
CLOTHWORKERS' LIBRARY
UNIVERSITY OF LEEDS

THE APPLICATION OF ROBOTICS TO THE ASSEMBLY OF

FLEXIBLE PARTS BY SEWING

BY

~
DAVID GERSHON

l..

Submitted in fulfilment of the requirements for

the degree of Doctor of Philosophy.

Being an account of work carried out under the

supervision of Professor I. Porat and Mr. C.A. Pinches.

Department of Textile Industries

University of Leeds

March, 1987

CLA~S tJARK

-r~ d.-'d--,-\-~~

ABSTRACT

This thesis concerns the development of a robotic cell to

perform assembly and handling operations on cloth.- A

flexible automation approach was adopted, in which the

robot was required to control the cloth panel during both

handling and sewing operations, without the aid of hard

automation attachments which might limit the flexibility of

the system. The cell consisted of an adaptively controlled

robot, a hierarchy of controllers, a conventional sewing

machine, a two-fingered fabric steering end-effector, and

several sensor systems.

A technique was developed for producing a seam parallel to

an edge of arbitrary contour, in which two cameras, a

cloth tension sensor and the sewing machine's shaft encoder

provided the sensory input. Two sensory servo control

systems were required, one control system generated the

robot's trajectory to maintain a small constant cloth

tension, and the other directed the robot to manipulate the

cloth panel to maintain a constant seam width.

The design of the cloth tension control was based on the

measured frequency response of the open loop system. The

seam width control was designed using simulation studies,

which accounted for the control transfer function, and non

linearities such as camera pixel resolution, time delays

and robot motion limitations.

Several robotic handling techniques were developed, so that

a cloth panel placed arbitrarily on the sewing table could

be set up for an edge seaming operation, and the cloth

could be rotated about the needle. The system's flexibility

was demonstrated in the assembly of an irregularly shaped

cloth panel, in which three adjacent sides were sewn up.

To Yvette

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to :-

* my supervisors, Prof. I. Porat and Mr. C.A. Pinches

for their valuable help and guidance

* Mr. A. Whitehead and the workshop staff for their

assistance in designing and building the rig

* Mr. M. N. Moghaddassi for his help and advice with the

electronic circuits

* the Textile and Other Manufactures Requirements

of the Department of Trade and Industry for

financial assistance

Board

their

* my parents and parents-in-law whose continued support

helped make this Ph.D possible.

iv

TABLE OF CONTENTS

ABSTRACT•......•. · i i

ACKNOWLEDGEMENTS ••••••••••••••.••••••••••••••••••••••••• i i i

ABBREVIATIONS ••• xx i

1. INTRODUCTION .••.••••••••••••

1.1. The Clothing Industry.

1. 2. Traditional Clothing Manufacturing Processes.

1.2.1. Cloth Preparation •• . . .
1 .2.2. Assemb 1 y ••••••••••

1.2.3. Finishing and Packaging.

1.3. Clothing Automation - State of the Art .•

1.3.1. Cloth Preparation ••.

1.3.2. Assembly by Sewing.

1.3.2.1. Attachments. · .
1.3.2.2. Semi-Automation. · . . .

. . . .

1.3.2.3. Full Operational Automation ••

. . • • 1

· • 1

.2

• .2

.2

· .3

• .3

· .3

• .3

• .4

• .4

• .5

1.3.2.4. Full Sequential Automation •• • .6

1.3.3. Other Uses of Automation in Clothing .
Manufacture. · .6

1. 3.4. Summary · .. · .7

1.4. Flexible Clothing Automation Developments. • .8

1.4.1. Japan•......... • .8

1.4.1.1. Automated Sewing System Project .•• 8

1.4.1.2. Other Research Projects. · .9

1.4.2. U.S.A.• 10

1.4.2.1. The (TC) 2 Project.10

1.4.2.2. The Singer Sewing Corp .. .12

1.4.2.3. Clemson University .•••.13

v

1.4.3. Europe 14

1.4.3.1. The BRITE Project •..•...•....... 14

1.4.3.2. Non-BRITE Research~ ..••........•. 14

1.4.3.3. UK Research •••..••.•...•.•...•.•. 15

1.5. Comparison of Flexible Clothing Automation

Approaches ••••••••••••••••••••••••••••••••••••••• 16

1.5.1. Introduction 16

1.5.2. (TC)2 Approach •••.•••••••••••.•••.•••••••• 17

1.5.3. The Clemson Approach .•••••••••.••••.•.•••• 18

1.5.4. The Adaptive Robot Approach ••••••••••••.•• 19

1.5.5. The Intelligent Robot Approach •••••..••.•• 20

1.6. Clothing Automation Research at Leeds University.20

2. FIGARO A ROBOTIC SEWING DEVELOPMENT SYSTEM .••••••• 22

2. 1. Overv i ew •••.••••••••••••••••••••••••••••.•••••••• 22

2.2. Hierarchical Control Structure ••.•.••..•.•••••.•• 25

2.3. Station Controller ••••••••••••••••••.•.•.•••••••• 27

2.3.1. Hardware ' 27

2.3.2. Software 27

2.3.2.1. Requirement for Multi-Tasking ..•• 27

2.3.2.2. AMX-86 Multi-Tasking Executive .•. 28

2.3.2.3. Tasks 28

2.3.2.4. Scheduling and Priorities •••••••. 30

2.3.2.5. ISP's and Timers ..•....•..•....•. 31

2.3.2.6. Resource Management 32

2.3.2.7. AMX Configuration Module ..••••••. 32

2.3.2.8. Languages 32

2.4. PUMA 560 Robot •••••••••••••..••.••••.•••.••••.••. 33

2.4.1. Mechanical Specification •••.•••.••••.••••• 34

2.4.2. Calibration 35

2.4.3. Electrical Specification •••••.....•••.•.•. 36

2.4.4. Robot Control Design .••••.•••••••..•••.••• 37

2.5. VAL 11 Robot Control and Programming System .•.••. 38

2.5.1. Robot Motion Control Modes •••.••••••••..•. 38

vi

2.5.2. Motion Control Parameters ••...•••••••••••• 39

2.5.3. Location Transformations •••.•...•••••••.•• 40

2.6. General Purpose Communication (GPC) Channel •.•... 42

2.6.1. VAL II Supervisory Communications

Facility 42

2.6.2. FIGARO GPC Design .•••••••••••••.•••.•••••• 42

2.6.3. FIGARO GPC Protocol ••••••.•••••.•••.•••••• 43

2.7. Sewing Machine ...•.. · 44

2.8. Workstation Design ••••••••••••••••••.•••••••••.•• 45

2.8.1. Sewing Table •.•.••.••••••••••••.•••••••••• 46

2.8.2. End-Effector •••••••••••••.•••••••••.•••••• 46

2.8.2.1. Number of Fingers •••••.•••••••••• 47

2.8.2.2. Hand Design •••••••••••••.•.•••••• 48

2.8.2.3. Finger Pads ••••••.••••••••••••••• 48

2.8.2.4. Spring Loading of Fingers •••••••• 49

2.8.3. Robot Siting •••••••••••••••••.•.•••••••.•• 49

2.8.3.1. Singularities ..•••••••••.•.•••.•• 49

2.8.3.2. Robot Height ••••..••••••••••••••• 50

2.8.3.3. Limitations Due to End-effector •. 51

2.8.4. Coordinate Systems •••.•.•.....•••..•..•••. 52

3. THE DEVELOPMENT OF A REAL TIME PATH CONTROL

CAPABILITY ••••••••••••••••••••••.••••.•.•.••..•••.•.•• 54

3.1. VAL 11 ALTER Facility .•••••••••••••••••••••••• 54

3.1.1. Partial and Total Real Time Path Control

Modes ••••••••••••••••••••••••••••••••••••• 54

3.1.2. ALTER modes ••••••••••••••••••.•••.•••••••• 55

3.2. The ALTER Communication Channel •.•.•.•••.••.••.•. 56

3.3. Implementation of the ALTER Protocol on the

IBM AT •••••.•.••••.•••.•••••.••..•.•.••••...•..•. 57

3.3.1. Hardware Considerations .•.•.•.•...•.••..•. 57

3.3.2. Software Design ••••••••••••••.•.•..••••••• 57

3.3.3. Communication Overhead •....•..•.....•.•.•• 60

3.4. Dynamic Performance Tests on ALTER Control ••••••• 61

vii

3.4.1. ALTER Performance Specification •••.•.••.•• 61

3.4.2. Test Setup 62

3.4.3. Results 63

3.4.4. Conclusions •••••.•••••••••••..•••.•.•••... 66

3.5. Generation of ALTER Data .•.........•........•.... 67

3.5.1. Velocity and Acceleration Limitations •..•• 67

3.5.2. The Non-Cumulative Approach ••.••••••••..•. 69

3.5.2.1. The Need for Smoothing~ •••••••••• 69

3.5.2.2. The Interpolator Algorithm ••••••. 70

3.5.3. The Cumulative Approach ••••••.•.•.•••.•..•. 70

3.5.3.1. Implicit Interpolation •••.••••••• 70

3.5.4. Comparison of Cumulative and Non-Cumulative

Modes •• ~ •••••••••••••••••••••••••••••••••• 71

4. CLOTH TENS I ON CONTROL SySTEM •••••••••••••••••.•••••••• 72

4.1. Introduction 72

4.1.1. Robotic Sewing of a Straight Seam ••••••••• 72

4.1.2. Requirements of Cloth Feed Tracking

Servo Control .•••••...•••.....••.......... 73

4.2. Open Loop Contre 1 ...•.•.•.........•.............. 74

4.2.1. Shaft Encoder 74

4.2.2. Shaft Encoder Interface with IBM AT ••••••• 74

4.2.3. Software Implementation •.••••.••...••••.•. 75

4.2.3.1. SEW Task •.••••••.•••••••••••••... 75

4.2.3.2. Implementing Open Loop Control ••• 76

4.2.4. Open Loop Control Performance .•••••••••••• 77

4.2.5. Limitations of Open Loop Control •••••.••.. 78

4.3. Cloth Tension Sensor ..•••...••••••••.•.•.•.••.••• 79

4.3.1. Measuring Cloth Tension •••••••••••••••••.• 79

4.3.2. Sensor Specification•.•.......••••... 80

4.3.3. Choice of Transducer ..••...•.•••••••••..•. 82

4.3.4. Mechanical Design ..•..•••••.•.••..•••••..• 82

4.3.4.1. Mechanically Decoupled Force

Sensors•...•..•..••...... 82

viii

4.3.4.2. Force Measurement Considerations.83

4.3.4.3. Choice of Material•... 85

4.3.4.4. General Design •...•.....•.•.••.. 86

4.3.4.5. Design Calculations ..•.•..•.•.... 87

4.3.4.6. Detailed Design•.......•.•.•. 90

4.3.4.7. Mechanical Overload Protection ••• 91

4.3.5. Electrical Design ..•••••..•••.•••...•••.•• 92

4.3.5.1. Noise Prevention ••.•••.••..••.••• 92

4.3.5.2. Electrical Overload Protection .•• 93

4.3.6. Sensor Performance •••••••..••.•.••.••••... 94

4.3.6.1. Sensitivity •••••..••••••••••••••• 94

4.3.6.2. Cross-sensitivity •••••••••••••••. 94

4.3.6.3. Natural Frequency •••••.••••••••• ~96

4.3.7. Signal Conditioning ••••••••••••••••••••••• 96

4.3.7.1. Signal Conditioning Requirements.96

4.3.7.2. Peak Detector ••....•.•.....••..•. 97

4.3.7.3. Analog to Digital Converter •••••• 98

4.3.7.4. Detailed Design •••.•••••.•••••••• 98

4.3.7.5. Sensitivity •...•••.....•..•.•.. 100

4.4. Closed Loop Control System Design •.....•...••..• l02

4.4.1. Control System Approach ..••••..••.••••••• 102

4.4.1.1. Block Diagram ••••••••••••••••••• l02

4.4.1.2. Software Implementation••••• l03

4.4.2. Preliminary Investigation into Closed

Loop Contre 1 104

4.4.2.1. Start-up Acceleration ••••••••••• l04

4.4.2.2. Effect of Table Friction ..•.••.• l05

4.4.2.3. System Instability •.•••...••.•.• l06

4.4.2.4. System Compensation •.•.•.••••••• 107

4.4.2.5. Implementation of Integral

Control•.....•............ l07

4.4.2.6. Effect of Speed on Closed

Loop Control •••••....•.•.••..••• l08

4.4.2.7. Finai Block Diagram .••.•.•••••.. l08

ix

4.4.3. Bode Design of Control System ••.••••••••• 109

4.4.3.1. Bode Design Procedure•...... l10

4.4.4. Measurement of Open Loop Frequency

Response •.•..•..••••.•••..•.•••..•.•••... 111

4.4.4.1. Experimental Technique .•••..•.•• lll

4.4.4.2. Test Fabric •••••.•.•••••.•••.••• 112

4.4.4.3. Resu 1 t 5 ••••••••••••••••••••••••• 112

4.4.5. Compensator Characteristics ..••••••••.••• 115

4.4.6. Determination of Compensator Parameters •• 118

4.4.6.1. Calculation Method .•••••.••••••• 118

4.4.6.2. Compensator Calculation ••••••••• 118

4.5. Control System Performance •••••••••••••••••••••• 121

4.5.1. Performance Criterion ••.•.••••••••••••••• 121

4.5.2. Experimental Fine-Tuning ••••••••••••••••• 122

4.5.3. Performance Versus Speed ••••••••••••••••• 124

4.5.4. Performance Versus Fabric Properties ..•.• 126

4.5.4.1. Sewing a Two-Ply Panel •••.•••••• 126

4.5.4.2. Sewing along the Bias ••.•••••••• 127

4.5.4.3. Different Fabrics ••••••••••••••• 127

4.5.4.4. Spring Loading ••••••••••••••.•.• 128

4.6. Discussion 128

4.6.1. System Non-Linearities ••••••••••••••••••• 129

4.6.2. System Time Delay ••••••.•••••••••••••.••• 130

4.6.3. Mechanical Properties of Cloth •.•••.•.••• 130

4.6.3.1. Tensile Loading along Warp

or Weft Directions •••••••••••••• 130

4.6.3.2. Tensile Loading Along Bias

D ire et i on •.•••.••••...••••••••. • 132

4.6.3.3. Knitted Fabrics .•.•••••..••.•••• 133

4.6.4. Conclusions•.•... ~ .•.••...•....•.• 134

5. SEAM WIDTH CONTROL SYSTEM .•...•.•••••.•..••.•.•.•.••• 135

5.1. Introduction 135

5.1.1. Description of the Problem •••••••••.•.••• 135

x

5.1.2. Block Diagram 136

5.1.3. Design Options ..•.••..•••..••••••••.•.••• 138

5.2. Simulation Program••....•.......•.• 138

5.2.1. Development of the Algorithm .•.••••..•••• 138

5.2.1.1. Basic Algorithm•...•....•.•. 139

5.2.1.2. Calculation of Seam Width

Error, Es 142

5.2.1.3. Calculation of Cloth Rotation ••• 144

5.2.1.4. Calculation of Cloth

Translation •.•..•••••••..••••• 145

5.2.1.5. Control Transfer Function, G1 ••• 145

5.2.1.6. Robot Motion Limitations ..••.••• 146

5.2.1.7. Simulation of Vision System •••• 147

5.2.1.8. Graphic Output •••••••••••••••••• 148

5.2.2. Simulation Experiments ••••••••••••••••••• 150

5.2.2.1. Performance Index (P.I.) ••••.••• 150

5.2.2.2. Photocell and One Camera Systems151

5.2.2.3. Performance of the Ideal System.151

5.2.2.4. Vision System Limitations ..•...• 152

5.2.2.5. Robot Motion Limitations ..••.•.• 154

5.2.3. Conclusions 156

5.3. Vision System 158

5.3.1. Cameras .•..•••..•.......•..•..........••• 158

5.3.2. Interface to IBM AT ••••••••••••.••••••••• 160

5.3.3. Lighting Arrangement •••••.••••••••••••••• 160

5.3.4. PrOjection Lamp ••••••••.•••••••.••••••••• 162

5.3.5. Software Implementation .•••••••••••.•.••• 162

5.3.6. Calibration Technique ••••••.•••.•••...••• 164

5.3.7. Vision System Performance ••••••••••.••••• 168

5.4. Implementation of Seam Width Control •.....•.... 169

5.4.1. Calculation of Robot Motion to Rotate

Cloth 169

5.4.2. Robot Reach Limitations .•.••..•••.•.••••• 171

5.4.3. Software Implementation ••••••••.•.•.••••• 174

xi

5.4.4. Prevention of Buckling ••••••••••••.•••••. 175

5.4.4.1. Cloth Takeup .•••••••••••••..•••• 175

5.4.4.2. Table Friction .••••............. 176

5.4.4.3. Finger Loading •••••••.•••••••••• 176

5.4.4.4. Damped Motion .•••....•....•..... 177

5.4.5. Close Sewinq Technique. oi ••••••••••••••••• 177

5.5. Contro 1 System Performance •••••••••••••••.•••••• 179

5.5.1. Performance Tests ••.•••••••••..•...•..••. 180

5.5.1.1. Performance Index ••••••••••••••• 180

5.5.1.2. Sample Printout ••••.•.•.••••...• 181

5.5.2. Performance Results .••••••••••••••••••••• 181

5.5,3. Summary•..•...•............... 184

5.6. Disc:ussion 185

5.6.1. Comparison of Performance with

Simulation Results •••••••••.••••••••••••• 185

5.6.2. Sional Noise •.•••••••••••••.•••••••.••••• 187

5.6.3. System Time Delays •••••••••.•.•..••.••••• 188

5.6.4. Actuation Errors •••••••.•••.••••.•.••.••• 189

5.6.5. FAR and CLOSE Sewing Techniques .•.•.•.•.• 190

5.6.6. Damped Robot Motions •••••...•....••.•••.• 192

5.6.7. Adaptive Control •••••••••••••••.•••••.••• 192

5.6.8. Conclusions •••••••••••••••••••••••••••••• 193

6. THE DEVELOPMENT OF FABRIC HANDLING TECHNIQUES ••.••••. 195

6.1. Software Organization •••••••••••.•••.•.•.•.•••.• 195

6.1.1. IBM AT Implementation ••••.•••••••.•.••••• 196

6.1.2. VAL 11 Implementation .•..••••..••...••••• 198

6.2. Second Prototype of FIGARO End-Effector ••••••••• 198

6.2.1. Programmable Finger Distance ••.•••••••••• 199

6.2.2. Low Profile Photocells •••.•••........•..• 200

6.2.3. Design of Second Prototype ••...•..••••••• 200

6.2.3.1. The Leeds Ply Separation Device.200

6.2.3.2. Modifications to Ply Separation

Dev ice •••••..••••.••.•••.••••••. 201

xii

6.3. Settinq Up for the Edge Seaming Operation •.••••• 201

6.3.1. Sequence for Setting Up Operation •..•.•.• 201

6.3.2. Placing Cloth Corner Under Needle ..•..•.. 203

6.3.2.1. Finding Cloth Panel ••.••••••..•• 204

6.3.2.2. Findinq Top Right Hand Corner ••• 204

6.3.2.3. Moving Cloth up to Needle ••••••• 205

6.3.2.4. Fine Adjustment of Seam Width ••• 206

6.3.3. Deciding on Sewing Strategy ••••••••••••.• 207

6.3.4. Placing Fingers on Cloth Panel •.••••••••• 208

6.3.5. Fine Angular Adjustment .•••••••.•••.••••• 209
I

6.4. Completinq the Edge Seaming Operation ••••••••••• 209

6.4.1. Seqmented Seam Production ••••••••••.•••.• 210

6.4.2. Sewing Up to the End of the Cloth ••.•.••• 210

6.4.2.1. Detection of the Cloth End .••••• 211

6.4.2.2. The inch Function •••••.•••••.••• 212

6.5. Rotating Cloth Panel about Needle .••••.•.•.••••• 213

6.5.1. VAL 11 Implementation •••••••••••••••••••• 213

6.5.2. Effect of Robot Inaccuracy ••••..•••.•••.• 214

6.5.3. Accommodating Robot Inaccuracy •.•••.•••.• 214

6.5.4. The straighten Routine •••.•••••.•.•.....• 215

6.6. Demonstration Assembly ••.•••••••••••••.•••••••.• 217

6.7. Discussion 217

6.7.1. Overhead Camera ••••••••••••••••••••.•.••• 217

6.7.2. Buckling Prevention •••••.•••••••.....•.• 218

7. DISCUSSION ..••••••.••••••••••••••••.•••••••••••••.••• 220

7. 1. Rev i ew •••••••••••••••••••••••••••••.•••...••••• 220

7.1.1.0bjective 220

7.1.2. The FIGARO Robotic Sewing System •..•••••• 220

7.1.3. Adaptive Control of the Robot ••...••••••• 223

7.1.4. CloFh Tension Control System ..•••...•.•.• 224

7.1.5. Seam ~Jidth Control System .•••.••••••••••• 226

7.1.6. Handling Techniques ••••••.•••••..•••••••• 227

7.2. Capabilities and Limitations of FIGARO system ••• 228

xiii

7.2.1. Introduction ••••••••••••••••• •• 228

7.2.2. Multi-Function Capabilities........ ..229

7.2.2.1. Present Capabilities. • •• 229

7.2.2.2. Potential Capabilities. ..230

7.2.3. Flexibility...................... • •• 231

7.2.4.

7.2.3.1. Present System's Flexibility •••• 232

7.2.3.2. Flexibility to Shape........ ..232

7.2.3.3.

7.2.3.4.

A Se~>ji ng

Flexibility

Flexibility

to Edge Contour.

to Fabric

Characteristics •••.

Strategy Generator (SSG)

• .232

• •• 233

7.3. Commercialization Considerations ••

• •• 234

• .235

••• 236

7.4.

7.3.1.

7.3.2.

Speed.

Cost ••

7.3.2.1.

7.3.2.2.

.
General Comments ••

Comments Relating to

Clothing Industry.

.
the

7.3.3. Other Considerations ••

Recommendations

. . . .

7.4.1. Robot ••••

7.4.2. Cell Controller.

.236

••••••• 236

• ••••• 237

• ••• 239

· .239

. •• 239

.240

7.4.3. Sewing Machine •• • •••. 241

7.5.

7.4.4. Workstation

7.4.5. Future Work.

Conclusion.
• •••. 242

. . . . • .• 242

REFERENCES ••••••••••••••••••••••••••••••.••••••••••••••• 244

APPENDICES

•
A. MISCELLANEOUS SOFTWARE MODULES.

A.1.

A.2.

Software Versions •..••.••.•

AMX C Interface Prefix File.

.252

.252

.252

xiv

A.3. AMX Configuration Module ••••••.•••••.••••..•.. 253

A.3.1. Summary of Configuration Details ••.•..• 253

A.3.2. Configuration Module ...••...........•.• 254

A.4. Header File for C Language Modules .•..•••.•••• 26l

A.5. Global Variables .•.....•.••.•.•..••.•...••..•• 265

A.6. Initialisations ••••••••••••••••••••••••..•..•• 267

A.6.l. Restart Procedures •.•.•••••••••••••..•• 267

A.6.2. AMX Start Up .••••••••••••.•••.•.•••..•• 267

A.7. PRNT Task •••••••••..••••••••.•••••••••••••.••• 267

A.s. Miscellaneous Functions •••••••••••.•.•••.•.•.• 268

B. SOFTWARE FOR ALTER COMMUNICATION CHANNEL ••••••..•• 270

B.l. The Restart Procedure .••.•••...•...•..•..••.•. 270

B.2. The COMM Task .•••••••••••••••••• ~ ••••.•••••••• 271

B.3. The RXMG Task •••••••••••••••••••••••••••••..•• 283

8.4. The TXMG Task ..•••..••••••.•••.•.••••.••••.••• 285

B.5. Assembly Module •••.••••••••••.••••••...••..••• 286

B.6. High Level Interface ••••••••.••••••••••••••••• 290

C'. THE GPC LINK ••••••••••••••••••••.••••••••••••••••• 292

C.l. Software Support for GP Communications ••••••.• 292
f

C.l.l. IBM AT Implementation •••••••••••••••••• 292

C.l.1.1. Interrupt Service Procedures •• 292

C.l.l.2. 110 Routines ••.•.•••.•.....••. 292

C.2. VAL 11 Implementation of GPC .•••..••..•.•...•• 294

C.3. Callinq VAL 11 Functions ••••••.•.••••.••••.•.. 295

C.3.1. IBM AT Implementation ..••..••....••.••• 295

C.3.2. VAL 11 Implementation .••..•••.•.•••.••• 296

C.4. Uplink Facility ••.••••.•••••.•.•.••••••••••••• 279

D. THE SEW TASK ••••••••••••••••••••••••••••••••••••••• 293

0.1. Restart Procedure •••••.•••••••.•.••••.•....••• 293

0.2. Main Routine of SEW Task .•••••••..•..•.•.•.••• 303

0.3. Cloth Tension Control Routines ••••••••.•.••••• 305

xv

D.4. Seam Width Control Rouines ..•••••••••• ' ..•••••• 306

E. THE corn, MAKE AND POST TASKS•.•....•.. 303

E.I. The CONT Task .••.•.•••••••..•.•••••.•.....•••. 303

E.2. The MAKE Task .••..............••.............. 306

E.3. The POST Task •••••••••••••.••••••••••••••••••• 309

E.4. VAL 11 Functions ...•..••.•...••.......•...•... 314

F. CAMERA ROUTINES AND CALIBRATION PROGRAM •••••••••••• 325

F.I. Camera Routines under AMX ..••••••••.••..•••••• 325

F.I.I. Restart Procedure •••••••••••••.•••••••• 325

F.l.2. Routines to Capture a Frame •••..•••.•• 325

F.2. Camera Setup and Calibration Program •••••••••• 326

G. SIMULATION PROGRAM •••••••••••••.••••••••••••••••••• 336

H. INTERFACE CIRCUITS •••••••••••••••••••••..••••••••. 346

H.I. IBM AT Interface Card •••••••••••.••.•••••••••• 346

H.I.I. General Purpose Ports ..•..••....•••.•.• 346

H.l.2. Sewing Machine Interface ••••.•.•••••.•• 346

H.l.3. Counter for Encoder Signal ..•.•.••••••• 346

H.l.4. GPC Interface •••••••••••••••••••••••••• 348

H.2. Tension Sensor ••.•••......•..•••.•....••.•.... 348

I. PAPER PRESENTED AT THE 16th ISIR, BRUSSELS, 1986 ••• 351

I . 1. ABSTRACT •••••••••••••••••••••••••••••••••••••• 351

I .2. I NTRODUCT 1 ON ••••••••.•••.••••••••••••••.••.••• 352

1.3. SYSTEM OVERVIEW .••••••••••••••••••••••..••.••. 353

1.3.1. Concept (fig. 1) ...••.•.•..•..•..•..•• 354

1.3.2. Development System (fig. 2) •........... 361

1 .4. SEAM TRACK 1 NG SERVO SySTEM ••...••••...•..•••.• 372

1 • 4 • 1. S i mu 1 at ion Pro 9 r a m (fig. 3)........... 342

1.4.2. Vision System •.•.•...•••.••.••••.••••. 353

1.4.3. End-Effector Rotation .•••••.••••.•••••• 353

xvi

I .5. CLOTH FEED TRACK I NG SERVO ••••••••••••.••••...• 353

1.5.1. Sewing Machine Encoder Signal•• 353

1.5.2. Cloth Tension Sensor (fig. 6) ..•••.... 354

1.5.3. Cloth Feed Tracking Control •••.•••••••• 354

1.6. SYSTEM PERFORMANCE •....................•..•.•. 355

I .6. 1. Seam Tr ac king•.....•...........•. 356

1.6.2. Tension control ••.••••••••••••.•••••••• 356

1.6.3. Seam qual ity ••••••••••.•••••••..••••••• 356

1.7. CONCLUSI0N .••••••••••••.•••••.•••••••.•.•.•.•• 357

1.8. ACKNOWLEDGEMENTS •••.•••.•••••.•••.••••.••••••• 357

xvii

LIST OF FIGURES

2-1: General View of FIGARO System •.•••..••••.•...•••••.• 22

2-2: Edqe Seaming Operation ...••....•.......•...•........ 23

2-3: FIGARO Hierarchical Control Structure •••••••••••••.• 25

2-4: Al"lX-86 Multi-Taskino Executive ••••••••.•..••.••.••.• 29

2-5: The PUMA 560 Robot ••..•.•.•••.•••••..••.•...•••••••• 33

2-6: WORLD and TOOL Coordinate Systems •.•.••••••••••••••• 41

2-7: FIGARO End-Effector - First Prototype ••••••••••••••. 47

2-8: FIGARO Coordina:e Systems .•••••••••••.•••••.•••••••• 53

3-1: Hierarchical Implementation of ALTER Protocol on

the IBM AT ••••••••• ' ••••••••••••••••••••••••••••• ~ ••• 58

3-2: ALTER Dynami~ Test Results

3-3: ALTER Dynamic Test Results

Ramp Test •••••••••••• 64

Stepped Ramp Test •••• 65

4-1: Sinqle Cantilever Sensor Desiqn •••••.•••••••.•.••••• 84

4-2: Double Cantilever Sensor Design .••...............••• 85

4-3: Cloth Tension Sensor - Design Concept •••••.•...•..•• 87

4-4: Cloth Tension Sensor - Realization .•.....•••.••....• 87

4-5: Measured Sensitivity of Tension Sensor •••••.••••••• 95

4-6: Peak Detector/ADC Circuit ••••••.••••••.•••••..•.••.. 99

4-7: Closed Loop Tension Control System ••••••••.•••.•••• 101

4-8: Effect of Table Friction on Tension Measurement •••• l05

4-9: Modified Block Diaqram of Tension Control System ••• l09

4-10: Cloth Tension Variations Due to Sinusoidal

For c: i nq ••• 11 3

4-11: Bode Plot Diagram for Cloth Tension Control

System.', .•••..••.•.•••..••.••..••••.........•...•. 114

4-12: Bode Plot Diaqram of Compensator, P(jw) ••...•••••• 117

4-13: Modified Bode Plot Diagram •.•••••••••••••••••••••. 120

4-14: Tension Control System Performance ..•.•••.•••••••• 125

4-15: Typical Load Extension Curve for Woven Fabrics ••• 131

xviii

4-16: Deformation of Woven Fabric, Loaded in the

Bias Direction 133

5-1: Initial Finqer Position for FAR Sewing Technique ••. 136

5-2: Seam Width Servo Control System .••.••••.•..•..•.... 137

5-3: Seam Width Control Problem ••••••• ~ ••••••••••••••••• 139

5-4: Flowchart of Simulation Alqorithm .•••••••••••••.••• 141

5-5: Apparent and Actual Seam Width ...••••••••.••••...•• 143

5-6: Simulation Plot for Two Camera System ••••••••••••.• 149

5-7: Simulation Plot for One Camera System ••••.••••..••• 150

5-8: Effect of Speed on Simulated Seam Width Control •••• 152

5-9: Effect of Pixel Resolution on Simulated Seam

Width Control •...•....................•.........•. 153

5-10: Effect of XCII" Seam Width Control •••.•••••••.•••• 154

5-11: Effect of x~ on Simulated Seam Width Control ••••• 156

5-12: The I-SIGHT Cameras Mounted on the Sewing Machine.159

5-13: Lighting Arrangement ••••..•••••••.•••••••••.•••••• 161

5-14: Vision Processing Time vs Camera Exposure Value ••• 163

5-15: Overlays used in Vision System Calibration •..•.••• 165

5-16: Calibration Program Display - Large Overlay .••..•. 166

5-17: Calibration ProQram Display - Small Overlay

in Came r al 167

5-18: Robot Motion Required to Rotate Cloth

About Needle ••••••••••••••••••••••••.•••••••••••• 171

5-19: Safe Envelope for Robot Motion ••.•••.•••••...•..•• 172

5-20: Initial Position of End Effector for Close Sewing.178

5-21: Edge Contour of Test Panel •••••••••••••.••••••••• 179

5-22: Sample Printout of Edge Seaming Program •••••••.•.• 182

5-23: Effect of Cloth Speed on Seam Width Control

Performance ••••••••••••••••••••••••.•••••••.•.... 183

5-24: Effect of No. of Plies on Seam Width Control

Per formance 184

5-25: Effect of Velocity Limitation on Seam

Width Control •.........•.....••.•................ 184

xix

6-1: Hierarchical Organization of IBM AT Software .•••.•. 197

6-2: Optimum Location of Fingers•..•......... 199

6-3: Startinq Conditions for the Setting Up Operation .•. 203

6-4: Demonstration of Automatic Production of a

Sub-assemb 1 y ••••••••••••••••••••••••••••••••••••••• 216

7-1: Block Diaqram of FIGARO Robotic Sewing System ..•... 221

H-1: Counter Circuit for Shaft Encoder Signal .•••.•••.•• 347

H-2: Power Supply Unit .••••••••••••••.••••••.••••.•••••• 349

H-3: Strain Guage Bridge and Amplifier Circuit •••.•••••• 349

H-4: Overload Protection Circuit ••••.••••••••••••.•••••• 350

xx

LIST OF TABLES

2-1: GPe HandshakinQ Protocol .•••••.•.....•.•.•.•.••....• 44

4-1: Tension Control System Terminology •..••.....•...••. 102

4-2: Experimental Results for Open Loop Frequency

Response •••••••.•••••••••••••••••••.•••.•.••.•••••• 115

4-3: Sample of Fine-Tuning Experimental Results ••.•••••• 123

4-4: Key to Fiq. 4-14 •.•••••••••••••.••••••••••••..••.•• 126

5-1:.Tension Control System Terminology •••••••.••••.•••• 137

5-2: Definitions of Simulation Parameters ••••••.•••••••• 140

5-3: Parameter Values for Simulation Tests •••••.•••••••• 152

5-4: Parameter Settings for Performance Tests ••••••••••• 183

6-1: Sequence for Setting Up Operation •••.•••••.•••••••. 202

A-1: Software Version Nos ••••••••••••••••••••••.•••••••• 252

H-1: Interface to Sewing Machine Functions .••••••••••••• 347

H-2: IBM AT Implementation of the GPe Link ••••••••••.••• 348

Abbrev.

CAD/CAM

CCD

CIM

CMRR

ONC

FIGARO

FMS

GPC

IRQ3

ISO

ISP

051

MITI

PlO

PlO

R !x 0

SSG

(TC)2

UART

w.r.t.

xxi

ABBREVIATIONS

Meaning

Computer Aided Design and Manufacture

Charqed Coupled Devices

Computer Integrated Manufacture

Common Mode Rejection Ratio

Direct Numerical Control

Flexible Intelligent Garment Assembly

Robot

Flexible Manufacturinq System

General Purpose Communication

Interrupt Request No. 3

International Standards Organisation

Interrupt Service Procedure

Open System's Interconnection

Ministry of International Trade and

Industry

Proportional-Inteqral-Derivative

Proqrammable Input/Output controller

Research and Development

Sewing Strategy Generator

Textile and Clothing Technology

Corporation

Universal Asynchronous Receiver

Transmitter

with respect to

Section

1.3.4

2.8.1

2.2

4.3.5.1

2.2

2.1

1.3.2.4

2.2

2.6.2

3.3.2

2.3.2.3

3.3.2

1.4.1.1

2.4.4

2.6.2

1.4.1.2

.7.2.4

1.4.2.1

3.3.2

5.2.1.1

1

CHAPTER 1

INTRODUCTION

1.1. The Clothing Industry

The Clothing Industry' is a major UK industry and makes a

significant contribution to the economy. In 1985, it was

the fourth largest manufacturing industry in the UK in

terms of sales (£4.135 billion), and the second largest in

terms of employment (193,300); exports amounted to £763

million [ll.

However, the industry is confronted with increasingly

difficult trading conditions. Clothing manufacture is

labour intensive and consequently the industry has suffered

import penetration from "low-cost labour" economies - from

1979 to 1985 clothing imports nearly doubled to £1.53

billion [1]. Increased competition from cheap imports has

resulted in lower price levels and reduced profitability.

Additional difficulties are caused by changes in the market

place; retailers are now demanding a quicker response in

manufacture and a greater flexibility in design [2l.

Clothing industries throughout the industrialized world are

facing

for

similar problems, and there is

their future [3,4,5). The

worldwide concern

development and

implementation of flexible clothing automation has been

identified as a vital measure if clothing industries are to

meet present day demands [6,7,8).

1.2. Traditional Clothing Manufacturing Processes

There are three main phases in clothing production

preparation of fabric pieces, assembly, and finishing and

packaging.

1.2.1. Cloth Preparation

The two-dimensional shapes of the cloth panels are derived

from the garment design for the various garment sizes

(grading). A drawing is made of the optimized layout of the

required cloth panels for the cutting from the cloth roll

(lay planning), the cloth is spread out into a multi-ply

stack (spreading), and the cloth panel shapes are marked

out on the top ply (marking), the cloth panels are cut out

in stacks (cutting), and the stacks are tied together in

bundles.

1.2.2. Assembly
,

The cloth panels are assembled using sewing and/or fusion

techniques. After each workstation the sub-assemblies are

bundled together again before transfer to the next station.

During the assembly process, the garment sub-assemblies

progress from simple 2-dimensional panels to finish as

complex 3-dimensional structures.

An analysis of the sewing operator's productivity showed

that on average 20% of the time was spent on sewing, and

66% was spent on work handling (bundle handle, present work

to machine, realign, remove and aside etc.) (10l.

3

1.2.3. Finishing and Packaging

The garment is pressed, inspected, labelled and packaged.

1.3. Clothing Automation - State of the Art

1.3.1. Cloth Preparation

When

1968,

the first automatic cutting system was developed in

there was considerable scepticism as to whether the

industry would be prepared to buy such expensive machinery

which would require a radical change within clothing firms

in order to operate and maintain them t8J. Today, however,

computer-controlled cutting systems are commonplace

throughout the industry, and many firms have successfully

accommodated the needs of complex computerized automation

equipment. Computerized systems are now available that

fully automate and link the grading, lay-planning, marking

and cutting operations [9].

Although multi-ply cutting is still the dominant cutting

method, advanced high speed single-ply cutting systems have

been developed and they are used in a few specialized

applications.

1.3.2. Assembly by Sewing

Four levels of automation can be differentiated as applied

to sewing operations [14J.

4

1.3.2.1. Attachments

Labour saving and deskilling attachments can be split into

two categories, corresponding to the traditional "sewing

versus handling" breakdown of an operator's activities.

Sewing attachments replace or simplify sewing functions.

Examples include needle positioning, thread cutting,

backtacking, edge guides, photo cells for detecting

start/end of cloth, pullers, edge trimmers etc. These

devices are usually closely integrated with the sewing

machine.

Examples of handling attachments include stackers, ply

separation devices, feeders, parts mating devices, parts

manipulation or folding devices, etc. These "add-on"

handling attachments tend to be more complex, less flexible

and less reliable than integrated sewing attachments. This

is of course related to the difficulties inherent in

handling limp fabric.

1.3.2.2. Semi-Automation

The majority of "automatic sewing units" available today

fit into this, category, in which conventional sewing

machines are combined with selected sewing and peripheral

attachments to produce an "engineered work-station". Most

sewing functions and some simple handling functions are

performed automatically, but most handling activity,

including ply separation, parts mating, parts loading etc.,

are still performed by the operator.

These units are specialized to perform specific sewing

5

operations only and most have limited flexibility to

accommodate style changes. They require frequent manual

adjustments to accommodate different garment sizes and

fabric types. Examples include contour seamers, profile

stitchers, pocket setters, dart sewers, button sewers,

button-holers, trouser sergers, etc.

Some recent models are computer controlled and th€refore do

offer a certain degree of programmability. Examples of

functions that can be under programmable control are seam

length, sewing sequence with time delays, backtacking,

stitch condensation, fullness, X-V pattern sewing, etc.

Many semi-automatic sewing machines have been developed

based on jig systems, i.e. the cloth panels are clamped in

a special-purpose jig and the sewing machine's X-V table is

driven by a contoured groove on the jig.

The Shirley Institute· measured the productivity

improvements from the use of attachments and semi-automatic

sewing units [10J.

1.3.2.3. Full Operational Automation

This refers to a cell that performs all cyclic work

functions automatically, including ply separation, parts

mating,

during

parts feeding, parts manipulation and guidance

the sewing and stacking of completed parts. The

operator is required to load the machine with a stack of

cut parts, remove completed bundles and transfer bundles

between operations.

Several ply separation devices are commercially available,

and ply separation devices have been combined with semi

automatic sewing units to produce fully automatic sewing

6

units. Of course these machines still have the

disadvantages of limited programmability, frequent manual

adjustments and high specialization.

1.3.2.4. Full Sequential Automation

This refers to a completely automatic sequential assembly

process in which a series of machines perform both cyclic

and non-cyclic work functions, and automatically transfer

parts from one automated operation to the next. When a mass

production system is required, the assembly line can be

based on linking hhard autom~tion" machines and loading and

unloading devices.

In a Flexible Manufacturing System (FMS), multi-function

programmable production machines are flexibly

integrated into a system, optimized for

production. Robots and other programmable

usually required in an FMS to obtain

flexibility.

linked and

small batch

devices are

the desired

The automatic sequential assembly of cuffs and collars has

been demonstrated by several manufacturers on equipment

which is flexible enough to accommodate different styles

and sizes. However, flexible automation systems for larger

sub-assemblies, which are much more difficult to handle

than small stiff cuffs and collars, are not available

commercially. There are several research projects to

develop flexible clothing automation, which are discussed

in section 1.4.

7

1.3.3. Other Uses of Automation in Clothing Manufacture

The traditional bundle transfer system has been replaced by

many garment manufacturers with "Unit Production Systems".

In these systems, all the cloth pieces that are required

for a sub-assembly (e.g. the two panels for a trouser leg

and the waistband) are suspended on a hanger, which is

suspended from an overhead conveyor. The hanger is directed

to the operator's workstation, under the control of a

central computer, and the operator removes the cloth pieces

for sewing and then replaces the finished sub-assembly onto

the hanger.

The control system permits buffering of hangers and ca~

select different paths as the production circumstances

change. The system can track different sub-assemblies using

bar codes on the hangers and the conveyor control system

can be interfaced to an overall production control system.

In addition to reducing operator handling time, the

adoption of conveyor systems provides the facility to link

up isolated units of production, both manual and automatic,

and it is an essential feature of any FMS concept for the

sewing room.

Labour-saving devices and attachments have been

for fusing and finishing operations, and

automatic systems are available for packaging.

1.3.4. Summary

developed

some fully

Integrated CAD/CAM (Computer Aided Design and

Manufacturing) systems have been introduced into the

cutting room and the design office which are comparable in

8

sophistication to the CAD/CAM systems in use in other

industries. The sewing room, however, has not yet benefited

from flexible automation technology and it is a generation

behind the current FMS systems in other industries.

One of the major problems that has held up the development

of flexible automation for the sewing room is the

fundamental difficulty in handling limp cloth.

1.4. Flexible Clothing Automation Developments

There are

programmes

several Government and industry

for research and development of

sponsored

flexible

clothing automation, throughout the industrialized world.

1.4.1 • .Japan

1.4.1.1. Automated Sewing System Project

In 1982,

(MITI)

the Ministry of International Trade and Industry

announced an 8-year Large-Scale Project under

Sewing System". The objectives of

was funded at ¥13 billion <about

the

the

£40

title "Automated

prOject, which

million), were

an efficient,

system" and to

[11,19J.

to "develop the necessary technologies for

diversified, small quantity production

produce a working pilot plant by 1989

The Automated Sewing System philosophy is based on flexible

assembly of simple 2-dimensional sub-assemblies such as

collars and cuffs on a flexible production line, followed

by 3-dimensional assembly of all the cloth pieces on a

9

dummy. This approach minimizes the amount of 3-D fabric

handling but it relies on some form of temporary fabric

stiffening and pre-assembly adhesion.

The project was divided into 4 sections;

a) Sewing preparation - covers all operations from design

through to cutting. Research is being undertaken to

investigate fabric characteristics, temporary stiffening of

the fabric, temporary adhesion of parts before sewing.

b) Sewing and Assembly - covers the development of sewing

technology such as 3-dimensional sewing using a small

sewing machine on the end of a robot arm, and a multi

functional sewing unit which has different sewing heads on

a rotating turret, and attachments stored on a magazine •.

c) Material Handling

techniques for picking up,

pieces. Devices are to

undressing the dummies.

- covers the development of

mating and transferring fabric

be developed for dressing and

d) Production

system, related

control - covers the production

integration systems and

recognition of cut pieces.

control

automatic

Although the outline and scope of the project has been

reported as described above, no detailed descriptions or

technical progress reports have been released, so far.

1.4.1.2. Other Research Projects

In addition to the officially sponsored R ~ D programme,

several Japanese companies are carrying out in-house

10

projects

Mitsubishi

aimed at near-term commercial exploitatiori.

have demonstrated an automated production line

for manufacturing two sides of a travel bag based on

(3), and Brother have developed a robotic cell for

assembly of shirt cuffs.

jigs

the

Innovative non-automation production methods have been

developed by Toyota. The Toyota Sewing System comprises a

line of sewing machines which can be operated in a standing

position; each operator controls four to six machines. The

system provides flexibility using a combination of group

working practices, manual skills and careful line-planning

[12J.

1.4.2. U.S.A.

1.4.2.1. The (TC)2 Project

The (TC)2 corporation was set up in 1979 by a consortium

of American firms in conjunction with the US government to

develop automation for the apparel industry [17,1~]. Their

first step was to sponsor a study to determine the R & D

-requirements of the industry. Fabric handling was

identified as the category of operations that most urgently

required automating. Instead of sponsoring generic research

on clothing automation, they decided to take the

manufacture of a specific sub-assembly (the sleeve of a

man's coat) and automate it.

In 1981, the Draper Laboratories was selected for carrying

out the initial R ~ D. Funding, which was gradually

increased, stood at $7.7 million per year in 1986. A

prototype machine was completed in 1985 which consisted of

the following modular units :

1 1

* an automatic loader

* a viewing table and vision system for recognizing

parts

* a robot and end-effector which can fold and align the

edges

* a transfer door that transfers the parts to the sewing

station

* a sewing unit.

An end-effector was developed for a SCARA type robot, which

can pick up a single ply, fold and unfold it and orientate

it. The end-effector, which comprises three jointed

sections, has a degree of programmable configurability. The

robot in conjunction with an overhead camera constitutes a

fabric handling module.

Two distinct approaches were considered for transporting

the fabric during sewing, either a foam backed presser foot

ora series of foam backed belts. The presser foot idea was

rejected because a different presser foot would be required

for each garment size. In the belt system the fabric is

held over most of its surface transforming the fabric piece

into a rigid object.

In the sewing unit, the fabric is controlled by two upper

belt systems, one before and one after the sewing head. The

two belt systems are arranged in an interlocking manner

which permits the sewing head to move perpendicular to the

direction of sewing. Contoured sewing is achieved by

generating sewing head position data from a video scan of

the fabric piece taken before it enters the sewing unit.

The sewing head's conventional intermittent feed mechanism

was replaced with a continuously moving belt top feed

12

system. Fabric fullness was achieved by placing an

additional series of belts below the fabric just before the

sewing head, so that the two plies could be moved at

different speeds.

In 19B5 the Draper technology was transferred to the Singer

Sewing company~ commercial exploitation. After a

preliminary evaluation, they decided to develop a transfer

line production system with multiple handling and sewing

modules permitting sequential flow down the line. The

Draper prototype machine, which had only one sewing and one

handling module, had a much lower throughput due to the

back and forth flow pattern.

1.4.2.2. The Singer Sewing Corp.

Independent of the (TC)2 project, Singer have developed

three ranges of robotic systems for sewing applications.

The 100 and 200 MARS robotic systems comprise a four-axis

electrically driven gantry robot which can perform fabric

pick-up, parts mating and fabric transport during sewing.

The 400 MARS robot series are two to five-axis articulated

pick and place robots. Singer have provided robotic sewing

systems for the manufacture of car seat coverings.

An insight into the Singer approach to the development of

flexible clothing automation was given by Lower CBJ. Some

of the technological breakthroughs that he listed as

necessary for flexible garment assembly systems were :-

* Four-axis robots with ability to sew intricately

curved seams and ability to pivot smoothly in needle

down position.

* Reliable pick-up and transport end-effectors.

13

* Accurate stacking systems.

* Prepositioning and orientation systems.

* Preshaping devices for parts mating.

* Sensors for positioning and pick up.

* Vision systems for locating features on cloth panels.

1.4.2.3. Clemson University

Torgerson and Paul reported the development of a vision

guidance system for a robot manipulating a fabric panel

under a simulated sewing needle, that produced a simulated

edge seam (65]. In their experiment, a static overhead

camera viewed the panel, which was stationary on a table,

and the shape of the panel was extracted from the image

using a vision processing algorithm. There was no vision

feedback during the simulated sewing operation.

The geometry of a seam around the edge of the panel and

12 mm parallel to ,the edge, 'was calculated and a robot

trajectory was generated in which the robot, a PUMA 560,

moved the panel under a simulated sewing needle. The

computed robot motion sequence also rotated the panel about

the simulated needle at the end of each seam segment, so

that the seam followed the circumference of the panel. The

sewing machine was simulated by a pointer which traced out

a simulated seam on the panel. The test fabric was heavy

denim, which is one of the stiffest fabrics used in

garments.

The experiment was performed to determine the accuracy of

the vision guided trajectory of the robot, but the

interactions between limp cloth, the sewing machine and the

robot during sewing were not investigated. Average

deviations of 3 to 5 mm were measured between actual and

14

intended seam traces, and Torgerson and Paul attributed

these large errors to insufficient resolution in the vision

system. However, our experience gained during the research

project described in this thesis suggests that the poor

accuracy of the PUMA 560 robot is more likely to be the

main reason for the large deviations (section 2.4.2.>.

An end-effector with four extendable fingers was developed,

and the finger configuration could be varied under program

control. An algorithm was developed to locate the four

fingers and orientate the end-effector optimally over the

fabric panel, for any panel shape.

At the end of their paper, Torgerson and Paul recommended

further work to investigate the interactions of actual

sewing on limp fabric, and to integrate additional vision

and force sensors into the system.

1.4.3. Europe

1.4.3.1. The BRITE Project

The European Commission launched the BRITE project in 1985

to promote "pre-competitive technological R & 0, including

pilot and demonstration projects in new production

technologies suitable for products made from flexible

materials". In the first three-year phase, 13 projects have

been approved which cover the whole spectrum of clothing

production.

1.4.3.2. Non-BRITE Research

No details have been published of German clothing

15

automation research although several projects are underway.

Semi-automated machinery has been developed by CETIH in

collaboration with French shirt manufacturers.

Nilsson, in Sweden, has described in detail a concept for a

fully integrated system for manufacturing garments, however

no experimental results have been reported, as yet (16J.

Nilsson acknowledges that manual assembly of complex three

dimensional sub-assemblies will be essential for the

foreseeable future, and therefore his production concept

incorporates both automated and manual stations linked

together within a single CIM environment.

1.4.3.3. UK Research

Hull University have developed a ply separation device and

vision systems for parts recognition and for alignment, and

they have demonstrated a robot-based transfer

partial assembly of men's underwear.

line for

Durham University have developed dedicated devices for ply

separation and alignment, and they have developed a
•

transfer line for partial assembly of underwear.

Courtaulds Clothing Ltd. have developed a system in which a

robot feeding fabric to a sewing machine with

synchronization of robot and feed speed, although it has

not been demonstrated publicly.

16

1.5. Comparison of Flexible Clothing Automation Approaches

1.5.1. Introduction

Almost all flexible automation systems include a robot, but

the role of the robot in the cell can vary considerably

between systems. The robot might have a simple supporting

role, e.g. loading a machine tool, or the robot may have

the central role in the performance of the manufacturing

operation, e.g. a robotic sheep shearing cell [13J. When

the robot is required to perform the central function of

the cell, the performance of the manufacturing process is

limited by the control capability of the robot. Robot

control systems are usually categorized into five groups

(28J, as follows :-

Sequence Control - a sequence of robot motions

or electrical hardware.

is

The determined by mechanical

sequence can be reprogrammed by manual adjustments.

Playback Control - an operator guides the robot to a

location and the coordinate information is recorded (i.e.

on-line programming). When required, the robot can move to

the taught location.

Numerical Control - locations can be computed in terms of a

coordinate

robot can

system relative to a frame of reference and the

be directed to those locations (off-line

programming). Straight line motions and other motions with

a defined continuous path can be performed by computing

intermediate locations between the start and end points

using interpolation schemes.

17

Adaptive Control - an adaptive robot uses sensory feedback

to perform a task in which the desired robot trajectory is

not known accurately in advance. For example, some robotic

welding systems incorporate a vision system to measure the

workpiece geometry ahead of the welding tool, so that the

robot's trajectory can be calculated in real time. Thus,

different workpieces can be welded without requiring

accurate programming of the workpiece's profile or accurate

jigging to hold the workpieces and the welding system can

accommodate deformation of the workpiece during the weld.

This sensor-based real time robot path control is often

referred to as "sensory servoing".

Intelligent Control - an intelligent robot can decide how

it is going to perform a task, using a world model (which

represents the environment, the robot and the task), a

knowledge base and an expert system for reasoning and

decision making.

1.5.2. (TC)2 Approach

In the (TC)2 project the robot had a numerical control

capability. The overhead camera and associated vision

processing hardware and software located the initial

position of the cloth panel, but during the subsequent

handling operation, the robot trajectory was predetermined

and there was no real time sensory feedback [64J.

The role of the robot was restricted to performing handling

operations only, and the sewing operations were performed

by the sewing unit. The sewing unit was a programmable

device with two degrees of freedom, belt motion and sewing

head motion. However, this modular concept, in which the

handling and sewing functions were performed by separate

18

devices, limits the flexibility of the system. Some

handling operations require inti~ate co-operation

the handling robot and the sewing machine, e.g.

the cloth about the needle between seams.

between

rotating

The sewing unit had only a numerical control capability.

The motion of the belts and of the sewing head was

predetermined by the visual measurements of the panel's

initial orientation and position prior to the sewing

operation. Consequently, the accuracy of the sewing process

is dependent on the ability of the belt system to hold the

cloth rigid, throughout the operation. In practise,

however, many fabric materials will buckle or slip during

the process in an unpredictable manner, and the sewing unit

has no means to detect or correct this. Our experience

suggests that the buckling tendency would be worse when

sewing along intricately curved contours, due to the shear

forces on the cloth created by the perpendicular motions of

the belts and the sewing head (section 5.4.4).

1.5.3. The Clemson Approach

In the Clemson project, the robot had a numerical control

capability and the robot manipulated the cloth during both

sewing and handling operations. The vision system provided

the initial position and orientation of the cloth panel

only, and no real time sensory feedback was provided. The

<TC)2 attempts to solve the problem of slipping and

buckling of the cloth by rigidly holding the cloth with a

system of

stiffness

support.

feedback

belts. The Clemson approach relies on the

of the heavy denim fabric and the multi-fingered

Torgerson and Paul acknowledged that sensory

would be required if flexible fabrics were to be

sewn by a real sewing machine.

19

1.5.4. The Adaptive Robot Approach

A more ambitious approach to the flexible automation of

garment assembly operations, is to develop a robot with an

adaptive control capability, which can perform the

operations based on real time sensory feedback. If the

adaptive robot can detect slipping and buckling of the

cloth during sewing operations and correct its trajectory

accordingly, then neither belts nor any other restraining

devices would be necessary to control the unstable cloth.

Consequently, the same robot could perform both sewing and

handling operations, and the flexibility of the system

could be maximized.

In the adaptive robot approach adopted in this project, the

robot was given the central role of performing all sewing

and handling operations in conjunction with a conventional

sewing machine. The limp nature of fabric was accommodated

by the real time control of the robot trajectory, derived

from sensory measurements taken during the sewing or

handling operation.

No hard automation attachments or devices were fitted to

the sewing machine which might limit the flexibility of the

system, e.g. a cheap edge guide can de-skill production of

edge seams, but the attachment would have to be removed

before the same machine could be used to sew on a pocket.

The adaptive robot approach is analogous to employing a

skilled operator on a basic sewing machine, in place of a

semi-skilled operator on a semi-automatic machine. The

former is more expensive but can perform a greater range of

operations on a greater range of materials. By developing

the robot's skills and by keeping the sewing machine

20

simple, a single flexible automation cell should be able to

_perform the same functions that are currently performed by

a wide range of different types of semi-automatic sewing

stations.

1.5.5. The Intelligent Robot Approach

The robot sewing and handling skills were provided by its

adaptive control capability. An intelligent control

capability is also required, if the flexible sewing cell is

to adapt itself automatically between batches. Without this

reasoning ability, the cell would require extensive

reprogramming and testing for each product, which may

differ from previous products in its material, shape, size

or sequence of operations.

The requirement for an intelligent capability is further

discussed in section 7.2.4.

1.6. Clothing Automation Research at Leeds University

The Department of Textile Industries at the University of

Leeds has been researching into clothing automation since

1982. In addition to the development of actual devices and

techniques for clothing automation, research has been

aimed at understanding and analysing the fundamental

problems involved in handling limp fabric.

A ply separation device was developed which can pick up a

single ply of fabric from a stack, with very high

reliability. The device is flexible in terms of shape, size

21

and fabric. A vision system was developed which, when used
wJ1-

in conjunction either a robot or a dedicated device, can

align a cloth panel of any shape or size. A technique for

accurately placing one ply on top of another is under

development.

The development of a flexible sewing station, based on the

adaptive approach described in section 1.5.4, is described

in the subsequent chapters. Although several clothing

automation projects based on adaptive robotics maybe

under way elsewhere, this project appears to be the first to

be reported in a refereed publication (66) (see

Appendix I).

22

CHAPTER 2

FIGARO A ROBOTIC SEWING DEVELOPMENT SYSTEM

2.1. Overview

A robotic sewing system, referred to by the acronym

FIGARO (Flexibl e Intelligent Garment Assembly RObot), was

developed which comprised a hierarchy of controllers, a

robot and a sewing machine. The system was used to

investigate robotic sewing and handling techniques in

accordance with the flexible automation approach outlined

in section 1.5.4.

Fig. 2-1: General View of FIGARO System

23

Fig. 2-2: Edge Seaming Operation

A robotic sewing technique was developed, which

produce either a straight seam or a seam parallel

edge of a cloth panel of arbitrary contour. The

could

to the

sewing

technique was based on real time multi -sensor y ser vo

control of the robot during the sewing op eration . The edge

seaming technique involved the following stages :-

a) The robot sets up the cloth p ane l by s liding it into

position, with the sewing machine' s n eed le at th e

beginning of th e seam.

b) The robot repositions its fing ers , so that th ey hold

the far end of the cloth panel against th e sewing

table.

24

c) The sewing machine is started, and th e robot controls

th e cloth panel throughout th e sewing op eration . Th e

robot motion is d eter mined in real tim e by tw o

superimposed servo control systems , a tension contro l

system and a seam width control system

(i) The tens ion control system ensure s th at th e robot

moves forward with th e cloth and mai nt ains a

small cloth t e n s ion throughout th e sewi ng

operation.

(ii) The seam width control s ystem e n s ur es that the

robot rotates th e cloth p a n e l about the sewing

needle in order to tr ack th e edge co ntour and

produce a seam parall e l to th e edge .

When the end of the seam i s d etected , th e sewi n g

machine is stopped.

The straight seaming technique was identical to the edge

seaming method but without th e seam width control system.

This chapter describes the primary functional unit s of th e

FIGARO system, their interfaces and the hi erarchi ca l

control concept which wa s impl e me nt ed . The d eve lopm e nt of a

real time path control capability, on whi c h th e cloth

tension and seam width control s ystems were b ased, i s

described in Chapter 3. Th e d e v e lopment of th e cloth

tension

Ch a pters

developed

and seam width control systems are d escr ib ed in

4 and 5 resp e ctive ly. Th e techniques that were

to set up th e cloth pane l for the sewing

operation, and the d eve lopme nt of additiona l cloth h a ndling

techniques are des cribe d in Chapt er 6.

25

2.2. Hierarchical Control Structure

A hi erarchical control structur e (fig . 2 - 3) was cho se n to

provide an adaptive robot control c a p a bility (sec tion

1.5.4) . Many d eve lopment and comm e rc·i a 1 ad a ptive robot

systems h a v e b een b ased on similar hi e rarchic a l control

structure s [29 ,30 ,31, 32] rath e r th a n on a control s t r u c tur e

in which the robot controller control s th e entir e s t a ti o n.

l Station Controller I

I I
Sensory Robot S e wing
Systems Controll e r Mac hine

I I
IBinar y Sensors I Robot I l End- Eff ec to r I .

Fig. 2-3: FIGARO Hi erarchica l Control Structure

26

In the hierarchical concept, the station controller has

equal access to all the major sensors and actuators, and

the robot sUb-system is regarded as one of the station's

actuators. This approach encourages modularity during

d eve lopment of the sub-systems, and facilitates the

integration of several complex sub-systems, e.g . more than

one robot, vision systems, DNC machines etc. The

hierarchy can be readily extended upwards by putting

several station controllers und er a cell controller (i. e .

an FMS cell), which in turn could be controlled by a

process controller within a ClM

Manufacturing) scheme (33,34].

(Comput er Integrated

In the FIGARO system, the station controller accepts

sensory data in real time, computes a robot trajectory and

transmits the robot coordinates to the robot controller.

The station controller also coordinates robot motions in

conjunction with the sewing machine . The robot controller

converts the robot coordinates into joint angle s and

directs the robot along the required path.

For convenience, some of the simple binary sensors (e . g .

photo cells, microswitches) and actuators (e .g. pneumatic

cylinders) which were integrated into the end effector,

were interfaced to the robot controller. All other

actuators and sensors were directly interfaced to the

station controller.

Two communication channels were developed between the

sta tion controller and the robot controller, the GPC

channel for General Purpose Communications and the ALTER

channel, which was dedicated to the high speed transfer of

real time robot trajectory data.

27

2.3. Station Controller

2.3.1. Hardware

The IBM AT microcomputer, whi c h was s e l e ct e d for th e

station controller, is a general purpo s e microcomput e r

with a large variety of software d e velopme nt tool s and

hardware options available. Furthermor e , IBM have publi s h e d

comprehensive technical manuals fo r the AT and for it s

operating system, which facilit a t e th e d e v e lopm e nt and

integration of non-proprietary softwar e and hardw a r e .

FIGARO's IBM AT had the following feature s .

* Intel 80286 16-bit microprocessor op e rating at 6MH z

* Intel 80287 math coprocessor

* 512KB of RAM

* 6 spare expansion slots for cus tomi zed a d a pt ers

* 20MB fixed disk drive

* 16 levels of system interrupt

* 7 channels for direct memory acc ess (DMA)

* 3 programmable timers

* real time clock

2.3.2. Software

2.3.2.1. Requirement for Multi - Tasking

The IBM AT wa s required to p e rform th e

processes .

* ALTER communications manageme nt (s e ction 3.3)

* GPC management (section 2.6.2)

following

28

* Read sensors and calculate robot traj ec tory (sect ion

4.4.1)

* Control sequence of sewing and h a ndling op eratio n s

* User/supervisor interface (section 6.1.1)

* Deci s ion making processes (section 6.3.3)

* Display runtime messages on th e screen

* Print out performance and debugging d ata

These processes were executed in real time and required

concurrent execution, therefore a multi - taski ng environment

was necessary.

2.3.2.2. AMX-86 Multi-Tasking Executive

The AMX-86 multitasking executive [37J, on which th e FIGARO

software was based, provides software facilities which are

required in complex real time applications. The AMX-86 is a

program which can schedule th e p seudo -concurrent execution

of application Tasks on a single microprocessor . Additional

considerations in selecting the AMX -86 system were that its

compatibility with the IBM AT, and C language int erface ,

permit the development of real time software with a high

level language. The operation of an AMX-based system is

described in fig. 2-4.

2.3.2.3. Tasks

In a multi - tasking system, th e software is split up int o

independent application module s called Tasks. Each Task i s

treated as a separate program, executing independently of

other Tasks. A major di st inction b etween multi - tasking and

single-tasking systems is the way in which a Task is

called. When a Task is called, a request i s pa ssed to the

29

schedu1er which w i 11 eventually execute the Ta sk in

conjunction with other real time demands on the processor,

according to a priority scheme. The caller is not suspended

after making a call, but may continue irrespec tiv e of the

status of the called Task. Pending calls to a Ta sk can

qu e ued and given different priorities .

NO

.lJ.AX-86 INTERRUPT
SUPOMSOR

SU' pond Ta,~

Fig. 2-4: AMX-86 Mu1ti-Tasking Executive

MIX-56 SERVICE
PROCEDURES

OEIJICE 2

OEIJICE 1
USER'S ISP

be

30

Each Task should perform a clearly def ine d function,

the logical breakdown of a comple x real time probl em

independent Task s is a crucial s t ep in th e d eve l opme nt

real time software .

A Task can be initiated in one of severa l ways

and

into

of

* It can be started immediat e ly after AM X h as completed

its initiali sa tion phase by a Restart Procedure.

* It can be started after a time int er v a l h as e l apsed ,

by a Timer.

* It can be started by a software or h ar dware interrupt,

by an Interrupt S e rvic e P rocedure , or I SP .

* It can be st a rted by another Task .

Parameters can be passed to a Ta sk from th e caller, e .g.

the PRNT Task, which di s plays or pri nts out messages , is

passed a point er to a message str ing wh en i t i s call e d.

Concurrent execution of Ta sks c an be control l ed and

synchronized th r ough variou s wake /wa it facilitie s . A Ta sk

can suspend itself unconditionally until a Task , T imer or

an ISP awakes it, or th e "wai t" c a n b e conditional on th e

execution of a called Task, or a time out limit ation can b e

specified.

Definitions of and relations hip s b etween Tasks concerned

with FIGARO's adaptive capability are d escribed in sect ion

3.3. The software org a nisation fo r th e overa ll sys t e m i s

described in section 6.1.1.

2.3.2.4. Scheduling and Prioriti es

The main function performe d by th e AMX s ystem i s th e

scheduling of the processor r esourc es b et ween Ta sks , I SP's ,

31

Timers, etc. At any given time a number of Tasks may b e

"active", i.e. waiting for access to th e processor , but

only one can have access at a time .

Each Task is given a Task numb er which deter mines its

priority, and the scheduler se l ects the active Task with

the highest priority. Only wh e n th at Task has b ecome

inactive (i.e. either it has terminat ed or entered a

"wait" state), can the ne x t highest active Task b e given

access to the processor.

Since a Task which receive s parameters can be called

several times with different parameters , AMX provides a

queueing facility to take care of pending calls to a Task ,

(e.g. several different me ssages can be qu eued to th e PRNT

Task for printing). Calls to a Task can b e given different

priority so that, for example, an error message can be

given priority over a status message .

2.3.2.5. ISP's and Timers

Immediate response to an external event can b e generated

through an Interrupt Service Procedure (ISP). Wh en the

processor is interrupted by a hardware interrupt, further

interrupts are temporarily di sab l ed and then th e AMX

Interrupt Supervisor directs control to th e appropriate

user-defined ISP. An ISP should b e a s hort routine th at

services the interrupt quickly, so that the di sab l ed

interrupts may be re-enabled as soon as possible.

For example, the communication ISP, COMISP (section 3.3.2),

is invoked when the serial port receives a byte. This

interrupt is serviced by reading th e byt e from th e port and

putting it onto a circular list. If necessary, it awakes

32

the Task that is waiting for the byte,

control to the AMX Interrupt Supervisor.

before returning

Timers are user-written procedures which ar e e xec ut e d at

specified time intervals after they we re c a ll e d.

2.3.2.6. Resource Management

The AMX Resource Manager provide s circul a r li s t s ,

pools and other facilities fo r th e ord e rly u se

buff e r

of th e

computer's resources by concurrent Tas k s . Data can b e add e d

to or removed from circular li s t s without any po ss ibl e

collision between Task s (i.e. th e 'mutua l ex c lu s ion

problem' is circumvented by res tricting a c c ess to

processes [70]).

2.3.2.7. AMX Configuration Module

critical

To use AMX, a configuration modul e h as to b e writt e n, which

specifies the names of the Ta s ks, Res tart Proc e dur es and

Timers in order of priority; the queu e l e ngth s r e quir e d for

each Task; and the storage requireme nt s for stack s , h ea p s

and buffers, etc. A Configuration Builde r facility a ss i s t s

in the construction of this module.

2.3.2.8. Languages

The majority of th e modul es we r e writt e n ln th e C

programming language, ex cept for s om e of th e communi ca tion

procedures and the configuration modul e , whi c h we re writt e n

in 8086 Assembler. Full listing s of all th e s oftw a r e

modules are given in Appendice s A,B,C,D and E.

33

2.4. PUMA 560 Robot

The PUMA 560 industrial robot wa s selected b ecause of it s

advanced VAL 11 control and programming system; th e ALT ER

function facilitates the d e velopment of an adaptive ro bot

capability. In addition, th e PUMA 560 h as b ee n u sed

extensively in research and dev e lopm e nt and its p er form ance

and characteristics have b ee n wid e ly r eported [3 5 , 36J .

SHOULDER

INNER LINK
(UPPER ARM)

SHOULDER . .(J; (JOINT 2)

ELBOW
(J OINT 3)

OUTER LINK
(FOR E.:<\R M)

TRUNK

WRIST
(JOINT 4)

WRI ST
(JOINT 5)

WRI ST FLANGE
(JOIN T 6)

Fig. 2-5: The PUMA 560 Robot

34

2.4.1. Mechanical Specification

The PUMA 560 is a six-degree-of-freedom, g enera l -purpose ,

assembly robot with six revolute axes. The configuration,

size and proportion of the robot's limb s are imit at iv e of

the human arm and torso. The robot ha s a spherical working

volume with a 0.92 m radius, and can carry a maximum load

of 2.3 kg including the end-effector. The limb s and joints

of the PUMA 560 are named in fig. 2-5.

An anthropomorphic six-axis robot, like th e PUMA 560, can

reach most points in its workspace by assuming one of eight

possible spatial configurations , as follows

either RIGHTY or LEFTY, i.e. the first

resemble a human's right or l eft arm

thr ee joint s

either ABOVE or BELOW,

points up or down

i . e. th e robot's e lbow

either FLIP or NOFLIP, i . e . the wri st (joint 5)

works in negative or positive angles.

With the maximum load, the maximum acceleration of the end

effector is 1 g, the maximum velocity i s 1 m/ s and the

maximum straight-line velocity i s 0.5 m/ s o

The robot has good repeatability (±0 .1 mm) which is

dependent on potentiometer res olution, arm stiffness,

backlash and servo deadband. This is the relevant precision

specification when the robot is programmed u si ng taught

locations only ("on-line programming"). However , wh e n th e

robot is programmed using computed locations ("off - line

programming"), then the robot's absolute accuracy i s

significant. In the FIGARO application, the majority of

35

robot motions involved computed locations rather than

taught locations, therefore good absolute accuracy was

necessary.

However, the PUMA 560 do es not h ave good absolute accuracy,

In common with many other industrial robots, SInce they

were originally intend e d for on- line programming only.

Absolute accuracy is dependent on the accuracy of a matrix

transformation which converts a location's coordinates into

joint angles.

is sensitive

Furthermore, thi s transfor mation calculation

to accumulated round -off errors and to

differences between the math e matical mod e l of the robot's

geometry and the robot's actual geometry (du e to

manufacturing tolerances and distortion of the robot's

structure).

2.4.2. Calibration

The robot was calibrat ed in accordance with the

manufacturer's instructions u sing th e V2POT5XO .l progr am

supplied with the robot (section 8.6 of reference [20]) .

The manual defines two refe rence positions for the robot

arm, the "READY" and "POTCAL" po sitions, which are u sed in

the calibration procedure. A careful check s how ed that the

manufacturer's alignment mark s had b een placed inaccurately

on the robot arm.

However, even after redrawing th e READY and POTCAL

alignment marks, and after a further calibration, the

absolute accuracy wa s ±4 mm in th e X, Y and Z directions

(i.e. 7 mm RMS), a~ ±0.2° for rotations about th e Z axis.

This was mea s ured by programming the robot to move to a

location at a specific linear or angular offset to th e

original location. The robot's accuracy deteriorates even

36

further towards the inner and outer limits of its working

envelope.

The absolute accuracy of the PUMA 560 is investigated more

fully in reference [22], which describes a different method

for measuring robot accuracy, where the robot i s po si tioned

at an arbitrary location with a RIGHTY configuration. The

robot's configuration is then changed to LEFTY and th e

robot is commanded to move to the same location. Thi s

is a particularly stringent test which exaggerates any

inaccuracies in the robot system. El-Zorkany [22] report e d

an RMS error of 16 mm and 1.6 0 with this tes t method and

the FIGARO robot showed an RMS error of 25 mm.

2.4.3. Electrical Specification

The PUMA 560 robot was supplied together with a system

cabinet which provided all the necessary power and control

facilities, a VDU terminal with an integral floppy - di sk

drive, and a manual control unit.

The system cabinet comprises

* A power tray which provides filtered power supplies.

* A control

computer,

interfaces

module which comprises

128 KB non-volatile

for peripherals and

a DEC LSI - 11/73

me mory, seria l

communications, a

digital servo system for each axis, and all th e

and necessary

motors.

* A switch

switches.

signal

panel

interfaces between proc essors

which houses th e main op erator

37

* An 110 module which contains 40 solid-state relays for

binary inputloutput control signals.

* A power amp module which contain a servo amplifier

with monitoring circuitry for each motor.

2.4.4. Robot Control Design

Each axis is driven by a permanent-magnet dc servomotor.

and a potentiometer and an incremental encoder are mounted

onto each servomotor.' The potentiometer provides an

absolute position signal and the encoder provides both

relative position and velocity signals. Each servomotor is

controlled by a digital servo system, based on the 6502

microprocessor. and an analog servo amplifier, using a PlO

(proportional integral and derivative> control scheme with

current feedback [21J.

In the PUMA control system, each axis is controlled

independently of the other axes, so that coupling effects

between joints and the gravity and load effects are

ignored. Although some wobble and other dynamic errors are

noticeable, the PUMA has satisfactory control, but at the

expense of relatively slow speed due to an overdamped

system. More sophisticated control methods have been

suggested that would account for coupling inertia,

friction, gravity and loading effects, and would result in

reduced structural stiffness requirements, smaller motors,

lower energy inputs and faster speed, as well as improved

dynamic control [23,24,25,26,27J.

38

2.5. VAL 11 Robot Control and Programming System

VAL 11 is one of the most advanced robot programming

languages commercially available today C39J. The language

has PASCAL-style control structures, manipulation of

location transformations, editing and debugging facilities,

interrupt handling with priority scheduling, several robot

motion control modes, communications support on different

levels and a wide range of functions and operators, in

addition to the ALTER facility which permits real time

trajectory control by an external computer (38J.

2.5.1. Robot Motion Control Modes

When the VAL 11 system processes a robot motion command, an

interpolation function is used to automatically generate a

series of intermediate locations between specified initial

and final locations [45J. This method ensures that the

joints move in a coordinated, predictable fashion between

the two locations. The programmer may select between two

interpolation schemes, as follows :-

- joint interpolated motions are generated by interpolating

the joint positions from their initial values to their

desired final values so that all the joints complete their

motions simultaneously.

- straight-line interpolated motions are generated by

interpolating the cartesian tip location and computing the

joint positions necessary to move the robot tool tip along

a straight line. The maximum speed for straight line

motions is only half that of joint interpolated motions.

VAL 11 includes a continuous path feature, which can

39

control the transition between successive motion segments

in a sequence to produce a

VAL 11 ensures that there

~mooth, continuous motion.

is smooth acceleration and

deceleration for each motion sequence.

VAL 11

along

also permits the user to program the robot to move

a

procedural

parallel

mathematically defined trajectory. In these

motions, the robot motion is executed in

with a.VAL 11 program loop in which the robot

trajectory is computed in small increments. The transitions

between computed motion segments are automatically smoothed

by the continuous path feature.

In addition to the programmed robot motions described

above, VAL 11 permits real time path control with the ALTER

facility. The ALTER facility is described in the next

chapter.

2.5.2. Motion Control Parameters

Robot motion along a programmed trajectory can be further

specified by the following parameters:

SPEED - tool speeds can be specified either in mm/sec or in

terms of a percentage of a maximum speed.

COARSE/FINE - this parameter specifies a low or high

tolerance position requirement for the hardware position

servos.

NONULL/NULL - final position checking of all the joints can

be avoided between consecutive motion segments, if high

speed and low accuracy are required.

40

INTOFF/INTON the position-error integration feature of

the PlO control of the servomotors can be switched off, if

a steady-state position error is expected, (e.g. if the

robot is exerting a force on an object).

2.5.3. Location Transformations

The position and orientation of the robot tool is

internally represented in VAL 11 by homogeneous

transformations. Paul [25) gives a complete description of

the theory ·of homogeneous transformations and their

application to robotic control. In VAL 11, location

transformations can be translated, rotated or compounded.

Using compound transformations, locations can be related to

different frames of reference.

In VAL 11, TOOL and BASE transformations can be specified

which rotate and offset the TOOL and WORLD coordinate

reference frames. The TOOL transformation, which relates

the tip of the tool to the end of the robot, is used to

accommodate different end-effectors. The WORLD

transformation can compensate for the movement of the robot

base relative to other fixed objects.

Thus, if the location transformation of an object is known

relative to the robot tool, then its transformation with

respect to the reference coordinate frame is given by :-

OBJECT = BASE: Tb TOOL : OFFSET

where OBJECT is the object location w.r.t. WORLD frame

OFFSET is the object location w.r.t. TOOL frame

Tb is the compound transformation,

Al:A2:A3:A4:A5:A6,

41

for the robot's six links, which relates the

tool to the base.

The WORLD and TOOL coordinate systems for the PUMA robot

are shown in fig. 2-6 for the default values of BASE and

TOOL.

Fig. 2-6: WORLD and TOOL Coordinate Systems

MOUNTING FLANGE
End View (Tool Model

TOOL CO-ORDINATES

42

2.6. General Purpose Communication (GPC) Channel

A general purpose communications channel was required

between the station controller and the robot controller, in

order to permit initialization, control, synchronization,

parameter transfers, monitoring and error recovery.

2.6.1. VAL" 11 Supervisory Communications Facility

VAL 11 provides extensive facilities for communications

with a supervisory computer. The supervisory computer can

monitor the VAL 11 system status, and perform all the 110

(input/output) that is normally performed by the VAL 11

terminal and disk drive. By implementing the supervisory

communication channel, the terminal and disk drive can be

discarded, and the robot controller remotely operated via a

LAN (Local Area Network) by other controllers in the

factory.

2.6.2. FIGARO GPC Design

Although, the VAL 11 supervisory communications facility

provides all the functions that would be required by a

commercial production system, it was unsuitable for

research purposes. The protocol was complex and rigorous,

the majority of its features were not necessary in the

laboratory set-up and, furthermore the protocol used up

considerable processor time and memory storage.

Therefore a communication channel was developed which

===----------- -----------

43

provided the specific facilities required by the FIGARO

system, with minimum processor overheads. In the FIGARO

arrangement, the VAL 11 terminal was not replaced by the

communication link, so that VAL 11 programs could be

developed independently of the rest of the system.

The GPC channel consisted of 20 parallel uni-directional

lines between the VAL 11 binary 1/0 signals and a 8255 PlO

(programmable lID controller) chip on a prototype card in

the IBM AT bus. In each direction, 8 lines were used as a

data bus (or buffer) and 2 lines were used as handshaking

signals. One signal was a "Buffer Full" signal from the

Sender to the Receiver, and the second was an "Acknowledge

Strobe" signal from the Receiver back to the Sender.

2.6.3. FIGARO GPC Protocol

The handshaking protocol implemented in the GPC link is

shown in ~able 2-1. The protocol was based on the timing

diagram for the 8255 PlO (programmable 1/0) device (46),

which was configured for Mode 2 Operation (viz. Strobed Bi

directional Bus lID). Thus, the operation of the

handshaking signals was performed automatically by the 8255

PlO chip at the IBM AT end.

The 8255 PlO chip was connected to the IRQ3 and IRQ5

interrupt lines respectively and the IBM AT software

implementation of the protocol was interrupt-dr(ven so that

low priority tasks were not "locked out" during GPC delays.

The software routines and the circuit diagrams developed

for the GPC channel are given in Appendix C. The use of the

GPC facility is further discussed in Chapter 6.

44

Seq SENDER RECEIVER

1 Put data byte ~n bus
2 Set Buffer Full Signal
3 Detect Buffer Full Signal
4 Read data byte
5 Toggle Acknowledge Strobe
6 Buffer Full Signal off

Table 2-1: GPC Handshaking Protocol

2.7. Sewing Machine

The Mitsubishi LS2-190 lockstitch sewing machine was

selected for the FIGARO development system. The machine

has a conventional drop feed mechanism in which a presser

foot holds the cloth against a pair of toothed dogs. The

dogs pull the cloth forward intermittently in

synchronization with the needle motion, so that the cloth

is stationary while the needle is in the cloth.

The machine was fitted with the LIMI-STOP Z variable speed,

needle-positioning clutch motor, which was controlled by

the LE-MF microprocessor-based control unit. The LE-MF unit

has two optional connector sockets, that facilitate

interfacing the unit to an external computer, and it

measures needle position and sewing speed with an optical

shaft encoder mounted on the sewing head shaft.

45

The machine was fitted with an automatic presser foot

lifter and an underbed thread trimmer which can be remotely

operated to cut the sewing thread after a seam has been

sewn. The machine's maximum sewing speed was 5000 rpm, and

the maximum stitch length was 4 mm.

The IBM AT was interfaced to the sewing machine so that the

-following functions could be controlled from the station

controller :-

* start and stop sewing

* vary sewing speed

* backtacking (i • e. sewing backwards)

* lift presser foot

* trim sewing thread

* stop machine with needle up or down

* bring needle up

The IBM AT/sewing machine interface is described in detail

in Appendix H.

2.8. Work Station Design

At the start of the FIGARO development, the work station

consisted of the robot, an end-effector, the sewing machine

and a sewing table. Additional features, that were

incorporated when the need arose, are described in later

chapters.

46

2.8.1. Sewing Table

The sewing machine was mount~d on a large table, 180 mm by

800 mm, with the needle located 330 mm from the end. The,

table's dimensions were selected so that there would be

sufficient room to manipulate large cloth panels (e.g.

trouser legs) for the sewing and handling. operations.

The

cloth

and

panel

sewing table required both a smooth surface, so that

panels could be slid into position without buckling,

a reflective surface, so that the edge of the cloth

could be easily detected by photocells and CCD

cameras. Consequently, the sewing table was covered with a

thin sheet of highly polished stainless steel, which

provided an excellent reflective surface and a relatively

low table-to-cloth friction.

However, the table friction proved sensitive to dust, and

to combat this, the table surface required periodic

cleaning. The table friction would be further reduced by

incorporating a flotation system in the sewing table, which

would also reduce its sensitivity to dust. Flotation, in

which compressed air is expelled via small nozzles drilled

in the table surface, is often employed in automatic sewing

stations.

2.8.2. End-Effector

The end-effector was designed to perform sewing and

handling operations on cloth panels with the simplest

possible configuration and minimum interference with the

sewing operation, in order to retain maximum system

flexibility (section 1.5.4>. The first prototype of the

end-effector is shown in fig. 2-7. The second prototype is

described in section 6.2.

47

Fig. 2-7: FIGARO End-Effector - First Prototype

2.8.2.1. Number of Fingers

If one end of a cloth pane l i s h e ld by th e sewing mac hine

needle, then a minimum of two fing ers i s r equired to rot ate

the cloth about th e ne e dle, wh e n fing ers are po sitioned at

the far end of the cloth panel. Similarly, a minimum of two

fingers is required to slide a cloth p ane l across the

table, when fing ers are po si tioned at th e front edge .

Although additional fing ers r educe the cloth p ane l' s

tendency to buckle, th e y also re s t r i c t th e work ing enve lop e

of the end-effector in the vicinity of th e sewing mac hine .

48

2.8.2.2. Hand Design

The first prototype end-effector had two spring-loaded

fingers supported on the end of cantilevered beams. This

low profile design permitted the fingers to operate in

close proximity to the sewing needle and move under the arm

of the sewing machine without the end-effector hitting the

sewing machine.

The distance between the two fingers could be adjusted

manually. Several micro-switches were installed on the end

effector to detect collisions between the robot and objects

in the workspace (section 4.3.4.5). A photocell was mounted

on each finger beam to detect the edge of the cloth panel

(section 6.2.2).

2.8.2.3. Finger Pads

To prevent the cloth panel slipping under the fingers

during handling and sewing operations, the finger-to-cloth

friction had to be greater than the table-to-cloth friction

and also greater than the cloth tension during sewing.

Consequently, the finger pad material had to exhibit high

friction with fabrics at low contact pressure. Card wire

pads or needles were rejected since they would scratch the

table surface. Pads with nylon needles were found to be

unsatisfactory since they required relatively high spring
•

loading before they gripped the cloth.

Rubber pads, with a diameter of 20 mm, were found to give

satisfactory performance; the best performance was achieved

using thin rubber discs with a contoured surface to

increase surface friction.

49

2.8.2.4. Spring Loading of Fingers

Each finger was spring-loaded, and the finger's vertical

travel had to be sufficient to accommodate static and

dynamic errors in the height of the end-effector above the

table. Static errors up to 10 mm were measured by

programming the robot to slide slowly across the table

surface; these were due to distortions in the table surface

and due to the robot's poor static accuracy. When the robot

was programmed to slide across the table at high

acceleration and velocity, significant dynamic and inertia

effects caused height variations of up to 20 mm.

The finger, its support and spring arrangement were

designed to maintain a low profile while still providing

20 mm vertical travel. Various springs, with different

spring constants, were tested in the end-effector (see

section 4.5.4.4).

2.8.3. Robot Siting

The optimum siting of the robot in a work station is often

a major difficulty, especially when the workpieces are

large relative to the robot's workspace. In addition to the

obvious problem of placing all necessary items within reach

of the robot, there is also the need to avoid the robot's

singularity regions.

2.8.3.1. Singularities

Six-degree-of-freedom robot arms have a number of

singularities in their kinematics, which in practice means

that a small change in Cartesian coordinates corresponds to

50

a large change in joint angles. Singularity regions should

be avoided since they result in unpredictable and erratic

behaviour of the robot arm.

Each singularity is associated with one of the spatial

configuration pairs, that is, the arm is at the boundary

between either the RIGHTY or LEFTY, the ABOVE or BELOW, or

the FLIP or NOFLIP configurations. In physical terms, a

singularity occurs when an axis of one joint becomes

aligned with an axis of an adjacent link.

Not all robot types suffer from this problem. If the number

of joints is less than six there are no singularities, but

then there are "holes" or regions within the workspace that

the robot cannot reach.

For the FIGARO application, in which the robot's wrist

flange was always held parallel to the table's surface, two

singularity regions limited the robot's stable workspace.

When the wrist flange was too far from the WORLD z axis,

the upper arm and forearm approached alignment, i.e. the

elbow singularity. When the wrist flange was too close to

the WORLD z axis, one of the wrist singularities might be

encountered. The FIGARO robot's working envelope is defined

in section 5.4.2.

•
2.8.3.2. Robot Height

The robot was fitted to a pedestal that was 170 mm lower

than the table surface. With the end-effector installed,

the robot exhibited wrist singularities even when the wrist

flange was quite distant from the WORLD z axis. The wrist

singularities were minimized by lowering the robot base so

that the arm was closer to the table surface.

51

The problem and its solution can be readily understood by

considering the anthropomorphic analogy. If a man tried to

slide the palm of his hand over a low table surface while

standing up, he would strain his wrist l However, he would

be much more comfortable if he sat down at the table

because he would use his elbow and shoulder more and his

wrist would not be strained.

The optimum height range for the robot tool flange, that

would give maximum reach and also minimize wrist

singularities, was found to be between 0 and 200 mm below

the centre of the base coordinate origin (assuming ABOVE

configuration). Since, the table surface was 490 mm below

the base origin and the end-effector was 150 mm high, the

robot origin had to be lowered by 150 to 350 mm. Rather

than manufacture a new pedestal, a 200 mm long aluminium

spacer was made to fit between the end-effector and the

tool flange (see fig. 2-7).

2.8.3.3. Limitations Due to End-effector

The second prototype end-effector (section 6.2) was 540 mm

wide, and· the width of the end-effector significantly

limited both the robot's minimum and maximum reach.

a) Minimum Reach

When the end-effector was close to the body, the inner end

of the end-effector was liable to hit the robot's trunk.

This minimum reach limitation could be removed by

suspending the robot from an overhead gantry, so that the

robot's trunk would not intrude into the useful workspace.

Although, this arrangement was not implemented, overhead

52

mounting is a recommendation for future improvement of the

FIGARO system (section 7.4.4).

b) Maximum Reach

When the arm was outstretched, it could not achieve its

full mechanical potential, due to a software limitation.

Location coordinates are stored internally in VAL 11 as 16-

bit signed integers, scaled by a factor of 32. Hence the

maximum distance that can be legal is only :

= 1024 mm (2.1)

2 x 32

This corresponds approximately to the maximum reach of the

PUMA. However, when locations were defined relative to the

far finger on the wide end-effector, using the TOOL

transformation facility, then the maximum distance was

still 1024 mm, even though the arm could physically reach

another 270 mm. This software limitation is not present in

a more advanced version of VAL 11, supplied with the Adept

robot, which represents distances internally as real

variables (section 7.4.1>.

2.8.4. Coordinate Systems

The sewing needle was selected as the origin of the work

station coordinate system and the direction of sewing was

chosen as the x direction. The robot TOOL transformation

was carefully defined so that its origin was at F, the

centre of the right hand finger pad, and its x axis was

aligned with the workstation x axis. The xy planes of both

coordinate systems were defined parallel to the sewing

table's surface.

53

The two coordinate systems are shown in fig. 2-8; the work

station's axes are marked x,y,z and the TOOL's axes are

m ark ed x', y' ,z ' •

SEWING TABLE

x

ll')('

y'

SEWING NEEDLE

F

END-EFFECTOR

Fig. 2-8: FIGARO Coordinate Systems

i·

54

CHAPTER 3

THE DEVELOPMENT OF A REAL TIME PATH CONTROL CAPABILITY

A real time path control capability was developed based on

the VAL 11 ALTER facility, which permits an external

computer to supply path modification data to

controller while the robot arm is in motion.

serial communications link was implemented

the robot

A high speed

between the

IBM AT and the robot controller, and interrupt-driven

software was written to service the link at multi-tasking

the IBM AT end.

3.1. VAL 11 ALTER Facility

The VAL 11 ALTER facility can be used to modify a

programmed motion or it can have total control over

robot's path. The ALTER modification data can

pre

the

be

interpreted in TOOL or WORLD coordinates, and the robot

motion can. be generated by cumulative or non-cumulative

application of the modification data.

3.1.1. Partial and Total Real Time Path Control Modes

Robot motion data from the external computer is ignored by

the robot controller, unless VAL 11 is performing a

programmed straight-line motion, or if the robot is

stationary during a programmed DELAY.

55

If the robot trajectory is approximately known in advance

and sensory feedback is only required to modify the tool

path, then the robot should be programmed to follow the

nominal path and the ALTER facility would then supply real

time sensory corrections. In the case of robotic sewing,

the required tool path is entirely unpredictable, and

therefore it was simpler to leave the robot nominally

stationary during an infinite DELAY and give the external

computer exclusive control over the robot's trajectory.

S.l.e. ALTER modes

ALTER data can specify any combination of offsets along and

rotations about the x, y, and z axes. When ALTER is

initiated, the user must specify either the WORLD or TOOL

coordinate systems for the subsequent ALTER data. He must

also specify whether the effects of the ALTER data are to

be cumulative or non-cumulative.

In cumulative mode, the effect of any data received is

accumulated and the robot location is modified by the sum

of all past ALTER data. Thus, if the ISM AT sends an ALTER

value of 0.1 mm in the x direction, then the robot will

move away from its nominal location at the rate of 0.1 mm

per 2B ms, i.e. a speed of S.5 mm/s (see section 3.2). The

robot stops when the external computer changes the x value

to zero.

In non-cumulative mode, the robot location is modified only

by the most recent data. Thus, when the IBM AT sends an x

value of 0.1 mm, the robot moves by 0.1 mm and then stops.

When the x value is set to zero, the robot returns to the

nominal location.

,

56

In the FIGARO system, ALTER was always used in the WORLD

coordinate mode (section 2.5.3) for convenience. 80th

cumulative and non-cumulative modes were tested, and their

different attributes are discussed further later.

3.2. The ALTER Communication Channel

The ALTER communication channel is dedicated to the

transfer of real time path control data from the IBM AT to

VAL 11. The link is an RS232 serial line operating at 19200

baud, which means that a byte is transmitted every 0.5 ms.

The protocol is optimized for high speed with minimal error

checking and no automatic retransmission of corrupted data,

since any time delay is detrimental to the performance of

the path control system.

The ALTER protocol is based on a handshake cycle which is

repeated every 28 ms. VAL 11 initiates the cycle with a

short message which requests path control information and

contains status information. The IBM AT must complete

transmitting its reply within 16 ms of the start of the

cycle, otherwise VAL II will abort ALTER with a timeout

error message. Simple start and end message codes, a one

byte checksum and a byte-stuffing protocol are used in the

message packet.

For convenience and clarity, robot motion parameters are

often quoted below in handshake units (or hs). For example,

an x ALTER data value of 2, in cumulative mode, would

result in a robot velocity of 2 mm/hs in the x direction

(equivalent to 71 mm/s>.

57

3.3. Implementation of the ALTER Protocol on the IBM AT.

The ALTER protocol was implemented on the IBM AT using the

interrupt handling and multi-tasking facilities provided by

the AMX-86 executive, in conjunction with the IBM AT

serial/parallel adapter.

3.3.1. Hardware Considerations

Although the IBM technical,reference manual (40) only

recommends operation of their serial port at 9600 baud,

when the IBM serial adapter card was installed in FIGARD's

IBM AT it ran successfully at 19200 baud. However, the

same card with the same software failed when used with an

older IBM AT system unit. This suggests that the IBM AT may

be operating close to a timing limitation when supporting

interrupt-based communications at 19200 baud.

3.3.2. Software Design

The software was organized along the lines of the ISO's OSI

(Open Systems Interconnection) Reference Model, which

defines a hierarchy of functional levels for computer

network communications (41). The OSI model encourages a

modular approach to the design of software and hardware

elements. A self-contained AMX-86 task was written for each

communication function within the OSI levels, in order to

permit parallel execution of the functions. The

hierarchical arrangement of the ALTER communication Tasks

is shown in fig. 3-1.

Application
Level

Session
Level

Transport

Level

Communications

Subnet

58

Robotic Sewing
Task - SEW

Communications
Supervisor Task

COMM

I I
Receive Message Transmit Message

Task - RXMG Task - TXMG

I I

Interrupt Service
Procedure - COMISP

I I ------
Communications

Controller
NS16450 UART

RS-232C Serial Line

Fig. 3-1: Hierarchical Implementation of ALTER Protocol
on the IBM AT.

s
o
f
t
w
a
r
e

h
a
r
d
w
a
r
e

59

The SEW Task, in which the desired robot trajectory is

calculated from sensory servo control functions,

corresponds to the Applications Level, the highest 051

level. The SEW Task is described in later Chapters 4 and 5.

The COMM Task, which corresponds to the OSI's Session

Level, performs the following functions:

* Interpreting the ALTER status message.

* Maintaining the ALTER handshake requirement by

immediately acknowledging every VAL 11 message.

* Passing the ALTER data from the Application level

on to the Transport level for transmission to VAL 11.

* Terminating the ALTER communication channel.

The RXMG Task performs the following functions:

* Assembles the message packets received by the serial

port.

* Removes the header and checksum and any byte stuffing.

* Checks for data corruption.

* Transfers the message to the COMM Task for

interpretation.

The TXMG Task performs the following functions:

* Takes the ALTER data for transmission to VAL 11.

* Constructs the message packet by adding the header and

checksum and by performing the byte-stuffing protocol.

* Loads the message packet onto a circular list.

The communications ISP (Interrupt

whenever the

Service Procedure),

COMISP, is executed UART communications

controller generates an IRQ4 interrupt. The

procedure determines whether the interrupt was a

received or byte-transmitted interrupt; in the

case it adds the received byte to a circular list,

COMISP

byte

first

in the

60 CLOTHVJO~;(Ef1S' LIBRARY
UNIVEHSITY OF LEEDS

second case it loads the port with a byte Tor ~ransmission

from a second circular list. If either RXMG or TXMG is

waiting for an interrupt, then COMISP awakes the

appropriate Task.

All the software modules associated with the ALTER

communication channel are listed and explained in

Appendix B. The efficiency of the COMISP procedure has a

critical effect on system performance, since it is executed

every 0.5 ms. Consequently, COMISP and part of TXMG were

written in 8086 assembler; the remainder was written in the

C programming language.

3.3.3. Communication Overhead

The support of the ALTER communication channel causes a

significant processing overhead for the IBM AT. This

overhead was measured by comparing the execution time of a

dummy program operating in a normal MS-DOS environment,

with the execution time of the same program operating under

AMX-86 with the ALTER communication protocol running in the

background. The following results were obtained :-

* Execution time under MS-DOS = 19.2 secs

* Execution time under AMX-86 = 27.8 secs

* During the 27.8 secs, 945 ALTER handshakes were

completed. Each handshake consisted of 12 bytes

received and 8 bytes sent.

Thus, the ALTER communications overheads plus the AMX-86

scheduling overheads, were :-

(27.8 - 19.2) I 945 = 9 ms per handshake

61

Since the ALTER handshakes occur every 28 ms, the overheads

account for a third of the cycle time, which is not very

satisfactory.

A more suitable arrangement might be to implement the COMM,

TXMG, RXMG and COMISP functions on a microcontroller, such

as the Intel 8751, which could be installed together with

a block of dual-ported RAM on a card on the IBM AT bus.

During real time path control of the robot under sensory

feedback, the IBM AT 80286 processor could be dedicated to

calculating the robot's trajectory coordinates, while the

microcontroller would take care of the ALTER

communications. The received and transmitted messages would

be transferred between processors via the dual-ported RAM.

Nevertheless, it was decided that the software-oriented

single-processor multi-tasking arrangement was more

suitable for a development system on which exploratory

research was to be carried out. ~ The hardware-oriented

multiprocessor arrangement would have improved the

performance of the system, but at the expense of reduced

flexibility and increased complexity.

3.4. DynamiC Performance Tests on ALTER Control

3.4.1. ALTER Performance Specification

The VAL 11 manual (38) states that the total time taken

between receiving the ALTER data from the IBM AT until the

robot reaches the required location is 49 ms. This is made

up of 22 ms for the matrix transformation calculations

which converts coordinate data into joint angles, and 27 ms

62

for the joint servo controllers to reach the target

location.

The VAL 11 manual does not provide any additional

information on the response performance of the ALTER motion

control, or on smoothing or interpolation requirements.

Initial experiments with the ALTER facility indicated that

careful interpolation and limitation should be applied to

the ALTER data sequence to prevent erratic or jerky motion.

Series of tests were performed to confirm the timings given

in the manual, and to investigate the dynamic

characteristics and interpolation requirements of ALTER

control.

3.4.2. Test Setup

In the test setup the PUMA was attached to the end of a

vertical LVDT, with a travel of 150 mm. A timing output

signal was produced by the IBM AT, which showed the

beginning of the handshake cycle and the end of the IBM AT

message transmission. The LVDT's output was filtered at 1

kHz, stored in a data logger and then recorded on an X-V

plotter.

Three test series were performed :-

a) single step change in position

b) ramp demand - i.e. a constant position increment per

handshake
I

c) stepped ramp demand - i.e. every second or third

handshake a position increment was transmitted, and a

zero increment was transmitted on the other

handshakes.

•

63

The tests were repeated for a range of increment rates up

to 10 mm per handshake. In addition, many of the tests were

repeated for both cumulative and non-cumuiative ALTER

modes, and for the COARSE, NONULL and INTOFF motion control

parameter settings.

3.4.3. Results

The following test results were obtained ;-

* The robot started to move approximately 20 ms after

the IBM AT message had been sent. This confirmed the

manual's timing specification for the matrix

transformation calculation.

* When the robot performed a step change, over 851. of

the total distance was covered within the specified

27 ms. The remainder of the distance

achieved over a further 10 to

was

35

gradually

ms. This

characteristic appears to be due to a conservative

control strategy applied to the joint servomotors,

involving coarse and fine motion segments.

* The robot moved very smoothly when given a ramp

demand. The robot tool passed through the requested

location 65 ms after the IBM transmitted the data.

This figure is not quite as good as the One quoted in

the manual (49.5 ms), probably due to the intentional

position offset applied to the coarse motion segment.

* A stepped ramp demand resulted in an intermittent,

staggered robot motion. For ALTER increments above

5 mm, the jerky motion was severe.

64

cj:i i;i'! :, i':il,,:!i" .. ! ';;! ;). !(:lilli~~jl1:[~~f~:!J!!1!i:ii!i:::, !~:. '[i::"I'i'i:. .. J:,:;;', i,':,l ', I':,!(,r:,' I: i" i~,;!{[,,!'; :i ,I', !::: i.,
: :~::: :: :: : I·-F: I::: :; ::p'·l :.j:!: rl :'1 11 1:'··1·,· ".j.;:,I ·,·· '!·: ·,.1, "I" l 'T" .. ' ''~ ..r +:·1· :,':: .. ,'. " 'I /1 '1': ·1·· ' ,I' i' ! ·, " " IJ',.:;_ ,I'_:::.::;' ·;_{_··:
,;: 7 ~:' b~ :{'>i ~~ I :~;:S !;; ~~~l : ' ::~~ i u~: ;r~: ,> :~i ; ~I~ : ~~~ , .'+T.~i~;:~~ ~~:; : · ! ~: : i · · \ ··h~+l H~ ;.~~.:; : ~ ~ .:. -
·Jd·;;: :::,:": 1 >i:::: [: ::(! ~ 1 ::: : ; : J:l:r:":;! :;:' j ~: : l i'I' '!:~ 1' :: : :: =:!: i::I·:'lil r;, (:,jo.:::.;-.I: :. :: .. :- ;.:. I: ;: ,1 1·; !'. ': / '.:.:. ··i I ' I ! '·1 ,: .. i ·' I .

'::i' i 'i' ii' II' :" ii': ~':! :" iji i ' ir~j~::' 11 '1~tl t~'~r1~~i::: i::: i;JI'[:!lf'ij,II:,Ji"l ~1'[I"!':: (j1!;.1'l ii'J"'r: '{ I ';"" L: T '1.-'rF
,-,.':· ... :: :.: .'.:.",· ·.·. :.~ .. : tl~·::~.~:!:::· i . ~. : jJ>~~\:~ I : : : , :~:! ~ :~: '; ~ : , ~ ; ~ ~v e ~:! ~:;1. . ~ :. ~J:E::) . :· !~ :· . L j:.:J.::~: 1 . .'J.:::j ~ ._i . ' ~~; · .~:' ~ ~~ : ! _ :~:: : - , _ . I ••. • :...i. . _ '. :' "!' I :
::;:::::y:::: ,·:;';;:::i.·:: I:i;·I:;::i":Y ';': II: ";; ':1 11 > jii , ·iill:i:· :"{",, ::·t:;·r·:r··u,' :.;.r., .-:: I,I· .. (,., ~ 1 ,, : ' .. ,." 1" :':. : I· '; I'.' } I ' :01 ,':·, ~ . :, ! .;~ r ~;-

trw
i F.~.'~.: ~~ •. _f.: .. ~. '. ·.; i :': l"~~iii '~ j~[:j~lj~,I,~j'jf! !]:" ;]I:~!"~~1~~~~[iJ)1:;!1!1~~i~,J1! , i('J~':~,':{'-' -· :-L-'_[-:;_'-: .-~.-;,:
~ .. " .,:J 1 :.::1:' ,..." " .. , ''I"' 1:., : . . . L:..I.··k .)::, .. , .. 1"., '.r- I: .. l" ,·:t· ':1 .. 1. I 1':·:1 ". ':.".: 1" . ·,··,1 . · ... 1 ··· .. 1. ! '. r'
<:[• ~ U1 .~ .. ;' . ; . : ..

c :El d : :~:i: , .. i 1: : ..

:u: ~. -.: f.:~:I U1 w: ~-~. . ~· :, : :·:~ :~ ': ! ·T
_ -. :!.::: ~ .. 4 ! • : •• _ . .

u Cl ::::1: ": I

ex ~ z _ ' _:_.~.L_

. \ "1 .~ .~::r .~ :;: .:-: :j .:~::
i 1-:0': I . ~~ · " : ~ -:~.-:-..

-... . t :"'; .. ; :: :';_. ,,-'

o

') f. ~::' .. r(
··- r+ I"~
. I " ' ,.: '.'

1
::1::. i I: .: ... -.,.! ... ~- .

. :..+ :: :.: ""j .. :1:":,: :0 :;"'1 ·1·;:;,;ITuH i,,, i:: ;'j ';''; '2E0';I;t+'''!''I'I'''j' ' · - :"h i i ' ; ;· ~ ,t"T'·ji '"j·:,·", I--ir.,' , " .. ; , .. ,., ~ ... " ... :-.. ~" .. ·~· i-,~- ·'

~ 'j! i,:'m:; ~ ';(1V::' l; ! :~i:'~~,~,~'i~; ! ", b;i'; IG;1;]Ii[:clt : ~j1 '" I. :~tt"~l~ :1i" i'" ~ ~ -, -.. -:~.-)~' : ..
Ir:H: . ~ :: : ' :-,,--.,.,.-:--.:.,-.-.!:.-:-~...:....~r-ir.....:.;..--:--7.-:-::--i-~:---:7-.~-'-+-7-:-~--:---:--;./ ;. , :: . j' -

· :: J· · :: i, ::.~ , .~ .. : I ·' , .",_ •• -

:: ..

~~~! } f: l~~ i :';!j : :~;I U i ;; ~ ::; I :'- ~2;i,~j i:'1 ':~ I:fi?! !!::: !:::I;:'i['F ;';'!"'! !" !;::;, IJ!!;;:; r ~ . , . : 1:':;.1.; i ; .• 

. cc: ... ; I :'J : 1' !:. i )'~r~~l~~i ;f:' i~;~m:! : :'i :i' i!': : .~r.i'I .:'!'; •• I :: ·t': i !: i~· ! :J" 1 ; 1.: I ,,'l'[I , .,j : ' [ : : ••.• ! i,'·.i .' ' .... : .·.i···i. ; '. ! .•• : ••. ~ ~., •. 
Fig. 3 - 2: ALTER Dynamic Tes t Result s Ramp Te s t 



65 

ir ~ ::! ': !J, j:rr i'/'i:!1!: I,' :! (j , ,-t~r-t~~iTi;~i j" t( 1-/P '}:~l1/~+~ 
~ t; ~ ~ .. : . i :: I' ::·-1:: i ·~.!. ++,::k: I" . ~ ~: ... ;:,J .. ~':.L _! .. ; ~:: :.'L -\.- -. t:I' :._L ! ~:k( .!.:::! _ '.:::- ~ ~-.:: . ~ ·~_.-:~_~-,-l: ·:l.:~·"= 1 

r" i ; .. : !:o ::- .::~ i :':' j'! ;:;·;L i, :'i' !' fi':'" :i' I" ( i'}J:J++j~;,:::::I;~ ~f'~l: ~ ~!: " i' ,: : : !-'H-:~ " :;~t'~:V,i~:~;~:J 
.!:..._ _ ! __ L..l.... _ ::!_l:: __ J~...L:'';'' __ U_!_::_. _,_I' I . ~' I .:.' . : ~.t • I . ! . . ', " _ : I : . i -- I 

'--~ I . . I I " ' 1 ., 1 I . 1 1 I' 1 • I ' 1 . I . " I 1 I I, . I .. 1 

, t . ..:' '," ! ~. ! .: ~- I. : i"' ~ .. !: -: :. ,. '. ' : ~ : .:L- I : ~ L. r ::-"1::' ; ~: - :;;": I· ::L:;· ~ ;,: 1:-:-! :.j ~.:; - - i ~' r ~~ ~:~:crIJ::~~ 
r---~ i' I ' ~' . ,'. ! ,' :' . i: .:. ~ 1 j :.r ~' r .. : I, . , :~: ~ i .· ,; : i -+ ::. k '~h:' .:+:,:,: .. :~ l~;::: I: :~ ::-";. ~;-:i. +~<- l::-~:;>F"-Uj 

• , , '. - • .. 1 1 . 1- >- '1 W - I " ;.,_ .. 1 . j_ .. . ~.-., '--r --1-·:-· --c ···l cr .. 1 - ~ .. - -.-- -'" '- '-- -'---"-'--:-~ 

.,.. :;;:";]J !, !,! .!. ~ol '~i :\~:"l, I' :' Hl="a}!0;~+ j~i::j~:lX ~~~ ,;: !~~~~,,~i~~ 
\., ' : ' 1 . i. ': ' .1 ·10 i," ,'. 1 Vj ",,, .1. I. ~ , ..... :. L,.. .. : ... I". " ' : ':fl:":'" ;0' 'r" [":1:::-11, r 'L - i '-:f~ I -" ":.- I-"[',·I-c- -r-:-:-'-J 

I.----::-- ! .... .!._ . .. !. __ i~ I , ' I ' -1 . . :. I '· · -::~~.J_:_E.:.~ · I · ..:.:J~~~~:_ ._ .~ _.~~~ .... :- ~ 
: ! . : : f. ' .. ·1 : .. ;., ; :' i· , I, :'-1"'1 .... ,;: +. :-', :;J: ' . '," ' ~L-:"- ;l+~;:if" ... ! .+~I-!!j~ . -::;: ~ 1.~::'<L:::~.:":;::_ci.;J 

~===~' =~:: :;: .:' ./ I"':; ".' ~:: . ;:<. ~- :. : ~+:: :~: I-~f ;~';; .. ~- : Y~~~:+;:f~ l ~,b :: i:~ :'j~ , ; .. :,~; ( ~1:1:~1::ttr.~ I ~i·I~~'9"-+<:~:: :~~;; ; !.i-~~ 

. ; .... ·1; 1'::'-1:.1' !:1:';': l:!!:j~:i~;];·~ ·,:! iI~:,rin~i:T:t~~:fW~)~: t:l*bd~tr~r{etI~ 

,: . ' .. : 
• 1 

I :, 

-'-j 

' : 1 

Fig. 3-3: ALTER Dynamic Tes t Result s St pped R mp T s t 



66 

* Cumulative and non-cumulative modes produced identical 

results for equivalent tests, confirming that the two 

modes are provided merely for the user's convenience 

but they do not imply any difference in the control of 

the robot. 

* The settings of the COARSE/FINE, NULL/NONULL and 

INTON/INTOFF motion control parameters have no effect 

on ALTER real time path control (section 2.5.1). 

Two examples of ALTER motion traces are shown in figs. 3-2 

and 3-3. 

3.4.4. Conclusions 

a) When VAL 11 performs a normal programmed robot motion, 

the LSI 11 processor applies an interpolation and 

smoothing function in order to achieve a specified 

tool velocity and smooth acceleration and 

deceleration. Then, the LSI 11 sends the computed 

setpoints to each joint"controller every 28 ms. 

b) When an external computer specifies the intermediate 

locations every 28 ms, the LSI 11 processor does not 

apply any smoothing interpolation; it merely converts 

the ALTER data into joint setpoints and sends the 

setpoints onto the 6502 joint controllers. 

c) Consequently, the external computer is responsible for 

smoothing out the ALTER data to produce smooth 

acceleration and deceleration, and for limiting the 

position increments to achieve a particular speed. 



67 

d) The 6502 joint controllers perform a digital PlO 

(proportional-integral-derivative) control algorithm 

which consists of a coarse and a fine mot ion phase. A 

large proportion of the demand is input into the 

coarse control and is achieved at high speed. The 

remainder of the demand is achieved more slowly and 

accurately using integral control. This conservative 

control strategy was probably adopted to prevent 

instability due to coupling effects between joints and 

load and gravity effects (section 2.4.4). 

3.5. Generation of ALTER Data 

As indicated by the ALTER dynamic performance experiment, 

care was required in the generation of ALTER data to ensure 

that the subsequent robot motion was smooth and 

approximated to the intended motion. 

3.5.1. Velocity and Acceleration Limitations 

Since the handshake rate is fixed at 35.7 Hz (1 every 

28 ms), the magnitude of position increments that the 

IBM AT demands, determines the speed of the robot motion. 

Similarly, the" rate of change of the position increments 

determines the robot acceleration. The ALTER data must be 

limited to sensible values by the external computer, since 

when a very large position increment was transmitted 

(i.e. greater than 25 mm/s) the robot arm was flung 

violently in an uncontrolled motion. 



68 

VAL 11 interprets successive ALTER position demands as 

point-to-point motions. Therefore, if a straight-line 

motion was desired, the ALTER data should be limited to 

small position increments, so that the gross motion would 

effectively be linear. 

In an investigation into ALTER motion control, the robot 

was programmed to move in a straight line, parallel to and 

100 mm above the table surface with an acceleration of only 

4 mm/hs/hs (0.52 g) and a velocity of 15 mm/hs 

(0.42 m/sec). Instead of a linear trajectory, the robot was 

observed to move in a vertical circular arc such that it 

would have hit the table top if the intended trajectory had 

been within 30 mm. 

ALTER data had 

Further experimentation showed that the 

to be limited to within 3 mm/hs/hs and 

8 mm/hs in order to maintain satisfactory linear motion. 

The maximum velocity and acceleration depended on the 

distance of the end-effector from the robot's base. When 

the arm was outstretched, the dynamic errors were more 

severe due to the arm's reduced stiffness. Consequently, 

the ALTER data was limited to 1.5 mm/hs/hs and 4 mm/hs when 

the mounting flange on the robot's wrist was more than 

680 mm from the origin of the robot's WORLD coordinates 

(section 5.4.2). 

Additional limitations were applied to the ALTER data 

before transmission to VAL 11, which prevented the end

effector from colliding with either the sewing machine or 

the base of the robot, or from approaching a singularity 

region. The implementation of these limitations is 

discussed in section 5.4.2. 



69 

3.5.2. The Non-Cumulative Approach 

3.5.2.1. The Need for Smoothing 

The ALTER data computed in the SEW Task was derived from 

the sensory servo control transfer functions. However, due 

to the processing limitations of the IBM AT and due to 

speed limitations of the vision system, the SEW Task was 

not able to compute new ALTER data in time for each 

handshake. Usually, the ALTER message would be updated only 

once every two handshakes, and occasionally once in three 

handshakes. 

Initially, the ALTER channel was operated in the non

cumulative mode. When the calculation overhead reduced the 

ALTER update rate to less than that of the ALTER handshake 

rate, the robot motion was intermittent and jerky. This 

undesirable behaviour was due to the stepped ramp form of 

the ALTER data, which had been investigated in the Dynamic 

Response Experiment (section 3.4.3). 

For example, in non-cumulative form ALTER data for a smooth 

robot motion between, say, locations 2 and 10 mm away from 

nominal origin, might be computed as :-

2 4 6 8 10 

However'due to the slower update rate, VAL 11 would,receive 

ALTER data in the form of a stepped ramp, as:-

2 2 4 4 6 6 8 8 10 10 

Consequently, the resultant robot motion would be jerky. 

Clearly, some form of interpolation was required to smooth 



70 

out the infrequently calculated robot path increments among 

the more frequent ALTER handshakes. 

3.5.2.2. The Interpolator Algorithm 

A smoothing interpolation algorithm was written for non

cumulative ALTER data, and was executed on the CO MM Task 

level. The algorithm modified ALTER messages that had not 

yet been updated, based on a prediction of the next ALTER 

message. 

If the 

demand 

COMM Task received from the SEW Task a position 

of, say, 4 mm, and the previous update had been 

the interpolater assumed that the next update 2 mm, then 

would be 6 

requested 

mm, by extrapolation. If an ALTER handshake 

data before a new update had calculated, 

then an intermediate position demand would be transmitted, 

i.e. a value between 4 mm and 6 mm. For the first non

updated handshake 40 Y. of the increment was transmitted, 

and if there was a second non-updated handshake then 70 Y

of the increment was transmitted, and so on. 

Although somewhat inelegant in concept, this algorithm was 

effective in smoothing out robot motions. 

3.5.3. The Cumulative Approach 

3.5.3.1. Implicit Interpolation 

When the ALTER channel is operated in the cumulative mode, 

there is no need for an explicit smoothing routine, since 

the position increment is maintained during a non-updated 

handshake. 



71 

For example, in the cumulative mode, if the robot was to 

move smoothly between locations 2 and 10 mm from the 

nominal origin, then the ALTER data could be:-

222 2 

Even if the update rate was slower than the handshake rate, 

the robot would move smoothly without requiring 

interpolation. 

3.5.4. Comparison of Cumulative and Non-Cumulative Modes 

Fundamentally, there is very little difference between the 

two approaches at representing ALTER data, and both were 

implemented successfully. 

However, the software was more straightforward and more 

elegant when the data was expressed in the cumulative mode, 

and the code was marginally more efficient. The 

communication overhead was greater in the non-cumulative 

approach, since it required the smoothing routine to be 

called during a time-critical part of the handshake cycle. 

i.e. between receiving and transmitting messages. 



72 

CHAPTER 4 

CLOTH TENSION CONTROL SYSTEM 

4.1. Introduction 

The previous two chapters described the main components of 

the FIGARO development system, and its real time path 

control capability. FIGARO was given an adaptive capability 

by integrating sensory-based servo control into the path 

control system. 

4.1.1. Robotic Sewing of a Straight Seam 

The first FIGARO sewing function developed was to sew a 

straight seam. The technique that was implemented was 

imitative of one of the common techniques used by human 

operators. Once the end of the cloth had been correctly . 
placed under the sewing head, the robot was required to 

hold the far end of the cloth against a smooth table and to 

guide the cloth while it was being sewn up. 

The sensory servo control system had to ensure that the 

robot tracked the forward motion of the cloth, caused by 

the feed mechanism of the sewing machine, and maintained a 

small tension on the cloth during the sewing operation. The 

development of this control system is described in this 

chapter. 



73 

4.1.2. Requirements of Cloth Feed Tracking Servo Control 

The major problem in applying a robot to control cloth 

during a sewing operation, is the limp nature of the cloth. 

Cloth can buckle under small shear forces, in a manner 

which is usually impossible to predict. Consequently, it is 

essential to ensure that buckling of the cloth is kept to a 

minimum, and that it does not occur at all in critical 

areas of the cloth panel during the operation. Once 

buckling of the cloth has been eliminated, the cloth panel 

can be assumed to behave like a rigid lamina. 

As described in section 2.8.1 the table had a smooth 

polished stainless steel surface, in order to minimize 

buckling. However, between the robot's fingers and the 

sewing head, buckling could easily occur due to forces 

applied to the cloth via the feed mechanism or via the 

fingers. This buckling could be prevented by maintaining a 

small cloth tension between the fingers and the sewing head 

during sewing, to ensure that the cloth panel stays rigid. 

If there was no cloth tension, then the robot would 

buckle the cloth when it moved forward or when it rotated 

the cloth about the needle (in the edge seaming operation). 

If the tension was too high then the asymmetry of the 

tension loading on the fabric would cause the cloth end to 

bend upwards near the presser foot, and this would affect 

the accuracy of the seam width measurement. In addition, 

high cloth tension would lead to seam puckering. 



74 

4.2. Open Loop Control 

Initially, an open loop control system was developed in 

which robot motion data was calculated from sewing machine 

speed measurements, so that the robot could track the speed 

variations of the sewing machine. This arrangement 

provided open loop control only, since the system had no 

feedback on the cloth tension, which was the "desired 

output" of the control system. 

The sewing machine speed was measured from the shaft 

encoder signal, and the desired robot motion was calculated 

assuming a fixed stitch length, (i.e. the cloth moved a 

fixed distance per sewing machine revolution). 

4.2.1. Shaft Encoder 

The sewing machine control unit monitored the sewing speed 

and the position of the needle using an optical shaft 

encoder. The incremental encoder, with had an output signal 

of 36 CMDS square waves per revolution, had a resolution 

of ±5°. The encoder did not provide any directional 

information (the shaft is only rotated in one direction 

even when backtacking), but two additional signals are 

provided which indicate the "needle up" and "needle down" 

positions. 

4.2.2. Shaft Encoder Interface with IBM AT 

Although the Mitsubishi LE-MF control box (section 2.7) did 

not provide a direct interface with the shaft encoder 

signal, the signal was accessed by tapping it at entry 



75 

into the LE-MF control box. The signal was transmitted to 

the IBM AT and fed into a 1b-bit uni-directional counter 

installed on a prototype card. 

A false triggering problem was traced to noise picked up by 

the cable, due to capacitive signal coupling [47J. The 

problem was solved by improving the cable shielding and by 

buffering the signal before transmission down the cable. 

Wiring and circuit diagrams are given in Appendix H. 

This interface permitted the IBM AT 

instantaneous reading of the number of 

to obtain an 

sewing machine 

revolutions since the counter was reset. The shaft encoder 

resolution was 36 counts per revolution, and the maximum 

number of revolutions that could be counted before the 

counter overflowed was 2 1
• I 3b = 1820. The distance 

that the cloth is fed past the needle is related to the 

sewing revolutions by .the stitch length setting, e.g. for a 

stitch length of 1 mm, the counter would overflow after a 

seam of 1820 mm. Since no continuous seam could be so long, 

a 16-bit counter was sufficient for this application. For 

debugging purposes, an error message was generated if the 

software detected counter overflow. 

4.2.3. Software Implementation 

4.2.3.1. SEW Task 

As described in section 2.3.3.2, the sensory servo control 

calculations were implemented in the SEW task. This task 

generated ALTER data in real time on the basis of sensory 

inputs, to perform a contoured seam. The SEW task assumed 

that the front end of the cloth had been accurately placed 

under the needle and that the robot fingers were in place 



76 

at the far end of the cloth. The basic SEW algorithm was as 

follows :-

1. Perform initializations 

2. Start sewing 

3. Calculate ALTER data for correcting in X direction 

5. Install ALTER data in new message for COMM to 

transmit 

6. Check if end of seam length has been reached 

7. If not yet, then repeat steps 3 to 7 

8. Stop sewing machine 

4.2.3.2. Implementing Open Loop Control 

The 1b-bit counter, which counted the square wave signal of 

the shaft encoder, 

initialization phase. 

was reset to zero during SEW'S 

Consequently, the value of the 

counter during sewing always indicated the number of sewing 

machine revolutions since the start of that sewing 

operation. The length of cloth fed into the sewing machine 

since the start of the sewing operation could be estimated 

using the following relationship :-

where : L 

L = C 5 

f 

is the length of cloth fed so far 

C is the count so far 

S is the average stitch length 

(4. 1 ) 

f is the frequency of counts per rev (viz. 36) 

The ALTER facility was used in the cumulative mode (section 

3.5.4); in this mode the ALTER data is required in terms of 

position increments (i.e. a velocity demand). The shaft 



77 

encoder counter was sampled at the update rate, which was 

usually slower than the handshake rate (section 5.4.3). 

Consequently, the ALTER data value, X~TO' was set equal 

to the cloth feed speed in mm/hs, as follows :-

where 

= oL u = oC S u 

f 

oL is the increase in L since last update 

OC is the increase in C since last update 

u is the average update rate 

(4.2) 

(i.e. no. of updates/no. of handshakes) 

4.2.4. Open Loop Control Performance 

The stitch length can be manually adjusted on the sewing 

machine by rotating a knob which alters the stroke of the 

feed dogs. When the stitch length was set to a nominal 

value in the software, the robot speed and the cloth feed 

speed could be synchronized manually using the knob. If the 

stitch length was too large, the robot lagged behind the 

cloth feed and the cloth tension was too high. Conversely, 

when the stitch length was too small, the robot preceded 

the cloth feed and the cloth went slack and buckled. 

When sewing a straight seam, an optimum knob position could 

be found for that particular fabric type at a particular 

speed, which gave a stable cloth 

position varied for different 

different speeds. Consequently, 

tension. 

fabric 

The optimum knob 

types and for 

required 

material. 

manual adjustment when 

the open 

changing 

loop 

the 

control 

fabric 



78 

When sewing an edge seam, the robot was required to rotate 

the cloth about the needle <under the seam tracking servo 

control), and the behaviour of the cloth panel within the 

feed mechanism was unpredictable. The open loop control 

system failed to maintain a constant cloth tension during 

an edge seam operation. 

4.2.5. Limitations of Open Loop Control 

The unpredictable behaviour of cloth 'tension during sewing 

was caused by slipping between the feed dogs and the cloth. 

During the feed part of the sewing cycle, the cloth is 

clamped between the presser foot and the dogs. The dogs 

grip the cloth with their serrated faces, but some slipping 

still occurs at the beginning and end of the feeding phase, 
. . 

and when there is a rotatlng moment on the cloth about the 

dogs. 

Different fabrics required different stitch length 

settings, since some were more prone to slipping than 

others. By adjusting the stitch length manually, it 

compensated for the average rate of slipping during the 

sewing operation. 

A suggestion for improving the open loop control was 

considered, that would involve inserting a constant force 

spring between the finger and the robot hand; this would 

accommodate small errors between the robot speed and the 

cloth feed speed. However, this modification was rejected 

on the basis that even a small tracking error would require 

the spring to absorb tension errors cumulatively, and the 

spring would then soon use up its total displacement 

length. 



79 

The open loop control of the cloth tension during sewing 

was unsatisfactory, since the cloth tension variations were 

unpredictable and they could not be compensated for 

adequately. Evidently, it was necessary to measure the 

cloth tension during sewing, and to close the loop by 

feeding back this measurement into the control system. 

4.3. Cloth Tension Sensor 

4.3.1. Measuring Cloth Tension 

In order to measure the cloth tension, a sensor was 

required which measured the force acting on the robot 

finger pad from the cloth tension. If the finger held the 

cloth against a table, the actual tension in the cloth 

would not be the same as the tension sensed by the finger 

pad, due to the friction between the table and the cloth. 

The friction problem could be avoided by holding the cloth 

end in the air between clamped finger pads. 

Human operators sometimes hold the cloth end in the air 

during long seam sewing operations, but they use this 

technique because it ensures that both plies will be the 

same length after sewing. However, since the operator must 

hold the cloth at its end, this technique is limited to 

sewing gently curved seams only. For the majority of 

operations, the human operator holds the cloth down on the 

table, since this permits greater manipulative flexibility. 

Both techniques are useful in different circumstances, but 

the cloth-held-against-table technique has wider 

applicability and does not require the end of the cloth to 



80 

be picked up first. It was decided to attempt the 

development of a cloth tension servo with the cloth held 

against the table. If the table friction problem could be 

solved then the control could be readily adapted for use 

with the cloth-in-the-air technique, which avoids the 

friction problem, altogether. 

4.3.2. Sensor Specification 

The cloth 

circuitry 

tension sensor 

was designed 

specifications :-

and 

to 

its signal 

meet the 

processing 

following 

High Sensitivity -.the optimum cloth tension during sewing 

is between 0.25 to 1.0 N/cm. For a 2 cm wide finger 

pad with a spring loading of 4 N, the friction acting 

between the table surface and the cloth is 

approximately 0.5 N. Therefore, a sensor, based on a 

2 cm finger pad, should have good resolution in the 0 

to 1.5 N range. 

Measurement Range - a full scale deflection of 4 N would be 

sufficient. 

Low Hysteresis - although the table friction had already 

introduced significant hysteresis, the finger/sensor 

arrangement should not add to the problem. 

Accuracy - the linearity and repeatability requirements are 

not very stringent in this application, since there is 

a range in which the cloth tension is permitted to 

vary. 



81 

Cross-Sensitivity - the sensor should be mechanically 

decoupled, i.e. it should be sensitive to force in the 

desired direction and insensitive to any other forces 

or moments. If the sensor was not mechanically 

decoupled then the output signal would be dependent on 

factors other than the cloth tension, such as the 

finger spring loading. 

Bandwidth - As described later, the cloth tension was found 

to fluctuate smoothly in synchronization with the 

sewing speed, and the maximum sewing speed is 5500 rpm 

(92 Hz). Therefore the sensor·s bandwidth should be at 

least 1 kHz. 

Drift since the tension control is only active durin~ 

short sewing operations, drift and other offset 

effects can be nul led in the software before each 

operation, and therefore lon~-term drift is not a 

significant problem. 

Natural Frequency the sensor's natural frequency of 

vibration should be considerably higher than the servo 

bandwidth (which has a maximum of 35 Hz), to prevent 

instability. A high natural frequency and stiffness 

are desirable in order to minimize noise from 

sympathetic oscillations. 

Dimensions and 

fitted on 

Robustness since the sensor 

the end of a robot finger, it 

is to 

should 

be 

be 

small, light and sturdy with a high overload capacity. 



82 

4.3.3. Choice of Transducer 

Usually, a force sensor consists of an elastic body which 

deforms under the applied force. Measurement of the elastic 

deformation, in one or more directions, by an appropriate 

transducer yields electrical signals from which the force 

vector can 

suitable 

be derived. 

such as, 

Several measuring principles are 

displacement transducers (LVDT, 

inductive, capacitive), piezo-electric crystals, magneto

elastic devices, conductive rubber, strain gauges, etc. 

A wide variety 

robotic tactile 

of transducers have 

sensing, i.e. the 

been developed 

measurement of 

for 

the 

variation of contact forces over an area [46,47). However, 

strain gauges are by far the most popular transducer for 

robot force and torque sensors, since they are small, easy 

to use, cheap and reliable [48). 

4.3.4. Mechanical Design 

4.3.4.1. Mechanically Decoupled Force Sensors 

Several instrumented wrists and fingers have been developed 

for robots, that measure the three forces and three torques 

that describe the interaction of the robot gripper with the 

environment [48,49,50,51,52). All of these sensor designs 

were intended to be mechanically decoupled, so that each 

force or torque could be obtained directly from one or two 

strain gauge signals. 

Feldmann [51) found that his design had poor decoupling, 

and he had to apply a decoupling matrix to the strain gauge 

signal measurements in order to extract the required force 

and torque components. A comparison of Feldmann's design 



83 

with other wrist sensor designs C48,49,50,52J, which 

good mechanical decoupling, indicated the exhibited 

probable reason for his sensor's poor decoupling 

performance. In his design one cantilevered beam was used 

to measure each force component, whereas the other designs 

all used two beams per force component. 

4.3.4.2. Force Measurement Considerations 

When a cantilevered beam is loaded at its free end, the top 

surface of the beam will be under tension and the bottom 

surface will be under compression. The bending moment and 

surface stress acting on the beam at a particular distance 

from the free end, is given by the following equations ;-

where M 

F 

)( 

er 

c 

I 

M = F)( 

er = M c 

I 

bending moment 

load on beam's 

at )( 

free end 

distance from the free end 

surface stress 

distance of surface from neutral 

moment of inertia 

(4.3) 

(4.4) 

axis 

For a simple beam, the neutral axis is in the centre of the 

beam, and therefore the surface stress due to pure bending 

will be equal and opposite on the top and bottom surfaces. 

The maximum bending moment (and therefore the maximum 

surface stress) is at the fixed end. 



84 

Consequently, maximum sensor sensitivity is obtained by 

bonding a strain gauge (SG) on both sides of the beam, 

close to the fixed end. When the two gauges are installed 

in the Wheatstone bridge arrangement shown in fig. 4-1, the 

output signal, V., is proportional to the applied load, F. 

F 

+5 V -5 V 

Fig. 4-1: Single Cantilever Sensor Design 

If a pure compressi~e or tensile load is applied to the 

beam longitudinally, then both gauges will sense equal 

strains of the same sign, and the bridge arrangement will 

cancel out these strains. Thus, the sensor in fig. 4-1 is 

sensitive to lateral loads which produce pure bending, and 



85 

is insensitive to longitudinal loads which produce pure 

tension or compression. This arrangement also provides 

automatic temperature compensation. 

However, a compressive longitudinal load on the beam's free 

end may cause the beam to buckle and then the sensor would 

measure an apparent bending load. The double cantilever 

design (fig: 4-2), increases the stiffness of the sensor in 

the longitudinal direction, effectively decoupling the 

sensor. The pensitivity of the output signal is unaffected 

since a full bridge of strain gauges has been used in this 

sensor. The double cantilever design also exhibits a much 

higher natural frequency than the single beam design. 

SG1 

SG2 
SG3 

F 

+5 V 

Fig. 4-2: Double Cantilever Sensor Design 

-5 V 



86 

4.3.4.3. Choice of Material 

In order to make a sturdy sensor with high sensitivity, the 

sensor's material had to exhibit high tensile and yield 

strengths, and a low modulus of elasticity (i.e. high 

strains for small stresses). 

High strength aluminium alloys, such as Al 2014 which was 

developed for aerospace applications, are usually chosen 

for robotic instrumented fingers and wrists [48,49,50,52J. 

They exhibit low modulus of elasticity and high tensile and 

yield strengths. High carbon spring steel exhibits greater 

strength, however it is more difficult to machine and also 

requires heat treatment after machining. Furthermore, since 

steel has a larger modulus, the beams would have to be 

thinner to provide the same output signal. 

The FIGARO tension sensor was made from a square bar of 

Al 2014 (SS L168.T6511). 

4.3.4.4. General Design 

The design concept is shown in fig. 4-3 and a photograph of 

the actual sensor is shown in fig. 4-4. 

The sensor consisted of two slender parallel beams which 

were machined out of a monolithic block of high strength 

aluminium alloy. One end of each beam was notched, so that 

the beam was effectively pivoted at that end. 



BRASS 
SLEEVE 

tU 

SPRING LOADING 

RUBBER FINGERTIP 

Fig. 4-3: Cloth Tension Sensor - Design Concept 

Fig. 4-4: Cloth Tension Sensor - Realization 



88 

4.3.4.5. Design Calculations 

Using equation 4.4, the strain on the top surface of a 

beam, is given by the following relationship:-

( = a = F c x = F d x (4.5) 

E 1 E 2 I E 

where E modulus of elasticity 

d beam thickness 

( surface strain at x 

The total elongation of the top surface is the integral of 

the strain over the total length :-

e = J dx = J F d x 
2 1 E 

dx 

For a beam with rectangular cross-section, 

where 

I = b d:!l 

12 

b - beam width 

Substituting into (4.6), 

e = 6 F J x dx 
E b d 2 

(4.6) 

(4.7) 

(4.8) 



89 

The strain gauge measures the strain over its effective 

length only, and therefore the measured strain is the 

integral over the length of beam covered by the strain 

gauge. 

Thus, 

where 

= 3 F (Xe 2 - Xl 2 ) 

E b d 2 

(4.9) 

distance of near edge of gauge to free end 

Xe distance of far edge of gauge to free end 

e. extension of gauge <strain measured by gauge) 

The output signal of the strain gauge is dependent on a 

strain gauge factor, k, which is defined as, 

where R 

oR 

1. 

k = oR 

R ( 

= oR 1. 

R e. 

gauge resistance 

change in resistance 

gauge effective length 

(4.10) 

The output voltage signal, v, due to each strain gauge is, 

where 

v = oR V 

R 

= k V e. 

1. 

v voltage applied to each strain gauge 

(4.11> 



90 

The full-bridge arrangement of four strain gauges in the 

sensor produces an output signal four times that of an 

individual gauge. Thus, the output signal, v., is given by, 

v. = 4 k V e. 

1. 

= 12 k V F (XI! 2 - X I 2 

1. E b d 2 

4.3.4.6. Detailed Design 

) (4.12) 

Although, MacCarthy (56] presents an optimization design 

procedure for strain gauge transducers, a simpler direct 

calculation was sufficient in this case. The design of the 

tension sensor was based on equation (4.12), and on the 

dimensions of a suitable foil strain gauge. 

A single element, constantan on polyimide, foil strain 

gauge (BLH SR-4 FAE-25-35 513) was selected, which had the 

following specifications 

, 
* gauge length 1. 6.35 mm 

* resistance R 350 ± 0.5 

* gauge factor k 2.04 ± lY. 

* overall length 13.92 mm 

* overall width 6.35 mm 

The gauge was bonded using BLH EPY-150 strain gauge 

adhesive, and a 12-hour curing cycle at 35°C. The gauge 

dimensions permit measurement of the surface strain over 

6.35 mm of the total length, starting 3 mm from the fixed 



end. Thus, 

can be made, 

Xe 

91 

in equation 4.12, the following substitutions 

= 
= 

L 

L 

3.00 

9.35 

(mm) 

(mm) 

where L - beam length 

A voltage of 10 VDC was applied to a strain gauge pair, 

which provided a large output signal without causing any 

local heating effects, (the current in each strain gauge is 

14 mAl. 

The choice of the length, width and thickness of the beams 

was made on the basis of equation (4.12), in order to 

ensure an adequate output signal level within the expected 

load range. 

The cloth tension sensor was manufactured to the following 

dimensions, 

L 

b 

d 

= 
= 
= 

25 mm 

7 mm 

1 mm 

When the above figures were substituted into equation 

(4.12), the nominal signal output for a 1 N load was 

calculated to be 19 mV. This is a typical output ,level for 

sensors based on foil strain gauges [54J. 

4.3.4.7. Mechanical Overload Protection 

Although the sensors performed satisfactorily throughout 

the FIGARO development project, the mechanical design was 



92 

lacking in one respect; the sensor was very fragile, and 

even a slight knock could break it. When programming a 

robot to move in a crowded environment, it is very easy to 

mistakenly direct the end-effector into objects. By nature, 

sensitive force sensors are delicate, but industrial 

designs should include mechanical end-stops to prevent 

mechanical overload. 

Although hard end-stops were not incorporated into the 

FIGARO sensor, two other precautionary measures were taken; 

micro-switches were installed which switched off the power 

to the robot arm when it approached too close too close to 

an object, and an electrical overload circuit was installed 

which switched off the robot when the sensor output rose 

beyond a certain level (see section 4.3.5.2). 

4.3.5. Electrical Design 

A Wheatstone bridge of strain gauges provides a low output 

signal with a low source impedance. The signal requires 

high amplification and is highly susceptible to noise and 

interference. 

The circuit diagrams of the amplifier unit and power 

supplies are given in Appendix H. 

4.3.5.1. Noise Prevention 

In accordance with recommended practice (55], the following 

measures were implemented to ensure minimal noise in the 

amplified signal :-

a) The bridge was supplied with a regulated split-supply 



b) 

93 

(±5 VDC), with a high CMRR (common mode rejection 

ratio) • 

The AD524 instrumentation IC amplifier was 

which provides a gain of 1000 with high 

drift and high accuracy. 

selected, 

CMRR, low 

c) The amplifier and associated components were installed 

on a card in a grounded metal case, mounted on the 

base of the robot. This location was the closest 

possible to the sensor, without being mounted on the 

robot itself. The amplifier unit was not mounted on 

the robot, since the robot vibrations might have 

affected the potentiometer settings. 

d) High frequency pickup was reduced by connecting 

decoupling capacitors to the supply lines close to the 

sensor. All cables shields were grounded at one end. 

e) The sense and reference terminals provided by the 

AD524 were used to prevent signal losses in the 

wiring. 

f) The regulated power supplies were situated in a 

separate box adjacent to the amplifier unit. 

4.3.5.2. Electrical Overload Protection 

A safety measure was included that sent an "Emergency Stop" 

signal to the robot whenever the tension sensor was 

overloaded. This measure reduced the possibility of the 

robot damaging the sensor when programmed incorrectly. The 

tension sensor signal was passed through a window 

comparator, which raised the "Emergency Stop" line when the 



94 

signal moved out of the window. 

This overload protection circuit was originally located in 

the amplifier unit. However, the proximity of the 

comparators to a pre-amplifier bridge-balancing 

potentiometer gave rise to noise and oscillation problems. 

These problems were solved by relocating the overload 

circuitry on a prototype board in the IBM AT. The circuit 

diagram is included in Appendix H. 

4.3.6. Sensor Performance 

4.3.6.1. Sensitivity 

The instrumented finger was calibrated in all directions by 

placing small weights on the free end of the sensor, and 

the results are shown in fig. 4-5. In the major direction 

(X), the sensor was found to have a sensitivity of 

1.27 mV/N and a repeatability of ± 0.7 % or ± 0.003 mV; 

hysteresis was negligible. 

4.3.6.2. Cross-sensitivity 

The y and 2 cross-sensitivities were 0.027 mV/N, or 2 % of 

the normal sensitivity (fig. 4-5). Van Brussel reported a 

3 Y. cross-sensitivity error for his 6-component force

torque wrist sensor (48). 

When the finger pressed against the table, it had a maximum 

spring loading of 500 gf (i.e. in the 2 direction), and 

this gave rise to an error of 0.10 mV (or 8 gf). Since this 

was a small and fairly constant error during sewing, it was 

not considered a significant error. 



However, if the finger was not accurately orientated 

perpendicular to the table, then as the robot pushed the 

finger against the table, it exerted a load on the finger 

in the x direction, and the sensor registered an apparent 

tension. Consequently, care was taken to assure that the 

finger was orientated perpendicular to the table during 

sewing to minimize this error. 

'·1 

OUTPUT: ,'0 
VOLTAGE' 

Vc 
0·1 

(mV) 

Dol. 

:0 

o 

I 

·1 

! 
i 
I 
! 

I 
I 

I 
I 
I 
I • 
I 

I I i 

I· I 
I ! 
i i 
! /, 

I 
I, 
I j' 

I 

I 

! 
i 
I 

I 
I 

I 
i' 

: I 
I 

I' 
'I 
i 
I 

I· 

Fig. 4-5: Measured Sensitivity of Tension Sensor 



96 

4.3.6.3. Natural Frequency 

The sensor's natural frequency, which was measured by 

"flicking" the finger and recording the signal trace, was 

found to be approximately 200 Hz. This fairly low value is 

inevitable in designs in which a lumped mass is attached to 

the main body by slender elastic beams. Van Brussel 

reported a natural frequency of 296 Hz for his sensor [48J. 

When the end-effector was not in contact with the table, 

oscillations of up to 0.2 mV were observed in the tension 

sensor signal, which were due to the sympathetic 

vibration of the sensor with the robot motion. When the 

finger was stationary and pressed against the table, it 

would pick up the table vibrations due to the sewing 

machine, and at high speed the amplitude of this noise 

signal was considerable (up to 1.2 mV). This high noise 

level was caused by vibration of the polished stainless 

steel cover which was loosely placed on the table top. 

However, when the finger moved with the cloth as it was 

being sewn, the sensor signal was smooth and noise-free, 

since the cloth tension damped out the influence of the 

table vibrations. 

4.3.7. Signal Conditioning 

4.3.7.1. Signal Conditioning Requirements 

The sensor's raw signal was viewed on 

whilst the robot was holding the cloth, 

an oscilloscope, 

and tracking the 

feed speed using open loop control. The signal had a smooth 



97 

sinusoidal form and its frequency was proportional to the 

sewing speed. It was obvious that the intermittent nature 

of the dog feed mechanism was giving rise to this periodiC 

variation in the cloth tension. 

Since the signal had a smooth wave form, no filtering of 

the signal was required. However, the tension control could 

not use the raw tension signal directly, since digital 

control systems operate only on intermittent samples of the 

inputs, and the sampling rate is independent of the 

oscillation of the tension signal. 

Consequently, a peak detector and an Analog to Digital 

Converter (ADC) were required to interface between the IBM 

AT and the tension signal, so that the IBM AT could read 

the maximum tension signal that had occurred since the 

previous sample. 

4.3.7.2. Peak Detector 

A purely analog peak detector circuit could be designed for 

the sensor signal, based on 2 op-amps, a FET switch and a 

diode. These analog circuits require a compromise between 

accuracy and bandwidth (55J, and they are therefore 

optimized for a specific frequency range. However, since 

the sewing machine could be operated for a wide range of 

speeds, a digital peak detector was implemented because 

there would be no drift of the peak reading even for very 

slow sampling rates. 

The digital peak detector was incorporated within the ADC 

circuit, and the detailed design is described in section 

4.3.7.4. 



98 

4.3.7.3. Analog to Digital Converter 

An 8-bit resolution was considered sufficient for the ADC, 

because the ADC's sensitivity could be easily adjusted, and 

the measurement range could be centred on the desired 

tension. If the control system is well behaved then it 

should suffice with a fairly narrow measurement range about 

the reference level. 

The ADC was sensitive only to positive signals, so that any 

negative sensor signal would read as zero. Any signal 

above the full scale setting would read as 255 tension 

units. Thus the cloth tension could only be measured within 

a range of 0 to 255 tension units. 

For convenience, tension units are abbreviated to tu 

throughout the remainder of this thesis. 

4.3.7.4. Detailed Design 

The circuit diagram of the ADC and peak detector is shown 

in fig. 4-6. 

The tension sensor's signal is fed into a comparator, ICi, 

which compares it with the output of an 8-bit DAC (digital 

to analog converter), IC2. The DAC's output is determined 

by a binary ripple counter, IC3, which is clocked at 

0.89 MHz. The counter counts clock pulses until the 

comparator detects that the DAC's output is greater than 

the tension signal; the comparator then switches off the 

clock via a NAND gate, IC4.This arrangement of a counter, 

a DAC, a clock and a comparator is based on the " s ingle

slope integration" technique of analog to digital 

conversion [55J. 



." .... 
10 

.s:-
I 

Cl'" 

"'1J 
III 
DJ 
7' 

0 
III 
n-
m 
n 
n-
o ., 
" :I> 
0 
n 
n .... ., 
n 
c: .... 
eT 

I \ 

14.31 IH6 

v 
"" 

DMD£ fit 1. fIIPPl!: COI..MER (2 X 74lS74) 

1D&CtI SENSOR Slaw. 

(.onDI IU'Uflc.o.T1OtI) 

v 
COl 

SENSITMTY 

ADJUSTlIENT 

I/O READ 

RESET 07 
" ,,, 

1 I. ,.. IC5 

~TCH DATA BUS 
." 373 

I. DO 

AD558 

..0 

..0 



100 

Conversion begins when the latch IC5 is read. The lID READ 

line, . after a small propagation delay, resets the counter 

to zero, the DAC's output reverts to zero and the 

comparator releases the clock signal to the counter. The 

counting is stopped either by the comparator, when the 

tension signal has been equalled, or by IC6 which detects 

counter overflow. The counter's output is frozen until 

either the tension signal goes higher, or the counter is 

reset. 

The latch IC5 tracks the output of the counter, so that it 

will contain a digital value proportional to the maximum 

tension since the last time it was read. The small 

propagation delay ensures that the conversion cycle begins 

only after the previous peak tension measurement has been 

read into the IBM AT. The 0.89 MHz clock signal is obtained 

from the IBM AT 14.31 MHz system clock, via a "divide by 

16" circuit constructed from four flip flops arranged in a 

ripple counter configuration. 

With a 0.89 MHz clock and an 8-bit counter, the maximum 

conversion cycle time for the peak detectorlADC described 

above is 255 I 0.89 = 286.5 ~s. Since the tension 

signal was observed to be a smooth signal which oscillated 

at the sewing machine's frequency, this conversion rate was 

satisfactory for tracking the peak tension, (th~ maximum 

. sewing frequency was about 80 Hz). 

4.3.7.5. Sensitivity 

The voltage divider VD1 provided a sensitivity control so 

that the full scale of the ADC could be set. When the 

voltage divider restricted the DAC's output to a range of 0 



101 

to 5 V, the ADC would register a full scale reading 

(255 tu) for any tension signal above 5 V. Consequently, 

the 8-bit resolution would be spread over a smaller voltage 

range, and the ADC's resolution would be ±0.01 V. If the 

maximum DAC output was increased to 10 V then the ADC's 

resolution would be only ±0.02 V. 

The sensitivity was adjusted so that the mid-point of the 

measurement range (i.e. 127 tu), corresponded approximately 

with the de~ired cloth tension. The sensitivity was set 

with the robot finger lying horizontal. A 100 9 weight was 

placed on the free end of the sensor, and the sensitivity 

was adjusted until a reading of 156 tu was obtained. Thus 

1 tu was equivalent to 0.64 gf. 

v u 
-" A 

M R 
.I'!V\ 

E ,<.+ 
G1 G2 -'<::- "tlY 

c 

B 

H 

Fig. 4-7: Closed Loop Tension Control System 



102 

4.4. Closed Loop Control System Design 

4.4.1. Control System Approach 

4.4.1.1. Block Diagram 

The block diagram for the closed loop control system is 

shown in fig. 4-7, and the symbols are defined in 

table 4-1. 

ANSI Std Nomenclature Description 

v Tracking Signal 

R Reference Input 

E Actuating Signal 

u Unmodified Variable 

C Controlled Variable 

B Feedback Signal 

M Manipulated Variable 

A Input Element 

Control Elements 

System Elements 

H Feedback Elements 

shaft encoder count 

desired cloth tension (tu) 

cloth tension error (tu) 

cloth feed speed (mm/hs) 

actual cloth tension 

measured cloth tension (tu) 

ALTER data for X direction 

relationship between V 
and U (equation (4.2» 

transfer function 

controlled system (Plant) 

tension sensor and signal 
conditioning circuitry 

Table 4-1: Tension Control System Terminology 



103 

The "Plant", Ge , refers to the combination of the following 

elements : 

* ALTER communications . 
* VAL 11 control system 

* PUMA 560 robot 

* cloth 

* sewing machine 

In the closed loop system, the open loop system for 

tracking the sewing machine speed (section 4.2.3.2), was 

retained, but the open loop robot speed demand was modified 

by negative feedback of the cloth tension, in the following 

manner; 

If the robot is lagging behind the cloth feed, the 

cloth tension will rise and produce a negative tension 

error, which will lead to an increase in the robot 

speed demand. 

If the robot is moving too fast, the cloth will go 
i 

slack, and the positive tension error will lead to a 

reduction in the robot speed demand. 

4.4.1.2. Software Implementation 

The closed loop control system was implemented in the SEW 

Task, using the following algorithm :-



104 

while not end_of_seam do 

begin 

read V 

calculate U 

read B 

calculate E 

E) + U 

( shaft encoder count) 

sewing speed ) 

cloth tension 

tension error 

calculate M = (8, 

send M to VAL 11 via ALTER 

end 

4.4.2. Preliminary Investigation into Closed Loop Control 

A series of experiments were carried out to explore the 

control problem and to investigate the effect of different 

transfer functions. Although satisfactory control was not 

achieved by these trial-and-error attempts, various control 

problems were highlighted. 

4.4.2.1. Start-up Acceleration 

When the sewing machine started sewing, the cloth 

experienced a large initial tension due to the time delay 

between start-up of the sewing machine and the robot. Such 

a large tension peak caused havoc in the closed loop 

tension control system. 

The problem was effectively solved by slowly accelerating 

the sewing machine at start-up. The start-up acceleration 

was controlled by a function called speed_control (see 

Appendix D). 



105 

me d t asure enSlon .--

~ 

robot hand 

finger 

1 pressure 
(]ctual cloth tension 

, ... 
table friction 

Fig. 4-8: Effect of 7able Friction on Tension Measurement 

4.4.2.2. Effect of Table Friction 

When a large proportional gain was applied to the tension 

error, the robot "vibrated" about a stationary point. This 

behaviour was traced to the effect of the table friction on 

the tension measurement. 

When the robot moves forward (fig. 4-7), towards the sewing 

machine, the force sensor measurement is :-

measured tension = cloth tension table_friction 



106 

However, when the robot moves away from the sewing machine, 

the table friction changes direction (since friction always 

opposes mot ion) , and the force sensor measures the 

fo 11 ow i ng :-

measured tension = cloth tension + table_friction 

Consequently, when the robot attempted to move backwards in 

order to tension the slack cloth, it immediately sensed an 

apparent cloth tension, even though the cloth was still 

slack. The solution to this problem was to limit the robot 

motion, in the x direction, to forwards only. 

4.4.2.3. System Instability 

When, under closed loop control, a small proportional gain 

was applied to the tension error, the system became 

unstable and the cloth tension oscillated between very high 

and zero tension. When the gain was reduced to a value 

close to zero, the system was effectively under open loop 

control, and the cloth tension tended to drift off towards 

either very high or zero tension. 

The difficulty in obtaining stable closed loop control was 

due to the c:harac:teristic:s of the "Plant". Since a small 

extension of the cloth results in a large increase in cloth 

tension, the Plant has a high inherent proportional gain. A 

system with a high proportional gain has a greater tendency 

to go unstable, due to a reduced stability margin [57J. The 

stability margin can be increased by introducing 

compensation into the transfer function. 



107 

4.4.2.4. System Compensation' 

In classical control systems, there are two main forms of 

compensation that can be introduced into the controller 

transfer function G1 , viz. derivative and integral control. 

Derivative control can increase system damping and improve 

system stability, but it has no affect on steady-state 

errors and it accentuates any noise or disturbances in the 

system. Integral control reduces steady-state errors to 

zero, but they increase the order and type of the system, 

and therefore it may make the system even more unstable. 

Although the raw tension signal had a smooth waveform when 

viewed on an oscilloscope, the variation in the values of 

peak tension, which are used in the control algorithm, was 

noisy. Furthermore, the slow sampling rate of the peak 

tension would lead to large errors when calculating its 

time derivative. Consequently, derivative control was 

unsuitable for this system. 

However, integral control could be beneficial to long-term 

steady-state tension control, provided that the combination 

of proportional and integral gain values give sufficient 

system stability (57,683. 

4.4.2.5. Implementation of Integral Control 

The tension integral was calculated by 

variable which contained the sum of all 

tension readings. 

maintaining a 

previous peak 

A consequence of a slow start-up <section 4.4.2.1.> was a 

significant build-up in the tension integral of the start

up tension errors. This problem caused a distorting effect 



108 

o~ the integral control, and it was effectively solved by 

resetting the integral to zero on the first occasion that 

the tension passed the desired tension. 

4.4.2.6. Effect of Speed on Closed Loop Control 

As explained in section 4.4.1.2. and in fig. 4-7, the ALTER 

data in the X direction was calculated as follows :-

M = u + E G1 (4.13) 

When the closed loop control was attempted for different 

sewing speeds, it was obvious that this control equation 

was inadequate. Although U is proportional to sewing 

speed, EG 1 is not and therefore the modifying action of EG a 

on M will be effectively reduced with increased sewing 

speed. The control equation was modified to make the 

contra ller , G1 , independent of. the sewi ng speed, as 

follows :-

M = U ( 1 + E G1 ) (4.14) 

In other words, the ALTER data, M, is modified 

proportionately by the tension feedback. 

4.4.2.7. Final Block Diagram 

The final block diagram for the closed loop control system 

is shown in fig. 4-9. The modified control equation is 

represented by the multiplication junction, and the 

controller transfer function, G1 , has been expanded to show 

the propor t i ona 1 and integra 1 components, Ka and KI! 

respectively. 



1 , 
.r 

109 

v u 
----- A 

E R M 
, -0-r- K 1 

.A.+ G2 
+ ~ fY -

c 

B 

~ K
2
[' 

H 

Fig. 4-9: Modified Block Diagram of Tension Control System 

4.4.3. Bode Design of Control System 

Although the preliminary experiments had provided much 

valuable information concerning the control problem, the 

Plant~s characteristics were still largely unknown, and the 

trial-and-error attempts at selecting suitable integral and 

proportional gain values had been unsuccessful. Clearly, a 

formal control system design procedure, based on more 

precise knowledge of the Plant, was necessary. 



110 

The system has several significant non-linearities, which 

are listed and discussed below section 4.6.1. A design 

procedure which accounted for these non-linearities would 

require a complete 

interactions, which 

analysis of each one and 

would be very difficult 

of their 

to achieve 

satisfactorily. "Linearization" techniques, in which the 

system is approximated to a linear system in the region of 

interest, are applied to non-linear systems, whenever 

applicable, so that classical linear control design 

procedures can be used [57). 

Since a mathematical 

system would have 

description of 

been difficult 

the 

to 

cloth tension 

derive, an 

experimentally based design procedure was more suitable. 

The Bode design method requires the open loop frequency 

response, which can be measured experimentally. The Bode 

technique is based on the assumption of a linear system, 

and although a linearization approximation was not strictly 

applicable to this system, the Bode design procedure was 

carried out in order to obtain an approximation of the 

Plant's dynamic behaviour, and to assist in identifying the 

"ball park" in which the correct gain values lie. 

4.4.3.1. Bode Design Procedure 

The theory on which the Bode analysis and design procedures 

are based, is explained in many textbooks [57,68,69). The 

Bode design procedure has the following stages :-

a) The open loop frequency response of the system (i.e 

GeH(jw», is obtained either by measuring the steady

state response in amplitude and phase to a sinusoidal 

input function, or by analysis. 



111 

b) The frequency response function is plotted on a Bode 

diagram. 

c) Control system stability performance is selected in 

terms of gain margin and phase margin. 

d) A compensation function is chosen so that it will 

"reshape" the GeHejw) plots and provide the required 

stability performance. This stage may be iterative. 

4.4.4. Measurement of Open Loop Frequency Response 

4.4.4.1. Experimental Technique 

The open loop frequency response was measured as follows :-

a) The sewing speed was fixed to 2000 stitches per 

minute. The stitch length knob was adjusted so that 

the cloth tension was constant, under open loop 

control. 

b) The test fabric that was selected is described in 

section 4.4.4.2. The dimensions of the test 'panel was 

710 mm by 280 mm. 

c) The first 170 mm of the test panel were sewn up under 

pure open loop control, to ensure steady state 

conditions. 

d) For the remainder of the length, a sinusoidal function 

was superimposed on the ALTER data, and the resultant 

tension variations were recorded every handshake. 

e) The amplitude of the forcing function was fixed at 



f) 

112 

either 1 mm or 2 mm and the period of the forcing 

function was varied between 4 and 24 handshakes. 

The amplitude 

variations were 

and phase angle of the. tension 

extracted using the auto-correlation 

statistical technique. 

g) The maximum tension amplitude that could be measured 

with an 8-bit ADC and a sensitivity of 0.64 gf/tu was 

± 80 gf. The tension sensor sensitivity was halved to 

1.28 gf/tu, so that a greater range of tensions could 

be measured. The tension measurements taken during 

these tests were then doubled so that the sensor"s 

effective sensitivity was still 0.64 gf/tu. 

4.4.4.2. Test Fabric 

A light, tightly woven cotton plain weave fabric was 

selected for the experimental measurement of the open loop 

frequency response. This fabric, which was also used in the 

majority of the final performance tests (sections 4.5.1. 

and 5.5.1.), was chosen because it was relatively sensitive 

to to pucker, compared with suiting fabrics. Excessive 

tension variations during sewing produced puckered seams in 

the test fabric. The test fabric weighed 0.0143 g/m2, with 

54 ends per inch and 46 picks per inch • 

• 

4.4.4.3. Results 

Fig. 4-10 shows examples of the tension variations 

obtained, after reduction by auto-correlation. The full set 

of experimental results is given in table 4-2; the Bode 

plot diagram for these results is shown in fig. 4-11. 



,+1 

AMPLITUDE 

OF 

FORCING 
FUNCTION 

(mm) 

o 

; - J.... 

160 

#1 .. 0 

ga 

AMPLITUDE 

OF 
/rtJ 

TENSION' 

VARIATIONS 

I 

! qo 
i. , 

I , 
I , 
I , 
1 .. 
; 
i 
I 
i 

I : 
i 
1 

1 , 
1 

I ,. 
. ! .. 

I , 

, 
i 
I , 

, ,. 

I . 11 

I " 
: ! .. : 

I ,, ! . ~; 
I 

, 
I 
i 
I 
i 
I 

I" . . , . 

1 

113 

;. I .. · "f ' , . 
. , ' . 

. i ... - . 1 ;-,·1. i" 
I·· ·-1-' .J ._.~ .. ~ .~.' 

,I " 
. " .', " ':' I .. · · ..... , 

. " · 1,: 
., .. t ':: /?,; · !I · 

• 1 ' 

1 
1 

1 
I 

., 1 '1 I , .. , 

I . I . I''': .:L.\'_} 
3 60 ., . ! . : ~ . ': : :. ::~: . i " .. ........". 

.: ... . , PHASE ANGLE 
j i i ':~ ' . " 

. . , .. ': 

:i' in .,,!:: ! 
" . T' I 

• I ' " I !_ . •. 
i : . • :; . :\ .(d egrees ) .j:: 

: i: . ,"'::;.;, -::lTt::r :~ I :: ;~~::~ ':':1" 
..... ~ ~ T' } .T: ! :~ i7:} ~El~ / :~ ; .. ~{ 

::i· ! TEST No. 5 ~Lj I:: !::, 
. ": :. '-::::-:1"::::::::;: , .. ··1· . ..... ... , .. , ..... t_ 

. .. ~ .. ' L _'[~ I~\~/<:: .::T~ 
[ I 

.. .. .... , .... , .... J ... -
. . ! I . • • ~. I . ;: . 

.. ; " .. .. ~ . __ :.: ; . I _. _' :, . ":. 

, . I ..: ' ' 1 . i ' . ; I :':": TEST : '.;: 
, . 1_: .. : . No. ~ ~~I' : ~: 

I "; 'I ' ;).:<. 
" .... _, '- -:--: . 

, ! " .• ! . ' " j :: .: I ': .:, .. ::': 

' 0 

', ' '[ eT '+:YL-PIJ 
. : : 1 :l·::: !:: -+lr-...:.-----r-~-f_-:..:.:rr---:...---.;..-.:....-..;-;----t---.;..-_r'_- ,---!- -;-

(tu) 

'-eo 

-110 
.; 

.. 

-Iba 
, 

.1 .. 
I 

.J::; ~:L; ' ~: :~ !~~~: ~L. I .. , ~ .~,~:~>t : ( h- !~ 
: ::,:. :::;':: }:: :::!: I :.:.. I,' ': :""'" :, .. : ... :,: .. , ... . : .. :J: ........ " ". "' 1'" " " . . I': , :i· : :: "i' . 1. ' :' ! ,' j :;'" . :: ::1:: 

i -•• <i- I ·-::- -r i, ' '1 ··r :: , .-::_-._:- II~ ,:2 1 ::'_'!' -'.: ': , 'r' ···T, ·': i : . :! '_ <: .. ::~: :;'; :~: I ::: : >i~: .-.. j: .. 1 
. I ·· ,· !,, · "'" , , ' 1,.:; :.: I :~~j:j ': ' ;::',' :,::: <:: ', > ::::,. i ::: ',:,,' 1'.: ' ' " ' .. I .. . " . • . 

I 1 .·. ·. ' •. ·.1.·.·_·:,.·.·,_: :' :'1': .... . " .... ............ " .. '_ ...... , ~ 

. ..; I ' ;: l :.' : ' ;': :: . i ,: , ::::::::: t: 

i f ;; :<,'I 'i l- i '·- :1 - i ~ : :' l i ' 
i .: . . :,, :(.: :····1:: ·: ':'T" , ':~ " I .. ":1 .; . . , . 1 ' ~ ~' r " : ': 
I : .) ,': ::: : ',.:':::-: j '. '1 . I : ! !", '( f 
; ... j '" ''' ! '; ., ... . : . .. . :.; . 1 : .. ·1··· ··· :-.. .. ·:...·1; ';:' 
. ' , 1 I '" I :, . I I ' ! " i . i ': ' i . . I ' I .\ :;' 
I : . .. . .. . :"" . ' : .. 1 .1' :.' . ': I. " .", .,:::.. .. . I . I : ' ; ' ' ! . 

Fig. 4-10: Cloth Tension Variations Due to Sinusoidal Forcing 



GAIN 

(db) 
, 
1 
i 
i 

i 

So 

jO 

! .to 
:. 
I , 

/0 

114 

. ! , 

, 
, 
I 
i • . 

i 
I 

.. I ... . .. ' 

1 

I , 
i I· " 

i , 
I 

" . . -.. _- .. ·1 ' i 
I I ' . ' . . 

.. !. ~ . : .:~ :. :" .... -.- ....... -
. . . 1 ., .... :;: " 

o •• • I. : ~ .. :; : ::.: ...... __ 

.1. .. j .. ~.J .... 
i I : I : 
,.. :::: ... J~ .... 

., . '. i ·: 
, . 

.... .. . . , . . - . .. .. . ... . .. , 
.1 .' I • 

. I ! , ' .I.! 
! .. '1 ' 1""1"::-I ' I .. 

I I ' 1 t i : :C.·· ,. 
., 
. I :::.!I ":: .. !. .1 ... 

. , . 

li . 1 : !:"" I:' . ,:" .. , . 

y, , . . .. ,'- ' " :'1" .. .. ; ... . .. .. : .. " " .. , 
. : : . , ..... ... . !. . .. : . :! . . 1 I .. :. .. .. ' : 1 

I 

' .1 1"- .-•• - .•• , ] ....... ... ·'1' . .. .. . 1 . • • I ! " ; i I '; ' 1 X .;,!,, :: . . :.,::; .. ( ., .. .. :.-.... :" 
, . .. ; .. ". ! .... .. .:.:l·, "i .. . ,:. .... . . ,.. . ... ;: ... ... : ... J. ,. : .. 
I,· : 1 . :: .1; ., I ,I .. .. :,i . .... "i..:: '~':"I ' . t·; .;.}:". , ,,~. '::: .:.: .. : I .... 
:1 ' I .:. " , .1 
, ! : I! ', :, .. ' !.:' ,' . ·i,· 
i : '1": :' / 'i i " ,· 1· ::'; :"'1--;" ." ..... - . . ; +-.~ ::. , .... ... :-
I 
':-' .. 1 : ! 1 .! .: j" '. ' 1: I I " :. ·:1 : ' 

1 
: .: .' ' .' 1 I 1 I. i" I 

: . 1 

'1 ' : j": ' . 'j I . i .. : ..... :; . ' : ~r : : -:','- -]~ :r : : ' I •• , . -':; .. ~ ! "1' _ ... ;. 

o ;---:-!-t .. ··--:i-j·· _ ... +,'-,; :'-,'-r!' +r-r: _ .. ~I -r: ~i:.....:: ~~· : .~::t ...;:-' -r-·...:-T""T:: · '~r-..:..··· ~ ---..:.: · I_·:-...-: -0....:.... ·=-;_ .. ~I·-·~~· i ·-·:-
I :2. ! : .. '. s: /0 1)..,0 1 I . ~o . . . "0 : ' 1' %00 1 . . , . .. 

, 
1 
i 

So 

1 1 

I , .. I /00 

I 
PHASE : 

ANGLE i ISo 

)l5 : , , 

1 

I 
.. . \ 1..00 

i ' ! 
i 
1 , 

• j • ..:. 
I ' , 
I 
1 

. I j,()O 
. I , 

~ ,., . .. I· ... ... ' :; I . (j) 

I
· ",' ''' ,': I:" :' i ' ... ;. · ' .... ; .... 1 · "1'-;' . .:-.. ! .... .. 

. ,: • I "I ' : . 1: :: 
.•. 1 /:: I':\ ! I .. ... ·j '":!' , . . ! ' ., ; I (rad s / s l 

. 1 .' . · I. : ! . 'I' i : ' ::;':" :·:[·: ·. ' · ... ·:1 ' iT' .II 'T j·.r·i . 

. ' j

!;'.' ... .. . , .. 1 .. ! ' 1', ,;. ! .:" "::v' .:: ~ .:: :.:::.: ,. "I :. , f' I"'::'" .-
1 .. .. ... ,, _!~:~ :'::'" ' .: ', ! ' . , ! . 

. .. ! . . " . 1' . . :j:::- .;: ,:-- '::l" .: ·r·-; ...... : .... .. -

'·1 1' 1 < : :r l ;~I !.-t, ! ,~}~i; ~rjj]I)~ ~I I,II 
i :;: .. ' .. !..' . .. :.: 1 . ....... L: ::.u : ~ . :.:t.: .. :.: ! ~;: .. : ... J ... I. :.:.:,': .. ... :: 
i: . :!. ' ·l , , . .... . . .. : I ' :. ',,!.. . ," " .i.. 'i ' 

!;! .; I i ,j · ••. : ~ .. :i·... i,!.::+ '. ~( ' I , : I . 

)~ :.r. :: 'l ·:· ; .. ·.1, ~ . : : ... . .. ::~. I .:.:1:_ .. ; .. _L . .. .. ! :~, I .. .. :.~ 
: : : I ' I. ' : I. . ,I ' i ' 1 . 

( : . 'i,:' I · .. · i .<: ';: ;": .::: ! :~:: ... j "f:' · : <~ .. I .. ·-·:· 
.. :- ~ ,1::: , .. :: 1 ~ .. i'i":- I' '':! :::' ;.1 : ;: :. ' " ::~l :: .. : ';'" ':~: ; "I : . 

. . , " I .. ,. . I .... '" _'. :,' ! . " ". :., .. :.: .... 1::.: . 
,'1·: " : ' ~ l : ... . ".. I . I ' i 

1;' ,:1 : . 'T:' .. : :. ' i ll : 
Fig. 4-11: Bode Plot Diagram for Cloth Tension Control System 



115 

Forcing Function Tension Variation 
Test 

No Amplitude Period Frequency Amplitude Phase Shift 
mm hs rad/s tu degrees 

1 1.0 4 56 12 260 
2 2.0 8 28 48 215 
3 2.0 12 19 100 186 
4 2.0 16 14 138 160 
5 2.0 20 11 166 148 
6 2.0 24 9 212 142 

Table 4-2: Experimental Results for Open Loop Frequency 

Response 

4.4.5. Compensator Characteristics 

The controller transfer function is given by :-

M - U = U ( 1 + K.E + K. J E ) (4.15) 

For simplification, a constant sewing speed, U, can be 

assumed, and then the second summing junction can be 

included in the controller transfer function, as follows; 

G,E = M = U (K.E + K. J E ) (4.16) 



116 

Taking the Laplace Transform yields, 

M(s) = U ( Kl E(s) + Ke E(s) ) (4.17) 

s 

The transfer function of the controller is then given by, 

pes) = M(s) = 5 U K1 + U Ke (4.18) 

E(s) s 

The transfer function can be reduced to Bode form by 

replacing s with jw, as follows, 

P(jw) = M(jw) 

E(jw) 

= jw U Kl 

Rewriting (4.19) gives, 

P( jw) = U Ke 1 

jw 

+ U K. 

jw 

• (1 + jw Kl ) 

Ke 

= constant • integrator • single zero 

(4.19) 

(4.20) 

The magnitude and phase angle of the compensator are given 

by, 

mag(P(jw» = U.J'(K1e 

(4.21) 

ang(P(jw» = tan-1 ( Ke 

Figure 4-12 shows the Bode plot of the compensator 

function, P(jw), which can be sketched directly from 

equations (4.20) and (4.21). 



() 

0 

PHASE 
ANGLE 

-4-5" 

0 

117 

w- K1 -K, 

Fig. 4-12: Bode Plot Diagram of Compensator, P(jw) 

w (rads/s) 

(on log sc:ale) 



118 

4.4.6. Determination of Compensator Parameters 

4.4.6.1. Calculation Method 

The control system was designed to meet the following 

stability criteria, 

gain margin = 8 db 

phase margin = 30°. 

(4.22) 

The Kl and Ke factors were calculated to give maximum 

system performance within the above stability criteria, 

using an iterative graphical procedure, as follows :-

a) Find the maximum Kl that meets both the phase and gain 

margin requirements, assuming Ke is zero. 

b) 

c) 

Calculate K., so that w., the centre of the 

compensator frequency range, is positioned 2n rads/s 

below the -180° crossover frequency. 

Recheck that the stability criteria are still 

satisfied for this value of Ke • 

4.4.6.2. Compensator Calculation 

a) Apply phase margin criterion, assuming Ke is zero. 

The phase margin criterion states that at a phase 

change of 150°, the system gain should be less than 1 

(or 0 db). 



119 

From fig. 4-11, 150 0 corresponds to a gain of 75 (or 

37.5 db) for the uncompensated system, and therefore 

the maximum value for UK, is -37.5 db (or 0.0133). 

b) Apply gain margin criterion, assuming Ke is zero. 

c) 

The gain margin criterion states that the gain should 

be less than -8 db at the 180 0 crossover frequency. 

From fig. 4-11, the uncompensated system has a gain of 

42 (or 32.5 db) at the crossover frequency. Therefore 

the largest value for UK, is -40.5 db (or 0.0094). 

All the frequency response tests were carried out at 

2264 stitches per minute, with a stitch length of 

3 mm, which resulted in an ALTER demand of 3.17 mm per 

handshake. Therefore, the maximum value for KI is 

= 0.0094 / 3.17 = 0.003 tu-' (4.23) 

Calculate Ke by graphically positioning w. ClT rads/s 

below the crossover frequency, on the Bode diagram. 

From fig. 4-11, the crossover frequency for the 

uncompensated system is 17.7 rads/s. From fig. 4-12, 

= 

Hence, 

Ke 

K, 

= 17.7 = 2.82 rads/s 

= 2.82 K, = 0.0085 tu-I S-I 

(4.24) 

(4.25) 

However, Ke is required in terms of handshakes, not 

seconds. 

= 0.0085 / 28 = 0.0003 tu-I hs-I (4.26) 



GAIN 

(db) 

,. 
I 10 

i 

o 

, 
~IO 

; 

i . 
- to 

-30 

i 
!O 

-f i , 
i , 

loo 
i 
PHASE . , 

ANGLE .: 

120 

Fig. 4-13: Modified Bode Plot Diagram 

I , 

. I . . : .· 
;' ., . . ' .. 
: : ., .. 

- .. . . .. . .. .. - _. 
.; , .. . 

T:' :., 

, 
i ' 

. , . ... --



d) 

121 

The modified open loop Bode plot is plott e d in 

fig. 4-13. The crossover frequency is now 15 rad/ s, 

the gain margin is 4 db, and th e phase margin is only 

20°. Consequently, KI and Ke h ave to b e reduced 

further until adequate stability margins are obtained . 

Additional calculation iterations were not attempted since 

the calculation procedure is only approximate for this 

system. The Bode design procedure assumes a linear system, 

and the cloth tension system is particularly non- linear . 

Therefore, the controll er transfer function was "fine

tuned" experimentally. 

4.5. Control System Performance 

4.5.1. Performance Criterion 

When considering the performance of the t ension control 

system, two different criteria could b e u sed ; th e stand ard 

deviation or the average of the tension error. Th e standard 

deviation gives a measure of the tens ion fluctuation s , and 

the average error indicates the tensio n offset during th e 

sewing operation. 

Although tension fluctuation s are d etrimental to seam 

quality, a small constant offset to the d emand t ension will 

not cause puckering. Since the ultimat e objective of the 

tension control 

the standa'rd 

system wa s to produc e pucker free seams, 

deviation wa s u sed as th e performance 

criterion far comparing the system's performance under 

different conditions. 



122 

Initial performance tests were performed using the same 

test fabric used in the Frequency Response Measurement 

Experiment (section 4.4.4.), and the clo~h panel had 

approximately the same dimensions. The reference tension, 

R, was set at 70 tu (or 45 g) for all performance tests. 

Although, the seam quality is inversely proportional to the 

standard deviation of the tension error, the sensitivity of 

seam quality to tension variations varies enormously for 

different fabrics [71J. The test fabric was particularly 

sensitive to pucker due to its light weight and tight 

weaving, such that a standard deviation of 'tension error of 

30 tu or more resulted in an unsatisfactory puckered seam. 

When the tension variation was controlled to 20 tu or less, 

the resultant seam was of excellent quality. 

When two plies of the test fabric were sewn up, the extra 

weight reduced the pucker sensitivity to tension 

variations, such that a standard deviation of 80 tu 

resulted in an acceptable seam. When a heavier suit fabric 

was tested, a similar reduction in pucker sensitivity was 

observed. 

4.5.2. Experimental Fine-Tuning 

The Bode design procedure indicated that the integral and 

proportional gain parameters should be less than 0.0003 and 

0.003, respectively. During the preliminary experiments, 

such low values had been considered insignificant, and 

therefore satisfactory control had been elusive. Once the 

correct range of values was known, the optimum gain values 

were easily determined experimentally. 



123 

The performance results for a sample of the fine tuning 

experiments are given in table 4-3. The following gain 

values were finally selected as the optimum values for 

providing stable and adequate tension control for a single 

ply of the test fabric over a range of speeds :-

= 0.0015, Ke = 0.00003 (4.27) 

The results in table 4-3 demonstrate that system 

performance was particularly sensitive to e)(cessive 

proportional gain, K, • A sample printout of the robotic 

sewing program, showing details of the performance of the 

cloth tension control, is shown in fig. 5-21. 

K, Ke Update Sewing Std. Dev of 

Rate Speed tensn error 

tu- l tu- l hs- l hs-' rpm tu 

0.0015 0.00003 1 2270 24.4 

0.0015 0.00010 1 2270 31.1 

0.0015 0.00001 1 2270 27.1 

0.0045 0.00003 1 2270 61.4 

0.0005 0.00003 1 2270 29.1 

Table 4-3: Sample of Fine-Tuning Experimental Results 



124 

4.5.3. Performance Versus Speed 

Once the optimum gain values had been determined, 

control system's performance was measured for a range 

sewing speeds. The results are shown in fig. 4-14 and 

performance curves are identified in accordance 

table 4-4. 

the 

of 

the 

wi th 

For an update rate of 1 hs-1 , the tension control was 

satisfactory up to about 2000 rpm. A transition was 

observed at approximately 2750 rpm, such that higher speeds 

produced much poorer seams. 

The processing 

calculations was 

overhead for 

not significant, 

the 

so 

tension 

that the 

• 

control 

maximum 

update rate was easily achieved. However, the seam width 

control system overheads were significant, so that when 

both systems were running simultaneously in the edge 

seaming operation, the update rate was reduced to at least 

0.5 hs-1 • The performance of the tension control system 

was measured for a reduced update rate of 0.5 hs-1 (see 

fig. 4-14). 

The tension control was unaffected by the slower sampling 

rate at slow speeds, since at slow speeds a digital 

control system is effectively continuous. The sampling 

interval was 2 hs (or 56 ms) and at 1000 rpm, each stitch 

takes 60 ms. Since the control is based on peak tension 

measurements, the cloth tension cannot be sampled more than 

once per stitch. Consequently, the control system's 

effective sampling rate is limited by the sewing speed for 

speeds below 1070 rpm, and at higher speeds, it is limited 

by the ALTER update rate, viz. 0.5 hs- 1 
• 



125 

For speeds above 2000 rpm, the tension control was markedly 

worse for the slower update rate, as the sampling interval 

started to influence the control system performance. The 

transition in the performance curve occurred at a lower 

speed, 2250 rpm, for the slower update rate. 

-'I-:'~" , " .. ,','. '; '~~~I;-~: I., 
;. . .,- .... , .,', 

• ,', I' .; 

: STANDARD DEVIATION OF ;, ~.,~; .•. : 
CLOTH 'TENSION VARIATIONiiiT- .' ; 
, .,.. ';: .. ;;.:,L :~ '.I.~;,~: ... ! ... :. , ! 

(tu ) J ',::. I:!.:··~: '! :: . 'I 
. '; I I. 

•••• • •••• , :: •• 1 ' 0' I ........ ! .. . 

, /00 

, .. , 

·60 

I 

"'j' , 
;;' : 411 -, 

I 
., , 

. i 

I 
,. ! 

, ! 2.0 
1 

-.-~ .. , ..... . 
. ;. i'· . 
. , i ., 

.1' ", • 

,: . i ..., 
.: ... , ...... 
, I.' , o 

! ; .: J i : 
I t I i. ," 

I I, . ! . I 
, .' I , , I i ,~ .... ; .. ::. .. 

, '; i ~ " I' i 
! I I.: . . . i . .. ~ . i.' .. I . .;. • • •. . 

I 
! 

, : 
i 
i 

, ; 

.i i, 
1 ~ . 

····i ........ ! ......... ; .......... , . 
, . ' . I : " 

. . '::.: :1'.' : .... ! ' .. 
! i· I': I ............ '" ;':' ~ .... ;- -.. !' .: .. 

., i; i 
. I 

! ' ., . ,I ..... : I . 
~ r .;:. "1 
I I.: . '. ! 

. , i', 

i /ooo! 
!, !I 

I • "I"' : 

, . 
J 

.3000 

i 
I 
I , 
, .,'. 
I 

. 
I 
1· 

SEWING MACHINE 

(RPM) 

, , . , 

Ij.ooo 

" 

Fig. 4-14: Tension Control System Performance 

c 



Curve Update No of 

Frequncy Plies 

a 1.0 1 

b 0.5 1 

c 1.0 1 

d 1.0 2 

Table 4-4: Key to Fig. 4-14 

126 

Sewing 

Directn 

normal 

normal 

bias 

normal 

CLOTHVJQ ;-tCEI\S' LI D RARY 
UNiVERSiTY OF LEEDS 

Kl Ke 

0.00150 0.000030 

0.00150 0.000030 

0.00150 0.000030 

0.00075 0.000015 

4.5.4. Performance Versus Fabric Properties 

4.5.4.1. Sewing a Two-Ply Panel 

Two plies are approximately twice as stiff as one ply, 

therefore the gain of the open loop transfer function of 

the Plant, Ge , will be doubled by adding a second ply. 

Consequently, the values of the compensator parameters, Kl 

and Ke , must be halved, in order to maintain the equivalent 

closed loop performance that was developed for a single 

ply. 

Fig. 4-14 shows the tension control system performance for 

sewing two-ply panels of the test fabric, when Kl and Ke 

were reduced to 0.00075 and 0.000015 respectively. Tension 

control was slightly worse for two-ply sewing; the 

performance curve closely follows the curve for single-ply 

sewing. 



127 

4.5.4.2. Sewing along the Bias 

All the tests so far had been performed with the sewing 

direction approximately aligned with the warp or weft of 

the cloth panel. A test panel was prepared which was 

equivalent to the previous test panels, except that it was 

cut across the "bias", i.e. the direction of sewing was now 

at 45° to the warp and weft directions. 

When the control system performance was measured using this 

test panel, good tension control was obtained at all 

speeds, (fig. 4-14). This was due to the much lower 

stiffness of the fabric in the bias direction, which 

effectively reduced the gain of the system and improved the 

stability margin. However, the fabric buckled badly during 

sewing, because of the high deformation of the structure of 

the fabric. 

The buckling could have been reduced by either placing many 

finger pads all over the cloth surface, to minimize the 

fabric deformation, or by reducing the demand cloth tension 

to the level of a few grams force. However, the demand 

cloth tension could not be reduced to the low level 

required, because of the table friction and the hysteresis 

in the sensor design. 

4.5.4.3. Different Fabrics 

When other woven fabrics were tested, each fabric was found 

to require different values for K, and Ke • For example, 

the gain values had to be reduced by at least 60 Y. before 

equivalent tension control was obtained on a heavy trouser 

material. However, the heavier fabric was much less 

sensitive to tension variations. 



128 

When a single jersey knitted fabric was tested, the tension 

variations were small, but the panel buckled badly. The 

fabric behaved in a similar fashion to the original test 

fabric when it was sewn along the bias direction. 

4.5.4.4. Spring Loading 

Initially~ all single-ply tests were performed with lightly 

sprung fingers (spring rate of 7 g/mm). When two-ply 

panels were tested, it was observed that when the top ply 

was pushed forward by the finger, it s~parated from the 

bottom ply which was held taut by the table friction. This 

problem was corrected by installing stronger springs with a 

spring rate of 70 g/mm. 

The single-ply tests were repeated with the stronger 

springs, and no significant difference in the tension 

control or in the seam quality was observed. 

4.6. Discussion 

Maintaining a small tension on a cloth panel during sewing 

using an adaptively controlled robot was found to be a 

complex problem. The system's complexity is due to the 

combination of non-linear elements, which must be 

identified and understood individually. The most serious 

and troublesome non-linearities are those associated with 

the mechanical properties of the fabric. 



129 

4.6.1. System Non-Linearities 

The major potential sources of non-linear behaviour in the 

tension control system are as follows :-

a) Time delay between measuring tension and the robot's 

corrective action. 

b) The mechanical properties of the fabric panel. 

c) The cloth tension can only be zero or positive since 

cloth buckles under compressive loading. 

d) The table friction causes a dead zone, i.e. small 

tensions are measured as 0 tu. 

e) The robot motion was limited to forward motion only, 

due to the effect of the table friction. 

Other non-linearities, such as the velocity and 

acceleration limitations on the robot motion and the 8-bit 

resolution of the tension sensor, were not significant. 

When the cloth tension control was satisfactory, the 

robot motion was smooth and continuous and the tension 

reading seldom dropped to 0 tu, i.e. items c), d) and e) 

did not affect the control system since the saturation 

levels were avoided. However, if the tension control was 

attempted at higher speeds or if a lower reference cloth 

tension, R, was specified, then these non-linearities would 

soon affect the control directly. 

The first two items are discussed further below. 



130 

4.6.2. System Time Delay 

Time delays have a destabilizing effect on control systems, 

and in particular, the stability of digital control systems 

is dependent on the sampling time delay [57,68). At slow 

sewinq speeds, 

the control is 

the system time delay is insignificant 

effectively continuous. However, 

and 

as 

demonstrated in section 4.5.3., system performance can be 

improved at high speeds by reducing the time delay. 

In the tension control system developed above, the affect 

of the time delay on the system dynamics has been ignored. 

In fact, different gain values are optimum for different 

sewing speeds. The system overall performance could 

possibly be improved by adjusting the values of Kl and KI 

for different sewing speeds. 

4.6.3. Mechanical Properties of Cloth 

Fabrics have highly non-linear mechanical properties. Under 

tensile loading, they exhibit anisotrophy, a strain

dependent modulus and hysteresis. Under compressive loads 

they buckle and their behaviour under shear loading is also 

complex (60). 

4.6.3.1. Tensile loading along Warp or Weft Directions 

Woven fabrics have non-linear load-extension curves, and a 

typical curve for the warp or weft directions is shown in 

fig. 4-15 [59,60). 



LOAD 

INTER-FIBRE 
FRICTION EFFECT 

131 

YARN EXTENSION REGION 

EXTENSION 

Fig. 4-15: Typical Load Extension Curve for Woven Fabrics 

Three regions or phases can be identified on the curve 

below the yield point :-

a) The initial high modulus of the fabric is usually due 

to frictional resistance to bending of the thread. 

b) Once the frictional restraint is overcome, a low 

modulus region is entered during which the threads in 

the direction of the force become taut ( i . e. 

"decrimping"). 



132 

c) Once the slack in the fibres has been taken up, a high 

modulus region is reached in which the fibres 

themselves are stretched. 

In addition to the non-linear load-extension curve, there 

is considerable hysteresis between the extension curve and 

the recovery curve. 

These non-linear characteristics were clearly responsible 

for much of the difficulty encountered in developing the 

cloth tension control. 

4.6.3.2. Tensile Loading Along Bias Direction 

The modulus of elasticity is slightly different in the warp 

and weft directions. However, in the bias direction (at 45° 

to the warp and weft), the modulus is very much lower than 

in either of the other two directions, since the cloth has 

a totally different deformation mechanism. When loaded 

along the bias, the cloth structure deforms by shear, i.e. 

the lattice framework is sheared as the fibres align 

themselves along the bias direction. This mode of 

deformation is shown diagrammatically in fig. 4-16. 

Although the lower modulus of elasticity improved the 

performance of the tension control along the bias, the 

shear deformation of the fabric structure resulted in 

unacceptable buckling on either side of the high tension 

zone, which lay between the fingers and the presser foot. 

Although reducing the cloth tension to a few grams force 

may prove beneficial, this form of buckling can only be 

prevented satisfactorily by clamping the cloth against the 

table over as much of the panel as possible, during sewing. 



133 

BEFORE LOADING AFTER LOADING 

Fig. 4-16: Deformation of Woven Fabric, Loaded in the 

Bias Direction 

4.6.3.3. Knitted Fabrics 

Under tensile loading, knitted fabrics exhibit very high 

extensibility relative to woven fabrics, due to elongation 

of their looped structure. This high extension was limited 

to the high. tension zone between the fingers and the 

presser foot, and the shear forces between the high 

and low tension zones generated severe buckling. 

Consequently, knitted fabrics are even more difficult to 

handle than woven fabrics cut along the bias. 



134 

4.6.4. Conclusions 

a) A tension control system was successfully developed in 

which an adaptive robot holds the end of a cloth panel 

against a table during sewing. 

b) The system is unsuitable for sewing along the bias 

direction of a woven fabric, or for knitted fabrics. 

Under such conditions, the fabric must be supported 

over a much greater proportion of its surface to 

prevent buckling, e.g. using a jig system or using a 

belt arrangement (section 1.3.2.2.>. Alternatively, the 

tension measurement system could be redesigned to be 

more sensitive, to measure cloth tensions of only a 

few grams force. 

c) Pucker free seams can only be produced at relatively 

slow sewing speeds in fabrics which are pucker

sensitive. Good quality seams can be produced in less 

sensitive fabrics at any sewing speed up to 5000 rpm. 

d) The system's gain parameters require modification for 

different fabrics. However, values for Kl and K. can 

be selected that will give good performance for a 

range of fabric types, especially if the fabrics have 

low pucker sensitivity. 

e) The system can accommodate single or multi-ply cloth 

panels, as long as the number of plies is known in 

advance. 

f) The system high speed performance can be improved by 

reducing the system time delay, e.g. increasing the 

update rate or reducing the handshake cycle time. 



135 

CHAPTER 5 

SEAM WIDTH CONTROL SYSTEM 

5.1. Introduction 

5.1.1. Description of the Problem 

In order to adaptively sew a seam parallel to the cloth 

edge, the robotic system must include a sensor that 

measures the position of the cloth e~ge relative to the 

needle in real time. This seam width measurement must then 

be used to compute a robot motion that will correct the 

orientation of the cloth panel about the sewing needle and 

eliminate the seam width error. 

The first edqe seaming technique that was developed was the 

FAR technique, in which the robot fingers held the cloth at 

the far end of the cloth. The cloth tension control was 

developed for the same arrangement, which is shown in 

fig. 5-1. 

When the robot holds the far end of the cloth, it can only 

correct the position of the cloth by rotating it about the 

sewing needle. Simultaneously, the robot must track the 

cloth feed by moving forwards to maintain a small cloth 

tension, 

earlier. 

using the tension control system described 



136 

Thus the robot cannot directly correct the seam width 

error, it may only alter the incident angle of the cloth 

axis. This corrective action depends on the forward motion 

of the cloth to help eliminate the seam error. 

Fig. 5-1: Initial Finger Position for FAR Sewing Technique 

5.1.2. Block Diagram 

The control system is shown in schematic outline in 

fig. 5-2, and the symbols are defined in table 5 - 1. 



137 

Rs Es Ms 
G2s 

+ G 1s -
Cs 

8s 

Hs 

Fig. 5-2: Seam Width Servo Control System 

ANSI Std Nomenclature Description 

R. Reference Input desired seam width (mm) 

E. Actuating Signal seam width error (mm) . 
B. Feedback Signal measured seam width (mm) 

C. Controlled Variable actual seam width (mm) 

MII Manipulated Variable ALTER data 

G.s Control Elements transfer function 

Glle System Elements contro lied system (Plant) 

HII Feedback Elements vision system 

Table 5-1: Tension Control System Terminology 



138 

5.1.3. Design Options 

The design of the tension control system was based on the 

experimental measurement of the frequency response of the

open loop system, i.e. GeH(jw). This design method, which 

assumed a linear and continuous system, was necessary since 

the system could not be readily analyzed or simulated. 

The seam width control system also involves a complex 

interaction of non-linearities due to fabric properties, 

table friction, motion limitations, etc. Attempts were made 

to analyse a model of the system, but they were aborted 

when it was realized that too many simplifying assumptions 

were necessary. 

A simulation technique was developed for the seam width 

control problem which accounted for many system non

linearities. The simulation was based on two reasonable 

assumptions, that the cloth panel was stiff, and that the 

robot could accurately manipulate the cloth panel. The 

geometry of the system, robot motion limitations, vision 

system limitations and system time delays were incorporated 

into the simulation model. 

5.2. Simulation Program 

5.2.1. Development of the Algorithm 

The simulation program, which was written in Turbo Pascal, 

was developed in 3 phases. First the basic control problem 

was simulated in which an ideal robot rotates the cloth by 

a ,computed correction angle based on accurate sensory 

measurements. The actual limitations of the PUMA 560 robot 



v 

139 

and the measuring accuracy of the proposed vision system 

were then introduced into the program. Finally a graphic 

display routine was added which permitted interactive use 

of the program during the simulation experiments. 

5.2.1.1. Basic Algorithm 

Fig. 5-3 describes the basic control problem and defines 

the main parameters which were used in the algorithm. The 

symbols used in fig. 5-3, together with other parameters 

used in the algorithm, are defined in ·table 5-2. The 

problem is viewed from within the coordinate frame of the 

cloth panel, as if the cloth remains stationary and the 

sewing needle rotates and translates across the cloth. 

N1 

N2 

Cloth 

Contour ca 

u 

Fig. 5-3: Seam Width Control Problem 



140 

Item Definition 

I 
x,y coordinates of a point w.r.t. axes of sewing mIc 
u,v coordinates of a point w.r.t. axes of cloth panel 
<X angle between y axis and u axis 

11 
(l I anqle of cloth contour tangent at y = 0 to x axis 

I 0'01 corrective rotation angle to reduce seam error 

I O't system time delay 
NI needle position at time tl 
Ni! needle position at time te 
NI PI measured seam width at time tl 
Ni! Pe measured seam width at time te= t 1 + O't 
Ne P:a measured seam width after cloth rotated by 0'01 
f(u) contour of cloth edge 
Vc cloth feed velocity 
O's distance sewn during O't 

Table 5-2: Definitions of Simulation Parameters 

The system time delay, ot, which is the delay between 

measurement and actuation, is a lumped parameter which 

comprises delays due to the vision system, processor 

delays, ALTER communication delays and actuation delays. 

The origin of the x and y axes is the needle of the sewing 

machine as defined in section 2.8.4. In fig. 5-3, at time 

t 1 , the x axis lies alonq the line NI Ne, and the y axis 

A parabolic function was chosen to define the contour of 

the cloth edqe, for the simulation proqram, because of its 

gradually increasing curvature. The contour function was :-

f(u) = u 2 I 200 ,(5.1> 



INrnAUZE N " er p 

MEASURE SEAM WIDTH N 1P 1 AND 

ANGLE , • AND CALCULATE 

SEAM WIDTH ERROR, E S 

CALCULATE CORRECTIVE ANGLE 

TRANSLATION 

CALCULATE POSITION N:l
2 

AfTER 

TRANSLATION BY is S - dT Vc 

. ROTATION 

ROTATE CLOTH BY ANGLE .sa 
AND CALCULATE P:3 

141 

UPDATE 

er - + ~a 

-

NO 

Fig. 5-4: Flowchart of Simulation Algorithm 

• 



142 

The basic control algorithm, which is depicted in a 

flowchart in fig. 5-4, is based on the discretization of 

the measurement and actuation processes, i.e. the motion of 

the cloth due to the cloth feed mechanism and its rotation 

by the robot are treated as separate short motion segments 

which occur alternately. 

Starting from a known initial needle position, N" the 

cloth is first translated along the x axis due to the cloth 

feed during the system time delay (t e -t. ). At time te the 

robot rotates the cloth by the corrective angle O~ which 

was computed using measurements taken at time t •• 

The cloth translation phase is depicted on fig. 5-3, by the 

needle moving from NI to Ne, relative to the cloth contour. 

The cloth rotation phase is depicted on fig. 5-3 as the 

sewing machine rotating by O~ relative to the cloth 

contour. 

The algorithm progresses along the seam length using the 

"time-marching" technique. At the end of each step the 

parameters ~, NI and P a are updated and the calculations 

are repeated until a termination condition has been met. 

5.2.1.2. Calculation of Seam Width Error, E. 

The line joining the needle and the cloth edge on the 

sewing machine y axis, NIP., which can be measured directly 

by a vision system, is only an apparent seam width. 

Fig. 5-4 compares the actual and apparent seam widths. 

Since the apparent seam width changes with the rotation 

angle of the cloth, ~, initial simulation runs confirmed 



, 

143 

that the control system required a more accurate value for 

the seam width. The actual seam width cannot be measured 

directly but a satisfactory approximation can be obtained 

from the apparent seam width and cloth incident angle, a, 
as follows :-

Hence, the seam width error is given by :-

= N1P1 cos a - Ra 

measured N seam 

actual 

(5.2) 

(5.3) 

Cloth 

Contour 

Cloth Contour Frame 

Fig. 5-5: Apparent and Actual Seam Width 



144 

Equation (5.3) is accurate for a straight line cloth edge 

and its accuracy is only dependent on the cloth curvature, 

and independent of the cloth angle, ~. Consequently, this 

relationship was found to be suitable for the seam width 

contro 1. 

5.2.1.3. Calculation of Cloth Rotation 

The position 

vision system, 

of the cloth edge (P), as detected 

for a particular needle position 

by 

(N) 

the 

and 

cloth rotation angle (a), was calculated from equations 

(5.5) and (5.8), which were derived as follows :-

Problem: given Nu, N .. and~, calculate Pu and P" 

where (Nu' N,,) and (Pu , P,,) are the coord i nates of 

Nand P relative to the cloth contour. 

Solution NP is a straight line with gradient - tan ~. 

Thus - tan ex = _N-.....v ___ ..:..P-zv (5.4) 

Nu Pu 

Since P lies on the curve, 200 v = u 2 (equation (5.1), 

200 P" = (Pu ) 2 (5.5) 

Eliminating P" between equations (5.4) and (5.5) yields 

(PH) 2 + tan a Pu 

200 

(N.. + Nu tan ~) = 0 (5.6) 



145 

Hence 

Pu = - 100 tan (X ± 10 4(100 tan 2 0( + 2 Nv + 2 Nu tan O() 

(5.7) 

Since the required solution lies in the first quadrant, 

Pu = - 100 tan 0( + 10 4(100 tan 2 ()( + 2 N", + 2 Nu tan (X) 

(5.8) 

5.2.1.4. Calculation of Cloth Translation 

The translation phase of the simulation cycle simulates the 

cloth feeding past the needle without any rotation 

place. In terms of the cloth coordinates u and 

taking 

v, the 

needle moves from location NI to Ne. The distance N, Ne is 

determined by the time delay ot, and the cloth speed Vc, as 

follows :-

= oS = Vc ot (5.9) 

Refering to fig. 5-3, the new needle position, Ne, is given 

by :-

( NI Ne 5 i n 0( (5.10) 

NI Ne cos (X ) 

The new cloth edge location, Pe , can be calculated from the 

cloth rotation equations (5.5) and (5.8). 



146 

5.2.1.5. Control Transfer Function, Ga 

The control system's transfer function had the following 

form :-

00. = + K.. (l (5.11> 

Since the incidence angle, (l, is in effect the derivative 

of the seam width error, Ell, the two constants, K;, and K .. , 

are analogous to proportional and derivative gains, 

respectively. 

The derivative component was clearly necessary, especially 

since 00. directly affects the angle (l and only indirectly 

affects Ell. Thus, the control system must act to minimize 

both E. and (l. 

Initial simulation runs confirmed that an integral control 

component, which would improve steady state errors at the 

expense of stability margin, would not be beneficial since 

the primary control difficulty was stability and the 

steady-state errors were not critical. 

5.2.1.6. Robot Motion Limitations 

The preliminary experiments in controlling the PUMA 560 

robot via the ALTER channel showed that the tool's velocity 

and acceleration had to be limited to less than 8 mm/hs and 

3 mm/hs/hs respectively (section 3.5.1). In addition the 

robot's reach was limited to 

-200 mm < y, < 200 mm (5.12) 

where the main finger has coordinates (x, ,y, ) 



147 

For a given correction angle, aa, the required displacement 

of the robot in the y direction is proportional to X~, the 

finger to. needle distance. Thus the limitations of the 

robot are more detrimental to seam width control for large 

values of x~, i.e. when the robot is further away from the 

needle. 

Thus, in the real system, the robot approaches the needle 

together with the cloth, so that the cloth can be rotated 

by larger angles towards the end of the seam. In the 

simulation program, x~ was held artificially constant, 

that the effect of the robot's limitations would not 

during the simUlation run. This measure facilitated 

so 

vary 

the 

interpretation of the simulation results since the effect 

of other variables, such as curvature, could be more easily 

identified. 

5.2.1.7. Simulation of Vision System 

The simulation program was modified so that either two or 

one camera vision systems could be investigated. A camera 

was modelled as a linear array of pixels so that the pixel 

resolution and the number of pixels could be specified. 

One camera was assumed to lie along the y axis in order to 

measure NIP I directly. In a two camera system, the second 

camera was placed at a distance XCM in front of and 

parallel to the first camera, in order to measure the 

incident angle, a. 

If a second camera was included, then, yc,," , the y 

coordinate of the cloth edge at x = X CM , can be measured 

directly. In the simulation program, y~" was calculated 



148 

from equations 5.10,5.5 and 5.8, by substituting XCA" for 

N1Ne and YCM for NePe • The angle A was then calculated as 

follows :-

(5.13) 

If only one camera was specified, then A was estimated from 

the rate of change of the seam width :-

= tan- 1 (5.14) 

os 

where NPK is the value of NIP I for this time step 

NPK - 1 is the value of NI PI for the previous time step 

5.2.1.8. Graphic Output 

The simulation program was extended to generate a graphical 

display of the seam width control in real time. This 

improved the usefulness of the program since parameters 

could be changed interactively and the results were 

displayed graphically within a few seconds. 

Two examples of simulation runs are shown in figs. 5-6 and 

5-7. Fig. 5-6 shows an excellent simulated seam produced 

with a two camera vision system, and fig. 5-7 shows an 

unstable control resulting from a one camera vision system. 

The cloth edge and the ideal needle path, which are the 

outer and inner parabolas respectively, were plotted at the 

start of the run. At each time step, the line NI p, is 

plotted. The PI end of these short lines always lies on the 

cloth edge, by definition. The other end represents the 



149 

position of the needle, relative to the cloth contour, at 

the beginning of each time step. The variation of O~ is 

clearly visible from the gradient and the seam width error, 

ED , is shown by the perpendicular distance between the 

needle position and the ideal needle path. 

~.070(3 
1.6~ 
0.4 
0.5 

50 
200 

6(3 

P:rO\'>1 H.1 
de:rl V I 1<2 
init alpha 
initial E 
dis t /. Xf 
Max yf 
speed l Vc 
Max acceln 
Max velcty 
no pixels 
pix width 
tiMe step 
dist l XcaM 
seaM width 

P. I . 

.. ~ .. 

Fig. 5-6: Simulation Plot for Two Camera System 

3.0 
8.0 

31 
0.50 

0.140 
23.(3 
13.0 

277.2(3 

• 



150 

, 
I 

'. 

p:ro~~ }~1 
de:rlv~ N2 
init alpha 
initial E 
dist,. X:f 
Max ,y:f 
speed" Vc 
Max acceln 
Max velcty 
no pixels 
pi)( wi cl tll 
tiMe step 
dist" XcaM 
seaM width 

P. I • = 50.40 

Fig. 5-7: Simulation Plot for One Camera System 

5.2.2. Simulation Experiments 

5.2.2.1. Performance Index (P.I.) 

The seam contour function, 200 v = u 2 used in the 

simulation was chosen because the curvature of the contour 

gradually increased as the sewing progressed. A convenient 



151 

measure of control system performance was the distance sewn 

before the seam error exceeded 1 mm. The initial values of 

the seam width error and alpha were set at 0.5 mm and 0.4 

radians, respectively, for all the simulation runs. The 

initial v coordinate of the needle was set at 199 mm. 

5.2.2.2. Photocell and One Camera Systems 

The one camera system was found to be unstable, under all 

circumstances (fig. 5-7). The use of one or two photocells, 

in place of the two cameras, was investigated, and was also 

found to be insufficient. 

5.2.2.3. Performance of the Ideal System 

Fig. 5-8 shows performance plots for four sewing speeds for 

the ideal system, i.e without vision system or robot motion 

limitations. Each plot shows the maximum variation in K, 

and K~ for a specific value of performance index. The 

parameter settings for the simulation runs that produced 

these performance plots are listed in table 5-3. 

The system's stability margin is sensitive to the distance 

sewn during the system time delay, os, which is dependent 

on both the sewing speed, Vc, and on the system time delay, 

at, (equation 5.9). Thus, if at is increased then Vc must 

be decreased before the same performance is obtained, and 

vice versa. 

Variation in the desired seam width, Ra, had only a minor 

effect on the control system. 

width error or incidence 

instability. 

Large initial values of seam 

angle, a, gave rise to 



152 

Fig. 5-8: Effect of Speed on Simulated Seam Width Control 

Parameter fig 5-8 fig 5-9 fig 5-10 fig 5-11 

No. of pixels 71 31 31 31 

Pixel width (mm) 0.5 0.5 0.5 

Dist, X,. (mm) 3 3 3 

Delay, ot (s) 0.14 0.14 0.14 0.14 

Dist, XC;II" (mm) 23 23 23 

Speed, Vc; (mm/s) 60 60 60 

Perf. index, PI 268 268 268 208 

Seam width (mm) 13 13 13 13 

Max. acceln 3 3 3 3 

Max. velocity 8 8 8 8 

Max y, (mm) 200 200 200 200 
" 

Table 5-3: Parameter Values for Simulation Tests 



153 

5.2.2.4. Vision System Limitations 

Fig. 5-9 shows the effect of pixel resolution on seam width 

control per~ormance. Increasing the pixel resolution (by 

reducing the pixel width) significantly improved the 

system's stability for high proportional gains, but 

slightly reduced the stability margin for high derivative 

gains. 

Increasing the length of the pixel array above 8 mm, had 

negligible eff~ct on the system's performance . 

, 
;: ··l·I' .' ".: ..... ! .. :.. :. (I:: . :': 

··+=>~~:.;r PIXEL-loHinH ..... ·.·0.9 ·mm"f-· .. ..1 •.• - .• : •. 
. I 
: ",0.3 mm 

. .i :1':::" ·L·!.··I>r:··1 ~;:lt:I::!:I"::: :; 1i:; ':!' ·1· !': I i ; :'1' . :. 

. I : I . I •. , ','1 .• J .. ;, , '1'" .. . .' 0.7 mm mm j.' ! 
. • .... 1. ............. ,... _--"""\ -----:-.........,...-:-:::)...-;..-~--:--:-~-71 

.).-~ ~I~:I·i_l:~: :::.' r' I' , ......... :; ... 1 

.. :1:))'·:· ." I 

:: l::: I ,:' I .. ~..., -'" . ": ". ! 
.... • .1 " i 

.1. 

i· , 

Fig. 5-9: Effect of Pixel Resolution on Simulated Seam 

Width Control 

" 

I 
i 
I 
I 
i 

: , 
! 
i 



Fig. 5-10 shows the effect of varying XC"'" , the distance 

between the two cameras, on the system~s performance. The 

optimum distance was found to be between 20 and 30 mm. 

Performance was impaired for smaller values of xc"'" because 

the accuracy of measuring the angle ~ was affected. Larger 

values of XC"'" affected the accuracy of calculating the 

angle ~ from the measurements, because the calculation was 

based on a straight line assumption (equation 5.13). 

Fig. 5-10: Effect of XC~ Seam Width Control 



155 

5.2.2.5. Robot Motion Limitations 

All the performance plots shown in figs.5-8 to 5-10, were 

based on a performance index of 268 (section 5.2.2.1.), 

which corresponds to sewing accurately round almost the 

entire contour up to the origin. However, once the robot's 

limited reach capability (equation 5.12) was included in 

the system model, the system could no longer follow the 

extreme curvature of the contour in the region of the 

origin. 

When the maximum reach limitation was introduced into the 

simulation program, but without the dynamic robot motion 

limitations, the maximum performance index obtained 

decreased as XI' (the robot to needle distance), was 

increased. Obviously, this ~ffect was due to the limit that 

the robot can rotate the cloth. 

Fig. 5-11 shows the effect of the robot's dynamic motion 

limitations (i.e. maximum acceleration and velocity) on 

system performance. The performance plots are based on a 

performance index of 208, which is more realistic for a 

real robot with limited reach, since the tangential angle 

of the edge contour does not exceed the maximum rotation 

angle of the robot about the needle for the values of XI' 

considered. 

Although the acceleration and velocity limitations were 

fixed to 3 mm/hs/hs and 8 mm/hs respectively, the 

performance was plotted against XI" since the effect of 

these dynamic limitations on the angular acceleration and 

velocity of the cloth was dependent on Xl' • For small values 

of XI" the dynamic limitations have very little affect on 

the robot motion, but at large values of XI" they severely 

damp down the cloth's rotational motion. 



.. 

, 

" 

156 

As clearly shown in fig. 5-11, the dynamic motion 

limitations improved the stability margin of the system for 

large gain values by damping down excessive robot motions. 

By preventing the high gain .values from generating· 

excessive robot motion, these limitations are keeping the 

effective system gain within a stable region. 

The dashed section of the performance curve for x~ = 200 mm 

denotes an untested region. The curves were plotted using a 

modified version of the simulation program which 

automatically found the minimum and maximum values of K_ 

for a particular value of K 3 • The search for minimum and 

maximum values of K_ had been limited to below 7. 

,.0 

lO 

~·O 

: ! ; ,. ,. :. j .. I' . 
I 
. - -! - : .,. ;. 

- .... .,. !- ..... ; .. 

~ : : I ;. ~ /1 . t t 
., I ... ;' .. , .... L: ...... : ........ :. ., I·j ·1 ;; .. ' 

I
; . :';·1 .:, .:: ... : 

. ; ........ : ... . 

I 
. ·'1· .... 

I 

"1 

I ., . 
~ 

I : I; .. 
zoo mm . .. 

5·0 .. 
z .... 
et 
t!l ~·o 

w 
:> 

. ""': ,: 
:: I:.' .. !.. .. 

. ··1··.. I.·. ·1· 
I .. ······.. ........ • •.• iI .::' ;. !. , 

~.-"-:'-7-7 :1 le,.. = 1 00 mm .... 
I- 3·0 <! 
:> .... 
0:: 
W' 
Cl J...D 

H' 

0 

," I . ; 
,i". "·l "'1 I·:· ".: ... 

" i 

, 'j" :!': .. !. .: .... ;. ! 
i .... ::: ..... ,: .... 1. '1;·" I I 
; ."1' I ,. .:' .. ':. .; .,;,' 
a . 3 mm I· I . ,'j., 

; I .:.. !;T·:~ ~:=': ~:' .~ r·~· 
:',' ·1" ::·!:·:··r "! "T· ·1 .'j'.' .. ,.: .... ;;, ... :: ...... : :. l ...... ::: .. 

; (.';: :.: : Y.: .l" '; 1 • 
!. '. I ,". :.:!:. ·V· 'T' ,'!. 

0 I·~ i 

! 
I 

i 

(H . 0·1 D.J 
I I I I I i 
! I I 

D·S' D.' ".~ .. ; G.,;· 
I . I :::. I : .. ". , .. +. 

PROPORTIONAL GAIN, K3 •. i' 
I ~ .. , 

, . 

: ; 

Fig. 5-11: Effect of x, on Simulated Seam Width 

Control 

I 
'j 

I . 
/. .. : .. I ; 
I , 

: .. : I ;.' .. , . . . . 
; ..... : ... 



, , 

157 

5.2.3. Conclusions 

The simulation proqram was a valuable aid in understanding 

the system's control problems and limitations. The 

following conclusions were made from the simulation 

experiments :-

a) Stable control could not be obtained using one or two 

photocells, or using only one camera. 

b) Stable control could be obtained using two linear 

c) 

array cameras. The I-SIGHT cameras, which were 

proposed for the FIGARO application and are described 

later, were shown to provide satisfactory control 

performance under simulation. 

The performance of the seam width control is very 

sensitive to system time delay, and the maximum sewing 

speed is primarily limited by the system time delay. 

d) The maxfmum curvature that could be tracked was 

dependent on the robot's reach limitations and on x~ , 

the robot to needle distance. The maximum tangential 

angle of an edge contour that can be accommodated is 

given approximately by :-

tan-1 «200 - y~l ) Ix~ (5.15) 

where Yl"l is the y coordinate of the main finger's 

initial position, at the start of the seam. 

e) The robot's acceleration and velocity limitations 

reduced the system's sensitivity to high values of K3 

and K .. , by keeping the effective gain values low. 



158 

f) The initial seam width error and incidence angle 

should be kept to a minimum. 

g) The two cameras should be placed between 20 and 30 mm 

apart. 

5.3. Vision System 

The simulation program confirmed that the vision system had 

to have the following specification: 

* high speed operation (to limit system time delays) 

* two cameras 

* a pixel resolution of at least 0.5 mm in the object 

plane 

* a pixel array length of at least 8 mm in the object 

plane 

5.3.1. Cameras 

Two I-SIGHT cameras were installed on the sewing machine, 

as shown in fig. 5-12. Each camera has a 32 X 30 pixel 

array and their proprietary mode of operation is similar to 

that 'of CCD cameras. These cameras were chosen because of 

their small physical dimensions which permitted direct 

attachment to the sewing machine. 

Although there were few pixels per row, this crude camera 

resolution was compensated by their close proximity to the 

table surface, so that an object plane resolution of 0.5 mm 

• , 



159 

was easily achieved. Furthermore, since the process ing tim e 

associated with the vision system is proportional to th e 

number of pixels, the relatively small pixel array size 

resulted in l ow system time delay. 

Fig. 5-12: The I -SIGHT Cameras Mounted on the Sewing 

Machine 
C 

I 

The camera s operated in a binar y mod e only, i . e . a pix e l 

could be only black or whit~ and gray l eve l s could not b e 

differentiated. The thres hold betwee n black and whit e was 

determined by specifying an exposure valu e <b etween 0 and 

127) which controlled th e camera 's exposure time int er v a l. 



160 

The cameras are focused by rotating the lens in the camera 

body., An advantage of selecting cameras with a crude 

resolution is that the depth of field is increased and 

therefore they do not require accurate focusing C62J. 

5.3.2. Interface to IBM AT 

The manufacturer's of the I-SIGHT camera, Electronic 

Automation Ltd, provided an interface card which linked the 

cameras to the IBM AT. The card, which was installed 

directly in the IBM AT bus, contained a 280 microprocessor, 

an EPROM and a block of dual ported RAM, in addition to the 

necessary digitizing hardware for the cameras. 

The 280 performed the frame grabbing and thresholding 

operations, thus reducing the vision system overheads of 

the IBM AT. The block of dual ported RAM constituted the 

frame stores for two cameras. 

The IBM AT initiated a frame grabbing cycle by 

hardware flag to the 280. Utilizing high 

transfers, the 280 loaded the frame stores 

digitized and thresholded pixel data. When the 

setting a 

speed DMA 

with the 

280 had 

completed its operation, it signalled the IBM AT 

another flag. The IBM AT then requested the 

relinquish the data bus to the frame stores and 

transferred the pixel data to its internal RAM. 

through 

280 to 

it then 

More details of the operation of the interface card are to 

be found in reference C61J. 



161 

5.3.3. Lighting Arrangement 

The lighting arrangement for the cameras, shown 

diagrammatically in fig. 5-13, comprised a projection lamp 

and the mirror surface of the table. The cameras were 

mounted vertically above the cloth edge and the lamp was 

directed to shine a pool of light on the field of view at 

an angle of about 45° to the table surface. 

CAMERA 

LAMP 

CLOTH 
[XXXXXX5?XXXXXX5<1 

SEWING TABLE 

Fig. 5-13: Lighting Arrangement 

When there was no cloth in the field of view then the 

mirror surface reflected the light away from the cameras 

and the image was black. When the cloth was present, the 



162 

light was dispersed by the cloth and the camera image was 

white. 

with 

Although this lighting arrangement was 

all kinds and colours of fabric, darker 

effective 

materials 

required longer exposure times since they absorbed more of 

the light and dispersed less. Satisfactory images were 

obtained for white material for an exposure value of 10. 

Unwanted reflections, which caused false images, were 

avoided by careful positioning of the lamp and by painting 

some of the polished surfaces black, such as the presser 

foot • 

. 5.3.4. Projection Lamp 

The I-SIGHT cameras required a lighting system that 

provided an intense and uniform pool of light with high 

infra-red content, that covered both fields of view. A 

normal filament bulb and reflector system was found to be 

unsuitable, since the filament created bright spots on the 

illuminated object. High quality projection lamps include a 

condenser lens, which ensures that a uniform pool of light 

is produced. A 48 W high intensity lamp, with an iris 

diaphragm and focusing condenser assembly, was selected for 

the FIGARO system. 

The I-SIGHT cameras are only sensitive to a narrow band of 

light (approximately 820 nm wavelength) in the infra-red 

portion of the spectrum, and they produce clearer and more 

stable images when the object is illuminated by an 820 nm 

laser beam. Although, laser illumination was not 

implemented in the FIGARO prototype, it has been used in 

some industrial applications of these cameras [63J. 



163 

5.3.5. Software Implementation 

The slave processor architecture of the camera interface 

card permitted the IBM AT to perform its real time 

processing of sensory data simultaneously with the frame 

gabbing operation. 

The image of the cloth edge captured by the cameras was 

quite noisy even when a clean edge was viewed. The image of 

the cloth edge would fluctuate by one or two pixels. Since 

the cameras provided a two dimensional array of pixels, the 

position of the cloth edge at x = 0 and at x = XCA" were 

. measured by averaging the edge locations taken at three 

adjacent pixel rows. This technique provided a more 

accurate and stable measure of the position of the cloth 

edge • 

. " 

.10 

./S 

: :1& 

.. .. -... 

:~+-

. ./1. 

/0 

_. 
, 

A. 

1.. 

0 

Cl , 'I 

CYCLE TI ME (ms) 

I. . 
, 11. 

. : ~T:":~:T ~~.:~! ... ~~:~; :". ·~t~~~;·~·:·· 
If; 

Fig. 5-14: Vision Processing Time vs Camera Exposure Value 



164 

The pixel data were transferred from the I-SIGHT card to 

the IBM RAM using a high speed hardware block move, and the 

routines for finding the cloth edge and calculating E. and 

a were optimized for fast execution. 

The time taken by the combined system to grab the two 

frames, process the pixel data and calculate E. and a was 

measured for different camera exposure values and the 

results are shown in fig. 5-14. The cameras were usually 

set at an exposure value of 10, for which the vision 

processing time was approximately 11 ms. 

5.3.6. Calibration Technique 

The accuracy of measurements based on the camera data 

depended on careful calibration of the vision system. In 

particular the seam width control was very sensitive to 

misalignment of the two cameras. Since accurate alignment 

and positioning of the cameras~ field of view was 

difficult and time consuming to do manually, a calibration 

technique was developed in which the true position of the 

field of view of each camera was accurately measured in 

terms of pixel offsets from the ideal position. These 

offsets were then entered as factors into the robotic 

sewing program which used them to calculate accurate values 

of E. and a from the camera data. 

The calibration procedure, which involved a calibration 

program and two calibration overlays shown in fig. 

consisted of the following steps ;-

5-15, 

a) Place the large overlay on the table and, using the 

sewing needle and alignment marks, 

over the cameras~ field of view. 

accurate locate it 



-~--------------------

165 

b) View the camera images on the screen using the 

calibration program. If the cameras' fields of view 

are grossly in error, make manual adjustments to the 

position and orientation of the cameras. Fine 

adjustments are not necessary. 

c) From the statistical data displayed on the screen, 

record the row numbers that correspond to the x = 0 

and x = Xc~ coordinates, and the column numbers that 

correspond to y = R. 

d) Place the small overlay in the field of view of each 

camera and align it using the displayed image. Record 

the slot width of the image in pixels displayed on the 

screen, and hence calculate the pixel resolution. 

e) Enter the calibration data into the robotic sewing 

NEEDLE 

HOLE 

program. 

-.0 

R 

Drm 

D~ 
D 

X 
CA)J 

10 mm 
~ .. .... r-

Fig. 5-15: Overlays Used in Vision System Calibration 



"'T1 .... 
\0 

UI 
I .... 

0-

n 
01 .... .... 
tJ'" .., 
01 
eT .... 
o 
::J 

"'U .., 
o 

1.0 .., 
01 
3 

c .... 
111 

"U .... 
01 

-< 
I 

r 
01 .., 

10 
III 

o 
< 
III .., .... 
01 
-< 

STRIP 
SEAH 

SLOT 

C~HERA 1 

~ows :
cols :
freq :-

wi d tll :
ff1eq :-

ente~ in ESe to exit 

o 1 2 3 456 
·12 13 14 

8 7 ,0 4 

4 5 6 7 8 
o 11 12 
697 

CAMERA 2 

~ 

0-
0-



, 

-. ' ... . ..... 
"TI .... 

10 . 
ut 
I .-

--.J .. 
.... n 
:::J \lJ .... 
n .... 
\lJ eT 
3 -, 
III \lJ 
-, eT 
\lJ .... 

0 

- :::J 
'"0 -, 
0 

10 -, 
\lJ 
3 

IDI~ .,. --- -C 0-.... --.J 
11\ 

"'0 .... 
\lJ 
-< 

I CAMERA 1 CAMERA 2 
Ul ente~ in Ese to exit 3 
\lJ .... .... STRIP rows :- o 1 2 3 456 
0 SEAM cols :- 3 4 5 < 
III 

freq :- 6 11 7 -, .... 
\lJ SLOT width:- . 2g 23 24 25 26 '< 

fr'eq :- 3 8 B 4 5 



168 

The calibration program is listed and explained in Appendix 

F. A typical display of the calibration program for each of 

the two overlays is shown in figs. 5-16 and 5-17. Using the 

statistical data shown in figs. 5-16 and 5-17, the vision 

system parameters would be set as follows :-

irow1 = 3 row no. along line x = 0 

irow2 = 6 row no. along line x = XC"" 

pixl_ offst = 2 offset in pixels, from y = R. 

pix2_ offst = 3 offset for Camera 2 

yl_pixel = 10/24 pixel resolution in y direction 

= 0.42 mm for Camera 1 

5.3.7. Vision System Performance 

The I-SIGHT/IBM vision system that was integrated into the 

FIGARO system was in laboratory prototype form only. 

Towards the end of the project, the manufacturer admitted 

continued difficulties in debugging the product, and the 

delivery of the final production system was delayed 

indefinitely. 

Two problems seriously affected the performance of the 

prototype vision system :-

~ 
1) The hardware that refreshes the CCD chip before a new 

picture is captured, appeared to be only partially 

effective. It took between 2 and 4 attempts at taking 

a new picture before the pixel data reflected changes 

in the field of view. This delay was observed for both 

light to dark and dark to light transitions. 

2) Camera 2 generated only a partial image, and the 

extent of the image varied with the amount of light in 



169 

the field of view. Thus, in fig. 5-16, the bottom half 

of the overlay is missing, but in fig. 5-17, the image 

is complete due to the brightness of the field of 

view. 

The second problem was minimized by aiming the camera so 

that only the line Xc~ passed through the top third of the 

image. The first problem effectively increased the system 

time delay (section 5.6.3.>. 

5.4. Implementation of Seam Width Control 

The simulation program assumed that the cloth panel 

remained rigid throughout the sewing operation. However, 

fabric panels exhibit very low lateral rigidity, and 

buckling of ·the cloth was the prime difficulty in 

implementing the seam width control system. 

5.4.1. Calculation of Robot Motion to Rotate Cloth 

The seam width control required that the robot corrected 

the orientation of the'cloth panel during sewing. This was 

achieved by superimposing two motion elements; rotation of 

the main finger about the sewing needle, and rotation of 

the auxiliary finger about the main finger. 

In fig. 5-18 the cloth is to be rotated about the needle 

by an angle ca. The geometry clearly shows that the main 

finger should be rotated about the needle by oa, and the 

auxiliary finger must be rotated about the main finger by 

the same angle, oa, (see fig. 5-18). 



170 

The ALTER data for rotating the main 'finger about the 

needle were calculated usinq the equations derived below. 

Consider rotation of the main finger from Fl to Fe about 

the needle, N, (see fig. 5-18). The coordinates of Fl , Xl 

and Yl , are known, and the coordinates of Fe are calculated 

as follows :-

Yz = NFe sin(cx + Qcx) 

= NFe ( sin cx cos QCX + cos C)( sin cC)( ) 

Applying small angle approximations for QC)(, 

Ya = NFa sin cx + CCX cos cx ) 

= NF a ( Y, 

NFl 

+ CCX Xl) 

NF, 

, 

No buckling condition requires that NFl = NF e, therefore 

= + QCX x I (5.16) 

Similarly, 

Xe = NFa cos(cx + ccx) 

= NFa ( cos cx cos QC)( sin ccx sin cx ) 

= NF. ( cos cx QCX sin cx ) 

= NFI! Xl QCX Yl 

NFI NFI 

which simplifies to 

XI! = Xl (5.17) 



171 

Thus, three ALTER components were necessary in order to 

rotate the cloth about the needle :-

x increment = XI! Xl 

y increment = YI! Yl 

Rotation about z increment = ca 

The X increment was superimposed on top of the x ALTER data 

due to the cloth tension control (section 4.4.1.2J. 

, , , , , , 
bO< r, fi 

- L_ ' -'.-...-

--

_--,.t-N 

.~ 

- - -

Fig. 5-18: Robot Motion Required to Rotate Cloth About 

Needle 



172 

5.4.2. Robot Reach Limitations 

In addition to the acceleration and velocity limitations 

discussed in section 3.5.1, the ALTER data had to be 

limited so that the robot was not directed beyond a safe 

envelope boundary. 

t 

b d 

RY-MIN RY-MAX 

NX MIN2 
iJSI~-- ----- ----__ ~ 

...,.---~l'I_"" 

L-_~--_Pt_--+---..L.NX-MIN1 Y 
eLl 

NY-MAX! 

e 

I 

I 
R-MIN xi 

ROBOT BASE 

SEWING TABLE 

Fig. 5-19: Safe Envelope for Robot Motion 



173 

The envelope, shown in fig. 5-19, was bounded by five 

curves :-

a If the robot approached too close to its own base, 

then either the end-effector would collide with the 

base, in the case of a wide end-effector, or the robot 

would pass through a wrist singularity region 

b 

c 

If the robot moved too far to the left, 

past the end of the table 

it would go 

If the robot arm was too far outstretched, 

would reach an elbow singularity region 

then it 

d If the arm moved too far to the right, then the x 

coordinate of the TOOL would exceed the 1024 limit 

(section 2.8.2.3.), and VAL 11 would abort ALTER 

e If either 

surrounding 

collision 

of the two fingers 

the sewing head, 

approached the area 

there was danger of a 

Since the first four boundaries constituted a serious 

restriction to the seam width control, these limitations 

were implemented carefully, so as to minimize the 

interference to robot motion. The ALTER data was limited so 

that the robot decelerated as it approached a boundary. 

When . the robot approached or moved away from the c 

boundary, then the high inertia loading of the end-effector 

on the outstretched arm caused serious wobbling. This was 

corrected by reducing the acceleration and velocity 

limitations in this region (section 3.5.1.). 



174 

Boundaries a and c were applied to the position of the 

centre of the flange on the end of the robot. Boundaries b 

and d were applied to the position of the main finger and 

boundary e was applied to each of the two fingers. The 

variable names used in the IBM AT software that define 

these limitation are given in fig. 5-19. 

5.4.3. Software Implementation 

The SEW Task, in which both the seam width control and the 

cloth tension control calculations were performed, had the 

following basic algorithm :-

Initialisations 

Trigger 280 to "take a pictUre" 

Start sewing machine sewing slowly 

WHILE (seam not complete) DO 

BEGIN 

calculate average update rate 

1* control of sewing machine *1 

accelerate sewing speed if near beginning of seam 

decelerate sewing speed if near end of seam 

1* cloth tension control calculations *1 

read shaft encoder counter 

calculate x increment to track sewing revs 

read cloth tension 

calculate x increment to maintain constant tension 

1* seam width control calculations *1 

check if 280 finished, if not - wait until it is 

transfer pixel data to local RAM 



END 

175 

trigger 280 to take a new picture 

calculate x, y and rotCz) increments 

1* ensure safe robot motion *1 

apply acceleration and velocity limits to ALTER data 

limit ALTER data if approaching envelope boundary 

install new ALTER message for COMM Task to transmit 

Stop sewing machine 

The processing overheads required for one update cycle were 

such that one update was performed every two handshakes, 

approximately, i.e. an update rate of 0.5 hs-1 • 

Several embellishments were added to this basic algorithm, 

such as calculation of sewing speed and standard deviation 

of seam width and tension errors. Setting up the cloth and 

the robot for the sewing operation was performed by the 

higher level MAKE Task (section 6.3.>. 

5.4.4. Prevention of Buckling 

If the cloth panel buckled and lost its rigidity, the robot 

could no longer rotate the cloth about the needle, i.e. the 

robot lost control of the panel. Consequently, the 

prevention of bUCkling was critical. In addition to the 

cloth tension control system, described in Chapter 4, 

several other factors were found helpful in controlling 

puckling. 



176 

5.4.4.1. Cloth Takeup 

As the cloth emerged from the sewing head, 

required a smooth and gentle pull, to ensure 

did not "pile up" just past the needle. 

it sometimes 

that the cloth 

In 

automatic commercial seaming units, this 

many semi

function is 

performed by a series of driven belts that may be placed on 

the top or bottom surface of the cloth panel. 

This approach is unsatisfactory for this application, since 

buckling of the cloth is only prevented in the vicinity of 

the needle. However, the belts would encourage 

between the robot and the sewing head, since they 

rotation of the cloth. 

buckling 

inhibit 

A more satisfactory solution would be a matrix of 

flotation nozzles, inserted into the table surface, and 

directed to give the cloth a slight push away from the 

sewing head. This gentler action would not inhibit rotation 

of the cloth panel. Although, flotation was not 

incorporated into the sewing table during this first phase 

of the project, it is planned to do so when the project is 

continued. 

5.4.4.2. Table Friction 

The table friction aggravated buckling and the polished 

table surface was kept free from dust and grease during the 

performance tests in order to minimize table friction. 

Experience with the FIGARO system suggests that the 

addition of flotation to the table in front of the needle 

would also be beneficial. 



177 

5.4.4.3. Finger Loading 

Excessively high spring loading on the fingers aggravated 

buckling by increasing the effects of table friction. Too 

low • a spring force also encouraged buckling by permitting 

slipping between the cloth and the finger. The satisfactory 

range for spring constant was found to be 

5 < Ke < 100 g/mm. 

5.4.4.4. Damped Motion 

Fast lateral motion or oscillatory motion of the cloth, 

under the robot 7 s control, tended to encourage buckling. 

This was reflected in the low optimum gain values found 

experimentally, which effectively restricted the robot 

motion to gentle and smooth corrections of the cloth 

incidence angle. 

5.4.5. Close Sewing Technique 

When a human operator holds the far end of the cloth panel 

during sewing, he Can only cope with gradual curvatures, 

even with an edge guide. In order to sew a seam in regions 

of greater curvature, the operator holds the cloth against 

the table with one hand alongside the needle and one hand 

in front of the needle. This position facilitates rotation 

of the cloth panel and prevents it from buckling. 

Similarly, the robot could only track gentle cloth edge 

contours when positioned at the fa~ end of the cloth. A 

close sewing technique was derived from the far sewing 

technique described above, so that much greater curvatures 



178 

I.~-~~:._~ __ .. i< ~~E~~'i J 
could be tackled. The auxiliary fing e r wa s po si tione d 

alongside the needle, and the end-effector was rotated 90° 

so that the maIn finger held th e cloth further down th e 

panel (fig. 5-20). 

In this position, the cloth could be rotated th rough mu c h 

larg e r correction angles before an envelop e boundary was 

encountered, and the cloth pane l had l ess t e nd e ncy to 

buckle. However, the sewing length was limit ed by th e 

distance between the two fing e rs, since th e fing e r s h a d to 

be repositioned once the main fing er h ad p assed b e yond th e 

n eedle. Furthermore, the cloth t e n sion could no l onger b e 

measured in this po s ition u s ing th e t ension sensor , and th 

cloth tension control wa s restricted t o th e op e n 

control system (section 4.2). 

Fig. 5-20: Initial Position of End-Effector for Clo se 

Sewing 

l oop 



179 

±,"' :' '[" \ 1'1"11 ' , 1111' I ~ I;- ~~ Le . . ', - I r7.~ ~. ' .. :: -.,. '-.. . .1 _ I L ' . ' " 
' I'l'l .. ,' ,; "" ' 1' I" ," : I ' I / I' ' I" ~ :.1'1' " " 'I' " , ' : ' , r-I - -1 I' , -I 
• : , I ' , ; ,: ' 'I , I .,........; , I I ' I:' :::/,1 I I" , : ' I I ' I: ,' I " I ~:, 7'1:' T~rE~I" :::f~~ : ~'" ~r l ~qfu ,-I d,-~ ""I ~ -r 1 hT tfl- "': 'I~ 1--',. ,, :, , , '" ~ : I " ~ ~,~ , .', , ' ,it! , '.' , " ' ,' ,. , I 'I I ' : ' ' , ' " 1 
;::- '~ : ':- ' ~ ' ;- i ;~ ~' 'I' ~ : :-, -/ , 'I:." ~ ' - ~ , -:, - " , -~'; :: '; J ," 
,, ' I ' / 'I', I ,,, " v" " ," "" ' I I " " " 1 ' ....<~ I...; ._~ •• I.. • _ .J.:.: --I I . I 

7,f., : 1" tt,', :i; ' : ~; ~I ' :~'~: '!',Ii,7I'" -; " ,- -r,- - -~ : ..,. - :'- q.- + I. ~' 
:':':~~i- ' : ~~ -: ~~ --- : ~ ':"!/' -I! -'-'-- ,L '_ , _l_ ~ ~ , ~ L _ ..l _! ., ' ' : ' ./ ,:, ' 1<' :'1: ' :, ' ',I,: , , ' I, : ": ' , I L : 

/'..' It,' · • I. I , . ! 
-r-;- ~/, ~i~ -, i";' 7 ,"-- ~r,-;-: ~ .. ,' - " - ~ - :- - I ' -~ , ~ I - . ,'-
'I' _ ' " "' , ' ./ ' ", ' . , I" ' " ' I "I 
. ' I ~,... . . I _: ~l ~ . , . " I. I ~ I ! ~ I I, , : . I I 
' ,I. ~' ~ ~I' I ,h ', .¥~, ,-, -r. ' "-I " , - - - -'1- -1--i -,-
• I I . . ; ; I . I , ' \" ' ~ I' I! ., . ' : I I • . 

-;-~ r ,r-''- . j- - r ' -F , ~... , - .. " , ,'- I. -1 - " ~ . 
.J~. ,I U L i'. ~I - ~f'< I ' .i' .! ,: ' '- !' ~ I I ' ! 
, .11 

' , : i " : ' ' I ' : : ; " ;:r . I ' I I \ ' _ . " 

!-l-. j, r~ ,c,Lo TH , ';, ~ ' ...: j; J I . t -: ~ . !" J '_ ~ L._! 
",", ,~T:I' -EOG(-l 'L ",t: ',', , 'I ' 'I' ; .r "1" I ,I 
I ' 'I • I I ' 

7':1:' ! " '~; " ' ~ : I " " I ' I " I ' ~ "I ' - I~' "I , ~' i '- - ', " ! ~ - r-: - ~ , - ,-' r -:. i :' . ;, ~" , ,',', ': r, ,: ,'" ' " ' ,. ,' ,'" I " , ;' 
-, !, ~ ' C ,,- - - , - - -,c' :;:J~r " 1'- -, - ,I., ----- ,I ' --I-'1 - -I' r ", 
,:· 1: .,' ': :"' ,,'I"' j./ '; 'I:i; ' ' " 'I' I : i ' " , ! 
- - _ . - - "'i7';r- ._1 . /i~ I J - - - !- 0; - , t . ..... 4_,. - - .. _ .. 1- _ I _ J . .1. 

11 , , _ .. - ..... .. 
I , 

' I" A" " '~/; .,i- H.. 'I ,. " , • ,'" '" , " , , , ~ , 'I '," 'I .,f '+, "f 

"I" ,,, 10 ,, ' I'" :; ... : +" ' ~ l ' ":' ,,:, :;',\ ,,1I or ,:,': , I , i '" " , ," I I' ,t 
..• ..•.. .J... _ .• _ , ., 

:1 i :1. -, 
.. • ! .• ' -: 1-' - -,,: 

' : : ': ;; I. ,:1' 
",;:, .. oF 

..L . . L . . 
, F. . " 

"':' ,(- ,,!, '.' 
, "-" " , , 

! 

~-, 

! :i. I ! 
'., ' "T ' , " ':, 

' I ,', ..... , " I 
I ' I . • 

: i ' i , _ _ ,[ .. I 
' · '1 ': " i 

- j " _. r' .;. 
! ' " 

' ''::' ''T' ' i ' 

:,!,. I 

, :. , ': ,,;,1-: :-1- i-
!. , . j j . I' ": i ' 

" I ' -i: :' ' r ' ~'" ' 
L : ! 1 ' 1 I; , 

'" - .... - !. , .. " - :';" 1- - '" ",,:- .I , 
. • .. . . ! ,. 'j' 

i· I·', ': 'I " :,1' I' :.1 ' ! ', I' '' ~ ' -I' l ,!,' , ~ ,:, : 
:. I ,, ' , , , I , I ", ,' 
t::;; -, -:--1' : T , , .. \::. - , . "' 1' "I';' c'I" ':" " I'- ' j- , , " 
! ' ! I ' ~ ; . ,I I .' . ~ ; . . I I 
:--, -~ ,'":- :;r:- - ". ';-- .. +:--1-;- , ", .- -i' -: ! ' , -; " ~ ' T' " -, " , 
• • I " I , . 1 I .•• , • I . 
· I • : • I I ' I I . I i , 

:~" I '" .-:- .. ~.- :: ~-, . : --, ' :'j- ". i:, " :" " " I. ; 
~:~' l- ' :- ,, ;,,~~:- ' ' ~ i ---;-- I: ' ! ' : ' 1,1 .. i 
~",,' :: ~ :'~, "" ~' r !' L • "" , ! ! 

,....,- ' j " _ .,' " " : . , !""" , I I' I I " I I 
",I" I , ' , , I ~ I . I I .. i . ' . . ,' 

jf T -,-T ';~ -:~ ~--. " . I · '" I :' I 
Tt ~L ,?~ .. ~r J I ::.' I !~ll : ,,' ! ' j '! -, r ,'1: I 

Fig. 5 - 21 Edg e Contour of Tes t Pa n e l 



180 

5.5. Control System Performance 

5.5.1. Performance Tests 

Extensive performan~e tests were carried out on a two-ply 

cloth panel for a range of sewing speeds, in order to 

produce performance plots of the same style as presented 

for the simulation results (section 5.2.2.3). Performance I 

plots were also obtained to determine the effect on 

performance of robot motion limitations, and the number of' 

plies. Exploratory tests were performed to investigate the 

system's sensitivity to fabric type. 

For the vast majority of the performance tests, the test 

cloth panel was the same fabric as the test fabric used in 

the tension control performance tests (section 4.4.4). The 

edge contour of the test panel, shown in fig. 5-20, is 

representative of contours found on trouser, 

skirt panels. 

jacket and 

The initial seam width error and incidence angle, a, were 

kept to a minimum throughout the tests using the fine 

adjustment techniques, developed in the setting up 

operation which is described in the next cha~ter. 

5.5.1.1. Performance Index 

As with the cloth tension control (section 4.5.1), either 

the standard deviation or the average seam width error 

could be used as a performance criteria. The standard 

deviation was selected as the performance criterion since 

fluctuations in the seam width, even a gradual undulating 



181 

seam, are unacceptable aesthetically, whereas a small 

constant offset (e.g. producing a 12 mm seam instead of a 

13 mm seam) is perfectly acceptable. 

The performance curves 

performance index of 0.6 

were plotted according to a 

mm, i.e. the seam width control 

performance was considered unacceptable if the standard 

deviation of the seam width error exceed 0.6 mm. 

5.5.1.2. Sample Printout 

A typical printout of the robotic sewing test program, with 

the details of the performance of the seam width and 

tension control systems, is given in fig. 5-22. 

5.5.2. Performance Results 

Figures 5-23, 5-24 and 5-25 show the effect of sewing 

speed, number of plies and robot velocity limitation, 

respectively, on seam width control performance. The 

performance curves indicate the regions within which the 

performance criterion is satisfied (section 5.5.1.1). 

The parameter settings that were used for these tests are 

listed in table 5-4. 



182 

03 JAN/87 20:19:14 

Robotic Sewing Development Program 
Version 2.10 

Input Data 

Parameters Set At Comp i le Time 

robot stoppinq dist = 120 mm pixel width - cam tU = 
maximum RHS motion = 251 mm pixel width - cam #2 = 
maximum LHS motion = 160 mm dist. between 2 fingers = 
deceleration length = 130 mm inter camera distance = 
sti tch length = 3 mm seam width = 

Parameters Set By User 

pixel row no. - cam #1 = 4 tensn servo, propnl qain = 
pixel row no. - cam #2 = 7 tensn servo, intgrl gain so 

x axis offset - cam #1 = 2 request cloth tension = 
x axis offset - cam #2 = 2 seam servo, propnl gain = 
robot velocity limitatn = 4 seam servo, deriv gain = 
robot accelrtn limitatn = 2 

Parameters Set At Run Time 

0.430 mm 
0.670 mm 

156 mm 
30.0 mm 
12.0 mm 

0.00075 
0.00001 

70 
0.050 
0.300 

seam lenath 
tension offset 

= 
= 

483 mm 
2 

sewing speed 
sewinq speed 

= 1910.6 rpm 
= 92.02 mm/s 

Output Data 

Processor Performance Data 

no. ALTER handshakes = 
handshakes/update rate = 

244 
2.07 

Robotic Sewing Performance Data 

seam width serve 
standard deviation 
sum of mean deviation 
sum of average error 
maximum error 
minimum error 

= 0.374 
= 17.9 
= -13.78 
= 0.91 
= -0.91 

no. feedback loops 
time period for speed 

= .. 

cloth tension servo 
standard deviation 
sum of mean deviation 
sum of average error 
maximum error 
minimum error 

118 
64 ticks 

= 47.160 
= 26253 
= -523 
= 147 
= -70 

Fig. 5-22: Sample Printout of Edge Seaming Program 



183 

Parameter fig 5-23 fig 5 - 24 fig 5-25 

nominal seam width, Re 12 12 12 

camera distance, X CAM 30 30 30 

pixel width ** 1 , yl_pixel 0 . 43 0.43 0 . 5 1 

pixel width #2, y2_pixel 0.65 0 . 6 5 0 . 4 9 

cloth spee d, Vc 40 80 

tension prop . gain , KI 0 . 000750 0.00150 

tension deriv . gain, Kc: 0 . 00001 5 0 . 00003 

number of p lies 2 1 

acceleration limitation 3 3 

ve l ocity l imitation 8 8 

Tab l e 5-4 : Parameter Setting s for Performance Tes t s 

• ~ 

-i. 
G: 
Cl 

w 
:> 
;: 
<t 
:> 
a: 
w 

'" 

O·IS 

0·/0 

·o~ 

12 mml 

I 
I 
! . 

o -t-----.,-----,--:---.,-----r-----,----.. - . .. 
I · c .o!.. :-I ... ,. 0'0:1

1

._ 
; : . .:. I 

0·01 . 
I 

o· 040 . i 
. I 

o·oS-. o 
PROPORT IONAL GAIN. K~ 

Fig . 5-23 : Effect of Cloth Speed on Seam Width Control 

Performance 



z : .: 
<t : " \ " 
(!) : •• . : . : . 

W; 
:> . 
;: .Ho 
<I ' 
~ i '. 
0:: :_ .... 
W ' .. : 
0 , · - ;.: 

: : ! 

.L ; 
I .. : 

. i 
1 ,. 
t 

i . . i , 

184 

I. 

I 
I 

! 
.j , 
I 

... , 

I 
I .. .. 
I 

, I 1 
" I 

L 

I 
I .... - : 

Fig. 5-24: Effect of No. of Pli es on Sea m Width Control 

Performance 

/ -0 

: , 
~ : .: . . 
- : • . '1 

z · - ; ";
<I : :: 
(!) : . " 

W 10 . 6 :> 1 

~ ~.<. 
- , . 
0:: ' 

; )g : o·ft. 
. I; 

' , : j" ' 

. O·l 

, : i ' I, .: . ; ;' :-: I: ::.. !" f, I : ... ! ; ,I " i . I ' ., . , 
' T ':', . :· I·j·I:1 ... .. ..; .. ! ..... ,.: .. "'i' :':: I" '. I ':''' j': 1 ', .. :. : 

.::.:I:.: . .l. .. : .. L'· I I ,.:. 'i' .... . . ',": ','1;.:" 1' :-- i·' I , 

:I-i ' I j "-i I i : vol 11 •• Lt,: ! 

. ... . :: .. : 1 ··~1~: {'r 1-: ~: I :'i- i .. :j .... : . :. ~ I · ;.;.. I , 
..... ''1'" "'1"" I · ' · . , .. , ', .. . . , . I 

,-;.: I"i;'-·~, •• ·"· •• ,r !:-I. :::~;, 1r,l-i:
I
-•• : •• :. ::·1-.:':· ,.'. !'·:i;·I •• ~'~.' ,-'!, '· 1' , 

~ rJF ~Flc-i,:::, " , '-f' '':: ' I ' .: ... i 
·. ,1 .: : vel_l im • . B,: . m!. "I,:.h S I !~<.;' ·~' ! " .! .. :.I .... ; .... "' ,;:: : "j"': "--', ·1>i:>I:::Vl 

I : 
l· .. : 

, 

I 
I , I 

1 , 

. '! ';" i 
! .: ' 1 
I ' , I 
I': .. 

I . 

Fig. 5 - 25: Effect of Ve locity Limit a tion on Seam Width 

Control Performanc e 



185 

5.5.3. Summary 

The results of the performance tests are summarized as 

follows :-

1) An increase in the cloth speed reduces the stability 

margin 

optimum 

of the seam width control system, reduces the 

proportional gain value and increases the 

optimum derivative gain value. 

2) A two-ply cloth panel has less tendency to buckle than 

a single-ply panel, due to its increased stiffness and 

extra weight. This was reflected in the performance 

results which showed that the two-ply panel had a 

larger stability margin. 

3) The tendency to buckle waS observed to be different 

for different fabrics; heavy or tightly structured 

fabrics exhibited greater stiffness than light or open 

structured fabrics. 

4) When the robot's motion was damped down by reducing 

the velocity limitation, the stability margin was 

improved enormously. 

5.6. Discussion 

5.6.1. Comparison of Performance with Simulation Results 

Tbe performance curves of the actual system show a similar 

pattern to the simulated performance curves (compare figs. 

5-23 and 5-8). The effect of damping the robot's motion 

with excessive dynamic limitations was as predicted by the 



~-~~~-----~---- ------

186 

simulation experiments (compare figs. 5-25 and 5-10). 

When the actual and simulated performance results are 

compared quantitatively, the optimum gains have quite 

different numerical values. The optimum gain values 

produced from the simulation program were approximately 20 

times those found experimentally. There are several factors 

that contribute to this apparent discrepancy :-

1) Both the actual and simulated systems generate a 

correction angle, oa, from the gain values using 

equation (5.11). The simulated system then rotated the 

cloth by oa after the system delay, ot. However, due 

to the real time considerations of the ALTER facility, 

the actual system directed the robot to rotate the 

cloth at an angular rate of o~ rads/hs. For most of 

the simulation runs, ot was set at 140 ms, so that the 

simulated rotation was performed at approximately 5 

o~ rads/hs. This accounts for a factor of 5 between 

the simulated and actual gain values. 

2) The simulation program was based on a global system 

time delay, which accounted for the delay between the 

measurement and actuation processes. However, in 

practise, the two processes occurred in parallel and 

with different associated delays. the actuation delay 

was determined by the ALTER facility, and the sampling 

delay was determined by the vision system and the 

update rate of the servo control calculations loop. 

The accuracy of the simulation model could be improved 

by differentiating between the sampling rate (i.e. the 

delay between obtaining new feedback measurements) and 

the actuation delay (i.e. the delay between obtaining 

a new measurement and making a correction). 



187 

3) The simulation results were based on a system time 

delay of 140 ms, which was estimated by assuming an 

update frequency of 0.5 update/hs and a well behaved 

vision system. However, the camera system's erratic 

behaviour (section 5.3.7), caused the effective system 

time delay to vary between 140 ms and 224 ms. 

4) The simulation model was based on the assumptions that 

the cloth panel was stiff and did not buckle, and that 

the vision system produced perfect and accurate images 

of the edge of the cloth. The effect of the cloth's 

lack of stiffness and of the poor performance of the 

vision system on the seam width control was 

unpredictable; these random factors constitute a noise 

input to the system (section 5.6.2). 

Derivative control systems are particularly sensitive 

to noise (57), although the effects of noise can be 

countered by damping down the system. This is 

confirmed by the considerable improvement in stability 

margin obtained by damping down the robot's motion 

(fig. 5-25). 

5) The performance plots for the simulation results and 

for the actual system were plotted according to 

different per~ormance indices (sections 5.2.2.1 and 

5.5.1.1). 

Comparison of the simulated and actual systems suggest that 

the seam width control could be improved by 

reducing the signal noise level in the system 

reducing time delays in the system. 

reducing actuation errors. 



188 

5.6.2. Signal Noise 

Occasionally, the cloth panel would buckle, when rotated 

about the needle, in such a way that the edge of the cloth 

panel would curl up around the presser foot, and the vision 

system would have an erroneous image of the cloth edge. 

Excessive cloth tension and inaccurate robot rotation, in 

particular, caused this type of buckling, in addition to 

the influence of the presser foot itself. The closer the 

fingers were to the presser foot, the greater the 

inhibiting effect of the presser foot on the rotation of 

the cloth. 

The other cause of noise in the image of the cloth edge was 

the unstable and erratic image produced by the vision 

system itself, as discussed in section 5.6.1. 

5.6.3. System Time Delays 

Both the sampling delay and the actuation delay are 

detrimental to the control system's performance. 

When the SEW Task routines were optimized and tuned for 

fast execution speed, the update rate was kept down to 0.5 

updates/hs. The vision system provided a new picture every 

2 to 4 attempts, and, although each attempt could be 

performed within half a handshake, the present version of 

the software only triggers the 280 once per update (section 

5.3.2). Consequently the effective sampling delay is 

between 4 and 8 hs (i.e. 112 ms and 224 ms). 

In addition to 

competent one, 

triggering the 

replacing the vision system with a more 

the sampling rate could be improved by 

280 more often than once per update. 



189 

Ideally, the vision system should refresh the camera frame 

stores continuously without any external triggering from 

the IBM AT, so that the frame stores contain images that 

are as recent as possible. 

would be an interrupt system, 

A "second best" arrangement 

so that the vision processor 

could interrupt the IBM AT when a new image was available. 

Even with the present vision system, the sampling rate 

could be improved. A Timer routine could be included. that 

retriggers the 280 every 14 ms, to exploit the fast capture 

time of the vision system. 

5.6.4. Actuation Errors 

When the cloth buckled between the robot fingers and the 

sewing needle, the servo-controlled robot trajectory did 

not produce the anticipated rotation of the cloth. The 

factors that affect the tendency of the cloth panel to 

buckle, and preventative measures that were implemented, 

were discussed in section 5.4.4. 

Despite good tension control, some buckling of the cloth 

was observed when the robot rotated the cloth, under the 

FAR sewing technique. Buckling of the cloth was more 

pronounced with the CLOSE sewing technique, and gross 

buckling occurred when a fabric handling technique was 

developed to rotate a cloth panel through 90 0 about a 

stationary sewing needle (section 6.5). 

The major reason for buckling of the cloth under these 

circumstances was the inherent inaccuracies in the robot 

and its control system (section 2.4.1). The robot's poor 

accuracy affected the handling and sewing techniques 

differently, because of the following factors :-



190 

1) The closed loop tension control system minimized the 

robot~s errors in the x direction. 

2) The visual measurement of the seam width error and the 

incidence angle minimized errors in the y directior. 

3) The seam width control only required the end-effector 

to be rotated within a narrow angular range (± 30 0 

which minimized errors due to rotation of the end

effector. 

Some buckling of the cloth was always present during a FAR 

edge seaming operation. The CLOSE edge seaming technique 

generated much more buckling of the cloth because it had 

only open loop tension control and a larger angular range 

of rotation. Thus, both FAR and CLOSE edge seaming 

techniques would benefit from a more accurate robot, 

although the CLOSE technique is particularly sensitive to 

robot inaccuracies. 

5.6.5. FAR and CLOSE Sewing Techniques 

The FAR and CLOSE techniques have different advantages and 

disadvantages. The FAR technique can sew long lengths of 

cloth without stopping the sewing machine and repositioning 

the fingers. However, it cannot sew contours that require 

the robot to rotate the cloth through too big an angle, nor 

can it sew with the fingers within 150 mm of the sewing 

needle. The CLOSE technique can accommodate much larger 

curvatures and can sew right up to the end of the cloth, 

but it can only be used to sew relatively short seam 

lengths (up to 300 mm) • 



191 

A combination of the FAR and CLOSE techniques should be 

able to produce a quality edge seam on the vast majority of 

cloth panel contours found in the clothing industry. To 

confirm this, a panel was cut out in the shape of a jacket 

sleeve and, using the CLOSE technique, a high quality seam 

was sewn around the shoulder curve. The shoulder curve had 

a radius of curvature of 85 mm and an angular extent of 

160 0 

For a particular cloth panel contour, there will 

optimum strategy for sewing along the edge. This 

would specify the following :-

a) number of segments, 

b) the length of each segment 

c) CLOSE or FAR technique 

be an 

strategy 

d) the position and orientation of the fingers on the 

panel for each segment 

e) the sewing speed for each segment 

A technique was developed for automatically repositioning 

the robot's fingers between segments of a sewing operation 

to facilitate segmented production of an edge seam, and is 

described in section 6.3.3. A decision making algorithm 

was developed which automatically specified a sewing 

strategy for a particular seam based on its length. 

The concept of a segmented seam production can be compared 

to the manual techniques employed by sewing operators, who 

often change hand position on a cloth panel during sewing. 

For example, when producing the long seam on a trouser 

panel, initially the operator usually grips the cloth close 

to the beginning of the seam, in order to control the cloth 

accurately during the initial high curvature section. When 



192 

the long straight section has been reached, the operator 

will either grip the end of the cloth and accelerate the 

sewing machine, or will hold the cloth with alternate hands 

as the cloth is fed into the machine. 

5.6.6. Damped Robot Motions 

The performance tests showed that the stability margin of 

the seam width control was vastly increased when the 

robot~s motion was damped by reducing the velocity 

limitation. However, excessive damping also reduced the 

performance of the control and the optimum velocity 

limitation depends on the cloth velocity and on the contour 

to be sewn. 

At present, the velocity and acceleration limitations are 

set by the user, at the initialization phase. A fully 

automatic version of the software would set the limitations 

internally according to the sewing speed. Ideally, an 

adaptive control technique should be employed to vary the 

control parameters, during the sewing operation, according 

to circumstances. 

5.6.7. Adaptive Control 

Since the seam width control was sensitive to the sewing 

speed, exaggerated and unstable behaviour was often 

observed at the beginning and end of a sewing segment, when 

the sewing machine was accelerating up to the nominal 

velocity or when it was decelerating. 

Since the sewing speed is not always held constant during a 

sewing operation, and since the sewing speed can be changed 



193 

externally by a control knob on the sewing machine, a more 

robust version of the control system would vary the control 

parameters automatically with variations in the sewing 

speed. This adaptive control capability could be 

implemented by relating the velocity limitation to the 

cloth velocity either with an empirical formula, or using a 

look-up table. The look-up table could also relate the 

optimum values of K3 , Kit and acceleration limitation to the 

cloth velocity. 

5.6.8. Conclusions 

a) A seam width control system has been developed that, 

in conjunction with the tension control (Chapter 4) 

and the ALTER channel (Chapter 3), can adaptively 

perform the edge seaming operation on a cloth panel 

with an edge profile of arbitrary contour. 

b) The system can accurately sew edge seams at speeds up 

to 150 mm/s (or 4500 rpm for 2 mm stitch length), 

without pucker, for cloth contours with only a slight 

curvature. Cloth contours which are moderately curved, 

such as for trouser and skirt panels, Can be sewn 

accurately at 100 mm/s (or 3000 rpm for 2 mm stitch 

length). 

c) A CLOSE technique has been developed to accommodate 

cloth panels that have intricately curved contours, 

and to perform the final segment of seams that extend 

right up to the end of the cloth. 



------------- - - ---------------- ---

194 

d) The system is unsuitable, in its present form, for 

fabrics with poor lateral stiffness,. such as knitted 

fabrics, since the cloth edge tends to buckle or curl 

up around the presser foot. The system performs best 

with shirting or worsted woven fabrics which have a 

reasonable resistance to buckling. 

e) Similarly, the system performs better when sewing up 

two-ply panels, which resist buckling better than 

single-ply panels. 

f) The optimum settings of the control parameters are 

sensitive to the cloth velocity, .and these parameters 

are set manually in the present version of the 

software. An adaptive control scheme is recommended 

for future versions. 



195 

CHAPTER 6 

THE DEVELOPMENT OF FABRIC HANDLING TECHNIQUES 

In addition to the robotic sewing techniques that have been 

described above, several fabric handling techniques were 

developed, so that the setting up of the cloth panel for a 

seaming operation and the rotation of the panel about the 

needle could be performed automatically. 

A ply separation device was incorporated into the FIGARO 

system, so that the robot could pick up fabric plies from a 

stack and place them on the table. The automatic 

manufacture of an irregularly shaped three-sided sub

assembly was demonstrated using the techniques developed in 

this project. 

6.1. Software Organization 

The hierarchical organization of the IBM AT software for 

the robotic 

3.3.2. The 

sewing operations was described 

VAL 11 software required for these 

was relatively simple :-

start ALTER mode 

wait until interrupted 

end ALTER mode 

in section 

operations 



196 

However, the robot motions required for the fabric handling 

operations did not need complex sensory feedback control, 

and therefore, instead of using the ALTER channel, the 

robot motions were generated directly by VAL 11 programs. 

Closer co-operation and synchronization was now necessary 

between the IBM AT and the VAL 11 controller using the GPC 

channel described in section 2.6. 

6.1.1. IBM AT Implementation 

Two levels were added to the software hierarchy described 

in section 3.3.2.; the complete software model is shown in· 

fig. 6-1. This model was designed to provide a clear, 

logical and modular structure, which would facilitate 

modification of the software to include new techniques, or 

to make a different sub-assembly. 

The CONT Task was responsible for the overall operation of 

the FIGARO sewing station, including the following 

functions :-

a) initialization and termination of the GPC channel 

b) management of interface to supervisor/operator 

c) receive data on batch quantities and product type 

d) instruct relevant MAKE Task to make required product 

e) error recovery 

The MAKE Task .was responsible for the sequence of 

operations required to make a specific sub-assembly. A 

separate version of the MAKE Task is required for each 

product type. 



STATION 

LEVEL 

PROCESS 

LEVEL 

OPERATION 

LEVEL 

COMMUNICATION 

LEVEL 

197 

FIGARO Controller 

Task CONT 

Task to Control 

Production of a 

Sub-assembly 

MAKE 

Robotic Sewing 

Task - SEW 

ALTER Channel 

Communication 

Tasks 

(fig 3.1) 

GPC Channel 

Communication 

Functions and 

ISPs 

Fig. 6-1: Hierarchical Organization of IBM AT Software 



198 

6.1.2. VAL 11 Implementation 

As described in section 2.2., a master-slave relationship 

was required between the IBM AT and the VAL 11 controller. 

This was achieved by splitting the VAL 11 software into 

functions that could be individually requested by the IBM 

AT via the GPC channel. A VAL 11 program called MAIN acted 

as the interface between the VAL 11 functions and the GPC 

channel. The MAIN program waited until it received a 

function request, and then it would call the relevant 

VAL 11 subroutine. When the subroutine had terminated, the 

MAIN program returned either the function number or zero to 

the IBM AT to signal either the successful or unsuccessful 

completion of the function. 

6.2. Second Prototype of FIGARO End-Effector 

During the development of the fabric handling techniques, 

several improvements to the simple early prototype end

effector were considered. An improved end-effector was 

assembled which incorporated two improvements :-

a) In place of the original manual adjustment, the 

distance between the two fingers could be changed 

automatically under program control. 

b) the high profile photocells were replaced with a low 

profile design so that they could be located closer to 

the fingers. 



199 

6.2.1. Programmable Finger Distance 

The ideal position for the two fingers which ensured that 

the cloth panel did not buckle, was to place one finger at 

each corner of the end of the cloth panel (fig. 6-2). Thus, 

the optimum distance between the fingers was dependent on 

the width of the cloth panel. During a typical sequence of 

operations, the robot would hold the cloth panel along both 

the narrow and the wide sides, and therefore a facility for 

changing the finger distance automatically during a sub

assembly was desirable. 

SUDING MOTION t 
u 

SUDING CLOTH PANEL 

ON TABLE 

ROTATING CLOTH PANEL 

ABOUT NEEDLE. 

Fig. 6-2: Optimum Location of Fingers 

SEWING NE::DLE 



200 

The end-effector was designed with 

...... _~.~ .. _....-. ......,....,-----vow..-

~ 
.. ~-.,. LIQr'ARY CLOT,';:,,' .. L •. \~, ~ l 

U~j'VEj~~.:.! rY OF LEEDS 

a ow profile near the 

6.2.2. Low Profile Photocells 

finqers so that they could approach the sewing head without 

any collisions (section 2.8.2.2>. The two original 

photocells were 95 mm high and therefore they had to be 

mounted 150 mm behind the fingers. 

The photocells were used to locate the edge of the cloth 

panel in order to place the fingers correctly on the cloth. 

An additional robot motion was required during the search 

sequence to accommodate the large offset between the 

photocells and the fingers. When low profile photocells 

were installed close to the finger pads, the offset 

correction motion could be eliminated and the sequence was 

simplified and faster. 

6.2.3. Design of Second Prototype 

6.2.3.1. The Leeds Ply Separation Device 

Towards the end of the project, an industrial prototype of 

the University of Leeds ply sepa~ation device (72J became 

available. The ply separation device included two bayonet 

assemblies and a dc servomotor which could vary the 

distance between the two bayonets. It was realized that the 

ply separation device could be easily modified to perform 

the functions of the FIGARO end-effector, and at the same 

time provide a programmable finger distance facility. 

In addition, the ply separation device could extend the 

usefulness of the FIGARO system by adding the following 

handling capabilities :-



• 

201 

a) picking up a ply from a stack 

b) placing one ply on top of the other 

c) folding a cloth panel 

6.2.3.2. Modifications to Ply Separation Device 

The second 

fig. 5-20, 

instrumented 

prototype FIGARO end-effector, shown in 

was based on the ply separation device. The 

finger was mounted on the fi~ed bayonet 

housing and the au~iliary finger was mounted on the movable 

bayonet. A miniature fibre optic sensor head was mounted on 

each finger assembly to perform the same function as the 

original photocells. A fibre optic cable connected each 

sensor head to a conventional infra-red variable photocell 

which was mounted on the robot's forearm. 

6.3. Setting Up for the Edge Seaming Operation 

The first handling operation that was automated on the 

FIGARO system was the setting up of the cloth panel for the 

edge seaming operation. 

6.3.1. Sequence for Setting Up Operation 

The sequence for the setting up operation is listed in 

table 6-1 and consists of three sections : 

Place the cloth corner under the needle 

Measure the cloth length and decide on a strategy 

Place fingers on the cloth and make final adjustments 



Sequence of Functions 

1. Place cloth corner under 

needle. 

lift sewing mIc presser foot 

find cloth on table 

find top right hand corner 

202 

slide cloth corner under needle 

fine adjust for seam width 

put sewing needle down 

remove robot from needle zone 

2. Measure cloth length and 

decide on strategy 

find cloth end & cloth length 

report robot's position 

decide seam sewing strategy 

3. Place fingers on cloth and 

make final adjustments 

IF using FAR technique THEN 

find bottom right hand corner 

IF using CLOSE technique THEN 

position fingers for close sew 

fine adjust for cloth angle, a 

Func 

tion 

3 

4 

5 

19 

23 

VAL 11 

routine 

findcloth 

corner 

uptoneedle 

fine.adj 

remove 

25 end.cloth 

IBM AT 

routine 

fine _adj 

ndle down -

11 calc.where where 

DecideSeam 

6 go.far.st 

17 go.close.st 

20 angle.adj 

Table 6-1: Sequence for Setting Up Operation 



203 

6.3.2. Placing Cloth Corner Under Needle 

The routines for placing the top right hand corner of the 

cloth panel under the sewing needle, which are described 

below, can accommodate almost any size and shape of cloth 

panel placed anywhere on the sewing table, within the 

following limitations (fig. 6-4):-

610 mm 

SEWlNG ~ACINE 

-t'Mf!TIfl ... ----------• ...,.."'--'-.,. 
y 

Initial Needle 

Position 

SEWING TABLE 

Fig. 6-3: Starting Conditions for the Setting Up Operation 

1) The panel should be placed down on the table so that 

the edge to be seamed is on the right hand side, and 

the inclination of that edge to the x axis, ~, is 

within 30°. 

2) The panel should be placed so that the X = 610 mm line 

is covered (i.e. approximately opposite the robot's 

base) • 



204 

3) The seam starts at the top right hand corner. The 

angle, e, between the top edge and the right hand edge 

is between 80° and 110°, i.e. the top right hand 

corner should be approximately square. 

The initial position of the cloth panel and the terms and 

symbols used in the description of the routines are defined 

in fig. 6-4. 

6.3.2.1. Finding Cloth Panel 

1) The robot scans the table along the line x = 610 mm 

until pcell1, the photocell mounted close to the main 

finger, detects a transition from "cloth absent" to 

"cloth present", at location A. 

2) The y coordinate of the first edge is noted and then 

the robot continues to scan as before until pcell1 

detects the opposite transition, at location B. 

3) The apparent cloth width along that line is calculated 

and the robot is moved back so that the two photocells 

are centred over the apparent centre of the cloth. 

6.3.2.2. Findinq Top Right Hand Corner 

1) The robot scans along the cloth in the x direction 

until one of the photocells detects the top end of the 

cloth. 

2) The robot's TOOL transformation is reset so that its z 

axis is coincident with the photocell that detected 

the edge. 



205 

3) The robot rotates the end-effector about the first 

photocell until the other photocell also detects the 

end of the cloth. The end-effector is now aligned to 

the cloth's top edge. 

4) The robot moves 30 mm back, perpendicular to the cloth 

edge, and then traverses parallel to the cloth edge 

until pcel11 detects the right hand edge. 

5) The end effector is now aligned to the top edge and 

its position relative to the top right hand corner is 

known. The robot is lowered until the fingers hold the 

cloth, with the main finger close to the top right 

hand corner and the auxiliary finger close to the top 

left hand corner (fig. 6.2a). 

6.3.2.3. Moving Cloth up to Needle 

Once the robot had put its fingers down relative to the top 

right 

cloth 

hand corner, the robot was directed to 

panel to a taught location, under_ndle. 

slide the 

The robot 

location transformation, under_ndle, was defined such that 

the fingers held the cloth panel with the initial sewing 

point approximately under the needle, and with the top edge 

aliqned to the sewinq machine'S y axis. 

Thus, this handling operation moved the cloth panel from an 

unknown location and orientation to a known location and 

orientation defined in terms of the sewing machine. Since 

the sliding motion was predominantly forwards and the 

sideways and rotational components of the 

gradual, buckling forces on the cloth 

insignificant. The tendency to buckle would 

motion were 

panel were 

be further 

• 



206 

reduced if flotation was incorporated into the sewing table 

(section 6.7.2). 

6.3.2.4. Fine Adjustment of Seam Width 

The sequence so far has positioned the cloth with the 

initial sewing point approximately under the needle, with a 

repeatability of up to ± 3 mm. The following factors 

contributed to this inaccuracy :-

The PUMA 560 is inaccurate (section 2.4.1), 

particularly when programmed "off-line" and for 

changes in orientation. 

2) When a photocell detects the cloth edge, the robot 
I 

overshoots, and this braking distance depends on the 

initial robot velocity. 

3) The cloth panel has curved edges of arbitrary contour 

in addition to an arbitrary starting position and 

orientation. However, a technique based on only two 

photocells to align the end-effector to the cloth 

edge, assumes that the cloth edge is a straight line. 

The simulation program confirmed that a large initial seam 

width error could make the seam width control go unstable. 

Consequently, a fine adjustment function was required to 

minimize this initial error. 

This function involved close interaction between the 1-

SIGHT vision system, the IBM AT and the VAL 11 system. The 

IBM AT used the two I-SIGHT cameras to provide a 

measurement of the seam width error, which it communicated 

to VAL 11. The robot was directed to move the cloth to 



207 

reduce the error, and on completion of the move, VAL 11 

returned an acknowledgement to the IBM AT. This cycle was 

repeated until the seam width error was under 0.5 mm. 

Following the fine adjustment function, the IBM AT drives 

the sewing machine until the needle reaches the "down" 

position, piercing the cloth. Once the cloth is held in 

position by the needle, the robot's fingers are carefully 

removed from the needle zone, without pulling on the cloth 

or colliding with the front camera assembly. 

6.3.3. Deciding on Sewing Strategy 

The FAR and CLOSE edge seaming techniques, as described in 

Chapter 5, have different advantages and disadvantages. The 

FAR technique is suitable for sewing long seams of gentle 

curvature up to 150 mm of the sewing needle. The CLOSE 

technique can only be used to sew short segments of a seam 

(up to 300 mm), but can accommodate much larger curvatures 

and can sew right up to the end of the cloth. 

Many edge seaming operations will require a combination of 

FAR and CLOSE techniques, and the DecideSeam function sets 

up a data structure which contains the number of seam 

segments, the sewing technique for each segment, the sewing 

speed and the segment length. A sophisticated version of 

the DecideSeam function, which would generate a sewing 

strategy based on the cloth profile, is discussed in 

section 7.2.3.3. 

The present version of DecideSeam implemented in the MAKE 

Task, was based on the length of the cloth panel in the 

direction of sewing. If the cloth was less than 300 mm then 

the whole seam was sewn using the CLOSE technique. If the 



208 

cloth was longer, then the seam was sewn in two sections, a 

FAR section up to 200 mm before the needle, and a CLOSE 

section to complete the cloth. The FAR section was sewn at 

top speed and the CLOSE section was sewn at half top 

speed, and the actual top speed was set manually from the 

control knob on the sewing machine. 

The cloth lenqth was easily determined by searching for the 

far edge of the panel (the cloth.end function) and 

calculating the distance between the main finger and the 

needle (the calc.where function). 

6.3.4. Placing Fingers on Cloth Panel 

The starting position for the robot's fingers for the FAR 

and CLOSE techniques are shown in figs. 5-1 and 5-20 

respectively. The go.far.st function which places the 

fingers at the FAR starting position, searches for the far 

right hand corner in a similar. fashion to the corner 

function, except that the end-effector is not aligned to 

the cloth edge. 

The go.close.st function places the fingers at the CLOSE 

starting position as follows: 

1) The end-effector is rotated by 90 0 in a zone free from 

obstructions. 

2) The robot searches for the lower left hand corner of 

the panel. 

3) If the left hand edge is within 180 mm of the needle, 

then the robot places the fingers down wi th the main 

finger in the bottom left hand corner and with the 



209 

second finger as close to the top left hand corner as 

possible. 

4) If the left hand edge i~ further from the needle, then 

the fingers are placed along the y = 180 mm line, with 

the main finger close to the lower edge and the 

auxiliary finger close to the top edge. 

6.3.5. Fine Angular Adjustment 

Once the fingers have been placed down on the cloth, one 

final adjustment is required before the sewing operation 

can start. Although the cloth was accurately positioned so 

that the needle was put down at the correct starting 

position, the orientation of the cloth (i.e. the incidence 

angle of the cloth edge, a) was still only approximate. 

The ang.adj function was identical to the fine.adj 

function, except that the IBM AT conveyed measurements of 

the angle a to VAL 11, and the robot rotated the cloth 

panel about the needle to reduce the angular error. The 

rotation of the cloth about the needle was performed by the 

rotate.ndle 

section 6.5. 

routine, which is described 

6.4. Completing the Edge Seaming Operation 

below in 

In order to incorporate the edge seaming function into a 

fully automatic sequence . of operations, additional 

developments were required. 



210 

6.4.1. Segmented Seam Production 

As explained in section 6.3.3, most seams require a 

combination of CLOSE and FAR techniques and the DecideSeam 

function provides a sequence of CLOSE and FAR segments for 

a particular seam. The MAKE Task contained the following 

loop structure immediately after the DecideSeam function in 

order to obtain the desired segmented production of the 

seam :-

for each segment of the seam 

beqin 

end 

if CLOSE segment 

go.close.st 

else 

go.far.st 

angle.adj 

start up ALTER communications channel 

start SEW Task and wait until it is completed 

end ALTER communications channel 

6.4.2. Sewing Up to the End of the Cloth 

Most seams are terminated a short distance before the end 

of the cloth (seldom more than 10 mm). Consequently, a 

technique was required to terminate the sewing operation at 

an accurate distance"from the cloth end. 

Although the distance between the cloth edge and the needle 

was known accurately at the start of the sewing operation, 

this distance could not be accurately calculated during the 

sewing operation for the following reasons :-



211 

1 ) The sewing machine revolutions did not give an 

accurate measure of the cloth feed due to the 

imprecise feed mechanism. 

2) The robot had poor absolute accuracy. 

3) The motion of the end-effector in the x direction did 

not accurately reflect the cloth edge to needle 

distance since slight slipping between the finger pads 

and the cloth occasionally occurred. 

Consequently the cloth end had to be detected using a . 
sensor. If the robot had been more accurate than the 

position of the cloth end could have been calculated from 

the ALTER data in the x direction with reasonable accuracy 

since the slipping between the fingers and the cloth was 

not a significant source of error. However, the use of a 

sensor to detect the cloth end, provides additional 

feedback information which improves the robustness of the 

system. 

6.4.2.1. Detection of the Cloth End 

Initial attempts to use the I-SIGHT cameras to detect the 

end of the cloth failed because of their narrow field of 

view. The cloth edge occasionally disappeared totally from 

the image of the forward camera during sewing due to large 

radius of curvature or excessive rotation of the panel. 

Consequently, the forward camera would occasionally give a 

false indication of the cloth end. Similarly the primary 

camera could not provide a cloth end detection capability 

since it would detect the cloth end some time after the 

seam width control system had already reacted to an 

apparent severe step change in the cloth contour. 



212 

The cloth end was detected by an additional photocell 

mounted on the sewing machine so that it gave 28 mm early 

warning (i.e. the x component of the photocell to needle 

distance). The photocell was mounted 15 mm to the left of 

the sewing needle to ensure that the photocell was not 

prematurely affected by the rotation of the cloth panel 

during the sewing operation. 

6.4.2.2. The inch Function 

The cloth end had to be detected before the needle reached 

the end of the seam, so that the seam width control system 

did not generate erratic robot motion when the cloth end 

passed by the field of view of the forward camera. The SEW 

Task was therefore terminated as soon as the cloth end was 

detected, and the seam finished 28 mm from the cloth end. 

The inch function completed the remainder of the seam 

length by "inching" along at slow speed. First the robot 

moved the fingers forward. by the required distance, which 

caused the cloth to loop upwards and removed any cloth 

tension. The sewing machine was then operated for a 

specific number of stitches which accurately finished off 

the seam. Since there was no cloth tension and the sewing 

speed was very slow, the feed mechanism was effective and 

repeatable. 

The number of stitches was obtained from a calibration 

test, and was only dependent on the position of the stitch 

length knob on the sewing machine. For a stitch length 

nominally set at 3 mm, seven sewing revolutions would 

extend the seam up to 10 mm from the cloth end. 

Unfortunately, the sewing machine did not have a stitch 



213 

condensation facility which would have permitted the 

control of the stitch width from the IBM AT. 

A stitch condensation facility is recommended for future 

prototypes, so that the accuracy of the inch function can 

be improved, and so that the sewing station is more 

independent of manual adjustments. 

6.5. Rotating Cloth Panel about Needle 

A common handling fabric operation which follows an edge 

seaming operation is to rotate the panel about the sewing 

needle, which was left in the "down" position at the 

termination of the previous seam, until the adjacent edge 

is aligned up ready for seaming. 

6.5.1. VAL 11 Implementation 

Rotation of the cloth about the needle during the edge 

seaming operation was performed using the ALTER facility 

since the rotation of the cloth was required within a real 

time sensory feedback control system (section 5.4.1). When 

the robot was required to rotate the cloth panel as a pure 

handling operation, sensory feedback and the ALTER facility 

were not required, so that the entire function could be 

controlled from a VAL 11 routine. 

The rotation was performed by the VAL 11 program, 

rotate.ndle, which was based on the procedural motion 

control mode (section 2.4.1). As described in section 

5.4.1, this rotation operation is composed of two 

simultaneous motions; rotation of the main finger about the 



214 

needle and rotation of the end-effector about the main 

finger. The routine was written in a general format, so 

that any angle of rotation could be specified. 

6.5.2. Effect of Robot Inaccuracy 

When the rotate.ndle routine was executed to rotate the 

cloth by 90°, large errors were observed in the final 

position and orientation of the end-effector, which caused 

the cloth to buckle. The errors were particularly high 

because under the procedural motion control mode the 

overall motion is the result of the interpolation of many 

intermediate motions, and the intermediate errors are 

cumulative. 

When the IBM AT software, developed for the seam width 

control system, was used in conjunction with the ALTER 

channel to perform the same function, identical errors were 

observed. This showed that the rotate.ndle function was 

equivalent to the ALTER version and that the robot's poor 

absolute accuracy was to blame. The effect of the robot's 

inaccuracy on cloth buckling is further discussed in 

section 5.6.4. 

6.5.3. Accommodating Robot Inaccuracy 

The effect of the robot's inaccuracy was accommodated by 

adopting the following procedure :-

1) The cloth was buckled intentionally by moving the 

cloth in towards the needle. 

2) The cloth was rotated by 90° using rotate.ndle. Since 



3) 

215 

the cloth was excessively slack, the inaccurate 

rotation did not generate any pulling of the fabric 

between the needle and the fingers. 

The buckled cloth was straightened out by the 

straighten routine. 

4) The final orientation of the cloth was adjusted by the 

angle.adj function (section 6.3.5), so the accuracy of 

the rotate.ndle routine was not critical. 

6.5.4. The straighten Routine 

A straighten routine was developed based on a directional 

air jet which was incorporated in the support of the main 

finger of the first prototype end-effector. The jet was 

directed at approximately 45° to the vertical and along the 

finger support beam. 

The air jet was placed at a location called blow.position, 

in which the jet was positioned over the cloth panel, close 

to the sewing machine, and directed along the line x = y 

and away from the needle. This technique was only partially 

successful at straightening out buckled single-ply panels, 

and it was even less effective with two ply panels and with 

heavy fabrics. 

The reliability of the air jet technique could be 

considerably 

under the 

friction. 

improved by the simultaneous use of flotation 

cloth panel to reduce the table to cloth 

A different technique for straightening the buckled cloth 

was developed with the second prototype end-effector, which 



216 

utilized the pneumatic actuators in the end-effector to 

lift the fingers off the cloth individually. The 

"straighten" function raised the main finger off th e tabl e, 

and the auxiliary finger stroked the end of th e cloth away 

from the needle, at 45° to the sewing machine a xes . This 

straightforward method proved successful and reliable . 

• I 

Fig. 6-4: Demonstration of Automatic Production of a 

Sub-assembly 



217 

6.6. Demonstration Assembly 

The robotic edge seaming technique and the fabric handling 

techniques' developed during the FIGARO project were 

demonstrated in the production of an irregularly shaped 

sub-assembly, 

contour are 

in which 3 adjacent edge seams of arbitrary 

produced to form a bag. The software 

implementation is shown in Appendix E, and a photograph of 

the typical results of the sub-assembly production is shown 

in fig. 6-t . 

6.7. Discussion 

6.7.1. Overhead Camera 

The handlinq techniques developed above used only 2 

photocells and the I-SIGHT cameras for locating or 

confirming the location of cloth panel features. Although 

the techniques performed the required operations 

satisfactorily' (when the panel was placed on the table 

within the limits given in section 6.3.2), an industrial 

implementation would require a more robust and reliable 

system that would have more visual feedback. 

An overhead camera system might provide a more reliable and 

quicker measurement of the location and orientation of the 

cloth panel, than using the searching strategies developed 

above. The limits on the initial position and orientation 

of the cloth panel, listed in section 6.3.2, could be 

relaxed considerably. In addition, an overhead camera could 

provide a measure of the contour profile which could be 



218 

used in a more sophisticated version of DecideSeam to 
• provide an optimum sewing strategy automatically (section 

7.2.4). However, a static overhead camera would require a 

very high resolution in order to have a field of view that 

covered most of the sewing table and to locate the cloth 

edge within a few millimetres. 

A more practical solution, that has been applied to other 

robotic assembly systems (62), is to use a combination of a 

static overhead camera and an end effector mounted vision 

system. In this application, an overhead camera could 

provide the gross position and orientation of the panel, 

and the two photocells could provide a fine measurement 

capability using the'techniques developed above. 

Overlapping redundant sensory feedback systems are often a 

feature of commercial robotic cells, since they improve the 

general robustness of the system. 

6.7.2. Buckling Prevention 

A more accurate robot and the installation of flotation 

nozzles in the sewing table would make a major reduction in 

the tendency of the cloth to buckle during handling 

operations. However, .techniques for ensuring that the cloth 

panel is straight and flat (section 6.5.4), would still be 

necessary to provide high reliability. 

Another measure that reduced the buckling tendency was the 

programmable finger distance feature of the second 

prototype end-effector (section 6.2.1). Additional fingers 

would be advantagous when rotating large panels about the 

needle but the multiple finger arrangement should be 

configurable under program control. Furthermore, the design 

of the multi-fingered end-effector should not reduce the 



219 

flexibility of the system to perform other handling and 

sewinq operations. 

Torqerson and Paul (65) developed an algorithm for the 

automatic generation of an optimum configuration of a 

multi-fingered end-effector according to the shape of the 

cloth panel. Although, the end-effector developed in the 

(TC)2 project has a measure of programmable 

reconfigurability (64), it is large and bulky and was not 

intended for handling operations in the vicinity of the 

sewing needle. 



220 

CHAPTER 7 

DISCUSSION 

This chapter reviews the achievements of this project to 

date and discusses the potential of the FIGARO approach and 

techniques for future developments. 

7.1. Review 

7.1.1. Objective 

The experimental robotic sewing station and the automatic 

sewing and handling techniques described above, were 

developed in accordance with an adaptive robotic approach 

to flexible clothing automation (section 1.5.4.), in which 

the robot controls the fabric panel using sensory feedback. 

The objective of this investigation was to ascertain 

whether this flexible automation approach could, after 

further research and development, become the basis of a 

commercially viable, 

cell. 

industrial, flexible automatic sewing 

7.1.2. The FIGARO Robotic Sewing System 

A block diagram of the FIGARO system is shown in fig. 7-1. 



" ..... 
10 

..J 
I ..... 

IJJ ..... 
o 
n 

" 
'=' ..... 
PI 

10 
i 
\lJ 
3 

o 
...... 

"T1 ..... 
G1 
D 
::0 
o 
::0 
o 
C
O 
eT ..... 
n 
(I) 
m 
1: .... 
:J 

10 

(I) 
'< 
lI\ 
eT 
m 
3 

ZBO 

J 
frame 

store 
no. 1 

I 
camera 
no. 1 

IBM AT - controller 

I 

signal counter sewing mic 
condition controller 

I 
frame amplifier 
store 

no. 2 
sewing speed . 
start/stop sewing 

I cloth machine presser foot 
camera tension shaft 

needle up/dn 
no. 2 sensor encoder 

SENSOR SYSTEMS ACTUATORS 

VAL 11 

system 

PUMA 560 

ru 
ru 
.-



ccc 

A control hierarchy was established so that the robot and 

sewinq machine could be controlled in real time in 

conjunction with multi-sensory feedback. 

An IBM AT was used as the cell controller, but its 

processinq power was found to be insufficient for this 

application. More suitable configurations are recommended 

in section 7.4.1. The software for the cell controller was 

developed for execution within a real time multi-tasking 

environment, allowing different processes to run 

concurrently. 

Two communication channels were set up between the station 

controller and robot controller; the ALTER channel was 

dedicated to conveyinq robot motion data in real time, and 

the GPC channel was used to provide additional 

communication facilities. 

The system was based on the PUMA 560 robot, because of its 

advanced proqramming and control system, VAL II. However, 

the robot was found to be unsuitable for this application 

because of poor absolute accuracy. A more suitable robot is 

recommended in section 7.4.2. 

The sewing machine was interfaced to the cell controller so 

that the various functions (e.g. 

presser foot up/down, needle 

controlled from the IBM AT. 

stop/start, sewing speed, 

up/down etc.) could be 

A sewing table was constructed around the sewing machine 

and was covered with a smooth, mirror surface stainless 

steel sheet. The position and heiqht of the robot base 

relative to the sewing table were deliberately chosen, to 

minimize the effects of the robot's limited workspace and 

to avoid sinqularity regions. 



223 

Two prototypes of a special purpose end-effector were 

developed for handling and manipulating limp fabric on a 

table. The end-effector was required to control the fabric 

sensitively, in close proximity to the sewing head, without 

interfering in the sewing operation or limiting the 

system's flexibility. 

Two spring-loaded fingers were incorporated into a low 

profile design and their separation distance could be 

changed under program control. The fingers were tipped with 

a'high friction rubber pad so that the cloth was gripped by 

the finger without increasing the table surface friction. 

Photocells and microswitches were installed on the end

effector, in order to locate the cloth panel and as a 

safety precation. 

7.1.3. Adaptive Control of the Robot 

The high speed ALTER communications protocol was 

implemented on the IBM AT in a modular fashion, along the 

lines of the OS1 Reference Model. The software was 

interrupt driven and optimized to minimize the 

communication overheads. 

The dynamic characteristics of the PUMA 560/VAL 11 system 

under ALTER control was investigated experimentally. In 

order to obtain smooth and linear motions, velocity and 

acceleration limitations and, in the case of non-cumulative 

mode, an interpolation algorithm had to be applied to raw 

ALTER data. The maximum velocity and acceleration had to be 

reduced when the arm was outstretched, to limit dynamic 

errors. 



224 

7.1.4. Cloth Tension Control System 

A robotic sewing technique was developed, in which the 

robot held the free end of a cloth panel and the robot 

moved with the cloth during the sewing operation. The robot 

motion was synchronized with the sewing machine feed 

mechanism by tracking the sewing machine shaft encoder 

signal. The buffered shaft encoder signal was interfaced to 

the IBM AT via a counter circuit. The IBM AT computed the 

required robot motion and transmitted it to VAL 11 via the 

ALTER channel. 

This cloth feed tracking system was capable of producing 

good quality short straight seams, once the stitch length 

had been manually adjusted for a specific speed. However, 

under most circumstances, thjs system was unsatisfactory 

because the cloth slipped in the sewing machine feed 

mechanism in an unpredictable way, and the robot would 

either lag or lead the cloth feed. This either resulted in 

excessive cloth tension or in a slack and buckled panel. 

The problem was solved by developing a closed loop control 

system in which the cloth tension was measured and the 

robot motion was modified to maintain a constant cloth 

tension. 

A cloth tension sensor was designed to provide high 

sensitivity in the direction of sewing, and high 

insensitivity in all other directions. The sensor's signal 

was amplified and interfaced to the IBM AT via an ADC. The 

cloth tension signal was found to undulate synchronously 

with the sewing revolutions durinq sewing, due to the 

intermittent nature of the feed mechanism. A digital peak 

detector was incorporated into the ADC circuit so that the 

cell controller could sample the peak tensions. 



225 

Initial experiments with a closed loop cloth tension 

control highlighted instability problems due to the non

linear behaviour of fabric under tension and due to the 

table friction. The system time delay and the initial 

start-up acceleration of the sewing machine caused high 

initial cloth tensions, which upset the tension control. A 

gradual controlled start-up acceleration corrected this 

problem. When the robot attempted to tension the cloth by 

moving away from the needle, the table friction created an 

apparent cloth tension even though the cloth was still 

slack. To avoid this, the robot motion was limited to the 

sewing direction only. 

A proportional and integral control was required to limit 

tension variations within an acceptable range and to 

prevent tension build-up, in order to produce good seams. 

Since satisfactory control could not be obtained through 

trial-and-error experimentation, the ·range in which the 

optimum gain values w~re likely to be was obtained using a 

Bode design procedure. The Bode procedure required the open 

loop frequency response, which was measured by imposing a 

sinusoidal forcing function on the open loop system. 

The performance of the cloth tension control was found to 

depend on the fabric's mechanical properties, the sewing 

speed, system time delays and the number of plies. Woven 

fabrics sewn along the bias and knitted fabrics, although 

operating under good tension control, produced unacceptable 

buckling during the sewing operation. The buckling was due 

to their high extensibility at the average tensions 

suitable for the control system developed. Good performance 

was obtained with a variety of woven fabrics at the maximum 

sewing speed of 5000 rpm. Fabrics, which were pucker 

sensitive, produced good seams at reduced speeds. 



226 

7.1.5. Seam Width Control System 

The robotic sewing technique was extended to sew seams 

parallel to an edge of arbitrary contour by including a 

vision-based seam width control system in the adaptive 

control of the robot. A simulation technique was developed 

which accounted for system non-linearities due to the 

vision system, system time delays and robot motion 

limitations. The simulation program showed that a design 

based on a single camera or on two photocells would not 

produce stable control. The simulation showed that the 

system was sensitive to the system time delay, pixel 

resolution and the initial seam width error. The simulation 

provided a specification for the vision system and an 

insight into the control problem. 

Two miniature cameras were mounted on the sewing machine 

and interfaced to the IBM AT. A lighting arrangement was 

developed 

the cloth 

which provided a clear black-and-white image 

edge, regardless of the fabric colour. 

of 

A 

comprehensive calibration technique was 

facilitate the setting up of the system, 

accurate and stable edge seam production. 

developed to 

and to ensure 

The seam width control required that the robot corrected 

the orientation of the cloth panel during sewing. This was 

achieved by superimposing two motion elements; rotation of 

the main finger about the sewing needle, and rotation of 

the auxiliary finger about the main finger. The robot's 

workspace constraints limited the maximum cloth edge 

curvature that could be tracked. To minimize the effects of 

these constraints, the robot's permissable envelope was 

carefully defined and when the robot approached one of the 

bounds of the envelope, the robot was decelerated smoothly. 



227 

Suckling of the cloth panel was a serious problem in the 

development of the edge seaming technique. When the cloth 

buckled, it lost its rigidity and the robot effectively 

lost control. The tendency of the cloth to buckle was 

minimized by reducinq the table friction, reducing the 

spring loading on the fingers and damping down the motion 

of the robot. The poor absolute accuracy of the robot 

contributed significantly to the buckling problem. When the 

end of the seam approached, the bucklinq tendency increased 

due to the effect of the presser foot. 

A CLOSE sewing technique was developed to sew the last 

100 mm of a seam or to sew intricately curved seams. In 

this technique, the fingers were positioned on the cloth 

alonqside the sewing head to manipUlate the cloth more 

effectively, although the tension control system had to be 

restricted to open loop control. 

Accurate edqe seams were produced at speeds up to 100 mm/s 

for typical contours. Fabrics wit~ relatively high buckling 

stiffness gave good performance. Fabrics with high 

extensibility, such as knitted fabrics, were unsuitable in 

the present system, due to the cloth edge curling up around 

the presser foot. Two-ply panels gave better performance 

than sinqle-ply panels because of their higher stiffness. 

7.1.6. Handling Techniques 

Techniques were developed to set up a cloth panel for the 

edge seaming operation. The robot located a cloth panel 

placed down approximately on the table, and slid it into 

place with the needle accurately positioned at the start of 

the seam. Two photocells and the two cameras mounted on the 

sewing machine provided visual feedback during the handling 

operation. 



228 

A technique for rotating the cloth about the needle was 

developed which was used to reduce the initial angular 

error of the cloth panel and to set up one cloth edge after 

sewing up the adjacent edge. The robot's poor absolute 

accuracy caused problems for this operation since sensory 

feedback could not be used to compensate for the robot's 

inadequacy. 

Segmented seam production was permitted by dividing a seam 

up into FAR and CLOSE segments and repositioning the 

fingers between segments. The sewing and handling 

techniques were demonstrated in the production of a three

sided panel of arbitrary contour. 

7.2. Capabilities and Limitations of FIGARO system 

7.2.1. Introduction 

An ideal flexible automatic sewing cell would have the 

following features :-

* Flexibility to process different shapes, sizes and 

fabrics. 

* Capability to perform a wide range of sewing and 

handling operations. 

* No manual intervention required between different 

operations or products. 

* Minimal manual adjustments or maintenance. 

* High reliability. 

* Automatic error detection and recovery. 

* Easy to integrate into a ClM environment. 



229 

Most of these features could be integrated into a 

commercial version of the FIGARO system. The hierarchical 

control arrangement that was adopted in the FIGARO system, 

can easily be incorporated into a CIM environment by 

developing an additional communication channel between the 

cell controller and a process supervisor. Automatic error 

'detection and recovery capabilities require redundant and 

overlapping sensor systems, and extensive processing 

capabilities, and the FIGARO system could be extended to 

include these facilities. Recommendations regarding the 

sewing machine, which is the most unreliable component in 

the system and which requires frequent manual adjustment, 

are given in sections 7.3.3 and 7.4.3. 

The flexibility of the FIGARO system and its multi-function 

capability is discussed in the following sections. 

7.2.2. Multi-Function Capabilities 

7.2.2.1. Present Capabilities 

Techniques have been developed for the FIGARO system, which 

perform the following functions :-

1) Sewing a seam parallel to an edge of arbitrary 

contour. 

2) Sewing a straight seam anywhere on the cloth. 

3) Setting up a cloth panel for the edge seaming 

operation, from an approximate initial position and 

orientation. 

4) Rotating a cloth panel about the sewing needle. 

5) Withdrawinq a cloth panel from the sewinQ machine 

after the sewing operation. 



230 

A ply separation device, developed in a separate project, 

was inteqrated into the end-effector in order to provide 

the capability to separate and pick up a single ply from a 

stack. A vision-based technique for placing one ply 

accurately on top of another is being developed in a 

parallel project, which could also be integrated into the 

FIGARO system. 

7.2.2.2. Potential Capabilities 

a) Additional Sewing Functions 

Seams with fullness could be produced if the drop feed 

sewing machine was exchanged for a machine with a 

programmable differential feed. If a button sewing machine 

and a button hole machine could be added to the sewing 

table, without affecting the performance of any of the 

sewing or handling operations already developed, then two 

very useful functions would be added to the FIGARO 

repertoire. These additional machines would probably 

require an extension of the sewing table and inverted 

of the robot (section 

to mount the robot on 

2.8.3.3). It 

a programmable 

mounting 

necessary 

platform, which is a .technique that is often 

increase a robot's working envelope. 

b) Foldinq and Unfolding 

may be 

gantry 

used to 

Foldinq a cloth panel prior to a sewing operation and 

unfolding it after the operation were identified by the 

(TC)2 project team as useful handling capabilities, which 

can be used, besides other purposes, to reduce the surface 



231 

area of large panels to facilitate the sewing operation 

(17). It is anticipated that some modification of the ply 

separation device will be necessary to realize these 

capabilities. 

Since foldinq and unfolding are functions in which a human 

operator must use both hands, a robotic solution must 

include a degree of assistance external to the single

handed robot. A simple and effective solution might be to 

use the table's flotation nozzles to apply suction to the 

panel, at the critical stage in the handling operation. 

Alternatively, a portion of the extended sewing table could 

be designed as a folding/unfolding station based on 

assistance devices. 

c) Pocket Setting 

The existing 

development in 

system would require 

order to set and sew up a 

some additional 

pocket onto a 

panel. For example, the vision system would have to detect 

the edge of the pocket against the panel. Since the table's 

mirror surface could not be used to detect the edge, a 

structured light approach might be successful, in which a 

laser beam is projected as a narrow line from a low 

elevation angle. The vision system could then measure the 

position of the cloth edge by detecting the step in the 

line of light, which is due to the height differential. 

7.2.3. Flexibility 

Besides offerinq a qreater ranqe of functional 

capabilities, a system based on robotics and sensory 

feedback is more flexible and adaptable to changes in the 



• 

232 

shape, size or characteristics of the workpiece, when 

compared to hard automation solutions. 

7.2.3.1. Present System's Flexibility 

In the sewing 

(section 6.6), 

flexibility, in 

up of a three sided sub-assembly 

the FIGARO system demonstrated some 

that panels of different sizes and with 

different edge contours were successfully sewn up without 

any manual mechanical adjustments or software alterations. 

The sensory feedback control systems accommodated minor 

changes in fabric characteristics without requiring changes 

in the control parameters. 

7.2.3.2. Flexibility to Shape 

The present end-effector has two fingers that can be 

configured optimally under program control for a specific 

panel shape. A multi-fingered end-effector would improve 

the system's performance for a wider range of shapes, but 

the more complex device should be designed in accordance 

with the comments made in section 6.2. 

7.2.3.3. Flexibility to Edge Contour 

Although the vast majority of edge profiles found on 

garment panels could be sewn up satisfactorily with an 

optimum combination of CLOSE and FAR seam segments, the 

seam strategy generator (SSG) implemented in the present 

version of the software is unsophisticated and it will only 

generate a satisfactory strategy for moderately curved 

contours. The current SSG is embodied in the DecideSeam 



233 

function, and it generates either a FAR-CLOSE or a CLOSE 

strategy, depending on the seam length. 

In order to sew along an edge with intricately curved 

features, a sewing strategy would have to be specified by a 

programmer by writing a new version of DecideSeam for the 

particular seam profile, in which the combination of FAR 

and CLOSE segments was based on the seam profile. This is 

not a very satisfactory situation since the programmer 

would either have to arriv~ at a successful strategy 

through 

require 

trial-and-error experimentation, 

expert knowledge of the system, 

characteristics and its limitations. 

or he would 

its dynamic 

Consequently, if the FIGARO system is to be used to its 

maximum potential and yet maintain simple task 

specification requirements, a much more sophisticated SSG 

is required to automatically generate the optimum sewing 

strategy for specific edge profiles (section 7.2.4). 

7.2.3.4. Flexibility to Fabric Characteristics 

The robotic sewing operations are sensitive to the 

mechanical properties of the fabric. In order to simplify 

the requirements of the user interface to the FIGARO 

system, different fabrics should be classified according 

to their mechanical properties, sO that the optimum control 

parameter settings could be found experimentally for each 

category. Consequently, when the system is in operation, 

the software could automatically select the optimum control 

for a specified fabric category. 

The present system cannot satisfactorily sew knitted 

fabrics or woven fabrics cut along the bias, due to 



234 

excessive shear buckling. This limitation might be removed 

if the tension control system was improved so that the 

cloth tension could be kept at a much lower level (of the 

order of 2 to 10 qf). 

The high table-to-fabric friction, which is the major 

factor preventing th~ reduction of the controlled tension 

level, can be reduced by adding flotation to the sewing 

table,or it can be eliminated by picking up the end of the 

panel and holding it in the air between clips 

(section 4.3.1>. 

7.2.4. A Sewing Strategy Generator (SSG) 

The requirement for an automatic, optimizing, sewing 

strategy generator was described in section 7.2.3.3. This 

sophisticated SSG would require a reasoning and decision

making capability, which could be developed using 

artificial intelliqence (AI) techniques. 

The SSG would require knowledge of the edge contour, which 

could be provided in one of two ways. An overhead camera 

system could provide an image of the cloth panel which 

would be interpreted in real time by a vision processing 

system. The edge contour shape would be extracted from the 

imaqe usinQ an edqe detection algorithm. 

Alternatively, in an advanced CIM system, the shape of all 

the cloth panels would already be on record in the CADCAM 

database which generated the program for the automatic 

cutting machine, and this database could be interrogated by 

the sewing cell controller. 



235 

Several experimental AI programs have been reported which 

can perform the "Robot Task Planning" function [73,74]. A 

Task Planner is given a description of the goal (e.g. "put 

the red block on top of the white block", or in this 

application "perform an edge seam on the left hand edge of 

the panel"), and it will decide how the robot can achieve 

the goal and specify the robot motion sequence, relevant 

locations and other parameters (in this case, the seam 

strategy). 

A Task Planner requires a World Model, a Knowledge Base and 

a reasoning algorithm. In the case of an SSG, the World 

Model would be a description of the edge contour and 

knowledge about the limitations and capabilities of the 

FIGARO system, and the Knowledge Base would contain a set 

of empirical rules to guide the reasoning process to find 

the optimum sewing strategy. An AI programming language, 

such as PROLOG which is based on predicate logic and has a 

built-in backtracking inference engine, would facilitate 

the development of the SSG. 

7.3. Commercialization Considerations 

The FIGARO development is based on an ambitious approach to 

solving the clothing automation problem, and at this early 

stage, the development of technical solutions and an 

investigation into the fundamental handling problems are 

the foremost requirements. Although, the present 

experimental system is not expected to be commercially 

attractive, some comments can be made as to the potential 

for commercial exploitation of the developments in the 

future. 



236 

7.3.1. Speed 

Sewing speeds of 3000 rpm have been achieved for moderately 

curved cloth panels, and implementation of modifications 

recommended above should increase the sewing speed or the 

rates of curvature further. This performance is comparable 

to the sewing speed that a human operator can achieve under 

similar circumstances, but an operator using an edge guide 

and dedicated automatic edge seamers can achieve up to 

6000 rpm for similar curvatures. 

Dedicated automation devices are usually faster than the 

equivalent flexible automation system because there is a 

trade-off between speed and flexibility. 

The system can locate and accurately set up a panel for an 

edge seaming operation within 20 to 30 seconds, and there 

is considerable scope for reducing the times for this and 

other handling operations. Since fabric handling accounts 

for up to 80 % of an operator's time (10), improving the 

fabric handling times is more important than improving the 

sewinq speeds. An overhead camera, with associated vision 

processing hardware and software, and a faster and more 

accurate robot should reduce the fabric handling times to 

timings comparable with a human operator. 

7.3.2. Cost 

7.3.2.1. General Comments 

The FIGARO approach is inherently expensive when compared 

to hard automation solutions, since it involves an adaptive 

robot, complex sensor systems, multi-processor 



237 

architecture, extensive real time processing, and large and 

complex software support. This is common, however, to most 

applications of robotics and flexible automation, and 

particularly in the case of complex systems involving 

adaptive or intelligent control. The high initial costs 

have to be justified commercially by high life expectancy 

and utilization of the system (75J. 

Simulation experiments can assist in determining the 

commercial viability of different production methodologies. 

The small batch flexibility of a robotic cell is best 

exploited within a CIM environment, and therefore the 

viability of complex intelligent robotic assembly cells is 

closely tied to the development and implementation of CIM 

systems. 

7.3.2.2. Comments Relating to the Clothing Industry 

The Clothing Industry has a relatively low level of 

investment in plant and machinery as a proportion of total 

sales over time, compared with other sectors of industry 

(ll. Several factors encourage this situation, such as low 

added value ratio on products, unacceptability of shift 

working among the work force, short batch production, etc. 

Consequently, the commercial viability of a sophisticated 

robotic sewing system is unlikely in the near future. 

Nevertheless, there are several factors that indicate that 

this situation will change ;-

a) Complex and expensive CAD/CAM equipment is becoming 

commonplace in cuttinq rooms (section 1.3.1). 



238 

b) Semi-automatic sewing units are in widespread use 

despite their limited flexibility and relatively high 

cost (section 1.3.2.2). 

c) Computerized conveyor systems have been adopted and 

integrated into production control systems, which is 

an important step towards developing a CIM environment 

(section 1.3.3). 

d) Large scale R & D projects are under way in Japan, 

Europe and the USA to develop flexible clothing 

automation (section 1.4), confirming that it is widely 

perceived that this technology is required urgently. 

The (TC)2 approach, which is technically more conservative 

than the adaptive robot approach, has the disadvantage that 

an expensive robot is restricted to handling operations, 

and that 

required. 

a complex expensive sewing module is also 

The adaptive robot approach, which maximizes the 

use of the expensive robot so that the sewing machine and 

other peripherals can remain relatively cheap and simple. 

is much more ambitious. 

If all the technical problems can be solved so that the 

cell's handlinq time can match that of a human operative, 

then it will replace three operatives, assuming round-the

clock (i.e. three-shift) operation of the cell. The 

current cost of three operatives is approximately £30,000 

per year, and the FIGARO project has shown that an 

industrial version could well have a capital cost below the 

£60,000 target, which gives a two year payback. 

Consequently, the adaptive robot approach is well worth 

pursuing. 



239 

7.3.3. Other Considerations 

Sewing machines are notoriously unreliable and they have 

frequent stoppaqes for thread and needle breakages, tension 

adjustments and bobbin replacements. This characteristic is 

a major problem in the automation of the sewing room, which 

can be tackled in two ways. 

a) Each sewing machine fault could be 

identified and rectified automatically. 

detected, 

Automatic 

bobbin changers and needle threading mechanisms have 

been developed [8J which could be integrated into the 

cell. An artificial intelligence capability may be 

necessary to ensure that system faults are interpreted 

correctly and that suitable corrective action is 

chosen. 

b) Alternatively, each sewing cell could have two sewing 

heads, either of which could be rotated into place. 

One of 

adjusted 

Nilsson 

the sewing heads could then be 

manually without holding 

(16) describes a sewing room 

threaded and 

up production. 

with general 

purpose sewing cells, in which the material flow could 

be modified automatically as cells were removed from 

production for rethreading etc. 

7.4. Recommendations 

7.4.1. Robot 

The PUMA 560 robot is unsatisfactory for robotic sewing and 

handling applications, due to its poor off-line programming 



240 . . , ... :,' ,,: L1.:. i U:,.;1Y C:"'v I ,~\o J ... : _,_ .. I 

UI'~I'JL:.KSI IV Or LEEDS, 

accuracy (section 2.4.1>. Since the end-effector is 

maintained in a perpendicular orientation relative to the 

sewinq table for all robot motions, a 4 axis robot would 

suffice and the PUMA robot has 2 redundant degrees of 

freedom. A 4 axis SCARA type robot is inherently stiffer 

and more accurate than the PUMA design, and it3 real time 

motion control calculations are simpler since there are 

only 4 axes to control. 

The major attraction of the PUMA robot was its VAL 11 

control system which permits real time path control of the 

robot. The Adept SCARA robot is now available with the 

VAL 11 control system, and the Adept robot system achieves 

very high off-line programming accuracy by incorporating 

the actual dimensions and angular offsets of each specific 

robot into the control system's model. The advantages of 

the Adept robot over the PUMA for the FIGARO application, 

are summarized below :-

* 16 ms handshake cycle time, instead of 28 ms 

* higher accuracy 

* no singularities 

* faster maximum tool velocity and acceleration 

* higher rigidity 

7.4.2. Cell Controller 

The workload on the IBM AT was considerable, and the 

performance of the robotic sewing operation suffered from 

insufficient processor power. A commercial implementation 

would require much more processor power for additional 

communication channels, 

correction, etc. 

automatic error detection and 



241 

A far more powerful processor could be selected for the 

cell controller e.g. the new 32-bit micro-processors, 

(80386, 60030, etc.). The workload on the cell controller 

should be further reduced by delegating the management of 

the ALTER and supervisory communication channels to 

dedicated processors, e.g. a microcontroller and a chip of 

dual ported RAM could provide a communications support sub

system (section 3.3.3). 

7.4.3. Sewing Machine 

Additional sewinq functions and a reduction in the number 

of manual adjustments required could be obtained by 

replacing the lockstitch machine with a machine that can 

provide differential top and bottom feed under external 

programmable control and that can provide a programmable 

stitch length. The differential top and bottom feed would 

permit production of seams with 

programmable stitch length would 

fullness, and 

permit production 

the 

of 

condensed stitching and reduce the need for frequent manual 

adjustments and check-up. 

7.4.4. Workstation 

Flotation nozzles should be incorporated into the table 

before and after the sewing head. The nozzles after the 

sewing head should be directed to push the cloth away from 

the needle during sewing (section 5.4.4.1>. If the nozzles 

in the main area of the table could be programmable to 

provide either suction or floatation, then the system will 

have additional flexibility and reliabilty. 

The robot could be mounted inverted from a gantry to 

increase its workspace. 



242 

7.4.5. Future Work 

Many recommendations for further research and development 

have been suggested earlier, and they are summarized as 

follows :-

1) Extend tension control to a wider range of fabrics. 

2) Improve edge seaming performance 

3) Reduce timings for fabric handling operations. 

4) Develop an SSG to provide AI task planning capability. 

5) Develop folding and unfolding techniques. 

6) Add overfeed and stitch condensation capabilities. 

7) Demonstrate production of a jacket sleeve. 

8) Measure mechanical properties of fabrics and determine 

tension control parameters for each fabric category. 

9) Add button-hole and "button-sewing machines. 

10) Develop handling and sewing techniques for setting and 

sewing up a pocket on a back panel. 

7.5. Conclusion 

An experimental flexible robotic sewing cell was developed 

which consisted of an adaptively controlled robot, a 

hierarchy of controllers, and several sensory inputs. 

Techniques for sewing contoured edge seams <and of course 

straight seams) were developed, based on sensory feedback 

control systems which maintain the cloth tension and the 

seam width during sewing. A clot~ tension sensor, vision 

processing software and a two-fingered fabric steering end

effector were developed for the robotic sewing operations. 



243 

Fabric handling techn~ques have 

including detecting a cloth panel, 

also been developed 

presenting it to the 

sewinq machine, accurately setting up the cloth for an edge 

seam operation, rotatinq the cloth about the needle, and 

removing the cloth from the machine after the sewing 

operation. 

The project has successfully demonstrated technical 

solutions to the flexible automation of clothing assembly, 

in which the robot performed all the fabric handling and 

control needed in the sewing assembly operations. Future 

developments of this approach to clothing automation have 

been clarified as a result of this research. 



244 

REFERENCES 

1 Cave P., NEDO, "Economic Overview of the Garment 

Industry", Proc. Conf. on Automation of Garment 

Manufacture, Leeds 1986, pp 6-11. 

WaIter C.H., Marks Se Spencer PLC, " A Retailer's View 

of the Requirement of Research in Garment 

Manufacture", Proc. Conf. on Automation of Garment 

Manufacture, Leeds 1986, pp 42-50. 

3 Tyler D.J.", "Flexible Apparel Automation and Japanese 

Initiatives", Hollings Apparel Industry Review, 1985, 

Vol 2, No 1, pp 7-24. 

4 Weston L., "Some Observations on the Swedish Clothing 

Industry", Hollings Apparel Industry Review, 1985, Vol 

2, No. 2, pp 153-170. 

5 Saibel M., "Research I!.. Developm/t Program for the 

Japanese Apparel Industry", -AAMA Apparel Research 

Journal, Bobbin, October 1977, p 138. 

6 "Research I!.. Development in the Apparel Industry", AAMA 

Apparel Research Journal, Bobbin, October 1977, 

pp 123-137. 

7 Anon, "Automation in Apparel", Bobbin, 1982, Vol 23, 

No 5, pp 66a-66h • 

. 8 Lower J.M., Singer Inc., "Automation Heard around the 

World", Bobbin, 1985, Vol 26, No 8, pp 78-81. 

9 Tredwin P., "Computerised Garment Manufacture", Proc. 

World Conf., The Textile Inst., May 1985, London. 



245 

10 Grills R. , Brown S., "Productivity in Sewing 

Operations", Shirley Institute Publication 520, 1975 • 

• 11 Ogawa 5., "Japan's Automated Sewing System: A National 

Research and Design Project",Bobbin, 1984, Vol 25, No 

6, pp 82-102. \ 

12 Sinclair D. , "stand Up and Sew", Apparel 

International, 1982, Vol 2, No 2, pp 4-7. 

13 Wong P.C., Hudson P.R.W., "The Australian Robotic 

Sheep Shearing Research and Development Program", 

Robots 7, 1983, pp 10-56 to 10-63. 

14 Hauber F.W., Pfaff, "An Organised Method for Looking 

at Sewing Machines", Bobbin, August ·1978, pp 114-118. 

15 "Technology and the Garment Industry", NEDO report, 

16 

1971. 

Edberg B. , Nilsson N., "Computerised Clothing 

Manufacturing: A Means for Survival", Proc. Annual 

World Conf., The Textile Institute, May 1985, London. 

17 Abernathy F.H., Pippins D., "(Te)· Apparel, Textile 

and Education at its best", Bobbin, 1986, Vol 28, 

No 1, pp 162-168. 

18 Bernardon E., Kondclean A., "Real Time Robotic Control 

19 

for Apparel Manufacturing", 

Laboratory Inc., 1985, pp 1-20. 
ft 4 -4-(' fo t. -Cc 

Charles Stark Draper 

V ~'tb crI b~-4.~·J-(q<l {", 

Berkstresser G.A., Takeachi K., "Japan's Automated 

Apparel Manufacturing System Research Project", 

Bobbin, 1983, Vel 25, No 3, pp 75-84. 



246 

20 "PUMA 500 MK2 Robot System Technical Manual", 

Unimation (Europe) Ltd., England, 506-9057/58. 

21 "Unimate PUMA Robot, Vol. 1 Technical Manual 398H1A", 

Unimation Inc., USA, 1981. 

22 EI-Zorkany H., Liscano R., Tondu B., Sawatzky G., 

"Sensor-based Location and Trajectory Specification 

and Correction in Robot Programming", Proc. Conf. ISIR 

16, Brussels 1986, pp 643-656. 

23 Desroches A., "Introduction to Robot Dynamics and 

Contro 1", IEEE Contro 1 Systems, Vo 1 22, No 1, 1984. 

24 Mudge T.N., Turney J.L., "Unifying Robot Arm Control", 

IEEE Trans. Industr. Applic. Vol 1A-20, No. 6, 1984. 

25 Paul R. P. , "Robot Manipulators: Mathematics, 

Programming and Control", Cambrige Press, 1981. 

26 Dubowsky S., Desforges D. T., "The app I i ca t i on of 

model-referenced adaptive control to robotic 

manipulators.", Jnl. Dynamic Systems Measurement and 

Control, Vol 101, 1979, pp 193-299. 

27 Freund E., "Fast non-linear control for robots", Proc. 

International Research on Robotics Research", Vol 1, 

No 1, 1982, pp 65-78. 

28 Critchlow A.J., "Introduction to Robotics", Macmillan, 

1985. 

29 Johnson D.G., Hill J.J., "Sensory Level Programming: A 

New Software System for Improved Control of a Sensory 



247 

Industrial Robot", Proc. Conf. ROVISEC 5, Amsterdam, 

1985, pp 383-391. 

30 Dupourque V., Ishacian 0., "ContraIl ing Multi-Robot 

Applications from UNIX", Proc. Conf. ISIR 16, Brussels 

1986, pp 197-208. 

31 Van Brussel H., De Winter D., Thielemans J., 

Valckenaers P., Claus H., "Introducing Flexibility in 

Assembly Systems", Proc. Conf. ISIR 16, Brussels 1986, 

pp 557-567. 

32 Smith R.C., Nitzan D., "A Modular Programmable 

Assembly Station", Proc. Conf. ISIR 13, Chicago 1983, 

pp 5.53-5.75. 

33 Albus J.S., McLean C.R., Barbera A.J., Fitzgerald 

M.L., "Hierarchical Control for Robots in an Automated 

Factory", Proc. Conf. Robots 7, 1983, pp 13.29-13.43. 

34 Symcox G., "Interfacing Robots with and without MAP -

a Case Study", Proc. Conf. I SIR 16, Brusse 1 s 1986, 

pp 209-218. 

35 Paul R.P., Shimano B., Mayer G.E., "Kinematic control 

equations for simple manipulators", IEEE Trans. 

Systems Man Cybernetics, Vol SMC-11, June 1981, 

pp 449-460. 

36 Bazerghi A., Goldenberg A.A., Apkarian J., "An Exact 

Kinematic Model of PUMA 600 Manipulator", IEEE Trans. 

Systems Man Cybernetics, Vol SMC-14, No 3, May/June 

1984, pp 483-487. 

37 "AMX~86 Multitasking Executive Reference Manual, 



38 

248 

PN855-9", KADAK Products Ltd., 206-1847 West Broadway 

Avenue, Vancouver, B.C., Canada, 1983. 

"User's Guide to VAL 11, 

Unimation Inc., USA, 1984. 

Version 1.1, 398T1", 

39 Gruver W.A., Soroka B.l., Craig J.J., Turner T.L., 

"Industrial Robot Programming Languages: A Comparative 

Evaluation", IEEE Trrans. Systems Man and Cybernetics, 

Vol SMC-14, No 4, July/August 1984, pp 565-570. 

40 "IBM AT Technical Reference Manual, PN 1502243", 1984. 

41 Tanenbaum A.S., 

1981 , pp 15-21. 

"Computer Networks", Prentice Hall, 

42 Elgazzar 5., "Efficient Kinematic Transformations for 

the PUMA 560 Robot", IEEE Jnl. Robotics and 

Automation, Vol RA-1, No 3, 1985, pp 142-151. 

43 Demers K.P., Walsh P.M., "Sensor-based Real-time Robot 

Control Systems", Robotics Today, Vol 5, No 3, 1983, 

pp 69-72. 

44 Hill J., Park W.T., "Real Time Control of a Robot with 

a Mobile Camera", Proc. Conf. ISIR 7, October 1977, 

pp 233-246. 

45 Shimano B.E., Geschke C.G., Spalding C.H., Smith P.G., 

"A Robot Programming System Incorporating Real Time 

and Supervisory Control: VAL 11", Proc. Conf. Robots 

9, Vol 2, Detroit 1984, pp 20.103-20.119. 

46 Dario P., De Rossi D., "Tactile Sensors and the 

Gripping Challenge", IEEE Spectrum, Aug 1985, pp 46-52 



47 

48 

49 

50 

51 

52 

249 

Harmon L.D., "Automated Tactile Sensing", Intl. Jnl. 

of Robotics Research, Vol 1, No 2, 1982, pp 3-32. 

Van Brussel H., Belian H., Thielemans H., "Force 

Sensing for Advanced Robot Control", Proc. Conf. 

ROVISEC 5, Amsterdam, 1985, pp 59-68. 

Lestelle D. , "Gripper 

Force/Torque Sensors", 

Amsterdam, 1985, pp 69-77. 

with 

Proc. 

Finger 

Conf. 

Built-in 

ROVISEC 5, 

Rosen C.A. et al., "Exploratory Research in Advanced 

Automation", Reports 1 to 5, Stanford Research 

Institute under National Science Foundation Grant 

G138100X, Dec 1973 to Jan 1975. 

Feldmann K. , Classe D., "Sensor Aided Robot 

Programming", Proc. Conf. ROVISEC 5, Amsterdam, 1985, 

pp 369-382. 

Watson P.C., Drake S.H., "Pedestal and Wrist Force 

Sensors for Automatic Assembly", Proc. Conf. ISIR 5, 

Chicago, 1975, pp 501-511. 

53 "Materials Selector", September 1972, pp 35-134. 

54 ".Kyowa Strain Gauge and Temperature Sensor, 

Instruction Manual", Kyowa Corp., Japan. 

55 Ho r m'<l i t z P • , Hi 1 1 W • , "The Art of Electronics", 

Cambridge University Press, 1980. 

56 MacCarthy B.L., Sharp J.M., Burns N.D., "A Constrained 

Optimization Technique to Improve the Performance of 



250 

Strain Gauge Transducers", Proc. Instn. Mech. Engnrs., 

Vol 200, No C2, 1986. 

57 Kuo B.C., "Automatic Control Systems", Prentice-Hall, 

58 

59 

1975, pp 295-302. 

"A.I.E.E. Committee Report", Elec. Eng., Vol 70, 

October 1951, P 905. 

Nordby, H.A., "The Load-Elongation Properties of 

Fabrics with Special Reference to Hysteresis", Ph.D 

Thesis, University of Leeds, 1968. 

60 Hearle J .W.S., Grosberg P., Backer S., "Structural 

Mechanics of Fibres, Yarns, and Fabrics", Volume 1, 

Wiley-Interscience, 1969, pp 339-369. 

61 "Users Manual - IBM AT Interface Card for the I-SIGHT 

Cameras", Electronic Automation Ltd., Hull, 1986. 

62 Loughlin C., Hudson E., "Eye in Hand Robot Vision", 

Proc. Conf. ISIR 13, 1983, pp 263-270. 

63 Naylor, P., Private Communication, Electronic 

Automation Inc., 1986. 

64 Porat, I., Private Communication, Univ. of Leeds, 1986 

65 Torgerson E., Paul F .W., . "Vision Guided Robotic Fabric 

Manipulation for Apparel Manufacturing", to be 

presented at the 1987 IEEE Intl. Conf. on Robotics and 

Automation •. 

66 Parker J.K, Dubey R., Paul F.W., Becker R.J., "Robotic 

Handling for Automated Garment Manufacturing", Trans. 



251 

AS ME Jnl. of Engineering for Industry, 1982, pp 1-6. 

67 Gershon D., Porat I., "Robotic Sewing Using Multi

Sensory Feedback", Proc. Conf. ISIR 16, Brussels, 

1986, pp 823-834. 

68 Di Stefano J., Stubberud A., Williams I., "Feedback 

and Control Systems", Schaum Series, McGraw Hill, 

1976, pp 295-302. 

69 Healy M., "Principles of Automatic Control", The 

English Universities Press, 1975, pp 131-156. 

70 Ben Ari M., "Principles of Concurrent Programming", 

Prentice Hall, 1982. 

71 Baker F., "The Causes of Seam Pucker", Bobbin, 1978, 

Vol 20, No 3, Nov, pp 188-192. 

72 Porat I., Iype C., Gershon D., Moghaddassi M.N., 

Grosberg P. "Clothing Automation at the University of 

Leeds", Proc. Conf. on Automation of Garment 

Manufacture, Leeds 1986, pp 36-40. 

73 Lozano-Perez T., "Task Planning", in "Robot Motion: 

Planning and Control", ed. Brady M., MIT Press, 1982, 

pp 473-498. 

74 Winston P., "Artificial Intelligence", Addison Wesley, 

1977, pp 158-165. 

75 Scott P.B., Little A.D., "Guidelines for Economic 

Justification of Flexible Automation", Proc. Conf. 

ISIR 16, Brussels, 1986, pp 1045-1056. 



252 

APPENDIX A 

MISCELLANEOUS SOFTWARE MODULES 

A.l. Software Versions 

The version numbers of the various software products that 
were used in this project are listed in table A-l. 

Product Vendor Version Year 

AMX-86 KADAK Ltd. 1.1 1985 
C compiler Lattice Corp. 3.1 1986 
LINKER Microsoft'Inc. 2.4 1983 
TURBO PASCAL Borland Intnl 3.01A 1985 
Assembler IBM 1.0 1981 

Table A-l: Software Version Nos. 

A.2. AMX C Interface Prefix File 

AMX-86 requires a prefix file to be used at link time, 
which ensures that the AMX segment definitions are 
compatible with the C compiler (see section 1.10 of AMX C 
Interface Manual). The prefix file provided was intended 
for version 1.15 of the Lattice C compiler and is 
incompatible with the different segment naming convention 
implemented in version 3. A small modification of the AMX 
prefix file rendered it compatible with version 3 of the C 
compiler, and the modified file is listed below :-

REV 

NAME 
PAGE 
TITLE 

AMX2P 
60,132 ;PAGE/LINE SIZE 
AMX2P - PREDEFINE SEGMENTS FOR LATTICE CLINKING 

This version is a modification of KADAK's AMCF865P.ASM 
(version 1.1, 1985). 
This prefix file has been modified so that AMX is now 
compatible with version 3 of the LATTICE C compiler, 
the IBM linker and the Microsoft linker. 

EQU llH ;REVISION 1.1 

DEFINE DUMMY SEGMENTS WHICH WILL RESULT IN ALL AMX86 SEGMENTS 
AND ALL LATTICE C SEGMENTS BEING LOADED INTO MEMORY IN THE 
CORRECT ORDER. 

THE C STACK SEGMENT MUST BE THE ONLY STACK SEGMENT 
WITH CLASS 'STACK'. IT MUST ALSO BE LOCATED AS THE 
LAST SEGMENT IN THE LINKED MODULE IN ORDER TO PROPERLY 



253 

ALLOCATE STACK AND HEAP. 

NOTE: THE AMX86 MEDIUM TASK STACK SEGMENT MAY BE FORCED BY 
YOUR AMX86 CONFIGURATION MODULE TO BE PART OF DGROUP. 
IN THIS CASE, SEGMENTS OF CLASS 'MSTACK' WILL BE 
AT THE BASE OF DGROUP AND SEGMENTS OF CLASS 'DATA' 
WILL IMMEDIATELY FOLLOW THEM IN DGROUP. 

NOTE: THE IBM MASM ASSEMBLER ORGANIZES THE SEGMENTS 
ALPHABETICALLY BY SEGMENT NAME. THEREFORE, SEGMENT 
NAMES HAVE BEEN CHOSEN TO DEFINE THE PREFERRED ORDER 
OF THE SEGMENTS IN THE OBJECT MODULE. 
THE MICROSOFT LINKER ALLOCATES SEGMENTS IN THE ORDER 
IN WHICH SEGMENT NAMES AND CLASSES ARE ENCOUNTERED. 

AAACODE SEGMENT BYTE 'CODE' 
AAACODE ENDS 

jAMX86 CODE SEGMENT 

j 
AAACODL SEGMENT BYTE 
AAACODL ENDS 

jLATTICE C CODE SEGMENT 

; 

The following segment declaration forces the linker 
to arrange the segments in the correct order 

AAACODP SEGMENT BYTE PUBLIC 'PROG' jLATTICE C SEGMENT (v. 3) 
AAACODP ENDS 
; 
AAASTKl SEGMENT WORD 'TSTACK' jAMX86 LARGE MODEL TASK STACK 
AAASTKl ENDS 
j 
AAASTK2 SEGMENT WORD 'MSTACK' jAMX86 MEDIUM MODEL TASK STACK 
AAASTK2 ENDS 

j jAMX86 PC SUPERVISOR DATA SEGMENT 
AMPCDATA SEGMENT WORD PUBLIC 'DATA' 
AMPCDATA ENDS 

END 

A.3. AMX Configuration Module 

The AMX executive requires a configuration module to be 
loaded with each application, as described in section 
2.3.2.7. The configuration details are summarized below, 
followed by the listing of the actual configuartion 
module :-

A.3.1. Summary of Configuration Details 

TASK TASK TASK TASK TASK QUEUE DEPTH 
tt NAME ADDR STACK MODEL LEVO LEVl LEV2 LEV3 

------ ------

0 TMR AMTMRT 400 LARGE 0 0 0 0 
1 RXMG STRXMG 400 LARGE 0 0 0 0 

..... 



254 

2 TXMG STTXMG 400 LARGE 0 
3 COMM STCOMM 500 LARGE 0 
4 SEW STSEW 500 LARGE 0 
5 MAKE STMAKE 500 LARGE 0 
6 CONT STCONT 500 LARGE 0 
7 POST STPOST 500 LARGE 0 
8 PRNT STPRNT 400 LARGE 4 

RESTART PROCEDURES: 

AMTDRR 
AMRMRR 
AABIA 
RTIMER 
RPCOM 
RPCAMR 
RP SEW 

CLOCK FREQUENCY IN H2. IS 18. 
CLOCK TICKS PER SYSTEM TICK IS 1. 
TIMEIDATE MAINTENANCE IS INCLUDED. 
TIMEIDATE PERIOD IN SYSTEM TICKS IS 18. 

TIMERS AND TIMER PROCEDURE ADDRESSES: 

TIMER 

TMTD 
TMNOl 

TIMER PROCEDURE 

AMTDTR 

RESOURCE MANAGER IS INCLUDED. 

BUFFER MANAGER IS INCLUDED. 

POOL# # BUFFERS SIZE 

o 
1 

200 
10 

150 
160 

500 SYSTEM QUEUE PARAMETER BLOCKS ALLOCATED. 
EXECUTIVE STACK IS 400 WORDS. 

0 
0 
0 
0 
0 
0 
3 

INTERRUPT SERVICE PROCEDURE STACK IS 450 WORDS. 

A.3.2. Configuration Module 

TI TLE CONT 1. C 5/2/87 
; 
;AN AMX86 CONFIGURATION MODULE DEFINING ALL 
;TASKS, TIMERS, QUEUES, STACKS, ETC. REQUIRED 
;BY AMX86 FOR PROPER OPERATION 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

320 3 



;TASK ADDRESSES 

; 

EXTRN 
EXTRN 
EXTRN 
EXTRN 
EXTRN 
EXTRN 
EXTRN 
EXTRN 
EXTRN 

AMTMRT:FAR 
STRXMG:FAR 
STTXMG:FAR 
STCOMM:FAR 
STSEW:FAR 
STMAKE:FAR 
STCONT:FAR 
STPOST:FAR 
STPRNT:FAR 

jRESTART PROCEDURE ADDRESSES 

; 

EXTRN 
EXTRN 
EXTRN 
EXTRN 
EXTRN 
EXTRN 
EXTRN 

AMTDPC:FAR 
AMRMRR:FAR 
AABIA:FAR 
RTIMER:FAR 
RPCOM:FAR 
RPCAMR:FAR 
RPSEW:FAR 

jAPPLICATION TIMER PROCEDURES 

EXTRN AMTDTR:FAR 

PAGE 
;THE AMX86 PARAMETER SEGMENT 
AMXPAR SEGMENT WORD 'CODE' 
; 
;ENTRY POINTS REQUIRED BY AMX86 

PUBLIC AMTDT 
PUBLIC AMRPL 
PUBLIC AMNUMQ 
PUBLIC AMCLKP 
PUBLIC AMTMRR 
PUBLIC AMISTP 

; 

255 

TASK .. 0 AMX86 TIMER TASK 
TASK # 1 
TASK .. 2 
TASK .. 3 
TASK .. 4 
TASK .. 5 

,TASK" 6 
jTASK .. 7 
jTASK .. 8 

jTIME/DATE FOR IBM PC DOS 
jRESOURCE MANAGER 
;BUFFER MANAGER 
;USER RESTART PROCEDURES 

iTIME/DATE TIMER PROCEDURE 

;TASK DEFINITION TABLE 
;RESTART PROCEDURE LIST 
jNUMBER OF QUEUE BLOCKS 
jCLOCK PERIOD = # OF INTERRUPTS 
;TIMER PROCEDURE LIST 
jAMX86 INTERRUPT STACK POINTER 

;TIME/DATE PARAMETER TABLE ENTRY POINTS 

j 

PUBLIC AMTDFQ 
PUBLIC AMTDTM 
PUBLIC AMTDRA 
PUBLIC AMTDSH 

jTIMER FREQUENCY 
jDISPLACEMENT OF TIME/DATE TIMER 
;A(TIME/DATE RAM BLOCK) 
jA(USER TIME/DATE SCHEDULER) 

iTABLE OF APPLICATION TIMER DISPLACEMENTS ENTRY POINTS 

j 

PUBLIC TMTD 
PUBLIC TMNOl 

jTIME/DATE TIMER 

jTABLE OF INTEGER TASK NUMBERS ENTRY POINTS 

PUBLIC TNTMR 
PUBLIC TNRXMG 
PUBLIC TNTXMG 
PUBLIC 'TNCOMM 

jTASK #,0 AMX86 TIMER TASK 
jTASK .. 1 
;TASK .. 2 
jTASK # 3 



j 

PUBLIC TNSEW 
PUBLIC TNMAKE 
PUBLIC TNCONT 
PUBLIC TNPOST 
PUBLIC TNPRNT 

jRESOURCE MANAGER ENTRY POINTS 

PUBLIC AMRDT 
; 
jBUFFER MANAGER ENTRY POINTS 

PUBLIC AAPDT 

PAGE 
jAMX86 TASK DEFINITION TABLE 
AMTDT LABEL DWORD 
i 

256 

;TASK .. 4 
;TASK # :5 
;TASK .. 6 
;TASK # 7 
jTASK # 8 

jRESOURCE DEFINITION TABLE 

jPOOL DESCRIPTION TABLE 

jAMX86 TIMER TASK (#0) IS THE HIGHEST PRIORITY 
;TASK # 0 

DD AMTMRT i A(AMX86 TIMER TASK) 
DD SPTMR ;A(TIMER TASK STACK) 
DW 0 jTASK ATTRIBUTES 
DW 0 ;LEVEL 0 (UNUSED) 
DW 0 ;LEVEL 1 (UNUSED) 
DW 0 jLEVEL 2 (UNUSED) 
DW 0 ;LEVEL 3 (UNUSED) . , 

;TASK # 1 
DD STRXMG jSTART ADDRESS 
DD SPRXMG ;STACK ADDRESS 
DW 0 jTASK ATTRIBUTES 
DW 0 ;LEVEL 0 (UNUSED) 
DW 0 jLEVEL 1 (UNUSED) 
DW 0 jLEVEL 2 (UNUSED) 
DW 0 jLEVEL 3 (UNUSED) 

i 
iTASK # 2 

DD STTXMG jSTART ADDRESS 
DD SPTXMG iSTACK ADDRESS 
DW 0 iTASK ATTRIBUTES 
DW 0 ;LEVEL 0 (UNUSED) 
DW 0 jLEVEL 1 (UNUSED) 
DW 0 jLEVEL 2 (UNUSED) 
DW 0 jLEVEL 3 (UNUSED) 

j 
jTASK # 3 

DD STCOMM ;START ADDRESS 
DD SPCOMM jSTACK ADDRESS 
DW 0 jTASK ATTRIBUTES 
DW 0 ;LEVEL 0 (UNUSED) 
DW 0 jLEVEL 1 (UNUSED) 
DW 0 jLEVEL 2 (UNUSED) 
DW 0 jLEVEL 3 (UNUSED) 

j 
jTASK # 4 

DD STSEW jSTART ADDRESS 
DD SPSEW jSTACK ADDRESS 



257 

DW 0 ;TASK ATTRIBUTES 
DW 0 ;LEVEL 0 (UNUSED) 
DW 0 ;LEVEL 1 (UNUSED) 
DW 0 ;LEVEL 2 (UNUSED) 
DW 0 ;LEVEL 3 (UNUSED) 

; 
;TASK # 5 

DD STMAKE ;START ADDRESS 
DD SPMAKE ;STACK ADDRESS 
DW 0 ;TASK ATTRIBUTES 
DW 0 ;LEVEL 0 (UNUSED) 
DW 0 ;LEVEL 1 (UNUSED) 
DW 0 ;LEVEL 2 (UNUSED) 
DW 0 ;LEVEL 3 (UNUSED) 

j 
;TASK # 6 

DD STCONT jSTART ADDRESS 
DD SPCONT . ;STACK ADDRESS 
DW 0 ;TASK ATTRIBUTES 
DW 0 jLEVEL 0 (UNUSED) 
DW 0 jLEVEL 1 (UNUSED) 
DW 0 jLEVEL 2 (UNUSED) 
DW 0 ;LEVEL 3 (UNUSED) 

; 
;TASK # 7 

DD STPOST START ADDRESS 
DD SPPOST STACK ADDRESS 
DW 0 TASK ATTRIBUTES 
DW 0 LEVEL 0 (UNUSED) 
DW 0 LEVEL 1 (UNUSED) 
DW 0 LEVEL 2 (UNUSED) 
DW '0 LEVEL 3 (UNUSED) 

j 
;TASK # 8 

DD STPRNT START ADDRESS 
DD SPPRNT STACK ADDRESS 
DW 0 TASK ATTRIBUTES 
DW 4 LEVEL 0 
DW 3 LEVEL 1 
DW 320 LEVEL 2 
DW 3 LEVEL 3 

DW 2 DUP(OFFFFH) jEND OF TASKS 
j 
;TABLE OF INTEGER TASK NUMBERS 
j 
TNTMR DW 0 
TNRXMG DW 1 
TNTXMG DW 2 
TNCOMM DW 3 
TNSEW DW 4 
TNMAKE DW 5 
TNCONT DW 6 
TNPOST DW 7 
TNPRNT DW 8 
; 
jAMX86 RESTART PROCEDURE LIST IN ORDER OF EXECUTION 



EVEN 
AMRPL LABEL 

DD 
DD 
DD 
DD 
DD 
DD 
DD 

DW 
; 
AMNUMQ DW 
AMCLKP DW 
AMISTP DD 
; 

DWORD 
AMTDPC 
AMRMRR 
AABIA 
RTIMER 
RPCOM 
RPCAMR 
RPSEW 

2 DUP(OFFFFH) 

500 
1 
AMISTK 

258 

;TIME/DATE FOR IBM PC DOS 
;RESOURCE MANAGER 
;BUFFER MANAGER 
;USER RESTART PROCEDURES 

;END OF LIST 

;# OF SYSTEM Q PARAMETER BLOCKS 
;CLOCK PERIOD = # OF INTERRUPTS 
;AMX86 INTERRUPT STACK POINTER 

;AMX86 APPLICATION TIMER PROCEDURE LIST 
; 
AMTMRR LABEL DWORD 

DD AMTDTR ;TIME/DATE TIMER PROCEDURE 
DD TRDMY 

DW 2 DUP(OFFFFH) ;END OF LIST 
; 
TRDMY PROC FAR 

RET 
TRDMY ENDP 
; 
;TABLE OF APPLICATION TIMER DISPLACEMENTS 
; 
TMTD DW 
TMNOl DW 
; 

o 
2 

;TIME/DATE USER PARAMETER TABLE 
EVEN 

; 
AMTDFQ- DW 
AMTDTM DW 
AMTDRA DD 
AMTDSH DW 
; 

18 
o 
TDRAM 
2 DUP(OFFFFH) 

;AMX86 RESOURCE DEFINITION TABLE 

EVEN 
AMRDT LABEL WORD 

DW 0 
; 

;TIME/DATE TIMER 

;TIMER FREQUENCY 
;DISPLACEMENT OF TIME/DATE TIMER 
;A(TIME/DATE RAM BLdtK) 
;NO USER TIME/DATE SCHEDULER 

;NUMBER OF RESOURCES 

jRESOURCE IDENTIFICATION NUMBER TABLE 

; 
;BUFFER POOL DESCRIPTION TABLE 

EVEN 
AAPDT LABEL 

DW 
DD 
DW 
DW 

WORD 
2 
RAMO 
200 
150 

;NUMBER OF POOLS 
;POINTER TO RAM AREA FOR POOL # 0 
;NUM8ER OF BUFFERS IN POOL # 0 
;SIZE OF BUFFERS IN POOL # 0 



. , 

DD 
DW 
DW 

RAMI 
10 
160 

AMXPAR ENDS 

PAGE 
jTHE AMX86 DATA SEGMENT 
j 

AMXDATA SEGMENT WORD 'DATA' 

; 
AMDATA 
NT 
QB 
TQ 
NTM 

PUBLIC AMDATA 

LABEL 
EQU 
EQU 
EQU 
EQU 

WORD 
9 
500 
346 
2 

259 

jPOINTER TO RAM AREA FOR POOL I 1 
jNUMBER OF BUFFERS IN POOL I 1 
;SIZE OF BUFFERS IN POOL # 1 

jEND OF AMX86 PARAMETER SEGMENT 

;ENTRY POINT FOR AMX86 USE 

;# OF TASKS IN SYSTEM 
;# OF QUEUE BLOCKS IN SYSTEM Q 
;# OF WORDS REQUIRED FOR TASK Q'S 
;# OF APPLICATION INTERVAL TIMERS 

DW 32 DUP(?) ;AMX86 PRIVATE STORAGE 
DW (NT*32)+2 DUP(?) ;TASK CONTROL BLOCKS 
DW (QB*9)+4 DUP(?) jAMX86 SYSTEM QUEUE 
DW TQ DUP(?) ;TASK QUEUE STORAGE 
DW NTM DUP(?) jTIMER LIST 

; 
;TIME/DATE RAM BLOCK 
; 
TDRAM DB 9 DUP(?) 
; 
AMXDATA ENDS 

PAGE 
jAMX86 STACK SEGMENTS 
j 

AMXESTK SEGMENT WORD 'TSTACK' 
PUBLI C AMESTK 
DW 400 DUP(?) 

jEND OF AMX86 DATA SEGMENT 

AMESTK LABEL WORD jAMX86 EXECUTIVE STACK 
AMXESTK ENDS 
j 

AMXISTK SEGMENT WORD 'MSTACK' 
DW 450 DUP(?) 

AMISTK LABEL WORD jAMX86 INTERRUPT STACK 
AM X I STK .ENDS 
j 

AMXTSTK SEGMENT WORD 'MSTACK' 
DW 400 DUP(?) 

SPTMR LABEL WORD jAMX86 TIMER TASK STACK 
AMXTSTK ENDS 
j 
jAMX86 LARGE TASK STACK SEGMENTS 
j 

RXMGTSTACK SEGMENT WORD 'TSTACK' 
DW 400 DUP(?) 

SPRXMG LA8EL WORD jSTACK FOR TASK # I 
RXMGTSTACK ENDS 
; 
TXMGTSTACK SEGMENT WORD 'TSTACK' 



DW 400 DUP(?) 
SPTXMG LABEL WORD 
TXMGTSTACK ENDS . , 
COMMTSTACK SEGMENT WORD 'TSTACK' 

DW 500 DUP(?) 

260 

;STACK FOR TASK * 2 

SPCOMM LABEL WORD jSTACK FOR TASK # 3 
COMMTSTACK ENDS 
; 
SEWTSTACK SEGMENT WORD 'TSTACK' 

DW 500 DUP(?) 
SPSEW LABEL WORD ;STACK FOR TASK # 4 
SEWTSTACK ENDS 
; 
MAKETSTACK SEGMENT WORD 'TSTACK' 

DW 500 DUP(?) 
SPMAKE LABEL WORD iSTACK FOR TASK # 5 
MAKETSTACK ENDS 
; 
CONTTSTACK SEGMENT WORD 'TSTACK' 

DW 500 DUP(?) 
SPCONT LABEL WORD 
CONTTSTACK ENDS 
; 
POSTTSTACK SEGMENT WORD 'TSTACK' 

DW 500 DUP(?) 

iSTACK FOR TASK # 6 

SPPOST LABEL WORD ;STACK FOR TASK # 7 
POSTTSTACK ENDS 
; 
PRNTTSTACK SEGMENT WORD 'TSTACK' 

DW 400 DUP(?) 
SPPRNT LABEL WORD iSTACK FOR TASK # 8 
PRNTTSTACK ENDS 

. PAGE 
iAMX86 RESOURCE CONTROL TABLE 
i 

. AMRMDATA SEGMENT WORD 'DATA' 

PUBLIC AMRCT 

EVEN 
AMRCT DW 
i 
AMRMDATA ENDS 

PAGE 

1 DUP(?) 

;BUFFER POOL STORAGE AREAS 
; 
AABMDATA SEGMENT WORD 'DATA' 
; 
RAMO 
RAMl 
j 

DB 
DB 

AABMDATA ENDS 

END 

30806 DUP(?) 
1646 DUP(?) 

iALLOCATE STORAGE 

jRAM FOR POOL # 0 
jRAM FOR POOL # 1 



261 

A.4. Header File for C Language Modules 

The c:ode 
language 
fo llowi ng 
modules :-

for the IBM AT was divided up into several C 
modules and one assembly language module. The 

header file was included in all the C language 

# include 
#include 
#i nclude 
#include 

#define VERSION 
#define U8259 
#define UEOI 
#define U8259M 
#define UIRQ3M 
#define UIRQ4M 
#define UIRQ5M 
#define UCLK 
#define UCLKC 
#define UCLKV 
#define UCOMV 
#define UGPCAV 
#define UGPCBV 
#define ONESEC 

#define UKBD 
#defi ne UKBDC 
#define UKBDR 
#define UKBDV 

#defi ne TNTMR 
#define TNRXMG 
#define TNTXMG 
#define TNCOMM 
#define TNSEW 
#defi ne TNMAKE 
#define TNCONT 
#define TNPOST 
#define TNPRNT 
#define TIMERl 

#defi ne POOL1 
#define POOL2 
#defi ne MAXLlNE 

#define PORT_A 
#define PORT_B 
#define PORT_C 
#define SPEED_P 
#define PORT_E 
#define PORTJ 
#defi ne PORT_G 

"s tdio.h" 
"dos.h" 
"math.h" 
"limits.h" 

2.3 
Ox20 
Ox20 
Ox2l 
Ox08 
OxlO 
Ox20 
Ox40 
Ox43 
8 
12 
13 
11 
18 

Ox60 
Ox61 
Ox80 
9 

o 
1 
2 
3 
4 
5 
6 
7 
8 
o 

o 
1 
81 

Ox304 
Ox305 
Ox306 
Ox307 
Ox308 
Ox309 
Ox30a 

1* 8259 Interrupt controller port *1 
1* end-of-interrupt command *1 
1* 8259 interrupt mask register *1 
1* IRQ 3 mask (serial comm. port #2 *1 
1* IRQ 4 mask (serial comm. port #1 *1 
1* IRQ 5 mask (GPC interrupts) *1 
1* clock port (timer 0 on 8253 eTC *1 
1* 8253 clock control *1 
1* clock interrupt type *1 
1* communicat. port #1 interrupt type*1 
1* General Purpose Communication int *1 
1* General Purpose Communication int *1 
1* no. of AMX86 ticks in one sec *1 

1* keyboard data port *1 
1* keyboard control port *1 
1* keyboard reset command *1 
1* keyboard interrupt type *1 

1* AMX Timer Task Number *1 
1* Receive Message Task *1 
1* Transmit Message task *1 
1* Communication Supervisor Task *1 
1* Adaptive robotic sewing Task *1 
1* Task to make one sub-assembly *1 
1* FIGARO Controller Task *1 
1* Post Mortem Report Generator Task *1 
1* Print messages task *1 
1* Timer used for speed calc *1 

1* Buffer pool for print messages *1 
1* Buffer pool for txmit messages *1 
1* max. no. characters on a line *1 

1* definitions for 1/0 card ports *1 

1* sewing mIc speed analogue signal *1 



#define CB_IO_1 
#define CB_IO_2 
#define CB_COUNTR 
#define LO_COUNT 
#define HI_COUNT 
#define FINGl 

Ox30b 
Ox30f 
Ox30e 
Ox300 
Ox301 
Ox310 

262 

1* control port for ports E, F ! G *1 

1* contrl port for counters & latches*1 
1* 10 byte of counter *1 
1* hi byte of counter *1 

1* port address for finger #1*1 

1* General Purpose Communcation Channel Functions *1 
#define INIT_GP 1 
#define TERM_GP 2 
#define FINDCLOTH 3 
#define CORNER 4 
#define UPTO_NDLE 5 
#define FAR_RH 6 
#define MOVE BACK 7 
#define ST_ALTER 8 
#define END_ALTER 9 
#define RETREAT 10 
#define WHERE 11 
#define PARAMl 12 
#define GO_START 13 
#define ALIGN_F 14 
#define DROP 15 
#define PARAM2 16 
#define GO_NEAR 17 
#define STARTUP 18 
#define FINEADJ 19 
#define ANGLEADJ 20 
#define ROTATE90 21 
#define INCHMOVE 22 
#define REMOVE 23 
#define STRAIGHTN 24 
#define END_CLOTH 25 
#define Q_AGAIN 26 

1* Sewing 
#define SEW_START OxOl 
#define SEW_STOP OxOO 
#define TRIM_THREAD Ox02 
#define NEEDLE_UP Ox04 
#define SLO_SEW OxlO 
#define FAST_SEW Ox20 
#define PRESSER_FT Ox40 
#define BACKTACK Ox80 

#define RESET_CNTR OxOl 
#define LATCH_EN Ox02 
#define PMBAK 100 

#define TRUE 1 
#define FALSE 0 

#define ALTER Ox3f8 
#define LCR 3 
#defi ne I IR 2 
#define LSR 5 
#define DLL 0 
#define DLM 1 

1* initialize GP communications *1 
1* terminate GP communications *1 
1* request robot find cloth *1 
1* request robot find upper RH corner *1 
1* put cloth corner under needle *1 
1* find far RH corner *1 
1* request robot move back a distance *1 
1* request VAL 11 start up ALTER *1 
1* request VAL 11 terminate ALTER *1 
1* robot retreats from ndle with cloth*1 
1* VAL 11 report robot position *1 
1* input parameters version 1 *1 
1* request robot move to start positn *1 
1* request robot aligns finger *1 
1* request robot drops onto cloth *1 
1* input parameters version 2 *1 
1* request robot move to near.start *1 
1* request startup data *1 
1* fine adjustment function *1 
1* fine angular adjustment function *1 
1* rotate cloth by 90 degrees *1 
1* inching motion function *1 
1* remove robot from needle zone *1 
1* straighten out cloth *1 
1* find end of cloth *1 
1* ask whether to continue *1 

Machine Functions *1 
1* mask for variable sewing speed *1 

1* thread trimming *1 
1* needle up *1 
1* sew at slow speed *1 
1* sew at maximum speed *1 
1* presser foot up *1 
1* backtack *1 

1* mask to reset counters *1 
1* enable latches *1 

1* serial port #1 *1 



#define IER 
#define MSR 
#define MCR 
#define ALT_LSR 
#define ALT_IIR 

#define HI_BAUD_RT 
#define LO_BAUD_RT 

#define ETX 
#define DLE 
#define DEL 
#define STX 
#define SC_FACT 
#define NSLOT 

#defi ne SEGMNT 
#defi ne CONTRLB 
#define TRIGGER 
#define FREEZE 
#define BUSFRZ 
#define CAM1_OFS 
#define CAM2_0FS 
#define CAM1JL 
#define CAM2_FL 
#defi ne NCAM 
#define NROW 
#define NCOL 
#define NPIXLS 

1 
6 
4 

Ox3fd 
Ox3fa 

Ox06 
OxOc 

0203 
0220 
0377 
0202 

32 
200 

Ox9cOO 
Ox3fff 
OxOO 
Ox08 
Ox09 
OxOOO 
Ox400 
Ox3fl 
Ox3f3 
2 
30 
32 
ROW * NCOL 

263 

1* max divisor is OxOf (c:har)*1 
1* 19200 baud *1 
1* 9600 baud *1 

1* scale factor for ALTER par*1 
1* no. slots in circ. list *1 

1* I-SIGHT camera card defns *1 
1* camera card address segmnt*1 
1* control byte address *1 
1* ctrl byte to trigger pict *1 
1* freeze control byte *1 
1* mask for bus + freeze *1 
1* offset for camera # 1 *1 
1* offset for camera # 2 *1 
1* address of flag of cam #1 *1 
1* address of flag of cam #2 *1 
1* moo of cameras *1 
1* no. of rows of pixels *1 
1* no. of columns of pixels *1 
1* no. of pixels in picture *1 

#define print_init 
#define prf __ 
#define end_print 
#define displ_init 
#define gpf_start(a) 

ajbgb(POOL1,~p.mp);p.outpt=5 
p.n=sprintf(p.mp, 
if(ajcall(TNPRNT,2,~p)<O)crash(1162) 
ajbgb(POOL1,&p.mp);p.outpt=2 
send_9P«char)a,TRUE) 

typedef struct SPMESS ( 
shod int nj 
char *mp; 
char outpt; 
}PMESSj 

typedef char SLOT1; 

typedef struct SCLIST ( 
char headed8l j 
SLOTl slotstNSLOTl; 
) CLlSTj 

1* Structure Definitions *1 

1* print message struct definition *1 

1* 1 byte slots in circ.lists*1 

1* circular list struct definition*1 

#defi ne TOANG 
#define RAD_TO_A 
#define ROT_FACT 

1* ROBOT specific 
(float)284.477044 
(float)57.2957795l 
(float) (-TOANG*RAD_TO_A) 

parameters *1 
1* VAL 11 scaling factor *1 
1* rads to angles conversn *1 

1* scales from radians to VAL*I 



264 

1* GRIPPER specific parameters */ 
#define RIGHT_MAX 251 itSC_FACT lit max modification dist in y*/ 
#define LEFT_MAX 160*SC_FACT 1* min modification dist in y*/ 
#define R_MAX B60*SCfACT 1* max reach of robot */ 
#define R_MIN 415*SC_FACT 1* min reach of robot */ 
#define R_MID 680*SC_FACT 
#define MAX_ANG 35*TOANG 1* 1 imi t to z_rot it/ 

#define NX_MAX BO*SC_FACT lit exclusion zone before ndle*/ 
#define NX_MIN -150*SC_FACT 1* exclusion zone after ndle */ 
#define NY_MAX 120*SC_FACT 1* exclusion zone beside ndle*/ 

#define STITCH_LEN 3 1* stitch length in mm *1 
#define TRK_FACT 1 1* tracking proportional gain*/ 
#define TOP_SPEED 255 1* sewing speed ratio to 256 *1 
#define MID_SPEED 170 lit sewing speed ratio to 256 it/ 

#define SLO_SPEED :SO 

#define Y1_PIXEL (float) (O.43*SC_FACT) 1* caml, pixel width *1 
#define Y2_PIXEL (float) (0.67*SC_FACT) 1* cam2, pixel width *1 
#define SEAM_W (float) (12*SC_FACT) 1* nominal seam width *1 
#define CAM2_DIST (float) (30*SC_FACT) 1* dist Xcam */ 
#define F_TO_PC 135*SC_FACT 1* fing to pcell dist */ 

#define NEAR TRUE 1* near technique to be used */ 
#define FAR FALSE 1* far technique to be used *1 

1* Referencing all the functions so that debugging information 
is provided by the compiler. *1 

extern void 

extern char 
extern int 

extern int 

extern float 
extern double 

main(), rtrack(), rpsew(), gpb_isp(), gpa_isp(), 
stseam(), stsew(), gp_function(int), gpf_end(int), 
read_offset(), set_param(), angle_adj(), 
send_word(int), send_gp(char,int), count_reset(), 
ndle_down(), e_calc(float *, float *), stpost(), 
pr_runtime(), setup_pixels(), stcomm(), inch(), 
set_speed(int), delay(int), rpcamr(), rpiptr(), 
install(int,int,int), take_picture(), read_came), 
zBO_check(), stprnt(int,char *,char), crash(int), 
pr_alt_st(int), rpcom(), init(int,char), rtimer(), 
strxmg(), sttxmg(), stack(char **), sh_delay(), 
norm_msg(char **), pm(int), pr _heading(), comisp(), 
clkisp(), tx_byte(char), initialise(), adjust(int), 
startup_data(), where(), setl_param(), set2_param(), 
fine_adj(), std_msgs(), CalcSeamSection()j 
get_byte (i nt) ; 
get_word(), speed_control(int), DecideSeam(int *), 
tension(), limit(int,int), limit2(int,int), 
edge_find(char *,int), find_edge(char *,int), 
intrprt(char), read_count(),limit3(int,int)j 

tens_corr(int,int,long *,double), 
x_corr(unsigned int *, double), 
y_corr(int *,int *,int *), 
envelope(int,int,double,int *)j 
transf_fn(), StdDev(double,double,int); 
rcos(double); 



265 

J* Referencing global variables, to make them accessible in 
all the modules. These variables are declared and described 
in module A. *1 

extern int sewwait, GPlnWait, GPOutWait, completed, ifeed, 
i_hand, x_total, v_total, SeamSection, 
StopDistance, sp_Ien, x_O, y_O, max_e, min_e, 
max_t, min_t, flip, i_t_Avg, rq_tens, accel_Iim, 
vel_Iim, irowl, irow2, ipixl_ofst, ipix2_ofst, 
in_nbyte, terminate, rxwait, no_int, newtxpt, 
comwait, pmarrayt], *pstart, *pfinish, *pbuf, 
fing_dist, f_r, n_x, n_y, cloth_end, acc_dist, 
calc_dist, decel_dist, debug, sew_near, caller; 

extern char b_port, msg_in[], *pt_txmg, *new_pt, *cc_pt, 
*cccb_pt, *tpl_pt, *tp2_pt, *caml_pt, *cam2_pt, 
caml_buft], cam2_buf[], *StartAckMsg_pt, 
*NuIIMsg_pt; 

extern long int t_MeanDev, t_Avg, I_total; 
extern unsigned int t_period,offstl, countl, count2; 
extern float pixell[], pixeI2[], gain_pixC], pmdatC], 

*pmdata_pt, blp_fact, e_MeanDev, e_Avg, pixl_ofst, 
pix2_ofst, t_gain, int_fact, deriv_gain, pix_gain, 
~h_O, f_angle, cos_f, sin_f, s_gain; 

A.5. Global Variables 

All ·the global variables used in the C language modules, 
were defined in the first module. 

J* Global variables *J 

int 
int 
int 
int 
int 
int 
int 
int 
int 
int 

J* flags *1 
sewwait; 
GPlnWaitj 
GPOutWait; 
completed; 
terminate; 
rxwait; 
newtxpt; 
comwait; 
cloth_end; 
sew_near; 

J* ALTER communication 
rxlist,txlist, chlistj 

msg_in[260Jj 
*p t_ hmg ; 
*new_pt; 

J* SEW task waiting for handshake *1 
J* waiting for GPC IBF interrupt *1 
1* waiting for GPC OBF interrupt *1 
1* cloth length has been sewn up *1 
1* flag to teminate COMM Task *1 
1* RXMG task waiting for COMISP ? *1 
J* SEW task updated transmit msg7 *1 
1* COMM task waiting for RXMG ? *1 
1* end of cloth detected 7 *1 
1* sew section using near technique *1 

Parameters *1 

1* pointer to txmit msg *1 
1* pointer to updated txmit msg *1 

CLIST 
char 
char 
char 
char *StartAckMsg_pt, *NullMsg_pt; 

J* pointers to standard txmit msgs *J 
int in_nbyte, no_intj 
int ifeed, i_hand, x_total, v_total; 



266 

long int z_totalj 

1* GPC channel Parameters *1 
char b _por t; 
i nt caller; 

1* initial contents of PORT_B *1 
1* Task No. of calling Task *1 

1* Post_mortem and crash 
int pmarray[PM8AKJ; 
int *pstart, *pfinish, *pbuf; 
float pmdat[4000Jj 
float *pmdata_pt = ~pmdat[Olj 
int debug = FALSEj 

1* camera par~meters *1 
float pix1_ofst; 
float pix2_ofstj 

parameters *1 

float pixell[NCOL+ll, pixeI2CNCOL+ll, gain_pix[NCOL+2l; 
char *cc_pt, *cccb_pt, *tpl_pt, *tp2_pt, *caml_pt, *cam2_ptj 
char cam1_buf[NPIXLS+2Jj 
char cam2_buf[NPIXLS+2lj 

1* Robot startup data Parameteras *1 
int fing_distj 1* dist between two fingers 
int f J j 1* finger-flange radius 
float f_an-gle, cos_f, sin_f; 1* finger-flange angle 
int n x· 1* needle position w.r.t. robot base, x coord - , 
int n_y; 1* needle position w.r.t. robot base, y coord 

1* Sewing Task parameters *1 

*1 
*1 
*1 
*1 
*1 

int SeamSection; 1* length of seam section to be sewn *1 
int StopDistancej 1* dist of seam section end to needle *1 
unsigned int offst1; 1* finger ADC's offsets at zero load *1 
int x_a; 1* initial 1st finger x position *1 
int y_Oj 1* initial 1st finger y position *1 
float th_Oj 1* initial theta, 2nd finger angle *1 
float blp_fact; 1* converts blips to y displcmnt *1 
float e_MeanDev; 1* seam error mean deviation *1 
float e_Avgj 1* seam error average *1 
long int t_MeanDev; 1* tension error mean deviation *1 
long int t_Avg; 1* tension error average *1 
int max_e, min_e, max_t, min_t, i_t_Avgj 
int flip; 
int acc_dist, calc_dist, decel_dist; 

1* Parameters for calclulating sewing speed *1 
unsigned int countl, count2; 
unsigned int t_period; 
int sp_Ienj 

1* Parameters that are reset by set_param( ) *1 
float t_gain; 1* Tension servo, proportnl gain *1 
float int_factj 1* tension servo, integral gain *1 
float deriv_gain; 1* Seam servo, derivative gain *1 
float s_gain; 1* Seam servo, proportnl gain *1 
float pix_gainj 1* proportnl gain per pixel *1 
int rq_tensj 1* demand tension *1 
int accel_lim; 1* acceleration limitation *1 



267 

• 

int vel_lim; 1* velocity limitation *1 
int irowl; 1* pixel row no for 1st camera *1 
int irow2; 
int ipix1_ofst; 1* camera 1 centreline offset *1 
int ipix2_ofst; 1* camera 2 centreline offset *1 

A.6. Initialisations 

A.6.1. Restart Procedures 

Restart Procedures were written for the communication 
Tasks, the vision system and for the SEW Task, and they are 
listed in Appendices B, F and D respectively. A simple 
Restart Procedure for the AMX timer was also required, as 
follows :-

vo id rtimer<) 
( ajmodl(); 

} 

ajbia(); 
rpiptr() ; 

A.6.2. AMX Start Up 

1* initialize all buffer pools *1 
1* set up pointers to ISP's *1 

The AMX executive was started using the following start-up 
code :-

void _main() 
< mai n( ) ; 
} 

void mai n( ) 
< extern unsigned int _top; 

int i,j; 

} 

_top = OxFFFO; 

for (j =30; j != 0; j--) 
for (i = 8000; i != 0; i--) 

j 

amxgo(); 

A.7. PRNT Task 

1* replace Microsoft's _main() *1 

1* disable stack checking *1 
1* delay until disk motor off *1 

1* start AMX *1 

Messages were displayed on the screen or printed out via 
the PRNT Task. The Task was given the lowest priority so 
that higher priority Tasks were not blocked by the printing 
out process. 



void stprntCn,mp,outpt) 
int n; 
char *mp; 
char outpt; 
< 

} 

char *msgp; 
ajmodl (); 

for ( msgp = mp; msgp < mp+n+l 
bdos(outpt,*msgp++); 

bdos(outpt,OxOa); 
bdosCoutpt,OxOd); 

if (ajbrb(mp) != 0) 
crashCS086); 

A.S. Miscellaneous Functions 

26S 

1* no. of characters in string *1 
1* pointer to string *1 
1* display or print code *1 

1* Lattice library function *1 
1* carriage return ~ new line *1 

1* release message buffer *1 

Extensive debugging facilities were developed and 
incorporated into the code. The crashC) function provided a 
simple error message facility. The pm() function provided a 
post-mortem facility in which values could be stored during 
a real time process and printed out afterwards. 

Two time delay functions were written, a normal delay() and 
a short sh_delay(). 

void crash(code) 
int code; 
< 

} 

char *stp, *msgp, stbufC120J; 
int n; 
PMESS p; 

install (0,0,0); 
terminate = TRUE; 
ajoutb(PORT_A,O); 
stp = ~stbuf(Ol; 

1* stop robot *1 
1* stop COMM task *1 

1* stop sewing mIc *1 

n = sprintf(stp," CRASH detected, crash code = %d", code); 
for (msgp = stp; msgp < stp+n+l;) 

bdosC2,*msgp++) ; 
bdos(2,OxOa); 
bdosC2,OxOd); 
if (debug) pr_runtime() 

1* This routine instals a post-mortem code *1 
1* into a buffer for debugging purposes *1 

void pm(code) 
int code; 
< 

*(pbuf++) = code; 



) 

if (pbuf > pfinish) 
pbuf = pstad j 

void delay(times) 
int times; 
( 

int i,j; 

for (i=Oj i < times; i++) 

269 

for (j=Oj j < 500; j++) 

) 

void sh_delay() 
( 

int i; 
for< i=Oj i < 10; i++) 

) 



270 

APPENDIX B 

SOFTWARE FOR ALTER COMMUNICATION CHANNEL 

B.l. The Restart Procedure 

void rpcom() 1* restart procedure for comm. port *1 
< PMESS pj 

} 

char m_regj 
ajmodl(); 
displ_init; 
prf __ "restart procedure for ALTER communications task"); 
end_printj 

ajdi(); 
m_reg = ajinb(U8259M); 
m_reg = m_reg ~ ~UIRQ4Mj 

sh_delay(); 
ajoutb(U8259M, m_reg); 
init(ALTER,(char)HI_BAUD_RT)j 
ajei()j 

1* enable IRQ4 interrupt *1 
1* reset IRQ4 mask *1 

1* initialize comm. chip *1 

1* init. circ. lists *1 
ajrstl (~rxlist,sizeof(SLOT1),NSLOT); 
ajrstl (~txlist,sizeof(SLOT1),NSLOT); 

pstart = ~pmarray(O]; 
pfinish = ~pmarray[PMBAK-l]; 
pbuf = ~pmarray[O]j 

1* init. post-mortem pointers*1 

1* This routine sets up the serial port *1 
void init(port,baud) 
int port; 
char baud; 
< char byte; 

ajmodl()j 

} 

ajoutb(port+IER,O); 
byte = ajinb(port+LSR); 
byte = ajinb(port)j 
byte = ajinb(port+IIR); 
byte = ajinb(port+MSR)j 
ajoutb(port+LCR,O)j 
ajoutb(port+MCR,O)j 
ajoutb(port+LCR,Ox80) 
ajoutb(port+DLL,baud) 
ajoutb(port+DLM,OxOO) 
ajoutb(port+MSR,OxOO) 
ajoutb(port+LCR,Ox03) 
ajoutb(port+MCR,OxOS) 
ajoutb(port+IER,Ox07) 

1* disable all IER interrupts*1 
1* clear Rx error interrupt *1 
1* clear Rx data interrupt *1 
1* clear Tx interrupt *1 
1* clear modem interrupt *1 

1* set DLA8 to access baud *1 
1* set baud rate divisor *1 

1* OUT2 must be high for interrpt *1 

• 



271 

S.2. The COMM Task 

1* Communication task - supervises handshaking *1 
void stcomm() 
{ 

} 

PMESS p; 
int alt_stat; 

ajmodl(); 
displ_init; 
prf __ "communication task started"); 
end_print; 

1* initialise Glob~l variables *1 
terminate = FALSE; 
rxwait = newtxpt = comwait = FALSE; 
i_hand = 0; 
alt_stat = 5; 1* ALTER not up yet *1 
std_msgs(); 

1* infinite loop for handshaking cycle *1 
for (i_hand = 0; ji_hand++) 
( 

} 

if (ajtask(TNRXMG) 
crash(90BO) ; 

ajshed(); 
ajdi(); 

!= 0)· 1* start RXMG Task *1 

comwait = TRUE; 
ajwait(); 1* wait until ALTER sends a msg *1 

5witch(intrprt(msg_intO]» 
( 

1* interpret msg *1 

} 

case 0 : 1* ALTER starting *1 
pt_txmg = StartAckMsg_pt; 
if (ajtask<TNTXMG) != 0) crash(90Bl); 
ajshed () ; 
pt_txmg = NullMsg_pt; 
break; 

case 1 
if 
( 

(newtxpt) 
ajdi(); 
newtxpt = 
pt_txmg = 
ajei () ; 

1* ALTER running *1 
1* check if new msg ready 1 *1 

} 

ajtask <TNTXMG) i 
ajshed(); 
break; 

case 2: 
case 3 : 
case 4 : 

pr_alt_st(alt_stat); 
ajend(); 

1* instal new pointer*' 

1* call TXMG Task *1 

1* ALTER terminating *1 

if (terminate) ajend(); 



272 

1* This routine sets up the Standard ALTER messages *1 
void std_msgs() 
( if (ajbrb(StartAckMs9_pt) < 0); 1* release old buffers *1 

> 

if (ajbrb(NuIIMs9_pt) < 0); 

if (ajbgb(POOL2,&StartAckMsg_pt) != 0) 
crash(6437) ; 

*StartAckMs9_pt = 1; 1* start acknowledge msg *1 
*(StartAckMsg_pt+l) = 0; 

if (ajbgb(POOL2,&NullMs9_pt) 1= 0) 
crash(6436); 

*NulIMsg_pt = 2; 
*(NullMsg_pt+l) = 0; 
*(NullMsg_pt+2) = 0; 

1* normal acknowledge msg *1 

1* this routine prints out the status of the ALTER comms *1 
void pr_alt_st(alt_stat) 
int alt_stat; 
( 

PMESS p; 

switch (alt_stat) 
( 

case 0: 

case 1: 

case 2: 

case 3: 

case 4: 

) 

> 

displ_init; 
prf __ " ALTER starting"); 
end_print; 
break; 

displ_init; 
prf __ " ALTER running"); 
end_print; 
break; 

displ_init; 
prf __ " ALTER pausing"); 
end_print; 
break; 

displ_init; 
prf __ " ALTER terminated"); 
end_print; 
break; 

displ_init; 
prf __ " error detected by VAL 11"); 
end_print; 

1* This routine interprets VAL Il"s ALTER control byte *1 
intrprt(contrlb) 
char contrlb; 
( PMESS p; 



} 

273 

Ox07) == 0) if «char)(contrlb ~ 
{ switch «int)( (char)(contrlb &. Ox60) 

( case 0 
case Ox20 
case Ox40 
case Ox60 

} 

} 

displ_init; 

return(l); 
return(O); 
return(2) ; 
return(3) ; 

switch «int)( (char)(contrlb &. Ox07) » 
{ 

case 1 : 

1* 
1* 
1* 
1* 

» 
ALTER 
ALTER 
ALTER 
ALTER 

prf __ 11 checksum error detected by VAL"); . 
break; 

case 2: 

running 
starting 
pausing 
stopping 

prf __ 11 framing/format error detected by VAL"); 
break; 

case 3: 
prf __ 11 data overrun detected by VAL"); 
break; 

case 4: 
prf __ 11 too many messages complaint from VAL 11); 

break; 
case 5: 

prf __ 11 protocol error detected by VAL"); 
break; 

case 6: 
prf __ 11 timeout error detected by VAL"); 
break; 

default . . 
prf __ 11 undefined VAL error message"); 

} 

end_print; 
return(4); 

*1 
*1 
*1 
*1 

8.3. The RXMG Task 

void strxmg() 
( 

1* Rx message Task *1 

char in_msg, dle_det,end_det,start_det, byte, checksum; 
void rx_halt(); 
ajmodl(); 

if (sewwa it) 
( sewwait = FALSE; 

) 

if (ajwakeCTNSEW) != 0) 
rx_haltC); 

ajdi(); 
rxwait = TRUE; 
ajwaitC); 

1* wake up SEW Task before*1 
1* RXMG suspends itself *1 

1* ensure wait state before *1 
1* setting flag *1 

1* wait for COMISP interrpt *1 

if (CajrblC~rxlist,~byte» < 0) 1* take 1st byte *1 



274 

r>C_halt(); 
mS9_in[OJ = byte; 

1* off list */ 

in_nbyte = 1; 
in_msg = TRUE; 
checksum = 0; 
dle_det = FALSE; 
end_det = FALSE; 
start_det = FALSE; 

1* initialize flags & counters */ 

wh i le (i n_msg) 
( 1* check for error conditions */ 

if «in_nbyte > 6 U, !start_det) :: (in_nbyte > 254» 
rx_halt()j 

ajdi(); 
1* remove next byte from list */ 

if ( (ajrbl(&rxlist,&byte» < 0) 
( /* if list empty - wait */ 

ajdi (); 1* ensure wai t state */ 
rxwait = TRUE; 1* before setting flag */ 
ajwait(); 
if ( (ajrbl(~rxlist,&byte» < 0) /* try again */ 

r>C_halt ( ) j 
} 

ajei()j 
msg_inCin_nbyte++l = byte; 

if 
( 

} 

else 
( 

} 

else 

else 

if 

if 

if 

if ( (checksum += byte) != 0) 
rx_halt(); 

in_msg = FALSE; 
in_nbyte = in_nbyte - 3; 

(dle_det) 

switch «int)byte) 
< case ETX end_det = TRUE; 

break; 

/* end of msg */ 

case STX start_det = TRUE; 
dle_det = FALSE; 
in_nbyte = 0; 
break; 

case DLE in_nbyte -= 1 • , 
dle_det = FALSE; 
checksum += byte; 
break; 

default rx_halt(); 
} 

(byte == DLE) 
dle_det = TRUE; 

(start_det) 
checksum += byte; 



) 

) 

if (c:omwait) 
( 

) 

c:omwait = FALSE; 
ajwakeCTNCOMM); 

else 
rx_haltC); 

ajend(); 

275 

1* COMM should have been waiting *1 

void ne_hal t C) 
( 

} 

FMESS Pi 

displ_init; 
prf __ " error in inc:oming ALTER message pac:ket"); 
end_print i 
c:rash(7); 

B.4. The TXMG Task 

The tx_byte() routine, which transmits a single byte down 
the ALTER channel, was written in Assembler, and is listed 
in section B.5. 

vo id sttxmg C) 
( 

int nbyte, temp; 
c:har *pt, c:hecksum; 

ajmodl(); 

c:hecksum 
nbyte = 

1* Transmit message task *1 

1* Check that TxHR on Comm Chip is empty before starting *1 
if( l(ajinb(ALT_LSR) !. Ox20) ) 

c:rash(66); 
tx_byte«char)DEL); 
tx_byte«c:har)DLE); 
tx_byte«char)STX); 

for ( pt = pt_txmg + 1; pt < pt_txmg + nbyte + 1; pt++) 
( 

) 

tx_byte(*pt); 
checksum += *pt; 
if (*pt == (char)DLE) 

tx_byte(+pt); 

tx_byte«char)OLE); 
tx_byte«char)ETX); 



} 

276 

checksum = (~checksum) + 1; 
tx_byte(checksum); 

1* accumulate ALTER data in global variables *1 
if (nbyte > 3) 
( 

) 

x_total += *<pt_txmg+3) + (*(pt_txmg+4) « 8); 
v_total += *(pt_txmg+5) + (*(pt_txmg+6) « 8); 
temp = *(pt_txmg+7) + <*(pt_txmg+8) « 8); 
2_total += (long)temp; 

ajend(); 

B.5. Assembly Module 

PAGE 60,132 

********************************************************* 
* * * MODULE B - ASSEMBLER ROUTINES FOR ROBOTIC SEWING * 
* DEVELOPMENT PROJECT * 
* * 
********************************************************** 

CONSTANTS DEFINITIONS 

; 
TNRXMG EQU 
TNCOMM EQU 
ALTER EQU 
ALT_IIR EQU 
ALT_LSR EQU 
U8259 EQU 
UEOI EQU 
UCLKV EQU 
UCOMV EQU 
ETX EQU 
STX EQU 
DLE EQU 

(for meanings see header file to C routines) 

1 
3 
03F8H 
03FAH 
03FDH 
20H 
20H 
8 
12 
0203Q 
0202Q 
0220Q 

AMX86 EXTERNAL DECLARATIONS 

EXTRN 
EXTRN 
EXTRN 
EXTRN 
EXTRN 
EXTRN 
EXTRN 
EXTRN 
EXTRN 
EXTRN 
EXTRN 

AARBL:FAR 
AAATL:FAR 
AAWAIT :FAR 
AACLK:FAR 
AAEND:FAR 
AAINT:FAR 
AAINX:FAR 
AJMODL:FAR 
AAIPTR:FAR 
CRASH:FAR 
AAWAKE:FAR 



277 

; 
DGROUP GROUP DATA 
DATA SEGMENT WORD PUBLIC 'DATA' 

ASSUME DS:DATA 

. , 

EXTRN 
EXTRN 
EXTRN 
EXTRN 
EXTRN 
EXTRN 

RXLIST: BYTE 
TXLIST:BYTE 
RXWAIT:WORD 
MSG_IN:BYTE 
IN_NBYTE:WORD 
COMWAIT:WORD 

DATA ENDS 

PAGE 
; ; 
SUPCODE SEGMENT BYTE 'CODE' 

ASSUME CS:SUPCODE 

RPIPTR 

. , 
RPIPTR 

FUBLI C RP I PTR 
FUBLI C COM I SP 
PUBLIC CLKISP 
PUBLIC TX_BYTE 

************************************************* 
* * * RPIPTR - RESTART PROCEDURE TO INSTAL * 
* INTERRUPT POINTERS * 
* * ************************************************* 

PROC FAR 

c:all AJMODL 
mov ax,5UPCODE 
mov es,ax es = c:urrent segment 
mov bx, OFFSET CLKISP es:bx = address(CLKISP) 
mov dl, UCLKV dl = c:lock intrpt type 
c:all AAIPTR 
nap 
nop 
nOP 
nop 
mov bx, OFFSET COMISP es:bx = address(COMISP) 
mav dl, UCOMV dl = port intrpt type 
c:all AAIPTR 
nap 
nap 
nap 
nap 
ret 

ENDP 

PAGE 



CLKISP 

; 
CLKISP 

278 

************************************************* 
* 
* CLOCK INTERRUPT SERVICE PROCEDURE * 

* 
* * 
************************************************* 

PROC FAR 

call AAINT inform AMX 
push ax 
mov al,UEOI 
out U8259,al end-ef-interrupt signal 
pop ax 
call AACLK go to AMX86 clock ISP 
call AAINX 
iret . dismiss interrupt , 
ENDP 

PAGE 

********************************************************* 
* 
* 
* 

COMMUNICATIONS INTERRUPT SERVICE PROCEDURE 
(ALTER COMMUNICATIONS CHANNEL) 

* 
* 
* 

********************************************************* 

COMISP PROC FAR 

; 
TOP: 

; 
RECEIV: 

call 
call 
push 

AAINT 
AJMODL 
es 

mov ax,ds 
mov es,ax 

mov 
in 
test 
jnz 

cmp 
jZ 
cmp 
jZ 
cmp 
jZ 

jmp 

mov 
in 
mov 
mov 
call 

test 
jns 

dx ,ALT_IIR 
al,dx 
al,Ol 
FININT 

al,04 
RECEIV 
al,02 
TXMIT 
al,06 
FRAME 

TOP 

dx,ALTER 
al,dx 
bx, OFFSET 
cl,al 
AAATL 

ax,ax 
CONT1 

tell AMX86 about interrupt 
set data segment 

read in Interrupt Identification Reg 
while (!«ajinb(ALTER_IIR» ~ 0)(01» 
jump if no interrupt left 

IIR = 4 - byte has been receivd 

IIR = 2 - Transmit Hold Reg Empty 

; IIR = 6 - framing error 

return to check for another interrupt 

read in byte 

DGROUP:RXLIST ; address of list 
; byte to add to list 

add byte to top of circ list 

test for successful call to AAATL 



; 
CONT1: 

; 
TXMIT: 

. 
J 

; 
FRAME: 

; 
FININT: 

. 
J 

COMISP 

; 

mov 
push 
call 
mov 

cmp 
jZ 

mov 
mov 
call 
test 
jz 

mov 
push 
call 
mov 

jmp 

mov 
call 
test 
jS 

mov 
mov 
out 
jmp 

mov 
in 
xor 
push 
call 
mov 
jmp 

pop 
mov 
out 
call 
iret 

ENDP 

PAGE 

ax,OOOl 
ax 
CRASH 
sp,bp 

[RXWAITl,OOOO 
TOP 

[RXWAITl,OOOO 
dx,TNRXMG 
AAWAKE 
ax,ax 
TOP 

ax,0003 
ax 
CRASH 
sp,bp 

TOP 

279 

crash(l) if failure to add to list 

; if (rxwait) then 

; rxwait = FALSE 

wake up RXMG task 

crash(3) if fail to wake 
RXMG when rxwait = TRUE 

bx,OFFSET DGROUP:TXLIST 
AARBL remove byte from TXLIST circ list 
ax,ax 
TOP 

al,cl 
dx,ALTER 
dx,al 
TOP 

dx, ALT_LSR 
al,dx 
ax,ax 
ax 
CRASH 
sp,bp 
TOP 

es 
ax,UEOI 
U8259,al 
AAINX 

; no byte on list, do nothing 

transmit byte 

read LSR to dismiss intrpt 

crash(O) if framing error 

dismiss interrupt signal 
return via AMX86 

********************************************************* 
* 
* 
* 
* 

* 
SUBROUTINE TO TRANSMIT A BYTE DOWN * 
ALTER COMMUNICATION CHANNEL * 

* 
********************************************************* 

TX_BYTE PROC FAR 



; 

call 
push 
mav 
mav 
mav 
pop 

AJMODL 
bp 
bp,sp 
al, [bp+6J 
cl,al 
bp 

push es 
mav ax,ds 
mav es,ax 

c1i 

280 

set data segment 

load parameter - byte 

mav bx, OFFSET DGROUP:TXLIST 
call AAATL ; add byte to circ. list 

; 

cli 
test 
jns 
mav 
push 
call 

CONT3: mav 
in 
test 
jz 

ax,ax 
CONT3 
ax,0009 
ax 
CRASH 

dx,ALT_LSR 
al,dx 
al,20H 
FINTXB 

test for successful call to AAATL 

crash(9) if can't add byte to list 

read in Line Status Register 
; if Tx Hold Reg is not empty 

leave byte on circ. list 

mov bx, OFFSET DGROUP:TXLIST 
call AARSL 
test ax,ax 
jns CONT4 

; 

mov 
push 
call 

CONT4: mov 
mov 
out 

; 
FINTXS: st i 

pop 
ret 

; 
SUPCODE ENDS 

END 

ax,OOOS 
ax 
CRASH 

al,cl 
dx,ALTER 
dx,al 

es 

B.6. High Level Interface 

crash(S) if no byte on list 

transmit byte to comm port 

enable interrupts 

High level Tasks, such as the SEW Task, conveyed ALTER data 
to the COMM Task using the following instal() routine. 



281 

void install(x_displ,y_displ,z_rot) 
int x_displ,y_displ,z_rot; 
( 

) 

char *pt; 

if(ajbgb(POOL2,l!.pt) != 0) 
crash(876); 

*pt = 8; 
*(pt+l) = 0; 
*(pt+2) = Ox31; 
*(pt+3) = (char)x_displ; 
*<pt+4) = (char)(x_displ » 8); 
*(pt+S) = (char)y_displ; 
*(pt+6) = (char)(y_displ » 8); 
*(pt+7) = (char)z_rot; 
*(pt+8) = (char)(z_rot » 8); 

; 
new_pt = pt; 
newtxpt = TRUE; 



282 

APPENDIX C 

THE GPC LINK 

C.l. Software Support for GP Communications 

C.l.l. IBM AT Implementation 

C.l.l.l. Interrupt Service Procedures 

1* Interrupt Service Procedure for GPC O/P *1 
void gpa_isp() 
( 

) 

if (GPOutWait) 
< GPOutWait = FALSE; 

) 

if (ajwake(caller) != 0) 
crash(2322); 

ajoutb(U8259, UEOI); 

1* Interrupt Service Procedure for GPC lIP *1 
void gpb_isp() 
{ 

) 

if (GPlnWait) 
( GPInWait = FALSE; 

) 

if (ajwake(caller) != 0) 
crash (2322) j 

if (!cloth_end) 
( cloth_end = TRUE; 

a j i nb ( PORT J) ; 
) 

ajoutb(U8259, UEOI)j 

C.l.l.2. 110 Routines 

char get_byte(control) 
int control; 
< PMESS pj 

char temp_b, Ok; 

Ok = FALSE; 
do 

1* dismiss interrupt *1 

( 1* wait until INT clear *1 
if( 
( 

!(ajinb(PORT_G) & OxOl) ) 
ajdiC) ; 
caller = ajgetn(); 
GPInWait = TRUE; 



> 

> 

283 

ajwait()j 
) 

temp_b = ajinb(PORT_F)j 
if (control ~~ t(ajinb(PORT_G) ~ OxlO» 
{ 

} 

else 

} while (!Ok) ; 
return(temp_b); 

int temp; 

displ_init; 
prf __ "Unexpected data byte = %5d",temp_b)j 
end_print; 

Ok = TRUE; 

temp = get_byte(FALSE); 
return( temp + «int)get_byte(FALSE) « 8) )j 

void send_9P(bite,control) 
char bite; 
int control; 
{ 

} 

if 
( 

> 

!(ajinb(PORT_G) ~ OxOS» 
ajdi<) ; 
caller = ajgetn(); 
GPOutWait = TRUEj 
ajwait()j 

if (contro 1 ) 
ajoutb(PORT_8,b_port 1= 

else 

ajoutb(PORT_E,bite)j 
sh_delay()j 
ajoutb(PORT_E,bite); 

void send_word(word) 
int word; 
( 

send_gp«char)word,FALSE)j 
sh_delay() ; 
sh_delay() ; 

1* wait for 08F clear *1 

1* set CONTROL high *1 
OxBO) j 

1* set Control low *1 

1* output byte *1 

1* repeat for good luck *1 

send_gp«char) (word » S),FALSE)j 
} 



284 

C.2. VAL 11 Implementation of GPC 

PROGRAM 
1 
2 
3 
4 
5 
6 
7 
8 
9 

END 

PROGRAM 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

END 

PROGRAM 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

END 

PROGRAM 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

inward 
tmpbyte = byte 
CALL inbyte 
PC 2016, 8 = byte 
FOR ii = 1 TO 30 . 
END 
CALL inbyte 
PC 2024, 8 = byte 
word = BIT5(2016, 
byte = tmpbyte 

inbyte 

; 
16) 

read low byte into register 

read high byte into register 
; recompose word 
; restore function code 

WAIT SIG(-1008) ; check OUTPUT BUFFER FULL signal 
byte = BIT5(1009, 8) ; read in data byte from bus 
IF 5IG(1006) THEN ; check CONTROL line 

incontrol = TRUE 
ELSE 

incontrol = FALSE 
END 
SIGNAL 8 
FOR ii = 1 TO 20 
END 
SIGNAL -8 
FOR ii = 1 TO 20 
END 
RETURN 

outbyte 
WAIT SIG(-1007) 
IF contout THEN 

SIGNAL -6 
ELSE 

SIGNAL 6 
END 
PC 9, 8 = COM byte 
SIGNAL 7 
FOR i = 1 TO 2 
END 
SIGNAL -7 
RETURN 

outword 
tmpbyte = byte 
contout = FALSE 
PC 2016, 16 = word 
byte = 8ITS(2016, 8) 

toggle ACKNOWLEDGE line 
delay 

delay for 8255 to respond 

check INPUT BUFFER FULL line 

put data byte on bus 
toggle STROBE? line on 
short delay 

toggle 5TR08E line off 

; store function code 
reset flag to send data byte 

CALL outbyte; send low byte 
FOR i = 1 TO 20 
END 
byte = BIT5(2024, 8) 
CALL ou"tbyte 
byte = tmpbyte 

send high byte 
restore function code 



285 

11 
END 

con tout = TRUE set control flag 

C.3. Calling VAL 11 Functions .......... -........ ~~~~ 
-CL·'O·-··IJI~~··I·:~~) . t": .. , S' 1I ~ 1~\~r\Y 

, \i J \ ... ' r " • \ ..... 

C.3.1. IBM AT Implementation UNIVERSITY OF LEEDS 

The following routines were used to call a VAL 11 function, 
from any Task :-

void gp_function(code) 
int code; 
( gpf_start(code); 

gpf_end(code); 
} 

void gpf_end(code) 
int code; 
( FMESS p; 

char temp; 

temp = get_byte(TRUE); 
displ_init; 
switch «int)temp) 
( 

case 0 
, case INIT _GP 
case TERM_GP 

. case FINDCLOTH: 
case CORNER 
case UPTO_NDLE: 
break; 
case FAR_RH 
case MOVEBACK 
break; 
case ST_ALTER 
case END_ALTER: 
case RETREAT 
case WHERE 
case FARAMl 
case GO_START 
case ALIGN_F 
case DROP 
case PARAM2 
case GO_NEAR : 
case STARTUP 
case FINEADJ 
case ANGLEADJ 
case ROTATE90 
case INCHMOVE 
case REMOVE 
case STRAIGHTN: 
break; 
case END_CLOTH 
default: 

prf __ "VAL 11 has aborted"); break; 
prf __ "GPC Channel initiated"); break; 
prf __ "GPC Channel terminated"); break; 
prf __ "VAL 11 reports finding cloth"); break; 
prf __ "VAL 11 reports finding corner"); break; 
prf __ "VAL 11 has put cloth under needle"); 

prf __ "VAL 11 has found far RH corner"); break; 
prf __ "VAL 11 has moved back a distance"); 

prf __ "VAL 11 has started ALTER"); break; 
prf __ "VAL 11 has terminated ALTER"); break; 
prf __ "Robot has retreated with cloth"); break; 
prf __ "VAL 11 reported robot position"); break; 
prf __ "VAL 11 has input parameters #1"); break; 
prf __ "Robot is at start position"); break; 
prf __ "Instrumented finger is aligned"); break 
prf __ "Robot has dropped onto cloth"); break 
prf __ "VAL 11 has input parameters #2"); break 
prf __ "Robot has moved to start.near"); break 
prf __ "VAL 11 has sent startup data"); break 
prf __ "Fine adjustment completed"); break 
prf __ "Fine angular adjust completed"); break 
prf __ "Robot has rotated cloth by 90"); break 
prf __ "Robot has completed inching"); break 
prf __ "Robot has cleared needle zone"); 'break 
prf __ "Robot has straightened out the cloth"); 

prf __ "Robot has found end of cloth"); break; 
prf __ "VAL 11 sent unrecognisable code - %4d", 



} 

286 

temp) ; 
} 

end_print; 
if ( code != (int)temp) 
< displ_init; 

} 

prf __ "Program terminated by VAL 11 - ", 
"unsuccesful call to function no. X3d",code); 

end_print; 
gpf_start(TERM_GP); 1* terminate GP comms *1 
ajend(); 

C.3.2. VAL 11 Implementation 

PROGRAM mainl 
1 CALL definitions 
2 SPEED hi.speed ALWAYS 
3 TOOL fing1 
4 terminated = FALSE 
:l DO 
6 
7 
8 
9 

·10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

TOOL fingl 
CALL inbyte 
IF incontrol THEN 

contout = TRUE 
CASE byte OF 

VALUE 1: 

check CONTROL line 

control codes 

TYPE "IBM AT has initiated GP communications" 
CALL set.param3 
CALL outbyte 

VALUE 2: 
TYPE "IBM AT has terminated GP communications" 
CALL outbyte 
terminated = TRUE 

VALUE 3: 
TYPE "IBM AT request - find cloth" 
CALL findcloth 
CALL outbyte 

VALUE 4: 
TYPE "IBM AT request - find cloth corner" 
CALL corner 
CALL outbyte 

VALUE 5: 
TYPE "IBM AT request - put cloth under needle" 
CALL uptoneedle 
CALL outbyte 

VALUE 6: 
TYPE "IBM AT request - find far RH corner" 
CALL far.rh 
CALL outbyte 

VALUE 7: 
TYPE "IBM AT request - move back distance" 
CALL moveback 
CALL outbyte 

VALUE 8: 
TYPE "IBM AT request - start ALTER" 



41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 

287 

IF testing THEN 

END 

MOVES SHIFT(HERE BY 0, 0,.100) 
BREAK 

IF testing THEN 
ALTER (0, 3) 

ELSE 
ALTER ( 0 , 19 ) 

END 
REACT 1003, cloth.end 
CALL outbyte 
DELAY 800 
TYPE "leaving start alter loop" 

VALUE 9: 
TYPE "IBM AT request - terminate ALTER" 
BRAKE; remove delay 
NOALTER 
IGNORE 1003 
CALL outbyte 
BREAK 

VALUE 10: 
TYPE "IBM AT request - drag cloth away from needle" 
CALL retreat 
CALL outbyte 

VALUE 11: 
TYPE "IBM AT request - robot position data" 
MOVES SHIFT(start.near BY 0, 0, 100) 
BREAK 
CALL calc.where 
CALL outbyte 

VALUE 12: 
TYPE "IBM AT request - enter gain parameters" 
CALL set.param 
CALL outbyte 

VALUE 13: 
TYPE "IBM AT request - is robot at start positn 1" 
CALL check.start 
CALL outbyte 

VALUE 14: 
TYPE "IBM AT request - align instrumented finger" 
CALL align.finger 
BREAK 
CALL outbyte 

VALUE 15: 
TYPE "IBM AT request - set down 2nd finger" 
DELAY 1 
CALL seLdown 
MOVES SHIFT(HERE BY 0, 0, 100) 
MOVES start 
BREAK 
CALL outbyte 

VALUE 16: 
TYPE" set.param version 2 " 
CALL set.param2 
CALL outbyte ' 

VALUE 17: 
TYPE "IBM AT requests move to start.near" 
CALL go.near.start 

l\ 



99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 

END 

PROGRAM 
1 
2 
3 
4 
5 
6 
7 

288 

CAll outbyte 
VALUE 18: 

TYPE "ISM AT request startup.data" 
CAll startup.data 
CAll outbyte 

VALUE 19: 
TYPE "ISM AT request - fine adjustment" 
CALL fine.adj 
CALL outbyte 

VALUE 20: 
TYPE "ISM AT request - fine angular adjustment" 
CALL angle.adj 
CALL outbyte 

VALUE 21: 
TYPE "IBM AT request - 90 degree turn" 
CALL rotate.90 
CALL outbyte 

VALUE 22: 
TYPE "ISM AT request - inching motion" 
CALL inch 
CALL outbyte 

VALUE 23: 
TYPE "IBM AT request - remove robot from needle zone" 
CALL remove 
CALL outbyte 

VALUE 24: 
TYPE "IBM AT request - straighten cloth" 
CALL straighten 
CALL outbyte 

VALUE 25: 
TYPE "ISM AT request - find cloth end" 
CALL end.cloth 
CALL outbyte 

VALUE 26: 
answer = 0 
TYPE "Do you want to continue 7" 
PROMPT "To continue enter in - 1 ", answer 
IF answer <> 1 THEN 

byte = 0 
END 
CALL outbyte 

ANY 
TYPE "ISM AT requests unknown function = ",/I5,byte 

END 
ELSE 

TYPE "ISM AT sent an unexpected data byte = ",/15,byte 
END 

UNTIL terminated 

definitions 

This routine 
TOOL fing1 
table.ht = 
test.level 
hi .speed = 
pcdist = 78 

initialises variables and constants 

-498.5 
= -484 
120 

z coordinate of table height 

speed rate for fast motions 
distance between photocells 



8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

END 

289 

1.154 ; ang. offset of finge to x axis 
y offset of finger ~1 from pcell1 
; x offset of pcell1 to finger #1 

theta.offset = 
pc.to.fg = 55 
fg.to.pc = -20 
fing.dist = 156 
testing = TRUE 
straightening = FALSE 
pcell1.on = 1001 
pcell2.on = 1002 
r.max = 850 
RETURN 

; input no. for photocell ~l 
; input no. for photocell #2 

max reach of robot for NULL tool 

C.4. Uplink Facility 

The GPC communication link provided a simple method for 
transfering messages between VAL 11 programs and the AMX 
Tasks running on the IBM AT. However, since the UNIMATION 
Supervisor communication link was not implemented, other 
facilities, such as downloading programs from the IBM to 
VAL 11, were not available. A method was developed for 
uploading programs from VAL 11 to the IBM AT, without 
requiring the Supervisor channel. 

An RS 232C serial port on the IBM AT was linked to the 
PRINTER port on the back of the UNIMATION terminal. The 
following program assisted the upload operation :-

#include "FCNTL.H" 
#include "STDIO.H" 

#define TRUE 
#define FALSE 

#define PUMAT 
#define LCR 
#define IIR 
#define PIIR 
#define LSR 
#define DLL 
#define DLM 
#define IER 
#define MSR 
#define MCR 

init(port) 
short int port; 
< 

outp(port+LCR,Ox83); 
outp(port+DLL,OxBO); 
outp(port+DLM,Ox01); 

1 
0 

Ox2f8 1* serial port ~1 *1 
3 
2 

PUMAT + IIR 
5 
0 
1 
1 
6 
4 



} 

outp(port+MSR,OxOO); 
outp(port+MCR,OxOO); 
outp(port+LCR,Ox03); 
outp(port+IER,OxOS); 
outp(port+IIR,OxOl); 

290 

1* set IER to ignore TxHRE *1 

main() 
( 

> 

char byte, *mode = "w+", *name = "d:puma.lst", date[12J; 
FILE *fp; 

init(PUMAT); 

fp = fopen(name,mode); 
if (fp == NULL) 

printf("\n error in opening 1st file"); 

printf("\nPress PRINTER button on Unimation terminal."); 
printf("\nEnter PLIST progname at Unimation terminal."); 
printf("\n\nWhen listing is completed, press eR on both H); 
printf("terminals (IBM first, then Unimation)\n"); 

getdate(~date[OJ); 

while(lkbhit(» 
if (putc(getbyte(), fp) == EOF) 

printf("Error in writing to file"); 

char getbyte() 
{ 

> 

char iir1, blank = ' '; 

1* wait for interrupt *1 
while ( (iir1 = inp(PIIR» ~ Ox01 ) 

if ( iir1 == Ox04) 
return(inp(PUMAT»; 

else if (iir1 == Ox06) 
printf("\n framing error"); 

else 
printf("\n strange interrupt iir1 = %x",iir1); 

inp(PUMAT+LSR); 
return(blank); 



291 



292 

APPENDIX D 

THE SEW TASK 

D.l. Restart Procedure 

1* Restart Procedure for SEW, CaNT, MAKE and POST Tasks *1 

void rpsew() 
( 

PMESS p; 
int i; 
char mJeg; 
static int gpaintcdC16J, gpbintcdC16Jj 
ajmodl(); 

displ_init; 
prf __ "restart procedure for sewing task"); 
end_print; 

rpiptr(); 1* set up pointers to ISP's *1 
1* send control byte to prog 1/0 chips*1 

ajoutb(CB_IO_2,Ox80)j 
sh_delay(); 
ajoutb(CB_IO_l,OxAE)j 
sh_de 1 ay ( ) ; 
ajoutb(CB_IO_1,Ox05)j 
sh_delay(); 
ajoutb(CB_IO_l,OxOO)j 

ajoutb(CB_COUNTR,RESET_CNTR);. 
sh_delay(); 
ajoutb(CB_COUNTR,O); 

1* mode 1 1/0 for GP comms *1 

1* set INTR for port B *1 

1* set INTR for port A *1 
1* reset counters to zero *1 

1* ready to count *1 
sh_delay () j 
ajoutb(CB_COUNTR,LATCH_EN)j 

1* enable latches to read count *1 

blp_fact = STITCH_LEN*TRK_FACT*SC_FACT*(-1.0)/36.; 
count2 = count1 = OJ 
t_period = 1; 

1* initialize 1/0 ports to sewing mIc *1 
ajoutb(PORT_A,O); 
ajoutb(PORT_8,O)j 
ajoutb(SPEED_P,O); 
cloth_end = TRUE; 1* disable cloth end signal via GPC *1 

1* Parameter initialisations *1 
GPlnWait = GPOutWait = FALSE; 
b_port = y_O = ~_O = 0; 
pixl_ofst = pix2_ofst = 0; 

ajiptr(UGPCAV,gpa_isp,gpaintcd); 
ajiptr(UGPC8V,gpb_isp,gpbintcd); 

m_reg = ajinb(U8259M)j 
m_reg = m_reg & ~UIRQ5M; 
m_reg = m_reg & ~UIRQ3M; 

1* instal interrupt pointer *1 

1* unmask interrupt *1 



} 

for (i = 300; i l= 0; i--); 
ajoutb(U8259M, m_reg); 

if(ajtask(TNCONT» 
crash(223); 

293 

1* start CONT Task *1 

0.2. Main Routine of SEW Task 

void 
< 

stsew( ) 
PMESS pj 
int status, inc_u, inc_x, z_rot, 

last_cnt, i_store, tens; 
float freq, e_O, b_Oj 
unsigned int blp_cntj 
long int t_intgrlj 

ajmodl()j 
displ_init; 
prf __ "SEWing task started"); 
end_print; 

1* Initialisations *1 
sewwait = completed = FALSE; 
blp_cnt = i_store = z_rot = ifeed = status = last_cnt 
y_displ = max_e = max_t = t_MeanDev = t_Avg = inc_x 
= i_t_Avg = dV_old = 0; 
e_MeanDev = e_Avg = 0.0; 
min_e = min_t = 10000; 
t_intgrl = OL; 
flip = FALSE; flop = TRUEj 
cloth_end = FALSE; 1* awaiting signal via GPC *1 
pmdata_pt = ~pmdat(Ol; 
ifeed = i_hand = 1; 

tens = tension()j 
sh_delay(); 
tens = tension(); 
count_reset(); 
set_speed(O) j 

take_picture()j 
delay(10)j 
read_cam() ; 
e_calc(~b_O,~e_O); 

1* start sewing now tl *1 

1* SENSORY FEEDBACK LOOP FOR REAL TIME ROBOT PATH CONTROL *1 

1* test for end of cloth *1 
while « x_total> StopDistance) ~~ tcloth_end ) 



} 

294 

{ 1* control sewing speed *1 

} 

status = speed_control(status)j 
1* calc. avg. update frequency *1 

freq = (float)ifeed/(float)i_handj 
1* APPLYING CLOTH TENSION CONTROL *1 

1* open loop cloth tension control *1 
inc_u = x_corr(~blp_cnt,freq); 

1* closed loop cloth tension control *1 
if (!sew_near) 
{ 1* update tension if ) 1 rev *1 

«blp_cnt - last_cnt) ) 36) if 
( last_cnt = blp_cntj 

tens = tension()j 
} 

1* reset t_intgrl after slack taken up *1 
if (flop ~~ tens> rq_tens) 

} 

{ flop = FALSE; 

} 

t_Avg = t_intgrl = OLj 
t_MeanDev = i_t_Avg = OJ 
min_t = 10000; 

inc_x = tens_corr(inc_u,tens,~t_intgrl,freq); 
1* limit x movement *1 

1* APPLY SEAM WIDTH CONTROL *1 
read_cam()j 1* transfer pixel data to buffer *1 
take_picture()j 1* trigger 280 to read cameras *1 
y_displ = y_corr(~inc_x,~z_rot,~dy_old)j 

if (ifeed < 100 ) 
< *<pmdata_pt++) = 

*(pmdata_pt++) = 
*(pmdata_pt++) = 
*(pmdata_pt++) = 

) 

1* install new ALTER message *1 

1* store runtime data*1 
(float)x_totalj 
(float)y_total; 
(float)i_handj 
«(loat)ifeedj 

flip = flip? FALSE: TRUE; 

ifeed++j 
1* end of update Loop *1 

ajoutb(PORT_A,SEW_STOP); 1* stop sewing machine ! ! *1 
install(O,O,O)j 
cloth_end = TRUEj 1* disable signal via GPC 

displ_initj 
prf __ "initial error = %8.3f, initial beta = %8.3f", 

e_O/SC_FACT,b_O*RAD_TO_A)j 

if (ajwake(TNMAKE) != 0) crash(2322); 

*1 



295 

D.3. Cloth Tension Control Routines 

1* This routine calculates an x displacement for the robot *1 
1* to track the sewing machine shaft encoder signal. *1 

x_corr(blp_cnt,freq) 
unsigned *blp_cnt; 
float freq j 
( 

} 

int inc_x; 
unsigned int new_blip_cnt; 

new_blip_cnt = (unsigned)read_count(); 
1* check for counter overflow *1 

if (new_blip_cnt < *blp_cnt) 
crash(73IS); 

inc_x = (float)(new_blip_cnt - *blp_cnt) 
*blp_fact*freq; 

*blp_cnt = new_blip_cnt; 

tens corr(inc x,tens,t intgrl,freq) - - -int inc_x, tens; 
long *t_intgrl; 
floa t freq; 
( 

} 

int temp; 

temp = rq_tens - tens; 
*t_intgrl += «float)temp/freq)j 
t_Avg += temp; 
max_t = max(max_t,temp); 
min_t = min(min_t,temp); 
t_MeanDev += (temp*temp)j 

1* Cloth Feed Servo Transfer Function *1 
temp = (float)inc_x*(1.0 - (float)*t_intgrl*int_fact -

t_gain*(float)temp)j 
if (temp> 0) 1* ensure no moves backwards *1 

temp = 0; 
return ( temp) ; 

speed_control (sew_status) 
int sew_status; 
( 

int Xj 
static int Pos_l, Pos_2, Pos_3j 

x = x_total; 
switch (sew_status) 
( 



> 

case 0 

case 1 

case 2 

case 3 

case 4 

296 

Pos_l = x_O - acc_dist; 
Pos_2 = Pos_l - calc_distj 
Pos_3 = decel_dist; 
sp_Ien = 0; 
set_speed (0) j 
return(l)j 

if (x > Pos_1> 
( if (sew_near) 

set_speed(i_hand*2)j 

> 

else 
set_speed(i_hand*10); 

return(l)j 

else 
return(2) ; 

if (sew_near) 
set_speed(MID_SPEED)j 

else 
set_speed(TOP_SPEED); 

ajtput«int)O, (unsigned)Oxffff); 
count1 = (unsigned)read_count()j 
Pos_l = )(j 
return(3)j 

if ( x < Pos_2 ) 
{ t_period = (unsigned)Oxffff - ajtget«int)O)j 

count2 = (unsigned)read_count()j 
ajtoff«int)O)j 
sp_Ien = Pos_l - Xj 
return(4); 

> 
else 

return(3)j 

if ( )( < Pos_3) 
( set_speed(SLO_SPEED)j 

return(S)j 
> 

> 
return(sew_status)j 

void read_offset() 
( offst1 = ajinb(FING1); 

delay(l)j 

> 

offstl = ajinb(FING1)j 
delay(lS)j 
offstl = ajinb(FING1)j 

void count_reset() 
{ 1* reset counters to zero *1 

ajoutbCC8_COUNTR,RESET_CNTR)j 
sh_de lay ( ) ; 
ajoutb(C8_COUNTR,0)j 1* ready to count *1 
sh_delay()j 

.... 



297 

ajoutb(CB_COUNTR,LATCH_EN)j 
1* enable latches to read count *1 

) 

tension( ) 
{ unsigned int tens; 

int tmp; 

tens = ajinb(FING1)j 
tmp = (int)(tens - offst1)j 
return( (tmp < 0) 1 0 tmp)j 

) 

limit(qty,lim) 
int qty,lim; 
{ if (qty > lim) 

) 

return(lim)j 
lim *= -1; 
return( (qty < lim) 1 lim qty) ; 

void set_speed(sp_req) 
int SPJeq; 

1* output speed request to mIc *1 

{ 

} 

if ( sp J eq < 0) 
spJeq *= -1; 

if ( sp_req > 255) 
spJeq = 255; 

1* no -ve value possible *1 

1* max. speed of sewin~ mIc *1 

1* change speed setting *1 

1* routine to read sewing mIc count *1 

) 

unsigned int countj 

ajoutb(CB_COUNTR,O); 
count = ajinb(LO_COUNT)j 
count += (ajinb(HI_COUNT) « 8); 
ajoutb(CB_COUNTR, LATCH_EN)j 

return«int)count)j 

D.4. Seam Width Control Rouines 

y corr(inc t, z_rot, dy_old) 
int *inc_t, *z_rot, *dy_old; 
{ PMESS p; 

1* disable latches *1 

1* re-enable *1 

float alphal, alpha2,del_alpha, xl, yl, x2, y2, dx, dy; 
long i nt z 1; 



298 

ajdi(); 
xl = x_total; 
yl = -v_total ; 
zl = z_total ; 
ajei(); 
alphal = (float)zl 

del_alpha = - transf_fnC); 

I*calc instantaneous position *1 
1* calc robot to ndle *1 

1* apply transfer function *1 

1* ca le robot position before limiting *1 
dx = -yl * del_alphaj 
x2 = xl + dx; 
dy = xl * del_alpha; 
y2 = yl + dy; 
dy_i = (int)dYj 
alpha2 = alphal + del_alpha~ 

1* APPLY VARIOUS LIMITATIONS *1 

dy_Iim = limit(dy_i,vel_lim)j 
1* velocity limitation *1 

if (!sew_near) 1* absolute limiting *1 
dy_Iim = limit2(dy_Iim, (int)yl)j 

1* check robot 
h_freq = (float)(1.0/freq); 
switch (envelope«int)xl,(int)yl,alphal,&r» 

within envelope *1 

( case 1 crash(1236); 
breakj 1* fing 1 hits sewing mIc *f 

case 2 crash(1237); 
breakj 

case 3 crashCl238)j 
breakj 

case 4; crash(l239)j 
break; 

1* fing 2 hits sewing mIc *1 

1* robot too far *1 

1* robot too near *1 
case acc_Iim = accel_lim*h_freqj 

case 6 

} 

break; 
acc_lim = 

1* close to base *1 

1* far from base *1 

dy_lim = limit(dy_lim -
dy_Iim *= h_freqj 
dy_lim = limit3(dy_lim, 
dy_Iim 1= h_freq; 

1* acceleration limitation *1 
*dy_old,acc_lim) + *dy_old; 

r); 1* absolute limiting *1 

1* if limited then recalc position *1 
if (dy_Iim ~= dV_i) 
{ dy_i = dy_Iim; 

) 

dy = (float)dy_i; 
del_alpha = dV/xl; 
dx = -(yl*del_alpha); 
x2 = xl + dXj 

*dy_old = dV_I; 1* store del_y for accel limit.1 
1* return z rot ALTER data */ 

*z_rot = del_alpha * ROT_FACT; 
*inc_t += dXj 1* return new x ALTER data *1 



299 

1* return new y ALTER data *1 
> 
envelope(x,y,alpha,r_r) 
int X; 
int y; 
float alpha; 
int*rJ; 
( int du,dv,rj 

> 

long int f_x, f_y, rx, ry; 
float sin_a, cos_a, sin_t, cos_t; 
double tt; 

if (HitSewMc(x,y» 
return( 1); 1* main finger hits *1 

sin_a = sin(alpha); 
cos_a = cos(alpha); 

1* calc 2nd finger position *1 

du = (float)fing_dist*sin_a; 
dv = (float)fing_dist*cos_a; 
if (HitSewMc(x - du,y + dv» 

return(2) ; 
1* 2nd finger hits *1 

1* calc position of robot flange *1 
cos_t = (cos_a*cos_f) - (sin_a*sin_f); 
sin_t = (sin_a*cos_f) + (sin_f*cos_a); 
f_x = (float)f_r*cos_t; 
rx = n_x + x + f_x; 
f_y = (float)f_r*sin_t; 
ry = n_y - y - f_yj 
tt = (rx*rx) + (ry*ry); 
tt = sqrt(tt); 1* calc robot reach radius *1 
r = (intltt; 

*r_r = r; 
if (r > R_MAX) 

return(3) ; 1* too far *1 
if (r < R_MIN) 

return(4); 1* too near *1 
if (r < R_MID) 

return(5); 1* close to base *1 
return(6); 1* far from base *1 

1* this routine returns angular correction based on *1 
1* proportional gain (gain_pix) and derivative gain (beta). *1 

float transf_fn() 
( 

float error,beta; 
int i; 

e_calc(~beta,~error); 1* calc error from pixel data*1 

e_Avg += errorj 1* calc seam error statistics*1 
e_MeanDev += (error*error)j 
min_e = min(min_e,(int)error); 
max_e = max(max_e,(int)error); 

fore i = NCOL; (error < pixellCi-l]) ~~ (i )= 0) i--) 



300 

; 

return«float)«deriv_gain*beta) + gain_pix[il) ); 
} 

1* This routine ealcs. actual seam width error *1 
void e_calc(beta_pt, error_pt) 
float *beta_pt; 
float *error _pt; 
( float np_l, np_2; 

int icol1, ico12j 

np_l = SEAM_W + pixell[icolll + pixl_ofst; 
icol2 = find_edge(cam2_buf,irow2) ; 

*beta_pt = (np_1 - np_2) I CAM2_DIST; 
*error_pt = (np_1 * rcos«double)*beta_pt» - (float)SEAM_W; 

) 

limit2(y_dis,0Id_y) 
int y_dis,old_Yi 
( 

int sig, retn, temp; 

temp = y_dis + old_Vi 
if (temp> 0) 

1* This routine applies absolute limiting *1 

( sig = 1; 
temp = LEFT_MA X - temp; 

1* sign of y direction *1 
1* dist between limit & Y *1 

) 

else 
( sig = -1; 

temp = RIGHT_MAX + temp; 
) 

if (temp> 1280) 
return(y_dis)j 

if «y_dis> 0 ~~ old_y < 0) 
return(y_dis); 

if (temp> 832) 
retn = 192; 

else if (temp) 512) 
retn = 160; 

else if (temp> 320) 
retn = 96; 

else if (temp> 192) 
retn = 64; 

else if (temp) 64) 
retn = 32; 

else 
return(O) ; 

if (retn < abs(y_dis» 
return(retn*sig); 

return(y_dis) j 

I I 
I I 

1* -ve y is on the left hand side *1 
1* absolute value required *1 

1* 40 mm well within limits *1 

(y_dis < o !.~ old_y > 0» 
1* approaching centre *1 

1* 2b mm approaching limit *1 
1* 6 mm deceleration *1 
1* 1b mm *1 
1* 5 mm *1 
1* 10 mm *1 
1* 3 mm *1 
1* b mm *1 
1* 2 mm *1 
1* 2 mm *1 
1* 1 mm *1 

1* dead zone near limit *1 

1* return deceleration speed *1 
1* else y_dis is slow enough *1 



301 

} 

limit3(y_dis,r) 
int y_dis,r; 

1* This routine applies absolute limiting *1 

{ 

) 

int sig, retn, temp; 

if (r < R_MID) 
{ sig = 2; 

temp = r - R_MIN - 150; 
} 

else 
{ sig = -1; 

temp = R_MAX - r - 150; 
} 

if (temp> 1600) 
return(y_dis)j 

if «y_dis > 0 M. r > R_MID) 
return(y_dis); 

if (temp> 832) 
retn = 70; 

else if (temp> 512) 
retn = 50; 

else if (temp> 320) 
retn = 30; 

else if (temp> 192) 
retn = 10; 

else if (temp> 64) 
retn = 5; 

else if (temp < -194 && sig 
retn = -10; 

I I 
I I 

> 0) 

else if (temp < -64 && sig > 0) 
retn = -5; 

else 
return(O) ; 

if (retn < abs(y_dis» 
return(retn*sig); 

return(y_dis); 

1* sign of y direction *1 
1* dist between limit & y *1 

1* 50 mm - well within limits *1 

(y_dis < o && r < R_MIO» 
1* approaching centre *1 

1* 26 mm - approaching limit *1 
1* 6 mm - deceleration *1 
1* 16 mm *1 
1* 4 mm *1 
1* 10 mm *1 
1* 3 mm *1 
1* 6 mm *1 
1* 2 mm *1 
1* 2 mm *1 
1* 1 mm *1 

1* dead zone near limit *1 

1* return deceleration speed *1 
1* else y_dis is slow enough *1 

HitSewMc(x,y) 
int x,y; 
{ 1* checking sewing mIc envelope *1 

if «y < NY_MAX) ~~ (x < NX_MAX) &~ (x > NX_MIN» 
return(TRUE) ; 

return(FALSE); 
) 

edge_find(cam_buf,irow) 
char *cam_buf; 
int irow; 
{ 

int ipix, icol; 

1* no. of pixel row to be searched *1 



} 

302 

ipix = (irow*NCOL)j 1* N.B. irow starts at zero *1 

for (icol = 0; icol < NCOL; icol++,ipix++) 
( 

} 

if ( *(cam_buf+ipix) < Ox80 ) 
return( icol) j 

return(NCOL-l)j 

find_edge(cam_buf,irow) 
char *cam_bufj 
int irowj 
( 

) 

int icoll, icol2, icol3j 

icol1 = edge_find(cam_buf,irow-l); 
icol2 = edge_find(cam_buf,irow); 
icol3 = edge_find(cam_buf,irow+l)j 
return (icoll + icol2 + ico13)/3j 

1* approximation based on first 2 terms of the series expansion *1 
double rcos(angle) 
double anQle; 
< 

return (1.0 - (anqle*anqle/2.0»; 
) 



303 

APPENDIX E 

THE CaNT, MAKE AND POST TASKS 

E.1. The CaNT Task 

void stcont() 
( PMESS Pi 

) 

displ_initj 
prf __ "CaNT task started"i; 
end. pri nt; 

debug = FALSE; 
ajoutb(PORT_A,PRESSER_FT)j 
gp_function(INIT_GP); 

do 
( gp_function(GO_START)j 

read_offset()j 
startup_data()j 
set_param() j 

a j task nNMAKE) ; 
ajwaitC); 

} while (aqain(»; 

void startup_data() 
( Qpf start(STARTUP); 

finQ dist = aet word(); 
f_r = get_word()j 

} 

f_angle = (float)get_word()/180.0j 
"_X = get_word(); 
"_y = get_word()j 
cos_f = cos(f_angle/RAD_TO_A); 
sin_f = sin(f_angle/RAD_TO_A)j 
gpf_end(STARTUP)j 

void set_param() 

1* Initial Sequence *1 

1* lift presser foot up *1 
1* initiate GP comms *1 

1* is robot at start? *1 

1* terminate GP comms*1 

( gpf _start (PARAM1); 1* input parameters *1 
in it i a 1 i se ( ) ; 

) 

setl_param() j 
pixl_ofst = Yl_PIXEL * (float)ipixl_ofstj 
pix2_ofst = Y2_PIXEL * (float)ipix2_ofstj 
setup_pixels()j 
gpf_end(PARAM1)j 



304 

void setl_param() 
( 

PMESS Pi 
int temp; 

do 
( temp = get_word(); 

if (temp != 0) irowl = temp; 
temp = get_word()j 
if (temp != 0) irow2 = temp; 
temp = get_word(); 
if (temp != 0) ipixl_ofst = temp; 
temp = get_word(); 
if (temp != 0) ipix2_ofst = temp; 
temp = get_word(); 

displ_init; 
prf __ "irowl = %4d, irow2 = %4d, ipixl_of = %4d, ipix2_of = %4d", 

irowl,irow2,ipixl_ofst, ipix2_ofst); 
end_print; 

if (temp != 0) s_gain = (float)temp/(100000.0*SC_FACT); 
temp = get_word(); 
if (temp 1= 0) deriv_gain = (float)temp/l0000.0; 
temp = get_word(); 
if (temp != 0) int_fact = (float)temp/lOOOOOO.Oj 

displ_init; 
prf __ "s_gain = %6.4f, deriv_gain = %6.3f, int_fact = 19.6f", 

s_gain*SC_FACT, deriv_gain, int_fact); 
end_print; 
pix_gain = s_gain * Vl_PIXEL I SC_FACT; 

temp = get_word(); 
if (temp != 0) t_gain = (float)temp/l00000.0j 
temp = get_word(); 
if (temp != 0) rq_tens = temp; 
temp = get_word(); 
if (temp != 0) accel_lim = temp; 
temp = get_word(); 
if (temp != 0) vel_lim = temp; 

displ_init; 
prf __ 

Ht_gain = IS.5f, rq_tens = X4d, accel_Iim = X4.2f, vel_Iim = %4d", 
t_gain,rq_tens,(float)accel_lim/SC_FACT,vel_lim/SC_FACT); 
end_print; 

} while (get_word() 1= 1); 
} 

• 

1* This routine initialises global parameters to default values *1 
void initialise() 
( 

t_gain = 0.0015; 
int_fact = 0.00003; 



) 

again() 

305 

deriv_gain = 0.1; 
s_gain = O.OOS/SC_FACT; 
pix_gain = s_gain * Yl_PIXEL; 
rq_tens = 70; 
accel_lim = (3.0 * SC_FACT); 
vel_lim = 8 * SC_FACT; 
irowl = 2; 
irow2 = 8; 
ipixl_ofst = 0; 
ipix2_ofst = 0; 

( int ans; 

) 

gpf_start(Q_AGAIN); 
ans = (int)get_byte(); 
return( ans == Q_AGAIN ? TRUE FALSE) ; 

void setup_pixels() 
( 

"\n 

1* PMESS p; 
int gain_sign, centre_pix, i, factor; 
int gainswitch; 
float halfpix_gain, halfl_width, half2_width; 

centre_pix = NCOL I 2; 
factor = centre_pix; 
haIfl_width,= Yl_PIXEL I 2.0; 
half2_widthl= Y2_PIXEL I 2.0; 
pixl_ofst = Y1_PIXEL * (float)ipix1_ofstj 
pix2_ofst = Y2_PIXEL * (float)ipix2_ofst; 

gainswitch = 0; 
gain_sign = -1; 
halfpix_gain = (Y1_PIXEL/2.0) * pix_gain 

1* print_init; 
prf __ "\npixel arrangement", 

i factor pixellC] pixe12C] 
end_print; 

for (i=Oj i < NCOL; i++) 
( 

gainC]\n"); 

*1 

pixellCiJ = halfl_width - (Yl_PIXEL * factor); 
pixe12CiJ = half2_width - (Y2_PIXEL * factor); 
gain_pixCiJ = - (halfpix_gain * gain_sign) 

(pixell[i - gainswitchJ * pix_gain) ; 

1* print_init; 

*1 

prf __ "X4dXIOdX13.2fX13.2fXI3.3f", 
i,factor,pixellCiJ,pixeI2CiJ,gain_pixCiJ); 

end_print; 

if (factor == 0) 
( 

*1 



> 

> 

} 

306 

gainswitch = 1; 
gain_sign = 1; 

factor--; 

gain_pixCNCOLl = - halfpix_gain 
(pixellCNCOL - 1) * pix_gain); 

1* print_init; 
prf __ "X46.Sf ",gain_pixCNCOL); 
end_print; *1 

E.2. The MAKE Task 

#define REMNANT 30*SC_FACT 
#define NSIDES 3 

1* cloth length left to sew *1 

void stmake() 
( 

PMESS p; 
'" ! 

int i, sectionCB), i_sect, no_sections; 
ajmodl(); 
displ_init; 
prf __ "SEAM task started"); 
end_print; 

1* find cloth *1 
1* find cloth corner *1 

1* put cloth under needle *1 

gp_functionCFINDCLOTH); 
gp_functionCCORNER); 
gp_functionCUPTO_NDLE); 
fine_adj(); 
ndle_down(); 
gp_function(REMOVE)j 

1* put needle down to permit pivot *1 

1* remove robot from immediate vicinity of needle *1 

1* Looped sequence *1 
for(i=O; i < NSIDES; i++) 
( gp_function(END_CLOTH); 

no_sections = DecideSeam(~sectionCO]); 
for (i_sect = 0; i_sect < no_sections; i_sect++) 
( sew_near = sectionCi_sectl; 

if (sew_near) 
gp_function(GO_NEAR); 

else 
gp_function(FAR_RH); 

angle_adj(); 
CalcSeamSection(); 
if (ajtask(TNCOMM» 

crash(6543); 
ajshed(); 
ajwatm(4)j 
gp_function(ST_ALTER); 
a j task (TNSEW) ; 
ajwait(); 
gp_function(END_ALTER); 

1* start ALTER Comms *1 

1* start ALTER up *1 

1* terminate ALTER *1 



307 

} 

inch ( ) ; 1* finish off last 15 mm of seam *1 

} 

if (i == NSIDES-l) break; 
gp_function(ROTATE90); 
gp_function(STRAIGHTN); 

} 

ajoutb(PORT_A,TRIM_THREAD); 
delay(10); 
gp_function(RETREAT); 

1* if (ajtask(TNPOST» crash(1837); 

if (ajwake(TNCONT) 1= 0) crash(2382); 

DecideSeam(section) 
int *section; 
( where(); 

} 

if (x_O > 150*SC_FACT) 
( *section = FAR; 

*(section+1) = NEAR; 
return(2) ; 

} 

*section = NEAR; 
return(l); 

void CalcSeamSection() 
( 

where() ; 
if (sew_near) 
{ StopDistance = -100*SC_FACTj 

acc_dist = 20*SC_FACT; 
decel_dist = 35*SC_FACTj 
SeamSection = x_a; 

} 

else 
{ StopDistance = 180*SC_FACT; 

acc_dist = 55*SC_FACT; 

1* rotate cloth by 90 *1 
1* straighten out cloth *1 

1* pull cloth back *1 

*1 

decel_dist = 10*SC_FACT + StopDistance; 
SeamSection = x_O - StopDistance; 

} 

} 

20*SC_FACT; 

1* this rotine sews up last 30 mm of cloth after *1 
1* photocell uncovered *1 

void inch() 
( gpf_start(INCHMOVE); 

} 

send_word«int)REMNANT); 
ajoutb(PORT_A,SLO_SEW); 
delay(600); 1* this delay = 30 mm travel *1 
ajoutb(PORT_A,SEW_STOP); 
delay(150) j 
ajoutb(PORT_A,PRESSER_FT); 
gpf_end(INCHMOVE); 



void ndle downC) 
{ 

) 

ajoutbCPORT_A,SLO_SEW)j 
delay(50)j 
ajoutbCPORT_A,SEW_STOP)j 
delay(150)j 
ajoutb(PORT_A,PRESSER_FT)j 

void fine_adje) 
{ gpf_startCFINEADJ)j 

) 

adjustCTRUE) j 
gpf_endCFINEADJ); 

void angle_adj() 
{ gpf_startCANGLEADJ); 

) 

adjust(FALSE); 
gpf_endCANGLEADJ); 

void adjust(width_adj) 
int width_adj; 
{ PMESS p; 

float beta,errorj 
int ack; 

atk = 
whi le 
{ 

0; 
(ack < 9) 

ta\<e_picture()j 
delay(3)j 
read_camC); 

308 

e_calc(~beta,~error); 

beta *= RAC_TO_A; 
displ_init; 

1* convert to degrees *1 

prf __ "Fine 

) 

adj. - error = %6.2f beta = %6.3f " 
end_print; 
if (width_adj), 

send_wordC(int)error)j 
else 

send_word«int)beta)j 
ac\< = get_word()j 

if (ack ! = 10) 
( displ_initj 

error, beta); 

prf __ "Program terminated - unsuccesful Fine Adjustment"); 
end_printj 
ajend()j 

} 

) 

void where() 
{ PMESS p; 

1* VAL 11 returns robot position data *1 I 



} 

gpf_start(WHERE)j 
x_a = get_word()i 
y_o = get_word()j 

309 

th_O = «float)get_wordC»/200.0j 
x_total = x_o; 
y_total = y_Oj 
z_total = -Cfloat) (th_O*TOANG); 
gpf_end(WHERE); 
displ_initj 

1* 

1* initial x dist 
1* initial y_sc 
1* initial theta 

initialise c:ounters 

prf __ "x_O = lSd, y_O = %5d, th_O = %6.2f, z total = %6Id", 
x_O,y_O,th_O, z_total); 

end_print; 

E.3. The POST Task 

void stpostC) 
( . 

PMESS Pi 
float feed_sp, rev_speed, e_StdDev, t_StdDev; 
ajmodl(); 

displ_init; 
prf __ 
"COMM handshakes = %5d, feedback updates = %5d",i_hand,ifeed); 
end_print; 

feed_sp = (float)sp_len * 18.0 / «float)t_period * SC_FACT) 
rev_speed = Cfloat)Ccount2-count1)*18.0 * 60.0 

/(Cfloat)t_period*36.0); 

1* c:alc error statistics *1 
e_MeanDev /= (float)(SC_FACT*SC_FACT)i 
e_Avg 1= (float)SC_FACTj 
e_StdDev = StdDev(e_MeanDev,e_Avg,ifeed)j 
t_StdDev = StdDev(Cfloat)t_MeanDev,Cfloat)-t_Avg,i_t_Avg)j 

displ_init; 
prf __ "no. ALTER handshakes 

end_print; 
displ_init; 

no. feedback loops 
= Y,6d 

prf __ "handshakes/update rate = %6.2f 
time period for speed 

Cfloat)i_hand/Cfloat)ifeed, t_period); 
end_print j 

displ_initj 

= %6u ticks", 

prf __ "\n\nParameters Set At Run Time\n") j ( 
end_print; 
displ_init; 
prf __ "seam length = %6d mm 

*1 
*1 
*1 
*1 



310 

sewing speed = 17.1f rpm", 
SeamSection/SC_FACT,rev_speed); 
end_print; 
displ_initj 
prf __ "tension offset = 16u 

end_print; 
displ_initj 

sewing speed = %7.2f mm/s",offstl,feed_sp); 

prf __ "\n\nRobotic Sewing Performance Data\n"); 
end_print; 
displ_init; 
prf __ "seam width servo cloth tension servo"); 
end_prin'; 
displ_init; 
prf __ "standard deviation = %7.3f 

end_print; 
displ_init; 

standard deviation = %7.3f",e_StdDev,t_StdDev); 

prf __ "sum of mean deviation = 17.1f 

end_print; 
displ_init; 

sum of mean deviation = %71d",e_MeanDev,t_MeanDev); 

prf __ "sum of average error = %7.2f 
sum of average error 

end_print; 
displ_init; 
prf __ "maximum error = %7.2f 

maximum error 
(float)max_e/(float)SC_FACT,-min_t); 
end_print; 
displ_init; 
prf __ "minimum error = %7.2f 

minimum error 
(float)min_e/(float)SC_FACT,-max_t); 
end_print j 

pr _head i ng ( ) ; 

print_init; 

= %7d", 

= %7d", 

prf __ "\nParameters Set At Compi le Time\n") ; 
end_print; 
print_init; 
prf __ "robot stopping dist = %6d mm 

pixel width - cam #1 
StopDistance/SC_FACT,Yl_PIXEL/SC_FACT); 
end_pr i nt; 
print_ini t; 
prf __ "maximum RHS motion = %6d mm 

pixel width - cam #2 
RIGHT_MAX/SC_FACT,Y2_PIXEL/SC_FACT); 
end_print; 
print_init; 
prf __ "maximum LHS motion = %6d mm 

= %7.3f mm", 

= %7.3f mm", 

dist. between 
LEFT_MAX/SC_FACT,fing_dist/SC_FACT); 
end_print; 

2 fingers = %6d mm", 

print_init; 
prf __ "deceleration length = %6d mm 



311 

inter camera 
decel_dist/SC_FACT,CAM2_DIST/SC_FACT); 
end_print; 
print_lnit; 
prf __ "stitch length = r.6d mm 

distance = '1.7.1 f mm", 

seam width 
STITCH_LEN, (float) (SEAM_W/SC_FACT»j 
end print; 

= r.7.1f mm", 

print_ini t; 
prf __ "\n\nParameters Set By User\n"); 
end_print; 
print_ini t; 
prf __ "pixel row no. - cam #1 = r.6d 

end_print; 
print_ini t; 

tensn servo, propnl gain = 'l.B.5f",irowl,t_gain)j 

prf __ "pixel row no. - cam #2 = 'I.6d 

end_print; 
print_initj 

tensn serve, intgrl gain = 'l.B.5f",lrow2, lnt_fact); 

prf __ "x axis offset - cam #1 = 'l.6d pxls 

end_print; 
print_lnit; 

request cloth tension = 'l.Bd",ipixl_ofst,rq_tens); 

prf __ "x axis offset - cam #2 = r.6d pxls 
seam 

ipix2_ofst,s_galn*SC_FACT); 
end_print; 

serve, propnl gain = 'l.B.4f", 

print_ini t; 
prf __ "robot velocity limitatn = 'l.6d mm/hs 

seam servo, deriv gain 
vel_lim/SC_FACT,deriv~gain); 

end_printj 
print_init; 
prf __ "robot accelrtn limitatn = r.6.1f mm/hs/hs", 

= Y.B.3f", 

end_print; 
print_ini t; 

(float)accel_llm/SC_FACT); 

prf __ "\n\nParameters Set At Run Time\n"); 
end_print; 
print_init; 
prf __ "seam length = r.6d mm 

sewing speed 
SeamSection/SC_FACT,rev_speed); 
end_print; 
pri nt_ini t; 

= r.6u 

= 'l.7.1f rpm", 

prf __ "tension offset 
sewing speed 

end_print; 
= 'I.7.2f mm/s",offstl,feed_sp); 

pri nt_i ni t; 
prf __ "\n\nY.cr.c 

end_pri nt i 
print_init; 

Output DataXc'l.c",27,69,27,70); 

prf __ "\nProcessor Performance Data\n"); 
end_print; 
print_initj 

\ 



312 

prf __ "no. ALTER handshakes = %6d 

end_print; 
print_ini t; 

no. feedback loops = %6d",i_hand,ifeed); 

prf __ "handshakes/update rate = %6.2f 
time period for speed 

(float)i_hand/(float)ifeed, t_period); 
end_print; 

print_ini tj 

= %6u ticks", 

prf __ "\n\nRobotic Sewing Performance Data\n"); 
end_print; 
print_initj 
prf __ "XcXcseam width servo 

end_print; 
print_init; 

cloth tension servo%c%c",27,69,27,70); 

= X7.3f prf __ "standard deviation 
standard deviation 

end_print; 
print_init; 

= K7.3f", e_StdDev,t_StdDev)j 

prf __ "sum of mean deviation = K7.1f 
sum of mean deviation = K7ld",e_MeanDev,t_MeanDev); 

end_print; 
pri nt_i ni t; 
prf __ "sum of average error = K7.2f 

end_print; 
print_init; 

sum of average error = K7ld",e_Avg,-t_Avg); 

prf __ "maximum error = K7.2f 
maximum error 

(float)max_e/(float)SC_FACT,-min_t); 
end_print; 
print_init; 
prf __ "minimum error = K7.2f 

minimum error 
(float)min_e/(float)SC_FACT,-max_t)j 
end_print; 

print_init; 
prf __ "%c",12)j 
end_print; 
pr _runtime ( ) ; 
) 

= Y.7d", 

= %7d", 

float StdDev ( 
float xl, x2; 
int n; 

xl, x2, n) 

( 

} 

~ 
return«float)(sqrt«double)«xl - (x2*x2/(float)n) 

/(float)(n-l» »); 

void pr_runtime() 
{ 

PMESS Pi 



> 

int ii,i, ind, no_data; 
float itemC10l; 

ind = 0; 
pri nt_ini t; 
prf __ 

313 

"Iclc Sensory Feedback Loop Runtime Data%c%c", 
27,69,27,70); 

print_init; 
prf __ 

"\n error 
" y_dis 

end_print; 

beta del_alph dy_i inc_x 
x_total y_total z_total"); 

ifeed = ifeed + 1; 
no_data = ifeed > 200? 200 ifeed/2; 
for (ii = 0; ii < no_data; ii++) 

inc_t " , 

( 1* recoup data from storage *1 
for< i=O; i < 10; i++) 

item[iJ = pmdatCind++l; 

print_init; 
prf __ 

"15.2f 17.2f 17.2f 17.2f 17.2f 17.2f 17.2f 17.1f 17.1f 17.1f", 
item[OJ/SC_FACT,item[ll*RAD_TO_A, 
item[2J*RAD_TO_A,item[3J/SC_FACT,item[4J/SC_FACT, 
item[5l/SC_FACT,itemC6J/SC_FACT, 
itemC7l/SC_FACT,item[8J/SC_FACT,itemC9J/TOANG)j 

end_print; 

ajwatm(5); 
) 

void pr_heading() 
{ 

PMESS p; 
struct ( 

char sec; 
char mins; 

. char hour; 
char day; 
char month; 
char year; 
char day_of_wk; 
char validj 
) tdbufj 

ajmodl<) ; 
print_init; 
prf __ "lclclclc",27,67,0,12); 
end_print; 
ajtdg(Udbuf) j 



314 

print_init; 
prf __ "\n\n\n " ) ; 

" 'l.c'l.c 

} 

p.n += ajtdf(~tdbuf,(int)OxOOc2,&p.mp(p.n+ll); 
end_print; 
print_init; 
prf __ 

end_print; 
print_init; 
prf__ "'l.C%C 

print_init; 
prf __ n\n\n%c%c 

Robotic Sewing Development Program",27,69); 

Version %4. 
2f",27,70,VERSION); 

Input Data%c'l.c", 
27,69,27,70); 

E.4. VAL 11 Functions 

PROGRAM 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

END 

PROGRAM 
1 
2 
3 
4 
5 
6 
7 

angle.adj 
tries = 0 
SPEED 10 ALWAYS 

324 DELAY 0.5 
CALL inward 
ang = word 
TYPE "Angle Adjustment : angle = " 
IF A8S(ang) < 2 GOTO 325 
IF A8S(ang) > 45 GOTO 326 
angle.req = -ang 
CALL rotate.ndle 
tries = tries+l 
word = tries 
CALL outward 
DELAY 0.5 
GOTO 324 

325 word = 10 
CALL outward 
SPEED hi.speed ALWAYS 
RETURN 

326 TYPE "excessive angular error" 
HALT 

calc.where 
DECOMPOSE ptCl = HERE 
x.O = DX(HERE)-DX(at.ndle) 
y.O = DY(HERE)-OY(front.ndle) 
th.O = 90-ptC3l+theta.offset 
TOOL t.store 

116, ang 

TYPE "x coord of finger w.r.t. needle =", ID, x.O 
TYPE "y coord of finger w.r.t. needle = ", ID, y.O 



8 
9 

10 
11 
12 
13 
14 
15 
16 

END 

PROGRAM 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

END 

PROGRAM 
1 
2 
3 
4 
5 
6 
7 
8 

END 

315 

TYPE "2nd finger angle 

word = x.0*32 
CALL outword 
word = y.0*32 
CALL outword 
word = th.0*200 
CALL outword 
RETURN 

calc. y. i nc 

= ", ID, th.O 

This routine calculates the maximum increase in y 
for the present x value. 
SET t.store = TOOL 
TOOL NULL 
y.inc.max = SQRT(SQR(r.max)-SQR(DX(HERE»)-DY(HERE) 
TOOL t.store 

apply software limitation of short integers scaled by 32 
IF (DY(HERE)+y.inc.max) > 1020 THEN 

y~inc.max = 1020-DY(HERE) 
END 
RETURN 

check.start 
x = DISTANCE(HERE, start) 
IF (x < 0.3) AND (x > -0.3) 

RETURN 
END 
MOVES start 
DELAY 2.5 
BREAK 
RETURN 

THEN 

PROGRAM cloth.end 
1 CALL outbyte 
2 RETURN 

END 

PROGRAM corner 
1 This routine sends robot up cloth length, finds top edge, 
2 aligns hand with cloth, finds LH edge, and places fingers 
3 down on cloth at an offset from top LH corner. 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

move forward until 
SET t.store = TOOL 
REACTI pcelll.on 
REACTI pcel12.on 
SPEED 80 

top edge detected 

MOVES SHIFT(HERE BY DX(limit.2)-DX(HERE), 0, 0) 
BREAK 
IF DX(HERE) < DX(limit.2)+30 GOTO 10 



14 
15 
16 

IGNORE pcelll.on 
IGNORE pcel12.on 

316 

17 ; move backwards and repeat search slowly and accurately 
18- MOVES SHIFT(HERE BY 35, 0, 0) 
19 BREAK 
20 REACTI pcelll.on 
21 REACTI pcel12.on 
22 SPEED 15 ALWAYS 
23 MOVES SHIFT(HERE BY -50) 
24 BREAK 
25 IGNORE peelll.on 
26 IGNORE pcel12.on 
27 
28 test to decide on next move 

test for error condition, i.e. when neither pcell lit up 
29 IF SIGCpeelll.on) GOTO 31 
30 IF SIG(pceI12.on) GOTO 31 
31 TYPE "error in finding top edge" 
32 GO TO 10 
33 31 IF SIG(-pcelll.on) GOTO 30 
34 IF SIG(-pceI12.on) GOTO 32 
35 angle = 0 
36 GOTO 33 ; if both lit up then no need to pivot 
37 
38 pivot photocell no. 2 until pcell no. 1 detects edge 
39 30 REACTI pcelll.on 
40 TOOL pcel12 
41 SET pivot = HERE 
42 FOR angle = 90 TO 0 STEP -0.5 
43 MOVE pivot:TRANSCO, 0, 0, angle, -90, 0) 
44 IF SIGCpcelll.on) GOTO 55 
45 END 
46 55 BREAK 
47 SET pivot:temp = HERE 
48 IF angle == 0 GOTO 10 
49 GOTO 34 
50 
51 pivot about peell 1 until peell 2 detects edge 
52 32 TOOL peelll 
53 REACTI peel12.on 
54 SET pivot = HERE 
55 FOR angle = 90 TO 180 STEP 0.5 
56 MOVE pivot:TRANS(O, 0, 0, angle, -90, 0) 
57 IF SIG(pceI12.on) GOTO 56 
58 END 
59 56 BREAK 
60 SET pivot:temp = HERE 
61 IF angle == 0 GOTO 10 
62 
63 calculate angle of cloth 
64 34 TOOL t.store 
65 DECOMPOSE pt3[] = temp 
66 angle = 90-pt3C31 
67 
68 move gripper back a "margin" from top edge 
69 33 BREAK 



70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 

END 

PROGRAM 
1 
2 
3 
4 
5 
6 
7 
8 
9 

END 

PROGRAM 
1 
2 
3 
4 
5 
6 
7 

margin = 20 
xl = margin*COS(angle) 
yl = margin*SIN(angle) 

317 

TYPE "cloth orientation angle = ", 115, angle 
SPEED 80 ALWAYS 
MOVES SHIFT(HERE BY xl, yl, 0); move perpend to edge 
BREAK 

move right to detect corner 
REACTI pcelll.on 
yl = DY(limit.1)-DY(HERE) 
xl = -yl*SIN(angle)/COS(angle) 
SPEED 30 ALWAYS 
MOVES SHIFT(HERE BY xl, yl, 0) 
BREAK 
IF SIG(-pcelll.on) GOTD 10 

move backwards to position fingers over cloth 
x.offset = 15 
y.offset = -83 ; offset in y direction 
xl = x.offset*COS(angle)-y.offset*SIN(angle) 
yl = x.offset*SIN(angle)+y.offset*CDS(angle) 
SPEED 70 ALWAYS 
MOVES SHIFT(HERE BY xl, yl, 0) 
BREAK 

lower fingers onto cloth 
SPEED 12 
drop = table.ht-DZ(HERE) 
MOVES SHIFT(HERE BY 0, 0, drop) 
BREAK 
SPEED hi.speed ALWAYS 
RETURN '. 

10 byte = 0 
TYPE "error in finding corner" 
RETURN 

end.cloth 

This routine moves robot back to find end of the cloth 
SPEED 80 ALWAYS 
REACTI pcelll.on 
MOVES down.line 
BREAK 
IGNORE pcelll.on 
SPEED hi.speed ALWAYS 
RETURN 

far.rh 

find right hand corner 
MOVES SHIFT(HERE BY -35, 0, 0) 
BREAK 
IF SIG(pcelll.on) GOTO 10 
REACTI pcell1.on 
SPEED 60 ALWAYS 



318 

8 CALL calc.y.inc 
9 MOVES SHIFT(HERE BY 0, y.inc.max, 0) 

10 BREAK 
11 IF SIG(-pcelll.on) GOTO 10 
12 IGNORE pcelll.on 
13 
14 put down fingers 
15 MOVES SHIFT(HERE BY -25, -pc.to.fg-30, 0) 
16 SPEED 10 
17 MOVES SHIFT(DEST BY 0, 0, table.ht-DZ(DEST» 
18 BREAK 
19 
20 SPEED hi.speed ALWAYS 
21 RETURN 
22 10 byte = 0 
23 TYPE "error in finding far RH corner" 
24 RETURN 

END 

PROGRAM findcloth 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

END 

this routine finds cloth, calculates width, and places 
gripper in centre of cloth. 

SPEED hi.speed 
MOVES start 
BREAK 
MOVES test1 
BREAK 
REACTI -pcelll.on 
MOVES limi t.l 
BREAK 

; high up over table 

down to photocell test level 

; scan right until edge found 

IF DY(HERE) > DY(limit.1)-30 GOTO 12 
SET temp = HERE ; LH edge of cloth 
REACTI pcelll.on 
SPEED 80 ALWAYS 
MOVES limit.1 
BREAK 
IF SIG(-pcell1.on) GOTO 12 

scan right 

calculate centre of cloth 
width = DY(HERE)-DY(temp) 

and move gripper there 

y2 = (width-pcdist)/2+30 
MOVES SHIFT(HERE BY 0, -y2, 0) 
BREAK 
TYPE "width = ", 115, width 

check if cloth too close to robot 
IF DY(HERE) < DY(limit.3) GOTO 12 
RETURN 

12 byte = 0 
TYPE "error in placement of cloth" 
RETURN 

PROGRAM fine.adj 
1 y.total = 0 
2 tries = 0 



319 

3 324 DELAY 0.5 
4 CALL inward 
5 y.error = word 
6 TYPE "Fine Adjustment : y error = " 116, y.error 
7 IF ABS(y.error) < 12 GOTO 325 
8 IF ABS(y.error) < 50 THEN 
9 y.error = y.error/2 

10 END 
11 IF y.error > 350 GOTO 326 
12 y.total = y.total+ABS(y.error) 

; prevent smash into camera 
13 IF y.total > 1250 GOTO 326 
14 SPEED 3 
15 MOVES SHIFT(HERE BY 0, -(y.error/32), 0) 
16 BREAK 
17 tries = tr ies+l 
18 word = tries 
19 CALL outward 
20 DELAY 0.5 
21 GOTO 324 
22 325 word = 10 
23 CALL outward 
24 SPEED hi.speed ALWAYS 
25 DELAY 0.5 
26 RETURN 
27 326 TYPE "excessive error at needle" 
28 HALT 

END 

PROGRAM go 
1 CALL mainl 

END 

PROGRAM 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

go.near.start 
This routine moves robot from end of angle.adj routine 

to the start position for the near sewing 
MOVES SHIFT(HERE BY 0, 0, 30) 
MOVES onway.5 
MOVES near.start 
BREAK 
SPEED 40 ALWAYS 

if cloth uncovered, find edge 
wide.piece = TRUE 
IF SIG(-pcel11.on) GOTO 14 
IF SIG(-pcel12.on) GOTO 13 
wide.piece = FALSE 
REACTI -pcel12.on 
MOVES SHIFT(HERE BY 0, DY(limit.5)-DY(HERE), 0) 
BREAK 
IGNORE pcel12.on 
IF SIG(pcel12.on) GO TO 11 
IF (DY(limit.5)-DY(HERE» < 30+fg.to.pc GOTO 11 
MOVES SHIFT(HERE BY 0, 15, 0) 
BREAK 

move forward until edge found 
13 IF SIG(-pcell1.on) GOTO 14 

.. 
F, 

t .. 



25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

END 

320 

REACTI -pcelll.on 
MOVES SHIFT(HERE BY DX(limit.6)-DX(HERE» 
BREAK ___ ~,-". "~'-'-"" ... , ~, ..... ,-,.~ .. ---. 
IGNORE pcelll.on 
IF SIG(pcelll.on) GoTo 11 

~~O-I t-iV~vl;.d:I'IS' LlJnAI1Y 
UNIVERSITY OF LEEDS 

move back outwards to place fingers neaf'~end of cloth 
14 MOVES SHIFT(HERE BY -pc.to.fg-20, 10-fg.to.pc, 0) 

SPEED 15 
MOVES SHIFT(DEST BY 0, 0, table.ht-DZ(DEST» 
BREAK 
SPEED hi.speed 
RETURN 

11 TYPE "error in finding near.start position" 
byte = 0 
RETURN 

PROGRAM grip.transf 
1 TYPE IC1,"PRoGRAM TO DEFINE TOOL TRANSFORMATION",/Cl 
2 
3 

4 
5 
6 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

PROMPT "Revising previously defined tool (1 = yes) 
1 ", answer 

IF answer <> 1 THEN 

END 

TYPE "Move the mounting flange to the reference", 
IS 

TYPE "location.", IS 
TYPE ICl, "Press ", IS 
TYPE "the COMP mode button on the teach pendant 

when ", IS' 
TYPE "ready to proceed." 

, 
DETACH; Release the robot to the User 

WAIT (PENDANT(2) BAND A17) <> 0 
WAIT (PENDANT(2) BAND ACO) <> 0 
ATTACH; Regain control of the robot 

TOOL NULL 
HERE ref.loc; Record the reference location 

TYPE "Instal the new tool, move its tip back to the ", IS 
TYPE "reference location.", ICl, "Press the CO MP mode ", IS 
TYPE "button on the teach pendant when ready." 

DETACH; Release the robot to the user 
• 

WAIT (PENDANT(2) BAND A17) <> 0 
WAIT (PENDANT(2) BAND A20) <> 0 

ATTACHjRegain control 
TOOL NULL 
SET new.tool = INVERSE(HERE):ref.loc 
TOOL new. tool 

STOP 

.. 
F. 
[ .. 



321 

END 

PROGRAM 
1 

inch 
CALL inward 
SPEED 5 2 

3 
4 
5 

END 

MOVES SHIFT(HERE BY -word/32) 
BREAK 
RETURN 

PROGRAM 
1 

moveback 
CALL inword 

2 
3 
4 
5 

END 

TYP~ "IBM requests a move back of H, 116, word 
MOVES SHIFT(HERE BY word, 0, 0) 
BREAK ; NB This routine has been 
RETURN ; disabled. 

PROGRAM remove 
1 

END 

2 
3 
4 
5 
6 
7 
8 
9 

This routine withdraws from the needle zone carefully 

SPEED 25 ALWAYS 
MOVES SHIFT(HERE BY 0, 0, ,12) 
MOVES outway.2 
BREAK 
SPEED hi.speed ALWAYS 
RETURN 

PROGRAM retreat 
1 DELAY 0.5 
2 SPEED 40 ALWAYS 
3 MOVES fin.l 
4 MOVES SHIFT(DEST BY 0, 0, 30) 
5 SPEED hi.speed 
6 MOVES fin.2 
7 SPEED 10 
8 MOVES SHIFT(DEST BY 0, 0, table.ht-DZ(DEST» 
9 SPEED 50 ALWAYS 

10 MOVES finish 
11 MOVES SHIFT(DEST BY 0, 0, 10) 
12 BREAK 
13 SPEED hi.speed 
14 MOVES start 
15 RETURN 

END 

PROGRAM rotate.90 
1 This routine crumples cloth a bit and then rotates 
2 the cloth by 90 degrees. 
3 SPEED 40 ALWAYS 
4 IF wide.piece THEN 
5 MOVES SHIFT(HERE BY 0, 0, test.level-DZ(HERE» 
6 MOVES start.rotate 
7 SPEED 18 
8 MOVES SHIFT(DEST BY 0, 0, table.ht-DZ(DEST» 
9 BREAK 



10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

END 

PROGRAM 
1 ; 
2 
3 
4 
5 
6 
7 
8 i 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

26 
27 
28 
29 
30 
31 
32 

33 
34 
35 

END 

322 

END 

SPEED 40 ALWAYS 
MOVES SHIFT(HERE BY 0, 10, 0) 
BREAK 
angle.req = -90 
CALL rotate.ndle 

lift robot up to testing level for photocells 
SPEED 9 
MOVES SHIFT(HERE BY 0, 0, test.level-DZ(HERE» 
BREAK 
SPEED hi.speed ALWAYS 

rotate.ndle 
this routine rotates robot about needle a given angle 

(angle.req). Locations required are at.ndle, front.ndle. 

calculate distance between main finger and needle 
x.offst = DX(HERE)-DX(at.ndle) 
y.offst = DY(HERE)-DY(front.ndle) 
radius = SQRT(SQR(x.offst)+SQR(y.offst» 

calculate locations and transformations 
SET pivot = SHIFT(HERE BY -x.offst, -y.offst, 0) 
SET temp = INVERSE(pivot):HERE 
angle.O = ATAN2(DY(temp), DX(temp» 

test required angle for size and direction 
IF angle.req > 90 THEN 

END 

'TYPE "angle.req is too large" 
HALT 

IF angle.req > 0 THEN 
istep = 2 

ELSE 
istep = -2 

END 

SET temp = pivot:TRANS(radius*CoS(angle.O), 
radius*SIN(angle.O), 0, 90, -90, 0) 

z.offst = DZ(temp)-DZ(HERE) 
ang.offst = 90-angle.O 

perform rotation 
FOR angle = angle.O TO angle.O+angle.req STEP istep 

MOVE pivot:TRANS(radius*COS(angle), 
radius*SIN(angle), z.offst, 

angle+ang.offst, -90, 0) 
END 
BREAK 
RETURN 

PROGRAM set.param 
1 DO 



2 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

END 

PROGRAM 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

END 

323 

TYPE "Enter in parameters as follows: 
(defaults given in brackets)" 

PROMPT "irowl (2) :", ward 
CALL outward 
PROMPT "irow2 
CALL outword 

(8) 

PROMPT "ipixl_offst (0) 
CALL outward 
PROMPT "ipix2_offst (0) 
CALL outword 

", word 

It, word 

.. , word 

PROMPT "PIX_GAIN (0.002) ", tmp 
word = tmp*100000. 
CALL outword 
PROMPT "DERIV_GAIN (0.1) : ", tmp 
word = tmp*10000 
CALL outword 
PROMPT "INT_FACT (0.00003) 
word = tmp*1000000. 
CALL outword 
PROMPT "T_GAIN (0.0015) 
word = tmp*100000. 
CALL outword 

" 

", tmp 

tmp 

PROMPT "RQ_TENS (70) ", word 
CALL outward 
PROMPT ItACCEL_LIM (3) 
word = tmp*32 
CALL outword 
PROMPT "VEL_LIM (8) 
word = tmp*32 
CALL outward 

", tmp 

", tmp 

PROMPT "Parameters set correctly 7 (Yes = 1)", word 
CALL outward 

UNTIL word == 1 
RETURN 

startup.data 
f.r = SQRT(SQR(DX(fingl»+SQR(DY(fingl») 
f.angle = ATAN2(DY(fingl), DX(fing1» 
nx = DX(at.ndle) 
ny = DY(front.ndle) 
TYPE "distance between fingers 
TYPE "finger-flange radius 
TYPE "finger-flange angle 
TYPE "needle position, x coord 
TYPE "needle position, y coord 
word = fing.dist*32 
CALL outward 
word = f.r*32 
CALL outward 
word = f.angle*180 
CALL outward 
word = nx*32 
CALL outword 
word = ny*32 
CALL outward 

= 
= 
= 
= 
= 

.. ID, fing.dist .. ID, f.r 
11 ID, f.angle 
" ID, nx 
It ID, ny 



324 

PROGRAM straighten 
1 SET templ = HERE 
2 SPEED 65 ALWAYS 
3 
It 
5 
6 
7 
B 
9 

10 
11 
12 
13 

END 

PROGRAM 
1 
2 
3 
4 
5 
6 
7 
B 
9 

END 

MOVES blow.position 
BREAK 
OPENI 
DELAY (0.5) 
BREAK; 
CLOSEI 
MOVES SHIFT(templ BY 30) 
BREAK 
TYPE "routine straighten has been called", IB 
SPEED hi.speed 
RETURN 

uptoneedle 

This routine pushes cloth up to needle and stays there 
so that the presser foot can come down onto the cloth 

SPEED 70 
MOVES needle 
BREAK 
SPEED hi.speed ALWAYS 
RETURN 



325 

• 
APPENDIX F 

CAMERA ROUTINES AND CALIBRATION PROGRAM 

F.l. Camera Routines under AMX 

F.l.l. Restart Procedure 

void rpcamr() 
( 

) 

PMESS Pi • 
ajmodl(); 

displ_init; 
prf __ "restart procedure for initialising cameras"); 
end_print; 

1* set up I-SIGHT pointers *1 
ajsseg(~cc_pt,(unsigned int)SEGMNT)j 
ajsofs(~cc_pt,(unsigned int)O); 
cccb_pt = cc_pt + (int)CONTRLBj 
caml_pt = cc_pt + (int)CAM1_0FSj 
cam2_pt = cc_pt + (int)CAM2_0FSj 
tpl_pt = cc_pt + (int)CAM1_FLj 
tp2_pt = cc.pt + (int)CAM2_FLj 

*cccb.pt = BUSFRZ; 
*(cc_pt+Ox3f4) = 0; 
*(cc_pt+Ox3f6) = 0; 
*cccb_pt = FREEZE; 

F.l.2. Routines to Capture a Frame 

void take. picture() 
{ 

} 

int i; 

*cccb_pt = TRIGGER; 
for (i=O; i<400; i++) 

; 
*cccb_pt = FREEZE; 

void read_came) 
( 

1* release FREEZE to trigger 280 *1 

z80_check(); 1* check that 280 has finished *1 
*cccb_pt = 8USFRZ; 
movmem(caml_pt,caml_buf,(unsigned int)NPIXLS); 



) 

326 

movmem(cam2_pt,cam2_buf,(unsigned int)NPIXLS); 
*cccb_pt = FREEZE; 

void z80_check() 
< 

> 

char test; 
int i; 

i = 0; 
do 
< i++j 

*cccb_pt = BUSFRZj 
test = <*tpl_pt t= 0 && *tp2_pt 1= 0); 
*cccb_pt = FREEZEj 

if (!test) 
delay(l); 

if <i > 20) 
crash(1234S) ; 

> while C!test); 

F.2. Camera Setup and Calibration Program 

The following program was used to initialize the camera 
card, to set up the exposure levels, and to calibrate the 
camera mountings. The camera card had to be initialized 
each time that the IBM AT was powered up. 

The program accepts one of the following runtime options :-

-i performs initialization 
-v puts cameras' views on screen 

In the default MODIFY mode, the exposure values can be set 
for each camera. On initialization, both cameras are set to 
an exposure value of 10. 

#include 
#include 

#define TRUE 
#define FALSE 
#define ESe 

"c:\lc\stdio.h" 
"c:\lc\stdlib.h" 

1 
o 
27 

#define SEGMNT Ox9cOO 
#define eONTRLB Ox3fff 
#define INITZ80 Ox02 
#define TRIGGER OxOO 
#define BUSRQ OxOl 
#define FREEZE Ox08 
#define BUSFRZ Ox09 

1* 
1* ESe key on keyboard *1 

I-SIGHT camera card addresses 
1* pcb card segment address 
1* control byte address 
1* ctrl byte to initial. Z80 
1* ctrl byte to trigger pict 
1* mask for bus request 
1* mask for freeze control 
1* mask for bus + freeze 

*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 



~define CAM1_OFSOxOOO 
~define CAM2_0FSOx400 
~define MAX_PIX Ox3cO 
#define CAM1_DT Ox3fO 
#define CAM2_DT Ox3f2 
#define CAM1_FL Ox3fl 
Idefine CAM2_FL Ox3f3 
#define NROW 30 
Idefine NCOL 32 
Idefine NPIXLS NROW*NCOL 
#define NCAM 2 

#define L_SCREENBO 
#define A_MEM OxbBOO 
#define B_MEM OxbaOO 
Idefine BLOCK Oxff 
#define BLANK 0 

#define MODIFY 0 
#define INITIAL 1 
Idefine VIEWING c 

327 

extern void alpha(), curs_xy(int,int)j 

1* offset for camera # 1 *1 
1* offset for camera # 2 *1 
1* maximum no. pixels *1 
1* threshold ~ invert data *1 

1* flag for 2BO done signal *1 

1* no. rows of pixels *1 
1* no. columns of pixels *1 
1* no. of pixels in picture *1 
1* no. of cameras *1 

1* graphics mode definitions *1 

1* fill-in picture element *1 
1* blank picture element *1 

1* permit mod. of values 
1* initialise 280 only 
1* display camera views 

*1 
*1 

*1 

extern void init(), set_cam(int), read_came), init_cc(), 
view(int), calib(int), delay(int), setup_came), 
display(int), set_screen(), z80_wait(), take_picture(); 

char thresh_bCNCAMJ = (C); 1* threshold ~ invert ctrl byte *1 
short int cam_ofs(NCAMl = (CAM1_0FS,CAM2_0FS)j 
short int cam_dt[NCAMJ = (CAM1_DT,CAM2_DT)j 
short int cam_fl[NCAMJ = (CAM1_FL,CAM2_FL); 
char *cc_pt; 1* pointer to base of cam. card *1 
char *cccb_pt; 1* pointer to cc control byte*1 
char cc_init = TRUE; 1* flag for initializing ctrl*1 
char caml_buftNPIXLSJj 
char camc_buf(NPIXLSJ; 
char *a_screen,*b_screenj 
char opts[) = ""; 

void main(argc,argv) 
int argc; 
char *argv(]; 
( char option, *odata; 

int next = 1, mode = MODIFY; 

odata = argopt(argc,argv, opts,~next,~option); 
if (odata == NULL) 

mode = MODIFYj 
else if (option == 'i') 

mode = INITIALj 
else if (option == 'v') 

init()j 
switch 
{ case 

mode = VIEWING; 

(mode) 
MODIFY if (ask_init(» 

init_cC()j 
display(MODIFV)j 



"\n**** 

} 

} 

328 

break; 
case INITIAL init_cc(); 

setup_came); 
printf( 

I-SIGHT camera card initialisation completed 

case VIEWING 
break; 
setup_cam() ; 
display(VIEWING); 

void display(mode) 
int mode; 
< int i = 0; 

do 

} 

< if (mode == MODIFY) 
( set_cameO); 

set_camel); 
) 

take_picture(); 
set_screen(); 
do 
( read_came); 

view( 0) ; 
view(l); 
calib(O); 
calib(1)j 
curs_xy«int)20,(int)17)j 

if ( *(cam2_buf+150) > Ox80 
printf( "Yes"); 

else 
printf("No 11); 

curs_xy«int)30,(int)17)j 
printf("%7d",i++); 

) wh i le ( ! kbh i t () ) j 
} while (getch() != ESC); 

int ask_init() 
< char c:; 

) 

printf("\n Initialize 280 7 (Y/N) ")j 
c = get char () ; 
getchar () ; 
if (c == • V' :: c == ' y' ) 

return <TRUE) ; 
return(FALSE)j 

void init() 
< long int i ; 

****"); 

1* set up pointers *1 
init_pt(~cc_pt,(unsigned int)SEGMNT,(unsigned int)O)j 
cccb_pt = cc_pt+CONTRLB; 

init_pt(~a_screen,(unsigned int)A_MEM,(unsigned int)O); 
init_pt(&b_screen,(unsigned int)8_MEM,(unsigned int)O)j 



} 

*cccb_pt = FREEZE; 
*cccb_pt = EUSFRZ; 

329 

for (i=CAM1_DT; i < CAM1_DT + 8; i+=2) 
*(cc_pt+i) = 0; 

*cccb_pt = FREEZE; 

1* init thresholds *1 

1* FREEZE normally up*1 

void 
( 

set_screen() 
alpha(); 
curs_xy«int)0,(int)20); 
printf(" STRIP rows:- H); 
curs_xy«int)0,(int)21); 
printf(" SEAM cols:- H); 
curs_xy«int)0,(int)22); 

1* set screen up for graphics*1 

} 

printfC" freq :- H); 
curs_xy«int)0,(int)23); 
printf(" SLOT width:- H); 
curs_xy«int)0,(int)24); 
printf(" freq :- H); 
curs_xyC(int)30,(int)18); 
printf("enter in ESC to exit"); 

1* The Z80 must be initialized only once after power-up *1 
void init_cc() 
( long int i,d; 

} 

printfC"\n Initialisini the 
*cccb_pt = INITZBO; 
for (i=0;i<1000;i++) 

d = i*4; 
*cccb_pt = .FREEZE; 
for (i=0;i<1000;i++) 

d = i*4; 

I-SIGHT camera card"); 
1* Initializing 280 *1 

1* delay while Z80 resets *1 

1* delay while Z80 resets *1 

void set_cam(icam) 
short int icam; 

1* routine to set up ~ init. camera *1 

{ short int dummy, dum; 
char answ, error; 

error = FALSE; 
do 1* enter in threshold*1 
( printf( 

"\n enter in threshold value for camera ~%d :",icam+1); 
scanf("%d",~dummy); 

dum = getchar()j 1* remove extra char *1 
error = FALSEj 
if (dummy> Ox7f :: dummy < 0) 
( printf( 

} 

"\n illegal threshold value = %d",dummy); 
error = TRUE; 

} while (error); 
thresh_bticam] = dummy; 

printf("\n invert image 7 (Y/N) H); 



) 

scanf("%c",~answ); 

dum = getchar(); 

330 

if (answ == 'y' :: answ == 'Y') 
thresh_b[icaml := Ox80j 

*(cc_pt+cam_dt[icaml) 
*eccb_pt = FREEZE; 

= thresh_b[icaml; 

void setup_came) 
( i nt i; 

} 

*eceb_pt = BUSFRZ; 
*(cc_pt+cam_dttOJ) = Cehar)10; 
*(cc_pt+cam_dt[1l) = Cehar)lO; 
*eceb_pt = FREEZE; 
take_picture(); 
for (i=O; i < 3; i++) 
( delay(100); 

read_cam C ) j 
) 

void read_cam() 
( 

1* request access *1 
1* instal thresh val.*1 

1* release 280 bus *1 

z80_wait(); 1* wait until picture taken *1 

) 

*eccb_pt = BUSFRZj 1* transfer data to buffer *1 
movmem(ec_pt+cam_ofs(OJ,caml_buf,Cunsigned)NPIXLS)j 
movmem(ec_pt+cam_ofst1J,cam2_buf,Cunsigned)NPIXLS)j 
*cccb_pt = FREEZE; 
take_picture(); 

void take_pictureC) 
( *cccb_pt = TRIGGER; 

*cccb_pt = FREEZE; 
) 

1* release FREEZE to trigger Z80*1 
1* reset FREEZE *1 

void z80_wai t C) 1* routine to check Z80 flag *1 
( short int i,j; 

char flag1, f1ag2, *tpl_pt, *tp2_pt; 

tpl_pt = cc_pt + cam_fltOl; 
tp2_pt = cc_pt + cam_flCl]; 

1* pointer to flag *1 

forCj=O; j < 1000'; j++) 
( 1* delay for 280 proccessing *1 

forCi=Oj i< 100 ji++) 

*cceb_pt = BUSFRZj 
flag1 = *tpl_pt; 
flag2 = *tp2_pt; 
*eccb_pt = FREEZE; 

if (flag1 != O!~ flag2 != 0) 

1* read flag byte *1 

1* test flag *1 

.. , 
F. 
'[ 
... 



} 

331 

return; 
> 
printf("\n excessive waiting for 280"); 

1* This routine displays the camera picture on the screen. *1 
1* Since screen pixels are rectangular each row of camera *1 
1* pixels is repeated 4 times. *1 

void view(icam) 
short int icam; 
( int ofs_1, ofs_2, start, n, rn, ipix; 

char *cam_buf; 

} 

cam_buf = icarn 1 cam2_buf 
start = icam ? 208 : 162; 

for n = ipix = 0; n < NROWj n++) 
{ ofs_1 = (2*n*L_SCREEN) + start; 

ofs_2 = «2*n + 1) * L_SCREEN) + start; 

for (m=Ojrn < NCOLj rn++,ofs_l++,ofs_2++,ipix++) 
( if ( *(cam_buf+ipix) > Ox80 ) 

( *(a_screen+ofs 1) = BLOCK; -*(a_screen+ofs_2) = BLOCK; 
*(b screen+ofs 1 ) = BLOCK; - -*(b screen+ofs_2) = BLOCK; -

) 

else 
( *(a_sereen+ofs_ 1) = BLANK; 

*(b_screen+ofs_l) = BLANK; 
*(a_sereen+ofs_2) = BLANK; 
*(b screen+ofs_2) = BLANK; -

) 

) 

) 

edge_find(cam_buf,irow,ico12) 
char *eam_buf; 
int irow, *ic012; 1* no. of pixel row to be searched *1 
( 

int ipix, ic01, ico11, phase; 
ipix = (irow * NCOL); 1* N.B. irow starts at zero *1 
phase = 1; 
*ico12 = 0; 
for (ic01 = 0; ic01 < NCOL; ic01++,ipix++) 
( 1* phase 1 - search for black edge *1 

if (phase == 1) 
( 

) 

else 

if *(cam_buf+ipix) < Ox80 ) 
( phase = 2; 

ie011 = icol; 
) 

1* phase 2 - search for *1 



} 

( 

> 
) 

if 
( 

> 

332 

1* following white edge *1 
*(eam_buf+ipix) > OxBO ) 
*ieol2 = ieo1; 
return(ieoll); 

if (phase == 2) 
return(ieol1>; 

return( NCOL-l); 

void calib(icam) 
int ieam; 
( 

int start,irow,ieol,i,ii,slotCNCOLJ, stripCNROWJ, istrip, 
seam[NCOLJ, ieo12; 

char *cam_buf; 

for (i = 0; i < NCOL; i++) 
( slot[iJ = 0; 

searnCiJ = 0; 
> 

cam_buf = iearn 7 eam2_buf caml_buf; 
start = ieam 7 44 : lB; 

1* reinitialise on entry *1 

for (istrip = irow = 0; irew < NROW; irow++) 
( 

} 

ic01 = edge_find(cam_buf,irow, &ieol2); 
if (icol > NCOL-2) 

stripCistrip++J = irow; 
else 

seamCicelJ++; 
if (ie012 > icel) 

slotCico12-icolJ++; 

curs_xy(start,(int)20); 
for (i = 0; i < 7; i ++) 

if (i < istrip) 
printf("%3d",stripCiJ); 

else 
printf(" 11); 

curs_xy(start,(int)21); 
fer (i = 0, ii = 0; i < NCOL; i++) 

if (seamCiJ > 3) 
( ii++. 

) 

if (ii < 7) 

printf("K3d",i); 

for (i = 0; i <= 7-ii; i++) 
pri ntf ( " " ) ; 

curs_xy(start,(int)22); 
for (i = 0, ii = 0; i < NCOL; i++) 

if (seam C iJ > 3) 
( ii++; 

printf("K3d",seamCiJ); 
} 



} 

333 

if (ii < 7) 
for (i = 0; i <= 7-ii; i++) 

printf(1I 11); 

curs_xy(start,(int)23); 
for (i = 0, i i = 0; i < NCOL; i ++) 

if (slotCi] > 2) 
< i i ++; 

printfC I %3d",i); 
} 

if (ii < 7) 
for (i = 0; i <= 7-ii; i++) 

printf(1I 11); 

curs_xy(start,(int)24); 
for (i = 0, ii = 0; i < NCOLj i++) 

if (slotCi] > 2) 
< i i ++; 

printf("%3d",slot[i]); 
} 

if <ii < 7) 
for (i = 0; i <= 7-ii; i++) 

printf(II 11); 

void delayCtimes) 
int times; 
< 

int i,j; 

for (i=Oj i < times; i++) 
for (j=O; j < 500; j++) 

. } 

TITLE ASSEMBLER ROUTINES FOR CAMERA PROGRAMS 
NAME CAM_SUP 
INCLUDE LM8086.MAC 

X EQU 6 offset of arguments for L model 

PSEG ; code segment begins 

module entry points 

PUBLIC ALPHA 
PUBLIC CURS_XV 
PUBLIC INIT _PT 

define stack structure for parameter access 
; 
CFSS STRUC 

; 
CFBP DW ? 

CFRA DD ? 

CFPA DW ? 

CFPB DW ? 

CFPC DW ? 

... 

.. 



CFPD DW 
; 
CFSS ENDS 
; 
ALPHA 

ALPHA 

PRoe FAR 

push bp 
mav bp,sp 

mov ah,O 
mov al,6 
int 16 

mov dl,9 
call prcam 
mav al,49 
call dis 
mov dl,61 
call prcam 
mav al,50 
call dis 

pop bp 
ret 
ENOP 

prcam: call cursor 
mov al,67 
call dis 
mov al,65 
call dis 
moval,77 
call dis 
moval,69 
call dis 
mov al,82 
call dis 
mov al,65 
call dis 
moval,32 
call dis 
ret 

dis: mov ah,10 
mav cx ,1 
int 16 
call cursor 
ret 

cursor: mov ah,2 
mov dh,17 
add dl,1 
mov bh,O 
int 16 
ret 

334 

; set 640 x 200 bw graphics mode 

column postion of cursor 
subroutine to print camera title 
camera number 
subroutine to display a character 
column position of cursor 

camera number 

subroutine to display camera title 

subroutine to display a character 
write char at current cursor postion 

. j count of characters to write 
video ID BIOS routine 

subroutine to increment cursor positn 

row post ion of cursor 
increment column post ion 
page no.- must be 0 for graphics mode 



; 

335 
CLOTH~~v'O:~;<EliS' LI: 

WNIVERSITY OF LE 

name curs_xy(icol, irow) 

char icel, irow; 

purpose put screen cursor at specified column and row 

FAR 

push bp 
mov bp,sp 

mov bx, [bpJ.CFPA 
mov d I, b I 
mov bx, [bpJ.CFPB 
mov dh, bl 

mov ah,2 
mov bh,O 
int 16 

pop bp 
ret 

; save base pointer on stack 
base points to stack for parameters 

1st parameter: column no 

2nd parameter: row no 

; select 'set cursor' function 
page no.- must be 0 for graphics mode 

replace old base pointer 

name init_pt(ptr, segment, offset) 

unsigned int segment, offset; 
char **ptr; 

purpose set up pointer segment and offset 

INIT_PT PRDC FAR 

. , 

push bp 
mov bp,sp 
push es 

les bx,DWDRD PTR 
mov ax,CbpJ.CFPC 
mov es: [bx+2l ,ax 

mov ax, [bp J .CFPD 
mov es:[bxJ,ax 

pop es 
pop bp 
ret 

INIT _PT ENDP 

ENDPS 
END 

save base pointer on stack 
base pointing to stack for parameters 

[bpJ.CFPA *1 - pointer to pointer 
#2 - segment 
move segment 

3rd parameter: offset 
move offset 

replace old base pointer 



336 

APPENDIX G 

SIMULATION PROGRAM 

PROGRAM simulate(input,output); 
< 

CONST 

TYPE 

This program simulates robotic sewing of a curved 
cloth contour using a visually servoed robot. 

np i x e 1 s = 31 ; 
pixel_width = 0.5; 
cloth_length = 190; 
timelimit = 50 ; 
seam_width = 13.0; 
del_t = 0.14 ; 
cam2_dist = 23.0j 

x_offset = 0 
y_offset = 0 
u_offset = 0 
v_offset = 0 ; 
screenlimit = 199 
scalefactor = 1.0 ; 
display_on = TRUE 
printout_on = FALSE 
curved_seam = TRUE 

coord = RECORD 

. , 
; 

ureal; 
v real 

END ; 

regs = RECORD 

< dist. to sew in mm. 
< time limit for program 
( seam width request 
( servo loop time interval 
< dist. between 2 cameras 

( graphic output parameters 

} 

ax,bx,cx,dx,bp,si,di,ds,es,flags integer 

VAR 

END; 

timestr = string[Sl; 
datestr = string[10Jj 

pixel, gain: ARRAY[O •• npixelsl OF real 
upper_pix, lower_pix : integer; 
pix_gain_fact,deriv_gain,alpha_init, 
error_init,rtn,cloth_feed,limit_total, 
accel limit, vel limit, prop Qain real; 
excessive : boolean; 

PROCEDURE InitData; 
BEGIN 

prop_gain .-.- 0.07; 
deri v_gai n := 1.6 ; 
alpha_ init := 0.4; 
error_ init .-.- 0.50j 

) 

) 

) 

) 

) 

) 



END; 

rtn := 300.; 
cloth_feed := 60.; 
limit_total := 200.; 
accel_limit := 3.0; 
vel_limit := 8.0; 

PROCEDURE InputData; 
BEGIN 

337 

qotoxy(65,1 1i write('prop, Kt ',prop gain:6:4'; 
gotoxy(75,1'j read(prop_gain)j gotoxy(75,1'; 
write(prop_gain:6:4); 
gotoxy(65,2); write('deriv, K2 ',deriv_gain:5:2'; 
gotoxy(76,2'; read(deriv_gain'; gotoxy(76,2'j 
write(deriv_gain:5:2'j 
gotoxy(65,3'j write('init alpha ',alpha_init:S:l'j 
gotoxy(76,3'; read(alpha_init,; gotoxy(76,3)j 
write(alpha init:5:1); 
gotoxy(65,41j write('initial E ',error_init:5:1)j 
qotoxy(76,4)j read(error_init)j gotoxy(76,4); 
write(error_init:S:l1j 
gotoxy(6S,5)j write('dist, Xf 
gotoxy(76,S); read(rtn)j 
write(rtn:5:0)j 

',rtn:5:0)j 
gotoxy(76,S)j 

gotoxy(6S,6'; write('max Yf ',limit_total:S:Ol; 
gotoxy(76,6); read(limit_total)j gotoxy(76,61j 
write(limit_total:5:01; 
gotoxy(65,7)j write('speed, Vc ',cloth_feed:S:O)j 
gotoxy(76,7)j read(cloth_feed)j gotoxy(76,7'j 
write(cloth_feed:5:0)j 
gotoxy(6S,S)j write('max acceln ',accel_limit:S:l)j 
gotoxy(76,S); read(accel_limit)j gotoxy(76,S)j 
write(accel limit:S:l); 
gotoxy(65,9); write('max velcty ',vel_limit:S:l)j 
gotoxy(76,9)j read(vel_Iimit)j gotoxy(76,9)j 
write(vel_Iimit:5:1'j 
qotoxy(65,10'j write('no pixels 
qotoxy(65,11'; write('pix width 
gotoxy(65,12)j write('time step 
gotoxy(6S,13)j write('dist, Xcam 
gotoxy(65,14)j write('seam width 

ENDj 

PROCEDURE draw line 
VAR 

',npixels:S'; 
',pixel_width:5:2)j 
',del_t:S:3'j 
',cam2_dist:5:11; 
',seam_width:5:1); 

seam_offl, seam_off2 : integer; 
BEGIN 

END 

seam_offl := round(seam_width * 0.7071 * scalefactor) 
seam_off2 := round(seam_width I 0.7071 * scalefactor) 
draw (x_offset-seam_offl, y_offset+seam_offl, 
x_offset+screenlimit-seam_off2, y_offset+screenlimit, 3) 

PROCEDURE draw_curve; 
VAR 

temp, temp2, temp3 : real; 
seam_x, seam_v, xl, x, y, x_a, x_n 

BEGIN 
integer 



338 

x_o := x_offset ; 
x_n := x_o + round(sqrt(200.0 * screenlimit) ) 
FOR xl := x_a TO x_n DO 

BEGIN 
x := xl - x_offset 
temp := x ; 
temp2 := sqr(temp) ; 
y := round(temp2/200.0) ; 
temp3 := (seam_width*IOO.0)/(sqrt(temp2 + 10000.0» 
seam_y := roundly + temp3) ; 
seam_x := round(xl - (x * temp3 I 100.0) ) ; 

plot(x1, y, 3) ; 
plot(seam_x, seam_y,3) 

END 
END 

PROCEDURE setup_screen 
BEGIN 

graphmode ; 
graphbackground(O) • < draw x and y axes } 
draw (x_offset, v_offset, x_offset, y_offset+screenlimit, 3) 
draw (x_offset, v_offset, x_offset+screenlimit, v_offset, 3) 

IF curved_seam THEN draw_curve 
ELSE draw_line 

END ; 

PROCEDURE setup_pixels ; 
VAR 

nspaces,gain_sign,centre_pix,i,factor,gain_switch 
half_pix_gain real; 

BEGIN 
pix_gain_fact := prop_gain*pixel_width; 
nspaces := npixels + 1; 
centre_pix := nspaces DIV 2 ; 
factor := 1 - centre_pix 
gain_switch := 0 ; 
gain_sign := -1; 
half. pix Qain := (pixel width I 2.0) * pix_gain_fact 

{ IF printout_on 
BEGIN 

THEN 

integer; 

wri t e 1 n ( 1 s t , ' 
wri teln( 1st) 

pixel 
wri teln( 1st) 

Pixel arrangement·) ; 
wri t e 1 n ( 1 s t , 

no. factor 

END 

FOR i:= 0 TO npixe1s -1 DO 
BEGIN 

pixelCiJ := pixel_width * factor; 

spacing gain'); 

} 

gainCi] := (pixelCi - gain_switch] * pix_gain_fact) + 
(half_pix_gain * gain_sign) 

gainCiJ := - gain[iJ ; 



339 

{ IF printout_on AND (gain_sign = -1) THEN 
BEGIN 

END; 

wri te1n( 1st,' 
',gainCiJ:l0)j 

writeln(lst,' ',i:4,' ',factor:8,' 
pixelCil:l0) ; 

END 

IF factor = 0 THEN gain_switch := 1 
IF factor = 0 THEN gain_sign := 1 
factor := factor + 1 

gain(i+1l := Cpixe1(iJ * pix_gain_fact) + 

> 

(half_pix_gain * gain_sign) 
gain(i+ll := - gain(i+1J 

IF printout_on THEN 
BEGIN 

END 
END ; 

write1n(1st) 
write1n<lst) 

FUNCTION 1imitCqty, lim : real) 
BEGIN 

real j 

END; 

IF (qty > lim) THEN 
limit := lim 

ELSE 
BEGIN 

ENDj 

lim := lim * -1j 
IF (qty < lim) THEN 

limit:= lim 
ELSE 

limit := qtYj 

FUNCTION np_measured (ndle,pos 
VAR 

coordj cosalpha real) 

BEGIN 

i : integer ; 
half_pix_width,np_ca1culated,error _ca1c,error_meas 

i := 0 j 

half.pix width := pixel width / 2.0 i 
np_ca1culated := (pos.u - ndle.u)/cosalpha 
error_calc := np_ca1culated - seam_width; 

WHILE 
DO 

(error_calc > pixeltiJ) AND (i < npixels) 
i := i + 1 ; 

IF i = npixels THEN 
error_meas := pixel(npixels-1J + half_pix_width 

ELSE 
error_meas := pixel[il - half_pix_width 

real; 

real; 



340 

END 

FUNCTION eale_error (ndle,pos:eoordj eosalpha,beta:real):real; 
VAR 

BEGIN 

END 

np : real 

np := np_measured (ndle, pos, cosalpha) ; 
eale_error := (np * eos(beta» - seam_width 

PROCEDURE rotate (tanalpha : realjndle : eoord; VAR pos eoord); 
VAR 

templ, temp2, temp3 
BEGIN 

real j 

END 

IF curved_seam THEN 
BEGIN 

templ := 100.0 * sqr(tanalpha) j 

temp2 := 2.0 * (ndle.v + (ndle.u*tanalpha» 
temp3 := 100.0 * tanalpha ; 
IF (temp1 + temp2 < 0) THEN 

pos.u := 0 
ELSE 

pos.u := 10.0 * sqrt(temp1 + temp2) - temp3 
pos.v := sqr(pos.u)/200.0 ; 

END 
ELSE 
BEGIN 

END 

pos.v := (ndle.v + (ndle.u*tanalpha»/(l + tanalpha); 
pos.u := pos.v; 

PROCEDURE translate(dist,alpha,eosalpha realjndlel: eoord; 
VAR ndle2,pos : eoord); 

VAR 
sinalpha real; 

BEGIN 

END 

sinalpha := sin(alpha) j 
ndle2.u := ndlel.u - (dist * sinalpha) ; 
ndle2.v := ndlel.v - (dist * cosalpha) ; 
rotate ( (sinalpha/cosalpha), ndle2, pos 

FUNCTION 
VAR 

transferfunetn (error, beta real) 

i inteqer; 
transfer : real 

BEGIN' 

real 

i : = 0 
WHILE 
DO 

error) pixel[il ) AND ( i < npixels ) 
i := i + 1 ; 



341 

transfer := gain[il + (deriv_gain * beta) 
transferfunctn:= transfer; 

END 

PROCEDURE initial_pos (VAR pos, ndIe : coord 
VAR 

tanaIpha, sinalpha, cosalpha : real ; 

BEGIN 
sinalpha := sin(alpha init) i 
cosalpha := cos(alpha_init) ; 
tanalpha := sinalpha/cosalpha 

IF curved_seam THEN 
BEGIN 

ndle.v := 199.0 
pos.v := ndle.v - «seam_width + error_init)*sinalpha); 
pos.u := sqrt( 200.0 * pos.v ) ; 
ndle.u := pos.u - «ndle.v - pos.v) / tanalpha ) ; 

END 
ELSE 
BEGIN 

ndle.v := cloth_length; {arbitrary needle postn> 
ndle.u := ndle.v - «seam_width+error_init) * 

(sinalpha + cosalpha» 
pos.u := (ndle.v + ndle.u*tanalpha)/(tanalpha + 1) ; 

END 
END ; 

pos.v := pos.u ; 

PROCEDURE lineplot ( n, p 
VAR 

coord ) ; 

nu_i, nv_i, pu_i, pv_i : integer 
BEGIN 

nu - i := round«(n.u-u_offset) 
nv_i := round«(n.v-v_offset) 
pu_ i ;= round«(p.u-u_offset) 
pv_ i .-.- round«(p.v-v_offset) 

draw (nu i,nv i,pu i,pv.i,3) ; 
END i 

PROCEDURE curve_plot (n, p : coord) 
VAR 

BEGIN 

* scalefactor) 
* scalefactor) 
* scalefac:tor) 
* sc:alefac:torl 

nu_i := round(n.u + x_offset ) ; 
nv_i := round(n.v) ; 
pu_i := roundCp.u + x_offset) 
pv_i := round(p.v) ; 

END 

FUNCTION time: timestr; 
VAR 

regpac:k 
hour, min, sec 

regs; 
stri ng(2] j 

+ x_offset) 
+ y_offset) 
+ x_offset) 
+ y _offset) 



BEGIN 

END; 

WITH regpack DO . 
ax := $2c shl 8; 

MSDOSCregpack) ; 
WITH regpack DO 
BEGIN 

342 

strCcx shr 8, hour); 
strCcx mod 256, min); 
strCdx shr 8, sec); 

END; 
time := hour+':'+min+':'+sec; 

FUNCTION date : datestr; • 
VAR 

BEGIN 

regpack 
month, day 
year 

WITH regpack DO 

regs; 
std ng[2]; 
stringC4J; 

ax := $2a shl 8; 
MSOOS C regpack) ; 
WITH regpack DO 
EEGIN 

strCcx, year); 
str(dx mod 256, day); 
strCdx shr 8, month); 

END; 
date := day+'/'+month+'/'+yearj 

END; 

PROCEDURE print_heading 
EEGIN 

writelnClst,#12,' 

writelnClst, 

writelnClst,#27#69,' 

write(lst,#27#70,' 
• contour ') ; 

IF curved_seam THEN 

da te) ; 

time, #10) ; 
Simulation of Robotic ' 

'Sewing of Curved Cloth',#10) 
version 1.8: cloth', 

write Clst,'CURVED seam v = sqrCu)/200') 
ELSE 

write (lst,'STRAIGHT seam 
writeln (1st) ; 
IF cam2_dist = 0 THEN 

wri t e I n ( 1st, , 
ELSE 

writelnClst,' 

u=v') ; 

one camera only' ) 

forward feedback', 

wri t e I n ( 1st, • 
writeln(lst) ; 
writelnClst,' 
wri teln (lst) ; 

• from 2nd camera'); 
Acceleration limiting'); 

Input Data') ; 



write(lst,' 
wri t e 1 n ( 1st, , 
write(lst,' 
writeln<lst,' 
write<lst,' 
writeln(lst,' 
wri tee 1st,' 
write1n(lst,' 
wri tee 1st,' 
wri t e 1 n ( 1 s t , • 
wri t e ( 1 s t , , 
writeln(lst,' 
write1n(lst,' 
wri te 1 n ( 1 st ) 

END ; 

343 

no. pixels = ',npixels:4) ; 
derivative gain = ',deriv_gain:8:4)j 

seam width = ',seam_width:4) j 

proportional gain = ',prop_gain:8:4); 
feed speed = ',cloth_feed:4) ; 

servo loop time delay = ',del_t:8:4) ; 
initial error = ',error_init:4) j 

initial angle = ',alpha_init:8:4)j 
cloth length = ',cloth_length:4) ; 

total limit = ',limit_total:8:4)j 
inter camera distance = ',cam2_dist:4) ; 

inter pixel distance = ',pixel_width:8:4)j 
acceleration limit = ',accel_limit:4); 

PROCEDURE print_table 
BEGIN 

{ 

END 

wri t e I n ( 1st, , 

wr i t e 1 n C 1st) ; 
write1n(lst,' error 
, gain y_sc 

wri te I n ( 1st, , 

writeln(lst) 

alpha 
y_displ')j 

ndle.u 
pos.u 

Simulation ' 
Results') 

np beta 

ndle.v 
pes.v') 

} 

FUNCTION calc_beta(ndle1,pos1:coordjalpha,cosalpha:real):realj 

{ This function returns the locally measured> 
( angle between cloth ~ sew mIc > 

VAR 
ndle2, pos2 : coord 
np_l, np_2 : real; 

BEGIN 
translate (cam2_dist,alpha,cosalpha,ndle1,ndle2,pos2); 
np_l := np_measured(ndle1,pos1,cosalpha) ; 
np_2 := np_measuredCndle2,pos2,cosalpha) j 

END; 

PROCEDURE performance(error,dist real); 
BEGIN 

END; 

IF excessive THEN exit; 
IF absCerror) < 1.0 THEN exit; 
gotoxy(68,16)j write('P.I. = ',dist:5:2); 
excessive := TRUE; 



VAR 

344 

( MAIN PROGRAM ) 

error, sew_dist, alpha, total_time, next_error, y_sc, y_displ, 
cosalpha, tanalpha, del_alpha, del_dist, Vd_old, y_offst, 
dedt, np_old, ace lim, vel lim, old y, np, beta: real; 

ndle1, ndle2, pos1, pos2, pos3 : coord ; 
result1 : regs; 
dummy: char; 
cloth_end : boolean; 

BEGIN 
InitData; 
REPEAT BEGIN 
IF display_on THEN setup_screen 
InputOata; 

(initialisations ) 
initial_pos (pos1,ndlel) 
sew_dist := 0; 
alpha := alpha_init ; 
cosalpha := cos(alpha) ; 
tanalpha := sin(alpha)/cosalphaj 
np := np.measured(ndlel,pos1,cosalpha) 
del_dist := cloth_feed*del_t; 
total_time := 0 ; 

( incr. feed distance) 

excessive := FALSE; 
cloth_end := FALSE; 
y_sc := 0; y_displ:= 0; yd_old:= 0; o· , 
y_offst := tanalpha * rtn; 

( convert robot motion limits from handshakes to del_t units) 
. vel lim := vel limit*del t/O.028; 
acc:lim := acc;l_limit*d;l_t*del_t/0.028/0.028; 
IF printout_on THEN print_heading 
setup_pixels ; 
IF printout_on THEN print_table ; 
IF display_on THEN 
BEGIN 

END 

IF curved. seam THEN curve_plot(ndle1,posl) 
ELSE lineplot(ndlel,pos1) i 

REPEAT 
np_old := np; 
np := np_measured(ndle1,posl,cosalpha) 

IF cam2_dist = 0 THEN 
beta := arctan«np_old - np)/del_dist) 

ELSE 
beta := calc_beta(ndlel, pos1, alpha,cosalpha)j 

error := calc_error (ndlel,posl,cosalpha,beta) 
del_alpha := transferfunctn (error, beta) ; 

translate (del_dist, alpha, cosalpha, ndle1, ndle2, pos2) 
( update alpha ) 

alpha ~= alpha + del_alpha; 



345 

cosalpha := cos(alpha) ; 
tanalpha := sin(alpha)/cosalpha; 

< calculate robot displ in mm ~ limit it ) 
y_sc := tanalpha * rtn - y_offst; 
y_displ := y_sc - old_V; 
y_displ := limit(y_displ,vel_lim); 
y_displ := limit(y_displ-yd_old,acc_lim) + Vd_old; 
y_sc := limit(old_y+y_displJlimit_tota}); 
y_displ := y_sc - old_V; 
Vd_old := y_displ; 
old_y := V_se; 
tanalpha := (y_sc + y_offst)/rtn; 
alpha := arctan(tanalpha); 
cosalpha := cos(alpha) ; 

rotate ( tanalpha, ndle2, pos3) 

sew_dist := sew_dist + del_dist 
ndlel.u := ndle2.u ; 
ndlel.v := ndle2.v ; 
posl.u := pos3.u ; 
posl.v := pos3.v ; 
total_time := total_time + del_t 

performance(error,sew_dist); 
IF (posl.u < 0) or (posl.v < 0) or 

(ndlel.u < 0) or (ndlel.v < 0) 
THEN cloth_end := TRUE; 

IF alpha < 0 THEN cloth_end := TRUE; 

IF printout_on and not cloth_end THEN 
BEGIN 

( update parameters > 

writeln(lst, error:6:2,' ',alpha:6:3,' , np:6:2, 
',beta:6:3,' ',del_alpha:6:3,' 

y_sc:6:1,' ',y_displ:6:1); 
< writeln(lst,' ',ndlel.u:l0.' " ndlel.v:l0, 

',posl.u:l0,' " posl.v:l0); ) 
END ; 

IF (display_on and (not cloth_end» THEN 
BEGIN 

END 

IF curved_seam THEN curve_plot(ndlel,posl) 
ELSE lineplot(ndlel.posl); 

UNTIL (total_time> timelimit) or cloth_end; 

gotoxy(68,18)j write('final = ',sew_dist:5:2)j 

IF (display_on) AND (printout_on) THEN 
BEGIN 

print_heading ; 
writeln(lst,*10*10*10); 
intr(5,resultl)j 

END; 
readln(dummy); 
END; UNTIL NOT curved_seam; 

END. 



346 

APPENDIX H 

INTERFACE CIRCUITS 

H.l. IBM AT Interface Card 

In addition to the RS232C serial ports which were required 
for the ALTER and Uplink facilities, several other 
interfaces were necessary between the IBM AT and other 
components of the FIGARO system. These interfaces were 
implemented on an IBM AT prototype card. 

H.l.l. General Purpose Ports 

Three 373 tri-state latches and two 8255 PlO controllers 
were installed on the card. Two of the 373 latches were 
configured as output ports, and are referred to as PORTA 
and PORTB in the software. The third latch, PORTC, was 
configured for input. 

The PlO· controllers provided 6 ports, PORTE th~ough to 
PORTJ, which could be configured under program control. The 
address of the control port of each PlO is listed in the 
header file, under CB 10 1 and CB 10 2. 

H.l.2. Sewinq Machine Interface 

An A0558JN OAC was incorporated on the card, and configured 
to provide an analoq output of 0 to 10 VOC. The address of 
the DAC was referred to as SPEED_Po The OAC's output was 
connected to the sewing machine's speed control pin. 

The interfacinq of the sewinq machine's functions to the 
IBM AT is described in table H-l. The lines to the sewing 
machine were buffered to accommodate the higher CMOS 
voltages in the sewing machine controller. 

H.l.3. Counter for Encoder Signal 

The shaft encoder signal was connected to a counter circuit 
which is shown in fig H-l. The two 373 latches were 
referred to as LO_COUNT and HI_COUNT in the header file. 
The MASTER RESET and the ENABLE LATCHES lines were taken 
from pins 1 and 2 of PORTJ (or CB_COUNTR). 



347 

PORT tt. Address Buffer Description 
pin no. .. 

A 1 772 10 7406 middle speed 
2 thread trimming 
3 (Ox304) needle up 
4 output compensation 
5 low speed 
6 high speed 
7 presser foot 
8 hi back tack 

B 1 773 7406 needle up stop 
2 (Ox305) " needle down stop 

• C 1 774 4049 needle up signal 
3 (Ox306) 11 encoder signal 

Table H-l: Interface to Sewing Machine Functions ---_ .. __ ... 

H 

4 

• C57 H 0 
I t. 

07 I. ~I 4 
~~ I/~ 

DATA d' 3 , I.Jt 
11 • 0 
• 7 i ~ BUS 
r 

, • 3 ~ I tL • DO • I. H 4k7 
11 WASTDlRESEl' 

• If or COUNTERS 
CS8 ~ • 4 

I , JL 

07 I ,t " 0 
" 1,>-
II 3 I. DATA 

111 ~ 4 /. 
4 7 It -.S 

BUS I ~ Ii 
~ ~ 0 
! 

3 
DO 

~f-f 
L.E 

SEWING "-'CHINE 

~TCH ES 
ENCOOER SlCNAL 

Fig. H-l: Counter Circuit for Shaft Encoder Signal 



348 

H.l.4. GPC Interface 

The implementation of 
detailed in table H-2. 
resistor). 

the GPC link on the IBM AT is 
(PUR is an abbreviation for pull-up 

PORT t: Address Bufferl Destin Description 
pin no. interfc Address 

E 1 776 7406 WX9G Output Data bus 
2 (Ox308) WX10G to Unimation 
3 WXllG 
4 WX12G 
5 WX 13G· 
6 WX14G 
7 WX15G 
8 WX16G 

F 1 777 PUR OX9S Input Data Bus 
2 (Ox309) .. OX10S from Unimation 
3 .. OXllS 
4 .. OX12S 
5 .. OX13S 
6 .. OX14S 
7 11 OX15S 
8 .. OX16S 

G 1 778 IRQ3 interrupt - input 
2 (Ox30A) 7406 WX7G INPUT BUFF FULL 
3 .PUR OX7G STROBE - input 
4 IRQ5 interrupt - output . 
5 PUR OX6S CONTROL SIGNAL in 
6 

·7 PUR oxes ACKNOWLEDGE - out 
8 7406 WX8G OUTPUT BUFF FULL 

Table H-2: IBM AT Implementation of the GPC Link 

H.2. Tension Sensor 

The cloth tension sensor consisted of a bridge of four 
strain gauges. The bridge was supplied with ±5 VDC 
requlated supplies. The bridqe output was amplified 1000 
times by an AD524 instrumentation amplifier, which operated 
with ±12 VDC regulated supplies. The regulated power 
supplies were housed in a separate box to improve noise 
insulation. The circuits for the power supply unit is shown 
in fiQ. H-2. The strain gauge bridge and amplifier circuit 
is shown in fig. H-3. The overload protection circuit, 
descibed in section 4.3.5.2, is shown in fig. H-4. 



240 VAC 

Fig. H-2: Power Supply Unit 

+5 V 

CLaIM TENSION SD4$OR 

$T1I.\IH Co\UC£ BRIDGE 

-5 V 

349 

+12 V 

-12 V 100 ,., 

I<STRUI.IDlT AnON AUPUflER 

Fig. H-3: Sensor and Amplifier Circuits 

+I2V REO 

GROUND 

-~ ,.EG 

-I2V REC 

$DjSE 



sa UPPER 

THRESHOLD 

+12 

CLOTH 'TENSION SIGNAl.. 

AFTER AlJPUFlCA nON 

SET LOWER 

THRESHOLD 

-12 

1''' 

350 

-12 

-12 

Fig. H-4: Overload Protection Circuit 

ROBOT PANIC UHe: 



351 

APPENDIX I 

PAPER PRESENTED AT THE 16th ISIR, BRUSSELS, 1986. 

ROBOTIC SEWING USING MULTI-SENSORY FEEDBACK 

D. Gershon and I. Porat, University of Leeds, England 

1.1. ABSTRACT 

To date, little has been published on the development of 
robotic automation for the garment industry. The major 
distinction between automating garment assembly and other 
manufacturing processes is the extensive .sensory 
ca~abilities required to perform t~e simplest of operations 
on cloth. 

This paper describes the development of a robotic cell to 
sew a contoured seam on cloth. The system was designed and 
analysed using a simulation program which accounted for 
control transfer function, and non-linearities such as 
camera pixel resolution, time delays and arm movement 
limitations. 

The cell comprises a PUMA robot under real-time path 
control with feedback loops for edge tracking, cloth 
tension and cloth feed tracking. Cameras, a cloth tension 
sensor and the sewing machine shaft encoder provide the 
sensory input. 



352 

1.2. INTRODUCTION 

The clothinq industry is starved of flexible automation 
equipment such as has been available in other manufacturing 
industries, despite growing demands for this technology 
(1,2,3J. Althouqh dedicated semi-automatic devices have 
been developed, the application of flexible automation 
systems based on robotics to qarment assembly and handling 
operations has been hindered by the unpredictable and 
awkward nature of limp fabric (4,5J. 

The Clothing Automation Group at the University of Leeds 
has a comprehensive research programme aimed at the 
development of techniques and devices which will pave the 
way for the implementation of Flexible Manufacturing 
Systems in the clothing industry. One long-term project, 
(named FIGARO - Flexible Intelligent Garment Assembly 
Robot), investigates robotic fabric handling and sewing 
skills. 

This paper describes the development of a robotic sewing 
capability of a contoured seam without the use of 
mechanical guides. 



353 

1.3. S~S\EM O~ER~lEW 

1.3.1. Concept (fig. 1) 

The robot holds the end of the cloth against a smooth table 
using two rubber-tipped fingers. The fingers are spring
mounted onto the end-effector. The cloth is fed into the 
sewing machine by the conventional feed mechanism of the 
sewing machine. The robot's path is generated in real-time 
by two sensory servo systems :-

a) a seam tracking servo that controls the sideways and 
rotational movements of the end-effector, based on 
visual tracking of the cloth edge. 

b) a cloth 
motion 
machine 
tension 

feed tracking servo that controls the forward 
of the end-effector, based on the sewing 
shaft encoder signal and and On the cloth 

measured by an instrumented finger. 

1.3.2. Development System (fig. 2) 

The development 
controller with 
slaves. 

system is organized around 
the robot controller and the 

a master 
sensors as 

The master processor is an IBM AT operating under the AMX-
86 real-time, multi-tasking executive. The interrupt 
service procedures and high speed communication routines 
are written in 8086 assembler, and the rest of the routines 
are written in C. 

The robot is a Unimation PUMA 560 with VAL 11. A major 
advantage of the VAL 11 system is the ALTER facility which 
permits real-time path control by an external computer. 
Full descriptions of the VAL 11 system may be found in 
references (6,7,8J. 

There are two communications channels between the IBM AT 
and VAL 11 :-

a) The ALTER channel is a high speed (19.2 kbaud) serial 
communication line dedicated to transferring real-time 
path control data from the IBM to VAL 11. The ALTER 
protocol permits robot position data to be updated 
every 28 ms. 

b) A general purpose 8 bit parallel communication channel 
was developed by the Leeds University Clothing 
Automation Group, which is used for process control, 
task synchronization and parameter passing. The 
channel combines the 110 binary signals from VAL 11 
with an 8255 PPI chip in the IBM. 

The sewing machine is a conventional Mitsubishi LS2-190 
lockstitch machine with drop feed, underbed thread trimmer 



and 
with 
was 
all 

354 

a microprocessor controlled needle-positioning motor 
a non-contact clutch. The sewing machine controller 
interfaced to the IBM AT permitting central control of 

sewing machine functions. 

The seam trackinq and cloth feed tracking servo systems are 
described in the following sections. 

1.4. SEAM TRACKING SERVO SYSTEM 

1.4.1. Simulation Program (fig. 3) 

The seam tracking servo was developed with the aid 
simulation program. The program had the following 
variables :-

of a 
input 

pixel resolution of linear array camera in line with 
needle 
pixel resolution of optional second linear array 
camera 
distance between cameras 
servo transfer function and gain parameters 
system time.delay 
cloth feed speed 
initial seam error 

- seam width 
limits on ALTER increments 
motion) 

(to ensure smooth robot 

The system time delay was a single parameter which 
accounted for camera sampling rate, processor delays and 
actuation delays. The program assumed that sideways motion 
of the robot produced perfect pivoting of the cloth about 
the needle, without buckling. Figure 4 shows two typical 
simulation runs. 

The simulation program demonstrated that stable control 
depended on applying the transfer function to the actual 
seam error and not to the measured error (fig. 3c). The 
actual seam error was calculated from the measured error 
and from a calculated incidence angle. 

Furthermore the servo was always unstable when a single 
camera was used. The servo was well controlled when a 
second camera was specified at a distance of 20 mm in front 
of the first, and when a large derivative gain was combined 
with a small proportional gain. A linear array of thirty 
pixels with a resolution of 0.5 mm gave a satisfactory 
performance. 

Stability was strongly dependent on the system time delay 
and seam tracking became more difficult as the sewing speed 
was increased. As would be expected, the maximum speed at 
which satisfactory performance could be obtained increased 
as system time delay decreased. 



355 

1.4.2. Vision System 

Two I-SIGHT cameras were selected because of their small 
size and low cost. This 30 by 32 pixel ccn camera is 
decribed in reference (9]. The camera's low resolution 
permits high frame rates which is so essential in real-time 
c~ntrol. T~e resolutio~ was satisfactory since only a small 

·fleld of vIew was requlred, and because the cameras could 
be ~laced close to the table. The extra pixel dimension, 
pr~v~ded by the camera's two dimensional array, was 
utl~l~ed to attenuate signal noise by averaging the edge 
posItIon measurement over three rows. 

The cameras were interfaced to the IBM via a circuit board 
installed in the IBM bus. The camera board consists of 
individual frame stores for each camera and a 280 processor 
which is responsible for picture grabbing, exposure timing 
and thresholding. The IBM AT read the frame stores using a 
DMAblock move. Typically the time taken from triggering 
the cameras, to reading both frame stores and finally 
calculating the seam error was 11 ms. 

The liqhtinq arranqement consists of a projection lamp 
directed at the table's mirror surface, and was found to be 
effective for all types and colours of fabric. 

1.4.3. End-Effector Rotation 

In order to prevent buckling of the cloth and to encourage 
correct pivotinq of the cloth about the needle, it was 
necessary to combine all sideways movements of the end
effector with a simultaneous pivoting of the end-effector 
about the instrumented finqer. The auxiliary finger was 
rotated about the instrumented one so that both fingers 
were at all times equidistant from the needle (fig. 5). 

With the VAL 11 system this rotation was easily achieved by 
defining the TOOL transformation so that the WORLD Z axis 
was colinear with the finger's centre-line. 

1.5. CLOTH FEED TRACKING SERVO 

1.5.1. Sewing Machine Encoder Signal 

The encoder siqnal was read into a counter to track the 
sewinq machine revolutions. The counter was set to zero at 
the start of a seam so that the robot's position update 
in the forward direction was given by:-

where 

x = c * s / b 

x = robot position demand 
c = instantaneous count 

( 1 ) 



356 

b = no. of counts per revolution 
s = stitch length 

Althouqh the robot could track the sewing machine's feed
dog speed accurately by using the counter, in practice it 
could not track the cloth speed accurately. The discrepancy 
between feed-dog speed and cloth speed was due to slipping 
between the cloth and the feed mechanism. This discrepancy 
could not be compensated for because the slipping was 
unpredictable and varied for different fabrics. Evidently 
a cloth tension sensor was necessary for correct cloth feed 
trackinq. 

1.5.2. Cloth Tension Sensor (fig. 6) 

The cloth tension sensor was designed for minimum 
hysteresis and maximum mechanical decoupling. The two 
slender parallel beams were machined from a solid block of 
Al 2024. Similar force sensors are described in references 
(10,11,12J. A foil strain gauge was bonded to each beam 
face. The sensor sensitivity obtained was 2.6 mV/N before 
amplification in the x direction. Good decoupling was 
achieved with a cross-sensitivity of 0.2 mV/N. Thus, the 
ideal cloth tension during sewing, which is 0.5N, 
represented a signal of 1.3V after amplification. 

When the sensor signal was viewed on an oscilloscope, it 
showed a regular rise and fall of cloth tension per stitch 
due to the intermittent nature of the feed mechanism. Since 
the feedback control requires an instantaneous reading of 
cloth tension, sampling the raw sensor signal ~ould be 
unsatisfactory. The signal was interfaced to a digital 
peak detector so that at each sample the processor would 
read the peak tension since the previous sample. The 
sampling rate was such that the reading obtained was the 
peak tension over several stitches. 

1.5.3. Cloth Feed Tracking Control 

The feedback control based on the cloth tension sensor was 
complicated by the effect of friction between the table 
surface and the finger (fig. 7). When the robot moves 
forward the measured cloth tension is less than the actual 
tension because of table friction. However, when the robot 
movei backwards, the table friction changes direction and 
the measured tension is larger than the actual tension. 
Clearly, control would be impossible if' end-effector 
displacements were permitted in both directions. 
Consequently, the robot was limited to forward 
displacements only, and the small offset due to the table 
friction was easily compensated. 

Satisfactory 
integral and 
signal, with 
encoder signal 

cloth feed tracking was achieved by combining 
proportional control on the cloth tension 
the displacement calculated from the shaft 
(fig. 8). 



357 

1.6. SYSTEM PERFORMANCE 

1.6.1. Seam Tracking 

Figure 9 shows areas of gain values in which satisfactory 
seams could be obtained for 2 different sewing speeds. The 
solid contour line is the boundary within which 
satisfactory seams were obtained, and the dotted line shows 
the region within which good seams were obtained. 

At 1600 rpm, satisfactory seams were obtained with 
increasing derivative gain for increased proportional 
gains. But when the proportional and derivative gains were 
further increased, unsatisfactory seams were obtained. 
However, at higher speeds, large proportional and 
derivative qains had to be applied to obtain satisfactory 
seams. These larqe qains when applied at the lower speed 
produced unsatisfactory seams. An adaptive control 
technique is possibly indicated. 

The system stability can be readily improved by minimising 
the total time delay between measurement and actuation. The 
time delay comprises the following main components ;-

actuation delay (i.e. robot speed) 
VAL 11 transformation calculations 
ALTER update rate (every 28 ms) 
IBM communication overhead (8.7 ms per 28 ms) 
camera exposure and capture time (10 ms) 

The IBM communication overhead could be reduced if a 
separate processor was used for managing the ALTER high 
speed communications. The use of a four axis SCARA robot 
would reduce the VAL 11 transformation calculations. A 
faster robot and a higher ALTER update rate would also 
benefit performance. 

1.6.2. Tension control 

The cloth feed tracking serve limited excessive tension 
variations, sufficiently to sew satisfactory seams. 
However, tension variations had an amplitude of up to 0.7N. 
More work is required to control the tension within closer 
limits. 

1.6.3. Seam quality 

Excessive tension variations and buckling of the cloth 
produced seam puckering. The tendency to buckle was 
reduced by using a highly polished smooth stainless steel 
table top and by limiting robot displacements to ensure a 



358 

smooth sliding motion. Seam quality varied considerably 
for different fabrics; open structure fabrics were very 
tolerant of tension variation, heavy fabrics were resistant 
to bucklinq forces, but light and tightly structured 
fabrics were more sensitive. 

The sewing machine's presser foot, which holds the cloth 
aqainst the feed dogs, hinders pivoting of the cloth about 
the needle. This effect becomes more severe as the robot 
approaches the needle. Consequently, this method of robotic 
sewing is at present only effective for finger to needle 
distances between 1000 mm and 250 mm. A refinement of this 
technique to enable satisfactory sewing close to the needle 
is being developed. 

1.7. CONCLUSION 

An adaptive robotic sewing system has been developed that 
uses multi-sensory inputs to manipulate the cloth in real
time. The system is stable within a narrow margin. The 
stability margin can be improved by reducing the system 
time delay. Seam quality can be improved by a more precise 
tension control. 

1.8. ACKNOWLEDGEMENTS 

1 would like to acknowledge the financial assistance 
provided by the Textile and Other Manufactures Requirements 
Board of the Department of Trade and Industry. 

REFERENCES 

( 1) Lower, 
Bobbin, 

J. M., "Automation Heard Around the World", 
Vol 26, No. 8, April 1985. 

(2) Tredwin, P., "Computerised Garment Manufacture", Proc. 
Annual World Conference, The Textile Institute, 
London, May 1985. 

(3J "Automation in Apparel", Bobbin, Vol 23, No 5, Jan 
1982. 

(4) Nilsson, N., "The Apparel Crisis in Sweden 

(5J 

Countermeasures and Developments", Bobbin, Dec 1982. 

Taylor, G.E., Kemp, D.R., Taylor, 
"Vision Applied to the Orientation 
Motifs in the Textile Industry", 
England, 1982. 

P • M ., Pug h, A., 
of Embroidered 

2nd ROVISEC, 

(6) Shimano, B.E., Geshke, G.G., Spalding, G.H., Smith, 
P.G., "A Robot Programming System Incorporating Real
Time and Supervisory Control, VAL 11", Proc. of Robots 
9, Vol 2, Detroit, June 1984. 



359 

(7J Loughlin, C., Morris, J., Rovetta, A., Franchetti, I., 
"Line, edge and contour following with eye-in-hand 
vision system", 14th ISIR, Gothenburg, Sweden, Oct. 
1984. 

(8] Van der Heijden, F.J.M., "Assembly of small components 
by a vision-controlled robot", 5th ROVISEC, Amsterdam, 
Oc t. 1985. 

(9J Loughlin, C. and 
hand vision", 7th 
1984. 

Morris, J., "Application of eye in 
B.R.A., Cambridge, England, May 

(10J Van Brussel, H., Belien, H., Thielemans, H., "Force 
Sensing for Advanced Robot Control", 5th ROVISEC, 
Amsterdam, Oct. 1985. 

(11J Lestelle,D., 
force/torque 
Oct. 1985. 

"Gripper with finger built-in 
sensors", 5th ROVISEC, Amsterdam, 

(12] Rosen, C., et al, "Exploratory 
Automation", Second Report, 
Institute, Aug. 1974. 

Research in Advanced 
Stanford Research 



1 

Figure 1. Robotic Sewing System 

The cameras are more clearly seen in the reflection 
of the sewing table's mirror surface 

IBM AT MASTER PROCESSOR 

ADC + PEAK SEWING MiC VAL II ROBOT 1 

DETECTOR CONTROLL!:R ;CO NTROL Sys.\ 

I AMPlIFIEi'i 
(X 1000) I NO . 2 

I I - SEWING SFEED 
I 1 - START/STOP 

I CLOTH I ,- PRES SER FOOT 1 

IrENSION! 
I I , 

I~ 
NEEDLE UP/D O'tl~J i 

L SE~JSOR : THREAD TRIMM cr:1i 

~~ure 2_. _~_lOCk Diagram of De ve lop me~~yste~ 



, 

i 

r 

I 
I 
I 

I 
I 
I 

I 

b 

a 

b 

ANGLE BETWEEN SEWIN~-~ 
AND CLOTH CONTOUR AXE~' - I 
CLOTH INCIDENCE ANGLE INTO! 
SEWING HIC 

c CLOTH ROTATION ANGLE TO 

CORRECT FOR SEAM ERROR I 
I 

Nl - NEEOLE POSITION AT TIME ti I 
N2 - NEEOLE POSITION AT TIME t21 
N1Pl - MEASUREO SEAM WIDTH AT tl 
N2P2 - MEASURED SEAM WIDTH AT t2 
N2P3 - MEASURED SEAM WIDTH AFTER 

CLOTH ROTATED 

CLOTH CONTOUR FRAME 

Figure 3a 

INITIALIZE N1. N2. a. b 

~ 

CALCULATE NEW POSITION 
PARAMETERS. N1P1 AND b. 
AND HENCE SEAM ERROR. E 

APPLY TRANSFER FUNCTION 

TO OBTAIN ANGLE c, 
c - PROP-E + DERIVMb 

CALCULATE N2.P2 DUE TO 
SEWING PERPENDICULAR TO 
N!P 1. DURING TIME DELAY 

Parameter Oefinitions 

UPDATE 

a - 11 + c 
Ni - N2 
P1 - P3 

END 

NP - MEASURED SEAM WIDTH 
NR • ACTUAL SEAM WIDTH 

Figure 3c. Sea~ Width 
Calculation 

i I RcaoT ROTATES CLOTH OF SEAM 
BYe. CALCULATE P3 7 

Figure 3b. Flowchart 

Figure 3. Simulation Program 



11 
! 
I 

i 
I 
i 
I 
I ONE CAMERA 

I 
TWO 

INSTRUMENTED 
FINGER 

y - 200/x 

CLOTH CONTOUR FRAME 

----', 
NO. OF PIXELS - 32 
PIXEL DISTANCE - 0.5 
CLOTH FEED 
TIME DELAY 
PROP GAIN 
OERIV GAIN 

- 100 mm/s 
- 120 ms 
- O.OS/plxel 

- 1. 9 

i 
I 

I 
! 

Figure 4. Simulation Results 

AUXILIARY 
FINGER 

END-EFFECTOR 

• 

L.FigUr_~_~. R l ·· l' i e atlonshlp between Rotat on and SldeW:JYS 
Motion of End-Effector 

• ___ . ______ •••• _ •• _ .• _ • . ___ • ___ 0_' 



'_0_----
1 

RUBBER FINGER,I? 

Figure 6. Cloth Tension Sensor 

MEASURED TENSION I ... 
I 
I 
I 

ROBOT HAND I 
I 
I 

I 
I 

FlNGERii 
PRESSURE 

ACTUAL CLO,H TENSION .. 

TABLE FRICIION 

Figure 7. Table Friction and Cloth 
Tension Measurement 

I 



c: 
i
'1'0 
it!) 
~CIJ 

,> ,.... 
:1'0 
i> . -t

III 
Cl 

REQD 
TENSN 

SEWING MIC 
REV COUNTER sIb 

MEASURED 
TENSION 

ACTUAL 
TENSION 

Figure 8. Cloth Feed Tracking Control System 

o 

.... 

o 

Q 

...... 
/ I ..... / 

.... ;' /' -- / ,.- . 
--", I Q 

Q 

\ I 
1 / 

Q "'\ 

GOOD 
FAIR 
BAO 

s 

1600 RPM 2700 RPM 

• 
Q 

le 

s 
+ 

1'
s \.. - --

Proportional Gain 

Figure 9. Seam Tracking Performance 


