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Summary of this thesis 

The motivation for this research was the study of a medical cost data set from 

a clinical trial. If a Regulatory Body were to be accept the new intervention that 

has been proposed then a Health Care provider has to budget for future treatments 

for some members of the rest of the population. 

In this Bayesian analysis we want to be able to calculate the expected value 

for one unobserved member of this finite population from its posterior predictive 

distribution by firstly establishing the parametric data model that best captures 

the positive skew characteristics of the costs. We then develop a novel approach 

to modelling the priors that enable an expert's prior beliefs to be elicited while 

permitting a limited analytical study of the model. 

These techniques have been applied to recent medical data sets to establish 

their comparative efficiency when compared with classical estimators. 
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Chapter 1 

Introduction 

1.1 Historical background 

The birth of Evidence Based Medicine can be traced back to the Crimea War and 

Florence Nightingale. Although born in Italy her grandmother lived in Sheffield 

and her family resided in Derbyshire for a while. The year 2010 contains two of 

the important anniversaries relating to her. The 15th June 1860 is the date when 

she admitted her first 15 students to her school for nursing at St Thomas' Hospital 

in London and 13th August is the centenary of her death. 

Florence Nightingale was better known as "The Lady with the Lamp" which 

derives from a report in The Times quoted by Cook (1913) and popularised by a 

poem by Longfellow (1857). She was sent to the Black Sea in 1854 with thirty-eight 

nurses to provide medical care for the wounded in the war against the Russians. 

When she returned to England for two years she collected evidence about the 

death rates for injured soldiers in hospital, when she came to believe that most of 

the soldiers at the hospital were not dying primarily from their battle wounds but 

from the diseases that they contracted whilst under medical care in the military 

hospital. 
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To support her numbers she devised Polar area diagrams (see for example 

Nightingale (1859)) which, by the twenty-first century, have evolved into what we 

now know as Pie charts. In 1858 she became the first woman to be elected a 

Fellow of the Statistical Society of London, as the Royal Statistical Society was 

then known, in recognition of her contribution to statistics. 

If we now move forward in time to around 1990 then the concept of Clinical 

Trials was well established, see for example Friedman et al (1998), and consisted 

of the following four phases 

Phase Description Trialists Testing 

I initial volunteers safety 

II clinical patients dosage & efficacy 

III multi-centre patients safety, 

comparative clinical efficacy & regulatory 

IV post-marketing patients side-effects 

The International Conference on Harmonisation of Technical Requirements for 

Registration of Pharmaceuticals for Human Use (ICH) was launched in 1990 to 

bring together the regulatory and pharmaceutical industry of Europe, Japan and 

the United States. Its mission is to "make recommendations towards achieving 

greater harmonisation in the interpretation and application of technical guidelines 

and requirements for pharmaceutical product registration, thereby reducing or 

obviating duplication of tesing carried out during the research and development of 

new human medicines" . 

ICH Guidelines are issued for Quality, Safety, Multidisciplinary and Efficacy 

topics - which includes Clinical Trials E7-E11. 
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So until around 1990 if efficacy improved, with no adverse safety effects, then 

a Health Care Provider could make a decision, post Phase III trials, to accept the 

new treatment or intervention. 

However, the rising costs of new treatments that were being developed in an 

environment of limited, if not fixed, financial resources meant that Health Care 

Providers were forced to consider both cost and effectiveness and then to look at 

Cost-effectiveness by involving Health Economists. Indeed the National Institute 

for Health and Clinical Excellence (NICE) is an NHS organisation established in 

the UK in 1999 with a brief to consider both cost and effectiveness evaluations 

when carrying out technology appraisals for proposed new interventions. 

The initial Cost-effectiveness investigations, when undertaken statistically, were 

made using a frequentist approach in papers such as Willan and O'Brien (1996) 

and Drummond and O'Brien (1993) and used the Incremental Cost-Effectiveness 

Ratio (ICER) to make treatment comparisons, where 

ICER = Ilc 
Ile 

and Ilc and Ile will be defined in Section 1.2. 

Quantifying uncertainty for the estimator of the ICER gave difficulties, see for 

example O'Brien et a1 (1994), because it was the ratio of two random variables 

and in Willan & O'Brien (1996) they resorted to Fieller's Theorem, see Fieller 

(1954). This approach was continued, see for example Willan (2001), but with 

the author beginning to recognise both Net Monetary Benefit, see Section 1.2, 

and the Bayesian approach. The Bayesian approach was argued in 0 'Hagan & 

Stevens (2002) with the advantages of the NMB and subsequently the CEAC, see 

Section 1.2, introduced. 

3 



So the natural framework for such analysis is Bayesian inference as was argued 

in Briggs (1999) and O'Hagan et al (2000) and the Bayesian approach has been 

developed, using retrospective analysis of Phase III studies at first. 

All of the initial approaches to Cost-Effectiveness analysis used the simplifying 

assumption of normality for the the underlying cost and efficacy data, or at least 

that the sample size is large enough for sample means to be normally distributed. 

One of the main research interests in this theses is to identify data models that 

fit the cost data better than a normal distribution and this topic will be pursued 

in Chapter 2. 

1.2 Model definition 

This model is introduced in O'Hagan et al (2001) and describes a clinical trial to 

compare two treatments, where we wish to assess whether treatment 2 is more 

cost-effective then treatment 1. 

We have ni patients in treatment group i (i = 1 or 2) where they will provide 

efficacy data eij and cost data Cij (j = 1,2, ... , ni)' Let Yij be the vector (eij, Cij)T 

and the complete data set be Y = {Yij : i = 1,2; j = 1,2, ... , nil. 

For any treatment i let the population mean efficacy be J-li with population 

mean cost similarly defined as 'Yi and covariance matrix Ei to allow for correlation 

between cost and efficacy for a given patient. Then the mean incremental efficacy 

of treatment 2 over treatment 1 is 4le = J-l2 - J-ll where 4lc is the corresponding 

mean cost increment. If we let ai = (J-li' 'Yif then the parameters may be defined 

as () = (aI, a2, Ell E2)' 
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The Net Monetary Benefit is defined to be 

where K is the maximum cost per unit improvement in efficacy that a health 

provider is prepared to pay. Hence if J3(K) > 0 treatment 2 is more cost-effective 

than treatment 1. 

The assumption made in O'Hagan et a1 (2001) is that it is reasonable to assume 

independence between patients conditional on the underlying parameters. Whilst 

their model assumes a simple structure and there are many circumstances when 

it is reasonable to assume independence between patients we do need to recognise 

that there will also be some situations when this would not be reasonable and the 

model used would need to capture the dependence between patients. 

More recent research, see for example Grieve et a1 (2005) and Manca et al 

(2005), have addressed multinational randomised clinical trials and they have used 

multilevel models to represent the two sources of variation (between country and 

between patients, within a country). These models capture the more complex 

hierarchical structure that may be present within the data but still proceed using 

independence between patients conditional on the underlying parameters. 

We will proceed here under the customary assumption of independence between 

patients conditional on the underlying parameters when our data model says that 

Yij!O '" N(Oi' E i ) : i = 1,2; j = 1,2, .. . , ni 

and after formulating appropriate prior beliefs we can then examine the posterior 

probability that J3(K) is positive, Q(K) as 

Q(K) = p{J3(K) > Oly} 

which, regarded as a function of K, is called the Cost-Effectiveness Acceptability 

Curve (CEAC). For the justification of the interpretation of this approach only 

within a Bayesian framework see Section 1.5. 
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1.3 The Cost-effectiveness plane 

In Section 1.2 for treatment i we let the population mean efficacy be ILi with 

mean cost similarly defined as "Ii. If we let the co-ordinate pair (IL, "Ii) represent 

treatment Ti then the Cost-effectiveness plane allows the population mean cost 

and effectiveness for many different treatments to be plotted in the same two 

dimensional plane as shown in Figure 1.1 for six treatments 

T6 ~o 

T3 

\ 
o 

o 

\ 
T1 T5 

\ 
o f 

T4 

T2 

Efficacy 

Figure 1.1: The Cost-effectiveness plane for treatments type Al to A6 

However, the usual practical situation will be the comparison of an existing 

treatment against an alternative proposed treatment. For this specification it is 

more useful to take the existing treatment as the base point and then consider the 

origin to be located at this point. The difference in cost and effectiveness between 

the existing treatment and any other treatment allows comparisons to be made 

between pairs of treatments. 

6 



1.4 The Incremental Cost-effectiveness plane 

This concept was introduced by Black (1990). It enables graphical comparisons 

between pairs of treatments, taking the existing treatment as the base point and 

is a development of the The Cost-effectiveness plane shown in Figure 1.1. It 

is illustrated in Figure 1.2 below, where the diagonal continuous line represents 

K~e = ~c 

Incremental Efficacy 

Figure 1.2: The Incremental Cost-effectiveness plane 

The plane naturally divides into four quadrants labelled NE, NW, SW and SE 

for unique identification and when subdivision is required then the cartographical 

description is continued as, for example, the NE quadrant divides into NNE and 

ENE regions. 
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The line ~c = K ~e partitions the plane where the area below this line can be 

seen to represent 

(3( K) = K ~e - ~c > 0 

the region where treatment 2 will be preferred to (the existing) treatment 1 because 

ENE region has a cost increase that is less than K x the efficacy gain 

SE quadrant has a cost reduction accompanied by an efficacy gain 

SSW region has a cost reduction that is greater than K x the reduction in efficacy. 

1.5 The Cost-Effectiveness Acceptability Curve 

(CEAC) 

The concept of the CEAC was introduced by Van Rout et al (1994) in a frequentist 

context. 

We know from, Section 1.2 that the population mean incremental efficacy of 

treatment 2 over treatment 1 is ~e = /J2 - /Jl where ~c is the corresponding 

population mean cost increment and the Net Monetary Benefit is defined to be 

where K is the maximum cost per unit improvement in efficacy that a health 

provider is prepared to pay. Renee if (3(K) > 0 treatment 2 is more cost-effective 

than treatment 1. 

Van Rout et al (1994) introduced the CEAC as the value of the probability 

that treatment 2 is acceptable for some given fixed value of K or the probability 

that (~e, Ac) falls within the acceptability region. 

8 



However, within frequentist statistics unknown parameters are not random 

variables following probability distributions and hence probability statements can 

not be made about their possible values. 

The probability that (Lle , Llc) falls within the acceptability region is meaningful 

only in a Bayesian framework. 

So after formulating appropriate prior beliefs we can then examine the posterior 

probability that (3(K) is positive, Q(K), as 

Q(K) = p{{3(K) > DiY} 

which, regarded as a function of K, is called the Cost-Effectiveness Acceptability 

Curve (CEAC). 

This definition recognizes that the acceptability of treatment 2 depends on the 

value of K, the maximum cost per unit improvement in efficacy that a health 

provider is prepared to pay, which mayor may not be known in practise. Hence 

it is more useful to determine Q(K) over a range of values of K (and possibly 

different representations of prior information) as we can show in the chart below 

" 
-......................... . 

to tI 1~ 

IogK 

Figure 1.3: The CEAC : A chart to show a possible Q(K) 
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1.6 The pMDI data set 

The CFC-propelled pressurized metered-dose inhaler pMDI has been used to treat 

Asthma for more than thirty years. However, amongst the perceived problems with 

pMDI-propelled inhalers is their contribution, however small, to the destruction of 

the ozone layer. This has led to the development of alternative inhalers including 

the inspiratory flow-driven multidose dry powder inhaler called Turbuhaler®. 

Although a number of studies have shown specific advantages for Turbuhaler® 

over pMDI's, the study that was conducted by Pauwels et al (1996) was the first 

long-term study performed to compare the effectiveness of pMDI (treatment 1) 

against Turbuhaler® (treatment 2). A total of 1004 patients from 77 centres in 7 

countries took part in the year long trial. The pooled results were evaluated for 

effectiveness by Pauwels et al (1996) using two common definitions of effectiveness. 

When Liljas et al (1997) conducted their cost-effectiveness analysis, they had to 

recognise that some of the well known difficulties associated with cost comparisons 

between countries precluded the pooling of data. In their study the Canadian data 

was selected because the largest group of patients (445) came from that country. 

They showed that Turbuhaler® was dominant in the sense that it was both cheaper 

and more effective as well as reducing the contribution to the destruction of the 

ozone layer. 

The UK data contained 58 patients receiving pMDI and 62 patients receiving 

Turbuhaler®. For each patient there was an observed measure of efficacy and 

an observed total cost for that trial period. This data set has been studied by 

O'Hagan et al (2001) using a Bayesian approach. The O'Hagan & Stevens (2003) 

paper studied the cost data for the pMDI+ patient group (those patients treated 

with pMDI and having a positive outcome ie no exacerbations) which contains 26 
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observations and is shown in Figure 1.4 below 

o ... 

o 

o 5000 10000 15000 20000 25000 

Cost 

Figure 1.4: The pMDI+ data set 

This data set contains positive values and is right, or positively, skewed with 

a few very large values. Whilst this would not be considered in any way atypical 

for a medical cost data set, the few very large values mayor may not be present 

in another data set. Typically the data set may be small (in absolute numbers) 

and small in comparison with the size of our population. 

It is of interest to note that the coefficient of skewness for the pMDI+ data set 

is 3.48 while, anticipating the analysis which is to come, for the log transformed 

pMDI+ data set it is 1.75. So even after the log transformation has been made 

some degree of positive skewness has been retained. 
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1.7 The structure of this thesis 

The motivation for this research is the study of the pMDI+ data set introduced 

above with the main interest being how a Health Care Provider can budget for the 

cost of an intervention, as the posterior predictive mean, for unobserved members 

of a population. 

The research will establish a suitable data model and will then develop prior 

beliefs that will satisfy three criteria. They will be shown analytically to produce 

values for the posterior predictive mean that will be shown to be finite, will allow 

numerical evaluation and will enable an expert's prior beliefs to be elicited. 

The early work on Cost-effectiveness modelling made the convenient, but fairly 

unrealistic, assumption that costs followed a Normal distribution. The purpose of 

Chapter 2 is to explore realistic models for costs that capture the non-negative 

positive skew nature of the pMDI + cost data set. 

We will show that conducting a Bayesian comparison of candidate models tells 

us that the logNormal distribution is the most appropriate data model for the 

pMDI+ cost data set and indeed the logNormal distribution is frequently used as 

a financial parametric model. 

It is in Section 2.4.2 that we first encounter a double integral of the form 

m>.(w) = 100 I: 7r(J.l, 0-
2) [f>.(y)]b dJ.lda2 

where the random variable Y, observed as y, is transformed as X = .,\-l(y>. - 1) 

where X '" N(J.l, a2
). 

The type of integrand in the double integrals that we will encounter in this 

thesis naturally lead, for ease of evaluation, to determining the integral with respect 

to J.l first. 
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In Chapter 3 we will examine inference for the posterior predictive mean from 

a finite population, using super-population theory to determine how to be able to 

predict future observations. 

In Section 3.4.2 we will use WinBUGS to produce true values for the posterior 

predictive mean. When using WinBUGS we can only specify beliefs that are 

proper and hence we need to give numerical values to the parameters of the prior 

distributions which determines how informative are our prior beliefs. 

Default priors can be considered a reference against which other priors may be 

compared. They may be informative or, more usually, noninformative. 

In clinical trials sceptical priors express scepticism about large treatment effects 

and have been put forward as a reasonable expression of doubt.The sceptical prior 

formalises the belief that large treatment differences are unlikely. This is usually 

set up, see Ashby (2000), as having a mean of no treatment effect and only a 

small probability of the effect achieving a clinically relevant effect. Alternatively, 

subjective clinical opinion may form the basis of a prior. 

Tessella pIc, see Tessella (2009/11), believe that the most obvious, but also 

contentious use of the Bayesian approach in clinical trials is to include a prior 

belief for the effect of the treatment in a clinical trial. Normally they would have 

to include a sceptical prior in order that the posterior results are convincing to 

a regulatory body such as the FDA. The US Department of Health and Human 

Services, Food and Drug Administration (FDA) is the US regulatory body that 

forms part of the Iell. In its Guidance for the Use of Bayesian Statistics in Medical 

Device Clinical Trials, FDA (2010), it has recommended that prior distributions 

be based on "good" information such as pilot studies, which should be presented 

and discussed with FDA reviewers before the study begins. This will then lead 

to informative priors but the FDA have suggested that noninformative priors will 

still need to be used in certain circumstances. 
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An important question is whose prior information. This information may be 

possessed by the developing company. In general the regulatory bodies start from 

a position of scepticism and may interpret this as meaning that they should have a 

prior prejudice against new treatments. The choice of prior beliefs is not a simple 

matter. It has been stated in O'Hagan & Stevens (2001) that an appropriate prior 

should incorporate scepticism about the cost-effectiveness of a new treatment. 

The comments above are motivated by the effectiveness leg of cost-effectiveness 

but are equally applicable to the cost leg. 

So to return to the question of the numerical values that we will give to the 

parameters of the prior distributions, we wish to choose a sceptical prior belief that 

is noninformative. In Congdon (2001), Example 2.4 takes a G(0.0001,0.0001) prior 

for the precision and a N(O,lOOOO) for the mean. This specification is even more 

diffuse than that which we will use in Section 3.4.2 and shows how far researchers 

may be prepared to go to capture noninformative prior beliefs. 

We believe that the numerical values that we will give to the parameters of the 

prior distributions in Section 3.4.2 have been chosen to include any values that we 

might expect to see for the mean and precision whereas more restrictive choices 

for the parameter values may lead to conflict with future data sets. 

WinBUGS can only produce true values for the posterior predictive mean that 

are finite. However, the instability of the results produced by WinBUGS, when 

using customary very weak priors for a logNormal data model, as the number of 

samples is increased do indicate that this model produces infinite values. 

A theoretical analysis will establish that this is indeed the case when using 

customary noninformative prior beliefs for a logNormal data model. 

14 



The main focus of our research will begin in Chapter 4 where we will develop 

a novel approach to modelling independent prior beliefs for the shape and scale 

parameters for this logNormal data model. We will utilise some of the properties 

of the logNormal distribution that have been introduced in the Glossary to be able 

to restructure our prior beliefs in the observation space and work with the Median 

(a function of the scale parameter alone) and the Quantile Ratio (a function of the 

shape parameter alone). 

We will then establish analytically the existence of finite posterior predictive 

moments. In particular, we will show that posterior predictive moments for an 

unobserved member of the population exist for a wide choice of prior beliefs for 

the Median but care is required to ensure convergence for our choice of prior belief 

for the Quantile Ratio. 

We will introduce in Chapter 4 an alternative representation and notation for 

"the posterior predictive mean of an unobserved member of the population for our 

Bayesian model" equivalently "the posterior expectation of the population mean" 

as the "Bayesian posterior expectation" , which is lE{ exp(p, + 0'2/2) \y}, or the Bpe. 

We will work with whichever definition is most convenient in the future. 

In Chapter 5 we will develop default values for the prior beliefs introduced 

in Chapter 4 when they are trained by models introduced in Briggs et al (2005). 

We will then make comparisons between the estimators that they introduced and 

the posterior predictive mean of an unobserved member of the population for our 

Bayesian model for their data sets. We will extend their analysis by considering 

other data generating models as well as other observed data sets. 
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We will also, in contrast to the Briggs et al (2005) simulation study, be able 

to present a number of theoretical results for their type of comparisons and also 

be able to compare shrinkage estimators using theoretical results for versions of 

their estimators with our Bpe. Finally we will make comparisons between the 

estimators for the mean of logNormal distributions considered in Zhou (1998) and 

our Bpe. 

In Chapter 6 we will develop the principles behind the procedure to elicit the 

prior beliefs that have been proposed in Chapter 4. The details of The elicitation 

will be shown in the Appendix. Two case studies applying this procedure, where 

in each case we have elicited an expert's prior beliefs about salary distribution, 

will also be presented. 

We will summarise the achievements of this thesis in Chapter 7 and present 

opportunities for further research. 
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Chapter 2 

Data model selection 

2.1 Introduction 

This chapter will explore some possible candidate models that will capture the 

non-negative positive skew shape of the distribution of the random variable Y, 

observed as y, in the pMDI+ data set. 

Bayesian statistics recognises two kinds of uncertainty - which is alluded to 

in The elicitation in the Appendix in the section headed Uncertainty. Epistemic 

uncertainty arises because of lack of knowledge, such as the values of parameters. 

Aleatory uncertainty arises because of randomness. 

Whenever we have observed data then we will assume that this data has arisen 

from some "true" data-generating process which we would be able to specify if 

we had complete knowledge. Uncertainty about this true data-generating process 

exists because we don't have complete knowledge and this uncertainty is typically 

expressed through a statistical model, which is the set of possible data-generating 

processes. 
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To decide the statistical model that is most appropriate for a given data set we 

use model selection techniques. There are three main Bayesian methods, namely 

the full probability model that we will adopt here, the Bayes information criterion 

or BIC and the Deviance information criterion or DIC. 

The Schwarz criterion, also known as the BIC, was introduced by Schwarz 

(1978) and is a common approximation to the log of the Bayes factor. It favours 

more strongly the model with fewer parameters. An equivalent result was obtained 

by Poskitt (1987) for quite general models. 

For complex hierarchical models, where the number of parameters may not be 

a well-defined quantity, Spiegelhalter et al (2002) adopted a semiformal approach 

to introduce the DIe. 

The full probability model leads to comparisons of pairs of models using the 

ratio of the marginal (or integrated) densities for the models being considered, 

known as the Bayes factor. Analytical evaluation of these marginal densities is 

possible in certain situations, see DeGroot (1970) and Zellner (1971a), and this is 

the approach that we will follow here. 

When comparing pairs of models in a Bayesian framework then hypothesis 

testing is undertaken by determining the posterior odds in favour of one of the 

models which can be expressed, as will be shown in Section 2.2, as the prior odds 

in favour of that model multiplied by the Bayes factor in favour of that model. 

The Bayes factor is derived after observing the data and, if the Bayes factor is 

greater than one, then that model fits the data better than the alternative model. 

As we will show in Section 2.2 the Bayes factor for comparing model Mi against 

Mj for the observed data y, Bij(y), is 

(2.1) 

where 
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is the marginal density of y under Mi , whose parameters are defined over the 

parameter space ni , with prior density 1Ti{Oi) and likelihood fi{yIOi)' The marginal 

densities are obtained by integrating over the parameter space for the model being 

considered where, for Equation 2.1 to be defined, it is necessary that the marginal 

density of each y under Mi is proper. 

The concepts underlying Bayes factors are introduced in O'Hagan and Forster 

(2004) and Gelman et al (1995) with a more detailed discussion given in Kass and 

Raftery (1995). Amongst the limitations of Bayes factors are their sensitivity to 

the choice of the data model and prior beliefs. When there is not any available 

information from which to construct prior beliefs then the invariance principle 

proposed by Jeffreys for noninformative priors, see Jeffreys (1961), is frequently 

adopted. We will follow Jeffreys' rule in Section 2.5.2 for our Gamma data model 

and in Section 2.4.2 for our Normal data model, although we will follow Jeffreys 

himself and rather than using 1T{J-t, 0'2) = (0'3)-1, which the rule suggests, we will 

specify 1T{J.L, 0'2) = (0'2)-1, as he did. 

General noninformative prior beliefs which are also improper will be introduced 

in Section 2.2.1 where we will not impose the restriction that the marginal density 

of each y under Mi is proper. To deal with the difficulty that this causes Smith and 

Spiegelhalter (1980) and Spiegelhalter and Smith (1982) introduced the concept 

of an "imaginary training sample device" . 

Another approach relies on the concept of the "training sample" introduced by 

Lempers (1971) from which partial Bayes factors will be developed in Section 2.2.1. 

Berger and Pericchi (1996) developed, what they called, intrinsic Bayes factors by 

averaging the partial Bayes factors arising from all the possible training samples 

arising from some fixed training sample size. We will follow here the fractional 

Bayes factor approach which we will introduce in Section 2.2.2 and so allow Bayes 

factors to be calculated without having to specify which data points are present 

in the training sample. 
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We will simplify the notation used from Section 2.3 onwards for the rest of 

Chapter 2 and refer to, for example, fx{x) rather than the strictly correct fx{x/O). 

The "composite models" that will be developed here are formulated by firstly 

considering a range of possible power transformations, as introduced in Section 2.3, 

to reduce the positive skew shape. In Sections 2.4 and 2.5 we will develop the 

Bayesian analysis for the two parametric models that will be considered after 

applying an appropriate power transformation to Y. 

In Section 2.6 the theory will be produced to allow the fBf to be defined for the 

comparison of a range of rootNormal vs logNormal and logNormal vs root Gamma 

models. In Section 2.8 will be the numerical results to show these comparisons for 

the pMDI+ data set. 

Section 2.7 will discuss the choice of training fraction to be used while in 

Section 2.8.3 we will produce numerical results to support the choice of training 

fraction. This latter section will close with the justification for proceeding with 

the use of the logNormal data model using non-Bayesian examples. 

There are of course many Bayesian examples, for example Padgett and Johnson 

(1983) considered applications in reliability and life testing, Chen (2002) gave an 

application in fish stock-recruitment, Zellner (1971b) explored both the logNormal 

distribution and logNormal regression models where his particular field of interest 

is econometrics whilst Khan et a1 (2005) have explored Bayesian prediction under 

censoring as used in biological, industrial and medical sciences. 

2.1.1 Acknowledgement of my source material 

Section 2.2 is based on Chapter 7 from O'Hagan and Forster (2004) and also on 

O'Hagan (1995) and (1997). Sections 2.4, 2.5, 2.6 and 2.8 are built around hand 

written notes by Prof O'Hagan. 
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2.2 Bayes factors for model comparisons 

We will develop the analysis for the case of m models under consideration for the 

data set y = (Yl 1 Y2 ... Yn) which are n observations of the independent identically 

distributed random variables (Yi, Y2 •• • Yn). 

Let model Mi have parameters 0 defined over a parameter space OJ with prior 

density 1l"i(Oi) and likelihood fi(yI8 i ). 

Hence the posterior distribution for Oil conditional on Mil becomes 

where 

, (2.2) 

is the marginal density of y under Mi. 

If we let the prior probability for model Mi be 

then we can define a unified model Mo, with parameter 001 whose parameter space 

is 0 0 = U:'l 0i' Model Mi is chosen whenever 00 E Oi. 

So the prior density becomes 

if 

and hence the posterior density is 

if 

where 
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may be found using Bayes theorem as 

* p{ylOo E ni}p{Oo E nil 
Pi = p{y} 

mi(y) 
- Pimo(y) 

where 
m 

mo(y) = LPimi(y) 
i=1 

is the marginal density of y under Mo. 

To compare model Mi against model Mj we will determine the ratio of their 

posterior probabilities as 

where Bij(Y) is called the Bayes factor for comparing model Mi against Mj for the 

observed data y. 

The ratio pdpj represents the prior odds for comparing model Mi against model 

Mj • The corresponding ratio pi /Pj, as the posterior odds, is expressed as the prior 

odds multiplied by the Bayes factor. 

The Bayes factor is a summary of (the strength of) the evidence provided by 

the data in favour of one statistical model when compared with an alternative. 

If model Mj fits the data y better than model Mi then the Bayes factor will be 

less than 1 and the posterior odds will be less than the prior odds. Conversely, 

if model Mi fits the data y better than model Mj then the Bayes factor will be 

greater than 1 and the posterior odds will be greater than the prior odds. 

We obtained the marginal density mi (y) by integrating over the parameter 

space ni as the parameter ()i is unknown. This relationship, see (2.2), requires the 

prior density 7Ti(Oi) and may therefore be sensitive to the prior that is chosen. 
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2.2.1 Partial Bayes factors for improper priors 

Consider now comparing model 1 against model 2 using the Bayes factor 

B ( ) _ ml(Y) 
12 y - () m2Y 

(2.3) 

where 

If we wish to represent weak prior information about, say, the parameter 0 1 as 

an noninformative prior distribution then this will generally be improper, which 

is defined as 

where Jn1 k1(Ol)d01 does not converge. 

It is possible to write 

where Cl is an undefined (and strictly non-existent) constant. 

The Bayes factor then becomes 

and depends on the unspecified Cl. 

Similarly, if an improper prior for model 2 is expressed as 1r'2(02) = C2k2(02) 

then 

which depends on the unspecified ratio CI/C2' 
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To resolve this problem we will introduce the concept of a "training sample" 

as first proposed by Lempers (1971). 

We will partition the data y as y = (w, z), where w denotes the training sample 

which will be used to provide improved prior information and z is the comparison 

sample. There are not any assumptions made about which observations comprise 

w from within y here, where we will resolve the selection of w in Section 2.2.2. 

Using w to derive posterior distributions gives 

.((}.I ) = 7l"i((}i)!i(wl(}i) 
p, ,w ( ) mi w 

where 

mi(w) = in; 7l"i((}i)!i(wl(}i)d(}i. 

(2.4) 

(2.5) 

If 7l"i((}i) = Ciki((}i) then Pi(Oilw), from (2.4) above, contains Ci in its numerator 

and denominator but as long as the integral (2.5) for mi(w) converges then the 

Ci's may be cancelled and Pi(Oilw) does not contain Ci. 

So when the training data w produces proper posterior distributions we are 

able to produce the Bayes factor using the comparison sample z as 

where 

B ( I ) - ml(zlw) 
12 z w - (I) m2 zw 

(2.6) 

B I2 (zlw) is called a partial Bayes factor and is now properly defined because 

any unspecified constants in the prior distributions 7l"i((}i) will have been cancelled 

out when calculating the posterior distributions shown in (2.4) above and so will 

not be present in mi{zlw). Substituting (2.4) into (2.6) shows that 

and hence 

mi(zlw) = mi(Y) 
mi{w) 

24 

(2.7) 



2.2.2 Fractional Bayes factors 

Whilst partial Bayes factors allow the comparison of models based on improper 

prior distributions, they introduce the partition of the full data y into the two 

parts wand z where there are not any assumptions made about which observations 

comprise wand z. 

If the full data y contains n observations and the training sample w contains 

g observations then let t = gIn define the training fraction, the proportion of the 

observations used to provide improved prior information. 

O'Hagan (1991) proposed the use of a training fraction and showed in O'Hagan 

(1995) that, asymptotically, the likelihood fi(wI8i), based only on the training 

sample W, behaves as the full likelihood fi(yI8 i ) raised to the power t. 

Equation (2.7) may be rearranged as 

B12(zlw) 
B12(Y) 

-
B12(W) 

- mt(Y) /mt(w) 
m2(Y) m2(w) 

ml(Y) / m2(Y) - ml(w) m2(w) 
m~(y) -
m~(y) 

where 

m~(y) = mi(Y) = In, '7ri(8 i )fi(YI8i)d8i 
, mi(W) In, 'lTi(8i)[fi(yI8i )]tdBi 

and we are then able to make an alternative definition of the Bayes factor (2.3) 

for comparing model Ml against M2 for the data y when using improper priors as 

Bt (y) = mHy) 
12 m~(y) 

where Bf2(Y) was designated the fractional Bayes factor (fBf) in O'Hagan (1995). 
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2.3 Power transformations 

2.3.1 The General Power Transformation 

The General Power Transformation (GPT) was introduced by Box and Cox (1964) 

as 

{ 

A-l(y>. - 1) : A ~ 0 
X= 

log Y : A = 0 

for any strictly positive Y, where they worked in a non-Bayesian framework using 

maximum likelihood techniques to determine A. 

2.3.2 The Simple Power Transformation 

The Simple Power Transformation (SPT) is defined as 

x = y>. 

where we will work with any strictly positive value of Y. 

2.3.3 Choice of range for ,\ 

In Section 1.6 we introduced the pMDI+ data set. This data set contains observed 

values in the range 48 to 26201 and is positively skewed. We will confine our 

analysis to positively skewed data sets. 

So for any 0 < A < 1, for a SPT we can transform Y E (0, (0) to X E (0, (0) 

whereas for a GPT we can transform Y E (0, (0) to X E (-l/A, (0), where the 

choice of ,\ is influenced by the degree of skewness. As A -+ 0, increasing degrees 

of positive skewness are reduced. 

After initially taking a power transformation, where we will work with ..\ in the 

range ,\ E [0,1], we will now formulate a Bayesian analysis using Bayes factors to 

compare candidate models. 
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2.4 The Normal model 

2.4.1 The model 

To look for a realistic model for the random variable Y, observed as y, we will 

make a General Power Transformation from Y to the normally distributed random 

variable X as 

where this transformation is continuous at >. = O. 

As X is defined on X E (-1/>., 00 ), unless >. = 0 this transformation will only 

be an approximation as a normally distributed random variable is defined over the 

range (-00,00). Particular care is needed when 1/>. takes values close to 1, say 

less than 5, as the approximation will be at its most crude at best. 

If X I'V N(J.L, 0'2) then 

1 [ (x - J.L)2] fx(x) = ~exp - 2 2 27r0'2 (7 

and when Y = g(X) then 

fy(y) 
d 

- dy[g-l(y)] fX[g-l(y)] 

- :v [>. -l(y,\ - l))fx(x). 

So 

and 

f>.(y) - II !>,(Yi) 

- (27r0'2ti (II Yi)'>.-l exp [- 2~2 I)xi - J.L)2] 

- (21r,,2)-~ (II y, )'-' exp [- 2~2 {SA + nix A - I' )2} ] 

27 



where Xi = )..-l(y; - 1) depends on ).. although the index A has been omitted for 

simplicity and I)Xi - fl? = L((xi - x,\) + (XA - fl))2, with SA = L(xi - XA)2 
1 

and x,\ = n LXi. 

To use this model for the population mean problem we need to be able to find 

lE {Y} = lE {(1 + AX)!}. 

Whilst we are unable in general to find the expectation flA of the fh power 

of the random variable (1 + AX) we are able to do it for the following special 

cases where Y is described as belonging to the rootNormal family of distributions 

indexed by the parameter A 

(i) A = 1 : Y I'V Normal and Y = 1 + X 

with fll = 1 + fl 

(ii) A = ~ : Y I'V squarerootNormal and Y = (1 + ~X)2 = 1 + X + ~X2 
with J.L! = 1 + (J.L + ~(2) + ~fl2 

(iii) A = i : Y", cuberootNormal and Y = (1 + iX)3 = 1 + X + iX2 + 2\X3 • 

. with J.Ll = 1 + (fl + !(2) + (!fl2 + ~fl(2) + 2l7Jj3 

(iv) For succeeding values of A = !, where m is a positive integer, then it is 

always possible to find lE {Y} by using the moment generating function of X, 

namely exp(Jjs + ~o2s2). 

However, as m increases, then Y will increasingly behave like the logNormal 

random variable that arises at the limiting value of A = 0 

(v) A = 0 : Y I'V logNormal and Y = exp(X) 

with flo = exp(Jj + ~(2). 
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2.4.2 Bayesian analysis 

The marginal density for a training sample w that represents a training fraction 

t of the data y, whose General Power Transformation is indexed by A, when the 

customary improper prior 7r(J-L, (12) = ((12tl is specified, is 

100 100 nt (~-l)t 
m.\(w) - D -00 7r(J-L, 0-2

) [f.\(y)]t dJ-Ld0-2 = (27r)-T (II Yi) 

x 100 100 
(0-2)-~t-l exp [-~ {S~ + n(x~ - J-L)2}] dJ-Ld0-2 

D -00 20-

and noting that 

we then obtain 

nt (II ) (~-l)t m.\(w) - (27rtT Yi, y27r/nt 

100 ( 2)_(nt!j-lLl (S~t 1 ) d 2 
X 0- exp --- 0-

D 2 (12 
(2.8) 

where the integral part of (2.8) may be evaluated after making the transformation 

as 

S.\t 1 
Z=--

2 0-2 

la, oo( 2)_(nt-l)_1 (S.\t 1 ) d 2 0- 2 exp --- 0-
D . 2 0-2 

and it follows that 

m,(w) = (21ft 'n';" (IIy,t-')' {£r (nt; 1) en _'"','1 

- (1r s,t 'n';'1 (IT y, /'-')' IF. r (nt ; 1) r~ . (2.9) 
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For m~(w) to be finite it is necessary that r (nt;-l) exists and so, from the 

Glossary, this means that nt - 1 > 0 or the training fraction t > lin. 

Therefore 

(2.10) 

Hence, when the General Power Transformation indexed by A of the random 

variable Y has a Normal distribution then, when making a model selection from 

within this root Normal family, the fBf for comparing model 1 (Ad vs model 2 (A2) 

for data y becomes 

and in particular when comparing model 1 against the logNormal for model 2, 

A2 = 0, then 

(2.11) 

where, when A = 0, Xi = log Yi and Xo = .!. L log Yi with So = L (log Yi - xO)2. 
n 
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2.5 The Gamma model 

2.5.1 The model 

To look for a realistic model for the random variable Y, observed as y, we only 

need to make a Simple Power Transformation from Y to X, where X is a Gamma 

random variable, as 

X=y>' 

because X has a strictly positive range. 

Suppose X r'oJ G(a,,6) then 

{3 

( ) _ a {3-1 ) 
Ix x - r(,6) x exp( -ax 

and when Y = g(X) then 

fy(y) 
d 

- dy[g-l(y)] fX[g-l(y)] 

- :y (y>')fx(Y>'). 

So 

and 
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To use this for the population mean problem we need to be able to determine 

E{Y} = lE{Xt} which we certainly can do for the special cases A = ~, where m 

is a positive integer, using the moment generating function, (l-s/a)-f3, of X and 

noting that 

lE{xm} = (3({3 + 1) ... ({3 + [m - 1]) 
am 

(i) A = 1 : Y f'V Gamma and Y = X with J-Ll = ~ 

(ii) A = ~ : Y tv squarerootGamma and Y = X2 with J1! = f3(!t1
) 

(iii) A = l : Y tv cuberootGamma and Y = X3 with J-Ll = f3((3+~}t+2), etc etc. 

2.5.2 Bayesian analysis 

The marginal density for a training sample w that represents a training fraction 

t of the data y, whose Simple Power Transformation is indexed by A, when the 

improper prior 7r( a, (3) = a-I (3-1 is specified, is 

where the integral with respect to a above may be evaluated after making the 

transformation 
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as 

t "ntp-, exp ( - (t Lyt) ,,) d" - t (t in;)'ntp-, exp( -z) (t;: yt) 
r(nt{3) 

and it follows that 

(2.12) 

To establish the conditions under which this integral converges we will initially 

look at small {3, remembering from Section 2.2.2 that nt = 9 is the number of 

observations in the training sample wand we can certainly do this, as we will 

show below, when nt > 1 is a positive integer. 

Looking at the integrand in (2.12) above, considering this as a function of {3, 

then as {3 -+ 0 

(TI Yi) is a constant and so (TI Yi)t(~,8-1) -+ (TI Yir t which is a constant 

(t 2: Y;) is a constant and so (t 2: Y;) nt,8 -+ 1. 

Hence to investigate the conditions under which this integral converges we have 

to examine how 

behaves as {3 -+ O. 

r(nt{3) 
{3[r({3) ]nt 

33 



When nt = 1 

r( nt(3) r({3) r({3) 
(3[r({3)]nt = (3r({3) = r({3 + 1) -+ 00 

as {3 -+ O. 

If we use the Gauss multiplication theorem, defined in the Glossary, when b = {3 

and m = nt, then 

( 1) ( 2) (nt-I) nt-l 1 tf3 r({3)r {3 + nt r {3 + nt ... r {3 + nt = (27r)-2 (ntp-n f(nt{3) 

and so 

( 1) ( 2 ) ( nt - 1) 1 
r(nt{3) = r({3)r {3 + nt r {3 + nt ... r {3 + nt ,(27r)~ (nt)!-nt/3 

and hence 

f( nt(3) 1 r ({3 + ;h) r ({3 + ~) ... r ({3 + ~) 1 
(3[r({3)]nt = ~ r({3) r({3) r({3) (27r)~(nt)~-nt!3 

and when nt = 2 

r(nt{3) 
(3[r({3) ]nt 

but when nt = 3 

r(2{3) _ 1 r (,8 + ~) 1 
- {3[f({3))2 - (3 r(,8) (27r)Y2!-2/3 

r ({3 + ~) 1 1 
- -+ - as (3 -+ 0, 

r({3 + 1) 7r! 21- 2,8 2 

r(nt{3) 
(3[r({3) ]nt 

r(3{3) 1 r ({3 + !) r (,8 + n 1 
- (3[r({3))3 = ~ r({3) r({3) (27r) 3 21 (3)~-3,8 

r ({3 + ~) r ({3 + ~) 1 
- fCB + 1) r({3) 27r3!-3/3 

r( 1 )f(a) 1 
-+ 3 3 -+ 0 as (3 -+ 0, 

f({3) 27r3! 

and for values of nt ;::: 4 

r(nt{3) 
{3[f({3)]nt -+ 0 as {3 -+ O. 

Hence we have shown that, for integer valued nt > 1, the integral (2.12) will 

converge when {3 is small. 
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We will now examine the conditions under which (2.12) converges for large (3 

and appeal to Stirling's formula as 

and so 

r(b) 

r(nt{3) 
[r({3)]nt 

'" .j2; exp( -b )bb- ~ (1 + _1_ + _1_ + ... ) 
12b 288b2 

'" v'27rbb-~ exp (-b + _1_) 
12b 

'" 
V21r(nt{3)nt.6-! exp( -nt{3 + 12!t.6) 

(V21r)nt({3.6-! )nt exp( -nt{3 + ~~) 

- (27r)1-2
nt

(nt)nt.6_!,ent;1 exp (12~t{3 - ~~). 

Hence (2.12) becomes approximately 

).nt(27r)¥ 
m>,(w) ~ 

(IT Yi)' (nt)~ 

(2.13) 

tX> ~ [(IT )t>' nt (~ >.)nt].6 (1 nt ) x Jo (3 2 Yi n / L...J Yi exp 12nt{3 - 12,8 d{3 

and using the simplification 

the integral part of m>, (w) becomes 

100 ~.6 (1 nt ) 
o ,8 2 s>.exp 12nt{3 - 12,B d,8 

where for large {3 the integrand behaves like 

Now 

8>. = 
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where 

and 

Therefore 

where 

am= Ly;/n. 

{3nt;3s~ _ {3nt;l-lexp[_(_{3logsA)] 

- /3nt;l-l exp{ -[nt(logam -loggm)]{3} 

_ {3
nt

i
1

-
1 exp( -nts~{3) 

s~ = log am -loggm > 0 (2.14) 

because gm < am and sl also depends on y and n although this indexation has 

been omitted for simplicity. 

So for large {3 the integral part of m>. (w) behaves like 

100 

{3nt;l-l exp( - ntsl{3)d/3 

which converges for nt > 1. 

So the results for both large and small /3 tell us that the integral on the right 

hand side of (2.12) for m>.(w) converges for nt > 1 or the training fraction t ~ 2/n. 
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We can then say, after using the substitution (2.14), that (2.12) will become 

approximately 

where 

and 

(211") nl2"l r{ nt,B) 
gt{f3) = (nt)nt/3-!,B¥ [r{f3)]nt 

where the expectation of gt({3) has been evaluated with respect to the Gamma 

distribution G{nt8~, nt;l). This suggests that a way of evaluating this integral is 

to use importance sampling from the G{nt(log am -log gm), nt;l) distribution. 

It also suggests (when t = 1) that this Gamma distribution is approximately 

the posterior distribution of f3 and hence that the posterior mean of the shape 

parameter f3 is approximately 

1 1 
- = -=-:-:-------::---~ 
28~ 2(log am - log gm)' 

which becomes larger as ,\ reduces in value. 

This in turn makes sense as 81 is clearly some kind of measure of dispersion 

because, as ,\ reduces in value, the transformed data set has a smaller range with 

its reducing skewness and sl reflects this transformation with its reducing value. 
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Our theory suggests that if the posterior probability is concentrated on values 

of 13 that are reasonably large (ie S>. is small enough and hence the scale factor 

nts1 of the Gamma distribution for (3) then, using ( 2.13 ) 

9t(f3) ~ exp (12~tf3 - ~~) ~ 1 

The choice of the value of the training fraction t is discussed in Section 2.7, 

but if we let t = 2/n then, by using Stirling's formula as developed in (2.13) 

9~((3) ~ exp ( - 8~) 
and we can see that g1. (0.2) ~ 0.51, g1. (1.2) ~ 0.90 and 91. (7.2) ~ 0.98. 

n n n 

Hence we would like our G(2s1,~) to be concentrated on values of (3 that 

are mainly above 1.2. For p{(3 :::; 1.2} :::; 0.1 this occurs when 2s1 :::; 0.0066 or 

whenever 1/)" ~ 19, for p{(3 < 1.2} ::; 0.25 this occurs when 2s>. ::; 0.0424 or 

whenever 1/)" ~ 8. 

For larger values of t then the requirement that 9t((3) ~ 1 does becomes less 

restrictive as, for example, when t = 4/n then g.1. (3.0) ~ 0.90 and p{(3 ::; 3} < 0.1 
n 

occurs when 4s>. :::; 0.0975 or whenever 1/)" > 7. 

We will show in Section 2.8.3, for the model comparisons undertaken and the 

pMDI + data set, that the choice of the training fraction t does not alter the model 

choice - only the strength of that preference. 

Although particular care is needed when 1/)" takes small values, say less than 

7, when the approximation will be at its most crude, we can feel confident that 

the approximation for m~ (y) below does provide reasonable results over most of 

the range for 1/)" and we will be able to use it in Section 2.6.2 

m~(y) rv ih~(y) = )..n(1-t)(2 *)- n(12-t) t ';t (II .) -(l-t) r(¥) (2.15) 
m~(w) - ih~(w) 1rs~n Yl r(nt;l)' 
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2.6 Model comparisons : theory 

2.6.1 root Normal vs logNormal 

From (2.11) in Section 2.4.2, we know that for comparison of models within the 

rootNormal family as model 1 against the logNormal for model 2, A2 = 0, then 

the fBf is 

which for the comparison of Normal, Al = I, vs logNormal becomes 

(2.16) 

for squarerootNormal, Al = !, vs logNormal 

(2.17) 

for cuberootNormal, Al = ~, vs logNormal becomes 

(2.18) 

where the form of this relationship continues for values of Al = !, i, l, .... 

2.6.2 logNormal vs rootGamma 

From (2.10) in Section 2.4.2 we know that for a member of the rootNormal family 

t ( ) = mAl (y) = ( s )- "(12- t ) (II .) (Al-1)(1-t) r( ~) !if 
mAl Y mAl (w) 7r Al y, r(nt2"l) t 

which for the logNormal distribution, when Al = 0, becomes 

mo(Y) = ( S, )_"(1:1- t ) (II .)-(l-t) r(~) ~t 
mo(w) 7r 0 Y. r( nt2'l) t 
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whereas from (2.15) in Section 2.5.2 we have the approximation for a member of 

the rootGamma family 

mt (y) = mA2 (y) ~ ~>-2(Y) = A2n (1-t) (27l's· n)_n(l;t)t~t (I1Yi)-t1
-t) r(~) . 

>-2 mA2(W) mA2(W) A2 r(nt;l) 

Hence the approximate fBf for the comparison of logNormal, modell, vs 

root Gamma, model 2, is 

..\n(l-t)(27l's* n)_n(12-t)t¥(TIy.)-(1-t) r(¥) 
2 A2 ~ r( n12 1) 

_ n(1-t) 

(~) 2 A-n{l-t) 
- 28. n 2 

A'l 

[ (~) -~ A -n] (I-t) 
- 2s. n 2 

A2 
(2.19) 

which for the comparison of logNormal vs Gamma, A2 = 1, becomes 

(2.20) 

for logNormal vs squarerootGamma, A2 = ~,becomes 

(2.21) 

and for logNormal vs cuberootGamma, ..\2 = 1, becomes 

(2.22) 

where the form of this relationship continues for values of Al = t, ~, ~, .... 

However note that the true value of the fBf, Bot A (y), is the approximation , 2 

(2.19) divided by 

lEA2 {g(,8)} 
lE~2 {gt (,8) } 
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where this true value, considering the expectation of gt{{3), is with respect to the 

Gamma distribution G(nts~2' nt;-l) and is only defined when t > ~. 

2.7 Choice of training fraction 

The choice of the size of the training fraction was discussed in O'Hagan (1995) 

and also in O'Hagan (1997) where the concept of a minimal training sample, no, 

was introduced and it was proposed that the minimal training fraction takes the 

value to = no/no 

In Section 2.4 we introduced the Normal model and we know from Section 2.4.2 

that the marginal density m~(w) for the training sample w, defined in (2.9), will 

converge whenever the training fraction t > l/n. Hence we can identify no = 2 for 

this Normal model. 

Similarly in Section 2.5 we introduced the Gamma model and from Section 2.5.2 

we know that the marginal density m~(w) for the training sample w, defined in 

(2.12), will converge whenever the training fraction t > l/n. So once again we can 

identify no = 2 for this Gamma model. 

We will adopt here the minimal training fraction for t which becomes to = 2/n 

and, because n = 26 for the pMDI+ data set, to = 2/26 = 1/13. 

If robustness to misspecification of the prior or models is a concern then two 

other ways to set t were proposed in O'Hagan (1995), t = n-1 max{no, J7i} or 

n-1 max{no, logn}, to generate values of t = 5.099/26 or 3.26/26 respectively and 

while they alter the strength of the model preference we will show in Section 2.8.3 

that they do not alter the choice. 

UNIVERSITY 
OF SHEFFIELD 

UBRARY 
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2.8 Model comparisons: using the pMDI+ data 

2.8.1 root Normal vs logNormal 

From (2.16) in Section 2.6.1 to compare the Normal, Al = 1, vs logNormal, A2 = 0, 

for data y, when n = 26 and t = 1/13, then the fEf is 

1 [(S )-13 1] H B[1(y) = S: (11 Yi) ~ 1.5 x 10-26 

and so there is overwhelming evidence in favour of the logNormal over the Normal. 

From Equation 2.17 in Section 2.6.1 to compare the squarerootNormal, Al = !, 
vs logNormal for data y, the fBf may be calculated as 

So there is very strong evidence in favour of the logNormal model over the 

squarerootN ormal. 

From Equation 2.18 in Section 2.6.1 to compare the cuberootNormal, Al = i, 
vs logNormal for data y, the fBf may be calculated as 

1 

Bl3 (y) = 
3,0 

So there is strong evidence in favour of the logNormal over the cuberootNormal. 

These calculations may be continued for other values of A = ~, where n is a 

positive integer, but are best represented by the figure below 
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Figure 2.1: Plot showing the fBf for comparing the rootN vs logN models 

where the value of the £Bf --+ 1 as ). --+ O. 

2.8.2 logNormal vs root Gamma 

Equation 2.20 in Section 2.6.2 shows that for the comparison of logNormal vs 

Gamma, A2 = 1 for data y, when n = 26 and t = 1/13, then the approximate £Bf 

becomes 

1 [( S )-13 ] H 1313 (y) = _0 1-26 ~ 627. 
0,1 52si 

Hence there is overwhelming evidence in favour of the logNormal over the 

Gamma. 
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Using Equation 2.21 in Section 2.6.2 to compare the logNormal model vs 

squarerootGamma, >'2 = !, for data y, the approximate fBf becomes 

[( )
-13 26] g -l ~ 1 -

B131 (y) = - (-) ~ 100. 
~~ 52s~ 2 

~ 

So there is very strong evidence in favour of the logNormal model over the 

squarerootGamma. 

Using Equation 2.22 in Section 2.6.2 to then compare the logNormal model vs 

cuberootGamma, A3 = ~, for data y, the approximate fBf becomes 

-~ ~ 1 -
[( )

-13 26] g 
B~,'l (y) = 5281 (3) '" 25. 

Therefore there is strong evidence in favour of the logNormal model over the 

cuberootGamma. 

Also to compare the logNormal model vs fourthrootGamma, ).4 = ~, for data 

y, the approximate fBf becomes 

Therefore there is some evidence in favour of the logNormal model over the 

fourthrootGamma. 

These calculations may be continued for other values of A = ~, where n is a 

positive integer, but are best represented by the figure below 
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Figure 2.2: Plot showing log(fBf) for comparing the logN vs rootG models 

where the value of the fBf - 1 as ,\ - O. 
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2.8.3 Conclusions 

Composite models have been constructed using a power transformation followed 

by a parametric model which, when improper prior beliefs are specified, can be 

compared using fractional Bayes factors. 

These comparisons have been undertaken using the minimal training fraction 

to = no/n which in this case was t = 2/26. The choice of size of training fraction 

influences the strength of model preference but it does not influence the model 

choice as is shown in the sample results below 

rootN vs logN logN vs rootG 

tn >. = 0.1 >. = 0.2 

(0) (0.0288) (8.1976) 

2 0.0378 6.9727 

4 0.0497 5.9309 

6 0.0653 5.0447 

8 0.0858 4.2909 

10 0.1127 3.6498 

12 0.1480 3.1045 

14 0.1945 2.6406 

16 0.2555 2.2460 

18 0.3357 1.9104 

20 0.4410 1.6250 

22 0.5794 1.3822 

24 0.7612 1.1757 

(26) (1) (1) 

Table 2.1: fractional Bayes factors for two model comparisons 

although the minimal training fraction yields stronger model preferences. 
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The logNormal was the favoured model over rootNormal and also rootGamma 

models for the pMDI+ data set. However, as ,\ -+ 0, then the fBf could barely 

distinguish between the logNormal and rootGamma models. 

The Simple Power Transformation, introduced in Section 2.3.2 and then used 

for the rootGamma models, is only a linear transformation of the General Power 

Transformation introduced in Section 2.3.1 and used for the rootNormal models. 

The value ,\ = 0 gives the same interpretation of a log transformation to both 

models. 

The Normal family of distributions has a fixed (symmetric) shape and has one 

parameter that controls its location and another that controls. its scale. However 

the Gamma distribution has one parameter that controls its scale and another 

that controls its shape and as its shape parameter increases, say for values above 

5, while the resulting Gamma distribution is still positively skewed it does begin 

to approach the shape of a Normal distribution. 

The logNormal model will be adopted in this thesis for two reasons. It is 

the dominant preference for the pMDI+ data set when undertaking the model 

comparisons above. It is a statistical model that has been widely chosen in many 

other applications and so, although our original motivation is the medical cost data 

set pMDI+, the wide applicability of the logNormal model gives the techniques of 

this thesis applications in fields far removed from medicine, such as astrophysics, 

see Kawahara et al (2008), transport, see Graham et al (2005), language, see 

Novotny and Drozd (2000), physics, see N611mann and Etchegoin (2001), reliability, 

see Steele (2008), agriculture, see Korpalski et al (2005) and finance, see AI-Eideh 

et al (2004). Further applications within medicine include survival analysis, see 

Mould et al (2002), surgical procedure times, see May et al (2000) and radiography, 

see Neti and Howell (2006). 
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Chapter 3 

The logNormal data model with 

noninformative prior beliefs 

3.1 Introduction 

Any Health Care Provider has responsibility for a potentially very large but finite 

population. So for the scenario described here, when some results are available 

following a clinical trial, then these trial data represent a sample from the finite 

population. To be able to budget for costs in future years the Health Care Provider 

needs to know the expected costs, or mean value, for the other members of their 

population who were not part of the clinical trial. For our Bayesian solution to 

this problem in Sections 3.2 and 3.3 we will use super-population theory, which 

was first proposed by classical statisticians, to model the population structure. 

Initially a numerical solution was obtained as will be described in Section 3.4.2 

but the results appeared somewhat surprising and did not show the stability for the 

mean that was expected as the number of samples was increased. This prompted 

a closer look at an analytical approach which will be described in Section 3.4.3. 
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There are few models for which an analytical approach will yield a posterior 

predictive distribution that has a recognisable parametric form. In this case not 

only was this possible but we will be able to show that all posterior predictive 

moments for one unobserved member of the population were infinite. 

3.2 Super-population approach 

3.2.1 Classical sampling theory 

Classical sampling theory, in the main, is concerned with sampling from finite 

populations. The characteristics, or variables, that are measured (where it is 

assumed that this can be undertaken without error) are commonly nominal or 

ordinal, as well as metric (interval or ratio). Classical sampling theory is also 

known as design based because it concentrates on sampling design. 

A particular difficulty for inference in classical sampling theory arises because 

the sampling mechanism is ancillary. 

Cassel et al (1993) contains a useful theoretical introduction to the two main 

classical approaches to inference when sampling from finite populations, namely 

the fixed population approach and the super-population approach. 

In the fixed population approach, which was developed first, the sampling 

design introduces the only source of randomness. 

The super-population approach is a more recent innovation although an early 

reference to the use of the concept, although not the actual term, is to be found 

in Cochrane (1939). The difficulties with the use of super-population theory for 

classical inference are explored in O'Hagan and Forster (2004) and typically entail 

abandoning the classical statistician's strict reliance on frequency probability. 

The super-population approach is also known within survey sampling as model 

based design. 
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3.2.2 Super-population approach 

When the question of inference for finite populations from samples was considered 

in more detail then attention became focused on the structure of the population. 

The concept of the super-population supposes that the finite population of interest 

has itself been generated as a random sample of N units from some underlying 

infinite population, known as a super-population. If the variable of interest can 

be assumed to follow a parametric model in the super-population then the values 

associated with each unit are the observed outcome of the random variable. The 

values of the finite population not in the sample can be related to those in the 

sample using the assumed super-population distribution. 

3.3 Bayesian super-population approach 

3.3.1 Introduction 

We will consider here a finite population comprising N units where we wish to 

examine the value of a variable Yi : i = 1,2, ... , N, for each unit or member of the 

population. The approach assumes a model where the Yi's are exchangeable. 

So the Yi's are N members of the super-population whose members follow a 

parametric distribution with unknown parameter 8. To be even more specific we 

will make the stronger assumption that the Yi's are independent and identically 

distributed with prior distribution 7T'( 8) to represent the uncertainty about the 

parameter f). The observed Yi values may be considered the first n members of the 

finite population because it is not generally relevant whether the units have been 

chosen at random in Bayesian inference. 

When the first n Yi's have been observed as Yi'S the Bayesian super-population 

approach permits the N - n unobserved members of the finite population to be 

estimated from their posterior predictive distribution. 
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3.3.2 Predicting future observations in general 

We have decided in Chapter 2 to adopt the logNormal distribution as our data 

model for the random variable Y, observed as y, where logY = X f'V N(8) where 

8 = (/-L, a2) and can therefore simplify our notation by replacing fa by f, 80 by 8 

and Xo by x. 

So when data Y = (YI, Y2,"" Yn) have been observed for the n independent 

identically distributed random variables (YI , Y2 , • •• , Yn ), which we will denote as 

Y = (YI ,}2, ... , Yn ) then 

n 

f(YI8) = IT f(YiI O) 
i=l 

and if prior beliefs about the uncertainty in the value for the parameter 8 are 

expressed as 7r( 0) then the posterior distribution of 0 becomes 

p(OIY) oc 7r(8) x f(yIO) 

where to predict future observations YN = (Yn+1, Yn+2, . .. , YN) of the random 

variables (Yn+1, Yn+2, ••• , YN), denoted as Y N = (Yn+ll Yn+2, ••• , YN), when data 

Y have been observed, we will use the posterior predictive distribution of Y N which 

is h(YNIY). 

This is obtained from the joint posterior density of Y Nand 0, h(YN,Oly) by 

integrating out 8, as 

h(YNIY) - J h(YN, 8ly)dO 

- J f(YNIO, y)p(8Iy)d8 

- J f(YNI8)p(8Iy)d8 (3.1) 

where we have made the assumption that Y N is conditionally independent of Y 

given O. 
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3.3.3 Predicting future observations for Health Care costs 

For the medical cost problem described here we wish to make predictions about 

the cost of treating an illness for our finite population where N is known. Let T 

denote the total cost, where T = Yl + Y2 + ... + YN • 

We have already observed = (Yll Y2,"" Yn) and so we wish to determine the 

properties of 

T - Yl + Y2 + ... + Yn + Yn+l + Yn+2 + ... + YN 
n N 

- LYi+ E Yi. (3.2) 
i=l i=n+l 

The posterior predictive distribution of E~n+l Yi was determined, following 

Equation (3.1), as 

h(Yn+l + Yn+2 + ... + YNly) = J f(Yn+l + Yn+2 + ... + YNI8)p(8Iy)d8. 

To enable posterior predictions for the sum of the unobserved members of the 

population to be made it is necessary to know the distribution of the sum of those 

unobserved values, as well as the posterior distribution of e. 

The distribution of the sum of the random variables, Yn+l + Yn+2 + ... + YNle, 

is straightforward for some distributions like the Normal but is not available for 

many other distributions including the logNormal. 

In Chapter 1 we introduced the typical medical problem under discussion here 

when a Health Care Provider needs to budget for the cost of an intervention for a 

finite population suffering from the disease. Hence we are interested in the mean 

population cost and we will concentrate on determining the posterior predictive 

mean of an unobserved member of the population and so, from Equation 3.2 

n N 

E{Tly} = LYi + L E{Yily}· 
i=l i=n+l 
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3.4 Data model 

To take account of the potentially positively skewed nature of the data naturally 

leads to examination of those models that allow the representation of this positive 

skew. In Chapter 2 we used fractional Bayes factors to compare candidate models 

and the logNormal distribution was strongly favoured and will be used here. 

We will continue to choose the same logNormal model for both the observed 

and unobserved members of the population. 

3.4.1 Prior beliefs 

When considering the choice of prior, due consideration has to be given to the 

sceptical nature of a Health Care Provider, or regulatory body like NICE, and a 

noninformative prior may well (need to) be chosen. 

Frequentist inference may be characterised as concerned only with what the 

data say, whereas Bayesian inference is concerned with using all of the relevant 

evidence. 

The basic principle of Bayesian inference is that all inferences are derived from 

the posterior distribution. Noninformative prior distributions, however, represent 

no prior information. The basis of this is that if we have a completely flat prior 

distribution that is a constant then the posterior density is proportional to the 

likelihood and all the information in the posterior comes from the data. 

The motivation for noninformative priors has been to produce an objective 

Bayesian analysis by using prior distributions that have been determined by some 

rule. There is continuing difficulty in defining what is meant by noninformative and 

a lack of agreed noninformative priors in all but simple situations. The rationale 

behind noninformative priors is to let the data determine the inference that can 

be made. 
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The ideas behind noninformative priors are introduced in most Bayesian text 

books, such as Gelman et al (1995), O'Hagan and Forster (2004) and Spiegelhalter 

et al (2004). Kass and Wasserman (1996) have produced a survey of methods to 

select noninformative priors constructed by some formal rule. They assert that 

the fundamental ideas and methods were laid down in Jeffreys (1961) and whilst 

it is possible to make a number of objections to the Jeffreys prior it has provided 

the improper prior ?reO) ex: 1/u2 used in Section 2.4.2 as well as this Chapter. 

There are a number of other formal rules that have followed Jeffreys' initial 

work, see, for example, the data-translated likelihood of Box and Tiao (1973) and 

the Berger-Bernado Method introduced by Bernado (1979). In a subsequent series 

of papers, mostly by Berger and Bernado, it was refined and applied to various 

problems, see, for example, Berger and Bernado (1989). 

For the analytical approach developed in Chapter 2, to compare candidate 

models for costs, customary improper priors were chosen for the models. These 

improper prior beliefs are noninformative because they are so weak. 

For numerical analysis noninformative prior beliefs have to be proper no matter 

how weak they may be. Furthermore, there may not be a direct analogy, as will 

be seen to be the case here, between the priors used for an analytical approach 

and those that are used for a comparable numerical analysis. 

3.4.2 Numerical analysis 

WinBUGS is a software package freely available from the World Wide Web that 

is relatively easy to use. These advantages positively support the appeal of the 

Bayesian approach to problems - which does usually require numerical solutions· 

because analytical solutions are intractable except in particular cases. 
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However, it also requires a prior understanding of both Bayesian analysis and 

MCMe, Markov Chain Monte Carlo, techniques to produce useful and realistic 

results. Using that knowledge, WinBUGS will produce estimates of the mean, 

standard deviation, median and other percentiles for those posterior distributions 

of interest. 

WinBUGS was used to examine this logNormal model which is specified in 

terms of its mean, /-L, and precision, r, (the inverse of its variance). Customary 

prior beliefs would be a Normal distribution for the mean and an Inverse-Gamma 

distribution for the variance, or Gamma distribution for the precision. So for the 

pMDI+ cost data set we have n = 26 observations, y, of the random variable, Y, 

with data model Y f'V logN(/-L, 0-
2

) = logN(/-L, l/r) and prior beliefs /-L f'V N(a, b) and 

r f'V G(c, d). 

The noninformative priors for the mean and precision respectively that we will 

use are N(O,lOOO) and G(O.OOl,O.OOl), which while proper are extremely weak and 

are customarily used. The range of values that are most likely for J-£ and r with this 

choice of priors will include any values that we might expect to see. The values of 

the parameters for these noninformative priors are chosen to be of the order that 

a sceptical regulatory body might want to see. 

We will show later in this Section that Gamma priors for r are not a good 

choice because they allow r to take values that are very small and so 0-2 may take 

values that are very large. Hence G(O.OOl,O.OOl) is a particularly poor choice and 

developing appropriate priors will commence in Chapter 4. 

The code that was used, in WinBUGS version 1.3, for the numerical analysis of 

this logNormal model to determine the properties of of one unobserved member of 

the population from its posterior predictive distribution is shown in the Appendix. 
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The model that has been outlined earlier leads to moments for its posterior 

predictive distributions as shown in this table 

Num/1000 Percentiles 

of Samples mean sd 2.5 50 97.5 

1 1499 8852 16.39 339.5 7004 

10 1536 26730 15.80 349.3 7749 

100 2028 222900 16.62 354.4 7708 

1000 1401 71880 16.22 355.4 7797 

5000 1338 38920 16.33 356.5 7787 

Table 3.1: logNormal model for 1 predictive value 

WinBUGS is using proper distributions and a finite number of samples to 

produce its output which will in turn always be finite. If the mean, for example, of 

the posterior distribution of interest is infinite according to an analytical analysis, 

then this may not be immediately obvious from the WinBUGS output. 

The graphical output ("density") from WinBUGS shows a highly positively 

skewed posterior predictive distribution with occasional very large values. The 

percentile values in the output are relatively robust for such a distribution but 

that is not true for the moments. The values that will be obtained may vary 

significantly as the posterior predictive values themselves will vary significantly. 

The results in Table 3.1 above do not indicate any stability in the values of 

the posterior predictive moments shown as the number of samples is increased and 

question whether finite posterior predictive moments do exist. 

It will not be at all easy in general, however, to determine from the WinBUGS 

output whether the posterior predictive distribution does possess finite moments. 

The logNormal model is a very specific case where an analytical solution is readily 

available to confirm that the numerical results do not indicate a finite first moment. 
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3.4.3 Analytical approach 

Noninformative (improper) prior beliefs 

If we assume that the prior beliefs for 8 = (J.L, ( 2 ) are independent for J.L and 

(J2 then the customary choice for noninformative prior beliefs will be the improper 

prior 7r(8) ex 1/a2, as used in Chapter 2, where the posterior distribution of 8 will 

be 

7r(8)f(YIO) 
p(8IY) = J J 7r(O)f(yIO)dJ.Lda2 

and, after cancelling the term (IIYir1
, the denominator becomes 

J J 7r(O)f(YIO)dJ.Lda2 ex 100 100 

(a2)-1(27ra2)-~ 
o -00 

x exp [- 2~2 {S + n(x - J.L)2} 1 dJ.Lda2
• 

If we consider the integral with respect to J.L first, then 

and the denominator becomes 

which, after using the substitution t = ~~, becomes 

So the posterior distribution of 8 is 
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Hence the posterior predictive distribution for one unobserved member Y of 

the population becomes, from Equation (3.1) where YN is Y 

h(Yly) - J f(YI8)p(8Iy)d8 

- j j(27rU')-!y-1exp [_ (!Og~u~ 1')'] 
(7rS)-! Vn 2 _~ [1 { - 2}] 2 

x (2/ S)~ r(!!.f) (0-) 2 exp - 20-2 S + n(x - p,) dj.Ldo-

ex J J (0-2)-(n~3) exp [- 2~2 {S + n(x - j.L)2 + (logy - j.L)2}] dj.Ld0-2 

- j j(u't('~" exp h~, {s + n: 1 (logy - x)'}] 
X exp - n+ 1 - dj.Ld0-2 

[ 

(nx+logll j.L)2] 

20-2/(n + 1) 

- J(0-2t(n~3)V27r0-2/(n+ 1) 

x exp h~, {s + n: 1 (log y - x)' } ] du' 

I)( j (u'r(~+1) exp [_ { s + ~(J;gy - X)'} :,] du' 

r(~)2j 
-

[S + n~1 (logy - x)2]~' 

So finally, after collecting together all the constants of proportionality 

(7rst! Vn _! (n)_j 
h(yly) = (2/ S)j r(!!.f) (27r) v'27r /(n + 1)r '2 (8/2) 

n 

X y-1 [1+ (logy-x)2]-I 
S(n + 1)/n 

_ r(~) -1 [1+ (10gY-X)2]-~ 
r (n 21) V7rS(n + 1)/n y S(n + 1)/n . 

Hence we can see from the Glossary that the posterior predictive distribution 

of y follows a log t distribution, where 1I = n - 1, P, = x and 0-2 = ~f:~g. We note 

also that S is only defined when integer valued n > 2 which tells us that 1I is a 

positive integer as required. 
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To examine the expected value of the moments of this log tn-l distribution we 

will use the substitution t = v'~~nv;.~/n to show that 

r 2 -1 1 + d 100 r (!!:) [(lOg y - X)2]-~ 
o Y r (n /) V7rS(n + l)/n Y S(n + l)/n Y 

tJV./ii roo exp[r{x + v'S(n + l)/n t}1 (1+ t2r~ dt r 2 7r J-oo 
r (~) ( _) 100 exp[rVS(n + l)/n t]d 

( 1) exp rx n t. r n2 Vi -00 (1 + t2)2 

As the denominator is O(tn) it is clear that there will be some value L > 0 

such that for any r ~ 1, n > 2 and S > 0 

exp[rVS(n + l)/n t] > (1 + t2
) ~ for all t> L 

and so lE{yrly} = 00 for all values of r. 

Natural conjugate prior beliefs 

The likelihood for ylB is 

and the natural conjugate family of joint prior distributions for J-L and a2 has a 

similar form to the likelihood as 

where J-Lla2 
'" N(a, b(2), a2 

fV IG(c, d) and 

7r(B) = exp - - x 
1 [ (a J-L)2] cd(a2)-d-lexp(-~) 

v'27rba2 2ba2 r(d) 

After following algebraic manipulation that is similar to the noninformative 

(improper) prior beliefs case above we are able to show that 

60 



(i) the posterior distribution of () is 

h K s (a-x}2 
were = c + "2 + 2{nb+l}/n 

(ii) the posterior predictive distribution for one unobserved member, Y, of the 

population is 

and again we can see from the Glossary that the posterior predictive distribution 

of Y follows a log t distribution, with v = 2d + n where 2d must be an integer, and 

nbx+ 1 
JL = nb + 1 

[ 
S (a x)2 1 

(12 = 2[(nb + 1 + b)/(nb + 1)] c +"2 + 2(nb ~ l)/n /(2d + n). 

Hence we can show that the expected value of the moments of this log t2d+n 

distribution are 

1
00 exp (r 2[(nb + 1 + b)/(nb + 1)] [c + ~ + 2(~b~x2)in] t) 

JE{yrly} ex (2d+n+l) dt 
-00 (1 + t2 ) 2 

and JE{yrly} = 00 for all values ·of r. 

This result holds for all logical values of the hyperparameters a, b, c and d ( b, c 

and d > 0, with 2d an integer) where the hyperparameters may have values that 

make the prior beliefs extremely informative. 
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Numerical output from WinBUGS 

Hence the customary noninformative, and indeed improper, prior cannot be 

used when finite posterior predictive moments are required. In fact the natural 

conjugate prior also yields posterior predictive moments that are not finite even if 

the prior beliefs are extremely informative. 

This serves as a warning when using WinBUGS with this logNormal data 

model. Sampling techniques within WinBUGS will always allow numerical values 

to be obtained but careful examination of the output will be required to determine 

whether the true posterior predictive moments are finite. 
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Chapter 4 

Developing prior beliefs for the 

logNormal data model 

4.1 Introduction 

In Chapter 2 we have adopted the logNormal distribution as the data model. The 

posterior predictive distribution was introduced in Chapter 3, using weak priors 

for the mean and variance of the logNormal distribution, and produced posterior 

predictive expected values that were infinite. 

We will now need to consider how to represent the prior beliefs for the joint 

probability distribution of () = J.l, a 2 that ensure that the mean of the posterior 

predictive distribution exists, will allow numerical evaluation and also that we can 

elicit prior beliefs from an expert to determine the values of the hyperparameters 

in the joint distribution. 

63 



We will look to formulate the joint distribution in terms of two independent 

marginal distributions each of which will only involve (a function of) one of the 

parameters. These univariate distributions may be considerably easier to elicit 

than their joint distribution. 

It is recognised as generally good practise to elicit beliefs about quantities that 

are directly observable. We will follow this practise wherever possible but will need 

a different approach when eliciting beliefs about the shape parameter (72. 

In Section 4.2 we will consider three possible formulations for prior beliefs. The 

three models that will be examined are similar but each represents a different prior 

formulation for the same logNormal data model and bring their individual pro's 

and con's. 

We will commence our study of the existence of posterior predictive moments 

in Section 4.3 by developing an analytically useful manipulation of the problem 

and in Section 4.4 we will examine a number of possible choices of models for our 

prior beliefs for the scale parameter of our data model. 

In Section 4.5 we will examine the existence of posterior predictive moments 

when neither the scale parameter, p" nor shape parameter, 0'2, for our data model 

are known, but we will be unable to obtain analytical solutions to the integrals 

involved. In Section 4.6 we will explore the value of the posterior expectation of 

the population mean for a particular class of prior beliefs choosing computational 

techniques that, by reducing the dimension of the problem, considerably improve 

the speed of computation. 
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4.2 Three possible models 

4.2.1 Introduction 

To enable us to consider possible models we note a number of useful properties of 

the logNormal distribution Y - logN(JL, 0"2) 

Quantity Formula 

mean exp(JL + 0"2/2) 

median exp(JL) 

mode exp(JL)/ exp(0"2) 

variance exp(2J.L + (12) [exp( (12) - 1] 

coefficient of variation [exp( (12) - I]! 

<I> ( q ) quantile exp(JL + qO') 

tth moment exp(tJL + t20'2/2) 

Table 4.1: Quantities and their formulae for a logNormal distribution 

whilst the coefficient of kurtosis and the coefficient of skewness are functions of 0'2 

alone, but their formulae are even more complex. 

The considerations that will motivate our exploration of possible models are 

the need to be able to elicit prior beliefs from an expert and to discover prior 

distributions that enable posterior moments to exist. 

We will seek to work with two quantities, or possibly functions of quantities, 

that are independent. If the one of the quantities is only a function of the scale 

parameter JL and the other only the ·shape parameter 0'2 then considerable technical 

advantages become available when examining moments of the posterior predictive 

distribution and enable us to only have to elicit two univariate distributions. 

So we can see immediately that the median is a (relatively simple) function of 

JL alone but to obtain a function of 0"2 alone may require the ratio of two quantities. 
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4.2.2 Mean and variance unknown 

In this approach we will work with the mean Ey(8) = JE{YI8} and variance 

Vy (8) = V{Y\8} of the logNormal random variable Y, where to simplify the 

nomenclature we will now represent Ey(O) as Ey and Vy(O) as Vy . 

We will model our prior beliefs for Ey and Vy with 1rEy,vy(e, v) where 

e = exp(J-L + a2/2) and 

hence a2 = log (1 + ;) and 

J-L = log e - -2
1 

log (1 + ~) = -2
1 

log (1 e
2

/ 2) = log ( e ) . 
e +v e v1 +v/e2 

We will transform our beliefs in the observation space, Y, into beliefs in the X 

space using the following usual methods 

1r(J-L,a2
) - 1rEy ,Vy(exp(J-L + a2/2),exp(2J-L)[exp(2a2

) -exp(a2
))) x PI 

- exp(3J-L + 5a2 /2) 1rEy ,Vy (exp(J-L + a2/2), exp(2J-L) [exp(2a2
) - exp(a2

)]) 

where 

ae ae 
8p. &;2 

J=det 

av av 
81-' &;2 

Even if the prior 1r Ey, Vy (., .) is assumed to factorize as 1r Ey (. )1r Vy ( .) the function 

7r(J-L,a2) is complex because both of the terms 7rEy (') and 7rVY(') are functions of 

J-L and of a2• 

Elicitation of the mean (for a skewed distribution) and variance are generally 

considered difficult with unreliable answers, whilst eliciting their distributions has 

rarely been considered. 

So although this is the customary model it will not be pursued here because of 

the elicitation difficulties. 
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4.2.3 Median and coefficient of variation unknown 

For this approach we will work with the median and coefficient of variation of the 

logNormal random variable Y as 

My(O) - median {YIO} = exp(JL) 

Cy(O) - coefficient of variation {YIO} = [exp(a2
) - I]! 

where the median is a function of (only) the scale parameter, JL, of the logNormal 

distribution and the coefficient of variation is a function of (only) a its shape 

parameter. 

To simplify the nomenclature we will represent My(O) as My and Cy(O) as Cy . 

We will model our prior beliefs for My and Cy with 7rMy.Cy(m, r) where 

. 
m = exp(JL) and c = [exp(a2) -l]i. 

We will transform our beliefs in the observation space, Y, into beliefs in the X 

space using the following usual methods 

7r(JL, ( 2
) - 7rMy ,Cy(exp(JL), [exp(a2) - I]!) x PI 

- exp(JL) exp(a2)~[exp(a2) - It!7rMy,cy(exp(JL), [exp(a2
) -I]!). 

If we assume that My and Ry are independent then we could now proceed 

using the considerable technical advantage that 7r(JL, ( 2) factorises into a function 

of JL alone and a function of a2 alone. However, the coefficient of variation is 

not directly observable and is a ratio of two different quantities, neither of which 

individually may be elicited easily. 

This approach will not be pursued here. 
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4.2.4 Median and quantile ratio unknown 

We will work with the median and quantile ratio of the logNormal random variable 

Y defined as 

median {YIO} = exp(/l) 
<I>(q) quantile {YIO} 

median {YIO} 
exp(/l + qa) _ () 

- () - exp qa exp /l 

where the quantile ratio, Ry(O), is a function of (only) the shape parameter a for 

a fixed value of q. 

To simplify the nomenclature we will represent My(O) as My and Ry(O) as Ry . 

We will model our prior beliefs for My and Ry with 7rMy ,Ry(m, r) where 

m = exp(/l) and r = exp(qa). 

We will transform our beliefs in the observation space Y into beliefs in the X 

space using the following usual methods 

7r(/l, ( 2
) - 7rMy ,Ry(exp(/l), exp(qa)) x PI 

qexp(qa) 
- exp(/l) 2a 7rMy,Ry (exp(/l), exp(qa)). 

We will again assume that My and Ry are independent when we could proceed 

using the considerable technical advantage that 7r(/l, ( 2) factorises into a function 

of /l alone and a function of a 2 alone. 

This approach will be pursued in Section 4.5 where we will consider the case 

q > 0, where the choice of q > 0 will be discussed in more detail in Section 6.1, 

which in turn implies that r ~ 1 and we need to choose distributions to model our 

prior beliefs for Ry whose support is [1,00). 
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4.3 Posterior prediction 

We proceed to evaluate the existence of posterior predictive moments as follows. 

The posterior distribution p(9Iy) may be expressed as proportional to the 

product of our prior beliefs 7r(9) and the likelihood of the observations f(y\8) as 

p(8IY) DC 7r(8)f(YI8). 

The posterior predictive distribution of a future observation y, h(yly), will be 

obtained from the joint posterior distribution of y and 0, h(y, Oly), as 

h(yly) - J h(y, Oly)dO 

- J h(yIO, y)p(0Iy)d9 

- J f(yI0)p(8Iy)d8 

where we have made the assumption that Y is conditionally independent of Y 

given 0 . 

So to examine the existence of the tth posterior predictive moment of Y we 

evaluate 

E{ytly} - J yth(yly)dy 

- J yt [j J(Y11I)P(IIIY)dll] dy 

- J [j ytJ(YIII)dy] p(lIly)dll 

- J jt(O)p(Oly)dO 

DC J jt(0)7r(9)f(YI9)d9 

where jt(O) = J ytf(yIO)dy is the tth moment of Y and Fubini's Theorem, see 

Malliavin (1995) or Korner (1988), has been invoked to justify interchanging the 

order of integration. 

69 



To ensure the conditions for Fubini to be applicable are satisfied we restrict 

our interest to a logNormal model for the likelihood to ensure jt(fJ) exists (which 

may not be true for a Student's t distribution for example). Also to prior beliefs 

11'( fJ) such that JE{yt Iy} < 00, which precludes such choices as the improper prior 

11'( fJ) ex 1/(72 from Section 3.4.3. 

We have been able to establish now that determining the 1st posterior predictive 

moment of Y, lE{Yly}, is equivalent to determining the posterior population mean, 

lE{ exp(JL + (72/2) \y }, and we will work with whichever is most convenient in the 

future. 

4.4 Prior beliefs when the median is unknown 

4.4.1 Introduction 

We will look at a range of commonly chosen models for prior beliefs to examine the 

influence that the tail thickness of the prior beliefs exert on the posterior predictive 

values. 

We will start with the case that the quantile ratio is known and only the median 

is unknown where we know from Section 4.2.4 that 

and that 
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4.4.2 Gamma prior beliefs for the median 

If My rv G(a,b) then 

100 [ (x - Ji,)2] JE{ytIY} ex -00 exp(tJL) exp(Ji,)[exp(JL)](b-l) exp[-aexp(JL)] exp - 2a2/n dJi, 

_ 100 

wb+t exp(-aw) exp [_ (2: -lOgw)2] dw if w = exp(JL) 
o 2a2/n w 

< J W(b+t)-l exp( -aw)dw = f(b + t) 
a(b+t ) • 

This result establishes an upper bound for E {yt Iy}' a constant for fixed a, b 

and t. Hence the tth posterior predictive moment always exists when My rv G(a, b). 

4.4.3 logNormal prior beliefs for the median 

This prior belief is chosen to illustrate a prior belief that possesses a thicker tail 

than the Gamma distribution, where if My rv logN(a, b) then 
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27rba2ln [(a-x)2] 
(b + a2 In) exp - 2(b + a2 In) 

[ 
{2(bx + aa2 In) + bta2/n}] 

x exp t 2(b + a2 In) (4.1) 

< v'27rb x 1 x K 

where the term exp [t{2(b.Hau2jn)+btu2jn}] is bounded by exp(tx) and exp(t2atbt) 2(btu2 jn) 2 • 

Which bound is upper and which bound is lower is determined by the values of x 
and 2atbt where K will be the larger of exp(tx) and exp{t2atbt). 

This result also establishes an upper bound for E {yt Iy}, a constant for fixed 

a, b, t and x. Hence the tth posterior predictive moment always exists whenever 

A1y "'oJ logN{a, b). 

4.4.4 First improper prior beliefs for the median 

If we represent our prior beliefs about the median as 7r My (m) ex: 1 1m then 

7r(p.) ex: 1 and 

which establishes that the value of E{ytIY} always exists, albeit as a function of 

t, nand a 2• 
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4.4.5 Second improper prior beliefs for the median 

If we now represent our prior beliefs about the median as 7r My (m) ex: 1 then 

E{Y'IY} oc L: exp(tlL) exP(IL) exp [ (~~r~2] dlL 

[
2(t + 1)2: + (t + 1)2(J2 jn ] 

- exp 2 

J [{(2:+(J2jn+t(J2jn) -Jl}2] d 
x exp - 2(J2 jn Jl 

1 

ex: exp [(t ;n1)2 cr2] (~cr2) 2 
which again establishes that the value of E{ytly} always exists, although again 

as a function of t, nand (J2. 

4.4.6 Summary 

The proper priors were chosen to illustrate a range of tail thicknesses and, along 

with the two particular choices of improper priors, all show results that we will 

demonstrate allow prior beliefs about the quantile ratio to be chosen that also 

ensure lE{yt Iy} is finite. 
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4.5 Prior beliefs when the median and also the 

quantile ratio are unknown 

4.5.1 Introduction 

When we model uncertainty in both the median and quantile ratio then 

jt(()) = exp(tj.l) exp (; (12) 
and hence we can say that 

JE{yt Iy} ex 100 1: exp( tp,) exp (; (12) 7r(/l, (12) 

n ( )-1 [{s+n(x- fL )2}] x (211"(12)-2 IT Yi exp - 2a2 dj.lda2 

If we let 

IJI. = 100 

exp(tp,) exp(p,)1I"My (exp(p,)) exp [_ (x ~ :)2] dj.l 
-00 2a n 

then, in Section 4.4, we have examined the convergence of IJI. for a range of prior 

beliefs when only the median is unknown. 

If we now return to the case of logNormal prior beliefs for the median where, 

after a little re-arrangement of the results in Equation 4.1, we can say that 

JE{ytly} roo (a2)i ex [2bntx - n(a - X)2 + t(2a + bt)a
2

] 
ex Jo (bn + (2)! P 2(bn + ( 2) 

X exp (; ( 2) 1I"(a2)(a2t~ exp (-; :2) da2 
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and after noting that t(2a + bt)(12 = t(2a + bt)(bn + (12) - bnt(2a + bt) we can say 

JE{ytly} ex:: 100 
1 [2bntx - n(a - X)2 - bnt(2a + bt)] 

o (bn + (12)~ exp 2(bn + 0-2) 

X exp e; ",) 11" (,,')(u't "," exp ( - ~ :,) du', 

If we now let H = 2bntx - n(a - X)2 - bnt(2a + bt) then we can observe over 

the stated range of integration that 

1 ; is bounded above by ~ and that 
(bn+O'~) (nb) 2 

exp [2(bn~0'2)] is bounded above by exp C~J if H > 0 or 1 if H :5 O. 

Hence 

100 1 [2bntx - n(a - X)2 - bnt(2a + bt)] 
ex:: 0 (bn+0-2)~ exp 2(bn+0-2) 

x exp e: ",) 11"("')("') -"'" exp ( - ~ :,) du' 

< A 100 

exp (t; (12) 7I"((12)((12)-<n;1) exp ( -; :2) d(12 

where the value of A depends on the sign of 2bntx - n(a - X)2 - bnt(2a + bt). 

Looking at the results in Sections 4.4.2, 4.4.3, 4.4.4 and 4.4.5 and after noting 

the result above, we will continue to examine the convergence of 

where T = t2 or t2 + t2 In or t2 + (t + 1)2In, N = nor n - 1 with N, T, S > 0 for 

any n > 1. 

We will examine the convergence of this integral by initially concentrating on 

11,00 - 100 

exp (~ 0-2) 7I"((12)((12)-~ exp ( - ; :2) d(12 

< 100 

exp (~ 0-2) 71"(0-2) ((12t ~ d0-2 = I~,oo 
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when once the convergence of I~.oo has been established, the convergence of lo,}' 

defined in the natural way, should follow from the dominating rate of convergence 

of exp (-~~) in (0,1) and hence the convergence of 10•00 is obtained. 

The convergence of 10•1 will of course need to be verified in each case. 

4.5.2 l+Gamma prior beliefs for the quantile ratio 

Looking at the quantile ratio, where if Ry '" 1 +G( c, d) then 

71'(0'2) <X exp(qO') [exp(qO') - 1Fd-l) exp[-c{ exp(qO') - I}] 
0' 

and hence 

I~.oo <X 100 

exp (~ 0'2) exp(qO')[exp(qO') - 1](d-l) 

x exp[-c{exp(qO') _1}](0'2)-(Nt
1
)d0'2 

and I~.oo is finite because of the dominating effect of the term 

exp[-c{exp(qO') -I}] 

in the integrand as 0'2 becomes large, remembering that q > O. 

10•1 converges because 

which is finite because of the dominant effect of exp ( - ~ ~) in the integrand. 

Hence the convergence of 10•00 has been established. 

4.5.3 logNormal prior beliefs for the quantile ratio 

Looking at the quantile ratio, where if Ry '" 1+1ogN(c, d) then 

( 2) exp(qO') 1 [ {log[exp(qO') - 1] - cF] 
71' 0' <X 0' [exp(qO') _ 1] exp - 2d hence 
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1~,00 ex 100 

exp (~ u2
) [ex~(~~)u2 1] 

[ 
{log[exp(qu) -1] - cF] ( 2)_(N+l)d 2 

X exp - 2d u:l u 

and 1~,00 will only converge if 

log[exp(qu) - 1] > (dTu2)! 

where for large values of u2 

log[exp(qu) - 1] ~ qu 

and we obtain convergence if d < 9,f. 

10,1 will converge because 

t exp(qu) 2 _(N+) (K) 2 
10,1 ~ C Jo [exp(qu) _ 1] (u) ~ exp - 2u2 du 

which is finite because of the dominant effe~t of exp (-[;r) in the integrand. 

Hence the convergence of 10,00 has been established for the quantile ratio when 
2 1 

d < ¥ or when the shape parameter d2 < -:if. 

The logNormal prior beliefs, when transformed into prior beliefs for u2, includes 

the term 

[ 
{log[exp(qu) - 1] - CP] exp -

2d 

which is of lower order for u2 than 

exp[-c{exp(qu) -Il] 

the comparable term when Gamma prior beliefs are modeled. 

Thus 1 +Gamma prior beliefs for the quantile ratio do allow posterior predictive 

moments to exist unconditionally, whereas for logNormal prior beliefs we have 

only been able to establish the existence of posterior predictive moments when d 

is constrained below an upper bound, where we note that for small values of d 

logN (c, d) -+ N (c, d) with thin tails. 
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4.6 Numerical integration 

4.6.1 Introduction 

We have shown in Sections 4.4.2 to 4.4.5 that the existence of posterior moments 

is available for a wide range of prior beliefs for the median. 

To enable evaluation of posterior moments it will be extremely useful, from a 

computational point of view, to reduce the dimension of the problem from two to 

one and then compute its value by quadrature. 

The general theory is developed in O'Hagan and Forster (2004) but we will 

concentrate here on a logNormal model for the data with logNormal prior beliefs 

for the median. 

4.6.2 Reducing the dimension 

We want to evaluate the posterior expectation of a function of our parameter 8 as 

1E{k(8)/y} = J k(8)p(8/y)d8. 

where we are particularly interested in the population mean k(8) = exp(J-L+a2/2). 

Although we can say, in general, that 

1l'(8)f(y/8) 
p(8/y) = J 1l'(8)f(y/8)d8 

we are usually unable to analytically determine the denominator and this is 

certainly true in general for our model. 

As we have 8 = (J-L, a2) our posterior expectation becomes 

where both the numerator and denominator are double integrals. 
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If we can find a way to reduce these integrals to one variable only then they 

will become significantly easier to evaluate. It is most expedient to work with an 

inner integral with respect to J-t initially as we will now demonstrate. 

We have chosen to work with the median and quantile ratio which, when we 

can express our prior beliefs independently as 7r My (m) and 7r Ry (r ), then allows us 

to state that 

and if we are able to choose 7rMy{m) so that p{J-tla2, y) is a member of the same 

family of distributions as 7r{J-t) where 

then this conditional conjugacy gives us the potential to integrate out J-t and reduce 

the dimension of our problem as required. 

If we choose a logNormal prior belief for the median then we will demonstrate 

in Section 4.6.3 that both 7r(J-t) and p(J-tla2,y) are members of the Normal family. 

The inner integral in the denominator of (4.2) with respect to J-t yields 1 when 

p(J-L1112, y) is expressed as a probability density function, complete with its constant 

of integration. The inner integral in the numerator may also be evaluated with 

respect to J-L for our form of k( 8) for a Normal distribution as we will demonstrate 

in Section 4.6.3. 

For an appropriate choice of P My (m) we may then say that 

kl (a2) = J k(J-t, 112)p(J-L la2 
I y)dJ-t 

and hence that 

JE{k(J-L, a 2)IY} = J k l (11
2

)PI{11
2

Iy)d11
2 

J PI (a2 1Y )da2 

which has reduced our posterior expectation to evaluating the ratio of two one 

dimensional integrals. 
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We are then able to evaluate each integral separately using the simplest of 

quadrature rules where we divide the common range of integration [O,U] into the 

same w equal parts and then calculating the value of the integrand at the midpoint 

of each of the w intervals and applying equal weights. 

So, using the denominator as an example, if 

we may compute the approximate value as 

A U W [U 1 I ~ - LPl -2 (2i -1) 
w i=l w 

where the following two points need careful consideration. 

The range of integration for our problem extends to 00 and to be able to ensure 

convergence of i we need to choose U so that the value of Pl [2~ (2i - 1)] is so small 

as to be unimportant whenever i:v(2i - 1) > v for some v < U. 

The error inherent in the approximation i will reduce as the value of w increases 

and w may be chosen as the minimum value to achieve the desired level of accuracy. 

4.6.3 Application when the median and the quantile ratio 

are unknown 

We know from Section 4.2.4 that our prior beliefs in the X space may be expressed 

in general as 

q exp(q(1) 
7r(J.L, (12) = exp(J.L) 2(1 7rMy,Ry (exp(J.L), exp(q(1)). 

If we assume that My and R y are independent then we proceed using the 

considerable technical advantage that 7r(J.L, (12) factorises into a function of J.L alone 

and a function of (12 alone. 
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Then using the results from Section 4.6.2 we invoke the concept of conditional 

conjugacy by only considering the case when My'" logN(a, b). To consider a model 

for prior beliefs for Ry that allows flexibility in its choice with posterior predictive 

moments that exist unconditionally, after noting that we want to consider the case 

q > 0, we will use Ry '" I+G(c, d). 

We are now able to say that 

[ 
(a-f..t)2] 1 7r(f..t, ( 2) oc exp - 2b (U2)-l exp(qu) [exp(qu) - I](d-l) exp[-c{exp(qu) - I}l 

and so 

oc exp [_ (a - f..t)2] exp [_ (x - 1L)2] (u2r(nt1) 
2b 2u2/n 

x exp ( -; :2) exp(qu)[exp(qu) - I](d-l) exp[-c{exp(qu) - I}l 

1 [ e!!:~;!n - IL ) 2 ] 

- V27r(b-1 + nu-2)-1 exp - 2(b-1 + nu-2)-1 

X V27r(b-1 + nu-2)-1 exp - (u2r ~ [ 
(a - X)2] i!!.±ll 

2(b + u2/n) 

X exp ( - ~ :2) exp(qu)[exp(qu) - l](d-l) exp[-c{exp(qu) - I}] 

where we can identify 

and 

- V 27r(b- + nu- )-l exp - (u2)- ~ . r;:;- 1 . 2 1 [ (a - X)2] (n+l) 

2(b + u2/n) 

X exp ( - ~ :2) exp(qu)[exp(qu) - l](d-l) exp[-c{exp(qu) - I}]. 

So following Section 4.6.2 when 
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we can say that 

and we are now able to determine the posterior population mean as 

where we will use the midpoint rule to evaluate the integral as 

lE{ ( + 2/2)1 } ~ E~=l kl [~(2i - 1)] Pl [~(2i - 1)] 
exp J.L a y '" ,,",W [lL(. _ )] . 

L..ti==l Pl 2w 2z 1 

4.6.4 Determining the range and number of intervals 

for our Numerical integration 

In Section 4.6.2 we stated that we will evaluate the integral in the numerator and 

the denominator separately using the simplest of quadrature rules by dividing the 

common range of integration [O,U] into the same w equal parts and calculating 

the value of the integrand at the midpoint of each of the w intervals and applying 

equal weights. 

The three considerations that need to be weighed up and balanced are 
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1. the range of integration for our problem extends to 00 and to ensure convergence 

of i we need to choose U so that the value of PI [2~(2i - 1)] is so small as to be 

unimportant whenever 2~ (2i - 1) > v for some v < U 

2. the error inherent in the approximation i will reduce as the value of w increases 

and w may be chosen as the minimum value to achieve the desired level of accuracy 

3. the computing time to undertake these evaluations. 

The initial investigations were conducted using Excel which allows each of the 

w lines of calculation to be viewed and the values of PI [2~ (2i - 1)] to be observed. 

The simulations using large numbers of draws were undertaken in R and the values 

of U and w were chosen to minimise computing time without compromising the 

error in i whilst ensuring that the value of PI [2~(2i - 1)] becomes so small as to 

be unimportant. 

From the investigations made the value of U =40 was chosen because if U =30 

was chosen the value of PI [2~(2i - 1)] did not always become so small as to be 

unimportant within the w lines of calculation. If U =50 was chosen then this was 

not computationally efficient because the value of PI [i:u (2i - 1)] became zero after 

approximately 80 of the w lines of calculation. The final 20% of the calculations 

did not contribute to the evaluation of the integral as the values of the numerator 

and the denominator were 0 for each of these lines. 

The Bayesian posterior expectation (Bpe) is mentioned first in Chapter 1 where 

Bpe is simply shorthand for lE{exp(J.L + u2/2)IY} when My '" 10gN(scale,shape) 

and also Ry '" l+G(scale,shape) . 

. Although it will be in Chapter 6 that we will develop the theory behind the 

choice of the Quantile Ratio, Ry , as the ratio of the Third Quartile to Second 

Quartile (or Median) we do need to recognise now, to be able to perform our Bpe 

calculations, that we will work with the value of q = 0.6745 throughout this thesis. 
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The data enters the calculations shown in Section 4.6.3 as x and 8, which 

would be recognised in classical statistics as sufficient statistics. The table that 

follows shows, for a range of values of w, and x and 8, the value of the Bpe that 

was obtained 

w 

Distn CoV x 8 100 200 400 500 800 1000 10000 

Pareto 0.25 6.8 0.2 997 946 922 917 910 907 906 

Gamma 0.25 8.2 0.8 4041 3836 3741 3730 3782 3774 3761 

Weibull 0.25 6.8 4.3 1000 1059 1036 1036 1036 1036 1036 

logN 2.00 6.0 51.0 948 947 947 947 947 947 947 

Gamma 2.00 1.5 660.0 117 117 117 117 117 117 117 

Table 4.2: Bpe when n=20, U=40 ; My ,...., logN(O,lOO) and Ry ,...., 1+G(11.5,6) 

where for the distribution and Co V indicated the value of x and 8 that were quoted 

represent values at the high or low end of the range for 8, for that distribution 

and CoY, for an individual sample of size 20. Values of x and 8 for other values 

of the Co V for these distributions will typically fall within the envelope of values 

quoted. 

It can also be observed that as the size of S increases the calculated Bpe is 

stable across the range of values of w. 

The value of 8 only enters the calculation of the B pe in the term exp ( - ~ ~ ) 

in PI (0'2IY). When 8 is small then exp( - ~ ~) is relatively large for all values of 

(J2 and quickly approaches its limiting value of 1 (reaches 0.90 when (J2=O.95 for 

8=0.2). The values of the numerator and denominator calculated for small values 

of (J2 are very large and if their values were plotted against (J2 then each would be 

J-shaped. The value of w influences the values of (J2 chosen to evaluate the Bpe 

and the values of the numerator and denominator are very sensitive to the values 

of small (J2. 
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For large values of 8 the term exp( -~~) is very small for small (J2 and only 

increases slowly (reaches 0.70 when (J2=925.3 for 8=660). A plot of the values 

of the numerator and denominator against (J2 would be unimodal with both the 

numerator and denominator only showing much smaller values but with smooth 

behaviour around the mode (where values of the numerator and denominator both 

contribute to the value of the Bpe). Hence the calculated Bpe is stable across the 

range of values of w. 

From the investigations made the value chosen was w=500 to provide as small 

value for w as was compatible with providing representative results. 

O'Hagan and Forster (2004) have stated that "for one-dimensional integrals, 

acceptable accuracy can generally be achieved with w=lOO evaluations". Table 4.2 

provides evidence that, at least in this case, w, the number of divisions of the range 

of U, should be chosen as larger than 100 to obtain representative results. The 

results in Table 4.2 were obtained by taking the sum of the first w terms for the 

numerator and the denominator. If however, each Bpe was evaluated by taking 

the sum of the first 100 terms then the same answers were obtained, reflecting the 

fast convergence of the terms. 

In the exploration of numerical integration other integrals have been evaluated 

where convergence was not so fast and so the conservative approach of w=500 was 

adopted for both the number of divisions of the range of integration as well as the 

number of evaluations (terms in the sums). 

The numerical integration techniques developed here will be used extensively 

in Chapter 5, Applying the Bayesian model to practical situations. To evaluate 

moments for the posterior predictive distribution they offer considerable reduction 

in computational time compared with using MCMC techniques implemented in 

WinBUGS with comparable accuracy. 
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Chapter 5 

Applying the Bayesian model 

5.1 Introduction 

The paper by Briggs et a1 (2005) examined clinical trials cost data modelling where 

an estimate of the population mean value is of interest. Cost data is non-negative 

and typically positively skewed and the customary parametric data models, which 

they used, were the Gamma and logNormal distributions. The estimators of the 

population mean that they used were the sample mean (sm) and exp(lm + Iv/2), 

respectively, where 1m and Iv were the log scale sample mean and variance. The 

estimator exp(lm + Iv /2) is one of a number possible for the population mean of 

a logNormal random variable as will be expanded in Section5.1O. 

Briggs et a1 (2005) compared these two estimators by calculating the root mean 

square error (RMSE) for a simulation experiment with 10,000 replications as the 

square root of the mean (estimate - population mean)2. They simulated from two 

parametric distributions, with five different values for the coefficient of variation 

(CoV) and samples of five different sizes but a constant population mean of 1000. 

87 



We will consider here estimates of population mean costs using a Bayesian 

method as well as the two Briggs et al (2005) methods. Our Bayesian approach 

entails calculating the posterior mean at each replication under the assumptions 

about the prior beliefs being considered. 

Their results, presented in their Table 1 and reproduced here as our Table 5.1 

overleaf, show that both of their estimators performed worst with respect to sample 

size when a simulation sample size of 20 (their smallest value) is taken and it is 

this value that we will use here. To enable us to make direct comparisons with 

their results we will simulate from the same two parametric distributions using 

RMSE's to compare the three estimators. 

RMSE for sm estimator RMSE for exp(lm +lv /2) estimator 

Simulation sample sizes Simulation sample sizes 

Distribution CoY 20 50 200 500 2000 20 50 200 500 2000 

Gamma 0.25 56 35 18 11 6 56 35 18 11 6 

0.50 112 71 35 22 11 114 73 38 25 16 

1.00 221 141 70 44 22 400 304 241 226 218 

1.50 333 214 105 67 34 1388 1097 925 896 878 

2.00 440 284 141 89 45 2663 1914 1510 1420 1378 

logNormal 0.25 56 36 18 11 6 56 36 18 11 6 

0.50 112 71 35 22 11 112 71 35 22 11 

1.00 224 141 72 45 23 221 137 69 43 22 

1.50 336 214 109 67 34 328 197 99 61 31 

2.00 450 288 143 63 45 419 250 122 54 38 

Table 5.1: Simulated root mean square error by parametric distribution and also 

estimator for different sample sizes and coefficients of variation, 10000 replications 

( from Briggs et al (2005) ) 
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In Section 5.2 we will introduce our concerns that arise because we are drawing 

samples from positively skewed distributions. Whenever we conduct simulations 

we will draw from a sequence of random numbers that is specified by the number 

of replications and, wherever possible, by the seed value. We will seek to keep 

the number of replications to a minimum consistent with drawing samples that 

adequately represent the distributions from which they have been drawn in the 

sense of the sample first and second moments compared to the population values. 

Specifying the sequence of random numbers by fixing the seed value enables 

simulations to be repeated to check results and enables direct comparisons between 

distributions to be made because the sampling variations are comparable. 

The Bayesian model will be introduced in Sections 5.3 where we will use our 

Bayesian posterior expectation (Bpe) as the comparable estimator to the sample 

mean (sm) and exp(lm + Iv/2) of Briggs et al (2005). We will continue to use 

the RMSE loss function introduced in Briggs et al (2005) throughout Section 5, 

except for Section 5.10, to enable direct comparisons to be made with their results. 

We have established in Chapter 3 that using customary weak prior beliefs for 

our logNormal data model does not lead to a posterior predictive mean that is 

finite. However, it is not always possible to elicit an expert's prior beliefs but we 

do need to establish some prior beliefs that can be used in those situations. These 

objective prior beliefs will provide a reference against which elicited prior beliefs 

can be compared. 

A default prior is a means of having objective prior beliefs readily available 

that can be used in a wide range of circumstances .. 
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The default prior for the quantile ratio will be determined by the methods 

described in Section 5.4 where it will be noted that, when CoY = 2, the average 

value of the Bpe is below the sample mean value because of the need to constrain 

the large values of the Bpe that may arise when optimising this default prior. 

In Section 5.5 we will apply our Bayesian model to the three observed data sets 

of Briggs et al (2005). I would like to thank Prof Simon Dixon of ScHARR, the 

University of Sheffield, for making these data sets available to me. Some of the 

reasons why the Bpe performs best, in the sense of lowest RMSE, will be explored 

here and will be developed further in Section 5.6. 

Briggs et al (2005) relied solely on simulation to produce their four sets of 

numerical results shown in their Table 1 although it is possible, as will be shown 

in Section 5.7, to obtain theoretical results for three of their sets of parametric 

simulations. 

In Section 5.8 we will be able to obtain approximate theoretical results when 

applying the logNormal estimator exp(X + 82/2), or exp(lm + Iv/2), to Gamma 

distributions. 

Shrinkage estimators will be explored in Section 5.9 to determine whether, in 

a classical framework, lower RMSE can be achieved at the expense of bias. 

In Section 5.10 we will compare, for logNormal distributions, the conditionally 

minimal MSE estimator of Zhou (1998) with the sample mean, exp(lm + Iv/2) 

and Bpe estimators to determine the range of values of (12, the variance of the 

log-scale, where the Bpe achieves lower Relative MSE than Zhou's CMMSE. 
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5.2 Drawing samples 

Distributions with support on the positive part of the real line are generally skewed 

to the right and all the distributions considered here are of this type. 

A distribution is said to possess a heavy, or thick, right tail if 

p{Y > y} -+ 0 as y -+ 00 slower than an exponential function 

and the probability of exceeding some large value is greater the heavier the tail. 

This can be illustrated by examining, for an increasing sequence of p values, 

the p-percentiles for the random variable Y, following a range of distributions that 

possess increasingly heavier right tails and whose mean = 1000 and CoY = 2, to 

obtain 

Distribution 

p values Gamma Weibull logNormal Pareto 

90 3002 2675 2273 1566 

99 9736 9594 8555 4643 

99.9 17506 20252 22548 13770 

99.99 25713 34411 50067 40838 

99.999 34158 51912 100070 121116 

99.9999 42751 72639 185981 359201 

99.99999 51445 96501 327454 1065304 

99.999999 60212 123421 552729 3159437 

99.9999999 69034 153337 901730 9370130 

99.99999999 77900 186192 1430110 27789552 

Table 5.2: p-percentiles 

where we will formally introduce the Wei bull and Pareto distributions later. 
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So if we look at p{Y > 75000} then following the table above we obtain 

Gamma = 0.000000001 

Weibull = 0.000000785 

logNormal = 0.000027004 

Pareto = 0.000027605 

where the Gamma distribution is light tailed and the Weibull (for this value of the 

CoV) , logNormal and Pareto are increasingly heavy tailed. 

The consequence of this observation is that when drawing samples from these 

right skewed distributions using random numbers to obtain the very large values 

possible for the heavier tailed distributions is indeed a rare event. According to 

the cycle of the congruential generator used to provide the random numbers a very 

large sample size may be necessary for a very large value to occur in the sample. 

The size of sample required increases as the distribution becomes heavier tailed. 

The way that we have chosen to draw samples that adequately represent the 

first and second order moments of the population from which it has been drawn is 

by judicious choice of seed value and number of replications, although the minimum 

number of replications will be used for computational efficiency. 

In Briggs et al (2005) each simulation experiment had a maximum of 2000 draws 

with 10000 replications. We would expect that sampling from positively skewed 

distributions will produce many replications that do not reflect the occasional 

extremely large values that may be possible and sample mean values, and more 

pertinently sample variances, will be lower than the corresponding values for the 

populations from which they were sampled. 

We expect to obtain a value 552729 or larger from the logNormal distribution 

once in 100,000,000 sampled values. The largest number of sampled values that 

Briggs et al (2005) obtain for any single simulation experiment was 20,000,000 and 

so they would not have expected to see a sample value of this magnitude. 
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5.3 Bayesian model 

To formulate our Bayesian model we will follow our work in Chapter 2 and use 

a logNormal data model and following Chapter 4 we will specify prior beliefs for 

the median and quantile ratio of the logNormal random variable. We know from 

the results in Chapter 4 that we have a wide choice of distributions available to 

represent our prior beliefs for the median but, as we want to undertake many 

replications, using numerical integration as introduced in Section 4.6 will give us 

considerable computational advantages over MCMC techniques such as WinBUGS. 

As explained in Section 4.6 if we represent our prior beliefs for the median as 

a logNormal distribution then the Bayesian posterior expectation (Bpe) becomes 

a ratio of two one dimensional integrals which may then be easily evaluated using 

quadrature techniques. To complete our specification we will represent our prior 

beliefs for the quantile ratio as a 1 +Gamma distribution, where the choice of the 

Gamma distribution allows a range of possible prior beliefs to be captured. 

To conduct the Bayesian analysis it is helpful to be able to specify default priors 

that can be used no matter what the specification of the data model and without 

the need to conduct elicitations. Although we will use the simulations from the 

customary parametric data models to determine, or train, our choice of default 

prior, when observed cost data sets are analysed then we do not know the actual 

population distribution from which they have been sampled and we will look to 

determine a default prior that is robust against misspecification. 

The RMSE used in Briggs et al (2005) is a particular form of a loss function 

as used in statistical decision theory. The mean square error (MSE) is known 

as the quadratic loss function whose properties may be summarised as giving 

equal weight to values that are equally above or below the target value whilst the 

quadratic nature of the calculations give larger weight to values that are further 

from the target value. 

93 



In the Bayesian model below our estimator is the Bpe and we then define the 

Total RMSE (TRMSE) as 

TRMSE = E RMSE 

which gives equal weight to each of the four parametric models considered, 

namely logNormal and Gamma each for CoV = 0.25 and 2, when searching 

amongst candidate prior distributions to determine the default prior that will 

minimise the TRMSE. 

The likelihood model that we are using is the logNormal distribution. So the 

range of possible values for the posterior expectation is non-negative and this range 

may be divided, in this case with known population mean, into 0 to population 

mean and then population mean to infinity. When we are searching to minimise the 

TRMSE the process is driven by not allowing values for the posterior expectation 

above the population mean to become too large - where the range is unbounded. 

Values below the population mean are not subject to such large changes as the 

choice of candidate default prior changes. 

The median, My, of the 10gN(p" a2) distribution is exp(p,) and so the prior 

belief chosen for the median as 10gN(a, b) in general, with 10gN(0, 100) in this 

case, translates to a prior belief for the mean on the log scale of N(O,100) which 

is not atypical if an noninformative prior is to be considered. The value b = 100 

was chosen to be sufficiently weak to allow a wide range of possible values for the 

mean to be considered but the value is within a range of values for b where the 

value chosen has very little impact on the calculated value of the posterior mean. 

Similar comments apply to the choice of a = 0 as will now be demonstrated in 

Table 5.3 overleaf where 10K replications have been taken with an 0710 seed value, 

p,y = 1000, n = 20 and R '" 1 +G(11.5,6). 
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a,b 

Distribution CoY 0,102 10 , 102 -10 , 102 0,52 0,202 50,52 

Gamma 0.25 60 61 60 60 61 65 

logN 0.25 62 63 62 62 62 67 

Gamma 2.00 552 552 553 551 552 703 

logN 2.00 313 312 313 313 312 326 

Table 5.3: Simulated root mean square error for the Bpe for a range of logN(a,b) 

prior beliefs for the median 

The first column shows the simulated RMSE values when My f"oJ logN(O, 100), 

which is a not atypical choice if we wish to model My with fairly weak prior beliefs. 

In the next four columns we look at variations around My f"oJ logN(O, 100) to 

determine if the values of the estimated RMSE are robust to other specifications 

that represent ranges of values that may be possible for the Median (from data 

that has been observed). We can observe that this is indeed the case. 

In the last column we have looked at My f"oJ logN(50,25) to see the effect of 

a stronger prior belief, which does not represent a range of values that observed 

data suggest would be possible for the Median. We can observe that, with the 

sole exception of the parametric data model Gamma Co V = 2, the values of the 

estimated RMSE's are also reasonably robust to other specifications. 

Hence, we will use My f"oJ logN(O, 100) to represent prior beliefs for the Median 

in all the subsequent analysis, unless specified to the contrary. 
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5.4 Default prior for the Quantile Ratio 

To determine a default prior the TRMSE was used to make comparisons between 

candidate priors for the two parametric distributions using a simulation sample size 

of 20. In Briggs et al (2005) for these two parametric distributions a population 

mean of 1000 was taken with a range of coefficient of variation (CoV) from 0.25 

to 2.00. 

It is worth noting that the smaller the Co V the less skewed both distributions 

become and they then approach the same approximate Normal distribution. The 

largest values of RMSE's, with respect to CoY, arise in Table 5.1 for CoY = 2 and 

this end of the chosen range for the Co V's clearly shows that the misapplication of 

the exp(lm + Iv /2) estimator to Gamma distributed data produces poor results. 

The value of the Co V is used to determine the numerical values drawn from 

the distribution at random where to undertake the numerical integration only the 

log scale sample mean and log scale sample sum of squares are required for each 

replication. 

To calculate the Bpe using numerical integration we also need to specify the 

candidate prior parameter values and can then use the Bpe as the estimate when 

calculating the (estimate - population mean)2 and hence the RMSE. It was in the 

worst case, in the sense of the largest values of the RMSE, which arose for both 

distributions when n = 20 and Co V = 2, that the choice of prior for the Quantile 

Ratio, Ry , influenced the value of the TRMSE. 

Briggs et al (2005) used 10,000 (10K) replications to generate their results. 

When the Bpe was calculated by numerical integration using the R programming 

package the value of the RMSE produced was influenced by the initial seed value 

that had been used for the random number generator, which was particularly 

noticeable for the Gamma distribution with Co V = 2, as indicated in Table 5.4 on 

the following page, with comparable variations for other seed values 
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number of replications 

seed 10K lOOK 1000K 

3.21E08 565.32 554.34 553.43 

0710 551.90 551.22 553.15 

Table 5.4: Simulated root mean square error for Bpe with sample size 20 for a 

Gamma distribution with CoY = 2 when Ry ~ 1+G(1l.5,6) and an increasing 

number of replications from the same seed value 

To reduce sampling errors when determining the default prior the seed value 

of 0710 was used with lOOOK replications. 

When samples were drawn from the Gamma and logNormal distributions they 

more than adequately represented the population first and second moments, as 

shown in the table below 

population sample values number of 

Distribution CoY mean sd mean sd CoY seed replications 

Gamma 0.25 1000 250 1000 250 0.250 0710 1000K 

logN 0.25 1000 250 1000 250 0.250 0710 1000K 

Gamma 2.00 1000 2000 1001 2004 2.001 0710 1000K 

logN 2.00 1000 2000 1000 2001 2.000 0710 1000K 

Table 5.5: Parametric distributions, mean = 1000, sample size = 20 

After comparing candidate priors we find that the TRMSE was minimised for 

the Bpe when Ry "V 1+G(11.5,6) which give the following comparative results 
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sm exp(lm + Iv /2) Bpe 

Distribution CoY RMSE average RMSE average RMSE average 

Gamma 0.25 56 1000 56 1002 61 1019 

logN 0.25 56 1000 56 1002 62 1017 

Gamma 2.00 448 1001 4.89E+48 4.89E+45 553 668 

logN 2.00 447 1000 459 1079 309 862 

TRMSE -II 10071 - 1 4.89E+48 1 - 1 - 1 

Table 5.6: Estimated root mean square error for sample size 20 by underlying 

distribution and estimator for different coefficients of variation 

where "average" denotes the average of the estimated mean values. 

We will now use Ry fV 1 +G(11.5,6) as the default prior in all the Bayesian 

analysis that follows. 

We note that, for small values of CoY, the Bpe performs quite well whilst 

predicting average values that are above the sample mean. For larger values of 

CoY, when the degree of skewness is greater, the Bpe performs better than the 

sample mean for the logNormal distribution but worse for the Gamma distribution 

and in both cases predicts an average value that is below the sample mean. 

This reflects the need, when optimising the default prior for the quantile ratio, 

to constrain the large values of the Bpe that arise as a result of the occasional 

large values in these distributions which would consequently have a large influence 

on the value of the RMSE. This optimisation will however be dominated by the 

calculations for Co V . = 2 and in particular for the Gamma distribution as this 

RMSE is the largest for the Bpe. 
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We are now able to display a plot of the probability density function of the 

default prior for the Quantile Ratio to illustrate how we have determined a prior 

that, while it does not have an upper limit on possible values of the Quantile Ratio, 

constrains values of the Quantile Ratio to generally lie in the range 1 to 3. 
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Figure 5.1: Plot to show the probability density function for the default prior for 

the Quantile Ratio 

Values of the Quantile Ratio larger than 3 occur with very small probability. 

99 



We have now shown a plot of the probability density function of the variance 

of the log-scale, /12, to illustrate how the choice of prior for the Quantile Ratio 

transforms into the prior for /12 . 
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Figure 5.2: Plot to show the probability density function for (12, the variance of 

the log-scale 

This prior for (12 does not have an upper limit on possible values of (12 but 

constrains the probable values to generally lie in the range 0 to 2 with values 

greater than 2 only occurring with a very small probability. 
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5.5 Application to the observed data sets 

The three observed data sets analysed in Briggs et al (2005) are summarised in 

their Table 3. To help understand the nature of the data sets we produce the 

Five-number summaries as follows 

data set mean sd minimum 1st quartile median 3rd quartile maximum 

CPOU 518 1145 12 102 172 399 10734 

IV Fluids 2693 7083 123 318 421 621 73167 

Paramedics 4233 7961 32 1151 2016 4069 130043 

Table 5.7: Five-number summary for the three observed datat sets 

All three observed data sets are skewed to the right with CPOU and Paramedics 

possessing distributional shapes that are broadly similar. 

The IV Fluids data set is somewhat different with a longer thicker right tail. In 

Table 3 of Briggs et a1 (2005) we can observe that IV Fluids exhibits the smallest 

skewness and kurtosis but the largest Co V as the above indicates. 

These properties may be displayed in the grouped data tables below 

population percentage of values in the range 

data set mean (pm) >pm > 2pm >3pm > 4pm > 5pm > lOpm > 20pm 

CPOU 518 19.65 9.57 6.79 4.53 3.60 1.65 0.10 

IV Fluids 2693 16.46 13.10 10.41 7.39 5.79 2.10 0.34 

Paramedics 4233 23.97 11.07 6.26 3.40 2.70 0.86 0.16 

Table 5.8: Grouped data table, values above the population mean 

where we can observe that IV Fluids has a right tail that is much heavier than 

that for either CPOU or Paramedics, while considering this table with the next 

table 

101 



population percentage of values in the range 

data set mean (pm) ~ pm/20 ~ pm/l0 ~ pm/5 ::; pm/4 ::; pm/3 ::; pm/2 ::;pm 

CPOU 518 2.77 5.33 25.41 36.63 50.10 61.52 80.35 

IV Fluids 2693 0.08 22.61 68.60 77.33 80.52 81.61 83.54 

Paramedics 4233 2.59 3.29 13.98 22.46 34.40 52.81 76.03 

Table 5.9: Grouped data table, values below the population mean 

we can observe that CPOU and Paramedics are mainly clustered between pm/l0 

and 2pm with IV Fluids concentrated between pm/20 and pm/4. 

From Table 3 of Briggs et al (2005) we note that the Co V of each of the three 

observed data sets is around the value 2. 

In Figure 2 of Briggs et 81 (2005) they show histograms of the log transformed 

observed cost data sets and the tail properties that we have described above become 

much more visually evident. 

From Table 4 of Briggs et 81 (2005) we can observe that Paramedics is the 

only one of the three observed data sets whose log transformed histogram exhibits 

negative, albeit marginally, skewness with the highest coefficient of kurtosis and 

lowest coefficient of variation. 

The work that we have undertaken in Chapter 2 developed, in Section 2.6, the 

theory to enable fBf's to be defined for the comparison of a range of rootN ormal 

vs logNormal and logNormal vs rootGamma candidate models. The numerical 

results presented in Section 2.8 showed these comparisons for the pMDI+ data 

set. 

We will now present numerical results for the comparisons of comparable ranges 

of candidate models for the CPOU, IV Fluids and Paramedics data sets. 
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The first plot in Figure 5.3 shows the fBf for comparing the rootNormal vs 

logNormal models for the cpau data set where the value of the fBf -+ 1 as 

,\ -+ o. 
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Figure 5.3: Plots comparing candidate models for the CPOU data set 

The second plot in Figure 5.3 shows the fBf for comparing the rootGamma vs 

logNormal models for the cpau data set where the value of the fBf -+ 1 as ,\ -+ o. 
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The first plot in Figure 5.4 shows the IDf for comparing the rootNormal vs 

logNormal models for the IV Fluids data set where the value of the IDf -+ 1 as 

,\ -+ O. 
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Figure 5.4: Plots comparing candidate models for the IV Fluids data set 

The second plot in Figure 5.4 shows the IDf for comparing the root Gamma vs 

logNormal models for the IV Fluids data set where the value of the IDf -+ 1 as 

,\ -+ O. 
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The first plot in Figure 5.5 shows the mf for comparing the rootNormal vs 

logNormal models for the Paramedics data set where the value of the fBf --+ 1 as 

A --+ 0, although the value of the mf is above 1 for values of 1/ A > 55 with the 

peak mf value of 1.26 occurring when 1/ A = 109. Hence a logNormal model was 

favoured over a rootNormal model for values of 1/ A < 55, whereas a rootNormal 

model was very weakly favoured over a logNormal model for values of 1/ A ~ 55. 
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Figure 5.5: Plots comparing candidate models for the Paramedics data set 

The second plot in Figure 5.5 shows the mf for comparing the rootGamma vs 

logNormal models for the Paramedics data set where the value of the IDf --+ 1 as 
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). --4 0, although the value of the fBf is above 1 for values of 1/), > 10 with the 

peak fBf value of 1.57 occurring when 1/), = 19. Hence a logNormal model was 

favoured over a rootGamma model for values of 1/), < 10, whereas a root Gamma 

model was weakly favoured over a logNormal model for values of 1/), 2:: 10. 

As)' --4 0 the fBf could barely distinguish between the logNormal and the other 

models. 

We will use the logNormal as the data model for the CPOU, IV Fluids and 

Paramedics data sets because the only exception against it being the favoured 

model was for Paramedics when there was a region of very weak preference against. 

We now wish to follow Briggs et a1 (2005) by applying the three estimators to 

the three observed data sets for sample size 20 with the Bpe to be evaluated using 

the default priorRy f'V 1+G(I1.5,6). The "sample" function in the R programming 

package, used here for replications "without replacement", does not allow control 

of the seed value and hence the samples drawn may show undue variation in their 

properties (representation of the population first and second order moments) for 

the different estimators due to sampling errors as indicated in the table following 

for the Paramedics data set 

population 10K 1000K 

values low high low high 

mean 4233 4204 4233 4234 4235 

sd 7961 7832 8061 7961 7964 

CoY 1.88 1.86 1.90 1.88 1.88 

Table 5.10: Simulation results based on the total sample size for 10K and lOOK 

replications of sample size 20, without replacement, from the Paramedics data set 

where the values in the columns of the table show typical results to indicate the 

variation possible based on different replications ie different seed values. 
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When we follow Briggs et al (2005) by applying the three estimators to the 

three observed data sets with the Bpe evaluated when Ry '" 1+G(1l.5,6) for 

sample size 20, to reduce the sampling variation we will use 1000K replications 

and hence obtain 

population sm exp(1m + Iv /2) Bpe 

data set mean RMSE average RMSE average RMSE average 

CPOU 518 253 518 233 479 186 396 

IV Fluids 2693 1570 2694 1648 2002 1459 1411 

Paramedics 4233 1770 4232 1653 4270 1199 3754 

Table 5.11: Simulation results based on drawing samples without replacement from 

the three large observed data sets 

which is not inconsistent with their results for sample size 20 as shown in their 

Table 5, where they found that the RMSE was lowest for the Paramedics and 

CPOU data sets for the exp(Im + Iv /2) estimator but lowest for the IV fluids data 

set for the sm estimator. 

It is not unexpected that our Bpe achieves the lowest RMSE for all three 

observed data sets and is therefore, in the sense of the lowest RMSE, the best 

estimator as we know from Table 5.6 that our Bpe estimator performs best for 

logNormal data when CoV = 2. Inherent within the phrase "performs best" is the 

knowledge that our default prior used to determine the Bpe has been primarily 

"trained" by distributions with Co V = 2. 

We remind ourselves that the Bpe estimator performs best for IV Fluids and 

we will explore the reasons for this in the next section. 
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5.6 Other data generating models 

Of the three observed data sets that were examined in Briggs et a1 (2005) we 

noted in Section 5.5 that CPOU and Paramedics may be reasonably modelled as 

logNormal distributions while IV Fluids, although positively skewed, appears to 

possess a thicker tail than either a logNormal or Gamma model would suggest. 

In Briggs et a1 (2005) they examined the performance of the exp(1m + Iv /2) 

estimator when it was misapplied to Gamma distributed data. To determine how 

the same three estimators perform if different data generating models were used 

the following two models, Wei bull and Pareto, were examined in the sense that 

data was simulated from the two models and then the same three estimators were 

used to generate RMSE's. 

This an extension of the misapplication of the exp(lm + Iv /2) estimator to 

Gamma distributed data introduced in Briggs et a1 (2005) because we now have 

four parametric data generating models (Gamma, Weibull, logNormal and Pareto) 

of increasingly heavier tails (the Weibull only conditionally as will be explained) 

and then the same three estimators were used to generate RMSE's. 

5.6.1 Weibull model 

If Y follows a Wei bull distribution then this is defined by the two parameters k > 0 

for shape and A > 0 for scale. We also note that whenever k < 1 then this Wei bull 

distribution possesses a heavy tail. 

We also know that for a Weibull distribution its mean, J,ty, and variance, a~, 

are related to k and A as 

J,ty = Ar (1 +~) = ~r (~) and 

a~ = A2r (1 +~) - J,t~. 
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Remembering that a? = Co V2 J.L} and that J.Ly = 1000, in this case, we can 

then show that 

(1+CQy2) [rG)]' = 2kr G) 
which we can solve for k by numerical methods for any value of CoY and hence 

obtain 

5.6.2 Pareto model 

A _ 1000k 
- rur 

If Y follows a Pareto distribution then this is defined by the two parameters k > 0 

for shape and a > 0 for location. We also note that the Pareto distribution always 

possesses a heavy tail. 

We also know that for a Pareto distribution its mean, JLY, and variance, a~, 

are related to k and a as 

ka 
JLy = k _ l' for k > 1 and 

a2k JL2 

a~ = (k -1)2(k _ 2) = k(k ~ 2)' for k > 2. 

So again remembering that a~= Co V2 JL} and that JLy = 1000, in this case, we 

can show that 

k2_2k __ l_ =0 
COV2 

which we can solve for k by numerical methods for any value of Co V and hence 

obtain 

k-1 
a= -;-1000. 
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5.6.3 Simulation results 

For both the Wei bull and Pareto distributions we continue with a population mean 

of 1000. 

For the Weibull distribution ,\ = 1095.21 and k = 4.54221 when CoY = 0.25, 

whereas ,\ = 575.250 and k = 0.54269 when Co V = 2 and we note that because 

k < 1 this distribution possesses a heavy tail. 

For the Pareto distribution a = 804.806 and k = 5.12311 when CoY = 0.25, 

while a = 527.864 and k =2.11803 when CoY = 2. 

To be able to draw samples from the Wei bull and the Pareto distributions 

that reasonably reflected the population first and second moments required some 

consideration of the seed value and number of replications to be used. While the 

choice of seed value 0710 with 10K replications was satisfactory for the Weibull 

distribution it was necessary to search for seed value 3843495 combined with 1000K 

replications to obtain results that were acceptable for the Pareto distribution as 

the following table shows 

population sample values number of 

Distribution CoY mean sd mean sd CoY seed replications 

Weibull 0.25 1000 250 1001 250 0.249 0710 10K 

Pareto 0.25 1000 250 1000 250 0.250 3843495 1000K 

Wei bull 2.00 1000 2000 1003 1994 1.988 0710 10K 

Pareto 2.00 1000 2000 1001 2027 2.025 3843495 1000K 

Table 5.12: Parametric distributions, mean = 1000, sample size = 20 
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The result of taking the seed value and number of replications indicated in 

Table 5.12 for sample size n = 20, evaluating the Bpe when Ry '" 1+G(11.5,6), 

produces 

sm exp(lm + Iv/2) Bpe 

Distribution CoV RMSE average RMSE average RMSE average 

Wei bull 0.25 56 1001 56 1006 60 1025 

Pareto 0.25 56 1000 54 999 58 1009 

Weibull 2.00 447 1003 8519221 122444 408 782 

Pareto 2.00 453 1001 177 960 170 984 

TRMSE -II 1012 1. -185195081 -I - I 
Table 5.13: Estimated root mean square error by underlying distribution and 

estimator for different coefficients of variation 

The results obtained in the Table above are not unexpected from the results 

and discussion in Section 5.4. 

However, the difficulty in drawing representative samples from right skewed 

distributions has been vividly illustrated by the potential problems in arriving at 

Table 5.12. 

It is, of course, still entirely feasible and logical to make comparisons between 

the three estimators as the tail of the distribution becomes increasingly heavier 

for a constant value of the CoV. 

We will note at this point that there is some discrepancy between the results 

obtained in Table 5.6 and those in Table 1 of Briggs et al (2005) when we apply 

the exp(lm + Iv /2) estimator to Gamma, or lighter tailed, distributions. We will 

return to this topic in Section 5.7. 
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If we combine the results for sample size n = 20 from Table 5.6 and also 

Table 5.13, evaluating the Bpe when Ry I'V 1+G(11.5,6), we obtain 

sm exp(lm + Iv /2) Bpe 

Distribution CoV RMSE average RMSE average RMSE average 

Gamma 0.25 56 1000 56 1002 61 1019 

Weibull 0.25 56 1001 56 1006 60 1025 

logNormal 0.25 56 1000 56 1002 62 1017 

Pareto 0.25 56 1000 54 999 58 1009 

Gamma 2.00 448 1001 4.89E+48 4.89E+45 553 668 

Weibull 2.00 447 1003 8519221 122444 408 782 

logNormal 2.00 447 1000 459 1079 309 862 

Pareto 2.00 453 1001 177 960 170 984 

TRMSE -II 2019 1 - I 4.89E+48 1 -I 1681 1 
Table 5.14: Estimated root mean square error for sample size 20 by underlying 

distribution and estimator for different coefficients of variation 

When CoV = 0.25 then all three estimators produce comparable results. 

It is, however, when CoV = 2 that we can observe that as the tail of the 

parametric distribution from which values have been sampled becomes heavier 

then the Bpe performs better when compared with the sm in the sense of RMSE. 

So the Bpe performs best when the data generating distribution has been 

correctly specified as the logNormal or indeed if it has been misapplied and, in 

particular, if the actual distribution possesses a heavier tail. 

Although we have not explored this option there will exist distributions, for 

example mixtures, whose thickness of tail is intermediate between the Wei bull and 

logNormal for which the Bpe performs better than the sm when CoV = 2. 
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5.7 Theoretical considerations 

While Briggs et a1 (2005) obtained their results for estimates of the population 

mean from simulations, it is also possible to obtain theoretical results for their 

parametric simulations. 

If the data Yl, Y2, . .. ,Yn are the n observed values of the independent and 

identically distributed (iid) random variables Yb Y2, • • '! Yn ! then if we express Y 

as log Y = X we can define 

Y = ..!.Eyt X = ..!.EX
i 

and 82 = E(Xi - X)2 
n n n-l 

with corresponding estimates from the log transformed data Xi = log Yi 

1 E and Iv = E(Xi - x)2 
1m = n Xi n -1 

Furthermore, we need to note that they considered only the case when the 

populations from which they drew their simulated values had a population mean 

of fLy = 1000 with the population variance O'~ related to the mean through the 

relationship 

Coefficient of Variation _ CoY 
O'y 

or =-

For the sample mean estimator Y as JE{Y} = fLy = 1000 we know that Y is an 

unbiased estimator and hence 

0'2 fL2 
MSE {Y} = var {Y} = .J:: = .J::. X (CoV)2 and 

n n 

- CoY 
RMSE {Y} = fly x Vii 

where these results are applicable for any distribution with finite second moment, 

in particular the Gamma or the logNormal distributions. 

We can present these results in the table below in a comparable format to 

Table 1 in Briggs et a1 (2005) and our Table 5.1, to observe that, with perhaps 

one exception, there is close agreement between the sampled values shown in Table 

1 of Briggs et a1 (2005) and our theoretical values 
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Sample sizes 

CoY 20 50 200 500 2000 

0.25 56 35 18 11 6 

0.50 112 71 35 22 11 

1.00 224 141 71 45 22 

1.50 335 212 106 67 34 

2.00 447 283 141 89 45 

Table 5.15: Theoretical RMSE for sm estimator 

Briggs et a1 (2005) refer to the paper by O'Hagan and Stevens (2002) and 

their use of the logNormal estimator Jiy = exp(X + 8 2/2) applied to a logNormal 

distribution, where we have replaced the O'Hagan and Stevens use of Y by X. 

This properties of this estimator were derived when Y f"V 10gN(J.L, 0-2) with the 

mean value of Y defined as J.Ly = exp (JL + 0-2 /2) with variance o-~ = JL~[exp(0-2) -1]. 

If we express Y as log Y = X f"V N(J.L,0-2 ) then following O'Hagan and Stevens 

(2002) we can obtain 
"-1 

lE{Jiy} = exp(JL + 0-2/2n) (1 _ ~) --2 

n-1 

and so /iy is a (positively) biased est'imator, whenever 0-2 < n -1, contrary to the 

assertion made in Briggs et a1 (2005), with 

MSE{/iy} - var{ exp(X + 8 2/2) } + (bias)2 

_ [lE{I'Y}]' [eXP(<T'/n) (1- n2<T'l) _n,' (1- n<T' 1) .-\ -1] 
+ (lE{Jiy} - JLy )2. 

In Briggs et a1 (2005) we know that 1000 = J.Ly = exp(JL + 0-2/2) and also that 

COV2JL~ = o-~ = J.L~[exp(0-2) - 1] and so for their range of values of CoY and 

n we can compute the theoretical values of RMSE {Jiy} using the relationships 

0-2 = log(Coy2 + 1) and J.L = log 1000 - 0-2/2 and we can present these results in 

the table below in a comparable format to Table 1 in Briggs et a1 (2005) as 
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Sample sizes 

CoY 20 50 200 500 2000 

0.25 56 35 18 11 6 

0.50 113 71 35 22 11 

1.00 229 140 69 43 22 

1.50 345 203 98 61 31 

2.00 460 259 123 77 38 

Table 5.16: Theoretical RMSE for exp(X + 8 2/2) estimator, evaluated for the 

logNormal distribution 

and observe that, with perhaps one exception, there is close agreement between 

the sampled values shown in Table 1 of Briggs et 81 (2005) and our theoretical 

values when the sample size is large and/or CoY is small. 

If we consider Table 5.15 as derived from logNormal data then we are able to 

make direct comparisons by individual cells with Table 5.16 for the theoretical 

values we have calculated and we can see that for Co V = 0.25 or 0.50 the values 

of the RMSE for both estimators are approximately equal for all sample sizes. 

However, for larger values of CoY the exp(X + 8 2/2) RMSE is smaller than 

the sm RMSE for sample sizes of 50 and above but is greater for sample size 20. 

If we take a fixed value of the CoY, say 1.50, and then examine the values of 

the RMSE that arise for the sm and the exp(X + 8 2/2) estimators as the sample 

size n varies then we can present the results in the table below. We can see that 

there is a value of n, in this case 26, which identifies the point where for values of n 

below 26 then the sm RMSE is less than the exp(X +82/2) RMSE and comparable 

values of n exist for other values of the CoY, although the size of n decreases as 

the value of CoY increases. 
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Sample Estimators 

size(n) sm exp(X + 8 2/2) 

50 212 203 

40 237 229 

30 274 270 

26 294 294 

25 300 301 

20 335 345 

15 387 416 

Table 5.17: Theoretical RMSE for estimators, evaluated when CoY = 1.50 for the 

logNormal distribution 

Whilst the sm RMSE, RMSE {Y} = J.Ly x CJnV, is a simple function of n 

and CoY, the f1y = exp(X + 8 2/2) RMSE is a more complex function of nand (72 

because 

MSE{l'y} - exp(2/L + ,,' In) (1- n ~ 1r(n-l

l 

X [eXP("'/n) (1- n
2"'1r

n

" (1- n ~ 1)"-1 -1] 
+ [eXP(/L + ,,' /2n) (1- n ~ 1 r no' - exp(/L + ,,' f2) r (5.1) 

However, both RMSE's possess the expected property that as n increases 

and/or CoY decreases then the value of the RMSE's decreases. 

Briggs et a1 (2005) asserted that when samples have been truly drawn from a 

logNormal distribution then the lognormal estimator is more precise as observed 

in their Table 1. However, because their results are based on (a limited number 

of) simulations, their sampling errors have masked the more subtle true results 

that can be obtained theoretically. 
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5.8 Applying the exp(X + 8 2/2) estimator to 

Gamma distributions 

For sample size n if we represent the data as Y = (Yl, Y2,' .. , Yn) then they are 

observations on the corresponding iid random variables Y = (Yt, Y2, •• ·, Yn). 

If Y ,...., G{a, b) then 

abyb- 1 exp( -ay) 
f(y) = f(b) where y> 0 and a, b > O. 

If we make the definition log Y = X then to apply the exp(X + 82/2) estimator 

we need to determine the distribution of the log transformation of Y which is 

f( ) 
= abexp(bx)exp[-aexp(x)] 

x r(b) where - 00 < x < 00 and a, b > 0 

and then evaluate the mean and variance of this log transformation. 

If we now examine the moment generating function of X then we are able to 

obtain the closed form 

M{s) _ E{eBX } _ J exp{sx)ab exp{bx) exp[-aexp{x)] d 
. r(~ x 

r{s + b) 
f(b)a B • 

We can remind ourselves that a, b > 0 and we wish to evaluate the case s = 0, 

hence we can restrict our attention to the range s + b > O. 
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To obtain moments for X we will need to differentiate the Gamma function 

and to undertake this we can appeal to the Weierstrass identity 

r( ) - -'YV 1 rroo e* v -e - --
v 1+!1. where 'Y = 0.577215665 is known as Euler's constant 

n=l n 

which is valid for all complex numbers, except negative integers. 

As we will confine our attention to v > 0 then r( v) > 0 and we will find it 

analytically more convenient to work with log r( v) as 

00 

logr(v) = -'Yv -logv + L [* -log (1 + *)] . 
n=l 

As we can differentiate the Gamma function infinitely often then we can obtain 

d 1 00 v 
-logr(v) = -'Y - - + L and 
dv v n=l n(v+n) 

d2 1 00 1 
-d 210gr(v) = 2' + 2: ( )2' 

V V n=l V + n . 

We will work with the cumulant generating function of X which we define as 

K(s) = 10gM(s) and so can obtain for X its mean as K'(O) with variance K"(O). 

Hence we have 

K ( s) = log r (s + b) - log r ( b) - 8 log a wi th 

, 1 ~ s+b 
K (s) = -'Y - -- + L...J -loga where 

s+b n=ln(s+b+n) 

, 1 00 b 
K (0) = -'Y - - + L - log a 

b n=l n(b+n) 

and similarly 

00 

K" 1 "'" 1 (8) = (8 + b)2 + ~ (s + b + n)2 where 

00 

" 1 "'" 1 K (0) = b2 + ~ (b+n)2' 
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It is then possible to use these relationships to evaluate the mean and variance 

for the log of Gamma distributions as shown below 

Distributions 

Gamma log of Gamma 

CoY a=scale b=shape mean variance 

0.25 0.01600 16.00 6.8754 0.0644 

0.50 0.00400 4.00 6.7774 0.2838 

1.00 0.00100 1.00 6.3305 1.6449 

1.50 0.00044 0.44 5.4519 6.0456 

2.00 0.00025 0.25 4.0666 17.1973 

2.50 0.00016 0.16 2.1494 40.3917 

Table 5.18: Mean and variance for log of Gamma distributions 

where the series for the cumulants converge very slowly and 20,000 terms have 

been used. 

We want to be able to determine theoretical RMSE's when the exp(X + 82/2) 

estimator is applied to Gamma distributions and to proceed we have now made the 

assumption that the log of Gamma distributions will follow approximately Normal 

distributions with log Y = X ap~ox N(Jl,0'2). 

The Gamma distribution is defined on the positive part of the real line and is 

right skewed. The log of Gamma distribution is defined on the real line and is left 

skewed. The assumption of approximate Normality does become less realistic as 

the Co V increases. 

So, continuing with the assumption of approximate Normality for the log of 

Gamma distributions it is then possible to obtain approximate theoretical results 

for the RMSE of the estimator fly = exp(X + 8 2/2), in a comparable way to those 

obtained in earlier in Section 5.7 with a population mean of 1000, as 
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I Coy /I RMSE I IE{IlY} I 
0.25 58 1002 

0.50 133 1020 

1.00 705 1383 

1.50 38286 10317 

2.00 00 4.67E+ll 

2.50 00 00 

Table 5.19: Approximate RMSE and lE{IlY} for exp(X + 8 2/2) and n = 20 

These results have been obtained because when we deduced the moments of 

exp(X + 8 2/2), following O'Hagan and Stevens (2002), we needed to evaluate 

lE{ e ~2} for the mean and the resulting Gamma integral only converged when 

(J2 < n - 1. Similarly to deduce the variance we needed to evaluate IE{ eS2
} and 

the resulting Gamma integral only converged when (J2 < (n - 1)/2. 

We can then present results in the table below in a format comparable to that 

in Table 1 in Briggs et al (2005) 

I II 
Sample sizes I 

Coy !--20--'1~--50--r1--20-0""T'"1--50-0""""1--2-00-10 

0.25 58 37 18 12 6 

0.50 133 83 43 28 17 

1.00 705 461 329 299 283 

1.50 38285 7761 4511 4065 3858 

2.00 00 2.27E+08 799762 446177 343139 

2.50 00 00 1.88E+12 3.44E+1O 7.86E+09 

Table 5.20: Approximate theoretical RMSE for the exp(X + 8 2/2) estimator, 

evaluated for the Gamma distribution 
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and observe that although there is reasonable agreement between these results and 

those presented in Table 1 of Briggs et al (2005) when Co V is 0.25 and 0.5 the 

two sets of results quickly diverge thereafter and we can see that the approximate 

theoretical results are never less than those derived by simulation and presented in 

Briggs et al (2005). When results are derived by simulation it will not, of course, 

be possible to replicate theoretical values of infinity and very large values should 

be seen instead. 

The General Power Transformation (GPT) was introduced by Box and Cox 

(1964) as 

x = { A-l{y~ - 1) : A # 0 

log Y : A = 0 

for any strictly positive Y where we have already used these ideas in Chapter 2. 

For CoY = 2 if we examine the results of a GPT on Y '" G(0.00025, 0.25) for a 

sequence of A = 1/2,1/4,1/8,1/16, ... then we can observe that A = 1/8 produces 

an approximate Normal transformation, although with range (-8, 00). 

If we evaluate the first two moments for this 1/8 GPT of the random variable 

Y '" G(0.00025,0.25) we find that, considering only the positive part of the real 

line, we obtain mean = 6.75 and variance = 31.26. If we had considered the whole 

of the real line then it is easy to show that, although the mean would have been 

smaller, the variance would have been larger than 31.26. 

If we look at the calculations in Table 5.18 for the Co V = 2 row then we can see 

that for the log of Gamma distribution we obtained a variance of 17.2 and so the 

variance obtained when a better approximation to Normality has been obtained is 

even higher. 

We believe that this fully justifies the results in Tables 5.19 and 5.20 and that 

they give conservative estimates. of the RMSE for Gamma distributions with the 

exp(X + 82/2) estimator. 
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5.9 Shrinkage estimators 

For sample size n if we represent the data as Y = (Yl, Y2, .•. ,Yn) then they are 

observations on the corresponding iid random variables Y = (Y1, Y2, ••• , Yn). 

If O(Y) is an estimator of an unknown parameter () then in classical statistics 

the usual properties of interest for O(Y) are bias and MSE. It may be possible 

to choose a shrinkage estimator c O(Y) , where we do not restrict to c = 1, that 

possesses better properties - particularly lower MSE. 

We wish to examine how our results may alter when using the sample mean 

shrinkage estimator c Y( = c sm), where we do not restrict to c = 1. 

Firstly we note that lE{ c Y} = c /-LY = 1000 c which does not necessarily equal 

() = 1000 = /-LY and so we recognise that in general this is a biased estimator. 

Hence 

MSE{cY} - var{cY} + (bias)2 
2 

_ c2/-Ly Coy2 + (c - 1)2J.l~ 
n 

2 
_ /-Ly [C2Coy2 + n(c - 1)2] 

n 

which can be easily shown to attain its minimum when c* is defined as 

* n c =---...". 
n+ Coy2 

and at this value 

2 

MSE{ c* Y} = /-Ly Co y2 X c· = c* x MSE{Y} 
n 

and hence RMSE{c* Y} <RMSE{Y} because a < c· < 1. 

When n = 20 and CoY = 2 then the minimum value of RMSE{ c Y} is attained 

when c* = 0.8333 and the smaller RMSE is achieved at the expense of bias in the 

shrinkage estimator which produces the value lE{ c· Y} = 833. 
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As either n becomes large and/or Co V becomes small then c* -+ 1 and hence 

RMSE{c* Y} -+ RMSE{Y}, as is shown in the table below when compared with 

Table 5.15 

Sample size(n) 

CoY 20 50 200 500 2000 

0.25 56 35 18 11 6 

0.50 111 71 35 22 11 

1.00 218 140 71 45 22 

1.50 318 208 105 67 34 

2.00 408 272 140 89 45 

Table 5.21: RMSE for shrinkage sample mean estimator evaluated at c* 

Briggs et al (2005) refer to the paper by O'Hagan and Stevens (2002) and 

their use of the logNormal estimator exp(X + 8 2/2), evaluated for a logNormal 

distribution. 

If we now examine the shrinkage estimator fie = c exp(X + 8 2/2) = c fiy then 

it has the following properties 

MSE{J}e} - var{c exp(X + 8 2/2) } + (bias)2 

_ c2 var{ exp(X + 8 2/2) } + (c E{fiy} _ 0)2 

_ c' (1E{)1y})' [exp(q2/n) (1- n
2q21) _n,' (1- n

q2 1) 0-1 -1] 
+ (c E{fiy} - JLY? 

n-1 

when E{J}y} = exp(JL + 0'2/2n) (1 - :~l) --:l and 0 = JLy = 1000 (in this case). 
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and the MSE{J2c} attains its minimum when 

•• J-ly 
c = n 1 • 

lE{J2y}exp(a2/n) (1- ~~~)--2 (1- :~lr-l 

We can now present the results of calculating the optimum values of c for the 

two estimators c¥ and c exp(X + 8 2/2) as 

cY c exp(X + 8 2/2) 

Sample size Sample size 

CoY 10 15 20 30 10 15 20 30 

0.25 0.994 0.996 0.997 0.998 0.991 0.994 0.995 0.997 

0.50 0.976 0.984 0.988 0.992 0.963 0.975 0.981 0.988 

1.00 0.909 0.938 0.952 0.968 0.861 0.907 0.930 0.954 

1.50 0.816 0.870 0.899 0.930 0.724 0.816 0.862 0.907 

2.00 0.714 0.790 0.833 0.882 0.582 0.719 0.788 0.857 

Table 5.22: Optimum values of c for the c Y estimator and also the c exp(X +82/2) 

estimator applied to the logNormal distribution 

where we can observe that as either n becomes large and/or Co V becomes small 

then c· and c·· ~ 1 when the RMSE for the estimator and its corresponding 

minimum value shrinkage estimator tend to the same value. 

It is only when n < 30 and Co V > 1 that the value of c that minimises the 

RMSE becomes significantly less than 1. 

However we still need to evaluate the effect on the resulting value of the RMSE 

which we will show next, although we must not lose sight of the fact that we do not 

know the value of c that minimises the RMSE as we do not know the population 

value for the CoY. 
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We are now able to present RMSE's in two tables which compare the sm = Y, 

'jiy = exp(X + 8 2/2) with the shrinkage versions of these estimators computed at 

their optimum values of c· Y and c·· exp(X + 8 2/2) and also the Bpe (using the 

default prior for Ry and seed value 0710 with 10K replications) where each cell in 

the tables below contains the RMSE for the estimators in the positions shown 

Bpe 
c·· exp(X + 8 2/2) 

exp(X + 8 2/2) 

We can deduce from Tables 5.23 and 5.24 below that the effect of using the 

shrinkage estimators is not generally large and is not even detectible unless n is 

sufficiently small and Co V sufficiently large 

Although values for c other than 1 and its optimum (in the sense of minimum 

RMSE) have been examined across the range of combination of values for the Co V 

and the sample size n they do not appear to offer any significant advantages and 

c = 1 has been retained as its simplicity is very appealing. 

The recommendation for choice of estimator, when the population value for 

Co V and the underlying parametric distribution is unknown, is to use the Bpe 

because for values of Co V > 1 the Bpe has the lowest RMSE. For Co V = 0.5 

the Bpe has comparable RMSE to the other estimators when n > 50 and its only 

when Co V = 0.5 with n < 30 and also when Co V = 0.25 that the the Bpe does 

not have the lowest RMSE. 

These recommendations have been established when comparing the sample 

mean shrinkage estimator (for Gamma and logNormal distributions) against the 

Bpe and {exp(X + 8 2/2)} shrinkage estimators for logNormal distributions. 
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I II 
Sample size 

CoV ~----1-0--~-----15----~---2-0--~----3-0--~ 

79 79 64 65 56 56 46 46 
0.25 96 74 62 50 

79 80 65 65 56 56 46 46 

156 158 128 129 111 111 91 91 
0.50 183 145 123 98 

158 162 129 131 112 113 91 92 

302 310 250 251 218 217 180 177 
1.00 294 242 211 173 

316 345 258 270 224 229 183 183 

429 446 361 359 318 309 264 251 
1.50 359 301 266 223 

474 561 387 416 335 345 274 270 

2.00 
535 

409 
562 459 

348 
450 408 313 387 343 

265 
314 

632 818 516 570 447 460 365 351 

Table 5.23: RMSE : values of n from 10 to 30 

I II 
Sample size 

CoV ~----5-0--~-----2-00--~----30-0--~----40-0--~ 

35 35 18 18 14 14 13 13 
0.25 40 23 20 18 

35 35 18 18 14 14 13 13 

71 70 35 35 29 29 25 25 
0.50 73 36 30 27 

71 71 35 35 29 29 25 25 

140 137 71 68 58 56 50 48 
1.00 134 68 55 48 

140 140 71 69 58 56 50 48 

208 194 105 97 86 79 75 68 
1.50 177 94 77 67 

212 203 106 98 87 80 75 69 

2.00 
272 

213 
242 140 

116 
121 115 

95 
98 100 83 85 

283 259 141 123 115 100 100 86 

Table 5.24: RMSE : values of n from 50 to 400 
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5.10 Comparisons with other estimators for the 

mean of logNormal distributions 

In a series of papers published from 1997 onwards Xiao-Hua Zhou, either alone 

or with others, looked at a number of aspects of estimation for the logNormal 

distribution in a health cost context. 

We will look here at Zhou (1998) where he compares his four point estimators, 
I 

~ for i = 1,2,3,4, for the mean of a logNormal distribution and evaluates them 

in a classical framework using the expected mean square error. The comparisons 

are made for the relative mean square error 

which has the technical advantage that the population logNormal mean () does not 

need to be specified (for his four point estimators). 

We will continue with our notation of Section 5.7, where we have interchanged 

the Zhou (1998) use of X and Y. So if Y f'o.J logN(JL, ( 2) then the mean value of Y 

is defined as () = J.Ly = exp(JL + a2/2) with variance a} = JL}[exp(u2) - 1]. If we 

express Y as log Y = X f'o.J N(J.L, ( 2) then the four estimators that he compared are 

the sample mean 

a uniformly minimum variance unbiased (UMVU) estimator, 

a maximum likelihood estimator (ML) 83 = exp (X + n2:182) 

a conditionally minimal (MSE) estimator (CMMSE) 84 = exp(X)gn-l (2(n:4l)82) 
h (t) - ~oo 1 m±2r ( m t) r nr m were gm - L.,.,r=O ri m mil i=l m±2i 

and because of the complex nature of some of the expressions for the MSE for 

these estimators he undertakes numerical comparisons and takes a2 to be 0.19 to 

4.94 incremented by 0.19. He also takes the sample size, n, to be 7, 11, 20, 30,40, 

50, 155 and 200. 
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He is able to show that, for any fixed value of n, the mean square error of 

the conditionally minimum MSE estimator is uniformly smaller than that of the 

UMVU estimator, the ML estimator or the sample mean. 

We will concentrate here on the case n = 20 and consider the Relative MSE 

(ReIMSE) for the following estimators 

the sample mean el = Y, 
the logNormal estimator 'jiy = exp(X + 8 2/2) 

from O'Hagan and Stevens (2002), which is clearly closely related to 

the maximum likelihood estimator 83 = exp (X + n~l 8 2/2) 
of Zhou (1998), 

his conditionally minimal MSE estimator 84 

and, evaluated when Ry "-J 1+G(11.5,6), our Bpe. 

We know from Zhou (1998) that the RelMSE {84 } does not involve 0 and is a 

function of 0"2 and n only. 

Also from Zhou (1998) and Section 5.7 we know that the RelMSE {Bl } does 

not involve 0 and is a function of 0"2 and n only as 

RelMSE {Bt} = MSE {Bl } = var {Y} = ( CoY )2 = exp(0"2) - 1 
(0)2 (JLy)2 n n 

remembering that in this Zhou (1998) context we are only dealing with logNormal 

distributions. 
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To evaluate the RelMSE {exp(X + 8 2/2)} we use Equation 5.1 from 

Section 5.7 to show RelMSE {exp(X + 8 2/2)} = RelMSE {JJ;y} where 

RelMSE {JJ;y} = MSE {JJ;y} 
(J.Ly)2 

_ {eXP(21' + u2/n) (1- n u' 1) -(0-1) 

x [exp(u2/n) (1- n
2U'I) -'T' (1- n

u2 1) 0-1 -1] 

+ [exP(1' + u2
/2n) (1- n

u2 lr
n

" - exp(1' + U2/2)r} 
: [exp(J.L + (72/2)]2 

_ exp(a2/n _ ( 2) (1 _ ~) -(n-l) 
n-1 

x [exp (u
2
/n) (1- n

2U21r
n

" (1 - n u
2 1 r-' -1] 

+ [exp(U2/2n-u2/2) (1- nu\r'T' -1]' 

which is a function of (72 and n only. 

To determine the RelMSE {Bpe} we are unable to obtain the result in a closed 

analytical format and have needed to obtain numerical results by simulation, for 

the specific value of J.Ly = 1000 (so far). However it may be that the value of the 

RelMSE {Bpe} will not be too sensitive to changes in the value of J.Ly. This can 

be examined by evaluating the RelMSE for the Bpe for 10K replications for the 

0710 seed value, sample size 20, Ry '" 1+G(1l.5,6) for logNormal distributions 

with the CoY = 0.25, 1 and 2, and with 1000K replications for CoY = 5 and 10, 

over a range of values for J.Ly where the results are presented in Table 5.25 overleaf. 

While we can observe small changes in the value of the RelMSE as J.Ly increases 

this is not so significant as to not be able to say that the value of the RelMSE for 

the Bpe may be determined when J.Ly = 1000 and then compared with the RelMSE 

for the other estimators (where it was unnecessary to specify the value of J.LY). 
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I ~y lit--0.-25--r--1-.0-0-~-~-.:-:---';----5.-00--r--l-0-.0---l 
250 0.003888 0.044526 0.097655 0.263609 0.446111 

500 0.003886 0.044490 0.097670 0.263827 0.446407 

1000 0.003885 0.044455 0.097686 0.264046 0.446703 

2000 0.003883 0.044419 0.097702 0.264264 0.446998 

5000 0.003880 0.044373 0.097724 0.264553 0.447389 

Table 5.25: RelMSE for values of J-ly and Co V 

Whilst we can obtain numerical evaluations of the theoretical results for the 

first three estimators we cannot obtain theoretical results for the Bpe. We are. 

able to obtain results by simulation for our first two estimators and, by comparing 

these results with those obtained theoretically, can justify the direct comparison 

between the Zhou (1998) theoretical CMMSE and our Bpe obtained by simulation. 

The Zhou (1998) paper takes 0'2 to be between 0.19 and 4.94 which, if we 

note the relationship CoV2 = exp(cr2) -1 from our earlier work on the logNormal 

distribution in Section 5.7, tells us that CoY varies between 0.46 and 11.78. So 

although the Zhou (1998) paper covers most of the same range of CoY, 0.5 to 2, 

as the Briggs et 81 (2005) paper it also recognises that much more skew logNormal 

distributions may be possible. 

This extreme skewness will significantly increase the care that will be necessary 

to obtain samples that adequately represent the population from which they have 

been drawn in the sense of first and second order moments, as the following table 

indicates. 
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Following the work in Section 5.2, for an increasing sequence of p values, the 

p-percentiles for the random variable Y, following the two distributions shown 

whose mean = 1000 are 

logNormal distribution 

p values CoV=2 CoY = 11.78 

90 2273 1460 

99 8555 14888 

99.9 22548 81317 

99.99 50067 328945 

99.999 100070 1106715 

99.9999 185981 3277924 

99.99999 327454 8831256 

99.999999 552729 22097919 

99.9999999 901730 52090121 

99.99999999 1430110 11685871 

Table 5.26: p-percentiles 

where we can see that as the the p value increases, then the p-percentile values for 

CoY = 11.78 are significantly greater than those for CoY = 2. 

To be able to draw samples from the logNormal distributions that reasonably 

reflected the population first and second order moments from which they have 

been drawn required very careful consideration of the seed value and number of 

replications to be used. While the choice of seed value 0710 with lOOK replications 

was satisfactory for values of CoY less than 1.89, the number of replications was 

increased to lOOOK for values of CoY up to 6 and for values of CoY greater than 

6 then the seed value 6561684 combined with lOOOK replications was necessary to 

obtain acceptable results as shown in the following table 
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population sample values 

0'2 CoY mean sd mean sd CoY 

0.19 0.457 1000 457 1000 457 0.457 

0.38 0.680 1000 680 1000 680 0.680 

0.57 0.877 1000 877 1000 877 0.877 

0.76 1.067 1000 1067 999 1067 1.068 

0.95 1.259 1000 1259 999 1260 1.261 

1.14 1.458 1000 1458 999 1461 1.462 

1.33 1.668 1000 1668 999 1672 1.673 

1.52 1.890 1000 1890 1000 1891 1.890 

1.71 2.128 1000 2128 1000 2129 2.128 

1.90 2.385 1000 2385 1000 2386 2.385 

2.09 2.662 1000 2662 1000 2663 2.662 

2.28 2.963 1000 2963 1000 2963 2.962 

2.47 3.290 1000 3290 1000 3290 3.288 

2.66 3.646 1000 3646 1000 3645 3.643 

2.85 4.036 1000 4036 1000 4031 4.029 

3.04 4.462 1000 4462 1000 4451 4.449 

3.23 4.927 1000 4927 1000 4909 4.907 

3.42 5.438 1000 5438 1001 5407 5.404 

3.61 5.997 1000 5997 1001 5948 5.945 

3.80 6.611 1000 6611 1000 6687 6.688 

3.99 7.284 1000 7284 1000 7361 7.362 

4.18 8.023 1000 8023 1000 8096 8.096 

4.37 8.834 1000 8834 1000 8896 8.894 

4.56 9.725 1000 9725 1000 9765 9.761 

4.75 10.704 1000 10704 1001 10707 10.701 

4.94 11.780 1000 11780 1001 11728 11.719 

Table 5.27: logNormal distributions, sample size = 20 

We will use the above range of the variance of the log-scale (12 in the following 

plots. 
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For the following four plots we will use a solid line for the numerical evaluation 

of theoretical results and a dotted line for simulated values. 

The plot below shows that the theoretical (smtheo) and simulated (smsim) 

values for the sample mean estimator are very close. 

co 
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Figure 5.6: Plot showing the theoretical and simulated sample mean estimators 
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This plot shows that the theoretical and simulated values for the exp(X +82/2) 

estimator show close agreement when (72 or the CoY has small values. However, 

as (72 increases, there is some evidence that the simulated values are lower than 

the theoretical values. This is not entirely unexpected because the results shown 

in Table 5.27 are for the whole of the sample, ie lOOOK replications for sample size 

20 or 20,000K values in total. There will be more variation in individual samples 

of size 20 and this will become more manifest as the Co V increases - particularly 

for second order moments. 
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Figure 5.7: Plot showing the theoretical and simulated exponential estimators 
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This plot compares the theoretical CMMSE with the simulated Bpe and from 

the two previous plots we can be confident that this is a valid comparison, when 

0"2 is below four in particular. 
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Figure 5.8: Plot comparing the CMMSE and Bpe estimators 

We may conclude that our Bpe has a lower Relative MSE than the Zhou (1998) 

CMMSE for 0"2 > 1. It is worth noting in passing that our Bpe uses the default 

prior Ry '" 1+G(11.5,6) which has been trained for both logNormal and Gamma 

distributions, using the values CoV = 0.25 and 2.00, J,Ly = 1000 and sample size 

20 when establishing its value for the TRMSE. 
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If we search for a default prior for Ry that minimises the Total RelMSE 

(TReIMSE) defined as 

TRelMSE = E RelMSE 

which gives equal weights to the two parametric models considered, namely the 

logNormal distribution for CoV = 0.457438 and CoV = 11.78008 (corresponding 

to the range limits chosen by Zhou of (]'2 = 0.19 and 4.94 respectively), then we 

arrive at Ry '" 1+G(5,7.5) when JLy = 1000 and sample size 20. 

The default prior used earlier was Ry '" 1+G(11.5,6) and the changes have 

arisen because in the Zhou type calculations (TReIMSE) only the logNormal was 

considered as a parametric model, the range of values for Co V was changed and 

because the RelMSE gives a much higher weighting (the square of the value for 

RMSE) to the larger ReIMSE, which occurs when Co V = 11.78, for constant JLy. 

Plot 5.9 overleaf compares the theoretical CMMSE with the simulated Bpe 

using Ry '" 1 + G(5,7.5). Comparing Plots 5.8 and 5.9 it is possible to see that 

the Bpe plots are of the same type of shape although Plot 5.8 is not so pronounced 

as Plot 5.9. 

Again we can identify a region where the Bpe has lower RelMSE than the 

CMMSE estimator and this occurs for values of (]'2 > 3. 

We have derived two default priors from particular loss functions and logics to 

minimise totals of these loss functions. In both of the cases analysed we have been 

able to establish regions of the range of the Variance of the log-scale (72 where the 

Bpe estimator performs better, in the sense of lower ReIMSE, than the CMMSE 

estimator. 
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Figure 5.9: Plot comparing the CMMSE and Bpe estimators 

Plot 5.9 above does illustrate the care that is needed when choosing default 

priors because if the prior has been trained by a very specific set of parametric 

models, as opposed to a set of parametric models that reflects the possibility of the 

broader underlying conditions that may arise in practise, then it will respond to 

those very specific set of models. The results that will be produced, in the sense of 

MSE, while they may be very good for some circumstances may be much worse for 

others. The default prior Ry f"'oJ 1+G(1l.5,6) has been trained over such a range of 

broad underlying conditions and does not in general perform particularly badly. 

137 



138 



Chapter 6 

Elicitation 

6.1 Introduction 

The contents of Section 6.2 are based in the main on O'Hagan et al (2006) with 

its associated references where our main innovation is a method of eliciting beliefs 

about a shape parameter. 

Elicitation may be described as the process of a facilitator capturing an expert's 

prior beliefs about an unknown quantity. We will follow the convention of ascribing 

the gender of the facilitator as male and the expert as female. The facilitator seeks 

to obtain her beliefs in the form of a probability distribution which both expresses 

her uncertainty and also enables him to combine the two sources of information, 

her prior beliefs and the data, into a single source of information, the posterior 

distribution. 

The data model for costs selected in Chapter 2 is the logNormal distribution 

which has two parameters', J.L for scale and 0'2 for shape, which are not of course 

directly observable. Moreover, the role of these parameters is not immediately 

obvious. We do however need our expert's prior beliefs about J.L and 0'2 expressed 

as their joint distribution and so it is the hyperparameters in the joint distribution 

that are of interest. 
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If we can find a way to express this joint distribution in terms of functions of 

the parameters that are independent then the process of elicitation becomes easier 

as we now need to elicit two independent marginal distributions. If, furthermore, 

each of the two independent distributions only involve (a function of) one of the 

parameters then these marginal distributions are univariate with respect to the 

parameters and may be considerably easier to elicit than their joint distribution. 

It is generally recognised as good practise to elicit beliefs about quantities that 

are directly observable. We will follow this practise wherever possible but will need 

a different approach when eliciting beliefs about the shape parameter. 

Although we have talked here about using a logNormal data model we will only 

tell our expert, see The elicitation in the Appendix, that our data model is to be 

a distribution that takes non-negative values, unbounded above and right skewed. 

The logNormal distribution has a number of properties that may be considered 

to be useful for this problem. 

Its Median is exp(J.t) and so is a simple function of J.t alone and this is the way 

that we will choose to model the scale parameter. 

Its shape parameter is (J2 and we now look to determine a function of (J2 

alone that is (statistically) independent of the median, where independence means 

knowing the value of one of the parameters does not give the expert any information 

about the value of the other parameter. 

Kurtosis, the degree of peakedness of a distribution, is defined as the fourth 

standardized moment J.t4/a4 where J.t4 is the fourth moment about the mean and 

(J2 is the variance. This is a ratio of two different quantities. Also commonly used 

is the measure of (excess) kurtosis, (exp(4(J2) + 2exp(3(J2) + 3exp(2a2) - 6), and 

either quantity contains a2 alone but is not directly observable. 
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Skewness, the degree of asymmetry of a distribution, is defined as the third 

standardized moment IL3/0'3 where IL3 is the third moment about the mean and 

0'2 is the variance. This is a ratio of two different quantities. Skewness may be 

defined as ([exp(a2) + 2] Jexp(a2) - 1) which contains a2 alone but is not directly 

observable. 

The coefficient of variation, defined as the ratio of standard deviation to mean, 

is useful as a relative measure of dispersion, or variation, but is the ratio of two 

different quantities. The coefficient of variation, or CoY, is [exp(a2) - 1]! and so 

a2 alone is present but this ratio is not directly observable. 

The logNormal distribution is unimodal where the value of its mode is expressed 

as exp(J.L)/ exp(a2). The ratio of its median to mode is exp(0'2). As the mode of a 

logNormal distribution is a visible feature we do have concerns that the mode will 

become an anchor point if it is used in an elicitation. Anchoring is the description 

given when elicited values remain close to some initial value and the elicitation 

yields values that are too conservative. While the ratio of median to mode is a 

function of 0'2 alone it is once again the ratio of two different quantities and the 

ratio is not directly observable. 

The <I>(q)-quantile for the logNormal distribution is exp(J.L + qa) and so the 

quantile ratio, defined as the ratio of its <I>(q)-quantile to its median, is exp(qO'). 

This ratio is a function of (72 alone. The logNormal distribution is uni-modal 

and positively skewed. In any plot of this logNormal distribution the mode is a 

dominant feature and it's possible that this may influence an expert's judgement. 

To reduce this influence we have chosen to work with quantiles whose theoretical 

values always lie on the same side of the mode, in this case to the right, where 

the range of numerical values is also larger than to the left. We will work with 

the ~-quantile, or median, and the ~-quantile. So the quantile ratio is a ratio of 

similar quantities but the quantile ratio is not directly observable. 
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We have outlined above five functions of a 2 alone that we may consider as 

candidates to elicit prior beliefs for the shape parameter, namely 

kurtosis 

skewness 

coefficient of variation 

ratio of median to mode 

quantile ratio 

None of these candidate functions are directly observable and we believe that 

to make the best choice we have to eliminate the worse options. 

Kurtosis and skewness are mainly used in descriptive statistics to summarise 

the properties of samples. We believe it would be difficult for an expert to form 

prior beliefs about them for a population. 

The coefficient of variation and the ratio of median to mode are both ratios of 

different quantities and we believe it would be more difficult for an expert to form 

prior beliefs about them than a ratio of similar quantities. 

The Quantile Ratio is a ratio of similar quantities and so arises in a natural 

way and we believe represents the best opportunity for an expert to express prior 

beliefs and it is the Quantile Ratio that we have chosen to work with here. 

The Median (a value expressed in monetary units) and Quantile Ratio (a value 

expressed as a (dimensionless) number) are statistically independent if knowing 

the value of one of them does not change the expert's beliefs about the other one. 

Whilst there is no obvious reason to believe that the Median, exp(J.L), and the 

Quantile Ratio, exp(qa) , are dependent, the assumption that we now make of 

independence between them will of course need to be examined when conducting 

the elicitation. 
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Hence we can restructure the problem so that we will need to elicit prior beliefs 

for functions of each parameter alone and propose now to work with the Median, 

exp(J.L), for scale and the Quantile Ratio, exp(qO'), for shape. As J.L and 0'2 are fixed 

but unknown for this population then so are the Median and Quantile Ratio. 

We will work with a logNormal data model whose parameters J.L and 0'2 will be 

restructured as the Median My = exp(J.L) and the Quantile Ratio Ry = exp(qO'). 

We will also work with the Third Quartile Ty(8) for the logNormal random 

variable Y which to simplify nomenclature we will represent as Ty and (although 

the theory developed so far in this chapter and elsewhere in this thesis relates to 

a Quantile Ratio) we have chosen to work with a ratio of quartiles, or a Quartile 

Ratio directly, in this elicitation. To help distinguish the Median, Third Quartile 

and Quartile Ratio from their elicited quantile values we will refer for the rest of 

this chapter, and most particularly when communicating with the expert, to the 

Quartile Ratio, denoted as Ry , rather than the Quantile Ratio. 

In The elicitation, located in the Appendix, we will describe the four stage 

procedure that we will follow for eliciting J.L and 0'2, the expert's prior beliefs for 

the parameters of the logNormal data model, by eliciting her prior beliefs for the 

population Median and Quartile Ratio. Each of the stages will comprise a number 

of steps. 

We propose in the first stage to elicit the expert's beliefs for her ~-quanti1e 

values for My (Median) and Ty (Third Quartile) for the population as m(My) 

and m(Ty) respectively. We are then able to obtain her plausible value for the 

Quartile Ratio as m(Ty )/m(My) and we will use this plausible value in stage two 

where we elicit the uncertainty in the expert's prior beliefs for the Quartile Ratio. 
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The Quartile Ratio is not a quantity that can be directly observed and it may 

therefore be difficult to elicit an expert's prior beliefs. The purpose of obtaining 

a plausible value is to provide guidance to the expert about the numerical value 

that the quartile ratio may take to ensure that the facilitator is able to conduct 

an elicitation that does represent our expert's prior beliefs. 

In Section 6.3 we will describe the Case studies or elicitations that have been 

conducted. 

The reasons why we were unable to use the 3CPO cost data set, which was 

generated between July 2003 and April 2007 and thus is relatively recent (when 

compared to the pMDI+ data set in particular which dates from 1991 and 1992), 

will be explained in Section 6.3.1. 

For each of the elicitations that will be described in Sections 6.3.2 and 6.3.4 

Peter Gregory is the facilitator. We will follow elicitation convention by assigning 

a male gender to the facilitator but will assign the true gender to the expert. 

For the two elicitations that were conducted, in both cases we were only able to 

follow The elicitation procedure in the Appendix up to and including the practise 

elicitation on distribution of salary where, in both cases, the random variable Y 

represents salary in the appropriate population. Comments on the two elicitations 

will be made in Sections 6.3.3 and 6.3.5 respectively. 

The elicitations were conducted following the Sheffield Elicitation Framework 

using the Distribution Fitting Tool for one expert using the tertile elicitation 

method to fit positively skewed distributions. 

Although we were unable to use the 3CPO data set, in Section 6.3.6 we will 

postulate what the outcome might have been if this had been possible for the data 

sets collected in Sheffield. 
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6.2 Theory 

We will assume that the joint prior distribution for the Median and the Quartile 

Ratio factorises into independent priors for the Median and the Quartile Ratio. 

Hence we know from Section 4.2.4 that our joint prior distribution for J.L and 0'2 

may be factorised as a product of functions of J-L alone and 0'2 alone. However, 

these prior distributions for J-L and 0'2, except in a few special cases, will not follow 

any recognisable known parametric form. 

We will work with the Median, My, Third Quartile, Ty , and also the particular 

Quartile Ratio, Ry = Ty / My, requiring q = 0.6745. 

It is worth noting the results from an experiment that used samples conducted 

by Peterson & Miller (1964). It concluded that its subjects were more proficient at 

estimating medians than means or variances when the sample distributions were 

highly skewed. Whilst our ultimate interest is eliciting our experts beliefs about 

the parameters we take account of these sample results as we start our process by 

eliciting beliefs about population quartiles. 

The first stage concerns the Median My and Third Quartile Ty of the random 

variable Y that represents the cost (of treatment) in our population where the 

expert has (only) been told that an appropriate model for Y is a distribution that 

takes non-negative values and is skewed to the right. 

Initially we concentrate on the Median. At the 1st step we will ask for the 

largest value for My that the expert believes is possible. It is well known that 

experts are prone to over-confidence, see Kerens (1991), by not recognising all 

the uncertainty that is present. Whilst we would always elicit this value for a 

quantity with a finite range, this question asks the expert to recognise that very 

large cost values are possible. In the 2nd step we can, after noting My > 0, elicit 
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the ~-quantile value for My, which we denote as m(My), by asking the expert to 

determine m(My) such that My is equally likely to be above or below this value. 

We now concentrate on the population Third Quartile Ty . At the 3rd step we 

ask the expert for the largest value for Ty that the expert believes is possible. At 

the 4th step we elicit the ~-quantile value for Ty , which we denote as m(Ty ), by 

asking the expert to determine m(Ty) such that Ty is equally likely to be above 

or below this value. 

While the theoretical values for My and Ty show that Ty > My here we are 

dealing with the elicited values m(My) and m(Ty) and in the unlikely event that 

m(My) > m(Ty) then further discussion and clarifi,cation will be necessary before 

repeating the two steps above. 

In the second stage, after recognising that the Quartile Ratio is bounded below 

by 1, we initially calculate a plausible value for Ry as m(Ty )/m(My) and we tell 

the expert these values. Our 1st step, for reasons comparable to those in stage 

one, is to ask for the largest value for Ry that the expert believes is possible. For 

our 2nd step we will then elicit values for the ~-quantile and ~-quantile for Ry by 

asking the expert to determine l(Ry) and u(Ry) such that Ry is equally likely to 

lie below l(Ry) as above u(Ry) as between these two values. In the 3rd step we 

will elicit the ~-quantile value for Ry , which we denote as m(Ry), by asking the 

expert to determine m(Ry) such that Ry is equally likely to be above or below 

this value. In the 4th step we will fit a "1 + Gamma" distribution to the elicited 

values and ask for visual confirmation before giving feedback. 

The third stage is to elicit the prior beliefs for the population Median My. 

After recognising that My is bounded below by 0, we will remind the expert that, 

in the first stage, she has determined the largest value she thinks possible for My. 

The 1st step is to elicit values for the ~-quantile and ~-quantile for My by asking 

146 



the expert to determine l(My) and u(My) so that My is equally likely to lie below 

l(My) as above u(My) as between these two values. The 2nd step is where we 

remind the expert that we have obtained in the first stage the ~-quantile value for 

My denoted m(My ). In the 3rd step we are then able to use the elicited values to 

fit a logNormal distribution and ask for visual confirmation before giving feedback. 

In the fourth stage we will examine the assumption of independence between the 

median and the quartile ratio. 

We will tell the expert that we want to determine whether knowing the value 

of the Median gives her any information about the value of the Quartile Ratio, 

rather than telling her that it is independence that is of interest. If the expert 

was told that independence was the focus of our attention then we believe that 

this may convey information to our expert and may influence the beliefs that she 

expresses. 

From the second stage we have been able to determine a confirmed (marginal) 

distribution for our expert's prior beliefs for the Quartile Ratio and similarly for 

the Median from the third stage. 

We will show the expert her confirmed (marginal) prior distribution for the 

Quartile Ratio and ask her if there is any particular value that could be chosen 

for the Median from her agreed (marginal) prior distribution would that cause her 

to want to change her beliefs about what is now her conditional prior distribution 

for the Quartile Ratio. 
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If the expert does believe that the Median (a value expressed in monetary units) 

and Quartile Ratio (a value expressed as a (dimensionless) number) are dependent 

then we will ask 

why she believes that there is a relationship between them 

what is that relationship? 

If the expert continues to hold the view of dependency between the Median 

and Quartile Ratio then this dependency will need to be captured in our model. 

6.2.1 Comments on the elicitation procedure 

To fit distributions to the elicited values we will use the SHELF distribution fitting 

tool, see www.tonyohagan.co.uk/shelf. Although we do need to be able to elicit 

median values to use SHELF, the choice of tertiles values to be elicited (rather 

than quartiles) is made to help the expert particularly when eliciting values for 

My and R y . 

It is unclear, see Garthwaite et a1 (2005), which percentiles should be elicited 

for the variable-interval method and so choosing quartiles does not appear to be 

an inappropriate choice. 

We will use the results from stage one to establish a plausible value for the 

Quartile Ratio in stage two. We have elicited the expert's beliefs for the Quartile 

Ratio in stage two so that the expert is asked about a quantity other than the 

Median before returning to the Median in stage three. We would expect to be able 

to obtain a better elicitation for the Median in stage three because the expert will 

have retained less of her thought processes from stage one after this "interruption". 
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6.2.2 Fitting distributions to the elicited values 

We propose to use the SHELF distribution fitting tool. 

Median 

We will fit a logNormal distribution for My. 

Quantile ratio 

We will fit a "1 +Gamma" distribution for Ry , where Sy = R y - 1 and hence 

By '" Gamma. 

6.3 Case studies 

6.3.1 The 3CPO Study: introduction 

The motivation for this thesis was the medical cost data set for the pMDI+ patient 

group. A further medical cost data set was obtained courtesy of Prof S Dixon for 

the 3CPO study, see http://www.sheffield.ac.uk/triaI3cpo/ for more details. 

The 3CPO trial generates patient level costs for the three arms of the trial 

where the aim was to recruit 1200 patients over 26 sites in England and Scotland. 

It was possible to extract the data for the major recruitment centres. Our aim 

was to identify finance experts who had an understanding of acute cardiogenic 

pulmonary oedema (the 3CPO medical study area) with whom we could conduct 

elicitations of the costs for the Standard and the two alternative treatments. 

The NHS traditionally sets budgets and then manages costs on a "top down" 

basis. There is however increasing interest in "bottom up" , or patient-level, costs. 

The Department of Health (DoH) is encouraging, whilst not making mandatory, 

the implementation of patient-level information and costing systems (PLICS). We 
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have been able to obtain from the DoH a list of the organisations that are in the 

process of implementing PLICS and were able to identify those organisations that 

the DoH said were implementing PLICS and had recruited patients to the 3CPO 

trial. 

Having contacted a number of the organisations that had been major recruiters 

to the 3CPO trial, including those listed as in the process of implementing PLIeS, 

a positive response was obtained from a couple, namely York and Bristol. However, 

they were both in the early stages of implementation and it has not been possible, 

in 2010, to identify personnel who possess the skill set required for them to be 

considered an expert capable of elicitation. 

It was possible to identify clinicians who understood the medical condition 

but not costs or finance personnel who were beginning to understand patient-level 

costs but did not understand the medical condition. The skill set required by an 

expert should be developed over the coming months and years but is not available 

in 2010. 

6.3.2 The first elicitation 

For this elicitation the expert was Miss Irena Peel, BSc ACA MBA, Financial 

Controller, Royal Institute of British Architects (RIBA), on 24th January 2010. 

Results obtained for the distribution of salary at RIBA can be summarised as 

I values elicited II My I Ty I Ry I 
upper bound 35 40 1.5 

median 30 38 1.2 

lower tertile 20 - 1.1 

upper tertile 35 - 1.3 

Table 6.1: Initial values elicited for My, Ty and Ry 
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where the plausible value for R y was approximately 1.3 and the entries for My 

and Ty represent thousands of pounds. There are logical lower bounds for A-fy 

and Ry of 0 and 1 respectively. 

As can be seen from Table 6.1 the value elicited for the upper tertile for My 

was equal to the value that had been elicited earlier for the upper bound. When 

this was discussed with the expert she felt that she had been too restrictive with 

her initial belief for the value of the upper bound and this was increased to 40. 

The elicited values that were used to fit the distributions were 

I values elicited " My I Ty I Ry I 
upper bound 40 40 1.5 

median 30 38 1.2 

lower tertile 20 - 1.1 

upper tertile 35 - 1.3 

Table 6.2: Elicited values for My, Ty and Ry used to fit a distribution 

with SHELF fitting a logNormal distribution with mean J.L = 10.181 and variance 

a 2 = 0.4412 for My. 
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It can be seen from Figure 6.1 below that although we have chosen to fit a 

logNormal distribution the alternative offered (for positively skewed distributions) 

in SHELF, a Gamma distribution, is a comparable distribution. 
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Figure 6.1: Plot comparing the fitted logNormal and Gamma distributions for My 

The expert felt that the plot of the logNormal distribution fitted by SHELF for 

My did represent her prior beliefs although the elicited values for My suggested 

negative skewness and her upper bound of £40,000 was the 0.827 quantile value of 

the fitted logNormal distribution which might not have adequately captured her 

upper bound as "a value that it is extremely unlikely" for My to exceed. 
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For Ry we want to fit a 1 +Gamma distribution and when 1 was subtracted 

from the elicited values for Ry SHELF fitted the Gamma distribution with scale 

parameter 5.924 and shape parameter 1.388. 

It can be seen from the chart below which compares the two alternatives offered 

(for positively skewed distributions) in SHELF that these distributions do show 

some divergence. 
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Figure 6.2: Plot comparing the fitted logNormal and Gamma distributions for Ry 

When the Excel l+Gamma chart was shown to the expert she felt that the 

chart did represent her prior beliefs although the elicited values for Ry suggested 

a symmetric distribution and her upper bound of 1.5 was the 0.901 quantile value 
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of the fitted l+Gamma distribution which once again might not have adequately 

captured her upper bound as "a value that it is extremely unlikely" for Ry to 

exceed. 

6.3.3 Comments on the first elicitation 

Some practical points 

1. It would be helpful to have a hand held calculator available (might be needed 

to calculate the plausible value of Ry). 

2. Additional note pads and pens to be provided. 

3. Ensure that the elicitation is conducted with plenty of desk space. The PC to 

be kept to one side as it is only used in the fitting and feedback part and not in 

the main (time consuming) part of capturing the expert's prior beliefs. 

4. The documentation that had to be completed from SHELF did seem potentially 

repetitive. Some changes to the documentation had been made to reflect the 

procedure that all the briefing to the expert took place at the meeting on a "face 

to face " basis. Further modifications were made to record all the elicited values 

on one piece of paper. 

5. The facilitator had developed more user friendly visual feedback of the fitted 

distributions using three colour charts in Excel to give individual feedback for My 

and Ry plus a combined chart showing smaller versions simultaneously of the two 

individual charts for the question about independence. 

When visual feedback for My was given the chart did not produce the results 

desired but a small modification has corrected that situation. 

6. After reflection on the elicitation and re-reading the SHELF documentation the 

facilitator decided to adopt a more proactive role for subsequent elicitations. 
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Changes to The elicitation in the Appendix 

1. A definition of elicitation is now made on page 1 of The elicitation in the 

Appendix to ensure that the ideas that the process of elicitation will require are 

introduced at the start of the elicitation session. 

2. At the first elicitation the expert was offered a choice of two page 6 charts to 

illustrate Normal distributions. The chart that is now included was chosen by the 

expert at the first elicitation. 

3. Positively skewed distributions are introduced on page 12 with the fourth 

paragraph containing the key points. However, the sentence "The larger the value 

of the Quartile Ratio, the greater the positive skew of values of the distribution" 

may not convey the intended meaning. The words were therefore illustrated by 

reference to the BBC article http://news.bbc.co.uk/l/hi/magazine/7581120.stm 

that shows a chart for The UK Income Distribution in 2006/7. 

However it was . felt during this first elicitation that this needed strengthening 

even further and this was achieved by adding in what is now page 16 to illustrate 

the effect of changing the value of Ry with the comments about the Quartile Ratio 

on page 13 restated. 

As the value of 0-2
, or Ry = exp(0.6745a), increases (with My = exp(/l) held 

fixed) the value at which the mode is attained reduces. However, the value of the 

probability density function for the modal value is a minimum when 0-2 = 1, or 

Ry = 1.963, but this subtlety has not been made explicit in the chart on page 16 

and the values shown of Ry = 1.5 and 3 indicate the general relationship between 

Ry and the shape of the probability density function. 

Note that this strengthening was conducted immediately before the elicitation 

of what have now been described as specific values. Although they do represent the 

~-quantile value, ~-quantile value and ~-quantile values for Ry there is no reason 
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why they need to be referred to as such, which potentially confuses the expert. 

When this first elicitation was conducted the lack of questions from the expert 

to the facilitator about the Quantile Ratio did concern the facilitator and added 

to the resolve to strengthen this part of the elicitation. 

4. When elicitation for the Median was undertaken, now page 19, there was 

evidence from the expert's queries to the facilitator that she had forgotten the 

population property that the Median controlled. Hence what is now page 18 has 

been added in to strengthen the expert's understanding immediately before the 

elicitation of what again have been described as specific values. 

6.3.4 The second elicitation 

For this elicitation the expert was Mr Richard Gregory, BA ACA MBA, Head of 

Risk Control, Northern Rock, on 3rd April 2010. 

The results that were obtained can be summarised as 

I values elicited II My I Ty I Ry I 
upper bound 25 30 1.75 

median 20 25 1.50 

lower tertile 16 - 1.20 

upper tertile 22 - 1.70 

Table 6.3: Initial values elicited for My, Ty and Ry 

where the plausible value for Ry was 1.25 and the entries for My and Ty represent 

thousands of pounds. There are logical lower bounds for My and Ry of 0 and 1 

respectively. 
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As can be seen from Table 6.3 the value elicited for the upper tertile for Ry 

was close to the value that had been elicited earlier for the upper bound. When 

this was discussed with the expert he felt that he had been too restrictive with his 

initial belief for the value of the upper bound and this was increased to 1.8. 

The elicited values that were then used to fit the initial distribution were 

I values elicited II My I Ty I Ry I 
upper bound 25 30 1.8 

median 20 25 1.5 

lower tertile 16 - 1.2 

upper tertile 22 - 1.7 

Table 6.4: Elicited values for My, Ty and Ry used to fit an initial distribution 

with SHELF fitting a logNormal distribution with mean J.L = 9.845 and variance 

(72 = 0.2602 for My. 

It can be seen from the chart below that although we have chosen to fit a 

logNormal distribution the alternative offered (for positively skewed distributions) 

in SHELF, a Gamma distribution, is a comparable distribution. 
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Figure 6.3: Plot comparing the fitted logNormal and Gamma distributions for My 

The expert felt that the plot of the logNormal distribution fitted by SHELF for 

My did represent his prior beliefs although the elicited values for My suggested 

negative skewness and his upper bound of £25,000 was the 0.860 quantile value of 

the fitted logNormal distribution which might not have adequately captured his 

upper bound as "a value that it is extremely unlikely" for My to exceed. 

For Ry we want to fit a 1 +Gamma distribution and when 1 was subtracted 

from the elicited values for Ry SHELF fitted the Gamma distribution with scale 

parameter 2.690 and shape parameter 1.339. 
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It can be seen from the chart below which compares the two alternatives offered 

(for positively skewed distributions) in SHELF that these distributions do show 

some divergence 
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Figure 6.4: Plot comparing the fitted logNormal and Gamma distributions for Ry 

When the Excel 1 + Gamma chart was shown to the expert this stimulated some 

discussion, particularly about the upper tail. He did not believe that the chart had 

captured the prior beliefs that he possessed and this was confirmed by examining 

the quantile fitted values that SHELF produces. It became apparent during this 

discussion that the expert felt that he possessed a more detailed understanding of 

salary distribution in the upper tail of Y. 
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The facilitator suggested that a way to obtain the increase in upper tail weight 

that the expert wanted was to increase the value of the upper bound to 1.9. 

SHELF then fitted the Gamma distribution with scale parameter 2.532 and shape 

parameter 1.310 as is shown in the chart below 
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Figure 6.5: Plot comparing the fitted logNormal and Gamma distributions for Ry 

and again this required a visual examination of the revised Excel 1 +Gamma 

chart as well as the quantile fitted values that SHELF produces before he was 

satisfied with this fitted distribution. 
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When the Excel 1 +Gamma chart was shown to the expert he felt that the 

chart did represent his prior beliefs although the elicited values for Ry suggested 

negative skewness and his upper bound of 1.9 was the 0.836 quantile value of the 

fitted l+Gamma distribution which again might not have adequately captured his 

upper bound as "a value that it is extremely unlikely" for Ry to exceed. 

When the final question was posed for the expert, see page 20 of The elicitation 

in the Appendix, which is about the independence of the Median and Quartile 

Ratio the expert at first felt that for a small value of the Median then the value of 

the Quartile Ratio would be large. This reflected the way that he tended to think 

of the elicited values of the Quartile Ratio as the Third Quartile value divided by 

the Second Quartile value. 

For a workforce of c.4000, as employed during the early part of 2010, he was 

thinking about the ratio of the salary of the 3000th ranked employee (determined 

when counting down) to the 2000th ranked employee (when counting up) where all 

Northern Rock employees were considered in this elicitation (including part-time, 

evening and weekend only employees) which gave the workforce a large, relatively 

lowly paid, clerical slew. 

The facilitator refreshed the expert's knowledge of the Median as a value that 

was measured in pounds whereas the Quartile Ratio was a dimensionless number. 

After a break to allow the expert to reflect he decided that he did not feel that 

particular values of the Median would want him to change his beliefs about the 

Quartile Ratio and so implicitly accepted the independence of the Median and the 

Quartile Ratio. 
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6.3.5 Comments after both elicitations 

The following observations were noted 

1. All four upper bounds were too low, or restrictive, and the facilitator should 

have discussed this with the experts. 

2. The facilitator was conducting his first and second elicitations here and felt, 

as was indeed the case, that he was progressing along a very steep learning curve. 

Although, when conducting the second elicitation, he became more proactive in 

his interaction with the expert it is evident that he should, within his level of 

expertise, increase his proactive involvement for any subsequent elicitations. 

3. None of the four elicitations produced values that represented positively skewed 

distributions. The SHELF package followed the choice made by the facilitator to 

fit positively skewed distributions and produced the best fit that it could make. As 

SHELF fits both a logNormal and Gamma distribution if the "positively skewed" 

option has been chosen then "the sum of squared differences between the elicited 

probabilities and fitted probabilities" are shown for both distributions. While this 

may be used to decide which of these two distributions is more relevant the values 

do also indicate how good is the "absolute" accuracy of fit. 

4. The experts agreed four unimodal distributions as representing their prior beliefs 

and probably these unimodal distributions were themselves within the experts' 

"comfort zone" . 

5. None of the four elicitations produced values that represented positively skewed 

distributions although in each case the expert did agree that positively skewed 

distributions represented their prior beliefs. This apparent "conflict" could be 

attributed to the experts' training, their inexperience in thinking about elicited 

values or the facilitator's lack of expertise in conducting elicitations or perhaps 

some combination of these factors. 
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The following changes to The elicitation are proposed for the future 

1. In The elicitation in the Appendix there are three references to "determine the 

largest value that you believe possible", for the Median and Third Quartile on 

page 15 and also the Quantile Ratio on page 17. These pages of The elicitation 

would be amended by inserting the additional part "determine the smallest value 

that you think possible" for 

My on page 15, before (a) 

Ty on page 15, between (b) and (c), 

Ry on page 17, before (a). 

2. In The elicitation in the Appendix there are two places where we will use SHELF 

to fit a positively skewed distribution to the elicited values for the Quantile Ratio 

(on page 17) and the Median (on page 19). These pages of The elicitation would be 

amended by inserting the additional part shown below, for Ry on page 17 between 

(c) and (d) and for My on page 19 between (b) and (c) 

"when the five elicited values have been determined by the expert, the facilitator 

will give an informal feedback by producing a sketch to indicate the shape of the 

distribution that has been suggested by the elicited values" . 

In particular the sketch will show whether the shape is indicated as being 

negatively, symmetric or positively skewed and, from the smallest and largest 

values, how quickly the shape decreases to zero. It is not unreasonable to expect 

the distribution of prior beliefs for quantities that do not take negative values (My 

and Ry - 1) to be positively skewed and if an expert's elicited values suggested a 

different shape then this would be discussed with the expert before formally using 

SHELF to fit a positively skewed distribution. 
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6.3.6 The 3CPO Study : the Sheffield data sets 

The study was able to recruit 1069 patients, from July 2003 until the end of 

April 2007, over its 26 sites with complete data available for 1052 patients. The 

Northern General Hospital, Sheffield was ranked the second largest site with 134 

patients recruited with complete data. As the facilitator had hoped to conduct 

an elicitation in Sheffield, preliminary analysis was undertaken on the total costs 

presented for the 134 patients recruited in Sheffield as well as the 1052 for the 

study as a whole. 

Costs, which commenced once the patient had presented at an Emergency 

Department, were collected according to a simple additive model for each patient 

with a "fixed" component representing the cost of the treatment arm to which the 

patient had been allocated and a "variable" component representing the cost of 

the time spent in the different type(s) of possible treatment. The same unit costs 

were used across the study. 

Summary statistics for per patient total cost are presented below for the three 

arms of the 3CPO study as a whole (namely Standard, CPAP and NIPPV) in the 

style of Briggs et al (2005), where for a Normal distribution Skewness = 0 and 

Kurtosis = 3, as 

" Standard I CPAP I NIPPV I 
n 364 337 351 

Mean 3715 4085 4325 

Sd 3497 3790 3917 

Skewness 3.23 2.80 2.49 

Kurtosis 20.14 14.39 10.65 

CoY 0.94 0.93 0.91 

Table 6.5: 3CPO study : cost summary statistics 
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and, for the patients recruited in Sheffield 

" Standard I CPAP I NIPPV I 
n 45 42 47 

Mean 4006 4381 4646 

Sd 2790 3348 4634 

Skewness 1.66 1.12 1.98 

Kurtosis 6.57 3.18 6.23 

CoY 0.70 0.76 1.00 

Second quartile 3398 3375 3075 

Third quartile 5488 5370 5155 

Plausible r 1.62 1.59 1.68 

Table 6.6: Sheffield study: cost summary statistics 

where the sample second quartile value is the 2x(nf )th ranked sample value 

and the sample third quartile value is the 3x( nil) til ranked sample value of the 

ordered observations with the plausible sample quartile value the ratio of these 

quartile values. If the rank number is non-integer then if the decimal part is 0.5 

take the average of the two ranked sample values immediately above and below, 

otherwise round to the nearest rank number. 

We can observe that the Co V for the Standard and CPAP data sets are 0.70 

and 0.76 respectively. 

While the sample numbers are much smaller for the Sheffield study compared 

to the 3CPO study as a whole there do appear to be some differences between 

these two sets of data. In particular, the mean values are higher for Sheffield but 

Prof Dixon was unable to offer an explanation for this observation. 

The 3CPO costs were measured in £ but to avoid unnecessary repetition the 

£ has been suppressed throughout this Section. 
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If we now look at the summary statistics for the log of cost for the patients 

recruited in Sheffield we have 

II Standard I CPAP I NIPPV I 
n 45 42 47 

Mean 8.07 8.12 8.07 

Sd 0.72 0.76 0.86 

Skewness -0.52 -0.05 0.19 

Kurtosis 3.70 2.79 2.94 

CoY 0.09 0.09 0.11 

Table 6.7: Sheffield study: log cost summary statistics 

where for a Normal distribution Skewness = 0 and Kurtosis = 3. 

We can observe that the log of cost for the Standard data set exhibits negative 

skewness with the CPAP data set showing this marginally. 

We will now present numerical results for the comparisons of comparable ranges 

of candidate models (to those presented in Section 2.8 for the pMDI+ data set) for 

the Standard, CPAP and NIPPV data sets collected for those patients recruited 

in Sheffield. 

The first plot in Figure 6.6 shows the fBf for comparing the rootNormal vs 

logNormal models for the Standard data set where the value of the fBf -+ 1 as 

A -+ 0, although the value of the fBf is above 1 for values of 1/ A > 3 with the peak 

fBf value of 2.29 occurring when 1/ A = 5. Hence a logNormal model was favoured 

over a rootNormal model for values of 1/ A < 3, whereas a root Normal model was 

very weakly favoured over a logNormal model for values of 1/ A ~ 3. 
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Figure 6.6: Plots comparing candidate models for the Standard data set 

The second plot in Figure 6.6 shows the fBf for comparing the logNormal vs 

root Gamma models for the Standard data set where the value of the fBf -+ 1 as 

.>. -+ 0 and the preference for rootGamma models is strong for values of 1/.>. close 

to 1 but quickly decreases. As'>' -+ 0 then the fBf could barely distinguish between 

the logN orma! and the other models. 
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The first plot in Figure 6.7 shows the fBf for comparing the rootN ormal vs 

logNormal models for the CPAP data set where the value of the fBf ~ 1 as ..\ ~ O. 
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Figure 6.7: Plots comparing candidate models for the CPAP data set 

The second plot in Figure 6.7 shows the fBf for comparing the logNormal vs 

rootGamma models for the CPAP data set where the value of the fBf ~ 1 as 

..\ ~ 0 and there is a weak preference for rootGamma models for values of 1/..\ 

close to 1. However, as ..\ ~ 0, then the fBf could barely distinguish between the 

logNormal and the other models. 
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The first plot in Figure 6.8 shows the fBf for comparing the rootNormal vs 

logNormal models for the NIPPV data set where the value of the illf -+ 1 as 

A -+ O. 
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Figure 6.8: Plots comparing candidate models for the NIPPV data set 

The second plot in Figure 6.8 shows the fBf for comparing the logNormal vs 

rootGamma models for the NIPPV data set where the value of the illf -+ 1 as 

A -+ O. 
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The logNormal was the favoured model over rootNormal and also rootGamma 

models for the NIPPV data set. However, as A -+ 0, then the fEf could barely 

distinguish between the logNormal and the other models. 

However, for the Standard and CPAP data sets Gamma was the favoured 

model. 

If we produce an amended version of Table 5.6 as Table 6.8 below, using a 

value of CoY = 0.75 as representative of the Standard and CPAP data set values 

sm exp{lm + Iv/2) Bpe 

Distribution CoY RMSE average RMSE average RMSE average 

Gamma 0.25 56 1000 56 1002 61 1019 

Gamma 0.75 168 1000 225 1088 194 1064 

Gamma 2.00 448 1001 4.89E+45 4.89E+45 553 668 

Table 6.8: Estimated root mean square error for sample size 20 for Gamma with 

different estimators using 1000K replications 

then we can see that when using the RMSE to compare our Bpe, which uses a 

logNormal data model, with the other estimators our Bayesian model is reasonably 

robust against the misapplication to a Gamma distribution with Co V = 0.75. 

The histograms for log of cost shown on the next page as Figure 6.9 do indicate 

that logNormal distributions appears to be not unreasonable data models. 

We will therefore continue with our logNormal data model for all three trial 

arms. 

.. 
170 



I"'-

(I) 

~ 
It) 

c:: .., 
Q) 
:::::I 
c:r CO) 
!!1 u. 

C\I 

-
0 

0 -
CO 

~ 
CO c:: 

Q) 
:::::I 
c:r 
!!1 .., 
u. 

C\I 

0 

C\I 

o 

.--

..-- ~ 

r-- r--
~ 

I I I I 
I 

6 

6 

6 

I I I 

7 8 9 

log of Standard therapy costs 

-

r--
r--

-
10-

r- Io-

7 8 9 

log of CPAP costs 

7 8 9 

log of NIPPV costs 

I I I 

10 

10 

10 

Figure 6.9: Histograms showing the distribution of log cost for the Sheffield study 

171 



Although we have been unable to elicit prior beliefs for any recruitment centre 

in the 3CPO study data set it is of interest to postulate what the outcome might 

have been if this had been possible for Sheffield and the rest of this chapter is 

devoted to that analysis and we will suppress the use of "Sheffield" when referring 

to any of the legs of 3CPO. 

We will commence by establishing the possible default priors may have been 

elicited from an expert for the Standard therapy and will then consider alternative 

prior beliefs for the other two legs of 3CPO. 

In Chapter 5 we have examined the application of the Bayesian model that 

has been developed to available data sets. In Section 5.2.3 we have examined the 

choice of prior beliefs for the median. Table 5.3 compares a number of options when 

My follows a logNormal distribution and concludes that the estimated RMSE is 

reasonably robust to the choice of parameter values when My follows a logN(/-L, 0'2) 

distribution over a range of values that we might expect to encounter. 

For the two elicitations that have been reported earlier in this chapter SHELF 

was used to fit logNormal distributions to My which gave mean /-L = 10.181 and 

variance 0'2 = 0.4412 and mean /-L = 9.845 and variance 0'2 = 0.2602 respectively. 

We can observe that while the two values of /-L are in the range that have been 

considered in Chapter 5 the variance is much smaller. 

To examine a range of values for /-L and 0'2 we use the Standard therapy data 

set with prior beliefs of Ry "J 1+G(11.5,6) to predict the mean value for one 

unobserved member of this cost population as 

172 



15 4544 4176 4173.00 

8 4169 4173 4172.97 

0 3809 4169 4172.93 

-8 3482 4165 4172.89 

-15 3195 4162 4172.85 

Table 6.9: Sheffield Standard therapy: predicted mean cost 

where we can observe that, for a fixed value of 0-
2 , as the value of IL increases then 

the predicted mean value also increases. When the value of 0-2 is small then the 

size of IL strongly influences the predicted mean value. 

We can observe from Table 6.9 that for IL = 8, a value almost exactly equal to 

the sample mean of the log of cost, the predicted mean cost is, as expected, robust 

against the value of 0-
2 used, over the range shown. 

To examine the influence of smaller values of 0-2 in more detail we use the 

Standard therapy data set with prior beliefs of Ry f'J 1+G(1l.5,6) to predict the 

mean value for one unobserved member of this cost population as 

I ~11~0.-12~I-o.2-2~1 O-.3-21~O-.4~21-0-.52~q;-O-.62~I-o.-72~I-o.-82~I-o.9-2~I -1~21 
10 46743 9109 5468 4824 4573 4447 4371 4324 4292 4269 

8 4006 4101 4135 4151 4158 4163 4165 4167 4168 4169 

0 292 436 769 1425 2827 3245 3475 3625 3731 3809 

Table 6.10: Sheffield Standard therapy: predicted mean cost for small (]'2 

where we have taken values of IL as 8 and also a value for IL above and below 8. 
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We can see that when J..l = 8 then the predicted mean cost is extremely robust 

against cr2 down to a value of cr2 = 0.72, very robust down to cr2 = 0.32 and even 

reasonably robust when cr2 = 0.12. 

To choose default prior distributions for My and R y that are located around 

reasonable values we will use their mean values to measure location because it 

always exists for our choice of prior distributions and to measure the spread of 

values that we wish to choose we will use their standard deviation to measure 

spread or uncertainty of our prior beliefs. 

As we have been unable to elicit prior beliefs from an expert to conduct this 

analysis we have chosen prior beliefs for My that are reasonably robust against 

the choice of the uncertainty parameter value and if we work with My rv G(8,102) 

as the default prior for our analysis of the 3CPO data sets it expresses reasonable 

uncertainty while being centred around plausible values for My. We want the 

different data sets to determine different posterior mean values for one unobserved 

member of this cost population, where appropriate. 

In Section 5.4 we have examined the choice of prior beliefs for the quantile ratio 

to develop the default prior Ry rv 1+G(11.5,6) which minimised the TRMSE and 

yields a mean of 1.522 and sd of 0.213 for Ry. 

It is of interest to compare what has been proposed as the default prior with 

the two distributions that were elicited earlier. For Ry we want to fit a 1 +Gamma 

distribution and when 1 was subtracted from the elicited values for Ry for the first 

elicitation SHELF fitted the Gamma distribution with scale parameter 5.924 and 

shape parameter 1.388 which yields a mean of 1.234 and sd of 0.199 for Ry • For 

the second elicitation SHELF fitted the Gamma distribution with scale parameter 

2.532 and shape parameter 1.310 which yields a mean of 1.517 and sd of 0.452 for 

Ry. 
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Hence while the mean values are different, and there is certainly no reason to 

expect them to be (even) approximately equal, the sd from the second elicitation 

is larger which reflects the greater uncertainty of the expert's beliefs about Ry. 

If we now apply the three prior beliefs for Ry to the Standard data set for 

Sheffield using My "'-I logN(8,102) as the default prior for My then the expected 

value is 4173 for the default prior of Ry "'-I 1+G(11.5,6 ) with 4143 from the first 

elicitation and 4211 from the second elicitation. So the values are approximately 

equal and we will proceed with Ry "'-I 1+G(11.5,6) as the default prior. 

To simulate the possible results from an elicitation we will start by formulating 

the expert's prior views about the Standard therapy costs as the default priors 

My "'-I logN(8,102) and Ry rv 1+G(11.5,6), with skewness of 2(shape)-! = 0.82 

and uncertainty or sd = 0.213 for Ry, to find the posterior mean value for one 

unobserved member of this cost population when the same prior beliefs are applied 

to all three arms of the 3CPO study as 

therapy type posterior mean value sample mean I 
Standard 4173 4006 

CPAP 4487 4381 

NIPPV 4615 4646 

Table 6.11: Sheffield study: mean values 

where we will make comparisons with the posterior mean value for an unobserved 

Standard therapy member. 

To examine alternative prior beliefs for Ry rv 1 +G we will allow the skewness 

to increase to 1.41 or to reduce to 0.47 while the uncertainty may increase to 0.43 

or to reduce to 0.11, which we represent as Ry rv l+G(scale,shape) with the nine 

pairs of parameter values shown in Table 6.12 below 
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uncertainty 

skewness reduce default increase 

increase (13,2) (6.7,2) (3.3,2) 

default (23,6) (11.5,6) (5.7,6) 

reduce (40,18) (20,18) (9.8,18) 

Table 6.12: G(scale,shape) parameter values 

When My r.J logN(8,102) and the nine possible prior beliefs for Ry r.J l+G are 

applied to the CPAP data set then Table 6.13 below shows the posterior mean 

value for one unobserved member 

uncertainty 

skewness reduce default increase 

increase 4334 4460 4554 

default 4282 4487 4663 

reduce 4315 4724 5291 

Table 6.13: Sheffield study: CPAP , sample mean 4381 

where the posterior mean value for an unobserved Standard therapy member was 

4173. Hence for all of the range of prior beliefs examined here the posterior mean 

value for CPAP was higher than that for the Standard therapy. 

When My r.J logN(8,102) and the nine possible prior beliefs for Ry r.J l+G are 

applied to the NIPPV data set then Table 6.14 below shows the posterior mean 

value for one unobserved member 
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uncertainty 

skewness reduce default increase 

increase 4435 4606 4737 

default 4350 4615 4848 

reduce 4352 4834 5490 .. 
Table 6.14: Sheffield study: NIPPV 

and for all of the range of prior beliefs examined here the posterior mean value for 

NIPPV was higher than that for the Standard therapy. 

It is possible to find a prior belief for Ry that will produce posterior mean 

values that are less than the posterior mean value for the Standard therapy. For 

Ry '" 1+G(187.5,56.25), yielding skewness of 2(shape)-! = 0.27 and uncertainty 

of sd = 0.04 for Ry, we find that 

I Therapy type II Expected value I 
CPAP 3916 

NIPPV 3861 

Table 6.15: Sheffield study: Ry mean=1.300 & sd=0.040 

but for this case there are very strong prior beliefs expressed for Ry, which with 

very little positive skew is approximately Normal while Ry is centred around 1.3. 

So, apart from exceptional prior beliefs, such as those above, our expert will 

still conclude that the Standard therapy will have the lowest posterior mean value 

of the three therapies compared. 
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Chapter 7 

Discussion 

The problem that we have considered in this thesis is how to forecast the cost of 

treating an unobserved member of a population for some medical intervention. As 

this cost would be used to produce a budget we will only work to establish a point 

estimate - although a credible interval, either equal-tailed (which is available as 

part of the WinBUGS summary statistics of the posterior distribution) or highest 

posterior density, may be of interest in some non-financial scenarios. 

For our Bayesian analysis we want to incorporate an expert's prior beliefs with 

an appropriate data model to produce the posterior expected mean value which 

would then be used as the forecast cost value for one unobserved member of the 

population. 

In Chapter 2 we established using Bayes factors that, for the pMDI+ cost 

data set, a logNormal distribution was the best choice. However, in Chapter 

5 when considering the fEf for the Paramedics data set there was a region of 

very weak preference against the logNormal distribution whilst in Chapter 6 a 

Gamma distribution was favoured for the Standard and CPAP data sets. Whilst 

all the observed data sets were "noisy" the only preferences against the logNormal 

data model arose from those data sets whose log distribution possessed a negative 

skewness. 
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We have approached authors of published papers for access to other cost data 

sets but, amongst other reasons, lack of permission to release the data, has not 

made this possible. 

Parametric distributions that possess a heavier tail than the logNormal were 

considered in Chapter 5 while there is a reference to a practical problem where a 

Weibull distribution is considered to be an appropriate model in Oakley & Clough 

(2010). It would be worthwhile developing the Bayes factor methodology for other 

data models to enable wider comparisons to be undertaken. 

The concepts behind forecasting future members of a finite population were 

introduced in Chapter 3 which led to the problem of interpreting the outcome 

from WinBUGS when using customary noninformative priors. Discussions with 

Prof Roberts and Prof Forster indicate that it is not necessarily straight forward 

to determine when the results from WinBUGS, which are necessarily finite, do 

indicate values that are infinite. This is particularly true for logNormal data that 

has a small shape parameter although WinBUGS does come with a warning that 

an understanding of the theory behind Bayesian statistics is required before using 

WinBUGS. 

Having decided that the logNormal distribution was the best data model for 

the pMDI+ cost data set the rest of this thesis was devoted to establishing models 

for the joint prior belief for the logNormal parameters that satisfied three criteria 

1. we can show analytically the existence of the posterior predictive moments 

2. we can determine the value of the posterior predictive mean 

3. we can elicit an expert's prior beliefs. 

In Chapter 4 we developed a way to model prior beliefs for the logNormal 

data model that ensured posterior predictive moments were finite. In particular a 

novel way to model the prior belief for the shape parameter was proposed when 
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numerical integration was available to speed the computation for particular choices 

for the prior distributions. To enable comparisons with classical estimators to be 

made in Chapter 5 default priors were determined. The parameter values for the 

shape default prior were trained by the parametric distributions and the values of 

the Co V that were used and also the Root Mean Square Error as the loss function. 

The choice of parametric distributions and the values of the Co V used do represent 

the typical range that might be encountered and weighting each result equally, aka 

the Laplace Criteria of Uncertainty, does produce results that have been shown to 

be robust, in the sense of the value of the RMSE, against misapplication of the 

data model. 

The choice of RMSE was continued from the Briggs paper but may not be the 

most appropriate choice. Further research with end users may establish that some 

asymmetric form of loss function, not necessarily involving Squared Errors could 

be more relevant to the practical situation under investigation. 

Data sets that arise in practical situations do not necessarily follow parametric 

forms and the performance of the logNormal data model with the default priors 

was encouragingly robust, in the sense of the value of the RMSE, against any 

misapplication of the data model - particularly when data arose from distributions 

with heavier tails than the logNormal. 

The methodology of conducting an Elicitation is outlined in Chapter 6 where 

SHELF has been used to obtain the best fit for the elicited values. Before SHELF 

was fortuitously made available we were examining the classical problem of fitting 

parameters analytically from elicited values, for a logNormal distribution for My 

and a I+Gamma distribution for Ry . Garthwaite & O'Hagan (2000) develop a 

simple method for the logNormal distribution that only requires three quantile 

values to be elicited. We had been seeking to establish a comparable method for 

the Gamma distribution for Ry - 1 and it would be of interest to establish whether 

this does exist. 
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Although the default prior was developed to enable comparisons to be made 

when it was not possible to elicit an expert's prior beliefs we have also produced, 

and revised after use, a method that can be followed to elicit an expert's prior 

beliefs for our Bayesian model. 

The case studies reported in Chapter 6 only represent part of what we would 

like to have undertaken and we would want to try to conduct elicitations with 

financial experts from within the NHS for the 3CPO data sets. 

Finally, to summarise this thesis, the problem that we have considered is how to 

forecast the cost of treating unobserved members of a population for some medical 

intervention. As a Bayesian analysis we have incorporated an expert's prior beliefs 

with an appropriate data model to produce the posterior expected mean value. 

The Bayesian model that we have developed, a logNormal data model and the 

quantile ratio to model the shape prior beliefs, does perform better (see Table 5.6) 

when using the default prior, in the sense of the Root Mean Square Error, than 

either the sample mean or the exp(lm + Iv /2) estimators when data is simulated 

from Gamma and logNormal distributions. This better performance has also been 

demonstrated to be true for the three observed data sets that were introduced in 

Briggs et al (2005), see Table 5.11. 

A Gamma data model is the preferred choice of many Health Economists, which 

was derived from a private conversation with Dr Richard Grieve of the LSHTM 

and see also Willans & Kowgier (2008). Our Bayesian model uses a data model 

that has a heavier tail than the Gamma distribution and, as shown in Table 5.14, 

performs better than the sample mean or the exp(lm + Iv /2) estimators when data 

is derived from a range of tail weights and skewness and is relatively insensitive to 

misapplication to data models other than logNormal. 
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Glossary 

Gamma function 

The Gamma function is defined as 

r(b) = 100 

V
b
-

1 exp( -v)dv 

where we will only work with b > O. 

The Gamma function along the positive real axis is a convex function that takes 

strictly positive values. It has a minimum at r(1.4616) = 0.8856 and its value 

approaches 00 as b --t 0 or 00. 

Important properties that we will use are 

f(b + 1) = bf(b) , f (~) = J?r , f (1) = 1 

and the Gauss multiplication theorem, which is defined when m is a positive integer 

as the finite product 

r(b)r (b + ~) r (b + !) ... f (b+ m ~ 1) = (27r) mil m!-mbf(mb). 

Gamma distribution 

The random variable V is said to follow a Gamma distribution, which we denote 

by V f'J G(a, b) for v > 0 and a, b > 0, if 

abvb- 1 exp( -av) 
fv(v) = r(b) . 

The scale parameter for V is a with shape parameter b. 

Inverse Gamma distribution 

The random variable W is said to follow an Inverse Gamma distribution, which 

we denote by W f'J IG(a, b) for w > 0 and a, b> 0, if 

abw-(b+l) exp( _1!..) 
fw(w) = f(b) W 

derived from l/W = V f'.J G(a, b) . 
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Bayesian paradigm 

Bayes' theorem allows us to combine our two sources of information about the 

parameters 8, namely prior beliefs and data, into a single source of information. 

It is expressed in symbols as 

p(8IY) OC 7r(8) x f(YI8) 

or in words as 

the posterior is proportional to the prior times the likelihood 

where p(8IY) is called the posterior distribution for 8 after observing the data y, 

7r( 8) represents our prior beliefs about 8 before observing the data y and 

f(YI8) represents the likelihood, L(8j y), because L(8j y) oc f(yI8). 

Likelihood 

We will work with the continuous random variable Y whose realised value will be 

the observation y with probability density function 

d 
fy(YI8) = dyP{Y ~ yl8 = 8} \/y 

and, unless it is necessary to avoid confusion, we will use the usual abbreviation 

of fY(YI8) as f(yI8). 

Whenever we have n observations y = (Yl, Y2, ... , Yn) then we will assume that 

this data set is the realised values from the independent identically distributed 

random variables (Yt, }2, ... , Yn). 

We are then able to formulate the likelihood of yl8 as 

n 

f(YI8) = IT f(YiI 8) = IT f(YiI 8). 
i=l 
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Normal distribution 

The random variable X is said to follow a Normal distribution, which we denote 

by X '" N(J.L, 0'2) for -00 < x < 00 and 0'2 > 0, if 

1 [ (x - J.L)2] fx(x) = J2i(;2 exp - 2 2 . 
21l'0'2 0' 

The scale parameter for X is 0'2 with location parameter J.L. 

logN ormal distribution 

The random variable Y is said to follow a logNormal distribution which we denote 

by Y '" logN(J.L,0'2), or alternatively Y '" logN(8) where (J = (J.L,0'2), for y > 0 

and 0'2 > 0, if 

derived from log Y = X '" N(J.L,0'2) where the scale parameter for Y is J.L with 

shape parameter 0' and the median of YI(J is exp(J.L). 

Quantiles 

The q-quantile of a random variable V is the value Vq such that for q E [0,1] 

p{V < vq } = q. 

If Z '" N(O, 1) then <I>(z) = p{Z < z}. 

If log Y = X '" N(J.L,0'2) then p{Y < exp(JL + qO')} = <I>(q) and hence the 

<I>(q)-quantile of YI8 is exp(JL + qO'). 

Percentiles 

The p-percentile of a random variable V is the value vp such that for p E [0, 100] 

p{V < vp } = p. 
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Student's t distribution 

The random variable X is said to follow a t distribution, which we denote by 

X '" tv(/-L, (]'2) for -00 < x < 00, (]'2 > 0 and v a positive integer, if 

(v+1) 

r(tll) [ (X-/-L)2j- 2 
fx(x) = ~ 1+ . 

r(~) V7r(]'2 V(]'2 

log t distribution 

The random variable Y is said to follow a log t distribution which we denote by 

Y '" log tv(/-L, (]'2) for y > 0, (]'2 > 0 and v a positive integer, if 

fy(y)= r(~) y_l[1+(IOgy-J.L)2j-(1I~1} 
r(~)vlV7r(]'2 V(]'2 

derived from log Y = X '" tv(/-L, 0'2). 
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Appendix 

There are two parts to the Appendix. 

The first part contains the WinBUGS code used in Section 3.4.3. 

The second part contains The elicitation procedure. 
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WinBUGS code 

model 

{ 

mu "'oJ dnorm( 0 , 0.001 ) 
tau "'oJ dgamma( 0.001 , 0.001 ) 

for ( k in 1 : N ) { 
X[ k ] "'oJ dlnorm( mu , tau ) 

} 

ans "'oJ dlnorm( mu , tau ) 

} 

list( N = 26 ) 

X[ ] 

660.3283 
194.5458 
350.0813 
377.6088 
48.17163 
242.0741 
.363.7085 
79.278 
340.5153 
276.0091 
321.8638 
182.7198 
240.5935 
1138.358 
325.4537 
79.278 
372.4307 
72.74691 
100.74 
19871.29 
26201 
160.4786 
174.6438 
1740.847 
329.4807 
450.8718 

list( ans = 1500 , mu = 6 , tau = 0.5 ) 
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The elicitation 

This section contains the procedure that the facilitator and the expert will 

follow when they meet and will be produced as a document separate from the 

rest of this thesis and it will be made available to the expert at the meeting. 

To control the flow of information a single sheet at a time will be provided. 

It is an implicit assumption that the facilitator and expert will be meeting to 

discuss (budget) costs for a treatment that, in terms of costs, the facilitator 

is talking to an expert and that there are some relevant costs available which, 

preferably, the expert has not seen. 
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The elicitation 

Definition 

I would like to tell you what is meant by the term elicitation. 

Elicitation is the name given to the process that will capture your knowledge 

about an unknown quantity and represent your prior beliefs in the form of a 

probability distribution. 

I will explain this in more detail now. 
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Procedure 

The procedure that we will follow comprises four parts 

Overview 

Introduction to the concepts involved 

The elicitation that we will follow, with practise 

The elicitation 

The Sheffield Elicitation Framework 

The Sheffield Elicitation Framework, SHELF, will be used to record our 

meeting and to produce the probability distributions from your prior beliefs. 
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Overview 

We need to be certain that we both know what it is that we want to achieve. 

We will be talking about costs measured in £ sterling and what I would like 

to determine are the beliefs that you hold about these costs before, or in 

other words prior to, any data is collected. 

I will need to ask you about these prior beliefs in a particular way and will 

explain shortly the technical terms that we will use. Your prior beliefs are a 

valuable source of information about these costs and it is important that we 

use your beliefs. 

However, the data is also a source of information about the costs and I 

will then combine these two sources of information to produce posterior 

knowledge, or in other words our knowledge after observing the data, about 

these costs. 

We will then be able to use this posterior knowledge for making inferences 

about the (underlying population of) costs from which we have obtained our 

data sample, in particular the posterior mean value. 

In this Bayesian approach, as it is known, we are looking to use all of the 

available information rather than just relying on the data as used in the 

traditional approach. 
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Introduction to the concepts involved 

It is important that if either of us uses a particular word then we are both 

agreed on exactly what it means. I will now introduce the concepts that we 

will need to conduct this elicitation - which is the name given to the process 

that will capture your knowledge about an unknown quantity and represent 

your beliefs in the form of a probability distribution. 

I will start this introduction by describing how we identify a statistical model 

for the data-generating process in terms of a probability distribution. 
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Probability distributions 

We will work with unknown quantities that are continuous because any value 

within their range is possible. Their probability distributions will define the 

probability that an unknown quantity lies within some part of its range. 

We will find it easiest to work with well known families of distributions, also 

known as parametric distributions. Parameters control particular properties 

of distributions and to specify which member of the family of distributions 

it is necessary to specify the value of the (typically two) parameters. 

Perhaps the most widely known distribution is the Normal distribution. This 

distribution is usually represented as N(J..£, 0'2), where we use the symbol N to 

represent the Normal family of distributions and two parameters, J..£ and 0'2, 

are required to specify which Normal distribution. The Normal distribution 

has the same shape, symmetric about its central value, for all parameter 

values. 

The parameter J..£ controls the location of the distribution (the central value 

about which the distribution is clustered) and 0'2 > 0 controls its scale (the 

range of values that are likely). 

The examples on the following page show the effect of increasing Jl and 0'2 

on the location and range, but not the shape, of the Normal distribution. 
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Examples of the Normal distribution where 

JL is the mean or location or central value and 

(J2 is the variance or scale or range of likely values 

Mean = - 5 & Variance = 1 

-15 -10 -5 o 5 

central value is -5 and likely range 18 -8 to -2 

Mean = - 5 & Variance = 9 

-15 -10 -5 o 5 

central value i8 -5 and likely range Is -14 to +4 

Mean = - 5 & Variance = 1 

central value 18 -5 and likely range II -8 to -2 

10 

10 

-15 

-15 

Mean = 0 & Variance = 1 

-10 -5 o 5 

central value 18 0 and likely range II -3 to +3 

Mean = 0 & Variance. 9 

-10 -5 o 5 

central value II 0 and likely range II -9 to +9 

Mean. 0 & Variance. 1 

central value I, 0 and likely range I, -3 to +3 

Figure 1: Normal distributions 
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Uncertainty 

When we work with a data-generating model then we need to recognize the 

two kinds of uncertainty that we have to distinguish between and then take 

account of 

1. we are uncertain about the values of the parameters that precisely define 

our probability distributions because we lack complete knowledge about their 

values 

2. we are uncertain about which outcomes randomness will produce. 

An example where uncertainty arises because of lack of knowledge alone 

would be your ability to estimate my age. 

If we had arranged this meeting by email without having met then you could 

have formed a prior belief about my age. Once we had met then you may 

have revised your beliefs and whilst you still could not be certain you would 

have been able to reduce your uncertainty. 

Your beliefs about my age are yours and yours alone. You have formed 

personal beliefs and there is no reason to think that they may be the same 

as those held by anyone else. This is exactly what we would expect when 

uncertainty arises because of lack of knowledge alone. 

An example where randomness alone determines the outcome would be when 

tossing an unbiased die. 

The probability of any of the faces arising at a single toss is 1. 
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An example where both kinds of uncertainty are present would be the model 

used in simple linear regression of Yi = f30 + f31Xi + f. 

The term f represents the random part of the model. The parameters f30 and 

f31 are unknown and we wish to improve our knowledge by estimating their 

values. 
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Statistical summary 

While a parameter controls a particular property of a distribution there are 

other ways to describe important features of the distribution, including the 

quartiles and in particular the median. They are collectively known as a 

statistical summary. 

Quartiles 

Quartiles divide the range of possible values that an unknown quantity Y 

may take into four sections in a particular way. We are interested here in 

the Second Quartile, or Median, and the Third Quartile. 

The Median for Y may be denoted as the value m where p{Y :5 m} = 0.5 

and clearly p{Y > m} = 0.5. We can see that an informal interpretation is 

that the median represents the "middle value" as the probability that the 

true value lies above the Median is equal to the probability that the true 

value lies below the Median. 

Similarly for Y the Third Quartile may be denoted as the value t where 

p{Y :5 t} = 0.75. Here, the probability that the true value lies below the 

Third Quartile is three times the probability that the true value lies above the 

Third Quartile and the Third Quartile represents the "three quarters value". 

We also need to introduce here the Quartile Ratio as 

Third Quartile 
Median 

which will be explained in more detail shortly. 

9 



Positively skewed distributions 

It is often the case that distributions are not symmetric and other possibilities 

include "J shaped" and skew. A distribution that can take any non-negative 

value (bounded below by zero but without an upper limit) and is positively 

skewed, also known as right skewed, is considered to be a good model for 

financial distributions eg the distribution of salaries within an organization. 

As well as parameters it is possible to use functions of parameters to capture 

your views about the properties of the data-generating distribution. We will 

use here the Median and Quartile Ratio of the data-generating distribution 

to control the scale and shape respectively. 

The scale of the distribution is determined by its Median. The larger the 

value of the Median, the larger the range of values over which the distribution 

is spread. 

Similarly, the shape of the distribution is determined by its Quartile Ratio. 

The larger the value of the Quartile Ratio, the greater the positive skew of 

values of the distribution. 

So we will consider here a distribution as a model for the data-generating 

process that has two fixed but unknown parameters. This elicitation is about 

gathering your understanding about this distribution, prior to observing the 

data. We will capture your knowledge about its Median and Quartile Ratio 

in a very specific way. 
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We now need to consider how we determine your prior beliefs about the costs 

when we use a distribution that only takes non-negative values and is skewed 

to the right as the model for the data-generating process and it's only (the 

values of) the Median and Quartile Ratio that are unknown. 

Population 

The population that we will be considering is the collection of the individual 

costs from each of those patients whose condition means that they will receive 

this treatment. We will denote the cost using the symbol Y. 

An individual member of the population is subject to uncertainty about the 

values of both the parameters for the distribution from which it is drawn as 

well as the random effect involved in choosing that member of the population. 

When we consider the population our only uncertainty is about the values 

of the parameters. 

Parameters 

The parameters are fixed but unknown, which also means that functions of 

the parameters, for example the Median, are fixed but unknown. 

It is your lack of knowledge about these parameters which leads to your 

uncertainty about their values; there is no randomness involved. 

We will capture your prior beliefs about the Median and Quantile Ratio by 

way of probability statements and then represent your prior beliefs in the 

form of a probability distribution. This will enable me, when the data is 

available, to combine these two sources of information to produce posterior 

views. 
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Elicitation 

For a population the fixed but unknown parameters, and also functions of 

parameters, control properties of the distribution. The fixed but unknown 

quartiles describe important features of the distribution. 

We will work here with the Median (My) and Third Quartile (Ty) and also 

the Quartile Ratio (Ry). Each of these quantities is fixed, but unknown, for 

our population of costs and I want to capture your prior beliefs about them 

by way of probability statements and then represent your prior beliefs in the 

form of a probability distribution 

Ratios 

A ratio is defined as 

ratio = numerator / denominator = num / den 

and if num and den> 0 with num > den then ratio> 1 

and its value (only) tells us how many times num is greater than den 

eg ratio = 9 could be = 9/1 or = 18/2 or = 80.1/8.9 etc etc. 

If we were to analyse different volumes of air to determine their constituent 

volumes of oxygen and nitrogen then we would find that (approximately) the 

ratio of nitrogen to oxygen (by volume) = 78/21 or = 156/42 or = 234/63 

~ 3.7. 
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Quartile ratio 

We will be looking specifically at a Quartile Ratio defined as 

Ry = Ty = Third Quartile 
My Median 

The larger the value of Ry the larger, or more extreme, the positive skew. 

The Quartile Ratio takes values in the range (1,00) because num and also 

den> 0 with num > den. As num and den are each costs measured in 

£ sterling then the quartile ratio is a value expressed as a (dimensionless) 

number. 

Your prior beliefs 

We will capture your prior beliefs about the Median, Third Quartile and also 

the Quartile Ratio by asking you about specific values as we will show in the 

example that follows for Ry . 

The value l(Ry) is the value such that p{Ry :5 l(Ry)} = ~ and similarly 

the value u( Ry) is the value such that p{ Ry < u( Ry)} = ~. So in this case 

the values l(Ry) and u(Ry) divide the range of possible values into three 

sections with equal probability that the true value lies in any of the three 

sections. 

We can also capture your beliefs about the value m( Ry) where this is the 

value such that p{Ry :5 m(Ry)} = ~ and the value m(Ry) divides the range 

of possible values into two sections with equal probability that the true value 

lies in either of the two sections. 

The Median and the Quartile Ratio 

We want to determine whether knowing the value of the Median gives you 

any information about your value of the Quartile Ratio. 
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A practise 

We want to use a positively skewed population, that you are not unfamiliar 

with, to practise the concepts involved. 

The distribution of employee salary within the organisation that you work 

would appear to present a suitable opportunity. 

The definition of salary that we wish to use here is individual gross pay for 

employees, which excludes any income earned outside the organisation, with 

our unit of measurement as £ sterling. 

We will now conduct an elicitation following the stages outlined in the next 

section - The elicitation that we will follow. 
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The elicitation that we will follow 

We will explain how we will determine the quantile values required in the 

four stages below as we deal with each stage in turn. 

Population quartiles 

In this first stage we are looking for values that are measured in £ sterling. 

Whilst the Median, My, and Third Quartile, Ty , are fixed for the population 

you cannot be certain about their values, although they will be greater than 

O. We want to capture your uncertainty about My and Ty as follows. 

We want to elicit specific values for My and Ty . We want to ask you to 

(a) determine the largest value for My that you believe is possible 

(b) determine m(My) such that My is equally likely to be above or below 

this value 

(c) determine the largest value for Ty that you believe is possible 

(d) determine m(Ty) such that Ty is equally likely to be above or below this 

value 
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Quartile ratio 

We will be looking at the Quartile Ratio, Ry, where the larger the value 

of Ry the larger, or more extreme, the positive skew which means that the 

probability of a very large value for Y is larger, as the figure below indicates 

'. '. 
:: «!.(---­: . 
· . · . : . 
· . · . · . 
~ ': · . · . · . · . · . · . · . · . · . · . · . · . · . 

'. 

Ry -1.5 

. ..... . ........................ , ......... . 

y 

Figure 2: Distribution of Y for two values of the Quartile Ratio 

The Quartile Ratio takes values in the range (1,00) because num and also 

den> 0 with num > den. As num and den are each costs measured in 

£ sterling then the quartile ratio is a value expressed as a (dimensionless) 

number. 
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So in this second stage we are looking for (dimensionless) numbers. 

From the first stage we can determine a plausible value for the Quartile 

Ratio, Ry , as m(Ty )/m(My ). 

Whilst Ry is fixed for the population you cannot be certain about its value, 

although it will be greater than 1. We want to capture your uncertainty 

about Ry in the form of a probability distribution as follows. 

We want to elicit specific values for Ry • We want to ask you to 

(a) determine the largest value that you believe is possible for R y 

(b) determine I (Ry) and u( Ry) such that Ry is equally likely to be below 

l(Ry), as above u(Ry), as between these two values 

(c) determine m(Ry) such that Ry is equally likely to be above or below this 

value 

(d) we will then produce a distribution fitted to your elicited values and 

show this to you to ascertain if it represents your prior beliefs for Ry. We 

will modify this distribution until you are satisfied with the final (visual) 

result. We will then be able to feedback to you some probability statements 

to confirm the final fitted distribution. If needs be we continue with this 

"fitted distribution and feedback" cycle until a satisfactory result has been 

obtained. 
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Median 

The scale of a distribution is determined by its Median, The larger the value 

of the Median, the larger the range of values over which the distribution is 

spread, as the figure below indicates 

o 

o 

o 

10000 

10000 20000 

20000 

20000 

Median. 20,000 

30000 

Median. 30,000 

40000 

Medlan.40,ooO 

30000 

40000 50000 

60000 

Figure 3: Distribution of Y for three values of the Median 
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Median 

In this third stage we are looking for values that are measured in £ sterling. 

Whilst the Median, My, is fixed for the population you cannot be certain 

about its value, although it will be greater than O. We want to capture your 

uncertainty about My in the form of a probability distribution as follows. 

We would like to remind you that, from the first stage, you determined the 

largest value for My that you believe is possible. 

We want to elicit specific values for My. We want to ask you to 

(a) determine l(My) and u(My) such that My is equally likely to be below 

l(My) as above u(My) as between these two values 

(b) from the first stage you have determined m(My) such that My is equally 

likely to be above or below this value 

(c) we will then produce a distribution fitted to your elicited values and 

show this to you to ascertain if it represents your prior beliefs for My. We 

will modify this distribution until you are satisfied with the final (visual) 

result. We will then be able to feedback to you some probability statements 

to confirm the final fitted distribution. If needs be we continue with this 

"fitted distribution and feedback" cycle until a satisfactor:y result has been 

obtained. 
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The Median and the Quartile Ratio 

We want to determine whether knowing the value of the Median gives you 

any information about your value of the Quartile Ratio. 

From the second stage we have been able to confirm the distribution for 

your prior beliefs for the Quartile Ratio and similarly for the Median from 

the third stage. 

We will show you your confirmed prior distribution for the Quartile Ratio. 

We will ask you if there is any particular value that could be chosen for 

the Median from your confirmed prior distribution, which is now shown as 

a reminder, that would that cause you to want to change your beliefs about 

your confirmed prior distribution for the Quartile Ratio. 
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Reflection 

Having completed the practise elicitation, using the distribution of employee 

salary within the organisation that you work as our population, it will be 

opportune to reflect on the last two parts of the procedure, namely 

Introduction to the concepts involved 

The elicitation that we will follow, with practise 

to ask if there are any aspects that we should return to or refresh ourselves 

about. 

The elicitation 

We are now ready to conduct our elicitation. 
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