 4.6-C & 4.6-
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D). The rate of reduction was slightly more pronounced at pH 5.0 than 

6.0 for both response variables as shown by the steeper slope at pH 

5.0. Expressible water was affected at all rice starch levels at pH 5.0. 

Add ing extra starch at pH 6.0 above a concentration of 0.5% starch , 

did not lead to the exudation of any more water: all the available 

expressible water must have been taken out at the lower concentration . 

The likely explanation is that the rice starch granules affect the 

microstructure by changing the size of the pores and their capillary 

action. Lee & Rhee (2007) showed in their experiments that 1 % 

concentration of rice starch caused whey protein concentrate gel to 

have a loose, filamentous structure compared to those prepared at 3% 

and 5%, in which a coarse honeycomb like structure was formed. 

Normally, a gel structure with large pores will bind or hold water to a 

lesser degree than one with smaller pores and therefore such water 

can be expelled more easily under pressure (Hermansson, 1986). 
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Figure 4.6-D 

The Effect of Rice Starch on Expressible Water 
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The observation in Figs. 4.6-C and 4.6-0 suggests that the pores in 

the gels of lower concentration of rice starch are constructed in such a 

way that more water is admitted into the interstices. As the 

concentration is increased, there is tendency towards a tighter, more 

cohesive structure allowing for less water ingress and less water 

exudation when the gel network is disrupted with the applied pressure. 

Do the rice starch molecules modify the gel in some way as to 

create smaller pores or do they act by a different mechanism 

perhaps as an active filler and bind more of the available water 

themselves? The experiment by Aguilera & Baffico (1997) using rice 

starch provides some insight. They proved that in heat-induced gel of 

whey protein and cassava starch , the starch granules swelled rapidly 

and remained distinctive as swollen granules in the mixed matrix. The 

conclusion was that the starch granules actively participate in the gel 

structure by removing water. They further proposed a new term of 

'active phase-separated gel ' to distinguish this phenomenon from the 

nearly phase separated gels that are formed due to thermodynamic 

inactivity. 
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Fracture Properties 

The fracture properties of the gel did not appear to be tremendously 

affected by the concentration of the rice starch. There was a very small 

increase in the magnitude of the fracture stress, confirming that rice 

starch can increase the strength of the gel, at both pH levels. 

Nonetheless, there was a bigger influence from the binder type as was 

evident from Figure 4.6-F with binder 2.5/1. At pH 5.0 and with the rice 

starch up to 0.5%, the 2.5/1 gel sample had a reduced value of fracture 

stress. The fracture stress and fracture strain were slightly higher when 

the pH was 6.0 (Figs. 4.6-E & 4.6-F). At this pH, the fracture stress for 

all three binder samples became resistant to the rice starch once the 

concentration was in excess of 1.0%. 
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Figure 4.6-F 

The Effect of Rice Starch on Fracture Stress 
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4.7 The Effect Of High Amylose Starch (Hylon VII) 

Elastic Properties 

There was a large and significant increase in the gel hardness with 

as little as 0.5% of Hylon VII. It was particularly noticeable at pH 5.0 

where there was almost a 50% increase in the hardness of the gels 

made from the 2.5/1 and 2/1 binder (Fig. 4.7-A). There was no further 

change in these two samples as the concentration was increased . 

Figure 4.7-A 

The Effect of High Amylose Starch on Gel Hardness 
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At pH 6.0, the change in gel hardness for all gel samples was rather 

more sedate but was still significantly higher for the 2.5/1 and 2/1 

binder at low concentrations of the high amylose starch (0.5-1.0%). 

With the exception of the 1.5/1 binder, the amylose starch conferred 

increased hardness to the gel samples at pH 5.0 than at pH 6.0. 

The observation from the present study is in agreement with the 

work of Shao et al. (2006) and Sandhu & Singh (2007) who concluded 

that starches with high amylose content tend to spawn harder gels 

especially when they have a high degree of polymerisation, longer 

chain length and smaller number of chains per molecule. 

Plastic Properties 

The high amylose starch hardly had any effect on the gel 

springiness. However when gel samples made at pH 6.0 were 

compared to those made at pH 5.0, the former showed higher 

springiness values (Fig. 4.7-8). At pH 5.0, the gel springiness varied 

directly with the amount of albumen in the binder because the 

springiness of the gel rose as the proportion of albumen was 

increased. The effect of added albumen in gel springiness was not so 

obvious at pH 6.0 as it was at pH 5.0. 

Like rice starch, the high amylose starch reduced the viscous 

properties of the gel and was evident by the reduction in the a-value of 

the gel as shown in Fig. 4.7-G. It tallied with the increase in gel 

hardness. At pH 5.0, there was a separation between the plot for the 

1.5/1 gel and the other two. The higher a-value for this sample, 

suggested that the whey protein concentrate did not engender inter­

molecular connections as effectively as the albumen. 
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Figure 4.7-8 

The Effect of High Amylose Starch on Gel Springiness 

CJ) 
CJ) 
W 
Z 
(9 
Z 
c::: 
0-
CJ) 

Q) 
::J 
ro 
> 

95 pH = 5 .95 pH =6 

85 Alb whey 
.85 

. 1.5/1 

. 2/1 .75 

. 251 

.65 

.35 

.25 

15 

Figure 4.7-G 

The Effect High Amylose Starch on a - Value 

0.95 
Alb whey 

0.95 
pH =5 pH = 6 

. 1.5/1 

. 2/1 

. 2511 
0.85 0.85 

0.75 ~ • 0.75 -- ~ 

...... ~I -
--- we 

0.65 0.65 - ~ --.. --
0.55 - 0.55 -

I I I I I I I I 
0 0.5 1 1.5 2 0 0.5 1 

Hylon (%) Hylon (%) 

- 153 -

Alb whey 
. 1.5/1 

• 
. 2 .1 

Alb whey 

. 1.5/1 

. 2.1 

. 251 

... 

I 
1.5 

-:-
~ 

I 
2 



Chapter 4: The effect of various materials and pH on gel characteristics 

Microstructure 

Water uptake was only slightly affected by the addition of the high 

amylose starch (Fig. 4.7-C). The effect was evinced by a slight drop in 

the water uptake with a 0.5% introduction of the starch at either pH. 

There did not seem to be any further change when the concentration of 

the starch is in excess of 0.5%. It is worth noting that at pH 5.0, the 

binder 1.5/1 , with the lowest amount of albumen, had a 

correspondingly higher water uptake than the other two binders at each 

level of high amylose starch. 

F;gure 4.7-C 

The Effect of H;gh Amylose Starch on Water Uptake 
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The addition of the high amylose starch had a profound effect on the 

expressible water. Figure 4.7 -D suggests that there was an interaction 

between the variables of pH and binder type. At up to 0.5% 

concentration of the starch, a shift in the amount of expressible water 

occurred , depending on whether the pH was 5.0 or 6.0. At the lower 

pH , the addition of 0.5% starch led to a reduction in the amount of 

expressible water with no further change observed when the starch 

concentration was increased. However at pH 6.0, there was a small but 

significant increase in the expressible water followed by a gentle 

decline, as the concentration was increased further. 
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Figure 4. 7-D 

The Effect of High Amylose Starch on Expressible Water 
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Fracture Properties 

The magnitude of the range of the fracture strain (Fig. 4.7-E) was 

not radically affected by the presence of the high amylose starch. A 

slight increase for all three binder types at pH 6.0 was the only 

significant change as the concentration was raised to 0.5%. 

Figure 4.7-E 

The Effect of High Amylose Starch on Fracture Strain 
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There was a slight increase in the fracture stress with the addition of 

0.5% of the starch at pH 6.0 (Fig. 4.7-F). No further change was 

observed with increased concentration . The 2/1 gel sample behaved in 

a peculiar manner. After a small, steady rise in fracture stress at up to 

1.0% concentration, there was a sharp drop in fracture stress between 

1.0-1.5% high amylose starch concentration. It is noteworthy that this 

phenomenon occurred in almost exactly the same manner at both pH 

5.0 and 6.0. There was an optimum level at which high amylose starch 

interacts with the binder to affect the gel strength most beneficially. It 

would be beneficial validate the optimum at pH 6.0. 

Figure 4. 7-F 

The Effect of High Amylose Starch on Fracture Stress 
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4.8 The Effect Of High Amylopectin Starch 

(Novation ™ 2700) 

Elastic Properties 

The addition of high amylopectin starch to the gel system gently 

increased the hardness of all the gel samples (Fig . 4.8-A) . The change 

in gel strength was particularly evident at pH 5.0. 
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Another observation from the graph was that there appeared to be a 

slight interaction between the pH and the binder type. At pH 5.0, the 

2.5/1 gel was consistently the strongest of the three gel types across all 

concentration values of the high amylopectin starch. At pH 6.0, there 

was an inversion of the linear plots with the 2/1 gel sample, in the main, 

becoming the stronger gel. The interaction appeared to be strongest at 

a concentration of 1.0 - 1.5% amylopectin. 

Interestingly at a concentration of 1.5% of the high amylopectin 

starch, the hardness of the 2/1 binder sample dropped at both pH 5.0 

and 6.0. 
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Plastic Properties 

The springiness of the gel with added high amylopectin starch 

increased steadily with increasing concentration of the starch at pH 6.0 

but binder type seemed to have little effect (Fig. 4.8-8). At pH 5.0, 

there was an initial lag in reaction at up to 0.5% concentration . This 

was followed by a step change between 0.5 and 1.0%. Above 1.5% 

there was either no further change or a slight drop. The magnitude of 

the change was more pronounced at pH 6.0 but there were no major 

differences in the binder type. 
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The Effect of High Amylopectin Starch on Gel Springiness 
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The a-value of the gels was reduced as the high amylopectin starch 

content was raised (Fig. 4.8-G). The implication of a reduction in a­

value is the improved inter-molecular connections manifested in 

increased elastic properties and reduced viscous properties as shown 

by the gel hardness. 
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Figure 4.8-G 

The Effect High Amylopectin Starch on a- Value 
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Micro-structure 

At pH 5.0, the water uptake (Fig. 4.8-C) was steadily reduced with 

the addition of the high amylopectin starch. There was very little 

change at the higher pH value. A similar trend was observed with the 

expressible water (Fig. 4.8-0), although, the slope of the curve was 

much steeper with the expressible water especially at pH 5.0. 
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Figure 4.8-D 

The Effect of High Amylopectin on Expressible Moisture 
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As there were only small differences in the magnitude of the water 

uptake and the expressible water with changes in the binder type at 

each level of the high amylopectin starch, it can be concluded that the 

binder type, in the presence of high amylopectin starch and within the 
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range of the experimental data, did not significantly affect the 

microstructure. 

Fracture Properties 

The high amylopectin starch had very little effect on the fracture 

strain at either pH 5.0 or 6.0 (Fig 4.8-E). The exception was a small 

increase of about 5% in the fracture strain at pH 6.0 in the 2/1 gel as 

the concentration of the high amylopectin starch was increased to 

0.5%. 
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At pH 6.0, the fracture stress increased with higher concentrations of 

the high amylopectin starch for all the binder types. At pH 5.0, the 

effect of the starch on the fracture stress was much smaller (Fig. 4.8-

F). Nevertheless, in the presence of the starch, increasing the amount 

of albumen in the binder also enabled an increase in the fracture stress 

especially with binder 2.5/1 which had the highest amount of albumen. 

Unlike the high amylose starch in which a peak in fracture stress 

occurred at about 0.43 Nmm-2, high amylopectin starch concentrations 

varied directly with the gel strength, as shown by the constantly 

increasing fracture stress. 
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Olsson et al. (2000) performed a series of experiments with P­
lactoglobulin and they incorporated potato amylopectin at various 

levels. They found out that at lower concentration «0.5%) the fracture 

stress was constant. At concentrations in excess of 0.5%, the stress 

fractu re decreased drastically for high viscosity amylopectin but 

increased with low viscosity amylopectin . Olsson et al. hypothesized 

that this change was either due to a change in the aggregation 

mechanism or phase separation. Light microscopy confirmed that 

amylopectin caused the protein aggregates to become larger and 

thicker and that the resulting gel had larger pores. 
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Figure 4.8-F 
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In another study, Olson et al. (2003) carried out a test of P­
lactoglobulin gel (6%) with varying concentrations of amylopectin with 

molecular weight ranging from 24000 - 44000 kDA. The conclusion 

was that the differing molecular weights of the amylopectin altered the 

mobility of the p-Iactoglobulin clusters leading to a variation in pore size 

and the resultant molecular structure of the gel. The gel containing 

0.75% of 24000 kDA amylopectin had an inhomogeneous 

microstructure with a mixture of both small and large pores whilst the 

gel containing 2% of the 44000 kDA amylopectin consisted of mostly 
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larger pores. When a fracture test was carried out as part of the 

experimentation, the gel containing 2.0% of 24000 kDA amylopectin 

had double the stress at fracture as compared to the gel containing 

0.75% 44000 kDA amylopectin. 

4.9 The Effect Of Soya Isolate 

Elastic Properties 

The effect of soya isolate on the gel hardness (Fig. 4.9-A) was at 

best mixed. The pattern was consistent at the different pH values but 

not with the different binders. The 2/1 binder showed maximum 

hardness at a concentration of 1.0-1 .5% for both pH values. On either 

side of this maximum, there was a drop in gel hardness. On the other 

hand, the 2.5/1 gel exhibited minimum hardness at 1.0-1 .5% at both 

pH 5.0 and 6.0. Similarly the 1.5/1 gel had its maximum gel strength at 

1.5-2%. Is there an unknown factor e.g. hydration that caused 

this inconsistency? 
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Plastic Properties 

Like gel hardness, the changes in springiness were small but 

seemingly inconsistent (Fig . 4.9-8). The change in the springiness was 

more dependent on the pH than the addition of the soya isolate or the 

binder composition , although at pH 5.0, the 2.5/1 binder gel was the 

springiest. The springiness peaked at 1.0-1.5% soya isolate 

concentration. 

Figure 4.9-8 
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Figure 4.9-G 
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There is hardly any change in the a-value in the presence of soya 

isolate. There was a bigger effect of the pH on the a-value over an 

above the effect of the concentration of the soya protein isolate. 

Microstructure 

Just like some of the other attributes, water uptake (Fig. 4.9-C) was 

not affected by the amount of soya isolate in the gel. The pH had a 

bigger effect. 

The biggest observable change was in the reduction of expressible 

water (Fig. 4.9-0) as the concentration of the soya isolate was 

increased. At pH 5.0 and 0.5% soya isolate concentration, there was a 

sharp drop in the expressible water. No further change took place in 

the binder samples as the concentration was increased although the 

expressible water in the 2.5/1 sample attained its lowest value at 2% 

soya isolate after a sustained decrease. There was very little change at 

pH 6.0 and the amount of expressed water at all concentrations was of 

the order of 1 %. It was observed that the pattern of change in the 2/1 

binder sample was similar at both pH 5.0 and 6.0 where this binder 

exhibited the lowest expressible water value at a soya isolate 

concentration of 1.0 - 1.5%. Increasing the isolate to 2% then led to an 

increase in the expressible water, again at both pH values. Is this 

evidence of a change from a whey/albumen continuous gel to a 

soya protein continuous 'gel'? 

Comfort & Howell (2002) reported that a pure soya isolate gel is 

better described as a colloidal aggregate rather than a true gel due to 

the loss modulus and storage modulus being frequency dependent and 

also due to the fact that on the removal of stress in a creep analysis 

test, there was irreversible creep compliance of as much as 89%. 

Comfort & Howell concluded that there was phase separation between 

the whey-protein continuous and the soya-protein continuous gel with 

the incompatibility attributed to the massive difference in molecular 

weights. 
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Figure 4.9-( 

The Effect of Soya Protein Isolate on Water Uptake 
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Fracture Properties 

Of the two fracture properties measured, the fracture stress was 

more extensively affected by the change in concentration of soya 

isolate. The isolate did not seem to have much effect on the fracture 

strain (Fig. 4.9-E). 
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Figure 4.9-E 
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At pH 6.0, there was a steady increase in the fracture stress for all 

three types of binder (Fig. 4.9-F). An interesting observation was the 

sudden increase in fracture stress of the 1.5/1 sample at both pH 

values when the soya isolate was dosed at 2.0%. Is there an 

interaction with the other protein molecules that led to soya 

protein molecules filling the interstices as an active/inactive filler? 

The gel had obviously not become more brittle because there is little 

effect on the fracture strain. 

The fracture stress was not affected much by the soya isolate at pH 

5.0. However all three binders had the same nominal fracture stress at 

2.0% concentration of the soya isolate. 
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Figure 4.9-F 

The Effect of Soya Protein Isolate on Fracture Stress 

It was not clear at this stage whether or not there was phase 

separation between the binder and added soya isolate in the present 

study. The biggest observable change was in the reduction of 

expressible water. This is possibly due to a colloidal aggregate having 

been formed rather than a true gel leading to large pores and low 

interstitial capillary pressure (Comfort & Howell , 2002). It may also be 

the reason for the increase in fracture stress with increasing soya 

isolate concentration. Increasing fracture stress is generally indicative 

of a gel that does not fracture easily and may be due to the fact that the 

aggregates or network are more flexible and can move easily in the 

viscous phase (Olsson et al., 2000) as opposed to the elastic phase. 
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4.10 The Effect Of Calcium Chloride (CaC/~ 

Elastic Properties 

Figure 4.10-A shows what the effect of CaCb was on the gel 

hardness. At pH 5.0, there was an initial increase in gel hardness up to 

a concentration of 0.5%, followed by a steady decline. The point at 

which the alteration occurred and the decline commenced was 1.0% 

CaCI2 for the 1.5/1 and 2/1 binder but it started much earlier (0.5%) for 

the 2.5/1 sample, i.e. the one with the highest amount of albumen. A 

similar effect was seen at pH 6.0, but the decline for all three binder 

samples started after 0.5% concentration of CaCI2 was achieved. 
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There is considerable confusion with regards to the role of calcium 

and its effect in a whey protein gel. Lupano et 81. (1992) showed in a 

study with whey protein isolate that at low levels «0.02M) calcium 

enhances protein-protein interactions and contributes positively to the 

gel network but that when the calcium is above this level, it causes 

excessive protein aggregation with detrimental effects on gel hardness. 

However, Beaulieu et 81. (2001) reported that whey protein gels made 

with 0.01 -0.02M calcium have particulate microstructures and low 

water holding capacity. Hongsprabhas et 81. (1999) suggested that in 
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calcium-induced whey protein gelation, 0.03 - 0.04M CaCh was the 

turning point at which the gel structure changed . Below this 

concentration, the charge screening mechanism dominated but above 

the 0.04M, the cross-linking mechanism gained ascendancy. The 

mechanism described by Hongsprabhas et al. (1999) may well be 

partly or totally responsible for the dip observed in gel hardness in the 

present study at 0.5 - 1.0% CaCI2 concentration. 

Plastic Properties 

There was a small increase in the gel springiness at low levels of 

CaCI2 observed at pH 5.0 but the effect appears to have been 

completed by the time the concentration reaches 1.0% (0.09M). At pH 

6.0, there was no major change with increasing concentration of CaCI2 

(Fig.4.10-B) the only exception being the 1.5/1 sample, which showed 

a sharp increase and reached a plateau at the 0.5% level. 

Figure 4.10-8 

The Effect of Calcium Chloride on the Gel Springiness 
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The sharp increase in a-value at pH 6.0 with the introduction of 0.5% 

CaCI2 (Fig. 4.10-G), is symptomatic of an increase in the viscous 

properties of the gel. Beyond this point, there was no further increase 

and the a-value stayed constant. At pH 5.0, the opposite takes place 

and added CaCI2 reduced the viscous properties of the gel. 
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Figure 4.10-C shows that the presence of CaCI2 led to a steady 

reduction in the water uptake in all three binder samples at pH 5.0. No 

further changes took place once the amount of CaCI2 had reached 

1.0% (0.09M). The amount of albumen in the binder did not influence 

the water uptake in a linear manner and the 2/1 binder consistently 

showed the lowest amount of water uptake. There was no real change 

in the water uptake with CaCI2 at pH 6.0. 
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Unlike the water uptake, there was considerable change to the 

expressible water when CaCI2 was introduced to the gel system. 

Evidence of interaction exists between pH and the binder type as 

evinced by the crossover of the lines in the Figure. 4.10-0. Expressible 

water was highest at pH 5.0 with no added CaCb and lowest at pH 6.0, 

again with no added CaCI2. When the concentration of the CaCI2 was 

increased at pH 5.0, the effect was to gradually reduce the amount of 

expressible water with a trough occurring at about 1.0-1 .5% 

concentration of CaCI2. On the other hand when the amount of CaCI2 

was increased at pH 6.0, there was a dramatic increase in the 

expressible water at 0.5%, with additional CaCI2 not bringing about any 

further increase. Unlike the situation at the lower pH value, the 2/1 gel 

had the higher amount of expressible water at virtually all the levels of 

CaCh tested at pH 6.0. 
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Figure 4. 10-D 

The Effect of Calcium Chloride on Expressible Water 
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Fracture Properties 

Although the increase in the fracture strain with added CaCb was 

very small , there was a significant difference in fracture strain with the 

various binders observable at both pH values (Fig. 4.1 O-E). 

Figure 4. 10-E 
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As the amount of albumen in the binder was increased, so did the 

fracture strain, implying that albumen in conjunction with the CaCb 

reduces the brittleness (or increases the toughness) of the gel. Of all 

the micro- and macro-molecules added to the binder system and 

assessed , CaCb was the only one that increased the fracture strain. 

There was also a clear increase in the stress at fracture with 

increasing levels of CaCI2, which means that the gels became stronger. 

The interaction between the binder type and the amount of CaCb was 

evident in the clearly separated lines in Figure 4.10-F. The magnitude 

of the difference between the binders 1.5/1 and 2.0/1 was quite small , 

but the 2.5/1 binder had a proportionally higher stress fracture. 

Figure 4.10-F 

The Effect of Calcium Chloride on Fracture Stress 

600 pH = 5 Alb whey pH =6 Alb whey 
. 1.5/1 .1 .5/1 
.. 2/1 .. 2/1 
. 25/1 . 25,1 - 500 N 

E -z 
.:x:. 400 

~ 
...... 
(J) 

~?rI>-(J) 
w 300 00 

0:: • 
~ 
(J) 200 

W 
0:: 
:::> 100 100 

~ 
U 

~ 0 0 

u.. 
0 0.5 

Cael: % 
1.5 2 0 0.5 

cael: % 
1.5 2 

At low levels of «0.005M - 0.01 M) the calcium from the CaCb can 

participate in calcium bridging and/or other electrostatic interactions 

between the negatively charged groups and can strengthen the gel 

matrix (Mulvihill & Kinsella, 1988; Barbut 1995). However in another 

study with CaCI2 at O.0075M (Kuhn & Foegeding, 1991), it was 

theorized that CaCI2 appears to induce an aggregated gel structure 

due to the fact the resulting whey protein gel was opaque and curd-like . 

It was also reported in the same study that increasing the amount of 
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CaCI2 Up to 0.2-1.0M then caused a sharp increase in the shear stress 

(Kuhn & Foegeding, 1991). 

In the experiment by Barbut (1995) with calcium at 0.025 M, the 

water holding capacity of the resultant whey gel was poor. 

Kuhn & Foegeding (1991) were able to show that CaCI2 effected a 

rapid increase in both stress and strain at failure up to about 0.0075M 

after which there was no further change in the stress or strain. 

Schmidt at al. (1979) reported that in a 10% (w/v) solution of whey 

protein concentrate that had been dialysed to remove the lactose and 

salts, the gel strength increased to a maximum with the addition of 

0.011 M CaCI2. With further addition of CaCI2, the gel strength 

decreased, possibly due to excessive cross-linking and rapid 

aggregation, which limits further protein unfolding and network 

formation (Mangino, 1992). 

Treatment of whey protein concentrate with polyphosphate also 

improved gel strength (Nakai & Li-Chen, 1985) ostensibly because the 

polyphosphate chelated the excess calcium. 

Johns & Ennis (1981) replaced calcium in a whey protein solution 

with sodium. The process was carried out by ultra-filtration. They 

observed that as the calcium was replaced, the resulting heat-induced 

gels became more translucent, more elastic, more cohesive, gummier, 

harder and springier. 

A strong negative relationship between gel strength and calcium 

content was found in gels made from whey protein concentrate 

prepared by ultra-filtration. It was concluded that the calcium content of 

commercially available whey protein concentrates (0.25-1.06%) was 

already in the range that inhibited gel formation (Kohnhurst & Mangino 

1985; Morr, 1992). 
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4. 11 The Effect Of Cysteine Hydrochloride 

Elastic Properties 

Addition of cysteine hydrochloride to the gel systems had a bigger 

effect on gel hardness at pH 6.0 than it did at pH 5.0 as shown by the 

higher values of hardness with each corresponding binder type (Fig. 

4.11-A) . At the higher pH value, there was a progressive reduction 

across all samples. However at pH 5.0, only the 1.5/1 gel showed a 

statistically significant reduction in gel hardness. The fact that this 

sample had the highest proportion of whey protein concentrate 

suggests that the cysteine hydrochloride had a bigger effect on the 

whey protein than it did on the albumen. 

Figure 4. 11-A 

The Effect of Cysteine Hydrochloride on Gel Hardness 
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Plastic Properties 

Springiness at pH 5.0 was not affected by cysteine hydrochloride 

until the concentration reached about 1.5% (Fig. 4.11-8) whereas at 

the higher pH of 6.0, the lag in the response only holds until the 

concentration reached 0.5%. Further additions reduced the gel 

springiness to similar levels to what was observed at pH 5.0. 

The a-value increased slightly at pH 5.0 when the concentration of 

the cysteine hydrochloride is raised from 0 - 1.5% (Fig. 4.11 -G). A 
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much larger rate of increase was observed at pH 6.0 when the 

concentration of the cysteine hydrochloride was raised from 0.5 - 1.0% 

after which there was no further change. The overall conclusion is that 

cysteine hydrochloride can be used to reduce the gel hardness without 

significantly changing the elastic properties. 
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Micro-structure 

Figure 4.11 -C shows that the change in water uptake with the 

addition of cysteine hydrochloride was not very large. All the activity 

and differences seem to be concentrated around the 0.5% 

concentration level after which there was no further effect. This is 

especially true for the 1.5/1 gel at pH 5.0 where there was a small 

increase. The opposite occurred in binders 2.5/1 and 2/1 at pH 6.0 

where a small reduction was observed. 

Figure 4.11-C 

The Effect of Cysteine Hydrochloride on Water Uptake 
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However, the expressible water (Fig. 4.11-D) was much higher at 

pH 5.0 for all the gel samples and like springiness was only really 

affected by the cysteine hydrochloride when the concentration was in 

excess of 1.5%. At pH 6.0, the expressible water increased at 0.5% 

concentration after which there was no further change. 
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Figure 4. 11-D 

The Effect of Cysteine Hydrochloride on the Expressible Water 
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Fracture Properties 

Both the fracture stress and the fracture strain were affected by the 

addition of cysteine hydrochloride. At either pH, increased levels of the 

cysteine hydrochloride lead to a slight overall reduction in the fracture 

strain (Fig. 4.11-E). There were changes due to the pH, mainly a 

reduction in the magnitude of the fracture strain at pH 5.0 as compared 

to pH 6.0. 

The same is true of the fracture stress (Fig . 4.12-F), which was 

reduced as the concentration of the cysteine hydrochloride was 

increased. There was interaction between the concentration of cysteine 

hydrochloride and pH as shown by the overlapping lines in the graph. 

The overall effect of the addition of cysteine hydrochloride was not just 

that it softened the gels such that they were less able to resist 

fracturi ng under pressure, but that they also become more brittle. 
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Figure 4. 11-E 

The Effect of Cysteine Hydrochloride on Fracture Strain 
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Schmidt et al. (1979) observed that the addition of cysteine to whey 

protein concentrate gel at levels up to 0.0097M increased the gel 

strength but at higher levels, there was a dramatic reduction in gel 
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strength. In addition , there was an increase in syneresis as measured 

by the compressible water. 

4. 12 The Effect Of Casein 

Elastic Properties 

Figure 4.1 2-A shows the small but positive significant effect of 

casein on the gel hardness. The consequence of adding the casein 

was generally similar at both pH 5.0 and 6.0. From 0.5% concentration 

the casein progressively and correspondingly increased the gel 

hardness especially at pH 6.0. However the casein exhibited maximum 

effect at a concentration of 1.0 - 1.5%. 
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Figure 4. 12-A 

The Effect of Casein On Gel Hardness 
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At pH 6.0 there was hardly any effect on the gel springiness 

although the 1.5/1 binder showed a small decrease at 0.5% 

concentration (Fig. 4.12-B). But at the lower pH value of 5.0, there was 

a small reduction in the gel springiness when the concentration of 

casein was increased up to about 1.5%. 

The a-value was higher at pH 5.0 than at pH 6.0 and the effect due 

to pH was greater than that of the concentration of casein (Fig 4.12-G). 
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Figure 4. 12-8 

The Effect of Casein on Gel Springiness 
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Micro-structure 

Casein had no effect on the water uptake at pH 6.0. At the lower pH 

value, there was a slight drop in the water uptake when casein was 

added at 0. 5% (Fig. 4.12-C). 

Figure 4. 12-C 

The Effect of Casein on Water Uptake 
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For expressible water (Fig . 4.12-0) the picture was slightly different. 

There was a consistent reduction in the amount of water expressed as 

the amount of casein was increased up to a maximum of 1.0% after 

which there was no further change. Furthermore, the 1.5/1 gel sample 

consistently showed higher expressible water compared to the other 

two binder systems at all concentrations of casein at pH 5.0. 
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F;gure 4. 12-D 

The Effect of Casein on Exoressible Water 
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Fracture Properties 

The fracture properties resulting from casein introduction into the 

binder systems are represented in Figures 4.12-E and 4.12-F. Fracture 

stra in was affected by the presence of casein and a change in the 

binder composition at pH 6.0 up to 2.0% addition . However at pH 5.0, 

there was a bigger linear reduction in the fracture strain of the gel. 

Increasing the amount of albumen in the binder also leads to a 

corresponding increase in the fracture strain. 

The fracture stress was affected differently. At pH 5.0, the stress 

was reduced with increasing levels of casein , whereas at pH 6.0, the 

opposite occurs: after an initial lag, the stress at fracture increased 

when the concentration of casein was in excess of 1.0%. The effect of 

casein at the different pH values is quite an interesting one because, 

depending on at the pH value, casein can either increase the 

brittleness of the gel, or reduce it. Casein itself is not coagulated by 

heat but can be precipitated by acids. The closer the gel pH is to the 

isoelectric pH, the more the likelihood of casein precipitation , which 

may explain the increasing brittleness at pH 5.0. 
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Figure 4. 12-E 

The Effect of Casein on Fracture Strain 
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Figure 4. 12-F 

The Effect of Casein on Fracture Stress 
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4. 13 The Effect Of G/ycomacropeptides (GMP) 

Elastic Properties 

The relationship between the elastic properties of gel samples and 

GMP was not linear (Fig. 4.13-A). At both pH values, the peak in gel 

hardness occurred at about 1.0-1.5% GMP concentration . The type of 

binder did not have a huge effect on the gel hardness although the 

tendency was for additional albumen to increase the gel hardness at 

the lower pH. 

F;gure 4. 13-A 

The Effect of Glycomacropept;des on Gel Hardness 
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The springiness showed a more consistent pattern as shown in 

Figure 4.13-8, but was itself almost GMP-independent. However, the 

type of binder had a small effect on the gel springiness. The 2.5/1 and 

the 2/1 binders were not different from each other in their effect on the 

springiness but at both pH values, the 1.5/1 sample was consistently 

the least springy. 
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Figure 4. 13-8 

The Effect 0/ Glycomacropeptides on Gel Springiness 
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Micro-structure 

Other than a small increase at pH 6.0 and 0.5% concentration, the 

GMP did not significantly affect water uptake at either pH level (Fig. 

4.13-C). On the other hand, expressible water (Fig. 4.13-0) was 

significantly affected by the GMP up to 0.5% at pH 5.0. There was no 

significant effect at pH 6.0. 

Figure 4. 13-C 

The Effect of Glycomacropeptide on Water Uptake 
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Figure 4. 13-D 

The Effect of Glycomacropeptides on Expressible Water 

Van Vliet et al. (2004) reported that the effect of GMP on a heat­

induced whey protein concentrate gel was to reduce the water holding 

capacity and strength. GMP was not incorporated into the functional 

network. 

Fracture Properties 

Both fracture properties (Figs. 4.13-E and 4.13-F) were significantly 

affected by altered levels of the glycomacropeptides and pH but the 

range of the change was small. However, both the fracture strain and 

the fracture stress were sensitive to the type of binders and loosely 

follow an increase in the albumen content of the binders. The 

magnitude of the difference was higher for the fracture stress than for 

the fracture strain. 
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Figure 4 .14-E 

The Effect of Glycomacropeptides on Fracture Strain 
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Figure 4. 14-F 

The Effect of Glycomacropeptides on Fracture Stress 
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4. 14 The Effect Of Methylcellulose 

Elastic Properties 

Methylcellulose caused a slight reduction in gel hardness up to 1.0% 

concentration (Fig. 4.14-A). At pH 5.0 and for all three binders, there 

was a reduction in hardness at the low level of methylcellulose followed 

by very little additional change with increased methylcellulose. For the 

2.5/1 and 1.5/1 samples, there was no further reduction in hardness at 

0.5% until the concentration reached 1.0% after which the hardness 

started to increase very slowly. With the 2/1 sample, the gel hardness 

did not drop until the concentration was in excess of 0.5% after which it 

dropped further. A similar relationship is noted at pH 6.0 but the shape 

of the curve is even more pronounced with the lowest point appearing 

at a concentration of 1.0% for all three binder samples. 

Figure 4. 14-A 

The Effect of Methylcellulose on Gel Hardness 
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The change in springiness was rather dramatic at pH 6.0 (Fig. 4.14-

B). There was a rapid reduction in springiness up to 1.0% 

concentration of the methylcellulose after which there was very little 

additional change. A similar effect was observed at pH 5.0 with the 

exception that the lowest point occurred at 0.5%. 
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The addition of the methylcellulose effected a reduction in the a­

value at both pH values but the change dissipated after the 

concentration reached 0.5% after which there was no further 

modification. The reduction in a-value meant that there was a slight 

strengthening of the prevailing inter-molecular bonds, especially at pH 

5.0. It is to be noted that the change in a-value was not manifested in 

increased hardness or increased springiness. 
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Figure 4. 14-G 

The Effect of Methylcellulose on a - Value 
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Some of the biggest differences in the gel characteristics of the 

whole study are observed in the micro-structural properties of water 

uptake (Fig. 4.14-C) and expressible water (Fig. 4.14-0) for 

methylcellulose. 

Figure 4.14-C 

The Effect of Methylcellulose on Water Uptake 
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At pH 5.0, all the binder gel samples changed from exuding water 

(methylcellulose concentration 0.5 - 1.0%) to ones that absorbed water 

(methylcellulose concentration in excess of 1.0%). By contrast, at pH 

6.0, there was hardly any effect on the water uptake at virtually all 

concentrations of methylcellulose used in this study. The sole 

exception was the reduction in the 1.5/1 and 2/1 gel water uptake 

(concentration 2.0%) at pH 6.0. 

As for the expressible water, the methylcellulose increase led to a 

very steep drop in the property, particularly at pH 5.0. There was a 

more sedate reduction at pH 6.0. However, by the time the 

concentration was increased to high values (2.0%) at either pH, there 

was hardly any water expressed . The differences are shown clearly in 

Fig . 4.14-0. 

Figure 4. 14-D 

The Effect of Methylcellulose on Expressible Water 
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Fracture Properties 

Methylcellulose has a huge effect on the fracture strain of the gel in 

which it is present. Even at a concentration as low as 0.5%, the 

methylcellulose triggered a sizeable reduction in the fracture strain 

(Fig . 4.14-E) at both pH values. There was no further change even as 
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the concentration was increased further. Methylcellulose delivered one 

of the lowest values of fracture stress in the gel systems. 

The stress at fracture (Fig .4.14-F) exhibited an unusual pattern. It 

was not directly affected by the pH. In addition, virtually all of the 

change in the fracture stress for the gel samples occurred at a 

concentration of methylcellulose less than 0.5%. In excess of this, 

there was very little further change. 

Figure 4. 14-E 

The Effect of Methylcellulose on Fracture Strain 
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Figure 4. 14-F 

The Effect of Methylcellulose on Fracture Stress 
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The low fracture strain at concentrations of methylcellulose as low 

as 0.5% (Fig 4.15-E) might be indicative of phase separation and 

incompatibility. Turgeon & Beaulieu (2001) reported that 

polysaccharides such as methylcellulose show incompatibility with 

whey protein gels. After heating, two phases were formed at 

equilibrium- one that was rich in whey protein and another rich in the 

methylcellulose. Many such systems were characterized by fracture at 

low hardness. 

Syrbe et al. (1995) proved that in a whey protein and methylcellulose 

gel, there was phase separation although the methylcellulose 

increased the modulus of the gels. 

4. 15 The Effect Of Lecithin 

Elastic Properties and Plastic Properties 

The relationship between the concentration of lecithin and the gel 

hardness is presented as a U-shaped curve. At low levels of lecithin 

(0.5-1%), there was a reduction in gel hardness at both pH 5.0 and 6.0 

(Fig. 4.1 5-A) that corresponded to an increase in the gel springiness 

(Fig. 4.15-B). Above a concentration of 1 %, there was an increase in 

gel hardness and a concomitant reduction in the gel springiness. Is 

this evidence of a phase inversion or just separation because of 

the inability of lecithin to bind to the protein molecules? 
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Figure 4.15-8 

The Effect of Lecithin on the Gel Springiness 
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The plot of a-value followed the same pattern as the hardness and 

springiness (Fig 4.15-G). At pH 5.0, the lowest a-value occurred at 

lecithin concentration of 1.0%. There was no effect at pH 6.0. 
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Micro-structure 

The lecithin had little effect on the water uptake, although it was 

observed that there was higher water uptake when the pH was at the 

lower value (Fig . 4.15-C). 

F;gure 4. 15-C 

The Effect of LedtMn on Water Uptake 
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The relationship between the concentration of lecithin and 

expressible water was exponential and shown by a IU' curve (Fig.4.15-

D). At pH 5.0, the nadir occurred at about 1.0% lecithin. The quantity 

of expressible water was generally high when compared to the amount 

at pH 6.0, where there was also very little change with concentration. 

At this time, there is no clear explanation/hypothesis for the U shape. 
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Figure 4. 15-D 

The Effect of Lecithin on Expressible Moisture 
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Fracture properties were not affected significantly by the presence of 

the lecithin . The fracture strain (Fig. 4.15-E) remained fairly 

independent of lecithin concentration although the larger than average 

error bars in the graph may indicate an experimental problem. 

Figure 4. 15-E 

The Effect of Lecithin on Fracture Strain 
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At pH 6.0 the binder type had an effect on the fracture strain. The 

strain at fracture mimicked the increase in the albumen content of the 

binder showing that albumen increased the brittleness of the gel. A 

similar phenomenon was observed with fracture stress at both pH 5.0 

and 6.0 (Fig. 4.1 5-F) . 
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Under the conditions of the present series of experiments, there was 

no effect of the lecithin concentration on the fracture properties 

although there was a significant effect on the gel hardness. 

In the experiment by Ikeda & Foegedding (1999) that was carried 

out with egg yolk lecithin, the conclusion was that the optimal level of 

phospholipids in whey protein for gel formation is determined by the 

amount of mineral ions in the system. They had observed that lecithin 

addition to fine-stranded or mixed networks increased the elastic 

modulus but that addition to particulate gels decreased the elastic 

modulus. In the present study, no attempts were made to quantify the 

mineral ions in the system in conjunction with lecithin concentration. 
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4. 16 The Effect Of Hydrogen Peroxide 

Elastic Properties 

Hydrogen peroxide addition to the gel system had the effect of 

producing a rather soft gel at concentrations as low as 0.5% (Fig . 4.16-

A) . The rapid reduction in gel hardness affected all binder samples but 

the change was more pronounced at pH 6.0. The significant difference 

between the 2.5/1 and 2/1 gel at pH 5.0 disappeared at pH 6.0. The 

conclusion from this observation is that the albumen and or whey 

protein concentrate was more resistant to the influence of the hydrogen 

peroxide at pH 5.0 than at pH 6.0. 

F;gure 4. 16-A 

The Effect of Hydrogen Peroxide on Gel Hardness 
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Springiness was not hugely affected at pH 5.0, but even at pH 6.0, 

there was no change until the concentration was in excess of 1.0%. At 

this point, there was a massive drop in springiness. 

Figure 4.16-G showed a steady increase in the a-value for all three 

binder samples at both pH values but especially at pH 6.0. The 

increase means that the molecular bonds became weaker as the 

concentration of the peroxide was raised. Noteworthy is the 

observation that at both pH values, there was a sharp rise in the a­

value as the concentration was raised from 1.5% to 2% in the gel 
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produced from the 1.5/1 binder. The molecular bonds in the higher 

albumen gel samples were more resistant to the effects of the 

hydrogen peroxide. 

Figure 4.16-8 

The Effect of Hydrogen Peroxide on Gel Springiness 
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Micro-structure 

Water uptake did not seem to be affected much either by the 

concentration of peroxide or the binder type (Fig. 4.16-C) although 

there was a separation between the plots of the binder samples as the 

concentration of hydrogen peroxide reached 2.0%. 

Nor was the expressible water affected by the concentration of the 

peroxide at pH 6.0 (Fig. 4.16-0) especially once a concentration of 

0.5% peroxide has been attained. It was a different picture at pH 5.0 

where a concentration of 0.5% hydrogen peroxide reduced the 

expressible water after which there was no further effect. In this 

instance, the 1.5/1 whey albumen sample showed the largest amount 

of water release thus highlighting the bigger effect of the hydrogen 

peroxide on whey protein concentrate than on the albumen. 

Figure 4. 16-C 

The Effect of Hydrogen Peroxide on Water Uptake 
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Figure 4. 16-D 

The Effect of Hydrogen Peroxide on Expressible Moisture 
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Fracture Properties 

Both fracture strain and fracture stress were affected by the 

presence of the hydrogen peroxide. The effect on the fracture strain 

was more pronounced at pH 6.0 than 5.0 as demonstrated by the 

steeper slope (Fig. 4.16-E). 

Figure 4. 16-E 

The Effect of Hydrogen Peroxide on Fracture Strain 
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In the case of the fracture stress, the pH generally had only a small 

effect as demonstrated by the almost identical profile of the graphs in 

Fig 4.16-F. At pH 5.0, the amount of the hydrogen peroxide only had 

an effect for the first 0.5% concentration after which there was no 

further significant change. At pH 6.0, the change carries on until about 

1.5% concentration before the fracture stress reached a plateau. 

Figure 4. 16-F 

The Effect of Hydrogen Peroxide on Fracture Stress 
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4. 17 The Effect Of Sodium Chloride (NaC/) 

Elastic and Plastic Properties 
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Within the range studied, NaCI appeared to affect the gel hardness 

but the effect was inconsistent (Fig. 4.17-A). This observation 

contradicts other studies, which report that NaCI reduces the gel 

strength (8oye et al., 1995; Verheul & Roefs, 1998; Chantrapornchai & 

McClements, 2002; Raikos et al., 2007) . 
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Figure 4. 17-A 

The Effect of Nael on Gel Hardness 

eooo pH = 5 

12~ 

Il9OO 

1800 

o 05 NaCI .~ 

Alb whey 
. 15/1 

• 

15 

6000 pH = 6 

2450 

8900 

5350 

1800 

o 05 NaCI o}o 

Alb whey 
. 1.5/1 
. 21 
. 251 

15 2 

There are several possible reasons advanced for the discrepancy. 

One is that in the present study, higher pH values were used. In 

addition, no dialysis was carried out on the binder systems before the 

heat-induced gelation, so it may well be that there is already some 

NaCI or Na+ present in the matrix - further sodium thereby having no 

additional effect. The highest concentration of NaCI used in the present 

study is 2%, equivalent to 0.3M/dm3
. Boye et al. (1995) reported that 

there was considerable variability in the gelling ability over a NaCI 

range of 0-2M. Firm gels were obtained in the absence of NaCI and 

soft gels prevailed when the NaCI was below 1 M. Boye et al. did not 

state whether there was dialysis of the whey protein solution to remove 

any residual sodium ions. In a separate study by Verheul & Roefs 

(1998), the concentration of NaCI studied was in the range of 0.1-3.0 

M/dm3 but at neutral pH. It was reported that there was a marked 

decrease in the elastic modulus of the resulting whey protein isolate 

gels. In yet another study, it was shown that the gel characteristics of 

water loss and elastic recoverability reached a plateau when the NaCI 

concentration was in excess of 0.2M (Chantrapornchai & McClements, 

2002). 
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Raikos et al. (2007) reported on a somewhat similar study that was 

carried out with egg white gels in which the addition of 6% (1 M) sodium 

chloride significantly reduced the gel hardness at all pH values of 2, 5 

and 8. Further explanation comes courtesy of Van Gamp et al. (1997) 

who had observed that near the isoelectric point of the whey protein 

concentrate, the electrostatic attractive forces can dominate over the 

electrostatic repulsion forces thereby reducing the effect of the salt and 

promoting aggregation rather than denaturation. The net result is the 

formation of a coagulum rather than a true gel. 

The change in the springiness in the present study observed by 

altering the concentration of NaGI was not wide ranging . Although there 

was a small increase in springiness at the lower concentration of NaGI 

(0 - 0.5%), the pH value had a much bigger effect (Fig. 4.17-8). 

Figure 4.17-8 

The Effect of Noel on Gel Springiness 
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At pH 5.0, the a-value either stayed constant or was reduced slightly 

with 0.5 - 1.0% NaGI for all samples, after which there was no further 

change. However, at pH 6.0, there was a small increase in the a-value 

at 0.5% NaGI. Above this concentration , there was no further change. 

As usual, the a-value was higher at pH 5.0 than 6.0 showing the effect 

of pH on the inter-molecular bonds. The lower a-value for the high 
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albumen gel systems showed that the molecular bonds in the albumen 

were less susceptible to the effects of the NaCI. 
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The Effect of NaCl on Water Uptake 
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Micro-structure 

At pH 6.0. the NaGI had little effect on the water uptake of any of the 

gel samples (Fig . 4.17-G). There was a very small reduction in the 

water uptake with increasing concentration of NaGI (up to 1.0%) at pH 

5.0. Above this concentration. there was no further effect. 

At pH 6.0. no real change was observed in expressible water with 

the addition of NaGI (Fig. 4.17-0). But at pH 5.0. there was a 

substantial reduction in expressible water up to a concentration of 0.5% 

NaGI at which point and thereafter, the gel became unresponsive to 

further NaGI addition. It is also clear from this graph that the NaGI 

affected the binder systems differently as the expressible water was 

Significantly reduced with the increase in the albumen content of the 

binder systems. 
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The Effect of Noel on Expressible Water 
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One other previous observation that does fall in line with the results 

observed in the present study is by Verheul & Roefs (1998) in which 

added NaGI is reported to make the whey gel coarser with a higher 

permeability. It was observed as shown in Figure 4.17-0 that the 

expressible water changed significantly with the introduction of NaGI at 

pH 5.0 but not much further once the concentration was in excess of 

1% (0 .17M/dm3
). Barbut (1995) and Ikeda & Foegeding (1999) 
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severally reported a decrease in the water holding capacity with the 

increase in salt concentration as a result of the change in the gel 

network from a compact fine stranded gel to a coarse, particulate gel 

with a large effective pore size and a lower resulting water holding 

capacity. Barbut further attributed the particulate gel to the formation of 

large aggregates as a result of the production of thicker and larger 

protein strands. It was also shown that the optimum level for the 

maximum effect of NaCI on gel strength and water holding capacity is 

0.2M. Ikeda & Foegeding (1999) also showed that water holding 

capacity dwindles with an increase in salt concentration. 

Chantrapornchai & McClements (2002) attributed the decrease in 

water holding capacity to the change in the structure of the gel from a 

fine-stranded gel to a particulate gel. The effect of the change was to 

increase the pore size and thereby capillary pressure. 

Fracture Properties 

Neither of the fracture properties showed massive changes as the 

concentration of the NaCI was altered (Figs 4.17 -E & 4.17 -F). The 

binders with the highest ratio of albumen showed the biggest stress 

fracture. 

Figure 4. 17-E 

The Effect of Nael on Fracture Strain 
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F;gure 4. 17-F 

The Effect of Nael on Fracture Stress 
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Ikeda & Foegeding (1999) noted that at concentrations of 

monovalent cations higher than 0.1 M/dm3
, the network is a mixture of 

fine strands and spherical aggregates that are high in stress and 

minimum in strain at the point of fracture. In an earlier study, Kuhn & 

Foegeding (1 991) had shown that in a sample of whey protein gel, 

NaGI had the consequence of a sharp increase in the fracture stress up 

to a concentration of about 0.05M - 0.075M. Above this concentration, 

there was a decrease in the fracture stress. By contrast, the fracture 

strain decreased rapidly with an increase in the NaGI up to about 0.1 M. 

The influence of NaGI on the rheological and microstructure of the 

whey protein concentrate/albumen gels can be explained in terms of 

the impact of salt on protein-protein interactions. At low salt 

concentration, there is electrostatic repulsion between the protein 

molecules, which prevents them coming into close proximity. However, 

as the salt concentration is increased, the electrostatic repulsion is 

progressively screened so that the protein molecules are able to 

approach closely enough to aggregate. Therefore, it is accepted that 

the primary impact of NaGI on the gelation of globular proteins is to 

reduce the range and strength of the electrostatic interactions 

(Ghantrapornchai & McGlements, 2002). 
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In the present study, it has not been ascertained whether there is a 

synergistic protection of the egg albumen protein molecules by whey 

protein concentrate or vice versa such that the NaCI is rendered 

ineffective by either preventing unfolding of the molecules or by 

selective aggregation of the unfolded molecules. Such a possibility was 

suggested in a study carried out by Soye & Alii (2000) with a­

lactalbumin and p-Iactoglobulin where thermal denaturation studies 

were carried out with the whey protein fractions, singly and together. A 

2.8°C decrease in the denaturation temperature of p-Iactoglobulin in 

the absence of a-lactalbumin and an increase of 2.SoC in the 

denaturation temperature of a-lactalbumin in the presence of P­
lactoglobulin strongly suggests both of these whey protein fractions 

affect the thermal behaviour of each other. Soye & Alii postulated that 

the unfolding of the a-lactalbumin on denaturation might initiate cross­

linking interactions with the exposed sites on the p-Iactoglobulin 

molecule thereby speeding up the unfolding of the p-Iactoglobulin. 

Even in the presence of other ingredients such as sodium bicarbonate 

and sodium ascorbate, the presence of a-lactalbumin still decreased 

the thermal stability of the p-Iactoglobulin. Howell & Laurie (1984) 

proposed that the synergistic interactions between compatible globular 

proteins depended on the degree of unfolding of the individual 

proteins (italics mine) in the mixture which governed optimum 

exposure of specific groups and hence the optimum interaction. 

4.18 Conclusions/Key Findings 

I. There were significant interactions between virtually all the 

main effects of one or more of the response variables. 

II. In the presence of other materials, the 2/1 ratio of albumen to 

whey protein concentrate as discussed in Chapter 3 did not 

always have the highest or lowest value of a particular gel 

characteristic. 

- 211 -



Chapter 4: The effect of various materials and pH on gel characteristics 

III. The pH generally had the biggest effect on the gel 

characteristics probably because most of the experiments 

were carried out in the isoelectric region. 

IV. The effect of sugars on gel properties was generally smaller 

than the effect of pH. Lactose however, did produce a 

dramatic reduction in fracture strain at concentration in 

excess of 0.5%. 

V. Of all the materials assessed, the starches exhibited the 

largest effect on the gel hardness. 

VI. The two major hydrocolloids studied i.e. pectin and 

methylcellulose, showed different effects on the gel 

properties. Although both have affinity for water, 

methylcellulose appeared to be the stronger one as the gels in 

which it was present changed from exuding water to 

imbibing water at concentrations in excess of 0.5%. The 

effects on residual stress and fracture strain were also 

markedly different for both materials. 

VII. The relationship between lecithin concentration and the gel 

characteristics appeared to be non linear. The peak/trough 

occurred at about 1 % lecithin concentration. 

VIII. The milk-derived ingredients of lactose, GMP and casein 

all had differing effects on the gel properties. Increased 

levels of casein consistently increased the elastic properties 

but reduced the plastic and fracture properties. Increased 

GMP had a mixed effect on the elastic properties but very little 

effect on the viscous properties or fracture properties. 

Addition of varying levels of lactose had little effect on the 

elastic and plastic properties but a marked effect on the 

fracture properties. 
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CHAPTERS 

CHARACTERIZATION OF MOLECULAR 

INTERACTIONS WITH PROTEIN PERTURBING 

AGENTS 

Summary 

The results of the gel dissolution by protein perturbing agents are 

described and discussed in this section in the context of the 

experiments performed as described in Section 2. Buffer solutions for 

the protein dissolution tests were prepared as described in Section 2.4. 

The gel samples were prepared and dissolved in the buffer solutions as 

described in Section 2.12. 

The gel samples selected for dissolution tests were high methoxyl 

pectin, high amylose starch (Hylon VII) and NaCI. 

Results and Discussion 

Figure 5-A 

Gel Protein Dissolution with Different Buffer Solutions (pH 5) 
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Figure 5-B 

Gel Protein Dissolution with Different Buffer Solutions (pH 6) 
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5. 1 Hydrophobic Bonds 

When SDS was added to the buffer solutions, (Buffer 1 to Buffer 2) 

there was a reduction in protein solubility for the 'no additive' gel as 

well as the starch and salt gels at both pH 5 and pH 6 (Fig. 5-A and B). 

The pectin infused gel was the exception. There was a slight increase 

Figure 5.1-A 

Effect of Various Molecules on the Protein Dissolution in a Gel System in 
the Presence of SDS (Buffer 2) 
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in the protein solubility especially at pH 5. It may be that the lower pH 

favoured pectin-pectin interactions. This was borne out by the 

increased solubility of the gels in Buffer 2 as shown by Fig. 5.1-A. 

As the pH was increased from 5 to 6, there was a reduction in 

hydrophobic bonding as shown by the reduction in protein solubility in 

each of the pairs. The gel with added pectin showed the largest 

magnitude decrease. The implication was that the pH change affected 

the hydrophobic bonds. The presence of pectin in particular, in the gel 

at pH 5, somehow enhanced the hydrophobic bonds in the gel system 

compared to pH 6. Dierckx & Huyghebaert (2002) reported that at low 

pH, hydrophobic interaction, electrostatic attraction and hydrogen 

bonding dominate the gelation in whey protein isolate solutions. 

Conversely, at alkaline pH, the disulphide bonds become more 

dominant. Back et al., (1979) had previously shown that sucrose could 

enhance the hydrophobic interactions between protein molecules. 

Other studies have also shown that junction zones in gels of high 

methoxyl pectin are stabilized by hydrophobic interactions between the 

methyl ester groups (Walkinshaw & Arnott, 1981; Oakenfull & Scott, 

1984). In the light of these observations and the fact that 

commercial pectin samples are standardized with sucrose, it is 

likely that the increase in hydrophobic interactions detected with 

the pectin-infused gel in the present study at pH 5 was due to the 

stronger affinity of the pectin molecules for each other than for 

the protein molecules. Sucrose from the pectin may also have 

increased the hydrophobic interaction between the protein 

molecules. 

With the conditions as described, it will not have been out of place to 

speculate that there would be clear evidence of phase separation in the 

gel due to hydrocolloid and protein polymer incompatibility. However, 

this is not always the case because even when a mixed biopolymer is 

thermodynamically unstable, phase separation might not be observable 

because of the kinetic energy barriers. For instance, if one or more of 

the polymers is highly viscous and/or forms a gel, the rate and/or 
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extent of the phase separation may be slow (Bryant & McGlements, 

2000a) 

At pH 6, there was no noticeable effect from any of the three 

additives on the protein solubility. 

5.2 Disu/phide Bonds 

When the DTE was removed, as in a change from Buffer 3 to Buffer 

2 Fig 5-A & B) , there was a significant reduction in protein solubility for 

all four gels. The change occurred at both pH 5 and pH 6 showing 

that disulphide bonds were mainly responsible for maintaining the 

gel structure. All three infusions i.e. high methoxyl pectin, NaGI and 

Hylon VII appeared to lead to an enhancement of the disulphide bonds 

at pH 5 as shown by the higher solubility of the gel as compared to the 

'no additive' gel (Fig. 5.2-A) 

In a similar buffer. when DTE was removed . as in a change from 

Buffer 5 to Buffer 4 (Fig. 5-A & B). there was reduction in the solubility 

of only the Hylon starch-infused gel at pH 5. The other infused gels as 

well as the 'no additive' gel displayed no effect. At pH 6. the Hylon gel 

and the NaGI gel both exhibited a reduction in protein solubility. 

Figure 5.2-A 

Effect of Various Molecules on the Protein Dissolution in a Gel System in 
the Presence of SDS and DTE (Buffer 3) 
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Starches do not normally contain sulphydryl or disulphide groups 

and are not normally expected to participate in the formation of inter- or 

intra-molecular disulphide bonds. However, it cannot be ruled out that 

attractive interactions occur between polymers due to patches of 

charged residues on the protein surface. On the other hand, could 

this be an example of what is described by Aguilera & Baffico 

(1997) as an 'active phase-separated gel'? 

Fig 5.2-A also demonstrated that as the pH was increased in the 

from a value of 5 to 6, the disulphide bonds were reduced very slightly 

as shown by a small reduction in protein solubility of the three infused 

gels in Buffer 3. Buffer 3 will attack both hydrophobic and disulphide 

bonds. The plain gel is the exception: the increased protein dissolution 

showed that the disulphide bonds increased. Neutral and alkaline pH 

values tend to promote disulphide bond formation. Although the 

magnitude of the difference in soluble protein between the pH values 

was small, it is possible that there was an interaction between the 

added macromolecules at pH 6. The effect of this interaction may have 

been to interfere with the ability of the protein molecules to fully unfold 

and hence reduce the extent of the thiol - disulphide reaction. When 

there were no additives, as in the plain gel, this was not the case. 

5.3 Electrostatic Attraction 

When salt was removed from the buffer in changing from Buffer 6 to 

Buffer 1 (Fig 5-A & B), there was no change in protein solubility for 

plain gel at pH 5 but there was a 40% reduction at pH 6. The 

implication is that contribution of electrostatic attraction to the gel 

structure was practically nil at pH 5 and very little at pH 6. The 

solubility of the pectin-infused gel was reduced by about % at both pH 

5 and 6 implying that the presence of pectin in the gel impacted on the 

electrostatic attraction. The solubility of both the starch and the NaCI 

infused gels increased considerably with the removal of salt from the 
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buffer. No explanation can be provided for this observation at the 

present time. 

When the plain gel was compared with the infused gels at pH 5, (Fig 

5.3-A), it was observed that both Hylon VII and NaCI reduced the 

solubility by about a th ird , showing that there was a slight reduction in 

the electrostatic attraction between the protein molecules as a result of 

the added molecules. This meant that when either the starch or NaCI 

was introduced to the gel , a measure of electrostatic attraction came 

into force. Pectin did not seem to change the protein solubility. 

As the pH was increased from 5 to 6, the plain gel suffered a slight 

reduction in electrostatic attraction as evinced by the reduction in 

protein solubility. The reduction in electrostatic attraction was 

exacerbated by the starch and the NaCI in a pattern similar to what 

was seen at pH 5. The effect of salt addition as a perturbing agent can 

generally be accounted for by screening charges, which leads to a 

decreased electrostatic attraction between the polymer chains 

(Schmelter et al., 2001) . 

Figure S.3-A 

Effect of Various Molecules on the Protein Dissolution in a Gel System in 
the Presence of NaCI (Buffer 6) 
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5.4 Hydrogen Bonding 

When urea was removed from the buffers as shown by changing 

from Buffer 4 to Buffer 1 (Fig 5-A & B), there was only a small change 

in protein solubility for the plain gel at either pH. The implication is that 

hydrogen bonding did not contribute significantly to the network of the 

plain gel. The solubility of the pectin-infused gel was reduced very 

slightly at both pH 5 and 6 implying that the presence of pectin in the 

gel impacted somewhat on the hydrogen bonding. With Hylon VII and 

NaCI however, the elimination of urea from the buffer led to a massive 

increase in protein solubility as compared to the plain gel. No 

explanation can be provided at present for this observation . 

However, when the gels with added material were compared to the 

'no additive' gels at pH 5 as highlighted in Fig. 5.4-A, it was observed 

that the Hylon VII , and especially the pectin, reduced the protein 

solubility implying a reduction in the hydrogen bonding. Therefore with 

the presence of these two materials in the gel, part of the overall 

structure was now maintained by hydrogen bonding. So while 

hydrogen bonding was not generally a major contributor to network of 

the plain gel structure, pectin reduced the little there was by about two­

thirds and the Hylon VII starch reduced it by about half. 
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Figure 5.4-A 

Effect of Various Molecules on the Protein Dissolution in a Gel System in 
the Presence of Urea (Buffer 4) 
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Increasing the pH from 5 to 6 had the effect of reducing the 

hydrogen bonding in the plain gel. At this pH, there was very little effect 

from any of the additives on hydrogen bonding. 
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Figure 5.4-B 

Effect of Various Molecules on the Protein Dissolution in a Gel 
System in the Presence of Urea + DTE (Buffer 5) 

NoedclMS Pectln (1.()%) Hylon VII (2.0%) NaCl (2.0%) 

When DTE was added to the urea buffer i.e. a change from Buffer 4 

to 5, there was increased protein solubility for all three infused gels at 

both pH values. The Hylon VII infused gel exhibited the biggest 

magnitude change. The DTE and urea buffer will attack both hydrogen 

bonds and disulphide bonds. The hypothesis is that the gel formed 

from the protein with the added starch was an inter-penetrating gel. 

Both the hydrogen bonds (from the starch and protein gelation) and the 

disulphide bonds (from the protein gelation) were destroyed by Buffer 

5, leading to increased solubility. 

5.5 Conclusions/Key Findings 

I. Pectin molecules appeared to hamper the ability of the 

protein molecules to gel because of the strong hydrophobic 

interactions between the pectin molecules in the presence of 

water. The increase in hydrophobic activity may also have 

- 220-



Chapter 5: Molecular bond characterization with protein perturbing agents 

been due to sucrose from the pectin affecting the protein­

protein interaction. 

II. Hydrogen bonding only played a small role in the protein gel 

structure. Nevertheless, at pH 5, the incorporation of pectin 

into the gel system reduced hydrogen bonding by about 60% 

whilst the Hylon VII high amylose starch reduced hydrogen 

bonding by about 50% 

III. Disulphide bonds were the major way in which the gel 

network was stabilized. All three materials enhanced the 

formation of disulphide bonds at pH 5 but they may have 

interfered with the ability of the protein molecules to unfold 

effectively at pH 6, thereby reducing the disulphide bonds 

slightly. 

IV. Electrostatic attraction between the charged protein 

molecules appeared to be minimal at pH 5. The introduction 

of both NaCI and the Hylon VII starch into the gels 

established electrostatic attraction as a way of maintaining gel 

structure. Pectin did not appear to affect electrostatic 

attraction in the gel. 
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CHAPTER 6 

CONFOCAL LASER SCANNING MICROGRAPHS 

OF SELECTED GEL SAMPLES 

Summary 

Not all of the samples manufactured from different materials could 

be analysed using the confocal laser scanning microscope due to time 

constraints. The samples selected for examination of the gel structure 

were as follows: 

I. Binder 2/1 with no added material at pH 5 and 6 - The 2/1 

sample was selected for two reasons (1) it represented the 

extreme point in most of the original TPA tests described in 

Chapter 3 and (2) it served as the 'control'. 

II. Binder 2/1 with rice starch (2%) at pH 5 and 6 and binder 

211 with high amylose starch - These samples were 

selected because they produced increasing hardness with the 

protein gel. It was also important to be able to perceive if 

there were any in the effect of the two starch products on gel 

characteristics. 

III. Binder 2/1 with high methoxyl pectin (0.5% and 1%) at pH 

5 and 6 - Due to the significant change in most of the gel 

attributes, the pectin infused gel was selected for CLSM 

analysis. The two different levels of pectin addition were 

assessed to determine whether the changes observed with 

gel deformation test could be explained at microscopic level. 

IV. Binder 2/1 with CaCI2 (2%) at pH 5 and 6 - Of the two gel 

samples with added salts, the CaCb infused gel was selected 

because it exhibited a bigger and more unusual effect than 

NaCI on some of the gel properties, notably expressible 

water. 
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V. Binder 2/1 with lactose (2%) at pH 5 and 6 - The effects of 

both lactose and dextrose were similar but the lactose had a 

much bigger effect on the fracture strain of the gel and so was 

selected for CLSM for this purpose. 

The gels from the binder samples were prepared as described in 

Section 2.13. All the micrographs shown in this chapter were derived 

from the pre-gelled samples made as described in Section 2.13.1. The 

results from the binders gelled in situ were not shown due to difficulties 

associated with the presentation of the gel samples. 

Results and Discussion 

6.1 211 Protein Gel With No Added Material 

Figure 6.1-A & B show that at a microscopic level, big differences 

exist in the microstructure. In the pH 6 sample, the fluorescence was 

evenly distributed in the gel structure. It looked smoother and was 

homogenous with very few, if any of the dark patches that 

characterized the gel at pH 5. This was indicative of fewer particles or 

aggregates and the gel is likely to be a fine-stranded gel. At pH 5, the 

microstructure changed dramatically. There were a lot of dark patches 

in the gel made at pH 5. The void spaces, as typified by the dark 

patches i.e. non-protein material, were bigger. These were almost 

certainly water molecules that had not been evenly incorporated into 

the gel network. The brightly coloured patches were almost certainly 

composed of aggregates of the protein as part of a phase- separated 

gel but more likely a particulate gel. 
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Figure 6.1-A 

CLSM Image of Albumen/Whey Protein Gel With No Added Material 
(pH 5) 

(Stained with 0.0005% Rhodamine B. Protein phase is orange) 

Figure 6.1-B 

CLSM Image of Albumen/Whey Protein Gel With No Added Material 
(pH 6) 

(Stained with 0.0005% Rhodamine B. Protein phase is orange) 
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6.2 211 Protein Gel With Rice Starch (2%) 

In Figures 6.2-C and D the individual particles were a lot more 

visible at 300 microns. The two gel samples looked homogenous. 

Interestingly, the aggregates at pH 6 appeared to be larger than the 

aggregates at pH 5. The non-protein material, as shown by the dark 

patches, was more evenly dispersed in the protein gel at pH 5 than at 

pH 6. The gel presented with rice starch appeared to be an 

interpenetrating gel where each of the protein and rice starch 

molecules both formed gels in which the strands/particles are 

interspersed with each other. This observation is almost certainly the 

reason for the increased hardness observed with the protein gels with 

added starch. 

Although there appeared to be a degree of separation between the 

protein and starch molecules in the gel at pH 6 as compared to pH 5, 

the fact that there were no major differences observed in the TPA 

hardness (Fig 4.6-A) may imply that the differences were only 

superficial. However, there were differences in TPA springiness (Fig. 

4.6-8) and residual stress (Fig.4.6-G) at pH 5 and 6, which may be 

explained by the separation between the starch and protein molecules. 
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Figure 6.2-A 

CLSM Image of Albumen/Whey Protein Gel With 2% Rice Starch (pH 5) 

(Stained with 0.0005% Rhodamine B. Protein phase is orange) 

Figure 6.2-B 

CLSM Image of Albumen/Whey Protein Gel With 2% Rice Starch (pH 6) 

(St ained with 0.0005% Rhodamine B. Protein phase is orange) 
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6.3 211 Protein Gel With CaC/2 (2%) 

There did not appear to be much difference between the gel 

structures at both pH values. The large sections of protein and non­

protein patches indicated that the CaCI2 induced the formation of a 

particulate gel at both pH 5 and 6. Beaulieu et al., (2001) reported that 

dispersions in excess of 10 mM calcium induced particulate 

microstructures in whey protein gels. Indeed the large deformation 

tests results in section 4.10 for elastic and plastic properties, 

microstructure and fracture properties show very little difference 

between gels made at pH 5 and 6 with 2% added CaCI2. 

Sok Line et al., (2004) reported that increasing the Ca2
+ 

concentration in a J3-lactoglobulin gel system resulted in larger pores 

and larger protein aggregates which were separated from each other 

by the aqueous phase. 
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Figure 6.3-A 

CLSM Image of Albumen/Whey Protein Gel With 2% CaCll (pH 5) 

(Stained with 0.0005% Rhodamine B. Protein phase is orange) 

Figure 6.3-B 

CLSM Image of Albumen/Whey Protein Gel With 2% CaClz (pH 6) 

(Stained with 0.0005% Rhodamine B. Protein phase is orange) 
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6.4 211 Protein Gel With High Methoxyl Pectin (0.5 % 

& 1%) 

Figures 6.4-A - D show the effect of adding pectin to the binder 

system. With 0.5% pectin addition at pH 5.0, the gel appeared to be a 

protein continuous gel. There was very little difference between the gel 

at pH 5 and pH 6 except that the non-protein particles were larger at 

the higher pH. It is not known whether the large size of the pectin 

gelled particles contributed to the tortuous paths in the gel at pH 5 or 

whether this was just an overlapping of the pectin molecules in the 

micrograph. Nevertheless, the micrographs shown in Fig. G - J were 

very similar to those obtained by Hemar et al. (2002) who carried out a 

series of experiments with K-carrageenan and milk protein. They 

concluded that the separation of the gel phases was induced by 

depletion flocculation caused by the K-carrageenan molecules in the 

aqueous phase. 

At the higher concentration of pectin (1 %), the gel structure 

appeared to be dominated by the pectin molecules/aggregates, with 

only small a small proportion of the gel being the protein. In the gel at 

pH 6 in particular, it appeared that the protein molecules have coated 

the pectin molecules/aggregates. It can be inferred that the gel system 

was now a pectin-continuous gel with the protein strands/aggregates 

acting as filler particles. It appeared to be a clear case of phase 

separation and phase inversion. Beaulieu et al., (2001) made a similar 

judgment when from a CSLM micrograph with a whey protein and low 

methoxyl pectin gel and concluded that whey protein and pectin are 

thermodynamically incompatible and lead to phase separation. 

Although samples at higher pectin concentration were not examined 

by CLSM, the results from the large deformation tests as reported in 

Section 4.4b suggested that further phase separation would have 

occurred. The increase in fracture strain (Fig. 4.4-E) when the pectin 

concentration is in excess of 1 % at pH 6 may be due to incomplete 

phase separation due to increased phase viscosity and gelation rate. 
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DeMars & Ziegler (2001) reported such an event in a study of the 

phase separated gelation of pectin and gelatin. 

Figure 6.4-A 

CLSM Image of Albumen/Whey Protein Gel With 0.5% High Methoxyl 
Pectin (pH 5) 

(Stained with 0.0005% Rhodamine B. Protein phase is orange) 

Figure 6.4-B 

CLSM Image of Albumen/Whey Protein Gel With 0.5% High Methoxyl 
Pectin (pH 6) 

(Sta ined with 0.0005% Rhodamine B. Protein phase is orange) 



Chapter 6; Confocal laser Scanning Microscopy of selected gel samples 

Figure 6.4-C 

CLSM Image of Albumen/Whey Protein Gel With 1.0% High Methoxyl 
Pectin (pH 5) 

(Stained with 0.0005% Rhodamine B. Protein phase is orange) 

Figure 6.4-D 

CLSM Image of Albumen/Whey Protein Gel With 1.0% High Methoxyl 
Pectin (pH 6) 

(Sta ined with 0.0005% Rhodamine B. Protein phase ;s orange) 
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6.5 2.1 Protein Gel With High Amylose Starch (2%) 

Figures 6.5-A and 8 show the effect of the high amylose starch in 

the binder gel system. At pH 5, the starch (non-protein) granules were 

clearly visible and evenly spread out through the gel structure. Due to 

the fact that there was very little difference in the TPA hardness for the 

high amylose infused starch at 2% at either pH (Fig. 4.7-A) it could 

have been theorized that the starch particles were behaving as an 

inactive filler within the protein gel matrix. However, all the other tests 

carried out and reported in Section 4.7, showed differences between 

the two gel samples at pH 5 and 6 (2% dosage) with the exception of 

the TPA hardness. TPA Springiness, fracture strain and fracture stress 

were higher in the gel at pH 6, whereas the residual stress, water 

uptake and expressible water were higher in the sample at pH 5. The 

combined evidence suggests that at pH 5, the starch particles were 

behaving as filler particles, but that at pH 6 there was evidence of 

some other modus operandi, most likely phase separation between the 

starch gel and the protein gel. 

Figure 6.5-A 

CLSM Image of Albumen/Whey Protein Gel With 2.0% High Amylose 
Starch (pH 5) 

(Stained with 0.0005% Rhodamine B. Protein phase is orange) 
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Figure 6.5-B 

CLSM Image of Albumen/Whey Protein Gel With 2.0% High Amylose 
Starch (pH 6) 

(Stained with 0.0005% Rhodamine B. Protein phase is orange) 

6.6 Protein Gel With Lactose (2%) 

There was a mixture of dark and light specs in the micrograph (Fig. 

6.6-A and 8). The specs were more plentiful in the pH 6 gel than in the 

pH 5 gel. The fluorescent specs were protein particles and more 

specifically, were likely to be aggregates of the protein formed in situ 

during the gelling process. As there were more of them at the higher 

pH, it is likely that the lactose is affected by the presence of acid and 

was not allowed to influence the protein in forming aggregates at this 

pH. Perhaps more aggregates were formed at pH 6. The normal 

tendency of sugars is to retard the gel formation process and increase 

the denaturation temperature. Specifically, Yang et al., (2004) showed 

that lactose affected the storage modulus of a starch-sucrose system 

and stated that lactose can be used in an albumen and whey protein 

concentrate system to impart strength and rigidity. 
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Figure 6.6-A 

CLSM Image of Albumen/Whey Protein Gel With 2% Lactose (pH 5) 

(Stained w i th 0.0005% Rhodamine B. Protein phase is orange) 

F;gure 6.6-B 

CLSM Image of Albumen/Whey Protein Gel With 2% Lactose (pH 6) 

(Sta;ned with 0.0005% Rhodamine B. Protein phase is orange) 
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6.7 Conclusion/Key Findings 

I. There was an interaction between pH and the added 

materials on the microstructure of the gel systems. 

II. At pH 5, the gels were mostly of a particulate microstructure 

while at pH 6, they were mostly fine-stranded. 

III. Rice starch addition at 2% produced mostly an 

interpenetrating gel network whereas high amylose starch 

produced a phase separated gel network. 

IV. Incorporation of high methoxyl pectin into the binder system 

led to the production of a phase-separated network. There 

was also evidence of phase inversion: the gel changed 

from a protein continuous network (at a pectin concentration 

of 0.5%) to a pectin continuous network (at pectin 

concentration in excess of 1%). 

V. Lactose (2%) appeared to influence the production of 

protein aggregates within the gel structure. The aggregates 

were particularly evident at pH 6. 
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CONCLUSIONS AND RECOMMENDATIONS 

FOR FURTHER WORK 

7. 1 Albumen and Whey Protein Concentrate 

The present study has shown that there exist statistically significant 

interactions between whey protein concentrate and albumen, when 

used in combination in a heat-induced gel. To date, there are only a 

handful of studies that exist on the interaction of whey protein 

concentrate and albumen in a mixed gel system. Fewer still exist on 

the interaction between a whey protein concentrate/albumen blend and 

other materials. In view of the importance of gel systems in the 

production of food, both domestically and industrially, this is a surprise. 

I have been able to show that there is an optimum blend of whey 

protein concentrate to albumen that exists in the region of 2: 1. 

As expected, pH plays a key role in determining the characteristics 

of the blended gel system. At the optimum pH, it was possible to make 

a gel from 100% whey protein concentrate that had similar hardness to 

a 100% albumen gel. This was accomplished at both neutral and 

slightly alkaline pH values. It would be interesting to determine how a 

100% whey protein concentrate gel or a blended gel of whey protein 

concentrate and albumen performs at much higher alkaline pH. One of 

the practical problems that will then arise may well be flavour. Finding a 

way to maintain a high pH in such a system without having it taste 

soapy, as it is wont to do at high alkaline pH values, remains a 

challenge. But if successful, it will be of immense interest and benefit 

to the food industry in general. It may then be possible to access all or 

some of the benefits of a whey protein gel system. 

One of the relationships that was not fully quantified was the optimal 

association between albumen and whey protein concentrate in the gel 

system and their interaction with total concentration. A 2:1 ratio has 
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been shown, in the present study, to work best in accentuating the gel 

hardness. However, there still remains confusion as to what the most 

favourable ratio is. In a separate study by Ngarize et 81. (2004) a ratio 

of 1:2 appeared to produce the hardest gel. If indeed a harder, 

combination gel can thus be produced, how can it be used to reduce 

the total dosage of material? For instance, will a different blend 

produce a gel that can be dosed at less than 16% solids and still 

produce gel of similar hardness? Is it possible to add the same amount 

at a slightly higher pH and have the same gel hardness? If this is case, 

then there are cost savings to be enjoyed because a gel sample can 

then be produced using fewer raw materials with great benefits to the 

ecosystems and the environment. This is because the production of 

both egg and whey protein concentrate require the use of considerable 

agricultural resources. 

The present study has shown that modifying the bound water in the 

system can alter gel springiness. When the interstices are small, the 

water in the gel is held tightly and has less of an ability to affect the gel 

flow properties. This property is important in food systems where the 

gel is required to maintain its integrity especially in a hot, aqueous and 

low pH medium. It applies to products such as sausages in a sauce, 

egg fried rice etc. Quom products, for instance, typically soften badly 

when cooked in a Tikka sauce. The acidity of the tomato in the sauce is 

not the causal mechanism. The ability to control the gel characteristics 

by altering the make up of the gel and the binding of the 'free' water in 

some way perhaps by the use of hydrocolloids may help to improve the 

performance of such gel systems. For instance, what happens to 

springiness of a gel with high free water but which is then bound with a 

hydrocollOid? Or what happens when the pH at which the gel is formed 

is far away from the isoelectric pH but on the very low acid (rather than 

just the alkaline) side of neutral? In reality, it will be interesting to see 

the changes in the TPA factors at such pH values. As there is a wide 

range of hydrocolloids and all with different functionalities and modus 

operandi, there is a plethora of opportunities for research in this field. 
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My experiments have shown that what whey protein concentrate 

does to an otherwise all-albumen gel is to confer on it a degree of 

elasticity. Albumen gels tend to be brittle. However, the big problem 

with whey protein concentrate is the tendency for a gel containing a 

high level of it is to flow when it has been made at a low pH. No doubt 

this is due to a lot of the water not being fully bound. Even with the 

present study, we still do not fully understand how whey protein 

concentrate contributes to gel structure in conjunction with albumen. At 

what point is it at its optimum in contributing to elasticity when hot and 

when cold? What can we as food researchers and chemists do to 'fool' 

the molecules into behaving atypically even when they are at or near 

the isoelectric pOint? It is possible that emulsifiers may be effective in 

accomplishing this objective. Why? They have hydrophilic and lipophilic 

moieties that may bind to water molecules at one end and to the 

protein molecules at the other end, thus forming a bridge that could 

contribute to gel structure. This experiment was not carried out due to 

the fact that it would have entailed studying two different materials in 

the same gel system. 

In a pure gel system, the present study has shown that optical 

properties as measured by Hunter LAB can probably be used as an 

early warning system to characterize the gel. It may be important to 

develop complete a tests that attempts to correlate the molecule 

aggregate size with gel strength and colour. Large aggregates strongly 

scatter light, thus giving the gel a whiter and more opaque appearance. 

Fine stranded gels result from conditions that allow the proteins to 

aggregate in ordered linear filaments. They form a structure that is 

transparent or translucent and because the strands are so small, they 

cannot scatter light effectively (Resch et al., 2002). 

7.2 Added Materials 

Gelation is difficult to define in general terms as gels exhibit diverse 

microstructures and textural properties. Protein gelation plays a major 

role in the domestic and industrial production of many foods. Protein is 
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utilised as a minor or sometimes major, ingredient for the formation of 

solid visco-elastic foods as well as for improved water absorption, 

thickening, adhesion, emulsification and foam stabilization. The effect 

of the protein in defining the characteristics of the food system in which 

it is used is anything but minor. Due to the fact that many gelling 

proteins are mUlti-component in nature, it is not always easy to provide 

a simple, mechanistic explanation for the method of gelation or to 

predict precisely and consistently how a gel system is formed from a 

mixture of raw materials. The mUlti-component nature of many food 

systems in which the gelation is required does not help either. 

Research into improving these properties or having the knowledge 

to modify and shift them in specific directions to deliver an exact 

amount of a required macroscopic property is always going to be of 

considerable interest in the food industry in general. This is because 

real food structures are very rarely simple. They are always a 

combination of several biopolymers with the inclusions of different 

solutes and solvents. In food, globular proteins are surrounded by a 

complex mixture of water, sugars, salts, polysaccharides, surfactants 

and lipids. When gelation occurs, there is almost always competition 

between the factors favouring gel formation and those favouring phase 

separation. 

It has been shown in the present study that the physico-chemical 

properties of a heat-induced whey protein concentrate/albumen gel 

were affected by the actual molecular configuration as well as the 

environmental conditions. The molecular configuration can be altered 

by the presence of other micro- and macro-molecules which in tum can 

either alter or be altered by the environmental conditions such as pH, 

ionic strength, solvent polarity, morphology, size, surface properties, 

hydrophobicity, thermo stability, catalytiC activity, viscosity, etc. 

By combining two different sets of data from the analysis of the gel 

characteristic, using TPA and stress relaxation, it has been possible to 

gain more of an insight into the factors that drive the specific qualities 

of a combined whey protein and albumen gel system. 
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7.2.1 Pectin 

High methoxyl pectin showed an interesting effect on the gel 

characteristics. It is quite conclusive that the gelation of a mixture of 

whey and albumen proteins with pectin is achieved via a phase 

separation between the protein gel and the pectin gel. At 

concentrations of pectin less than 0.5%, there was the formation of a 

protein backbone to support the gel. However, at higher concentration 

of pectin (>0.5%) there was also a phase inversion with the pectin 

backbone supporting the gel. It is worth exploring in some more 

detail. For instance, why was the effect of high methoxyl pectin so 

pronounced when the concentration was in excess of 0.5%? Is it just 

thermodynamic and molecular incompatibility? Or are there other 

factors at work? What happens when other types of pectin such as 

amidated pectin and low methoxyl pectin are used with and without 

added calcium? How will the pectin affect a binder system with differing 

ratios of whey protein concentrate to albumen? Turgeon and Beaulieu 

(2001) stated that phase separation is driven by the behaviour of each 

biopolymer in solution prior to heat-induced gelation and that 

protein/pectin attractions have to be stronger than protein/protein and 

pectin/pectin attractions in order to have a compatible and 

homogenous gel. Yoo et 81. (2006) also showed that the viscosity of a 

pectin solution is Significantly affected by the presence of different salts 

at differing concentrations. They concluded that the forces that promote 

pectin aggregation are complex and involve a combination gel network 

formation, precipitation and solubilization mechanisms. Protein 

dissolution tests in the present study suggested that there was stronger 

affinity of the pectin molecules for each other and for the solvent, in 

preference to the protein molecules. The pectin molecules· interacted 

via hydrophobic bonds long before the disulphide bonds between the 

protein molecules had a chance to be established. As pectin is often 

used to promote succulence in many food products due to their high 

affinity for water, it is worth exploring in further work ways in which the 

protein/pectin attraction can be strengthened or conversely, ways in 
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which the pectin/pectin hydrophobic interaction or the pectin/water 

affinity can be reduced. 

Nevertheless, the phase separation between the protein molecules 

and the pectin molecules can be used to good advantage. Pectin can 

be used to alter the brittleness of a protein gel or at the other extreme; 

protein can be used to increase the elasticity of a pectin gel. The 

interplay between the two may also be useful in molecule 

encapsulation in which the molecules or particles of other material and 

'embedded' in one phase which can then be held in another composite 

e.g. heat labile flavours, vitamins, nutraceutical molecules etc. 

7.2.2 Inulin 

Inulin is also another ingredient perhaps worthy of further 

investigation. It is unknown how inulin reacts to low pH conditions when 

in a gel system. However, it is known that inulin can be hydrolysed by 

the conditions common in gel formation namely i.e. heating 

temperatures greater than 80°C and a pH of about 6 - 8 (Kim et al., 

2001). 

7.2.3 Starch 

Starches are important hydrocolloids. The present study showed 

how the rice starch, high amylopectin starch and high amylose starch 

increased the hardness of an albumen/whey protein concentrate gel. 

Protein dissolution test results suggested that for the high amylose 

starch, there was the formation of an interpenetrating gel between the 

starch molecules and the protein molecules. The CLSM micrographs 

showed that a fine-stranded interpenetrating gel was formed at pH 5 

but changed to a phase-separated or particulate gel at pH 6. Results 

also showed how the starches reduced the expressible water 

especially at pH 5.0. 

As a proposal for further studies, an aspect for further research will 

be to determine how the water is bound in the gel. What happens as 

the starches start to age and retrograde? Has the optimum 

concentration really been determined via these experiments? What has 
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the starch actually done to the water in the context of a protein gel? It is 

known that water serves as a plasticizer and thus influences the 

molecular mobility of the starch molecules (Choi and Kerr, 2003). 

Have the starch granules fully gelled and lost their amorphousness or 

are they exerting their influence on water by another mechanism? 

Nuclear Magnetic Resonance (NMR) may help answer some of these 

questions. Hinrichs et al. (2003) and (Choi and Kerr, 2003) describe a 

method for using NMR to measure and characterize the structure and 

water-holding capacity of hydrocolloid gels. They concluded that this 

method offers molecular information about the structure of gels and 

helps to quantify the influence of ingredients and processing on the gel 

properties. 

7.2.4 Soya Protein Isolate 

Soya isolate is another ingredient whose performance in the present 

study raises a few issues. As a globular protein, it is expected to unfold 

and eventually form a gel with the application of heat in an aqueous 

environment. However, it does not always gel fully and has been 

reported to form an aggregate/coagulum (Comfort and Howell, 2002). 

An exciting thought is to determine, by experimentation, the optimum 

conditions that will produce a gel from the combination of egg albumen, 

whey protein concentrate and soy isolate. It has been suggested by 

soya protein isolate manufacturers (personal communication) that 

under ambient conditions, it can take up to two hours under conditions 

of low to medium shear, for soy protein isolate to become fully 

hydrated. It is not known at present how significant this is in practical 

terms. No attempts were made in the present study to incorporate this 

knowledge into the experiments. If it is indeed confirmed that the soya 

protein was somehow not fully hydrated prior to heat-induced gelation 

with the albumen and whey protein concentrate, then it is quite 

possible that its functionality and effect on the gel properties were not 

fully realised. It would be of interest to repeat the study with soya 

protein isolate and determine by various means what effect the degree 

of hydration of the soya isolate has on the gel properties. 
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7.2.5 Salts 

There were a few instances during the present study whereby the 

effects of the salt addition to the binder system - NaCI and CaCI2 were 

reviewed. It was speculated that one of the reasons for differences in 

the results from many disparate studies was because not all 

researchers carried out the dialysis. Indeed, no dialysis was carried out 

in the present study. In future research, it will be of scientific interest to 

determine precisely how to control the gel qualities. In addition many 

industrial food production recipes call for a reduction in the use of NaCI 

due to its implication in high blood pressure and heart problems. There 

have been very few if any studies on the effects of other salt 

replacements such as potassium chloride and glutamic acid on the 

protein gel characteristics. 

7.2.6 Sugars 

Reducing sugars are known to participate in a Maillard reaction with 

amino acids. This results in crosslinking of the amino acid molecules 

leading to gelation. It has often been speculated that it might be 

possible to use the Maillard reaction to promote protein gelation. The 

results observed in the fracture strain of the gels containing lactose 

may be due to a Maillard type gelation, but this cannot be confirmed at 

this stage and is worthy of further investigation. Previous experiments 

have suggested that when globular proteins are retorted in the 

presence of a reducing sugar, gelation occurred at low protein 

concentrations (Hill et al., 1992). 

7.3 Further work 

In addition to suggestions for further work mentioned in the previous 

section, there are other areas that warrant further attention. 
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7.3.1 Fresh egg and fresh whey 

All the experiments described in the present study were carried out 

using dehydrated egg and whey protein concentrate. Pasteurised egg 

albumen powders generally produce harder gels than the non­

pasteurised versions due to increased surface hydrophobicity as a 

result of the heat of pasteurization (Delben and Stefancich, 1998). 

However, there is immense cost associated with drying and then 

pasteurising the egg white. If it is done solely for the purpose of 

producing a firmer, harder gel, then it must be worth the while to 

research ways in which liquid, unprocessed egg albumen can be made 

to form harder gels. Besides, the process of drying, no matter how 

carefully it is controlled, will almost certainly produce some damage to 

some of the protein, resulting in a loss of or reduction in functionality. 

The use of liquid versions of both albumen and the whey protein 

concentrate to test the effects of selected added materials will be of 

advantage in the part of the food industry where the use of liquid egg is 

still the norm e.g. sugared egg for use in the cake industry. 

7.3.2 Whey protein fractions and avian egg albumen 

The diverse fractions of whey protein have different effects on each 

other. For instance, it was reported that a-lactalbumin affects the 

gelation characteristics of ~-Iactoglobulin and that the denaturation 

temperature for ~-Iactoglobulin is reduced in the presence of a­

lactalbumin. It was also suggested that the unfolding of a-lactalbumin 

on denaturation might initiate cross-linking interactions with exposed 

sites on the ~-Iactoglobulin molecule, thus starting a chain reaction in 

speeding up the unfolding of the ~-Iactoglobulin molecule (Boye and 

Alii, 2000). What is not fully understood at the present time is whether 

there is such an effect with egg albumen and fractions of whey protein. 

Suggestions for further work to examine the effect of the following: 

I. albumen and pure a-lactalbumin, 

II. albumen and pure ~-Iactoglobulin and 

III. albumen and pure bovine serum albumin. 
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There may also be different combinations of the fractions that produce 

different types of gels. 

7.3.3 Avian egg albumen fractions and whey protein concentrate 

Fractions of albumen should be tested against a nominal whey 

protein concentrate. There are two ways in which this may demonstrate 

benefits. Whey protein concentrate is normally either made directly by 

using acid to precipitate the whey from milk, or it is made available as a 

by-product of cheese production. As a waste stream. the liquid whey 

needs to have significant amounts of water removed in order to yield a 

concentrate. If fractions of egg are made available, they can be added 

directly to the whey stream, thereby obviating the requirement to 

concentrate and then dry the whey protein. The use of egg albumen 

fractions such as ovalbumin in conjunction with other materials may 

also produce gels of different characteristics and is worthy of further 

investigation. 

7.3.4 Transglutaminase 

Transglutaminases are a family of microbial enzymes that catalyze 

the formation of a covalent bond between a free amine group (e.g., 

protein- or peptide-bound lysine) and the y-carboxamidegroup of 

protein- or peptide bound glutamine. Transglutaminase has been used 

in applications such as binding small chunks of meats into a big one 

("portion control"), such as in sausages, hot dogs, recombined meat, 

improving the texture of low-grade meat such as so-called pale, soft. 

and exudative meat, making milk and yoghurts creamier and making 

noodles firmer. It has also been used to bind GMP in milk products 

(Tolkach and Kulozik, 2005). Although it was shown in the study that 

native whey proteins are not a good substrate for transglutaminase, no 

work has been done with albumen to determine whether partially 

denatured albumen, may show some effect on he resulting gel. This 

can form the basis for further work 
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7.3.5 Multlcomponent gels 

Many of the tests carried out in the present study were done with the 

materials added one at a time. The experiments were purposely 

designed in this manner in order to quantify the effect of such materials 

in a pure gel system. In reality, as foods contain a wide variety of 

different components, it is important to enumerate the effect of 

combinations of the materials by means of a larger, all-encompassing 

study. Response surface methodology is a good way to study such 

effects in a combined whey and albumen gel system. There is also 

more likelihood for the formation of mixed systems under such 

conditions where the materials exert differing effects on the albumen 

and whey protein gel structure. If there are any further synergistic or 

antagonistic behaviour between the groups of materials, these can be 

elucidated by means of such a study. 

The speed and order of gelation could also be important. For 

example, Ziegler and Rizvi (1989) showed that in a mixed gel system, it 

is the network that forms first that usually exhibits the greater degree of 

continuity even if it is the minor component by weight. The primary 

network is also the one that tends to carry the most load and thus 

determines the mechanical properties of the mixed gel. In another 

study, Gon~alves et al., (2004) used cassia gum to modify the heat­

induced gelation of whey protein isolate in a system that would 

normally have exhibited phase separation. Prior to this time,a different 

study had suggested that locust bean gum hampered protein/protein 

interactions in whey protein gel and that the chains of the gum 

molecules were accommodated in the continuous protein network 

causing a 'micro-phase separation' rather than a full phase separation. 

The degree of the micro-phase separation was shown to be dependent 

on pH (Tavares and Lopes da Silva, 2003). This proves that it is 

possible to retard the rate or extent of phase separation. There is a 

basis for further research here. Do any of the added materials have a 

higher affinity for the whey proteins than the albumen proteins? Or do 

they affect the solvent in such a way that they alter the affinity of the 
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protein molecules for the solvent? If any of these apply. can they be 

modified such that preferential gelation of a selected molecule (or 

group of molecules) can be induced? This will be of considerable 

interest in creating novel products within the food industry. 

7.3.6 Type of acid 

Acidification of all the gel samples used in the present study, were 

carried out with hydrochloric acid. Previous protein gelation studies 

have used other acids such as lactic acid, phosphoric acid, citric acid, 

tartaric acid, acetic acid and glucono delta lactone to lower the pH 

(Jelen and Sucheim, 1984; Venugopal et a/., 1994; Soye et a/., 1997; 

Ju and Kilara, 1998). Data suggests that the use of different acidulants 

produced gels with a range of functionalities. This is due to the fact that 

the introduction of different ions into a solvent can cause alterations in 

the solvent, which in tum can affect the solubility, unfolding and 

aggregation of the protein molecule (Damodaran and Kinsella, 1982). 

The Hofmeister series also postulates that different anions have 

different effects on the structure of protein and other macromolecules. 

As many foods use one or more of the different acids during 

manufacture, it is known how many of the observations in this study will 

still hold true if an acid other than hydrochloric acid was used. For 

instance Resch et a/. (2005) reported that there were differences in the 

fracture strain values of a whey protein gels made with lactic acid, citric 

acid and hydrochloric acid. More common food acids should be tested 

for their effect on the properties of the resulting gel. 

7.3.7 Effect of reducing sugars 

There is indication that more reactive reducing sugars may lead to a 

stronger gel when reacted with globular proteins although they are also 

likely to fonn a darker product (Mitchell and Hill, 1995). In a more 

recent study, Kwan and Easa (2003) used glucose as a Maillard active 

molecule in making retort tofu and reported that the retorted tofu was 

finner than the control sample. However, a few other studies suggest 
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that glucose has very little effect on Maillard crosslinking (Mitchell and 

Hill, 1995; Graham, 1996). 

In the present study, only dextrose and lactose were used as sugar 

sources. It will be interesting to determine the effect of other sugars 

especially the pentoses such as ribose and xylose in their ability to act 

as a precursor for Maillard crosslinking. 

7.3.8 Confocal Laser Scanning Microscopy 

One of the constraints in the present study has been the difficulty 

within the time frame of the study to fully define and encapsulate the 

differences between a particulate gel and a phase-separated gel. Even 

with the so-called fine-stranded gels, resolution was only achieved up 

to about 150-300 microns. There are a few studies that have reported 

resolution as low as 2-5 microns. It is thought that at this level of 

resolution, it should be possible to show the difference between a 

phase-separated and particulate gel. 

Furthermore, as many foods consist of a lot more than just two 

components, differential and multiple staining of a gel sample for CLSM 

will be necessary to further elucidate the relationship between micro 

and macro molecules and their effect on protein gel properties. Arltoft 

et a/. (2007a) reported some success with differential staining of pectin 

and carageenan in a dairy dessert and were able to show clear 

evidence of a coupled gel between the pectin and carageenan in a 

continuous casein matrix. For instance, in the protein/pectin gels 

reported in the present study, it would have been useful to be able to 

stain the pectin with a fluorescent marker in order to be able to monitor 

its position within the gel structure and its affinity for water. Staining of 

the pectin phase is difficult but there are ongoing studies within this 

field to define an effective pectin staining procedure (personal 

communication). Protein molecules can easily be labelled because the 

label molecules tend to be hydrophobic and will therefore prefer to sit in 

the protein rich areas. Pectin is hydrophilic and therefore has no affinity 

for fluorescent label molecules, which tend to be more hydrophobic. 

Pectin and most other polysaccharides have to be labelled by binding 
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the label molecules covalently (Tromp et al., 2004). The binding takes 

place by a chemical reaction of the reactive label with the hydroxyl 

groups on the pectin chain. The danger is that sometimes the extra 

charges introduced to the pectin chain change the properties of the 

pectin. In the experiment by Arltoft et al. (2007a) the pectin was 

stained with an anti-pectin antibody JIM5. Further tests have also been 

carried out by Arloft et al. (2007b) using monoclonal pectin antibody 

JIM 7. If available, this antibody may find widespread use in pectin 

staining for CLSM studies. 
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APPENDIX 1 

RAW DATA PARAMETERS FOR LACTOSE GEL 

til W or-t 
~ ~ N 

I- ~ U) U) U) U) w E w..e za: ~i ~ U) U) U) w 
.J!. 

w-.... w w 0 U) w Z 
U) ffi 0 a:~ a:z Ww a: ;:) ;:)- w z w Z ;:)- ;:)~ Q.- .J_ W Z z :!!:U) lID O:z:: 0" M~ .J .Jill ;:)~ a:~ 

Z- (5 C1: W I-~ 1--a::Ii tiD. I-C a:!!.. ~ ~~ oS i ~ ::::i 1-;:) 
o~ oU) 

w;:) oGl a:- w- a: Z U) :Ii iii -.J 
:iffi .e .e E 0 III .Q w l- .e a: w i!!:;:) :il-~z I- ~ :z:: ;:) :z:: w 0 II. u.:::J I- :z:: Q. 0 a: u.U) II. a: w .Q 0 ~ U) 0 C) 0 l-e ~ 0 :Ii U) 

1 5 1.5/1 0 0.753 3.33 3.39 5.20 8693.03 0.53 0.21 1818.07 1032.20 0.07 1582.12 63.66 242.75 
2 5 1.5/1 0 0.753 3.34 3.46 5.02 8987.56 0.52 0.21 1816.56 965.17 0.06 1541.64 63.13 232.82 

3 5 1.5/1 0 0.753 3.34 3.36 4.91 8855.89 0.52 0.22 1793.02 923.20 0.06 1591.62 63.06 253.08 
4 6 1.5/1 0 0.647 3.38 2.36 1.61 8967.80 0.72 0.19 1721.14 1245.77 0.06 1533.14 16.98 313.18 
5 6 1.5/1 0 0.646 3.37 2.01 1.33 11560.74 0.70 0.23 2627.40 1496.56 0.08 1515.28 70.72 306.22 
6 6 1.5/1 0 0.644 3.37 1.89 1.45 11243.~ 0.70 0.22 2126.35 1620.98 0.08 1465.13 68.04 273.14 
7 5 211 0 0.735 3.31 3.12 3.70 9422.01 0.60 0.21 1942.70 1155.61 0.06 1761.79 63.26 282.96 
8 5 211 0 0.737 3.31 3.02 3.68 10023.45 0.59 0.21 2053.01 997.78 0.06 1851.80 63.02 262.99 
9 5 2/1 0 0.734 3.30 3.16 4.17 9571.29 0.49 0.20 1942.07 959.82 0.06 1795.84 63.39 272.94 
10 6 211 0 0.637 3.26 1.88 0.90 9689.08 0.72 0.24 2376.69 1759.03 0.07 1595.55 66.12 263.28 
11 6 2/1 0 0.638 3.30 2.03 1.13 10148.34 0.74 0.25 2152.39 1682.90 0.07 1521.61 65.12 273.15 
12 6 2/1 0 0.638 3.24 1.89 0.91 9475.20 0.73 0.23 2172.01 1583.42 0.07 1511.56 65.10 253.12 
13 5 2.5/1 0 0.742 3.44 4.03 3.79 11124.11 0.55 0.22 2237.19 1234.83 0.06 1948.02 67.67 353.36 
14 5 2.5/1 0 0.744 3.42 3.98 3.73 12057.54 0.56 0.21 2069.82 1265.25 0.06 1937.08 67.64 353.41 
15 5 2.5/1 0 0.739 3.43 3.89 3.84 11672.~9 0.58 0.22 2116.63 1176.74 0.06 1887.26 66.56 343.33 
16 6 2.5/1 0 0.629 3.26 0.89 0.92 10221.89 0.73 0.21 2176.05 1590.48 0.06 1685.41 71.17 363.51 
17 6 2.5/1 0 0.629 3.23 0.74 1.11 9657.85 0.71 0.21 2221.08 1432.27 0.06 1715.41 71.80 373.51 
18 6 2.5/1 0 0.626 3.26 0.91 0.92 9402·41 0.72 0.21 2114.13 1433.97 0.06 1675.42 71.74 363.27 
19 5 1.5/1 0.5 0.738 3.39 3.52 4.76 9649.17 0.57 0.21 1972.12 1117.12 0.06 1625.73 64.01 262.96 
20 5 1.5/1 0.5 0.736 3.35 3.14 4.89 9040.45 0.61 0.20 1787.52 1124.05 0.05 1635.88 64.04 252.99 
21 5 1.5/1 0.5 0.739 3.35 3.17 4.86 8726.60 0.59 0.20 1858.81 1130.48 0.06 1545.86 63.61 252.85 
22 6 1.5/1 0.5 0.640 3.25 2.12 1.23 9189.47 0.80 0.21 1941.13 1409.06 0.07 1556.12 66.44 272.95 
23 6 1.5/1 0.5 0.641 3.26 2.10 1.21 8535.45 0.72 0.20 1991.15 1598.41 0.07 1535.56 65.48 273.07 
24 6 1.5/1 0.5 0.640 3.22 2.00 1.20 8872.21 0.82 0.20 1916.40 1575.86 0.07 1543.25 66.00 273.26 
25 5 211 0.5 0.739 3.26 3.94 5.08 10191.15 0.50 0.20 1824.73 1242.50 0.07 1839.36 63.91 272.79 
26 5 211 0.5 0.740 3.25 3.93 4.97 9153.65 0.51 0.22 2294.02 1100.64 0.07 1778.60 63.33 272.90 
27 5 211 0.5 0.740 3.28 3.84 5.04 9239.68 0.53 0.21 1968.78 1206.44 0.07 1819.66 64.57 262.77 
28 6 211 0.5 0.633 3.18 2.11 1.23 9060.50 0.77 0.24 1942.52 1396.27 0.07 1567.58 67.38 313.54 
29 6 2/1 0.5 0.630 3.19 1.90 1.20 9369.2S 0.74 0.22 2058.24 1526.08 0.07 1547.10 67.22 313.55 
30 6 211 0.5 0.629 3.17 2.23 1.28 9330.01 0.74 0.22 1919.69 1414.19 0.07 1457.36 68.80 313.48 
31 5 2.5/1 0.5 0.750 3.37 4.09 4.24 10333.30 0.51 0.22 2310.89 1297.30 0.06 1874.44 66.81 333.21 
32 5 2.5/1 0.5 0.748 3.41 4.23 4.20 10304.08 0.55 0.22 2345.08 1275.35 0.06 1864.89 66.65 329.37 
33 5 2.5/1 0.5 0.748 3.39 4.32 4.11 10301.22 0.51 0.23 2313.30 1263.75 0.06 1777.15 66.72 323.31 
34 6 2.5/1 0.5 0.627 3.20 1.63 1.34 9557.05 0.72 0.21 1838.25 1228.46 0.06 1715.05 70.15 363.41 
35 6 2.5/1 0.5 0.626 3.22 1.67 1.23 9524.95 0.74 0.20 1771.12 1200.82 0.06 1630.48 69.69 373.40 
36 6 2.5/1 0.5 0.627 3.22 1.68 1.31 9360.23 0.75 0.20 1846.89 1212.28 0.06 1646.17 70.15 373.04 
37 5 1.5/1 1 0.747 3.26 3.80 4.90 9169.71 0.59 0.22 2213.67 1495.78 0.07 1534.06 63.69 242.24 
38 5 1.5/1 1 0.749 3.30 3.68 5.02 9440.97 0.58 0.23 2335.39 1352.89 0.07 1595.66 63.10 242.33 
39 5 1.5/1 1 0.749 3.31 3.71 5.06 9773.08 0.59 0.22 2568.66 1552.37 0.07 1555.27 63.57 241.44 
40 6 1.5/1 1 0.650 3.46 1.93 1.22 9447.50 0.79 0.22 2081.89 1642.02 0.07 1695.84 65.76 293.00 
41 6 1.5/1 1 0.642 3.38 2.09 1.05 8914.54 0.80 0.23 2003.52 1606.55 0.07 1656.25 66.05 292.90 
42 6 1.5/1 1 0.642 3.39 1.67 1.08 9401.95 0.82 0.23 2075.10 1617.38 0.07 1656.72 65.12 293.00 
43 5 2/1 1 0.740 3.27 3.80 4.86 9424.89 0.56 0.22 2445.83 1034.69 0.06 1764.42 64.31 284.13 
44 5 2/1 1 0.742 3.26 3.57 4.95 10269.00 0.54 0.22 2036.90 1132.01 0.06 1745.90 64.16 272.89 
45 5 211 1 0.742 3.25 3.85 4.76 10016.15 0.53 0.23 2359.85 1089.78 0.06 1696.21 64.16 278.88 
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46 6 211 1 0.634 3.29 1.75 0.89 9830.66 0.74 0.22 2052.35 1448.77 0.07 1724.41 68.22 329.66 

47 6 211 1 0.635 3.29 1.63 0.93 9770.12 0.71 0.22 2122.17 1536.90 0.07 1745.03 68.49 315.18 

48 6 2/1 1 0.633 3.27 1.65 1.07 9781.95 0.75 0.22 2041.15 1583.14 0.07 1745.41 68.37 333.20 

49 5 2.5/1 1 0.747 3.45 3.75 3.99 11418.88 0.60 0.23 2630.05 1521.74 0.06 1798.55 67.02 321.57 

50 5 2.5/1 1 0.749 3.46 3.74 3.99 11013.60 0.60 0.23 2516.43 1501.81 0.06 1778.26 67.26 319.17 

51 5 2.5/1 1 0.747 3.48 3.52 4.10 11044.39 0.59 0.23 2522.57 1492.70 0.06 1748.00 66.60 326.05 
52 6 2.5/1 1 0.626 3.24 2.22 0.87 9787.20 0.71 0.20 1935.89 1235.84 0.06 1675.27 71.62 435.32 

53 6 2.5/1 1 0.628 3.22 2.16 0.87 9650.36 0.70 0.20 1907.27 1202.20 0.06 1695.02 71.19 393.57 
54 6 2.5/1 1 0.627 3.26 2.25 0.91 9758.81 0.69 0.20 1768.81 1152.75 0.06 1655.13 71.54 343.60 
55 5 1.5/1 1.5 0.752 3.33 3.94 4.67 7908.83 0.52 0.22 1795.69 930.95 0.06 1580.94 65.27 286.29 
56 5 1.5/1 1.5 0.752 3.35 3.91 4.59 8512.59 0.52 0.21 1851.97 977.28 0.06 1628.65 65.11 272.59 
57 5 1.5/1 1.5 0.751 3.38 3.88 4.67 8790.38 0.48 0.22 1864.30 971.06 0.06 1545.96 65.77 272.53 
58 6 1.5/1 1.5 0.654 3.31 2.18 1.23 9479.33 0.83 0.21 1955.16 1615.55 0.07 1515.84 67.54 293.40 

59 6 1.5/1 1.5 0.656 3.37 2.14 1.22 9471.38 0.80 0.23 2220.71 1771.04 0.07 1458.89 66.18 273.26 
60 6 1.5/1 1.5 0.654 3.32 1.96 1.40 8926.55 0.66 0.23 2078.20 1372.24 0.07 1588.94 65.25 253.43 
61 5 211 1.5 0.744 3.33 3.19 4.55 11714.21 0.65 0.23 2393.91 1549.50 0.06 1886.14 63.59 283.15 
62 5 2/1 1.5 0.742 3.32 3.49 4.74 11411.19 0.60 0.23 2462.81 1442.93 0.07 1776.31 63.02 293.16 
63 5 211 1.5 0.743 3.31 3.28 4.70 10526.42 0.63 0.23 2255.70 1559.49 0.07 1777.39 64.88 293.27 
64 6 211 1.5 0.647 3.23 1.97 1.18 8732.70 0.73 0.20 1678.39 1164.43 0.07 1516.83 68.42 323.55 
65 6 2/1 1.5 0.647 3.22 2.03 1.28 8530.41 0.68 0.21 1797.42 1219.83 0.07 1476.46 69.32 313.53 
66 6 211 1.5 0.641 3.18 2.02 1.11 8051.53 0.73 0.21 1507.19 1217.40 0.07 1552.85 68.61 313.52 
67 5 2.5/1 1.5 0.741 3.34 3.23 3.66 11559.88 0.51 0.25 2849.32 1465.80 0.06 1756.67 66.56 323.49 
68 5 2.5/1 1.5 0.742 3.34 2.89 3.94 11853.07 0.52 0.22 2817.98 1497.83 0.06 1753.17 67.56 343.33 
69 5 2.5/1 1.5 0.740 3.39 3.50 3.71 11660.37 0.53 0.23 2689.23 1539.26 0.06 1758.10 67.43 313.45 
70 6 2.5/1 1.5 0.626 3.17 2.11 0.91 8110.89 0.68 0.18 1248.29 977.11 0.05 1638.10 74.94 333.56 
71 6 2.5/1 1.5 0.627 3.20 2.15 0.88 7163.54 0.73 0.17 1134.06 773.84 0.05 1546.79 73.02 343.57 
72 6 2.5/1 1.5 0.625 3.22 2.12 0.89 8049.46 0.69 0.17 1204.78 875.09 0.05 1645.55 72.67 351.48 
73 5 1.5/1 2 0.751 3.27 3.21 4.93 9426.62 0.67 0.23 2038.56 1093.44 0.06 1581.26 65.26 242.70 
74 5 1.5/1 2 0.751 3.29 3.18 4.96 9123.03 0.66 0.22 1864.08 1054.15 0.06 1577.72 64.38 252.67 
75 5 1.5/1 2 0.751 3.28 3.25 5.12 8631.19 0.62 0.22 1937.91 1038.45 0.06 1578.50 64.30 252.69 
76 6 1.5/1 2 0.643 3.20 2.22 1.41 7839.32 0.75 0.24 2045.33 1587.58 0.07 1664.10 64.53 252.90 
77 6 1.5/1 2 0.641 3.28 2.31 1.37 8944.94 0.77 0.23 2390.26 1622.87 0.08 1574.21 64.32 252.89 
78 6 1.5/1 2 0.641 3.21 2.11 1.32 8397.84 0.78 0.24 1691.61 1773.21 0.08 1634.18 66.15 252.89 
79 5 211 2 0.753 3.35 3.42 4.19 9252.06 0.54 0.21 1909.94 1139.02 0.06 1636.72 65.18 293.04 
80 5 211 2 0.750 3.34 3.53 4.41 9035.12 0.55 0.22 2045.21 1113.92 0.06 1636.22 65.29 283.04 
81 5 2/1 2 0.748 3.35 3.32 4.38 9162.46 0.60 0.22 1828.76 1144.25 0.06 1675.45 65.13 283.00 
82 6 211 2 0.635 3.24 1.35 1.22 9212.07 0.72 0.19 1768.40 1271.89 0.06 1496.10 69.67 333.41 
83 6 211 2 0.634 3.21 1.37 1.22 8883.60 0.73 0.21 1941.11 1226.51 0.06 1556.33 68.00 323.56 
84 6 2/1 2 0.633 3.19 1.57 1.25 9101.90 0.71 0.20 1855.02 1317.72 0.06 1525.37 69.72 323.57 
85 5 2.5/1 2 0.744 3.30 3.99 3.99 11043.61 0.54 0.22 2375.86 1292.95 0.06 1726.27 65.81 297.09 
86 5 2.5/1 2 0.743 3.34 3.78 4.22 11083.12 0.55 0.23 2495.93 1367.16 0.07 1752.66 65.49 331.27 
87 5 2.5/1 2 0.744 3.34 3.85 4.15 11298.89 0.53 0.21 2389.80 1245.33 0.06 1773.86 65.52 301.63 
88 6 2.5/1 2 0.630 3.17 1.96 1.11 8195.40 0.70 0.20 1999.27 1297.61 0.06 1625.00 72.30 423.31 
89 6 2.5/1 2 0.632 3.22 1.80 1.12 8973.73 0.73 0.20 1594.86 1119.45 0.06 1747.06 73.82 423.28 
90 6 2.5/1 2 0.631 3.15 1.75 1.05 7804.81 0.68 0.21 1897.92 1375.40 0.06 1649.24 72.74 413.30 
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APPENDIX 2 

PICTORIAL ILLUSTRATION OF TYPICAL TPA PLOT 
FOR LACTOSE GEL 
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APPENDIX 3A 

PICTORIAL ILLUSTRATION OF TYPICAL STRESS RELAXATION 
PLOT FOR LACTOSE GEL 
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APPENDIX 38 

PICTORIAL ILLUSTRATION OF LINEARIZED STRESS RELAXATION 
PLOT FOR LACTOSE GEL (converted via Excel Spreadsheet) 
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_t_ = ---.fo,=-t--::-:-~ 
Y(t) F 0 - F(t) 

Where Fa = force at t = 0 and F(t) is force at time (t) during compression cycle 
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