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Abstract 
 

The variability of the North Atlantic polar front jet stream is crucial for determining 

weather patterns in western Europe over a range of timescales. Jet metrics of speed 

and latitude are constructed from reanalysis datasets and a new index of jet 

meridionality is presented. An excellent match for time series of jet stream metrics is 

achieved between reanalyses. Homogenisation of jet metrics, the match with ERA-

Interim (ERA-I) and density of observational coverage in the North Atlantic sector 

increase confidence in the ability of the Twentieth Century Reanalysis (20CR) to 

represent interannual jet stream variability based on zonal wind speeds from 700-

900hPa.  

 

There is little evidence of significant trends in jet metrics. While recent (post-2000) 

negative trends in summer jet latitude are significant, they are not unprecedented and 

appear to be linked to the phase of the Atlantic Multidecadal Oscillation (AMO). A 

significant trend of increasing winter jet latitude interannual variability since 1950 is 

found, while there is some evidence linking periods of increasing and decreasing 

variability to slowly varying boundary conditions. Subseasonal jet variability shows 

high interannual variability and little evidence of significant trends. 

 

Potential drivers of jet-stream variability are investigated using multiple regression 

and composite analysis, supported by the use of wavelet coherence. Regression 

models are able to explain up to 56% of jet metric variability. Different drivers impact 

upon different seasons and jet metrics. The links with a range of predictors have value 

for future work on the predictability of the jet metrics.  

 

The multiple regression approach is extended to produce probabilistic forecasts for 

the winter North Atlantic Oscillation (NAO). Regression models show some skill at 

making winter NAO predictions based on autumn drivers, with some skill in making 

real-time forecasts. They compare favourably with Met Office seasonal predictions 

from their coupled dynamical forecasting system, GloSea5. 

 



	 xi	

 

List of Tables 
Tables are organised by chapter. A prefix “A” to the number indicates the table is in 

the appendix associated with the chapter in question. 

 

1.1. Summary of potential drivers of jet-stream variability ............................................ 40 

 

2.1. Websites for obtaining reanalysis data ..................................................................... 54 

2.2. Breakpoints in jet-metric time series ........................................................................ 67 

2.3. Datasets used in the thesis ........................................................................................ 81 

 

3.1. Means and standard deviations of jet-speed time series ........................................... 93 

3.2. Means and standard deviations of jet-latitude time series ........................................ 95 

3.3. Latitudes of peaks in jet frequency ......................................................................... 109 

3.4. Correlations between jet metrics at different atmospheric levels ........................... 113 

3.5. Trends in jet metrics using Mann-Kendall trend test ............................................. 118 

3.6. Trends in jet metrics using linear regression .......................................................... 118 

3.7. Correlations between different jet metrics ............................................................. 119 

3.8. Mean jet speed for different time periods in 20CR and ERA-20C ........................ 122 

 

4.1. Trends in jet metrics, 1871-2012 (1871-2012 for winter, 1901-2012 for vrange) .... 140 

 

5.1. Regression coefficients for predictors of jet speed ................................................. 181 

5.2. Regression coefficients for predictors of jet latitude .............................................. 182 

5.3. Regression coefficients for predictors of jet meridionality .................................... 183 

5.4. Composite winter jet-stream metrics ...................................................................... 186 

5.5. Composite spring jet-stream metrics ...................................................................... 188 

5.6. Composite summer jet-stream metrics ................................................................... 189 

5.7. Composite autumn jet-stream metrics .................................................................... 190 

5.8. Correlations of seasonal jet latitude with the QBO ................................................ 227 

5.9. Composites of winter jet-stream latitude for stratospheric drivers ........................ 230 

5.10. Summary of winter jet-stream drivers .................................................................. 233 

5.11. Summary of spring jet-stream drivers .................................................................. 234 



	 xii	

5.12. Summary of summer jet-stream drivers ............................................................... 234 

5.13. Summary of autumn jet-stream drivers ................................................................ 235 

A.5.1. Correlations between jet metrics and driver time series, 1979-2012 .................. 362 

A.5.2. Correlations between jet metrics and driver time series, 1955-2012 .................. 370 

A.5.3. Correlations between jet metrics and driver time series, 1871-2012  

           (1901-2012, Jet meridionality) ........................................................................... 375 

 

6.1. Regression coefficients for winter NAO predictors ............................................... 264 

6.2. Statistical summary of observed and forecast time series ...................................... 266 

6.3. Deterministic forecast verification measures ......................................................... 267 

6.4. Poorly predicted years in forecast models .............................................................. 269 

6.5. Ensemble and observed NAO variances ................................................................ 273 

6.6. Observed and forecast NAO values, 2013-2016 .................................................... 275 

6.7. Observed, ensemble mean and probabilistic values for 1980-1997 regression 

        model ..................................................................................................................... 278 

6.8. Verification statistics for probabilistic forecasts .................................................... 281 

6.9. Verification statistics for the 1980-1997 model ..................................................... 283 

A.6.1. Observed, ensemble mean and probabilistic values for 1980-1997model,   

           using detrended sea-ice data ............................................................................... 384 

A.6.2. Observed, ensemble mean and probabilistic values for N56 .............................. 386 

A.6.3. Observed, ensemble mean and probabilistic values for N80 .............................. 387 

A.6.4. Observed, ensemble mean and probabilistic values for N93 .............................. 389 

A.6.5. Observed, ensemble mean and probabilistic values for GloSea5 Index ............. 390 

A.6.6. Observed, ensemble mean and probabilistic values for raw93 ........................... 391 

A.6.7. Observed, ensemble mean and probabilistic values for GloSea5 raw ................ 392 

A.6.8. Verification statistics for 1980-1997 model, using detrended sea-ice data ........ 393 

 

 

 

 

 

 

 



	 xiii	

 
List of Figures 

 
Figures are organised by chapter. A prefix “A” to the number indicates the table is in 

the appendix associated with the chapter in question. 

 

1.1. Mean northern hemisphere vector winds for winter and summer .............................. 3 

1.2.  Cross-section of Atlantic sector mean winter zonal wind speeds, 1981-2010 .......... 3 

1.3. Metrics of winter North Atlantic atmospheric circulation ......................................... 6 

1.4. Zonal mean air temperature response 2076-2099 minus 1980-2004, RCP8.5 ......... 11 

1.5. Vertical cross-sections 60-90°N of air temperature and geopotential height 

anomalies .................................................................................................................. 14 

1.6. Anomalies of 1000-500hPa thickness, north of 40°N for each season .................... 20 

1.7. Schematic diagram of how snow anomalies may influence atmospheric 

circulation ................................................................................................................. 22 

1.8.  AMO impact on summer regional climate .............................................................. 24 

1.9. Schematic diagram showing ENSO effects on European climate ............................ 28 

1.10. Solar observations time series ................................................................................ 33 

1.11. Poleward and downward propagation of the solar signal from the stratosphere to 

         the troposphere ....................................................................................................... 35 

1.12. Schematic diagram of potential drivers and their impact upon jet-stream 

         variability ................................................................................................................ 42 

 

2.1. Composite vector winds in the North Atlantic, 800hPa showing wind  

       configurations for different vrange  values .................................................................. 57 

2.2. Amplitude response functions for running means .................................................... 59 

2.3. Amplitude response functions for the Lanczos filter ............................................... 61 

2.4. Effect of the Lanczos filter on a daily jet-speed time series ..................................... 62 

2.5. Amplitude response functions for binomial filters ................................................... 63 

2.6. Summer jet latitude and spread time series showing breakpoints ............................ 66 

2.7. Time series of jet speed, 1871-2012 ......................................................................... 69 

2.8. Time series of jet latitude, 1871-2012 ...................................................................... 70 

2.9. Time series of jet meridionality, 1871-2012 ............................................................ 71 

2.10. Time series of 20CR ensemble members showing jet speed ................................. 74 



	 xiv	

2.11. Time series of 20CR ensemble members showing jet latitude ............................... 75 

2.12. Map showing locations of data for potential drivers used in the thesis .................. 77 

A.2.1. Schematic of jet speed and latitude calculation .................................................. 348 

A.2.2. Observational count data for 20CR, North Atlantic, 1914-1922 ........................ 349 

A.2.3. Total counts of North Atlantic observations, 20CR ........................................... 350 

 

3.1 Example boxplot of annual summer jet latitudes ...................................................... 88 

3.2. Mean jet speed, 1979-2012 for each season ............................................................. 93 

3.3. Mean jet latitude, 1979-2012 for each season .......................................................... 94 

3.4. Mean jet meridionality, 1979-2012 for each season ................................................ 95 

3.5. Annual cycle of jet speed ......................................................................................... 96 

3.6. Annual cycle of jet latitude ....................................................................................... 97 

3.7. Annual cycle of jet meridionality ............................................................................. 98 

3.8. Daily time series of jet metrics, 1980 and 1986 ..................................................... 100 

3.9. Scatterplot of 20CR and ERA-I daily jet speed ...................................................... 102 

3.10. Scatterplot of 20CR and ERA-I daily jet latitude ................................................. 103 

3.11. Mean differences in zonal wind fields, 20CR and ERA-I, 1980-2012 ................ 104 

3.12. Differences in mean zonal wind fields, 20CR and ERA-I for 25/07/99 .............. 105 

3.13. Differences in mean zonal wind fields, 20CR and ERA-I for 26/07/99 .............. 106 

3.14. Scatterplot of 20CR and ERA-I daily jet meridionality ....................................... 107 

3.15. Seasonal daily jet-latitude distributions, 700-900hPa .......................................... 108 

3.16. Geopotential height anomalies associated with winter jet latitude modes ........... 110 

3.17. Mean jet-speed time series at 200-300hPa for each season .................................. 111 

3.18. Mean jet-latitude time series at 200-300hPa for each season ............................... 112 

3.19. Latitude-height cross-section showing difference in mean zonal wind speeds,  

         20CR and ERA-I .................................................................................................. 114 

3.20. Seasonal daily jet-latitude distributions, 200-300hPa .......................................... 115 

3.21. Scatterplot of 20CR and ERA-I daily jet speed, 200-300hPa .............................. 116 

3.22. Scatterplot of 20CR and ERA-I daily jet latitude, 200-300hPa ........................... 117 

3.23. Jet-speed time series for 20CR, 20CRv2c, ERA-20C .......................................... 121 

3.24. Annual cycles of jet speed from 20CR and ERA-20C ......................................... 123 

3.25. Jet-latitude time series for 20CR, 20CRv2c, ERA-20C ....................................... 124 

3.26. Seasonal daily jet-latitude distributions, 20CRv2c .............................................. 125 

3.27. Seasonal daily jet-latitude distributions, ERA-20C .............................................. 126 



	 xv	

3.28. Latitude-height cross-sections of seasonal mean zonal mean wind speeds, 20CR  

         and ERA-I ............................................................................................................. 129 

A.3.1. Time series of winter jet metrics based on median and mean values ................. 351 

A.3.2. Comparison of spring jet speed and latitude for high and low resolution  

           versions of ERA-I ............................................................................................... 351 

A.3.3. Comparison of raw meridional wind ranges in 20CR and ERA-I ...................... 352 

A.3.4. Daily 1980 jet speed and latitude time series, filtered and unfiltered ................ 352 

A.3.5. Daily filtered and unfiltered jet latitude time series for 1986 ............................. 353 

A.3.6.Seasonal daily jet-latitude distributions high resolution ERA-I .......................... 353 

 

4.1. 15-year running trends of jet speed ........................................................................ 141 

4.2. 15-year running trends of jet latitude ..................................................................... 142 

4.3. 15-year running trends of jet meridionality ............................................................ 143 

4.4. Jet speed time series with significant 15-year trends ............................................. 144 

4.5. Jet latitude time series with significant 15-year trends .......................................... 144 

4.6. Jet meridionality time series with significant 15-year trends ................................. 145 

4.7. Wavelet power spectra for jet speed ....................................................................... 146 

4.8. Wavelet power spectra for jet latitude .................................................................... 147 

4.9. Wavelet power spectra for jet meridionality .......................................................... 148 

4.10. Moving window standard deviations of interannual jet speed ............................. 150 

4.11. Moving window standard deviations of interannual jet latitude .......................... 151 

4.12. Moving window standard deviations of interannual jet meridionality ................. 152 

4.13. Subseasonal jet-speed variability ......................................................................... 153 

4.14. Subseasonal jet-latitude variability ....................................................................... 154 

4.15. Subseasonal jet-meridionality variability ............................................................. 155 

4.16. Moving window standard deviations of interannual jet latitude for winter 

         months .................................................................................................................. 158 

4.17. Solar cycles and summer jet-latitude interannual variability ............................... 160 

4.18. September AMO and autumn jet speed interannual variability ........................... 162 

4.19. Winter subseasonal  jet-latitude variability, 20CR and ERA-I ............................ 163 

A.4.1. 15-year running trends for synthetic jet speed and latitude time series .............. 354 

A.4.2. Wavelet power spectra for synthetic time series of jet metrics .......................... 355 

A.4.3. Interannual variability of synthetic jet latitude and speed time series ................ 356 

A.4.4. 15-year running trends of subseasonal jet-speed variability .............................. 356 



	 xvi	

A.4.5. 15-year running trends of subseasonal jet-latitude variability ............................ 357 

A.4.6. 15-year running trends of subseasonal jet-meridionality variability .................. 357 

A.4.7. 15-year running trends of synthetic time series for jet latitude and speed  

           subseasonal variability ........................................................................................ 358 

A.4.8. Internnual jet-latitude variability for spring, summer and autumn months ........ 359 

A.4.9. Subseasonal variability changes of jet latitude for individual months ............... 360 

A.4.10. Distribution of Kendall’s τ from 1000 synthetic time series ............................ 361 

 

5.1. Example of wavelet coherence and cross wavelet transforms ............................... 179 

5.2. Winter jet-latitude time series and cross-validated regression models ................... 184 

5.3. SLP composites, tropical rainfall drivers of jet speed ............................................ 194 

5.4. Wavelet coherence plots, tropical rainfall drivers of jet speed ............................... 196 

5.5. SLP composites, tropical rainfall drivers of jet latitude and meridionality ............ 198 

5.6. Wavelet coherence plots, tropical rainfall drivers of jet latitude  

        and meridionality ................................................................................................... 199 

5.7. Correlation of the leading solar signal with summer jet latitude ............................ 201 

5.8. SLP composites, solar variability drivers of jet metrics ......................................... 202 

5.9. Wavelet coherence plots, solar variability drivers of jet metrics ........................... 203 

5.10. SLP composites, AMO drivers of jet metrics ....................................................... 206 

5.11. Wavelet coherence plots, AMO drivers of jet metrics ......................................... 207 

5.12. SLP composites, ENSO drivers of jet metrics ...................................................... 210 

5.13. Wavelet coherence plots, ENSO drivers of jet metrics ........................................ 212 

5.14. SLP composites, Atlantic tripole drivers of jet metrics ........................................ 214 

5.15. Wavelet coherence plots, Atlantic tripole drivers of jet metrics .......................... 216 

5.16. SLP composites, sea-ice drivers of jet speed and latitude .................................... 218 

5.17. Wavelet coherence plots, sea-ice drivers of jet speed and latitude ...................... 221 

5.18. SLP composites, sea-ice drivers of jet meridionality ........................................... 222 

5.19. Wavelet coherence plots, sea-ice drivers of jet meridionality .............................. 223 

5.20. SLP composite and wavelet coherence, Eurasian snow cover and winter jet 

         latitude .................................................................................................................. 224 

5.21. SLP composites, stratospheric drivers of winter jet latitude ................................ 226 

5.22. Wavelet coherence plot, QBO and winter jet latitude .......................................... 226 



	 xvii	

5.23. Schematic diagram of significant differences between composites based on 

         solar and QBO phase ............................................................................................ 229 

5.24. SLP composites, combined stratospheric drivers of winter jet latitude ............... 231 

5.25. Annual cycles of Barents-Kara Sea ice ................................................................ 241 

5.26. 15-year running correlations, October QBO and winter jet latitude .................... 244 

A.5.1. Winter jet speed and meridionality time series and cross-validated  

            regression models .............................................................................................. 379 

A.5.2. Spring jet-metrics time series and cross-validated regression models ............... 380 

A.5.3. Summer jet-metrics time series and cross-validated regression models ............ 381 

A.5.4. Autumn jet-metrics time series and cross-validated regression models ............. 382 

A.5.5. 500GPH composites, tropical rainfall drivers of jet metric variability showing  

           possible wavetrain propagation .......................................................................... 383 

 

6.1. A 2x2 contingency table ......................................................................................... 253 

6.2. Example reliability diagram ................................................................................... 260 

6.3. Example ROC plot ................................................................................................. 262 

6.4. Observed NAO and predicted time series from statistical models ......................... 265 

6.5. Ensemble members and observed NAO with Verification Rank Histograms for 

       statistical models and GloSea5 ............................................................................... 272 

6.6. Ensemble members and observed NAO with Verification Rank Histograms for 

       raw datasets ............................................................................................................ 273 

6.7. Observed and predicted NAO time series 1980-2015 based on  

       1980-1997 model .................................................................................................... 276 

6.8. Observed and predicted NAO time series 1980-2015 based on  

       1980-1997 model using detrended sea-ice data ...................................................... 280 

6.9. Reliability diagrams N56 ........................................................................................ 285 

6.10. Reliability diagrams N80 ...................................................................................... 286 

6.11. Reliability diagrams N93 ...................................................................................... 287 

6.12. Reliability diagrams GloSea5 Index ..................................................................... 288 

6.13. Reliability diagrams raw93 ................................................................................... 289 

6.14. Reliability diagrams GloSea5 raw data ................................................................ 290 

A.6.1. Time series of November Barents-Kara Sea ice, with trend left in and trend  

           removed .............................................................................................................. 394 

 



	 xviii	

 

List of Abbreviations 
20CR/20CRv2c  Twentieth Century reanalysis v2/v2c 

AA   Arctic Amplification 

AGCM/GCM  Atmospheric General Circulation model/General Circulation 

Model 

AIC    Akaike Information Criterion 

AMO    Atlantic Multidecadal Oscillation 

AMOC/MOC  Atlantic Meridional Overturning Circulation/Meridional 

Overturning Circulation 

AO    Arctic Oscillation 

AR   Atlantic Ocean tropical rainfall 

AR1   autoregressive (lag1)  

ARMA   autoregressive moving average 

AWB   anticyclonic wavebreaking 

BKI   Barents-Kara Sea ice 

BS   Brier Score 

BSS   Brier Skill Score 

CMIP3/5  Coupled Model Intercomparison Project Phase 3/5 

COBE-SST2 Centennial In Situ Observation-Based Estimates of the 

Variability of SST and Marine Meteorological Variables 

version2 

COI    Cone of Influence 

CPR   Central Pacific Ocean tropical rainfall 

CWB   cyclonic wavebreaking 

CWT   cross-wavelet transform 

EA   East Atlantic Pattern 

ECMWF  European Centre for Medium Range Weather Forecasts 

EIR   East Indian Ocean tropical rainfall 

ENSO   El Niño-Southern Oscillation 

EOF   Empirical Orthogonal Function 

EPR   East Pacific Ocean tropical rainfall 

ERA-20C  ERA 20th century reanalysis 



	 xix	

ERA-20CM  ERA twentieth century atmospheric model ensemble 

ERA-40  ERA-40 reanalysis 

ERA-I   ERA-Interim reanalysis 

GCR   galactic cosmic rays 

GI   Greenland Sea ice 

GloSea5  Global Seasonal Forecasting System version 5 

GPCP   Global Precipitation Climatology Project 

GPH   Geopotential height 

HadISST1/2  Met Office Hadley Centre SSTdataset v1/v2 

IQR   interquartile range 

IR   infrared 

ITCZ   Intertropical Convergence Zone 

IPCC   Intergovernmental Panel on Climate Change 

IPSD   International Surface Pressure Databank 

LOOCV  leave-one-out cross-validation 

LVI   Laptev-East Siberian-Chukchi Sea ice 

MJO   Madden-Julian Oscillation 

N3.4   Niño 3.4 region 

NAO   North Atlantic Oscillation 

NARMAX  non-linear autoregressive moving average with exogenous 

inputs 

NCEP/NCAR National Center for Environmental Prediction/National Center 

for Atmospheric Research reanalysis 

NOAA/ESRL National Oceanographic and Atmospheric 

Administration/Earth System research Laboratory 

NSIDC  National Snow and Ice Data Center 

NWP   Numerical Weather Prediction 

OLSR   ordinary least-squares regression 

PFJ   polar front jet 

QBO   Quasi-biennial Oscillation 

RCP   representative concentration pathway 

ROC   Relative Operating Characteristic 

RSS   residual sum of squares 

SAI   Snow Advance Index 



	 xx	

SCA   Scandinavian pattern 

SIC   sea-ice concentration 

SIE   sea-ice extent 

SLP   sea level pressure 

SNAO   Summer North Atlantic Oscillation 

SODAsi2  Simple Oceanic Data Assimilation with Sparse Input version 2 

SPV   Stratospheric Polar Vortex 

SST   sea surface temperature 

SSW   Sudden Stratospheric Warming 

STJ    subtropical jet 

TEAM   Tropically Excited Arctic warMing 

TSI   Total Solar Irradiance 

UV   ultraviolet 

VRH    Verification Rank Histogram 

WIR   West Indian Ocean tropical rainfall 

WPR   West Pacific Ocean tropical rainfall 

WTC   wavelet coherence 

 

 

 

 

 

 

 
	
	
	
	
	
	
	
	
	
	
 



 

 1 

 

Chapter 1 

Drivers of North Atlantic Polar Front Jet stream Variability 
 1.1. Introduction 

North Atlantic Polar Front jet stream (PFJ) variability is a crucial determinant of European 

and Northern Hemisphere weather patterns.  There have been many recent instances of 

extreme weather attributed to jet stream variability, with large societal impacts. For example, 

the severe winter of 2009/10 experienced in North Western Europe and the Eastern United 

States (e.g. Cattiaux et al., 2010; Cohen et al., 2010; Fereday et al., 2012) and the wet British 

summers of 2007 and 2012 (e.g. Blackburn et al., 2008; National Climate Information 

Centre, 2012) are linked with shifts in the jet stream.  The winter of 2013/2014 was the 

wettest winter on record in the UK, with exceptional storminess (Matthews et al., 2014) while 

North America experienced a persistent cold air outbreak from the polar regions, attributed to 

changing jet stream configurations as a consequence of a number of potential influencing 

factors (e.g. Pacific sea-surface temperatures (SST; Hartmann, 2015), and a combination of 

SST and reduced sea-ice impacts (Lee et al., 2015)). 

 

In this chapter, jet stream and storm-track characteristics are outlined, potential drivers of jet 

stream variability are reviewed and their relative impacts on the climate around the North 

Atlantic are compared. Implications are then discussed for future jet stream variability. 

Towards the end of the chapter, the research aims of this study are stated and the structure of 

the thesis is outlined. 

 

1.2. Jet stream characteristics 

A traditional view (e.g. Krishnamurti, 1961) is that there are two main jet streams in the 

troposphere of the Northern Hemisphere, which are relatively thin “ribbons” of high velocity 

air moving eastwards near the tropopause. The subtropical jet (STJ) is a shallow feature 

restricted to the upper troposphere at the poleward edge of the Hadley cell and is driven by 

poleward angular momentum transport within the thermally direct Hadley cell (Held and 

Hou, 1980). The conservation of angular momentum of poleward-moving air at upper levels 

produces the zonal eastward flow associated with the STJ. 
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Further poleward, the PFJ is also known as the eddy-driven jet as it is driven by momentum 

and heat fluxes from transient eddies, or cyclones, in the mid-latitudes (Williams, 1979; 

Panetta and Held, 1988). The region where the eddies occur is the Polar Front, where a steep 

meridional temperature gradient separates colder, polar air from warmer tropical air, with 

isobars and isotherms intersecting one another. These baroclinic regions with strong 

horizontal temperature gradients contain the storm tracks; paths commonly followed by 

synoptic scale cyclones (Hoskins and Valdes, 1990). Thus the PFJ is intimately linked with 

the storm track, as storms are steered by the jet stream and also reinforce it through wave-

meanflow interaction (e.g. Hoskins et al., 1983).  Indeed, numerical experiments indicate that 

eddies can perturb a baroclinic zone and spontaneously generate a jet (Williams, 1979; 

Panetta and Held, 1988; Panetta, 1993; Lee and Kim 2003).  

 

Pioneering work by Charney (1947) and Eady (1949) established the unstable nature of 

baroclinic westerly flow which leads to the growth of eddies. Unlike the STJ, the PFJ extends 

through the depth of the troposphere and has wind speeds increasing with height in thermal 

wind balance with the meridional temperature gradient. 

 

When averaged over time, the jet streams form part of a continuous global spiral starting in 

the subtropical East Atlantic and ending over the British Isles (Figure 1.1) having extended 

once round the Northern Hemisphere (Archer and Caldeira, 2008). At the start and end of this 

spiral, there is a clear separation of the PFJ and STJ in the Atlantic. There are also weaker 

indications of a split jet over the East Pacific. This is the case particularly in winter.  

However, when viewed instantaneously, the jet stream is more likely to appear as disjointed 

fragments.  

 

Figure 1.2 shows a vertical cross-section of the mean winter zonal winds in the North 

Atlantic. The separation of the two jets mentioned above is apparent, with the STJ occurring 

equatorward and near the tropopause, while the PFJ is further poleward and extends 

downwards through the troposphere, having a surface expression in the storm tracks. PFJ 

speed and latitude are often identified using lower level (700-900hPa) tropospheric zonal 

winds, as these vary in-phase with windspeeeds in the jet core and occur at the same latitude 

(e.g. Woollings et al., 2010a) and the PFJ can be isolated from the STJ. However, it should be 

borne in mind that while patterns of variability may be the same, the windpseeds portrayed at 

these lower levels will be significantly less than those in the jet core. 
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Figure 1.1. Mean northern hemisphere vector winds for a) DJF and b) JJA, from 
NCEP/NCAR reanalysis, plotted using the NOAA/ESRL online plotting tool 
(www.esrl.noaa.gov). 
 

 
Figure 1.2. Cross-section of the Atlantic sector, looking west, showing mean DJF zonal 
winds 1981-2010. The subtropical jet is located near the tropopause centred on 20°N, while 
the polar front jet is centred at 45° N and has a clear surface expression. Data from ERA-I 
(Dee et al., 2011) 
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Evidence from numerical experiments suggests that at some longitudes, the existence of the 

PFJ depends on the latitude and strength of the STJ (Lee and Kim, 2003).  Where the STJ is 

strong, baroclinic wave growth coincides with the STJ region and no PFJ forms, such as in 

the Pacific sector, whereas for a weak STJ, the baroclinic wave growth is in mid-latitudes and 

a PFJ will form, typical of the situation in the North Atlantic.  The difference could in part be 

due to orographic forcing of the atmospheric flow by the Tibetan plateau (Held et al., 2002) 

and the presence of other modes of variability (Vallis and Gerber, 2008), such as The El 

Niño-Southern Oscillation (ENSO). The frequent presence of a double jet structure makes the 

North Atlantic unique in the Northern Hemisphere, but a double jet is frequently seen in the 

Southern Hemisphere (Koch et al., 2006; Archer and Caldeira 2008). 

 

Jets are not uniform along their length, having variable wind speed and altitude and often 

consisting of fragmented sections where baroclinicity is greatest. Variability and mean flow 

increases over the oceans (Blackmon, 1976). Summer jet streams are weaker than in winter 

and are displaced poleward (Figure 1.1). These seasonal changes are a consequence of a 

reduced, poleward-shifted meridional temperature gradient. However, jets can shift in latitude 

and exhibit changes in intensity (speed) and zonality from year to year, which has a profound 

impact upon local climate variability.  

 

The atmospheric circulation and therefore the jet streams are subject to internal unforced 

variability as a result of chaotic internal dynamical processes (Lorenz, 1963). Nevertheless, 

forcing mechanisms, which may be capable of producing more predictable climate change act 

against this background of unpredictable “climate noise” (Madden, 1976) and the signal-to-

noise ratio is therefore crucial for understanding the size of these forcing signals (Scaife et 

al., 2014a).  

 

Most extratropical teleconnection patterns are related to jet stream location and strength. The 

North Atlantic Oscillation (NAO) is the first, dominant pattern of atmospheric sea-level 

pressure (SLP) variability over the Atlantic Ocean. It is characterised by a meridional 

pressure dipole, with low pressure centred roughly over Iceland and high pressure over the 

Azores to the south (e.g. Walker and Bliss, 1932; Hurrell, 1995). It explains the largest 

proportion of variance on climate timescales. An increase (decrease) in the pressure gradient 

between the Azores and Iceland, results in a positive (negative) NAO index.  The Arctic 

Oscillation (AO) is the dominant mode of SLP variability extended over the Northern 
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Hemisphere (e.g. Thompson and Wallace, 1998) and is closely linked to the NAO. NAO and 

AO variability have the largest amplitude in winter and exert a strong influence on European 

winter climate.  The NAO pattern was regarded by Gerber and Vallis (2009) as the 

interaction of the subtropical and polar jets, with a positive (negative) NAO pressure pattern 

corresponding to splitting (merging) of the jets. The mid-latitude Atlantic PFJ is consistently 

stronger and further poleward when the pressure gradient increases (Ambaum et al., 2001), 

resulting in a positive NAO.  The NAO is in fact a result of the presence of the North Atlantic 

storm track and associated PFJ (Vallis and Gerber, 2008). In the literature, potential drivers 

are frequently reported as impacting upon the NAO. This simply reflects the fact that they 

impact upon the storm track and PFJ, which is manifested as a phase shift in the NAO.  

 

The NAO alone does not describe all jet stream variability, being a simplified description of 

the North Atlantic dipole, with its centres of action remaining in the same place.  In reality, 

shifts in location of the centres are observed as a result of the interaction of different modes 

of variability: the NAO, the Eastern Atlantic (EA) pattern and the Scandinavian (SCA) 

pattern (Moore et al., 2013). The EA is the second mode of variability and consists of a 

monopole on the axis of the NAO west of Ireland, while the SCA centre of action is west of 

Bergen, Norway (Barnston and Livezey, 1987). The NAO is the dominant pattern of 

variability in describing latitude shifts, while changes in winter jet speed are explained 

equally by the EA and NAO (Woollings and Blackburn, 2012). This chapter will focus on the 

NAO as a measure of PFJ variability as it is the aspect most frequently discussed in the 

literature.   

 

The change over time of the winter North Atlantic PFJ latitude and speed are shown in Figure 

1.3, together with winter trends in the NAO and EA. Jet latitude has a significant (p≤0.05) 

poleward trend up to the start of the twenty-first century, but there is no significant trend in 

jet speed (Woollings and Blackburn, 2012) and the two metrics show an insignificant 

correlation over the period 1979-2012 (r=0.003, detrended). However, the jet stream latitude 

can be seen to closely correspond to changes in the NAO  (r=0.83, detrended; Figure 1.3a,c), 

while jet speed bears a closer resemblance to the EA time series (r=0.50, detrended; Figure 

1.3b,d). Recent years indicate a decrease in the NAO and jet latitude, at least in winter (e.g. 

Fereday et al., 2012).  
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Figure 1.3. Metrics of winter North Atlantic atmospheric circulation. a) Jet latitude, averaged 
over 0-60°W, based on 700-900hPa zonal wind speed from 20CR, b) jet speed, averaged over 
0-60°W, based on 700-900hPa zonal wind speed from 20CR, c) the Hurrell PC-based NAO 
Index, d) the EA Index. 
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from 2007 to 2012 produced exceptionally wet conditions over the British Isles and northern 

Europe, while Mediterranean regions were particularly warm and dry, and these are 

associated with a southward shift in the PFJ and a more negative summer NAO (e.g. 

Blackburn et al., 2008; National Climate Information Centre, 2012).   

 

1.3. Storm tracks and blocking 
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baroclinicity arises through a localised, strong horizontal temperature gradient. Such a 
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and Gerber, 2008) which also give the storm track its southwest-northeast tilt through a 

southward deflection of the westerly flow (Brayshaw et al., 2009).  

 

Enhanced baroclinicity is associated with cyclogenesis and latent-heat fluxes from the warm 

ocean in the west Atlantic. Well-developed storm tracks occur downstream, where eddy 

kinetic energy increases to a maximum as the eddies grow and are advected eastward. The 

decay of the eddies is associated with an area of maximised eddy-momentum fluxes, which 

are barotropic in nature and roughly coincide with the NAO pattern (Chang et al., 2002; 

Vallis and Gerber, 2008). This arises as a consequence of the variability of the storm track 

and associated PFJ (Wittmann et al., 2005; Vallis and Gerber 2008). These resulting large-

scale circulation patterns are also self-reinforcing due to dynamical feedbacks (Kug and Jin, 

2009). 

 

North Atlantic storm tracks may also depend on the warm oceanic western boundary current 

off the east coast of North America (The Gulf Stream), and since they help to drive this ocean 

current which is integral to their existence there is a further positive feedback (Hoskins and 

Valdes, 1990; Nakamura et al., 2004).   

 

Stationary waves are also important for organising storm tracks. Without the presence of 

mountains upstream, waves are weaker and the storm tracks are more zonally symmetrical 

(Chang et al., 2002). Indeed, enhanced baroclinicity can be maintained by orographically-

induced wavetrains (Lee and Mak, 1996). 

 

The jet stream is therefore fuelled by the growth and subsequent decay of baroclinic eddies. 

New eddies may grow on the remains of old eddies from the Pacific storm track which spill 

over into the Atlantic. This seeding contributes to stronger storm tracks than would be 

anticipated from local conditions (Vallis and Gerber, 2008). The latitude or frequency and 

energy of eddy seeding from the Pacific can impact on wavebreaking in the zonal flow and 

therefore the NAO phase (Franzke et al., 2004; Rivière and Orlanski, 2007). Such variability 

may also be linked with El Niño events in the Pacific (Li and Lau 2012a; 2012b; see section 

5.2 below). 

 

A positive NAO arises when there is a poleward shift of the jet, driven by strong eddy 

momentum fluxes polewards of the STJ which separates the jets. A negative phase however, 
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results from weaker, more equatorwards eddy momentum fluxes. Eddy momentum fluxes are 

related to wavebreaking in the zonal flow. Wavebreaking can be anticyclonic (AWB) which 

occurs mainly equatorwards of the main jet, or cyclonic (CWB) which occurs mainly 

polewards of the main jet (Thorncroft et al., 1993). AWB drives the PFJ northwards, leading 

to a positive NAO, while CWB drives it to the south leading to a more negative NAO 

(Benedict et al., 2004; Franzke et al., 2004). AWB is more common, and often precedes a 

shift in NAO phase.  

 

Wavebreaking and the NAO are also intimately connected to atmospheric blocking. This 

occurs when the strength of the westerly zonal circulation is temporarily reduced, usually by 

a persistent stationary anticyclone in the mid-latitudes (Rex, 1950).  In the North Atlantic, the 

normal pattern of cyclonic (anticyclonic) flow to the north (south) of the PFJ is often reversed 

(Woollings, 2011). A more southward displaced winter North Atlantic jet regime is 

associated with a negative NAO and Greenland blocking (Woollings et al., 2010b) while 

Davini et al. (2014) find that a poleward displacement of the PFJ is associated with blocking 

on the equatorward side of the jet, over a region from the Azores to Scandinavia. 

 

It is apparent from the above discussion that variability of the storm track, PFJ and NAO can 

be driven by internal atmospheric mechanisms related to eddy growth and decay, and non-

local forcings such as the Pacific storm track seeding of eddies. In addition to this variability, 

there is low frequency variability from external forcings which extend to the atmosphere over 

the Atlantic. This is discussed in subsequent sections.  

 

Climate models spontaneously reproduce the jet streams and storm tracks but some features 

show systematic errors. Recent studies suggest weaker, more equatorward storm tracks in 

models than in observations (Chang et al., 2012).  Similarly, the frequency of winter blocking 

episodes is under-represented in models (Scaife et al., 2010; Dunn-Sigouin and Son, 2013).  

This could be due to limitations in atmospheric resolution and also climatological ocean bias 

within the model, caused by a southward bias in the location of the North Atlantic Current. 

Summer blocking over the oceans is overestimated in Coupled Model Intercomparison 

Project phase 5 (CMIP5, Taylor et al., 2012) models while Eurasian blocking is 

underestimated (Masato et al., 2013). Evidence suggests that models with improved 

atmospheric and ocean resolution can give improved blocking frequency, particularly if the 

mean ocean bias in the model is reduced (Scaife et al., 2011; Berckmans et al., 2013). This 
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indicates that high resolution alone may not be the only factor relevant to accurate 

representation of blocking. It is not yet clear whether these biases in climate model 

representations of storm tracks are also important when considering model representation of 

storm-track changes in future projections of climate change. 

 

1.3.1 Climate change and storm tracks 

Although there is variation in predicted changes to storm tracks in the twenty-first century in 

increased greenhouse gas emission scenarios, a number of themes are evident. More recent 

modelling studies using simulations from CMIP5 also show some differences from earlier 

work using CMIP3.  Studies have focused on latitudinal shifts in the storm track, longitudinal 

storm-track extension and changes in storm frequency and intensity, predominantly in winter.  

 

A commonly identified pattern of future changes is of mean northward displacement and 

vertical expansion of the storm tracks (Yin, 2005, using CMIP3; Meehl et al. 2007; 

Bengtsson et al., 2006). However, Yin (2005) only reports zonal mean changes, and there is 

important regional variability in latitudinal storm track displacement. For example, the winter 

storm track to the north of the British Isles is predicted to strengthen and extend eastward, 

with corresponding jet stream changes, while the southerly Mediterranean storm track 

weakens under greenhouse gas forcing using the A1B scenario (Bengtsson et al., 2006; 2009; 

Ulbrich et al., 2008). A similar but slightly weaker response is found in CMIP5 models (e.g. 

Haarsma et al., 2013).  The mean northward shift is consistent with observational evidence 

reported by the Intergovernmental Panel on Climate Change Fifth Assessment Report which 

indicates a northward shift in the latter half of the twentieth century (IPCC AR5 (2013), 

section 2.7.6). However, this mean poleward displacement disguises the different response in 

the North Atlantic mentioned above. Here, there is a well-known bias amongst CMIP3 and 

CMIP5 models for the winter storm tracks to be displaced somewhat southward, and not to 

capture the meridional southwest-northeast tilt of the storm tracks. Nevertheless there is some 

evidence to suggest that the biases are not quite as large in CMIP5 and some higher 

resolution models replicate well the meridional tilt of the storm track (e.g. Zappa, 2013a).  

 

However, the theoretical basis for climate change in the jet stream is limited and there is 

sensitivity to model formulations. Vertically extended models which contain improved 

representations of the stratosphere indicate a relative equatorward shift in winter storm tracks 

and the associated jet stream in response to changes in greenhouse gas concentrations (Scaife 
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et al., 2012; Karpechko and Manzini, 2012). This suggests that the northward migration of 

extratropical storm tracks may be overestimated in standard vertical resolution CMIP3 

models. Indeed, recent observations suggest that the strong poleward trend in jet latitude in 

the late twentieth century has reversed since 2000, in concert with a less positive NAO as 

noted earlier (Figure 1.3). The projected eastward extension of zonal winds has implications 

for future blocking events. In the future, blocking frequency is seen to decrease over the 

Atlantic, with the zonal winds strengthening and extending eastwards (e.g. Matsueda, 2011), 

while in autumn and winter, wavebreaking and blocking are shifted eastwards, downstream 

of the extended jet exits (de Vries et al., 2013). Although there is a projected decrease in 

summer blocking, the projected poleward shift of the storm tracks into the more northerly 

region of more frequent blocking may actually increase the number of storms affected by 

blocking (Masato et al., 2013).  

 

There appears to be a decrease in the overall number of storms in the twenty-first century 

Atlantic winter storm tracks (Bengtsson et al., 2006; Geng and Sugi, 2003; Zappa et al., 

2013b) but this is dominated by a reduction in the number of weaker storms, with the 

reduction in stronger storms being much smaller. There is no consistent view of increased 

intensity of the stronger storms. Bengtsson et al. (2009) report a small reduction in cyclone 

numbers but no significant changes in extremes of wind and vorticity. This is in contrast to 

Lambert and Fyfe (2006) who find increased frequency of intense storms, but reduced 

numbers overall and no change in the location of storm tracks. Differences may be due to 

internal variability, differing model physics and different methods used to identify and assess 

the storm tracks.  CMIP5 models show a greater decrease in storm track activity than CMIP3, 

particularly over North America in winter. However, care should be taken in comparing the 

two sets of simulations as even though emissions scenarios may be of similar magnitude, 

model physics and climate forcings are different (Chang et al., 2012). Spatial variation occurs 

in the winter storm-track response to warming in CMIP5 models with increasing (decreasing) 

intensity in the North Atlantic (North Pacific) attributed to different baroclinic responses to 

warming in the two regions, although storm-track frequency decreases in line with other 

results (Eichler et al., 2013). 

 

Mechanisms driving projected storm track and jet stream changes relate to patterns of 

anthropogenic warming, cooling and corresponding vertical and meridional temperature 

gradient changes.  Anthropogenic thermal forcing can take three forms: 
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a) warming in the tropical upper troposphere resulting from increased latent heat release 

through a more vigorous hydrological cycle;  

b) polar stratospheric cooling as a consequence of ozone depletion and   higher carbon 

dioxide levels increasing long wave cooling. The stratospheric cooling is more 

significant in the southern hemisphere;  

c) warming at the polar surface, as a consequence of sea-ice melting and ice-albedo 

feedback, together with other processes (Pithan and Mauritsen, 2014), contributing to 

what is known as Arctic Amplification (AA).  

 

The upper tropospheric warming and stratospheric cooling enhances baroclinicity, driving a 

poleward shift and strengthening of storm tracks, while the polar surface warming weakens 

the lower level meridional temperature gradient (Butler et al., 2010), which has the potential 

to work against the predicted poleward shift in storm tracks. This lower level decrease in 

baroclinicity has been associated with the overall observed decrease in numbers of winter 

storms (Geng and Sugi, 2003; Bengtsson et al., 2006) and is discussed further below (section 

1.4.1) in the context of Arctic sea-ice depletion.  These regions of projected warming and 

cooling for the 21st century are clearly seen in Figure 1.4. 

 
Figure 1.4. Zonal mean, multi-model mean air temperature response between 2076-2099 
minus 1980-2004, under the RCP8.5 for 21 CMIP5 models in a) winter (January-March) and 
b) summer (June-September). From Barnes and Screen (2015). 
 
Upper tropospheric warming increases tropical static stability and is linked with the projected 

expansion and weakening of the Hadley Cell (Frierson et al., 2007; Lu et al., 2007). The 

increased lower latitude static stability results in weakening of baroclinicity equatorward of 
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the mid-latitude jet, shifting the jet and the Hadley Cell boundary polewards (e.g. Lu et al., 

2008). Observational evidence from satellite data suggests an approximately 2° northward 

expansion of the Hadley Cell over the period 1979-2005 (Fu et al., 2006).  

 

Although baroclinic responses at different levels appear to oppose one another, the surface 

decrease in baroclinicity may appear to be secondary in this case, as a given forcing 

amplitude results in a larger response at upper levels (Lorenz and DeWeaver, 2007; Butler et 

al., 2010). The net overall effect seems to be in favour of a future northward shift of the storm 

track (Yin, 2005; O’ Gorman, 2010; Geng and Sugi, 2003). Different representations of these 

opposing temperature gradient changes could account for the range of projected changes in 

jet latitude and may also explain the sensitivity to vertical resolution (Scaife et al., 2012).  

Thus competing influences act to drive the jet stream and storm tracks in different directions 

and it is at present unclear whether tropical or polar warming will have the greater influence 

(Barnes and Screen, 2015). However, Harvey et al. (2015) find that the Arctic sea-ice 

influence on lower tropospheric temperature gradient is significant in the Atlantic sector, 

producing a negative NAO response. The sea-ice projections in CMIP3 models are found to 

have a significant impact on the model spread of storm-track projections in the North 

Atlantic, while upper tropospheric temperature gradient changes do not account for much of 

the model spread. It seems likely that the increased AA has, in the Atlantic sector at least, the 

ability to modulate the poleward shift in storm tracks driven by tropical warming, reducing 

the magnitude of the shift (Barnes and Polvani, 2015). 

 

To summarise, storm tracks are driven by eddies developing in baroclinic zones and are 

inextricably linked to the PFJ, the NAO, blocking and wavebreaking. While much of the 

short-term variability is driven by internal atmospheric forcing, low frequency external 

forcing can also play a role in future changes of the storm track. Greenhouse-gas forcing may 

impact on some of the potential external drivers of jet stream variability, resulting in shifts in 

latitude and changes in the intensity and frequency of storms, but this long-term change is 

still unclear.   

 

Many studies consider the impact of individual driving factors on the NAO, which is a 

phenomenological response to jet stream and storm-track shifts. A key question to be 

resolved is identifying the mechanisms by which these drivers operate.  Some of these drivers 
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are now considered below, with a particular focus on winter, which has received most 

attention so far. 

 

1.4. Cryospheric drivers of jet stream variability 

1.4.1. Sea-ice reduction 

Northern Hemisphere sea-ice has shown a significant decline over the last 30 years, faster 

than predicted by most model simulations contributing to CMIP3 and CMIP5 (Wang and 

Overland, 2012). If this decline continues there are likely to be ice-free summers well before 

the end of the twenty-first century or even within a few decades  (Wang and Overland, 2009). 

A new record low in sea-ice extent (SIE) occurred in September 2012 (Overland and Wang, 

2013), with some recovery in 2013 and 2014 although 2015 had the fourth lowest SIE of the 

satellite era (1979-2015; Perovich et al., 2015). Given the recent acceleration of Arctic ice 

decline, it seems possible that an ice-free Arctic will occur even earlier (Overland and Wang, 

2013; Snape and Forster, 2014). It is argued that most CMIP5 models are still conservative in 

their representation of sea-ice loss when compared with observations and have not 

significantly reduced uncertainty as to when a seasonally ice-free Arctic may occur, when 

compared to CMIP3 models (Stroeve et al., 2012). However, Swart et al. (2015) point out 

that the differences between the observed sea-ice trend and that from the model ensemble 

mean are not inconsistent with differences arising from internal climate variability, and warn 

against making extrapolations of future sea-ice decline based on short term trends such as the 

rapid ice decline from 2001-2007.  

 

There has however, been a shift in sea-ice variability since 2007 with an increased amplitude 

of the seasonal cycle of Arctic SIE (e.g. Livina and Lenton, 2013). Recent studies have also 

begun to suggest that fundamental changes in the Arctic cryosphere are likely to have far-

reaching implications and research suggests that sea-ice decline may impact upon mid-

latitude jet streams and the phase of the NAO. 

 

Atmospheric circulation has a very clear effect upon SIE and variability (e.g. Rigor et al., 

2002). However following early work by Newson (1973), more recently the possibility of 

sea-ice forcing of local and large-scale atmospheric circulation changes has become more 

prominent. Sea-ice may affect atmospheric circulation through the modulation of latent and 

sensible heat fluxes from the ocean, via the ice-insulation feedback (Budikova, 2009). Sea-ice 

also has a higher albedo than the sea surface and therefore reflects more of the incoming solar 
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radiation. This is the surface-albedo feedback (Screen and Simmonds 2010). As sea-ice 

decreases in extent more ocean is exposed, absorbing more incoming shortwave radiation. 

This additional energy raises water temperature in the summer. The subsequent reduced ice 

extent in autumn results in an increased heat loss to the atmosphere as warmer water from 

summer heating delays the onset of ice formation which would otherwise insulate the 

atmosphere from the ocean (Screen and Simmonds, 2010; Stroeve et al., 2014). The resulting 

surface warming of the troposphere is restricted in vertical extent to about the lowest 1000m 

(Kumar et al., 2010; Deser et al., 2010a) due to a stable atmospheric inversion layer (Figure 

1.5a).  

 
Figure 1.5.  Vertical cross-section from 60°N to the North Pole, averaged over the Northern 
Hemisphere for a) composite air temperature anomalies, b) composite geopotential height 
anomalies, for October-December 2005-2014 compared with 1981-2010 climatology, from 
NCEP/NCAR reanalysis (Kalnay, 1996). Updated from Overland and Wang (2010). 
 
Some analyses find greater warming at higher levels (e.g. Graversen et al., 2008; Screen et 

al., 2012; Screen et al., 2013a) which is driven by changes in poleward heat transport. This 
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may be due to remote SST changes (Screen et al., 2012) rather than direct surface heat loss.  

This high latitude AA is enhanced by feedback mechanisms related to ice melt and changing 

albedo. It has the effect of reducing the surface meridional temperature gradient and 

increasing geopotential heights. Hydrostatic balance implies a similar geopotential height 

increase at higher levels in the troposphere (Figure 1.5b), with subsequent impacts on global 

circulation (Overland and Wang, 2010), where zonal winds are weakened through the 

thermal wind relationship.  This thickening of geopotential height layers over high latitudes 

reduces the poleward thickness gradient, and meridional pressure and temperature gradients, 

which contributes to a more meridional, asymmetric flow around the polar vortex, leading to 

a weaker, more meandering jet stream (Francis et al., 2009), with an equatorward 

displacement.  

 
It is suggested that the larger meanderings in planetary waves increase blocking frequency, as 

with increased amplitude they tend to be slower moving and this has been linked with recent 

extremes of weather in the Northern Hemisphere (Francis and Vavrus, 2012; 2015). However 

this suggestion has not yet been confirmed by modelling studies and may be sensitive to the 

choice of metric used (Barnes, 2013; Screen and Simmonds 2013).  While the recent Arctic 

warming has become a distinct signal against the background internal variability since the 

mid 1990s (Cohen et al., 2014), the observational record is too short to detect the impact of 

Arctic warming signals on the mid-latitude atmospheric circulation against the background of 

substantial internal atmospheric variability (Barnes et al., 2014; Screen et al., 2013b).  

 

Using an idealised dry General Circulation Model (GCM) Hassanzadeh et al. (2014) find that 

while AA does indeed result in reduced zonal wind strength and a decreased meridional 

500hPa geopotential height  (GPH) gradient, there is also a decrease in blocking occurrence 

and the amplitude of atmospheric waves, contrary to the expectation from the mechanism 

proposed by Francis and Vavrus (2012). It is argued that a decrease in variance of 500hPa 

GPH anomalies is the key, as the strength of 500GPH anomalies changes with the mean state 

of the north-south temperature gradient. A weaker north-south gradient is associated with 

weaker GPH anomalies and ignoring this may account for the increased blocking and 

meandering of waves proposed by Francis and Vavrus (2012).  Using CMIP5 models, Barnes 

and Polvani (2015) find that while AA is robust amongst models, in the medium term (2020-

2044) there is no robust response amongst models concerning atmospheric circulation 

changes. By 2100 the only robust response was found with jet latitude, which in all seasons 
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except winter showed a clear poleward shift in the North Atlantic, contrary to what would be 

expected from the mechanism proposed above. It should be noted that this lack of apparent 

response may not be due to the mechanism not operating: instead results may be a 

consequence of the conflicting influences of tropical upper tropospheric and polar lower 

tropospheric warming. The lack of response may also be due to limitations of the CMIP5 

models. The Arctic has the potential to impact on the mid-latitude jet stream but it is unlikely 

to be the dominant driver (Barnes and Screen, 2015).  

  

A number of observational studies find a negative NAO response to reduced sea-ice (e.g. 

Jaiser et al., 2012; Hopsch et al., 2012) but there are issues with identifying causality from 

observational analyses alone and years selected to represent high and low ice years may alias 

onto other variability. For example high-ice years of 1990-2000 coincide with the presence of 

a strong positive NAO, while decreasing ice years 2001-2010 coincide with a negative NAO 

trend, which may or may not be sea-ice driven. Furthermore, it is suggested (Hopsch et al., 

2012) that while mechanisms for sea-ice influence on atmospheric circulation are plausible, 

results from many studies are not statistically robust. This may be due to limited samples of 

high and low ice events or limited time series restricted to large anomalies, as most studies 

rely on the short period of satellite data availability.  

 

Unlike purely observational studies, climate modelling has the advantage of being able to 

change a single component of the climate system in a controlled manner, thus helping to 

quantify any effects of sea-ice variation on atmospheric circulation in isolation, albeit with 

the caveat that climate models may have biases and may not simulate all the important 

physics involved.   Some studies forced Atmospheric General Circulation Models (AGCM) 

with observed ocean and sea-ice conditions in selected regions (Deser et al., 2004; 

Magnusdottir et al., 2004; Nakamura et al., 2015), or seasons (Alexander et al., 2004). Some 

of these studies pre-date the recent accelerated sea-ice loss, or have often been forced in 

response to the low ice year of 2007 (Strey et al., 2010; Kumar et al., 2010; Orsolini et al., 

2012; Bluthgen et al., 2012).  Alternatively, models have been forced with projected future 

SIC (Singarayer et al., 2006; Deser et al., 2010a, 2015; Seierstad and Bader, 2009; Sun et al., 

2015). 

 

A number of general themes emerge from these studies.  The main atmospheric effects of 

sea-ice reduction, such as thermodynamic warming and increased atmospheric moisture 
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content are felt within the coastal and maritime Arctic (e.g. Screen et al., 2013a; Kumar et al., 

2010) while a remote circulation response is sometimes detectable, but not always 

significant.  GPH anomalies in response to sea-ice loss are often found to extend through the 

depth of the high-latitude troposphere in winter (Deser et al., 2010a; Screen et al., 2013a). 

Sea-ice reduction frequently results in a negative NAO-like response, but there is 

considerable disagreement over the timing and intensity of this.  Some workers report a 

negative NAO response from December to February (e.g. Magnusdottir et al., 2004; Seierstad 

and Bader, 2009; Peings and Magnusdottir, 2014a), while Deser et al. (2010a) obtain a 

negative NAO response only in February and Screen et al. (2013a) find a weak negative 

NAO response in early winter which can be masked by other forcings and internal variability. 

Other studies find a response with little resemblance to the NAO (e.g. Strey et al., 2010; 

Singarayer et al., 2006), while Orsolini et al. (2012) show a positive NAO response. Similarly 

it should also be noted that a negative NAO response can be induced by sea-ice reductions 

east of Greenland or sea-ice increases to the west of Greenland (e.g. Alexander et al., 2004).  

 

Petoukhov and Semenov (2010) demonstrate a non-linear atmospheric response to sea-ice 

reduction in the Barents-Kara Sea, with the response being dependent on the extent of the 

sea-ice reduction. A 40-80% reduction produces a negative NAO-like response, while losses 

greater or less than this produce a response similar to a positive NAO, but with shifts in the 

NAO structure. Some of this variation in response amongst models is likely to be due to 

whether or not models incorporate a well-resolved stratosphere. There is evidence to suggest 

that a delayed atmospheric response to reductions in sea-ice can occur via a stratospheric 

pathway. In such circumstances anomalous Rossby waves from the area of sea-ice reduction 

propagate upward into the stratosphere, weakening the stratospheric polar vortex and these 

anomalies propagate down into the troposphere in later winter (e.g. Kim et al., 2014, Peings 

and Magnusdottir 2014a). A high-top model extending well into the stratosphere will capture 

this response (Nakamura et al. 2015; Sun et al., 2015) as it portrays stratospheric variability.  

In addition, sea-ice anomalies in different locations can elicit a different stratospheric 

response. While Atlantic sea-ice anomalies can weaken the vortex, Pacific anomalies may 

lead to a stronger vortex due to constructive and destructive interference with climatological 

planetary waves in the troposphere (Sun et al., 2014).  

 

A further, more robust response among models is a teleconnection between Barents-Kara Sea 

ice anomalies and strengthening of the Siberian anticyclone, resulting in cooling in Siberia 
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and central Asia. This is thought to operate via an anomalous Rossby wavetrain (e.g. Kim et 

al., 2014; Liu et al., 2012; Kug et al., 2015). 

 

In contrast to some of the studies above, a robust high latitude reduction of SLP in response 

to Arctic sea-ice loss is recently reported, using a sizeable ensemble of 60 members (Screen 

et al., 2013b). A large ensemble size appears to be necessary to detect SLP responses that are 

much less than atmospheric internal variability. While the majority of studies show a 

negative NAO response, Screen et al. (2013b) advise that winter circulation responses are not 

robust across simulations, even if the same model is used and that much of this could be due 

to ensemble size and differences in experimental design. Differences in the model responses 

may also be due to the use of different forcing mechanisms and model physics, the range and 

number of models employed in the ensembles and the nature of the sea-ice forcing as 

discussed above (Screen et al., 2013a, 2013b). 

 

The large-scale atmospheric response is strongest in winter in many of these studies, after the 

sea-ice minima in autumn. This is thought to be because surface temperatures build up 

through the summer season, with anomalies peaking in autumn.  Heat fluxes are then at a 

maximum when temperature differences are greatest between ocean and atmosphere in 

winter, despite the recovery of thin sea-ice (Deser et al., 2010a).  

 

A caveat should be added concerning the potential influence of sea-ice. A number of recent 

studies have suggested that sea-ice variability is a response to either tropical forcings (e.g. 

Ding et al., 2014), the influence of the North Atlantic Multidecadal Oscillation (AMO; 

Peings and Magnusdottir, 2014b) or the influence of the Gulf Stream (Sato et al., 2014). 

Therefore the sea-ice response may in fact be driven by other external forcings and may act 

to modulate this forcing signal and its impact upon the mid-latitude atmospheric circulation. 

 

In summary, limited atmospheric responses to sea-ice loss have been detected. Although the 

mechanism is not well understood, plausible suggestions have been made involving oceanic 

heating of the Arctic atmosphere, which raises geopotential heights over the Arctic.  

However, responses to sea-ice loss are much more robust in the Arctic than in the mid-

latitudes and while several observational studies and some modelling experiments suggest a 

negative NAO response to sea-ice loss, and therefore a southward displacement of the PFJ, 

results are not always robust. They depend on the choice of model and require large 
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ensembles to detect relatively weak signals against a strong background noise of internal 

variability. It would appear that sea-ice decline has the potential to modulate the northward 

shift in storm tracks but is unlikely to be the dominant driver of jet stream change. 

 

1.4.2. Snow cover  

In a similar way to sea-ice, a change in snow cover on Northern Hemisphere land masses, 

particularly during spring snow melt or autumn snowfall can impact on the lower layers of 

the atmosphere. Reduced snow cover presents a land surface with a decreased albedo, which 

will absorb more downward shortwave radiation, in turn emitting more longwave radiation to 

the atmosphere, with potential impacts on atmospheric circulation (Brown et al., 2010; Cohen 

et al., 2012).  

 

There has been a significant trend towards an earlier spring snow melt in the Northern 

Hemisphere (Brown et al., 2010), where May and June snow cover extent have reduced 

respectively by 14% and 46% over the period 1967-2008 across the Arctic. Observational 

and reanalysis studies indicate that spring/summer snow cover trends may influence 

atmospheric circulation. Significant anomalies occur in 1000-500hPa GPH thicknesses over 

Northern Hemisphere landmasses in summer (Figure 1.6), a possible consequence of earlier 

snow melt onset, leading to warmer, drier soils which increase surface heating of the 

atmosphere (Francis and Vavrus, 2012). It is proposed that this heating leads to increased 

meridional wave amplitude and a weaker, strongly meandering jet stream, as poleward 

geopotential thickness gradients decrease.  A significant negative correlation of Northern 

Hemisphere May snow cover with extended ridges in planetary wave patterns has been 

identified (Francis and Vavrus, 2012). 



 

 20 

 
Figure 1.6. Anomalies of 1000-500hPa thicknesses north of 40°N, 2000-2010 compared with 
1970-1999 using NCEP/NCAR reanalysis (Kalnay et al., 1996). a) Autumn (OND), b) winter 
(JFM), c) spring (AMJ), d) summer (JAS). White asterisks denote areas with significance of 
p<0.05. Note in summer the significant anomalies, although weaker than in other seasons, are 
located over the northern continents. Adapted from Francis and Vavrus (2012). 
 
It is argued that this pattern of weakened zonal winds and increased wave amplitude will 

result in more persistent weather patterns in mid-latitudes. However, aspects of the 

mechanism by which changes in amplitude lead to changes in phase speed are unclear and 

certainly not supported by linear theory.   Furthermore, the seasonal trends detected in 

meridional wave amplitude, phase speed and blocking are not replicated by more recent 

studies (Screen and Simmonds 2013; Barnes 2013, Barnes et al., 2014) suggesting that trends 

could be an artifact of analysis methodology. In addition, a number of other potential factors 

contribute to Arctic Amplification, for example lower latitude SST forcing (Screen et al., 

2012). 
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Significant autumn snow cover anomalies, particularly over Eurasia, may also have a 

possible impact on large scale atmospheric circulation via stratosphere-troposphere coupling 

over recent decades, according to a number of observational studies (Cohen and Entekhabi 

1999; Saito et al., 2001; Takaya and Nakamura, 2008; Honda et al., 2009).  A proposed 

mechanism is outlined by Cohen et al. (2007). They suggest that large positive anomalies in 

October Eurasian snow cover result in a higher albedo and a shortwave radiation deficit at the 

surface. Snow anomalies could be linked to reductions in SIE and associated increases in 

atmospheric moisture, through the Clausius-Clapeyron relationship, as air over the Arctic 

warms, or through enhanced latent heat flux from the Arctic Ocean as evaporation increases  

(Cohen et al., 2012). Reduced SIE would possibly lead to a more negative NAO and a 

meandering jet, enabling cold surges to take place over northern continents (e.g Liu et al., 

2012) and there is observational and modelling evidence of increased precipitation and snow 

anomalies over parts of Eurasia (Callaghan et al., 2011; Park et al., 2013). However, there are 

a number of contributory factors to projected snow anomaly increases other than sea-ice loss 

(Deser et al., 2010a). 

  

If snow cover is increased, the Siberian surface high pressure is strengthened and this may 

increase the flux of upward propagating planetary wave activity, leading to subsequent 

weakening of the stratospheric polar vortex (see section 1.6.1) and increased geopotential 

heights in the winter upper troposphere over high latitudes. This could again result in a 

negative NAO-type pattern and an equatorward shift in the jet stream in the Atlantic sector in 

winter (Figure 1.7).  However, a recent study found the link between autumn snow cover and 

winter NAO (AO) to be non-stationary, with running correlations between snow cover and 

the AO being insignificant or changing sign before the 1970s, and only being significant 

since the early 1980s (Peings et al., 2013). These authors suggest that the snow cover-

stratospheric circulation relationship may also be modulated by stratospheric equatorial wind 

patterns, the Quasi-biennial Oscillation (QBO; see section 1.6.3 below). 
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Figure 1.7. Schematic illustrating how increased autumn snow cover anomalies in Eurasia 
may modify stratospheric and tropospheric circulation. 1) Early rapid increase in Siberian 
snow cover. 2) Diabatic cooling strengthens the Siberian high and results in lower than 
normal temperatures. 3) The snow-forced diabatic cooling and proximity to high topography 
leads to increased upward wave flux from the troposphere. This is absorbed in the 
stratosphere. 4) Strong convergence of wave activity flux increases geopotential heights, 
weakens the polar vortex and warms temperatures in the stratosphere. 5) Downward 
propagation of zonal mean geopotential height and wind anomalies, from the stratosphere to 
the surface. 6) A strong negative Arctic Oscillation at the surface results. Adapted from 
Cohen et al. (2007). 
 

Limited support for the snow-NAO teleconnection can be found in some idealised numerical 

studies (e.g. Orsolini and Kvamstø, 2009: Allen and Zender, 2010), suggesting that the 

analysis of autumn Eurasian snow cover anomalies could enhance predictability of winter 

NAO patterns and jet stream variability. However, none of the CMIP3 models demonstrated 

the snow cover-stratosphere-NAO relationship discussed above (Hardiman et al., 2008), 

which is attributed to failure of the models to portray accurately various components of the 

proposed mechanism.  A subsequent modelling study (Fletcher et al., 2009) captures some of 

the atmospheric response to snow-cover anomalies, but here the initial snow forcing is 

prescribed, compared with allowing snow cover to evolve freely (Hardiman et al., 2008). 

Stratospheric representation in models is also a significant factor in determining outcomes, 

and most models do not simulate a realistic atmospheric response to snow-cover anomalies 
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(Peings et al., 2012). There is therefore significant uncertainty still surrounding this proposed 

troposphere-stratosphere coupling. As the snow anomaly itself may be a response to sea-ice 

decreases (Liu et al., 2012), the identified stratospheric pathway may itself be a direct 

response to the sea-ice decrease rather than to the snow-cover anomaly (Sun et al., 2015). 

 

The mechanism in Figure 1.7 relates to positive snow anomalies in October. Some studies 

have suggested that there is evidence of a cooling trend and increased snow cover in October 

over Northern Hemisphere landmasses (e.g. Cohen et al., 2012), implying that this 

mechanism would become more prevalent, leading to increased occurrences of a more 

negative NAO in winter. However, it was recently shown that this positive snow-cover trend 

is a consequence of inhomogeneities in the satellite dataset (Brown and Derksen, 2013). If 

this trend is spurious, and October snow onset is becoming later, then the mechanism will 

operate less frequently, but the nature of the trend does not affect the principles of the 

mechanism, which is based on anomalies rather than trends in snow cover.  

 

While the mechanism for snow-cover impact upon the jet stream seems plausible, some of 

the trends identified are dependent on methodology and susceptible to inhomogeneities in 

datasets and there is limited modelling evidence to support the link.  There are also issues 

with obtaining reliable observations of snow cover, which may be very patchy, with a very 

uneven observation network (Brown et al., 2010).  

 

1.5. Oceanic drivers of jet stream variability 

1.5.1. Atlantic sea-surface temperatures (SSTs) 

Instrumental records from the 19th century onwards show variations in summer climate of 

North America and Europe occurring on decadal scales (e.g. Enfield et al., 2001). These 

appear to coincide with multidecadal variations in Atlantic Ocean SSTs (Folland et al., 1999; 

Sutton and Hodson, 2005), known as the Atlantic Multidecadal Oscillation (AMO).  A 

positive (negative) AMO index, with higher (lower) SSTs is associated with lower (higher) 

mean SLP over the Atlantic and Europe, decreased (increased) precipitation over North East 

Brazil, Southern Europe and the southern United States, and increased (decreased) 

precipitation over Northern Europe and the Sahel shown in Figure 1.8 (Knight et al., 2006).   
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Figure 1.8. Evidence for AMO impact on summer (JJA) regional climate. a)-c) Observed 
differences between mean summer conditions 1931-1960 (warm AMO phase) and 1961-1990 
(cold AMO phase). d) and e) Ensemble mean of six simulations with HadAM3 atmosphere 
model forced with observed global SST data showing differences between 1931-1960 and 
1961-1990. f) –h) Differences between time mean of HadAM3 simulations forced with 
positive and negative signs of idealised AMO SST pattern. For all except b), white shows 
areas where anomalies are not significant at the 90% level. Adapted from Sutton and Hodson 
(2005). 
 
The positive AMO has been associated with increased winter blocking (Häkkinen, 2011) and 

the negative phase of the winter NAO (Peings and Magnusdottir, 2014b; Davini et al., 2015). 

Experiments with an AGCM indicate that a positive AMO can result in a southward 

displacement of the zone of baroclinicity, through positive Gulf Stream SST anomalies near 

Newfoundland reducing the meridional SST gradient. As noted above (section 1.4.1) the 

AMO can also impact on sea-ice extent, and AA could be over-estimated if the influence of 

the AMO is not considered (Peings and Magnusdottir, 2014b). Davini et al. (2015) find that it 

is the tropical SST component of the AMO that has the greatest impact on the winter NAO. 
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The positive (warm) phase of the AMO correlates with the negative phase of the summer 

NAO (SNAO), which is the first empirical orthogonal function (EOF) of North Atlantic 

summertime mean SLP and the summer equivalent of the winter NAO (Folland et al., 2009). 

The SNAO is smaller in extent, with a northward displacement of the centres of action, with 

the southern node being centred over northwest Europe instead of the Azores.   The SNAO is 

able to explain the main variations of summer climate over Northern Europe, through 

changes in the Atlantic storm-track and jet stream locations. The positive SNAO is associated 

with warm, dry and cloud-free conditions over northwest Europe with a poleward 

displacement of the jet stream, which are conditions found under a negative AMO regime, 

and vice versa (see above).  Sutton and Dong (2012) present observational evidence that 

Atlantic Ocean warming was the key driver in changes in European climate in the 1990s, 

with wetter summers in western Europe characteristic of a negative SNAO and positive 

AMO. 

 

The drivers of the AMO itself are unclear, although a 1400-year simulation produces an 

AMO pattern which suggests that it is a natural mode of variability related to the meridional 

overturning circulation (MOC) of the North Atlantic (Knight et al., 2005). An accelerated 

MOC increases the northward transport of heat, producing a more positive AMO. However, 

anthropogenic warming is forecast to weaken the MOC (e.g. Schneider et al., 2007) which 

therefore may lead to a more negative AMO, with opposite implications for regional climate. 

This projected weakening of the MOC may explain why several studies (Bengtsson et al., 

2006: Ulbrich et al., 2008; Woollings et al., 2012) find that an eastwards extension of storm 

tracks is predicted, as there is an intensification and extension of the eddy-driven jets towards 

Europe (Woollings et al., 2012). This would be a consequence of increased baroclinicity in 

mid-latitudes, as the North Atlantic would have lower SSTs due to the reduced MOC, whilst 

further south SSTs would be higher through more general climate warming.  

 

Work from observations and modelling (e.g. Booth et al., 2012; Evan et al., 2009; Mann and 

Emanuel, 2006) suggests there is also a role for volcanic and anthropogenic aerosols in 

forcing decadal Atlantic SST changes, together with impacts on climate extremes such as the 

Sahel droughts. CMIP3 models showed weaker aerosol forcing of Atlantic SST while CMIP5 

models which include indirect aerosol effects indicate that aerosols could force the AMO 

(Booth et al., 2012), although this result is still being investigated (Zhang et al., 2013). 

 



 

 26 

On shorter timescales, experiments with coupled atmosphere-ocean models have identified a 

robust but weak signal linking summer equatorial Atlantic SSTs with winter North Atlantic 

atmospheric variability (Drévillon et al., 2003, Peng et al., 2005; Haarsma and Hazeleger, 

2007). The proposed mechanism involves a positive summer SST anomaly in the equatorial 

cold tongue, increased convection and divergence aloft when the anomaly coincides with the 

inter-tropical convergence zone (ITCZ) in autumn. This strengthens the Hadley Cell 

circulation and the STJ. Resulting Rossby wave propagation could result in circumglobal 

wave propagation along the STJ which acts as a waveguide to the Atlantic, where a 

southward shift of the baroclinic zone and the PFJ occurs (Haarsma and Hazeleger, 2007). 

Other mechanisms suggest a more direct link, for example enhanced convection in the 

Amazon basin initiating a Rossby wave train over the North Atlantic (Drévillon et al., 2003). 

 

There is also evidence for more local ocean-atmosphere coupling in the North Atlantic. A 

tripole SST pattern is often observed in the North Atlantic winter, consisting of low SST 

anomalies in the subpolar and subtropical Atlantic, with a warm anomaly in mid-latitudes. It 

is well established that this pattern is a consequence of heat and momentum fluxes associated 

with the winter NAO (e.g Cayan, 1992; Visbeck et al., 2003). A positive NAO results in 

stronger westerlies over the northern node which increases turbulent energy flux losses, while 

over the central node there is heat gain from the atmosphere due to anomalous easterly flow 

which reduces westerly wind speeds, which acts to increase the meridional temperature 

gradient (Deser et al., 2010b). However, there is also some evidence for positive feedback 

between the SST tripole and the NAO (Czaja and Frankignoul, 2002; Rodwell and Folland, 

2002). Winter and spring SST anomalies form in a deeper ocean mixed layer and are 

preserved beneath the thermocline that develops from spring onwards, under a shallower 

mixed layer. These SST anomalies may subsequently re-emerge in the following winter as 

the mixed layer deepens and incorporates the water which has anomalous temperatures 

(Rodwell and Folland, 2002). Some studies find that the decadal variability of the north and 

south nodes of the tripole is distinct from that of the central node, and shows greater 

association with the EA, while the central node is more closely associated with the NAO 

(Álvarez-García et al., 2011).  Model experiments have indicated that North Atlantic SST 

anomalies can force NAO-like atmospheric responses (e.g. Rodwell et al., 1999), but 

identical responses can result from an atmosphere-ocean coupling forced by high frequency 

stochastic atmospheric variability (Bretherton and Battisti, 2000). Overall, the evidence 

supports a stochastic interpretation (Frankignoul and Hasselmann, 1977) in which a 
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stochastic white noise atmospheric forcing produces SST responses in the lower-frequency 

red noise spectrum, but with some feedback to the atmosphere.  

 

In summary, Atlantic SST forcing of the atmosphere on longer timescales via the AMO is 

perhaps clearer than short-term forcings from SST in the tropics or the North Atlantic. The 

AMO phase appears to be linked with the phase of the NAO in summer and winter and also 

with the jet stream location. The coupling between atmosphere and the Atlantic Ocean is far 

from fully understood and is not easy to determine, particularly in observational studies.  

 

1.5.2. El Niño-Southern Oscillation (ENSO) 

ENSO involves strong coupling of the ocean and atmosphere in the tropical Pacific Ocean. In 

the normal state there is upwelling of cold ocean water off the west coast of Peru, with warm 

Pacific surface waters further west, associated with strong atmospheric convection 

(Philander, 1989). The east-west surface temperature and pressure gradients produce strong 

trade winds pushing the warm water westwards and enhancing upwelling in the east. 

Fluctuations in this mean state can drive a strong cooling (warming) in the eastern Pacific 

known as La Niña (El Niño), when upwelling is strengthened (suppressed) as trade winds 

strengthen (weaken) and the temperature gradient increases (reduces). 

 

The primary influences of ENSO are around the Pacific basin, but there is now increasing 

evidence that ENSO can affect European climate via its impact on the NAO.    El Niño (La 

Niña) events tend to be accompanied by negative (positive) NAO conditions in late winter 

(Brönnimann, 2007).  These canonical signals occur in most events but different signals have 

been found for strong El Niño events, with strong events producing high pressure in the 

eastern Atlantic in January and February (Toniazzo and Scaife, 2006). In strong El Niño 

events warm SST anomalies propagate further eastward (e.g. Cai et al., 2015), compared with 

a central Pacific anomaly source for more moderate events. Mechanisms that link ENSO with 

the NAO can operate via both the stratosphere and the troposphere (Toniazzo and Scaife, 

2006; Bell et al., 2009; Butler et al., 2014).  

 

In El Niño winters, enhanced planetary wave activity enters the stratosphere, weakening the 

polar vortex (e.g. Manzini et al., 2006). This upward propagation of an El Niño signal into 

the stratosphere increases the likelihood of weak stratospheric polar vortex anomalies which 

can then propagate downwards into the troposphere (see section 1.6.1), with a response 
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similar to the negative NAO phase (Bell et al., 2009). Likewise, La Niña episodes are 

associated with a stronger stratospheric vortex and a positive NAO (Figure 1.9; Li and Lau, 

2013) although this signal has been more difficult to detect.   

 

 
Figure 1.9. A schematic diagram showing El Niño and La Niña effects on European climate 
and the North polar stratosphere for different seasons. Pressure centres, storm tracks and the 
strength of the polar vortex are given as absolute values, with the arrows or font showing the 
strength of deviation (dotted or light is decrease, solid or bold is increase), whereas 
precipitation and temperature indicate relative values. Adapted from Brönnimann (2007). 

 

As will be seen in section 1.6, ENSO events are not the only influences on the stratosphere 

and strong and weak vortex events arise in years when no strong ENSO signal is present. 

These stratospheric responses are in the seasonal mean stratospheric vortex values. 

Intriguingly, more extreme sudden stratospheric warmings (SSW; see section 1.6.1) appear to 

be more or less equally common in both ENSO phases via non-linear interactions with the 

Aleutian low-pressure area in the North Pacific (Butler and Polvani, 2011; Garfinkel et al., 

2012a) and are more common in both than for ENSO neutral years, although sample sizes are 

very limited.  There is some evidence for solar modulation of ENSO signals within the 

stratosphere (Kryjov and Park, 2007). During solar maxima there is an insignificant effect of 
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ENSO impact on the lower extratropical stratosphere, while a strong impact resembling the 

Northern Annular Mode is evident during solar minima. Whether this is simply due to 

sampling error or indicates a real non-linearity is currently unknown. 

 

The tropospheric linkage involves an equatorward shift of the North Pacific storm track 

during El Niño winters.  Intensified transient eddies extend further downstream and “spill 

over” into the Atlantic sector which can impact on the seeding of eddies in the North Atlantic 

storm track (Li and Lau, 2012a; 2012b). As discussed above (section 3), the nature of these 

seedings can affect the storm tracks and NAO phase (Benedict et al., 2004: Franzke et al., 

2004). In El Niño winters, strong positive SST anomalies in the equatorial Pacific enhance 

the strength of the eddies and their ability to propagate into the Atlantic, where they introduce 

negative height anomalies which impact on the southern NAO node (Li and Lau, 2012a; 

2012b), A negative (positive) NAO phase occurs more frequently in late winter during El 

Niño (La Niña) events. Modelling evidence suggests that for a strong El Niño event, the 

tropospheric pathway dominates (Toniazzo and Scaife, 2006; Bell et al., 2009). 

 

The ENSO impact on the North Atlantic jet stream is robust in models and is consistent with 

signals in observations, (Ineson and Scaife, 2009; Cagnazzo and Manzini 2009) although the 

observational record of course contains only one realisation per year and is therefore 

statistically more uncertain. 

 

1.5.3. Other SST forcings 

Hoskins and Karoly (1981) found that a localised application of heating in the tropics can 

result in the propagation of an anomalous Rossby wave train, which traces a great circle over 

the Northern Hemisphere and has the potential to impact upon extratropical circulation 

patterns with a time-lag of seven to ten days. More recent studies have supported this work, 

with anomalous Rossby wave trains from the Pacific being shown to have a potential impact 

on Arctic warming and the PFJ latitude and extratropical weather patterns (Ding et al., 2014; 

Trenberth et al., 2014). A mechanism is proposed by Lee et al. (2011), identified as 

Tropically Excited Arctic warMing (TEAM). Anomalous tropical SST can lead to enhanced 

convection and the poleward propagation of planetary Rossby waves, accompanied by the 

transport of eastward angular momentum to the tropics, in the opposite direction to Rossby 

wave propagation (Held 1975). There is a poleward heat flux which produces adiabatic 

warming at high latitude as air sinks. Condensation occurs, enhancing cloud production and 
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downward longwave radiation, which leads to further surface heating (Lee, 2014). Yoo et al. 

(2011) find that around 20% of Arctic amplification is attributable to changes in frequency of 

Madden-Julian Oscillation phases over the Indian and west Pacific Oceans, which produce 

wavetrains similar to those of Hoskins and Karoly (1981) and are consistent with the TEAM 

mechanism (Lee et al., 2011).  

 

Hartmann (2015) identifies anomalously warm SST in the North Pacific as forcing the 

extreme winter of 2013/14 (cold over the eastern USA and mild, wet and stormy over 

western Europe), but recognizes that the ocean temperatures themselves are likely to be 

forced from tropical West Pacific warm SST anomalies, which is consistent with the studies 

above and supported by Palmer (2014). Lee et al. (2015) confirm the influence of Pacific 

SSTs on winter 2013/14 but argue that the perturbations caused by the Rossby waves can be 

reinforced by anomalously low sea-ice concentrations.  

 

1.6. Stratospheric drivers of jet stream variability 

1.6.1. The Stratospheric Polar Vortex (SPV) 

In winter, the Northern Hemisphere stratospheric circulation is dominated by a polar vortex, 

characterized by strong westerly winds circulating around a deep cold polar cyclone. This 

develops in autumn as a consequence of the reduction then cessation of solar heating over 

high latitudes (Waugh and Polvani, 2010). In spring the vortex breaks down and in summer 

the mean flow is easterly around a polar anticyclone.  

 

There is large variability in the strength of the vortex, represented by the Northern Annular 

Mode Index at 10hPa, where a positive (negative) index indicates a strong (weak) vortex, 

(Baldwin and Dunkerton, 2001). Sudden stratospheric warmings (SSW; Scherhag, 1952) 

occur when the strong westerly winds slow due to perturbations, usually a result of strong 

planetary wave activity emanating from the troposphere. The meridional temperature gradient 

and zonal flow can be reversed and warming of the polar stratosphere takes place, by up to 

50°C over the space of a few days (Limpasuvan et al., 2004). The warming arises through the 

poleward transport of heat by planetary waves (Matsuno 1971), and adiabatic warming due to 

rapid descent and compression over the Arctic reduces the meridional temperature gradient 

and therefore the winds, according to geostrophic balance.  Large interannual fluctuations in 

the strength of the SPV occur due to fluctuations in upward propagating Rossby waves 

(Scaife and James, 2000).  Both weak and strong vortex anomalies often transfer to the 
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troposphere, producing negative or positive NAO influences respectively (e.g. Kodera et al., 

1990). Arctic GPH anomalies - negative (a strong vortex) or positive (a weak vortex) – are 

able to propagate down from the stratosphere and are followed by positive (negative) phases 

of the NAO at the surface, and therefore influence tropospheric circulation for up to 60 days 

(Baldwin and Dunkerton, 2001). The tropospheric response to a weak (strong) SPV of a 

southward (northward) shift of the PFJ and a negative (positive) NAO is found to be robust in 

GCMs (Gerber et al., 2009; Gerber and Polvani, 2009). The surface response to a SSW 

appears to be sensitive to the type of SSW: a split SPV tends to have a greater surface impact 

as a negative NAO while displacement events, where the centre of the vortex is located away 

from the pole, frequently result in cold-air outbreaks in North America (Mitchell et al., 2013). 

The North Atlantic jet would appear to be particularly sensitive to coupling with the 

stratosphere compared with the Pacific jet which is on average situated further south 

(Garfinkel et al., 2013). 

 

Mechanisms of transfer from the stratosphere to troposphere are only partly understood 

(Gerber et al., 2012).   Possible connections to the PFJ are via downward movement of the 

region of wave-mean flow interaction (e.g. Plumb and Semeniuk, 2003), wave reflection 

back into the troposphere (e.g. Perlwitz and Harnik, 2003), lower stratospheric perturbations 

influencing baroclinic instability (e.g. Rivière 2011) and/or wavebreaking (e.g. Kunz et al., 

2009). This is an area of important ongoing research.  

 

Nevertheless, the stratosphere may be important for surface Atlantic climate on both 

interannual and decadal timescales. For example, NAO variability, particularly the 

strengthening observed in the late 20th century, can only be effectively reproduced in models 

if observed circulation variability in the SPV is included in the forcings (Scaife et al., 2005; 

Douville, 2009).  Stronger stratospheric winter jets are followed by stronger tropospheric 

westerlies at mid-to-high latitudes and a more positive NAO.  The strengthened stratospheric 

jets may be a consequence of forcing due to ozone depletion or increased carbon dioxide 

content for example. Alternatively they could be driven by upper tropospheric anomalies, 

with a possible positive feedback between the troposphere and stratosphere (Plumb and 

Semeniuk, 2003). The fact that the stratospheric anomalies could be driven by the 

troposphere means that the stratosphere should not necessarily be viewed as exerting top-

down control on the troposphere.  
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Perturbations to the stratosphere can also arise through the influences of solar activity 

(section 1.6.2), variations in equatorial stratospheric circulation (section 1.6.3) and 

propagation of tropospheric planetary waves from the surface, caused by phenomena such as 

El Niño (section 1.5.2), together with infrequently occurring events such as tropical volcanic 

eruptions (section 1.6.4).  

 

1.6.2. Solar variability 

The 11-year cycle in Total Solar Irradiance (TSI) is well known and has been observed for 

many years through the variation in sunspot numbers. However, there are a number of other 

measures of solar output that are more useful (Figure 1.10). The open solar flux, Fs for 

example, shows centennial changes of both maxima and minima as opposed to just the 

maxima with sunspot cycles (Lockwood, 2010).  

 

As incoming solar radiation fuels the atmosphere, it seems reasonable to assume that solar 

variability will have a consequent effect upon atmospheric circulation. However, average net 

incoming solar radiation available to the Earth System is approximately 239 Wm-2 and the 

amplitude of change in TSI forcing at the top of the atmosphere over the 11-year solar cycle 

is only about 0.17Wm-2, which represent less than 0.1% of the total (Gray et al., 2010).   

Based on TSI changes alone, it is therefore difficult to see how such a small variation could 

significantly influence climate, particularly when net forcing due to anthropogenic 

greenhouse gases over the period 1951-2011 is estimated to be 1.5Wm-2   (IPCC AR5, 2013, 

section 8.5.2). There is some evidence from modelling studies that longer-term variations in 

TSI, for example over an 80-90 year cycle, may be of greater magnitude (e.g. Krivova et al., 

2007; Wang et al., 2005) and that ozone feedbacks (e.g. Haigh et al., 2010) and ocean-

atmosphere feedbacks may be important (Scaife et al., 2013) but no direct irradiance 

observations exist on this timescale and estimates of global temperature change over the 

coming century due to solar variability are much smaller than those expected due to 

greenhouse gas forcing (Jones et al., 2012). 
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Figure 1.10. Solar and heliospheric observations and mean temperature data. a) The 
international sunspot number R (World Data Centre for the Sunspot Index, Brussels, 
Belgium). b) The open solar flux, Fs derived from the radial component of the interplanetary 
magnetic field. (Data from OMN12 composite dataset, NASA, USA). c) Neutron count rate 
C (World Data Center A, Boulder, USA). d) Total Solar Irradiance (TSI) composite (World 
Radiation Centre, PMOD Davos, Switzerland. e). Global mean surface air temperature 
anomaly ΔT from the 1951-1980 mean, (NASA, USA). Black lines are monthly means. In d), 
daily values are shown in grey. Adapted from Lockwood and Fröhlich, (2007). 
 

There are two regions in the atmosphere warmed by absorption of solar radiation; the first is 

near the surface due to absorption of visible light while the second is near the stratopause due 

to the absorption of ultra-violet (UV) radiation by ozone (Kodera and Kuroda, 2002).  The 

UV heating fluctuates by a larger proportion (6%) than would be suggested by TSI variability 

alone (0.07%), so it is a strong candidate for mediating solar influence on climate (Gray et 
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al., 2010). Note that the UV variability is still uncertain though, and new data suggest a 

decrease in UV four to six times greater than previously indicated may have occurred during 

the decline of the most recent solar cycle, while irradiance in other bands may have increased 

(Harder, 2009). This observational result is currently the subject of debate. 

 

An increasing body of evidence points to impacts of solar variability on the stratosphere. It 

has been found through modelling studies (e.g. Kodera et al., 1990; Matthes et al., 2004) that 

downward propagation of a solar signal from the upper to lower stratosphere arises through a 

modulation of the stratospheric Polar Night Jet. In autumn and winter, decreased upper 

stratospheric temperatures are observed at solar minimum, as a consequence of a reduction in 

heating due to decreased ozone heating. The signal is strongest in the tropics and therefore 

results in a decreased meridional temperature gradient and an associated weak easterly 

anomaly in the upper stratospheric circulation. This anomaly propagates poleward and 

downward, and is amplified by dissipation of planetary wave activity and increased easterly 

forcing of the Polar Night Jet. The anomaly intensifies, weakening the SPV at solar minimum 

(Ineson et al., 2011), with consequent potential impacts on the troposphere as outlined in 

section 1.6.1. 

 

There are numerous further studies arguing for a solar impact on North Atlantic and Western 

European climate. Lockwood et al. (2010a) demonstrate a link between low solar activity and 

colder than normal European winters, in agreement with work by Barriopedro et al. (2008) 

who find that blocking episodes in the East Atlantic increase in duration and intensity during 

solar lows. Ineson et al. (2011) show that a model forced with decreased UV irradiance 

observations produces negative NAO effects through a downward and poleward propagation 

of zonal wind anomalies from the stratosphere, similar in magnitude to observations, which 

could have contributed to recent severe winters such as that in 2009/10 (Figure 1.11). There 

are indications of a lagged positive NAO response to a solar maximum, by around three 

years, which is evident from observational evidence and supported by modelling (Scaife et 

al., 2013; Gray et al., 2013). It is suggested that a more or less immediate atmospheric 

response to a solar maximum is transmitted to Atlantic SST via atmosphere-ocean coupling, 

and the tripole SST pattern discussed earlier.  

 

Temperature anomalies develop in the deeper winter ocean mixed layer and are submerged 

below the shallower summer mixed layer. These re-emerge the following winter and 



 

 35 

perpetuate the original NAO anomaly via atmosphere-ocean coupling, and in turn further 

perpetuating the signal.  This lag may also account for some of the disagreement on the 

effects of solar variability between previous studies which focused on simultaneous 

relationships between solar variability and surface climate. 

 

 
Figure 1.11. The poleward and downward propagation of the solar climate signal from the 
stratosphere to the troposphere. The composite monthly zonal-mean zonal wind (ms-1) is 
shown for the difference between solar maximum and minimum. Time period is October to 
March. a) shows Met Office GCMl data, b) is reanalysis (ERA-40 and ERA-Interim for the 
period 1957-2002, Uppala et al., 2005: Dee et al; 2011). Solid white contours show 
significance levels at 95% for the model and 90% for the reanalysis. Adapted from Ineson et 
al., (2011). 
 
While the magnitude of UV irradiance variations is still unclear, the top-down mechanism for 

solar variation influencing surface climate has been shown to operate in several recent 

observational and modeling studies, which can impact on the jet stream through stratosphere-

troposphere coupling. 

 

There are a number of other solar cycles of different periods, such as the 22-year Hale Cycle, 

in which the magnetic polarity of sunspots alternates between positive and negative polarity 
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in successive 11-year cycles (Burroughs, 2003). These fluctuations in solar magnetic activity 

modulate the flux of galactic cosmic rays (GCR) in the Earth’s atmosphere, and it has been 

hypothesized that fluctuations in GCRs are able to affect levels of cloudiness (e.g. Carslaw et 

al., 2002) through impacts on aerosols which form cloud condensation nuclei (e.g. 

Svensmark, 2007). However, more recent observational data do not support this idea as 

correlations have weakened (Lockwood, 2012), although a cycle of around 20 years is one 

that is commonly found in meteorological data (Burroughs, 2003). 

 

1.6.3. The Quasi-biennial Oscillation (QBO) 

The dominant source of interannual variability in the tropical stratospheric circulation is the 

Quasi-biennial Oscillation (QBO). This is a quasi-regular oscillation of equatorial 

stratospheric winds between westerly and easterly directions, with a period of 24-30 months 

(Veryard and Ebdon, 1961; Reed et al., 1961).  These changes in wind direction descend over 

time through the stratosphere to tropopause level. An easterly QBO phase increases drag on 

the westerly polar vortex by confining planetary wave activity at mid-to-high latitudes. The 

line of zero wind in the lower stratosphere confines planetary waves nearer to the pole during 

an easterly QBO. The concentration of wave activity at higher latitudes weakens the SPV. 

Conversely, with a westerly QBO, stratospheric tropical winds are westerly so wave activity 

disperses more widely and is therefore weaker (Holton and Tan, 1980; Baldwin et al., 2001).  

Evidence from models has generally supported this mechanism (e.g. Hamilton, 1998). 

However, some recent studies (e.g. Garfinkel et al., 2012b) have argued that the changes in 

the mean meridional circulation of the QBO are more important in creating a barrier to wave 

propagation to mid-latitudes. This is challenged by Watson and Gray (2014) who find the 

Holton-Tan mechanism is a significant contributor to the relationship established between the 

QBO and SPV. However, other mechanisms may be involved and this is an area of ongoing 

research. A QBO signal in the extratropical Atlantic troposphere was detected by Ebdon 

(1975) and subsequent studies support a surface impact of the QBO in the Atlantic sector 

(e.g. Pascoe et al., 2006; Boer and Hamilton 2008). 

 

There has also been considerable debate over an apparent non-linear link between the QBO 

and the solar cycle (e.g.Labitzke, 1987; Labitzke and van Loon 1988; Baldwin and 

Dunkerton, 1989). When solar activity is low, the SPV tends to weaken (strengthen) when the 

QBO is easterly (westerly), as expected. The reverse situation may prevail when solar activity 

is high (Baldwin et al., 2001). The relationship only becomes apparent when data are 
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stratified according to the phase of the QBO. This has proved difficult to reproduce in models 

and no satisfactory mechanism has therefore been demonstrated and the observed relationship 

may simply arise from aliasing of limited observations. 

 

A more straightforward explanation of the influence of solar cycles and QBO on the SPV is 

proposed by Camp and Tung (2007). Here the solar minimum/west QBO is identified as the 

unperturbed state of the vortex. Both solar maxima and east QBO are capable of perturbing 

and warming the SPV, but act separately and no reversal of warming at solar maximum is 

found. 

 

As indicated above, there is an observed link between the phase of the QBO and the strength 

of the SPV, although there is no consistent agreement on mechanisms involved. There is 

evidence for propagation of QBO-induced stratospheric anomalies down into the troposphere, 

where they can impact upon the tropospheric annular modes and the jet stream (e.g. Ebdon, 

1975; Hamilton, 1998; Marshall and Scaife, 2009), but it remains to be seen whether similar-

strength anomalies to those in observed records can be produced in coupled ocean-

atmosphere climate models. 

 

1.6.4. Tropical volcanic eruptions 

Tropical volcanic eruptions are episodic but have occurred a number of times in recent 

records. They are capable of injecting aerosols into the stratosphere, where their effects may 

last for several years. Aerosols reflect solar radiation, leading to a cooling of the Earth’s 

surface while warming the equatorial lower stratosphere through absorption of terrestrial IR 

and near-IR solar radiation (Stenchikov et al., 2006). The enhanced meridional temperature 

gradient in the stratosphere results in a strengthening of the Polar Night Jet and the SPV 

(Robock and Mao, 1992; Marshall et al., 2009).  

 

Observations show a positive NAO anomaly in winter for the two years following an 

eruption (e.g. Robock and Mao, 1992), with northward displacement of storm tracks and the 

polar jet stream, which are only reproduced to a very limited extent in IPCC AR4  

(Stenchikov et al., 2006) and CMIP 5 models (Driscoll et al., 2012; Gillett and Fyfe, 2013). 

Reasons for this are unclear but may be related to models having insufficient resolution and 

atmospheric depth representation to incorporate stratospheric dynamics and stratosphere-

troposphere couplings adequately particularly in the earlier models. Alternatively, the 
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observed NAO response could have occurred by chance, since the number of observed 

occurrences is very limited (Gillett and Fyfe, 2013), although this appears unlikely (Marshall 

et al., 2009).  Modelling based upon the Mount Pinatubo eruption of 1991 (Stenchikov et al., 

2004) produced a positive winter AO response but did not incorporate volcanically-induced 

ozone depletion in the calculations, which may amplify the signal. The volcanic signal may 

also be confounded by coincidence with ENSO events (e.g. Stenchikov, 2006). Given the 

relatively small samples, it remains to be seen how strong this effect is on the NAO and jet 

stream. 

 

1.7. Outstanding problems in modelling the Atlantic jet stream  

There are significant problems with climate model representation of jet stream variability and 

change over time.  CMIP3 models contain significant biases in representing the North 

Atlantic PFJ and storm tracks (Woollings and Blackburn, 2012), which are still evident, 

although less strong in CMIP5 (Zappa et al., 2013a). The southwest-northeast tilt of the jet, 

roughly following the North American coastline, is a characteristic feature of the jet that is 

not well represented in the models, particularly in winter, when modelled jets are too zonal. 

Furthermore, most models have an equatorwards (polewards) bias in representing the latitude 

of the jet in winter (summer), amplifying the seasonal cycle (Hannachi et al., 2012), with an 

overall equatorward bias in the seasonal cycle. The winter jet is generally too strong in model 

representations and the poleward shift in the jet under anthropogenic forcing of climate is 

only significant in summer, with the large spread of model projections in winter resulting in a 

weak ensemble mean shift. Biases in the jet are also related to error in North Atlantic SSTs 

(Keeley et al., 2012; Scaife et al., 2011). The trimodal distribution of winter North Atlantic 

jet positions detected in reanalysis data (Woollings et al., 2010a) could not be reproduced in 

CMIP3 simulations, either for the twentieth century transient run or for twenty-first century 

predictions (Hannachi et al., 2012). An analysis of CMIP5 models reveals that some models 

are starting to capture the trimodal distribution of the winter PFJ, and this is achieved with 

higher horizontal and vertical resolution (Anstey et al., 2013). Improved representations of 

European and Greenland blocking frequencies are achieved, which relate to the trimodal 

distribution of North Atlantic winter jet latitude. Greenland blocking increasing the southern 

distribution peak (Woollings et al., 2010a), while European blocking contributes to the 

northern peak (Davini et al., 2014). Davini and Cagnazzo (2014) also show that there is 

considerable variation in the representation of the NAO amongst CMIP5 models, due to 

misrepresentation of the physical processes associated with the NAO, and conclude that it 
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would be better to adopt jet metrics based on jet latitude and speed (e.g. Woollings et al., 

2010a) to study North Atlantic variability. 

 

While earlier CMIP3 models were found to predict a systematic poleward shift of the jet 

streams (e.g. Yin, 2005), a more nuanced picture has since emerged with CMIP5 models 

(Barnes and Polvani, 2013), with regional differences. Poleward migration of the jet is found 

to be less in the Northern than in the Southern Hemisphere in climate projections, with 

regional differences in variability.  Worryingly, equatorward bias in different CMIP3 models 

has been associated with the amount of poleward shift of the jet under climate change in the 

Southern Hemisphere (Kidston and Gerber, 2010). This could be a consequence of increased 

equatorward bias allowing more space for a jet to move poleward, thus appearing to be more 

sensitive to forcing. It is possible that a similar situation may prevail in the Northern 

Hemisphere.  In addition, Scaife et al. (2012) find that using models with improved 

representation of stratospheric processes reduces the poleward shift of Northern Hemisphere 

extratropical storm tracks projected in standard climate models (e.g. Yin, 2005). This is 

consistent with weakened poleward shifts in CMIP5 models, many more of which contain a 

well-represented stratosphere. This is more evident in the Northern Hemisphere as the wave-

driven overturning circulation in the stratosphere is stronger than in the Southern 

Hemisphere, and as the overturning accelerates under climate change there is a much larger 

impact on the Northern Hemisphere tropospheric circulation and a reduced poleward 

expansion of the extratropical storm track (Karpechko and Manzini, 2012). 

 

The null hypothesis for climate variability is of internal, unpredictable changes due to chaotic 

dynamics. Whatever the role for driven variation is, this internal dynamics means that 

ensemble size is a significant factor when trying to detect a forcing signal  (Deser et al., 2012; 

Screen et al., 2013b) and many ensemble members may be required to average out internal 

variability before a small forced signal is revealed. Circulation responses to forcing have 

larger uncertainties and are much harder to detect than responses such as temperature, due to 

the high degree of internal variability present in the atmosphere through, for example, the 

NAO.  Many of the studies discussed above are based on a small ensemble, and thus the 

signal will be difficult to detect. Similarly, local responses to sea-ice loss exceed internal 

variability and are detectable in observed records, while larger-scale circulation responses 

may be wholly or partially masked by internal variability. 
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1.8. The impact of external drivers on the Northern Hemisphere polar jet stream 

From the above discussions, the cryosphere, ocean surface and stratosphere have all been 

repeatedly suggested as having an impact upon large-scale patterns of variability such as the 

NAO, storm tracks and the jet stream, all of which are intimately linked  (Gerber and Vallis, 

2009; Wittman et al., 2005). There is evidence that these drivers, summarized in Table 1.1, 

can impact upon the mid-latitude atmospheric circulation, but signals are often masked by 

atmospheric internal variability, which is largely unpredictable, and may be greater than any 

forcing signal (Kushnir et al., 2006).  

     

Table 1.1. A summary of the potential drivers of jet stream variability, their impacts on 
atmospheric circulation and an indication of the level of confidence that can be attached to 
their influence. A high degree of confidence results from both observational and modelling 
evidence indicating similar impacts. 
 

Potential Drivers of Jet 
Stream Variability 

Potential Impacts on 
Atmospheric Circulation 

Confidence 

Cryosphere – 
decline of Arctic sea-ice 
cover 

Equatorward shift of the PFJ. 
Negative NAO/AO like patterns. 

Mechanisms plausible, effects may 
only just be emerging. 
Observational evidence may be 
masked by atmospheric internal 
variability. Studies mostly over 
short time series.  Little consistent 
modelling evidence which could 
be due to small ensemble size, 
model physics and nature of sea-
ice forcing in experiments. Any 
evidence is for an autumn and 
winter response over the North 
Atlantic, which is not always 
statistically significant. 

Cryosphere - positive 
Siberian autumn snow 
anomalies 
 

Equatorward shift of the PFJ. 
Negative NAO/AO-like patterns. 

Observational evidence supports 
the “Siberian High” mechanism, 
with limited support from 
modelling studies.  
 

Cryosphere - 
earlier spring snow melt 

Surface heating of the 
atmosphere, increased 
geopotential heights, reduction of 
meridional temperature gradient 
andmore persistent weather 
patterns due to increased 
blocking frequency. 

No clear agreement on blocking 
patterns or trends in wave 
amplitude. 
Observational/reanalysis evidence. 
No modelling evidence for impact 
of early melt on atmospheric 
circulation. Low confidence. 

Ocean - 
North Atlantic sea-surface 
temperatures 

Positive, warm (negative, cold) 
AMO associated with negative 
(positive) summer NAO and an 
equatorward (poleward) 
displacement of the PFJ.  

Evidence for summer link between 
SST and atmospheric circulation is 
supported by observational 
evidence and modelling studies. 
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Ocean - 
tropical Atlantic sea-surface 
temperatures 

Warm (cold) summer anomalies 
associated with 
negative(positive) NAO and 
southward(northward) 
displacement of the PFJ in 
winter. 

Observed links confirmed by 
modelling studies although no 
agreement on mechanisms. Short 
timescale impact (7-10 days) but 
persistent anomalies may produce 
a seasonal impact. 

Ocean - 
tropical Indian and Pacific 
Ocean sea-surface 
temperatures 

SST anomalies promote poleward 
propagation of Rossby waves, 
transporting heat polewards. 
Warming of the Arctic, with 
potential impact on mid latitude 
PFJ. Sea-ice anomalies may 
modulate the perturbations 
caused by the Rossby waves. 

Mechanism is plausible, with 
evidence from observations and 
modelling studies. Sign of 
response may be sensitive to 
anomaly location. 

Ocean-  
ENSO  (but also 
stratospheric pathway). 

 El Niño (La Niña) weakens 
(strengthens) polar vortex which 
can lead to negative (positive) 
NAO/AO like patterns. El Niño 
(La Niña) linked to strengthened 
(weakened) Pacific STJ which 
can increase eddy spillover into 
Atlantic storm track, resulting in 
more negative (positive) NAO, 
equatorward (poleward) PFJ 
displacement. 

Observational evidence. Models 
suggest preconditioning of 
stratosphere is necessary. 
Modelling evidence supports 
tropospheric link with the storm 
track. 

Stratospheric drivers Weaker (stronger) polar vortex 
results in warming (cooling) of 
the polar stratosphere, associated 
with negative (positive) NAO 
fluctuations. Strength of polar 
vortex can be influenced by snow 
cover, solar variability, the QBO, 
ENSO and tropical volcanic 
eruptions. 

Impact in winter only. Good 
observational and modelling 
evidence for impacts of the 
stratosphere on tropospheric 
circulation. Volcanic eruptions-
observational, modelling evidence 
contradictory. Solar-weak 
influence detected in observations 
and models; QBO influence 
supported by observation and 
limited model evidence.  

Table 1.1. continued 

 

Drivers of jet stream variability show seasonal variation.   Surface forcings such as SST and 

sea-ice decline have the potential to have an impact throughout the year, while stratospheric 

influences operate mainly in winter when there is a coupling of the stratosphere and 

troposphere, a link which breaks down in summer as stratospheric winds reverse. Winter 

stratospheric circulation anomalies have been shown to have the potential to impact upon 

tropospheric climate from above. These relationships are summarised in Figure 1.12. 



 

 42 

 

 
 
Figure 1.12. A schematic diagram of some of the potential drivers of a) winter and b) 
summer jet stream and NAO variability, derived from the literature. A red arrow indicates a 
positive association, while a blue arrow indicates a negative association. The “+” sign 
indicates the combined influence of solar and QBO variability and the black arrow indicates a 
variable sign of association dependent on the combination of solar and QBO phase in 
question. The NAO can be used as a surrogate for jet variability. Arrow sizes are not 
proportional to strength of forcing or the confidence attached to the potential forcing. 
 

QBO   solar
variability+

winter
 NAO

 ENSO

    tropical 
    volcanic
   eruptions

     autumn
Eurasian snow
    anomaly

sea ice
 extent

   tropical 
   Atlantic 
     SST

     tropical
       static 
     stability

North Atlantic
        SST
      tripole

AMO
phase

   

 tropical Pacific/ 
   Indian Ocean
            SST 

  Stratospheric
         Polar
    Vortex (SPV) 

phase

summer
    NAO

sea ice
decline

  AMO
 phase

     early
snowmelt

?

? North Atlantic
        SST
      tripole



 

 43 

It is apparent that different drivers of jet stream variability operate in different seasons. More 

drivers operate in winter, partly as a consequence of stratosphere-troposphere coupling in this 

season and this may be why the proportion of variability in winter from frequencies beyond 

weather variability over two to five days is larger and more significant than in summer 

(Keeley et al., 2012). Many drivers project onto the same NAO-like pattern, which makes 

attribution of forcing very difficult when based on observational evidence alone and allows 

signals to be masked by atmospheric internal variability in model simulations, particularly if 

the ensemble size is small. The fact that many forcings all project onto the same pattern of 

internal variability in the Atlantic, that is the NAO, is a strong emerging feature of studies of 

Atlantic basin climate variability. This is despite stark differences in the drivers which act 

from above (stratospheric variability induced by, for example, solar variability) or below 

(ocean and other surface conditions), that are quite different in character. Nevertheless, this is 

also a common feature of dynamical systems, including the climate system, when forcings 

are not too strong (e.g. Watson and Gray, 2014) and is consistent with what would be 

expected from the fluctuation dissipation theorem (e.g. Leith, 1975; Gritsun and Branstator, 

2007). If this essentially linear perturbation regime applies, then it is the inherent 

decorrelation time for the NAO as well as the strength of the forcing that governs the 

response, and errors in either of these would affect the fidelity of climate-model simulations. 

 

In summer, Atlantic SST would seem, from modelling and observations, to exert a significant 

influence on the climate of Europe (Knight et al., 2006; Sutton and Dong 2012). In most 

studies there has been no significant detectable influence of decreasing SIE on the Atlantic 

sector climate in summer. However, Balmaseda et al. (2010) find a negative summer AO 

response to a sea-ice anomaly, although the atmospheric response seems to depend on SSTs 

in the northwest Atlantic. Recent wet European summers are associated with an equatorward 

displacement of the summer jet stream which can be induced by Arctic sea-ice loss in model 

experiments (Screen, 2013).  Land-surface conditions such as soil moisture, while important 

for surface temperature, do not appear to give a large response in the atmospheric circulation. 

 

While climate projections generally indicate a poleward shift in global jet streams, a 

consistent picture or indeed mechanism for shifts of the Atlantic jet under future climate 

change does not exist. Some drivers oppose each other, while others operate over different 

seasons and timescales. Drivers such as snow cover and SIE exhibit an overall downward 

trend over time, whilst other drivers such as the AMO are cyclical, but could be modified by 
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anthropogenic climate change. Solar-radiation cycles will continue to operate independently 

of any changes in the ocean-atmosphere-cryosphere system and there are hints that we may 

now be entering a period of long-term decline in solar activity (Lockwood, 2010). Though 

unlikely to have a large effect on global temperature (Lockwood et al., 2010b; Jones et al., 

2012), this could perhaps significantly impact regional temperatures (Rozanov et al., 2012).  

 

It is important to re-iterate that the late twentieth century positive trend in the winter NAO, 

which has previously been attributed to anthropogenic climate change (e.g. Gillett et al., 

2003) has reversed since 2000 (e.g. Hanna et al., 2015).   Since then, decreases in SIE and 

snow cover have been linked to a more negative NAO and more meridional flow (e.g. Jaiser 

et al., 2012; Francis and Vavrus, 2012; 2015). However, the recent observed reversal in the 

NAO trend is not projected to continue according to a recent CMIP5 study by Gillett and 

Fyfe (2013), who find a positive NAO response in all seasons, and decadal trends may be 

attributable to natural variability. Conversely, Cattiaux et al. (2013) find an increase in 

negative NAO occurrences in winter, under the RCP8.5 high-emissions scenario, although 

the impact of this is partially offset by the negative NAO events being less intense. Negative 

NAO events are projected to decrease in summer.  Similarly, Morganstern et al. (2009) and 

Scaife et al. (2012) show that more negative trends in the winter NAO cannot be discounted.   

 

In summary, future projections of the NAO and associated Atlantic storm tracks are unclear, 

yet are crucial for regional climate change. A northward shift in the PFJ would lead to a more 

positive NAO, with warmer, drier summers and milder, wetter winters in western Europe.  

However, no robust trend is yet detected, model signals are small and a convincing 

mechanism has not been demonstrated. 

 

Biases and spread amongst models and uncertainties in reanalysis data require further 

attention to better constrain the jet stream and its influencing drivers. The extent to which 

climate models are successful in replicating the jet stream and modelling future regional 

climate change will depend on how well these competing drivers are represented and how 

effectively the signals can be identified against atmospheric internal variability, which will 

require larger ensemble size and higher resolutions than have commonly been used to date.  
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1.9. Research questions. 

The research discussed above has predominantly focussed either on jet stream variability 

without examining causes (e.g. Archer and Caldeira, 2008), or on possible drivers of jet 

stream variability such as the AMO (e.g. Peings and Magnusdottir, 2014b), sea-ice variability 

(e.g. Liu et al., 2012) or solar effects (e.g. Ineson et al., 2011). These are often studied 

individually and without explicit reference to jet streams, instead often focusing on the NAO 

which is a broad indicator of jet stream variability.  There is also an emphasis on winter 

impacts, when the NAO is much stronger; yet the climatic implications of jet stream changes 

in summer, such as the record summer floods of 2007 (Blackburn et al., 2008) may be just as 

important. The potential non-stationarity of relationships between drivers and variability (e.g. 

Peings et al., 2013) is also highly significant. From existing research it is unclear whether 

potential drivers are able to impact jet speed, jet latitude or both. Therefore in this thesis jet 

stream variability is examined for all seasons, for jet speed, latitude and meridionality. 

 

As Europe and North America are uniquely placed in close proximity to the STJ entrance and 

PFJ exit (Woollings, 2010) any changes in the jet stream will have significant socio-

economic implications for these densely populated regions with advanced, but susceptible 

infrastructure. For example in winter, a northward displacement of the jet leads to milder 

wetter winters while a southward displacement may result in cold winters. Therefore an 

understanding of North Atlantic jet stream variability over the period of the Twentieth 

Century Reanalysis (20CR, 1870-2012; Compo et al., 2011) is crucial and will allow any 

identified recent changes to be placed in a long-term context, to help to address the issue of 

whether or not these changes are unprecedented. The identification of possible drivers of jet 

stream variability has the potential to enhance predictability both of seasonal jet stream 

metrics and the regional expression of the jet as the NAO.  

 

Three research aims for the thesis have been identified:  

 

1. through the use of reanalysis data, to develop an understanding of polar jet stream 

variability over the period 1872-2012; 

2. to identify key drivers of jet-stream variability and their relative  significances over 

seasonal to multidecadal timescales; 
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3. to assess the predictability of the winter NAO using statistical models and to compare 

the results with those obtained from the Met Office Global Seasonal Forecast System 

version 5 (GloSea5, MacLachlan et al., 2014; Scaife et al., 2014a).   

In order to achieve these aims, the following research objectives have been identified: 

 

1. Production of datasets of jet stream latitude, speed and meridionality for the period 

1872-2012, derived from 20CR and for ERA-Interim (ERA-I, Dee et al., 2011) for 

1979-2014. There are no readily available datasets of jet stream parameters so it is 

necessary to derive the metrics from other variables obtained from reanalysis 

products. The method of identifying the PFJ used by Woollings et al. (2010b) has 

been widely used (e.g. Davini et al., 2014; Barnes and Polvani 2015) and has the 

advantage of being able to isolate the PFJ in the North Atlantic from the STJ, by 

developing the jet-speed and latitude metrics from lower tropospheric (700-900hPa) 

zonal winds. In the Atlantic sector both jets frequently co-exist at the height of the jet 

core, near the tropopause, while the PFJ extends downwards through the depth of the 

troposphere. Consequently when using the simple metrics discussed here near the 

tropopause, it may not be possible to determine which jet has been identified on a 

given day. However, while the metrics presented by Woollings et al. (2010b) enable 

jet latitude and speed to be identified, there is no way of measuring the meridionality 

of the jet, that is the element of north/south flow present within the jet stream on a 

given day. This is important as recent studies (e.g. Francis and Vavrus 2012; 2015) 

have suggested that an increasingly wavy jet may lead to increased frequency of 

extreme weather events in the mid-latitudes, with increased duration. Others have 

suggested, however, that the results of this analysis are metric-dependent (e.g. Screen 

and Simmonds 2013; Barnes 2013). It would be useful to have a simple measure of 

the jet meridionality to complement the latitude and speed metrics, so this is 

developed in Chapter 2, along with datasets of jet latitude and speed.  

                                                                             

2. A comparison of ERA-I and 20CR representations of jet stream variability, for the 

period 1979-2012. Reanalysis datasets are widely used in climate research, and are 

hybrids of observational data and models, which should not be confused with pure 

observations. Reanalysis datasets are discussed in more detail in Chapter 2, section 

2.2). The attraction of 20CR is the fact that it extends back to 1870, whereas most 



 

 47 

new reanalyses use satellite-era data from 1979 onwards. While these later reanalyses 

assimilate satellite data and will give a better representation of upper atmospheric 

variability, they are not long enough to detect significant changes in the jet stream. 

20CR is derived from surface observations only and so it provides a longer time series 

which enables recent jet stream variability to be placed in a longer-term context. 

However, a key question is how well a surface-based reanalysis can portray upper 

tropospheric phenomena such as the jet stream.  Therefore a comparison of jet metrics 

derived from 20CR and the ERA-Interim reanalysis (Dee et al., 2011) is made. Jet 

stream metrics developed in Chapter 2 are compared for the two reanalyses over the 

time period 1979-2012 in Chapter 3. 

 

In addition, it is likely that metrics derived from wind speeds nearer the surface will 

be more accurate than higher-altitude jet metrics in a reanalysis such as 20CR, which 

is derived from surface measurements only. To test this, an analysis of 200-300hPa 

winds is undertaken, to compare 20CR and ERA-I jet metrics at this increased 

altitude. Any changes in jet stream representation with height between the two 

reanalyses should be readily apparent.  

 

The degree of match between ERA-I and 20CR will indicate the level of confidence 

in the ability of the ensemble mean of 20CR to portray jet stream variability based on 

surface measurements only. This analysis is presented in Chapter 3. 

 

An extended version of 20CR, 20CRv2c has recently become available (2015) and 

extends the reanalysis time series back to 1851. Furthermore, an additional extended 

reanalysis, ERA-20C  (Poli et al., 2013) has also become available. Both reanalyses 

were produced too late to be incorporated into this thesis on a systematic basis. 

However, a preliminary comparison of some jet metrics in these two reanalyses is 

outlined in Chapter 3. 

 

3. An extended analysis of subseasonal and interannual jet stream variability and trends 

from 1871-2012. The 20CR data allow a longer period of jet variability (speed, 

latitude, zonality) to be analysed, having been calibrated against ERA-Interim 

(objective 1). Recent weather extremes (e.g. Blackburn et al., 2008; Davies, 2015) 

have been linked to jet stream variability and it is important to place jet variability 
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conducive to such events in a historical context. The 20CR may allow a better 

identification of any trends, together with periods in the past which may have 

exhibited similar extremes. As well as identifying winter interannual variability, it is 

important to examine trends and variability for all seasons, particularly for summer jet 

variability, because this season is relatively poorly understood. It is also important to 

consider subseasonal variability, and the extent to which this has changed, as recent 

summers for example have exhibited similar patterns of persistent rain, which would 

suggest reduced subseasonal variability over recent years.  Some degree of validation 

will have been established by comparison with ERA-I above, but care should be taken 

in extrapolating from this relatively data-rich period to earlier periods where relatively 

sparse data availability may have a significant impact upon the reanalysis datasets. 

This objective is investigated in Chapter 4.   

 

4. Analysis of the relative impacts of a range of potential drivers upon jet stream 

interannual variability. A number of potentially interlinked drivers may affect jet 

stream varaibility. Some may oppose each other (e.g. sea-ice and Atlantic SST trends, 

which also show regional variation; Magnusdottir et al., 2004), and localised tropical 

warming and sea-ice influences (e.g. Feldstein and Lee, 2014). Others such as solar 

influences are cyclical while other quasi-cyclic drivers such as the AMO may also be 

subject to external forcing (e.g. Booth et al., 2012). A range of potential drivers are 

identified and a number of different approaches (linear regression, composite analysis 

and wavelet coherence) are used to identify whether these drivers are significant, 

whether any significance identified is dependent on season and jet metric, and 

whether relationships appear to be stationary over the time period. This research is 

presented in Chapter 5. 

 

5. Construct a simple statistical forecast for the winter North Atlantic Oscillation, using 

drivers of change previously identified.  The NAO is a significant aspect of the North 

Atlantic atmospheric circulation, influencing the weather in western Europe and 

eastern North America. The NAO is largely a function of jet stream variability. A 

negative NAO in winter is associated with a southward displacement of the jet, which 

is often weaker and meandering, whereas a positive NAO is associated with a 

stronger more zonal jet located further north (e.g. Woollings et al., 2010a; 2010b). 
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While it is possible to predict jet metrics specifically, here the approach is to predict 

the NAO, as this allows a direct comparison of the results with those from the Met 

Office Global Seasonal Forecast System version 5 (GloSea5, MacLachlan et al., 

2014) which has been used to predict the winter NAO from one to four months ahead 

(Scaife et al., 2014a). Potential predictors of the winter NAO are identified and linear-

regression models are developed to express statistical relationships between these 

predictors and the winter NAO. Forecast verification techniques are used to assess the 

quality of these statistical models compared with GloSea5 forecasts, and the statistical 

models are used to make NAO forecasts outside the period for which data are used to 

construct the model (out-of-sample forecasting). This approach to forecasting the 

winter NAO is developed in Chapter 6.  

 

6. Extension of the NAO forecasts to include probabilistic forecasts of the NAO. A 

straightforward deterministic forecast of the NAO is effectively only one realisation 

of a range of possibilities that could occur, given the uncertainty inherent in 

forecasting due to the dynamical chaos within the atmosphere (e.g. Wilks, 2011, pp4-

5). Constructing probabilistic forecasts therefore enhances the usefulness of a 

forecast, as information can be presented about the probability distribution of which 

the issued forecast is a member. A probabilistic forecast can be of greater use to a 

wider range of user groups, as decision thresholds concerning any necessary action 

can be at different probability levels for different forecast user groups. The 

probabilistic forecasting is extended to GloSea5. Ensembles of forecasts are created, 

from which probabilistic forecasts are then constructed. The forecast quality is 

assessed by using verification methods appropriate to probabilistic forecasts. Chapter 

6 extends the deterministic forecasting approach to a probabilistic one. 

1.10.  Organisation of the thesis 

This chapter has presented an introductory review of jet stream variability and its potential 

drivers. Chapter 2 explains how the jet stream metrics are derived, discusses the reanalysis 

datasets that are used and outlines other datasets used in the study. Chapter 3 compares jet 

stream variability using jet metrics derived from different reanalyses. In Chapter 4, changes 

in jet variability and trends over the longer time period 1871-2012 are investigated. Chapter 5 

examines potential drivers of jet stream variability and identifies associations between 

different drivers and jet metrics, distinguishing between impacts on jet latitude, speed and 
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meridionality, and the seasons in which drivers are influential. In Chapter 6 probabilistic 

forecasting of the winter NAO is developed and Chapter 7 concludes with a summary of the 

work, emphasising the main findings and identifying areas for future research.  

 

1.11. A Note on internal variability 

Internal variability within a system is unforced variability arising within the system itself. 

The definition of internal variability depends on the spatial and temporal scales under 

consideration. Taking the ocean-atmosphere system as a whole, ENSO can be viewed as a 

mode of internal variability. Similarly within the Atlantic Ocean the AMO can be regarded as 

internal variability. In this thesis the focus is on the North Atlantic atmospheric circulation. If 

this is the system under consideration, then the AMO can be regarded as a slowly varying 

external boundary forcing. Similarly ENSO is a forcing external to this system. In this thesis, 

internal variability is therefore taken as the unforced variability that occurs within the North 

Atlantic atmospheric circulation, which is subject to forcings from a number of boundary 

conditions such as SST and sea-ice.  
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Chapter 2 

Datasets: Reanalyses, Jet Stream Metrics and Other Datasets Used in the 

Thesis 
 

2.1. Introduction 

This chapter presents the data that are used throughout the thesis. Reanalysis datasets are 

used as the source of data for developing jet stream metrics. A detailed account is given of 

how these jet metrics are produced, including information on filtering and homogenisation 

techniques. In addition, sources of data for possible drivers of jet stream variability are 

discussed, together with the NAO indices used in the forecasting chapter.  

 
2.2. Reanalysis datasets 

Reanalysis datasets are hybrids of observational data and forecasting models and should not 

be confused with pure observations. They provide global datasets with consistent spatial and 

temporal resolution over decadal timescales, covering the entire surface of the Earth and the 

atmosphere at a number of different levels. However, it is important to be aware of their 

shortcomings; changing sources of observations introduce discontinuities, bias and 

systematic error exist in the models used and data quality is variable over space and time 

(Dee and NCAR staff, 2016). 

 

Two main reanalyses are used in this thesis: Twentieth Century Reanalysis (20CR, Compo et 

al., 2011) from the National Oceanic and Atmospheric Administration (NOAA), covering 

1870-2012 and ERA-Interim (ERA-I, Dee et al., 2011) produced by the European Centre for 

Medium-Range Weather Forercasts (ECMWF) covering 1979-2015. Additional use is made 

of the National Center for Environmental Prediction / National Center for Atmospheric 

Research (NCEP/NCAR) reanalysis (Kalnay et al., 1996) covering the period 1948-2015, the 

newly released ERA-20C (Poli et al., 2013) covering 1900-2010 and 20CRv2c, released in 

2015 which extends 20CR to 1851 as well as improving the dataset over 1870-2012. 

 

20CR is the only reanalysis to date which extends back into the Nineteenth Century (1870, 

v2; 1851, v2c). A brief outline of the design of 20CR is given below and further details can 

be found in Compo et al. (2011). The only observations used in 20CR are surface pressure 
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measurements from the International Surface Pressure Databank (IPSD). Due to geostrophy, 

surface pressure gives a good approximation of the barotropic component of atmospheric 

flow, which is substantial. The NCEP atmosphere-land Numerical Weather Prediction 

(NWP) model is used to generate a 56-member ensemble of forecasts for a timestep, known 

as the first-guess state of the atmosphere. Observed monthly sea-surface temperature (SST) 

and sea-ice concentrations (SIC) from the Met Office Hadley Centre Sea-ice and Sea-surface 

Temperature dataset (HadISST1v2: Rayner et al., 2003) are used as prescribed boundary 

conditions for the model. An Ensemble Kalman Filter (Whitaker and Hamill, 2002) is then 

used to assimilate the observations with the 56-member ensemble forecasts for a given 

timestep, using a weighted average to give the best estimate (the analysis) of the state of the 

atmosphere at that timestep, together with an estimate of the uncertainty attached to that 

analysis. The uncertainty in the analysis is attributable to atmospheric dynamics, errors in 

imperfect observations and errors in forecasts from imperfect NWP models. Following the 

assimilation of observations, the 56-member set of analyses becomes the 56 initial conditions 

for the subsequent forecast/analysis cycle.  A global analysis of climate is produced for every 

six hours over the period of the reanalysis. While a 56-member ensemble is used, the data 

that are widely available are the ensemble means of the atmospheric fields (NCAR staff, 

2016). The use of 20CR enables the development of a relatively long time series for the jet 

stream, against which any recent trends and variability can be placed in a longer-term 

context.  

 

When using 20CR it is advisable to bear in mind that the data used are the ensemble mean. 

This can have an impact on the processing of certain variables. For example, if the square of 

the mean zonal wind (U2) is required, calculating this from the ensemble mean will provide a 

different value to that calculated by finding U2 for each ensemble member and then 

averaging. However, for linear calculations, there will be no difference. Individual ensemble 

data for the 56 ensemble members are available from the Twentieth Century Reanalysis 

Project Ensemble Gateway (Table 2.1) but only for a limited range of variables and 

atmospheric levels. For example, zonal and meridional winds are only available for the 

250hPa and 850hPa pressure levels. Count data giving the number of observations 

incorporated into 20CR at each 2° grid cell for ech month is obtainable from Chesley McColl 

at NOAA. 
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The dataset is relatively new, and being based upon surface pressure, it is advisable to 

calibrate it against a third-generation reanalysis product with observational inputs from the 

upper troposphere and stratosphere, to establish how well middle atmosphere features are 

generated. A good candidate for comparison purposes is the ERA-I, extending from 1979 to 

2015. While 20CR relies on surface pressure measurements to reconstruct the atmosphere, 

with SIC and SST acting as boundary conditions, ERA-I incorporates a much wider range of 

data sources such as satellites, radiosonde balloon and aircraft. ERA-I is available at a 

resolution of 0.75° compared with 2° for 20CR, but can also be averaged to lower resolution. 

ERA-I has 37 atmospheric pressure levels to 1hPa compared with 24 to 10hPa in 20CR. 

Vertical resolution between levels to 750hPa is 25hPa in ERA-I and 50hPa in 20CR. ERA-I 

data are extracted at 2° resolution, to enable a more direct comparison with 20CR. The high 

resolution of ERA-I is also used to examine whether horizontal resolution has any impact on 

the portrayal of jet variability and, where it occurs, it is denoted ERA-I HR (high resolution). 

Although another reanalysis dataset, ERA-40 (Uppala et al., 2005) extends back to 1957, a 

number of issues have been identified, particularly exaggerated warming in the lower to mid-

troposphere over the Arctic (Screen and Simmonds, 2011) as a result of a discontinuity in 

1997 due to refined processing of satellite data. Furthermore, representation of the Brewer-

Dobson Circulation in the stratosphere was found to be too strong, resulting in the downward 

propagation of spurious features in polar regions (Dee et al., 2011). As Arctic influences such 

as sea-ice and snow cover are possible drivers of jet stream variability, it seems inadvisable 

to use this product. 

 

Two recent products were released in 2015, after much of the work on the thesis had been 

completed. First, there is 20CRv2c, which extends 20CR back to 1851 and incorporates a 

modified treatment of the boundary layer. Prescribed boundary conditions have been 

adjusted, using SST from Simple Ocean Data Assimilation with Sparse Input version 2 

(SODAsi2, Giese et al., 2015), together with SIC from the monthly COBE-SST2 sea-ice 

(Hirahara et al., 2014). Second, ERA-20C has been produced by ECMWF, extending from 

1900-2010. It assimilates observations of surface pressure and surface marine winds. 37 

pressure levels are available, at three-hourly resolution, with higher horizontal and vertical 

resolution then 20CR (125km c.f. 210km horizontal, and a greater number of pressure levels). 

ERA-20C is not regarded as a state-of-the-art final product, but is more an investigation of 

new assimilation techniques in studying longer time periods. ERA-20C is deterministic, 

having a single member (Poli et al., 2013). The reanalysis is forced by HadISST2.1.0. 
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ensemble of SST and SIC (Titchner et al., 2014).  HadISST2 has more sea-ice than 

HadISST1 and some discontinuities have been removed, by applying bias adjustments. In 

addition, new data sources are incorporated.  A brief comparison of jet stream metrics from 

these new reanalyses with 20CR is included in Chapter 3. Reanalysis data are downloaded 

from the websites in Table 2.1. Additional use of NCEP/NCAR is made via the 

NOAA/ESRL online plotting tool (Table 2.1) for the creation of some composite plots in 

Chapter 1, particularly of upper atmospheric data, where 20CR is likely to be less reliable.  

 

Data used from reanalysis datasets are: zonal and meridional wind speeds, geopotential 

height and sea-level pressure (SLP). The ensemble-spread data for zonal and meridional 

winds are used in evaluating the homogeneity of the time series (section 2.3.2) and 15 

ensemble members from 20CR are randomly selected, to show how the ensemble mean 

corresponds to the time series of individual ensemble members. 

 

Reanalysis Website 

ERA-I apps.ecmwf.int/datasets/data/interim-full-daily/  

20CR rda.ucar.edu/datasets/ds131.1/  

20CRv2c rda.ucar.edu/datasets/ds131.2/  

ERA-20C apps.ecmwf.int/datasets/data/era20c-daily/  

NCEP/NCAR www.esrl.noaa.gov/psd  

20CR ensemble Portal.nersc.gov/project/20C_Reanalysis/  

20CR composites www.esrl.noaa.gov/psd  

Table 2.1. Websites for obtaining reanalysis data. 
 
2.3. Jet stream time series 

This section explains how the jet metrics are derived, describes the filtering procedure used 

and demonstrates how inhomogeneities present within the jet-metric time series can be 

addressed. In this section, and throughout the thesis, conventional climatological seasons are 

used: boreal winter, December-February (DJF); boreal spring, March-May (MAM); boreal 

summer, June-August (JJA); boreal autumn, September-November (SON). The year of 

winter is identified as the year in which the season ends.  

 

There is no readily available dataset for the jet stream so metrics have to be derived from 

other variables. Here, a simple jet-latitude index is used, together with a time series of jet 

speed. These were developed by Woollings et al. (2010a) and have subsequently been utilised 

http://www.esrl.noaa.gov/psd
http://www.esrl.noaa.gov/psd
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in other research (e.g. Davini et al., 2014; Barnes and Hartman, 2010; Barnes and Polvani 

2013). The jet-speed and jet-latitude metrics have been devised to isolate the PFJ from the 

STJ and so are derived using lower tropospheric wind speeds. The zonal wind speed at each 

gridpoint in the North Atlantic sector (16-76°N, 60-0°W) is obtained for the levels 700-

900hPa, at 50hPa intervals, from each reanalysis dataset. These are processed to obtain a 

vertically-averaged daily mean for each gridpoint. A zonal-mean zonal wind speed value is 

then obtained for each 2° latitude band. This allows the identification of the latitude band 

with the maximum zonal-mean zonal wind speed. This latitude is taken as the latitude of the 

jet for each day, and the zonal-mean zonal wind speed at this latitude is taken as the jet speed.  

If 𝑢! is the zonal-mean zonal wind speed at latitude φ degrees North, averaged over 700-

900hPa, then the jet speed s is given by: 

 

𝑠 = 𝑚𝑎𝑥 𝑢! ,𝜙 = 16,18,… . ,76          Eq. 2.1 

 

and the jet latitude l is given by: 

 

                    𝑙 = 𝜙 𝑠                                    Eq. 2.2 

 

These daily values of s and l are averaged to give monthly and seasonal values. The wind 

speeds are taken from height levels well below the jet core, which is located near the 

tropopause. This is because the PFJ extends down through the troposphere, having a surface 

expression in the storm tracks, while the STJ is relatively shallow, occurring near the 

tropopause (Woollings et al., 2010a). Using these lower levels ensures that the winds 

identified are from the PFJ rather than from the STJ, capturing the part of the zonal winds 

driven by transient baroclinic eddies. While speed values will be lower than those in the jet 

core, their fluctuations on daily to seasonal timescales will reflect those in the PFJ at higher 

levels.  The jet latitude obtained from lower levels is a good indicator of the latitude of the 

PFJ from higher levels (Chapter 1, Figure 1.2), maxima in zonal winds being at 

approximately the same latitude as those at higher levels.  

 
The jet-latitude and jet-speed time series are based entirely on the zonal component of flow. 

To try to represent aspects of jet meridionality a simple new index is developed, based on 

meridional flow. Meridional winds are obtained for the Atlantic sector, and averaged to 

produce daily vertically-averaged values for each gridpoint. The range of the meridional 
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winds across each latitude is calculated, to take into account both northerly and southerly 

flow, as any averaging would result in some cancelling of positive and negative flow. The 

daily maximum values of meridional wind speed range are taken, irrespective of latitude, as 

an indicator of the strength of the meridional flow. If vφ is the values of the meridional wind v 

for all 2° increments of longitude 0-60°W, at latitude φ,  the vrange is given by: 

 

𝑣!"#$% 𝜙 = 𝑚𝑎𝑥 𝑣! −𝑚𝑖𝑛 𝑣! ,𝜙 = 16,18,… . ,76     Eq. 2.3a 

 

then the vrange for the Atlantic sector is given by: 

 

             𝑣!"#$% = 𝑚𝑎x 𝑣!"#$% 𝜙 ,𝜙 = 16,18,… . ,76            Eq2.3b 

 

A normalised index is produced; the vrange index. Normalising is achieved by subtracting a 

climatological mean value from the observed vrange values for each year, and dividing the 

result by the climatological standard deviation. It is also necessary to correct the summer and 

autumn time series, where high meridional wind ranges could be observed at low latitudes 

due to hurricanes. Hurricanes are identified manually from the field of daily vrange at each 

latitude, and removed  from the record. Clusters of high vrange south of 28° N that coincided 

with the known hurricane season (June to November inclusive; National Hurricane Center, 

2015) are removed. A check is made to ensure that the adjusted latitude value of the vrange 

maximum was consistent with those of adjacent, unadjusted days. The cutoff at 28°N is 

somewhat arbitrary as hurricanes frequently track northwards and enter the storm tracks. 

However, visual inspection reveals that the main clusters of high values occurs south of this 

cutoff and as the hurricanes move northwards and weaken, higher vrange values at higher 

latitudes are selected. Corrections are not necessary for the summer time series from ERA-I, 

as meridional wind speed at higher latitudes are greater than those identified in the 

hurricanes. 

 

The effectiveness of this index in portraying the meridional nature of the jet is assessed by 

comparison with regional plots of 20CR data obtained from the Earth System Research 

Laboratory (ESRL) website, (Table 2.1) using composite plots for periods of days with high 

and low vrange values (Figure 2.1). The positive vrange days show a clear meridional flow 

(Figure 2.1a) while the negative vrange index demonstrates strong zonal flow (Figure 2.1b). 
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Figure 2.1. Composite vector winds at 800hPa, 20CR for a) 16th -20th Feb 1979, when the 
average vrange index was +1.35, and b) 8th -12th Feb 1979, when the average vrange index was   
-2.00. Plotted using NOAA/ESRL online plotting tool. 
 
Daily time series of the three jet metrics are filtered using the Lanczos filter to remove 

synoptic-scale variability (see section 2.3.1) and then further time series of seasonal values 

are created by averaging daily values over each month, and combining them to form a 

seasonal average.  

 

4 6 8 10 12 14 16 18 20 22 24

800hPa vector wind /ms-1 composite mean

a) 16/2/1979-20/2/1979

b) 08/02/1979-12/02/1979
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The averaging and filtering procedures are all linear and calculations using the ensemble 

mean will not differ from those derived from the average of the same procedures calculated 

from individual ensemble members. However finding the maximum zonal windspeed 

introduces a non-linearity as the averaged maxima from the individual ensemble members 

will not necessarily give the same as the maximum found from processing the ensemble 

mean field. This is demonstrated by means of a schematic figure in the appendix to this 

chapter (Figure A.2.1). The impact of this non-linearity is discussed in section 2.4. 

 

2.3.1. Using filters 

The time series of jet metrics are filtered to remove some of the short timescale synoptic 

variability, using a Lanczos low pass filter (Duchon, 1979, details below). Annual plots of 

seasonal values are further smoothed with a 7-point binomial filter, which removes variability 

at timescales of less than five years, to highlight any slowly varying patterns. 

 

Filters are defined as an array of constant values or coefficients, which are applied to the raw 

time series values, to remove variations on timescales that are not being analysed (von Storch 

and Zwiers, 1999).  A time series will be composed of a range of different frequencies. Filters 

will remove some frequencies in a time series, but leave others unaffected, while yet others 

are reduced in amplitude. This pattern of how the various frequencies are affected is termed 

the amplitude response of the filter, which gives the proportion of each frequency remaining 

after filtering. To apply the filter, each element of the filter is matched with a value from the 

time series and the two are multiplied. The sum of these products gives a filtered value, 

which is centered on the middle value of the filter. Filters used here are symmetrical about 

the central value co, so if cm is the element furthest away from the central value, the elements 

or weights of the filter are: 

 

                                         𝑐 = 𝑐!!, 𝑐!!!!,… , 𝑐!!, 𝑐!, 𝑐!,… , 𝑐!!!, 𝑐!            Eq. 2.4                      

 

A number of principles should be followed when using filters. First, the coefficients or 

weights should sum to one, ensuring that the amplitude response is one at frequency equal to 

zero. This preserves the time average of the time series. Second, the symmetrical nature of 

the weights ensures that there is no phase shift in time of maxima and minima in the time 

series. Third, a filter should be as long as possible, bearing in mind that data loss occurs at the 

beginning and end of the time series (Burt et al., 2009). This is due to the first filtered value 



 

 59 

being centered on co; all m time series values prior to this being lost. Thus a filter of length 21 

will result in the loss of ten data values at the beginning and end of the time series.  

 

The simplest filter to use is known as the running mean, whereby a straightforward arithmetic 

mean is taken of the values of the time series within the filter window. Amplitude response 

functions for different running means are shown below (Figure 2.2).  

 

The amplitude response can be calculated according to: 

 

                           𝑅 𝑓 = 𝑐!

!

!!!!

cos 2𝜋𝑘𝑓 , 0 ≤ 𝑓 ≤
1
2                     Eq. 2.5 

 

where f is the frequency in terms of the number of cycles per observation, k is the subscript of 

the coefficient (from –m to m) and ck is the filter coefficient at index k. 

 
Figure 2.2. Amplitude response functions for 11-point (red), 7-point (blue) and 5-point  
(black) running means. 
 
In Figure 2.2, the curves’ amplitude responses decrease with increasing frequency, indicating 

smoothing. The only frequency that is not reduced in amplitude is zero, i.e. a series 

containing a set of constant values would have frequency zero. The point at which each curve 

crosses the zero amplitude line (dashed above) indicates the frequencies that are completely 
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suppressed by the filter. In the case of the running means above, the filters of length L 

completely remove variation at frequency 1/L. However, it will be noted that at frequencies 

higher than 1/L, frequencies are not totally removed. Although reduced in amplitude, maxima 

and minima can be reversed and this noise at higher frequencies means that a running mean 

does not give an optimum performance as a filter. These ripples at higher frequencies are 

known as Gibbs oscillations. An ideal filter would ensure that amplitudes at desired 

frequencies remained unchanged, at one, while those not required were instantaneously 

reduced to zero. A low-pass filter, as used here, is a filter that allows lower frequencies below 

the selected cutoff values to pass through, while removing those frequencies higher than the 

cutoff value. In practice it is not possible to obtain an instantaneous cutoff, and as can be seen 

with running means, problems can arise with contamination at higher frequencies. 

 
2.3.1.1. The Lanczos filter 

Following Woollings et al. (2010b) the daily time series of zonal-mean zonal windspeeds are 

filtered using a 61-point low-pass Lanczos filter with a 10-day cutoff, to remove synoptic 

scale variability (Duchon, 1979). The Lanczos filter has significant advantages over a 

running mean. First, filter length is independent of cutoff frequency whereas with the running 

mean the cutoff frequency is 1/L. Thus the length of the filter can be chosen according to 

how much data can be lost from the time series. The longer the filter, the sharper the cutoff 

response. In Figure 2.3, two Lanczos filters with a cutoff frequency of 0.125 are shown. For 

the Lanczos filter, the amplitude response at the cutoff frequency is about 0.5. The steeper 

response curve is produced by lengthening the filter. 

 

A second significant advantage is that the amplitude response is virtually flat in the pass- and 

stop-bands (the range of frequencies which are allowed to pass through and are stopped by 

the filter). This contrasts with the undulations at high frequencies found with the running 

mean (Figure 2.2).  
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Figure 2.3. Amplitude response functions for Lanczos filters of length 21 (black) and 30 
(red). The cutoff frequency of 0.125 is shown by the dashed vertical line. 
 
 

To create the filter weights, following Burt et al. (2009), the cutoff frequency required is 

given by fcut which as shown above, is the centre of the transition between frequencies passed 

and those removed. The filter length L=2m+1 is selected according to how much data can 

afford to be lost from the beginning and end of the time series (m values at each). There are m 

pairs of weights and the middle value is co as above (equation 2.4).  A set of initial 

coefficients bk are found using: 

 

𝑏! =
𝑠𝑖𝑛 2𝜋𝑓!"#𝑘

𝜋𝑘
𝑠𝑖𝑛 𝜋𝑘/ 𝑚 + 1
𝜋𝑘/ 𝑚 + 1         Eq. 2.6 

 

for k =1,2,3,…m, for these initial coefficients. The central coefficient is given by bo=2fcut. 

These initial coefficients do not sum to 1, therefore each coefficient should be divided by the 

filter sum. The sum B is given by: 

 

           𝐵 = 𝑏!

!

!!!!

= 𝑏! + 2 𝑏!

!

!!!

                  Eq. 2.7 
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and the final coefficients are given by: 

 

                                𝑐! =
𝑏!
𝐵                                       Eq. 2.8 

 

The effect of using the Lanczos filter on the daily time series of jet speed is shown in Figure 

2.4. 

 
Figure 2.4. Time series of daily jet-speed values for 1979 (blue), with a Lanczos filter 
applied (black). 
 
For filtering a daily series for just one year as above, the loss of 30 values from each of the 

beginning and end of the series amounts to around 16% of the series, and would likely be 

regarded as too much. However, in the context of a series consisting of a number of years, the 

loss of 60 days of data becomes much less significant. 

 

The weights for the 61-point Lanczos filter were supplied by Tim Woollings as a high-pass 

filter, which means that the filter allows through the high-frequency signals and blocks those 

at lower frequencies. It is therefore necessary to subtract each filtered value from the 

corresponding original time series value, to produce a new series containing only the low 

frequencies. 

 

2.3.1.2. The binomial filter 

When applying a smoothing filter to the jet-metric time series, a seven-point binomial filter is 

favoured over the running mean because it smooths the interannual variability of seasonal or 

monthly time series, and does not demonstrate the fluctuations in amplitude response 

function at high frequencies  (Figure 2.5) shown by the running mean (Figure 2.2). The 

choice of filter is influenced by the amount of data loss at the start and end of the time series, 
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and the cutoff required. As seen from Figure 2.5, an increased filter length will increase the 

period of cutoff.  

 
Figure 2.5. Amplitude response function for the 7-point binomial filter (red) together with 5-
point (blue), 9-point (black), and 21-point (green) binomial filters. 
 
The filter weights in a binomial filter are symmetrical and approximate to a Gaussian 

distribution. The weights can actually be obtained from the relevant row of Pascal’s triangle 

(Aubury and Luk, 1996). Thus for a seven-point filter, the Pascal triangle gives weights of 1, 

6, 15, 20, 15, 6, 1. To convert to values which sum to one, each weight is divided by the sum 

of the row, giving weights of 0.01562, 0.09375, 0.23438, 0.3125, 0.23438, 0.09375, 0.01562. 

 

2.3.2. Homogenisation 

A great advantage of 20CR data is the provision of time series back to 1870 (1851 for 

20CRv2c), purely reliant on surface measurements, which potentially avoids the 

homogeneity issues present within the satellite record (1979-present) which are caused, for 

example, by changes in satellite technology. The longer time series helps to present recent 

changes in a longer-term context.  

 

Inhomogeneities may arise in a time series due to some form of climatic shift. Alternatively 

they may be of non-climatic origin through changes in data over time, for example changes in 

the spatial density and number of observations, or they may arise through a change in the 

method of assimilation. Recent work (e.g. Ferguson and Villarini, 2012; 2014; Wang et al., 

2013) has highlighted homogeneity issues within the 20CR data, some of which are 

potentially identified as breakpoints arising from non-climatic causes. An inhomogeneity has 

been identified as non-climatic if it coincides with an estimated inhomogeneity in the time 
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series of ensemble standard deviation, or spread, which serves as metadata for the 

identification of inhomogeneities. The spread data (standard deviation, SD of the ensemble 

members) for 20CR give an estimate of the uncertainty in the data, which can arise through 

atmospheric dynamics, forecast-model errors and observational errors resulting from changes 

in distribution and density (Ferguson and Villarini, 2012).  It has been found that such 

inhomogeneities, when identified and corrected in the time series of the variable concerned, 

are able to change the sign of the trend within the data (e.g. Wang et al., 2013). It is likely 

that inhomogeneities identified in a time series which arise as a result of a shift in the count 

of observations will have more impact in the earlier parts of the time series as the number of 

observations will be much lower, so the relative impact of any shift will be greater. 

 

Seasonal time series of jet latitude, speed and vrange are assessed for inhomogeneities, and the 

ensemble-spread data are also analysed for inhomogeneities. Homogeneity tests that can 

identify more than one breakpoint in a time series are required, so the Bai-Perron test is used 

(Bai and Perron, 1998; 2003), in the “strucchange” package of R (Zeileis et al., 2013). The 

test is based on a linear regression model.  

The basic regression equation is: 

 

𝑦 = 𝑎 + 𝑏𝑥          Eq. 2.9 

 

where 𝑦 is the predicted value of y, a is the y-intercept and b gives the slope of the line (a and 

b are known as the regression coefficients). In ordinary least squares regression (OLSR), the 

line is fitted to a dataset and there is a residual ei for each data point, giving the vertical 

distance of the data point from the regression line. The line is fitted to minimize the sum of 

the squared residuals (the residual sum of squares, RSS).  

 

The null hypothesis is of structural stability, that is the coefficients remain the same 

throughout the time series, while the alternative hypothesis is that at least one of the 

regression coefficients varies over time (Bai and Perron, 1998; 2003). In a time series, it can 

be assumed that there are m breakpoints, which gives m+1 segments. For each segment, the 

regression coefficients will be constant, but change at the breakpoints. The structural change 

test examines all possible breakpoints and segment combinations, calculating the regression 

coefficients and the residual sum of squares for each segment. Multiple breakpoints can be 

assessed and the minimum segment length is specified (0.15 as a fraction of the whole time 
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series, which allows up to five breakpoints, i.e. the default setting). Breakpoints identified are 

insensitive to changes in this parameter. The optimal breakpoint configuration is that which 

minimises the overall RSS for the segments of the time series. Further details and 

mathematical formulations are found in Bai and Perron (1998; 2003). 95% confidence 

intervals for the breakpoint locations are also calculated. The Bayesian Information Criterion 

(Schwarz, 1978) is used by the package to determine the most appropriate number of 

breakpoints.  

 

Not all breakpoints will be artificial. Some may be due to a climate shift, for example a 

volcanic eruption could produce an inhomogeneity in a time series. To try to establish which 

inhomogeneities are purely related to data assimilation, the approach of Ferguson and 

Villarini (2014) is followed, whereby time series of the ensemble spread are plotted and 

breakpoints calculated. A break is deemed to be artificial if the 95% confidence intervals of 

the spread breakpoint and that of the variable in question overlap by any amount.  An 

example is shown in Figure 2.6 for the summer latitude time series. A single breakpoint is 

identified in the latitude time series, centred on 1907, and the 95% confidence intervals are 

shown. Similarly breakpoints are shown on the ensemble spread time series. It will be noted 

that ensemble spread increases back in time due to increased uncertainty through sparser data 

and data quality issues. It can be seen that the confidence intervals for the latitude breakpoint 

overlap those for two of the breakpoints in the ensemble-spread time series. Thus the 

breakpoint identified in the latitude time series is taken as being an artifact of data 

assimilation or quality changes, so an adjustment is made at the point identified in the latitude 

series. Note that the breakpoint in the ensemble series at 1944 does not manifest itself in the 

latitude time series, so no correction is necessary at this later time. 
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Figure 2.6. Time series of ensemble spread and jet latitude for JJA, showing breakpoints 
identified in the time series by the Bai-Perron test (dashed vertical lines) with 95% 
confidence intervals (red bars). 
 
Breakpoints deemed as being artificial are adjusted by finding the mean of each section of the 

time series, differencing them and increasing the earlier portion of the time series by this 

amount, the assumption being that the earlier portion contains an error due to the structural 

breakpoint arising from data issues. Once the adjustment is made, the new adjusted time 

series is subject to retesting, to ensure its homogeneity. Furthermore, the breakpoint 

identification is verified by using the Pettitt test (Pettitt, 1979). While this only detects a 

single breakpoint in a series, it can be applied separately to subsections of the series to 

identify further breakpoints. This is a non-parametric test based on the Mann-Whitney-

Wilcoxon test (see Chapter 3, section 3.2.3), which selects a point in the time series, splitting 

the series into two portions for which significant difference can be tested. The split point 

moves systematically through the time series allowing the potential identification of any 

breakpoint. It should be noted that the Pettitt test is used in an indicative manner, as 

stationarity is assumed by the test and the test is liberal in its rejection of the null hypothesis 

when a trend is present. On the other hand, removal of a linear trend reduces the usefulness of 

the test (Busuioc and Von Storch, 1996). 

 
Four breakpoints are identified over the times series of ensemble spread for both the zonal 

and meridional component of wind, which correspond closely to each other across the time 
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series (Table 2.2). Inhomogeneities around 1920 and 1945 are identified in all spread data, 

with a breakpoint at around 1894 identified in half of the spread time series, with a further 

breakpoint identified in c.a.1966 in just one of the series from the zonal wind component 

spread data. The two most common breaks occur towards the end of the First and Second 

World Wars. It is likely that data are sparser for these periods and an increase in data 

availability may have followed the end of the Wars, resulting in inhomogeneity.  

jet speed Breakpoints 

DJF (1882) 1897 (1910) 
MAM (1891) 1902 (1909) 

JJA                                      (1909) 1917 (1928) 
SON                                      (1908) 1915 (1920) 

jet latitude  
DJF  

MAM (1876) 1894 (1906)                                                                                   (1953) 1981 (2001) 
JJA (1898) 1907 (1917) 

SON (1887) 1897 (1913) 
U spread  

DJF                                      (1917) 1920  (1926)      (1942) 1943 (1944)       (1964) 1966 (1973)  
MAM (1884) 1891 (1921)      (1918) 1921 (1923)       (1945) 1946 (1948) 

JJA (1890) 1894 (1903)      (1914) 1919 (1922)       (1943) 1944 (1946) 
SON (1885) 1891 (1913)      (1915) 1919 (1922)       (1942) 1943 (1945) 

Vrange                                         
DJF                                       (1919) 1921 (1926) 

MAM (1894) 1903 (1925)       (1922) 1927 (1933) 
JJA                                       (1920) 1922 (1929) 

SON                                                                             (1936) 1940 (1953) 
V spread  

DJF                                       (1917) 1919 (1923)       (1946) 1947 (1949) 
MAM                                       (1919) 1920 (1924)       (1945) 1946 (1948) 

JJA (1884) 1894 (1906)       (1916) 1919 (1922)       (1944) 1945 (1947) 
SON                                       (1916) 1918 (1920)       (1945) 1946 (1949) 

 

Table 2.2. Seasonal time series breakpoints for jet speed, latitude and meridional wind range 
and zonal and meridional wind spread data. The year of the breakpoint is the central value for 
each set of three values; the dates in parentheses on either side being the 95% confidence 
intervals. A bold value indicates where the time series has been adjusted. Breakpoints are 
aligned vertically to indicate common breakpoints. 
 

These breakpoints in spread data are the inhomogeneities most commonly identified in the 

time series of jet variables, although in time series with two breakpoints only one requires 

adjustment, while the other is not present in the spread data for that particular month or 

season (spring jet latitude). The winter jet-speed time series appears to be homogenous.  It is 

the two earliest breakpoints (c.a.1894 and c.a.1920) that are most frequently detected in the 
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time series of jet stream metrics, possibly as a result of reduced data availability, so any 

change in data quantity, for example, would have a proportionately greater impact. The 

breakpoint detected around the end of the Second World War does not feature in the jet-

metric time series.  

 

Count data of observations assimilated into 20CR may illustrate why a particular breakpoint 

is identified. Figure A.2.2 shows the number of observations assimilated into 20CR for 

summers from 1914-1922, together with changes in spatial distribution. This period spans the 

identified breakpoint in summer jet speed and the duration of the First World War. In 1914 

just prior to the outbreak of war, data assimilation from the transatlantic shipping lanes is 

clear (Figure A.2.2.a). This source of data diminishes from 1916, presumably due to the 

advent of U-boat attacks on shipping, and resumes in 1919. For the years 1917 and 1918 

(Figure A.2.2.d,e) the observation inputs are almost entirely restricted to land-based stations 

around the Atlantic basin. However, it is also noticeable that the number of observations 

increase post-First World War, above pre-war levels, with data from shipping extending 

down the west coast of Africa (Figures A.2.2.h,i). Figure A.2.3 shows the number of 

observations assimilated for the North Atlantic region on a year-by-year basis. This confirms 

an increase in data assimilation post-1920, and suggests that although the spatial distribution 

of observations changed during the war, the decrease in number of observations is relatively 

slight. This means that the breakpoint identified coincides with the marked increase in the 

number of observations assimilated after the First World War, rather than being associated 

with a decrease and change in distribution of counts during the war years.  

 
Time series of seasonal jet metrics, showing the effect of breakpoint adjustment, are shown in 

Figures 2.7-2.9. Note that time series extend from 1871 (1872 for winter) as the first year 

(1870) is omitted due to it being incomplete at the time of analysis. It is clearly seen that 

adjustments are limited to the earlier portions of the time series, as would be expected if data 

assimilation density variations have an impact on homogeneity. At lower densities, changes 

will have a bigger impact. The early portions of the adjusted vrange time series are still a cause 

for concern as all the series have a very low starting point in 1871/1872 even after 

adjustment, with very large amplitude fluctuations prior to 1900 (Figure 2.9). For this reason, 

the early portions of these time series are discarded in subsequent analyses, the time series 

being taken from 1901, using homogenised data. 
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2.4. 20CR ensemble data 

In order to give an indication of how individual 20CR ensemble members vary compared 

with the ensemble mean, 15 of the 56 ensemble members were selected randomly and 

processed to produce jet speed and latitude metrics. Note that as these are from 850hPa, the 

ensemble mean used for the comparison is the 850hPa ensemble mean. A comparison of the 

850hPa ensemble mean and the ensemble mean averaged over 700-900hPa reveals little 

difference between the two. Woollings et al. (2014) use the 850hPa ensemble mean in place 

of the ensemble mean for zonal winds averaged over 700-900hPa as results obtained are 

almost identical. Figures 2.10-2.11 show the time series for these ensemble members, 

together with the unhomogenised 850hPa ensemble mean. It is clear that after 1940 the 

ensemble members converge, the spread is much reduced and there is little difference 

between the individual members and the ensemble mean, both in amplitude and phase of 

fluctuations. Prior to this there is increased spread, particularly evident in summer, 

corresponding to the earlier parts of the time series where breakpoints were identified. In the 

pre-1900 portions of the time series, fluctuations are still broadly in phase, although the 

amplitudes vary more. It would be expected that fluctuations are in-phase, as the ensemble 

members give a range of interpretations for a particular SLP and SST configuration. If, for 

example, the SLP observed input indicated a negative NAO pattern and a southward 

displacement of the jet, then the ensemble members would be likely to indicate a negative 

NAO, although of varying magnitudes. However the observational evidence will mitigate 

against an ensemble mean indicating a positive NAO and a northward-displaced jet. The 

density of observations from the North Atlantic is known to be higher than in other regions, 

due to the increased availability of records: for example from shipping, using well-developed 

trade routes.  

 

It is notable that particularly prior to 1900, the ensemble mean can have a lower value than 

any of the ensemble members for a given year and this is more pronounced for jet latitude 

than jet speed and is least evident in winter (Figures 2.11; 2.12). This could be due to a 

skewed sample of ensemble members but the issue remains when the ensemble member 

sample is increased to 28 (not shown). This feature is instead a consequence of the 

nonlinearities introduced into the jet metric calculations discussed earlier (section 2.3). It is 

expected that where the spread is greatest, the nonlinearity will be manifest as a smaller 

ensemble mean (Gil Compo, personal communication September 2016). The main impact 

here will be upon long-term trends, as the fluctuations are in-phase. There will be little 
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impact on calculations using detrended ensemble mean data, and using post-1950 data. The 

homogenisation procedure also corrects for this smaller ensemble mean in the earlier portions 

of the time series. However, in future work when working with an extended time series from 

20CR, it would be advisable to use jet metric data constructed using the 56 ensemble 

members. The fact that the bias is less evident in winter is perhaps a consequence of the 

ensemble members being better constrained by the observations, also reflected in the fact that 

there are no corrections due to inhomogeneities in the winter jet speed and jet latitude time 

series.  
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2.5. Other datasets 

A number of potential drivers of North Atlantic jet stream variability have been identified 

(see Chapter 1).  Here the datasets used to represent these potential drivers are summarised, 

and the NAO data used in Chapter 6 are described. 

 

2.5.1. Data for drivers of jet stream variability 

A standardised Nino 3.4 Index (N3.4) is used, based on SST from HadISST1 (Rayner et al., 

2003), for the period 1871-2012, obtained from www.climexp.knmi.nl. A non-linear 

relationship between El Niño-Southern Oscillation (ENSO) events and the Atlantic sector has 

previously been observed, whereby moderate El Niño events show a negative correlation 

with the winter North Atlantic Oscillation (NAO), whereas stronger events, with stronger 

SST anomalies in the eastern Pacific (greater than 1.5°C) do not produce an NAO-like 

response (Toniazzo and Scaife, 2006). The NAO index is a measure of PFJ variability, 

particularly latitude (e.g. Woollings et al., 2010a), so following Folland et al. (2012) a 

discontinuous El Niño index is used. N3.4 values less than ± 1 standard deviation of their 

seasonal variability between 1871 and 2012 equate to 0, values more negative than -1 are set 

to -1, values from +1 to +1.75 are set to 1, and values above this are again set to zero. The 

standardised N3.4 Index is also used as a separate potential predictor in the analysis, as while 

the stronger positive El Niño events may not produce an NAO-like pattern in winter and 

hence influence jet latitude, other jet metrics may be susceptible to influence from these 

stronger events.  Also, the non-linear aspect of the N3.4 -NAO relationship has only been 

demonstrated for winter. However, as these two N3.4 indices are not independent, only the 

more powerful predictor is selected for use in the regression, if significant. 

 

Two metrics of Atlantic SST are used. The Atlantic Multidecadal Oscillation (AMO) is a basin-

wide pattern of SST variability across the North Atlantic. AMO data (Enfield et al., 2001) are 

obtained from the Earth System Research Laboratory (ESRL) 

(www.esrl.noaa.gov/psd/data/timeseries/AMO), for the period 1871-2012, based on the Kaplan 

SST dataset (Kaplan et al., 1998, updated), area weighted averages of SST being calculated for 

the North Atlantic over 0-70°N. The unsmoothed version of the index is used to retain the 

monthly vaviability necessary for identifying assocaitions with jet metrics at different lead 

times. A North Atlantic SST tripole index is developed using the methodology of Czaja and 

Marshall (2001); it is the SST anomaly taken over 40-55°N, 60-40°W minus the anomaly over 

a southern box, 25-35°N, 80-60°W using HadISST1 SST data (Rayner et al., 2003) (Figure 

http://www.climexp.knmi.nl
http://www.esrl.noaa.gov/psd/data/timeseries/AMO
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2.12). Anomalies are relative to the 1981-2010 climatology. This dipole lies to either side of the 

Gulf Stream, and the southern node of the classic tripole mirrors the northern node identified 

here. A positive tripole index indicates higher anomalies in the northern sector compared to 

those in the southern sector, and reflects a reduced temperature gradient between the two. The 

converse is also true for negative index values. 

 
 
Figure 2.12. Map showing the regions from which data for potential drivers is taken. 1) 
Greenland Sea ice (GI), 2) Barents-Kara sea ice (BKI), 3). Laptev, East Siberian and Chukchi 
sea ice (LVI), 4) Siberian snow 5) West Pacific Rainfall (WPR), 6) Central Pacific rainfall 
(CPR), 7) East Pacific Rainfall (EPR), 8) Atlantic Rainfall (AR), 9) West Indian Ocean 
rainfall (WIR), 10) East Indian Ocean rainfall (EIR), A) northern tripole sector, B) southern 
tripole sector. 
 
Tropical rainfall can be an indicator of tropical SST and convection. Positive SST anomalies 

may increase convective activity and divergence aloft, which can generate Rossby waves 

which propagate away from the source and are capable of influencing the jet streams 

(Hoskins and Karoly, 1981). The Global Precipitation Climatology Project v2 provides global 

precipitation data at 2.5° resolution, based on satellite data, 1979-2012, at monthly resolution 

(Adler et al., 2003). Six sub-sections are taken from the tropics (Figure 2.12): three from the 

Pacific Ocean (West Pacific Rainfall (WPR) 5°S-5°N, 120-170°E; Central Pacific Rainfall 

(CPR) 5°S-5°N, 170-220°E; East Pacific Rainfall (EPR) 5°S-5°N, 220-270°E), two from the 

Indian Ocean (West Indian Rainfall (WIR) 5°S-5°N, 50-85°E; East Indian Rainfall (EIR) 

5°S-5°N, 85-120°E) and one from the Atlantic Ocean (Atlantic Rainfall (AR) 5°S-5°N, 10-

35°W). This ensures coverage of all equatorial tropical oceans. 
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The Quasi-biennial Oscillation (QBO) is a reversal of zonal equatorial stratospheric winds 

with a period of around 28 months. This has been shown to influence the strength of 

stratospheric polar vortex anomalies (Holton and Tan, 1980, Anstey and Shepherd, 2014), 

which can in turn propagate downwards and impact upon the polar front jet stream and NAO 

(Baldwin and Dunkerton, 2001). QBO data are obtained from the Free University of Berlin 

(www.geo.fu-berlin.de/met/ag/start/produkte/qbo/ (Naujokat, 1986, updated) and cover 1953-

2014. 30hPa equatorial zonal wind speeds are used, following Hamilton (1984). 

 

Solar-cycle data are available in a variety of forms. In order to obtain data for the whole 

period, monthly sunspot numbers are obtained from the Solar Influences Data Analysis 

Center (http://sidc.oma.be/). The 10.7cm solar-flux dataset is obtained from 

www.spaceweather.ca/ and used to construct stratospheric composites. Recent studies suggest 

that there is a lagged North Atlantic climate response to solar variability (Scaife et al., 2013; 

Gray et al., 2013), by between one and five years. Therefore solar indices with lead times 

over jet metrics of one to five years are also used.  

 

A volcanic index is derived according to Folland et al. (2012). The index is set to one for the 

two years following a tropical volcanic eruption, all other years being set to zero, with the 

years of volcanic eruptions being derived from Stenchikov et al. (2006).  A positive NAO in 

winters following a major tropical eruption has been observed, in contrast to the expected 

cooling via the impacts of stratospheric aerosols (e.g. Robock and Mao, 1992). These 

eruptions are identified by Robock and Mao (1992) as occurring in 1883 (Krakatoa), 1886 

(Tarawera), 1888 (Bandai), 1902 (Santa Maria), 1907 (Ksudach), 1912 (Katmai), 1932 

(Quizapu), 1956 (Bezymianny), 1963 (Agung), 1974 (Fuego), 1982 (El Chichón) and Mount 

Pinatubo (1991). 

 

Sea-ice concentration (SIC) data are taken from HadISST1 (Rayner et al., 2003). SIC is 

defined as the proportion of sea covered with ice in a region. Although this series extends 

back to 1870, much of the earlier series is based on climatology. Therefore only data from 

1955 are used, where earlier data are based on operational sea-ice charts (Meier et al., 2007) 

and which avoids periods of data based on climatology, although it is the post-1979 data from 

the satellite era that are most reliable. This allows for comparisons of the whole time series 

from 1955 with that of the satellite era. Data are acquired for the whole of the Arctic, plus 

sub-regions that are identified as being potentially more significant, based on correlation 

http://www.geo.fu-berlin.de/met/ag/start/produkte/qbo/
http://sidc.oma.be/
http://www.spaceweather.ca/
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maps of sea-ice extent with jet stream metrics for the periods 1955-2012 and 1979-2012, 

depending on the availability of potential predictors. Areas identified are the Barents-Kara 

Sea (BKI; 30-90°E, 70-85°N), NE Greenland (GI; 35-0°W, 80-90°N) and the area centred on 

the Laptev Sea (LVI; 60-200° E, 70-90°N), but including the East Siberian, Kara and 

Chukchi Seas (Figure 2.12). In addition, SIC data from the National Snow and Ice Data 

Center (NSIDC, Cavalieri et al. 1996 updated) are used in the forecasting analysis in Chapter 

6, as, although only starting in 1978, these data are available closer to real-time, which is 

important when constructing forecasts. 

 

Snow cover data for Eurasia (55-150°E, 45-80°N, Figure 2.12) are obtained from Rutgers 

University (Robinson et al., 2012, http://climate.rutgers.edu/snowcover/).  

 

Additional data are used in Chapter 6 on NAO forecasting. The area for tropical Atlantic 

precipitation is extended (-5°S-5°N, 50-0°W). Tropical SST data from HadISST1 (Rayner et 

al., 2003) are used from the same grids as precipitation data in Chapter 5, in an attempt to 

provide more potential predictors for the longer time series from 1956.  

 

All datasets are normalised by subtracting the mean and dividing by the standard deviation 

for the period 1981-2010, and are detrended prior to use for Chapter 5, while the trend is 

retained for chapter 6. Trends in jet-metric time series are also retained in Chapter 4. 

Detrending removes the impact of slowly varying external forcings such as global warming 

and allows the focus to be on the impacts of interannual variability within the time series. In 

forecasting however, trends may represent an important aspect of forecast skill. 

Normalisation allows some comparison between the relative impacts of different drivers on 

the response variable.  

 

2.5.2. NAO data. 

There is no definitive index for the NAO. The index is usually calculated by subtracting the 

normalised SLP records of a northern node from that of a southern node (e.g. Hurrell 1995, 

Jones et al., 1997, Cropper et al., 2015). The northern node is in Iceland, while the southern 

node used is more variable (The Azores, Lisbon or Gibraltar have all been used). Station-

based indices have the advantage that they can be extended into the Nineteenth Century, but a 

drawback is that by using data from fixed stations they are effectively locked in position and 

http://climate.rutgers.edu/snowcover/
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so do not capture the spatial variability of the NAO and the movement of node centres 

through the annual cycle. An alternative approach is to use an index derived from principal 

component analysis (PCA). The index is the time series of the leading empirical orthogonal 

function (EOF) of SLP anomalies. The Hurrell PC-based index uses SLP anomalies over 20-

80°N, 90°W-40°E and gives a better representation of spatial variability. However it is only 

available back to 1899.  

 

NAO Index data (station- and PC-based, Hurrell, 1995) are downloaded from the 

NCAR/UCAR Climate Data Guide (www.climatedataguide/ucar/.edu/). Raw-station mean 

sea level pressure  (MSLP) data (Reykjavik and Lisbon) are supplied by James Hurrell and 

Adam Phillips at UCAR. In Chapter 6, an NAO index is constructed from the raw station 

data, the difference between SLP in the Azores and Iceland being found, then normalized to 

1993-2012, to correspond with the NAO index used by the Met Office for comparison with 

forecasts from GloSea5 (Scaife et al., 2014a). This differs from the Hurrell station index, 

where  SLP at each station is normalised, then subtracted. 

 

The Met Office seasonal forecasting system (Global Seasonal Forecast System 5; GloSea5, 

MacLachlan et al. 2014) has been used to generate estimates of winter NAO predictability 

(Scaife et al., 2014a). In order to make a comparison with statistical hindcasts in Chapter 6, 

NAO hindcast data for an ensemble of 24 members, both raw and normalised, are provided 

by the Met Office, which covers the period 1993-2012.  GloSea5 has a high ocean resolution 

(0.25°), a fully resolved stratosphere and increased horizontal resolution (0.7°), which have 

enabled an improved predictability in the main modes of atmospheric variability 

(MacLachlan et al., 2014). In addition, GloSea5 operational forecasts for 2014-2016 have 

been provided by the Met Office. While the hindcast data is based on an ensemble of 24 

members, the operational forecasts consist of 31 or 32 forecasts, and are not available for 

winter 2013. 

 

Table 2.3 summarises the additional datasets used in this thesis and indicates in which 

chapters they are used. 

 

 

 

 

http://www.climatedataguide/ucar/.edu/
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Chapter 3 

A Comparison of North Atlantic Jet Stream Metrics in ERA-Interim and 

20th Century Reanalysis Data 1979-2012 
 

3.1. Introduction 

The Twentieth Century Reanalysis (20CR) is seen as a suitable reanalysis product to use in 

assessing North Atlantic jet stream variability as it provides a relatively long time series 

against which to compare recent trends and variability. There are relatively many 

observations historically in the North Atlantic region which are assimilated into the 

reanalysis. However, a potential concern is that it is derived from surface measurements of 

sea-level pressure (SLP), using sea-ice conditions and sea-surface temperatures (SST) as 

boundary conditions only. Therefore its ability to portray accurately the polar front jet stream 

(PFJ), with its core near the tropopause, has to be questioned, as it would seem likely that the 

higher one goes in the atmosphere, the less reliable 20CR will be. This is part of the rationale 

for using the jet-metric algorithm which has been derived from lower level winds (700-

900hPa), as outlined in the previous chapter.  

 

This chapter aims to assess aspects of jet variability derived from 20CR against the variability 

indicated by a third generation state-of-the art reanalysis, ERA-I (Dee et al., 2011). In order 

to achieve this, comparisons are made between: 

• jet metrics (latitude, speed and vrange) derived from ERA-I and 20CR for the North 

Atlantic sector, using 700-900hPa winds. This tests the ability of a reanalysis derived 

from SLP only to portray this eddy-driven component of the jet at lower levels in the 

troposphere. 

• jet metrics from high resolution (0.75°) ERA-I (ERA-I HR hereafter) and a 2° 

resolution version to assess whether the spatial resolution affects the portrayal of jet 

stream variability. 

• jet metrics from ERA-I and 20CR at 200-300hPa. At this level of the troposphere, the 

subtropical jet (STJ) and PFJ often coexist at different latitudes, particularly in winter. 

The algorithm will have difficulty distinguishing between the two jets, but this will 

allow examination of the hypothesis that 20CR will be less accurate as distance from 

the surface increases. If this is the case, clear differences should be seen between jet 

metrics derived from the two reanalyses at this level. 
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• the jet-latitude distributions obtained from 20CR and ERA-I.  A clear trimodal pattern 

of winter jet-latitude distribution was identified by Woollings et al. (2010a) and is 

demonstrated by binning daily jet-latitude occurrences over a season, creating a 

histogram of jet frequency at given latitudes. This was initially identified using ERA-

40 data (Uppala et al., 2005), but is not evident in Coupled Model Intercomparison 

Project 3 (CMIP3) models  (e.g. Hannachi et al., 2012). Misrepresentation of the jet-

latitude distribution is also evident in several CMIP5 models (e.g. Anstey et al., 2013; 

Davini and Cagnazzo, 2014). 

• two new reanalysis products, ERA-20C and 20CRv2c, released in 2015. Jet latitude 

and speed metrics at 700-900hPa will be compared with those from 20CR, to assess 

the extent to which there is agreement in the representation of jet metrics. 
 

When comparing 20CR and ERA-I only the time period 1979-2012 is considered1 as 1979 is 

when the ERA-I reanalysis starts. At the time of analysis, data for 20CR were not available 

for 2013 and 2014, although data for 2013 and 2014 are shown for ERA-I in time series plots. 

ERA-20C covers 1900-2010 and 20CRv2c extends from 1850 to 2012. Data are analysed for 

the standard meteorological seasons; boreal spring (March, April, May); boreal summer 

(June, July, August); boreal autumn (September, October, November); boreal winter 

(December, January, February). In the text and figures, winter is denoted by the year in which 

it ends, i.e. the year in which the January and February fall. A comparison of daily time series 

is also made. 

 

Patterns of jet stream variability are linked to what would be expected from theory, and 

reasons for differences between the reanalyses are discussed. 

 

3.2. Methods 

Simple comparisons are made between the reanalyses using histograms, scatter plots and line 

graphs of time series. A number of straightforward summary descriptive statistics are used 

(see Wilks, 2011 for further details). 

 

 
                                            
1 The 200-300hPa analysis only covers the period 1979-2010 as this was the extent of availability at 
the time of analysis. The 700-900hPa analysis was subsequently updated for use in other chapters 
which extended its time series for this chapter. 
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3.2.1. Mean and median 

The arithmetic mean is a measure of location, or the central tendency of a dataset.  It is 

calculated as: 

        𝑥 =
1
𝑛 𝑥!

!

!!!

                            Eq. 3.1 

 

where  n is the number of values in the dataset, each of which is represented by xi. The mean 

can be heavily influenced by outlier values and so is not the most robust measure of central 

tendency. On occasions therefore, reference is made to a more robust measure, the median. 

This is the central value of a dataset when it is ranked. If the dataset has an even number of 

values, there is no central value. Instead the median is taken as the average of the two central 

values. 

 

3.2.2. Standard deviation 

The standard deviation (SD) is a measure of the spread of the data around the mean. The SD 

is defined as: 

𝑠 =
1

𝑛 − 1 𝑥! − 𝑥 !

!

!!!

              Eq. 3.2 

 

The sample standard deviation includes the division by n-1 as there is a tendency for data 

values to be closer to the sample mean than to the population mean, which would make the 

sample SD too small.   

 

3.2.3. The Wilcoxon Signed-rank and Mann-Whitney-Wilcoxon tests 

These two tests are nonparametric tests determining the significance of differences in location 

between two datasets, (strictly speaking, the difference in median of the two sets). These 

nonparametric tests are preferred to the more usual t-tests as sample sizes are often small and 

no assumption needs to be made about the normality of the data. When data are paired, as 

occurs with two jet-metric time series from different reanalyses over the same period of time, 

the Wilcoxon signed-rank test can be used to assess the significance of the difference in 

location between the two datasets. This is a non-parametric equivalent to the paired t-test and 
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incorporates the positive correlation between the pairs of data when identifying any 

difference in location.  The difference Di between each of n pairs of data is found, and the 

absolute differences are ranked (|Di|). If there are pairs with equal |Di|, an average rank is 

given to the tied values, and pairs where Di is zero are not included in the next stages. The 

number of pairs which have a Di value other than zero is denoted n'. A statistic T is then 

calculated by summing the ranks Ti of the positive or negative Di values, giving T+ and T- 

respectively. Thus T is either:  

 

                          𝑇! = 𝑇!
!!!!

                                     Eq. 3.3a   

or 

                          𝑇! = 𝑇!
!!!!

                                    Eq. 3.3b  

 

The Mann Whitney-Wilcoxon (or Mann-Whitney U test) is used in Chapters 4 and 5 but is 

introduced here to compare with the signed-rank test.  It is similar to the Wilcoxon signed-

rank test, but in the case of composites, or comparison of different time periods, data are not 

paired. The null hypothesis Ho is that the two datasets are drawn from the same population. 

Therefore datasets n1 and n2 are pooled, and these pooled data are ranked, with rank1 being 

the smallest. The ranks of values in each dataset are then summed, to give R1 and R2. The null 

hypothesis Ho assumes there will be no significant difference in the sums of ranks R1 and R2. 

The Mann-Whitney U statistic is calculated for either R1 or R2: 

 

                    𝑈! = 𝑅! −
𝑛!
2 𝑛! + 1                         Eq. 3.4𝑎 

or 

                     𝑈! = 𝑅! −
𝑛!
2 𝑛! + 1                          Eq. 3.4𝑏   

 

which essentially give information about how far away each summed rank is from the 

maximum possible.  U1 and U2 contain the same information as U1 + U2  = n1n2. Critical 

values of the test statistics can be determined from tables. 
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3.2.4. Pearson Product Moment correlation coefficient 

For paired data, an observation in one dataset (x) corresponds to an observation in another (y) 

and it is possible to examine how a change in x is associated with a change in y by examining 

the covariance of the two datasets. The sample covariance is given by: 

 

𝑐𝑜𝑣(𝑥,𝑦) =
1

𝑛 − 1 𝑥! − 𝑥 𝑦! − 𝑦
!

!!!

            Eq. 3.5 

 

However, the covariance is dependent on the units of the two variables. To eliminate this 

problem, the covariance is divided by the respective SDs of the variables, which is measured 

in the units of the variables. Thus the units cancel and produce a dimensionless ratio, the 

Pearson’s Product Moment correlation coefficient, which ranges from -1 (a perfect negative 

linear relationship) to 1 (a perfect positive relationship). Thus the Pearson’s product moment 

correlation coefficient (r), hereafter the correlation coefficient, is defined as: 

 

                    𝑟 =
𝑐𝑜𝑣 𝑥,𝑦
𝑠!𝑠!

                                        Eq. 3.6 

 

However, the correlation coefficient has limitations: normality is assumed; it may not identify 

strong non-linear relationships between variables; and it is sensitive to the presence of 

extreme outliers, so this must be borne in mind. The significance of the correlation coefficient 

obtained can be determined using tables of significance. 

 

3.2.5. Spearman’s Rank correlation coefficient 

Where the undue influence of outliers is suspected, an alternative, nonparametric approach to 

correlation may be appropriate, based on the ranks of data rather than the data values. Data 

values in each dataset are ranked, and the difference in rank between pairs of values is found. 

Spearmans’s rank correlation coefficient can be calculated by: 

 

                  𝑟!"#$ = 1−
6 𝐷!!!

!!!

𝑛 𝑛! − 1                                Eq. 3.7       

 

where Di is the difference in rank between the ith pair of values and n is the sample size. 
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3.2.6. Autocorrelation and effective sample size 

If earlier values of a time series correlate with subsequent ones, the time series possesses 

temporal or serial autocorrelation, often described as persistence. This has the effect of 

reducing the degrees of freedom present within the data, as points show dependence upon 

nearby values in the series. Thus if this autocorrelation is not taken into account there is a 

tendency for the null hypothesis of no significance to be rejected too readily, known as a 

Type 1 error. 

 

The effective sample size Ne when calculating the significance of a correlation coefficient can 

be calculated according to: 

 

                               𝑁! = 𝑛×
1− 𝑟!𝑟!
1+ 𝑟!𝑟!

                                     Eq. 3.8  

                                                                                                                                              

where n is the number of timesteps and r1 and r2 are the lag-1 autocorrelation coefficients for 

series one and two respectively (Bretherton et al., 1999). 

 

3.2.7. Jet-metric time series 

3.2.7.1. Seasonal time series 

Mean seasonal latitude and wind speed over time are plotted, with median values calculated 

for comparison. The time series plots are smoothed using a seven-point binomial filter to 

remove short-term (less than five years) variability in the time series (see discussion of filters 

in Chapter 2, section 2.3.1). Trends in data are retained for this section of analysis, as the 

comparison includes whether the reanalyses show similar trends. Correlations between the 

time series of the two reanalyses are given, with level of significance adjusted for 

autocorrelation (see section 3.2.6). 

 

Correlations between seasonal jet latitude, speed and meridionality are also calculated for 

each reanalysis. Here, the linear trend is removed prior to correlation, as the focus is on 

determining correlation of interannual variability.  

 

3.2.7.2. Annual cycles 

Jet metrics for each month are calculated. These are then plotted using a boxplot for each 

month to show the seasonal cycle, and variability within this for each month. An example 
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boxplot is given in Figure 3.1, showing the distributions of annual jet latitudes for 20CR and 

ERA-I. The bold horizontal line denotes the median value for the month or season in 

question; the box shows the extent of the interquartile range (IQR); and the lines or whiskers 

show whichever is smaller of the maximum and minimum values, or 1.5 times the 

interquartile range. 1.5 IQR is roughly equivalent to two standard deviations. Points that 

occur at more than 1.5 IQR above the third quartile are termed outliers; they are shown by the 

open circles and are plotted individually. If there are no outliers the whiskers show the 

maximum and minimum values of the dataset. In Figure 3.1, each reanalysis has a single year 

outlier at the upper ends of the range, while the lower whisker extends to the minimum value 

of the series in each case. 

 
Figure 3.1. Example boxplot of annual summer jet latitudes for 20CR and ERA-I, 1979-
2012. 
 

3.2.7.3. Daily time series 

Examples of daily time series for individual years are plotted and the correlation between the 

two reanalyses calculated. In addition, scattergraphs are plotted between all days within a 

season for the two reanalyses, and the correlation is indicated. 

 

3.2.7.4. Jet-latitude frequency distribution 

The jet latitudes for all available days within a season are plotted as histograms, with a bin 

resolution of 2° latitude, to give the total daily frequency of jet occurrence at each latitude for 

the time period concerned. A high resolution (0.75°) binning is used for ERA-I HR. 

 

46

48

50

52

54

56

20CR ERA-I

summer jet latitude

jet
 la

titu
de

 /°
N



 

 89 

 

3.2.8. Trend identification 

Trends and their significances are identified using nonparametric methods: the Theil-Sen 

slope estimator (Theil, 1950; Sen, 1968) with the Mann-Kendall trend test to identify the 

trend significance, as outlined in Wilks (2011). An advantage of the nonparametric tests is 

that they are more robust to the presence of outliers than ordinary least squares regression and 

they are appropriate for non-normally distributed data. 

 

The Theil-Sen slope estimator is the median of all slopes between all pairs of points in a 

dataset, each slope Ti  for i= 1,2,…,n being given by: 

 

                   𝑇! =
𝑥! − 𝑥!
𝑗 − 𝑘                                             Eq. 3.9 

                                                                        

Where xj and xk are data values at times j and k and j > k. 

 

The Mann-Kendall test considers the correlation between ranked observed values and their 

time order. The Mann-Kendall test statistic for a time series xi, , i =1,2,…, n, is : 

 

                        𝑆 = 𝑠𝑔𝑛 𝑥!!! − 𝑥!

!!!

!!!

                             Eq. 3.10         

                                                                                                                                                

where 

             𝑠𝑔𝑛∆𝑥 =
+1,∆𝑥 > 0
   0,∆𝑥 = 0
−1,∆𝑥 < 0

                                   Eq. 3.11 

                                                                                                                                            

where Δx is (xi+1 –xi). Adjacent data pairs in time order are totalled where the first is smaller 

than the second, and subtracted from this is the number of pairs where the second is smaller 

than the first, to derive S.  
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For n > 10 the test statistic has an approximately Gaussian distribution. If the null hypothesis 

Ho of no trend holds, the distribution has a mean of zero. Variance is given by: 

 

               𝑉𝑎𝑟 𝑆 =  
𝑛 𝑛 − 1 2𝑛 + 5 − 𝑡! 𝑡! − 1 2𝑡! + 5

!
!!!

18                 Eq. 3.12 

                                                                                                          

where J is the number of tied values, tj is the number of values in the jth tied group. 

 

The test statistic ascertaining the significance of the trend is described by: 

 

                                            𝑍 =

𝑆 − 1
𝑉𝑎𝑟 𝑆 ! ! , 𝑆 > 0

                     0, 𝑆 = 0
𝑆 + 1

𝑉𝑎𝑟 𝑆 ! ! , 𝑆 < 0

                                             Eq. 3.13 

 

The value obtained in equation 3.13 is used to assess the significance of the trend. A two-

tailed test is used, as the trend could be positive or negative. If the value of Z obtained, |Z| > 

zα/2  then the null hypothesis Ho of no trend is rejected at the significance level, α. For the tests 

of significance, α=0.05, a confidence level of 95% was selected. 

 

Any autocorrelation within the time series being assessed for trend increases the variance of 

the Mann-Kendall statistic. Thus there is a tendency to over-detect trends. The trend-

detection tests can therefore be too liberal in their rejection of the null hypothesis Ho. Here, 

the Yue-Pilon method (Yue et al., 2002) is used to counter this weakness. First the trend is 

identified and assumed to be linear. This trend is then removed from the data series, and the 

first-order autoregressive process (AR1) for the detrended time series is calculated, known as 

the trend-free pre-whitening procedure (Yue et al., 2002), which gives a series of residuals. 

These are then combined with the original trend and the Mann-Kendall test is applied for 

trend significance. Mann-Kendall trend analysis and the Yue-Pilon adjustment are 

implemented using the R package “zyp” (Bronaugh and Werner, 2014). 

 



 

 91 

For comparison and completeness, trends and their significance are also calculated using 

ordinary least-squares regression. Trend error was calculated according to Taylor (1997). The 

uncertainty, σy in values y1….yN is given by: 

 

                  𝜎! =
1

𝑁 − 2 𝑦! − 𝐴 − 𝐵𝑥! !

!

!!!

                              Eq. 3.14 

                                                                                                                                                      

where N is the number of values in the time series, A is the y-intercept and B is the slope of 

the trend line.  

 

The uncertainty in the slope value B is given by: 

 

                                 𝜎! = 𝜎!
𝑁
∆                                                          Eq. 3.15 

                                                                                                                                                   

where Δ is a constant for the time series given by: 

 

                                 ∆= 𝑁 𝑥! − 𝑥
!

                                      Eq. 3.16 

                                                                                                                                              

where x is the order number of the year, x1…….xN. 

 

 Trend significance t-values are calculated using: 

                                     𝑡    =
𝐵
𝜎!

                                                            Eq. 3.17 

 

Where B is the trend and σB is the uncertainty in B derived using equation 3.15. 
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However, as with the Mann-Kendall trend calculation, autocorrelation within the dataset can 

impact upon the identified trend. Here, the effective sample size based on the lag-1 

autocorrelation is calculated. Effective sample size ne is given by: 

 

                                 𝑛! = 𝑛!
1− 𝑟!
1+ 𝑟!

                                                     Eq. 3.18  

 

where  nt is the sample size of the time series and r1 is the lag-1 autocorrelation (Santer et al., 

2000). This value for ne is substituted for N in equations 3.15 and 3.16 above.  

 

It should be borne in mind that the time period 1979-2012 is too short to ascribe any long-

term trend with certainty and trends are susceptible to the start and end points chosen for the 

time series. 

 

3.3. Results 

3.3.1. Jet-speed time series 

Figure 3.2 presents time series of mean seasonal jet-speed interannual variability. Median 

series are shown in Appendix A.3.1, and track the main fluctuations in mean with no 

systematic difference between mean and median values. 

 

For 700-900hPa winds, interannual variability is particularly large in winter, but both 

reanalyses capture the same interannual variability, in terms of amplitude and phase 

relationships. Time series for 20CR and ERA-I reanalyses correspond very closely; the main 

difference is in winter when 20CR consistently portrays a slower jet speed than ERA-I 

(Figure 3.2a). This difference in winter has a mean value of 0.53ms-1 and is significant 

(p≤0.05) using the Wilcoxon signed-rank test. 20CR wind speed is, for most years, 

systematically slightly lower than ERA-I wind speed in spring and autumn and systematically 

slightly higher for most years in summer. These differences are also significant (p≤0.05). A 

seasonal cycle of increasing and decreasing jet speed is evident, with maximum mean speeds 

in winter and minimum mean speeds in summer, corresponding to the increased north-south 

temperature gradients experienced in winter, which accelerate the zonal winds. Correlation 

coefficients between the reanalyses are, as with jet latitude, extremely high and significant 

(p≤0.01). Table 3.1 shows that ERA-I mean-seasonal speeds are higher for all seasons except 

summer. 
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Figure 3.2. Mean jet speed, 700-900hPa, 1979-2012 for each season 20CR and 1979-2014 
for ERA-I. Note that the winter series starts in 1980. Thin lines are 20CR (blue) and ERA-I 
(red). Bold lines are smoothed time series, using a 7-point binomial filter. Correlation 
coefficients are given for the unsmoothed series. 
 

Figure A.3.2 shows a very good match between jet speed values from ERA-I and ERA-I HR, 

using spring as an example (other seasons are similar). While interannual variability is the 

same, ERA-I HR has very slightly higher speeds (0.18 ms-1) averaged over the time series. 

This has no impact on jet latitude, as the maximum wind speeds are identified as being at the 

same latitude for both versions. 

 

 20CR ERA-I 

season Mean (ms-1) SD Mean (ms-1) SD 

DJF 13.95 1.23 14.48 1.32 

MAM 11.15 0.92 11.29 0.96 

JJA 10.20 0.80 10.13 0.75 

SON 11.94 0.82 12.07 0.83 

Table 3.1. Mean and standard deviation values for seasonal jet-speed time series. 

 

3.3.2. Jet-latitude time series 

The interannual variability of the mean seasonal jet latitude is shown in Figure 3.3. Both 

20CR and ERA-I are shown for the period 1979-2012, with ERA-I extending to 2014.  There 
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is a high degree of correspondence between the interannual variability shown by the time 

series from the two reanalyses, with the greatest differences in latitude being observable in 

winter and spring (Figure3.3a,b).  Interannual variability is higher in these seasons for both 

reanalyses. Correlation coefficients are very high and significant (p≤0.01), irrespective of 

season. Median values follow the main fluctuations of mean variability closely (Appendix 

A.3.1). There is no systematic difference between median and mean values, with median 

values for both 20CR and ERA-I frequently demonstrating similar departures from the mean 

for given years.  Interannual variability is almost identical in the two reanalyses, particularly 

when comparing the filtered series.  In most years 20CR produces a lower-latitude jet than 

ERA-I during winter and spring (around 0.75° lower when averaged over the time series, 

Table 3.2) resulting in a significant difference between the two jet latitude time series, based 

on the Wilcoxon signed-rank test (p≤0.05).  Differences between ERA-I and 20CR latitude 

are also significant in the other seasons although this is most evident in the earlier portions of 

the time series (Figure 3.3b,d).  

 
Figure 3.3. Mean jet latitude 700-900hPa, 1979-2012 for each season 20CR, and 1979-2014 
for ERA-I. Note that the winter series starts in 1980. Thin lines are 20CR (blue) and ERA-I  
(red). Bold lines are smoothed time series, using a 7-point binomial filter. Correlation 
coefficients are given for the unsmoothed series. 
 
Table 3.2 summarises the means and standard deviations of seasonal jet latitude in each 

reanalysis. A consistent seasonal cycle is evident in the latitude time series, and with 

increased mean latitude in summer and autumn, with decreased standard deviation, consistent 

with northward shifts of the mean jet due to weaker and more poleward-displaced 
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temperature gradients in the summer. This is developed in section 3.3.4 below. Appendix 

A.3.2 shows a very high degree of correspondence in interannual variability and yearly 

values between spring values of ERA-I and ERA-I HR jet-latitude time series, which 

indicates no degradation through using the low-resolution version (other series are similar).  

 

 20CR ERA-I 

season mean SD mean SD 

DJF 47.76 3.83 48.42 3.98 

MAM 47.53 3.02 48.29 3.09 

JJA 49.19 2.15 49.42 2.33 

SON 49.84 2.05 50.03 2.14 

Table 3.2. Mean and standard deviation values (degrees North) for seasonal jet-latitude time 
series. 
 

3.3.3. Meridional wind time series 

Figure 3.4 presents the time series for the vrange index2. A lower index value is associated with 

more zonal flow while a higher value is indicative of more meridional flow (see Chapter 2). 

 
Figure 3.4. vrange index, 700-900hPa, 1979-2012 for each season. Note that the winter series 
starts in 1980. Thin lines are 20CR (blue) and ERA-I (red). Bold lines are smoothed time 
series, using a 7-point binomial filter. Correlation coefficients are given for the unsmoothed 
series. 

                                            
2	Meridional winds were obtained only for the period 1979-2012 for ERA-I, due to availability at time 
of analysis. 
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As with latitude and speed, there is a close correspondence between indices from the two 

reanalyses and median values track the fluctuations shown by the mean time series 

(Appendix A.3.1). Interannual variability is again high in winter, but unlike the other metrics, 

it appears equally high in all seasons, due to the data being normalised. However, unlike 

speed and latitude, differences between the indices are not systematic, as the index with 

higher values changes throughout the time series. This is also likely to be a consequence of 

the normalising procedure (subtracting the mean value and dividing by the standard 

deviation). These differences in time series are not significant (p≤0.05) using the Wilcoxon 

signed-rank test. When raw values are examined, ERA-I gives a higher range of meridional 

winds across all seasons, by up to 2 ms-1 (Appendix A.3.3), which is not reflected in the 

normalised series here. Correlation coefficients, while still very high and significant (p≤0.05), 

are not quite as high as for latitude and speed.  

 

3.3.4. Annual cycles of jet metrics 

Clear annual cycles in wind speed and jet latitude are evident from comparisons of the 

seasonal plots in Figures 3.2-3.3 above. To clarify the nature of the annual cycles, Figures 

3.5-3.7 demonstrate the seasonal cycles of jet speed, latitude and vrange for ERA-I and 20CR 

at 700-900hPa only. These correspond closely to those of Woollings et al. (2014).  Boxplots 

are shown for all values for each month, over the period 1981-2010.  

 
Figure 3.5. Annual cycle of jet speed for 20CR (black) and ERA-I (red dashed) for the 
climatological period 1981-2010. The median value for each month is shown by the bold 
(solid black, 20CR, dashed red ERA-I) line. Circles indicate outliers. 
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The jet-speed annual cycle is shown in Figure 3.5. The minimum is in May, with a steep 

decline into the minimum and a more gradual increase after the minimum. The maximum of 

the cycle is in January, based on the median values. Here the IQR of winter months is again 

greater than in the summer, with the exception of August, and the magnitude of the annual 

cycle  (around 4.5ms-1) exceeds the largest IQR. There are still some winters with wind 

speeds lower than some summers and vice versa, but these are restricted to the tails of the 

monthly distributions, since, unlike for jet latitude, the IQR of summer and winter months do 

not overlap (see Figure 3.6). In winter months, including March but excluding February, 

ERA-I shows higher median values of monthly mean jet speed, whereas there is close 

agreement in other months. The faster speeds apparent in winter are a consequence of the 

seasonally stronger poleward temperature gradient. 

 
 

Figure 3.6. Annual cycle of jet latitude for 20CR (black) and ERA-I (red dashed) for the 
climatological period 1981-2010. The median value for each month is shown by the bold 
horizontal (solid black, 20CR, dashed red ERA-I) line. Circles indicate outliers. 
 
The annual cycle of jet latitude (Figure 3.6) is markedly different from that of jet speed 

(Figure 3.5) and reaches its poleward maximum in September with a minimum in May 

(Figure 3.6). There is a secondary peak in March. Median values are higher in ERA-I than for 

20CR for March, April and May and the IQR is greater in ERA-I for February, March, April 

and December, with a greater number of higher values compared to 20CR for the spring 

months, and more lower values in December. The IQR is reduced in summer for both 
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reanalyses. As noted by Woollings et al. (2014), the annual cycle has a relatively small 

amplitude of around 5° and despite the mean seasonal shifts in jet location, many years have 

a mean winter jet latitude that is as far north as many mean summer jet latitudes. The IQR in 

winter months is greater than that of the annual cycle. The latitude cycle tracks the movement 

of the poleward maximum temperature gradient northwards in summer and southwards in 

winter. However, as with Woollings et al. (2014), the jet latitude lags the cycle of solar 

insolation, with the most southerly jet latitude in May while the solar minimum is in winter, 

and the most northerly latitude in September, while the maximum solar insolation is 

associated with summer. 

 

The meridional wind-range annual cycle is based on raw data, with adjustments made for 

hurricanes, to allow a more straightforward comparison of the range as portrayed by the two 

reanalyses.   

 
Figure 3.7. Annual cycle of meridional wind range for 20CR (black) and ERA-I (red dashed) 
for the climatological period 1981-2010. The median value for each month is shown by the 
bold (solid black, 20CR, dashed red ERA-I) line. Circles indicate outliers. 
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A clear annual cycle is shown by both datasets. It has a minimum in July and a maximum in 

December/January (Figure 3.7). These values are the actual meridional wind range rather 

than indices, and so maxima in the winter months are reflective of the stronger wind speeds 

present in winter, both zonal and meridional, through the enhanced northern hemisphere 

temperature gradients. The cycle is more symmetrical than those of the other metrics and 

corresponds most closely to the seasonal variation in solar insolation, but with no lag. The 

IQRs of winter and summer months are clearly separated, although there is some overlap of 

the tails of the distributions. As with jet speed, the amplitude of the annual cycle is greater 

than the IQR of the individual months. Median values and the IQR are consistently shifted 

towards greater meridional wind range in ERA-I, compared to 20CR, and the IQR are greater 

for winter months in both reanalyses. 

 
3.3.5. Daily time series  

Daily time series are shown for latitude, wind speed and raw meridional wind range, for two 

individual calendar years, 1980 and 1986 (Figure 3.8). These years were chosen to highlight 

the need for correction of jet meridionality in summer and autumn for 20CR, and to clarify 

discrepancies between reanalyses in representing jet latitude, particularly at high latitudes. 

The daily latitude plots show jet latitude as varying stepwise, remaining at or around a given 

latitude for a few days, before switching to another latitude. Jet speed and meridional wind 

range on the other hand vary much more smoothly, with around 24-30 apparent cycles of 

increasing and decreasing jet speed over a year. It is noteworthy that the apparent cycles in jet 

speed and meridional wind range are largely in anti-phase, such that high zonal winds occur 

when meridional wind range is small, and vice versa. These cycles are made more apparent 

by the use of the Lanczos filter as they are much less evident in the unfiltered raw time series 

(appendix A.3.4). The raw unfiltered jet-latitude series shows the same persistence around 

particular latitudes before a sudden transition to a different latitude  “regime”. The plot is, 

however, noisier, with a number of very rapid transitions on synoptic scales that are 

smoothed out. 
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Figure 3.8. Daily time series of jet speed, latitude and raw meridional (v) wind range, for 
1980 and 1986, based on 700-900hPa zonal winds. 20CR is shown in blue, ERA-I in red. 
Note that the values are filtered, so the first and last 30 days of each series contain some 
information from outside the time period shown. Correlation coefficients between the series 
are given. In e), corrected values for meridional wind range are shown in green. 
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Figure 3.8. continued 

 

A further point to note from Figure 3.8e is the impact of a hurricane on 20CR raw meridional 

wind range around day 260, when unadjusted for the hurricane influence (Chapter 2, section 

2.3) in 1980, which is not evident in ERA-I due to the higher meridional wind speeds at 

higher latitudes in ERA-I, and higher speeds at lower latitude in 20CR. This spike is not 

evident in the corrected 20CR time series which is used in the rest of the analysis (green line 

on figure 3.8e, which closely matches the values for ERA-I). 

 

Correlation coefficients between ERA-I and 20CR jet metrics are consistently high for jet 

speed, but more variable for latitude and raw meridional wind range.  All correlation 

coefficients are significant (p≤0.05) despite the high degree of lag-1 autocorrelation present 

in each series, with a large reduction in effective sample size. 1986 latitude and 1980 vrange 

correlations are surprisingly low (Figure 3.8d,e), although there are one or two notable 

departures in these time series from a close relationship, for example the occurrence of a 

hurricane captured by the unadjusted 20CR summer jet speed (see above). This highlights the 

problem of Pearson’s Product Moment correlation coefficient being unduly influenced by 

outlier values. In these two cases, the Spearman’s Rank correlation coefficient gives a better 

representation of the relationship that is evident by eye from the plots (rrank is 0.86 for 1980 

meridional wind range, and 0.79 for 1986 latitude).  
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For jet speed, ERA-I portrays around two thirds of days within a year as having a higher jet 

speed, and three quarters of days with a higher vrange value. For jet latitude, around two thirds 

of days in each year have the same latitude in each reanalysis. For the remaining days, two 

thirds show a latitude in ERA-I that is more poleward than in 20CR. All these differences are 

significant, using the Wilcoxon signed-rank test (p≤0.05).  

 

The two reanalysis datasets are remarkably close in their representations of jet speed based on 

700-900hPa zonal winds, as shown by the scatterplots between all days of each season over 

the period 1979-2012 (Figure 3.9), and the very high significant correlations (p≤0.01). The 

reduced jet speed in summer is also evident, with the locus of scatter points shifted towards 

the origin. The slightly higher speed values in ERA-I can be detected by the marginal bias of 

points below the diagonal line. The higher ERA-I values are particularly evident in the upper 

tails of the winter, spring and autumn distributions (Figure 3.9a,b).   

 
 

Figure 3.9. Scatterplots showing association between daily jet-speed values from 20CR and 
ERA-I, 1979-2012, from 700-900hPa zonal winds. Black line is x=y. Correlation coefficients 
between the daily time series are given. 
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Correlations are not as high for the scatterplots of daily latitude representations (Figure 3.10). 

In particular, some jet occurrences at high latitudes are only represented by one of the 

datasets, most commonly ERA-I, or the high latitude event is of shorter duration in one 

dataset than the other. This is exemplified in Figure 3.8d, where three jet latitude occurrences 

at 76° N are shown at days 31-35, 57-60 and 96-100 in 1986. The first two are shown by both 

datasets, with shorter duration peaks for 20CR, while the third is only present in ERA-I. 

When compared with the unfiltered time series (Appendix A.3.5), a closer match is found in 

the unfiltered data with all three peaks being shown by each reanalysis, but those for 20CR 

are of very short duration and are smoothed out by filtering. These discrepancies are further 

investigated by analysis of the scatterplots in Figure 3.10. The presence of points outside the 

main cluster indicates that when one dataset shows a high-latitude jet stream value, the other 

may show a jet stream at lower latitude. This happens most frequently with ERA-I showing 

the higher-latitude jet and is a pattern present in all four seasons, although it is most marked 

in winter and spring (Figure 3.10).  

 
 
Figure 3.10. Scatterplots showing association between daily jet-latitude values from 20CR 
and ERA-I, 1979-2012, from 700-900hPA zonal winds. Black line is x=y. There are fewer 
points due to the discrete nature of the time series, in 2° increments, points being 
superimposed. Correlation coefficients between the daily time series are given. 
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Analysis of the differences in zonal wind strengths between ERA-I and 20CR (Figure 3.11) 

reveals that ERA-I portrays stronger average zonal winds over northern Greenland, 

northward of 74°N, in both winter and summer (Figure 3.11a) while the reverse is true in 

summer for an area of south Greenland extending to just north of Iceland, (Figure 3.11b). In 

winter the situation further south is more complex, with areas of higher 20CR speeds over 

central and western Greenland, while ERA-I values are higher over eastern Greenland, 

around 65°N (Figure 3.11a). Thus where ERA-I shows a peak at 74°N or poleward, 20CR 

winds on that day and at that latitude are likely to be less strong, with the possibility that 

20CR will identify jet latitude as being further south. Similarly the same situation may occur 

where 20CR shows stronger winds over the south Greenland anomaly.  

 
Figure 3.11. Example of the difference in zonal wind fields at 850 hPa, ERA-I minus 20CR, 
for a) DJF and b) JJA, averaged over 1980-2012.  
 
These discrepancies are likely to occur when a split jet is present, when variations  in zonal 

wind fields between the two reanalyses can lead to each reanalysis indicating a different 

latitude for the jet. This is clearly seen in Figure 3.12 where zonal wind fields are shown for 

one date (25/07/99, Figure 3.12a,b). The spatial representations of the wind field are very 

similar, with two jet fragments just west of Iceland and in the central Atlantic. It is apparent 
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3.12c,d) for each reanalysis, the jets are clear as distinct peaks. However, ERA-I portrays the 

southern jet fragment as stronger, while 20CR shows the northern portion as being stronger. 

Thus for each reanalysis, a different jet latitude is selected for this day. The actual maximum 

wind speed occurs at a similar latitude for each reanalysis (around 36ºN), however for 20CR 

the wind speeds in the higher-latitude jet fragment near 66ºN are stronger than for ERA-I.  

Although lower in absolute terms than for the southern jet fragment, the high-latitude maxima 

in 20CR  are more zonally extensive: thus in the zonal averaging procedure, this northerly jet 

fragment is identified as the jet latitude by 20CR.  

 

 
Figure 3.12. Daily mean zonal wind fields averaged over 700-900hPa for 25/07/99 for a) 
20CR, b) ERA-I, together with zonal mean zonal wind speeds for 25/07/99, for c) 20CR and 
d) ERA-I.  

mean zonal wind speed /ms-1

30 154530 1545

30

45

60

75

lat
itu

de
 /°

N

longitude /°W

a) 20CR, 25/07/99 b) ERA-I, 25/07/99

0 20 40 60 80 0 20 40 60 80
-15
-10
-5
0
5

10
15

latitude /°N

zo
na

l w
ind

 sp
ee

d 
/m

s-1

c) 20CR mean zonal wind speed d) ERA-I mean zonal wind speed

-25 -15 -5 5 15 25



 

 106 

Figure 3.13 gives the same information for the following day (26/07/99). This time, the 

reanalyses identify the same jet latitude. Only 4.6% of winter daily latitude values have a 

difference greater than 6° between reanalyses, while 60% of days have the same latitude. 

 
Figure 3.13. Daily mean zonal wind fields averaged over 700-900hPa for 26/07/99 for a) 
20CR, b) ERA-I, together with zonal mean zonal wind speeds for 26/07/99, for c) 20CR and 
d) ERA-I. 
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hurricanes, there is still a tendency for low latitude (around 30°N) meridional wind ranges to 

be greater in 20CR than ERA-I. The outlying scatters on the autumn scattergraph  (Figure 

3.14d) are attributable to three short events in 1990, 2001 and 2005, around 20 days in total 

that will have little impact on interannual variability when seasonal means are calculated, but 

show that important differences between the reanalyses can occur on daily timescales. 

 

 
Figure 3.14.  Scatterplots showing association between daily raw v range values from 20CR 
and ERA-I, 1979-2012, from 700-900hPa meridional winds. Black line is x=y. Correlation 
coefficients between daily series are given. 
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period (1957-2002). The distributions for high resolution ERA-I (Appendix A.3.6) appear 

much noisier due to the narrower latitudinal bins used (0.75° c.f. 2°), yet preserve the same 

distribution patterns, which indicates that they are not an artifact of spatial resolution. A 

comparison of 20CR and ERA-I demonstrates a good visual match for each season. However, 

individual latitude frequencies can be markedly different, particularly at higher latitudes, 

which will relate to the different wind strengths in the reanalyses at these latitudes as shown 

in Figure 3.11.  South, central and north peaks in frequency are evident in winter and spring 

for both reanalyses (Figure 3.15a,b) although the distinctiveness of the three peaks is clearer 

in 20CR, with a more pronounced north peak in summer and a more prominent south peak in 

spring. Summer and autumn show two peaks, the south peak not being evident (Figure 

3.15c,d, Table 3.3). The autumn histograms show the greatest difference between reanalyses 

(Figure 3.15d), with a broader central peak in ERA-I and a less distinct northern peak, due to 

increased frequency of occurrence at 54°N. In summer, while the northern peak is less 

distinct, it appears as a clear shoulder on the northward side of the distribution, suggestive of 

a decreased latitude gap between the central and northern peaks in the summer, when the 

central peak is displaced slightly northwards, with a southward shift of the northern peak 

(Figure 3.15c). 

 
Figure 3.15.  Seasonal daily jet-latitude distributions for 20CR (blue) and ERA-I (magenta), 
1979-2012, from 700-900hPa zonal winds. 
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The latitudes of the peaks in the distribution are found to correspond across reanalyses (Table 

3.3) with a tendency to a more southerly portrayal of the peaks in ERA-I for the central and 

south peaks. The central peak shifts slightly northwards in summer in both reanalyses, while 

the northern peak shifts southward, giving a more compressed distribution. 

 

 20CR ERA-I LR 

season south central north south central north 

MAM 38 46 58 36 44 58 

JJA NA 48 54 NA 46 54 

SON NA 46 58 NA 46 58 

DJF 38 46 58 36 44 58 

Table 3.3. Latitudes of jet frequency peaks, 20CR and ERA-I. 

 

The southern peak seen in winter and spring is closely related to blocking over Greenland 

poleward of the jet associated with cyclonic wavebreaking (e.g. Woollings et al., 2008; 

Davini 2012). The northward jet latitude mode has been associated with European blocking 

in the mid-latitudes (Davini et al., 2014) which is equatorward of the jet, associated with 

anticyclonic wavebreaking and the northward displacement of the jet. The central mode 

represents days that are not influenced by blocking activity. Thus recent work clearly links 

each mode of the winter jet-latitude distribution to blocking activity in different regions. 

Figure 3.16 shows geopotential height anomalies associated with each of the three jet modes 

in winter, averaged over 0-60ºW. They are produced from composites of thirty days at each 

of the jet modes. 
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Figure 3.16. Geopotential height anomalies for the winter jet modes, derived from ERA-I 
data averaged over the North Atlantic sector (0-60ºW), for 30 days of jet occurrence at each 
mode, from the period 1979-2012. 
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while the central jet is accompanied only by weak positive GPH anomalies, mainly to the 

south (Figure 3.16b) and the northern jet features positive GPH anomalies in mid-latitudes 

(Figure 3.16a), to the south of the jet, consistent with Davini et al. (2014). 

 

3.3.7. Analysis of jet speed and latitude at 200-300hPa 

A similar analysis of jet speed and latitude to that performed for 700-900hPa is performed at 

the 200-300hPa level, near the tropopause, where separate STJ and PFJ frequently coexist, 

particularly in winter. This will assess the extent to which the reanalyses agree at higher 

atmospheric levels, further from the surface observations assimilated into 20CR. The time 

series of seasonal mean jet speed and latitude for 1979-2010 for ERA-I and 20CR are 

presented in Figures 3.17 and 3.18. 

 
Figure 3.17. Mean jet speed, 1979-2010 for each season (winter from 1980-2012) at 200-
300hPa. Thin lines are 20CR (blue) and ERA-I LR (red). Bold lines are smoothed time series, 
using a 7-point binomial filter. Correlation coefficients are given for the unsmoothed series. 
 

At 200-300hPa, there is close correspondence in interannual variability of jet speed between 

the reanalyses for autumn, summer and winter (Figure 3.17), with consistently high 

significant correlations. All seasons show significant differences (p≤0.05) between the time 

series for the two reanalyses, but in spring the difference in jet speed is particularly marked, 

with a mean wind speed difference of nearly 4ms-1 between the reanalyses (Figure 3.17b). 

However, the spring interannual variability still shows a reasonable and significant match 

(r=0.66). In spring, ERA-I portrays the STJ up to 7ms-1 stronger than in 20CR (Figure 3.19b), 
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and this difference will result in the identification of the STJ as the jet latitude in ERA-I and 

accounts for the large difference in wind speed seen in spring.  

 
Figure 3.18. Mean jet latitude, 1979-2010 for each season (winter from 1980-2012) at 200-
300hPa. Thin lines are 20CR (blue) and ERA-I LR (red). Bold lines are smoothed time series, 
using a 7-point binomial filter. Correlation coefficients are given for the unsmoothed series. 
 
Figure 3.18 shows jet latitude over time for the 200-300hPa levels. The greatest agreement 

between time series is found in summer and autumn (Figure 3.18c,d), when the impact of the 

STJ on PFJ latitude detection is much reduced, with time series showing very similar 

interannual variability, and with significant correlation coefficients (summer 0.75, winter 

0.90, P≤0.05). The correlation between the two reanalyses for spring is not significant 

(r=0.26, Figure 3.18b), and while the correlation for winter is significant (0.73), 20CR 

portrays a jet that is on average 5° further north than ERA-I (Figure 3.18a). Differences in 

latitude are significant for all seasons (p≤0.05). The more northerly jet in 20CR is particularly 

obvious in winter and spring, suggesting a stronger representation of the STJ in ERA-I, which 

is identified as the latitude of the jet, whereas in summer and autumn the jets are displaced 

northwards and tend to show little spatial separation (Woollings, 2010 and discussion, section 

3.4 below). The predominantly more northward jet in 20CR at 200-300hPa contrasts with 

results from 700-900hPa and is likely to be a consequence of the under-representation of the 

strength of lower-latitude zonal winds in 20CR compared with ERA-I at 200-300hPa (see 

below). 
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Correlations between jet metrics at different atmospheric levels for 20CR and ERA-I are 

shown in Table 3.4.  

 

 speed latitude 

season 20CR ERA-I 20CR ERA-I 

DJF 0.86 0.74 0.59 0.37 

MAM 0.61 0.14 0.37 0.15 

JJA 0.82 0.78 0.68 0.67 

SON 0.79 0.75 0.66 0.57 

Table 3.4. Correlation coefficients between jet metrics at 700-900hPa and 200-300hPa for jet 
speed and latitude, 20CR and ERA-I. Significant correlations (p≤0.05) are shown in bold. 
 
In summer and to a lesser extent autumn, upper and lower jets are aligned, with correlations 

between 200-300hPa and 700-900hPa interannual jet latitude of 0.67 and 0.57 respectively in 

ERA-I and 0.68 and 0.66 in 20CR. The correlations with wind speed variability are even 

higher, showing that the jet strengthens and weakens synchronously throughout its depth, but 

it is the magnitude of the wind that varies with altitude. Correlations are very weak and 

insignificant for winter spring in ERA-I, reflecting the detection of the STJ at 200-300hPa 

and the PFJ at 700-900hPa, while in 20CR spring correlations are much higher for both speed 

and latitude, as the STJ is less frequently detected: thus more days are sampled from the PFJ 

at higher altitudes, strengthening the correlation with the PFJ at 700-900hPa.  

 

Figure 3.19 demonstrates clearly that the STJ in ERA-I is stronger than in 20CR in all 

seasons, while at the latitude of the PFJ (around 46-48°N), at 200-300hPa winds are slightly 

stronger in 20CR in all seasons, particularly in winter and spring. This suggests that the 

Hadley circulation may be stronger in ERA-I relative to 20CR, with greater poleward 

movement aloft and conservation of angular momentum producing a strong STJ. There are 

signs that the stratospheric polar circulation is stronger in 20CR, above the level shown by 

Figure 3.19, but linked to the stronger PFJ at 200-300hPa in 20CR. At the 700-900hPa level, 

there is very little difference between the zonal winds of the two reanalyses. 20CR is slightly 

stronger around 46°N and ERA-I at around 52°N, which explains the slight northward shift 

evident in ERA-I (e.g. Figure 3.2). 
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Figure 3.19. Latitude-height cross-sections averaged over 0-60° W showing difference in 
mean zonal wind speed (ERA-I minus 20CR) for each season, 1981-2010.  
 
Figure 3.20 shows jet latitude distributions for the 200-300 hPa level. Agreement between 

20CR and ERA-I distributions is qualitatively good for summer and autumn (Figure 3.20c,d), 

although closer inspection reveals some differences. Summer jet latitude for ERA-I contains 

more values in the lower tail of the distribution; 120 days at latitude of 32° or less compared 

with just seven for 20CR. For both summer and autumn, the frequencies on the lower side of 

the distribution are greater in 20CR while the frequencies on the upper slope are greater in 

ERA-I, demonstrating a systematic bias between the reanalyses. 
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Figure 3.20. Seasonal daily jet-latitude distributions at 200-300hPa for 20CR (blue) and 

ERA-I (red), 1979-2010. 

 

The distributions differ markedly in winter and spring (Figure 3.20a,b). Both 20CR and ERA-

I show higher frequencies at lower latitudes in winter and spring due to the separation of the 

STJ and PFJ, and the detection of the STJ as the latitude of the jet if it is stronger than the 

PFJ. However, ERA-I shows greater increased frequencies at lower latitudes than does 20CR, 

especially in spring due to the more prominent representation of the STJ in ERA-I relative to 

20CR, confirmed by the mean zonal differences in wind speed shown in Figure 3.19.  

 

It is therefore difficult to isolate the PFJ at these higher levels in winter and spring and it is 

unclear at which latitude the PFJ occurs on those days where the STJ is stronger. Thus 

certainly for winter and spring, the 200-300hPa analysis is ineffective at capturing the PFJ 

variability but demonstrates well the relative differences between the two reanalyses. It is 

supportive of the hypothesis that there will be greater divergence between ERA-I and 20CR 

at higher altitudes, at least in part due to the sole use of surface-based inputs for 20CR. 

 

The jet-latitude distributions for 200-300hPa are unimodal in summer and autumn in both 

reanalyses while winter and spring show bimodal distributions reflecting the detection of both 

PFJ and STJ. There is also a hint of a trimodal distribution for winter, with slight peaks in the 
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remain at a constant of 48° in summer and autumn for both reanalyses. It is not possible to 

compare peaks for winter and spring due to the presence of the subtropical jet, which when 

stronger than the PFJ means that the PFJ latitude and speed for that day cannot be 

determined.  

 
Figure 3.21. Scatterplots showing association between daily jet-speed values from 20CR and 
ERA-I at 200-300hPa, 1979-2010. Black line is x=y. Correlation coefficients between daily 
series are given. 
 
Interestingly, the correlations between daily jet speed in each reanalysis at 200-300hPa are 

high (Figure 3.21). This suggests that even when 20CR and ERA-I are identifying jets at 

different latitudes (the STJ is more likely to be identified in ERA-I, the PFJ in 20CR), the 

speeds of the jets are similar in magnitude. Therefore a slight difference in the representation 

of their relative strengths can result in the identification of the jet at different latitudes. When 

the scatterplots of latitude are examined, the identification of different jets in winter and 

spring is readily apparent (Figure 3.22). There is a clear cluster of days along the diagonal 

where both reanalyses are identifying the same jet latitude, but there is an obvious “plume” of 
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days where 20CR is identifying the jet at a markedly higher latitude than is ERA-I. This is 

evident in winter and spring (Figure 3.22a,b). These are likely to be the days when there is a 

clear separation of STJ and PFJ, and the stronger STJ portrayal in ERA-I leads to its selection 

as the jet latitude, similar to the case outlined in Figure 3.12. The scatterplots for summer and 

autumn are closer in appearance to those for 700-900hPa (Figure 3.22c,d, c.f. Figure 3.10).  

 
 Figure 3.22. Scatterplots showing association between daily jet-latitude values from 20CR 
and ERA-I at 200-300hPa, 1979-2010. Black line is x=y. Correlation coefficients between 
daily series are given. 
 
 
3.3.8. Trend Analysis 

Trends for the seasonal time series of jet metrics at 700-900hPa are given in Tables 3.5 and 

3.6, for the period 1979-2012. There is agreement between ERA-I and 20CR in identifying 

significant negative trends for summer latitude, all other trends being insignificant, whichever 

trend detection method is used, with the exception of winter and summer jet speed in ERA-I. 

It must be emphasised that the detection of significant trends is dependent upon the start and 

end points of the time series in question. For example, if the first year of the time series in 
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question has an anomalously high observation, and there is an underlying positive trend, this 

will reduce the trend. Analysis of running trends using a moving window may be more 

informative and this will be assessed in Chapter 4.   

 

 DJF MAM JJA SON 

20CR speed -0.02± 0.04 0.00±0.03 -0.00±0.03 -0.00±0.03 

ERA-I speed -0.02 ± 0.05 0.001±0.03 -0.01±0.03 -0.01±0.03 

20CR latitude -0.04± 0.15 -0.01±0.11 -0.10±0.07 0.03±0.06 

ERA-I latitude -0.05±0.16 -0.01±0.12 -0.12±0.07 0.01±0.07 

20CR vrange -0.00±0.01 0.00±0.01 0.00±0.01 0.00±0.01 

ERA-I vrange -0.00±0.01 0.00±0.05 0.00±0.01 0.00±0.01 

Table 3.5. Trends and significance in seasonal jet metrics at 700-900hPa, 1979-2012, 
calculated using the Mann-Kendall trend test and the Theil-Sen slope estimator. Significant 
trends are shown in bold. Units are ms-1 yr-1 for jet speed, °N yr-1 for latitude and index units 
yr-1 for vrange. 
 

 DJF MAM JJA SON 

20CR speed -0.02±0.02 0.00±0.02 -0.00±0.01 -0.00±0.01 

ERA-I speed -0.03±0.02 0.04±0.02 -0.01±0.01 -0.01±0.01 

20CR latitude -0.06±0.07 -0.02±0.05 -0.09±0.03 0.04±0.04 

ERA-I latitude -0.06±0.07 -0.04±0.06 -0.11±0.04 0.03±0.04 

20CR vrange -0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 

ERA-I vrange -0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 

Table 3.6. Trend and significance in seasonal jet metrics at 700-900hPa, 1979-2012, 
calculated using OLSR. Significant trends are shown in bold. Units are ms-1 yr-1 for jet speed, 
°N yr-1 for latitude and index units yr-1 for vrange. 
 
 
It is noteworthy that the poleward mean shift of the jet stream under global warming (e.g. 

Yin, 2005; Barnes and Polvani 2013) is not detectable over the Atlantic, for the period since 

1979, using these particular metrics. This could be related to regional variations in the global 

mean pattern. Recent research  (Barnes and Polvani, 2013) identified regional variations in 

the jet response to global warming. Meanwhile others (e.g. Haarsma et al., 2013) find that 

rather than a poleward shift, in the Atlantic the jet will extend eastward, which will not be 

detected using this particular range of metrics.  The jet stream position is determined in part 

by competing factors. Evidence from models and observations suggest that a decline in Arctic 

sea-ice and increased Arctic Amplification acting to decrease the poleward temperature 
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gradient in the lower troposphere, can explain the lack of poleward displacement of the jet 

(e.g. Deser et al., 2015). However, other factors such as global warming may act to drive the 

jet polewards, via warming of the tropical troposphere and cooling of the polar stratosphere, 

increasing the poleward temperature gradient in the upper troposphere (Butler et al., 2010). 

The decrease in sea-ice may in part be responsible for this poleward shift not being evident in 

the Atlantic, offsetting the northward forcing from the tropical troposphere.  A more detailed 

analysis of trends and their change over time can be found in Chapter 4.  

 

3.3.9. Correlations between metrics. 

Winter jet speed and latitude have been shown to be only weakly correlated in ERA-40 data 

(Woollings and Blackburn, 2012), suggesting that jet speed and latitude may be subject to 

different influencing factors. Here, this analysis is extended to other seasons. Correlations 

between jet metrics for 20CR and ERA-I are compared to assess consistency between the 

reanalyses (Table 3.7). 

 

season latitude/speed latitude/vrange speed/vrange 

20CR 

DJF -0.12 -0.22 -0.45 

MAM 0.26 -0.04 -0.18 

JJA -0.10 0.29 -0.46 

SON 0.17 0.17 -0.41 

ERA-I 

DJF -0.03 -0.23 -0.56 

MAM 0.35 -0.07 -0.38 

JJA -0.17 0.35 -0.44 

SON 0.20 0.30 -0.47 

Table 3.7. Correlation coefficients between jet metrics for 20CR and ERA-I, 1979-2012 at 
700-900hPa. Significant correlations are indicated in bold (p≤0.05). 
 
Both reanalyses show a similar pattern of correlations between jet metrics at 700-900hPa 

(Table 3.7). Latitude/speed correlations are highest in spring, but only significant for ERA-I 

(p≤0.05), suggesting that in this season speed and latitude are influenced in part by common 

factors, whereas in other seasons different factors may influence speed and latitude. Similarly 

correlations between latitude and vrange are mostly weak and are only significant for summer. 

However, correlations between speed and vrange are negative and mostly significant. Thus 
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stronger zonal winds are indicative of a more zonal flow, whereas a slower zonal flow is 

associated with a more meridional “wavy” jet stream (e.g. Francis and Vavrus 2012; 2015). 

The various factors that may influence the jet metrics are explored in detail in Chapter 5. 

 

3.3.10. New reanalyses 

The two extended reanalysis products, ERA-20C and 20CRv2c have only recently become 

available (2015).  Both assimilate surface data only, but while 20CR only incorporates SLP 

and uses SST and sea-ice conditions as boundary conditions, ERA-20C also assimilates 

surface marine winds. Here jet latitude and speed from these two products at 700-900hPa are 

compared with the time series from 20CR extending from 1871, unadjusted for breakpoints. 

While ERA-20C is represented in full, a sampling approach is taken to 20CRv2c. Due to time 

limitations, three time periods are downloaded: 1851-1880, 1941-1950 and 1990-2000. These 

periods are chosen to incorporate the new, early portion of data prior to 1870, while creating 

an overlap with 20CR for direct comparison. The 1941-1950 subset represents a decade when 

World War II impacted upon data availability, while the 1990-2000 subset represents a more 

recent period with increased data availability.   

 

Jet-speed time series for 20CRv2c and 20CR show a good match (Figure 3.23, blue and red 

lines), with no significant differences between the two in summer and autumn, although 

differences are found to be significant in winter and spring (p≤0.05). However, ERA-20C, 

while portraying the same interannual fluctuations, appears to show a systematic difference in 

the seasonal mean wind speed.  In all time series ERA-20C shows a lower wind speed than 

20CR, the difference being greater prior to 1950 in all seasons. The difference is smallest in 

winter, and largest in summer, and there is less convergence between the reanalyses in 

summer in the post-1950 period. All differences between ERA-I and 20CR are highly 

significant (p≤0.01), whether pre- or post-1950, although for the post-1950 winter time series, 

the difference is only just significant agreeing with evidence from Figure 3.23 where time 

series from the reanalyses have converged in winter post-1950. The significance of 

differences is determined using the Wilcoxon signed-rank test (Chapter 3, section 3.2.3).  

 



 

 121 

 
Figure 3.23. Jet-speed time series for unadjusted 20CR (red), 20CRv2c (blue) and ERA-20C 
(green) from 700-900hPa zonal winds. Bold lines show series with 7-point binomial filter 
applied. 
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These differences demonstrate that in ERA-20C the annual cycle of wind speed has a greater 

amplitude than in 20CR (Table 3.8), particularly over 1900-1950. Apparent long-term trends 

in 20CR result from use of the non-homogenised time series for comparison purposes. These 

trends are not evident in 20CR when the series are homogenised (Chapter 2, Figures 2.8-2.9 

and Chapter 4, section 4.4.1). 

 

 20CR ERA-20C 

years DJF MAM JJA SON DJF MAM JJA SON 

1900-

1950 

14.03 11.39 10.18 11.56 13.37 10.26 8.93 10.54 

1951-

2010 

13.84 11.21 10.32 11.83 13.84 10.90 9.77 11.50 

Table 3.8. Mean jet speed (ms-1) for different periods within the time series, 20CR and ERA-
20C, using 700-900hPa zonal winds. 
 

Figure 3.24 presents the annual cycle of jet speed from ERA-20C and 20CR, subdivided to 

show the periods 1901-1950 and 1951-2010. While the annual cycles of 20CR jet speed are 

very similar for the two periods, there is a marked difference between the annual cycles for 

ERA-20C. While the 1951-2010 annual ERA-20C cycle is very close to 20CR in November 

to March, the difference is greater from April to October. The ERA-20C annual cycle for 

1900-1950 has consistently lower mean wind speeds for all months than both 20CR cycles 

and the 1951-2010 ERA-20C cycle. The difference is particularly marked from May to 

September, and the increased annual cycle is clearly visible. 20CR being much more 

consistent across both periods. The 1951-2010 annual cycle from ERA-20C is also consistent 

with those from 20CR.This suggests that over the period 1900-1950, ERA-20C is susceptible 

to under-representation of the jet speed. Chang and Yau (2015) find that storm-track activity 

prior to 1955 is biased low compared to 20CR, suggesting that ERA-20C is more affected by 

changes in observational density than 20CR.  The result here would support this assertion. 
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Figure 3.24. Annual cycles of jet speed from 20CR (blue) and ERA-20C (red) at 700-
900hPa. Solid lines are the annual cycles for 1900-1950 (solid) and 1951-2010 (dashed). 
 
Jet latitude time series are presented in Figure 3.25. 20CRv2c jet latitude compares 

favourably with that of 20CR. The two latter periods reproduce the time series for 20CR very 

closely, with slightly different values on average (less than 1° average for the period). The 

only significant differences between 20CR and 20CRv2c occur in spring. 20CRv2c gives the 

slightly higher latitude value for all overlaps in winter and spring, while summer and autumn 

do not show the systematic but marginal increase in latitude.  The results suggest that using 

20CRv2c in the thesis would make no significant difference to the results obtained, and it 

would be possible to splice the first 20 years of 20CRv2c onto the existing unadjusted 20CR 

series, to extend the existing jet metrics series, rather than starting afresh with 20CRv2c. The 

new spliced series could then be checked for homogeneity as in Chapter 2, and appropriate 

adjustments made.  

 

ERA-20C reproduces the interannual fluctuations of the 20CR time series, with the sign of 

change from one year to the next being the same, fluctuations being in-phase. However, there 

is a more noticeable systematic increase in jet latitude across all seasons, by between 0.5° and 

just over 1° depending on season, which is significant at p≤0.05. This difference, being 

systematic would not impact upon analyses carried out in this thesis, such as trend and 

variability analyses, and the identification of drivers of jet stream variability.  
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Figure 3.25. Jet-latitude time series for unadjusted 20CR (red), 20CRv2c (blue) and ERA-
20C (green), from 700-900hPa zonal winds. Bold lines show series with 7-point binomial 
filter applied. 
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The systematic difference in jet speed present between ERA-20C and 20CR does not appear 

to have a large impact on jet latitude as differences between the reanalyses pre- and post-

1950 are very similar. This is likely to be because the maximum jet speed still occurs at a 

similar latitude to 20CR throughout the time series, even though for the years 1900-1950, 

values across the zonal wind field are lower. However, the convergence of jet speed shown 

by 20CR and ERA-20C post-1950 will have an impact on assessments of trend and 

variability, although on closer analysis it may be found that this convergence is a 

consequence of inhomogeneities and can be adjusted. However, in both cases the long-term 

trends are likely to be unreliable as decreased observational density in the earlier parts of the 

time series results in greater uncertainty, less constrained models and a low bias where the 

uncertainty is greatest. 

 

The distribution of jet latitude is now examined in 20CRv2c and ERA-20C (Figures 3.26 and 

3.27), to establish if the distributions identified above are evident in these new products. 

Again, the basic patterns are present, albeit with slightly different shapes, such as the 

trimodal distribution in winter. Some of the differences in distribution are attributable to 

different periods covered as it has been demonstrated that the relative sizes of the three peaks 

in distribution for winter can change over time (Woollings et al., 2014) and different amounts 

of data are incorporated into the plots. Therefore Figures 3.26 and 3.27 should not be 

compared directly, but they do illustrate the presence of common features in different seasons 

found across reanalyses and time periods.  

 
 Figure 3.26. Seasonal  daily jet-latitude distributions for 20CRv2c, 1851-1880, from 700-

900hPa zonal winds. 
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 Figure 3.27. Seasonal daily jet-latitude distributions for ERA-20C (1900-2010), from 700-
900hPa zonal winds. 
 

3.4. Discussion 

In this chapter, jet metrics have been compared for 20CR and ERA-I. This establishes how 

effective 20CR is in portraying aspects of jet variability, derived from 700-900hPa 

measurements of zonal and meridional wind speed, given that the only data assimilated into 

20CR are surface pressure measurements. To test the hypothesis that the reanalyses will 

diverge in their portrayal of atmospheric circulation as height increases, a similar run of 

analyses was conducted using data from 200-300hPa. Finally, the representations of jet 

metrics from two new reanalysis products, 20CRv2c and ERA-20C were presented. 

 

At the 700-900hPa level there is a good match between the jet metrics from the different 

reanalysis products (ERA-I and 20CR). Common features include the representation of 

interannual variability, daily time series variability, jet-latitude distributions in different 

seasons, seasonal cycles and trend for all jet metrics. A few consistent discrepancies occur; 

ERA-I has a significant but slight northward shift in jet latitude, and a stronger jet in all 

seasons, although interestingly there is a slight southward shift in the peak latitude 

frequencies for the southern and central jet. On daily timescales there is a strong association 

between jet speed, latitude and vrange values in the two reanalyses although, particularly at 

high latitudes, there can be some discrepancies due to different representations of wind 

speeds near Greenland. Many of the discrepancies could be removed by redefining the North 

Atlantic sector as only extending to 72°N. 
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The close similarity between the two reanalyses gives confidence in the ability of a reanalysis 

based on surface inputs only, to represent the variability of the PFJ. Using the current 

algorithm for jet identification, it is important to use the 700-900hPa levels as greater 

discrepancies occur between reanalyses at 200-300hPa. This is to be expected with a surface-

based reanalysis compared with one incorporating satellite data. The problem is compounded 

by the presence of the STJ in winter and spring at this altitude, which is consistently stronger 

in ERA-I. Thus the 200-300hPa analysis highlights some of the discrepancies between the 

reanalyses. However, a modification of the algorithm could include identifying days where a 

split jet occurs, with a jet equatorward of 30ºN being identified as the STJ. The poleward jet 

could then be selected as representing the PFJ. This would ensure that a more “like-for-like” 

comparison of the PFJ in the upper troposphere in ERA-I and 20CR could be made. This 

would have the further advantage of identifying the wind speeds in the jet core, as those used 

in the current algorithm are too low, despite showing the correct interannual variability. 

Another alternative here would be to establish a mathematical relationship between wind 

speeds at the different levels, and apply this as an adjustment factor to 700-900hPa winds to 

give an indication of jet core speeds. 

 

The portrayal of seasonal jet differences (in height, latitude, strength and the separation of the 

PFJ and the STJ) is supported by examination of the seasonal-mean zonal winds for each 

reanalysis in the North Atlantic sector for each season, shown in Figure 3.28. The difference 

between the reanalyses has already been shown in Figure 3.19. 

 

A key question is to what extent the jet metrics outlined in this chapter capture the variability 

of the North Atlantic PFJ, and whether the metrics derived from 20CR are comparable with 

those from ERA-I. These issues can be addressed by examination of Figure 3.28.  

 

The seasonal-mean zonal-mean winds (Figure 3.28) show the vertical alignment of the upper 

tropospheric and lower tropospheric jet in summer and autumn, and in winter, but with 

distinct PFJ and STJ in the latter, at 200-300hPa the STJ being stronger in ERA-I, the PFJ 

stronger in 20CR. As can be seen for winter, small variations in the relative strengths of the 

two jets within one reanalysis will result in different latitude detection. The bias towards a 

stronger STJ in ERA-I and stronger PFJ in 20CR at 200-300hPa accounts for the different jet 

distributions seen at this higher altitude.  
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In spring, the STJ is much stronger at higher atmospheric levels, confirmed by the enhanced 

peak in jet latitude frequency at lower latitudes (Figure 3.20b), while at lower levels, the PFJ 

occurs further north explaining the low correlation between upper and lower jet metrics for 

this season. Furthermore, the STJ is much stronger in ERA-I than in 20CR, accounting for the 

greater discrepancy in jet-latitude distribution occurring in this season. 

 

In summer the jets are merged, which is captured by the stronger correlations between upper- 

and lower-level jet metrics (Table 3.7). The reanalyses show little difference in the mean 

strength of the jet, although the core of the jet and maxima at lower levels are displaced 

slightly north in ERA-I relative to 20CR. The jet metrics show this northward displacement 

in ERA-I together with similar jet speeds.  

 

During autumn, although the jets are beginning to separate in the mean flow, the PFJ remains 

stronger; hence the stronger correlations in this season between lower- and higher-level jet 

metrics. As with summer, the representation of the jet is slightly polewards in ERA-I relative 

to 20CR.  

 

Figure 3.28 also shows the clear annual cycle of jet strengthening in winter and weakening in 

summer, and the summer poleward shift and winter equatorward shift of the PFJ, which are 

well captured by the jet metrics (section 3.3.4). These cross-sections increase confidence in 

the ability of the jet metrics to portray aspects of North Atlantic jet variability, since annual 

cycles, differences between the strength of the STJ and PFJ and differences between upper 

and lower tropospheric winds are well represented by the jet metrics. 
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Figure 3.28. Latitude-height cross-sections of mean seasonal zonal winds averaged over 0-
60°W, for the climatological period 1981-2010, taken from 20CR(left) and ERA-I (right). 
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Examination of the new 20CRv2c reveals that interannual variability in 20CRv2c seems to 

correspond well to that shown by 20CR, with similar seasonal values obtained for both jet 

speed and latitude. However, the present version of ERA-20C, while portraying the 

interannual variability accurately in terms of the sign of change from one year to the next, 

shows a jet speed that is markedly lower than for 20CR, particularly prior to 1950. Further 

analysis of this product may reveal breakpoints, that when adjusted, produce time series that 

are compatible with other reanalysis products. This is, however, beyond the scope of this 

thesis and breakpoints in ERA20C cannot be verified against ensemble spread data. Both 

20CR and ERA-20C will be to some extent incorrect representations of the state of the 

atmosphere. The two versions of 20CR are in close agreement, and there is no large change to 

jet speed and latitude in the early part of the time series, despite new boundary condition 

datasets and additional observations incorporated from a later version of the ISPD (v3.2.9). 

However, from Figure 3.24, the annual cycle of jet speed in ERA-20C for 1900-1950 is 

distinct from the other annual cycles, including that for ERA-20C post-1950. This suggests 

that in the period prior to 1950, ERA-20C is more affected by the observation density 

decrease, although both reanalyses are likely to be biased low where the models are less 

constrained by observations and long term trends are therefore likely to be unreliable. The 

greater impact of observational density change on ERA-20C is supported by Chang and Yau 

(2015). A model only version of ERA-20C is available, ERA-20CM (Hersbach et al., 2013), 

which has no data assimilation. It could be used to assess whether the identified changes in 

ERA-20C over time are indeed a consequence of data assimilation.  

 

The multimodal nature of the jet-latitude distribution in winter at 700-900hPa appears not to 

be an artifact of spatial resolution, time period or reanalysis product, as similar features are 

present in all datasets  (Woollings et al., 2010a; 2014). Furthermore, similarities are evident 

between reanalyses for the jet-latitude distributions in other seasons: summer having a 

unimodal distribution with a distinct shoulder on the poleward side, spring showing a 

trimodal distribution and a bimodal distribution in autumn.  

 

The projected poleward shift of the jets under climate change (e.g. Yin, 2005; Butler et al., 

2010) is driven by increased north-south temperature gradients in the upper troposphere, as at 

this level tropical warming is dominant, whereas in the lower troposphere Arctic 

amplification is suggested to reduce the temperature gradient at lower levels. Thus there are 

clear competing influences over the direction of change of jet latitude under climate change 
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(e.g. Barnes and Screen, 2015). Certainly according to the metrics here there is no significant 

trend in jet speed and meridionality in any season, with a significant decrease in jet latitude in 

summer over the period 1979-2012, counter to predictions from models. This could be a 

consequence of Arctic Amplification often acting to counter the projected northward shift, or 

could be due to atmospheric internal variability and need not be present in all regions. It is 

also consistent with results which show no agreement amongst models over the direction of 

jet shift amongst CMIP5 models in the near-term, to 2044 (Barnes and Polvani, 2015). 

However, the lack of trends identified in this chapter is only for a small part of the 21st 

century projection time period. It is possible that observed trends will change in future. The 

large amount of interannual variability will also act to obscure any underlying trend, 

particularly on shorter timescales. Further trend analysis over a longer time period extending 

back to 1871 is presented in Chapter 4. 

 

3.5. Conclusions 

In this chapter, a thorough comparison of jet metrics from two reanalyses has been presented, 

both for 700-900hPa and for 200-300hPa and differences between the reanalyses have been 

identified. The jet stream metrics identified by Woollings et al. (2010a) and here extended to 

include a measure of jet meridionality, are able to capture a number of aspects of the zonal 

flow in the Atlantic sector. Seasonal cycles are well represented, and there are highly 

significant correlations between the jet metrics as portrayed by each reanalysis at 700-

900hPa, which gives a high degree of confidence in the ability of data from 20CR to portray a 

realistic PFJ. The use of 700-900hPa winds gives a good representation of the latitude of the 

PFJ, even though the jet core is not sampled, due to the vertical alignment of maximum jet  

speeds at different levels throughout the troposphere. ERA-I portrays a slight northward shift 

and strengthening of the jet relative to 20CR.  These differences are statistically significant 

and reflect slight biases in reanalyses. These will, however, have minimal impact upon 

analyses of interannual jet variability as different reanalyses show the same year-to-year 

fluctuations.  

 

Upper-level winds are more problematic, and are represented differently in the two 

reanalyses, with the STJ stronger in ERA-I and the PFJ stronger in 20CR. The algorithm 

therefore samples the jet from different latitudes, particularly in winter and spring when there 

is a clear separation of the two jets in the mean zonal flow. The jet-speed and -latitude 

metrics are therefore not suitable for use in the upper troposphere due to the presence of both 
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jets, and neither reanalysis will be able to isolate the PFJ. The comparison of the metrics at 

this higher level is, however, useful in demonstrating systematic biases in the two reanalyses 

in their portrayal of upper tropospheric circulation, and confirms that when using a reanalysis 

derived from surface inputs only, there will be greater discrepancies between 20CR and other 

reanalyses at higher levels. 

 

The jet-latitude frequency distributions and their seasonal variation at 700-900hPa appear to 

be robust in both reanalyses and are insensitive to the period used or spatial resolution. Clear 

GPH anomalies are associated with each of the three modes of winter jet latitude and studies 

indicate that these three modes are linked with blocking either over Greenland (the southern 

jet mode), Europe (the northern node) or with no blocking (the central mode).  

 

There are few significant trends in either reanalysis for the period 1979-2012, the only 

significant trend being evident in both reanalyses is a southward trend in summer jet latitude. 

This lack of a poleward trend is consistent with research which indicates that models show a 

wide spread of latitude shift over the first part of the 21st century, with no clear agreement on 

direction of shift (e.g. Barnes and Polvani, 2015), although here only a small part of the 21st 

century is covered, and observed trends may change in future, with no guarantee that they 

will match predicted trends. Furthermore, the projected shift polewards is in the global mean 

and there are likely to be regional differences in this. Trend identification is particularly 

susceptible to the selection of start and end points and anomalous values and Chapter 4 

examines more closely patterns of trends over a longer timescale.  The southerly trend in jet 

latitude in summer is indicative of wetter summers in western Europe, as recently 

experienced, which may to be linked to the phase of the AMO (Sutton and Dong, 2012). No 

significant correlation has been found between jet speed and latitude, but jet speed shows 

significant negative correlations with meridionality in winter, summer and autumn in both 

ERA-I and 20CR, suggesting meridional, meandering flow is slower. The lack of correlation 

between jet speed and latitude indicates that different factors influence their variability, and 

this is explored more fully in Chapter 5.  

 

The release of ERA-20C and 20CRv2c during 2015 may support the extension of jet metrics 

to cover a longer time series. While 20CRv2c is well-matched to the existing 20CR and 

offers the potential to extend back to 1850, ERA-20C shows the same interannual change but 

with systematically lower jet speeds, particularly before 1950. This product is likely to 
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undergo further development however, and it may be possible to correct for breakpoints using 

the methods discussed in Chapter 2. The analysis presented in this chapter gives confidence 

in the ability of 20CR to represent the PFJ using lower tropospheric wind speeds, and 

therefore the extension of jet metrics back to the 19th century is likely to give a reasonable 

indicator of past jet stream variability. However, it is important to bear in mind that there will 

be increased uncertainty in the earlier portions of the time series, due to decreased data 

availability, which will affect long-term trends in the data. Counter to this, however, is the 

fact that data coverage from the Atlantic sector is much better than from other regions. The 

breakpoint analysis presented in Chapter 2 should address some aspects of this problem for 

20CR although similar breakpoints arising from data assimilation issues cannot be as readily 

identified for ERA-20C as there is no spread data available. 
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Chapter 4 

Jet Stream Trends and Variability 
 

4.1. Introduction 

Chapter 3 examined trends in jet stream metrics from 1979/1980-2012 and found little 

evidence of significant trends for this recent period, apart from a decrease in summer jet 

latitude. The 20CR reanalysis (Compo et al., 2011) allows the examination of trends over a 

longer period, from 1870 (although this has recently been extended to 1851, 20CRv2c)3. 

However, it should be borne in mind that overall linear trends are sensitive to start and end 

points of the time series and the influence of outliers, and can overlook shorter periods within 

the time series where trends are significant. Long-term trends will also be susceptible to the 

presence of inhomogeneities in a time series (e.g. Wang et al., 2012), which in the case of 

20CR are likely to result from a decrease in assimilated surface observations in the earlier 

part of the time period, resulting in increased ensemble spread for that period (see Chapter 2). 

 

Jet stream metrics may exhibit periodicities in their fluctuations, that is quasi-regular 

fluctuations of certain lengths, or periods. A number of potential jet stream drivers discussed 

in Chapter 1 have quasi-regular periodic signals on different timescales, such as the solar 

cycle with a period of around 11 years, the quasi-biennial oscillation with an average period 

of around 28 months, and the Atlantic Multidecadal Oscillation (AMO), with a period of 65-

80 years. It would be expected that some evidence of these periodicities would be detectable 

in the jet metrics if indeed the potential drivers are interacting with the jet stream. 

 

Recent studies suggest that with increased Arctic Amplification (AA), and the consequent 

decrease in poleward temperature gradient, the jet stream may become slower and more 

meandering, with an increased tendency for blocking events and extreme weather (e.g. 

Francis and Vavrus 2012; 2015). However, this AA has only clearly emerged since the mid 

1990s (e.g. Cohen et al., 2014) and these findings concerning the jet stream are controversial. 

They may also be metric dependent (e.g. Screen and Simmonds, 2013; Barnes 2013), and are 

difficult to detect in model projections  (e.g. Barnes and Polvani, 2015). Despite this, there is 

evidence for increases in a number of types of extreme weather (e.g. Coumou and Rahmstorf, 
                                            
3	20CR is used here as the release of 20CRv2c was too late to enable it to be included in the analysis.	
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2012) and several significant extreme cold events have impacted on the northern hemisphere 

winter over recent years such as in 2009/10 and 2010/11 (e.g. Seager et al., 2010; Fereday et 

al., 2012) and the “polar vortex” event of 2013/14 over North America (Davies 2015; Lee et 

al., 2015). Cohen et al. (2009) suggest that increasing occurrences of extreme cold in late 

boreal winter is a trend that has been evident since the late 1980s. There is evidence of recent 

persistent weather patterns on subseasonal timescales. For example, winter 2009/10 showed 

persistence of extreme cold in western Europe (Seager et al., 2010), while winter 2013/14 

was the wettest on record in the UK (Matthews et al., 2014), with a succession of storms and 

flooding over the UK, and persistent mild conditions. Winter 2015/16 set a number of records 

in the UK, being the warmest winter for England and Wales since 1910 and the wettest 

season on record for Scotland, Wales and Northern Ireland, second only to the winter of 

2013/14 for the UK as a whole (Met Office, 2016a). December 2015 was the warmest 

recorded December in the UK since 1910 and the warmest in the Central England 

Temperature record (Manley 1974; Parker 1992) since 1659 with rainfall at 191% of the 

average for the month  (Met Office 2016b). These winters also represent extreme examples of 

their type occurring in quick succession, with cold and mild extremes increasing interannual 

variability. Conversely, in summer, the UK has experienced a recent run of cool wet summers 

(2007, 2008, 2009, 2011, 2012; Belcher et al., 2014), with notable UK flooding in 2007 and 

2012 (e.g. Blackburn et al., 2008; Kennedy et al., 2013). 

 

The recent patterns of variability outlined above can be summarised qualitatively as follows: 

the interannual variability of winters has increased, while subseasonal variability is 

decreasing as winters show less variability over their duration. Meanwhile summer variability 

is decreasing on both timescales. The increased interannual variability could be attributable to 

an increasingly meridional jet stream, as proposed by Francis and Vavrus (2012; 2015), 

which may tend to increase variability as blocking and instances of extreme weather may 

occur at different locations each year. Similarly, the presence of blocking could enhance 

subseasonal persistence of weather conditions in particular locations. Screen (2014) argues 

that subseasonal temperature variance is decreasing partly as a consequence of AA; as the 

Arctic warms more rapidly than lower latitudes, northerly winds and the cold days they bring 

will be relatively warmer than the increased warmth of southerly winds and associated warm 

days. However this thermodynamic change will not necessarily impact upon dynamical 

circulation changes in the same way. In summer however, the recent persistence of wet 

summers may be due to the natural variability of the AMO (e.g. Sutton and Dong, 2012), 
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where the warm phase of the AMO is associated with a southward displacement of the North 

Atlantic PFJ in summer. 

 

To place recent changes in a long-term context, there is a need to go beyond the analysis of 

trends in means. Increased interannual variability in itself will not necessarily impact upon 

the overall trend of mean climate metrics, and similarly increased or decreased subseasonal 

variability will not necessarily impact upon the seasonal-mean values. There is therefore a 

need to examine changes in variability over time. A simple measure of interannual variability 

which can be employed is the running standard deviation, and metrics are developed for 

examining subseasonal variability. Periodicity is examined using wavelet analysis, and trends 

are assessed using overall linear trends for the time period 1871-2012, together with trends in 

a 15-year moving window. In addition, the analysis of the longer time series offered by 

20CR, compared with other reanalyses, allows any recent changes to be placed within a 

historical context. 

 

4.2. Data 

Data used are the homogenised time series of seasonal jet metrics from 20CR, 1871-2012 

(see Chapter 2 for details) derived from 700-900hPa zonal winds. Winter time series run from 

1872.  Daily jet stream data for each season, as derived in Chapter 2, are used to assess 

subseasonal jet-metric variability. Due to issues with the earlier part of the jet-meridionality 

time series, jet meridionality is taken from 1901 rather than 1871 (see Chapter 2). In addition, 

daily data from ERA-Interim (ERA-I, Dee et al., 2011) are used to identify winter 

subseasonal variability in the two most recent years (2013, 2014) available at the time of 

analysis. 

 

4.3. Methods 

4.3.1. Trend analysis 

Trend analysis and the identification of significant trends are carried out as discussed in 

Chapter 3, using the Mann-Kendall trend test and OLSR for identifying overall trends. 15-

year running trends are identified by applying a 15-year moving window to the time series, 

which results in the loss of seven years from each end of the time series, but this is a small 

loss compared to the overall length of the time series (142 years). A 15-year moving window 

enables a reasonable number of degrees of freedom to be retained, whilst ensuring that very 

short fluctuations in trends are smoothed out. The significance of the trend for each window 
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is calculated using the Mann-Kendall trend test, the magnitude of the trend being determined 

by the Theil-Sen slope estimator. For OLSR, the trend significance is calculated using the t-

value as described in Chapter 3, section 3.2.8. 

 

4.3.2. Wavelet analysis 

Fourier analysis is a standard technique for identifying periodicities within a time series. 

However, this standard technique tends to average out periodicities over the time series, 

giving no indication as to whether periodicities are constant features across the time series. A 

particular periodicity could be very evident for a portion of the analysis but may appear to be 

insignificant over the longer series as a whole due to the averaging out of the Fourier 

analysis. For this reason, wavelet analysis is preferred, as periodicities can be identified over 

shorter periods of time. Further details can be found in Torrence and Compo (1998). 

 

The Continuous Wavelet Transform (CWT) is an effective method for extracting features in 

time-frequency space, especially if the signal-to-noise ratio is low (Grinsted et al., 2004). A 

wavelet function ψ0(η) has zero mean and is localised in time-frequency space, where η is a 

non-dimensional time parameter. The wavelet function acts like a bandpass filter over the 

time series, giving a measure of the variance of periodic features in the time series across the 

range of frequencies in question, and how this variance changes over time. The CWT of a 

time series xn, n=1,….,N, with equal time intervals δt,  is its convolution with scaled and 

translated versions of the wavelet used. Here the morlet wavelet is used: a good choice for 

geophysical time series as it is localised in space and time (Grinsted et al., 2004). The 

dimensionless frequency ω0 of the morlet wavelet is usually set as six (that is, there are six 

complete oscillations within the wavelet, Torrence and Compo, 1998). Six oscillations means 

that correction terms are unnecessary in order to ensure the wavelet has a mean of zero 

(Farge, 1992). The morlet wavelet is defined by: 

 

                       𝜓! 𝜂 = 𝜋!! !𝑒!!!!𝑒
!!!

!                    Eq. 4.1 
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The convolution of xn with a scaled, normalised version of ψ0 gives the continuous wavelet 

transform of xn : 

 

            𝑊!! 𝑠, 𝑡 =
𝛿𝑡
𝑠 𝑥!!

!

!!!!

𝜓!
𝑛! − 𝑛 𝛿𝑡

𝑠       Eq. 4.2 

 

where s is the wavelet scale, t is time, n is the localised time index of the time series points 

along which the wavelet is translated and n’ is the summation index. The wavelet scale is 

varied and translated along the time index n, revealing the amplitude of any features at a 

given scale, together with amplitude variation over time. The wavelet power spectrum is 

given by |Wn
X(s)|2. CWTs are calculated for jet metric time series and the normalized wavelet 

power spectrum given by |Wn
X(s)|2 /σX

2, where σX
2 is the variance of the background 

spectrum, is plotted. As with Torrence and Compo (1998), it is necessary to use a Cone of 

Influence (COI), to guard against the influence of edge effects, as the wavelet is not entirely 

localised in time. The COI identifies regions of time-frequency space where edge effects have 

reduced the wavelet power.  This is the area seen below the curve, with semi-transparent 

shading in the figures and results should not be interpreted in this area. This process is carried 

out using the R package “biwavelet” (Gouhier, 2014). The 95% confidence levels for the true 

wavelet power being above the background level are shown by a solid black line, and are 

measured against a background autoregressive AR1 red-noise process.  

 

The Fourier power spectrum Pk of an AR1 process with lag-1 equal to α, estimated from the 

observed time series is given by: 

 

       𝑃! =
1− 𝛼!

1+ 𝛼! − 2𝛼𝑐𝑜𝑠 2𝜋𝑘/𝑁           Eq. 4.3 

 

where k is the frequency index 0….N/2. This is the background level against which wavelet 

power is measured. Thus as shown in Torrence and Compo (1998), the probability of wavelet 

power being greater than p is given by:  

 

         𝐷
|𝑊!! 𝑠, 𝑡 |!

𝜎!!
=
1
2𝑃!𝜒!

! 𝑝            Eq. 4.4 
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where v equals 1 for real wavelets and 2 for complex wavelets. 

 

4.3.3. Assessing changes in variability 

Changes in interannual variability can be identified by applying the standard deviation to a 

moving window of time-series values. Different lengths of running standard deviation 

window are applied to ensure that results are not sensitive to the length of the window 

chosen. The year identified by the moving window is centred on the middle year of the 

window. However, when comparing with possible drivers of variability change (section 4.5), 

the final year of the window is the year represented by the standard deviation of the window 

as incorporating future values in a moving window would be meaningless in looking for co-

variability. 

 

A number of approaches are considered for determining subseasonal variability. Taking jet 

latitude as an example, a standard deviation of the daily jet-latitude values for a season could 

be used (e.g. Woollings et al., 2014). However, alternative approaches can give finer 

resolution. Applying a standard deviation using moving windows, and finding the mean 

window standard deviation for the season in question achieves qualitatively the same results 

as identifying the average daily jet metric shift, which is designed to give a measure of the 

sinuosity of the seasonal jet latitude-time plot. Absolute values for daily shifts of the jet 

metric are simply summed and divided by the number of daily transitions (number of days 

minus one). A high value for the mean daily change indicates a jet that is less persistent at a 

particular value, the converse also being true. Here, the method used is the mean daily change 

in the jet metric over the season in question. Any trends evident in interannual and 

subseasonal jet variability are identified using the Mann-Kendall trend test.  

 

4.3.4. Synthetic time series 

The patterns in trend and variability that are identified could be a product of random internal 

variability. To test whether similar patterns can be obtained by chance, random time series 

are generated, which have the same mean, standard deviation and length as the jet-metric 

time series. A number of values equivalent to the time-series length are randomly selected 

from the normal distribution with mean and standard deviation as above and used to create a 

synthetic time series. The analyses discussed above can then be applied to these random time 

series and compared with results from the jet metrics. 
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4.4. Results 

4.4.1. Trend analysis 

In this section, trends in the seasonal jet metrics are identified, and their significance is 

assessed. This is done for both homogenised and unadjusted time series; the time series for 

winter jet speed and latitude not requiring homogenisation (Chapter 2, section 2.3.2). Time 

series of the jet metrics can be seen in Chapter 2, Figures 2.8-2.10.  Table 4.1 shows the 

linear trends calculated according to the Mann-Kendall trend test (Table 4.1a) and OLSR 

(Table 4.1b), for the whole homogenised time series. There is agreement between the two 

approaches in identifying most of the trends as being insignificant (p>0.05). The only trend 

identified as significant (p≤0.05) over the time period is a positive trend in winter jet speed, 

from 1872-2012, which is identified using both methods. This trend over the whole period 

(derived using the Theil-Sen slope estimator) amounts to an increase in jet speed of 0.93ms-1 

± 0.74 ms-1 (95% confidence interval) over 142 years, an increase of around 7%. It should be 

emphasised at this point that the homogenisation procedure used in Chapter 2 will reduce the 

magnitude of any trends identified from unhomogenised time series. Trends for unadjusted 

time series are shown for comparison in Table 4.1c, based on the Mann-Kendall trend test 

and Theil-Sen slope estimator only, as Table 4.1b shows this trend analysis performs 

comparably to the OLSR trend analysis. Most trends from unadjusted data are found to be 

significant (Table 4.1c), thus the results confirm that the trends identified in unadjusted data 

from 20CR over the period 1871-2012 are consistent with those that would arise from 

changes in data-assimilation density in the earlier parts of the reanalysis. 

 

jet metric DJF MAM JJA SON 

speed (ms-1 yr-1)  0.007±0.005 -0.002±0.004 -0.001±0.002  0.001±0.003 

latitude (°N yr-1)  0.006±0.014  0.009±0.012 -0.002±0.008  0.000±0.006 

vrange  (yr-1) -0.001±0.001  0.002±0.003 -0.001±0.002 -0.002±0.002 

Table 4.1a Trends for seasonal jet metrics, 1871-2012 (1872-2012 for winter, 1901-2012 for 
vrange) calculated using the Mann-Kendall trend test and the Theil-Sen slope estimator, 
(significant trends in bold). 95% confidence interval is shown. 
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jet metric DJF MAM JJA SON 

speed (ms-1 yr-1)  0.006±0.003 -0.002±0.002 -0.002±0.002 0.001±0.002 

latitude (°N yr-1)  0.007±0.007  0.009±0.006 -0.001±0.001 0.000±0.004 

vrange  (yr-1) -0.001±0.001  0.001±0.001 -0.001±0.001 0.000±0.001 

Table 4.1b Trends for seasonal jet metrics, 1871-2012 (1872-2012 for winter, 1901-2012 for 
vrange) calculated using OLSR (significant trends in bold). 95% confidence interval is shown. 
 

jet metric DJF MAM JJA SON 

speed (ms-1 yr-1) 0.007±0.005 0.005±0.005 0.007±0.003 0.013±0.004 

latitude (°N yr-1) 0.006±0.014 0.026±0.013 0.017±0.009 0.013±0.009 

vrange  (yr-1) 0.004±0.002 0.004±0.002 0.006±0.001 0.004±0.001 

Table 4.1c Trends for unadjusted seasonal jet metrics, 1871-2012 (1872-2012 for winter, 
1901-2012 for vrange) calculated using the Mann-Kendall trend test and the Theil-Sen slope 
estimator (significant trends in bold). 95% confidence interval is shown. 
 
Figures 4.1 to 4.3 show the 15-year moving window trends calculated for each season of the 

jet metrics. Significant 15-year trends are marked in red.  Significant trends are not always 

the trends of greatest magnitude. This is because serial correlation of time series residuals 

needs to be considered when assessing the significance of a trend. If the residuals show serial 

correlation, the null hypothesis of no trend is rejected too frequently. This is remedied here 

using the Yue-Pilon adjustment (Yue et al., 2002) to remove serial correlation from the data 

prior to testing for trend (Chapter 3, section 3.2.8). Thus trends of greater magnitude that are 

not identified as significant will have greater serial correlation of residuals. 

 
Figure 4.1. 15-year running trends of jet speed for each season, 1871-2012 (1872-2012 for 
winter).  Significant 15-year trends are indicated in red (p ≤0.05), located at the central year 
of the window.  
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For all jet metrics, it is apparent that over 1871-2012, 15-year trends vary considerably from 

positive to negative. There are relatively few significant trends within the period, often 

occurring in clusters, which signify a more sustained trend in the jet metric over a number of 

years: for example spring jet speed (Figure 4.1b) shows a cluster of significant 15-year 

moving window trends from 1954-1960, followed by significant negative trends from 1966-

1970. Some of these clusters coincide across seasons or metrics. Winter and spring jet 

latitude both show significant negative trends in the mid 1950s (Figure 4.2a,b) and spring and 

summer jet latitudes have significant positive trends in the early 1930s (Figure 4.2b,c), while 

spring and summer jet speed have significant negative trends in the late 1920s (Figure 

4.1b,c).  

 

Recent (post-1980 trends) seen in this context are in no way unprecedented, and largely 

insignificant. For jet speed (Figure 4.1) and vrange (Figure 4.3) the only significant trends after 

1990 occur in spring, and are restricted to only two (speed) or one (vrange) moving windows.  

 
Figure 4.2. 15-year running trends of jet latitude for each season, 1871-2012 (1872-2012 for 
winter).  Significant 15-year trends are indicated in red (p ≤0.05), located at the central year 
of the window.  In c) the detrended AMO is shown as a blue dashed line, without scale for 
clarity. 
 

The recent negative trend in summer jet latitude is identified and found to contain significant 

15-year trends (Figure 4.2c), but is similar to episodes in the 1880s and 1940s where similar 

clusters of significant negative trends occur. The significant negative trends in summer jet 
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cluster of significant positive trends in the 1970s coincides with a negative AMO. As 

indicated in Chapter 1, a positive AMO is associated with a southward displacement of the jet 

(e.g. Folland et al., 2009), so this negative trend is consistent with the jet shifting south 

during this phase. However, the cluster of significant positive trends in the 1930s does not 

conform to this pattern of association, corresponding to a positive AMO and is likely to be 

due to internal variability. 

 

 
Figure 4.3. 15-year running trends of jet vrange for each season, 1901-2012.  Significant 15-
year trends are indicated in red (p ≤0.05), located at the central year of the window. 
 

Figures 4.4-4.6 put these significant trends into context, plotting the significant trends onto 

the filtered jet metric time series (using a 15-point binomial filter to correspond better with 

the trend moving window).  

 

It can be seen that isolated significant trends are often the result of proximity to a particularly 

extreme value of the jet metric (e.g. autumn jet latitude, 1882, Figure 4.5d). Some instances 

of significant trends do not appear to correspond to the trends demonstrated by the smoothed 

time series (e.g. SON vrange, 1923, Figure 4.6d) where a significant negative 15-year trend is 

indicated, although the overall pattern for the smoothed time series is of increasing vrange in 

the 1920s. Again, the proximity of some extreme values is likely to influence the 15-year 

trend. Thus isolated significant trends prove little, and can arise as a consequence of internal 

variability. Clusters of significant trends can be seen to correspond to longer timescale 
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variability, for example spring latitude during the 1950s and 1960s (Figure 4.5b), where there 

is a clear decadal pattern of increasing and then decreasing jet latitude. 

 
Figure 4.4. Homogenised jet-speed time series (faint blue line), 1871-2012 (1872-2012 for 
winter), smoothed with a 15-year binomial filter (bold blue line). Significant (p ≤0.05) 15-
year trends are plotted onto the smoothed series, at the central year of the moving window, 
positive trends are red, negative trends are black. 
 

 
Figure 4.5. Homogenised jet-latitude time series (faint blue line), 1871-2012 (1872-2012 for 
winter), smoothed with a 15-year binomial filter (bold blue line). Significant (p≤0.05) 15-
year trends are plotted onto the smoothed series, at the central year of the moving window, 
positive trends are red, negative trends are black. 
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Figure 4.6. Homogenised jet-vrange time series (faint blue line), 1900-2012, for the four 
seasons, smoothed with a 15-year binomial filter (bold blue line). Significant (p≤0.05) 15-
year trends are plotted onto the smoothed series, at the central year of the moving window, 
positive trends are red, negative trends are black. 
 

To summarise, considering long-term linear trends overall there is no evidence to suggest that 

there are significant trends in jet metrics over the whole period 1871-2012, with the exception 

of winter jet speed (Table 4.1a,b,c), which shows a significant positive trend (p ≤0.05). Other 

overall trends identified in unadjusted jet metrics are consistent with those that would arise as 

artifacts of changes in data-assimilation density.  

 

Based on 15-year trends, no recent significant trends have been identified in autumn and 

winter, apart from one instance of a significant positive trend for autumn jet latitude (Figure 

4.2d), which might be anticipated post-2000 as a response to AA (but see section 4.5). The 

exception to the lack of recent significant trends is the significant negative trend in summer 

jet latitude since 2000, although AA is less strong in the summer and trends are more likely to 

be a consequence of the natural variability of the AMO (e.g. Sutton and Dong, 2012). 

Significant 15-year window trends occur infrequently through the time period; 10.9% of all 

15-year trends being significant. Clusters of significant 15-year window trends are indicative 

of trends on a decadal timescale. It is possible however that such patterns of 15-year trend 

variability are produced by internal variability. For example, using synthetic time series and 

identifying 15-year moving window trends, similar trend patterns, including clustering of 
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significant trends, can be created, examples of which are shown in Appendix A.4.1. For 

synthetic series for each season and jet metric, 8.9% of 15-year moving window trends are 

found to be significant. Without further investigation it cannot be concluded with certainty at 

this stage that periods with consecutive significant 15-year trends are a consequence of some 

external forcing, although the coincidence of a number of significant trend clusters in summer 

jet latitude with phases of the AMO points to a likely source of forcing external to the 

atmosphere. 

 

4.4.2. Wavelet Analysis 

Evidence for any periodicities in jet metrics will now be presented, using the results of 

wavelet analysis. Wavelet power spectra are plotted in Figures 4.7 to 4.9. It would be 

expected that about 5% of the area of each plot would be identified as significant by chance 

and areas of significant power should be viewed in this context.  

 
Figure 4.7. Wavelet power spectra for seasonal jet speed, 1871-2012 (1872-2012 for winter). 
Black contours show regions that are significantly different from the background AR1 
spectrum at p≤0.05. Cone of influence extent is shown by the semi-transparent overlay. 
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Jet-speed wavelet plots (Figure 4.7) are characterised by small regions of apparent 

significance at periods of eight years or less, which last for around 10-20 years. These could 

be predominantly due to internal variability as similar features can be generated from a 

synthetic white-noise time series (Appendix A.4.2). More persistent features exist at longer 

periods in spring (20-30 years periodicity, 1950-1980, Figure 4.7b), summer (centred on a 40 

year period, 1920-1960 but continuing into the COI, Figure 4.7c) and autumn (centred on a 

24 year period, 1910-1980, Figure 4.7d). No such significance at longer periods is evident in 

winter. It is possible to find areas of significance at longer time periods in synthetic series but 

they tend not to be as sustained. 

 

 
Figure 4.8. Wavelet power spectra for seasonal jet latitude, 1871-2012 (1872-2012 for 
winter). Black contours show regions that are significantly different from the background 
AR1 spectrum at p≤0.05. Cone of influence extent is shown by the semi-transparent overlay. 
White contour in a) shows the p≤0.1 significance level for winter only. 
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Patterns of significant periodicities for jet latitude (Figure 4.8) are subtly different. There is 

now little evidence of significance at periods longer than 20 years, with the exception of 

spring (Figure 4.8b). It should be emphasised that any periodicity arising as a consequence of 

the AMO will not be captured by the wavelet plots as the longest period represented by the 

diagrams that falls outside the COI is 48 years, which is shorter than the period of the AMO 

at 65-80 years. It will be noted that there is some evidence of significant power at longer 

periods, which lies within the COI for summer (Figure 4.8c), consistent with the discussed 

influence of the AMO on jet latitude.  Again, small areas of significance at shorter periods 

may be due to internal variability, but more structure is evident at periods of eight to sixteen 

years in winter, summer and autumn. There is a suggestion of harmonics at periods of eight 

and sixteen years in winter (Figure 4.8a) even though no areas are identified as significant at 

the 95% level between 1900-1920. Areas of significance are however, found at the 90% level 

for eight and 16-year periods, shown as white contours. 

 

 
Figure 4.9. Wavelet power spectra for seasonal jet vrange, 1901-2012. Black contours show 
regions that are significantly different from the background AR1 spectrum at p≤0.05. Cone of 
influence extent is shown by the semi-transparent overlay.  
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Plots for vrange  (Figure 4.9) show few significant periods; periodicities of around eight years 

being episodic over the time period, with significant areas covering not much more than 5% 

of the plot. There is an indication of significant power at a period of around 16 years in 

summer and autumn, although this is not significant (p≤0.05) in autumn. 

 

In summary, there is limited evidence of persistent significant periodicities in time series of 

jet metrics and the more obvious periodicities in potential forcing mechanisms such as solar 

variability, the quasi-biennial oscillation and the AMO (see Chapter 1) are not consistently 

detected. Shorter periods assume significance for 10-20 years before disappearing and are 

likely to be due to internal variability. Longer periods exhibit greater persistence, and 

periodicities evident in jet speed are longer than those in jet latitude (24-40 years for jet 

speed, 8-16 years for jet latitude). This is consistent with Woollings et al. (2014) who find 

that jet speed shows stronger multi-decadal variability than does jet latitude. However, there 

are some differences from their results. They find significant low-frequency decadal 

variability for jet speed in all seasons except summer, whereas here winter is the exception 

(Figure 4.7). The low-frequency variability in jet latitude for spring and summer found by 

Woollings et al. (2014) is, however, supported by Figure 4.8. Associations between the 

periodicities and phases of jet metrics and potential drivers of variability are further examined 

in Chapter 5 using wavelet coherence, which is able to detect regions of common power in 

time-frequency space even though power may be quite low (Grinsted et al., 2004). 

 

4.4.3. Interannual variability 

Interannual variability is investigated by measuring the standard deviation over different 

lengths of moving window. Changes in interannual variability over the period 1871-2012 are 

summarised in Figures 4.10 to 4.12. All metrics and seasons show distinct periods of 

increased and decreased interannual variability over the time series. For example, the early 

1990s has increased interannual variability for the winter jet speed, while the early 1980s are 

characterised by lower interannual variability (Figure 4.10a). It is clearly seen that the size of 

moving window has little impact on the results obtained, in identifying these periods of 

increased and decreased variability. All time series of running standard deviations are 

analysed for the significance of any overall linear trend, using the Mann-Kendall trend test as 

above (section 4.3.1, Chapter 3, section 3.2.8). 
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Figure 4.10. Standard deviations of jet speed for the four seasons using moving windows of 
7 (blue), 11 (red) and 15 years (green). The year is the central year of the window. 
 
Considering jet speed (Figure 4.10), there are no significant overall trends in interannual 

variability over the period 1871-2012. Mean winter jet-speed variability is highest, reflecting 

the stronger jet speeds and greater jet-speed spread evident in this season (Chapter 3, Figure 

3.5).  The summer jet-speed interannual variability appears to be distinct from those in other 

seasons: from 1930 to 1980 the changes in interannual variability are small, whereas the early 

1880s, 1920s and 1990s are characterised by large increases in summer jet speed interannual 

variability. Other time series are marked by more regular fluctuations in interannual 

variability. Trends in interannual variability are significant (p≤0.05) over shorter timescales, 

for example the positive trend in autumn jet speed interannual variability seen from 1910 to 

1935 (Figure 4.10d). 

 

Jet-latitude interannual variability shows similar quasi-cyclicity of more and less variable 

periods (Figure 4.11). Interannual variability is higher in winter and lower in summer, 

reflecting the more compressed unimodal jet-latitude distribution in summer and the trimodal 

latitude distribution in winter (Chapter 3, Figures 3.5; 3.15). However, winter jet latitude 

shows a significant  (p≤0.05) trend of increasing interannual variability over time, 

irrespective of the moving window used (Figure 4.11a). If the time period is subdivided, there 

is no significant trend in winter latitude variability over 1872-1950 whereas the significant 

trend emerges in the post-1950 period (1951-2012). Due to the large fluctuations of 
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variability increase and decrease, trends within this subdivision are very sensitive to the 

choice of start and end point. However a quadratic trend can be added which shows the 

increasing trend post-1950 (not shown).  

 

It is interesting to note that summer jet-latitude interannual variability exhibits cycles of 

decreased and increased variability with a period of around 20 years for much of the 

Twentieth Century (Figure 4.11c), identifiable as such from a CWT of the interannual 

variability data (not shown). 

 

 
Figure 4.11. Standard deviations of jet latitude for the four seasons using moving windows of 
7 (blue), 11 (red) and 15 years (green). Significant trends are indicated where occurring (DJF 
only). The year is the central year of the window. 
 

All seasons show significant (p≤0.05) trends over shorter periods. For example, spring 

latitude shows a positive trend for all moving windows from 1955-2012 (Figure 4.11b), 

autumn shows a similar positive trend from 1990-2012 (Figure 4.11d) while in summer there 

is a negative trend from 1980-2012 (Figure 4.11c). While the relatively steep positive trend in 

autumn (1990-2012) is not matched elsewhere over the time period, the recent trends in 

summer and spring are similar to trends seen earlier in the time series. 
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Figure 4.12. Standard deviations of jet vrange for the four seasons using moving windows of 7 
(blue), 11 (red) and 15 years (green). The year is the central year of the window. 
 

The vrange interannual variability shows similar quasi-cyclicity, with no overall trends. 

Nevertheless, significant trends on shorter timescales are evident, for example autumn vrange 

variability shows a steep significant increase from around 1990 (Figure 4.12d), and summer 

vrange variability decreases from 1915-1930 (Figure 4.12c). Similarly spring shows a 

significant decrease in variability from the early 1920s to the late 1950s, followed by a 

significant increase in variability from around 1960 to the late 1990s (Figure 4.12d). 

Normalisation means that any seasonal differences in interannual variability are not evident. 

Apart from autumn, recent post-1990 trends in variability in other seasons are not 

exceptional. 

 

It is noteworthy that the interannual variability of recent years is often not unprecedented, 

when examining these longer time series, with the exception of winter jet-latitude variability, 

which is currently at its highest level for the whole time series. However, some of the recent 

significant trends, such as autumn vrange and latitude are greater than any previous periods in 

the time series.  

 

Synthetic time series display some similar features of interannual variability. Quasi-cyclical 

periods of increased and decreased interannual variability are evident, together with 

significant short-term trends (Figure A.4.3), suggesting that many of the features identified 
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above arise through internal variability. However, the significant positive trend in winter jet-

latitude interannual variability is unusual in the context of synthetic time series, as suggested 

by the significance of the trend identified above, and points to a possible external cause. 

Further details of synthetic time series trends are given in Appendix A.4.10. 

 

4.4.4. Subseasonal variability 

The variability of jet metrics within a season, and how this may change over time, is 

examined using the mean daily change in the jet metric over the season (section 4.3.3). 

Figures 4.13 to 4.15 present time series of subseasonal variability of jet metrics. Here time 

series are derived from daily series for each year, which are used to generate the value for the 

year in question. For all jet metrics, subseasonal variability changes greatly from year to year 

and these fluctuations dominate the signal. A 7-point binomial filter has been applied 

(Chapter 2, section 2.3.1) to remove any interannual noise and shows that longer timescale 

variability is present within the time series. 15-year moving window trends for these 

subseasonal variability time series are shown in Figures A.4.4-A.4.6. 

 
Figure 4.13. Subseasonal jet-speed variability, 1871-2012 (1872-2012 for winter).  
Significant (p ≤0.05) overall trends are shown (MAM only). 
 

Daily jet-speed changes (Figure 4.13) are on average highest in winter   (0.98 ms-1 day-1) and 

lowest in summer (0.71ms-1 day-1) a difference that is significant at p≤ 0.01 using the Mann-

Whitney-Wilcoxon test (Chapter 3.2.3) and is a reflection of the annual cycle in jet speed 
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(Figure 3.5). Where jet speed is on average lower, for example the summer, the mean daily 

change is also lower. A positive trend of increasing subseasonal variability is detected for 

spring jet speed (Figure 4.13b), however, it is possible that this is an artifact of decreased 

surface measurements in the earlier part of the time series, as a breakpoint is detected in 

1942, which coincides with a breakpoint in spread data, as discussed in Chapter 2. Thus, after 

adjustment, this trend is insignificant. 

 

Years with high subseasonal variability are sometimes followed by another year with high 

subseasonal variability, and vice-versa (for example summer 1983-1990, Figure 4.13c). 

However, there are also periods when subseasonal variability is anti-correlated from year to 

year. This is clearly seen for winter for the years 1954-1958 (Figure 4.13a). Recent, post-

2000 changes in subseasonal jet-speed variability are in line with previous shifts for all 

seasons. There are no significant trends (Figure A.4.4) and these are not particularly extreme 

examples of subseasonal persistence or lack of persistence, in terms of jet speed. However, 

there are clusters of significant trends, for example a cluster of significant positive trends, 

indicating increased subseasonal variability in winter, between 1940 and 1950 (Figure 

A.4.4a). 

 
Figure 4.14. Subseasonal jet-latitude variability, 1871-2012 (1872-2012 for winter). 
Significant (p ≤0.05) overall trends are shown (MAM only). 
 

As with jet speed, subseasonal jet-latitude variability shows seasonal differences reflecting 
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1.75° compared with 1.42° in summer, a difference significant at p ≤ 0.01, (Mann-Whitney-

Wilcoxon test, Chapter 3, section 3.2.3). This is expected as the jet-latitude distribution 

histograms (Chapter 3, section 3.3.6) show a more clustered unimodal distribution in 

summer, while the winter latitude distribution is trimodal, with the jet frequently making 

large jumps between different modes. Spring jet-latitude subseasonal variability shows a 

significant positive trend, with no breakpoints detected (Figure 4.14b), the mean daily 

latitude change increasing by about 0.4º ± 0.3° (95% confidence interval) over the period, an 

increase of about 20%. As with speed, individual years are often anti-correlated, but 

superimposed on these fluctuations are multi-year trends of increasing or decreasing 

subseasonal variability. For example, in winter, from 1937-1948 subseasonal variability 

fluctuates from year to year, with no two consecutive years having similar subseasonal 

variability, while during this time there is a trend to increasing subseasonal variability (Figure 

4.14a), although this trend is not significant (Figure A.4.5a). Conversely, also for winter, 

there is a cluster of years with similar, relatively low subseasonal variability from 1974-1985 

(Figure 4.14a). The only recent (post-1990) significant trends are of decreasing subseasonal 

variability in summer (Figure A.4.5c), influenced by the recent run of cooler wetter summers 

(Belcher et al., 2014). 

 
Figure 4.15. Subseasonal variability of jet vrange index, 1901-2012 for the four seasons. No 
significant overall trends are detected. 
 
Subseasonal vrange variability demonstrates no overall significant trend in any season (Figure 

4.15). Both autumn and winter show a recent decrease in subseasonal variability, from 2005, 

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

1901 1921 1941 1961 1981 2001 1901 1921 1941 1961 1981 2001

year

m
ea

n 
da

ily
 v r

an
ge

 in
de

x c
ha

ng
e 

a) DJF b) MAM

c) JJA d) SON



 

 156 

although these trends are not significant (Figure 4.15a,d). There is no seasonal cycle evident 

due to the normalising procedure used to create the vrange index. As with speed and latitude, 

there is some multi-year variability, with periods where years show similar subseasonal 

variability (e.g. autumn, 1952-1973, Figure 4.15c), while at other times the year-to-year 

change in subseasonal variability is large (e.g. winter 1991-2003, Figure 4.15a). Autumn in 

particular has clusters of significant 15-year moving window negative trends (1952-1958, 

1992-1995, Figure A.4.6).  

 

As with trends of jet metrics (section 4.4.1), synthetic series of subseasonal variability show a 

similar pattern of trend variability to those derived from the jet metrics, with a similar 

clustering of significant trends, indicating that the pattern of trends identified in subseasonal 

variability could well arise as a product of internal variability (Figure A.4.7). 

 

4.5. Discussion 

The results in section 4.4 identify any systematic changes in jet metrics over time, together 

with assessing any changes in variability. This analysis suggests that any long-term trends 

present in seasonal mean jet-metric data are likely to be a consequence of changes in 

observational density, particularly in the earlier part of the time series, as significant trends 

found in unadjusted data disappear once the data have been homogenised. Woollings et al. 

(2014) find positive significant trends in jet latitude for all seasons using 20CR for 1871-

2008, which could be attributable to external forcing although they acknowledge, but do not 

investigate, the role of data assimilation in creating artificial trends and did not homogenise 

the time series. The omission of the most recent four available years from their analysis may 

also have an impact on differences in significant trend detection, as both winter and summer 

jet latitude show negative trends since 2000. Chang and Yau (2015) agree that long-term 

trends in storm-track activity derived from 20CR are unlikely to be reliable due to changes in 

the density of surface observations, although as in this analysis, useful evidence is provided 

about interannual variability in such surface-based reanalyses. The long term significant 

increase in winter jet speed is greatest over the first half of the period 1871-2012, and from 

the 1970s the trend appears to be reversing  (Figure 2.7a) so this trend is not consistent with 

the projected strengthening and eastward extension identified in some studies (e.g. Haarsma 

et al., 2013). 
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Significant trends in jet metrics occur over shorter timescales but are frequently reversed and 

can be replicated in synthetic time series, suggesting that they are largely a product of internal 

variability (e.g. Shepherd, 2014). Shorter-term significant trends in summer jet latitude 

appear to correspond to fluctuations in the AMO, a result supported by Sutton and Dong 

(2012). Dong et al (2013a) find that the series of negative summer NAO (SNAO) summers in 

western Europe is unlikely to be a result of internal variability alone. However, the synthetic 

time series generated here show that this clustering of similar years can indeed occur by 

chance, with sustained trends of increased or decreased interannual variability being possible. 

A long-term significant positive trend is identified for interannual variability in winter jet-

latitude for 1873-20094, which is particularly notable after 1950. With no sign of reversal to 

date, and due to its sustained nature, this trend is worthy of some further consideration. The 

trend is unlikely to be associated solely with the AA signal as this only emerged as distinct 

from the background climate variability since the late 1990s (Cohen et al., 2014) while this 

trend is evident far earlier. Furthermore, it is estimated that any thermodynamic signal of 

anthropogenic climate change, such as AA will emerge before dynamical changes in 

circulation patterns, which have greater uncertainty attached (Deser et al., 2012). Hanna et al. 

(2015) identify a similar increase in winter NAO variability, dominated by increased 

variability in December, a pattern also found by Overland and Wang (2015) for the Arctic 

Oscillation and the Greenland Blocking Index (GBI; Hanna et al., 2016). When winter is 

broken down into its constituent months, the same pattern is found for jet-latitude interannual 

variability: a significant positive trend in December and no significant trend in either January 

or February (Figure 4.16). Considering all months of the year separately, a significant trend 

in increased jet-latitude variability is also found for November, but for no other months 

(Figure A.4.8.). However, it should be noted that indices such as the GBI, NAO and AO are 

all highly correlated and do not represent independent lines of evidence. 

                                            
4	The date range is truncated due to the use of moving windows, with the year of the interannual 
variability time series being the central year of the moving window. 
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Figure 4.16. Standard deviations of jet latitude for winter months with an 11-year moving 
window, December (blue), January (red), February (green). The significant linear trend for 
December is shown (thin blue line).  
 
As Hanna et al. (2015) make clear, the increase in winter variability, particularly in early 

winter (including November), is puzzling and may be a consequence of internal atmospheric 

variability. However, it is coincident with increased global warming as shown for example by 

the HadCRUT 4.4 surface temperature anomaly dataset (Morice et al., 2012) and the 

comparison with trends obtained with synthetic time series in Appendix A.4.10 suggests that 

this increased variability trend is unlikely to arise by chance. It seems strange that the trend is 

only evident in winter and there is at present no clear reason for this. As it is evident in other 

metrics of North Atlantic atmospheric circulation, the trend may be robust and should be 

further investigated. Possible lines of enquiry beyond the scope and timeframe of this thesis 

could involve examining whether the PFJ is becoming more susceptible to external forcings, 

perhaps as a result of global warming. The increasing latitude variability may suggest that 

potential forcings such as those from the tropics and from sea-ice, (e.g. Feldstein and Lee, 

2014) may have different relative influences in different years, and may therefore nudge the 

jet in opposite directions. This could be affected by possible state dependence of atmospheric 

circulation response to any forcing. For example a negative or positive phase of the North 

Atlantic Oscillation, with associated southward or northward displacement of the jet, could be 

set up by internal atmospheric variability. However, a negative NAO phase may be more 

susceptible to influences from AA, which resembles the negative NAO. If so this may 

increase the magnitude of the event, while not influencing the occurrence of the event itself, 

but may not impact upon a positive NAO. Similarly tropical warming may act to reinforce the 

positive NAO phase (Shepherd, 2014; Overland et al., 2016). It is worthwhile noting that 
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early winter is consistently found to be the time of atmospheric response to sea-ice loss in 

autumn (e.g. Deser et al., 2015), where the turbulent energy flux from ocean to atmosphere is 

greatest, due to increased temperature differences between atmosphere and ocean. 

 

Another fruitful line of enquiry would be to assess the regional differences in variability. 

Three relevant questions are: 1) does the Pacific region show similar increasing winter jet-

latitude variability? 2) Is the variability increasing because the forcings are stronger but are 

not always manifest in the same regions every year? 3) Given that global warming is 

occurring, what is the role it plays in this apparent increased early winter jet-latitude 

variability (Trenberth et al., 2015)?   

 

There are also similar trends of increasing jet-latitude interannual variability in spring (1955-

2012) and autumn (1990-2012), and increased interannual variability in jet meridionality in 

autumn (1990-2012), although timescales here are shorter and it remains to be seen whether 

any of these trends will be sustained into the future.  

 

The significant trend of increased subseasonal variability in spring (Figure 4.14b) is similarly 

puzzling and not found elsewhere, and may well reflect internal atmospheric variability. An 

analysis of subseasonal variability broken down by month reveals that April and December 

have significant trends of increasing subseasonal variability while September shows a 

significant decrease in subseasonal variability and other months show no significant trends 

(Figure A.4.9). It is interesting that December shows significant increasing variability on both 

subseasonal and interannual timescales over the period 1871-2012. 

 

The quasi-cyclicity of periods of increased and decreased interannual variability is interesting 

(Figures 4.10-4.12), although as noted above, synthetic time series display this feature so 

much of what is observed is likely to arise from internal variability. However, of particular 

note is the regular cycle of increased and decreased variability of summer jet latitude, with a 

period of around 20 years. The cycle actually corresponds to the 22-year solar Hale cycle 

(Figure 4.17), caused by the reversal of the magnetic polarity of sunspots (see Chapter 1). 

Such changes in the solar magnetic field impact upon galactic cosmic rays (GCR) received by 

the Earth’s atmosphere, which may in turn impact upon cloud condensation nuclei, although 

this is controversial and little understood (e.g. Pierce and Adams, 2009).  
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While there is no identified robust mechanism linking the Hale cycle with atmospheric 

variability, cycles of around 20 years are commonly found in atmospheric variables. 

However, these can be attributable to natural cycles of the climate system or combinations of 

harmonics of other cycles (e.g. Moore et al., 2006) and cycles of around 20 years have been 

generated in computer simulations of the Atlantic Meridional Overturning Circulation 

(AMOC, e.g. Escudier et al., 2013).  

 
Figure 4.17. Solar cycles (average for JJA) and summer jet-latitude variability (red: 7-year 
moving window SD, purple: 11-year moving window SD, blue: 15-year moving window 
SD). The polarity of the solar magnetic field is indicated, and shading indicates the positive 
phase of the 22-year Hale cycle.  
 

Despite this lack of certainty it is interesting to compare the 22-year cyclicity evident in 

summer jet-latitude variability with solar cycles (Figure 4.17). From the 1930s to 2000, there 

is a very good correspondence between jet latitude variability and the Hale cycle (here the 

year identified is at the end of the moving window, as any solar influence is likely to build up 

over time and a centred moving window would incorporate future years into the comparison). 

Positive phases of the Hale cycle correspond to periods of low jet-latitude variability and 

vice-versa. However, the relationship, while still evident, is less clear prior to this period, 

particularly between solar cycles 14 and 15, although it is more evident between cycles 12 

and 13. It is less distinct for the most recent positive phase shown (solar cycles 22-23), due to 
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no subsequent increase in jet-latitude variability. Solar cycle 24 is of a much lower amplitude 

than previous cycles, and thus the expected increase in jet stream variability may have been 

impacted, if the relationship is real. The solar influence, being reduced, might well be 

outweighed by other factors. The time series are unfortunately too short to confirm the 

persistence of this association over long periods of time. Any solar influence will not be 

transmitted directly from the stratosphere, as in summer the stratospheric polar vortex breaks 

down and the stratosphere and troposphere become decoupled. Furthermore, a response in 

summer is likely to be less distinct as there is a decreased poleward solar energy gradient, 

meaning dynamical processes are not as strong (Lockwood 2012). There remains the 

possibility of a bottom-up mechanism where TSI influences surface temperature variability 

which then couples upwards with the atmosphere (e.g. Meehl et al, 2009), although it would 

be expected that this association would reflect the 11-year solar cycle rather than the 22-year 

magnetic cycle. An alternative solar transmission mechanism could be via low-frequency 

stratospheric variability which has been found to covary with the AMOC (Reichler et al., 

2012). The AMOC has been found to show variability with a period of around 20 years in 

model simulations (Danabasoglu, 2008; Escudier et al., 2013) although data for comparison 

with the summer jet-latitude variability time series are only available from around 1960 and 

show no significant correlation. 

 

Although there is no satisfactory identified mechanism to account for a causal link, this 

association raises the possibility that some slowly-varying drivers may influence the quasi-

cyclicity of jet interannual variability. Again, using years at the end of the moving window 

period to identify jet variability, a good correspondence is identified between the September 

AMO and autumn jet-speed (r=0.46; other months’ AMO values also showed similar, but 

slightly weaker correlations, Figure 4.18). Despite the use of a filtered series for the jet 

metric, the correlation is still significant at p<0.01.  
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Figure 4.18. The detrended September AMO index (red) and the 11-year running standard 
deviation of autumn jet speed (blue) for 1871-2012.  
 
Interannual correlations between the AMO index and jet variability may be low, but the 

correspondence of the longer-term fluctuations is clear prior to 1991 suggesting that a 

positive (warm) AMO phase is associated with periods of higher interannual variability in 

autumn jet speed. This supports the evidence for a potential bottom-up influence on 

interannual variability, although the recent increase in the AMO index after 1991 is not 

reflected in increased autumn jet-speed interannual variability and the period covers less than 

two full cycles of the AMO, so it remains to be seen whether this apparent association 

between the two time series is sustained as the association could be coincidental, occurring 

for the duration of around one cycle of the AMO. 

 

These suggested associations between forcings varying on low-frequency decadal and 

multidecadal timescales and jet variability are interesting and previously unexplored. 

Conventional studies of change over time based on mean values will miss such potential 

associations. Furthermore, the definition of extreme events based on jet metrics is challenged. 

A particularly persistent winter, such as that of 2013-2014 may show up as an extreme winter 

when viewed from the perspective of subseasonal persistence, but mean jet metrics for the 

season do not reflect this particular variant of extreme event. Although not shown in Figure 

4.14a due to the availability of 20CR data, similar calculations from ERA-I reveal winter 

2013-14 to be the most persistent winter of the period 1871-2012 (Figure 4.19), as the match 

between ERA-I and 20CR is good for this metric of variability. This winter was also the 
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wettest on record for the UK (Matthews et al., 2014), with a succession of storms hitting the 

British Isles, captured well by the subseasonal persistence measurement.  

 
Figure 4.19. Winter subseasonal jet-latitude variability, 1980-2014, from ERA-I (red) and 
20CR (blue). Bold lines are 7-point binomial filters. 
 
Examining other recent winters, 2010 is seen to have the most southerly mean jet latitude in 

the record while 2005 has the most northerly mean jet in the record (Chapter 2, Figure 2.8a). 

The close proximity of these two years contributes to the increasing interannual variability 

seen in winter jet latitude, but the extreme nature of 2014 does not contribute, the jet latitude 

being near average. Thus there is a need to use a range of jet metrics when assessing 

variability and extreme events.  

 

Other clear patterns of change in jet variability are somewhat elusive apart from the periods 

of increased and decreased interannual variability. Looking at the period since 2000, changes 

in winter and summer can be summarised as follows. Winter is characterised by a decreased 

interannual variability of jet speed, but increased interannual variability of jet latitude, which 

is part of an overall trend of increased interannual jet-latitude variability, particularly in 

December. Since around 2004, there has been a decrease in winter subseasonal jet-latitude 

variability. These changes correspond with the qualitative observation in section 4.1 of more 

variability from winter to winter, but with winters tending to vary less from day to day. 

However, the variability time series indicate that these subseasonal changes are consistent 

with those in the past and may well be reversed in the future. Jet meridionality shows no 

significant change in variability since 2000 on either subseasonal or interannual timescales. 
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In summer, a recent significant southward trend of the jet is evident, with relatively low 

interannual jet-latitude variability. Subseasonal jet-latitude variability is moderate to low, 

with a significant negative trend towards decreasing subseasonal variability; thus recent 

summers can be characterised as having a more equatorward jet, with a tendency for 

summers to be more similar both to one another, and from day to day, than average. The 

recent pattern of several wet summers is detected, where a more southerly summer jet is 

associated with increased rainfall in western Europe and the positive phase of the AMO. 

Again, changes in individual variability metrics are not unprecedented, although the 

particular combination of variability patterns may well be distinctive. 

 

Results provide little evidence for any mid-latitude atmospheric circulation response to 

greenhouse gas (GHG) forcing, either through trends in jet metrics or changes in variability. 

The exception to this may be the increased interannual winter jet-latitude variability. The 

thermodynamic response to GHG forcing is robust in observations, models and theory and is 

evident in AA and in the tropics as circulation responses to SST forcings. However in mid-

latitudes there is greater internal atmospheric variability and there is much less confidence in 

dynamical responses to forcing (Xie et al., 2015). Any dynamical response will take longer to 

emerge in mid-latitudes against the background of increased internal variability, and the 

detection is further confounded by the tendency of the dynamical response to be indirect, 

projecting onto large-scale patterns of internal variability such as the NAO and therefore 

being difficult to separate from internal variability (Shepherd, 2014). It is estimated that the 

time of emergence of robust climate change signals such as temperature will not emerge in 

the midlatitudes until the mid 21st century and there is considerable uncertainty (± 60 years) 

attached to this (Hawkins and Sutton, 2012). Therefore any dynamical response will have 

even larger uncertainty attached (Deser et al., 2012). While the evidence in this chapter is 

mostly consistent with this assessment, recent work on seasonal prediction using dynamical 

models has suggested that models may underestimate the predictability of the real world as 

the signal-to-noise ratio in models may be too low, due to a systematic underestimation of the 

mechanisms influencing mid-latitude atmospheric circulation (Scaife et al., 2014a; Stockdale 

et al., 2015). It is possible that this is also an issue with climate change projections and the 

role of internal atmospheric variability may need revisiting (Eade et al., 2014). 
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4.6. Conclusions 

With the exception of winter jet speed, any significant long-term trends present in jet metrics 

from 1871-2012 are consistent with trends that would arise as a consequence of 

inhomogeneities in the time series. These inhomogeneities could arise as a consequence of 

changing data density over time and once time series are homogenised, the trends become 

insignificant. However, there are significant trends over shorter periods of time, the most 

recent notable example being the southward trend in the summer jet latitude, which is likely 

to be influenced by the positive phase of the AMO, although such clusters of significant 

trends can also be shown to arise by chance. Recent 15-year trends in jet metrics are not 

unprecedented in the long-term context and are mostly insignificant. 

 

Evidence for periodicities within the jet stream metrics is limited, but it seems that jet speed 

shows longer periodicities than jet latitude, corroborating the earlier work of Woollings et al. 

(2014). Periods of significant wavelet power at periods of less than eight years tend to come 

and go in the record and are most likely to be a consequence of atmospheric internal 

variability. 

 

Jet metrics show periods of increased and decreased interannual variability. There are some 

tantalising glimpses of possible causal relationships, such as between the 22-year solar cycle 

and summer latitude variability, the AMO and autumn speed variability and global warming 

and winter latitude variability. However, such links are based on simple statistics only and no 

causal mechanisms can be identified from such evidence. There is the distinct possibility that 

such features may be attributable to internal variability, as the periods of increased and 

decreased variability are simulated in synthetic time series and time series are not long 

enough to show associations beyond 140 years, but certainly merit further investigation. 

However, the identification of a significant trend of increased jet-latitude variability in early 

winter, which is sustained over 70 years, is remarkable and is consistent with evidence for 

early winter changes in the North Atlantic atmospheric circulation found in other measures of 

atmospheric variability (Hanna et al., 2015; 2016; Overland and Wang, 2015). However, as 

yet the mechanisms behind this change are uncertain. Changing interannual variability and 

possible external forcing of this is a new area of research to be further investigated, and is not 

detectable from a traditional examination of changes in means over time. Some of the 

increasing interannual variability in early winter may be associated in part with increasing 
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Arctic Amplification although the trend dates from before the emergence of the Arctic 

Amplification signal. 

 

Subseasonal variability over time is dominated by noise, and any significant trends on shorter 

timescales can be simulated from synthetic time series.  April (positive) and September and 

December (negative) show significant trends over the time series but these are much less than 

any year-to-year variation in subseasonal variability. 

 

Evidence has been found to support the decreased variability on interannual and subseasonal 

timescales in summer, with increased interannual variability evident in winter. However, 

there is no conclusive shift to decreased subseasonal variability in winter, although winter 

2014 had the lowest observed subseasonal variability for the whole period. 
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Chapter 5 

Identifying Drivers of Jet Stream Variability 
 

5.1. Introduction 

Potential drivers of jet stream variability are discussed in detail in Chapter 1. It is important 

to note that while these drivers have the potential to influence jet stream variability, they will 

not explain all of it, some proportion being determined by atmospheric internal (unforced) 

variability. In this chapter, a range of methods are used to identify which of the drivers may 

be significant and in which seasons they operate, together with which aspect of the jet stream 

may be affected (latitude, speed and meridionality). The signs of any relationships are 

established (whether significant correlations are positive or negative) and the persistence and 

variability of the relationships over time are examined. For the purposes of the chapter, 

potential drivers discussed in Chapter 1 have been grouped into tropical rainfall, solar, SST, 

cryospheric and stratospheric drivers.  

 

In the tropics, positive SST anomalies may increase convective activity and divergence aloft 

in the presence of a vorticity gradient, which can generate Rossby waves which propagate 

away from the source and are capable of influencing the jet stream (Hoskins and Karoly, 

1981). Tropical rainfall is used as a proxy for this tropical convection, but is distinguished 

from the other SST drivers. SST includes potential drivers in the extratropical Atlantic (AMO 

and the SST tripole) and the Pacific (El Niño-La Niña/Southern Oscillation  (ENSO), here 

represented by the N3.4 index). While it would seem that the ENSO phenomenon can impact 

upon the North Atlantic both by stratospheric and tropospheric pathways (e.g. Butler et al., 

2014), it has been decided to include it in the SST group as it is not necessary for this study to 

determine the path of the signal, only whether it is a driver of jet stream variability.  

 

Cryospheric drivers consist of sea-ice and Eurasian snow-cover anomalies. While these are 

suggested to have a stratospheric impact (e.g. Kim et al., 2014) it has been decided to retain 

them as a distinct group as they are not purely stratospheric. Similarly, the solar cycle is 

proposed to operate via two distinct mechanisms for impacting surface climate: via both the 

stratosphere and SST (Meehl et al., 2009). Stratospheric drivers are therefore identified as a 

separate category consisting of the QBO and tropical volcanic eruptions, whose influence is 
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solely via the stratosphere (see Chapter 1). However, in composite analysis, the ENSO and 

solar signals are also included as factors influencing the stratosphere. 

 

Section 2 outlines the data used, and the methods (regression, composite analysis and wavelet 

analysis) are discussed in section 3. Results of the analyses are presented in section 4, with 

general comments on each analysis followed by a breakdown by driver type. The results are 

discussed in section 5 and conclusions presented in section 6. 

 

5.2. Data 

Chapter 2 gives a full account of datasets used in this chapter (see also Table 2.3). 

 

Three time series of jet stream metrics are used: 1871-2012, 1955-2012 and 1979-2012. 

These have been selected to correspond to the availability of potential predictors, so 

regression models for a given time period will consider all available predictors for that 

period. Due to a lag-time between predictors and jet stream response, in regression analysis 

the first years of the time series are lost. Hereafter these time series will be referred to as the 

1872, 1956 and 1980 time series. When considering jet meridionality, due to irregularities in 

the early part of the time series (see Chapter 2, section 2.3.2. and Figure 2.9), data are only 

used from 1901: thus regression models, wavelet and composite analysis only cover this 

period of time for the longer time series, instead of from 1872. 

 

Sea-level pressure (SLP) data are also used from 20CR, to support the composite analysis. 

SLP composites for terciles of high and low years of the detrended potential driver are 

subtracted for the season of the associated jet metric to produce composite difference maps. 

SLP composites are used to indicate whether there is any change in SLP and tropospheric 

circulation associated with the potential driver. SLP is preferred to 500hPa geopotential 

height (500GPH) composites as 20CR is derived from surface-pressure observations, so there 

will be increased confidence in the reliability of the SLP field compared with one from the 

middle troposphere. A comparison of SLP and 500GPH composites reveals similar features, 

validating the use of the SLP field, which allows the identification of barotropic circulation 

features. Some examples of 500GPH composites appear in the appendices (Figure A.5.4a c.f. 

Figure 5.3b, Figure A.5.4b c.f. Figure 5.3d). 
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Drivers are identified on a monthly basis, while the primary interest is in identifying the 

impact of the drivers on seasonal jet stream metrics. Monthly drivers are used, as within a 

season individual months can have distinctly different correlations with jet metrics, which 

could cancel out in producing seasonal values. All data are detrended by subtraction of a 

linear trend prior to use, as the focus here is on interannual variability and the potential 

impacts of interannual driver variability. Driver datasets are normalised (subtracted from the 

1981-2010 mean and divided by the 1981-2010 standard deviation), as is the vrange index (see 

Chapter 2), whereas the jet-speed and -latitude time series retain the original units so the 

magnitude of change can be more easily assessed. 

 

Earlier work in chapter 2 identified inhomogeneities in the jet stream time series and 

produced adjusted time series. These adjusted series are used in this chapter. A comparison 

made with unadjusted data showed that there was very little difference in correlation values 

between predictors and the adjusted and unadjusted time series (not shown). This only 

impacts upon the 1872 and 1901 time series as all adjustments for inhomogeneity are made 

before 1955. 

 

5.3. Methods 

5.3.1. Linear regression 

Potential predictors of seasonal jet stream variability are assessed using ordinary least squares 

(OLS) multiple regression.  

 

Simple OLS regression (OLSR) describes the linear relationship between two variables (x, 

the predictor variable and y, the predictand). The straight-line fit to the relationship between x 

and y is achieved through minimising the sum of the squared errors or residuals, given by the 

vertical departure of each data point from the straight-line fit.  

 

The basic linear regression equation is of the form: 

 

                             𝑦 = 𝑎 + 𝑏𝑥                         Eq. 5.1 

 

where  𝑦  indicates the predicted value of y, a is the y-axis intercept of the line and b is the 

gradient or slope of the line. OLSR assumes that the residuals have a mean of zero, a constant 
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variance and are normally distributed.  Simple linear regression can be extended to multiple 

linear regression, where a number of predictor variables can influence the predictand.  

 

The equation for multiple linear regression is of the form: 

 

𝑦 = 𝑏! + 𝑏!𝑥! + 𝑏!𝑥! +⋯+ 𝑏!𝑥!             Eq. 5.2 

 

The number of predictor variables is given by k, and each predictor variable has its own 

coefficient bk. The intercept is here given by b0. 

 

Selecting predictors for inclusion in multiple regression models can be problematic. It is easy 

to overfit a model by including too many predictor variables, and whereas it is possible for 

automated screening of predictors to be undertaken, this again can lead to bias in the models 

(DelSole and Shukla, 2009). Selection of potential predictors on the basis of plausible 

physical mechanisms can reduce this artificial skill. Consequently, the initial pool of 

predictors (section 5.1 above, Chapter 2, Table 2.3) is identified on the basis of modelling 

and observational studies where plausible mechanisms have been identified (see Chapter 1 

for details).  Correlation matrices are used to obtain Pearson’s Product Moment correlation 

coefficients between the jet variables (latitude, speed, meridionality) and these potential 

predictors, with the jet variables lagging predictors by up to 11 months to help to identify 

which month of a predictor time series provides the strongest link with the jet metric (longer 

lag-times are used with solar variability time series as lag times of over a year between solar 

variability and North Atlantic atmospheric variability have been identified; Scaife et al., 

2013). Correlation coefficients exceeding the 90% confidence level are taken to indicate 

potentially significant predictors. The threshold is deliberately set low to avoid omission of 

apparently marginally significant predictors, which may well become significant at later 

stages in the regression or composite analysis. Also, in the initial stages of analysis, a number 

of predictors with known physical links to jet variability are identified as having correlation 

coefficients falling below the 95% threshold, but above 90%. Multiple linear regression 

models are constructed, with screening of predictors occurring through forward selection 

(Wilks, 2011, pp247-248), where regression models are constructed for each individual 

potential predictor. The predictor providing the strongest relationship is selected as the basis 

for the next round of model developments with two predictors, one of which is the one 



 

 171 

selected from the previous round. Up to five rounds of predictor selection are required, before 

the stopping criterion is reached. 

 

It is important to establish a stopping criterion to avoid overfitting (Wilks, 2011, p249-250). 

In this case, selection continues until no more predictors can be added at p<0.10 (for the t-

value given by the ratio of the regression coefficient estimate to the coefficient standard 

error). Most models in fact satisfy p<0.05.  A comparison using the Akaike Information 

Criterion (AIC; Akaike 1974) to indicate the number of predictors reveals very similar 

although slightly more liberal results in the latter.  

 

As mentioned above, a problem with multiple regression is that of artificial skill, which 

increases as the number of predictors increases. It is possible to get an R2 value of 1 by the 

selection of many predictors  which have no real significance. To reduce this, an adjusted R2 

value may be calculated for the model, which departs further from the raw value as more 

predictors are included (Draper and Smith, 1998, pp139-140). However, cross-validation 

(Efron and Gong, 1983; Efron and Tibshirani 1993,p 237-240) can provide an unbiased 

technique for assessing the ability of a regression model to predict unknown data values. 

Cross-validation repeats the model fitting for data subsets (the training set) and then makes 

predictions for sections of data left out of the model (the validation set). In order not to base a 

model on too small a training set, leave-one-out cross-validation (LOOCV) is performed, 

where each year’s value is left out of the model regression in turn, and for n years, the fitting 

procedure is performed n times with a sample size of n-1, each time obtaining a predicted 

value for the missing year.  Revised R2 values based on cross-validation are calculated 

(denoted xvR2). When employing cross-validation, it is important that the year being omitted 

and predicted has in no way been “seen” previously in the model building process. To this 

end it is necessary to cross-validate any standardisation of data values, by leaving out the year 

in question from the climatological period before calculating means and standard deviations 

of the reference period. This procedure is followed here. Furthermore, the time series of 

predictors are divided into five groups, or folds, which provides sufficient data values in each 

group while allowing subdivision of the data, and the initial correlation coefficients are 

calculated. A predictor is selected for potential inclusion in the model if a significant 

correlation occurs between it and the jet variable in more than three of these folds. Thus 

selection does not take place on the basis of all years. Cross-validation is applied at each 
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stage of the regression model building, to confirm the identification of the selected predictor 

at each stage.  

 

Multicollinearity arises when predictor variables are highly correlated, which can lead to 

unstable parameter estimates. This is avoided by checking that the correlation coefficients 

between predictors are not significant. Multicollinearity mostly occurs due to  one predictor 

being a subset of another, for example the Barents-Kara Sea ice and Arctic sea-ice in general, 

and can occur as a consequence of one driver having a direct influence on another.  Predictors 

exhibiting significant (95%) correlation with a prior selected predictor are omitted from 

subsequent stages of the forward selection.  

 

Autocorrelation of residuals of the model violates the assumption of independent random 

errors. The Durbin-Watson statistic is calculated for the selected models to test for this (e.g. 

Wilks, 2011, p228).  The null hypothesis is that the model residuals are an independent 

series, with the alternative hypothesis being that they are a first order autoregressive process. 

The Durbin-Watson statistic is calculated by: 

 

                                        𝑑 =
𝑒! − 𝑒!!! !!

!!!

𝑒!!!
!!!

                            Eq. 5.3 

 

where n is the number of observations and ei is the ith residual. The sum of squared 

differences between consecutive residuals is divided by a scaling factor proportional to the 

residual variance. Positive autocorrelation will result in adjacent residuals being of similar 

size, and thus the value of d will be small. Randomly-distributed residuals will result in a 

larger value of d. The number of predictors also influences the outcome of the test, 

determining the location of the critical value curve on a graph of d against sample size. Thus 

for a given significance level (in this case p≤ 0.05), sample size and  number of predictors in 

the model, if the value of d is above a critical level, the null hypothesis cannot be rejected. 

There is a range of values for d for which the test is indeterminate, in which case further 

calculations may be required. Plots of residuals are also visually examined for indications of 

heteroscedasticity (non-constant variance). 

 

Some predictors show significant synchronous correlations with the jet metrics. For some 

drivers, the direction of influence is clear: for example, ENSO has a potential influence on 
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mid-latitude circulation and the jet stream but jet stream fluctuations will not impact upon 

ENSO.  Influences from the tropics are able to influence mid-latitude weather via planetary 

waves propagating from a tropical heating source within a timescale of 7-10 days (e.g. 

Hoskins and Karoly, 1981).  The AMO varies on a multidecadal scale and will not be 

significantly influenced by a particular season’s atmospheric circulation on a timescale of 

days to weeks. For these reasons, AMO, ENSO, solar variability and tropical rainfall are 

retained as drivers even when synchronous. Conversely, closely coupled two-way 

interactions arise between the Atlantic SST tripole and tropospheric winds and similarly the 

cryospheric factors and tropospheric winds. Here, with synchronous predictors it is not 

possible to show in which direction forcing (if any) occurs. Thus cryospheric and Atlantic 

SST tripole predictors, when synchronous, are omitted from the regression models as the 

primary purpose is to identify predictors of jet stream variability which lead the jet stream 

metrics by some period of time. However, these synchronous relationships are discussed 

when appropriate. 

 

Predictors identified as being significant for a particular jet metric could well be spurious, 

with correlations arising by chance. To safeguard against this, the annual pattern of 

correlations of monthly predictor values with a jet metric is checked. If there is a clear 

clustering of significant correlations around the month selected for the predictor, or if it forms 

part of a clear annual cycle, the relationship is more likely to be real. Similarly, for predictors 

occurring across more than one time series, monthly correlation plots are checked across the 

different time series to assess similarity of pattern. The use of composite analysis will also act 

as a filter to help identify and eliminate any such spurious relationships. 

 

5.3.2. Composite analysis 

Factors identified as significant drivers of jet stream variability in the regression analysis are 

used in composite analysis, together with some drivers eliminated at earlier stages in 

regression model development, due to multicollinearity.  There is evidence for interaction 

between the solar cycle and the QBO (e.g. Labitzke and van Loon, 1988; Camp and Tung, 

2007) and although the mechanism is disputed, the combined influence is able to impact on 

the stratospheric polar vortex (SPV). This is not considered in the regression analysis but is 

further examined in the composite analysis. 
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Years of high- and low-driver values are identified, and partitioned by terciles; thus the 

middle third of year values in a time series are not used in composite analysis. Composite 

partition by quartiles or the median gives qualitatively similar results (not shown). Mean 

values of seasonal jet metrics are calculated for the composites of high- and low-driver years, 

and the difference between them for the high and low years is found. These differences are 

tested for statistical significance using the nonparametric Mann-Whitney-Wilcoxon two-

tailed test (see Chapter 3, section 3.2.3) as sample sizes are frequently too small to conduct a 

t-test, and no assumptions have to be made about the normality of the data.  

 

For the discontinuous N3.4 index, composites are based on years with a score of one 

(moderate El Niño events) and minus one (moderate to strong La Niña events). Composites 

are based on the longest time series for which the driver is available, to maximise the number 

of years in the composites. Where a driver is available for the period 1871-2012, the 

equivalent jet-metric or SLP series is used to produce the composite, giving 47 years in each 

high or low composite. Where the 1956 time series is used (sea-ice and  QBO drivers) there 

are 19 years in each composite and where the 1980 time series is used (tropical rainfall and 

snow cover drivers) there are 11 years in each composite. Some non-linear aspects of 

associations can be identified by comparison of each of the high and low composites with 

climatological values of the jet metric. If one of these differences is significant and the other 

is not, it is suggestive of an asymmetric relationship whereby one extreme of driver 

occurrences (either high or low) has a greater potential influence than anomalies of the 

opposite sign. 

 

It is necessary to treat drivers operating via the stratosphere in a slightly different manner. 

Tropical volcanic eruptions and the phases of the QBO, ENSO and solar cycles are all known 

to influence the strength of the winter SPV and it can be difficult to separate their impacts. 

Circulation anomalies are observed to propagate downwards to impact on the tropospheric 

circulation (e.g. Baldwin and Dunkerton, 2001).  Potential interactions are considered 

between pairs of stratospheric drivers, to identify whether these differ significantly from the 

impacts of a single driver, or to assess whether drivers interact in a non-linear way, as 

suggested with the solar cycle and the QBO (e.g. Labitzke and van Loon, 1988). Using 

composites derived from high and low values of two drivers has the effect of reducing the 

sample size available for composites even further. Thus for this particular aspect, different 

thresholds are established, allowing larger sample sizes for the different driver combinations. 
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For solar cycles and the QBO, the thresholds used by Camp and Tung (2007) are modified. A 

westerly/easterly QBO is identified as having a mean 30hPa wind speed of 4.0 (-4.0) ms-1 

which allows composite groups of 25 years (WQBO) and 30 years (EQBO), leaving three 

years excluded from the composites. Solar maximum (minimum) years are identified by 

reference to the 10.7cm solar flux, having values above (below) a mean of 140 (125) solar 

flux units (23 high years, 33 low years, 2 years excluded). ENSO (N3.4) composites are 

obtained by using years which exceed 0.25 (-0.25) standard deviations of the climatological 

mean (18 high years, 30 low years, 9 years excluded). These revised thresholds are used only 

when at least one of the datasets is only available from 1955. For the solar/N3.4 composites, 

the longer time series are available so the original terciles are used. Sensitivity tests establish 

that irrespective of the precise threshold used for the composite cutoffs, the relative 

magnitudes of the impacts of the combined drivers on jet latitude is the same (not shown). 

Furthermore, years influenced by tropical volcanic eruptions are often removed from 

composites of years of QBO, ENSO and solar cycles, to obtain a cleaner signal (e.g. Camp 

and Tung, 2007; Ineson et al., 2011). That practice is followed here, for the combined 

stratospheric composites. 
 

In order to try to explain significant composite differences, composite maps of SLP 

difference between high and low driver index years are produced, for the season of the jet 

metric that is associated with the driver. Significance is assessed using a two-tailed Mann-

Whitney U test. A problem arises with the significance of spatial data presented in maps.  

Adjacent data points will be correlated with one another, thus effectively reducing the 

number of degrees of freedom in the dataset, which will impact upon the determination of the 

significance of the difference between two atmospheric fields, known as field significance. 

Field significance of the p-values obtained from the Mann-Whitney U test values is 

determined using the false discovery rate (FDR, Benjamini and Hochberg, 1995; Wilks, 

2006a) as this method takes into account the magnitudes of the individual p-values relative to 

the significance level of the global null hypothesis, αglobal (p≤0.05). The false discovery rate 

is the expected fraction of apparently significant tests whose null hypotheses are true. p-

values from individual tests at each of N grid points are ranked from  p(1), p(2), …, p(N), where 

p(1) is the smallest value. Individual p-values are significant if the p-value is no greater than: 

 

𝑝!"# =
max

𝑗 = 1,… ,𝑁 𝑝!:𝑝! ≤
𝑗
𝑁 𝛼!"#$%"           Eq. 5.4 
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The p-values are assessed on a sliding scale. If the largest p-value (p(N)) is greater than αglobal 

=FDR, all p-values are significant. If however it is greater than αglobal then for the null 

hypothesis of the second largest p-value to be rejected, then: 

 

                𝑝!!! ≤
𝑁 − 1
𝑁 𝛼!"#$%"                       Eq. 5.5 

 

The null hypothesis of the test with the largest p-value which satisfies equation 5.4 is 

rejected, as are the null hypotheses of all tests with smaller p-values. 

 

SLP composite plots are only presented in section 5.4 for years where significant 

relationships are identified in both regression and composite analysis, with the exception of 

the stratospheric composites discussed above. It should be noted that some predictors are 

significant in the regression model building process but are not included in the final model, 

due to multicollinearity. Such predictors are included in SLP composite plots if they are also 

found to be significant in composite analysis. Analysis of 500GPH composites is used to 

support the SLP composite analysis. 

 

5.3.3. Wavelet Coherence analysis 

Correlation and regression analysis give no indication of the stability of an observed 

relationship over time. A number of geophysical time series such as the solar cycle (decadal), 

the QBO (interannual) and the AMO (multidecadal) exhibit regular fluctuations or 

periodicities on different timescales. Other time series may show periodicities which are not 

sustained over a whole time series, or which change frequency over time. The limitations of 

Fourier analysis and the advantages of using wavelet analysis are explained in Chapter 4, 

section 4.3.2. To extend wavelet analysis to examine how associations between two variables 

can change over time, a technique known as wavelet coherence (WTC) is used, (e.g. Torrence 

and Compo, 1998; Torrence and Webster 1998; Grinsted et al., 2004). Common coherence of 

the continuous wavelet transforms (CWT) of each time series can be identified so the WTC is 

analogous to a localised correlation coefficient in time-frequency space. The phase 

relationship between the two CWTs can be established, and where there is a common phase 

relationship in areas of significant coherence, a physical relationship between the two time 

series may be suggested (Grinsted et al., 2004). In the figures and text, the phase relationship 

is expressed in terms of radians, 2π radians being equivalent to 360º. Thus if a driver leads a 
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jet metric by π/2, this is equivalent to a quarter of a cycle. It should also be noted that the 

length of time of a particular phase relationship will vary according to the periodicity in 

question. Thus a lead-time of π/2 would be 6 months for a wave period of two years and 16 

years for a period of 64 years. 

 

Wavelet coherence (WTC) measures the cross-correlation of the two series in time-frequency 

space, returning a value between zero and one. Coherence can be found even when common 

power is low.  The squared wavelet coherence of two time series can be defined as: 

 

𝑅!! 𝑠 =
|𝑆 𝑠!!𝑊!!" 𝑠, 𝑡 |!

𝑆 𝑠!!|𝑊!! 𝑠, 𝑡 |! . 𝑆 𝑠!!|𝑊!! 𝑠, 𝑡 |!
          Eq. 5.6 

 

where S is a smoothing operator, Wn
X(s,t) and Wn

Y(s,t) are the wavelet transforms of two time 

series X and Y, each with n values, s is the wavelet scale and t is time (see Chapter 4).  

 

Wn
XY(s,t) is known as the cross wavelet transform and is obtained by: 

 

      𝑊!!" 𝑠, 𝑡 =𝑊!! 𝑠, 𝑡 𝑊!!∗ 𝑠, 𝑡                          Eq. 5.7 

 

where Wn
Y*(s,t) is the complex conjugate of Wn

Y(s,t). 5 

S is a smoothing operator which smooths over frequency and time scales, which define the 

scales at which the coherence measures the covariance. S is given by: 

 

𝑆 𝑊 = 𝑆!"#$% 𝑆!"#$ 𝑊 𝑠, 𝑡                           Eq. 5.8 

 

Sscale and Stime are the smoothing along the wavelet scale axis and smoothing in time 

respectively. Jevrejeva et al. (2006) and Torrence and Webster (1998) give the following: 

 

𝑆!"#$ 𝑊 |! = 𝑊! 𝑡, 𝑠 ∗ 𝑐!𝑒!!
! !!! |!             Eq. 5.9 

                                            
5  A complex number z is of the form x + iy, where x and y are real and i=√-1. The complex conjugate 
of z, z* = x-iy 
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𝑆!"#$% 𝑊 |! = 𝑊! 𝑡, 𝑠 ∗ 𝑐! 0.6 |!            Eq. 5.10 

 

where c1and c2 are normalisation constants and Π is the rectangle function (a boxcar function 

that is zero outside the interval -1/2 : 1/2 and 1 inside the range). 0.6 is the scale decorrelation 

length for the morlet wavelet. Significance is determined using Monte Carlo techniques to 

generate a background autoregressive lag 1(AR1) red-noise spectrum against which the 

wavelet power can be tested for significance. Figure 5.1 demonstrates the relationship 

between the individual CWTs for the jet-metric and driver time series, and how the WTC 

relates to each. Detrended time series used to construct the CWT are shown directly above 

the CWT. Three features are lettered on each CWT and the WTC. Location a shows a feature 

of significant wavelet power in each CWT, and the equivalent significant coherence location 

on the WTC, which in this case lies inside the COI. The phase arrow points upwards, 

indicating that the tripole leads the jet metric by π/2 radians, i.e. by 90°. The other two 

examples demonstrate how even low power in a CWT may result in significant coherence. 

Feature b has significant wavelet power for the jet latitude metric, but although a feature of 

moderate power on the tripole CWT, it is not significant. However the WTC detects this as an 

area of significant common power. Here the phase arrow points down, the tripole leading the 

jet metric by 3π/2 radians. Finally, point c is unusual as it occurs below what would be 

expected to be a possible area of coherence, even though neither region is determined to be 

significant in the CWT. On the time series plots, points 1,2 and 3 correspond to low time 

series values around 20 years apart. It is this feature that is being detected by the WTC. The 

low points in the tripole series occur slightly ahead of those in the latitude time series, hence 

the phase arrows point upwards at point c, indicating that the tripole leads the jet latitude by 

π/2 radians (around five years in this case, for a period of about 20 years). 
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Figure 5.1. Example showing how the wavelet coherence plot relates to individual cross 
wavelet transforms. a) detrended winter jet latitude time series, b) detrended June tripole time 
series c) winter jet latitude CWT d) June tripole CWT, e) Wavelet coherence for the winter 
jet latitude and June tripole CWTs. The 5% significance against a red noise background is a 
black contour. The semi-transparent region shows the cone of influence. Arrows show the 
relative phase relationship ( → in-phase; ←anti-phase; ↑ driver leads by π/2; ↓driver leads by 
3π/2. Arrows are shown for z-values greater than 0.9. Points 1, 2, 3 and a, b, c are discussed 
in the text. 
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5.4. Results 

In this section an overview of analyses discusses some general points about the results from 

each analysis method (section 5.4.1). The relationships between jet metrics and individual 

drivers are discussed in detail in section 5.4.2. 

 

5.4.1. Overview of analyses 

5.4.1.1. Multiple regression models 

Correlation coefficients between jet stream metrics and potential predictors are given in 

Tables A.5.1-A.5.3 and model regression coefficients, R2 and xvR2 values are given in Tables 

5.1-5.3. These tables also show the y-intercept coefficient A and therefore allow the 

regression equations for the models to be extracted. Some drivers are selected independently 

as being significant drivers for more than one model (indicated in blue shading, Tables 5.1-

5.3) and as such are likely to be more robust predictors of jet variability. As would be 

expected, regression models for the longer time series have lower predictive ability due to the 

reduced number of predictors available for selection and greater uncertainty in the datasets in 

the earlier portions of the time series. The explained variance, indicated by R2 and xvR2 of 

the models varies both seasonally and by jet stream metric. Winter and summer have the 

highest R2 and xvR2 values for models of jet latitude across all three time series scales. The 

most skillful jet-speed models occur for autumn in both the 1980 and 1956 time series while 

the most skillful 1872 speed models are found in winter. The most skillful vrange models are 

for spring in the 1980 and autumn in the 1956 time series. It should be emphasised that a 

number of models are produced for each jet stream metric time series, which are capable of 

explaining differing fractions of the variability. Here it is the models which provide the best 

fit, given the cutoff conditions discussed above, which are presented and analysed. 

 

The Durbin-Watson test identified no models with significant serial autocorrelation of the 

residuals.  

 

In four instances, (1902 and 1956 autumn meridionality, 1872 summer latitude and 1956 

spring latitude) it is the conventional El Niño N3.4 index that is selected as a predictor in the 

regression models, while other N3.4 predictors are from the discontinuous modified index.  
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Figure 5.2.Winter jet latitude (blue), and cross-validated time series (red) for a) 1980, b) 
1956 and c) 1872 time series. Note the slight variations in the jet-latitude values between 
plots are a result of detrending each time series. 
 
An example of a regression model compared with the time series of the jet metric is shown 

for winter latitude in Figure 5.2. Here features of these time series plots are discussed for the 

winter jet-latitude models only, but similar comments are applicable to other metrics and 

seasons. The relationship between models for other metrics and seasons and the jet metrics 

derived from 20CR are shown in Figures A.5.1 to A.5.4.  It can be seen that the 1980 and 

1956 models capture well the interannual variability of the winter jet latitude (xvR2 of 0.56 

and 0.30 respectively; Figure 5.2a,b). However neither the 1980 or 1956 models replicate 

well the jet-latitude peaks of 2005, and 1981 is poorly predicted by the 1956 model. The 
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amplitude of the fluctuations is reduced in the model predictions, and so will tend to 

underestimate the strength of extreme events. Interestingly, the 2005 winter is also poorly 

predicted in dynamical model-based seasonal forecasts (Scaife et al., 2014a). This is 

discussed further in Chapter 6, section 6.4.2. By comparing models, the only difference in 

predictors is the selection of the December East Indian Ocean rainfall and October Eurasian 

snow predictors for the 1980 time series model. Thus the extra skill appears to be gained 

from these two predictors. 

 

The fit for the 1872 time series is less good (Figure 5.2c), as would be expected with fewer 

predictors being available for use, particularly the sea-ice predictor which is important in the 

two shorter time series. While a number of peaks or troughs are correctly identified such as 

the winters of 2010 and 1984, the magnitude of interannual change is often reduced, as is the 

case for 2010. Other years are less well estimated. For example, in the winter of 2005, jet 

latitude is again too far equatorward, by 7°, while the winters of 1960 and 2010 have a jet 

that is around 8° too far poleward. 

 

Ideally models across different time periods would use the same predictors, indicative of 

stationary relationships. However, the limited availability of predictors mitigates against this, 

together with possible non-stationarity of relationships. Some predictors such as tropical 

rainfall are only available post 1980. The selection of such a predictor for the 1980 models 

will alter the “balance” of the model, and predictors selected for longer models may now 

appear less significant in the 1980 models, or not be selected at all, perhaps due to 

multicollinearity with the previously selected predictor. There is also the issue that real-life 

associations are not always stationary. A treatment of this issue is presented in the discussion 

section below (section 5.5).  

 

5.4.1.2. Composite analysis 

Results of composite analysis are shown in Tables 5.4 to 5.7. It is notable that for composites 

from the longer time series (AMO, tripole, N3.4, solar variability), composites comprise 47 

years (speed and latitude) or 37 years (meridionality) for both high and low years. The effect 

of these larger sample sizes is to increase the significance of the results, such that when p-

values are adjusted for spatial autocorrelation, areas of significant difference can be found. 

However, for the shorter time series data from 1956 (QBO, sea-ice) and 1980 (tropical 

rainfall, Eurasian snow), with composites of 19 and 11 years, while areas of the SLP 



 

 186 

composite maps appear significant prior to adjustment, these disappear once adjustments are 

made.  Given the significance obtained with the longer time series, this is considered to be an 

artifact of the short time series that are available, rather than indicating no significant 

difference. Thus results are presented and discussed for these shorter time series, and shown 

with unadjusted significance levels for guidance only.   

 

The potential confounding influence of tropical volcanic eruptions on stratospheric drivers 

(solar variability, N3.4 and QBO) is considered by calculating composites for each, both with 

and without years affected by volcanic eruptions. This is performed for winter jet latitude 

only, where the volcanic influence is identified as significant from regression models. Table 

5.4 shows that this makes little difference with the exception of the QBO, where composite 

difference becomes insignificant if the years affected by volcanic eruptions are removed. 

Further consideration is given to combinations of stratospheric drivers in section 5.4.2.5. 

 

In Tables 5.4-5.7 significance is also calculated for the differences between high- and low- 

driver composite years and the climatological values. This gives an indication as to whether 

associations are asymmetric (see section 5.3.2 above).  

 
 
a) DJF speed 
drivers 

High (ms-1) Low (ms-1) p(high/low) p(high/clim) p(low/clim) 

December WIR 13.87 12.55 0.01 0.16 0.07 
December AR 13.84 12.63 0.01 0.15 0.08 
Solar 4 lead 13.05 13.30 0.47 NA NA 
Solar 3 lead 13.00 13.55 0.05 0.41 0.32 
Solar 2 lead 13.10 13.38 0.33 NA NA 
January AMO 12.61 13.59 9x10-4 0.04 0.31 
September AMO 12.77 13.77 2x10-4 0.13 0.09 
May LVI 13.69 12.51 7x10-4 0.20 0.04 
September GI 13.00 12.82 0.91 NA NA 
Climatological average, 1981-2010: 13.24 ms-1 

 
Table 5.4. Composite winter jet stream metrics based on high and low years for drivers 
identified in regression analysis. Significant differences between composites (p ≤ 0.05) are 
highlighted in bold, using the Mann-Whitney-Wilcoxon test. Composites for differences 
between high, low and climatological values are given. NA indicates p-value not calculated 
as high/low composite difference is not significant. For solar drivers, the number of years 
lead-time is shown. 
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Table 5.4. continued 
 
b) DJF latitude 
drivers 

High (°N) Low (°N) p(high/low) p(high/clim) p(low/clim) 

December EIR 49.26 46.03 0.02 0.08 0.52 
Solar cycle 46.92 45.11 0.28 NA NA 
Solar, no volcanic 45.93 44.38 0.36 NA NA 
Solar 2 lead 46.36 45.62 036 NA NA 
Solar 3 lead 46.92 46.29 0.40 NA NA 
February N3.4 45.53 47.13 0.02 0.18 0.71 
Feb N3.4 (mod) 43.24 47.45 6x10-4 3x10-3 0.54 
October N3.4 45.76 47.10 0.10 0.28 0.77 
Oct N3.4 (no volc) 45.53 46.82 0.18 NA NA 
Oct N3.4 (mod) 46.29 47.99 0.18 NA NA 
OctN3.4 (mod, no 
volc) 

46.13 47.62 0.35 NA NA 

February AMO 45.93 46.94 0.26 NA NA 
June tripole 47.36 45.60 7x10-3 0.42 0.18 
November BKI 48.38 45.01 0.02 0.20 0.14 
October snow 46.36 49.31 0.04 0.54 0.06 
Volcanic index 48.09 46.17 0.04 0.26 0.44 
September QBO 47.00 45.07 0.14 NA NA 
Sept QBO(no volc) 46.43 44.94 0.28 NA NA 
October QBO 47.71 44.94 0.04 0.44 0.10 
Oct QBO (no volc) 46.86 44.81 0.12 NA NA 
SONQBO 47.68 44.82 0.02 0.44 0.08 
SONQBO(no volc) 46.83 44.68 0.10 0.96 0.06 
Climatological average, 1981-2010: 46.87°N 
 
c) DJF vrange  

drivers 
High Low p(high/low) p(high/clim) p(low/clim) 

August AR -0.28 0.40 0.08 NA NA 
Solar 2 lead 0.15 -0.16 0.26 NA NA 
September N3.4 0.09 -0.04 0.40 NA NA 
Sept N3.4 (mod) -0.04 -0.00 0.97 NA NA 
February N3.4 -0.04 -0.12 0.71 NA NA 
March N3.4 0.26 -0.15 0.11 NA NA 
October AMO 0.25 0.09 0.35 NA NA 
June tripole 0.01 -0.07 0.42 NA NA 
September GI 0.06 0.41 0.21 NA NA 
Climatological average 1981-2010: 0.00 
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Table 5.5. as for Table 5.4, but for spring jet stream metrics. 
a) MAM speed 
drivers 

High(ms-1) Low(ms-1) p(high/low) p(high/clim) p(low/clim) 

January AR 11.77 11.11 0.12 NA NA 
January WIR 11.57 11.05 0.37 NA NA 
December WPR 11.91 10.96 0.03 0.28 0.14 
Solar cycle 11.41 11.61 0.24 NA NA 
Solar 1 lead 11.37 11.55 0.31 NA NA 
Solar 2 lead 11.44 11.58 0.54 NA NA 
Solar 3 lead 11.56 11.62 0.83 NA NA 
Sept N3.4 (mod) 12.54 11.41 0.08 NA NA 
April AMO 11.42 11.69 0.13 NA NA 
February tripole 11.19 11.65 0.04 0.28 0.43 
February LVI 11.74 11.25 0.10 NA NA 
July LVI 11.11 11.94 0.01 0.20 0.11 
Climatological average 1981-2010: 11.46 ms-1 

 

b) MAM latitude 
drivers 

High (°N) Low (°N) p(high/low) p(high/clim) p(low/clim) 

March WIR 45.01 47.33 0.10 NA NA 
May N3.4 46.03 45.51 0.38 NA NA 
May N3.4 (mod) 45.75 45.74 0.99 NA NA 
July N3.4 45.43 46.23 0.16 NA NA 
July N3.4(mod) 44.40 46.38 0.02 0.05 0.69 
October tripole 46.19 44.99 0.01 0.86 0.02 
August BKI 45.70 45.34 0.61 NA NA 
October LVI 46.90 44.30 4x10-3 0.65 0.02 
Climatological average 1981-2010: 46.29°N 
 
c) MAM vrange 
drivers 

High Low p(high/low) p(high/clim) p(low/clim) 

April CPR 0.15 -0.36 0.52 NA NA 
Solar 3 lead 0.23 -0.45 1x10-3 0.28 0.10 
December N3.4 -0.41 0.12 0.04 0.10 0.61 
Dec N3.4 (mod) -0.51 -0.02 0.24 NA NA 
May AMO -0.22 0.25 0.13 NA NA 
December tripole -0.11 -0.09 0.43 NA NA 
September GI -0.51 0.32 0.04 0.15 0.36 
Climatological average 1981-2010: 0.00 
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Table 5.6. As for Table 5.4, but for summer jet metrics 
a) JJA speed 
drivers 

High (ms-1) Low (ms-1) p(high/low) p(high/clim) p(low/clim) 

July WIR 10.74 9.83 0.01 0.45 0.02 
January AR 10.98 10.13 0.01 0.08 0.16 
Solar 2 lead 10.66 10.53 0.35 NA NA 
Solar 4 lead 10.45 10.57 0.36 NA NA 
August AMO 10.24 10.63 0.01 0.14 0.63 
May tripole 10.35 10.81 3x10-3 0.27 0.17 
November tripole 10.59 10.48 0.44 NA NA 
Sept Arctic SI 10.17 10.77 0.02 0.22 0.25 
Climatological average 1981-2010: 10.49 ms-1 

 

b) JJA latitude 
drivers 

High (°N) Low(°N) p(high/low) p(high/low) p(low/clim) 

Solar cycle 49.49 48.99 0.26 NA NA 
Solar 1 lead 49.63 49.00 0.18 NA NA 
Solar 2 lead 49.66 48.90 0.10 NA NA 
Solar 4 lead 49.83 48.91 0.04 0.44 0.30 
Solar 5 lead 49.92 48.97 0.03 0.25 0.35 
June N3.4 49.16 49.62 0.13 NA NA 
June N3.4 (mod) 50.23 49.53 0.99 NA NA 
January AMO 49.35 49.53 0.65 NA NA 
March tripole 49.59 49.26 0.51 NA NA 
November BKI 50.51 48.40 1x10-3 0.08 0.03 
November QBO 48.96 49.90 0.13 NA NA 
Climatological average, 1981-2010: 49.45°N 
 
c) JJA vrange  
drivers 

High Low p(low/high) p(high/clim) p(low/clim) 

November  EPR -0.04 -0.13 1.00 NA NA 
March tripole 0.22 -0.20 0.10 NA NA 
November tripole -0.18 0.17 0.08 NA NA 
September GI 0.53 -0.21 2x10-3 0.10 0.31 
Climatological average 1981-2010: 0.00 
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Table 5.7. As for Table 5.4, but for autumn jet metrics. 
a) SON speed 
drivers 

High (ms-1) Low (ms-1) p(high/low) p(high/clim) p(low/clim) 

May EIR 11.13 12.34 3x10-4 0.04 0.06 
March CPR 11.63 12.48 0.01 0.42 0.02 
September AR 11.45 12.17 0.06 NA NA 
Solar 3 lead 11.68 11.90 0.27 NA NA 
Solar 4 lead 11.66 11.99 0.12 NA NA 
Solar 5 lead 11.47 11.98 0.02 0.16 0.59 
January N3.4 11.63 11.76 0.25 NA NA 
January 
N3.4(mod) 

11.49 12.05 0.03 0.24 0.27 

November 
AMO 

11.52 11.82 0.10 0.18 0.82 

June LVI 11.99 11.42 0.02 0.32 0.12 
July Arctic SI 11.72 11.39 0.16 NA NA 
Climatological average 1981-2010: 11.78 ms-1 

 

b) SON latitude 
drivers 

High (°N) Low (°N) p(high/low) p(high/clim) p(low/clim) 

February WIR 48.65 50.44 0.04 0.36 0.08 
July WIR 50.42 48.48 0.04 0.59 0.02 
May EIR 49.02 50.71 0.08 NA NA 
February N3.4 49.73 50.26 0.47 NA NA 
Feb N3.4(mod) 49.56 50.70 0.18 NA NA 
December AMO 50.57 49.84 0.22 NA NA 
February tripole 49.61 49.97 0.48 NA NA 
March GI 50.51 49.09 0.03 0.40 0.14 
August QBO 49.89 50.10 0.88 NA NA 
Climatological average 1981-2010: 49.94°N 
 
c)SON vrange 
drivers 

High Low p(high/low) p(high/clim) p(low/clim) 

April WIR 0.30 -0.34 0.10 NA NA 
September CPR -0.52 0.32 0.03 0.14 0.45 
November EPR -0.46 0.56 0.02 0.20 0.14 
September AR 0.08 -0.17 0.55 NA NA 
September N3.4 -0.28 0.23 0.02 0.17 0.55 
Sept N3.4 (mod) -0.13 0.18 0.47 NA NA 
July AMO 0.27 -0.23 0.02 0.31 0.35 
December tripole -0.18 0.21 0.12 NA NA 
September GI -0.08 0.31 0.12 NA NA 
July LVI -0.47 0.41 3x10-4 0.10 0.06 
Climatological average 1981-2010: 0.00 
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5.4.1.3. Wavelet Coherence analysis. 

WTC are presented when appropriate within the section on the relevant drivers. It should be 

noted that as with the composite plots, there are limitations when using wavelet analysis for 

the shortest time series. The longest period detectable for the 1980 series is just over 11 years, 

precluding analysis of periodicities longer than this. The cone of influence (COI) has a 

disproportionately larger impact, further reducing the usefulness of the results. Only periods 

of five years or less can be analysed for more than half the length of the time series. In order 

to minimise this effect, wavelet coherence analysis has been carried out for the longest 

possible period over which a predictor dataset is available, even if the predictor only 

appeared as a significant predictor in the shorter time series. Indeed, the wavelet analysis may 

shed light on the potential non-stationary nature of any relationship, hence perhaps indicating 

why a driver was not selected as a predictor for the longer time series regression models. 

 

5.4.2. Relationships between jet metrics and potential drivers 

In this section, each potential driver is examined in turn for associations with jet metrics, 

based on the regression and composite analysis. Identified associations with each jet metric 

are discussed in turn. Only associations identified from both regression and composite 

analysis are discussed in detail. For stratospheric influences however, a different approach 

has been taken to the composites, outlined in section 5.3.2 and SLP composites are presented 

for some combined drivers.  This includes predictors eliminated from the final regression 

models due to multicollinearity. 

 

5.4.2.1. Tropical rainfall  

Data for this driver are only available for the 1980 time series. Positive relationships involve 

an association of increased tropical rainfall with a strengthening of the jet (jet speed), a 

northwards shift (jet latitude) and increased meridionality (vrange), the converse applying for 

negative relationships (Tables 5.1-5.7). The majority of associations for jet speed are positive, 

with the exception of those for autumn, while the picture for jet latitude and meridionality is 

more mixed. Lead times of up to one month, or synchronous relationships are understandable 

on the timescale of propagation of Rossby waves from a tropical heating source of 7-10 days 

(Hoskins and Karoly, 1981), while the associations with a greater lead-time are more 

problematic in terms of possible direct causality. The weakest associations of jet metrics with 

tropical rainfall occur in summer, with potential predictors only identified for jet speed. In the 

composite analyses, there is some evidence of asymmetric associations between tropical 
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drivers and jet metrics. In summer, the composites based on July West Indian Ocean low 

rainfall years are significantly different from the jet-speed climatology while those in the high 

rainfall composite are not (Table 5.6). Similar relationships can be seen in autumn (May East 

Indian Ocean rainfall and March Central Pacific rainfall with jet speed, July West Indian 

Ocean rainfall with jet latitude, Table 5.7). 

 

5.4.2.1.1. Tropical rainfall and jet speed 

In both regression and composite analyses, the strongest association between this driver and 

jet metrics occurs for the jet speed, where a region of tropical rainfall is selected as a jet-

speed driver for each season (Tables 5.1, 5.4a-5.7a). Five of the six drivers selected in 

regression models show a positive regression coefficient, the exception being May East 

Indian Ocean rainfall with autumn jet speed.   For winter and spring, two separate regions of 

tropical rainfall are selected for model inclusion, with no significant correlations between the 

tropical rainfall in these regions (not shown). In the regression models, the tropical rainfall 

regions associated with summer and autumn jet speed show significant lead times of four to 

six months while those associated with winter and spring jet speed are synchronous (winter), 

or leading by two to three months (spring). When composites are examined, there are further 

instances of tropical rainfall associated with jet speed (Tables 5.4a-5.7a) which show a 

significant difference between composites for high and low rainfall years. These are the 

potential drivers eliminated from regression models through multicollinearity, e.g. July West 

Indian Ocean rainfall with summer jet speed (a synchronous association compared with 

others found in regression analysis for summer jet speed) and March Central Pacific rainfall 

with Autumn jet speed. Regions associated with autumn jet speed all show a negative 

relationship, a lower jet speed associated with increased tropical rainfall and vice versa, as is 

the case for the regression model.   

 

In winter, composite SLP plots (Figure 5.3) confirm the association of high rainfall in certain 

parts of the tropics with a significant more positive NAO-like SLP pattern in winter (Figure 

5.3b), with increased jet speeds (regression models, Table 5.1) These relationships are 

synchronous and there is a suggestion of poleward wave propagation from the tropical 

Atlantic to the North Atlantic in winter (Figure 5.3b), although this would not normally be 

diagnosed from SLP, so is further illustrated using 500GPH differences (Figure A.5.5a). This 

corresponds to a preferred direction of wave propagation from the tropical Atlantic identified 

by Hoskins and Ambrizzi (1993, their Figure 13). Increased December West Indian Ocean 
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rainfall is associated with weak high pressure over Iberia and a strong significant low-

pressure anomaly over Russia and a stronger winter North Atlantic pressure gradient, and 

vice versa (Figure 5.3a). The high pressure over Russia in the low December West Indian 

Ocean rainfall years will bring cold continental air westwards and the weaker pressure 

gradient in the Atlantic will reduce jet speed, as suggested by jet-speed composites (Table 

5.4a) and regression analysis (Table 5.1). Spring pressure anomalies based on December 

West Pacific rainfall  (Figure 5.3c) are weak and insignificant in the Atlantic, even though 

this is   identified as a significant driver from regression and jet-speed composite analysis 

(Tables 5.1, 5.4a). No other SLP composites are assessed for spring. In summer, while a 

wavetrain appears to arc over North America for July West Indian Ocean rainfall, linking 

high rainfall with stronger North Atlantic jet speeds and significant lower pressure to the 

south of Iceland (Figure 5.3d), the wavetrain does not extend back to the source of origin 

(Figure A.5.5b) and is unlikely to originate directly from the West Indian Ocean, seeming 

instead to originate from the waveguide of the Pacific jet (Hoskins and Ambrizzi, 1993).   

 

High January Atlantic rainfall appears to be more associated with a positive East Atlantic 

(EA) pattern6 with lower pressure to the west of the UK (figure 5.3e).   The SLP composites 

associated with autumn jet speed show similar patterns of significant high-pressure anomalies 

over the Arctic, with no lower-pressure anomalies in the Atlantic sector (Figure 5.3f,g), 

associated with spring tropical rainfall anomalies in the East Indian and Central Pacific 

Oceans. This is associated with a weaker poleward pressure gradient and the reduced zonal 

wind speeds indicated in regression and composite analysis.  

 

                                            
6 The East Atlantic pattern is the second mode of atmospheric variability in the North Atlantic region, 
characterised by a monopole of high (low) pressure to the west of Ireland in its negative (positive) 
phase. 
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Figure 5.3. SLP composite pressure differences for tropical rainfall drivers associated with 
jet speed, based on high minus low years. Region of tropical rainfall and the season of 
associated jet speed are indicated: a) December East Indian Ocean tropical rainfall (decEIR) 
winter jet speed, b) December Atlantic Ocean tropical rainfall (decAR) and winter jet speed, 
c) December West Pacific tropical rainfall (decWPR) and summer jet speed, d) July West 
Indian Ocean tropical rainfall (julWIR) and summer jet speed, e) January Atlantic Ocean 
(janAR) tropical rainfall and summer jet speed, f) May East Indian Ocean tropical rainfall 
(mayEIR) and autumn jet speed, g) March central Pacific tropical rainfall (marCPR) and 
autumn jet speed. Note that significance contours  (p≤0.05) are unadjusted and for guidance 
only. 
 
WTC for winter jet speed show significant coherence between the continuous wavelet 

transforms of the two time series, at around seven years periodicity for December West 

Indian Ocean rainfall  (Figure 5.4a) and broad coherence from 3-7 years for December 

Atlantic rainfall, from 1987-1998 (Figure 5.4b). In both cases, the relationships are 
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consistently in-phase, supporting a possible physical link, with 3-7 year variability in rainfall 

in these regions being matched in the winter jet speed and corresponding to the positive 

associations found in regression and composite analysis. Similarly the coherence between 

December West Pacific rainfall and spring jet speed is in-phase and significant for periods of 

four to six years from 1985-2000 (Figure 5.4c). While significant wavelet coherence is found 

at periods greater than five years for July West Indian Ocean rainfall with summer jet speed 

(Figure 5.4d), the phase of rainfall periodicity leads that of summer jet speed by π/2 radians. 

Areas of significant coherence between January Atlantic rainfall and summer jet speed occur 

at periodicities less than three years, with a more variable phase relationship and are more 

likely to arise from noise (Figure 5.4e).  Two associations are found between spring tropical 

rainfall variability and the autumn jet speed. May East Indian Ocean rainfall shows broader 

significant coherence, decreasing from four years to three years or less, with the periodicities 

in anti-phase (Figure 5.4f), corresponding to the negative association established by 

regression and composite analysis, while March Central Pacific rainfall shows little 

significant common coherence  (Figure 5.4g). However, it is hard to see a causal link between 

spring tropical rainfall and autumn jet speed. These time series are too short to establish how 

coherence patterns may come and go over time. It is interesting that synchronous or near 

synchronous WTC show significant coherence at periods of four to eight years (Figure 

5.4a,b,c) or around 10 years (Figure 5.4d) with a generally in-phase relationship, while those 

with longer lead times over the jet metric show significant coherence predominantly at less 

than three years period, (Figure 5.4e,f,g), with coherence being in-phase (Figure 5.4e) or in 

anti-phase (Figure 5.4f,g).  As mentioned above, a causal association at longer lead times is 

hard to explain, and the shorter periodicities involved may be more reflective of internal 

variability. 
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Figure 5.4. Squared wavelet coherence between jet speed and tropical rainfall regions. 
Regions and jet metrics a) to g) as for Figure 5.3. The 5% significance against a red noise 
background is a black contour. The semi-transparent region shows the cone of influence. 
Arrows show the relative phase relationship ( → in-phase; ←anti-phase; ↑ driver leads by 
π/2; ↓driver leads by 3π/2). Arrows are shown for z-values greater than 0.9 
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5.4.2.1.2. Tropical rainfall and jet latitude 

In the regression models jet latitude is significantly associated with tropical rainfall in winter 

(positive, December East Indian Ocean) and spring and autumn (both negative, March and 

February West Indian Ocean respectively, Table 5.2). Composite analysis confirms the 

significant winter association and in autumn identifies a link with the West Indian Ocean, this 

time in July (Tables 5.4b and 5.7b). There are no associations with summer jet latitude in 

either analysis.  Lead times are mostly quite small, being synchronous in winter and spring, 

the exception being for autumn where the lead is seven months. Autumn jet latitude shows 

associations with West Indian Ocean rainfall anomalies in composite and regression analyses, 

although the signs of these vary according to lag. The association with July West Indian 

Ocean rainfall is positive, while that with February West Indian Ocean rainfall is negative.  

 

The winter SLP composite for December East Indian Ocean rainfall indicates a significant 

positive NAO-like pattern (figure 5.5a), although the nodes are shifted northwards compared 

to Figure 5.3b and there is no evidence suggesting a propagating wavetrain from the source 

region. However, the WTC for December East Indian Ocean rainfall reveals no significant 

coherence (Figure 5.6a), which is interesting as in regression models this predictor alone 

explains around 19% of the variance in winter jet latitude (unadjusted R2). The autumn SLP 

composite based on February West Indian Ocean rainfall shows a significant negative NAO-

like anomaly (Figure 5.5b) while anomalies for July West Indian Ocean rainfall in autumn 

are weak and insignificant, even prior to any adjustment for spatial autocorrelation (Figure 

5.5c). Neither WTC plot for autumn latitude have any significant coherence (Figures 5.6b,c). 

The association between July West Indian Ocean rainfall and autumn jet latitude should not 

be considered robust as significance is only found in the composite analysis (Table 5.7b). 
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Figure 5.5.  SLP composite pressure differences for tropical rainfall drivers associated with 
jet latitude and meridionality, based on high minus low years. Region of tropical rainfall and 
the season of associated jet speed are indicated: a) December East Indian Ocean tropical 
rainfall (decEIR) and winter jet latitude, b) February West Indian Ocean tropical rainfall 
(febWIR) and autumn jet latitude, c) July West Indian Ocean rainfall (julWIR) and autumn 
jet latitude, d) September central Pacific rainfall (sepCPR) and autumn jet meridionality, e) 
November East Pacific rainfall (novEPR) and autumn jet meridionality.  Note that 
significance contours (p≤0.05) are unadjusted and for guidance only, except for d and e, 
where p-values remain significant after adjustment. 
 
5.4.2.1.3. Tropical rainfall and jet meridionality 

Significant drivers of meridionality in both regression analysis and composite models are 

only found in autumn (September Central Pacific rainfall), where a negative relationship 

associates decreased rainfall with increased meridionality of the jet in autumn (Tables 5.3 and 

5.7c).  Synchronous tropical associations exist with spring and autumn meridionality in 

regression models only. Autumn meridionality appears to be synchronously associated with 

rainfall in the tropical Pacific. September Central Pacific rainfall and November East Pacific 

rainfall (figure 5.5d,e) show ENSO-like patterns of high pressure over Indonesia and low 
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pressure over the East Pacific where rainfall is high, a pattern which is significant after 

adjustment, although smaller areas of significance such as those found in the Atlantic 

disappear after adjustment.  

 
Figure 5.6. Squared wavelet coherence between jet latitude and meridionality and tropical 
rainfall regions. Regions and jet metrics a) to e) as for Figure 5.5. The 5% significance 
against a red noise background is a black contour. The semi-transparent region shows the 
cone of influence. Arrows show the relative phase relationship ( → in-phase; ←anti-phase; ↑ 
driver leads by π/2; ↓driver leads by 3π/2). Arrows are shown for z-values greater than 0.9. 
 
These links may in fact be ENSO-driven, confirmed by the WTC plots  (Figures 5.6d,e) 
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N3.4 (unadjusted) is also a significant predictor of SON meridionality (Tables 5.3, 5.7c), and 

the two rainfall indices may not be separable from this signal, as they appear to replace it in 

the 1980 model. However, there is no robust SLP response in the Atlantic sector (Figure 

5.5d,e) and the WTC association appears to be dominated by this single event. 

 

5.4.2.2. Solar influences 

Solar months with a lead over the jet metric are selected as drivers for the regression models 

far more frequently than the synchronous solar cycle (e.g. five occurrences of the solar signal 

leading the jet metric by three years compared with one synchronous, Tables 5.1-5.3). 

Potential significant solar influences on regression models are identified for jet speed in 

winter and summer but not for the transition seasons (Table 5.1) and solar variability is 

selected more frequently as a predictor variable for the longer time series (twice for the 1980 

time series, three times for 1956 and four times for 1872/1902 across all jet metrics; Tables 

5.1-5.3). Solar variability has the strongest association with summer jet metrics (speed and 

latitude, being identified as significant at various lead times in composites for summer jet 

latitude). It is also interesting that the correlations between solar variability and jet metrics 

remain roughly constant, irrespective of the length of the time series (Figure 5.7), and 

therefore solar variability correlations will tend not to reach the required level of significance 

for the shorter time series. This, together with elimination through multicollinearity with 

tropical rainfall (e.g. summer speed 1980 model, with July West Indian Ocean rainfall) 

results in the possible under-representation of solar variability within the shorter-timescale 

models. Certain jet metrics exhibit prolonged significant correlations over many months with 

the lagged solar cycle (Tables A.5.1-A.5.3).  For example the 1872 summer jet-latitude time 

series shows a significant positive correlation for most months at lags of three to five years 

(Figure 5.7).  

 

The inconsistent evidence of a solar influence may be related to the complex interactions of 

the QBO and solar cycle jointly with the SPV. Further consideration is given in section 

5.4.2.5 to a solar influence on stratospheric drivers. 

 

 



 

 201 

 
Figure 5.7. Monthly correlation (Pearson’s Product Moment) of sunspot cycle with lagged 
summer jet latitude. Green =1872 series, red=1956 series, blue =1980 series. Dashed 
horizontal lines indicate the 95% confidence levels for each series. 
 
5.4.2.2.1. The solar cycle and jet speed  

Solar variability associations with jet speed are found for winter (negative) in both regression 

and composite analyses (Table 5.1), while a positive summer association is only evident in 

regression models. The winter associations are at a considerable lag of three to five years, 

while the summer relationships are at up to one-year lag.  

 

Few of the drivers identified in regression analysis are found to be significant in the 

composite analysis. Solar composites with a lead-time of three years have a significant 

negative relationship with winter speed, although this is not evident in the regression 

analyses, i.e. low solar activity is associated with higher wind speeds (Table 5.4a). A similar 

relationship is found between five-year leading solar activity and autumn speed (Table 5.7a). 

These relationships are at first sight counter to previous work where a negative NAO and 

colder winters are associated with lower solar activity (e.g. Ineson et al., 2011). However, 

here the relationships are lagged, and the metric is jet speed, which in winter correlates less 

well with the NAO than does jet latitude (0.50 c.f. 0.83), and is better explained by both the 

NAO and the East Atlantic (EA) pattern; it is quite possible to get faster jet speeds under a 

negative NAO if the EA is positive (Woollings et al., 2010a). Correlations and regression 

analysis unfortunately shed no light on this. (See also Chapter 6, where solar variability is 

linked specifically to the NAO). 
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Figure 5.8. SLP composite pressure differences for solar variability drivers associated with 
jet stream metric, based on high minus low solar years. The solar lead in years and the jet 
metric with which it is associated is indicated in a) to d).  Significance contours (p≤ 0.05) are 
adjusted for spatial correlation. 
 
The composite SLP plot for winter jet speed (Figure 5.8a) resembles that shown by Gray et 

al. (2013) (their figure 4), with an arc of high pressure from the central Atlantic, over the 

British Isles and into central Asia, and with a marked low pressure in the Aleutian area. 

However, no statistical significance is found in this pattern in Figure 5.8a, although their 

methodology for deriving the map is different, being based upon regression coefficients.  The 

autumn SLP composite (Figure 5.8b) shows high-pressure anomalies over the Arctic 

associated with increased solar activity leading by five years, together with a high-pressure 

anomaly in the East Atlantic resembling the negative EA pattern. This acts to weaken the 

north-south pressure gradient, reducing zonal westerly wind speeds. This link with the EA is 

consistent with that shown by Woollings et al. (2010b) see section 4.2.2.1 above, although 

again, here these patterns are not found to be significant. WTC analyses show little common 

coherence, although there is evidence of the 11-year solar cycle in the WTC for winter jet 
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speed (Figure 5.9a), particularly at around 1950-1960, where the coherence is in anti-phase. 

Significant coherence identified at shorter periods is likely to be noise, as phase relationships 

are not consistent. 

 
Figure 5.9. Squared wavelet coherence between jet metrics and the solar variability signal. 
The solar lead years and jet metric used in the WTC are indicated in a) to d).The 5% 
significance against a red noise background is a black contour. The semi-transparent region 
shows the cone of influence. Arrows show the relative phase relationship ( → in-phase; 
←anti-phase; ↑ driver leads by π/2; ↓driver leads by 3π/2). Arrows are shown for z-values 
greater than 0.9 
 

5.4.2.2.2. The solar cycle and jet latitude 

The leading solar signal exhibits a positive correlation with summer jet latitude (Tables 

A.5.1-A.5.3), which is more in line with the expected relationship, with high solar index 

values being associated with a northward displacement of the jet, and vice versa.  The five-

year leading solar signal emerges as a significant predictor for summer latitude in two of the 

three regression models (1956 and 1872) and in the composite analysis (Table 5.6b), while an 
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association with winter jet latitude is only identified in the regression analysis (Table 5.1) and 

no associations are found with the transition seasons. 

 

The SLP composite for summer  (Figure 5.8c), based on five-year leading solar composites 

for jet latitude, reveals a similar, but weaker arc of high pressure to that for winter, with an 

area of significant low-pressure anomalies in the South Atlantic (15-20°S), which is still 

significant after adjustment for spatial autocorrelation.  Composite plots for three and four 

year lead times show the progressive strengthening of anomalies  (not shown).  WTC analysis 

(Figure 5.9c) identifies common coherence at about 11-year periodicity, with the solar signal 

leading by around π/4 radians to around 1920, with a shorter in-phase coherence at 1960-

1970.  This WTC plot presents the clearest evidence found of a solar signal associated with a 

jet metric and helps to explain why the 1980 summer jet latitude regression model does not 

include a solar variability term, as no significant coherence is detected post 1979, while areas 

of significance exist prior to this, which are likely to influence the longer timescale regression 

models.  

 

5.4.2.2.3. The solar cycle and jet meridionality 

An association of solar variability leading spring jet meridionality by three years is found 

across all three time series and in composite analysis (Tables 5.3, 5.5c), suggesting a robust 

link, with increased solar variability associated with increasing jet meridionality in spring. No 

other associations with jet meridionality are found. 

 

The SLP composite map for spring is characterised by high-pressure anomalies over the 

North Pole when sunspot numbers are high, although no area is identified as being significant 

(Figure 5.8d). The high pressure over the pole will reduce the north-south pressure gradient, 

leading to a weaker jet with an increased propensity to meander. The WTC plot (Figure 5.9d) 

suggest common in-phase coherence at around an 11-year periodicity from around 1980, with 

little evidence of coherence at other periods or times.  

 

5.4.2.3. SST drivers 

SST in the Atlantic (AMO and Atlantic tripole) and the Pacific (ENSO, represented here by 

N3.4) are potential drivers of variability in jet stream metrics. 
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5.4.2.3.1. The AMO 

Although few AMO relationships are identified in the analyses, they paint a consistent 

picture. A negative synchronous relationship with jet speed in winter and summer and a 

positive association with autumn meridionality found in both regression and composite 

analyses (Tables 5.1, 5.3, 5.4a, 5.6a, 5.7c) indicate that a positive AMO is associated with 

lower jet speeds and enhanced meridionality, and vice versa.  Throughout there is only very 

limited evidence for any association with jet latitude, and with any jet metrics in spring solely 

occurring in regression analysis.  

 

5.4.2.3.1.1.  The AMO and jet speed 

The strongest influence of the AMO is on jet speed, the AMO being identified as a predictor 

in regression models for all seasons, with negative associations  (Table 5.1). The strongest 

relationships are synchronous with jet speed, except for the winter jet, where the strongest 

association is with September AMO for 1956 and January AMO for 1872. The synchronous 

association with winter and summer jet speed are also robust in the composite analysis 

(Tables 5.4a, 5.6a), with significant differences in jet speed between high (warm SST) and 

low (cold SST) AMO values, those for spring and autumn jet speed being marginal (p = 0.13, 

0.10 respectively, Tables 5.5a, 5.7a). The January AMO low years are significantly different 

from winter jet-speed climatology while that of high years is not, indicating an asymmetric 

association (Table 5.4a). 

 

SLP composite maps show significant pressure differences for winter and summer in the 

Atlantic region (Figure 5.10a,b,c), after adjustment for spatial autocorrelation, although the 

SLP anomalies are not significant in the Atlantic for the composites based on the September 

AMO (Figure 5.10b). The patterns support the associations found between a high (low) AMO 

with a more negative (positive) NAO-like pattern in the North Atlantic sector and slower 

(faster) jet speeds, in agreement with the regression data. It is interesting to note that for the 

synchronous AMO relationships in winter (Figure 5.10a), both low-pressure anomalies in the 

central North Atlantic and high pressure anomalies further north are significant, for a positive 

(warm phase) AMO and vice versa, while in summer (Figure 5.10c) it is only the central 

North Atlantic lower-pressure anomaly that is significant (higher pressure for a negative (cold 

phase) AMO). The extensive nature of the regions of significant pressure difference is 

noteworthy, indicative of the basin-wide nature of the AMO. The pattern for the September 

AMO influence on winter jet speed is different (Figure 5.10b), resembling a monopole of 
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high pressure in the East Atlantic, akin to the negative EA pattern, although this is not 

identified as significant.  

 

 
Figure 5.10. SLP composite pressure differences for AMO drivers associated with jet stream 
metric, based on high minus low AMO years. Month of the AMO driver and the season of the 
associated jet metric are given in a) to d). Significance contours (p≤ 0.05) are adjusted for 
spatial autocorrelation. 
 
The effectiveness of WTC analysis (Figure 5.11) to show common periodicities with the 

AMO is limited, as the main multidecadal variability of the AMO lies outside the range of 

scales of the WTC plots. On some plots (winter speed/January and September AMO, Figure 

5.11a,b) there are suggestions of common periodicities beyond 32 years, but these cannot be 

interpreted as they lie on the very edge of the plot, within the COI. Many of the other 

features, particularly at the shorter periods, are probably simply noise. However, both winter 

jet speed WTC plots show similar features with six- to twelve-year periods, extending from 

1880-1960 (Figure 5.11a,b), with the time series being broadly in anti-phase (high AMO, low 

speed). There is an indication of common coherence with summer jet speed, from around 
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1960-2000, with periodicities from seven to 16 years (Figure 5.11c), with the AMO phase 

leading jet speed by 3π/2 radians, varying slowly from being in anti-phase. This more 

extensive common coherence and phase relationship at periods of seven to sixteen years 

suggests a genuine link between AMO and jet speed in summer and winter. 

 

5.4.2.3.1.2. The AMO and jet latitude 

The January AMO is a predictor in the 1956 summer regression model, while the December 

AMO is included in the autumn 1872 model. The sign of the relationship is negative, 

consistent with a positive AMO being associated with a weaker, southward-displaced jet; 

however, neither relationship is identified as significant in composite analysis. No other 

evidence of an association with jet latitude is found.  

 

 
Figure 5.11. Squared wavelet coherence between jet metrics and the AMO. Month of the 
AMO driver and the season of the associated jet metric are given in a) to d). The 5% 
significance against a red noise background is a black contour. The semi-transparent region 
shows the cone of influence. Arrows show the relative phase relationship ( → in-phase; 
←anti-phase; ↑ driver leads by π/2; ↓driver leads by 3π/2). Arrows are shown for z-values 
greater than 0.9. 
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5.4.2.3.1.3. The AMO and jet meridionality 

Both associations identified in regression models are positive (October AMO/winter jet 

meridionality, July AMO/autumn jet meridionality) although only the autumn association is 

significant in composite analysis. The SLP composite map for autumn meridionality (Figure 

5.10d) shows a significant region of low-pressure anomalies in the subtropical North Atlantic 

associated with a more positive AMO, which may impact on the southern high-pressure node 

of the NAO. The WTC plot (Figure 5.11d) shows significant common coherence at periods of 

20-32 years, with the AMO leading by π/4 radians. 

 

Overall there seems to be evidence for the AMO driving jet-speed variability on multidecadal 

time scales. This is in agreement with other recent results (Woollings et al., 2014; 2015) 

indicating that multidecadal variability of the NAO and North Atlantic jet is more prominent 

in the jet speed: the results here suggest that this is partly driven by the AMO.  

 

5.4.2.3.2. El Niño-Southern Oscillation (ENSO)  

While the regression models show the modified discontinuous index as the most commonly 

selected predictor, the unadjusted N3.4 index is selected in summer (June N3.4/summer jet 

latitude, 1872 time series, Table 5.2) and autumn (September N3.4, autumn meridionality, 

1901 and 1956 time series, Table 5.3). These are the only results in these seasons that occur 

in more than one analysis and suggest that the non-linear nature of the association between 

North Atlantic atmospheric circulation and ENSO is restricted to winter and spring. The 

picture in composite analysis is more mixed, possibly as a result of decreased sample size for 

modified index composites. Figure 5.12 indicates whether SLP composites are based on 

modified or unmodified indices. All significant associations identified in regression and 

composite analysis are negative7, which means that an El Niño is associated with an 

equatorward displacement of the jet, with reduced wind speeds and interestingly, in autumn, 

reduced meridionality; the converse is true for a La Niña event. The equatorward 

displacement of the jet is consistent with the relationship demonstrated in earlier work 

(Toniazzo and Scaife, 2006; Ineson and Scaife 2009; Bell et al., 2009). The most frequent 

association is with jet latitude, where an association is evident in all seasons in regression 

                                            
7		The positive relationship identified between the unadjusted May N3.4 index and spring jet latitude 
is at odds with the relationship identified in composite analysis and seems likely to be a statistical 
fluke. 
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models. WTC analysis was performed on the unadjusted N3.4 series only, as use of the 

modified index would impact upon any periodicities present in the original series. 

 

5.4.2.3.2.1. ENSO and jet speed 

The only significant association identified in both regression and composite analysis is 

between the discontinuous January N3.4 index and the subsequent autumn jet speed (Tables 

5.1, 5.7a). Although evident in composite and regression analyses, the SLP anomalies, while 

consistent with reduced jet speed through a reduced poleward pressure gradient, are not 

significant (Figure 5.12a). The WTC plot in Figure 5.13a shows no consistent coherence or 

phase relationship and patterns are likely to be due to noise. 

 

5.4.2.3.2.2. ENSO and jet latitude 

The strongest impacts on jet latitude are in winter, when both October and February  

(discontinuous index) moderate El Niño events are associated with an equatorward 

displacement of the jet stream, across all regression models and composites and La Niña 

events with a northward displacement (Tables 5.2,5.4b). The association between the 

February N3.4 discontinuous N3.4 index and winter jet latitude is asymmetric, with jet 

latitude in El Niño years being significantly different from climatology, which is not the case 

for La Niña years (Table 5.4b). The influence of ENSO on jet latitude extends all year round 

in the regression analyses but is only found in both regression and composite analyses for 

winter and spring. The asymmetric association described above is also identified for spring 

jet latitude (Table 5.5b). North Atlantic SLP anomalies are weaker and mostly not significant 

in spring  (Figure 5.12d). The SLP anomaly patterns in winter are striking (Figure 5.12b,c), 

with a negative NAO-like pattern in the North Atlantic for both months, although the 

anomalies are stronger and more significant for the February N3.4 index. This suggests that 

the signal may be strongest in the Atlantic in February and supports evidence for a 

stratospheric teleconnection in late winter (e.g. Bell et al., 2009).  

 

Sudden stratospheric warmings (SSW), which can be influenced by planetary wave fluxes in 

the stratosphere propagating upwards from ENSO events, may induce tropospheric anomalies 

which can persist for up to two months after the event (e.g. Baldwin and Dunkerton, 2001), 

leading to an impact in late winter. This stronger SLP anomaly pattern for the February N3.4 

index may reflect the fact that for the 1872 regression model, the February N3.4 index was 

selected in preference to the October index, which is selected for the 1980 and 1956 models. 
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In both cases the significant El Niño pressure anomaly pattern is evident in the Pacific Ocean. 

It should be noted that the significance levels for the discontinuous index are likely to be 

affected due to the smaller sample sizes used relative to the terciles used for most composites. 

 

 
Figure 5.12. SLP composite pressure differences for N3.4 drivers associated with jet stream 
metrics, based on high-low N3.4 years. The month of the N3.4 driver and the season of the 
associated jet metric are given in a) to f). Significance contours (p≤ 0.05) are adjusted for 
spatial autocorrelation. Composites based on the modified discontinuous N3.4 index are 
indicated (mod). 
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A plot of winter SLP anomalies for the unadjusted October N3.4 index composites (not 

shown) does in fact reveal that the southern node of lower pressure anomalies in the North 

Atlantic acting to weaken the Azores high is significant after adjustment for spatial 

autocorrelation. The association between ENSO events and winter jet latitude persists into 

spring, (Tables 5.2,5.5b) although the SLP anomalies in the North Atlantic have weakened 

and are no longer significant (Figure 5.12d). WTC plots for winter jet latitude show a similar 

significant feature in the early half of the time series (Figure 4.12b,c), with the two time 

series broadly in anti-phase, as would be expected from the negative association in other 

analyses, with coherence over 1900-1940 (1960 for February N3.4) for periodicities in the 

range 12-20 years, but with periods gradually decreasing over time. The same feature is 

present in the WTC for spring latitude-July N3.4 (Figure 5.13d), although less extensive. This 

corresponds with a peak in the Fourier power spectrum of the N38 time series at 16 years 

shown in Torrence and Compo (1998) and clear wavelet power at 16-20 years in the N4 time 

series (Burroughs, 2003). Other small areas of significance occur at shorter periods but are 

not very persistent, although there is clear significant near in-phase coherence between 1890 

and 1925 for periods of six to eight years in both winter and spring (Figures 5.13c,d) 

corresponding to another periodicity detected in N3.4. It appears that jet latitude may be more 

responsive to the longer periodicities evident within ENSO.  

 

5.4.2.3.2.3. ENSO and jet meridionality 

Links between the N3.4 index and jet meridionality are weak. Positive relationships are found 

in all winter regression models, but not in composites. This relationship is consistent with El 

Niño events being associated with an equatorward jet displacement with slower speeds, more 

conducive to a meandering, meridional flow. The negative relationships identified between 

the September N3.4 unadjusted index and autumn jet meridionality and December N3.4 and 

spring jet meridionality is therefore something of a surprise (Tables 5.3, 5.5c, 5.7c). The SLP 

composites (Figure 5.12e,f) show weak but significant low-pressure anomalies over France in 

El Niño years in autumn, while pressure anomalies are insignificant in spring. The WTC plot 

for spring jet meridionality (Figure 5.13e) identifies common coherence at around 12 years 

between 1920 and 1945, in anti-phase but not significant.  The WTC for autumn jet 

meridionality identifies more extensive areas of significant common coherence, with periods 

                                            
8 The N3 region is 90°W to 150°W, 5°S to 5°N. The N4 region is 160°E to 150°W, 5°S to 5°N. The 
N3.4 region overlaps the two, bounded by 120°W to 170°W, 5°S to 5°N. 
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of two to eight years from 1905-1930, and about 20-years periodicity between 1940 and 

1980.  

 
Figure 5.13. Squared wavelet coherence between jet metrics and the unmodified N3.4 Index.  
The month of the N3.4 and season of the associated jet metric are given in a) to f). The 5% 
significance against a red noise background is a black contour. The semi-transparent region 
shows the cone of influence. Arrows show the relative phase relationship ( → in-phase; 
←anti-phase; ↑ driver leads by π/2; ↓driver leads by 3π/2). Arrows are shown for z-values 
greater than 0.9. 

1900 1940 198019001900 1940

18801880 1920 1960 2000 18801880 1920 1960 2000

1980

year

year

32

16

8

4

32

16

8

4

32

16

8

4

pe
rio

d 
(ye

ar
s)

a) janN3.4 /SON speed b) febN3.4 /DJF latitude

c) octN3.4 /DJF latitude d) julN3.4 /MAM latitude

f) sepN3.4 /SON v rangee) decN3.4 /MAM v range

0.0 0.2 0.4 0.6 0.8 1.0

squared wavelet coherence



 

 213 

5.4.2.3.3. The Atlantic tripole 

The Atlantic tripole has a complex relationship with jet speed, latitude and meridionality 

across all four seasons (Tables 5.1-5.3). Synchronous correlations are frequently significant, 

and persist across all regression models for a season. For example the January tripole is 

significantly negatively correlated with winter jet speed for all three time series (Tables 

A.5.1-A.5.3). Resolving the role of Atlantic tripole SST anomalies in jet variability is 

therefore complicated by the short timescale (monthly) coupling that occurs between the 

atmospheric circulation and Atlantic SSTs, unlagged correlations mainly reflecting 

atmospheric forcing of SST (Frankignoul and Hasselmann, 1977). Increased westerlies in a 

positive NAO phase lead to a more negative tripole, with increased temperature difference 

between the northern and central tripole nodes. This impacts on sensible and latent heat 

fluxes at the ocean surface, with increased heat loss to the atmosphere where winds are 

stronger and heat gains at lower latitudes where winds are weaker (Deser et al., 2010b).  

Vertical mixing processes in the near surface ocean layers also influence the heat flux (Fan 

and Schneider 2012; Cayan, 1992).  SST anomalies lag the atmospheric forcing by two to 

three weeks (Deser and Timlin 1997) and therefore would appear as synchronous correlations 

in the current analysis. These synchronous relationships are noted, but not considered further 

as the primary interest is upon potential drivers of jet variability.  

 

5.4.2.3.3.1. The Atlantic tripole and jet speed 

The Atlantic tripole is associated with jet speed in spring and summer, in each case leading 

by one month, the association being negative in both regression and composite analysis 

(Tables 5.1,5.5a, 5.6a). No significant evidence of the tripole leading jet speed is found for 

autumn or winter.  The negative association indicates that a negative tripole is associated with 

a strengthening of the jet, which would be expected from the increased meridional SST 

temperature gradient. SLP patterns for spring and summer are presented in Figure 5.14a,b, 

where the tripole leads the jet speed by one month for both spring and summer jet speed.  For 

a high tripole index (with a reduced meridional SST gradient) there are significant high-

pressure anomalies over Iceland in summer only and significant low-pressure anomalies in 

the mid-Atlantic (spring and summer), indicating a more negative NAO when the tripole 

index is high with a lead-time of one month over jet speed, the reverse also being true. This is 

in agreement with the understanding of physical mechanisms underpinning the association. 

WTC plots for spring and summer jet speed and the tripole show a number of features. 

Significant coherence at periodicities of around 8-16 years is evident through large parts of 
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the time series, which are broadly in anti-phase (1905-1960, spring; 1890-1920, 1940-1970- 

summer (Figure 5.15a,b). The period of around 12 years is consistent with the period for the 

tripole of 11 years identified by Fan and Schneider (2012). There is a suggestion of a longer 

common period of around 45 years in summer (Figure 5.15b). 

 
Figure 5.14. SLP composite pressure differences for Atlantic tripole drivers associated with 
jet stream metrics, based on high-low tripole years. The month of the tripole driver and the 
season of the associated jet metric are given in a) to d). Significance contours (p≤ 0.05) are 
adjusted for spatial autocorrelation. 
 
5.4.2.3.3.2. The Atlantic tripole and jet latitude 

Significant associations of the Atlantic tripole with jet latitude are evident for all seasons in 

the regression models (Table 5.2), at a range of lead-times, the association being positive 

except for autumn, when the lead-time is greatest (six months). The positive associations 

between the June tripole and winter latitude and the October tripole and spring latitude are 
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positive tripole is associated with a subsequent positive (northward) shift of jet latitude, i.e. a 

more positive NAO, in contrast to the negative near-synchronous relationship with jet speed. 

This lagged feedback of the tripole onto the NAO arises as the tripole pattern in late spring is 

preserved beneath the summer thermocline, which is destroyed the following winter and the 

signal may subsequently re-emerge in the following winter and spring to feedback onto the 

NAO (e.g. Rodwell et al., 1999; Deser et al., 2003). A positive (negative) tripole is associated 

with a northward (southward) displacement of the jet, which is somewhat counter to 

expectations. The original SST anomaly was primarily influenced by jet speed, yet the re-

emerging signal has an impact on latitude. This could be related to the background 

atmospheric flow being insensitive to the SST anomaly at the time the anomaly develops, but 

makes a stronger response in winter as the anomaly re-emerges, when the background flow 

has changed (Czaja and Frankignoul, 1999). The correlations of monthly tripole values with 

winter jet latitude show a positive peak at this time of year (June) in all time series (Tables 

A.5.1-A.5.3) although only significant for the 1872 time series The June tripole is associated 

with a positive NAO-like SLP anomaly pattern in the following winter (Figure 5.14c), 

although no significance is detected in this pattern. SLP anomalies in spring are weak and 

insignificant (figure 5.14d). In WTC analysis, the range of common periodicities is greater 

than with jet speed. Significant, broadly in-phase areas of coherence at longer periodicities 

are evident in winter (~24 years, 1910-1960, Figure 5.15c), and spring (12-16 years, 1900-

1960, Figure 5.15d) for extensive parts of the time series, suggesting some longer, 

multidecadal fluctuations in SST, shorter than the period of the AMO, which impact on jet 

latitude. The phase relationships at shorter periods are more variable, particularly in spring 

(Figure 5.15d), indicating they are likely to be a consequence of noise. 

 

5.4.2.3.3.3. The Atlantic tripole and jet meridionality. 

While jet meridionality has negative associations with the tripole in all seasons for the 

regression models, none of these are found to be significant in the composite analysis and are 

not pursued further. 
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Figure 5.15. Squared wavelet coherence between jet metrics and the Atlantic SST tripole. 
The month of the tripole driver and the season of the associated jet metric are given in a) to 
d). The 5% significance against a red noise background is a black contour. The semi-
transparent region shows the cone of influence. Arrows show the relative phase relationship 
(→ in-phase; ←anti-phase; ↑ driver leads by π/2; ↓driver leads by 3π/2). Arrows are shown 
for z-values greater than 0.9. 
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available: thus only shorter periodicities of less than 16 years are detectable (Figures 5.17, 

5.19).  Much significant coherence is detected at periods of four years or less, however there 

is evidence of significant coherence at periods of 8-12 years, which is likely to correspond to 

the quasi-decadal oscillation of Arctic sea-ice (Mysak and Venegas, 1998, Wang et al., 2005), 

which reflects atmosphere-ocean-ice coupling. Wang et al. (2005) relate the increased 

amplitude of the quasi-decadal oscillation since the 1960s to the thinning of sea-ice.  Most 

significant longer periodicities occur after 1980 in the WTC figures presented here for jet 

latitude; the transition point to satellite measurement of sea-ice. Thus low-frequency 

variability may be differently represented in the pre- and post-satellite eras.  

 

5.4.2.4.1.  Sea-ice and jet speed 

Some potential influence of sea-ice variability is discernible in the regression models and 

composite analyses of jet speed (Tables 5.1, 5.4a-5.7a), although different regions of sea-ice 

are selected for different seasons and no consistent picture emerges across time series; 

associations being of different signs in different seasons.  Jet-speed lags of up to seven 

months (February Laptev Sea/spring, September Greenland Sea/winter, June Laptev 

Sea/autumn) have positive correlations, while associations for longer lags (July Laptev 

Sea/spring, September Artic SI/summer) are negative. SLP composites show positive NAO-

like patterns for low-sea ice in spring (Figure 5.16a) and negative NAO-like patterns for low 

sea-ice in summer (Figure 5.16b), although this latter pattern is more reminiscent of the 

SNAO (Folland et al., 2009) and only the southern node, located over the British Isles shows 

significant pressure differences. Figure 5.16b, as with a number of the other plots (see below) 

indicates significant pressure differences in the tropics, which could be the cause of the 

signal, rather than a delayed sea-ice signal. SLP anomaly patterns for autumn are weaker, 

with high-pressure anomalies over the British Isles associated with low sea-ice (Figure 

5.16c). In spring, significant wavelet coherence is restricted to short periodicities (Figure 

5.17a). The coherence from 1960-1980 is anti-phase while two shorter regions of significant 

coherence from 1990-1995 and 2005-2010 show sea-ice leading spring jet speed by π/2, 

which may be attributable to noise. The WTC plot for summer identifies significant near anti-

phase coherence at periodicities of 8-12 years from 1985 onwards (Figure 5.17b). The anti-

phase coherence is consistent with the negative associations found in regression analysis 

(Table 5.1). The longer periods evident in autumn (Figure 5.17c) lie outside the COI, while  
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Figure 5.16. SLP composite pressure differences for cryospheric drivers associated with jet 
stream speed and latitude, based on low-high sea-ice years. a) July Laptev Sea ice (julLVI) / 
spring jet speed, b) September Arctic sea ice (sepsis)/summer jet speed, c) June Laptev Sea 
ice (junLVI)/autumn jet speed, d) November Barents-Kara Sea ice (novBKI)/winter jet 
latitude, e) October Laptev Sea ice (octLVI)/spring jet latitude, f) November Barents-Kara 
Sea ice (novbki)/summer jet latitude, g) March Greenland Sea ice (marGI)/autumn jet 
latitude. Significance contours (p≤ 0.05) are adjusted for spatial autocorrelation only in the 
case of g). 
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the significant broadly in-phase periodicities of three years and less are consistent with the 

positive relationship identified at shorter lead-times in regression (Table 5.1).  

 

5.4.2.4.2. Sea-ice and jet latitude 

A much more consistent picture emerges with jet latitude, the Barents-Kara Sea being the 

most important area associated with jet-latitude variability in regression models and 

composite analysis (Tables 5.2, 5.4b, 5.6b). Correlations with sea-ice extent leading jet 

latitude are positive (Tables A.5.1 and A.5.2); a reduction in sea-ice is associated with a 

subsequent southward displacement of the jet stream and a more negative NAO, with sea-ice 

leading by up to seven months (summer latitude/November Barents-Kara Sea ice). 

Synchronous relationships are negative, consistent with a more northerly jet resulting in wind 

driven reduction of sea-ice extent (e.g. Strong and Magnusdottir, 2011), although these are 

not discussed further here.  November Barents-Kara Sea ice is a significant predictor of 

winter jet latitude in both time series for which it is available.  

 

There is some evidence of a late summer-early autumn sea-ice impact in the subsequent 

spring (1979- August Barents-Kara Sea ice; 1955-October Laptev Sea ice) and summer (1979 

and 1955 both have November Barents-Kara Sea ice as a predictor), while March Greenland 

Sea ice shows a significant association with autumn latitude (Tables 5.2 and 5.7b). This 

association is present in both regression and composite analysis.  

 

A feature of associations between sea-ice drivers and spring and summer jet latitude is their 

asymmetric relationship (Tables 5.4b and 5.5b). In each case the difference between the low 

sea-ice composite and jet-latitude climatology is significant, whereas the difference between 

the high ice composite and climatology is not, suggesting a stronger driving from the years 

with low sea-ice. 

 

SLP composite analysis identifies marked low and high-pressure anomalies for winter 

centred on the east Atlantic/Barents Sea for low November Barents-Kara Sea ice years 

(Figure 5.16d).  The higher pressure over the Barents Sea could be a consequence of the 

northward migration of cyclone tracks in the Barents Sea, following the northward shift in 

baroclinicity with the marginal ice zone, resulting in a relative high-pressure anomaly further 

south (Inoue et al., 2012).  
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The SLP composite for November Barents-Kara Sea ice/ summer latitude (Figure 5.16f) 

suggests that an increase in Greenland blocking may be associated with low ice extent in the 

previous autumn, with significant areas of higher pressure over Greenland and low pressure 

over the British Isles with low sea-ice, and vice-versa. The pattern of pressure anomaly 

centres over the North Sea and Greenland appears to correspond to that of the SNAO 

(Folland et al., 2009). The low-pressure anomaly over northern Europe associated with lower 

ice extent is also found by Screen (2013), associated with increased rainfall in recent 

summers. There is also evidence of enhanced ridging over Greenland, which may link to 

recent increased Greenland blocking (Screen, 2013; Hanna et al., 2015; 2016). The longer-

term influence of sea-ice changes occur through their effect on ocean stratification and sea-air 

heat flux through subsequent months.  

 

A further mechanism which may be associated with identified relationships is that the time of 

freeze-up at a location impacts on anomalies of sea-ice area, leading to thickness anomalies 

which are able to persist in the seasonal ice zone through the winter, resulting in anomalies in 

the following melt season (Blanchard-Wrigglesworth et al., 2011). These anomalous patterns 

may then be associated with subsequent atmospheric circulation anomalies. The spring SLP 

composite associated with October LVI shows a negative NAO-like pattern associated with 

low sea-ice (Figure 5.16e).  

 

The composite for autumn jet latitude based upon March Greenland Sea ice shows significant 

pressure differences in the tropics, even after adjustment for spatial autocorrelation and may 

represent another instance of apparent sea-ice relationships, with jet variability in fact having 

a tropical origin (Figure 5.16.g). 

 

Significant coherence between jet latitude and sea-ice drivers occurs at longer periodicities 

than with jet speed for winter  (7-10 years, 1995-2005, Figure 5.17d, but also at two to four 

years periodicity, 1980-1995), spring (10-12 years, 1980-2012 Figure 5.17e), summer (6-8 

years, 1980-1990, Figure 5.17f, but also at three to four years, 1975-2000) and autumn (16-20 

years, 1980-1990, Figure 5.17g), all showing approximately in-phase associations consistent 

with the positive associations in regression analysis. As noted above, these all occur in the 

post-1980 section of the time series. 
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Figure 5.17. Squared wavelet coherence between jet speed and latitude and sea-ice drivers. 
Sea-ice regions and jet metrics as for Figure 5.16a) to g). The 5% significance against a red 
noise background is a black contour. The semi-transparent region shows the cone of 
influence. Arrows show the relative phase relationship ( → in-phase; ←anti-phase; ↑ driver 
leads by π/2; ↓driver leads by 3π/2). Arrows are shown for z-values greater than 0.9. 
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5.4.2.4.3. Sea-ice and jet meridionality 

For both regression and composite analyses, a positive sea-ice association with jet 

meridionality exists in summer (September Greenland Sea ice, Tables 5.3, 5.6c) while a 

negative association is found in spring (September Greenland Sea ice, Tables 5.3, 5.5c) and 

autumn, (July Laptev Sea ice, Tables 5.3, 5.7c). This is the opposite to the signs of 

association found for jet speed, with shorter lags having negative associations while the 

longer lags show a positive association. In light of the previously identified negative 

correlation between zonal wind speed and meridionality (Chapter 3, Table 3.7), this would be 

expected, and lends support to there being a genuine link between driver and jet metric. The 

September Greenland Sea ice extent appears to be the most significant predictor of jet 

meridionality, occurring in regression models for all seasons. SLP composites for sea-ice 

associations with spring and summer meridionality identify significant pressure differences in 

the tropics (figure 5.18a,b). Interestingly, the three composite SLP maps relating to 

Greenland Sea ice (Figures 5.16g, 5.18a,b) all have significant pressure differences in the 

tropics, suggesting that the apparent association between sea-ice in this region and jet metrics 

may in fact be driven from the tropics.  

 
Figure 5.18. SLP composite pressure differences for cryospheric drivers associated with jet 
stream meridionality, based on low minus high sea-ice years. a) September Greenland Sea ice 
(sepGI)/spring jet meridionality, b) September Greenland Sea ice (sepGI)/summer jet 
meridionality, c) July Laptev Sea ice (julLVI)/autumn jet meridionality. Significance 
contours (p≤ 0.05) are adjusted for spatial autocorrelation only in b). 
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Autumn meridionality is associated with July Laptev Sea ice in regression models and 

composites; SLP composites revealing significant higher pressure over northern Europe 

associated with lower sea-ice and vice-versa. Significant wavelet coherence is identified in 

spring (4-7 year period, Figure 5.19a), summer (6-9 year period, Figure 5.19b) and autumn 

(12-16 year period, Figure 5.19c), phase relationships varying from broadly in-phase 

(summer) to anti-phase (spring and autumn) in agreement with regression associations (Table 

5.3). The spring and summer coherence with September Greenland Sea ice is at shorter 

periods than the quasi-decadal oscillation and may further support a different origin of this 

signal (Figure 5.19a,b). 

 
Figure 5.19. Squared wavelet coherence between jet meridionality and sea-ice drivers. Sea-
ice regions and jet metric seasons are as for Figure 5.18a) to c). The 5% significance against a 
red noise background is a black contour. The semi-transparent region shows the cone of 
influence. Arrows show the relative phase relationship ( → in-phase; ←anti-phase; ↑ driver 
leads by π/2; ↓driver leads by 3π/2). Arrows are shown for z-values greater than 0.9. 
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A.5.1), indicating that a decrease in sea-ice is associated with a southward displacement of 

the mid-latitude jet, and vice versa, the association with snow is negative, and increased 

Eurasian snow anomalies are associated with a southward displacement of the jet, and vice 

versa. These are consistent with the direction of relationships found in other research (e.g. 

Strong and Magnusdottir, 2011; Cohen et al., 2007, Liu et al., 2012). Reduced Barents-Kara 

Sea ice is associated with ridging over the seas, with a downstream trough, while positive 

snow anomalies cool the surface and favour troughing, with upstream ridging near the 

Barents-Kara Sea. Thus both mechanisms have a tendency to induce a similar tropospheric 

geopotential height pattern (Cohen et al., 2014). Composite analysis (Table 5.4b) supports the 

significance and sign of the relationship. The SLP composite differences (Figure 5.20a) show 

low pressure over Europe associated with high snow anomalies, with higher pressure over the 

Arctic, the reverse being true. While not a characteristic NAO pattern, the effect of this 

pressure pattern will be to displace the jet stream southwards in high-snow years and 

northwards in low-snow years. The anti-phase relationship is demonstrated in WTC analysis  

(Figure 5.20b), with a period of around four years, although this is not sustained through the 

time series; the greatest coherence being prior to 1995. WTC is of limited value with such a 

short time series.   

 
Figure 5.20 a) SLP composite pressure differences for Eurasian snow cover associated with 
jet stream latitude, based on high-low snow years. Significance contours (p≤ 0.05) are not 
adjusted for spatial autocorrelation due to small sample size, and are for guidance only. b) 
Squared wavelet coherence between jet latitude and Eurasian snow cover. The 5% 
significance against a red noise background is a black contour. The semi-transparent region 
shows the cone of influence. Arrows show the relative phase relationship ( → in-phase; 
←anti-phase; ↑ driver leads by π/2; ↓driver leads by 3π/2). Arrows are shown for z-values 
greater than 0.9. 
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5.4.2.5. Stratospheric drivers 

The QBO and tropical volcanic eruptions are able to influence the strength of the 

stratospheric polar vortex (SPV), which is a phenomenon of the winter hemisphere (see 

Chapter 1). Stratospheric drivers are seen only to impact upon latitude in the regression 

models (Table 5.2): minimally upon autumn and predominantly on winter. This is consistent 

with when coupling occurs between the stratosphere and troposphere (e.g. Tomassini et al., 

2012), but there is no evidence of an impact on jet speed and meridionality. The volcanic 

index is a significant predictor for all winter jet-latitude time series (Table 5.2). The positive 

association supports evidence that volcanic eruptions can, via the stratosphere, result in a 

northward shift in the jet stream through the downward propagation of circulation anomalies 

from the stratosphere to the troposphere (e.g. Marshall et al., 2009; Driscoll et al., 2012). 

Composite differences are significant between eruption-influenced years and unaffected years  

(Table 5.4b) and support evidence for the more positive NAO found after eruptions, indicated 

by the regression models. The SLP composites (figure 5.21a) show a positive NAO-like 

pattern for years following eruptions, but with the nodes shifted northwards. However, 

significance values for this pattern disappear after adjusting for spatial autocorrelation. This 

could be a consequence of the mismatch of sample size, (18 volcanic-influenced years, 123 

non-volcanic years); the non-volcanic years range is greater and completely encloses the 

range of the volcanic years. WTC analysis is not appropriate for a driver such as volcanic 

eruptions, whose distribution in time is episodic and irregular. 

 

The autumn QBO is associated with winter jet latitude such that a positive (westerly) QBO is 

associated with a more northerly jet latitude, consistent with a stronger undisturbed polar 

stratospheric vortex and a positive NAO, and vice versa (Baldwin and Dunkerton 2001; 

Anstey and Shepherd 2014). September QBO is selected as a predictor for the 1980 model, 

while October QBO is included in the 1956 model. Composite latitude differences are 

significant, whether for October QBO or an extended autumn (SON) QBO, designed to 

eliminate the inclusion of QBO years which change sign just after September or October. 

Removing years affected by volcanic eruptions reduces the significance of the composite 

differences (Table 5.4b).  The SLP composite map reveals a very distinct “bull’s-eye” pattern 

of high (low) pressure anomalies over the Atlantic associated with the westerly (easterly) 

QBO (figure 5.21b), also seen in Scaife et al. (2014b), their Figure 4a. This appears to be 

more akin to the negative EA pattern rather than the NAO.  WTC identifies the expected 

common coherence, mainly around two to three years periodicity, mostly with an in-phase 
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association which is significant prior to 1980 (Figure 5.22). The lack of significant coherence 

post-1980 corresponds to a weaker coupling between the SPV and the QBO. This Holton-Tan 

effect (Chapter1) weakened post-1978 due to a stronger and broader winter SPV (Lu et al., 

2014). 

 
Figure 5.21. SLP composite pressure differences for stratospheric drivers (volcanic eruption-
influenced years minus non-affected years) and QBO (west minus east phase) associated with 
winter jet stream latitude. Significance contours (p≤ 0.05) are not adjusted for spatial 
autocorrelation and are for guidance only. 
 

 
Figure 5.22. Squared wavelet coherence between winter jet latitude and autumn QBO. The 
5% significance against a red noise background is a black contour. The semi-transparent 
region shows the cone of influence. Arrows show the relative phase relationship ( → in-
phase; ←anti-phase; ↑ driver leads by π/2; ↓driver leads by 3π/2). Arrows are shown for z-
values greater than 0.9. 
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The significant positive correlation between the autumn QBO and winter jet latitude is seen 

in Table 5.8. This is sustained for both the 1956 and 1980 time series, being significant 

(p≤0.05) from July-August-September (lag5) though to November-December-January (lag1) 

for the 1956 series. Correlations at lags 6 and 7 are likely to arise due to autocorrelation 

within the QBO time series, as stratosphere-troposphere coupling does not commence until 

the autumn. 

Lag11 0.001 -0.038 0.022 0.069 

Lag10 0.080 -0.020 0.090 0.075 

Lag9 0.147 0.017 0.170 0.097 

Lag8 0.193 0.061 0.241 0.110 

Lag7 0.222 0.084 0.285 0.107 

Lag6 0.254 0.092 0.275 0.066 

Lag5 0.269 0.107 0.244 0.036 

Lag4 0.283 0.127 0.231 0.010 

Lag3 0.287 0.137 0.216 -0.006 

Lag2 0.291 0.123 0.191 -0.031 

Lag1 0.269 0.105 0.131 -0.034 

Lag0 0.253 0.098 0.063 -0.033 

Jet latitude season DJF MAM JJA SON 

Table 5.8a. Correlations of seasonal jet latitude with moving 3-month windows of QBO 
values. 1956-2012.Highlighted values are those significant at 5% (dark) and 10% (light). 
Lag1 for DJF is NDJ, lag2 is OND, etc.  
Lag11 -0.010 -0.048 0.153 0.010 

Lag10 0.042 -0.023 0.249 -0.014 

Lag9 0.111 0.025 0.350 -0.019 

Lag8 0.192 0.079 0.420 -0.028 

Lag7 0.278 0.108 0.386 -0.061 

Lag6 0.348 0.117 0.309 -0.148 

Lag5 0.380 0.122 0.218 -0.210 

Lag4 0.394 0.109 0.156 -0.277 

Lag3 0.396 0.107 0.097 -0.311 

Lag2 0.371 0.092 0.041 -0.329 

Lag1 0.257 0.067 -0.033 -0.304 

Lag0 0.218 0.064 -0.132 -0.268 

Jet latitude season DJF MAM JJA SON 

Table 5.8b. As for Table 5.8a, but for 1980-2012 time series. 



 

 228 

 
There are also significant correlations between the preceding autumn and early winter QBO 

and the following year’s summer jet latitude. For example, for the 1956 and 1980 summer jet 

time series, significant (p≤0.05) correlations occur between the summer jet latitude and the 

QBO with the jet lagging QBO by eight months (October-November-December QBO) and 

seven months (November-December-January QBO). Although this relationship is not evident 

as a driver in the regression models, it occurs consistently across different months and both 

time series. There is no evidence of this association in the composite analysis, but it requires 

further investigation. Ebdon (1975) identified a statistically significant association between 

the phase of the QBO and July SLP and 500GPH over the Atlantic sector, although no 

mechanism was proposed. There is no troposphere-stratosphere coupling in Northern 

hemisphere summer so the QBO signal has to be present as long-term memory, possibly in 

SSTs, and results presented here suggest an association with the previous autumn’s QBO 

rather than a synchronous relationship. 

 

An aspect of stratospheric influence on the troposphere which the regression models do not 

address is the interaction of stratospheric drivers, particularly the non-linear interaction of the 

QBO and solar cycle that has been well documented (e.g. Labitzke and van Loon 1988; 

Camp and Tung 2007). Composite differences for various combinations of drivers are given 

in Table 5.9, having first removed the volcanic signal which can further confound any 

potential relationships. This is achieved by removing all years identified as being affected by 

tropical volcanic eruptions (chapter 2, section 2.5) prior to compositing the remaining years. 

Interactions between the QBO and solar cycles seem to produce the main significant 

differences in jet latitude, these being found between high solar-east QBO and low solar-east 

QBO and low solar-west QBO and low solar-east QBO (Table 5.9). The solar cycle appears 

to have a marked impact on the effect of the east QBO phase on jet latitude, with high solar 

activity combining to shift the jet northwards, while low solar activity produces an even more 

pronounced southward shift than found with the QBO alone. On the other hand, stratifying 

years by low solar activity enhances the difference between QBO phases (42.40° east QBO, 

46.11° west QBO) while incorporating high solar activity reduces them (45.93° east QBO, 

45.65° west QBO). In these composites, for early winter, it is the low solar-east QBO that is 

distinct from other phase combinations, shown in a schematic diagram (Figure 5.23).  
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Figure 5.23. Schematic diagram of solar activity/QBO composites. Significant differences 
(p≤ 0.05) between pairs of composites are shown by a bold solid line. 
 

This enhanced effect on jet latitude is seen in SLP composite maps, where a more 

recognisable NAO pattern emerges (Figure 5.24b,d,f), but with a wider hemispheric impact 

than for QBO alone (c.f. Figure 5.21b) and with more prominent significant SLP anomalies at 

the northern node. A major problem of this “combination analysis” is the small sample sizes 

produced, even when different selection criteria are used, and thus statistical significance is 

low. Results contrast with those for late winter (Camp and Tung, 2007), where the low solar-

west QBO is found to be distinctive, as the coldest and least perturbed state of the polar 

vortex. Here it is the most disturbed state that stands out, which is possibly related to the 

evolution of signals during the winter. 
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   2-tailed p-values for difference between composites 

Driver (1955-

2012) 

Number of 

years 

Latitude 

(°N) 

High solar 

EQBO 

High solar 

WQBO 

Low solar 

EQBO 

Low solar 

WQBO 

High solar 

EQBO (SON) 

15 45.93 NA 0.87 0.03 0.80 

High solar 

WQBO (SON) 

8 45.65 0.87 NA 0.23 0.90 

Low solar 

EQBO (SON) 

8 42.40 0.03 0.23 NA 0.00 

Low solar 

WQBO (SON) 

11 46.11 0.80 0.90 0.00 NA 

       

Driver (1871-

2012) 

Number of 

years 

Latitude 

(°N) 

High solar 

high N3.4 

High solar 

low N3.4 

Low solar 

high N3.4 

Low solar 

low N3.4 

High solar high 

October N3.4 

11 44.78 NA 0.18 0.80 0.17 

High solar low 

October N3.4 

17 46.72 0.18 NA 0.12 0.82 

Low solar high 

October N3.4 

11 44.16 0.80 0.12 NA 0.10 

Low solar low 

October N3.4 

10 46.86 0.17 0.82 0.10 NA 

       

Driver (1955-

2012) 

Number of  

years 

Latitude 

(°N) 

High N3.4 

WQBO 

High N3.4 

EQBO 

Low N3.4 

WQBO 

Low N3.4 

EQBO 

High Oct N3.4 

WQBO (SON) 

8 46.29 NA 0.20 1 0.75 

High Oct N3.4 

EQBO 

9 43.07 0.20 NA 0.19 0.00 

Low Oct N3.4 

WQBO 

9 45.90 1 0.19 NA 0.74 

Low Oct N3.4 

EQBO 

13 45.90 0.75 0.00 0.74 NA 

Table 5.9. Composites of winter jet stream latitude for high and low years of combined 
stratospheric drivers. Years influenced by tropical volcanic eruptions are removed from the 
composites. p-values for significance of composite differences are derived from a two-tailed 
Mann-Whitney-Wilcoxon test and significant values (p≤0.05) are shown in bold. 
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Figure 5.24. SLP composite pressure differences for combined stratospheric drivers 
associated with winter jet stream latitude. a) to f) show differences between combinations of 
high and low solar activity and east and west QBO, g) shows SLP differences between El 
Niño and La Niña years with an east QBO.  Significance contours (p≤ 0.05) are adjusted for 
spatial autocorrelation only in g). 
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The phases of Solar/N3.4 interactions appear to make little difference to jet latitude (Table 

5.9), although there is a significant difference between El Niño/East QBO and La Niña /East 

QBO, while under westerly QBO, there is no significant distinction between N3.4 phases. 

The El Niño pressure pattern emerges in the EN/EQBO minus LN/EQBO SLP composite 

(Figure 5.24g), together with significant differences in the western North Atlantic; the 

differences are significant after adjustment for spatial autocorrelation, even given the small 

sample size. This suggests that preconditioning of the stratosphere (an easterly QBO) may be 

a necessary condition for propagation of planetary waves from El Niño events into the 

stratosphere, with a subsequent influence on the NAO and jet latitude.  

 

5.5. Discussion 

Tables 5.10-5.13 summarise the results obtained from the different analyses for each season 

and jet metric, in order to identify more robust associations between drivers and jet metrics. 

Regarding jet latitude, the most robust predictors denoted by green shading, are found in 

winter and summer. Winter and summer jet speed have more robust associations with drivers 

(three) than the other seasons, but all seasons have at least one robust association with a 

driver. Regarding jet meridionality, no robust associations are identified in winter or summer 

(the strongest association in summer being with Greenland Sea ice which, as discussed 

above, seems to have an as yet unidentified tropical source), while autumn has robust 

associations with three drivers. 
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driver regression jet-metric 
composites 

SLP 
composites 

WTC 

winter jet speed  
December WIR 1980 ü ü ü 
December AR 1980 ü ü ü 
Lead3 solar  ü   
Lead4 solar 1872    
January AMO 1872 ü ü ü 
September AMO 1956 ü  ü 
September GI 1980    

winter jet latitude  
December EIR 1980 ü ü  
Lead2 solar 1872    
October N3.4(mod) 1956, 1980 ü∗ ü ü 
February N3.4(mod) 1872 ü ü ü 
June tripole 1872 ü  ü 
November BKI 1956,1980 ü ü ü 
October Eurasian snow 1980 ü ü ü 
Tropical volcanic 1872,1956,1980 ü ü NA 
Autumn QBO 1956,1980 ü ü ü 

winter vrange  
October AMO 1980    
Feb/mar/sepN3.4(mod) 1956,1901,1980    
June tripole 1956,1980    
September GI 1956    

Table 5.10. Summary of drivers that are significant in different analyses for winter jet 
metrics. The time series where the driver is a significant predictor are indicated. Where 
significance is found (p≤0.05) in jet-metric composites, SLP composite and WTC analyses, 
the driver is ticked. Shading indicates which associations are more robust. Green shading 
indicates significant drivers in all four analyses, orange indicates significance in three of the 
analyses. Identified associations with asterisked drivers may in fact be driven by other 
factors. 
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driver regression jet-metric 

composites 
SLP 

composites 
WTC 

spring jet speed  
December WPR 1980 ü  ü 
April AMO 1980    
September N3.4 (mod) 1872    
February tripole 1872 ü ü ü 
February LVI 1980    
July LVI 1956 ü ü ü 

spring jet latitude  
May N3.4 1956    
July N3.4(mod) 1872 ü  ü 
October tripole 1872 ü  ü 
August BKI 1980    
October LVI 1956 ü ü  

Spring vrange     
Lead3 solar 1872,1956,1980 ü  ü 
December N3.4 (mod) 1901 ü   
December tripole 1980    
September GI * 1956 ü  ü 

Table 5.11. As for Table 5.10, but for spring jet metrics. 
 

driver regression jet-metric 
composites 

SLP 
composites 

WTC 

summer jet speed  
July WIR  ü ü ü 
January AR 1980 ü ü  
January SS 1980    
Lead1 solar 1956    
August AMO 1872 ü ü ü 
November tripole 1980    
May tripole 1872 ü ü ü 
September SI 1956 ü ü ü 

summer jet latitude  
Lead3/4/5 solar 1872,1956 ü  ü 
January AMO 1956    
June N3.4 1872  ü  
March tripole 1980    
November BKI 1956,1980 ü ü ü 

summer vrange  
November tripole 1956,1980    
September GI * 1956,1980 ü  ü 
March tripole 1901    

Table 5.12. As for Table 5.10, but for summer jet metrics. 
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driver regression jet-metric 
composites 

SLP 
composites 

WTC 

autumn jet speed  
May EIR 1980 ü ü ü 
March CPR  ü ü  
Lead5 solar  ü   
November AMO 1980    
July SI 1980    
June LVI 1956 ü ü  

autumn jet latitude  
February WIR 1980 ü ü  
July WIR  ü   
December AMO 1872    
February N3.4(mod) 1872,1956    
February tripole 1980    
March GI 1956 ü  ü 

autumn vrange  
September CPR * 1980 ü  ü 
November EPR *  ü  ü 
July AMO 1901 ü ü ü 
September N3.4 1901,1956 ü ü ü 
December tripole 1901    
September GI 1980    
July LVI 1956 ü ü ü 

Table 5.13. As for Table 5.10, but for autumn jet metrics. 

Many of the models are consistent with suggested drivers of variability in the literature, in 

terms of the predictor selected, its season of operation, the sign of the relationship and any 

lag. This is particularly the case for jet latitude, and for the summer and winter seasons. 

However, other results are more complex and difficult to interpret, for example the different 

signs of association between jet speed and sea-ice which appears to depend on the extent of 

the lag, and changing signs of association with the North Atlantic tripole. Some interactions 

are likely to be non-linear and so will not be well captured by linear regression models. 

Several of the predictors may interact with one another, particularly the QBO, N3.4, solar and 

volcanic signals which all impact upon the SPV, and apparent associations may in fact be due 

to an as yet unidentified driver, which is capable of influencing both the driver identified  and 

the jet metric. A possible example of this is a conjectured tropical driver which influences 

both sea-ice in the Greenland Sea, and jet metrics, as identified from areas of significance in 

SLP composites (asterisked in Tables 5.10-5.13). The significant role of atmospheric internal 

variability is evident as even the best regression model only explains just over 50% of the jet 

stream variability for a particular metric, and internal unforced variability is much higher in 

the transition seasons, masking any possible relationships and weakening the regression 
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models. Furthermore, it is possible that associations identified by regression models are 

purely coincidental, so the results from the various analyses should be taken as a whole. 

 

North Atlantic SSTs, either as the tripole or the AMO, often occur as synchronous predictors 

of jet metrics, particularly for jet speed.  In the case of the tripole index, this is likely to 

reflect the forcing of SSTs by the atmosphere on monthly timescales through turbulent 

energy flux anomalies (e.g. Frankignoul and Hasselmann, 1977, Czaja and Frankignoul 

1999), rather than the other way round.  With a positive NAO and northward-shifted jet, the 

ocean loses heat over the subpolar  (and subtropical) tripole node due to stronger westerly 

winds, and gains energy in the mid-latitudes due to reduced wind speeds and warm air 

advection (Cayan, 1992; Deser et al., 2010b). However, the AMO varies on a multidecadal 

timescale so is likely to be influencing the atmospheric variability, particularly the jet speed, 

rather than vice versa. Most synchronous correlations with jet speed are negative, relating to 

an increased wind speed leading to a reduced tripole index, with increased differences in 

temperature between the nodes. 

 

Correlations with the tripole leading jet latitude are generally positive where significant.  The 

lagged relationship between the June tripole and the winter NAO is identified as influencing 

jet latitude and meridionality more than speed, although the association with meridionality is 

not robust across analyses (Table 5.10). The May tripole is also seen to lead summer jet speed 

and Dong et al. (2013b) find similar evidence of precursor sub-polar gyre SST anomalies in 

spring accounting for around half of the summer SST anomalies, the remainder being driven 

by atmospheric variability, with the potential  to impact on summer atmospheric circulation.  

 

The sustained significant negative correlation of the AMO with the 1872 winter speed time 

series may reflect the AMO being a measure of multidecadal variability, hence being more 

detectable in the longer time series. The negative relationship between September AMO and 

winter jet speed (1956 time series, Table 5.1) is in agreement with work suggesting a more 

positive AMO can lead to a more negative winter NAO, with a weaker jet (Peings and 

Magnusdottir, 2014b). A positive AMO leads to an equatorward shift in transient eddy 

activity and the area of maximum baroclinicity, and a more negative NAO, with a southward 

shift in the jet. This result is also in agreement with Woollings et al. (2014; 2015) who find 

that on decadal time scales jet speed shows greater variability than jet latitude, which in turn 

impacts on NAO variability.  This decadal variability of jet speed may therefore be related to 
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SST variability, particularly the AMO. A key question for future research beyond the scope 

of this thesis is why the main Atlantic SST influence is on jet speed rather than latitude. Jet 

speed will reflect the strength of the meridional temperature gradient while jet latitude will 

reflect the latitudinal location of this gradient maximum. Atlantic SSTs therefore appear to 

influence the strength of the gradient rather than its location.  

 

ENSO events have robust associations with jet latitude (winter, and to a lesser extent spring, 

Tables 5.10 and 5.11) and meridionality (autumn, Table 5.13). In winter and spring it is the 

modified discontinuous index that is most important whereas in autumn it is the unadjusted 

index, suggesting that the non-linear relationship identified (e.g. Toniazzo and Scaife, 2006) 

may only be really applicable in winter and spring, and may be related to transmission of a 

part of the signal via the SPV. Rao end Ren (2016a,b) confirm that ENSO has a non-linear 

impact on the Northern Hemisphere winter stratosphere, based on both observational and 

climate model evidence. 

 

Tropical rainfall shows some potential links with jet stream metrics in these regression 

models and composite analyses, but data are only available for the 1980 time series, which 

limits interpretation, excludes interactions on longer timescales and reduces significantly the 

value of WTC anlysis. The greatest potential impacts are on jet speed (Table 5.1 c.f. Table 

5.2) and a number of these associations appear to be robust across analyses (Tables 5.10-

5.13), with the caveat that results are based on a short time series since 1980. Tropical rainfall 

anomalies are indicative of SST anomalies, whose influence on the North Atlantic is likely to 

be transmitted via Rossby wave propagation polewards and eastwards (Hoskins and Karoly, 

1981). Possible propagation pathways are not easy to discern in SLP composite plots, but the 

winter speed /December tropical Atlantic rainfall (Figures 5.3b, A5.1a), resembles a preferred 

propagation path in Hoskins and Ambrizzi (1993, their Figure 13), while there is a suggestion 

of a wave train in the summer speed/July West Indian rainfall composite, arcing across 

Canada, into the North Atlantic (Figures 5.3d, A.5.1b). The strongest associations are 

synchronous, consistent with the seven- to ten-day time for propagation of a signal from the 

tropics (Hoskins and Karoly, 1981). Longer lead times are more puzzling, and no mechanism 

is evident here, so results could be coincidental. 

 

Evidence in the regression models for direct solar driving of jet stream variability is very 

limited. The question of solar impact on climate has been controversial and signals have not 
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been detected consistently. The small fluctuations in the solar cycle amplitude (0.2Wm-2) 

from solar maximum to solar minimum (Lean et al., 2005) require some form of 

amplification to match observed impact on climate. Evidence suggests that the solar driver 

may operate via two mechanisms. A top-down stratospheric impact, through fluctuations in 

ultra-violet (UV) radiation resulting in variations in ozone, leads to warming (cooling) of the 

stratosphere at solar maximum (minimum), with subsequent stratosphere-troposphere 

coupling (e.g. Kodera and Kuroda 2002). A bottom-up mechanism involves air-sea coupling 

in cloud-free areas of the subtropics. Increased energy input can result in increased 

evaporation, moisture transportation to the tropics and increased tropical precipitation, 

strengthening the Hadley and Walker circulations (Meehl et al., 2009). It is suggested that 

both mechanisms together may be able to produce the necessary amplification of the solar 

signal, although impacts are still small on climate (Lockwood, 2012). Variations in solar 

output have been linked with El Niño (e.g. Kodera et al., 2007), SST more widely (e.g. White 

and Tourre, 2003), the QBO (e.g. Labitzke and van Loon, 1988; Camp and Tung, 2007) and 

the SPV (Kodera and Kuroda 2002), all of which have been suggested as drivers of North 

Atlantic climate variability in their own right.  

 

There are significant problems with non-linearity in relationships, for example between the 

solar cycle and the QBO (e.g. Labitzke and van Loon, 1988; Camp and Tung, 2007), making 

the solar signal difficult to detect, particularly in linear models. Haigh and Roscoe (2009) 

found a significant response to solar and QBO signals in multiple regression of the Northern 

Annular Mode only when the two were combined to give one signal. Aliasing may also occur 

between solar and volcanic signals over the shorter time series as the eruptions of El Chichon 

and Pinatubo both occurred close to solar maxima, 9-10 years apart (Frame and Gray, 2010), 

further complicated by the coincidence of volcanic activity with El Niño events. Despite this, 

it is interesting to note that solar indices leading jet metrics by a number of years have  

stronger correlations than the  synchronous datasets. This supports the findings of Scaife et al. 

(2013) and Gray et al. (2013) and suggests that the bottom-up mechanism via solar impacts 

on SSTs may provide a positive feedback from the ocean in addition to any stratospheric 

effect.   It should also be noted that sunspot peaks appear about a year in advance of peaks of 

total solar irradiance (TSI), which may contribute to some of the lag (Roy and Haigh, 2010). 

Solar influences are only slightly more evident in composite and WTC analyses, again with 

leading solar variability being more important, although SLP differences for composites are 

only small (Figure 5.8). There does appear to be some interaction with the QBO in early 
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winter, although the same influences as in other work (e.g. Camp and Tung, 2007) are not 

identified. This may be due to the time of the analysis (early compared with late winter), the 

level of winds selected to represent the QBO, the time period of analysis and cutoffs used in 

composite analysis, all combined with small sample sizes leading to variability in results. It 

should be stressed that the results found here for interaction of the QBO and solar cycles were 

robust to the cutoffs used, changes in sample size and the month(s) selected to best represent 

the QBO.  

 

The main influence of leading solar variability is likely to operate via SST anomalies and 

tropospheric impacts, rather than through the stratosphere. It is worth noting that as with the 

tripole, AMO and tropical rainfall, the main impact of leading solar activity appears to be on 

jet speed in regression and composite analyses (with the exceptions of summer latitude and 

autumn meridionality), which further supports a link via its influence on SST. However, the 

presence of a solar signal influence on jet speed is not robust across analyses (Tables 5.10-

5.13). The solar influence on jet latitude appears to be most evident in summer, which is the 

only association with solar activity identified across more than two analyses (Tables 5.10-

5.13). This is suggestive of a different mechanism than the transmission via SSTs, requiring 

further investigation, beyond the scope of this thesis. 

 

Sea-ice appears to have a pervasive influence across all seasons in regression models and 

composite analysis, and on all jet metrics, although regular periodicities are harder to detect.  

Sea-ice appears as a robust driver across all four analyses for jet speed (spring and summer), 

latitude (winter and summer) and meridionality (autumn) although it is not always the same 

area of sea-ice that is influential (Tables 5.10-5.13). While Greenland Sea ice appears in 

regression models and composites as an important predictor for metrics in different seasons, 

it is interesting to note that SLP composites show significant pressure differences in the 

tropics, suggesting that in fact the Greenland Sea ice variability and jet metrics are 

responding to a tropical signal. Ding et al. (2014) report that NAO changes and sea-ice 

variability may be affected by anomalous Rossby wavetrains emanating from the tropical 

Pacific, particularly in the Greenland sector of the Arctic. 

 

When sea-ice leads jet latitude, there is a positive association between ice extent and jet 

latitude, thus confirming studies linking reduced sea-ice to a more negative NAO  (e.g. 

Petoukhov and Semenov, 2010; Jaiser et al., 2012; Peings and Magnusdottir, 2014a). Results 
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here are not due to decadal trends in the NAO as data have been detrended, avoiding aliasing 

of the NAO onto high- and low- sea-ice years. For example, some studies divide composites 

into high- and low- ice years, but these also correspond to positive and negative phases of the 

NAO: thus atmospheric circulation differences between the two composites will inevitably be 

detected (e.g. Jaiser et al., 2012). The Barents-Kara Sea is confirmed as one of the more 

significant areas of sea-ice variability, in terms of potential influences on North Atlantic 

atmospheric circulation. It is noteworthy that it is not the minimum ice extent in September 

which is most closely associated with jet-latitude changes in winter, rather it is the November 

extent. The correlation of September Barents-Kara Sea ice with winter jet latitude is in fact 

found to be negative, and insignificant (Tables A.5.1 and A.5.2). This may explain why, in 

some studies (e.g. Mori et al., 2014), where minimum ice extent is used, significant 

atmospheric changes in response to sea-ice change in this region are not detected for the 

Atlantic sector.  

 

While sea-ice loss is greatest in autumn, a number of studies confirm that the maximum 

heating effect in the Arctic occurs in winter (e.g. Screen and Simmonds, 2010; Screen et al., 

2013a, Deser et al., 2015, Pedersen et al., 2016). This is because the temperature difference 

between ocean and atmosphere is greatest in winter, thus reduced insulation of the ocean by 

sea-ice, in terms of thickness and concentration, results in enhance turbulent heat flux 

exchange from ocean to atmosphere. When comparing annual cycles of high- and low-ice 

years, using composites of detrended sea-ice series for September and November, an 

intriguing difference emerges (Figure 5.25). Low September sea-ice years are seen to recover 

more quickly after the minimum ice concentration so that by November the difference 

between high- and low-ice years has reduced, compared with in September. However, low 

November ice years are closer to high November ice years in terms of minimum ice 

concentration in September, but are characterised by slow ice recovery during October and 

November. Thus it seems that a different mechanism may be involved in terms of the 

influence on the Atlantic sector, compared with the well-attested downstream linkages with 

Asia (Kim et al., 2014, Honda et al., 2009, Mori et al., 2014).   
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Figure 5.25. Annual cycles of monthly sea-ice concentration for the Barents-Kara Sea for 
September high-ice concentration years (blue dashed), September low-ice concentration years 
(blue solid), November high-ice concentration years (red dashed) and November low-ice 
concentration years (red solid). Data from HadISST1 (Rayner et al., 2003) 
 
Preconditioning of the recovering ice in autumn, by for example a strongly positive NAO, 

may in turn result in negative feedback in winter (Strong and Magnusdottir, 2011). When the 

NAO in autumn is positive, sea-ice concentrations in the Barents-Kara Seas tend to be 

reduced as a consequence of wind-driven sea-ice anomalies, with stronger winds from the 

southwest restricting the southward advance of the ice, together with increased poleward 

atmospheric and oceanic heat transport  (e.g. Koenigk et al., 2009). The subsequent negative 

sea-ice anomaly is then able to feedback negatively onto the NAO and jet latitude in winter as 

discussed above. It is possible, from these results, that the sea-ice maxima and minima in 

November are in turn partly driven by a source external to the region, making the sea-ice-

mid-latitude link part of a longer causation chain. Sato et al. (2014) suggest this external 

forcing originates in fluctuations in the location of the Gulf Stream, with a northward shift of 

the SST front in the Gulf Stream area and changes in diabatic heat fluxes producing 

advection of warm air from the south and reduced sea-ice over the Barents-Kara Seas. Ding 

et al. (2014) link Arctic warming and sea-ice decline to a negative NAO anomaly induced by 

positive tropical SST anomalies. 

 

Stratospheric drivers of tropospheric change interact in a complex way and are difficult to 

isolate, particularly as sample sizes become very small when undertaking combination 

composite analysis. However, there does appear to be interaction between the solar cycle and 

the QBO, and to a lesser extent the QBO and ENSO, where the QBO may well precondition 
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the SPV to respond to ENSO-driven planetary waves. It would be interesting to compare the 

early winter analysis here (DJF) with a late winter analysis (JFM), but this is beyond the 

scope of this thesis. The links between stratospheric drivers and jet metrics exist only in 

winter on a consistent basis, confirming that they act only when the stratosphere and 

troposphere are coupled, during the winter months. The stratospheric drivers are seen 

primarily to influence jet latitude, consistent with studies which find that the primary 

tropospheric response to a weakening of the strength of the SPV results in an equatorward 

displacement of the tropospheric jet (Baldwin and Dunkerton, 1999; Kidston et al. 2015). The 

QBO and volcanic influences are robust across the different analyses (Table 5.10,), together 

with the potential stratospheric influence from ENSO events.  

 

While much of the winter stratospheric forcing of the troposphere occurs via SSWs, these 

latter are not identifiable using the current methodology. However, it is likely that the drivers 

identified precondition the stratospheric vortex so that SSWs are more or less likely. 

Garfinkel et al. (2013) argue that the latitude of the polar front jet determines its response to 

the SPV, hence the Atlantic response is stronger than that in the Pacific due to the jet 

occurring on average at a more favourable latitude for interaction between the stratosphere 

and troposphere. This may help to explain why the QBO seems only to affect the Atlantic in 

composite plots (Figure 5.21b). 

 

Winter jet-latitude variability is well accounted for by consideration of the autumn N3.4, 

November sea-ice concentration in the Barents-Kara Sea, tropical volcanic eruptions, October 

Eurasian snow anomalies and the autumn QBO, consistent with previous work (e.g. Folland 

et al., 2012), together with a suggested influence from SST anomalies in the East Indian 

Ocean (Table 5.10). The tropical influence is interesting, as it is in agreement with a Met 

Office report (Slingo et al., 2014) which implicates positive rainfall anomalies and high SST 

in this area with the extreme storminess in the UK in winter 2013/14, with a sustained 

positive NAO, heavy rainfall and flooding. It is notable that these drivers do not account for 

all aspects of winter jet variability. However, it is the September/ January AMO that seems to 

link most closely with winter jet speed, together with potential influences from the tropical 

West Indian and Atlantic Oceans (Table 5.10). Models for winter jet speed have much lower 

R2 values than latitude, suggesting either other drivers not yet considered, and/or a greater 

influence of atmospheric internal variability (Tables 5.1 and 5.2). Stratospheric drivers are 

significant in this season, consistent with the winter coupling of stratosphere and troposphere, 
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but predominantly influence jet latitude. There are potential effects on speed and latitude 

identified from tropical precipitation anomalies, which are likely to result from planetary 

wave propagation due to the presence of a low-latitude heat source (Hoskins and Karoly, 

1981). 

 

Aspects of summer jet variability would appear to arise in part from drivers in the previous 

autumn (meridionality - September Greenland Sea Ice; latitude - November Barents Kara Sea 

ice, although as discussed above, the Greenland Sea ice signal could well be of tropical 

origin).  The association of the AMO with the summer NAO and jet stream configuration 

(e.g. Knight et al., 2006; Folland et al., 2009; Sutton and Dong, 2012) is shown by the 

occurrence of the August AMO as a significant predictor for summer speed in the 1871 

series, and a significant influence in the composite analysis.  Composite analysis suggests 

that it has little impact on jet latitude. This may also be a result of the timescale of interaction. 

Here the focus is on interannual variability while others have focussed on interdecadal scales. 

Solar variability at quite long lead times of three to five years is also an important predictor 

of summer jet latitude, and the only solar association that is relatively robust across different 

analyses (Table 5.12). 

 

Drivers for transition seasons are generally less consistent across both the regression models 

and the composite analyses for different time series and have lower R2 values for jet latitude, 

although some regression models (spring and autumn jet speed) perform better than do those 

for winter and summer. There are fewer drivers identified as robust across the four analyses 

than for winter and summer (Tables 5.10-5.13). In spring, the preceding late summer -autumn 

sea-ice in the Barents-Kara-Laptev Sea regions is associated with jet latitude, while for 

meridionality the main association is with the leading solar signal and September Greenland 

Sea ice, a signal which may well be of tropical origin. Leading solar variability and summer  

sea-ice extent in the Laptev Sea region are consistently associated with autumn jet speed. 

Autumn meridionality appears to be influenced by the autumn N3.4 index, also shown by the 

tropical rainfall anomalies in the Pacific which appear to be ENSO related. It is likely that the 

increased internal variability in transition seasons means that any regression models will 

explain a smaller proportion of the variance, although there appears to be some success with 

models for jet speed and spring meridionality. This increased internal variability in the 

transition seasons will act to obscure any signals present and is consistent with fewer robust 

drivers of jet variability being detected (Tables 5.10-5.13). 
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Comparisons of models across time series are also hampered by possible non-stationary 

relationships between drivers and jet metrics. This is exemplified by the changing 

relationship between the October QBO and winter jet latitude (Figure 5.26). The QBO is one 

of the drivers that fluctuates with quasi-regularity, having a period of around 27-28 months, 

fluctuating from easterly to westerly phases, yet the correlation varies considerably over time. 

This may be related to the disruption of the Holton-Tan effect seen from 1978-1997, (Lu et 

al., 2014), where the coupling of the QBO phase with the strength of the SPV was reduced. 

As can be seen from Figure 5.26, during this period there were no significant correlations 

between winter jet latitude and the autumn QBO. This may also explain the significant 

wavelet coherence seen between winter jet latitude and the QBO, which is evident only prior 

to 1980 (Figure 5.22). 

 
Figure 5.26. 15-year running correlation of the DJF jet latitude with October QBO, 1956-
2012. Dashed line shows 90% significance level. 
 
A similar situation has been shown to prevail with the sunspot cycle and the winter NAO 

over a longer time period (1821-2011), with periods of positive and negative correlation 

influencing the overall positive correlation (Gray et al., 2013). This could be due to 

fluctuations in other drivers, such that when they are more prominent, they may override any 

influence of the QBO or solar cycles. Alternatively these changes could be attributable to 

internal variability. Other drivers show less regular periodicities but appear to co-vary with 

jet stream metrics over varying periods of time. However, there are possible mechanisms, 

identified through the study of the dynamics of non-linear systems which can account for this 

intermittent coupling. Entrainment, or synchronisation has been observed in a wide variety of 

physical systems, including the climate system (e.g. Castrejón-Pita and Read, 2010). It 
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involves two interacting oscillatory systems which have different periods when functioning 

independently, but which through non-linear interaction assume a common period, possibly 

that of one of the systems. This results in the appearance of one of the systems being 

entrained within the other. This phenomenon is well known from metronomes which can 

synchronize through small movements of the base on which they stand (e.g. Pantaleone, 

2002). Such interaction can be envisaged between a driver and one of the jet metrics. This is 

perhaps suggestive of general underlying internal variability on occasion drifting into a 

pattern which then picks up the signal from, for example, the QBO, which modulates it for a 

time, before it drifts out again. 

 

An alternative approach, which has again been investigated across the scientific spectrum is 

stochastic resonance. This non-linear process involves the amplification of a weak signal by a 

particular level of background noise, so an increased noise level can, paradoxically make the 

signal easier to detect (e.g. Gammaitoni et al., 1998). Thus fluctuations in background noise 

levels may account for the intermittent detection of weak signals, which may then interact, 

for example through entrainment, producing the correlations identified in atmospheric 

research.  

 

A similar non-linear relationship between Barents-Kara Sea ice and mid-latitude circulation 

patterns is suggested by Petoukhov and Semenov (2010). Using a modelling approach, they 

find that reduction of sea-ice in the Barents-Kara Sea from 100-80% and 40-1% results in 

cyclonic circulation anomalies over the region while a reduction from 80-40% produces 

anticyclonic circulation anomalies over the heating source, with easterly wind anomalies over 

Europe. The non-linear atmospheric response is attributed to interplay between convection 

above the heat source and the baroclinic effect of modified temperature gradients. Work by 

Fauria et al., (2009) suggests a non-stationary relationship between the NAO (jet stream) and 

sea-ice variability, possibly linked to variations in atmospheric patterns related to the NAO. 

Peings and Magnusdottir (2014a) find that when sea-ice is substantially reduced in modelling 

experiments, thermodynamic considerations override circulation changes induced by sea-ice 

reduction. 

 

As discussed above, a number of the drivers have robust associations with jet metrics across 

analyses. However, climate modelling experiments can provide evidence for causal effect and 

insights into physical mechanisms. There is supporting evidence for physical links between 
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some drivers and the NAO from a number of modelling studies, predominantly for winter. 

These drivers include: the AMO (Peings and Magnusdottir, 2014b); ENSO (Toniazzo and 

Scaife, 2006; Rao and Ren, 2016b); the Atlantic SST tripole (Maidens et al., 2013); tropical 

rainfall (Scaife et al., 2016a); the solar cycle with a lead of three to five years (Scaife et al., 

2013; Andrews et al., 2015); sea-ice (Peings and Magnusdottir 2014a; Mori et al., 2014). 

More limited use has been made of GCMs in assessing the impact of the QBO, and few 

examine the interactions of the QBO and solar cycle. Those that do, while broadly in 

agreement with observational evidence, tend to have unrealistically large solar forcing (e.g. 

Kodera et al., 1991). A number of factors that may influence the Northern Hemisphere winter 

stratosphere have been difficult to represent in GCMs (e.g. the solar cycle, QBO and ENSO), 

let alone their combined influences (Anstey and Shepherd, 2014).  

 

This evidence demonstrates that in many cases, plausible physical mechanisms exist to link 

the various drivers with North Atlantic jet stream variability. However, the studies do not 

differentiate between effects on jet latitude and speed, instead focusing on the NAO. To 

confirm and explain the results in this chapter, model experiments should be run that focus on 

jet metrics and that explore the different lead times that exist in the statistical relationships. 

This would involve controlling all variables except the particular driver under consideration. 

However, there are limitations to such an approach, which assumes simple cause and effect 

linkages. Responses to a forcing may be state dependent, in that the impact may be 

influenced by the initial state of the atmosphere. For example, the effectiveness of the 

propagation of waves into the stratosphere is sensitive to the initial state of the stratospheric 

vortex (Sigmond and Scinocca, 2010). The effect of multiple influences can obscure or 

negate the impact of a particular driver and there is the likelihood that key drivers may 

interact in a non-linear fashion (Overland et al., 2016). Thus while a simple approach of 

allowing one driver to influence the jet stream demonstrates its potential to have an impact, 

reality is more complex. Therefore future studies should also try to address the issues of the 

interactions of multiple influences. 

 

5.6. Conclusions  

Simple regression models are able to explain up to 56% of jet metric variability (winter jet 

latitude, 1980-2012), with a number of other models being effective, particularly at shorter 

timescales. While the regression models capture the sign of much of the interannual 

variability, they are less effective over the longer time series (1872), presumably due to the 



 

 247 

decreased availability of important predictors such as sea-ice, and increased uncertainty in the 

driver- and jet-metric data from the earlier part of the time period. However, in all regression 

models a significant proportion of jet stream variability is attributable either to other drivers 

not considered, or to internal atmospheric variability. 

 

A key aspect of this chapter is the decomposition of the association of drivers with North 

Atlantic atmospheric circulation variability into their impacts on different jet metrics rather 

than the NAO alone, which previous studies focus on (e.g. Sutton and Dong, 2012; Strong 

and Magnusdottir, 2011). The evidence suggests that different drivers impact upon different 

jet metrics: drivers associated with SST (tropical precipitation, AMO, tripole, lagged solar 

through its impact on SST) impact mainly upon jet speed. In the case of tropical rainfall 

anomalies, there is some evidence to suggest linkage via Rossby wave propagation from a 

low-latitude heat source. These relationships are often synchronous, which in the case of the 

tripole reflects the short-timescale coupling between SST and atmospheric variability in the 

Atlantic, with atmospheric forcing of SST.  The tripole is associated with jet latitude when it 

leads by up to six months, indicative of the preservation of the SST signal beneath the 

thermocline, which re-emerges in winter. The AMO is an important driver of jet speed on 

longer timescales, across all seasons.  Stratospheric influences and the N3.4 index are 

associated mainly with jet latitude, correlations being strongest in winter when the 

stratospheric teleconnection pathway is operating. Lead-times also vary between the potential 

driver and jet metrics. Solar lead-time over any jet-metric response is consistently identified 

as being three to five years. Cryospheric effects impact across all seasons and jet metrics, 

although different areas of sea-ice may be involved. There is a consistent positive correlation 

between jet latitude and sea-ice across all seasons where sea-ice leads. Synchronous negative 

relationships are indicative of wind-driven changes to sea-ice extent. The relationship with jet 

speed varies in sign, according to the length of the lead-time. There is also evidence to 

suggest that a sea-ice signal from the previous summer or autumn may survive to influence 

jet metrics in the subsequent spring and summer. The relationships are thus more nuanced 

than associations identified with the NAO. 

 

The regression analyses for different time periods and the WTC analysis indicate that 

associations between drivers and jet metrics are far from uniform in the observational record. 

Such apparent non-stationarity may be attributable to non-linear interactions operating via 
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processes such as stochastic resonance and entrainment. Alternatively it could be due to the 

linear addition of climate noise or uncertainties in the datasets used.  

 

The potential impacts of tropical rainfall anomalies, Eurasian snow cover and to a lesser 

extent sea-ice need interpreting with caution as data are available for a much shorter time 

series. Likewise, the earlier parts of 20CR are less accurate and have an increased spread, 

although this has been taken into consideration by using homogenised time series. 

 

While there is significant uncertainty in North Atlantic jet stream variability, particularly in 

terms of the magnitude of fluctuations, the evidence presented indicates that there is a 

significant predictable component within this variability, particularly in winter. Thus there is 

potential to use these drivers for forecasting jet stream variability, which has important socio-

economic implications for western Europe, where much of the weather is strongly influenced 

by jet stream variability. While some of the links identified between drivers and jet variability 

were expected, further investigation is required into other possible causal mechanisms. 

Relationships identified should be confirmed by a fully-coupled general circulation climate 

modelling approach. 

 

In the next chapter, the work on drivers of jet stream variability is extended to develop simple 

probabilistic forecasts of the winter North Atlantic Oscillation (NAO). The NAO is largely a 

function of jet latitude, and is used here in preference to the jet metrics themselves as this will 

enable a direct comparison with forecasts for the winter NAO produced by the Met Office 

Global Seasonal Forecasting System 5 (GloSea5; MacLachlan et al., 2014; Scaife et al., 

2014a).  
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Chapter 6 

Simple Probabilistic Forecasts of the NAO 
 

6.1. Introduction 

The North Atlantic Oscillation (NAO) is a key element of Northern Hemisphere atmospheric 

circulation and relates to storminess, wind speeds, surface air temperature and precipitation 

variability over the North Atlantic Ocean and the adjacent continents of eastern North 

America and western Europe (e.g. Hurrell, 1995). The NAO can be described as a see-saw of 

atmospheric mass between two nodes, a southern high-pressure node over the subtropical 

Atlantic (Azores) and a northern low-pressure node over Iceland. A positive NAO occurs 

when the pressure difference between the nodes increases, while a more negative NAO 

occurs as this difference decreases, although even for a negative NAO the absolute pressure 

difference is rarely reversed. This fluctuation of the pressure gradient between the nodes is 

directly proportional to the geostrophic wind speed. The NAO can be viewed as a 

consequence of storm-track and jet stream variability, (e.g. Vallis and Gerber, 2008) and 

there are significant correlations between jet latitude and the NAO index (Woollings and 

Blackburn, 2012). The NAO is most prominent in winter and explains up to one third of total 

variance in sea level pressure (SLP) over the North Atlantic (Hurrell and Deser, 2009). It is 

highly variable, frequently changing phase from month to month and there is little evidence 

for preferred timescales of variability (Hurrell and Deser, 2009), with large variations from 

month to month, from year to year and on decadal scales. (see Hanna et al. 2015 for a recent 

review of NAO variations from 1899-2014).  The evolution of the NAO is consistent with a 

stochastic first order autoregressive process with a timescale of around 10 days on a daily 

timescale(Feldstein, 2000). However, Keeley et al. (2009) report that up to 70% of winter 

interannual variability is unexplained by short timescale variability and may be externally 

forced, while there is less evidence of dynamical influences on timescales of 10-30 days other 

than the Madden-Julian Oscillation (MJO, Lin et al., 2013). 

 

There has been considerable debate over the extent to which the NAO is driven by external 

climate factors and to what extent it is generated by internal atmospheric variability. For 

example, James and James (1989) identify a long-term mode based on non-linear feedbacks 
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in the atmosphere creating low-frequency variability similar to the NAO. However, the 

enhanced interannual variability and trend in the NAO observed in the latter part of the 

twentieth century is greater than that expected from internal atmospheric variability only 

(Feldstein, 2002) and is indicative of some external forcing such as the ocean or sea-ice 

(Hurrell and Deser, 2009) that may not be properly reproduced in climate models (Scaife et 

al., 2009).  The NAO is not a consequence of local dynamics alone, as the storm-track pattern 

exists due to topographic forcing by the Rocky Mountains and the temperature contrast 

between the cold American continent and the warm Atlantic Ocean (Vallis and Gerber, 

2008). 

 

The temporal variability of the NAO is usually represented by an index, derived from the 

difference between normalised SLP at a northern and southern location. However, a range of 

indices have been developed, with different stations as nodal points, with 

Stykkisholmur/Reykjavik in Iceland as the northern node, and variously the Azores, Lisbon 

or Gibraltar as the southern node, resulting in there being no definitive index value (e.g. 

Hurrell et al., 2003).  Station-based indices have an advantage in that they can be extended 

back to the 19th century (e.g. Jones et al., 1997; Cropper et al., 2015) but a limitation of this 

station-based approach is that the nodes are effectively “locked” onto a particular location, 

whereas in reality there is considerable variability in node location (e.g. Zhang et al., 2008). 

This can be circumvented by using an empirical orthogonal function (EOF) approach to 

identifying the NAO, (e.g. Hurrell, 1995), where the NAO index is derived from the principal 

components (PC) time series of the leading EOF of North Atlantic SLP. These are more 

optimal representations of the NAO spatial pattern but as they are derived from gridded data, 

they have to date only been extended back to the early 20th century (Hurrell and Deser, 2009). 

However, they are also fixed as the pattern is defined by the reference period for which the 

EOF is calculated. 

 

While some dynamical forecasting models exhibit only limited predictability in extratropical 

regions (e.g. Kim et al., 2012; Arribas et al., 2011; Jung et al., 2011) more recent work 

indicates there is likely to be a useful degree of predictability in the winter NAO. Folland et 

al., (2012) use a regression approach to forecast European winter temperatures based on a 

range of predictors, and recent work with dynamical forecast models (Riddle et al., 2013; 

Scaife et al., 2014a; Kang et al., 2014) concludes that important aspects of winter climate and 

the NAO are predictable one to four months ahead, with a potentially high proportion of the 
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variance being accounted for by the models  (Scaife et al., 2014a). A number of potential 

predictors have been identified; El Niño (e.g. Bell et al., 2009), spring North Atlantic sea-

surface temperatures (SST, e.g. Rodwell and Folland, 2002), tropical volcanic eruptions (e.g. 

Robock and Mao, 1992), Arctic sea-ice (e.g. Strong and Magnusdottir, 2011) and Autumn 

Eurasian snow cover (e.g. Cohen and Jones 2011) have all been linked with North Atlantic 

atmospheric circulation variability. Links have been suggested between tropical SST 

anomalies and extratropical seasonal variability (e.g. Bader and Latif 2003; Hoerling et al., 

2004) where the upward trend in the NAO from 1950-99 is attributed to increased SST over 

the Indian Ocean. However, the magnitude of the observed change in the NAO was much 

greater in observations than in the models (Scaife et al., 2009).  A solar variability influence 

on the winter NAO has also been identified (e.g. Ineson et al., 2011). Some success has been 

found when using some of these predictors to make seasonal forecasts of winter weather in 

the North Atlantic region (e.g. Riddle et al. 2013, Eurasian snowcover; Folland et al. 2012, 

volcanic eruptions, El Niño, Atlantic SST, Quasi-biennial Oscillation (QBO); Scaife et al. 

2014a, El Niño, QBO, Autumn sea-ice in the Kara Sea, Atlantic Ocean heat content).  

 

In this chapter this range of potential predictors is examined, using a simple NAO index 

calculated as the normalised pressure difference between the Azores and Iceland, 

corresponding to the index used in Scaife et al. (2014a) and compared with predictions from 

the Met Office Global Seasonal Forecasting System 5 (GloSea5; MacLachlan et al., 2014) 

which has high ocean resolution (see Chapter 2, section 2.5.2) and three-hourly atmosphere-

ocean coupling, a fully resolved stratosphere and interactive sea-ice physics. While the 

coupled dynamical model is state-of-the-art, a simple probabilistic approach based on 

regression methods may help to illuminate particular weaknesses or limitations of the 

dynamical models and aid the identification of predictors and processes involved.  

 

6.2. Data 

Data sources are described in Chapter 2. The main NAO index is derived from SLP data for 

the Azores and Iceland which are used to provide NAO time series from 1956, 1980 and 

1993. The 1993 time series enables a direct comparison with GloSea5. In addition raw station 

data (SLP from the two stations) are used for comparison with the raw data obtained from 

GloSea5. The NAO Index is normalised to the period 1993-2012, again in agreement with 

Scaife et al. (2014a). Raw NAO values are given throughout in hPa. Here, any trends within 
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the data (predictors and NAO) are retained, as any trend may contribute to forecasting skill. 

However, limited use is made of detrended sea-ice data (see section 6.4.4 below). 

 

As noted in Chapter 2, Tropical SST data from HadISST1 (Rayner et al., 2003) are used from 

the same locations as rainfall data in Chapter 5, in an attempt to provide more potential 

predictors for the longer time series from 1956. An extended tropical Atlantic rainfall sector 

is used (-5°S-5°N, 50-0°W). For the 1980 and 1993 time series, sea-ice data from the 

National Snow and Ice Data Center (NSIDC, Cavalieri et al., 1996 updated) are used as these 

are available closer to real time, which is important in developing forecasts. 

 

6.3. Methods 

A number of terms have a specific meaning in forecasting verification. Such terms are 

italicised in the text and can be found in a short glossary in section 6.7. The R packages 

“verification” (Gilleland, 2015) and “SpecsVerification” (Siegert, 2015) are modified and 

used to implement verification measures. 

 

6.3.1. Regression models 

Potential predictors have been identified for the winter NAO, based on literature and 

correlations between the various drivers and the NAO index, at different lead times. 

Correlations with winter jet variability (Chapter 5) give an indication of which predictors 

may be significant but it is necessary to recalculate correlations based on the NAO for a wide 

range of predictors, as jet variability as defined by Chapter 5 does not wholly correspond to 

NAO variability. Predictors for the multiple regression models are identified using the 

methodology outlined in Chapter 5, section 5.3.1. Forward selection is used, and cross-

validation is applied, including cross-validating the normalised values of the potential 

predictors. To avoid multicollinearity, predictors which showed significant correlations with 

previously selected predictors (p≤0.05) are not used in the next round of predictor selection. 

Here, as the purpose of the regression models is to predict the winter NAO, no synchronous 

predictors are used.  

 

Hindcasts of the NAO are constructed from 1956-2012, 1980-2012 and 1993-2012, hereafter 

identified as N56, N80 and N93. In addition, a 20-year hindcast (1993-2012) is constructed 

based on the raw pressure differences between the two stations (raw93). N93 and raw93 can 

be compared directly with GloSea5 hindcasts, which are available for the period 1993-2012 
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and have units of hPa. The hindcast time series are cross-validated using leave-one-out cross-

validation, to ensure that the time series generated is not correlated with the year being 

predicted (see Chapter 5, section 5.3.1). In principle, therefore, a separate model with 

different coefficients is created for each year. The hindcast derived from the regression model 

is the ensemble mean hindcast and is used to construct an ensemble of hindcasts (see section 

6.3.3).  

 

6.3.2. Deterministic hindcast verification 

The ensemble mean hindcast alone is a deterministic hindcast which provides no information 

concerning the uncertainty of the occurrence or non-occurrence of an event. Both hindcast 

and observation can be expressed in binary categorical form: one indicates that the event 

occurs while zero indicates its non-occurrence. Thus for a categorical prediction for the NAO 

being less than or equal to zero, if the observed NAO is -0.4 and the ensemble mean 

predicted NAO is 0.1, these are expressed as one and zero respectively.  

 

A 2x2 contingency table  (Figure 6.1) can be drawn up to show the counts of all the possible 

hindcast-observation pairs (e.g. Stephenson, 2000; Wilks, 2011, pp306-311). 

 

 

 

 

 

HINDCAST 

 OBSERVATION  

YES NO 

 

YES 

a 

(hit) 

b 

(false alarm) 

 

 

     a+b 

 

NO 

c 

(miss) 

d 

(correct 

rejection) 

 

     c+d 

 a+c b+d n=a+b+c+d 

 

Figure 6.1. A 2x2 contingency table showing definitions of the counts a,b,c,d for all possible 
hindcast-observation pairs using a binary approach to occurrence/non-occurrence of an event. 
Sample size of hindcast-observation pairs is given by n.  
 

From this contingency table and the totals therein, a number of verification measures can be 

derived.  The base rate s is simply a sample estimate of the marginal probability of an event 

occurring and is given by: 
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𝑠 =
𝑎 + 𝑐
𝑛                      Eq. 6.1 

 

The base rate is the climatological probability of an event occurring.  

 

Here, three additional simple measures are used. The hit rate, H is given by: 

 

𝐻 =
𝑎

𝑎 + 𝑐                           Eq. 6.2 

 

which is the ratio of the number of correct predictions to the total number of event 

occurrences, or the fraction of occasions when the event occurred on which it was also 

predicted (Wilks, 2011, p310). It is also known as the probability of detection (POD). The 

false alarm rate F is defined as: 

 

     𝐹 =
𝑏

𝑏 + 𝑑                         Eq. 6.3 

 

F can be understood as the ratio of false alarms to the total number of non-occurrences, or the 

probability of false detection (POFD). A final measure used is the bias, B, defined as: 

 

    𝐵 =
𝑎 + 𝑏
𝑎 + 𝑐                          Eq. 6.4 

 

This is the ratio of the number of “yes” predictions to the number of “yes” observations for 

the occurrence of a particular event. If the bias is greater than one, the event in question is 

predicted more often than observed (over-prediction) while if the bias is less than one, the 

event is predicted less often than it is observed (under-prediction).  

 

Both F and H are said to be degenerate for rare events, that is values tend to zero for rare 

events, suggesting that they cannot be predicted with any skill (e.g. Jollife and Stephenson, 

2012, p49). As sample sizes are small, values of H and F in particular must be treated with 

caution. Standard errors are calculated according to Jollife and Stephenson (2012, p56). For 

the hit rate H, the standard error is: 
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       𝑆! =
𝐻 1− 𝐻
𝑎 + 𝑐                 Eq. 6.5 

 

 

while for the false alarm rate F,  

 

       𝑆! =
𝐹 1− 𝐹
𝑏 + 𝑑                  Eq. 6.6 

 

Significant results at a 95% confidence interval will therefore differ from zero by more than 

1.96 times the standard error.  

 

6.3.3. Ensemble creation 

The variance of the ensemble mean generated from each regression model is less than that of 

the observed time series. This is because the regression model captures some of the forced 

signal but not the unforced internal atmospheric variability. Observations should be 

statistically indistinguishable from the ensemble hindcasts, so in order to generate a 

consistent ensemble from the ensemble mean, the variance should be adjusted, to incorporate 

an unforced noise component. The variance due to noise can be taken as: 

 

                                  Var(noise) =Var(obs) –Var(ensemble mean)         Eq.6.7 

 

The noise is added to the ensemble mean by generating random numbers from a Gaussian 

distribution with standard deviation (SD) equal to √ Var(noise) in equation 6.7, and with a 

mean of zero. For a time series consisting of n years, n random numbers from the distribution 

are generated and one is added to each of the annual predicted values to generate an ensemble 

member, the process being repeated for the required number of ensemble members. Note that 

this adjustment is only applied for the generation of ensemble members, and does not affect 

the ensemble mean used in hindcasting, which is generated directly by the regression model. 

This simple method also assumes the same ensemble spread in each year. The total variance 

of the 24-member ensemble is very close to the variance of the observed time series as it is 

statistically indistinguishable. In order to compare with GloSea5 dynamical forecasting data, 
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24 ensemble members are created. GloSea5 ensemble members were generated by the 

forecasting general circulation model and are averaged to create the ensemble mean. 

 

Verification Rank Histograms (VRH) are plotted to establish the extent to which the observed 

time series differs from the ensemble members (both GloSea5 and statistical models). The 

purpose of these is to indicate whether the hindcast ensemble includes the observations as 

equally likely members (e.g. Wilks, 2011, p371). The observed value for each given year and 

n ensemble members are ranked for values 1…. n+1, 1 being the lowest rank. If the 

observations and ensemble hindcasts are drawn from the same distribution, then the 

observation values are equally likely to occur at all ranks across the years of the time series. 

If this is the case across all hindcast-observation pairs, then the histogram should be uniform, 

indicating the occurrence of observations equally across the whole range of ranks. Systematic 

bias can be detected. For example if the observations are much more frequent at high and low 

ranks, the ensemble is underdispersed, that is the ensemble members do not predict the more 

extreme events frequently enough, while if the observations are more frequent in the middle 

ranks the ensemble is overdispersed, so the ensemble includes values beyond the range of the 

observations more frequently than would be expected.   

 

It is important to distinguish between an uneven distribution due to sampling variations, and 

true deviations from a uniform distribution. The chi-square goodness-of-fit test against a 

uniform distribution is often used, but is insensitive to any coherent patterns in the histogram 

as the order of bin-values is not considered (Elmore, 2005). An alternative is to use 

nonparametric tests from the Cramér-von Mises group of tests, specifically the Watson 

(Watson 1961) and Anderson-Darling (Anderson and Darling, 1952) statistics. These have 

been developed for discrete distributions by Choulakian et al. (1994). For a discrete 

distribution with k bins there is a probability pi of an event value landing in a particular bin. 

Observed and expected counts under the null distribution (in this case a uniform distribution) 

in bin i are given by oi and ei respectively. The equations: 

 

𝑆! = 𝑜!
!

!!!
 and 𝑇! = 𝑒!

!

!!!
            Eq. 6.8 
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give the cumulative sums of oi and ei over j =1,2,….,k. Sj/N and Hj=Tj/N correspond to the 

empirical density function (EDF) FN (x). N is the number of events. Let Zj = Sj – Tj, then the 

Watson statistic (U2) is given by: 

     𝑈! = 𝑁!! 𝑍! − 𝑍
!

!

!!!

𝑝!                   Eq. 6.9 

 

where 𝑍 = 𝑍!!
!!! 𝑝! and for uniform distributions, pj =1/k. 

 

The Anderson-Darling statistic (A2) is given by: 

 

𝐴! = 𝑁!! 𝑍!
!

!!!

𝑝!/ 𝐻! 1− 𝐻!              Eq. 6.10 

 

Both the tests are used as the Watson test has been found to be more sensitive to U-shaped or 

peaked distributions, while the Anderson-Darling test is more sensitive to bias or rank 

(Elmore, 2005). Tables of p-values are consulted, and the null hypothesis that the event 

values are from a discrete uniform distribution with k cells is rejected if the statistic exceeds 

the given value for the p-value and number of cells (k) in question. 

 

6.3.4. Probabilistic hindcasts 

Five probabilistic hindcasts are constructed for each NAO time series, including probabilistic 

hindcasts derived from the GloSea5 ensemble: Pr{NAO ≤ -1}; Pr{NAO ≤ -0.5};  Pr{NAO ≤ 

0}; Pr{NAO ≥ 0.5}; Pr{NAO ≥ 1}. For the raw forecasts, pressure difference thresholds are 

identified which correspond approximately to these NAO quantiles, although due to the 

normalisation procedure in producing the index values, there is not an exact correspondence. 

The forecast quantiles for raw data are: Pr{NAO≤13; Pr{NAO≤17}; Pr{NAO≤21}; 

Pr{NAO≥25};Pr{NAO≥29}. Units for the raw NAO series are hPa.  

 

Actual occurrences of the observed NAO at or below/above the threshold are expressed in 

binary form (one: occurs, zero: does not occur) for each year. Probabilistic hindcasts are 

constructed from the 24-member ensemble generated as outlined in section 3.2. The 

probability of a winter falling within a particular hindcast quantile is calculated as the 

proportion of the 24 members giving predicted NAO values at or below (above in the case of 
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positive NAO hindcasts) the threshold for each year. As the ensemble size is not large, a 

simple adjustment was made for small sample size (Wilks, 2006b). It is often the case that 

probabilities of 0 or 1 may occur with a small sample size. This adjustment takes into account 

that this is unlikely to happen with a large ensemble size, and adjusts the probability values, 

particularly the extremes, accordingly. The adjustment is made so that the probability of the 

forecast f  being less than or equal to the quantile in question is calculated according to the 

formula: 

 

Pr 𝑓 ≤ 𝑞 =
𝑅𝑎𝑛𝑘 𝑞 − 1 3
𝑛!"# + 1 + 1 3

            Eq. 6.11 

 

Rank(q) shows the rank of the quantile in question in terms of its position within the 

ensemble forecast for a given year and nens is the number of ensemble members used. Rank(q) 

=1 if it is smaller than all nens ensemble members and Rank(q) =nens +1  if it is larger than all 

members. The further adjustments in the equation ensure that the value obtained is 

approximately equal to the median of the estimated sampling distribution of the cumulative 

probability in question (Wilks, 2006b). For the Pr{NAO ≥ 0.5} and Pr {NAO ≥ 1} forecasts,  

(Pr{NAO ≥ 25} and Pr {NAO ≥ 29} for the raw forecasts), the equation is adapted according 

to: 

 

Pr 𝑓 ≥ 𝑞 = 1−
𝑅𝑎𝑛𝑘 𝑞 − 1 3
𝑛!"# + 1 + 1 3

              Eq. 6.12 

 

6.3.5. Probabilistic hindcast verification 

A wide range of forecast verification tools can be used to evaluate the predictions. Here the 

Brier Score (BS), Brier Skill Score (BSS), reliability diagrams and Relative Operating 

Characteristic  (or Receiver Operating Characteristic; ROC) diagrams are used to provide a 

range of metrics for assessing the forecast (e.g. Wilks, 2011, pp331-346).  “Forecast” is used 

in this section here as it is in the literature, although initially the verification tools are applied 

to hindcast values. 

 

Ten bins are used for the initial analysis, although sensitivity of results to bin size is 

addressed by re-running the verification tests for five bins. It is found that five bins provided 



 

 259 

a more robust representation for the reliability diagram, giving sufficient bins while ensuring 

these bins were populated, and reducing noise evident in the initial ten-bin run. The results 

presented in this chapter are the five-bin statistics. 

 

6.3.5.1. Brier Score and Brier Skill Score 

The BS assesses forecast accuracy, indicating the magnitude of probability forecast errors as 

the mean squared probability error. The range is 0 to 1; 0 being a perfect score, less accurate 

forecasts having a higher score. BS is calculated according to: 

 

𝐵𝑆 =
1
𝑛 (𝑦! − 𝑜!)!

!

!!!

            Eq. 6.13 

 

where k is an index for the number of forecast-observation pairs, o is the observation (1 if 

occurring, 0 if not occurring) and y  is the probability forecast value. Larger errors are given 

more weight than smaller ones. 

The BSS indicates the relative skill of the forecast to one based on climatology, in predicting 

whether an event occurs or not. The range is -∞ to 1; a perfect score being 1, 0 indicating no 

skill when compared with a forecast based on climatology, and negative scores indicating less 

accuracy than a forecast with no skill, such as one based on climatology. It can be calculated 

as: 

 

𝐵𝑆𝑆 = 1−
𝐵𝑆
𝐵𝑆!"#

                  Eq. 6.14 

 

where BSref is the BS calculated for a climatological reference period, in this case over the 

length of the time series (forecast probability for each year is the proportion of years in the 

period where the event occurred). 

 

6.3.5.2. The Reliability Diagram 

Reliability diagrams can be plotted based on the probability forecasts and the binary observed 

occurrence/non-occurrence of the event. Forecasts are grouped into bins based on the 

probability of the forecasts. Observed relative frequency is plotted against forecast 

probability, to indicate how well predicted probabilities of an event correspond to observed 
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frequencies (Figure 6.2). For example, a probability forecast of 0.1 for an event should occur 

in 0.1 of these cases. As the forecast probability increases, so the observed relative frequency 

should increase. The perfect reliability line corresponding to this is the 1:1 diagonal (x=y).  

 

                                
Figure 6.2. Schematics of reliability diagrams showing a) underforecasting; b) 
overforecasting; c) overconfidence; d) underconfidence. e) example of a reliability diagram 
as used in this chapter, showing histogram of frequency of  forecast occurrence in each 
probability bin. Grey vertical bars are consistency bars. Figures a-d from Mason and 
Stephenson (2008). 
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A well-calibrated reliable forecast should result in plots of observed relative frequency 

against forecast probability being close to this diagonal. If the plotted line is above the 

diagonal, it indicates underforecasting, with forecast probabilities too low, that is the event 

occurs more frequently than expected from the forecast (Figure 6.2a). If it is below the line, it 

indicates overforecasting, with probabilities too high, the event occurring less frequently than 

anticipated (Figure 6.2b). A curve which slopes less steeply than the diagonal will lie above it 

for low forecast probabilities, i.e. these events occur more frequently than forecast, while 

lying below the diagonal for higher forecast probabilities, these occurring less frequently than 

forecast. Such forecasts are overconfident, in that the changes in probability are overstated 

(Figure 6.2c). The converse, where the curve is steeper than the diagonal, understates the 

change in the relative frequencies of an event and is an underconfident forecast (Figure 6.2d). 

The flatter the curve, the lower the resolution, i.e. the poorer the ability of the forecast to 

resolve a set of events into subsets with characteristically different outcomes.  

 

The histogram in the lower right corner of Figure 6.2e shows the relative frequency of 

predictions in each bin.  In the example above (Figure 6.2e) most forecasts predict low 

probabilities for the event. This histogram indicates the sharpness of the forecasts. A sharp 

forecast is one that is able to predict events with probabilities different from the observed 

frequency of the event, that is at low and high probabilities. The grey bars are consistency 

bars (Bröcker and Smith, 2007).  As even perfectly reliable forecasts will depart from the 

diagonal due to limited counting statistics, it is useful to try and show how far the observed 

relative frequency is expected to be from the diagonal, if the forecast is reliable. If a dataset 

of forecast-observation pairs is given by (Xi, Yi), for i=1 to N, then a surrogate forecast series 

can be created by drawing with replacement N times from Xi; binary surrogate observations 

can then be created based on the NAO value in question. A reliability diagram of the 

surrogate data can be plotted, and the resampling can be conducted any number of times, in 

this case 500. The range of values shown by each of the surrogate forecasts for each bin is 

shown by the consistency bars, for the 2.5% to 97.5% quantiles. The extent to which the 

forecast is calibrated is shown by where the observed relative frequency falls within the 

consistency bars, not by distance from the diagonal. 

 

6.3.5.3.The Relative Operating Characteristic (ROC) diagram and ROC area 

ROC diagrams are complementary to reliability diagrams. While reliability diagrams are 

conditional on the forecasts (if x was predicted, what was the outcome?), ROC diagrams are 
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based on observations, (if x is observed, what was the forecast?). ROC diagrams indicate the 

ability of the forecast to distinguish between events and non-events and so measures 

discrimination rather than reliability. Given an event such as heavy precipitation, for 

occurrences and non-occurrences of this event it would be hoped that forecasts are distinctly 

different. This is what the ROC diagram assesses.  For each probability category (0 to 1, by 

0.2 in this study), hit rate and false alarm rate are calculated (equations 6.3 and 6.4). Hit rate 

is the proportion of observations of an event that is correctly forecast, while false alarm rate 

is the proportion of observations of an event that is incorrectly forecast (i.e. an event was 

forecast to occur but did not). These two rates are plotted against each other for increasing 

probability levels (Figure 6.3). The area under the ROC curve can be calculated to give a 

score.  0.5 indicates no skill in distinguishing between events and non-events, (i.e. along the 

diagonal x=y), while 1 is a perfect score. The further the curve extend towards the top left 

corner of the plot, the greater the area under the curve and the better the forecast is at 

discriminating between events and non-events. For the example below, a forecast probability 

of 0.4 (40%) would result in a hit rate of about 0.63 and a false alarm rate of around 0.18, 

whereas a forecast probability of 0.6 (60%) gives a hit rate of 0.28 and a false alarm rate of 

0.04. For a skillful forecast, hit rate will exceed false alarm rate. 

 

 
Figure 6.3. Sample ROC diagram. The curved black line is the empirical ROC curve, drawn 
directly from the data, while the red curve is the binormal curve that can be drawn if the hit 
rate and false alarm rate both follow normal distributions. The forecast probability associated 
with each point on the empirical ROC curve is shown.  
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The ROC area can be tested for significance against the null hypothesis that area is equal to 

0.5. The ROC area is equivalent to the Mann-Whitney U statistic, testing forecast 

probabilities for cases when the forecast occurred compared with occasions when events did 

not occur (Mason and Graham, 2002).  

 

6.3.6. Forecasting future NAO values 

The N80 regression model is fitted to 1980-2012 data, while N56 is fitted to 1956-2012. 

Their ability to provide forecasts of the NAO is tested on years 2013-2016, years outside the 

calibration period for which observational data are available. However, this is a very small 

sample which only increases incrementally by one each year, so significance cannot be 

attached to these results. To generate a forecast for each of these years, three approaches are 

tested. The first involves using the model developed for the period 1980-2012, and simply 

applying the relevant predictor coefficient values for the year in question. A second approach 

involves incorporating the new years into the model so that it is based on data from all 

previous years post 1980. Thus the model for 2014 needs to incorporate data for 2013 and 

that for 2015 should incorporate data from 2013 and 2014. This means that although the 

predictors are fixed, the coefficients can vary. Further forecasts can be generated in future by 

the continued expansion of the dataset and appropriate modification of regression 

coefficients. A third approach is to construct a regression model for each new period by 

allowing the predictors to vary instead of just the coefficients.  In each case, the standard 

deviation of the fitted values for the test period is found, and the standard deviation of the 

model noise is calculated as above (equation 6.7). 24 ensemble noise terms for the forecast 

year in question are then generated from a Gaussian distribution with a mean of zero, SD 

equal to SD (noise), and to each of these is added the forecast NAO value for the year in 

question. This generates 24 ensemble member forecasts for the given year. Probability 

forecasts can then be constructed as above.   

 

A further important test of the ability of a statistical model to provide a useful forecast is to 

develop a model based on one period (the training period) and then test it on another period 

(the testing period). Statistical models are frequently overtuned as predictors are often based 

upon those identified in observational relationships, and so may be a consequence of noise 

rather than a meaningful physical connection. Testing on another period assists in separating 

noise and coincidental relationships from physical connections. A statistical model is 
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developed based on data from 1980-1997 only. This model is then tested on the subsequent 

period (1998-2016), applying predictor coefficient values for each year to the regression 

equation and probabilistic forecasts are developed using an ensemble as described above. 

 

6.4. Results 

6.4.1. The regression models 

In this section the regression models developed for each time series are presented and the 

time series are compared with those of the observations. Basic statistical properties of the 

hindcasts are compared. The different time periods resulted in slightly different optimal 

regression models. The predictors and regression equations shown in Table 6.1 are identified 

through the stepwise selection process described in Chapter 5, section 5.3.2. Table 6.1 shows 

the regression coefficients of the selected predictors, the R2 value and the Y-intercept term A 

are given, allowing straightforward reconstruction of the regression equations. 

 

model A Oct 
N3.4 

Sep 
WISST 

JulSS Apr 
LVI 

Nov 
BKI 

Oct 
WIR 

Jun 
tripole 

Oct 
AMO 

R2 xvR2 

N56 -0.04 -0.82 0.29 0.25 0.23 - NA - - 0.39 0.28 
N80 0.01 -0.79 N - - 0.43 0.38 0.15 - 0.68 0.58 
N93 0.15 -0.97 N - - 0.34 0.51 - -1.75 0.78 0.63 
raw93 22.81 -8.82 N - - 3.12 4.64 - -15.84 0.78 0.63 

 
Table 6.1. Regression coefficients of winter NAO predictors selected for the regression 
models N56, N80 and N93. A is the y-intercept term and R2 and cross-validated R2  (xvR2) 
values are given, OctN3.4= October N3.4 discontinuous index, SepWISST= September West 
Indian Ocean tropical SSTs (used in N56 only), JulSS=July solar activity, April LVI=April 
Laptev Sea ice (HadISST1), NovBKI=November Barents-Kara Sea ice (NSIDC), 
OctWIR=October West Indian Ocean tropical rainfall (only available for N80, N93), Jun 
tripole=June Atlantic tripole SST, OctAMO=October AMO. NA denotes a predictor is not 
available for a particular model. N shows a predictor is not used for a particular model. All R2 
values are significant at p≤0.05, through calculation of the F-statistic.   
 

The models, although differing in some aspects of predictor selection, are consistent in the 

identification of predictors of the winter NAO. All models show Arctic and tropical 

influences. October N3.4 is present in all models, and November BKI is the common sea-ice 

term although this is replaced in N56 by April LVI. This seems odd, but is not just due to 

unreliable early data as this predictor is often significant but not chosen for the shorter 

models. Tropical influences are also represented in all models by SST (N56) or rainfall in the 

West Indian Ocean (all other models). A solar effect is significant in the longer time series 



 

 265 

N56. Extratropical Atlantic influences are also present (N80: June SST tripole; N93 and 

raw93: October AMO, although recent results suggest that the predominant influence of the 

AMO on the NAO originates from tropical SST anomalies (Davini et al., 2015). xvR2 values 

are much higher for the models based on post-1980 data, perhaps reflecting the improvement 

in data quality in the satellite era, and the increased number of predictors available. However, 

in the models developed, all predictors identified are available for both longer and shorter 

series, if tropical SST is substituted for tropical rainfall in the longer series. It could also be 

the case that the early period is less inherently predictable. 

 
Figure 6.4. a) Observed (black solid) and predicted NAO time series (N56, red solid; N80, 
blue solid), based on the statistical models. b) as a) but for GloSea5 (blue solid), and N93 (red 
solid) compared with observed NAO index (black solid). Out-of sample forecasts are shown 
as dotted lines. Note the different timescales on the axes. Correlations are shown to 2012 
only. 
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Figure 6.4a shows the observed NAO index together with the time series of predicted NAO 

values derived from the models above. It is clearly seen that for N56, the correlation between 

observations and predictions is less good before 1979 (r=0.34) and not significant (p ≤0.05) 

compared with the post-1979 period (r=0.53, significant at p ≤0.05). This is likely to be at 

least partly due to improved data quality post-1979 of predictors such as sea-ice due to the 

availability of satellite data. There are periods where all models show a close match with 

observations (e.g. 2008-2012) while in other periods there is greater divergence (e.g. 2001-

2005), suggesting possible variations in predictability between different periods. For all 

models, correlations shown in Figure 6.4 are significant (p ≤0.05). 

 

Statistical values of observed NAO and forecast ensemble means are presented in Table 6.2. 

It is noteworthy that the variance of the raw GloSea5 ensemble mean is small compared with 

that of the raw93 ensemble mean and that of the observed raw time series. 

 

series mean variance noise 

variance 

correlation with 

observed NAO 

observed time series 

N56  -0.22 1.02 NA NA 

N80 0.07 0.87 NA NA 

N93/GloSea5 0.00 1.00 NA NA 

raw93/GloSea5 raw 21.47 81.98 NA NA 

forecast ensemble means 

N56 -0.22 0.40 0.62 0.53 

N80 0.08 0.58 0.29 0.76 

N93 -0.02 0.76 0.24 0.79 

raw93 21.32 62.46 19.52 0.79 

GloSea5 index 0 1.65 NA 0.61 

GloSea5 raw 23.42 5.52 NA 0.61 

 
Table 6.2. Statistical summary of observed and forecast time series for different time periods. 
Note that even though the index values for observations are normalised, N56 and N80 
observed NAO data are normalised to the period 1993-2012: therefore means are not equal to 
zero and standard deviations do not equal one. 
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6.4.2. Deterministic hindcasts 

Hindcast deterministic verification statistics are presented for each hindcast quantile, based 

on the contingency table counts in Figure 6.1. The hit rate, false alarm rate and bias measures 

discussed above (section 6.3.2) are presented in Table 6.3. Uncertainty in the hindcasts is 

assessed and years that are poorly predicted are identified. 

a) NAO ≤ -1 Base rate 

(a+c)/n 

Bias 

(a+b)/(a+c) 

Hit Rate 

a/(a+c) 

False Alarm 

Rate 

b/(b+d) 

N56  0.23 0.31 0.31±0.25 0 

N80  0.12 0.25 0.25±0.42 0 

N93 0.15 0.67 0.33±0.53 0.06±0.11 

GloSea5 index  0.15 1 0.66±0.53 0.06±0.12 

raw93 ≤13hPa  0.15 0.67 0.33±0.53 0.06±0.11 

GloSea5 raw ≤13hPa 0.15 0 0 0 

 

b) NAO ≤ -0.5 Base rate 

(a+c)/n 

Bias 

(a+b)/(a+c) 

Hit Rate 

a/(a+c) 

False Alarm 

Rate 

b/(b+d) 

N56 0.39 0.95 0.59±0.20 
0.23±0.14 

N80 0.24 0.50 0.50±0.35 0 

N93 0.25 1 0.80±0.35 0.07±0.13 

GloSea5 index  0.25 1.2 0.60±0.43 0.20±0.20 

raw93 ≤17hPa  0.25 1 0.80±0.35 0.07±0.13 

GloSea5 raw ≤17hPa 0.20 0 0 0 

 
Table 6.3. Deterministic forecast verification measures for statistical models and GloSea5. 
For hit rate and false alarm rate, significant values (p ≤0.05) are in bold. Hit rate and false 
alarm rate also shows ±1.96 standard errors (section 6.3.2). For N56, n=57; N80, n=33; and 
for N93, GloSea5 Index , raw93 and GloSea5 raw, n=20. 
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c) NAO ≤ 0 Base rate 

(a+c)/n 

Bias 

(a+b)/(a+c) 

Hit Rate 

a/(a+c) 

False Alarm 

Rate 

b/(b+d) 

N56 0.56 1.16 0.78±0.14 0.48±0.20 

N80 0.48 0.75 0.75±0.21 0.24±0.20 

N93 0.50 0.70 0.90±0.19 0.20±0.24 

GloSea5 index  0.50 1.10 0.80±0.26 0.40±0.30 

raw93 ≤21hPa  0.50 1 0.80±0.24 0.20±0.24 

GloSea5 raw ≤21hPa 0.50 0.30 0.20±0.25 0.10±0.18 

 

d) NAO ≥ 0.5 Base rate 

(a+c)/n 

Bias 

(a+b)/(a+c) 

Hit Rate 

a/(a+c) 

False Alarm 

Rate 

b/(b+d) 

N56 0.30 0.47 0.24±0.20 0.10±0.09 

N80 0.39 0.62 0.46±0.27 0.10±0.12 

N93 0.40 0.75 0.62±0.33 0.08±0.15 

GloSea5 index  0.40 0.88 0.62±0.34 0.17±0.22 

raw93 ≥25hPa  0.40 0.75 0.62±0.33 0.08±0.15 

GloSea5 raw ≥25hPa 0.40 0.63 0.50±0.35 0.08±0.15 

 

e) NAO ≥ 1 Base rate 

(a+c)/n 

Bias 

(a+b)/(a+c) 

Hit Rate 

a/(a+c) 

False Alarm 

Rate 

b/(b+d) 

N56 0.14 0.38 0.37±0.33 0 

N80 0.12 0.69 0.99±0.05 0 

N93 0.20 0.75 0.50±0.49 0.06±0.12 

GloSea5 index  0.20 1.00 0.75±0.22 0.06±0.12 

raw93 ≥29hPa  0.20 1.25 0.75±0.44 0.12±0.16 

GloSea5 raw ≥29hPa 0.20 0 0 0 

Table 6.3. continued 
 
Some of the results in Table 6.3 should be treated with caution, particularly for the hindcasts 

of more extreme events as there are few occurrences during the time periods concerned. The 

highest base rates for negative quantile forecasts occur for N56, reflecting the increased 
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relative frequency of positive NAO observations since 1980. Bias scores show 

underprediction of events in statistical models except N56 (NAO ≤ 0) and raw93 (NAO ≥ 

29hPa), which are both overpredicted. The GloSea5 index based hindcasts show no bias for 

the more extreme hindcasts (NAO ≤ -1, ≥ 1), overpredicting for NAO ≤ -0.5, ≤ 0 and 

underpredicting for NAO ≥ 0.5. The hit rate H is frequently significant, with the exceptions 

of raw93 ≤ 13hPa and statistical forecasts for NAO ≤ -1. Hit rates for all GloSea5 raw 

forecasts are insignificant (with the exception of NAO ≥ 25hPa, Table 6.3d), reflecting the 

decreased amplitude in fluctuations of the raw GloSea5 ensemble means; thus more extreme 

events are never forecast, based on raw values. For the statistical models N56 achieves lower 

hit rates than other models for positive NAO forecasts, but performs comparably on negative 

forecasts. GloSea5 index hit rates are all significant and comparable to those of statistical 

forecasts, except for NAO ≤ -1, where GloSea5 has the only significant hit rate. False alarm 

rates are largely insignificant, with the exception of N56 (NAO ≤ -0.5, ≤ 0, ≥ 0.5) and the 

NAO ≤ 0, hindcast for N80 and the GloSea5 index.  

 

An assessment of the uncertainty of a hindcast for a particular year can be obtained by 

examining which observation years are outside the hindcast 95% confidence interval defined 

by ±1.96 times the standard deviation of the noise added to the ensemble mean in section 

6.3.3. Such years are shown in Table 6.4. 

 

forecast years 

N56 1963 1969 1995 2011 

N80 1990 1996 2012 

N93 1996 2012 

GloSea5 index 1996 2005 

 
Table 6.4. Years for which the difference between forecast observation pairs is greater than 
1.96 standard deviation (noise). The number of events is generally in agreement with that 
expected due to sample size. 
 

The number of years in Table 6.4 identified as poorly predicted for each forecast is small.  It 

must be borne in mind that at p ≤0.05, one year out of twenty is likely to fall outside this 

range by chance. However, 1996 is poorly hindcast in all cases except N56, a positive NAO 

being predicted in every case while a negative NAO was observed. 2012 is also poorly 
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predicted by N80 and N93; in each case the observed positive NAO was stronger than 

predicted. 2005 is poorly predicted by GloSea5, but not by the statistical models. Such 

variations between poorly hindcast years in different statistical models, while in part 

attributable to random fluctuations, can give insight into possible reasons for the poor 

performance in a particular year.  

 

The year 1996 was significant as it was the year when the positive NAO trend of the late 

Twentieth Century ended, and coincided with a rapid warming of the North Atlantic subpolar 

gyre (Robson et al., 2012), which seems not to be evident in the predictions, even though the 

June tripole and October AMO are used in N80 and N93. 2005 is poorly predicted by 

GloSea5, with quite a strong negative predicted NAO (-0.53) and a strong positive observed 

NAO (0.78). This year is successfully predicted by the statistical models. The correct positive 

hindcast in the statistical models is attributable in part to a strong positive signal from the 

October West Indian Ocean rainfall value (N80, N93) and the September West Indian Ocean 

SST value (N56). This tropical influence appears to be masked in GloSea5, either by internal 

variability in a small ensemble, or through some as yet unidentified atmospheric process 

(Adam Scaife, personal communication, April 2016). 

 

In contrast, winter 2011 is well predicted by N93 and N80. For this year, the Atlantic SST 

signal outweighed the sea-ice signal in both forecasts, consistent with the conclusions of 

Maidens et al. (2013), finding that Atlantic SSTs were a major contributory factor to the 

negative NAO of this year. 

 

It is interesting to note that with the GloSea5 forecasts, raw and index NAO time series may 

identify different forecast “bust” years. For example, using the raw NAO values, the observed 

NAO lies outside the range of ensemble members for 2010 (figure 6.6), the only year for 

which this occurs, yet when the ensemble members are normalized, the observed NAO lies 

well within the range of the ensemble members. 

 

6.4.3. Ensemble hindcasts 

Plots of ensemble members, generated as discussed in section 6.3.3, and the observed NAO, 

together with the VRH for each hindcast model are shown in Figures 6.5 and 6.6, and any 

systematic ensemble biases are discussed. Data are presented that are consistent with forecast 

ensembles being statistically identical to the observed NAO.  
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At first sight the VRH appear uneven (Figure 6.5) but this could be due to the relatively small 

ensemble size resulting in statistical noise at certain ranks. There is no discernible systematic 

bias in most of the histograms for the statistical forecast models. However, the Glosea5 index 

appears underdispersed: that is the extreme NAO values are under-represented in the forecast 

(Figure 6.5d), so the observed NAO occurs more frequently at very low and very high ranks. 

However the Watson and Anderson-Darling statistics suggest that the null hypothesis of a 

uniform distribution cannot be rejected at p ≤0.05 for any of the ensembles. There are too few 

ensemble members to identify any systematic biases with confidence. 

 

Figure 6.6 shows the ensemble members and VRH for the predictions based on raw pressure 

differences. The ensemble mean has been added to this figure to highlight the reduced 

amplitude of interannual fluctuations evident in the GloSea5 raw ensemble mean.  The 

correlation of the ensemble mean with the observed NAO is the same as that of the 

normalised ensemble mean (0.61). Here again the null hypothesis of a uniform distribution 

cannot be rejected, although other statistics confirm that the raw GloSea5 forecasts are in fact 

underconfident (Eade et al., 2014) and this is clearly seen in the small amplitude of 

interannual fluctuations in the ensemble mean. 
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Figure 6.5. Ensemble members (orange dots) and observed NAO values (bold black line) 
together with Verification Rank Histograms for a) N56, b) N80, c) N93 and d) GloSea5. 
Dashed lines on histograms indicate expected values of counts for each rank if the 
observations are equi-probable at all ranks. Note the different vertical scale in d). 
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Figure 6.6. Ensemble members (orange dots), ensemble mean (orange line) and observed 
NAO values (bold black line) together with verification Rank Histograms for a) raw93 and b) 
GloSea5 raw.  Dashed lines on histograms indicate expected values of counts for each rank if 
the observations are equi-probable at all ranks. 
 
Table 6.5 shows that there is no more than 5% difference between observed and total 

ensemble variance in any of the statistical models, thus the ensembles can be regarded as 

statistically identical to the observations. 

 
series total ensemble variance observed variance 

N56 1.11 1.02 

N80 0.83 0.87 

N93 1.04 1.00 

raw93 77.68 81.97 

 
Table 6.5. Comparison of total ensemble variance with observed variance for different 
statistical models. 
 

6.4.4. Using the statistical models for out-of-sample forecasting 

The real test of a statistical forecasting model is its ability to make genuine forecasts outside 

the period from which data were used to develop the model.   Here the regression models 
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outlined in section 6.4.1 are applied to the years 2013 to 2016 to obtain forecasts for out-of-

sample years. A model developed using data from 1980-1997 only is also presented, and then 

applied to forecast the winters of 1998-2016, giving a longer out-of-sample forecasting 

period. An adjusted forecast based on detrended sea-ice data is also presented for 

comparison. The forecasts for the NAO for the years 2013 -2016 based on statistical models 

and GloSea5 are shown in Table 6.6, together with the probabilistic forecasts, and these out-

of-sample forecasts are also shown in Figure 6.4. 

 

Forecast values for the years 2013-2016 based on the original statistical models actually 

perform slightly better than either of the two adjusted model variants, (same predictors, 

variable coefficients, and variable predictors), both of which return the same models, and it is 

these results that are presented here (Table 6.6). The addition of a few years to the time 

period is not sufficient to change the model significantly and predictors are not changed, 

although over longer periods there is the possibility that change will be more substantial. 

However, these out-of-sample forecasts are less well-matched to observations (Figure 6.4) 

than forecasts for the model-building periods.  For all statistical models, three out of the four 

years have the sign of the NAO incorrectly predicted, although plotting the results reveals 

that the predicted values for N80 and N93 track the observed values but with a systematic 

negative bias (Figure 6.4).  For  2014, 2015 and 2016, forecasts are negative or too weakly 

positive compared with the observed positive NAO in each season. Only two out of the 

twelve out-of-sample statistical forecasts lie within the same probability quantile as the 

observed NAO and the forecasts exhibit a bias towards a negative NAO. 

 

In contrast, the GloSea5 forecasts appear to be much more successful with this small sample 

of years. The sign of the NAO is successfully predicted for 2014, 2015 and 2016 although in 

2014 the forecast NAO is too weak, while in 2016 it is too strong. 
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     observed occurrence of NAO       probability of NAO forecast 

year obs forecast ≤-1 ≤-0.5 ≤0 ≥0.5 ≥1 ≤-1 ≤-0.5 ≤0 ≥0.5 ≥1 

N56 

2013 -0.06 0.12 0 0 1 0 0 0.18 0.26 0.54 0.26 0.14 

2014 1.93 -0.43 0 0 0 1 1 0.26 0.5 0.66 0.14 0.07 

2015 1.93 -0.15 0 0 0 1 1 0.14 0.26 0.50 0.26 0.11 

2016 0.77 0.34 0 0 0 1 0 0.03 0.11 0.42 0.3 0.18 

N80 

2013 -0.06 -0.42 0 0 1 0 0 0.14 0.54 0.74 0.07 0.03 

2014 1.93 -0.84 0 0 0 1 1 0.42 0.62 0.89 0.07 0.03 

2015 1.93 -0.05 0 0 0 1 1 0.03 0.14 0.62 0.22 0.14 

2016 0.77 -0.87 0 0 0 1 0 0.58 0.89 0.97 0.03 0.03 

N93 

2013 -0.06 -0.65 0 0 1 0 0 0.11 0.34 0.70 0.07 0.03 

2014 1.93 -1.41 0 0 0 1 1 0.89 0.97 0.97 0.03 0.03 

2015 1.93 -0.05 0 0 0 1 1 0.07 0.14 0.38 0.26 0.11 

2016 0.77 -0.52 0 0 0 1 0 0.18 0.58 0.93 0.03 0.03 

GloSea5 

2013 -0.06 NA 0 0 1 0 0 NA NA NA NA NA 

2014 1.93 0.01 0 0 0 1 1 0.18 0.33 0.48 0.36 0.24 

2015 1.93 1.89 0 0 0 1 1 0.02 0.02 0.02 0.98 0.92 

2016 0.77 1.52 0 0 0 1 0 0.02 0.02 0.05 0.89 0.86 

 
Table 6.6.  Observed and forecast values for years 2013-2016, from N56, N80, N93 and 
GloSea5. Observed (obs) and ensemble mean NAO values, binary observations and 
probabilistic forecasts are given. Green shading shows the occurrence of an observed NAO 
value within a probability forecast. Bold figures show the probability location of the 
ensemble mean value. GloSea5 operational forecasts were not performed for 2013. 
 

The above out-of-sample forecasting is based on a very limited number of years and it is 

difficult to draw firm conclusions from such a small sample. It could be that the years 

covered are atypical and the statistical models perform less well in these years. A further test 

of the statistical models’ ability to make accurate forecasts is to develop a model based on a 

more limited amount of time (the training period), allowing a longer testing period. The 
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forecast model developed for the training period 1980-1997 is only based on two predictors, 

November Barents-Kara Sea ice and the October adjusted N3.4 Index: 

 

                               DJF NAO= -0.14 +0.71novBKI – 0.74octN3.4     R2 =0.56 

 

Figure 6.7 shows the fit over the training period (1980-1997) together with the subsequent fit 

of forecasts over the testing period (1998-2016). 

 

 
Figure 6.7. Observed NAO (black) and predicted NAO values (red) for the testing period 
1998-2016, based on a training period model of 1980-1997. Black vertical line denotes end of 
training period and start of testing period. Error bars are for ± 1.96 standard deviations of the 
ensemble noise. 
 

The correlation between observed and predicted NAO for the training period is significant 

(0.75, p ≤0.05) while that for the testing period is not significant (0.37, p ≤0.05). However, 

for most of the testing period, the correlation is significant (1998-2011, r = 0.75). The model 

forecasts also appear to reproduce the increased variability present in the NAO during the 

testing period and replicate the magnitude of extreme NAO events such as winter 2010. It is 

in the last five years that the observations and forecasts are less well-matched, with forecasts 

being too negative, consistent with the results from forecasts based on the statistical models 

in Table 6.6. As there is no input from the N3.4 predictor for the years 2011-2016, the index 

being set to zero for these years (no moderate El Niño or moderate to strong La Niña events), 

the negative bias in the forecast NAO must come from the sea-ice. The NAO forecasts for the 

-5

-4

-3

-2

-1

0

1

2

3

4

1980 1985 1990 1995 2000 2005 2010 2015

NA
O 

Ind
ex

year

Observed and Predicted NAO



 

 277 

testing period show a negative trend, as does sea-ice extent, but this is not matched in the 

observed NAO. Winter 2012-2013 was preceded by a very low Barents-Kara Sea ice 

concentration (November 2012), and resulted in a strong predicted negative NAO forecast of 

the same order of magnitude as winter 2009-10, but this is not reflected in the observed 

winter NAO in Figure 6.7, where the dip is not as marked, and a slightly negative NAO is 

observed (-0.06). In reality, either the very low sea-ice values and their impact appears to be 

offset by other drivers or by internal variability, or the sea-ice impact is over-estimated in the 

statistical model or a combination of the two. Sea-ice recovered in 2013 and 2014, which is 

reflected in the models and observations of the NAO for 2014 and 2015, but there is still an 

underestimation of the forecast compared with the observed index. This may to be due to the 

influence of the sea-ice trend, which is quadratic over the period, steepening since 2000 

(Figure A.6.1a).  For the testing period, observations outside the forecast error bars occur in 

1996, and then 2007-2009 and all years after 2011 (Figure 6.7), in all cases observations 

being higher than forecasts confirming the systematic bias evident in forecasts for the latter 

period.  

 

Probabilistic forecasts and observed NAO values for this model are shown in Table 6.7. It is 

clear from this table that the model performs much better for the training period. Although 

the number of negative NAO observations is roughly equal for the two periods (eight for 

1980-1997, nine for 1998-2016), the number of negative NAO forecasts for 1998-2016 is 

double that of the training period (fifteen compared with seven). This results in consistently 

high false alarm rates for all negative NAO quantile forecasts for the testing period. 

Conversely the hit rates for a positive NAO are high prior to 1998, while post-1998, the hit 

rate is reduced even though observed NAOs greater than 0.5 are more or less evenly split 

between the two periods.  The poor performance of negative forecasts is likely to arise from 

the over-reliance on sea-ice as a predictor, with only two predictors, sea-ice and N3.4, being 

selected and sea-ice demonstrating a quadratic negative trend, which steepens particularly 

over the post-2007 period. 
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Table 6.7. Observed (obs) and ensemble mean (EM) NAO values, binary observations and 
probability forecasts for the 1980-97 statistical model. Training and testing periods are 
separated by a double line. Green shading shows the occurrence of an observed NAO value 
within a probability forecast. Bold figures show the probability location of the ensemble 
mean value. 

1980-97 model observed occurrence of NAO probability of NAO forecast 

year obs EM ≤ -1 ≤0.5 ≤0 ≥0.5 ≥1 ≤ -1 ≤0.5 ≤0 ≥0.5 ≥1 

1980 -0.19 0.08 0 0 1 0 0 0.03 0.22 0.50 0.22 0.03 

1981 0.57 0.77 0 0 0 1 0 0.03 0.03 0.07 0.42 0.18 

1982 -0.32 -0.35 0 0 1 0 0 0.14 0.38 0.66 0.03 0.03 

1983 0.73 0.86 0 0 0 1 0 0.03 0.03 0.03 0.74 0.58 

1984 1.20 0.73 0 0 0 1 1 0.03 0.07 0.11 0.50 0.34 

1985 -1.01 -0.47 1 1 1 0 0 0.11 0.34 0.74 0.11 0.03 

1986 -0.78 -0.53 0 1 1 0 0 0.26 0.50 0.82 0.03 0.03 

1987 -0.82 -0.21 0 1 1 0 0 0.07 0.18 0.46 0.18 0.03 

1988 -0.29 -0.49 0 0 1 0 0 0.18 0.42 0.70 0.07 0.03 

1989 1.56 1.83 0 0 0 1 1 0.03 0.03 0.03 0.93 0.86 

1990 1.18 -0.09 0 0 0 1 1 0.07 0.30 0.54 0.22 0.11 

1991 0.42 0.61 0 0 0 1 0 0.03 0.03 0.11 0.54 0.34 

1992 0.22 0.34 0 0 0 0 0 0.07 0.14 0.38 0.30 0.14 

1993 0.78 0.50 0 0 0 1 0 0.03 0.07 0.18 0.66 0.34 

1994 0.71 0.12 0 0 0 1 0 0.07 0.07 0.34 0.18 0.03 

1995 1.36 0.63 0 0 0 1 1 0.03 0.03 0.14 0.62 0.34 

1996 -1.22 0.10 1 1 1 0 0 0.03 0.07 0.34 0.26 0.03 

1997 -0.49 -0.81 0 0 1 0 0 0.38 0.66 0.89 0.07 0.03 

1998 -0.16 0.22 0 0 1 0 0 0.03 0.11 0.38 0.26 0.11 

1999 1.18 1.97 0 0 0 1 1 0.03 0.03 0.03 0.93 0.93 

2000 1.06 0.66 0 0 0 1 1 0.03 0.03 0.14 0.62 0.26 

2001 -0.84 -0.85 0 1 1 0 0 0.54 0.93 0.97 0.03 0.03 

2002 -0.38 -0.45 0 0 1 0 0 0.14 0.66 0.82 0.07 0.03 

2003 -0.26 -0.41 0 0 1 0 0 0.18 0.46 0.78 0.07 0.03 

2004 -0.78 0.12 0 1 1 0 0 0.07 0.11 0.42 0.30 0.11 

2005 0.33 -0.02 0 0 0 0 0 0.03 0.11 0.70 0.11 0.07 

2006 -0.33 -0.51 0 0 1 0 0 0.22 0.58 0.74 0.07 0.03 

2007 0.53 -0.75 0 0 0 1 0 0.42 0.66 0.89 0.03 0.03 

2008 0.62 -0.58 0 0 0 1 0 0.42 0.66 0.78 0.03 0.03 
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2009 0.30 -0.93 0 0 0 0 0 0.54 0.82 0.89 0.07 0.03 

2010 -2.56 -3.42 1 1 1 0 0 0.97 0.97 0.97 0.03 0.03 

2011 -1.09 -0.12 1 1 1 0 0 0.07 0.18 0.58 0.11 0.03 

2012 1.24 -1.59 0 0 0 1 1 0.78 0.93 0.97 0.03 0.03 

2013 -0.06 -2.77 0 0 1 0 0 0.97 0.97 0.97 0.03 0.03 

2014 1.93 -1.52 0 0 0 1 1 0.93 0.93 0.97 0.03 0.03 

2015 1.93 -0.13 0 0 0 1 1 0.11 0.38 0.58 0.11 0.03 

2016 0.77 -2.09 0 0 0 1 0 0.97 0.97 0.97 0.03 0.03 

Hit rate, 1980-97 0 0.25 0.75 0.67 0.25 

False alarm rate, 1980-97 0 0.07 0.10 0 0 

Hit rate, 1998-2016 0.5 0.25 0.67 0.25 0.20 

False alarm rate, 1998-2016 0.24 0.53 0.80 0 0 

Table 6.7. continued 

 

This 1980-1997 forecast model is repeated, with the quadratic trend in sea-ice removed 

(Figure A.6.1b).  This use of detrended sea-ice data results in the following regression model: 

 

                           DJF NAO = 0.20 +0.70novBKI(det) -0.76octN3.4        R2=0.53 

 

Figure 6.8 shows this new adjusted forecast compared with the observed NAO. While a much 

better match of forecast-observation pairs is achieved in the testing period, three of the six 

most recent observations still lie outside the forecast error bars, although for 2011 the 

forecast value is greater than that observed, and for 2012 and 2014 the forecasts are lower 

than the observed NAO values.  Correlations between observed and predicted values are now 

0.73 for the training period and 0.56 for the testing period, both significant (p≤0.05). The bias 

no longer seems to be systematic but still highlights an issue with the most recent forecasts 

being less accurate. It would appear that the interannual variability of sea-ice is a better 

predictor of the winter NAO than the absolute value of the sea-ice extent.  The equivalent 

table to Table 6.7 for forecasts based on detrended data is shown in appendix A.6.1. While hit 

rates remain unchanged for 1980-1997 (with the exception of the NAO ≥ 0.5 quantile, where 

it is only slightly less) and false alarm rates increase for the NAO ≤ -0.5 and ≥ 0.5 quantiles, 

much larger changes are evident in 1998-2016.   Hit rates for the stronger negative forecasts 

(≤ -1, ≤ -0.5) are the same as for the non-detrended version, reduced for the NAO ≤0 quantile 

and with large increases for positive forecasts. There is an overall decrease in false alarm 
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rates for negative forecasts, with increased rates for positive forecasts. The forecasts for the 

testing period overall have improved hit rates and decreased false alarm rates. The removal of 

the quadratic trend has relatively little impact on the earlier period, but much greater impact 

from 1998-2016 where the negative trend is getting progressively steeper. It would seem that 

as using detrended sea-ice data reduces the systematic bias, consideration should be given to 

using this in future forecasts. This will complicate the process slightly as the addition of a 

new year will alter the trend equation slightly, so the detrending will need to take place for 

each additional forecast year. 

 

 
Figure 6.8. Observed NAO (black) and predicted NAO values (red) for the testing period 
1998-2015, based on a training period model of 1980-1997, derived from detrended sea-ice 
data. Black vertical line denotes end of training period and start of testing period. Error bars 
are for ± 1.96 standard deviation of ensemble noise. 
 

6.4.5. Probabilistic forecast verification 

In this section the verification statistics described in section 6.3.5 are presented for the 

probabilistic forecast quantiles. Tables A6.2-A6.7 summarise the probabilistic forecasts and 

observed NAO for all statistical models and GloSea5. These form the basis of the verification 

statistics shown in Table 6.8 and are discussed below. 
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a) NAO≤ -1 BS (BSref) BSS ROC area 

N56 0.15 (0.18) 0.18 0.75* 

N80 0.09 (0.11) 0.16 0.73 

N93 0.11 (0.13) 0.17 0.74 

GloSea5 index  0.12 (0.13) 0.04 0.79 

raw93 ≤13hPa  0.11 (0.13) 0.14 0.74 

GloSea5 raw ≤13hPa 0.10 (0.13) 0.20 0.77 

 

b) NAO≤ -0.5 BS (BSref) BSS ROC area 

N56 0.22(0.24) 0.07 0.69* 

N80 0.11 (0.18) 0.39 0.90* 

N93 0.10 (0.19) 0.19 0.89* 

GloSea5 index  0.21 (0.19) -0.10 0.72 

raw93 ≤17hPa  0.09 (0.19) 0.54 0.91* 

GloSea5 raw ≤17hPa 0.19 (0.19) -0.03 0.65 

 

c) NAO≤ 0 BS (BSref) BSS ROC area 

N56 0.23 (0.25) 0.08 0.69* 

N80 0.15 (0.25) 0.40 0.87* 

N93 0.09 (0.25) 0.64 0.96* 

GloSea5 index  0.21 (0.25) 0.18 0.76* 

raw93 ≤21hPa  0.13 (0.25) 0.48 0.90* 

GloSea5 raw ≤21hPa 0.22(0.25) 0.13 0.77* 

 

d) NAO≥ 0.5 BS (BSref) BSS ROC area 

N56 0.19 (0.21) 0.10 0.72* 

N80 0.17 (0.24) 0.29 0.84* 

N93 0.18 (0.24) 0.26 0.84* 

GloSea5 index  0.20 (0.24) 0.18 0.75* 

raw93 ≥25hPa  0.20 (0.24) 0.18 0.82* 

GloSea5 raw ≥25hPa 0.19 (0.24) 0.21 0.83* 

Table 6.8. a)-e) Verification statistics for probabilistic forecasts. Asterisks in the ROC 
column denote significant (p≤ 0.05) ROC area values. BS is the Brier Score (bracket =BSref), 
BSS is the Brier Skill Score. ROC area is the area under the Relative Operating Characteristic 
(ROC) curve. 
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e) NAO≥ 1 BS (BSref) BSS ROC area 

N56 0.08 (0.12) 0.31 0.76* 

N80 0.10 (0.17) 0.37 0.78* 

N93 0.12 (0.16) 0.26 0.76 

GloSea5 index  0.07 (0.16) 0.54 0.99* 

raw93 ≥29hPa  0.12 (0.16) 0.26 0.87* 

GloSea5 raw29hPa 0.13 (0.16) 0.16 0.89* 

 Table 6.8. continued. 
 

The BS is an indicator of probabilistic forecast accuracy ranging from 0 to 1; 0 being a 

perfect score with no forecast errors (section 6.3.5.1). The lowest BS overall, indicating the 

more accurate forecasts, are those for N80 and N93 while the least accurate forecast overall 

is N56. The scores show an overall pattern for the N80 and N93 of lower BS values for 

negative forecasts and higher values for the positive forecasts, although for N56 the lower BS 

values are for the positive and negative extremes, the positive forecast BS being lower. For 

GloSea5, the lower values are also for the extreme forecasts, both positive and negative. BS 

values for GloSea5 raw and raw93 are close to those for N93 and the GloSea5 index scores. 

BS values are usually less than BSref, indicating a better performance than climatology, 

although often the difference is only small and, with small sample sizes, this difference is 

sensitive to noise. 

 

The BSS gives the skill of the forecast relative to climatology. Zero indicates no skill 

compared to the reference forecast while 1 is a perfect score. Negative scores indicate less 

skill than climatology. This can easily be seen in Table 6.8 as negative BSS values occur 

when the BS value is greater than or equal (i.e. inferior) to BSref. For the BSS, the highest 

values for each quantile, indicating the forecasts with the greatest skill relative to 

climatology, are for N80, N93 and raw93 across all probabilistic forecasts except for the 

extreme forecasts (NAO ≤ -1, ≥ 1). BSS values for N56 for the NAO ≤ -0.5, ≤ 0, ≥ 0.5 

quantiles are much lower compared with N80 and N93, indicating lower skill, although N56 

shows higher skill than both N80 and N56 for NAO ≤- 1 and more skill than N93 for NAO ≥ 

1. The GloSea5 index forecast has the highest BSS value for NAO≥1, and BSS for the 

GloSea5 index increases from negative to positive forecasts, with skill being less than 

climatology for NAO ≤ -0.5. The GloSea5 index BSS are greater than for raw GloSea5 

forecasts for NAO ≥ 1 and those for the raw scores are greater for negative forecasts.  
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Verification data for the 1980-97 model using unadjusted sea-ice (Table 6.9) confirm that 

negative NAO forecasts  (NAO ≤- 1, ≤ -0.5) for this model have little accuracy, whether for 

the period 1980-97 or over the whole period, BS values being higher than BSref, indicating 

less accuracy than a climatological forecast and BSS values being negative. Whereas BSS 

values are quite high for the training period (NAO ≤ 0, ≥ 0.5, ≥ 1), they are consistently low 

across all forecast quantiles for the whole period, and negative for all quantiles for the testing 

period only indicating less skill than would be expected from climatology. These scores are 

heavily influenced by the negative forecast bias evident in the latter part of the testing period. 

The BS values also reflect the influence of the negative bias in the training period. BS values 

are much higher for the testing period, showing less accurate forecasts for 1998-2016.  

 

NAO forecast BS (BSref) BSS ROC area 

1980-2016 

≤ -1 0.17 (0.10) -0.70 0.54 

≤ -0.5 0.29 (0.17) -0.68 0.59 

≤ 0 0.21 (0.25) 0.17 0.73* 

≥ 0.5 0.20 (0.24) 0.19 0.69* 

≥1 0.15 (0.19) 0.20 0.73* 

1980-1997 

≤ -1 0.11 (0.10) -0.09 0.50 

≤ -0.5 0.19 (0.17) -0.11 0.71 

≤ 0 0.10 (0.25) 0.60 0.94* 

≥ 0.5 0.15 (0.25) 0.40 0.88* 

≥1 0.13 (0.17) 0.25 0.84* 

1998-2016 

≤ -1 0.22 (0.10) -1.31 0.63 

≤ -0.5 0.38 (0.17) -1.24 0.58 

≤ 0 0.32 (0.25) -0.27 0.54 

≥ 0.5 0.25 (0.24) -0.03 0.47 

≥1 0.17 (0.20) 0.15 0.63 

Table 6.9. Verification data for the 1980-1997 model, together with verification statistics for 
1998-2016 and combined training and testing periods (1980-2016). Asterisks denote 
significant (p ≤ 0.05) ROC area values. BS is the Brier Score (bracket =BSref), BSS is the 
Brier Skill Score, ROC area is the area under the Relative Operating Characteristic (ROC) 
curve). 
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The equivalent data for the forecast using detrended sea-ice  (Figure 6.8) are found in Table 

A6.8. This shows small increases in accuracy (lower BS) and skill (higher BSS) for negative 

forecast quantiles in the overall forecast for 1980-2016, but large increases for 1998-2016, 

reflecting the reduction of the negative bias, particularly in the testing period. Changes in the 

training period are smaller and of varying sign, depending on quantile.  

 

The verification statistics confirm that forecast quality can be improved by using detrended 

sea-ice data. Using detrended sea-ice ensures that the statistical forecast now performs better 

than a forecast based on climatology for the training period for all quantiles except NAO ≥ 

0.5 (Table A.6.8). ROC areas are insignificant for all forecast quantiles in the testing period, 

whether the sea-ice trend is removed or not. For the detrended sea-ice regression model 

(Table A.6.8), this insignificance is often marginal at p≤ 0.05 and is in part due to decreased 

sample size.  

 
Reliability diagrams based on five forecast probability bins are presented for each forecast 

quantile in Figures 6.9-6.14.  The ten-bin forecasts produce noisy reliability diagrams due to 

the relatively small sample of years being distributed amongst a larger number of bins, which 

can result in many empty bins and large fluctuations around the diagonal (not shown). The 

five-bin approach was judged a sensible compromise, producing a smoother calibration curve 

while having enough bins to be meaningful. Even with five bins, the curve sometimes shows 

considerable fluctuation and some forecast probability bins are empty. However, any further 

reduction in bin size would reduce the values of the diagrams, bins being too coarse and too 

few to show meaningful relationships between forecast probability and observed relative 

frequency. It will be noted that the consistency bars are wide, a consequence of the small 

sample sizes. Most points plotted on the curve lie within the consistency bars, but are 

frequently at the extreme ends of the bar, if the occurrence of a particular probability is small. 

A higher probabilistic forecast value of an event is a forecast of a more extreme event. For 

example, if an NAO less than one is forecast with near certainty, the observed NAO is likely 

to be more strongly negative than for a lower probabilistic forecast. 
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Figure 6.9. Reliability diagrams, N56 forecast models, for 5 probability bins. The histogram 
in the lower right-hand corner of each diagram shows the frequency of occurrence for each 
forecast probability bin. Grey vertical lines are consistency bars for the 95% confidence 
interval. 
 
N56 forecasts make use of all forecast probability bins, except for NAO ≤ -1, ≥ 1, where high 

probability forecasts do not occur (Figure 6.9a, e). All curves approximate to the diagonal but 

do not follow it as closely as do some other forecasts (see below). The best fits to the 

diagonal are for NAO ≤ -0.5, ≤ 0, although the forecasts are not as sharp as those for N80 and 

N93, as the histograms show that mid-range probability forecasts are issued frequently, while 

less use is made of the more extreme forecast probabilities.  
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Figure 6.10. As for Figure 6.9, except for N80. 
 

For N80, overall the forecasts appear well-calibrated for NAO ≤ -0.5, ≤ 0 and to a lesser 

extent NAO ≥ 0.5, being close to the diagonal (Figure 6.10b,c,d). For the NAO ≤ -1 and ≥ 1 

forecasts, where the observed relative frequency shows a large deviation from the diagonal, 

in each case the bin contains few occurrences as seen from the histograms in the lower right 

hand corner of each diagram. Hence small sample size influences the form of the curve. 

Histograms indicate high frequencies for low-probability forecasts across all NAO quantiles 

for this model, although for the NAO ≤ 0 forecast, forecasts occur in all probability bins, with 

greater frequencies for high- and low-probability forecasts. This greater use of extreme 

probabilities indicates a more confident forecast with increased sharpness. 
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Figure 6.11. As for Figure 6.9, except for N93. 

 

The N93 forecasts show increased fluctuations around the diagonal compared with N80 

(Figure 6.11). This is due to the reduced number of forecast-observation pairs (20), thus with 

this small sample size, by chance, forecast-probability bins are more likely to show relative 

over-or under-population of occurrences, and one further occurrence in a forecast bin could 

make a substantial difference to the proximity to the diagonal.  The best fit to the diagonal is 

for NAO ≤ 0 (Figure 6.11c), and to a lesser extent NAO ≥ 0.5 (Figure 6.11d), as these two 

forecasts have the highest number of occurrences in the 20-year period (ten and eight 

respectively, compared with three (NAO ≤ -1), five  (NAO ≤ -0.5) and four (NAO ≥ 1). As 

with N80, low forecast probabilities occur with greater frequency, although for NAO ≤ 0 in 
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particular, there are also higher numbers of forecasts in the higher probability bins, indicating 

greater sharpness (Figure 6.11c). 

 
Figure 6.12. As for Figure 6.9, except for GloSea5 Index. 

 

GloSea5 Index plots (Figure 6.12) show considerable fluctuation which may be due to the 

small sample size, but makes interpretation difficult. A number of low probability forecasts 

occur less frequently than expected (Figure 6.12a,c,e). There is a suggestion of 

underconfidence as low-probability forecasts tend to occur less frequently than expected 

while high-probability forecasts often occur close to the diagonal (Eade et al., 2014; Siegert 

et al., 2016). As with many of the statistical models, low-probability forecasts are issued far 
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more frequently than higher probability forecasts although NAO ≤ 0 and ≥ 0.5 show u-shaped 

histograms indicating more forecasts at both probability extremes and increased sharpness. 

 

 
Figure 6.13. As for Figure 6.9 except for raw93. 

 

Reliability diagrams for raw93 show considerable variability in form  (Figure 6.13) and are 

qualitatively similar to N93 diagrams (Figure 6.11). Any differences are due to cutoffs 

selected for the raw93 quantiles not being entirely consistent with the N93 values (see section 

6.3.4). Extreme departures from the diagonal for the NAO≥29hPa forecast (Figure 6.13e) are 

due to small numbers of forecasts occurring in these bins. The best fits are for NAO ≤ 21hPa, 

≥ 25hPa (Figure 6.13c,d) corresponding to the more reliable forecasts for N93 (NAO ≤ 0, ≥ 

0.5, Figure 6.11c,d). 
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Figure 6.14. As for Figure 6.9 except for GloSea5 raw data. 

 

A number of forecast bins for the raw GloSea5 forecasts are empty, particularly at the higher 

probabilities (Figure 6.14).  The limited evidence available suggests underconfidence across 

the forecasts, low-probability events occurring less often than predicted, while high-

probability events occur more frequently than expected. Unlike the reliability diagrams for 

N93 and raw 93 (Figures 6.11 and 6.13), the reliability diagrams for GloSea5 raw values do 

not resemble those for the GloSea5 index (Figure 6.12) particularly closely. This shows that 

reliability can be affected by processing of data, such as normalising. It has already been 

shown that the ensemble means for the GloSea5 Index and GloSea5 raw forecasts differ 

greatly in amplitude (e.g. Figure 6.6b), whereas with the statistical forecasts, the models were 
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derived separately based on raw and normalised NAO data, hence their closer 

correspondence. 

 

The ROC areas calculated and shown in Table 6.8 show many of the forecasts to have good 

discrimination between events and non-events and therefore to be potentially useful.  ROC 

area scores for negative NAO forecasts are less good; only the N56 forecast has a significant 

ROC score for NAO ≤ -1, and for GloSea5 neither of the NAO ≤-1 and ≤ -0.5 ROC scores 

are significant, for both raw and index-based forecasts. For the statistical forecasts, scores for 

N56 are lower, but still statistically significant due to larger sample size. Scores for N80 and 

N93 are similar across all quantiles except NAO ≤ 0 where the score for N93 is higher (Table 

6.8c). In comparison with GloSea5, ROC scores for N93 and raw 93 are consistently higher 

than the GloSea5 equivalent except for NAO ≥ 1. The ROC scores indicate that GloSea5 

performs better for positive NAO forecasts, while statistical models are consistent across all 

quantiles apart from NAO ≤ -1. 

 

N80 and N93 provide the best probabilistic statistical forecast models in terms of skill, 

reliability and resolution although quality varies depending on which quantile is used for the 

probability forecast. The better forecasts to use are NAO ≤ 0.5, ≤ 0 and ≥ 0.5 as these events 

have more occurrences, and verification statistics can be interpreted with greater confidence. 

Attempting to use a longer time series does not necessarily produce a better-quality forecast. 

With N56 this is likely to be due to fewer predictors being available, and reduced data quality 

in the pre-satellite era, and possible decreased predictability in the earlier part of the time 

series. However the use of different predictors in this model may give some insight into why 

certain years are poorly forecast in other models.  Verification statistics for GloSea5 suggest 

greater skill with the positive forecasts, and the N80 and N93 statistical forecasts are 

comparable to GloSea5 in terms of their verification statistics. 

 

6.5. Discussion 

While much work has suggested that the NAO is a mode of atmospheric internal variability 

(e.g. James and James, 1989; Hurrell et al., 2003), analysis with GloSea5 and probabilistic 

statistical models developed over different time periods indicates that there is a significant 

predictable component in the winter NAO, with cross-validated R2 values suggesting selected 

predictors may be explaining around 60% of the interannual variance in the observed winter 

NAO (Table 6.1). It is possible to produce statistical hindcasts for the NAO which have high 
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levels of skill and resolution. However, although care has been taken not to overfit the 

regression models with too many predictors, it is still possible that these models are 

overtuned as they have performed more poorly in recent out-of-sample years.  

 

Identified relationships could be non-stationary, or simply a result of noise, and therefore not 

indicative of true relationships. The key test is therefore the extent to which a statistical 

model is able to predict NAO values outside the training period. Such models may help to 

provide a benchmark for dynamical models, although it must be borne in mind that the 

statistical models rely upon predictors which are chosen following data inspection through 

observational and modelling studies. There is reasonable success in testing regression models 

against independent verification data, as shown by the ability of models to forecast the NAO 

for 2013-2016, albeit with an apparent negative bias (Table 6.6, Figure 6.4). Also, the testing 

of a model on a longer period of “unseen” data shows that the ensemble mean forecasts are 

frequently able to capture the phase and amplitude of the observed NAO (Figure 6.7). 

However, forecasts for more recent years (post 2006) show a negative bias, very strongly 

evident for the 1980-1997 based model, where the only predictors are November Barents-

Kara sea-ice and October N3.4. N3.4 has a limited impact in a few specific years, due to the 

discontinuous nature of the modified time series.   

 

The results support the evidence from dynamical models that the winter NAO contains a 

significant predictable component, although sources of predictability in the dynamical models 

are largely unknown (Scaife et al., 2016a). Therefore the testing of several predictors 

simulataneously may help to identify sources of predictability and can also help to identify 

reasons for some poor forecasts in dynamical models. For example, 2005 was poorly 

predicted by GloSea5, with a predicted negative anomaly, while the observed anomaly was 

positive. However, this year was predicted more successfully by statistical models, where a 

tropical rainfall signal was a significant component and indicated a positive NAO anomaly. 

Recent work has confirmed the importance of a tropical rainfall signal in improving the 

seasonal predictability of the NAO (Scaife et al., 2016a). This suggests that for some as yet 

unidentified reason the tropical rainfall signal for this year was masked in GloSea5. The 

statistical approach may also highlight the importance of variables and lead times which may 

not be adequately represented in the dynamical models. For example, at present there is 

almost no skill in dynamical forecasting of the summer NAO. However, results from Chapter 

5 suggest that the predictable component of summer jet variability may be up to 35%, which 
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will be associated with summer NAO variability. Furthermore, the predictability may come 

from the previous autumn’s sea-ice anomaly, a factor which at present may not be considered 

in the initialisation of dynamical forecast models. 

 

Low autumn sea-ice is associated with a negative NAO and it seems that while the match of 

forecast/observation pairs is quite good in the testing period prior to 2005 (Figure 6.7), the 

accelerating decline in sea-ice has subsequently led to a negative bias in forecasts which is 

only partly offset by other predictors in the more complex models such as N80. Thus, while 

sea-ice interannual variability appears to be an important predictor of the winter NAO, the 

increasing negative trend detracts from the quality of the forecast, resulting in a negative 

forecast bias. This results in negative forecasts being issued too frequently, with more 

extreme values being predicted, with consequent poorer skill in these negative forecasts. This 

is evident to some extent in all statistical models, but is particularly noticeable in the very 

recent years and in the 1980-1997 model. Removing the quadratic trend from the sea-ice 

before incorporation into the model-building process appears to be able to address this bias. 

(Figure 6.8). The predictability of the NAO is therefore improved by considering interannual 

variability of sea-ice alone rather than absolute values and it would be preferable to use 

detrended sea-ice data in future development of the statistical forecasting models. GloSea5 on 

the other hand shows no such bias, even though the model includes both sea-ice trend and 

sea-ice interannual variability. The more complex dynamical forecasting system may include 

elements that counteract the influence of the sea-ice trend detected in the statistical models, 

which are greatly simplified, containing only a few factors that may influence the NAO. For 

example it is possible that greenhouse gas forcing acts to oppose the trend in the NAO 

induced by sea-ice decline. The heating in the upper troposphere and increased meridional 

temperature gradient at this level opposes the lower-level temperature gradient decrease seen 

through Arctic Amplification (e.g. Barnes and Screen, 2015; Chapter 1, Figure 1.4). An 

alternative approach would be to include a greenhouse-gas forcing term in the statistical 

models (c.f. Folland et al., 2012). 

 

As with winter jet latitude (Chapter 5), it is the November sea-ice that is an important 

predictor of the winter NAO. Figure 5.25 shows that these low-ice years in November are a 

result of a reduced rate of freeze-up rather than the sea-ice minima in September. Therefore, 

the suggested mechanism of low September sea-ice anomalies leading to to increased autumn 

heat fluxes from ocean to atmosphere may apply less well here. Other factors may reduce the 
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rate of freeze-up in autumn such as poleward atmospheric or ocean heat transport in the 

Atlantic sector. Further investigation may reveal factors which drive the November sea-ice 

interannual variability, which may themselves prove to be better predictors of winter NAO 

variability with possible increases in lead time. This would have the advantage of 

disentangling the sea-ice trend from interannual variability, as the trend most likely has a 

different origin in global warming, compared with the interannual variability. 

 

The statistical forecasting is based upon models fitted over a particular time period. 

Predictors of the NAO show apparent non-stationary relationships over time and so there is 

likely to be drift away from the predictors used, even if coefficients are updated on a year-by-

year basis. Alternatively, this apparent relationship could be due to atmospheric internal 

variability. This might be evident in the decay of R2  values with increased distance from the 

reference period of 1980-2012. For example, the cross-validated R2 values of the N80 model, 

where coefficients are allowed to vary, for forecasting 2013, 2014 and 2015 are 0.58, 0.35 

and 0.29 respectively. Thus, a statistical probability forecast based on fixed predictors may 

lose its validity over time. A number of potential predictors show low-frequency variability, 

such as the Atlantic Multidecadal Oscillation (AMO), and their variability may result in its 

future predictor selection, or influence the relationship between the NAO and other 

predictors. Although allowing predictors to vary did not result in models with new predictors, 

this may not be the case over longer period of time. It seems likely that forecasts will drift 

away from observations as the time between the calibration period and the issued forecast 

increases, due to low-frequency variability. Different periods of time may also vary in their 

inherent predictability. 

 

It is interesting to note that while models differ in the precise predictors selected, there is 

similarity amongst the predictors selected. N3.4 is always selected and autumn sea-ice is 

present in N80 and N93, but replaced by spring sea-ice in N56. This seems strange but could 

be indicative of some memory of maximum sea-ice extent preserved in SST in the 

Laptev/Kara Sea region, which is then able to exert an influence on the subsequent autumn 

NAO, perhaps by influencing sea-ice regrowth (e.g. Blanchard-Wrigglesworth et al., 2011). 

However it is strange that this seven-month lagged relationship appears stronger than one 

based on sea-ice growth in November. The relationship with the North Atlantic June tripole is 

only found in N80. The only suggestion of solar variability influence is in the longer time 
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series model N56 and the West Indian Ocean influence is indicated in all three statistical 

models. The influence of these predictors is confirmed in modelling studies (e.g. Maidens et 

al., 2013) and therefore suggests that genuine skill is present in the statistical forecasts. 

However, as the statistical models use a limited range of predictors, there are likely to be 

periods where they are less successful than dynamical forecasts such as those from GloSea5, 

when other factors may be more dominant. 
 

Also of interest are the predictors that are not selected by the models. Despite available 

evidence (e.g. Ebdon, 1975), relationships between the QBO and winter NAO were not found 

to be strong enough to warrant inclusion in the models. While forecasting work with 

dynamical models suggests the need for a fully-resolved stratosphere (e.g. Marshall and 

Scaife, 2010; Scaife et al., 2016b), the stratospheric influence in these statistical models is 

limited, probably just to part of the N3.4 signal (Bell et al., 2009). Similarly, no role for 

Eurasian snow cover is identified, despite other research (Cohen and Jones, 2011; Riddle et 

al., 2013). Although, Cohen and Jones (2011) found their snow advance index (SAI) 

demonstrated better correlation with the winter NAO than did snow cover extent, the reason 

for this has not been established and their winter 2014 forecasts were poor. However, there is 

an assumption of linearity in the statistical forecasts, which means that certain processes may 

not be well-represented. 

 

The quality of probabilistic forecasts varies depending upon the quantile used. Only a few 

forecasts perform worse than climatology for predicting whether an event occurs or not, 

(GloSea5 index NAO ≤ -0.5; GloSea5 raw, NAO ≤ 17hPa) although many other forecasts 

have skill levels close to those that are obtained from climatology and small sample size 

means there is sensitivity to slight changes in frequency. Due to the relatively small number 

of forecast-observation pairs, some forecast quantiles, particularly the extremes, are based on 

relatively few occurrences and verification statistics are less good. The negative bias of 

ensemble mean statistical forecasts in recent years indicates that negative forecasts have less 

skill and reliability. However, as discussed above, removing the trend from sea-ice data 

appears to have some potential for counteracting this. A forecast that predicts the likely sign 

of the winter NAO would be valuable, and would be based on more forecast-observation 

pairs than forecasts based on more extreme quantiles. The magnitude of the forecast event 

would be indicated by the probability attached to the occurrence of, for example, a negative 
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NAO. A forecast probability of 0.8 would suggest the likelihood of a more extreme event 

than would a probability of 0.3.  

 

The particular version of the NAO index used makes little difference to the ability of a model 

to predict the NAO; R2 values being consistently high and significant when the approach is 

tested with Hurrell station data and the Hurrell PC NAO index (not shown). There is some 

variation in the more minor drivers that are selected.  

 

6.6. Conclusions 

A range of probabilistic statistical models has been developed for forecasting the winter 

NAO. The differences between selected predictors for the models are relatively small, with 

some slight variation amongst the more minor predictors that are selected. Probabilistic 

forecasts can be issued for a range of NAO values although those for more extreme values are 

affected by limited numbers of observations. Hindcast ensemble means based upon longer 

time series (N56) are less successful, with lower verifications scores which could be a 

reflection of reduced data quality for predictors such as sea-ice in the pre-satellite era, or 

decreased predictability in the earlier part of the time series. The statistical models have some 

success when making forecasts of the winter NAO, often getting the interannual direction of 

change correct, but showing a large negative bias in very recent years. A statistical model 

applied to an extended forecast period from 1998-2016 shows the potential of the statistical 

forecasting, but again has a negative bias in recent years. This may be due to an over-reliance 

on sea-ice as a predictor, which has shown a very strong negative trend in recent years, 

culminating in the autumn of 2013, since when there has been some recovery. There is 

potential to remedy this bias by using detrended sea-ice data and it is demonstrated that this 

produces much improved forecasts for the testing period, with considerable skill. It is 

recommended that detrended sea-ice is used in statistical forecasts of future years. An 

alternative may be to include a greenhouse-gas forcing term, which may act in opposition to 

the sea-ice trend. 

 

The verification statistics indicate that for the period over which they were developed, the 

performance of the best statistical models is comparable to that of GloSea5; however, they 

are likely to be less effective in out-of-sample forecasting due to apparent non-stationary 

relationships between predictors and the NAO, which may still be due to internal variability 

rather than true non-stationarity. Results demonstrate a greater success for GloSea5 in out-of-
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sample forecasting although this verification period is only four years and hence too short to 

draw any conclusions. However, the application of a statistical model to a longer testing 

period appears to be indicative of genuine predictability that can be captured by such models. 

Although these statistical models show very high correlation skill with the observed NAO, 

and other verification statistics are very good, the main role for such models is acting as a 

benchmark for dynamical forecast models. For example, statistical models may shed light on 

the reasons why a dynamical model issues a poor forecast in particular years by identifying 

particular factors that may not be adequately represented in the model, and there is scope for 

using the two approaches together to improve forecasting skill. The simple statistical 

approach used lends support to the argument that the winter NAO has a significant 

predictable component. These simple statistical models can be further developed to 

incorporate other variables and non-linearities. 

 

6.7. Some definitions of forecasting terminology 

 

accuracy. The agreement between forecast and observation pairs, averaged over time. 

 

discrimination. This reflects the ability of the forecast to produce different forecasts for 

different observation sets. For example, if observations are classified as occurrences or non-

occurrences of a particular event, the distribution of forecast probabilities for each group can 

be compared. Good discrimination would show an association between high probability 

forecasts and the occurrence of the event. 

 

overconfidence. Forecasts frequently predict extreme values, i.e. high probability values 

close to 1 or very low values close to 0, and these forecasts are confident. However, if when 

compared to observations these forecasts are too extreme and the event does not occur with 

the frequency predicted, the forecasts are said to be overconfident. Thus extreme events 

forecast with near certainty of occurrence occur less frequently than this while events with a 

near-certainty of non-occurrence in forecasts will occur more frequently.  

 

overdispersion. An overdispersed ensemble of forecasts means that the ensemble members 

tend to forecast extreme values too frequently. Thus when comparing with observations, the 

observed values tend to appear in the middle ranks of the ensemble more than would be 

expected. 
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overforecasting. The forecasts are too large compared to the relative observed frequencies, 

so forecasts tend to be greater than observations. 

 

reliability. Do the probabilities mean what they say? The forecast is reliable if the predicted 

probabilities occur with the same frequency in observations, e.g. a forecast of 0.1 will occur 

in exactly 0.1 of these cases. 

 

resolution. This is the extent to which a forecast sorts observed events into groups that are 

different from each other. If outcomes following different forecasts are very different, the 

forecast shows resolution, whereas if the outcomes are very similar following different 

forecasts, the forecast shows poor resolution. 

 

sharpness. This defines how much forecasts differ from the mean climatological 

probabilities. It can be viewed as the tendency to predict extreme values. An unchanging 

climatological forecast has no sharpness. Sharpness can also be termed refinement. 

 

skill. The relative accuracy of the forecast compared with a reference forecast, often 

climatological.  

 

underconfidence. A forecast with low confidence tends not to depart much from the average 

value. Thus underconfident forecasts do not tend to forecast extreme values. The forecasts 

with greatest probability occur more frequently than expected while the forecasts with the 

smallest probability values occur less frequently than expected. 

 

underdispersion. An underdispersed ensemble is one that tends not to forecast extreme 

values very often. Thus the observed values occur more frequently at the extremes than do 

ensemble members. 

 

underforecasting.  The forecast probabilities are too small relative to the observed relative 

frequencies, so the forecasts tend to be less than observations. 

 

verification: Assessing the quality of the forecast. 
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Chapter 7 
 

Synthesis, Conclusions and Future Work 
 

This chapter summarises the results of previous chapters, presents the main findings and 

identifies future work that can extend the thesis. 

 

7.1.  Summary of chapters 

Chapter 1 reviews the literature on the potential drivers of North Atlantic polar front jet 

stream (PFJ) variability. The complexity of relationships is evident and is exemplified by 

Figure 1.12, with many potential influences operating; these drivers often oppose one another 

so that a consistent response to a particular driver is not always identifiable and can be 

masked by internal variability. Associations may not be stable through time, reflecting the 

competing influences of drivers and the non-stationary nature of the drivers themselves, 

which can evolve over time. There is also some evidence of non-linear interactions between 

drivers and the jet stream. Many of the latest generation of climate models still show 

significant biases in jet stream characteristics; there is a tendency to exaggerate the seasonal 

cycle of jet latitude and to portray a North Atlantic jet that is too zonal in orientation. They 

often fail to represent the trimodal jet-latitude distribution evident in reanalyses. However, 

some models are moving beyond this (e.g. Davini and Cagnazzo, 2014), with improved 

vertical resolution (e.g. Anstey et al., 2013) and ocean resolution  (e.g. Scaife et al., 2011). 

These enable better representation of SST and atmospheric dynamics and consequently 

improved blocking representation. 

 

Chapter 2 outlines the methods for deriving the jet stream metrics, together with the 

homogenisation procedure used to identify and correct any breakpoints that may arise as a 

consequence of changing data-assimilation density, particularly in the earlier portion of 

20CR. A wide range of datasets is used in this thesis, and these are described in this chapter, 

together with the rationale for their use. Reanalysis data from 20CR and ERA-I are used to 

construct the jet metrics and data for potential predictors of jet metrics are obtained from 

observational datasets. Sources are given and any data post-processing, where applicable, is 

explained. The 1871-2012 seasonal time series of jet metrics derived from 20CR all required 

homogenisation with the exception of winter jet speed. Time series were corrected based on 
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identified breakpoints. Only one significant breakpoint was found for each time series and 

these all occurred before 1945. It was also decided to use the meridionality time series from 

1901 only, as even after homogenisation the early portion of the time series showed 

anomalously low values. It is recommended that jet metrics are constructed from the 56 

ensemble members rather than using the ensemble mean, due to evident biases in the 

ensemble mean in earlier parts of the timeseries due to nonlinearities in the calculation 

procedure. 

 

A detailed comparison of jet stream metrics for the period 1979-2012, derived from the 20CR 

and ERA-I reanalysis datasets is provided in Chapter 3. An analysis of jet metrics at the 200-

300hPa level is also undertaken, to assess the jet representation of 20CR at upper 

tropospheric levels, compared with ERA-I, which assimilates some data from these levels. 

There is a very good match between jet metrics in the different reanalyses at 700-900hPa, 

demonstrating that the 20CR reanalysis product, which is derived from surface measurements 

only, is able to reproduce the trends and variability found in the PFJ when using a third-

generation reanalysis product, based on zonal wind fields. Discrepancies arise between the jet 

metrics from reanalyses on a daily scale, particularly with jet latitude. These are shown to be 

a result of subtle variations in the representation of the zonal wind field strength at different 

latitudes, which can lead to different jet latitudes being identified by each reanalysis, despite 

the overall similarity of the wind field. Such discrepancies are reduced when daily data are 

seasonally averaged.  

 

A comparison between different horizontal resolutions of ERA-I shows that jet-metric 

variability and latitude distribution patterns are not sensitive to horizontal averaging 

resolution. The analysis at 200-300hPa is complicated by the presence of the subtropical jet 

(STJ). Different representations of the strength of this jet in the two reanalyses results in the 

jet-latitude metric in particular being less effective in winter and spring at unambiguously 

identifying the latitude of the PFJ, and there is greater divergence between the representations 

of jet latitude in the two reanalyses. This is because the upper tropospheric winds at the 

latitude of the STJ are stronger in ERA-I than 20CR. It would be possible to modify the jet 

metric algorithm to try and isolate the PFJ at these upper tropospheric levels. There is a closer 

correspondence of jet-speed interannual variability between the different levels of analysis. 

Jet-latitude distributions at 700-900hPa are robust across reanalyses for all seasons. ERA-20C 

is found to portray similar interannual variability to 20CR and 20CRv2c; however with jet 
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speed in particular there is a systematic difference evident particularly prior to 1950, where 

the jet speed is consistently around 10% weaker than in 20CR. This does not impact upon the 

jet-latitude time series since maximum winds occur at the same latitudes but are weaker in 

the pre-1950 part of ERA-20C. It seems that ERA-20C wind speeds may be more prone to 

spurious effects arising from changing data assimilation densities, but this should be further 

investigated using ERA-20CM. It is important to note however that both 20CR and ERA-20C 

are to some extent incorrect representations of the state of the atmosphere. 

 

Chapter 4 examines 20CR over the period 1872-2012 to identify any long-term trends in jet 

metrics and any changes in variability. After homogenisation, all long-term trends over this 

period are insignificant, with the exception of a positive trend for winter jet speed. Thus 

trends evident in the reanalysis are consistent with trends that may result from the presence of 

breakpoints within the time series. Short-term significant 15-year trends are identified within 

all time series, but it is shown that these trends can arise from internal variability as well as 

being due to any external forcing. However, the coincidence of clusters of significant 15-year 

trends with phases of the AMO for summer jet latitude suggests a possible causal link. 

Wavelet analysis reveals significant periodicities that come and go over the time series. These 

again may be due to internal variability, particularly for shorter periodicities, although there 

is an indication that longer periodicities evident in time series may be distinct, with jet speed 

having longer periodicities than jet latitude (24-40 years for jet speed, 8-16 years for jet 

latitude). This significant low-frequency variability in jet speed is evident in all seasons 

except winter. 

 

Jet metrics exhibit periods of increased and decreased variability, identified using moving 

windows of jet metric standard deviation. It is shown that this quasi-cyclicity can arise 

through internal variability. However, there are significant trends of increased winter 

(particularly early winter) jet-latitude variability that merit further investigation, beyond the 

scope of the thesis. Also, a correspondence is noted between some driver time series and jet 

variability. For example, summer jet latitude exhibits a clear 22-year periodicity that 

corresponds to the solar Hale cycle, and autumn jet speed shows cycles of increased and 

decreased variability corresponding to the phase of the AMO, although data are only 

available for less than two cycles of the AMO. This raises the possibility that drivers may not 

just have an impact on mean jet metrics, but may also influence the variability of the jet on 

decadal timescales. Evidence is found to support the assertion that UK summers since 2000 
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have been more similar, with cool wet weather, while winters have shown increased 

interannual variability, with extremes of jet latitude occurring in quick succession. The cause 

of this increased winter interannual variability is unclear as it predates the emergence of the 

Arctic amplification signal in the mid 1990s. On a subseasonal level, winter jet latitude has 

become marginally less variable since 2004 but these changes are not significant. Interannual 

variability and trends of jet metrics in recent (post-2000) years are often not unprecedented, 

since periods with similar trends are evident earlier in the time series. A clear point to emerge 

is that assessing jet stream variations using standard measures such as annual means only 

gives a partial picture of changes over time, and therefore analysis of interannual and 

subseasonal variability will contribute to a more in-depth understanding. 

 

Chapter 5 examines in more detail the potential influence of different drivers upon jet 

metrics. Different drivers are associated with different metrics in different seasons and at 

different lead-times. Associations are not stationary, which may explain why some drivers are 

not selected as significant in regression models over different time periods. Associations 

between drivers and jet metrics of speed and latitude are more robust in summer and winter, 

while increased noise in the transition seasons is more likely to obscure any signal. However, 

autumn jet stream meridionality shows clear associations with a number of drivers. 

Stratospheric drivers are associated with winter jet latitude, as suggested in the literature. The 

predominant influence of tropical and Atlantic SST drivers (AMO and tripole) is upon jet 

speed (excluding ENSO which also operates via the stratosphere). Cryospheric drivers impact 

on all jet metrics in all seasons apart from winter, where the influence is on jet latitude only. 

Lead-times of cryospheric drivers are particularly long in summer (six to eight months) 

suggesting that there may be a mechanism for preserving the previous year’s sea-ice signal 

though winter, to impact upon the following summer’s jet metrics The Potential link between 

meridionality  and  sea-ice needs to be treated with caution as there is an indication that an 

unidentified tropical driver may be common to both Greenland Sea ice and jet meridionality. 

 

Composite analysis and regression models are able to identify significant components of 

seasonal jet stream variability, particularly in winter and summer, although a substantial 

amount of variability is unexplained and is attributable to either internal variability or as yet 

unidentified drivers. This analysis suggests that there is a substantial amount of predictability 

in jet metrics, although this varies according to season and jet metric. 
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Chapter 6 extends the work in Chapter 5, by developing probabilistic forecasts of the winter 

NAO which are compared with those issued by the Met Office’s GloSea5 dynamical 

forecasting system, over the period 1993-2012. Out-of-sample forecasts are also produced for 

2013-2016 and compared to those issued by GloSea5: predictions with comparable skill to 

those of GloSea5 can be constructed for the training period over which the statistical model is 

developed, although GloSea5 performs better on real-time forecasts. In part this is due to the 

non-stationary nature of relationships, and thus a model developed for a particular period is 

likely to be less accurate for out-of-sample forecasting. The statistical model is also 

developed for a specific period and only contains a few predictors, which may be less evident 

in out-of-sample years. The statistical models show some skill for out-of-sample forecasts 

and are complementary to dynamical forecasting and can help to identify sources of 

predictability. Removal of the sea-ice trend from the statistical forecast increases the out-of-

sample skill. This may in part be a proxy for incorporating a greenhouse gas (GHG) forcing 

signal, which acts to oppose the influence of the sea-ice trend. It also indicated that declining 

sea-ice does not seem to increase the frequency of a negative winter NAO. The development 

of probabilistic forecasts helps to quantify uncertainty within the forecast and means that the 

forecast is of greater potential use to a range of decision-makers over a range of different 

fields. 

 
7.2. Key findings 

The key findings of the thesis are presented here, together with the relevant research aims and 

objectives, which are restated for ease of reference. Objective 1, the production of jet stream 

datasets underpins all of the research. 

 

Aim 1: Through the use of reanalysis data, to develop an understanding of polar jet stream 

variability over the period 1872-2012. 

 

Objective 2: A comparison of ERA-Interim (ERA-I) and Twentieth Century Reanalysis 

(20CR) representations of jet stream variability, for the period 1979-2012. 

 

• 20CR can be used to represent jet stream variability based on 700-900hPa zonal 

windspeeds, as it produces very similar results to ERA-I. The latitude of this lower-

level jet is consistent with the PFJ latitude at 200-300hPa and wind speed fluctuations 
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are in-phase, albeit at lower speeds, at 700-900hPa. Jet metrics and the jet-latitude 

distributions are not sensitive to the reanalysis used or to horizontal resolution. 

• There is greater divergence in upper atmosphere representations between ERA-I and 

20CR, as would be expected given that 20CR assimilates only surface measurements. 

 

Objective 3: An extended analysis of subseasonal and interannual jet stream variability and 

trends from 1871-2012. 

 

• Long-term trends in jet metrics (1871-2012) are mostly consistent with those resulting 

from inhomogeneities in data assimilation density, and after adjustment are mostly 

insignificant. There is a significant increase in winter jet speed over the period 1872-

2012, although this is not to be equated with studies that show a projected 

strengthening and eastward extension of the Atlantic PFJ, as more recently the trend 

appears to have reversed and since the mid 1970s the 15-year trends are insignificant 

and largely negative.  

• Short-term trends within jet metrics are consistent with those arising from internal 

variability. There are no significant recent trends that may be a response to Arctic 

Amplification. However significant 15-year trends in summer jet latitude appear to 

correspond to phases of the AMO. 

• Internal variability is able to explain periods of increased and decreased jet 

interannual variability although this does not explain the sustained trend of increased 

interannual variability of jet latitude in winter. 

• It is possible that external drivers are able to influence the degree of jet-metric 

variability over a number of years. This is seen in the correspondence of summer jet-

latitude interannual variability changes and the solar Hale cycle, and also the 

correspondence between the September AMO and autumn jet speed interannual 

variability. 

 

Aim 2: To identify key drivers of jet stream variability and their relative significances over 

seasonal to multidecadal timescales. 

 

Objective 4: Analysis of the relative impacts of a range of potential drivers upon jet stream  

interannual variability. 



 

 305 

 

• Jet metrics are associated with different drivers in different seasons and at different 

lead-times. 

• Atlantic and tropical SSTs are predominantly associated with jet-speed variability. 

• Stratospheric factors have an influence on winter jet latitude. 

• Late summer and autumn sea-ice conditions are associated with jet speed and latitude 

in the following summer. 

• There is a significant amount of predictability in jet speed, latitude and meridionality. 

Jet latitude has the greatest predictability in winter (up to 55%) with around 30% in 

summer and less in the transition seasons. Jet speed and meridionality on the other 

hand appear to be more uniformly predictable across seasons. 

• Drivers selected for jet latitude and speed in winter and summer are consistent across 

timescales and analyses while those for the transition seasons are more variable. 

• Predictability is poorer for longer time series, which may be due to more limited 

availability of predictors, reduced data quality for the earlier portions of the time 

series or covering periods of time where jet metrics are inherently less predictable. 

 

Aim 3: To assess the predictability of the winter NAO using statistical models and to 

compare the results with those obtained from the Met Office Global Seasonal Forecast 

System version 5 (GloSea5, MacLachlan et al., 2014; Scaife et al., 2014a). 

Objective 5: Construct a simple statistical forecast for the winter North Atlantic Oscillation, 

using drivers of change previously identified. 

• The winter NAO contains a significant component of predictability (around 60% in 

statistical models). 

• The statistical forecasts show similar or better skill and verification measures 

compared with GloSea5 for the period over which they are constructed. 

• Out-of-sample statistical forecasts retain some skill although are outperformed by 

GloSea5 forecasts. 

• Removing the sea-ice trend from statistical forecasts increases the skill of out-of-

sample forecasting. This may be a surrogate for the global warming trend which will 

act to oppose changes in the NAO induced by sea-ice. 
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• Statistical models can help to identify sources of predictability in dynamical model 

forecasts. 

 

Objective 6: Extension of the NAO forecasts to include probabilistic forecasts of the NAO. 

 

• The probabilistic forecasts enable the uncertainty within the forecast to be presented. 

• Statistical forecasts are valuable companions to dynamical forecast systems and can 

help to shed some light on factors not included in dynamical forecast models. They 

may also explain why a dynamical forecast for a particular year may be poor, by 

identifying specific factors that could contribute to an improved forecast. 

• The probabilistic forecast enhances the usefulness of a forecast to a potential user, as 

the risks of action or inaction can be weighed against the probabilistic aspect of the 

forecast. 
 

7.3. Areas for future investigation 

The research carried out for this thesis has addressed the research aims and objectives 

discussed in Chapter 1. However, a number of areas for future investigation have been 

identified, and are outlined below. 

 

7.3.1. Jet-latitude distributions 

The seasonal jet-latitude distributions have considerable potential for future work, 

particularly the winter distribution with its trimodal pattern that may relate to blocking 

regimes, which are significant in influencing weather patterns in and around the North 

Atlantic basin. While the days for which jet latitude occurs at the distribution peaks can be 

ascribed to a mode with greater certainty, those days which fall between the peaks could be 

assigned to either distribution, as the trimodal distribution can be modelled by an overlapping 

set of three normal distributions. If a method could be identified for assigning each day to a 

particular mode, the magnitude of each mode could be determined, in days per season. Any 

changes in peak magnitude over time could be assessed and linked to changes in blocking 

patterns or Arctic amplification and may inform improved predictability of weather patterns. 

The relative magnitudes of the modes may also give insights into subseasonal variability and 

the use of clustering algorithms may identify a number of distinctive flow regimes for winter.  
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7.3.2. Associations between drivers and interannual variability changes 

Although many of the quasi-cyclic fluctuations of interannual variability seem likely to arise 

through internal variability, there is the tantalising prospect that some of this interannual 

variability may be a consequence of external forcing, such as between summer jet-latitude 

interannual variability and the 22-year Hale cycle, and between autumn jet speed and the 

AMO. Further exploration of these associations is important for improving seasonal 

predictability and should be accompanied by an investigation into possible physical 

mechanisms. The changes of variability have only been assessed for the North Atlantic. It 

would be informative to analyse other regions to see if they exhibit similar patterns and 

determine whether any forcing influence is region-specific. 

 

7.3.3. Examination of potential drivers of early and late winter jet metrics 

Running the regression and composite process for slightly altered seasons (early winter: 

OND, late winter JFM) may help to resolve whether certain potential drivers of jet stream 

variability operate in different parts of the winter season. This may be particularly useful in 

resolving predictors operating via a stratospheric pathway, which is considered to be more 

effective in late winter  (e.g. Kidston et al., 2015). 

 

7.3.4. Identification of why jet speed and latitude have different drivers 

Chapter 5 demonstrates that different drivers are associated with variability of jet speed and 

latitude. SST predominantly influences jet speed while stratospheric drivers influence 

latitude, and sea-ice influences all jet metrics. Research should focus on identifying the 

physical mechanisms behind this difference. This may in turn inform the development of 

dynamical forecasting systems. 

 

7.3.5. Spatial analysis of identified associations between drivers and jet metrics 

Techniques such as Maximum Covariance Analysis may help to identify atmospheric 

circulation patterns associated with potential linkages and with the identification of any 

physical mechanisms involved. 

 

7.3.6. The causes and impacts of Barents-Kara Sea ice anomalies 

The cause of low November Barents-Kara Sea ice anomalies should be further investigated, 

in order to more fully understand possible linkages between the Arctic and mid-latitudes and 

develop improved seasonal forecasting potential. As shown in Chapter 5, Figure 5.25, the 
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lowest November sea-ice concentrations in the Barents-Kara Sea do not necessarily occur in 

the same year as the lowest sea-ice minima in September. This suggests that turbulent heat 

fluxes from the ocean are not the only factor in establishing the low-ice anomalies in 

November, as if this was the case, the low November anomalies would be expected to follow 

low-ice anomalies in September. Atmospheric wind forcing and polewards heat advection 

may be contributory factors. Further work may also address the issue of how sea-ice signals 

may be preserved from one year to the next. 

7.3.7. Greenhouse gas forcing and statistical forecast models 

The absence of any greenhouse gas forcing as a discrete predictor may have a significant 

influence on model accuracy. While there is no significant long-term trend in observed NAO 

data, the forecast NAO time series show a clear negative trend in recent years, particularly 

with out-of-sample forecasting. The warming trend related to greenhouse gas emissions may 

offset the negative trend in predicted NAO induced by the observed sea-ice trend. 

 

7.3.8. Incorporation of non-linearities into statistical forecasting models 

Linear regression assumes linear relationships between predictors and the NAO, while in 

reality a number of relationships may be non-linear. These non-linear aspects could be 

identified though a forecasting system based on composite analysis, or through using non-

linear autoregressive moving average with exogenous inputs (NARMAX) models (e.g. 

Billings 2013). This would be a novel approach to apply to forecasting and explaining 

Atlantic climate variability. 

 

7.3.9. Future jet metric variability 

CMIP6 output will become available in the next two years. These data will enable new 

analyses of changes in the frequency and distribution of jet stream configurations, weather 

patterns and storminess under different global warming scenarios. 

 

Many of the above mentioned areas for future research focus on identifying physical 

mechanisms for statistical associations. This will require the use of climate models of 

differing degrees of complexity. The release of CMIP6 climate model data in the near future 

will enable an extension of this research using future projections. It will be necessary to 

systematically identify which CMIP6 models best represent the North Atlantic atmospheric 
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circulation, as it has been shown that many CMIP5 models give unphysical representations of 

the NAO and Atlantic atmospheric circulation  (e.g. Davini and Cagnazzo, 2014). 
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Appendices 

The number of the appendix refers to the chapter for which it is relevant. 
Appendix A.2. Supplementary material to Chapter 2 

 
Figure A.2.1. Schematic to show how jet speed and latitude are calculated, and the difference 
between values derived from the ensemble mean field and those derived from individual 
ensemble members. Grey shading shows the location of the jet. 
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Figure A.2.2. Counts of observational data assimilated into 20CR for summer over the years 

1914-1922. Counts are total counts for the season for each 2° x2° grid cell. 
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Figure A.2.3. Total counts of observations assimilated into 20CR for the North Atlantic 

sector (16-76°N, 0-60°W) for summer seasons.  
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Appendix A.3. Supplementary material to Chapter 3 

 
Figure A.3.1. Time series of ERA-I (red) and 20CR(blue) with seasonal means (bold) and 
seasonal medians (dashed lines) for a) DJF latitude b) DJF speed and c) DJF vrange  at 700-
900hPa. 
 

 
Figure A.3.2. Interannual MAM jet variability for a) speed and b) latitude. High resolution 
(0.75°, red) and low resolution (2°, blue) versions of ERA-I are compared for 700-900hPa. 
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Figure A.3.3. Meridional wind range time series for 20CR (blue) and ERA-I (red), for DJF 
(upper pair of lines) and JJA (lower pair), for 700-900hPa. 
 

 
Figure A.3.4. Daily time series of 20CR jet speed and latitude for 1980 at 700-900hPa, 
showing the raw time series prior to application of the Lanczos filter (red) and the Lanczos-
filtered series (blue).  
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Figure A.3.5. a) Filtered and b) raw latitude time series values for 20CR (blue) and ERA-I 
(red) for the first 110 days of 1986. 

 
Figure A.3.6. Seasonal daily jet-latitude distributions, ERA-I high resolution, 1979-2012, for 
700-900hPa. Bins are at 0.75° resolution. 
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Appendix A.4. Supplementary material to Chapter 4 

 
Figure A.4.1. Examples of 15-year moving window trends for synthetic time series of a) jet 
speed (using mean and standard deviation of winter jet speed) and b) jet latitude (using mean 
and standard deviation of summer jet latitude). Significant 15-year trends are indicated in red. 
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Figure A.4.2. Wavelet power spectra for synthetic time series of a) jet speed b) jet latitude 
and c) jet meridionality derived from means and standard deviations of winter jet metrics. 
Black areas show regions that are significantly different from the background AR-1 spectrum 
at p≤0.05. Cone of influence extent is shown by the semi-transparent overlay. 
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Figure A.4.3. Examples of interannual variability for two synthetic time series a) summer 
latitude (white noise series derived from mean and standard deviation of summer jet latitude) 
and b) autumn jet speed (white noise time series derived from mean and standard deviation of 
autumn jet speed). Moving windows are 7 years (blue), 11 years (red) and 15 years (green). 
The year is the central year of the window. 
 

 
Figure A.4.4. 15-year moving window trends for jet-speed subseasonal variability, for all 
four seasons. Significant trends (p ≤0.05) are shown as red dots, located at the central year of 
the window. 
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Figure A.4.5. 15-year moving window trends for jet-latitude subseasonal variability, for all 
four seasons. Significant trends (p≤0.05) are shown as red dots, located at the central year of 
the window. 
 

 
Figure A.4.6. 15-year moving window trends for jet-meridionality subseasonal variability, 
for all four seasons. Significant trends (p≤0.05) are shown as red dots, located at the central 
year of the window. 
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Figure A.4.7. Examples of 15-year moving window trends for synthetic time series of 
subseasonal variability derived from mean and standard deviations of a) autumn jet latitude 
and b) winter jet speed. Significant trends (p≤0.05) are shown as red dots, located at the 
central year of the window.  
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Figure A.4.8. Interannual jet-latitude variability for spring, summer and autumn months 
shown with an 11-year moving window standard deviation for the period 1871-2012. a) 
spring: March-red, April-blue, May-green b) summer: June-blue, July-red, August-green c) 
autumn: September-blue, October-red, November-green). The significant overall linear trend 
for November is shown (thin green line). 
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Figure A.4.9. Subseasonal variability changes in jet latitude, 1871-2012, broken down by 
month. A) winter (December-blue, January-red, February-green b) spring: March-blue, April-
red, May-green c) summer: June-blue, July-red, August-green d) autumn: September-blue, 
October-red, November-green. Significant overall linear trends are shown where occurring: 
December (blue), April (red), September (blue) on the relevant figure. 
 
Appendix A.4.10. Trends in synthetic interannual variability time series 
 
The interannual variability time series shown in Figures 4.10-4.12 possess substantial 

autocorrelation due to successive points being constructed from overlapping moving windos, 

so that most of the information used in constructing the previous point is included in the 

construction of the next value. An approach that can be used here is outlined in Dakos et al. 

(2012) and is used to detect early warnings of critical transitions in time series. The null 

hypothesis is that the trend estimate of interannual variability is a result of chance. Synthetic 

datasets are constructed with the same probability distribution, length, and importantly the 

same correlation structure as the interannual variability time series. Trend estimates from the 

synthetic series are compared with that of the original series. Here the trend estimate is based 

on Kendall’s τ as an estimate of the strength of the trend, similar to the Mann-Kendall trend 

test. The R package “earlywarnings” (Dakos et al., 2015) computes Kendall’s τ and is used to 

generate 1000 synthetic time series, using the best-fit linear autoregressive moving average 

(ARMA(p,q)) model, applied to the time series residuals after detrending. An ARMA model 

incorporates the autocorrelation with the previous p values of the series, together with a 
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moving average of the previous q and the present value of a white noise time series. 

Kendall’s τ is estimated for each synthetic series. The values of these synthetic series are 

plotted as a histogram below. It is clearly seen that the observed trend is in the upper tail of 

the distribution, outside the 95% confidence intervals, indicating the unusual nature of the 

trend in synthetic series. 

 
Figure A.4.10. Distribution of Kendall’s τ from 1000 synthetic time series of winter 
interannual variability. The vertical black lines show 5% and 95% significance levels. The 
position of the actual winter interannual variability trend is shown by the black dot. 
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Appendix A.5. Supplementary material to Chapter 5 
 
Table A.5.1. Pearson correlation coefficients between detrended standardised monthly jet 
stream drivers and detrended seasonal jet stream metrics, 1979-2012. Where p < 0.1, 
significant positive correlations are highlighted in bold red, and significant negative 
correlations highlighted in bold blue. 
 
EIR J F M A M J J A S O N D 
speed             
DJF 0.12 0.28 -0.02 -0.31 0.08 0.04 -0.07 -0.15 -0.06 -0.24 -0.11 0.12 
MAM 0.19 -0.23 0.13 -0.12 0 -0.08 0.07 -0.14 0.13 -0.01 0.06 -0.16 
JJA -0.14 -0.02 -0.05 0.02 -0.13 -0.29 -0.15 -0.22 -0.05 -0.08 0 0.19 
SON 0.06 0.05 0.11 0.24 -0.59 0.06 -0.20 -0.18 -0.09 0.15 -0.13 0.07 
latitude             
DJF 0.04 -0.02 0.01 -0.16 0.29 -0.08 -0.08 0.01 -0.08 -0.06 -0.14 0.44 
MAM 0.18 -0.15 -0.30 -0.12 0.21 -0.12 -0.17 -0.18 0.01 0.01 -0.30 -0.14 
JJA -0.05 0.10 -0.10 -0.46 0.16 0.27 0.20 0.15 -0.30 -0.27 -0.33 0.17 
SON 0.08 -0.16 0.04 0.20 -0.35 -0.28 -0.04 -0.27 -0.12 0.22 -0.06 0.32 
Vrange             
DJF 0.15 -0.10 0.14 0.10 0.03 -0.22 0 0.04 0.07 0.02 0.17 -0.12 
MAM 0.11 -0.24 0.06 -0.08 0.13 -0.10 0.12 -0.01 0.09 0.13 -0.09 0.18 
JJA 0.27 0.15 0.14 -0.18 0.12 0.23 0.24 0.25 -0.06 0.16 0.17 0.16 
SON 0.04 -0.14 -0.06 0 0.03 0.03 0.24 0.23 0.18 0.31 0.19 -0.02 
 

WIR J F M A M J J A S O N D 
speed             
DJF 0.06 0.14 -0.33 -0.20 -0.14 -0.29 -0.10 0.14 0.25 0.35 0.41 0.41 
MAM 0.34 -0.09 -0.08 0.29 -0.14 -0.10 0.27 -0.42 -0.18 -0.22 0 -0.18 
JJA 0.04 -0.18 0.13 0.16 0.19 -0.20 0.45 -0.02 -0.09 0.07 -0.05 -0.25 
SON -0.30 -0.36 -0.03 -0.17 -0.22 0.06 0.10 -0.01 -0.14 -0.09 0.20 -0.14 
latitude             
DJF 0.38 -0.08 0.06 -0.02 0.14 0.02 -0.07 -0.13 0.05 0.23 -0.05 0.10 
MAM 0.19 -0.11 -0.36 -0.01 -0.10 -0.02 0.10 -0.07 -0.13 -0.18 -0.18 0.20 
JJA 0.38 0.23 0.12 -0.16 -0.07 0.18 -0.04 0.36 0.26 0.26 0.21 0.28 
SON 0.26 -0.35 -0.12 -0.01 -0.22 -0.05 0.35 -0.07 -0.30 0.11 -0.11 0.23 
Vrange             
DJF 0.01 -0.04 0.11 0.45 0.07 -0.08 0.06 0.14 0.09 -0.09 0.03 -0.01 
MAM 0.28 -0.05 -0.07 0.20 -0.26 -0.03 0.24 0.10 0.08 -0.02 0.01 0.31 
JJA -0.03 0.10 0.08 -0.13 -0.15 0.19 -0.15 -0.05 0.04 0.07 0.08 0.11 
SON 0.33 0.09 0.08 0.36 -0.05 0.04 0.09 0.11 -0.29 -0.03 -0.28 0.28 
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Table A.5.1. continued 
WPR J F M A M J J A S O N D 
speed             
DJF 0.10 -0.19 -0.21 -0.19 -0.09 0.33 -0.03 -0.05 -0.22 -0.05 0.01 -0.12 
MAM -0.01 0.19 0.14 0.14 0.11 0.03 -0.10 0.15 -0.06 0.38 -0.16 0.39 
JJA -0.15 0.07 0.06 0.06 -0.04 -0.11 -0.05 -0.10 -0.14 0.18 0.01 -0.03 
SON -0.21 -0.11 -0.11 0.04 0.10 0.13 0.29 0.29 0.01 0.11 0.06 -0.31 
latitude             
DJF -0.12 -0.21 0.08 -0.09 0.12 0.23 -0.11 0.18 -0.07 -0.22 -0.42 -0.29 
MAM -0.27 -0.23 -0.20 -0.36 0.20 -0.15 0.10 -0.08 -0.23 -0.09 -0.20 -0.11 
JJA -0.23 -0.30 -0.28 -0.19 -0.11 -0.24 -0.11 -0.16 -0.41 -0.39 -0.49 -0.21 
SON 0.13 0.32 -0.07 0.18 0.11 -0.03 0.13 0.00 0.07 0.14 0.25 -0.31 
Vrange             
DJF 0.10 0.14 0.10 0.03 -0.12 -0.01 -0.11 -0.06 0.24 0.06 -0.01 0.06 
MAM 0.10 0.05 -0.27 -0.15 0.15 0.11 -0.13 0.04 0.29 0.08 0.20 -0.09 
JJA 0.11 -0.07 0.03 0.04 -0.01 -0.11 -0.14 -0.05 -0.02 -0.20 0.14 -0.10 
SON 0.15 0.05 0.27 0.17 0.27 0.08 -0.21 0.13 0.12 0.02 0.15 -0.10 
 
CPR J F M A M J J A S O N D 
speed             
DJF 0.00 -0.04 -0.24 0.09 0.01 0.07 0.00 -0.04 0.05 0.03 -0.03 0.09 
MAM -0.11 -0.14 -0.02 0.00 -0.09 -0.08 -0.02 -0.01 -0.11 0.00 -0.07 -0.07 
JJA -0.12 -0.10 0.03 -0.10 -0.13 -0.06 -0.18 0.07 -0.08 0.00 -0.03 -0.23 
SON -0.34 -0.29 -0.37 -0.31 -0.12 0.01 0.08 0.03 0.10 0.05 0.19 -0.37 
latitude             
DJF -0.20 -0.19 0.22 0.18 0.19 0.14 -0.07 -0.01 -0.20 -0.10 0.04 -0.18 
MAM 0.19 0.10 0.16 0.16 0.32 0.18 0.09 0.04 0.19 0.18 0.18 0.14 
JJA 0.16 0.17 -0.07 -0.08 -0.05 -0.11 -0.31 -0.33 0.11 0.22 0.26 0.25 
SON -0.13 -0.23 -0.23 -0.08 -0.02 -0.14 0.02 -0.03 -0.14 -0.10 0.05 -0.24 
Vrange             
DJF 0.26 0.29 0.13 -0.12 -0.10 0.03 0.06 0.12 0.21 0.15 0.18 0.23 
MAM 0.25 0.24 0.28 0.35 0.24 -0.03 -0.17 -0.05 -0.08 -0.06 0.20 0.15 
JJA 0.01 0.03 -0.04 0.00 -0.13 -0.11 -0.08 -0.20 -0.25 -0.30 -0.09 0.01 
SON 0.25 0.18 0.23 0.07 -0.08 -0.25 -0.34 -0.27 -0.40 -0.38 -0.26 0.20 
 
EPR J F M A M J J A S O N D 
speed             
DJF -0.08 -0.13 -0.03 0.13 0.18 0.23 -0.08 -0.07 -0.02 -0.11 -0.06 -0.06 
MAM -0.10 -0.09 -0.20 -0.15 -0.16 -0.17 -0.06 -0.08 -0.01 -0.07 -0.04 -0.1 
JJA 0.00 0.03 -0.06 -0.10 -0.12 -0.02 0.00 -0.03 0.14 0.02 0.04 0.00 
SON -0.02 -0.06 -0.04 0.03 0.08 0.14 0.01 0.00 -0.07 -0.03 -0.01 -0.01 
latitude             
DJF 0.03 0.02 0.21 0.17 0.19 0.08 -0.01 -0.07 -0.08 -0.04 -0.07 -0.02 
MAM 0.18 0.27 0.22 0.23 0.29 0.28 0.22 0.18 0.16 0.18 0.19 0.17 
JJA 0.25 0.20 0.18 0.07 0.14 0.24 -0.10 -0.12 0.12 0.12 0.11 0.23 
SON -0.16 -0.17 -0.14 -0.26 -0.16 -0.12 -0.03 -0.07 -0.05 -0.04 -0.08 -0.13 
Vrange             
DJF 0.11 0.09 0.06 0.00 -0.07 -0.01 0.06 0.06 0.06 0.05 0.06 0.10 
MAM -0.10 -0.13 0.17 0.05 0.16 0.07 -0.14 -0.20 -0.18 -0.19 -0.20 -0.10 
JJA -0.27 -0.25 -0.19 -0.22 -0.05 0.01 -0.04 -0.03 -0.38 -0.37 -0.40 -0.32 
SON -0.01 -0.06 -0.05 -0.09 -0.16 -0.25 -0.34 -0.37 -0.34 -0.34 -0.38 0.00 
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Table A.5.1. continued 
AR J F M A M J J A S O N D 
speed             
DJF 0.05 0.00 -0.35 -0.03 0.07 0.07 0.02 0.05 -0.16 0.02 0.10 0.49 
MAM 0.38 0.24 -0.13 0.08 -0.04 0.08 0.12 0.12 0.13 0.33 0.16 0.26 
JJA 0.38 0.09 0.10 0.10 0.01 0.08 -0.04 -0.13 0.09 0.30 0.01 0.06 
SON 0.04 0.08 -0.16 0.17 -0.03 0.19 0.04 -0.26 -0.46 -0.37 -0.15 0.04 
latitude             
DJF -0.07 0.35 0.12 -0.27 -0.17 -0.15 -0.04 0.14 0.35 0.08 -0.06 0.00 
MAM 0.11 0.19 0.12 -0.12 -0.11 0.23 0.13 0.07 -0.13 -0.14 0.21 0.02 
JJA -0.24 -0.02 -0.11 0.21 0.23 0.15 0.27 0.18 0.06 -0.07 -0.15 0.07 
SON 0.10 0.29 0.19 -0.02 0.01 0.15 0.09 0.13 0.17 -0.01 0.03 0.28 
Vrange             
DJF 0.04 0.07 0.09 0.10 -0.23 -0.18 -0.34 -0.43 -0.06 -0.11 -0.06 -0.13 
MAM -0.14 -0.07 0.23 -0.09 -0.24 -0.15 -0.32 -0.46 -0.09 -0.28 -0.31 -0.17 
JJA -0.33 0.12 -0.14 -0.06 0.25 0.22 0.24 0.26 0.09 -0.21 -0.01 0.00 
SON -0.02 0.04 0.21 0.07 -0.14 0.07 0.07 0.16 0.34 0.20 0.08 0.14 
 
SS J F M A M J J A S O N D 
speed             
DJF 0.12 -0.03 -0.03 -0.01 0.03 0.06 -0.05 -0.04 0.00 -0.01 0.00 -0.02 
MAM 0.14 0.13 0.00 0.03 -0.05 0.08 0.08 0.06 0.04 0.05 0.02 0.13 
JJA 0.43 0.38 0.28 0.27 0.22 0.31 0.24 0.29 0.36 0.29 0.27 0.38 
SON 0.13 0.15 0.19 0.15 0.15 0.14 0.10 0.08 0.14 0.10 0.14 0.17 
latitude             
DJF 0.10 0.22 0.18 0.18 0.15 0.21 0.23 0.17 0.11 0.23 0.22 0.22 
MAM 0.15 0.22 0.22 0.22 0.17 0.10 0.09 0.19 0.15 0.17 0.17 0.11 
JJA 0.03 -0.03 0.03 0.00 0.06 0.10 0.10 0.09 -0.02 -0.04 -0.08 0.03 
SON 0.11 0.10 0.08 0.00 -0.03 0.15 0.08 0.10 0.08 0.14 0.09 0.09 
Vrange             
DJF -0.18 -0.11 0.11 0.09 0.02 -0.08 0.04 0.07 -0.01 -0.05 -0.10 -0.12 
MAM -0.19 -0.14 -0.26 -0.27 -0.21 0.03 0.07 0.03 -0.14 -0.14 -0.18 -0.17 
JJA -0.12 -0.12 -0.06 -0.03 -0.07 -0.14 -0.07 -0.05 -0.14 -0.07 -0.11 -0.11 
SON 0.33 0.19 0.17 0.13 0.18 0.28 0.20 0.25 0.17 0.27 0.23 0.18 
 
Solar lead1 J F M A M J J A S O N D 
speed             
DJF -0.10 -0.03 -0.05 -0.07 -0.17 -0.08 -0.08 -0.15 -0.09 -0.10 -0.02 0.09 
MAM 0.06 0.09 0.11 0.14 0.04 0.10 0.22 0.14 -0.06 0.04 0.05 -0.01 
JJA 0.26 0.25 0.34 0.36 0.32 0.35 0.37 0.46 0.18 0.21 0.28 0.21 
SON -0.04 0.08 0.09 0.08 0.12 0.13 0.15 0.13 0.17 0.10 0.12 0.10 
latitude             
DJF 0.24 0.21 0.17 0.14 0.09 0.09 0.22 0.30 0.21 0.21 0.19 0.15 
MAM 0.16 0.07 0.09 0.13 0.06 0.09 0.08 0.18 0.15 0.05 0.07 0.22 
JJA -0.04 0.00 0.03 0.04 -0.05 0.06 -0.04 0.00 0.07 0.14 0.15 0.07 
SON 0.11 0.13 0.11 0.24 0.16 0.04 0.20 0.20 0.04 0.05 0.07 0.15 
Vrange             
DJF 0.09 0.07 0.19 0.20 0.27 0.23 0.18 0.18 0.17 0.19 0.16 0.08 
MAM 0.17 0.22 0.18 0.11 0.04 0.37 0.42 0.42 0.25 0.24 0.26 0.22 
JJA -0.15 -0.24 -0.28 -0.25 -0.23 -0.07 -0.17 -0.19 -0.17 -0.16 -0.24 -0.13 
SON 0.29 0.27 0.29 0.25 0.15 0.23 0.24 0.25 0.26 0.21 0.21 0.18 
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Table A.5.1. continued 
Solar lead2 J F M A M J J A S O N D 
speed             
DJF -0.19 -0.09 -0.08 0.00 -0.05 -0.16 0.05 -0.02 -0.14 -0.07 -0.09 -0.13 
MAM 0.21 0.20 0.17 0.23 0.22 0.35 0.28 0.28 0.13 0.23 0.22 0.10 
JJA 0.25 0.13 0.12 0.20 0.17 0.14 0.15 0.20 0.12 0.14 0.14 0.17 
SON -0.06 -0.03 -0.04 -0.04 -0.06 -0.06 -0.11 -0.08 0.06 -0.01 0.07 -0.08 
latitude             
DJF 0.30 0.27 0.07 0.21 0.18 0.06 0.05 0.18 0.19 0.19 0.18 0.17 
MAM 0.08 0.17 0.16 0.20 0.11 -0.02 0.01 0.04 0.07 0.11 0.11 0.04 
JJA 0.08 0.09 0.10 0.04 0.01 -0.03 0.17 0.15 0.15 0.26 0.26 0.22 
SON 0.16 0.00 -0.03 0.00 0.11 0.18 0.04 0.11 0.08 0.12 0.19 0.12 
Vrange             
DJF 0.31 0.21 0.39 0.35 0.35 0.32 0.24 0.23 0.33 0.29 0.32 0.31 
MAM 0.41 0.37 0.41 0.39 0.41 0.49 0.45 0.54 0.45 0.40 0.47 0.47 
JJA -0.28 -0.17 -0.14 -0.16 -0.26 -0.31 -0.16 -0.18 -0.27 -0.22 -0.24 -0.31 
SON 0.01 -0.10 -0.03 0.10 0.07 0.20 0.15 0.17 0.08 0.17 0.12 0.07 
 
Solar lead3 J F M A M J J A S O N D 
speed             
DJF -0.13 -0.05 -0.02 -0.03 -0.01 -0.01 -0.02 0.05 -0.06 0.02 -0.01 -0.06 
MAM 0.18 0.14 0.20 0.14 0.18 0.11 0.20 0.30 0.19 0.11 0.16 0.19 
JJA -0.10 -0.09 -0.08 -0.07 -0.04 0.22 0.10 0.12 -0.20 -0.17 -0.16 -0.13 
SON -0.18 -0.25 -0.24 -0.15 -0.02 -0.07 -0.05 -0.06 -0.06 -0.09 -0.09 -0.11 
latitude             
DJF 0.25 0.24 0.05 -0.01 0.01 0.19 0.05 0.11 0.16 0.14 0.14 0.21 
MAM 0.05 0.00 0.08 0.06 0.04 0.06 0.06 -0.02 -0.09 -0.03 -0.06 -0.04 
JJA 0.19 0.25 0.14 0.24 0.21 0.11 0.12 0.08 0.27 0.28 0.25 0.26 
SON -0.06 -0.05 0.06 0.06 0.02 0.05 0.08 0.10 0.08 0.01 0.02 -0.11 
Vrange             
DJF 0.32 0.32 0.22 0.29 0.29 0.24 0.25 0.18 0.33 0.26 0.24 0.27 
MAM 0.48 0.46 0.56 0.58 0.58 0.50 0.47 0.47 0.53 0.49 0.53 0.5 
JJA -0.08 -0.10 -0.22 -0.13 -0.10 -0.29 -0.25 -0.30 -0.14 -0.14 -0.10 -0.10 
SON -0.02 -0.01 0.06 0.03 -0.01 0.01 0.00 0.08 0.00 -0.01 0.04 0.03 
 
Solar lead4 J F M A M J J A S O N D 
speed             
DJF 0.03 -0.03 0.11 0.07 0.13 0.07 0.08 0.16 0.13 0.04 0.08 0.06 
MAM 0.09 0.07 0.18 0.18 0.14 0.08 -0.06 0.04 0.14 0.08 0.16 0.07 
JJA -0.28 -0.29 -0.21 -0.19 -0.26 -0.35 -0.19 -0.17 -0.34 -0.27 -0.28 -0.43 
SON -0.15 -0.18 -0.25 -0.29 -0.26 -0.26 -0.33 -0.30 -0.16 -0.19 -0.14 -0.20 
latitude             
DJF 0.18 0.09 0.04 0.02 -0.04 -0.04 0.03 -0.02 0.00 0.05 -0.01 -0.02 
MAM -0.05 -0.13 -0.08 -0.04 0.08 -0.21 -0.23 -0.24 -0.12 -0.10 -0.05 -0.13 
JJA 0.27 0.19 0.18 0.12 0.18 0.23 0.24 0.24 0.17 0.19 0.11 0.12 
SON -0.12 -0.14 -0.12 -0.15 -0.14 -0.09 -0.07 -0.11 -0.13 -0.05 -0.04 -0.12 
Vrange             
DJF 0.19 0.20 0.10 0.09 0.13 0.18 0.17 0.10 0.14 0.14 0.14 0.17 
MAM 0.40 0.33 0.42 0.45 0.47 0.31 0.36 0.28 0.37 0.40 0.42 0.43 
JJA 0.05 0.14 0.07 0.03 0.07 0.12 0.03 -0.08 0.03 0.00 -0.02 -0.01 
SON -0.14 -0.09 -0.02 -0.05 -0.09 0.01 0.04 0.01 0.00 0.01 0.03 -0.10 
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Table A.5.1. continued 
Solar lead5 J F M A M J J A S O N D 

speed             
DJF 0.18 0.09 0.09 0.09 0.08 0.16 -0.08 -0.04 0.11 0.08 0.09 0.16 
MAM 0.02 0.02 0.02 0.14 0.15 0.07 0.05 -0.02 0.05 0.01 0.03 0.13 
JJA -0.23 -0.26 -0.36 -0.31 -0.20 -0.22 -0.31 -0.31 -0.32 -0.28 -0.28 -0.22 
SON -0.28 -0.19 -0.22 -0.27 -0.35 -0.23 -0.26 -0.25 -0.11 -0.18 -0.23 -0.26 
latitude             
DJF -0.01 -0.02 -0.26 -0.18 -0.12 -0.08 -0.14 -0.16 -0.17 -0.09 -0.12 -0.18 
MAM -0.13 -0.07 -0.11 -0.15 -0.13 -0.19 -0.27 -0.29 -0.12 -0.22 -0.25 -0.11 
JJA 0.16 0.13 0.19 0.20 0.20 0.15 0.15 0.13 0.03 0.04 0.11 0.07 
SON -0.05 -0.04 -0.03 0.00 -0.05 -0.05 -0.02 -0.04 -0.10 -0.04 -0.05 0.00 
Vrange             
DJF -0.02 0.13 -0.07 -0.15 -0.07 -0.06 0.01 0.00 -0.03 -0.01 0.07 -0.01 
MAM 0.14 0.21 0.27 0.25 0.20 -0.06 0.00 0.06 0.09 0.17 0.14 0.06 
JJA 0.13 0.02 0.12 0.07 0.08 0.04 0.11 0.12 0.15 0.04 0.03 0.05 
SON -0.17 -0.21 -0.15 -0.06 0.02 -0.06 0.06 0.00 -0.19 -0.13 -0.09 -0.12 
 
N3.4(mod) J F M A M J J A S O N D 
speed             
DJF -0.09 -0.05 -0.32 -0.32 -0.29 0.01 -0.09 -0.03 0.04 -0.08 -0.02 0.08 
MAM -0.08 -0.16 -0.14 -0.14 -0.09 -0.05 -0.14 -0.15 -0.14 0.00 -0.06 -0.05 
JJA -0.16 -0.20 -0.05 -0.05 -0.15 0.14 0.16 -0.03 -0.08 0.00 -0.10 -0.02 
SON -0.45 -0.22 -0.18 -0.18 0.09 0.07 0.22 0.01 0.21 0.10 0.13 -0.29 
latitude             
DJF -0.26 -0.35 -0.03 -0.03 0.02 0.16 -0.25 -0.07 -0.17 -0.44 -0.32 -0.20 
MAM -0.01 0.01 -0.09 -0.09 0.19 0.24 -0.17 -0.21 0.00 -0.19 0.03 0.03 
JJA -0.03 -0.11 -0.05 -0.05 -0.28 0.01 -0.13 -0.18 -0.07 -0.11 0.05 0.03 
SON -0.28 -0.23 -0.25 -0.25 0.00 0.07 0.12 0.00 -0.12 -0.04 0.10 -0.08 
Vrange             
DJF 0.41 0.40 0.25 0.25 0.25 0.09 0.27 0.35 0.41 0.37 0.37 0.23 
MAM 0.30 0.24 0.13 0.13 0.17 0.28 0.30 0.31 0.27 0.00 0.23 0.12 
JJA 0.05 0.07 0.05 0.05 -0.09 -0.22 -0.25 -0.09 -0.19 -0.03 0.19 0.11 
SON 0.08 -0.06 -0.02 -0.02 -0.24 0.08 -0.11 -0.07 -0.10 -0.13 -0.15 0.15 
 
N3.4(raw) J F M A M J J A S O N D 
speed             
DJF -0.08 -0.10 -0.20 -0.12 0.01 -0.06 -0.15 -0.06 -0.03 -0.05 -0.03 -0.04 
MAM -0.11 -0.10 -0.14 -0.05 0.07 -0.16 -0.11 -0.08 -0.07 -0.07 -0.09 -0.13 
JJA -0.06 -0.08 -0.09 -0.06 0.02 -0.05 -0.05 -0.05 -0.02 -0.04 -0.07 -0.06 
SON -0.4 -0.37 -0.32 -0.23 -0.09 0.02 0.04 0.07 0.13 0.17 0.17 -0.33 
latitude             
DJF -0.14 -0.13 0.27 0.25 0.19 0.01 -0.11 -0.15 -0.16 -0.17 -0.19 -0.13 
MAM 0.17 0.23 0.18 0.22 0.31 -0.02 -0.02 -0.01 0.04 0.09 0.10 0.11 
JJA 0.18 0.17 0.16 0.05 -0.02 -0.19 -0.33 -0.30 0.21 0.23 0.20 0.19 
SON -0.22 -0.26 -0.24 -0.20 -0.11 -0.01 0.08 0.08 0.04 0.09 0.05 -0.18 
Vrange             
DJF 0.37 0.36 0.13 0.11 0.12 0.16 0.30 0.31 0.33 0.36 0.34 0.33 
MAM 0.19 0.19 0.25 0.31 0.30 0.08 0.12 0.08 0.05 0.10 0.11 0.13 
JJA -0.06 -0.05 -0.03 -0.11 -0.22 -0.23 -0.20 -0.23 -0.12 -0.07 -0.02 0.01 
SON 0.23 0.21 0.15 0.09 -0.05 -0.14 -0.19 -0.30 -0.33 -0.29 -0.28 0.15 
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Table A.5.1. continued 
AMO J F M A M J J A S O N D 
speed             
DJF -0.28 -0.20 -0.25 -0.20 -0.17 -0.08 -0.09 -0.14 -0.30 -0.18 -0.05 -0.14 
MAM -0.13 -0.27 -0.49 -0.53 -0.52 -0.06 -0.12 -0.07 0.09 -0.13 -0.18 -0.13 
JJA 0.00 -0.01 -0.17 -0.31 -0.36 -0.27 -0.30 -0.35 0.29 0.15 0.17 0.18 
SON -0.12 -0.15 -0.15 -0.22 -0.18 -0.31 -0.27 -0.21 -0.17 -0.24 -0.33 0.02 
latitude             
DJF -0.10 -0.11 0.3 0.31 0.23 0.19 0.06 0.03 0.02 -0.04 -0.01 -0.05 
MAM 0.03 0.05 -0.05 -0.08 -0.14 -0.08 -0.09 0.02 0.10 -0.02 -0.11 0.02 
JJA 0.12 0.24 0.40 0.31 0.21 0.14 0.17 0.10 0.13 0.18 0.20 0.15 
SON -0.22 -0.17 -0.21 -0.39 -0.38 -0.18 -0.2 -0.24 -0.12 -0.16 -0.12 -0.14 
Vrange             
DJF 0.25 0.17 0.15 0.00 -0.02 0.02 0.10 0.21 0.29 0.30 0.17 0.22 
MAM -0.13 -0.04 0.04 -0.06 -0.29 -0.25 -0.21 -0.23 -0.17 -0.07 -0.09 -0.13 
JJA 0.08 0.05 0.16 0.30 0.34 0.17 0.17 0.13 -0.02 0.06 0.14 0.06 
SON 0.09 0.16 -0.01 -0.02 -0.02 0.20 0.10 0.11 0.11 0.18 0.13 0.11 
 
tripole J F M A M J J A S O N D 
speed             
DJF -0.41 -0.28 0.21 0.07 0.20 0.21 0.24 0.28 -0.01 -0.02 -0.12 -0.29 
MAM 0.07 -0.30 -0.33 -0.44 -0.23 0.01 -0.01 0.06 0.11 0.29 0.29 0.27 
JJA -0.02 -0.40 -0.35 -0.38 -0.31 -0.09 -0.09 -0.09 -0.19 0.26 0.50 0.26 
SON 0.05 -0.11 -0.09 -0.13 0.10 0.17 0.24 0.17 0.09 -0.06 -0.08 0.20 
latitude             
DJF -0.01 0.23 -0.02 -0.02 0.10 0.11 -0.21 -0.28 -0.05 0.26 0.21 0.11 
MAM -0.07 -0.19 -0.30 -0.19 -0.21 -0.09 0.02 -0.05 0.15 0.14 0.00 0.16 
JJA 0.06 0.40 0.53 0.37 0.29 0.20 0.35 0.23 0.00 0.25 0.05 0.03 
SON -0.37 -0.39 -0.28 -0.30 -0.03 0.10 -0.02 0.02 0.07 0.27 0.21 -0.10 
Vrange             
DJF 0.20 0.25 -0.25 -0.16 -0.27 -0.51 -0.25 0.00 0.04 0.02 -0.05 0.03 
MAM -0.26 -0.06 0.14 0.19 0.09 -0.03 -0.05 0.08 0.11 0.03 0.05 -0.32 
JJA 0.06 0.24 0.30 0.40 0.36 0.15 0.34 0.20 -0.26 -0.27 -0.39 -0.13 
SON -0.20 -0.12 -0.13 -0.12 -0.11 -0.07 -0.14 -0.04 -0.12 -0.07 -0.07 -0.11 
 
Arctic SI J F M A M J J A S O N D 
speed             
DJF 0.25 0.03 -0.13 -0.06 0.05 0.08 0.06 -0.04 -0.02 0.20 0.20 0.16 
MAM 0.13 0.06 -0.21 -0.28 -0.18 -0.25 -0.35 0.01 0.04 0.19 0.12 -0.15 
JJA 0.01 -0.05 -0.13 -0.13 0.00 0.16 0.24 0.21 -0.32 -0.18 -0.19 -0.12 
SON 0.00 -0.04 -0.14 -0.01 0.09 0.36 0.54 0.32 0.15 0.20 0.07 -0.19 
latitude             
DJF -0.17 -0.35 0.35 0.33 0.04 -0.11 -0.19 -0.11 -0.06 0.14 0.40 0.29 
MAM 0.20 0.17 -0.10 -0.12 -0.05 0.13 0.22 0.34 0.19 0.37 0.30 0.12 
JJA -0.03 -0.16 -0.15 -0.24 -0.24 -0.22 -0.10 0.06 0.33 0.37 0.53 0.37 
SON 0.01 -0.03 -0.10 -0.14 -0.08 0.03 -0.09 -0.06 -0.07 -0.01 0.14 -0.13 
Vrange             
DJF -0.23 -0.19 0.06 -0.08 -0.04 0.10 0.22 0.19 0.11 0.04 0.05 0.03 
MAM -0.25 -0.06 -0.06 -0.08 0.00 -0.07 -0.01 0.11 0.04 0.15 0.13 -0.11 
JJA -0.10 -0.25 -0.08 -0.19 -0.39 -0.36 -0.18 -0.17 0.25 0.12 0.13 0.11 
SON 0.12 0.04 0.14 -0.08 -0.21 -0.24 -0.23 -0.04 -0.01 0.00 0.17 0.16 
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Table A.5.1. continued 
BKI J F M A M J J A S O N D 
speed             
DJF -0.04 -0.16 -0.11 -0.03 -0.02 -0.04 0.02 0.00 0.10 0.11 0.00 -0.11 
MAM -0.01 0.18 -0.08 -0.13 -0.09 -0.26 -0.23 -0.04 0.00 0.13 0.05 -0.25 
JJA 0.00 0.06 -0.05 -0.06 -0.04 0.16 0.18 0.28 0.04 0.08 0.03 -0.12 
SON 0.01 0.01 0.03 0.15 0.17 0.30 0.36 0.25 0.11 0.00 -0.20 0.05 
latitude             
DJF -0.34 -0.49 0.07 -0.01 -0.14 -0.11 -0.09 0.05 -0.07 0.38 0.53 -0.07 
MAM 0.17 0.18 -0.06 -0.08 -0.16 0.11 0.31 0.38 0.35 0.36 0.20 0.24 
JJA -0.14 -0.18 -0.08 -0.23 -0.06 -0.23 -0.25 -0.19 0.23 0.25 0.54 0.06 
SON -0.05 -0.02 -0.05 -0.01 0.14 0.25 0.19 0.32 0.01 0.05 -0.06 0.11 
Vrange             
DJF 0.21 0.19 0.25 0.10 0.11 0.14 0.08 0.08 0.19 -0.11 0.07 0.31 
MAM -0.16 -0.12 -0.04 0.05 0.11 -0.01 -0.02 0.18 0.16 0.11 0.09 -0.04 
JJA -0.05 -0.23 -0.25 -0.31 -0.37 -0.41 -0.27 -0.2 0.12 0.08 -0.02 0.13 
SON 0.12 0.04 0.08 -0.15 -0.04 0.00 -0.01 0.14 0.02 0.16 0.29 0.18 
 
GI J F M A M J J A S O N D 
speed             
DJF -0.1 -0.24 0.30 0.14 -0.15 0.14 -0.05 0.25 0.30 0.11 -0.11 0.02 
MAM 0.07 0.11 0.20 0.10 0.04 0.00 -0.31 -0.32 -0.25 -0.03 -0.08 -0.10 
JJA 0.07 0.04 0.14 0.07 -0.05 -0.16 0.11 -0.11 -0.21 -0.14 -0.22 0.00 
SON -0.28 -0.29 -0.19 -0.06 -0.32 0.10 0.30 0.27 0.01 -0.07 -0.28 -0.28 
latitude             
DJF 0.20 0.19 0.14 0.05 0.08 -0.10 0.14 0.00 0.09 0.08 0.22 0.17 
MAM -0.22 -0.01 -0.21 -0.25 0.00 -0.11 0.08 0.00 -0.18 0.11 -0.02 -0.04 
JJA 0.30 0.20 0.26 0.22 -0.12 -0.26 -0.29 0.16 0.29 0.19 0.23 0.22 
SON 0.21 0.04 0.25 0.22 0.11 0.04 0.04 -0.03 -0.27 -0.22 -0.25 0.10 
Vrange             
DJF -0.06 -0.05 -0.32 -0.24 0.05 -0.07 -0.20 -0.25 -0.34 -0.02 0.15 -0.08 
MAM 0.03 -0.18 0.06 -0.07 0.01 -0.17 -0.22 -0.30 -0.44 -0.27 -0.16 -0.24 
JJA 0.32 0.31 0.24 0.23 0.09 -0.18 0.28 0.32 0.54 0.43 0.41 0.47 
SON 0.35 0.09 0.28 0.35 0.28 -0.11 -0.24 -0.28 -0.37 -0.16 0.07 0.21 
 
LVI J F M A M J J A S O N D 
speed             
DJF 0.03 -0.14 -0.14 0.04 0.38 0.07 0.07 0.04 0.01 0.22 0.18 0.05 
MAM 0.14 0.35 -0.06 -0.01 0.20 -0.14 -0.24 0.07 0.10 0.26 0.19 -0.06 
JJA 0.10 0.13 0.10 0.11 0.00 0.14 0.13 0.13 -0.26 -0.03 -0.08 -0.11 
SON -0.17 -0.20 -0.30 0.08 0.16 0.33 0.41 0.27 0.17 0.15 0.00 -0.20 
latitude             
DJF -0.06 -0.29 0.46 0.34 -0.10 -0.14 -0.19 -0.10 -0.10 0.13 0.29 -0.17 
MAM 0.34 0.22 -0.01 -0.19 -0.10 0.17 0.23 0.28 0.26 0.35 0.28 0.24 
JJA 0.22 0.03 0.30 -0.05 -0.01 -0.18 -0.10 -0.02 0.21 0.27 0.52 0.19 
SON -0.10 -0.04 -0.22 -0.15 -0.08 0.02 -0.11 -0.10 -0.08 -0.05 -0.14 -0.03 
Vrange             
DJF 0.20 0.14 0.17 0.07 -0.10 0.12 0.21 0.15 0.15 0.10 0.13 0.34 
MAM -0.01 0.06 0.16 0.14 0.22 -0.06 -0.13 -0.03 0.01 0.16 0.00 0.01 
JJA 0.10 -0.04 -0.03 -0.24 -0.36 -0.32 -0.24 -0.21 0.18 -0.03 0.12 0.04 
SON 0.25 0.14 0.21 0.00 -0.30 -0.28 -0.26 -0.15 -0.05 -0.02 0.14 0.33 
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Table A.5.1. continued 
snow J F M A M J J A S O N D 
speed             
DJF -0.01 0.01 -0.30 -0.26 0.01 -0.10 0.00 0.18 0.3 0.27 0.08 0.23 
MAM -0.02 -0.05 -0.18 -0.36 0.03 -0.08 -0.06 0.13 -0.06 -0.05 -0.05 0.17 
JJA 0.18 -0.07 -0.24 -0.28 -0.18 -0.22 -0.32 0.04 -0.10 0.05 -0.06 -0.08 
SON -0.11 -0.09 -0.19 -0.08 -0.13 -0.24 -0.26 -0.10 0.07 0.05 0.13 -0.09 
latitude             
DJF -0.19 0.00 0.01 -0.16 -0.01 -0.12 -0.15 0.18 -0.16 -0.37 -0.34 -0.16 
MAM 0.06 0.10 0.08 -0.46 -0.22 -0.27 -0.26 -0.21 0.25 -0.10 0.02 0.16 
JJA -0.16 -0.18 -0.33 0.06 0.17 0.09 -0.05 0.06 0.06 -0.04 -0.23 -0.11 
SON 0.12 -0.12 -0.11 -0.35 -0.02 0.14 -0.03 -0.24 -0.19 -0.28 -0.17 0.12 
Vrange             
DJF 0.15 0.09 -0.10 0.11 0.06 0.06 -0.10 -0.14 -0.09 0.23 0.25 0.20 
MAM 0.16 -0.13 -0.15 0.17 0.31 0.07 -0.36 0.06 -0.05 0.28 0.08 0.34 
JJA -0.11 -0.03 0.08 0.00 -0.27 -0.24 0.09 -0.03 0.03 -0.23 -0.16 -0.11 
SON 0.17 -0.06 -0.05 0.01 0.05 0.03 0.02 0.11 -0.10 -0.14 -0.41 0.24 
 
QBO J F M A M J J A S O N D VOLC 

speed              
DJF 0.01 -0.08 0.14 0.13 0.17 0.14 0.07 0.05 0.05 0.11 0.10 0.01 -0.13 
MAM 0.07 0.11 0.14 0.09 0.10 -0.10 -0.07 -0.05 -0.01 0.00 0.08 0.09 -0.03 
JJA -0.16 -0.12 -0.08 -0.05 -0.05 -0.02 -0.03 -0.03 -0.14 -0.24 -0.24 -0.21 -0.05 
SON -0.19 -0.14 -0.16 -0.14 -0.2 -0.26 -0.32 -0.29 -0.28 -0.20 -0.12 -0.17 0.04 
latitude              
DJF 0.18 0.19 0.04 0.1 0.18 0.28 0.35 0.38 0.39 0.39 0.35 0.29 0.42 
MAM 0.13 0.08 0.06 0.06 0.07 -0.05 0.03 0.09 0.11 0.12 0.10 0.11 0.23 
JJA 0.26 0.23 0.15 0.09 0.05 -0.02 -0.13 -0.23 0.22 0.36 0.43 0.40 0.16 
SON -0.04 0.01 -0.05 -0.13 -0.24 -0.24 -0.32 -0.34 -0.31 -0.25 -0.20 -0.03 -0.07 
Vrange              
DJF -0.09 -0.14 0.03 0.06 0.03 -0.01 -0.03 -0.03 -0.04 -0.04 -0.01 0.00 0.04 
MAM -0.03 -0.02 -0.06 -0.04 -0.01 -0.13 -0.18 -0.22 -0.20 -0.17 -0.05 0.04 0.44 
JJA 0.11 0.09 0.16 0.22 0.23 0.21 0.22 0.24 0.01 0.10 0.06 0.07 0.06 
SON 0.19 0.14 0.12 0.04 0.09 0.16 0.15 0.11 0.09 0.06 0.03 0.08 -0.08 
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Table A.5.2. Pearson correlation coefficients between detrended standardised monthly jet 
stream drivers and detrended seasonal jet stream metrics, 1955-2012. Where p < 0.1, 
significant positive correlations are highlighted in bold red, and significant negative 
correlations highlighted in bold blue. 
 
SS J F M A M J J A S O N D 
speed             
DJF 0.06 -0.01 -0.01 0.03 0.01 0.04 -0.02 -0.02 0.03 0.00 0.00 -0.02 
MAM -0.04 -0.02 -0.06 -0.05 -0.08 -0.09 -0.11 -0.09 -0.11 -0.13 -0.13 -0.07 
JJA 0.23 0.21 0.17 0.15 0.11 0.18 0.15 0.18 0.23 0.17 0.16 0.21 
SON 0.15 0.15 0.18 0.17 0.16 0.16 0.13 0.15 0.16 0.14 0.16 0.13 
latitude             
DJF 0.10 0.15 0.11 0.13 0.08 0.12 0.20 0.14 0.07 0.15 0.17 0.15 
MAM 0.13 0.20 0.18 0.17 0.13 0.06 0.10 0.14 0.08 0.13 0.15 0.10 
JJA -0.07 -0.04 -0.04 -0.09 -0.07 -0.01 -0.05 -0.05 -0.06 -0.08 -0.15 -0.05 
SON 0.00 0.09 0.09 0.05 0.01 0.12 0.09 0.08 0.11 0.15 0.18 0.00 
Vrange             
DJF -0.09 -0.04 0.10 -0.02 -0.05 -0.04 0.06 0.08 -0.01 -0.03 -0.05 -0.06 
MAM -0.02 -0.04 -0.11 -0.11 -0.05 0.07 0.14 0.12 0.00 0.01 0.02 0.02 
JJA -0.03 0.00 0.04 0.05 0.04 -0.01 -0.01 0.01 -0.04 0.02 -0.03 -0.01 
SON 0.21 0.12 0.09 0.08 0.12 0.18 0.14 0.21 0.13 0.16 0.19 0.20 
 
Solar 
lead1 

J F M A M J J A S O N D 

speed             
DJF -0.07 0.01 -0.06 -0.05 -0.10 -0.05 -0.08 -0.11 -0.06 -0.07 -0.06 0.00 
MAM -0.05 -0.08 -0.09 -0.07 -0.11 0.00 0.07 0.01 -0.11 -0.07 -0.07 -0.10 
JJA 0.20 0.17 0.20 0.26 0.21 0.26 0.26 0.28 0.20 0.19 0.26 0.19 
SON 0.04 0.07 0.08 0.11 0.11 0.12 0.11 0.14 0.17 0.11 0.11 0.08 
latitude             
DJF 0.12 0.16 0.12 0.15 0.14 0.13 0.18 0.19 0.17 0.19 0.17 0.12 
MAM 0.10 0.08 0.04 0.09 0.04 0.08 0.06 0.10 0.09 0.06 0.06 0.13 
JJA -0.04 0.00 -0.05 -0.02 -0.09 -0.05 -0.06 -0.05 0.06 0.11 0.05 0.04 
SON -0.09 -0.02 -0.12 0.00 -0.01 -0.06 0.01 0.00 -0.03 -0.03 0.02 -0.07 
Vrange             
DJF 0.05 0.09 0.14 0.15 0.21 0.18 0.15 0.13 0.12 0.16 0.14 0.09 
MAM 0.15 0.17 0.18 0.13 0.06 0.27 0.28 0.28 0.19 0.19 0.22 0.16 
JJA -0.02 -0.09 -0.10 -0.11 -0.08 0.00 -0.07 -0.07 -0.05 -0.01 -0.07 0.01 
SON 0.19 0.17 0.19 0.18 0.1 0.16 0.21 0.17 0.18 0.18 0.20 0.15 
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Table A.5.2. continued 
Solar lead2 J F M A M J J A S O N D 
speed             
DJF -0.06 -0.01 0.03 0.03 0.01 -0.07 0.07 0.02 -0.07 0.00 -0.05 -0.04 
MAM 0.06 0.02 0.03 0.06 0.05 0.19 0.13 0.16 0.09 0.09 0.10 0.01 
JJA 0.27 0.21 0.21 0.22 0.25 0.20 0.20 0.25 0.18 0.19 0.21 0.22 
SON -0.01 -0.02 0.03 0.03 -0.02 0.03 -0.02 -0.02 0.10 0.07 0.06 0.01 
latitude             
DJF 0.16 0.19 0.13 0.17 0.13 0.05 0.05 0.13 0.13 0.11 0.12 0.12 
MAM 0.04 0.13 0.10 0.12 0.08 0.01 0.01 0.02 0.09 0.12 0.08 0.05 
JJA 0.13 0.11 0.11 0.09 0.04 0.02 0.12 0.07 0.16 0.20 0.17 0.17 
SON 0.00 -0.08 -0.07 -0.13 -0.03 -0.01 -0.13 -0.05 -0.10 -0.08 -0.01 -0.06 
Vrange             
DJF 0.19 0.24 0.27 0.23 0.23 0.20 0.15 0.13 0.20 0.16 0.22 0.20 
MAM 0.20 0.18 0.21 0.24 0.22 0.29 0.27 0.33 0.27 0.24 0.28 0.27 
JJA -0.16 -0.09 -0.05 -0.08 -0.13 -0.18 -0.05 -0.08 -0.16 -0.12 -0.12 -0.17 
SON 0.03 -0.04 0.02 0.11 0.12 0.17 0.13 0.16 0.11 0.13 0.14 0.06 
 
Solar lead3 J F M A M J J A S O N D 
speed             
DJF 0.02 0.07 0.03 0.07 0.05 0.03 0.06 0.05 0.04 0.10 0.06 0.03 
MAM 0.09 0.02 0.08 0.10 0.08 0.16 0.16 0.26 0.18 0.09 0.11 0.10 
JJA 0.06 0.07 0.08 0.09 0.10 0.25 0.16 0.18 0.01 0.05 0.03 0.06 
SON -0.09 -0.15 -0.13 -0.04 -0.01 -0.02 0.02 0.02 0.05 0.02 0.01 -0.04 
latitude             
DJF 0.16 0.22 0.09 0.08 0.08 0.20 0.10 0.10 0.14 0.17 0.11 0.18 
MAM 0.01 0.03 0.05 0.05 0.02 0.08 0.04 0.00 -0.01 0.05 -0.01 0.02 
JJA 0.16 0.27 0.18 0.24 0.20 0.12 0.15 0.12 0.25 0.28 0.20 0.22 
SON -0.09 -0.11 -0.03 -0.07 -0.08 -0.07 -0.04 0.03 -0.09 -0.14 -0.11 -0.11 
Vrange             
DJF 0.11 0.12 0.15 0.19 0.20 0.19 0.17 0.17 0.20 0.17 0.14 0.17 
MAM 0.27 0.28 0.30 0.31 0.31 0.28 0.27 0.27 0.29 0.28 0.32 0.32 
JJA -0.13 -0.12 -0.20 -0.12 -0.10 -0.23 -0.17 -0.22 -0.17 -0.16 -0.14 -0.13 
SON 0.04 0.03 0.07 0.03 0.04 0.04 0.01 0.11 0.02 0.01 0.05 0.06 
 
Solar lead4 J F M A M J J A S O N D 
speed             
DJF 0.06 0.09 0.07 0.04 0.08 0.06 0.07 0.07 0.11 0.08 0.08 0.07 
MAM 0.12 0.06 0.16 0.14 0.15 0.10 0.04 0.11 0.15 0.09 0.14 0.11 
JJA -0.08 -0.12 -0.04 -0.04 -0.07 -0.10 -0.02 -0.02 -0.12 -0.07 -0.05 -0.13 
SON -0.07 -0.09 -0.14 -0.15 -0.13 -0.13 -0.17 -0.13 -0.04 -0.05 0.00 -0.14 
latitude             
DJF 0.14 0.10 0.11 0.09 0.05 0.01 0.08 0.05 0.07 0.10 0.07 0.08 
MAM -0.04 -0.07 -0.05 -0.04 0.05 -0.17 -0.16 -0.16 -0.08 -0.08 -0.04 -0.07 
JJA 0.23 0.23 0.17 0.16 0.22 0.25 0.22 0.17 0.14 0.16 0.12 0.15 
SON -0.06 -0.16 -0.14 -0.13 -0.12 -0.08 -0.05 -0.09 -0.12 -0.06 -0.09 -0.09 
Vrange             
DJF -0.01 0.08 0.08 0.05 0.10 0.11 0.18 0.11 0.09 0.09 0.08 0.13 
MAM 0.21 0.18 0.21 0.24 0.21 0.20 0.21 0.19 0.23 0.26 0.27 0.25 
JJA -0.05 0.03 -0.04 -0.09 -0.04 -0.02 -0.07 -0.13 -0.10 -0.11 -0.12 -0.09 
SON -0.07 -0.07 0.00 -0.03 -0.07 0.00 0.03 0.01 -0.01 0.02 0.03 -0.06 
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Table A.5.2. continued 
Solar lead5 J F M A M J J A S O N D 
speed             
DJF 0.09 0.12 0.04 0.02 0.05 0.07 -0.05 -0.05 0.06 0.02 0.04 0.09 
MAM 0.10 0.04 0.08 0.16 0.11 0.21 0.19 0.12 0.18 0.16 0.16 0.19 
JJA -0.08 -0.12 -0.15 -0.14 -0.05 -0.07 -0.11 -0.10 -0.19 -0.15 -0.11 -0.08 
SON -0.21 -0.13 -0.13 -0.15 -0.24 -0.17 -0.19 -0.18 -0.06 -0.12 -0.13 -0.17 
latitude             
DJF 0.04 0.05 -0.09 -0.07 0.00 0.01 -0.03 -0.05 -0.07 0.00 -0.02 -0.05 
MAM -0.11 -0.05 -0.10 -0.11 -0.12 -0.14 -0.17 -0.23 -0.12 -0.16 -0.21 -0.11 
JJA 0.14 0.20 0.21 0.16 0.16 0.09 0.14 0.12 0.03 0.04 0.06 0.05 
SON -0.06 -0.07 -0.01 0.00 -0.04 -0.04 -0.04 -0.05 -0.07 -0.07 -0.06 -0.06 
Vrange             
DJF -0.07 -0.04 -0.02 -0.11 -0.02 -0.03 0.10 0.08 -0.04 -0.01 0.04 0.00 
MAM 0.02 0.12 0.13 0.14 0.14 -0.10 -0.08 -0.04 -0.02 0.04 0.03 -0.01 
JJA 0.02 -0.06 0.00 -0.04 -0.05 -0.08 -0.03 -0.01 0.03 0.00 -0.04 -0.02 
SON -0.14 -0.16 -0.12 -0.02 0.04 -0.02 0.05 0.00 -0.11 -0.05 -0.03 -0.14 
 
N3.4(mod) J F M A M J J A S O N D 
speed             
DJF -0.05 -0.10 -0.20 -0.19 -0.10 -0.02 -0.04 -0.07 0.11 0.00 0.03 0.05 
MAM -0.02 -0.06 0.06 0.07 0.11 -0.05 -0.04 -0.05 -0.08 0.03 -0.04 0.00 
JJA -0.04 -0.11 0.02 -0.02 -0.04 0.12 0.17 -0.03 -0.04 0.01 -0.04 0.03 
SON -0.36 -0.22 -0.10 -0.09 0.10 0.07 0.16 0.14 0.06 0.09 0.11 -0.26 
latitude             
DJF -0.29 -0.26 0.00 -0.01 -0.09 0.00 -0.25 -0.14 -0.24 -0.44 -0.31 -0.26 
MAM -0.06 -0.07 -0.07 -0.06 0.18 0.14 -0.13 -0.17 0.02 -0.13 0.04 0.01 
JJA -0.03 -0.04 -0.10 -0.01 -0.20 0.02 -0.09 -0.16 0.06 -0.08 -0.01 -0.08 
SON -0.24 -0.26 -0.26 -0.25 -0.05 0.03 0.04 -0.02 -0.09 -0.01 0.08 -0.08 
Vrange             
DJF 0.22 0.28 0.15 0.13 0.13 0.03 0.10 0.13 0.13 0.19 0.19 0.09 
MAM -0.04 -0.04 -0.11 -0.12 0.04 0.12 0.01 0.07 -0.02 -0.11 0.05 -0.01 
JJA 0.06 0.15 0.04 0.02 -0.03 -0.12 -0.15 -0.05 -0.13 -0.10 0.10 0.02 
SON -0.08 -0.13 -0.12 -0.18 -0.22 -0.06 -0.24 -0.21 -0.18 -0.18 -0.19 0.08 
 
N3.4(raw) J F M A M J J A S O N D 
speed             
DJF -0.01 -0.04 -0.04 -0.02 0.07 -0.01 -0.08 -0.01 0.07 0.04 0.02 0.04 
MAM -0.07 -0.05 -0.03 0.05 0.15 -0.12 -0.02 -0.04 -0.07 -0.04 -0.05 -0.09 
JJA -0.03 -0.01 -0.02 0.05 0.12 0.04 0.02 0.04 0.00 -0.05 -0.07 -0.06 
SON -0.27 -0.26 -0.20 -0.15 -0.05 0.01 0.04 0.02 0.08 0.11 0.12 -0.23 
latitude             
DJF -0.22 -0.18 0.24 0.21 0.13 -0.07 -0.18 -0.18 -0.17 -0.22 -0.25 -0.20 
MAM 0.08 0.14 0.13 0.19 0.27 -0.03 -0.04 -0.02 0.06 0.07 0.04 0.05 
JJA 0.12 0.14 0.12 0.04 -0.04 -0.13 -0.24 -0.21 0.18 0.17 0.16 0.16 
SON -0.18 -0.18 -0.19 -0.16 -0.09 -0.09 -0.04 -0.04 -0.07 -0.01 -0.02 -0.15 
Vrange             
DJF 0.23 0.24 0.12 0.07 0.10 0.10 0.16 0.17 0.18 0.21 0.21 0.20 
MAM -0.02 -0.03 -0.01 0.07 0.09 -0.04 -0.08 -0.10 -0.11 -0.08 -0.08 -0.07 
JJA 0.02 0.05 0.05 -0.06 -0.13 -0.13 -0.11 -0.11 -0.06 -0.01 0.05 0.07 
SON 0.07 0.05 0.00 -0.04 -0.15 -0.19 -0.25 -0.30 -0.35 -0.30 -0.28 0.03 
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Table A.5.2. continued 
AMO J F M A M J J A S O N D 
speed             
DJF -0.27 -0.27 -0.29 -0.25 -0.23 -0.18 -0.18 -0.21 -0.32 -0.28 -0.21 -0.23 
MAM 0.17 0.13 -0.04 -0.03 -0.13 0.14 0.09 0.10 0.18 0.12 0.11 0.15 
JJA 0.10 0.11 0.03 -0.01 -0.09 -0.07 -0.11 -0.15 0.28 0.21 0.24 0.22 
SON 0.07 0.07 -0.02 -0.07 -0.06 -0.15 -0.15 -0.08 -0.08 -0.09 -0.14 0.12 
latitude             
DJF -0.22 -0.27 0.06 0.05 0.04 0.09 0.00 -0.05 -0.10 -0.14 -0.12 -0.13 
MAM -0.08 -0.09 -0.16 -0.13 -0.18 -0.04 -0.07 -0.05 -0.03 -0.08 -0.14 -0.08 
JJA -0.23 -0.21 -0.14 -0.14 -0.15 -0.18 -0.14 -0.21 -0.26 -0.22 -0.17 -0.24 
SON 0.11 0.07 0.02 -0.07 -0.17 -0.15 -0.11 -0.13 -0.03 -0.03 0.00 0.11 
Vrange             
DJF 0.00 -0.08 0.04 -0.03 -0.04 -0.01 0.03 0.05 0.08 0.08 0.03 0.03 
MAM -0.08 -0.08 -0.05 -0.09 -0.12 -0.05 -0.02 0.00 0.04 0.07 0.02 -0.02 
JJA -0.08 -0.07 0.02 0.07 0.10 0.04 0.08 0.02 -0.09 -0.05 -0.02 -0.10 
SON 0.09 0.06 0.01 0.05 0.07 0.14 0.13 0.14 0.16 0.21 0.19 0.14 
 
tripole J F M A M J J A S O N D 
speed             
DJF -0.36 -0.31 0.03 -0.01 0.07 0.14 0.20 0.26 0.05 -0.02 -0.15 -0.21 
MAM 0.11 -0.03 -0.11 -0.22 -0.10 -0.06 -0.07 -0.09 0.00 0.02 0.07 0.15 
JJA -0.09 -0.26 -0.26 -0.24 -0.22 0.00 0.00 0.02 -0.14 0.09 0.22 0.10 
SON 0.08 -0.06 -0.08 -0.12 0.10 0.15 0.18 0.14 0.10 0.08 -0.01 0.13 
latitude             
DJF -0.11 -0.06 -0.03 0.06 0.05 0.13 0.03 -0.02 0.08 0.19 0.10 0.09 
MAM -0.02 -0.11 -0.19 -0.01 -0.02 0.04 0.13 0.14 0.19 0.06 -0.03 0.10 
JJA -0.11 0.06 0.12 0.12 0.16 0.21 0.39 0.33 -0.10 0.06 -0.16 -0.14 
SON -0.08 -0.18 -0.10 -0.11 -0.08 0.11 0.10 0.15 0.09 0.15 0.19 0.01 
Vrange             
DJF 0.02 0.08 -0.12 -0.05 -0.15 -0.24 -0.17 -0.04 0.00 0.01 -0.08 -0.04 
MAM -0.16 -0.15 -0.04 0.06 0.04 0.12 0.13 0.29 0.25 0.16 0.09 -0.21 
JJA 0.05 0.24 0.25 0.23 0.23 0.06 0.06 -0.04 -0.2 -0.20 -0.29 -0.16 
SON -0.02 -0.04 -0.09 0.03 -0.01 0.04 -0.15 -0.11 -0.14 -0.14 -0.15 -0.10 
 
Arctic SI J F M A M J J A S O N D 
speed             
DJF -0.03 -0.10 -0.04 0.00 0.01 0.03 0.04 0.08 0.11 0.21 0.08 0.00 
MAM 0.04 0.01 -0.14 -0.13 0.00 -0.13 -0.26 -0.15 -0.14 -0.02 -0.06 -0.18 
JJA -0.08 -0.04 -0.12 -0.16 -0.07 0.03 0.14 0.16 -0.37 -0.23 -0.27 -0.23 
SON -0.07 -0.08 -0.17 -0.05 -0.02 0.14 0.25 0.17 0.11 0.13 -0.04 -0.21 
latitude             
DJF -0.12 -0.23 0.25 0.13 -0.16 -0.23 -0.26 -0.12 0.00 0.16 0.14 0.05 
MAM 0.23 0.26 -0.04 -0.12 -0.12 0.08 0.06 0.18 0.19 0.35 0.17 0.11 
JJA 0.06 -0.01 -0.04 -0.14 -0.14 -0.06 -0.02 0.18 0.27 0.4. 0.40 0.30 
SON 0.03 0.06 0.02 0.01 0.09 0.20 0.15 0.11 0.00 -0.08 0.03 -0.07 
Vrange             
DJF 0.26 0.15 0.12 0.02 0.08 0.03 0.10 0.10 0.07 0.05 0.06 0.05 
MAM -0.22 -0.09 -0.11 -0.07 0.00 -0.19 -0.08 0.06 0.08 0.08 0.00 -0.16 
JJA 0.08 -0.08 0.02 -0.04 -0.12 -0.13 -0.06 -0.08 0.11 0.13 0.20 0.18 
SON -0.01 0.03 0.08 -0.07 -0.09 -0.22 -0.35 -0.3 -0.23 -0.14 0.03 -0.02 
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Table A.5.2. continued 
BKI J F M A M J J A S O N D 
speed             
DJF -0.06 -0.11 -0.03 0.02 0.06 0.06 0.09 0.04 0.03 0.08 -0.03 -0.10 
MAM 0.01 0.17 0.06 0.00 0.02 -0.23 -0.27 -0.14 -0.12 0.00 0.02 -0.18 
JJA -0.05 -0.01 -0.09 -0.09 -0.08 0.07 0.09 0.15 -0.06 0.02 -0.02 -0.17 
SON 0.05 0.07 0.07 0.16 0.16 0.23 0.23 0.12 0.11 0.01 -0.15 0.07 
latitude             
DJF -0.3 -0.42 0.04 -0.02 -0.12 -0.13 -0.14 -0.08 -0.12 0.24 0.33 -0.12 
MAM 0.18 0.20 -0.01 -0.05 -0.11 0.13 0.19 0.11 0.04 0.22 0.17 0.19 
JJA 0.00 -0.04 0.00 -0.12 0.00 -0.07 -0.09 -0.12 0.07 0.25 0.52 0.26 
SON -0.06 -0.04 -0.02 0.03 0.13 0.19 0.13 0.16 -0.04 -0.12 -0.22 0.02 
Vrange             
DJF 0.24 0.00 0.20 0.17 0.08 0.06 0.00 0.01 0.09 -0.09 0.05 0.21 
MAM -0.17 -0.16 -0.13 -0.02 -0.01 -0.15 -0.15 -0.03 0.02 -0.02 -0.07 -0.12 
JJA 0.07 -0.1 -0.12 -0.17 -0.17 -0.2 -0.12 -0.06 0.02 0.10 0.11 0.23 
SON -0.04 -0.07 -0.03 -0.16 -0.14 -0.19 -0.23 -0.14 -0.18 0.03 0.21 -0.02 
 
GI J F M A M J J A S O N D 
speed             
DJF -0.16 -0.26 0.09 0.02 -0.15 0.05 -0.16 0.04 0.12 0.03 -0.17 -0.08 
MAM 0.10 0.14 0.20 0.16 0.07 0.06 -0.14 -0.16 -0.10 -0.03 -0.05 -0.05 
JJA 0.06 0.05 0.09 0.03 -0.03 -0.05 0.01 -0.11 -0.14 -0.15 -0.11 0.04 
SON -0.26 -0.27 -0.19 -0.09 -0.30 -0.02 0.16 0.13 -0.07 -0.15 -0.31 -0.28 
latitude             
DJF 0.07 0.06 -0.04 -0.12 -0.05 -0.09 -0.02 -0.14 -0.08 -0.12 0.01 0.00 
MAM -0.26 -0.11 -0.26 -0.28 -0.13 -0.18 -0.12 -0.15 -0.26 -0.07 -0.15 -0.14 
JJA 0.08 -0.01 0.06 0.03 -0.22 -0.34 -0.33 -0.06 0.09 0.01 -0.06 -0.03 
SON 0.20 0.11 0.26 0.23 0.16 0.13 0.14 0.05 -0.13 -0.05 -0.10 0.17 
Vrange             
DJF -0.26 -0.21 -0.26 -0.10 -0.11 -0.03 -0.09 -0.16 -0.26 -0.01 0.13 -0.05 
MAM 0.02 -0.13 0.03 -0.07 0.00 -0.13 -0.13 -0.21 -0.35 -0.23 -0.11 -0.16 
JJA 0.24 0.21 0.13 0.11 0.06 -0.19 0.22 0.26 0.39 0.31 0.23 0.30 
SON 0.27 0.08 0.17 0.17 0.20 -0.10 -0.12 -0.14 -0.21 -0.11 0.06 0.15 
 
LVI J F M A M J J A S O N D 
speed             
DJF -0.14 -0.17 -0.16 0.05 0.35 0.17 0.19 0.21 0.19 0.27 0.17 -0.08 
MAM 0.14 0.23 -0.03 0.00 0.14 -0.24 -0.33 -0.15 -0.13 0.02 0.08 0.03 
JJA 0.04 0.11 0.11 0.12 0.00 0.12 0.14 0.17 -0.28 -0.07 -0.08 -0.09 
SON -0.12 -0.19 -0.25 0.09 0.18 0.33 0.33 0.21 0.16 0.14 0.02 -0.15 
latitude             
DJF -0.16 -0.33 0.30 0.26 -0.02 -0.02 -0.09 0.05 0.08 0.22 0.25 -0.15 
MAM 0.26 0.19 -0.03 -0.11 0.01 0.23 0.23 0.30 0.30 0.38 0.32 0.28 
JJA 0.06 -0.04 0.12 -0.04 0.09 0.03 0.06 0.20 0.23 0.35 0.52 0.16 
SON 0.03 0.05 -0.11 -0.12 -0.12 0.01 0.01 0.03 -0.03 -0.13 -0.21 0.00 
Vrange             
DJF 0.15 -0.02 0.16 0.25 0.24 0.10 0.17 0.21 0.11 0.09 0.09 0.21 
MAM -0.06 0.02 0.15 0.15 0.16 0.00 -0.03 0.10 0.11 0.11 -0.07 -0.02 
JJA 0.01 -0.08 -0.09 -0.24 -0.29 -0.22 -0.16 -0.16 0.04 0.00 0.15 0.03 
SON 0.17 0.12 0.16 0.02 -0.24 -0.34 -0.38 -0.32 -0.23 -0.11 0.07 0.21 
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Table A.5.2. continued 
QBO J F M A M J J A S O N D VOLC 

speed              
DJF 0.03 -0.03 0.10 0.07 0.08 0.06 0.05 0.03 0.05 0.09 0.08 0.04 -0.06 
MAM 0.06 0.06 0.07 0.03 0.02 -0.04 0.01 0.02 0.05 0.05 0.11 0.12 -0.05 
JJA 

-0.06 -0.02 0.00 -0.02 -0.07 -0.05 -0.07 -0.07 -0.04 -0.10 -0.11 
-

0.09 -0.05 
SON 

-0.17 -0.17 -0.2 -0.15 -0.14 -0.16 -0.17 -0.14 -0.10 -0.06 0.02 
-

0.10 0.00 
latitude              
DJF 0.24 0.23 0.08 0.16 0.18 0.22 0.25 0.28 0.27 0.29 0.27 0.27 0.41 
MAM 0.15 0.11 0.09 0.10 0.09 -0.04 0.02 0.07 0.09 0.09 0.09 0.13 0.17 
JJA 0.27 0.25 0.20 0.22 0.20 0.13 0.05 0.00 0.08 0.17 0.26 0.27 0.20 
SON 0.08 0.12 0.12 0.07 0.01 0.03 -0.01 -0.04 -0.05 -0.01 -0.03 0.08 -0.16 
Vrange              
DJF 0.04 0.00 0.04 0.06 0.01 -0.03 -0.04 -0.04 -0.05 -0.03 0.00 0.04 0.02 
MAM 

-0.10 -0.1 -0.16 -0.16 -0.10 -0.06 -0.12 -0.15 -0.14 -0.12 -0.09 
-

0.06 0.19 
JJA 0.06 0.03 0.07 0.11 0.14 0.13 0.18 0.19 -0.04 0.01 0.00 0.02 0.07 
SON 0.08 0.06 0.03 -0.04 0.00 0.06 0.05 0.02 0.00 -0.02 -0.03 0.01 -0.07 
 
 
 
 
 
Table A.5.3. Pearson correlation coefficients between detrended standardised monthly jet 
stream drivers and detrended seasonal jet stream metrics, 1871-2012 (1901-2012 for jet 
meridionality). Where p < 0.1, significant positive correlations are highlighted in bold red, 
and significant negative correlations highlighted in bold blue. 
 
SS J F M A M J J A S O N D 
speed             
DJF 0.09 0.05 0.03 0.05 0.03 0.02 -0.01 0.01 0.04 0.07 0.11 0.07 
MAM 0.01 0.02 -0.02 -0.02 -0.03 -0.07 -0.07 -0.08 -0.04 -0.07 -0.06 -0.01 
JJA 0.06 0.02 0.06 0.01 0.00 0.00 0.02 0.02 0.07 0.04 0.03 0.06 
SON 0.01 0.00 0.01 0.02 0.01 0.02 0.03 -0.01 0.00 0.01 0.08 -0.02 
latitude             
DJF -0.04 0.01 -0.01 0.00 -0.05 0.01 0.04 0.00 -0.05 -0.01 -0.01 0.01 
MAM -0.03 0.02 -0.01 0.03 -0.02 -0.04 0.02 0.01 -0.04 0.03 0.02 0.00 
JJA 0.01 0.03 0.03 -0.05 -0.02 0.03 0.01 0.02 0.05 0.00 -0.04 0.00 
SON -0.05 -0.04 -0.06 -0.07 -0.08 -0.03 -0.02 -0.02 -0.05 -0.01 0.00 -0.04 
Vrange             
DJF -0.06 -0.04 -0.05 -0.04 -0.04 -0.03 -0.01 -0.05 -0.04 -0.08 -0.11 -0.06 
MAM -0.07 -0.14 -0.16 -0.15 -0.13 -0.05 -0.02 -0.05 -0.07 -0.03 0.00 0.00 
JJA -0.15 -0.16 -0.10 -0.11 -0.11 -0.11 -0.16 -0.16 -0.08 -0.05 -0.07 -0.09 
SON -0.03 -0.09 -0.14 -0.14 -0.10 -0.04 -0.05 -0.06 -0.07 -0.05 -0.08 -0.03 
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Table A.5.3. continued 
Solar lead1 J F M A M J J A S O N D 
speed             
DJF -0.03 0.05 -0.10 -0.08 -0.09 -0.06 -0.04 -0.07 -0.03 -0.03 -0.05 0.00 
MAM -0.06 -0.04 -0.07 -0.06 -0.11 -0.06 -0.03 -0.05 -0.10 -0.04 -0.06 -0.08 
JJA 0.03 0.02 0.02 -0.01 0.01 0.09 0.07 0.09 0.07 0.03 0.04 0.05 
SON 0.00 0.00 -0.02 0.01 -0.03 -0.01 0.01 0.01 0.03 -0.01 -0.05 0.00 
latitude             
DJF 0.02 0.02 0.08 0.05 0.03 0.04 0.06 0.06 0.05 0.06 0.08 0.06 
MAM 0.02 0.00 -0.01 -0.01 -0.04 0.03 0.03 0.04 0.03 0.02 0.01 0.03 
JJA 0.07 0.06 0.04 0.04 0.00 0.03 0.03 0.06 0.08 0.08 0.11 0.09 
SON -0.08 -0.05 -0.09 -0.07 -0.09 -0.11 -0.07 -0.09 -0.09 -0.09 -0.05 -0.06 
Vrange             
DJF -0.03 -0.06 0.00 -0.02 0.00 0.03 0.00 -0.01 -0.01 0.00 -0.02 -0.02 
MAM 0.03 0.00 0.00 -0.07 -0.10 0.09 0.08 0.05 0.05 0.01 0.00 0.00 
JJA -0.08 -0.11 -0.16 -0.18 -0.13 -0.1 -0.11 -0.11 -0.06 -0.08 -0.13 -0.07 
SON -0.08 -0.14 -0.17 -0.17 -0.21 -0.11 -0.13 -0.13 -0.1 -0.09 -0.09 -0.12 
 
Solar lead2 J F M A M J J A S O N D 
speed             
DJF -0.06 -0.08 -0.04 -0.10 -0.09 -0.13 -0.08 -0.07 -0.06 -0.03 -0.05 -0.05 
MAM 0.00 -0.06 -0.05 -0.06 -0.07 0.04 0.03 0.04 0.03 0.03 0.03 -0.01 
JJA 0.10 0.02 0.02 -0.01 0.01 -0.01 -0.01 0.05 0.03 0.03 0.03 0.04 
SON -0.04 -0.05 -0.05 -0.04 -0.11 -0.05 -0.08 -0.06 0.00 -0.01 0.00 -0.04 
latitude             
DJF 0.08 0.11 0.10 0.15 0.09 0.06 0.06 0.10 0.08 0.05 0.07 0.06 
MAM -0.03 0.02 -0.02 0.01 -0.01 -0.06 -0.05 0.00 -0.01 0.01 -0.01 -0.03 
JJA 0.16 0.15 0.15 0.10 0.08 0.07 0.16 0.08 0.14 0.18 0.19 0.15 
SON -0.04 -0.06 -0.05 -0.05 -0.04 -0.03 -0.11 -0.05 -0.07 -0.08 -0.03 -0.04 
Vrange             
DJF 0.05 0.00 0.06 0.06 0.01 0.04 0.05 0.06 0.05 0.03 0.03 0.06 
MAM 0.04 0.00 0.01 0.03 -0.03 0.04 0.02 0.08 0.12 0.07 0.07 0.05 
JJA -0.07 -0.11 -0.07 -0.08 -0.13 -0.12 -0.04 -0.07 -0.10 -0.07 -0.04 -0.12 
SON -0.13 -0.19 -0.19 -0.16 -0.17 -0.14 -0.16 -0.15 -0.13 -0.13 -0.14 -0.11 
 
Solar lead3 J F M A M J J A S O N D 
speed             
DJF -0.11 -0.04 -0.13 -0.12 -0.11 -0.11 -0.12 -0.12 -0.10 -0.07 -0.11 -0.12 
MAM 0.00 -0.06 -0.01 -0.03 -0.01 0.02 0.02 0.11 0.05 0.01 0.02 0.02 
JJA -0.01 -0.02 0.00 -0.01 0.01 0.09 0.05 0.02 -0.03 -0.01 0.01 -0.02 
SON -0.13 -0.16 -0.18 -0.10 -0.06 -0.05 -0.07 -0.06 -0.01 -0.05 -0.07 -0.10 
latitude             
DJF 0.06 0.11 0.11 0.09 0.10 0.14 0.11 0.08 0.09 0.14 0.10 0.08 
MAM -0.03 -0.01 0.00 -0.03 -0.05 0.01 0.00 0.00 -0.05 -0.02 -0.05 -0.04 
JJA 0.20 0.27 0.22 0.25 0.19 0.16 0.17 0.15 0.23 0.26 0.23 0.24 
SON -0.02 -0.02 0.02 0.00 -0.03 -0.04 -0.03 0.01 -0.05 -0.08 -0.07 -0.02 
Vrange             
DJF 0.06 0.05 0.03 0.08 0.05 0.05 0.06 0.00 0.06 0.05 0.02 0.01 
MAM 0.13 0.12 0.12 0.10 0.06 0.12 0.13 0.10 0.12 0.10 0.11 0.12 
JJA -0.06 -0.05 -0.07 -0.04 -0.09 -0.13 -0.07 -0.12 -0.08 -0.06 -0.03 -0.08 
SON -0.10 -0.10 -0.09 -0.14 -0.15 -0.13 -0.09 -0.10 -0.13 -0.15 -0.13 -0.11 
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Table A.5.3. continued 
Solar lead4 J F M A M J J A S O N D 
speed             
DJF -0.11 -0.14 -0.10 -0.18 -0.11 -0.12 -0.10 -0.08 -0.04 -0.07 -0.05 -0.07 
MAM 0.06 -0.01 0.09 0.05 0.07 0.08 0.04 0.08 0.09 0.06 0.09 0.07 
JJA -0.01 -0.01 0.04 0.01 -0.02 -0.07 -0.03 -0.03 0.01 0.01 0.05 0.01 
SON -0.14 -0.09 -0.10 -0.12 -0.11 -0.17 -0.15 -0.16 -0.09 -0.09 -0.07 -0.15 
latitude             
DJF 0.12 0.12 0.11 0.09 0.10 0.10 0.12 0.10 0.07 0.11 0.08 0.09 
MAM -0.06 -0.08 -0.03 -0.03 -0.01 -0.12 -0.07 -0.10 -0.07 -0.08 -0.01 -0.06 
JJA 0.23 0.23 0.21 0.23 0.24 0.25 0.24 0.22 0.15 0.14 0.13 0.15 
SON 0.01 -0.03 0.00 0.03 0.02 0.06 0.03 0.03 0.00 0.01 -0.01 -0.01 
Vrange             
DJF 0.05 0.04 0.04 0.07 0.06 0.06 0.07 0.04 0.05 0.07 0.03 0.02 
MAM 0.10 0.07 0.12 0.09 0.07 0.10 0.12 0.09 0.13 0.12 0.13 0.09 
JJA 0.03 0.08 0.05 -0.01 -0.01 0.01 0.03 -0.01 -0.02 0.01 0.00 -0.02 
SON -0.05 -0.08 -0.06 -0.07 -0.10 -0.07 -0.05 -0.07 -0.06 -0.07 -0.09 -0.09 
 
Solar lead5 J F M A M J J A S O N D 
speed             
DJF -0.06 -0.05 -0.05 -0.13 -0.12 -0.11 -0.15 -0.13 -0.08 -0.13 -0.11 -0.03 
MAM 0.11 0.07 0.07 0.08 0.09 0.10 0.12 0.06 0.13 0.07 0.07 0.11 
JJA 0.03 0.03 0.03 -0.01 0.03 0.03 0.05 0.06 -0.02 -0.04 0.00 0.01 
SON -0.16 -0.12 -0.17 -0.14 -0.18 -0.14 -0.15 -0.17 -0.09 -0.10 -0.12 -0.10 
latitude             
DJF 0.06 0.06 -0.08 0.01 0.06 0.06 0.05 0.03 0.01 0.07 0.05 0.01 
MAM -0.08 -0.02 -0.04 -0.08 -0.07 -0.03 -0.04 -0.08 -0.06 -0.10 -0.14 -0.12 
JJA 0.12 0.14 0.17 0.15 0.18 0.17 0.14 0.16 0.05 0.07 0.09 0.09 
SON 0.09 0.05 0.02 0.08 0.10 0.11 0.11 0.07 0.05 0.03 0.02 0.03 
Vrange             
DJF 0.04 0.05 -0.01 0.03 0.03 0.02 0.05 0.05 0.04 0.03 0.04 0.01 
MAM 0.00 0.02 0.06 0.08 0.08 -0.01 0.01 0.02 0.02 0.05 0.03 -0.02 
JJA 0.08 0.06 0.06 0.06 0.02 0.00 0.08 0.04 0.07 0.04 0.06 0.02 
SON -0.07 -0.05 -0.07 -0.05 -0.02 -0.02 0.03 0.00 -0.07 -0.05 -0.05 -0.08 
 
N3.4(mod) J F M A M J J A S O N D 
speed             
DJF 0.03 0.01 0.00 0.15 0.01 0.07 0.07 -0.05 0.13 0.02 0.01 0.06 
MAM 0.02 0.00 0.04 0.09 0.01 0.02 0.10 0.06 0.13 0.02 0.08 0.07 
JJA 0.00 0.02 0.03 0.04 -0.11 -0.10 -0.08 -0.06 0.06 0.01 -0.01 0.07 
SON -0.15 -0.04 0.01 0.02 -0.05 -0.01 0.02 0.07 0.02 -0.01 -0.05 -0.06 
latitude             
DJF -0.26 -0.29 0.07 -0.04 0.05 0.00 -0.04 -0.07 -0.22 -0.14 -0.25 -0.14 
MAM -0.09 -0.11 -0.11 -0.03 -0.01 -0.08 -0.19 -0.19 -0.15 -0.12 -0.09 -0.14 
JJA 0.02 -0.02 0.01 0.06 -0.01 0.04 -0.09 -0.08 0.07 0.09 0.07 0.11 
SON -0.15 -0.14 -0.10 -0.04 -0.04 -0.10 -0.10 -0.15 -0.20 -0.09 -0.12 0.00 
Vrange             
DJF 0.08 0.10 0.10 0.05 0.08 0.05 0.07 0.11 0.06 0.15 0.11 0.10 
MAM -0.07 -0.01 -0.04 -0.04 0.05 0.00 -0.04 0.05 -0.03 -0.02 -0.11 -0.11 
JJA 0.01 0.04 0.04 0.11 -0.01 -0.10 -0.03 0.06 0.05 -0.03 0.10 0.09 
SON 0.05 0.07 0.10 0.05 0.07 -0.05 -0.02 0.01 -0.07 -0.06 -0.12 0.12 
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Table A.5.3. continued 
N3.4(raw) J F M A M J J A S O N D 
speed             
DJF -0.01 -0.05 0.02 0.02 0.05 0.00 -0.04 -0.01 0.06 0.02 -0.03 0.02 
MAM 0.04 0.05 0.06 0.05 0.05 0.00 0.07 0.04 0.06 0.05 0.06 0.05 
JJA 0.04 0.05 0.07 0.03 0.00 -0.05 -0.11 -0.10 0.04 0.02 -0.02 0.00 
SON -0.14 -0.12 -0.08 -0.05 -0.02 -0.04 -0.03 0.01 0.03 0.04 0.04 -0.11 
latitude             
DJF -0.19 -0.15 0.13 0.14 0.11 -0.03 -0.06 -0.08 -0.08 -0.13 -0.13 -0.13 
MAM -0.07 -0.02 -0.07 -0.03 0.02 -0.10 -0.11 -0.11 -0.07 -0.11 -0.09 -0.09 
JJA 0.08 0.09 0.06 0.03 -0.01 -0.11 -0.17 -0.13 0.13 0.13 0.13 0.11 
SON -0.16 -0.15 -0.16 -0.06 -0.09 -0.12 -0.09 -0.09 -0.13 -0.09 -0.08 -0.14 
Vrange             
DJF 0.12 0.15 0.14 0.14 0.14 0.08 0.09 0.11 0.10 0.13 0.13 0.14 
MAM -0.03 -0.03 -0.04 -0.04 -0.02 -0.07 -0.11 -0.08 -0.08 -0.05 -0.13 -0.10 
JJA 0.11 0.14 0.13 0.11 0.04 0.02 0.03 0.04 0.09 0.09 0.11 0.13 
SON 0.19 0.20 0.18 0.14 0.06 0.04 -0.05 -0.10 -0.13 -0.10 -0.11 0.17 
 
AMO J F M A M J J A S O N D 
speed             
DJF -0.33 -0.34 -0.27 -0.21 -0.23 -0.27 -0.26 -0.27 -0.3 -0.3 -0.27 -0.31 
MAM -0.05 -0.07 -0.14 -0.16 -0.20 -0.10 -0.13 -0.13 -0.02 -0.01 -0.01 -0.03 
JJA 0.04 0.01 -0.06 -0.08 -0.08 -0.14 -0.20 -0.24 0.11 0.08 0.07 0.08 
SON 0.04 -0.05 -0.06 -0.08 -0.09 -0.11 -0.14 -0.12 -0.13 -0.11 -0.14 0.06 
latitude             
DJF -0.03 -0.12 0.04 0.01 0.03 0.08 0.08 0.04 0.01 0.03 0.06 0.01 
MAM 0.00 0.02 -0.06 -0.07 -0.10 0.09 0.02 0.03 0.04 0.00 -0.02 -0.01 
JJA -0.05 -0.04 -0.01 0.00 -0.04 -0.04 -0.02 -0.04 -0.05 -0.06 -0.07 -0.07 
SON 0.22 0.16 0.06 0.03 -0.02 0.01 -0.01 -0.03 0.01 0.07 0.12 0.22 
Vrange             
DJF 0.05 -0.02 -0.04 -0.10 -0.10 -0.07 -0.07 -0.08 -0.07 0.02 0.05 0.04 
MAM -0.10 -0.14 -0.19 -0.19 -0.2 -0.15 -0.15 -0.15 -0.18 -0.09 -0.08 -0.09 
JJA 0.02 0.11 0.06 0.09 0.13 0.10 0.05 0.08 0.01 0.03 0.00 0.02 
SON 0.14 0.16 0.06 0.07 0.07 0.10 0.09 0.04 0.03 0.12 0.04 0.14 
 
tripole J F M A M J J A S O N D VOLC 

speed              
DJF -0.37 -0.32 -0.05 -0.12 -0.08 -0.02 0.05 0.13 0.08 -0.05 -0.11 -0.25 -0.09 
MAM -0.19 -0.19 -0.17 -0.27 -0.15 -0.06 -0.02 -0.07 -0.06 -0.04 -0.05 -0.15 0.04 
JJA 0.02 -0.08 -0.12 -0.18 -0.2 0.01 0.11 0.13 -0.05 0.08 0.14 0.05 -0.13 
SON 0.01 -0.06 -0.01 0.02 0.10 0.07 0.08 0.09 0.08 0.11 0.04 0.12 -0.06 
latitude              
DJF 0.07 0.08 0.03 0.11 0.13 0.22 0.05 -0.02 0.04 0.21 0.18 0.14 0.20 
MAM 0.04 -0.06 -0.11 0.01 0.05 -0.01 -0.02 0.05 0.12 0.18 0.06 0.10 0.12 
JJA -0.10 0.02 0.01 -0.06 -0.07 0.07 0.23 0.22 -0.06 -0.06 -0.15 -0.08 0.09 
SON -0.01 -0.10 -0.08 -0.03 0.00 0.06 -0.02 0.08 0.16 0.27 0.28 0.13 0.05 
Vrange              
DJF 0.11 0.14 0.06 0.12 0.05 0.03 -0.07 -0.12 -0.10 -0.01 0.05 0.08 0.12 
MAM -0.08 -0.13 -0.09 -0.03 -0.01 0.02 -0.02 0.09 0.05 0.00 -0.02 -0.08 0.13 
JJA 0.05 0.13 0.19 0.13 0.15 0.06 -0.04 -0.06 -0.06 0.00 -0.07 -0.07 0.01 
SON -0.06 0.02 0.02 0.09 0.02 0.03 -0.06 -0.06 -0.11 -0.05 -0.05 -0.09 0.07 
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Figure A.5.5. 500GPH composites for a) December Atlantic rainfall high minus low years, 
1980-2012, using winter 500GPH values and b) July West Indian rainfall high minus low 
years, 1980-2012, using summer 500GPH values. For each, the area of potential tropical 
forcing is indicated (grey box) and the direction of wave propagation is shown (black arrow). 
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Appendix A.6. Supplementary material to Chapter 6 

Table A.6.1. Observed and ensemble mean NAO values, binary observations and probability 
forecasts for the 1980-97 statistical model, derived using detrended sea-ice data. Training and 
testing periods are separated by a double line. obs is the observed NAO value, EM is the 
ensemble mean hindcast value from the regression model Green shading shows the 
occurrence of an observed NAO value, within a probability forecast.  Bold figures show the 
probability location of the ensemble mean value. 
 

1980-97 model 

(detrended sea-ice) 

observed occurrence of NAO probability of NAO forecast 

year obs EM ≤ -1 ≤0.5 ≤0 ≥0.5 ≥1 ≤ -1 ≤0.5 ≤0 ≥0.5 ≥1 

1980 -0.19 0.28 0 0 1 0 0 0.03 0.14 0.34 0.34 0.11 

1981 0.57 0.90 0 0 0 1 0 0.03 0.07 0.14 0.7 0.38 

1982 -0.32 -0.25 0 0 1 0 0 0.11 0.50 0.78 0.07 0.03 

1983 0.73 0.85 0 0 0 1 0 0.03 0.03 0.22 0.58 0.34 

1984 1.20 0.77 0 0 0 1 1 0.03 0.07 0.11 0.58 0.30 

1985 -1.01 -0.47 1 1 1 0 0 0.22 0.62 0.86 0.11 0.03 

1986 -0.78 -0.55 0 1 1 0 0 0.38 0.70 0.82 0.03 0.03 

1987 -0.82 -0.27 0 1 1 0 0 0.07 0.34 0.74 0.14 0.07 

1988 -0.29 -0.59 0 0 1 0 0 0.34 0.58 0.82 0.07 0.03 

1989 1.56 1.68 0 0 0 1 1 0.03 0.03 0.03 0.97 0.93 

1990 1.18 -0.17 0 0 0 1 1 0.07 0.26 0.62 0.11 0.03 

1991 0.42 0.51 0 0 0 0 0 0.07 0.14 0.38 0.30 0.11 

1992 0.22 0.27 0 0 0 0 0 0.03 0.11 0.18 0.54 0.26 

1993 0.78 0.44 0 0 0 1 0 0.03 0.07 0.34 0.30 0.07 

1994 0.71 0.10 0 0 0 1 0 0.07 0.07 0.34 0.14 0.07 

1995 1.36 0.62 0 0 0 1 1 0.03 0.11 0.34 0.58 0.34 

1996 -1.22 0.15 1 1 1 0 0 0.07 0.14 0.38 0.34 0.07 

1997 -0.49 -0.68 0 0 1 0 0 0.18 0.66 0.86 0.07 0.03 

1998 -0.16 0.35 0 0 1 0 0 0.03 0.14 0.22 0.42 0.22 

1999 1.18 2.08 0 0 0 1 1 0.03 0.03 0.03 0.97 0.97 

2000 1.06 0.94 0 0 0 1 1 0.03 0.07 0.18 0.74 0.54 

2001 -0.84 -0.48 0 1 1 0 0 0.18 0.50 0.7 0.11 0.03 

2002 -0.38 -0.03 0 0 1 0 0 0.11 0.18 0.58 0.26 0.14 

2003 -0.26 0.04 0 0 1 0 0 0.07 0.18 0.54 0.18 0.11 

2004 -0.78 0.69 0 1 1 0 0 0.03 0.07 0.11 0.66 0.26 
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2005 0.33 0.65 0 0 0 0 0 0.03 0.07 0.11 0.46 0.14 

2006 -0.33 0.27 0 0 1 0 0 0.03 0.11 0.30 0.22 0.22 

2007 0.53 0.15 0 0 0 1 0 0.18 0.22 0.38 0.26 0.18 

2008 0.62 0.51 0 0 0 1 0 0.07 0.18 0.34 0.38 0.26 

2009 0.30 0.20 0 0 0 0 0 0.11 0.14 0.26 0.26 0.07 

2010 -2.56 -1.73 1 1 1 0 0 0.93 0.97 0.97 0.03 0.03 

2011 -1.09 1.29 1 1 1 0 0 0.03 0.03 0.07 0.93 0.70 

2012 1.24 -0.08 0 0 0 1 1 0.11 0.22 0.58 0.11 0.03 

2013 -0.06 -1.1 0 0 1 0 0 0.58 0.89 0.97 0.03 0.03 

2014 1.93 0.27 0 0 0 1 1 0.11 0.26 0.5 0.22 0.11 

2015 1.93 1.80 0 0 0 1 1 0.03 0.03 0.03 0.97 0.97 

2016 0.77 0.03 0 0 0 1 0 0.18 0.34 0.58 0.22 0.11 

Hit rate,1980-97 0 0.25 0.75 0.63 0.25 

False alarm rate, 1980-97 0 0.14 0.10 0.10 0 

Hit rate,1998-2016 0.5 0.25 0.44 0.50 0.40 

False alarm rate, 1998-2016 0.06 0.07 0.10 0.27 0.07 

Table A.6.1. continued 
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Table A.6.2. Observed and ensemble mean NAO values, binary observations and 
probabilistic forecasts for N56 (see section 6.4.1). Obs is the observed NAO value, EM is the 
ensemble mean hindcast value from the regression model. Green shading shows the 
occurrence of an observed NAO value, within a probability forecast. Bold figures show the 
probability location of the ensemble mean value. 
N56 observed occurrence of NAO probability of NAO forecast 

year obs EM ≤-1 ≤0.5 ≤0 ≥0.5 ≥1 ≤-1 ≤0.5 ≤0 ≥0.5 ≥1 

1956 -1.21 -0.04 1 1 1 0 0 0.14 0.30 0.58 0.22 0.07 
1957 0.49 -0.94 0 0 0 0 0 0.62 0.82 0.93 0.03 0.03 
1958 -0.69 -0.22 0 1 1 0 0 0.26 0.38 0.74 0.18 0.07 
1959 -0.83 -0.08 0 1 1 0 0 0.22 0.26 0.46 0.34 0.26 
1960 -1.14 -0.30 1 1 1 0 0 0.14 0.26 0.62 0.14 0.03 
1961 0.83 -0.50 0 0 0 1 0 0.30 0.54 0.74 0.14 0.14 
1962 -0.34 -0.44 0 0 1 0 0 0.34 0.58 0.7 0.14 0.07 
1963 -2.24 -0.59 1 1 1 0 0 0.34 0.54 0.74 0.11 0.07 
1964 -1.51 -0.66 1 1 1 0 0 0.3 0.62 0.82 0.07 0.07 
1965 -1.37 -1.42 1 1 1 0 0 0.62 0.78 0.89 0.03 0.03 
1966 -1.60 -1.83 1 1 1 0 0 0.74 0.93 0.97 0.03 0.03 
1967 0.18 -0.68 0 0 0 0 0 0.54 0.78 0.89 0.03 0.03 
1968 -0.86 -0.41 0 1 1 0 0 0.34 0.58 0.70 0.14 0.07 
1969 -2.32 -0.61 1 1 1 0 0 0.18 0.58 0.86 0.11 0.03 
1970 -0.39 -0.58 0 0 1 0 0 0.34 0.50 0.62 0.14 0.11 
1971 -0.60 -0.39 0 1 1 0 0 0.26 0.46 0.66 0.14 0.07 
1972 0.33 -0.66 0 0 0 0 0 0.50 0.66 0.70 0.11 0.03 
1973 1.03 0.04 0 0 0 1 1 0.22 0.34 0.54 0.34 0.07 
1974 0.83 0.20 0 0 0 1 0 0.14 0.18 0.26 0.46 0.22 
1975 0.50 -0.90 0 0 0 1 0 0.26 0.50 0.66 0.07 0.03 
1976 0.23 -0.24 0 0 0 0 0 0.18 0.54 0.74 0.07 0.03 
1977 -1.64 -0.91 1 1 1 0 0 0.66 0.74 0.89 0.07 0.03 
1978 -0.90 -0.56 0 1 1 0 0 0.34 0.62 0.82 0.14 0.07 
1979 -1.76 -0.78 1 1 1 0 0 0.54 0.74 0.93 0.03 0.03 
1980 -0.19 0.07 0 0 1 0 0 0.18 0.22 0.3 0.50 0.26 
1981 0.57 -0.06 0 0 0 1 0 0.22 0.42 0.62 0.22 0.07 
1982 -0.32 -0.30 0 0 1 0 0 0.22 0.34 0.54 0.18 0.07 
1983 0.73 0.14 0 0 0 1 0 0.07 0.22 0.38 0.18 0.11 
1984 1.20 0.96 0 0 0 1 1 0.03 0.07 0.11 0.70 0.50 
1985 -1.01 -0.70 1 1 1 0 0 0.62 0.70 0.86 0.07 0.03 
1986 -0.78 -0.57 0 1 1 0 0 0.26 0.58 0.82 0.14 0.07 
1987 -0.82 -0.75 0 1 1 0 0 0.38 0.62 0.82 0.11 0.07 
1988 -0.29 -0.35 0 0 1 0 0 0.11 0.50 0.70 0.11 0.03 
1989 1.56 1.36 0 0 0 1 1 0.03 0.03 0.07 0.86 0.66 
1990 1.18 0.07 0 0 0 1 1 0.11 0.30 0.42 0.34 0.07 
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1991 0.42 0.05 0 0 0 0 0 0.07 0.14 0.34 0.54 0.30 
1992 0.22 0.54 0 0 0 0 0 0.07 0.18 0.30 0.58 0.30 
1993 0.78 -0.21 0 0 0 1 0 0.34 0.46 0.70 0.07 0.03 
1994 0.71 -0.19 0 0 0 1 0 0.22 0.38 0.58 0.26 0.18 
1995 1.36 -0.32 0 0 0 1 1 0.14 0.42 0.62 0.18 0.03 
1996 -1.22 -1.07 1 1 1 0 0 0.54 0.62 0.82 0.03 0.03 
1997 -0.49 -0.69 0 0 1 0 0 0.42 0.70 0.82 0.14 0.03 
1998 -0.16 0.09 0 0 1 0 0 0.22 0.34 0.62 0.34 0.07 
1999 1.18 1.19 0 0 0 1 1 0.03 0.03 0.03 0.82 0.54 
2000 1.06 1.24 0 0 0 1 1 0.03 0.11 0.11 0.86 0.66 
2001 -0.84 0.67 0 1 1 0 0 0.07 0.11 0.34 0.38 0.18 
2002 -0.38 0.29 0 0 1 0 0 0.07 0.11 0.26 0.46 0.26 
2003 -0.26 -0.23 0 0 1 0 0 0.18 0.34 0.46 0.11 0.07 
2004 -0.78 0.60 0 1 1 0 0 0.07 0.14 0.22 0.54 0.38 
2005 0.33 0.16 0 0 0 0 0 0.07 0.22 0.38 0.42 0.18 
2006 -0.33 0.03 0 0 1 0 0 0.14 0.30 0.38 0.34 0.18 
2007 0.53 0.04 0 0 0 1 0 0.03 0.14 0.30 0.46 0.18 
2008 0.62 -0.71 0 0 0 1 0 0.38 0.62 0.82 0.14 0.11 
2009 0.30 -0.04 0 0 0 0 0 0.14 0.30 0.50 0.34 0.14 
2010 -2.56 -1.09 1 1 1 0 0 0.66 0.89 0.93 0.03 0.03 
2011 -1.09 0.89 1 1 1 0 0 0.03 0.03 0.14 0.62 0.30 
2012 1.24 0.07 0 0 0 1 1 0.14 0.30 0.46 0.38 0.26 

 

 

Table A.6.3. As for Table A.6.2. except for N80. 

N80 observed occurrence of NAO probability of NAO forecast 

year obs EM ≤-1 ≤0.5 ≤0 ≥0.5 ≥1 ≤-1 ≤0.5 ≤0 ≥0.5 ≥1 

1980 -0.19 -0.07 0 0 1 0 0 0.03 0.11 0.42 0.26 0.03 

1981 0.57 0.00 0 0 0 1 0 0.03 0.11 0.42 0.14 0.07 

1982 -0.32 -0.47 0 0 1 0 0 0.26 0.38 0.82 0.11 0.03 

1983 0.73 0.86 0 0 0 1 0 0.03 0.07 0.07 0.66 0.38 

1984 1.20 1.39 0 0 0 1 1 0.03 0.03 0.03 0.93 0.78 

1985 -1.01 -0.46 1 1 1 0 0 0.11 0.50 0.86 0.11 0.03 

1986 -0.78 -0.32 0 1 1 0 0 0.11 0.42 0.74 0.07 0.03 

1987 -0.82 -0.28 0 1 1 0 0 0.22 0.34 0.82 0.07 0.03 

1988 -0.29 0.09 0 0 1 0 0 0.07 0.22 0.38 0.26 0.07 

1989 1.56 1.06 0 0 0 1 1 0.03 0.03 0.03 0.82 0.46 

1990 1.18 -0.12 0 0 0 1 1 0.07 0.26 0.58 0.14 0.07 

1991 0.42 0.55 0 0 0 0 0 0.03 0.07 0.22 0.58 0.34 

1992 0.22 -0.27 0 0 0 0 0 0.03 0.22 0.86 0.07 0.03 
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1993 0.78 -0.02 0 0 0 1 0 0.07 0.22 0.42 0.26 0.11 

1994 0.71 0.38 0 0 0 1 0 0.03 0.11 0.22 0.42 0.07 

1995 1.36 0.33 0 0 0 1 1 0.03 0.07 0.26 0.38 0.07 

1996 -1.22 0.24 1 1 1 0 0 0.03 0.14 0.34 0.38 0.07 

1997 -0.49 -0.48 0 0 1 0 0 0.26 0.66 0.86 0.07 0.03 

1998 -0.16 0.14 0 0 1 0 0 0.03 0.07 0.34 0.30 0.07 

1999 1.18 1.89 0 0 0 1 1 0.03 0.03 0.03 0.97 0.89 

2000 1.06 1.15 0 0 0 1 1 0.03 0.03 0.03 0.82 0.62 

2001 -0.84 -0.98 0 1 1 0 0 0.66 0.86 0.93 0.07 0.03 

2002 -0.38 -0.26 0 0 1 0 0 0.18 0.42 0.66 0.11 0.07 

2003 -0.26 -0.03 0 0 1 0 0 0.07 0.18 0.58 0.22 0.03 

2004 -0.78 -0.62 0 1 1 0 0 0.38 0.74 0.82 0.07 0.03 

2005 0.33 0.77 0 0 0 0 0 0.03 0.03 0.11 0.70 0.30 

2006 -0.33 0.08 0 0 1 0 0 0.11 0.26 0.46 0.18 0.07 

2007 0.53 0.48 0 0 0 1 0 0.03 0.07 0.18 0.5 0.18 

2008 0.62 0.90 0 0 0 1 0 0.03 0.03 0.07 0.58 0.34 

2009 0.30 0.04 0 0 0 0 0 0.07 0.14 0.38 0.18 0.07 

2010 -2.56 -2.09 1 1 1 0 0 0.97 0.97 0.97 0.03 0.03 

2011 -1.09 -0.82 1 1 1 0 0 0.46 0.62 0.86 0.03 0.03 

2012 1.24 -0.45 0 0 0 1 1 0.14 0.5 0.74 0.11 0.03 
Table A.6.3. continued 
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Table A.6.4. As for Table A.6.2. except for N93 

N93 observed occurrence of NAO probability of NAO forecast 

year obs EM ≤-1 ≤0.5 ≤0 ≥0.5 ≥1 ≤-1 ≤0.5 ≤0 ≥0.5 ≥1 

1993 0.78 -0.17 0 0 0 1 0 0.07 0.22 0.38 0.26 0.07 

1994 0.71 0.80 0 0 0 1 0 0.03 0.03 0.11 0.50 0.26 

1995 1.36 0.87 0 0 0 1 1 0.03 0.03 0.11 0.62 0.30 

1996 -1.22 0.17 1 1 1 0 0 0.03 0.07 0.42 0.26 0.11 

1997 -0.49 -0.08 0 0 1 0 0 0.03 0.22 0.66 0.14 0.03 

1998 -0.16 -0.01 0 0 1 0 0 0.07 0.26 0.42 0.22 0.07 

1999 1.18 1.15 0 0 0 1 1 0.03 0.03 0.07 0.82 0.50 

2000 1.06 1.09 0 0 0 1 1 0.03 0.03 0.03 0.78 0.66 

2001 -0.84 -0.75 0 1 1 0 0 0.30 0.86 0.97 0.03 0.03 

2002 -0.38 -0.57 0 0 1 0 0 0.18 0.50 0.89 0.03 0.03 

2003 -0.26 -0.18 0 0 1 0 0 0.11 0.42 0.70 0.11 0.03 

2004 -0.78 -1.69 0 1 1 0 0 0.93 0.97 0.97 0.03 0.03 

2005 0.33 1.07 0 0 0 0 0 0.03 0.03 0.07 0.82 0.50 

2006 -0.33 -0.19 0 0 1 0 0 0.07 0.18 0.66 0.07 0.03 

2007 0.53 -0.24 0 0 0 1 0 0.14 0.5 0.62 0.11 0.11 

2008 0.62 0.88 0 0 0 1 0 0.03 0.03 0.03 0.89 0.54 

2009 0.30 0.28 0 0 0 0 0 0.03 0.07 0.22 0.54 0.14 

2010 -2.56 -1.98 1 1 1 0 0 0.97 0.97 0.97 0.03 0.03 

2011 -1.09 -0.85 1 1 1 0 0 0.42 0.82 0.93 0.03 0.03 

2012 1.24 0.07 0 0 0 1 1 0.03 0.22 0.50 0.26 0.03 
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Table A.6.5.  As for Table A.6.2. except  for GloSea5 index 

GloSea5 index observed occurrence of NAO probability of NAO forecast 

year obs EM ≤-1 ≤0.5 ≤0 ≥0.5 ≥1 ≤-1 ≤0.5 ≤0 ≥0.5 ≥1 

1993 0.78 -0.53 0 0 0 1 0 0.26 0.42 0.54 0.11 0.03 

1994 0.71 -0.39 0 0 0 1 0 0.14 0.34 0.62 0.07 0.03 

1995 1.35 1.34 0 0 0 1 1 0.03 0.03 0.11 0.86 0.58 

1996 -1.22 0.75 1 1 1 0 0 0.07 0.07 0.18 0.74 0.42 

1997 -0.49 -0.94 0 0 1 0 0 0.42 0.66 0.82 0.07 0.03 

1998 -0.15 -0.06 0 0 1 0 0 0.22 0.30 0.46 0.26 0.11 

1999 1.18 0.91 0 0 0 1 1 0.03 0.03 0.18 0.66 0.54 

2000 1.06 1.98 0 0 0 1 1 0.03 0.03 0.07 0.89 0.82 

2001 -0.84 -0.04 0 1 1 0 0 0.07 0.30 0.62 0.26 0.11 

2002 -0.38 1.12 0 0 1 0 0 0.03 0.03 0.11 0.70 0.54 

2003 -0.26 -0.28 0 0 1 0 0 0.22 0.50 0.62 0.26 0.14 

2004 -0.78 -0.98 0 1 1 0 0 0.46 0.58 0.82 0.14 0.03 

2005 0.33 -1.70 0 0 0 0 0 0.66 0.86 0.93 0.03 0.03 

2006 -0.33 -0.48 0 0 1 0 0 0.38 0.58 0.66 0.30 0.07 

2007 0.53 -0.11 0 0 0 1 0 0.30 0.50 0.50 0.30 0.26 

2008 0.61 0.82 0 0 0 1 0 0.11 0.11 0.18 0.70 0.50 

2009 0.30 0.35 0 0 0 0 0 0.03 0.14 0.30 0.46 0.18 

2010 -2.56 -1.74 1 1 1 0 0 0.7 0.82 0.89 0.07 0.03 

2011 -1.09 -2.63 1 1 1 0 0 0.93 0.97 0.97 0.03 0.03 

2012 1.24 2.60 0 0 0 1 1 0.03 0.03 0.03 0.97 0.93 
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Table A.6.6.  As for Table A.6.2, except for raw93. 

raw93 observed occurrence of NAO probability of NAO forecast 

year obs EM ≤ 13 ≤ 17 ≤ 21 ≥ 25 ≥ 29 ≤ 13 ≤ 17 ≤ 21 ≥ 25 ≥ 29 

1993 28.53 20.00 0 0 0 1 0 0.03 0.14 0.62 0.18 0.07 

1994 27.93 28.70 0 0 0 1 0 0.03 0.03 0.11 0.74 0.42 

1995 33.73 29.30 0 0 0 1 1 0.03 0.03 0.11 0.58 0.30 

1996 10.43 23.00 1 1 1 0 0 0.03 0.11 0.22 0.38 0.14 

1997 17.03 20.80 0 0 1 0 0 0.18 0.26 0.46 0.26 0.07 

1998 20.07 21.30 0 0 1 0 0 0.07 0.11 0.34 0.26 0.03 

1999 32.17 31.90 0 0 0 1 1 0.03 0.03 0.07 0.86 0.74 

2000 31.03 31.30 0 0 0 1 1 0.03 0.03 0.03 0.89 0.62 

2001 13.83 14.60 0 1 1 0 0 0.38 0.74 0.89 0.03 0.03 

2002 18.03 16.30 0 0 1 0 0 0.26 0.50 0.89 0.07 0.07 

2003 19.13 19.90 0 0 1 0 0 0.14 0.26 0.5 0.26 0.03 

2004 14.43 6.20 0 1 1 0 0 0.86 0.97 0.97 0.03 0.03 

2005 24.43 31.20 0 0 0 0 0 0.03 0.03 0.07 0.82 0.54 

2006 18.50 19.80 0 0 1 0 0 0.11 0.42 0.74 0.14 0.03 

2007 26.30 19.30 0 0 0 1 0 0.07 0.11 0.54 0.18 0.11 

2008 27.03 29.40 0 0 0 1 0 0.03 0.07 0.07 0.82 0.42 

2009 24.20 24.00 0 0 0 0 0 0.03 0.07 0.26 0.46 0.14 

2010 -1.73 3.50 1 1 1 0 0 0.97 0.97 0.97 0.03 0.03 

2011 11.57 13.80 1 1 1 0 0 0.46 0.93 0.97 0.03 0.03 

2012 32.67 22.10 0 0 0 1 1 0.03 0.11 0.26 0.34 0.11 
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Table A.6.7. As for Table A.6.2, except for GloSea5 raw data. 

GloSea5 raw observed occurrence of NAO probability of NAO forecast 

year obs EM ≤13 ≤17 ≤21 ≥25 ≥31 ≤13 ≤17 ≤21 ≥25 ≥31 

1993 28.53 22.45 0 0 0 1 0 0.18 0.22 0.34 0.54 0.38 
1994 27.93 22.70 0 0 0 1 0 0.07 0.14 0.30 0.38 0.11 
1995 33.73 25.87 0 0 0 1 1 0.03 0.11 0.30 0.5 0.38 
1996 10.43 24.80 1 1 1 0 0 0.07 0.18 0.22 0.54 0.22 
1997 17.03 21.70 0 0 1 0 0 0.14 0.30 0.46 0.38 0.30 
1998 20.07 23.32 0 0 1 0 0 0.14 0.26 0.38 0.42 0.22 
1999 32.17 25.08 0 0 0 1 1 0.03 0.18 0.30 0.58 0.30 
2000 31.03 27.04 0 0 0 1 1 0.07 0.14 0.22 0.74 0.42 
2001 13.83 23.34 0 1 1 0 0 0.07 0.11 0.42 0.26 0.22 
2002 18.03 25.46 0 0 1 0 0 0.07 0.14 0.38 0.58 0.42 
2003 19.13 22.91 0 0 1 0 0 0.14 0.18 0.50 0.38 0.26 
2004 14.43 21.63 0 1 1 0 0 0.14 0.38 0.46 0.42 0.26 
2005 24.43 20.31 0 0 0 0 0 0.26 0.34 0.54 0.34 0.18 
2006 18.50 22.54 0 0 1 0 0 0.14 0.34 0.50 0.38 0.30 
2007 26.30 23.22 0 0 0 1 0 0.07 0.42 0.50 0.46 0.30 
2008 27.03 24.91 0 0 0 1 0 0.11 0.18 0.22 0.58 0.38 
2009 24.20 24.06 0 0 0 0 0 0.03 0.18 0.26 0.54 0.18 
2010 -1.73 20.25 1 1 1 0 0 0.30 0.34 0.46 0.38 0.18 
2011 11.57 18.61 1 1 1 0 0 0.26 0.34 0.54 0.34 0.14 
2012 32.67 28.18 0 0 0 1 1 0.07 0.07 0.18 0.70 0.58 
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Table A.6.8. Verification statistics for 1980-1997 regression model, using detrended sea-ice 
data. Asterisks denote significant (p ≤ 0.05) ROC area values. BS is the Brier Score (bracket 
=BSref), BSS is the Brier Skill Score, ROC area is the area under the Relative Operating 
Characteristic (ROC) curve). 
 

NAO forecast BS (BSref) BSS ROC area 

1980-2016 

≤ -1 0.08 (0.10) 0.20 0.68 

≤ -0.5 0.16 (0.17) 0.08 0.69 

≤ 0 0.17 (0.25) 0.31 0.80* 

≥ 0.5 0.22 (0.24) 0.08 0.74* 

≥1 0.14 (0.19) 0.26 0.73* 

1980-1997 

≤ -1 0.09 (0.10) 0.09 0.75 

≤ -0.5 0.15 (0.17) 0.15 0.84* 

≤ 0 0.12 (0.25) 0.51 0.94* 

≥ 0.5 0.20 (0.25) 0.20 0.83* 

≥1 0.12 (0.17) 0.30 0.73 

1998-2016 

≤ -1 0.07 (0.10) 0.31 0.61 

≤ -0.5 0.17 (0.17) 0.02 0.55 

≤ 0 0.22 (0.25) 0.11 0.70 

≥ 0.5 0.25 (0.24) -0.05 0.68 

≥1 0.16 (0.20) 0.22 0.68 
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Figure A.6.1. November Barents-Kara Sea ice concentration, 1979-2015,with a) trend left in, 
trend shown in black, and b) detrended. For the detrended series, the quadratic trend              
y = -0.004x2 + 0.0923x+0.1078 is removed from the data, where x is the index number of the 
year, 1-37. For convenience, the sea-ice concentration was normalised to 1981-2010 then 
detrended, which makes updating the series every year more straightforward. 
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