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SUMMARY 

This thesis is concerned with the electrical, thermal and mechanical modelling of 

electrical machines for the 'more-electric' aircraft. Two specific applications are 

considered viz. a permanent magnet brush less DC (BLDC) machine for an electro­

hydraulic actuator for a primary flight control surface, and a switched reluctance (SR) 

starter/generator for the HP spool of a large civil aero-engine. As a consequence of the 

highly variable and often hostile ambient environment and constrained available space 

envelope, these electrical machines can rarely be designed in isolation, with thermal and 

mechanical constraints often having a significant influence on the design. 

In view of these considerations, a transient lumped parameter thermal model has been 

developed for the BLDC machine, and validated by experimental measurements on a 

prototype machine at various stages of manufacture. Since the rotor cavity of the BLDC 

machine is flooded with hydraulic fluid leaking from the pump, fluid friction losses 

have been modelled, and validated by tests on a prototype machine. Optimisation of the 

BLDC machine airgap has also been investigated using analytical electromagneticlfluid­

dynamic modelling. 

Detailed investigation of the mechanical stresses in the rotor of the HP spool machine 

have led to the development of a novel rotor structure for SR machines which is shown 

to have comparable electromagnetic performance with a conventional SR machine. A 

specific design of SR machine is analysed in detail in terms of dynamic current 

waveforms and the subsequent iron losses, and its thermal performance is modelled in a 

representative aero-engine environment. 
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NOMENCLATURE 

Nomenclature is listed in the order in which it appears in this thesis. 
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More Electric Aircraft 
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conductor diameter, m 

thermal conductivity, W/mK 

unidirectional heat flow, W 

temperature differential 

slot liner thermal conductivity, W/mK 

conductor bundle thermal conductivity, W/mK 
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(J) angular velocity, radls 
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J.1 kinematic viscosity, mrn2/s 
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Cf surface friction coefficient 

Pdrag fluid friction loss, W 

L axial length of rotor, m 
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rl rotor outer radius, m 

r2 stator inner bore radius, m 

Vt tangential velocity, m/s 

Va axial velocity, mls 

Cv velocity coefficient 
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h heat transfer coefficient, W/m2K 
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Q electric loading, Afm 

Nph number of phases 
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CHAPTER! 

INTRODUCTION 

1.1 Background 

International air transport is presently the fastest growing sector of transport worldwide. 

Technological advances in the aircraft industry have improved aircraft efficiency and 

reduced the costs of air transport by such a degree that worldwide air passenger traffic 

has grown at an average yearly rate of 9% since 1960 [BOE 96], with freight and mail 

traffic also growing by some 11 and 7%, respectively. In 1995 for instance, some 1.3 

billion passengers were carried by the world's airlines [BOE 96]. 

Despite this strong historical growth, the industry remains relatively volatile and prone 

to sudden short term declines. However, Button [BUT 99] has postulated that passenger 

air traffic will grow at a rate of between 5 and 7% into the foreseeable future, with much 

of the growth in the Asia-Pacific region (up to 9% a year), while more recent 

predictions by the Airbus Group [AlA 02] have suggested that the growth in the 

passenger markets will slow to 4.7% up to 2020, again with more of the market share 

moving towards Asia-Pacific (the Chinese domestic market is predicted to grow by over 

8%). The vast majority of large civil aircraft with >500 seats operate in Asia and the 

demand for such aircraft, as the Asian pacific economies grow, is likely to increase. 

Further, these very large aircraft will be able to carry a greater volume of passengers 

through the worlds' increasingly congested airports and air traffic control systems. 

This projected increase in air travel will occur against a background of ever-increasing 

concerns regarding the environmental impact of air traffic. Although this was largely 

confined to problems of noise pollution in the past, concern has more recently shifted to 

atmospheric pollution around airports and damage caused to the atmosphere by jet 

engine exhaust emissions at cruising altitude. This change is a result of increased public 

awareness of issues such as greenhouse gas emissions and the potential damage to the 
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ozone layer. In terms of pollution on a global scale, British Airways [BA 99] estimated 

that their aviation fleet as a whole produced some 18 million metric tons of carbon 

dioxide, 79000 tons of nitrogen oxides, and 5000 tons of sulphur dioxide in 1999, and 

thus contributing significantly to world greenhouse gas emissions. nitrogen oxide 

emissions in the middle atmosphere where the majority of jet-engine aircraft cruise may 

also affect the ozone layer, and sulphur dioxide emissions at lower levels may 

contribute to acid rain. These examples of pollution to the atmosphere are a by-product 

of the combustion process, and are thus fundamental to the operation ofajet engine. 

From these examples it is clear that there are many commercial and environmental 

pressures on aircraft operators, and in turn aircraft manufacturers, to improve the 

performance of future aircraft. However, aircraft safety is a critical feature that 

permeates the entire civil aerospace industry and often hinders the adoption of radical 

technologies. Air travel remains, by most objective criteria, the safest way to travel. The 

current rate of incidents involving all carriers in the USA has remained fairly constant 

since the 1970s at around 0.05 fatalities per 100,000 departures or 8x 10-4 per million 

aircraft-miles [BOE 96]. During the period 1987 to 1996, there were 205 commercial 

jet-engine aircraft losses in the world, with over 65% of these crashes occurring during 

take-off or landing, where the airframe, engines, flight control actuators, and hence 

power generation capacity are generally at there most stressed from a mechanical, 

electrical, and thermal point of view. Despite the remarkable safety record of civil 

aircraft, the potentially catastrophic consequences of component andlor system failure 

dictate that it is by nature very conservative, even compared to the automotive sector 

where safety is also of paramount importance. However, even against this conservative 

background, there is growing interest in adopting new technologies for performing key 

functions on aircraft. Arguably, the most significant in terms of its far-reaching effects 

on aircraft architecture, is the wider adoption of electrical systems in preference to 

established hydraulic, pneumatic and mechanical systems. 
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1.2 The more-electric aircraft and more-electric engine 

In the civil aircraft market, it is likely that ever more functions on future aircraft will be 

implemented using electrical systems, as the necessary improvements in electrical drive 

systems are realised. Although there are several ancillary systems in which electrical 

drives are being proposed, e.g. brake actuation, fuel pumping and environmental control 

systems, the most significant electrical loads are likely to be those associated with the 

adoption of electrically actuated flight control surfaces. The flight control surfaces of 

current modem large civil aircraft are generally powered by means of three independent 

and segregated hydraulic systems that deliver hydraulic power to actuators that are local 

to the flight surface under control, as shown in figure 1.1. In general, these systems are 

complex to install and costly to maintain, comprising substantial lengths of high­

pressure hydraulic lines, and hence fluid volume and weight. 

The concept of ultimately replacing all hydraulic actuation systems with entirely 

electromechanical actuation systems is commonly referred to as the all-electric aircraft 

(AEA). However, it is likely that the so-called more-electric aircraft (MEA) will be 

adopted as an important intermediate step. In the MEA, it is proposed to gradually 

convert more aircraft functions to electrical systems rather than using hydraulic or high­

pressure bleed air, which is presently the case. In some cases, electrical systems may be 

used in conjunction with tailored hydraulic sub-systems as an interim technology. 

Future large civil aircraft which embrace either the AEA or MEA concepts are likely to 

have many electrically powered control surface actuators (potentially up to 50 or so -

each having a peak power capability of several tens of kWs), together with increased 

ancillary electrical loads. The resulting step change in aircraft electrical loading has far 

reaching implications for the electrical generation systems. Indeed, future electrical 

power requirements are unlikely to be met by simply scaling up existing technologies 

such as generators driven by take-off shafts and gearboxes, particularly as they suffer 

from a number of inherent drawbacks in relation to efficiency, reliability, 

maintainability and can compromise engine design. To address the power generation 
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challenges, considerable effort is being directed towards realising the so-called 'more­

electric engine', in which electrical machines are integrated within the main aircraft 

engmes. 

1.3 Historical background to the 'more-electric' aircraft 

The concept of the more-electric aircraft is by no means new, and indeed, the first civil 

aircraft equipped with fly-by-wire technology, the Airbus A320, made its maiden flight 

on 22nd February 1987 [PRA 00]. Aircraft with electrically powered actuators first flew 

in the late 1940's, on aircraft such as the Bristol Brabazon [MOl 01] and later on the 

Vickers Valiant V-Bomber [JON 99]. The Brabazon was the first aircraft with 100% 

powered flying controls, electric engine controls, and the first with an AC power 

system. Large weight savings were made over conventional aircraft of the day due to 

the individually highly optimised systems. Electrical machines used in actuation 

systems on the Bristol Brabazon and Vickers Valiant were typically low power density 

machines, with a torque per rotor volume ofless than 10kNmlm3
• 

Torque density or torque per unit rotor volume is often quoted as a means of comparing 

the specific power density of machines [MIL 93]. Typical values of torque per rotor 

volume for various types and size of electrical machine with different types of cooling 

are shown in Table 1.1. Traditionally, electric actuation was a heavy and cumbersome 

alternative to hydraulics (which can achieve equivalent torque per rotor volume figures 

of -500kNmlm3
). As a consequence, hydraulic systems have historically dominated 

flight control surface actuators, landing gear, steering, brakes and various secondary 

actuators in modem civil and military aircraft. 

However, with the advent of rare earth permanent magnet materials in the early 1980's, 

improvements in electrical steels, and more recently in high power semiconductor 

devices, higher power density electrical machines and their associated converters have 

emerged as a potentially competitive option for next-generation flight surface actuation. 
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Although they are still unable to directly match the specific torque capacity of hydraulic 

actuators, there are a number of system level benefits which merit serious consideration, 

e.g. enhanced efficiency, benefits of electrical distribution over hydraulic distribution, 

reduced maintenance etc. 

The benefits and challenges of the more-electric aircraft have been widely researched 

and published, particularly in the United States, where military programs provide ideal 

technology platforms for such research. The all-electric airplane was first conceived as a 

more efficient means of transport as far back as 1980 [CRO 90], at a time when 

concerns over energy conservation and escalating fuel costs threatened to hinder the 

growth of the aerospace industry as a whole. The momentum behind the more-electric 

initiative was strengthened in 1991 when Northrop/Grumman were awarded a long-term 

US Department of Defence project to develop a power management and distribution 

system for the more-electric aircraft [MAL 97, 99]. The programme sought to develop 

power generation architectures with twice the reliability of existing systems by 1998, 

and five times the reliability by 2003. Specific goals included a starter/generator with 

25000 hrs MTBF, highly reliable fault tolerant distribution, and a 50% power density 

and reliability improvement in power electronics .and motor drives . 

• 1.4 Perceived benefits of the more-electric aircraft 

The relative merits of electrical and hydraulic actuation systems are influenced to a 

significant degree by aircraft size. Electrically powered actuation becomes more 

attractive to air-framers as the size of the aircraft increases, as hydraulic distribution 

networks have been shown to have a higher mass per unit length for a given operating 

power level than an equivalent electrical system. Despite the fact that the fundamental 

torque and force density of hydraulic machines are much higher than their electro­

magnetic counterparts, the elimination of the hydraulic fluid distribution system leads to 

the electrical flight control systems having a higher net power density. EHAs are also 

safer in terms of fire and corrosion risk. Studies carried out in the U.S.A [CLO 97] have 
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identified that the adoption of more-electric technologies could yield potential benefits 

including: 

• 

• 

• 

• 

6.5% reduction in take-off gross weight 

3.2% reduction in life-cycle costs 

5.4% increase in MTBF 

4.2% reduction in maintenance man-hours per flying hour. 

However, these estimates are based on specific weight savings of each active 

component in the various aircraft systems, and do not consider the contributory effects 

of an increased volume due to the fundamentally lower power density of EMAs and 

EHAs. Moreover, no specific consideration was given to the large increase in the 

number and size of electrical contactors, isolators and other switchgear that is required 

to attain an acceptable level of reliability and partitioning. 

More-electric technology has been identified as being especially attractive to military 

aircraft since elimination of a centralised hydraulic power source reduces the 

vulnerability of the aircraft in a combat situation [MAL 97]. Indeed,' electrically 

powered flight control surface actuators have been under test in aerospace applications 

in the military field since the mid 1990's. For example, both EHA and EMA actuators 

have been tested on the left aileron of a General Dynamics FIA-18 Hornet systems 

research aircraft under the Electrically Powered Actuator Design (EP AD) validation 

program [WIL 97]. The United States Air Force has embarked upon an MEA initiative 

encompassing starter/generator technologies, power distribution systems and electric 

actuation technologies [ELB 97] [MAL 96, 97, 99]. Table 1.2 lists some of the key 

projects in the development of electrically powered actuation technology in the United 

States, and in Europe. In summary, although the benefits in terms of weight saving, 

MTBF and safety are difficult to quantify without a specific study and the availability of 

proven hardware, the advantages of the MEA are well recognised, and in tum provides a 

strong driver for the development of key enabling technologies, in particular high 
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reliability electrical machines and associated power electronic converters. Many of the 

challenges of realising robust hardware are common to both actuation and power 

generation systems, although as will be demonstrated in this thesis, these do offer 

somewhat different constraints and performance requirements. 

1.5 Electrically actuated flight control surfaces 

Figure 1.2 shows the flight surfaces on a typical aircraft that could potentially be 

controlled by electrical actuation systems. Electrical actuation of flight surfaces can be 

realised using electro-mechanical actuators (EMA), which utilise a mechanical gearing 

and clutch system coupled to a lead-screw mechanism, or electro-hydraulic actuators 

(EHA), in which an electrically driven hydraulic pump is connected to a conventional 

hydraulic ram. With current technology, EHAs have higher overall force densities than 

equivalent EMAs and hence they may well remain as the preferred choice for highly 

demanding applications such as actuation of the rudder in a large aircraft. It is envisaged 

ultimately that the trend towards the all-electric aircraft may well result in the total 

adoption of EMAs, with the total exclusion of hydraulic devices from the aircraft 

control systems. However, currently civil air-framers favour EHA technology, since it 

retains many of the characteristics and advantages of conventional hydraulic actuators, 

and requires minimal change in system definition. Hence, EHAs are seen as an 

intermediate but nonetheless necessary development in proving new technologies and 

gaining operational experience. 

The adoption of EHAs to de-centralise the three hydraulic systems of an aircraft 

eliminates a significant proportion of the heavy and unreliable hydraulic lines that 

currently distribute power around the aircraft. In the particular EHA system studied in 

this thesis, hydraulic power is produced locally to the flight control surface via a speed 

and torque controlled integrated electric motor and pump. The volume of hydraulic fluid 

in such a de-centralised system is greatly reduced, as the fluid is no longer routed along 

the length of the fuselage, but is confined to individual actuators at the flight control 

surfaces. This has significant benefits in terms of enhancing reliability and safety of the 
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actuation system with regard to corrosion caused by leakage, and more importantly 

mitigating safety concerns over the risk of fire in the hydraulic systems. Each EHA 

system comprises a BLDC motor and associated power electronic inverter, a slipperless 

hydraulic piston pump, hydraulic ram, accumulator, and various hydraulic control and 

safety valves. The system is shown schematically in Fig. 1.3, while the proposed 

packaging of such a unit for service is shown in Fig. 1.4. 

The ability to control the speed of the pump enables a fixed angle swash plate to be 

employed, which offers significant simplifications and increased reliability when 

compared to variable angle swash-plate pumps [CRD 96]. The slipperless type piston 

pump which is employed in this EHA has an inherent axial leakage flow, and would in 

many applications be sealed from the motor by means of an appropriate dynamic seal. 

However, concerns over the reliability of such seals have resulted in a design that 

eliminates the need for any seals between the pump and machine. Hence, the fluid 

leakage path is routed through the machine, causing substantial losses due to fluid 

friction and subsequent heat dissipation in the airgap, while also providing some degree 

of additional cooling. 

Given the safety critical role of many control surfaces, the management of potential 

failures plays an important role in both their design and subsequent operation. At 

present, the strategy for managing failure modes in primary flight control surface 

actuators (i.e. rudder, ailerons, flaps) is one of active/standby, in which three 

independent actuators are connected to each individual control surface (each having the 

capability to perform the necessary function in the event of a failure of one or both of 

the other actuators). This is known as triplex redundancy, and is commonplace in civil 

aircraft. Military aircraft have taken this approach a step further by adopting quadruplex 

redundancy systems that provide continued capability even following a high degree of 

damage. The EHA system considered in this thesis follows the same basic triplex 

redundancy design seen in most modem civil aircraft, i.e. there are three separate EHAs 

on each surface. In the event of a failure of the active actuator, a standby actuator is 

brought on-line and the failed actuator is switched to a so-called damping mode in 
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which the hydraulic pump is switched out of the hydraulic circuit, allowing hydraulic 

fluid to flow via a restrictor valve in a shorted loop from either side of the ram, as 

illustrated in figure 1.3. The duplication of the complete actuation system relaxes the 

component redundancy that would otherwise have to be included in the actuator drive­

train. 

Thus, in the active/standby system, each EHA need only achieve the same level of 

reliability as its hydraulic counterpart, since the system level fault tolerance 

requirements are met by employing sub-system redundancy. Consequently, the 

electrical machine and its associated power electronic converter can have a fairly 

conventional topology (e.g. a 3 phase star connected machine and a conventional· 6 

switch converter), as opposed to so-called 'fault-tolerant' drive topologies which have 

been proposed for other safety critical applications [HAY 98] [MEC 99]. These fault­

tolerant machines and converters may well feature prominently as candidate machines 

for the next-generation aircraft as they offer the potential for built-in redundancy, e.g. 

by complete separation of the windings, the use of separate H-bridge converters in the 

converter, the use of 1 per unit reactance windings to limit fault currents. This approach 

to internal fault tolerance avoids the need for the duplication that is required in duplex 

or triplex redundancy systems. This has obvious benefits in terms of weight reduction, 

while reliability of the system is designed to meet or exceed that of the multi­

component duplex or triplex redundant systems that they are designed to replace. The 

general requirements for a fault tolerant power system have been described previously 

by White [WHI 95] and can be equally applied to a fault tolerant drive systems with 

minor modifications to the terminology. The key features are: 

• Partitioning and redundancy 

• Isolation between units 

• Fault detection and reporting 

• Continued operation until the next service opportunity 
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A typical fault tolerant BLDC machine topology is illustrated in Figure 1.5. The 

machine stator is wound such that it provides the physical, thermal, electrical and 

magnetic isolation between phases by having one concentrated winding which fills the 

entire slot either side of a tooth. Hence if the machine has n teeth, then it is wound with 

n/2 coils. The mutual coupling between phases is designed to be very low (typically 

<5% [MIT 02]). In a permanent magnet fault tolerant machine, the synchronous 

reactance Xs is normally designed to be 1.0 per unit so that rated current is generated in 

a short-circuited phase, thus maintaining the same level of dissipation in that particular 

coil, albeit that the overall copper losses in the machine is increased as the currents in 

the remaining healthy phases are increased to maintain the rated torque. However, the 

requirement to achieve 1.0 per unit reactance usually involves major design penalties 

for fault tolerant machines, as a higher reactance design often requires 10-20% increase 

in the total mass of the machine due to deeper slots and thicker tooth tips in order to 

encourage more inter-pole leakage in the stator to boost the inductance. Fault tolerant 

machines have been proposed in the development of various aerospace electrical drive 

systems for applications such as EMA's, [ORI 98], fuel pumps [HAY 98], and aero­

engine starter/generator systems [MAC 89a]. 

Although fault tolerant machines provide an improved degree of reliability in terms of 

electrical failures, they do not provide any fault tolerance with respect to failures in the 

mechanical system, in particular the bearings. It has been demonstrated that bearing 

failures are statistically by far the most common failure mechanism in the vast majority 

of electrical machines. By way of illustration, in military electrical machines in the 

range 10-100kW, mean time between failures (MTBF) is approximately 7.1xl0-6 

failures per hour, with 95% and 2% due to bearing failure and stator winding failure 

respectively. For industrial machines rated less than 50kW, the MTBF is 6.31xl0-6 

hours, with 51 % due to bearings, and 16% due to winding failures [T A V 99]. Therefore, 

any fault tolerant application must be considered carefully in view of these statistics, 

particularly when considering actuation for primary flight control surfaces that are 

fundamental to the stability of the aircraft. One long-term possibility for addressing the 
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problems of bearing failure is to levitate the rotor using either magnetic bearings, or so­

called self-bearing machines (in which the stator winding performs the dual role of 

torque production and rotor levitation) [aKA 96] [ODS 96]. However, there are 

considerable research issues to be addressed before such machines are a sufficiently 

mature and well-proven technology to be considered for service. Hence, in this 

particular application a conventional electrical machine topology is likely to result in a 

similar MTBF for the system as a fault-tolerant machine. 

1.6 Future aircraft electrical power generation 

Electrical power generation requirements will inevitably feature prominently in next­

generation civil aircraft. As well as the actuation systems described previously, 

increased levels of electrical power will be required by galley loads, satellite navigation 

Icommunications and advanced in-flight entertainment systems. By way of illustration 

of this trend, a typical large civil aircraft in the 1960s required -40kVA per engine, 

whereas modern civil aircraft require upwards of 200kVA per engine. It is envisaged 

that very large, next-generation civil aircraft such as the Airbus A380 will require in 

excess of 350kVA per engine [Mal 99] in order to meet the spiralling demand in 

electrical power. In order to achieve this increased generating capability, it is inevitable 

that the generators will become increasingly integrated into the aircraft engine itself. 

However, the architecture and operating requirements of large aircraft engines impose 

severe constraints on electrical machine design. 

In its most elementary form, a jet engine consists of three main parts: a compressor, a 

combustor, and a turbine as shown schematically in fig. 1.6. The compressor stage 

compresses the incoming air to a high pressure (typically 150psi), which is then fed into 

the combustor. Fuel is introduced to the high pressure air in the combustor where it is 

burnt continuously, the resulting high pressure, high velocity gas being forced out 

through the turbine, which recoups a proportion of the energy from the 'jet' of exhaust 

gas to drive the compressors, thus maintaining a constant flow of high-pressure air 
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through the combustor. Whereas this basic mechanism is common to all gas-turbine 

aero engines, the final thrust is derived by different means depending on the demands of 

the particular application. 

In a simple jet engine (such as those which dominate military aircraft), thrust is derived 

by the rapid expulsion of exhaust gases from the rear of the engine. However, although 

this provides extremely high thrust densities (particularly with features such as after­

burners), it is inefficient in terms of fuel consumption. Large civil aircraft employ high­

bypass, turbo-fan engines, which employ either two-shaft designs (used by General 

Electric and Pratt and Whitney), or three-shaft designs (used by Rolls-Royce). In a 

three-shaft engine, the three concentric shafts (or spools) rotate at different speeds and 

are generally classified in terms of their operating pressures, viz. the low-pressure (LP), 

intermediate-pressure (IP), and high-pressure (HP) spools as illustrated by figure 1.7. 

The inlet air is compressed in turn by the LP, IP and finally HP compressors before 

entering the combustor. The high velocity exhaust gases drive the HP, IP and finally LP 

turbines. The final stage LP turbine drives the LP shaft and hence the very large LP 

compressor fan. This large compressor fan generates most of the thrust in a turbo-fan 

engine, by driving large volumes of air at a relatively low velocity through the engine 

nacelle, which in effect by-passes the core (in contrast to a pure jet engine that moves 

small amounts of air at high velocity). This airflow is known as by-pass air, with a by­

pass ratio defined as the ratio between the volume of by-pass air to the volume of air 

flowing through the core of the jet engine. Bypass ratios of 5: 1 are common in modern 

civil turbo-fans, with the large compressor fan producing as much as 80% of the thrust 

[COH 96]. Although inevitably more complex, three-shaft designs tend to offer greater 

fuel economy than a double or single-shaft design [COH 96]. 

The electrical power required for various aircraft systems is currently generated using a 

constant-speed, wound-field, synchronous machine which is mounted outside the main 

core of the ~ngine. The generator requires a constant speed input in order to generate an 

AC output with a constant frequency. Since the engine speed typically varies over a 2:1 
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range from take-off to cruise, a constant speed drive (CSD) mechanism is required to 

continuously vary the effective gearing between the engine take-off shaft and the 

electrical machine. This is accomplished by means of a variable hydraulic transmission 

that is mechanically linked to the HP spool via external, intermediate, and internal 

gearboxes. These are complex hydro-mechanical devices that by their very nature are 

not highly reliable. Figure 1.8 shows a simplified representation of a typical three-shaft 

turbo-fan engine with accessory gearbox, and constant speed drive, whilst fig. 1.9 

illustrates a typical external gearbox for a large civil aircraft. However, the losses 

generated in these CSD mechanisms are very high, and the complex oil systems 

involved in lubricating and cooling the gearbox and electrical machine are a major 

factor in determining the maintenance schedules of aero-engines. In an attempt to 

overcome this problem, several alternatives have been considered for directly coupling 

the generator to the engine. Variable-speed, constant frequency systems (VSCF) have 

been employed on military and civil aircraft, in which the generator is interfaced to the 

supply via a cyclo-converter [ELB 97]. Another system which has received considerable 

attention is the use of variable frequency AC systems since these avoid the need for any 

power electronic converters (which are currently viewed as being considerably less 

reliable than the generators themselves). Table 1.3 lists the recent developments in civil 

and military aircraft power systems. 

The 'more-electric' engine concept envisages electrical machines integrated co-axially 

with the engine spools, to supply electrical power directly to the aircraft system loads, 

thus eliminating the need for a large accessory gearbox and take-off shaft. Moreover, it 

is proposed that the various hydraulic pumps, fuel pumps, governors and the air-starter 

which are shown in fig. 1.9 would be replaced with electrical counterparts, with the task 

of engine starting being performed by an embedded electrical machine integrated with 

the HP spool [FER 95] [RIC 88] [RIC 95] [RAD 92] [RAD 98]. The major perceived 

benefits of the alVmore-electric engine that have been identified in key trade studies are: 

[MOl 99]. 
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• Improved specific fuel consumption 

• Simplified power-plant/engine architectures 

• Improved reliability 

• Reduced operating and maintenance costs 

• Reduced weight 

• Reduced engine change times 

• Scope for novel nacelle designs and hence aerodynamic efficiency gains 

• Improved power-plant/airframe integration 

• Scope for controlled power transfer between shafts 

One potential configuration of a three-shaft more-electric engine is shown in fig. 1.10. 

In the particular case shown, electrical machines are incorporated on all three spools. In 

principle, each of these machines can operate in both motoring and generating modes, 

thus providing integral starting capability (via the HP spool machine), power generation 

from all three spools when appropriate, and allow a degree of controlled power transfer 

between the shafts. 

Whereas the integration of electrical machines within an engine has several advantages, 

it presents an extremely challenging environment, particularly with regard to 

temperature. Figure 1.11 shows the maximum temperature variation within a Rolls­

Royce RB-211 turbo-fan engine. The region near the HPIIP bearing housing (the region 

in which the HP machine will be located) reaches temperatures of -350°C under full 

load engine conditions. The HP spool machine is also exposed to the highest 

mechanical loads since its rotational speed is -15,000 - 20,000 rpm. 

1. 7 Design of electrical machines for aerospace application 

As will be ·evident from the preceding review of the more-electric aircraft and the more­

electric engine, there are several challenging constraints on the design of electrical 

machines for use in aircraft. By way of illustration, although a pump motor for an EHA 

and a starter/alternator for the HP spool have very different performance specifications, 
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they have several key requirements which are common to the all electrical machines in 

aircraft, viz: 

• High power densities to minimise system weight 

• High reliability to ensure safe operation with minimal redundancy and over-rating 

• An ability to operate in highly variable, and often harsh, environmental conditions 

• An ability to operate with highly transient duty cycles without over-rating (and 

hence over-sizing) the machine. 

It is worth noting that efficiency is often not a paramount consideration, apart from its 

consequent impact on dissipation and hence power density. Another frequently 

encountered requirement is the need to integrate the machine closely with its prime­

mover or end-effector. Moreover, in system level optimisation, little weighting is often 

given to the demands of the electrical machine, particularly within an aero-engine where 

the electrical power typically constitutes less than 1% of the total power flow (e.g. a 

large civil engine such as the Rolls-Royce Trent series where the powers are -350kVA 

and -50MW respectively). Thus electrical machines are often designed to operate in 

severely confined space envelopes with non-optimal geometries (e.g. stators with very 

short axial lengths relative to their diameters), as this often results in the best system 

level solution in terms of engine layout. 

As a consequence of these factors, which manifest themselves to differing degrees in 

various aircraft applications, the design of high power aerospace electrical machines 

(Le. > lOkW) often requires very different considerations and analysis tools when 

compared to electrical machines for less demanding industrial applications, for example. 

Although based on the same design principles, the higher stress levels (thermal, 

electrical and magnetic) encountered in aerospace applications, requires far greater 

cognisance of the external systems and thermal/mechanical issues than a comparably 

rated machine for more benign applications. 
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This thesis addresses many of the research issues associated with the realisation of high 

performance electrical machines for next-generation aircraft systems by focussing on 

two specific machines, viz. a permanent magnet brushless DC (BLDC) machine for an 

EHA and an embedded HP spool starter-generator for a large civil engine. As shown by 

table 1.4, these applications have somewhat contrasting performance specifications and 

operating environments. The research findings presented in chapters 2 and 3 on the 

EHA system are primarily concerned with the thermal modelling and design 

optimisation of a pre-existing machine design which operates in a well defined 

environment and whose design synthesis was relatively unconstrained, albeit that there 

was a considerable premium associated with reducing system mass. In contrast, chapters 

4 to 6 are concerned with the design synthesis of an HP spool generator, which requires 

concurrent consideration of its electromagnetic, mechanical and thermal behaviour since 

the design is severely compromised by the combination of a very limited space 

envelope, high rotational speeds (and hence high mechanical stresses) and an ambient 

temperature of -350°C. This latter example serves to quantify, in a representative 

example, the performance trade-offs that result from closely integrating an electrical 

machine into the harsh environment of an aircraft engine. 
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Table 1.1 Typical torque per rotor volume of various types of electrical machine. 

Source: [MIL 93] 

Machine type , Torque per rotor volume 

(kNm/mJ) 

Small totally enclosed motors 2.5 -7 

Small industrial motors 7-30 

High performance servo motors 15 -50 

Aerospace machines 30-75 

Large liquid cooled machines 100 - 250 

Table 1.2. EMAIEHA projects within the U.S and Europe. 

Program Time-span Type Flight tested 

FLASH 1989 - Smart actuation Boeing B757 

Lockheed / EHA Lockheed C-130 

Parker 

EPAD 1993-1999 'Smart', EHA, EMA General Dynamics F-18 

EPICA 1993-1996 EHA Airbus A321 

ELISA 1996-2001 EHA+EMA -
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Table 1.3. Recent civil and military aircraft power system developments. 

Source: [MOl 01] 

Generation type Civil application Military application 

IDG/CF B777 2x 120kVA 

[115v AC/400Hz] A340 4x90kVA 

B737 4 X 90 kVA 

MD-12 4x120kVA 

B747 4x120kVA 

B717 2x40kVA 

B767-400 2x120kVA 

Do728 2x40kVA 

VSCF (Cycloconverter) F-18EIF 2 x60kVA 

[115v AC/400Hz) 

VSCF (DC link) B777 2x20kVA 

[115v AC/400Hz] (backup) 

MD-90 2x75 kVA 

VF Global Ex ,4x40kVA Boeing 2 x 50 kVA 

[115v AC/380-760Hz] JSF 

Horizon 2x25 kVA 

A380 4x 150kVA 

270VDC F-22 2 x 70 kVA 

Raptor 

Lockheed- 2 x 50kVA 

Martin 

JSF 
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Table 1.4. Top-level specification of the electrical machines under investigation in this 
thesis. 

Specification BLDC machine for SR starter generator 

the EHA application. for the HP spool of an 

aero-engine. 

Mass requirement Minimum Minimum 

Max outer diameter (mm) None specified 400 

Minimum inner diameter (mm) None specified 200 

Max total length (mm) None specified 100 

Max torque (Nm) 55 200 

Maximum speed (rpm) 9000 15000 

Rated power (k W) 4.0 100 

Max ambient temperature eC) 70 350 
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Figure 1.1. Three segregated hydraulic systems on a large civil aircraft 
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Load alleviation 

Figure 1.2. Flight surfaces suitable for electric actuation technology (EHAlEMA). 
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Figure 1.3. Electro-hydrostatic Actuator (ERA) system diagram. 

Gas filled 
accumulator 

ram pump 

BLOC machine 

Power electronic 
converter 

Figure 1.4. Proposed packaging of the ERA system. 
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Figure 1.5. Fault tolerant permanaent magnet motor design showing the single coil 
per slot design, and large tooth tips to increase the reactance to 1.0 per unit. 

Combustor 

Compressor Turbine 

Figure 1.6. Simplified illustration of a gas turbine engine. 
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IP compressor 

LP compressor 

HP turbine 
IP turbine 

Figure 1.7. Location of the three rotating spools within a typical large civil aero-engine. 

LP 

~::::::::~ 

Constant speed drive 
(CSD) 

External gearbox 

Figure 1.8. Cross-section of a three-spool turbo-fan engine showing the location of 
the external gearbox and constant speed drive (CSD). 
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Figure 1.9. Typical external gearbox for a large civil aircraft showing the electrical 
generator (top) and air starter (bottom right) as is commonplace on the majority of 

large civil aero-engines. [Source: Rolls-Royce] 
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HP Motor/Generator 

IP Motor/Generator No mechanical drive through inter-case assembly 

Figure 1.10. One potential configuration of a three-shaft more-electric engine. 

29 



Figure 1.11 . Maximum temperature variation within a Rolls-Royce RB-211 turbo-fan 
engIne. 
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CHAPTER 2 

THERMAL MODELLING OF A BRUSHLESS PERMANENT 

MAGNET MACHINE IN AN EHA SYSTEM 

2.1 Introduction to thermal modelling of machines 

Electrical machines for use in aerospace are usually subject to the highly variable 

ambient conditions. By way of example, ground temperatures may reach as high as 

70°C in extreme climates while during high altitude flight; temperatures may descend as 

low as -60°C. The problem of designing a machine to operate in such a variable 

environment is compounded in many aerospace applications since the emphasis is often 

placed on minimising mass, as a consequence of which, electrical machines are often 

required to operate with high levels of specific loss. Accurate thermal modelling is 

therefore critical in order to ensure that a given machine design is able to operate within 

given maximum temperature constraints while at the same time is not over-sized. 

The extent to which thermal modelling features in the design synthesis of electrical 

machines depends on the demands of the particular application. In some cases, 

successful machine designs may be established with reference to suitable 

electromagnetic models, with steady-state and dynamic performance being predicted for 

an assumed operating temperature. Initial design studies are typically formed around a 

maximum permissible current density in the conductors based on a-priori assumptions 

regarding the likely winding temperature rise for a given cooling method. For instance, 

a naturally cooled machine may operate at a current density of SAlmm2
, whereas a 

forced water-cooled machine may be able to operate at 25A1mm2 or so on a continuous 

rating owing to the increased heat transfer from the windings. This rudimentary and 

somewhat empirical approach can compromise the machine design, as inaccuracies in 

temperature estimation of windings and magnets can result in an excessive temperature 

rise (which could in some cases lead to thermal runaway) or an over-sized machine. 
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Thermal runaway is a consequence of the positive temperature coefficient of resistivity 

of the windings and the negative temperature coefficient of the magnet remanence. In 

some cases this can result in an exponential rise in temperature until some part of the 

system fails. 

Whereas thermal modelling is important in the design of machines that operate under 

essentially steady-state conditions, it is even more critical in machines that operate on a 

prescribed duty cycle or 'flight cycle', which may contain many transients. In such 

cases, by exploiting the thermal capacity of the machine, it can intennittently operate at 

current densities many times higher than those under steady-state conditions. This 

chapter illustrates the importance of thermal modelling for machines with transient load 

profiles by considering the specific case of a BLDC machine that is at the heart of the 

EHA actuator described in chapter 1. 

2.2 Mechanical construction of the BLDC machine 

The BLDC machine that is investigated in this chapter is directly coupled to a 

slipperless piston pump with no requirement for a dynamic seal between them as 

discussed in Chapter 1, section 5. The pump itself is subject to relatively high drag 

losses at high speed, and its effects on the temperature distribution in the BLDC 

machine must therefore be included in a system thermal model of the EHA. Figure 2.1 

shows a cross-section through the machine and pump, (with the pump on the right hand 

side). The leading dimensions of the BLDC machine are shown in figure 2.2, and table 

2.1. A design feature of this motor and pump unit, which exerts a significant influence 

on its thermal performance, is that the rotor is flooded in hydraulic fluid as the pump 

design allows hydraulic fluid to leak from the pump to the far end of the machine. The 

presence of hydraulic fluid in the airgap gives rise to significant drag loss on the rotor 

and a marked increase in the heat transfer within the airgap. Another interesting feature 

of the machine that has a significant bearing on its thermal perfonnance is the presence 

of a PTFE sleeve on the stator bore to prevent the ingress of hydraulic fluid into the 
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stator and frame. As will be demonstrated in detail in chapter 3, the relatively poor 

thermal conductivity of the sleeve and the cooling provided in the airgap by the 

hydraulic fluid has the effect of largely de-coupling the heat transfer within the stator 

from that in the rotor and the airgap. This in turn enables these regions to be considered 

separately in terms of heat transfer and sources of loss. The electrical machine has been 

designed for natural convection cooling so as to eliminate ancillary cooling parts, hence 

maintaining a high level of reliability. 

Annular cooling fins have been incorporated over the entire length of the frame to 

augment heat transfer. The fin geometry was optimised for maximum heat transfer with 

natural convection at a frame surface temperature of 135°C (which arises from the 

assumed frame temperature at the maximum ambient of 70°C. This optimisation was 

based on the assumption that the radial fins can be regarded as parallel isothermal plates 

of rectangular section, with equivalent heat dissipation being evaluated from standard 

fin efficiency calculations [BAR 84] and methods for representing convection heat 

transfer [INC 90]. As the fins describe an annular geometry around the periphery of the 

frame, it is assumed that the lowest and highest regions of the fins do not contribute to 

the convective air-flow since their location prevents air flow through the buoyancy 

. effect of the heated air. It was therefore assumed that all heat transfer by convection 

only occurs over half of the case outer circumference. However, the fin geometry 

obtained using standard design guidelines [INC 90] would have resulted in a very tall 

and narrow fin (80mm by 1.5mm respectively) and ultimately, due to engineering 

requirements, a fin with a non-optimum profile has been chosen (17mm by 3.5mm). 

However, despite this significant departure from the optimal geometry, calculated fin 

efficiencies for the specified operating temperature are 0.90 and 0.74 for optimal and 

final designs respectively. For the particular fin design employed in the prototype 

machine, this efficiency results in the frame being capable of dissipating 361 W of loss 

by convection for a frame temperature of 135°C and an ambient of 70°C. 
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Although convective heat loss tends to dominate in naturally ventilated and force cooled 

machines at moderate temperatures (Le. frame temperature up to -150°C or so), due 

account can also be taken of radiation from the frame. There are well-established 

analytical expressions [HOL 90] for calculating the loss from cylindrical and circular 

surfaces, which could be applied to the frame (including the circular end-caps). 

However, in a finned frame, there are difficulties associated with defining an equivalent 

surface area, because of the considerable emission and subsequent absorption that 

occurs between the sides of the fins that face each other. Assuming a worst-case in 

which the side faces of the fins do not make a significant contribution to the radiation, 

then the frame can be represented as a smooth cylinder and a pair of cylindrical end­

plates. The heat transfer rate for this simplified representation is hence given by [HOL 

90]: 

(2.1) 

However, even allowing for the fact that equation 2.1 is likely to be a slight under­

estimate, the frame would only be capable of dissipating <5W of loss by radiation for a 

frame temperature of 135°C and an ambient of 70°C, which is considerably lower than 

the corresponding value of 361 W for convection. 

2.3 Sources of loss in the stator 

An essential pre-requisite for analysing heat transfer within the stator is the calculation 

of the magnitude and distribution of the losses generated in the stator. Since the effects 

of fluid losses are largely confined to fluid itself as a result of the insulation provided by 

the PTFE sleeve, the stator losses are dominated by the copper and iron losses. The 

copper losses can be relatively straightforwardly calculated for any arbitrary current 

waveform (providing the winding has been designed such that there is no discemable 

skin effect within conductors at the frequencies of interest, i.e. the DC resistance 

provides an adequate representation). However, it is important to recognise that the 
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magnitude of copper losses are strongly coupled to winding temperature because of the 

comparatively high temperature coefficient of resistivity of copper (0.00393 parts per 

DC). 

In contrast, the iron losses are considerably more difficult to calculate. Historically, the 

calculation of iron loss was reliant on a significant degree of empiricism. However, the 

accuracy with which machine designers have been able to calculate iron losses has 

improved markedly in recent times with the development of ever-more sophisticated 

field calculation techniques, particularly finite element models which are increasingly 

being coupled with models of the power converter and mechanical load. These have 

enabled flux density waveforms to be derived with greater spatial and temporal 

refinement (e.g. in each and every element of a finite element mesh of a stator core if 

necessary). 

Having established the flux density variation throughout the machine, a suitable loss 

model must be employed to calculate the associated loss. A widely employed approach 

is to consider the net iron losses as consisting of three separate components, viz. 

hysteresis losses, excess losses and classical eddy current losses. Standard iron loss 

models have been developed for calculating the contribution from these three 

components for any arbitrary waveform [BER 85] [LA V 78]. Using one such standard 

model proposed by Bertotti [BER 85], the overall iron loss for a particular flux density 

waveform can be derived using equation 2.2, in which the various material coefficients, 

kh' kexc, and kc are derived from standard measurement procedures. 

2 

P = U d ..!.. fldB). dt + ~ ..!.. fldB)·s. dt + k AQ+bB..!.. (2.2) 
Fe 12 0 T T \dt 0 T T \dt h B T 

This equation can be applied on an element-by-element basis within a finite element 

model or to a region of the stator (e.g. tooth body) in which the flux density variation is 

relatively uniform. 
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In order to calculate the iron losses in the BLDC machine under representative load 

conditions at 700rpm and 6000rpm, a magnetostatic finite element model of the 

machine was employed. Figure 2.3 shows the finite element mesh employed in 

calculating iron losses in the BLDC machine stator for rms phase currents of 137A and 

34.25A respectively, which correspond to the rated load conditions at rotor speeds of 

700rpm (55Nm) and 6000rpm (13.75Nm). Figures 2.4 and 2.5 show the predicted iron 

loss densities throughout the stator iron for these two test conditions. As is evident, 

there is a considerable variation in the loss density, with particularly high losses in the 

vicinity of the tooth tips. The total losses in the machine at 700rpm and 6000rpm are 

29W and 569W respectively. These losses are significant when compared to the rated 

power at 6000rpml13.75Nm but considerably lower than the corresponding copper loss 

of 300W at 700rpml55Nm. This illustrates a key issue in developing thermal models 

which are reliant on a degree of simplification, in that the relative significance of 

different loss sources and heat transfer mechanisms can vary significantly throughout 

the operating range. 

2.4 Heat transfer modelling techniques 

A variety of methods have been applied to the study of heat transfer in electrical 

machines. Arguably, the most widely employed are those based on lumped parameter 

analysis in which the machine is divided into a number of regions in which simplifying 

assumptions regarding the heat transfer are adopted. The resulting heat flow is 

calculated using equivalent circuits in which the thermal parameters such as 

temperature, heat flow and thermal resistance are represented by their analogous 

electrical parameters; voltage, current and resistance respectively. Equivalent T­

networks have been used extensively to model conduction heat transfer in rotating 

electrical machines, firstly by Soderberg in 1931 [SOD 31] who derived equivalent 

circuits for steady-state heat transfer in large turbine generators with radial cooling 

ducts. Smaller machines have also been investigated, most notably by Perez and 
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Kassakian [PER 79] for medium sized induction motors (i.e. tens of kWs) and by 

Mellor [MEL 91] for on-line temperature monitoring of induction machines. Jokinen 

[JOK 97] developed this technique further to model the effects of forced air-cooling by 

including additional temperature sources controlled by the flow of heat. 

Another method that has been employed extensively, particularly for modelling 

conduction heat transfer, is the finite element method. This has been applied for 

example in large turbo-generators [ARM 76] [ARM 80] and industrial induction 

machine stators [SAK 91]. Computational Fluid Dynamics (CFD) has been used both in 

the study of forced convection heat transfer in electrical machines [SHA 02], and in the 

study of aerodynamic losses in machines with highly salient rotor structures [CAL 02]. 

However, it is worth noting that the use of ever-more sophisticated models remains 

reliant on the ability to accurately determine the various input parameters for the model, 

e.g. solid material properties, tolerances on geometries/fits and fluid properties. Indeed, 

it is arguable that modelling techniques have evolved to such a level of sophistication, 

that their ability to accurately represent the behaviour of a practical system is now 

determined predominantly by the quality of the input data. By way of example, 

uncertainties in the convection coefficients of a thermal system, sometimes by as much 

as ±25%, [HOL 90] and more particularly in contact coefficients (±25%) can render 

elaborate analysis techniques unnecessary. Indeed, there are many examples in 

published literature [XYP 99] where the detail in which some features are modelled 

(e.g. localised dissipation within deep rotor bars of induction motors) are difficult to 

justify, given that other regions which arguably have an equal impact on thermal 

performance are modelled using only first-order approximations. In formulating an 

equivalent thermal network for a given machine and external environment, many of the 

regions are well defined, both geometrically and in terms of thermal properties, e.g. the 

tooth body region of the stator lamination. Hence, relatively simple analytical equations 

can be derived to describe the heat transfer in these regions. However, there are other 

regions where there is a lack of reliable material data and/or a degree of uncertainty in 

the exact geometries, and modelling is often reliant on published data and / or empirical 
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guidelines. This is particularly the case for heat transfer within the conductor bundle and 

slot region, and at the interface between the stator lamination pack and the frame. Since 

these will have a significant bearing on the thermal behaviour of the machine in fig.2.1, 

these features were investigated in detail. 

2.5 Stator lamination and frame model 

Although the vast majority of the stator lamination and the frame itself can be readily 

modelled as conduction within homogeneous and well-defined regions, one often­

problematic feature is the heat transfer between the stator lamination stack and the 

frame. The heat transfer at this interface is strongly influenced by the processes 

employed during manufacture, viz. the axial clamping pressure applied to the 

lamination stack, the surface finishes on the outer diameter of the lamination stack and 

the bore of the frame, and the radial contact pressure which the frame exerts on the 

stator lamination pack. There are published experimental studies on heat transfer across 

representative stack-frame interfaces at a range of pressure conditions [BRI 91], from 

which the following general conclusions can be drawn: 

• The effective thermal resistance of a given interface is essentially independent of 

temperature over the range 70°C to 130°C. 

• Thermal contact resistance decreases as contact pressure increases, 

• Corrosion products on a laminated surface increase thermal contact resistance 

substantially, particularly at low axial clamping pressure and high contact pressure 

(>I.SMpa) 

• Surface grinding of the lamination pack slightly decreases contact resistance this 

being most pronounced at high axial clamping pressure. 

• The thermal resistance is largely independent of contact pressure for a surface 

ground finish. 
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In practice, it is difficult to precisely determine the exact pressure between the stack and 

frame at the design stage, albeit that some degree of control can be exercised by closely 

specifying dimensional tolerances. The thermal resistance due to this contact region is 

very sensitive to the mechanical fit between the surfaces, and consequently, is often 

measured following assembly of a trial stator in order to provide accurate data for a 

transient thermal model [MEL 91]. Although there are some published empirical values 

for contact coefficients [SHL 64], these are restricted to comparatively low contact 

pressures (up to I.4MPa). Mellor and Turner [MEL 91] employed these published 

characteristics, albeit for an extrapolated range of values, and applied a further empirical 

correction in attempt to provide a better correlation with measured values on an 

induction motor frame. 

For the particular machine considered in this chapter, a contact thermal resistance of 

8.5xI0-4 K.m2/W was specified between the lamination stack and frame interface. This 

value is deemed to be representative of a lamination stack that has been seem welded at 

three equi-circumferentially disposed points along its axis while clamped at a high 

pressure, machined surface finishes on the stack and frame, and an 'interference' or 

shrink fit. These manufacturing steps are likely to result in a contact pressure of -3 MPa 

(600psi) and a clamping pressure of -0.8 Mpa (120psi). This value of 8.5xl0-4 K.m2/W 

(equivalent to a contact coefficient of 1200 W/m2K) is comparable with the values in 

the range 300 to 2500 W/m2K measured in [MEL 91] for an industrial induction motor. 

2.6 Thermal properties of electrical machine stator slots and coils 

The stator slot region consists of a series of copper conductors (each of which is 

covered with a thin insulating layer of varnish, a layer of slot liner material to 

electrically insulate the winding from the stator stack, and a medium between 

conductors and slot liner (which is often simply air, or in some cases, encapsulants 

which enhance the heat transfer and/or provide structural support). 
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This composite region will inevitably present challenges in terms of thermal modelling 

and property specification, particularly with the lack of repeatability in exact geometry 

between nominally identical coils. Moreover, the consti~uent materials have thermal 

conductivity that vary by several orders of magnitude; e.g. copper has a thermal 

conductivity of 383W/mK at room temperature, while commonly used commercial slot 

liner materials such as Nomex 410 have a thermal conductivity of -0.15W/mK 

[NOMEX]. 

One well established method of deriving reliable data for modelling heat transfer within 

practical coils is to construct a section of the winding and measure its heat transfer 

capability in a custom test-rig. This enables a net thermal conductivity for the entire 

bundle to be derived for various packing factors and encapsulants. An alternative 

approach is to model the region using finite element techniques, although as will be 

demonstrated in section 2.7, there are a number of factors that must be carefully 

considered in formulating a finite element model that is capable of representing all the 

features of practical coils. A further potential source of data is so-called 'handbook 

results' [GE 69], which endeavour to collate findings drawn from manufacturing trials 

and measurements. However, although data on conductor bundle thermal conductivity 

is available in such handbooks, they cover only a small range of conductor geometries. 

Furthermore, conductor insulation and encapsulant properties have advanced 

significantly since the original data was collated, and hence it may be somewhat 

unreliable for modem coil materials and manufacturing processes. 

In all electrical machines, the conductors only occupy a proportion of the total slot 

cross-section. This partial filling is often quantified in terms of a 'fill factor' or 'packing 

factor', which is the ratio of the copper area to the available slot area. Achievable 

packing factors in small and medium machines (Le. up to a few tens of kW) typically 

range from 0.3 to 0.7 both for hand and automated winding processes. Thus, there is 

considerable residual space between the conductors, even in machines with 

comparatively high packing factors. One commonly employed technique for enhancing 
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heat transfer from the winding region is to fill this residual space with a relatively high 

thermal conductivity material. Such processes are variously referred to as encapsulating, 

potting or impregnating the conductor bundle. Although these terms are often used 

loosely for various processes, for the purposes of this thesis, impregnation is considered 

to be the application of a varnish (such as a solventless modified alkyd varnish -

STERLING 073-1041) by a combination of dipping and/or by a vacuum process, while 

encapsulation refers to the complete potting of the stator (including the region 

surrounding the end-windings and coil terminations) with a highly loaded composite 

under vacuum to form an integrated solid stator module. The vast majority of 

encapsulants are polymer-based materials that are loaded with an electrically insulating 

material of a high thermal conductivity, such as alumina oxide or zirconium oxide 

[EMM]. The thermal conductivities of potting compounds typically range between 0.6 

and 1.4 W/mK, [EMM]. However, their maximum operating temperature is typically 

limited to -200°C. As well as enhancing heat transfer within the machine, the additional 

thermal capacity of encapsulants is useful for machines with highly intermittent duty 

cycles, since the winding is often heated under essentially adiabatic conditions during 

brief transient overloads. For the particular case of a winding with a packing factor of 

0.3, the use of encapsulants such as Stycast 2850 KT (specific heat capacity of 1000 

J/kg.K and a density of 2400 kg/m3
) increases the net thermal capacity of the slot region 

by a factor of 3. An additional benefit of employing encapsulants or varnishes is that 

they can provide good structural support to the windings (which may endure high forces 

during operation). However, despite the many advantages of employing encapsulants, it 

is important to recognise that they are generally expensive; both in terms of the intrinsic 

material cost and the additional manufacturing steps involved. 

As well as heat transfer within the conductor bundle, difficulties are also often 

encountered in representing heat transfer across material boundaries. A widely used 

approach for modelling such features is the use of surface-to-surface contact 

coefficients, in an analogous fashion to a surface convection coefficient. This so-called 

contact coefficient is a function of both surface finish and the contact pressure between 
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the two materials. In a model of a typical slot, contact coefficients are required to cater 

for the interface between the conductor bundle and the slot liner, and the slot liner and 

stack. 

There are some published values of effective thermal conductivity for different slot liner 

materials at a range of applied pressures [MON 92]. The values were derived from 

measurements on flat circular test samples in a custom test-rig. Although the published 

results are representative of commercial slot liner materials and thicknesses, they were 

measured for the particular case of a uniform applied pressure. Hence, they are not fully 

representative of a practical conductor bundle, in which some parts of the slot liner are 

subject to high pressures exerted by the windings, while other parts may have virtually 

no pressure applied. 

2.7 Finite element modelling of stator slots and coils 

Due to a relative dearth of published data on thermal modelling of random wound coils, 

both encapsulated and un-encapsulated, a finite element study was performed to derive 

reliable data for a lumped parameter model of the entire machine. Moreover, finite 

element modelling provides a convenient and systematic means of investigating various 

generic features of practical coils, viz. the significance of convection in a non­

encapsulated winding, the influence of the geometry of individual conductors within the 

bundle on the overall heat transfer capability and the influence of the distribution of the 

individual conductors. 

The initial finite modelling was based on a two-dimensional representation of a cross­

section through the machine, i.e. temperature variation in the axial direction was 

neglected in the slot region due to the axial thermal resistance of the conductors being 

some 2 orders of magnitude lower than in the radial direction, and therefore giving rise 

to a correspondingly lower thermal gradient. The heat transfer was modelled using a so­

called 'solid' model of the slot region, in which heat transfer is solely a result of 
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conduction. The periodic geometry of the stator was exploited to reduce the problem 

domain to one half of a slot pitch. To simplify the geometry somewhat, and allow a 

systematic approach to be adopted for incrementing the number of conductors within a 

slot, the curvature of a typical practical machine was neglected, i.e. the slot was 

'unravelled' to create a linear representation of the tooth and slot geometry as shown in 

figure 2.6. Zero heat flux boundary conditions were applied to all exterior surfaces in 

the model of figure 2.6 except the uppennost surface of the frame section, where a 

convection coefficient of 30W/m2K was specified (this value being representative of a 

finned frame). 

The model of figure 2.6 includes specific reglOns for modelling thermal contact 

coefficients between the slot liner and lamination stack, and between the lamination 

stack and the frame. As described previously in section 2.5, contact interfaces can be 

very localised, and it is difficult to rigorously define an equivalent cross-section for a 

particular contact region, since they are based predominantly on empirical data derived 

from measurements. Hence, in the finite element models, these contact regions are 

represented as well defined layers, whose thickness is compatible with the mesh 

discretisation employed, and whose equivalent thennal conductivity is specified such 

that they result in the same net thennal resistance. As a consequence, the mesh is not an 

exact geometrical representation of a stator slot region, as the model is primarily 

concerned with the heat transfer in the winding region. 

The heat generation is assumed to be equal in each conductor and unifonnly distributed 

within each individual conductor. In adopting this assumption, it is recognised that in 

some machine windings there may be a degree of current re-distribution within a 

conductor due to eddy currents, i.e. skin and proximity effects and hence additional 

copper losses (often referred to as 'AC losses'). However, such effects are often 

minimised in practice by ensuring that the winding is appropriately sub-divided (e.g. by 

using a number of parallel strands or in extreme cases even Litz wire) 
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A series of finite element models were analysed, initially with a fixed copper packing 

factor of 0.6 and a fixed total power dissipation of 20W per slot. Only process 1 (un­

encapsulated) and process 3 (encapsulated) coils were considered, as there is no reliable 

means of formulating a solid finite element model of the process 2 winding 

(impregnated) given the uncertainty in the location of the impregnating varnish. The 

number of individual conductors per slot was progressively increased from 1 to 100 

with the conductors arranged in a square packed structure of nxn conductors (as shown 

in figure 2.6). Figure 2.7 shows the variation in the predicted maximum coil 

temperature as a function of the number of conductors per slot for process 1 and process 

3 coils. In both cases, the maximum temperature increases slightly as the number of 

conductors is increased, although beyond 16 or so conductors, the maximum 

temperature remains essentially constant. The benefits of employing encapsulation are 

clearly evident from figure 2.7, with a reduction in peak temperature from 110°C to 

52°e for 1 tum, and 128°e to 57°e for 100 turns (which corresponds to a reduction in 

temperature difference between the centre of the winding and the inner surface of the 

slot liner from 5Soe to soe for 1 tum and 71 °e to soe for 100 turns, respectively). 

Figures 2.S and 2.9 show representations of the temperature distribution in both an un­

encapsulated (process 1) and fully encapsulated (process 3) coil for the particular case 

of 36 conductors per slot. 

A series of finite element models were also analysed to establish whether the geometry 

of the individual conductors has any significant influence on the heat transfer within the 

reference slot design, particularly for low numbers of turns. To this end, two conductor 

geometries were compared with the circular conductors, viz. square conductors, and 

rectangular conductors with an aspect ratio of 3:1 (arranged both vertically and 

horizontally) as shown in figure 2.10. Figures 2.11 and 2.12 show comparisons of 

temperature rise for these conductor geometries in both an un-encapsulated and an 

encapsulated state respectively (in all cases for a copper packing factor of 0.6). As one 

would expect, the difference between these conductors is only marginal, being most 
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pronounced for a high number of turns in the case of the horizontal rectangular 

conductors. 

The finite element models up to this point have all been based on a fixed copper 

packing factor of 0.6. Any variation in this packing factor is likely to influence both the 

heat transfer capability, and more particularly, the losses generated for a given total 

ampere turns in the slot. A series of slots having 36 conductors of circular cross section 

with packing factors between 0.3 and 0.7 (in 0.1 increments) were modelled. The 

variation in packing factor was simply achieved by varying the diameter of each 

conductor while maintaining the same square packing arrangement. In order to 

distinguish between the effects of packing factor and losses on heat transfer, two cases 

of dissipation were considered, viz. a fixed loss for all packing factors, and a loss that is 

based on constant ampere turns for a given packing factor. Figures 2.13 and 2.14 show 

the variation in the maximum temperature with packing factor for these two cases of 

dissipation. As is evident, although the packing factor influences heat dissipation, 

particularly for the un-encapsulated coils, the benefits in terms of reduced dissipation 

with higher packing factors are far more pronounced. 

The influence of packing factor was also considered for slots with relatively low 

numbers of rectangular conductors, as this is often representative of higher power 

machines such as the BLDC machine for the EHA. Moreover, as is evident by 

comparing figure 2.7 and 2.11, the difference between circular and rectangular 

conductors is almost constant above 12 turns. Hence, a series of packing factors from 

0.3 to 0.7 (in 0.1 increments) were modelled for the case of 12 turns of rectangular 

conductors with an aspect ratio of 3:1. Figure 2.15 shows the influence of packing 

factor on the maximum temperature of process 1 and process 3 windings with 12 

rectangular conductors for the same fixed loss of20W per slot. 

Whereas the solid finite element model is able to cater for thermal conduction within the 

slot, natural convention may also playa role in non-encapsulated windings. In order to 
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determine the influence of convection in a typical slot, a model with identical 

dimensions to that considered with the solid model was analysed using a coupled solid 

finite element Icomputational fluid dynamic solver. The mesh elements which represent 

the non-fluid components (Le. conductors, slot liner, stack and iron have the same 

degrees of freedom as those used in the standard solid thermal model. The elements that 

represent the fluid regions surrounding the conductors were assigned the 

thermodynamic properties of air (these properties being iteratively modified to take 

account of the air temperature in this non-linear solution) and assigned additional 

degrees of freedom to allow convection to be modelled. The motion of the air and the 

resulting heat transfer within these fluid elements was modelled using the Flotran® 

CFD solver in ANSYS [ANSYS]. 

The air velocities within the fluid elements are calculated from the principle of 

conservation of momentum, the pressure from the principle of conservation of mass, 

and the temperature from the law of conservation of energy. As there is no forced 

convection within the problem domain, the air movement is solely due to buoyancy 

forces. The acceleration due to gravity in the problem was set to 9.81mls2
• Zero-slip 

velocity boundaries are applied to all solid surfaces within the slot. 

In a horizontally mounted machine, the orientation of each slot relative to the vertical 

axis in which gravity acts varies around the periphery of the stator, which in tum will 

influence the buoyancy effects. In order to establish the limiting values of heat transfer 

due to natural convection, two reference slots with identical dimensions but different 

orientations were modelled. These two slots are shown in figure 2.16a and 2.16b and are 

subsequently referred to as the upper and lower slot respectively. Particular care was 

taken to ensure that the mesh was finely discretised in regions where abrupt changes in 

velocity or pressure occur, e.g. at zero-slip boundaries. Moreover, the mesh density was 

progressively refined for decreasing conductor diameters. The pressure field was solved 

using the Preconditioned Generalised Minimum Residual (PGMR) method with 

convergence criteria of lxlO-12, and the temperature and velocity fields were solved 
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using the Preconditioned Bi-Conjugate Gradient Method (PBCGM) solver with 

convergence criteria lxlO-12 and lxlO-6 respectively. This coupled CFD and finite 

element model was employed to calculate the heat transfer in a series of slots with nxn 

conductors, in which the value of n was progressively increased from 1 to 10 in integer 

increments, i.e. 1 to 100 conductors per slot. Figure 2.17 shows a comparison between 

the minimum and maximum winding temperature predicted by a solid finite element 

model and the coupled CFD / finite element model for the particular case of a uniformly 

distributed power loss of 20W per slot. Since the difference in maximum temperature 

between the upper and lower slot for the CFD model was found to be <1 %, the upper 

slot only was used for the CFD analyses. 

As demonstrated by figure 2.17 the temperatures predicted using the coupled finite 

element / CFD model are in reasonable agreement with those predicted by the solid 

model, with a maximum difference of 6.4% (the temperature gradients between the 

hottest part of the coil and the slot liner is also in good agreement). Thus, the heat 

transfer in a totally enclosed naturally ventilated machine with un-encapsulated 

windings surrounded by air, operating at a maximum winding temperature prescribed 

by the slot liner «180°C for this case) can be modelled to a practicable degree of 

accuracy using a solid finite element representation. The correlation between the two 

models tends to improve at higher numbers of turns, as the air flow pattern around 

individual conductors become less significant in terms of the overall air flow within the 

slot. This is illustrated by figure 2.18 and 2.19 which show that convection currents 

move air over a large proportion of the slot in the case of a single turn (fig 2.18), 

whereas the convection currents in the 4 turn model are much more localised (fig 2.19). 

2.8 Influence of random conductor distribution within a coil 

One of the most commonly employed methods for winding electrical machines is to 

pre-form the windings automatically on a bobbin pdor to their insertion into the slot. 

This technique is capable of rapidly producing coils with good overall dimensional 
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tolerances, but not necessarily with good repeatability in terms of the relative 

disposition of individual conductors. For stators which have partially closed slots as a 

result of wide tooth tips (as is commonplace in BLDC machines) only a relatively low 

packing factor may be achieved, as tooling must be passed through the slot during the 

winding process, thus preventing the winding from filling the total available area. 

Recourse to the more labour intensive method of hand winding is necessary for BLDC 

machines with large stator tooth tips or large diameter conductors, as pre-formed 

windings become impractical to insert in such a topology, while the requirement for a 

high packing factor precludes the use of automatic winding methods used for closed slot 

designs. 

Both methods are capable of generating a formal distribution of conductors in the slot, 

but in practice, the final position of individual conductors within the slot cannot be 

predicted with any accuracy. Furthermore, variation in individual conductor position is 

not only confined to the XY plane, as conductors may also change position from top to 

bottom of slot, making it very difficult to provide a definitive solution of the 

temperature distribution in the slot for a given machine. Hence, the effects of random 

conductor distribution within the slot have been investigated in a finite element study, 

by generating a large number of solutions based on a simple random distribution of 

conductors in the XY plane. 

Prior to assessing the influence of random conductor disposition on the maximum 

temperature in the winding, it is useful to consider the limiting cases that are likely to 

provide the upper and lower limits on temperature distribution, viz. a 'worst-case' 

model in which the conductors are bunched together in the centre of the slot, and a 'best 

case' model in which the conductors are packed into the comer of the slot in close 

proximity to the stator core as illustrated in figure 2.20. The variation in the maximum 

temperature as a function of the number of turns in the slot for process 1 and 3 windings 

(in all cases for a packing factor of 0.6) are shown in figure 2.21 and 2.22 respectively. 
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The maximum temperature within any practical coil distribution is therefore likely to 

fall wit~in the range of values shown in figures·2.21 and 2.22. 

In order to quantify the influence of random conductor placement, a methodology was . 

adopted for defining conductor positions. The basis of this method can be illustrated by 

reference to figure 2.23, which shows n conductors arranged within the square slot of 

sides a in an equal number of rows and columns. Having specified n, a and a particular 

packing factor, the conductor diameter cj> can be readily calculated. This investigation 

was concerned only with such 'square packed' arrangements rather than the 'closely 

packed' arrangement shown in figure 2.24 (these terms being used in an analogous 

manner to their routine use in describing crystal structure). 

As shown in figure 2.25, each individual conductor is restricted to be within a square 

having sides of a/..Jn. Within this square, the centre of the conductor can be offset 

from the centre of the square in the x and y-axis by displacements of Bx and By as shown 

in figure 2.25, which are given by: 

(2.3) 

(2.4) 

A degree of constrained randomness can be introduced in the offsetting of each 

conductor (i.e. each conductor is still constrained to remain within a given square) by 

assigning random values to (3 within the range -0.95<(3<0.95. Although not necessarily 

comprehensive in terms of all possible conductor bundle arrangements (particularly 

cases where circular conductors adopt a close packed structure in some regions of the 

slot), this model along with the limiting values derived above, nevertheless serve to 

demonstrate the sensitivity of the temperature estimation to the exact conductor 

distribution in a random wound coil. 
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A series of finite element calculations of heat transfer were performed for all integer 

values of n between 1 and 10 (Le. 1 to 100 conductors in a square arrangement). For 

each value of n, 100 different random conductor arrangements were modelled, with the 

maximum temperature in each case being noted. Figure 2.26 shows the spread of 

maximum temperatures in a process 1 winding achieved with a particular number of 

circular conductors with a packing factor of 0.6, and power loss of 20W. As is evident, 

slots with a relatively low number of un-encapsulated windings are the most sensitive to 

the exact conductor position, with a spread of -20°C for a mean value of -130°C. 

However, as one would expect, this spread in temperatures is considerably less than the 

-60°C observed between the best and worst case coil arrangements shown previously in 

fig. 2.21. Although the process 1 winding was seen to be relatively sensitive to 

conductor position in the case of the randomly placed model, the process 3 winding 

exhibited a far smaller variation in maximum winding temperature between the worst 

case and best case conditions as can be seen from figure 2.22. It was therefore deemed 

unnecessary to employ the random placement model in the determination of maximum 

winding temperature for the process 3 winding, given that the maximum variation in 

temperature is -5°C. 

2.9 Summary of conductor bundle modelling 

The following general conclusions can be drawn from the findings of the various 

"models described in sections 2.7 to 2.8: 

• Fully encapsulating the winding brings benefits of> 100% in terms of reduction in 

maximum temperature. 

• The individual geometry of the conductors has a small influence over the maximum 

temperature rise in the winding region, the most significant variation being noted 

for the horizontally positioned rectangular conductors. 
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• The maximum temperature in the winding region showed a high sensitivity to 

packing factor for a constant Amp-turns (fig 2.13), with a variation of 300°C and 

50°C in the process 1 and process 3 winding for packing factors of 0.3 and 0.7 

respectively. 

• Maximum winding temperature showed a small variation with packing factor at a 

constant value of power loss; hence the loss density in the region has a greater 

influence than the packing factor over the maximum winding temperature. 

• Heat transfer in the windings of un-encapsulated, naturally ventilated machines, 

with maximum winding temperatures dictated by conventional slot-liner materials 

«180°C) may be accurately represented by solid finite element models, with no 

recourse to the more time consuming CFD modelling technique. 

• Random distribution of the conductors has shown that for a low number of turns in 

an un-encapsulated machine, the maximum winding temperature may vary by as 

much as 20% for a low number of turns, whereas high numbers of turns tend to be 

less affected by the random placement. 

2.10 Experimental measurements on conductor bundles 

In order to measure the effective thermal conductivity of representative conductor 

bundles the test rig shown in figures 2.27 and 2.28 was constructed. The conductor 

bundle under test is located between the two aluminium blocks, one of which contains 

an electric cartridge heater and the other acts as a heat sink. The DC input power 

supplied to the cartridge heater is precisely controlled, to a nominal resolution better 

than 0.2% (Four digit HP 3440lA DVM's were employed to measure input current and 

voltage). The conductor bundle itself is insulated such that the heat flow is a good 

approximation to being uni-directional. Hence, the net thermal conductivity in a 

direction perpendicular to the orientation of the conductors can be established. In order 

to ensure uni-directional heat flow within the test-rig, the thermal conductivity of the 

surrounding insulation must be at least an order of magnitude less than the thermal 
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conductivity of the bundle to be measured. To this end, the insulation layer was 

manufactured from a single cast block of Rescor 740 insulating foam ceramic, which is 

an alumina/silicon based ceramic with manufacturer's specified thermal conductivity of 

0.1 W/mK [COT 99]. 

In order to ensure that the thermal conductivity was measured under steady-state 

conditions, temperatures were monitored using K-type thermocouples at the 4 locations 

shown in figure 2.27. Steady-state conditions were deemed to have been achieved when 

the temperature change over the period of one hour was less than 1%). The resulting 

thermal conductivity for a measured temperature difference between the two 

thermocouples 2 and 3 of as at a particular power qx is given by: 

(2.5) 

where qx is the rate of heat flow through the bundle test piece, 1 is the length of the 

bundle test piece in the direction of the heat flow, and A is the cross sectional area of 

the bundle normal to the heat flow path. Given the high precision to which the input 

power and the thermocouple temperatures can be measured, the principal sources of 

errors in the measurements are likely to be a result of dimensional tolerances and the 

departure of the heat flow from a true uni-directional flow. The likely magnitudes of 

these errors were assessed as being: 

• Error in the bundle face area perpendicular to the main heat flow path was assumed 

to be +1- 0.25mm in each direction, thus giving an error of 1 %. 

• The separation between the two thermocouples was assumed to be accurate to 

within +1- O.25mm, giving rise to a potential error of ±4%. 

• Errors attributed to the non-uniformity of the heat path (leakage through the 

alumina ceramic insulation) were measured by a thermocouple that was attached to 

the outer wall of the insulation. Foran assumed heat transfer coefficient from this 

wall of lOW/m2K (typical of free convection from a vertical face), the temperature 
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rise measured by this ancillary thermocouple corresponds to a net loss from the side 

walls of,.., 1 % of the total heat flow. 

Assuming as a worst-case condition, in which the various sources of error act in such a 

way as to compound rather compensate for each other, then the total error in the 

measured thermal conductivity is -6%. 

Measurements of temperature difference in the test-rig for a fixed input power of 15W 

were performed for a bundle of 30 conductors with a rectangular cross-section of 10mm 

x 2mm. (this being representative of the conductor geometry employed in the prototype 

EHA machine). These measurements were performed on the same conductor bundle for 

various encapsulation processes, i.e. prior to any encapsulation (process 1) following 

vacuum pressure impregnation with STERLING 073-1041 varnish (process 2), and 

finally following complete encapsulation with Stycast 2850kt under vacuum conditions 

(process 3). A cross-section through the bundle following all encapsulation processes is 

shown in figure 2.28a, which demonstrates the absence of any significant voids. 

The measured temperature differences and inferred thermal conductivities for these 3 

encapsulation processes are shown in table 2.2. Also shown in table 2.2 are the 

corresponding values predicted using a solid finite element model of the test-rig for the 

particular case of encapsulation processes 1 and 3. As was the case with the solid model 

of actual slot geometries, there is no reliable means of formulating a solid finite element 

model of the process 2 encapsulation given the uncertainty in the location of the 

impregnating varnish. As is evident from table 2.2, considerable benefits can be accrued 

in terms of heat-transfer from employing a highly loaded encapsulant within the slot. 

Thermal conductivity measurements were not performed on the slot liner itself, since 

the intrinsic material properties of this particular grade of Nomex slot-liner have been 

measured previously over a range of different uniform pressures [MON 92]. As would 

be expected, the measured conductivities tend towards the intrinsic value of the material 
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as the pressure is increased (from O.86MPa to 9.8MPa), since at low pressures there is a 

significant contribution from the contact interface of the test-rig heat plates (which were 

nominally flat machined surfaces) and the slot liner. The value of thermal conductivity 

measured at low pressure (O.86MPa), viz O.102W/mK was assumed to be representative 

of a slot liner and contact interface in an un-encapsulated coil (process 1). In order to 

cater to some degree for the likely reduction in thermal contact coefficients that would 

result from the use of an encapsulant, it is assumed that the net thermal conductivity 

was proportional to the benefit in measured winding thermal conductivity within the 

coil for a particular encapsulation process. Hence, the slot liner thermal conductivity 

was corrected using equation 2.6: 

kS/(n)= kPl-( b,- kP2 J 
kwdg (n)/ kwdgl 

(2.6) 

where n is the particular encapsulation process employed in the winding (1 to 3), and 

kPI and kp2 are the measured slot liner thermal conductivity at high and low pressures 

respectively. The resulting thermal resistances derived on the basis of equation 2.6 are 

shown in table 2.3. 

2.11 Lumped parameter model of BLDC machine 

Having established representative thermal parameters for slots and windings, a complete 

thermal model of the BLDC machine was developed. As discussed previously in section 

2.4, a lumped parameter thermal network provides a flexible and rapid means of 

modelling transient thermal behaviour, while having an accuracy which is likely to be 

sufficient in the context of the uncertainties which are in inherent in any thermal model 

as a result of dimensional and material property tolerances and repeatability of 

interfaces etc. The thermal network model of the prototype BLDC machine is divided 

into a number of geometrically discrete regions, the selection of which was made with 

due cognisance of the likely temperature gradients throughout the motor and not simply 
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the size of the particular region. Each region within the network is assigned a lumped 

thennal capacity, and where appropriate, a heat source, and is connected to other 

regions via a network of linear (i.e. temperature invariant) thermal impedances. The 

interconnection of the various elements is based on assumed heat flow paths, which 

inevitably requires some engineering judgement as to the likely significance of different 

heat transfer mechanisms. 

• The calculation of equivalent thermal parameters for the various lumped regions is 

based on a number of simplifying assumptions: Heat flow in the radial, axial and 

circumferential directions is independent of each other. 

• A single mean temperature defines the heat flow in all directions within a region. 

• The thermal capacity and heat generation within a region are uniformly distributed 

throughout that region. 

The various elements in the thermal model were represented using a standard T -network 

approach [PER 79]. An example of the derivation of the parameters for such a T­

network can be found in [PER 79] and [MEL 91] and is also given in Appendix A for 

the case of conduction heat transfer through a cylinder. 

T -networks for each given direction are connected together at the mean temperature 

point 8m. Lumped thermal storage (capacitance) and internal heat generation are also 

introduced at the mean temperature node. The resulting thermal network for the BLDC 

machine is shown in full in Appendix B which caters for heat conduction in three 

dimensions so that effects such as asymmetrical mounting, shaft coupling, and heat 

exchange with fluid in the airgap can be accounted for. Figure 2.29 shows how the 

lumped parameter model is developed from the machine geometry in a simplified form, 

where it can be seen that one half a stator tooth section is considered. It may be seen 

from figure 2.29(b) that this is split into five regions; A: winding, B: tooth tip, C: tooth 

body, D and E: back iron. Each one of these regions is then represented by an equivalent 

network of thermal resistances and capacitances as shown in figure 2.29(c) where the 

various regions are coloured according to their materials i.e. thennal resistances 
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belonging to the winding reglOn are coloured orange, whilst thermal resistances 

belonging to the stator iron and frame are coloured blue and grey respectively. The 

utility of this model can be illustrated by considering the particular case of the BLDC 

machine operating with the duty cycle shown in fig. 2.30(a), which is represenative of 

its operation in an EHA. The resulting winding and back-iron temperature rise are 

shown in figure 2.30(b) for this particular duty cycle. 

2.12 Experimental measurement to validate stator radial model 

In order to validate the thermal model described in section 2.11, a series of thermal 

measurements were performed on a prototype stator (which included the PTFE sleeve). 

Measurements were performed during the manufacture of the stator for all 3 

encapsulation processes. 

The stator was instrumented with 18 thermistors in the back iron, tooth body, tooth tip, 

windings (including end-windings), and airgap and in the frame. The locations of these 

thermistors are shown in figure 2.31. In an attempt to mitigate the contact resistance 

associated with such invasive temperature measurement techniques, the thermistors 

were held in place by high thermal conductivity aluminium putty. The temperature of 

each thermistor was measured for the particular case of a heat flow that was restricted to 

being almost entirely radial in order to evaluate the accuracy of predictions made by the 

two-dimensional lumped parameter model of Appendix B. This was achieved in 

practice by insulating both ends and the end-winding cavity of the machine with 200mm 

of fibre glass as shown in figure 2.32. The fibre glass has thermal conductivity of 0.24 

W Im.K, which corresponds to a thermal resistance of 400°C/W for the sections 

employed. This is some two orders of magnitude greater than the predicted thermal 

resistance from winding to ambient of 0.26°C/W for this particular stator with a fully 

encapsulated winding (comparable figure 0.41°C/W for an un-encapsulated winding. 

Thus, the assumption of essentially radial heat flow is reasonable (with less than 1 % 

leaking axially through the glass fibre). 
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The stator and frame were suspended horizontally 200mm above the test bench using 

low thermal conductivity tufnol inserts and rod as shown in figure 2.32. This 

arrangement allows for sufficient air movement over the frame during the tests and 

attempts to replicate the proposed orientation of the BLDC machines in the EHA. The 

thermistors employed to measure the winding temperature were located at the centre of 

the slot as possible (both axially, and with reference to the slot cross-section). The 

ambient temperature for a given test was measured by a thermistor located 

approximately 1.0m away from the machine frame, and was approximately 24°C at the 

start of all the tests. All the thermistors used in the tests were calibrated in a 

temperature-controlled oven at 120°C before testing commenced, with a maximum 

deviation of 0.2°C. 

A fixed loss equal to the copper loss of 300W predicted for the steady-state fault 

condition of 700rpm, 55Nm was introduced to the stator windings. Since the required 

current of 137 A exceeded the capabilities of available DC power supplies, the stator 

windings were supplied from an existing three-phase inverter. However, in order to 

achieve near static conditions (Le. in which negligible iron losses are induced in the 

stator), the frequency of the inverter was fixed at its minimum value of 10Hz. The 

measured variation in the temperatures with time at key locations within the stator are 

shown in figures 2.33, 2.34 and 2.35 for the various winding encapsulation processes. In 

each case, the ambient temperature was - 24°C and it was necessary to allow a period 

of some 5-6 hours to elapse before steady-state thermal conditions were achieved. The 

final steady-state measured temperatures are summarised in table 2.4 along with the 

corresponding values predicted from the thermal model described in section 2.11 (two 

measured values are shown for the predicted winding temperature which correspond to 

minimum and maximum values within the slot). As is evident from table 2.4, good 

agreement is obtained between measured and predicted temperature throughout the 

machine for all three encapsulation processes, with a maximum error of 10% arising in 

the prediction of end-winding temperature. 
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The benefits of fully encapsulating the winding in Stycast 2850 is clearly apparent, with 

a reduction in the maximum winding temperature of 33°C and 17°C as compared to the 

process 1 and process 2 windings respectively. This reduction in winding temperature 

becomes increasingly important if the ambient temperature is increased beyond the 

24°C in the tests. By way of example, for the maximum specified ambient of 70°C 

(which corresponds to the most onerous ground conditions), the maximum temperature 

of a process 1 winding would exceed 180°C (which is beyond the service temperature 

capability of the insulation). This trend in the centre of the winding is also observed in 

the end-winding regions, albeit that the benefits of encapsulation are marginally less 

than in the case for the centre of the slot. 

It is also interesting to note from figures 2.33 to 2.35, and table 2.5, that the thermal 

time constant of 60.1 minutes for the fully encapsulated winding is significantly longer 

than the 43.8 and 48.3 minutes of process 1 and process 2 windings respectively. 

However, this is achieved at the expense of an additional mass of 2.lkg (which 

corresponds to a 7% increase in total machine mass from 30.8kg to 32.9kg). However, 

this increase in mass of 7% compares favourably with the 25% increase that is achieved 

in the effective thermal capacity of the machine, which is a consequence of the Stycast 

2850 being located in the critical slot area. 

In assessing the merits of encapSUlation, it is interesting to consider the effect of 

increasing the mass of an un-encapsulated machine by the same 2.1 kg. If this additional 

mass is introduced by increasing the slot area (which also requires an increase in the 
• 

depth of the stator tooth body) this would result in a 20% increase in slot area and hence 

a proportional reduction in copper loss. The resulting temperature difference between 

the original machine design with Stycast encapsulation and the new design would hence 

be 8°C as compared to the 33°C difference shown in table 2.4. However, it is worth 

bearing in mind that the thermal capacity of the larger un-encapsulated machine is still 

5% lower than the original encapsulated design. Although the larger un-encapsulated 
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machine and the original encapsulated design have equal mass, the volume of the un­

encapsulated machine is larger. Hence, the relative merits of encapsulation are closely 

coupled to the design constraints imposed by a particular application. 

One drawback of encapsulating the stator from a heat transfer point of view is that it 

precludes the direct cooling of the winding with a fluid. Thus, there may be some scope 

to increase the cooling in an un-encapsulated or impregnated winding by removing the 

PTFE sleeve and allowing the hydraulic fluid to flow through the stator slots. However, 

to derive any net benefit, the available mass flow rate must be high enough to maintain 

the fluid below its maximum service temperature. This condition is not met in the EHA 

as the main delivery flow rate of 75 lImin at 6000rpm at 100bar load (27.5Nm), gives 

rise to a measured leakage flow rate from the pump of 4.0 lImin (equivalent to a mass 

flow rate of 7xlO-s kg/s). If this leakage flow passed through the stator windings, the 

mass flow rate would remain the same (7xlO-s kg/s) since this is dominated by the pump 

leakage characteristics rather than the effective hydraulic resistance 'of the flow path. 

However, the increased cross-sectional area through which fluid flows in an open 

winding would result in a reduction in the axial velocity from 112 mmls to 12 mm/s. 

Thus, the fluid would traverse the length of the machine in -13 seconds, and the fluid 

temperature would be raised to that of the winding as it will reach effective steady state 

within this time-frame. However, since the operating temperature limit is likely to be set 

by the slot liner at -150°C, this is some 30°C higher than the temperature at which the 

hydraulic fluid begins to degrade. Hence, there is little scope to employ fluid cooling of 

the windings unless this is separately forced through the slot regions rather than being 

reliant on the leakage through flow in the machine. 

2.13 Efficiency measurements 

Load tests at various pressures have been conducted on a fully encapsulated machine 

(process 3) with the pump fitted as shown in figure 2.36, and efficiency of each stage of 

the EHA system has been evaluated from both measurements and predicted losses. 
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Measurements of DC-link input power to the inverter were measured with a Voltech 

PM3000 Power analyser, and three-phase output power from the inverter to the BLDC 

machine was measured with a Norma D600 three phase power analyser. Power 

developed by the pump was calculated from the measurement of delivery flow and 

system load pressure, while mechanical shaft power developed by the BLDC machine 

was estimated from measured copper loss and predicted iron losses using [BER 85]. 

Figure 2.37 (a to d) shows measured efficiencies of the various stages in the EHA 

system from electrical 3-phase input to hydraulic output power for pressures of 50, 100, 

150 and 200 bar, where a general trend of decreasing efficiency is noted for lower loads. 

This is attributed to fluid viscous drag loss in the machine that occurs irrespective of 

load condition, as it is primarily a function of speed and diameter. Hence, as the 

machine loading is reduced at a given speed, the drag loss becomes an increasingly 

large fraction of the total mechanical output power of the machine, thereby reducing the 

overall efficiency (as can be seen in Chapter 3, fig. 3.1). However, the proportion of 

drag loss that should be attributed to the pump and the machine was unclear from the 

tests, as there was no means of measuring the respective losses individually. It was 

decided to manufacture a dummy rotor from mild steel and drive it externally from a 

dynamometer machine with the pump removed, thus removing any electromagnetic 

losses, and therefore isolating the fluid friction loss for direct measurement (albeit via a 

gimbal mounted dynamometer that must be characterised before loss measurements can 

be taken). 
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Table 2.1. Key dimensional data of the BLDC machine with reference to fig. 2.2. 

Dimension Size (mm) Equivalent parameter from 

Figure 2.2 

Frame outer radius 95.0 Rl 

Stator outer radius 90.0 R2 

Radius to back of slot 81.7 R3 

Stator bore radius 55.5 R4 

Airgap sleeve bore radius 54.5 R5 

Rotor outer radius 53.0 R6 

Magnet outer radius 52.5 R7 

Rotor iron outer radius 46.5 R8 

Shaft outer radius 37.5 R9 

Tooth body height 21.65 th 

Tooth body width 14.5 tw 

Tooth tip width 6.2 ttw 

Tooth tip height 1.0 tth 
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Table 2.2. Measured and predicted thermal conductivity data from conductor bundle 

tests and FE models respectively. 

Encapsulation Packing No. of Measured Effective Predicted 

process factor conductors temp thermal thermal 

difference. conductivity conductivity 

(K) (W/m.K) (W/m.K) 

1 0.65 30 50.0 1.07 1.18 

2 0.65 30 26.7 2.04 . 

3 0.65 30 13.1 4.15 7.23 

Table 2.3. Equivalent thermal resistance of NOMEX 410 slot liner for different 

encapsulation processes from equation 2.6. 

Encapsulation Equivalent thermal 

process resistance per unit area 

(OC/W) 

1 2.5 e-3 

2 2.0 e-3 

3 1.6 e-3 
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Table 2.4. Measured and predicted temperature-rise above ambient at various regions in 

the stator, for various winding encapsulation processes. 

. c OJ) 
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§' 0 0 0 .... .9 1-0 1-0 0 0 I 
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0.. 0 0 ~ 
(I) "'=' .... 

~ (,) 

13 c ~ s:: S ro ~ ~ Cf.l (I) 
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Predicted 72 71 78 113 114 69 - -
1 1121 

Measured 73 75 79 115 118 63 67 68 

Predicted 70 75 78 95 105 66 67 67 

2 /99 

Measured 72 76 77 98 95 - - 69 

Predicted 72 75 77 811 82 - - 69 

3 83 

Measured 75 79 77 83 87 68 74 74 

Table 2.5. Thermal time constant for each winding encapsulation process. 

Encapsulation process Predicted winding Measured winding 

thermal time constant thermal time constant 

(mins) (mins) 

Process 1 43.8 47.8 

Process 2 48.3 53.0 

Process 3 60.1 62.5 
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Figure 2.1. BLDC machine and slipperless piston pump combination (pump on right) 

Figure 2.2. Key dimensional parameters of the BLDC machine for the EHA application 
(actual dimensions are given in Table 2.1). 
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Figure 2.3. Finite element mesh of the BLDC machine used to generate per-element 
flux density data for the iron loss model. 
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Figure 2.4. Iron loss distribution in the BLDC machine at 6000 rpm, 13 .75 Nm. 
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Figure 2.5. Iron loss distribution in the BLDC machine at 700 rpm, 55 Nm. 
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Figure 2.6. Diagram of stator section used in the FE model, showing the various 
contact regions modelled, and the limits of conductor placement within the slot region. 
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Figure 2.7. Maximum winding temperature as a function of number of turns for an un­
encapsulated (stage 1) winding and an encapsulated (stage 3) winding at a fixed power 

loss of20W. 
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Figure 2.8. Temperature distribution in an un-encapsulated slot for a packing factor of 
0.6, a power loss of20W, with 36 conductors of circular cross-section. 
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Figure 2.9. Temperature distribution in a fully encapsulated slot for a packing factor of 
0.6, a power loss of20W, with 36 conductors of circular cross-section. 
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Figure 2.10. Various conductor geometries considered: (a) square conductors, (b) 
horizontal rectangular conductors, (c) vertical rectangular conductors. 
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Figure 2.11. Maximum winding temperature as a function of the number of turns; for 
an un-encapsulated winding; with three different conductor geometries. 
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Figure 2.12. Maximum winding temperature as a function of the number of turns; for 
an encapsulated winding; with three different conductor geometries. 
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Figure 2.13. Maximum and minimum winding temperature as a function of the packing 
factor for a fixed mmf of 500 A.turns. 
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Figure 2.15. Variation in maximum winding temperature with packing factor for 12 
horizontally arranged rectangular conductors. Constant power loss of20W. 
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Figure 2.16. Reference slots for CFD model with different orientations with respect to 
gravitational forces. (a) upper slot, (b) lower slot. 
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Figure 2.18. Velocity vectors computed from the CFD model for a single circular turn. 
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Figure 2.19. Velocity vectors computed from the CFD model for 4 circular turns. 
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Figure 2.20. (a) Best case, and (b) worst case conductor positioning for heat transfer 
from the winding to the stack. 
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Figure 2.21 . Maximum winding temperature as a function of the number of turns for 
the worst and best-case conductor positions in an un-encapsulated winding (with 

reference to fig 2.23 (a) and (b). 
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Figure 2.22. Maximum winding temperature as a function of the number of turns for 
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Figure 2.23. Geometric definition of the random conductor position model 
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Figure 2.24. (a) Close packed geometry, (b) Square packed conductor geometry 
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Figure 2.25. Definition of the maximum conductor displacement from the centre 
position of the square with reference to equation 2.3 and 2.4. 
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Figure 2.26. Variation in maximum winding temperature with increasing numbers of 
turns for randomly positioned, stage 1 conductors of circular cross section. Power loss = 

20W. 
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Figure 2.27. Cross section of bundle thermal conductivity test fixture 
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Figure 2.28. Conductor Bundle test fixture with aluminium heat-sink removed. 

Figure 2.28a. Photo of bundle cross section. 
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Fig. 2.29 BLDC machine showing stator section considered in the thermal model. (b) 
Subdivision of the section into A: winding, B: tooth tip, C: tooth body, D and E: back 
iron. (c) Simplified thermal network of resistances showing connection with adjacent 

sections 1 and 3, and the frame. Although thermal capacitances have been neglected for 
clarity, these would be situated at points A through E . 
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Figure 2.30(a). Representative duty cycle for a rudder primary flight surface actuator 
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Figure 2.30(b). Winding and back iron transient temperature rise for the BLDC 
machine operating on the duty cycle of fig 2.30(a). 
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Figure 2.32. Test arrangement for BLDC stator thermal tests during different stages 
of encapsulation. 
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Figure 2.33. Measured versus predicted temperature to steady-state for stage 1 
encapsulation. Solid lines represent predicted values. 
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Figure 2.35. Measured versus predicted temperature to steady-state for stage 3 
encapsulation. Solid lines represent predicted values. 
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Figure 2.36. EHA system load testing. The BLDC machine is top centre with the 
pump mounted on the left hand end. The hydraulic ram shown at the bottom is not in 

circuit. 
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CHAPTER 3 

FLUID LOSSES IN THE EHA ELECTRICAL MACHINE 

3.1 Introduction 

This chapter addresses the design and modelling issues raised by the presence of hydraulic 

fluid in the airgap of the BLDC machine described in chapter 2, in particular the 

implications for overall system efficiency and temperature rise. As is evident from the load 

tests described in Chapter 2, fluid friction is a major loss component in the machine, 

particularly at high speeds. The friction losses in the pump itself are extremely difficult to 

determine due to the complex radial and axial motion of the rotating piston array, and its 

consideration is beyond the scope of this thesis. In contrast, fluid friction loss within the 

BLDC machine is more amenable to analytical calculation since it involves a relatively 

simple geometry comprising two concentric cylinders (with the inner cylinder rotating). In 

terms of calculating the overall drag losses, it is useful to consider the net losses as 

consisting of two contributions, friction losses and acceleration losses. The friction losses 

are a result of circumferential flow and subsequent shear in the airgap, while the 

acceleration losses are a consequence of the axial flow from the inlet to the outlet and the 

need to accelerate the fluid at the inlet since it has no tangential component of velocity on 

entry. 

As is evident from the measurements presented in chapter 2, the overall efficiency of the 

EHA unit diminishes markedly for a combination of low load and high rotor speed, since 

the parasitic fluid friction losses in the pump and in the airgap of the BLDC machine form 

an large fraction of the total output power. For the particular case of a load demand of 50 

bar (equivalent to 13.75Nm of motor torque), as can be seen in figure 3.1, the efficiency 

falls from 70.4% at 1020rpm to 35.6% at 6870 rpm. 
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Fluid friction loss in the machine is investigated in this chapter, with particular emphasis on 

establishing the influence of the radial airgap length (Le. the mechanical clearance between 

the surface of the rotor and the inner bore of the stator). This in tum provides a 

methodology for selecting an airgap that provides the best balance between the conflicting 

requirements of reducing fluid friction losses (which would tend to require a larger airgap) 

and enhancing the magnetic loading of the machine (which is best achieved by reducing the 

airgap). The development of this methodology is supported by measurements of fluid 

friction losses at various speeds, axial flow rates, and radial airgap lengths on a dummy 

rotor. 

3.2 Slipper-less pump leakage characteristics 

The slipper-less piston pump has an inherent leakage path that flows through the BLDC 

machine airgap annulus because of the absence of a dynamic seal. The leakage flow rate is 

a function of both rotor speed and pump load. In order to quantify this leakage, 

measurements were performed with a flow-meter during load tests of the motor and pump. 

The measured characteristics are shown in figure 3.2, from which it is apparent that the 

leakage flow rate exhibits a non-linear relationship with both speed and load pressure. 

These complex characteristics are largely determined by specific design features of this 

slipper-less pump, with the nature of flow in the airgap of the machine having little effect. 

Since the leakage characteristics of slipperless pumps are beyond the scope of this research, 

the measured values of figure 3.2 were adopted in subsequent analyses. 

3.3 Fluid pbysical properties 

Aerospace hydraulic fluids such as Skydrol SOOB have a highly non-linear viscosity versus 

temperature characteristic, and hence fluid friction loss (which is strongly influenced by the 

viscosity) will inevitably be highly sensitive to the fluid temperature. By way of example, 
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as is evident from table 3.1, the kinematic viscosity of Skydrol 500B drops from 1100 

mm2/s, to 9.6 mm2/s between -55°C and +50°C. All hydraulic oils have a maximum 

recommended continuous service temperature, beyond which significant changes in 

chemical composition can occur. This in turn, reduces the active working life and 

diminishes its fire retardant qualities. In the case of Skydrol 500B hydraulic fluid, the 

operating temperature must be maintained below 120°C so at to avoid the possibility of oil 

degradation, which in turn will adversely affect the reliability, and thus MTBF of the EHA. 

Although it would be desirable to perform experimental measurements using Skydrol 

500B, it is unfortunately a chemically hazardous phosphate-esther and cannot be used in a 

laboratory test-rig. Hence, the fluid friction loss measurements undertaken in this research 

programme have been performed with Castro I HF-18, a mineral oil which has similar 

physical properties to Skydrol 500B, but is considerably less hazardous. The physical 

properties of both Skydrol 500B and Castrol HF-18 are shown in tables 3.1 and 3.2 and in 

figure 3.3. 

3.4 Calculation of fluid friction losses 

Despite the relative simplicity of the airgap geometry, the nature of the fluid flow requires 

consideration of the tangential flow due to the rotation of the rotor, the axial flow provided 

by the pump leakage path, and Taylor vortices [TA Y 36] due to centrifugal forces in the 

airgap of the machine. Moreover, the fluid properties (particularly its viscosity) vary 

significantly over the operating temperature range of the machine. 

The nature of the flow can be determined by firstly considering a cylinder rotating in an 

infinite volume of fluid. A useful guide to the type of flow (Le. whether it is turbulent or 

laminar) can be derived from the so-called Reynolds number, which is a dimensionless 

number that expresses the ratio between inertial forces and viscous forces in the flow. For a 

given combination of fluid density (p), kinematic viscosity (J..l) and angular velocity (mr) the 

tip Reynolds number for an isolated rotating cylinder is given by 
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2 
Re = PWr 

J1 
(3.1) 

If a comparatively large diameter stationary outer cylinder is now introduced into the fluid 

volume, the flow in the region between the cylinders becomes influenced by the interaction 

of the two surfaces. As the radial distance between the two cylinders (0) is continually 

reduced, the flow pattern increasingly approaches that of Couette flow between parallel 

plates. For this particular case, the Couette-Reynolds number is given by 

Re = p(J)r~ 
J1 

where the presence of turbulent flow is now influenced by the radial airgap length, o. 

(3.2) 

When the Couette-Reynolds number is below ..... 2300, the flow is a reasonable 

approximation to laminar flow (i.e. the fluid particles nominally flow in a single direction). 

However, if the rotor speed is increased, such that the Reynolds number exceeds -2300, 

fluctuations in velocity occur as the fluid particles move randomly in small 'packets' 

(although they still exhibit a net flow in the same direction). In this case, the flow is said to 

be turbulent. The onset of turbulence may in turn be influenced by a number of factors, 

occurring at lower velocities than indicated by equation 3.2, if for example there is 

significant surface roughness and/or obstructions in the flow path. 

There is an extensive body of published literature concerned with fluid friction losses in 

concentric cylinders. Measurements have been reported for numerous different fluids with a . 

wide variety of surfaces, airgap lengths, cross-flow velocities and Reynolds numbers [GAZ 

58] [KAY 58] [DOR 63]. Measurements of fluid friction losses on rotating cylinders date 

back to experiments conducted by Theodorsen and Regier [THE 44] who made a detailed 

study of friction torque on rotating cylinders in free space i.e. with no outer cylinder 
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present. The tests were carried out in air, kerosene, oil and water, while in half the 

experiments the surface of the cylinder was roughened with sand. They found that the 

friction coefficient of rough cylinders was significantly higher than those of smooth 

cylinders at high Reynolds numbers. 

The effects of surface roughness of the rotor and stator must therefore be considered, as it 

influences both the frictional losses and the surface heat transfer. Such 'rough' rotor 

surfaces also increase heat transfer between stator and rotor, as firstly, the area available for 

heat transfer is larger, and secondly, the onset of turbulence occurs at lower rotational 

speeds as described previously in this chapter, thus increasing surface heat transfer. 

However, the stator of the BLDC machine shown in figure 3.4 is sealed from the rotor by a 

smooth machined PIFE sleeve which has a very low friction coefficient and was machined 

to a high quality surface finish, while the rotor surface has a carbon fibre/epoxy overwrap 

that has been surface ground to a high surface finish. It is therefore reasonable to assume 

that the rotor and stator surface in the BLDC machine are reasonable approximations to 

ideal smooth surfaces. 

As shown previously by equation 3.2, the Couette-Reynolds number is proportional to the 

airgap radial length, 8 and the peripheral surface speed of the rotor. Figure 3.5 shows the 

Reynolds number at the inlet and the outlet of the airgap over the operating speed range of 

the machine for temperatures of -50°C and 100°C and a radial airgap length of 1.5mm (the 

effective viscosity of the fluid at a given temperature taking the values shown in fig.3.3). It 

can be seen from figure 3.5 that the flow is predominantly turbulent above -750rpm for the 

high inlet temperature, whereas the flow only becomes turbulent after -3000rpm for the 

low inlet temperature (although the Reynolds number is seen to rise sharply after this point 

due to the greater losses dictating a high temperature, and thus lower viscosity). In the 

subsequent analysis, the correlating equations developed by Bilgen and Boulos [BIL 73] 

have been employed to describe the effective friction coefficient of the machine airgap 

annulus over a wide range of Couette-Reynolds numbers. Approximations to the effective 
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surface friction coefficient as a function of the Couette-Reynolds numbers between zero 

and >lxlO4 are given below. 

Cj = 10 (8/r) OJ 

Re 

Cj = 2 (8/ r ) 0.3 

Reo.6 

Cj = 1.03 (8/r) 0.3 

. Reo.s 

(8/ )0.3 

Cj = 0.065 r 
ReO.2 

Re<64 (3.3) 

64 < Re < 5 xl 02 (3.4) 

5 xl 02 < Re < 1 xl 04 (3.5) 

Ixl04 < Re (3.6) 

Figure 3.5a shows the variation in friction coefficient, C/with airgap height. It can be seen 

from figure 3.5a that the friction coefficient decreases with airgap length below a Reynolds 

number of Ix104, whereas beyond a Reynolds number of lxlO\ the friction coefficient 

increases with airgap length. Having established a value for the friction coefficient, the 

associated power loss generated by a rotating cylindrical body due to fluid friction can be 

estimated: 

1 v 3 4 
Pdrag = -GJ 1r Pw r L 

2 
(3.7) 
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3.5 Acceleration losses 

On entering the end space of the stator cavity, the fluid is accelerated from zero tangential 

flow to its terminal tangential flow rate over an axial length which is governed by the ratio 

of the two flow rates. The kinetic energy gained by the fluid as it is accelerated on entry is 

ultimately dissipated as heat in the fluid on exit. The losses generated by such fluid 

acceleration have been investigated by Polkowski [POL 84] by applying the momentum 

equation to a rotor-stator system. By adopting this approach, the friction torque associated 

with the entry effects in the airgap region can be approximated by: 

2 (3 3\ 
T = 37l'PV-2 - rl }vI Va (3.8) 

where Vt is determined by the final velocity distribution in the airgap: 

(3.9) 

Cy is a velocity coefficient defining the relationship between tangential flow and rotor 

peripheral speed. The findings of Polkowski [POL 84] and Dorfman [DOR 63] suggested 

that a suitable value for Cy is 0.48 for theoretically smooth surfaces. Measurements by Saari 

[SAR 95] suggest that this parameter varies significantly for the case of high-speed axial 

flow in induction machines, with values as low as 0.12 being derived from experimental 

measurements. However, since the flow in the EHA is closer to the conditions studied by 

Polkowski, a value of 0.48 was adopted for the analysis. 

3.6 Heat transfer in the airgap 

Since both Skydrol 500B and Castro I HF-18 exhibit a highly non-linear viscosity 

characteristic over the likely operating temperature range, it is important to reliably 
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establish the variation of fluid temperature within the airgap in order to avoid any large 

errors in the prediction of fluid friction loss. Moreover, in order to avoid premature 

degradation of the hydraulic oil, care must be taken at the design stage to ensure that its 

temperature is maintained below 120°C in service. 

The PTFE sleeve which separates the stator from the airgap, and the carbon-fibre over-wrap 

on the rotor dictate that the heat transfer capability from fluid to both stator and rotor is 

relatively poor (the equivalent thermal resistances being I.8°CIW and 0.5°CIW 

respectively). Hence the vast majority of the loss generated in the airgap by friction and 

acceleration losses directly heats the fluid as it passes through the airgap. The net heat 

transfer capability of the airgap is influenced strongly by fluid physical properties, axial 

flow rate, rotational speed, and radial airgap length. The flow in the annulus can be 

approximated by a channel flow for heat transfer purposes. The nature of this flow can be 

determined by reference to the so-called Nusselt number that is given by [BEl 95]. 

htJ Nu=­
k 

(3.10) 

At low speeds, the fluid around the rotor surface is forced to flow tangentially, and hence 

resembles the flow between a moving and a stationary parallel plate, i.e. classical Couette 

flow. However, as the speed is increased, and centrifugal forces begin to playa greater role 

in determining the flow pattern, toroidal vortices known as Taylor vortices develop in the 

airgap. This flow regime (known as Taylor-Couette flow) increases the heat transfer in the 

airgap, and development of these vortices can be described by the Taylor number [TA Y 36] 

2 2 3 
Ta = P W rmo 

Ii 
(3.11) 

A modified Taylor number can also be derived which takes into account the actual rotor 

radius and airgap length, however, since the ratio of airgap length to rotor radius is 
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sufficiently small in this case (0.028), the modified Taylor number tends towards the 

classical Taylor number. Average Nusselt numbers have been measured by [GAZ 58], 

[BlK 59], [BEC 62] over a range of Taylor numbers, and have been expressed for three 

different flow regimes by Becker [BEC 62]: 

Nu=2 Ta < 1700 (3.12) 

Nu = 0.128 Ta°.367 1700 < Ta < Ix104 (3.13) 

Nu = 0.409 TaO.241 1 X 104 <Ta < lxl07 (3.14) 

Thus the overall heat transfer coefficient, h, of a rotating concentric cylinder can be derived 

by rearranging equation 3.10, which results in an equivalent thermal resistance of IlhA. 

For a rotor speed 'of 6000rpm and a bulk fluid temperature of 50°C, the average heat 

transfer coefficient calculated from equation 3.10 is 224 W Im2K, corresponding to an 

equivalent thermal resistance for the particular dimensions of this machine of 2x 1 O·s °C/W. 

This value of heat transfer coefficient is very high in comparison to the corresponding 

values for the natural convection heat transfer from the frame (30 W/m2K). However, due 

to the relatively high thermal' resistance of the PTFE sleeve and carbon fibre, it is 

reasonable to bound the problem at the inner bore of the PTFE sleeve and the outer surface 

of the rotor carbon-fibre and assume zero heat transfer into both the stator and rotor. 

In order to cater for any axial temperature increase between the inlet and outiet, and the 

consequent impact on drag losses, it is necessary to divide the airgap into a number of axial 

sections, in which the viscosity is assumed to be essentially constant within each section. 

The number of axial sections must be sufficient to ensure that the variation in viscosity 

between successive 'sections is sufficiently small so as to provide a reasonable 

approximation to a continuous variation in the context of the characteristics of fig. 3.3. 
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The temperature rise of the fluid in the airgap is a function of the drag loss, the axial mass 

flow rate, and the specific heat capacity of the fluid. The temperature rise can be evaluated 

for successive axial sections in the airgap annulus starting at the inlet (pump end), in tum 

allowing the appropriate material viscosity to be established for calculating the contribution 

to the fluid losses. This process can be repeated along the length of the machine to calculate 

the maximum temperature that occurs at the outlet end. This procedure can be illustrated by 

considering n axial sections, in which the temperature in the ith section can be calculated 

using equation 3.15: 

(3.15) 

Establishing an appropriate value for n for a given set of operating conditions requires an 

iterative process in which a series of calculations are performed for increasing n until 

successive values of calculated drag loss converge within a pre-specified tolerance. In order 

to determine the values of n required for a range of representative conditions, a series of 

such iterative calculations were performed for a rotor speed of 6000rpm and an axial flow 

rate of 3 IImin. The inlet temperature of the Skydrol 500B was varied between -50°C and 

+ 1 oooe, for 3 values of airgap, viz. 0.5mm (which is at the lower limit of a practical gap in 

this application), 1.5mm and 3.0mm. In all cases, the value of n was increased until the 

convergence between successive values of drag loss was better than 2%. Table 3.3 shows 

the resulting values of n required and the corresponding drag losses for these combinations 

of conditions. As would be expected, the highest values of n are required when the axial 

gradient of the viscosity is highest, conditions which are achieved with a high loss (and 

hence high temperature gradient) and for temperatures which correspond to regions of the 

viscosity characteristics of fig.3.3 where the rate of change of viscosity with temperature is 

greatest. 
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Figure. 3.6 shows the predicted variation in the fluid friction loss, acceleration loss and 

hence total drag loss as a function of speed for 4 specific conditions, viz. all inclusive 

combinations of inlet temperatures of -50°C and + 100°C and zero axial flow and 5 11m in. 

As is evident, even with a high axial flow rate, the losses are dominated by the fluid friction 

loss for both temperatures and all speeds. 

3.7 Drag loss measurements on a dummy rotor 

An experimental test rig was constructed in order to measure the drag loss, which 

comprises the fluid friction loss, and acceleration loss. A mild steel dummy rotor with 

identical dimensions was used during these measurements, to eliminate any 

electromagnetic losses induced by the rotating field of the permanent magnets. The 

hydraulic fluid circuit used to control the axial flow rate is shown in the schematic of 

Figure 3.7 and the photograph of figure 3.8. An axial flow rate was enforced by pumping 

the hydraulic oil around the closed circuit at a predetermined flow rate (this value increased 

during the test due to the increase in temperature, and hence reduction in viscosity of the 

oil). Various flow rates corresponding to those measured during load tests on the 

motor/pump unit were investigated at rotor speeds between 0 and 6000rpm (this upper limit 

being imposed by t~e rating of the available dynamometer machine). The oil was passed 

through a water-cooled heat exchanger during the tests to provide some level of control 

over the oil inlet temperature. Two dummy rotors which resulted in two radial airgap 

lengths, S = 1.5mm and S = 3.0mm were employed to investigate the influence of radial 

airgap length on the losses. The overall drag loss, which is the sum of the fluid friction and 

acceleration losses, was measured using the gimbal mounted dynamometer machine with a 

2kg torque cell mounted on the test bench. The average axial flow rate was measured with a 

flow meter mounted in the oil circuit in the return path to the header tank, while oil 

temperature was measured at the inlet and the outlet of the machine with K-type 

thermocouples inserted directly into the flow stream. A series of thermistors were mounted 

behind the PTFE sleeve in an attempt to measure the airgap temperature along the axis of 
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the machine. However, these proved to be of limited use for the dynamic tests as the 

effective thermal time constant of the PTFE sleeve was considerably longer than the rapid 

change in fluid temperature (and hence drag losses) in the airgap. Indeed, given the strong 

coupling between the magnitude of the drag losses and oil temperature, it is difficult to 

realise a pre-defined steady-state condition in practice. However, the trend observed in the 

thermocouple readings did show a linear temperature rise axially through the annulus of the 

machine as was assumed. 

In order to measure the drag caused by the fluid using the test-rig shown in fig 3.7, it was 

necessary to quantify and account for the various other sources of losses that contribute to 

the net torque measured by the load cell. The variation of the measured friction and 

windage losses for the dynamometer drive machine alone are shown in figure 3.9 together 

with the corresponding characteristics for the dynamometer machine when coupled to the 

dummy rotor BLDC machine, but without hydraulic fluid in the airgap. This enables an 

estimate to be derived of the net drag loss of the dry BLDC machine. This characteristic is 

also shown in figure 3.9, where it is evident that the nature of variation in drag loss with 

speed is dominated by friction rather than windage. Hence, the overall drag loss 

characteristic for the coupled machines is representative of the parasitic losses that will be 

encountered during testing with a flooded rotor (in which the BLDC windage losses are not 

present). 

For each of the two dummy rotors, a series of drag loss measurements were performed for 

speeds up to 6000rpm with two different nominal axial flow rates, viz. zero net axial flow 

and a high flow rate of 2.6 I/min. Whereas zero flow can be reliably controlled, it was not 

possible using the test-rig to provide closed loop control of the high flow rate condition (the 

hydraulic pump that was used simply provided a given flow-rate for a particular viscosity). 

Hence, although a nominal starting flow rate of 2.61/min was set, this inevitably drifted 

upwards as the tests progressed, particularly at high speeds (and hence high loss) due to 

heating of the fluid. Full control could not be exercised over the inlet temperature to avoid 
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this drift because of the limited capacity of the heat-exchanger and the limited volume of 

oil in the system. 

Tables 3.4 and 3.5 summarise the measurements of drag loss for 3 speeds (2000rpm, 

4200rpm and 5400rpm) at the two nominal flow rates for both 1.5mm and 3mm airgaps. 

Also shown in tables 3.4 and 3.5 are the measured axial flow rates and the inlet and outlet 

temperatures which correspond to these particular measured losses. Although the axial flow 

rate has some influence on drag losses, the variation in loss is more sensitive to rotor speed 

than axial flow rate. Indeed, the maximum acceleration losses were found to be < 50W at a 

rotor speed of 5400rpm, and a fluid flow rate of 4 IImin for the worst case condition of S = 

1.5mm (the equivalent value of fluid friction loss for these conditions being 2042W). 

Also shown in table 3.4 are the corresponding drag losses predicted using equations 3.7 and 

3.8 in which the flow rate and inlet/outlet temperatures are based on the measured results. 

There is good agreement between measured and predicted losses, with a maximum error of 

-18% occurring for the tests at low speed. As is evident from tables 3.4 and 3.5 the 

measured and predicted drag losses show good correlation for both airgap lengths. 

3.8 Optimisation of mechanical airgap in the machine 

A first-order estimate of the electromagnetic torque produced by an electrical machine can 

be derived from equation 3.16 

(3.16) 

The electric loading, Q, in equation 3.16 describes the stator ampere-turns per unit of active 

airgap periphery of the machine: 
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Q = a Nph Nt Nc I ph 

1[ DSi 
(3.17) 

where a describes the fraction of the coils contributing to torque production at any instant, 

e.g. 2/3 for the case of a conventionally commutated, 3 phase BLDC machine. The average 

airgap flux density, B, can be approximated using 

Bg= Br 

1 + P.(;! J 
(3.18) 

In order to maintain a constant airgap flux density, it is evident from equation 3.18 that the 

ratio of the magnet length to the airgap length (1m/Is) must remain fixed. However, it is 

recognised that equation 3.18 involves some simplifications as its neglects interpolar 

leakage [ZHU 91] and flux de-focussing [A IT 94], both of which tend to reduce the 

magnitude of the airgap flux density. However, these additional factors only have a marked 

influence when the magnet thickness is significant with respect to the pole pitch and the 

rotor diameter respectively. However, neither of these conditions is met in the BLDC motor 

considered in the chapter. Hence, from equation 3.18 it is reasonable to assume that any 

increase in the net magnetic airgap due to an increase in the mechanical clearance between 

, the rotor outer surface and the PTFE sleeve can be compensated for by an appropriate 

increase in the magnet thickness. The magnetic loading can therefore be regarded as being 

independent of the mechanical airgap (8). However, since any increase in the mechanical 

airgap necessitates a corresponding decrease in the rotor diameter, an increase in electrical 

loading (and hence the copper loss) is required to maintain a given output. However, the 

increase in electric loading required is marginal in rotors of the size considered in this 

chapter, when the airgap is varied by only a few millimetres (particularly since the value of 

the effective magnetic airgap has a small offset associated with the 0.5mm thick rotor 

containment and the 1.0mm thick stator PTFE sleeve). 
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The EHA machine operates on a highly transient duty cycle, typically between 1000 and 

9000rpm, while the fluid temperature and hence viscosity can vary over a wide range. The 

flight duty cycle of modern large civil aircraft involves a number of high power transients 

during take-off and landing (followed by relatively low speed manoeuvres at cruising 

altitude). During take off and landing, the aircraft electrical power generation system may 

be required to deliver maximum power to flight control surfaces, undercarriage, radar, and 

the various cabin systems. Thus, any improvements in the efficiency of the electric drives 

of the flight control systems will yield dividends in terms of down-sizing the components 

of the power generation system. Hence, it is important to consider a variety of operating 

conditions and fluid temperatures when establishing the value of airgap that results in the 

best overall efficiency. 

As is evident from the predicted drag losses shown previously in fig. 3.6 for the worst-case 

conditions of start-up at an ambient operating temperature (and hence fluid temperature) of 

-50°C, the losses are extremely large in relation to the rated power of the machine. By way 

of example, for 6000rpm and a load of 50bar (a typical load and speed requirement during 

positioning of the rudder flight control surface during take-off), the drag losses are 12kW at 

-50°C for a mechanical airgap of 1.5mm. Although this level of initial loss at -50°C may 

be tolerable from a thermal point, it will have severe implications for the inverter rating and 

the required installed capacity of the power generation system. However, as is evident from 

the temperature-viscosity characteristic of Skydrol 500B shown in figure 3.3, there is a 

large reduction in viscosity between -50°C and O°C. Hence, in terms of reducing the peak 

power rating, considerable benefits are likely to be derived by pre-heating the hydraulic 

fluid prior to take-off. This could be achieved using a variety of means, e.g. an electric 

cartridge heater in the small fluid reservoir, gentle controlled slewing of the control 

surfaces when the aircraft is grounded to gradually increase the fluid temperature. Since 
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fluid pre-heating yields such large benefits and is likely to be adopted in future systems, for 

the purposes of this study, a minimum starting temperature ofO°C was assumed. 

The method used in calculating copper loss from the various input parameters is best 

explained with reference to Figure 3.10. Firstly, the input parameters are defined; torque 

demand (which is derived from the load pressure); airgap height; rotor speed; axial flow 

rate and fluid inlet temperature. The Couette-Reynolds number of the flow is calculated 

from equation 3.2, and the drag losses (Pdrag) from equations 3.3 to 3.9. This loss represents 

the total fluid friction loss and acceleration loss in the airgap calculated over one axial 

section in the airgap (n = 1). The convergence test to determine the number of axial 

sections required (n) is carried out in a while loop as shown in figure 3.10, where the outlet 

temperature of each successive axial section (calculated from equation 3.15) provides the 

inlet temperature of the next section. Once the criteria has been reached, the final value of 

drag loss is used to determine the electromagnetic power required based on a given torque 

demand Le.: 

T drag = P drag / W (3.19) 

Tern = T demand + T drag (3.20) 

Pem = Tern. ill (3.21) 

Where Tdrag is the torque associated with the drag losses (Pdrag) and ill is the speed (rads· I ). 

Tern and Pem are the electromagnetic torque and power that must be supplied by the BLDC 

machine for a given torque demand. The electric loading, Q, is then calculated from the 

electromagnetic torque requirements (as described in equation 3.16), and in turn the phase 

current is calculated from equation 3.17. The copper losses may then be established from 

the phase resistance. This approach is repeated over a speed range of 300 to 10000rpm. and 
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airgap lengths from 0.25 to 10mm to generate the copper loss contours of figures 3.11 to 

3.14. 

Hence, for a given mechanical airgap, 8, the drag loss for a particular rotor speed, load 

pressure and fluid inlet temperature can be readily calculated, along with the resulting 

copper losses for this particular operating point. By way of example, figure 3.11 shows 

contours of constant copper loss for airgap lengths between 0.25mm and 10mm, and for 

rotor speeds between 200rpm and 10000rpm, for the particular operating conditions of an 

inlet fluid temperature of O°C and a load pressure of 20 bar. For a given combination of 

rotor speed and airgap, the axial flow rate (which influences the temperature rise and hence 

the loss) has been derived from the measured pump-leakage characteristics shown 

previously in figure 3.1. 

The dashed line in figure 3.11 shows the locus of airgap length that gives the maximum 

speed for a given copper loss. This point constitutes the lowest copper loss for a given 

operating speed. In the particular case shown in figure 3.11 that corresponds to a low 

pressure and low temperature, the drag losses form a comparatively large proportion (-67% 

at 6000rpm) of the total torque requirement. Hence, considerable reductions in copper 

losses can be achieved by increasing the airgap (e.g. 4.5mm gives the lowest copper loss at 

6000rpm). The reduction in the optimal airgap beyond 6000rpm is a consequence of the 

non-linear pump leakage characteristics in that the axial flow rate almost saturates, and 

hence the temperature of the fluid increases markedly (with a consequent reduction in 

viscosity and hence drag losses). 

However, for the extreme case of load pressure, viz. 200 bar, the drag losses only constitute 

a very small proportion of the required electromagnetic torque (the vast majority of which 

is required to provide the high pressure at the output of the pump). As shown by the 

corresponding copper loss contours of figure 3.12, for this case, the optimal airgap remains 

comparatively small « Imm) over the entire speed range, since the penalty in electrical 
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loading associated with increasing the airgap (due to the consequent reduction in rotor 

diameter) ,outweighs any benefits in reduced drag losses with larger airgaps. 

Any increase in the fluid temperature favours a reduction in airgap since the magnitudes of 

the drag losses relative to the pump output power diminishes even further. This is clearly 

illustrated by the copper loss contours of figures 3.13 and 3.14 for the case of a 100°C fluid 

temperature and loads of 20 bar and 200 bar respectively. Hence, the best system level 

compromise will be achieved with small airgaps of the order of Imm, providing pre-heating 

is employed (a larger airgap would be preferred if operation with a fluid temperature of -

50°C was required). 

3.9 Discussion of results 

At low inlet temperatures and low load pressure, the desired radial airgap length was in 

general found to be larger than for high temperatures and high load pressures, as can be 

seen by inspection of figures 3.11 and 3.13. Specifically, for a speed of 6000rpm, the 

minimum copper loss in figure 3.11 is found to be at an airgap length of 4.5mm, whereas 

for the same speed at high temperature and high load pressure (fig 3.13) optimum 8 is 

found to be 0.3mm. Therefore, a trade-off between the two operating extremes must be 

sought. Efficiency of the BLDC machine must be maximised for the higher values of drag 

loss and copper loss experienced under take-off conditions in order to minimise the 

maximum inverter VA rating, and also relax the maximum aircraft power generation 

system requirements during take-off as this has been shown to be the most onerous 

operating condition for such embedded machines (Chapter 6). Hence a mechanical airgap 

clearance of between 1.0 and 2.0 mm, corresponding to the minimum copper loss at 

6000rpm, I50bar with a fluid inlet temperature of 50°C and 6000rpm, 50bar, O°C 

respectively, would be most suitable for a BLDC machine with a flooded rotor operating 

under these conditions. 
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3.10 Conclusions 

Fluid friction loss has been shown to playa key role in determining the rating of the BLDC 

machine and associated inverter for an EHA application, with significant implications on 

the total system efficiency under the combination of high speed and light load operation. 

Established fluid friction loss coefficients for rotating concentric cylinders together with 

acceleration losses have been successfully applied to the solution of fluid friction losses in 

the airgap, and good agreement is shown with measured data. The iterative solution of the 

fluid friction loss necessary for such widely varying physical properties has shown to 

deliver very accurate results. Good correlation is shown for two airgap lengths with zero 

axial flow rate, and at high axial flow rate. The method has also been extended to the 

selection of a sub-optimal airgap length in terms of providing a maximum average 

efficiency over envisaged speed and load characteristics during take off and landing, and to 

provide a lower VA rating of the inverter. The selection of an appropriate airgap length has 

proved a very complex task due to the highly variable duty cycle in terms of speed and 

load, and the wide range of fluid inlet temperatures. 
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Table 3.1. Skydrol 500B hydraulic fluid physical properties. 

Temperature (OC) Kinematic Specific 

viscosity (mm2/s) Gravity 

-55 1100 1.072 

-17.8 147 1.036 

50 9.6 0.9768 

100 4 0.938 

Table 3.2. Castro} HF-18 hydraulic fluid physical properties. 

Temperature (OC) Kinematic Specific 

viscosity (mm2/s) Gravity 

-40 2200 1.03 

0 108 -
40 14 -
70 5.9 -
100 3.5 0.965 
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Table 3.3. Convergence in fluid friction loss with number of sections, n, at 6000rpm. 

Fluid inlet 8=0.5mm 8= 1.5mm 8=3.0mm 

temperature 
Number Total Number Total Number Total 

(DC) 
of axial loss of axial loss of axial loss 

sections, n (kW) sections, n (kW) sections, n (kW) 

-50 31 13.99 21 10.69 15 9.32 

-25 12 8.53 8 7.12 7 6.26 

0 6 5.80 6 4.65 5 3.95 

25 5 3.87 4 3.10 4 2.54 

50 4 2.76 4 2.14 3 1.80 

75 3 2.13 3 1.63 2 1.57 

100 2 1.83 2 1.51 2 1.46 
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Table 3.4. Predicted and measured drag losses for 8 = 1.5 mm (high flow rate corresponds 

to 2.6 l/min at the start of the tests. 

Rotor speed of Rotor speed of Rotor speed of 

2000rpm 4200rpm 5400rpm 

Zero High Zero High Zero High 

flow rate flow rate flow rate flow rate flow rate flow rate 

Measured drag loss 271 277 1185 1491 2287 2603 
(W) 

Flow rate (l/min) 0 2.6 0 2.9 0 3.3 

Fluid inlet 20.7 18 21.5 19.0 34.3 21.8 

temperature (oe:) 

Fluid outlet 22.8 21.6 29.4 28.1 57.7 36.3 

temperature (oe:) 

Predicted drag 
130 189 1240 1522 2179 2711 

losses for measured 

flow rate and 

inlet/outlet 

temperatures (W) 
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Table 3.5. Predicted and measured drag losses for 0 = 3.0 mm (high flow rate corresponds 

to 2.6 IImin at the start of the tests. 

Rotor speed of Rotor speed of Rotor speed of 

2000rpm 4200rpm 5400rpm 

Zero High Zero High Zero High 

flow rate flow rate flow rate flow rate flow rate flow rate 

Measured drag loss 121 212 901 1236 1624 2085 

(W) 

Flow rate (llmin) 0 3.6 0 3.8 0 4.1 

Fluid inlet 19.5 18.8 19.3 19.4 20.3 20.5 

temperature (0(:) 

Fluid outlet 22.1 23.0 36.8 32.0 53.1 43.6 

temperature (0(:) 

Predicted drag 

losses for measured 93 134 934 1337 1798 2286 

flow rate and 

inlet/outlet 

temperatures (W) 
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Figure 3.8. Hydraulic fluid closed circuit cooling for axial flow tests. 
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CHAPTER 4 

HP SPOOL EMBEDDED MACHINE DESIGN 

4.1. Introduction 

This chapter investigates the design of a switched reluctance starter/generator machine 

that is to be embedded within the high-pressure (HP) region of a civil aircraft turbo-fan 

engine as shown in Chapter 1, figure 1.10. The high-pressure spool of a typical large 

turbo-fan engine rotates at speeds of up to 13500 rpm on a typical flight duty cycle, and 

up to 15000rpm in an over-speed condition. It is disposed concentrically as the outer of 

the three rotating spools, hence having the largest diameter. Due to the close concentric 

arrangement of the spools, it is unpractical to embed a machine inside the HP spool, 

thus necessitating a large rotor bore diameter. At this early stage in the move toward the 

'more electric' engine, turbo-fan engine designers seek to employ embedded electric 

generation without the obligation to make any major changes to the existing engine 

design. Hence the HP starter/generator machine must be incorporated within the same 

axial section of the engine that is presently occupied by the radial take-off shaft, while 

the maximum diameter is constrained by the aerodynamic requirements of the turbo-fan 

engine. The combination of a large rotor bore diameter, and the high rotational speeds 

of the HP spool dictates that the rotor will potentially be subject to high mechanical 

stresses. The constraints imposed by conventional rotor designs due to the limited 

mechanical strength of the laminations are highlighted by finite element analysis of the 

stress distribution. A modular rotor structure is proposed which facilitates a significant 

reduction in the mechanical stress in rotor laminations, and thereby an increase in the 

diameters. Both two and three-dimensional finite element analyses are employed to 

compare the static electromagnetic performance of a switched reluctance machine with 

a modular rotor against two machines having conventional rotors. 
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Many modem turbo-fan engines employ a three-shaft design that affords greater fuel 

economy than a double or single shaft configuration as described in Chapter 1, section 

6. The shafts or 'spools' are classified by their operating pressure, viz. the low-pressure 

(LP), intermediate-pressure (IP), and high-pressure (HP) spools. The 'more-electric' 

aircraft engine concept envisages electrical machines integrated co-axially with the 

spools, and supplying electrical power directly to the aircraft system loads, thus 

negating the large accessory gearbox and take-off shaft. However, although the 

potential advantages in terms of functionality, reliability, efficiency and weight saving 

in civil aircraft are well recognised [PRO 02], significant technical challenges must be 

overcome before such highly integrated engines enter service. Many of these challenges 

are related to the harsh operating environment and the demanding performance 

specifications. In civil aircraft, the most onerous conditions are for electrical machines 

which are to be integrated with high-pressure (HP) spools, where the ambient 

temperature may reach as high as -350-400°C, the rotational speed is -15,000-20,000 

rpm and the required power rating is in excess of 100kW [GAR 99], [FIN 00]. 

Of the various candidate machine technologies, the switched reluctance (SR) machine 

has been identified as a leading, if not the leading, candidate for this application due to 

its ability to operate in high temperature environments and its high specific power 

capability [RIC 88], [MAC 89A], [MAC 89B]. Other machine topologies have been 

considered for this role, including the singly-fed and doubly-fed induction machines 

[ELB 97], albeit much of the development of such VSCF systems being aimed at lower 

speed wind generators. Permanent magnet machines have so far received little attention 

for application as an aircraft starter/generator due mainly to the poor high temperature 

performance of permanent magnet materials. Various grades of Samarium Cobalt 

magnets have been developed for high temperature operation (>350°C) [TAN 99, LIU 

99] but offer vastly diminished performance in terms of remanent flux density (typically 

-0.6 Tesla at 400°C) and lower intrinsic coercivity, ultimately resulting in a machine 

with a very poor specific torque density. 
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Cooling of the machine may be augmented by forced oil cooling (as is presently the 

case with the externally mounted CSD) or forced air-cooling. Forced oil cooling 

provides a higher heat transfer rate than that of forced air cooling, but as the long-term 

aim of the 'more-electric' engine is to operate with an oil-less engine as discussed in 

Chapter 1, section 6, the machine has been designed to operate with forced air cooling 

in mind, thus enabling incorporation in future engine designs. However, the high 

pressure differential required to generate forced air cooling necessitates the use of bleed 

air from the intermediate compressor region, where air temperatures may reach as high 

as 300°C. Hence, dissipation within an air-cooled machine operating in an ambient 

temperature of -350°C with cooling air at 300°C is likely to raise the internal 

temperature to -400°C. This will have a significant impact on the copper loss, since the 

winding resistance at 400°C is -2.5 times greater than that at room temperature. In 

order to increase the winding area, so as to partially mitigate the increased winding 

resistance, the 'split-ratio' (the ratio of the rotor outer diameter to the stator outer 

diameter) may be reduced. 

In terms of the magnetic properties of soft magnetic lamination materials, such as cobalt 

iron and silicon steel, elevated temperature operation does not pose any significant 

difficulties, since their magnetisation characteristics degrade only . slightly with 

temperature up to 400°C. Indeed, some benefit may accrue in terms of a reduction in 

iron loss due to the increase in electrical resistivity [SIM 96]. In contrast however, the 

mechanical properties of soft magnetic laminations are a major consideration at such 

elevated temperatures since the high rotational speed and power (and by implication the 

large rotor diameter) will inevitably result in high stress levels within the rotor. The 

problems associated with stresses in the rotor are compounded by the particular space 

envelope constraints, since in order to integrate an SR machine in an HP spool, its rotor 

must have a large central bore, typically of 200mm diameter which compares with a 

maximum outer stator diameter of 400mrn. Table 4.1 outlines the dimensional and 

electromechanical requirements for the HP spool starter/generator. 
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In order to quantify the mInImUm number of rotor teeth required to achieve an 

acceptable value of aligned to unaligned inductance within the given space envelope, a 

study has been carried out using a simple criteria proposed by Radun [RAD 95] based 

on the minimum height of a rotor tooth, viz. little benefit will be derived in increasing 

the rotor tooth height beyond 1.5 to 2 times the circumferential distance between the 

edges of the stator and rotor teeth when in the un-aligned position. For this particular 

study, the lower value of 1.5 was used. The shaft diameter and stator outer diameter 

were fixed at 200mm and 400mm respectively, and the minimum rotor outer diameter 

fulfilling this criterion was determined for each viable combination of stator and rotor 

poles. Table 4.2 shows the minimum rotor outer diameter for each combination. It is 

also interesting to note that the 6-4 and 8-6 designs are geometrically unfeasible for 

such a shaft diameter and stator outer diameter, as the stator tooth length is defined to 

have a negative value imposed by the large back iron width requirement. Therefore, as a 

consequence of this space envelope constraint, a comparatively high pole number 

machine must be employed so as to reduce the thickness of the rotor and stator back 

iron, whereas in general, a high speed machine would be designated a low number of 

poles in order to reduce the electrical frequency, and hence the iron losses. 

A conventional SR rotor employs a single-piece lamination, and is hence relatively 

simple and robust. However, high levels of hoop stress can occur in the laminations, 

particularly at high rotational speeds. Generally, there is little scope to employ any form 

of containment around the laminated rotor, e.g. a carbon-fibre over-wrap or a high­

strength steel sleeve, since the performance of SR machines degrades markedly when 

the effective magnetic airgap is increased. Additionally, the high ambient temperature 

precludes the use of epoxy resins used in carbon-fibre over-wraps, which typically have 

a maximum operating temperature of <200°C. Although high-strength rotor cages have 

been proposed as a means of providing additional mechanical support to SR rotors 

[PAT 96], these can pose significant problems in terms of axial stiffness, increased 

weight, and induced eddy currents in the case of a metallic cage. 
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Hence, for a given speed rating and with a single-piece lamination, the maximum rotor 

diameter is generally limited by the mechanical properties of the rotor lamination 

material. Of the candidate lamination materials for high performance SR rotors, the 

various grades of cobalt iron offer significant advantages over silicon iron in terms of 

mechanical properties, typical room temperature 0.2% yield strengths being 680MPa 

and 400MPa respectively, as well as having superior magnetic properties [HIP 50] [CK 

26]. Thus, cobalt iron laminations are likely to be preferred for the rotors of SR 

machines for integration in the HP spool, albeit at a considerable cost premium 

compared to silicon iron. 

The mechanical properties of cobalt iron can be tailored to some degree to suit the 

requirements of a particular application by control of the heat treatment, albeit an 

increase in mechanical strength being achieved at the expense of compromising the 

magnetic properties. Both the mechanical and magnetic properties of these cobalt alloys 

have been found to be very sensitive to the heat treatment schedule and temperature 

[KON 00]. 

By way of example, the room temperature yield strength of Hiperco 50HS (a 

commercially available grade of 49% cobalt iron whose composition is optimised for 

mechanical strength [HIP SOD, can be increased from 441 MPa to 665 MPa by reducing 

the heat-treatment temperature from 800°C (which gives optimal magnetic properties) 

to 720°C. However, even after being heat treated to optimise the mechanical strength, 

subsequent exposure to elevated temperatures results in a marked reduction in the 

mechanical strength, e.g. at 400°C, the yield strength of Hiperco 50HS is 580MPa, 

which compares to 665MPa at 20°C [FIN 99]. This difficulty in employing cobalt iron 

laminations when they are exposed to high stress levels and elevated temperatures is 

further compounded by concerns regarding their stability under long-term and cyclical 

operation, in particular their high-temperature creep behaviour [FIN 99]. 
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4.2. Limitations of conventional rotor topologies 

In order to establish the consequent constraints which the lamination material imposes 

on the dimensions of a rotor, it is first necessary to specify an appropriate safety factor 

which relates the operational design limits to the nominal material properties. One 

widely employed criteria for accommodating long-term factors such as fatigue in metals 

is to limit the maximum stress to 50% of the yield strength [GER 01], which for 

Hiperco 50HS at a temperature of 400°C corresponds to a maximum stress in the rotor 

of 290 MPa. A useful first-order estimate of the constraint which this imposes on the 

rotor diameter can be obtained by considering the analytical expression for hoop stress 

in a thick-walled cylindrical disk [FEN 90]. 

(3+v) 2( 2 2 R12R22 1+3v 2J (In= pm RI + R2 + 2 ---r 
8 r 3+v 

(4.1) 

where O'a is the circumferential stress, p is the density, (t) is the angular velocity, and v is 

Young's modulus. RI and R2 are the outer and inner radius of the disk respectively, and 

r is the radius at which O'a is evaluated. For a disk having an inner bore of 200mm and 

rotating at 15,000 rpm, a maximum stress criterion of 290MPa would limit the 

maximum outer diameter to 248mm. With reference to table 4.2, it can be seen that this 

mechanically determined maximum rotor diameter would place a lower limit on the 

number of rotor poles to be 16, as combinations with lower pole numbers require a 

larger diameter to achieve the electromagnetic saliency criteria. 

However, whilst this simple analysis provides a useful starting point, it is important to 

consider the actual stress distribution within the SR rotor. In this respect, a rotor that is 

constrained to have a large bore diameter relative to its outer diameter, and is required 

to incorporate a degree of magnetic saliency, usually results in an increase in the peak 

stress as compared to that which exists in a uniform disk of the same outer diameter 
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[CAL 03]. For the unifonn disk, the maximum stress always exists at the bore. For a 

salient structure however, when the bore diameter tends towards the rotor outer 

diameter, the tooth height becomes a greater proportion of the total rotor annulus, thus 

decreasing the back iron width. This increases stress at the bore, with a greater focusing 

under the pole faces as can be seen from figure 4.1. Further increase in bore diameter 

moves the region of maximum stress to the inter-pole region on the outer surface of the 

rotor, while stress levels continue to rise. An investigation of the stress distribution in a 

four-pole switched reluctance rotor has been reported by Calverley [CAL 03] arguing 

that the most efficient use of the rotor material is achieved when the stress in the fillet is 

equal to the stress in the bore. 

Thus, an iterative design approach, using two-dimensional linear finite element stress 

analysis was employed to establish the maximum dimensions of an I8-pole rotor having 

a bore of 200mm and a localised peak stress of 290MPa at 15,000 rpm (assuming that 

no pre-stress is induced during assembly of the rotor laminations onto the central shaft). 

One pole of the resultant rotor design, which has an outer diameter of 229mm (c.f. 

248mm for a cylindrical disk having the same peak stress of 290 MPa) is shown in 

figure 4.1. As will be evident however, this limiting rotor design has a very poor 

saliency ratio, which severely compromises the specific torque capability of the SR 

machine. In order to achieve an acceptable level of rotor saliency, whilst maintaining a 

200mm rotor bore diameter and rotating at 15,000 rpm, it is necessary to operate the 

Hiperco 50HS laminations at stress levels that exceed 50% of its yield strength at 

400°C. 

In order to establish the extent to which the rotor laminations must be stressed so as to 

realise viable electromagnetic SR machine designs, a linear structural finite element 

study was undertaken on a series of 12- and I8-pole SR rotors, whose outer diameters 

were varied up to 350mm. In each case the rotor bore diameter was maintained constant 

at 200mm, and the following design guidelines were adopted to establish the rotor 

geometry for each outer diameter: 

130 



• The rotor pole-arcs for the 12- and 18-pole rotors were fixed at 11.3° and 7.4°, 

respectively, these values being typical of those employed in practical machines, 

and consistent with the values proposed by Lawrenson for achieving a high torque 

density [LAW 80]. 

• The height of the rotor teeth was based on the criteria proposed by Radun [RAD 

95], viz. little benefit will be derived in increasing the rotor tooth height beyond 

1.5 to 2 times the circumferential distance between the edges of the stator and rotor 

teeth when in the un-aligned position. For this particular study, the lower value of 

1.5 was used. 

• The thickness of the rotor back-iron was assumed to be 2/3 of the width of a rotor 

pole to accommodate flux from more than one phase during phase overlap 

operation. 

• A fillet, based on a B-spline curve, was incorporated at the base of the teeth in 

order to alleviate any localised stress concentration (which is predominantly radial 

in these regions). 

To ensure a satisfactory degree of accuracy in the finite element solutions, a 

convergence study was carried out on the maximum Von-Mises stress and the 

maximum deflection in the problem. Due to the nature of the toothed structure, there is 

a large stress concentration at the knee-point of the tooth fillet; hence the mesh in this 

region should ideally be assigned smaller elements than the remaining regions, where 

stress concentrations are lower. Two different meshing approaches were investigated, 

the first with a generic global element size, and the second with a locally refined mesh 

in the regions of high stress concentration. For the global mesh, the element size was 

gradually reduced by a normalised scaling factor, K, until a convergence of <0.1 % was 

achieved for both the maximum Von-Mises stress, and the maximum deflection. The 

element size is defined to be: 

(4.2) 
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where rl is the rotor outer radius and Nrt the number of rotor teeth. Figure 4.2 shows 

one pole of the rotor, showing the key dimensions used to determine the element size, 

and the applied boundary conditions. Table 4.3 shows the convergence in maximum 

deflection, ~, convergence in maximum Von-Mises stress, E, and the normalised 

computational requirement, with normalised element scaling factor, K. The problem is 

first discretised with the minimum number of elements returning a solution, while each 

subsequent solution reduces the element size by 50% until the convergence tolerance of 

<0.1 % is met. It can be seen by inspection of table 4.3 that both the global and local 

mesh achieve the convergence tolerance for Von-Mises stress with K = 0.071, whereas 

the maximum deflection converges at a much faster rate (K = 0.25 and K = 0.20 for 

global and local meshes respectively). 

It is also interesting to note from table 4.3 the relative computational requirement for 

each solution, as a large number of iterations were required in determining the most 

appropriate fillet shape for each value of outer radius, and thus the solution time should 

be kept to a minimum. The relative computational requirement is shown to be 

considerably less for the local mesh at K = 0.071, with values of 19.1 and 8.3 for global 

and local discretisation respectively, showing that the locally refined mesh converged in 

under half the time taken with the globally refined mesh. Increasing the mesh density in 

the problem beyond that which satisfies the convergence tolerance is a law of 

diminishing returns, with relative computational requirement increasing as a function of 

the total number of elements in the mesh, while the value of E beyond K = 0.071 only 

changes by some 0.01 % for the local mesh. 

Adopting the electromagnetic design criteria set out for the finite element solutions (and 

using K = 0.071) imposed a lower limit on the outer diameter of the 12- and IS-pole 

rotors of 26lmm and 248mm, respectively, the maximum associated localised stresses 

being 389 MPa and 345 MPa, respectively (which correspond to 67% and 60%, 

respectively, of the yield strength of Hiperco 50HS at 400°C). Fig. 4.3 shows the 

variation in the predicted maximum localised Von-Mises stress levels for the 12- and 

18-pole rotor designs as their outer diameters are varied between these lower limits and 
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350mm, the rotor bore diameter being 200mm in all cases. Fig.4.3 also shows the 

variation of the peak stress that would result in a thick-walled cylindrical disk of the 

same density. As will be seen, the adoption of a higher pole number has benefits in 

terms of a reduction in the maximum stress for a given rotor outer diameter, owing to 

the more acute pole arc angle affording a reduced tooth height. Thus the back iron 

becomes a greater proportion of the total rotor annulus, and is able to carry the hoop 

stress over a greater diameter. Figs. 4.4 and 4.5 show Von-Mises stress contours for a 

261mm diameter 12-pole rotor, and a 248mm diameter I8-pole rotor respectively, the 

peak stress being essentially circumferential and occurring at both the inner bore and 

inter-pole / slot regions. Electro-magnetically induced radial forces have been shown to 

be very high for the switched reluctance machine topology [GAR 99], leading to 

unbalanced magnetic pull, and hence raising concern over its operation as a fault 

tolerant machine in many applications. However, electromagnetically induced radial 

stresses due to in the rotor were assumed to be negligible for the purpose of analysis, 

since for the particular rotor geometries considered, even with an airgap flux density of 

2.0T, they represent less than 0.0 I % of the maximum Von-Mises stress due to rotation. 

In summary, the combination of a large rotor bore diameter, a high rotational speed and 

a high ambient temperature cause the rotor lamination material to operate at the limits, 

or indeed beyond the limits of their long-term mechanical capabilities, e.g. at 60% of 

their 400°C yield strength for an 18-pole rotor. Further, even when operating at these 

stress levels, there are severe constraints on the rotor diameter that, in tum, will limit the 

achievable power capability, given that the axial length of the machine is also severely 

constrained by the available space envelope in the engine. 

4.3. Modular rotor topologies 

One means of overcoming the limitations imposed by the use of a single-piece rotor 

lamination and the mechanical strength of the lamination material is to employ a 

modular rotor construction, in which separate laminated pole modules are attached to a 
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high strength, non-magnetic, annular hub. Such a modular rotor is illustrated 

schematically in FigA.6. It has 9 laminated modules each consisting of two poles, 

resulting in 18 rotor poles. The hoop-stress in such a rotor structure is borne 

predominately by the non-magnetic hub, which can be manufactured from a high 

strength material having the required fatigue, corrosion and high temperature creep 

properties, e.g. Nickel super-alloys such as Inconel 718 which have a 0.2% yield stress 

of 1100 MPa at 400°C [BOY 89]. Figure 4.7 shows the variation in 0.2% yield strength 

with operating temperature for Inconel 718 following typical heat treatment for high 

strength. 

SR machines equipped with modular rotors of the type shown in fig. 4.6 appear to have 

received relatively little attention in the published literature, although patents exist for 

rotors fabricated from a series of individual poles [PAT 92] (although the motivation 

was to reduce the volume of soft magnetic material). The apparent lack of interest in SR 

machines with modular rotors may be due to the fact that their construction conflicts 

with one of the major perceived benefits of conventional SR machines, viz. the relative 

simplicity of the rotor. 

Various technologies could be employed for attaching the individual laminated pole 

modules onto the rotor hub. For example, by using a 'fir-tree' arrangement that is 

commonly used in the retention of turbine blades in aircraft engines (shown in fig 4.8), 

or dovetailing the modules into the hub with a suitable degree of pre-compression, as 

illustrated in fig. 4.9. A structural finite element study has been undertaken using non­

linear contact elements in order to determine the feasibility of attaching such modules 

using different techniques. The contact element approach allows the module to act as a 

dead weight in the problem, with the relative displacement of the two interfaces (hub 

and module) determining the degree of constraint imposed on the module and hub. Fig 

4.10 shows the approach taken in developing the problem for analysis using contact 

elements, with the hub and module first being created separately with surface-to-surface 

contact elements formed along the interfacing surfaces. The two components are then 

brought together with the mesh nodes at the interface overlapping. The contact elements 
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are nonlinear, and thus require a full Newton iterative solution. The load (angular 

velocity) is applied in discrete steps in order to stabilise the solution. [ANS 01]. Figure 

4.11 shows finite element results for the Von-Mises stress distribution in a 'fir-tree' 

type fixing arrangement for an 18-pole rotor (9 modules) with an outer diameter of 

300mm, and a rotor bore diameter of 200mm rotating at 15000 rpm. The module 

material is Hiperco 50HS and the hub material is Inconel 718. It can be seen from Fig 

4.11 that the maximum stress is highly localised around the fir-tree lobes, reaching a 

maximum of 31 00 MPa. Plastic deformation would normally occur in the Hiperco 50HS 

at these very high levels of stress, and indeed, may serve to alleviate the stress 

concentration to some degree. However, the linear analysis has shown that the Hiperco 

50HS would be taken into the plastic region of the stress-strain characteristic, thus 

increasing the likelihood that it will suffer from fatigue. Figure 4.12 shows the stress 

distribution for a dovetailed arrangement with the same loads and limiting dimensions, 

which again suffers from high stress concentrations at the contact points. Pre­

compression of the dovetailed module has also been investigated. An overlap of O.4mm 

was determined from the coefficient of thermal expansion of Inconel 718 (13 .5e·6 1°C) at 

200°C, resulting in a pre-compression of 250 MPa. Table 4.4 summarises finite element 

results for the maximum deflection, maximum Von-Mises stress, and maximum stress 

at the hub inner radius for the various arrangements. 

In summary, the methods of attachment do not mitigate the maximum stress 

experienced by the cobalt iron, which may be subject to fretting fatigue in service due to 

the high stress concentrations, and hence reduce the mean time between failures of the 

rotor. However, one potentially attractive technique in terms of avoiding any localised 

stress concentrations is to friction weld the lamination modules to the hub [KAL 99]. As 

the modules have a non-cylindrical geometry, the parts would have to be linear friction 

welded, a method for joining materials that is finding increasing application in the 

attachment and repair of turbine blades. Other techniques are available for joining the 

two materials such as induction welding and induction brazing technologies. Indeed, 
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induction brazing technologies [WU 00] have been successfully used in the joining of 

Inconel X-750 and stainless steel 304, achieving ajoint strength of 483MPa. 

In order to assess the stress levels that would result in the laminated rotor pole, in the 

high strength non-magnetic hub, and at their interface, iterative finite element analysis 

was employed to predict the stress distribution in an 18-pole SR modular rotor (i.e. 9 

modules each having 2 poles) with an outer diameter of 300mm and a bore diameter of 

200mm when rotating at 15,000 rpm. A convergence study of maximum stress and 

displacement has been carried out in the same way as that for the conventional machine, 

with the radius rl in this case being replaced by the hub maximum outer radius. A value 

OfK = 0.057 gave convergence to within 0.1 %. 

Fig. 4.13 and fig. 4.14 shows the resulting Von-Mises stress distribution and radial 

displacement respectively, with the interface between the laminated modules and the 

hub being modelled as an idealised rigid bond. The Von-Mises stress at the interface is 

less than 250MPa, which compares with a maximum value of 658MPa in the hub, 

corresponding to 60% of the yield strength ofInconel 718 at 400°C [BOY 89]. By way 

of comparison, a single-piece rotor lamination with the same dimensions would have a 

maximum stress of 406MPa, which is 70% of the 400°C yield strength of Hiperco 50HS 

alloy. During the iterative finite element analysis of the modular rotor, it was noted that 

the fillet radius between the two teeth had little influence on the stress distribution 

within the module, as centripetal acceleration is manifested predominantly as radial 

forces in the module teeth. Hence the tooth fillet radius has been reduced to zero, 

affording a lighter module with subsequent lower stress in the hub, and a greater degree 

of magnetic saliency. 

The basic operation of an SR machine equipped with a modular rotor can be illustrated 

with reference to the 8-phase machine having an 18-pole rotor (configured as 9 

modules, each with two poles) and a 24-pole stator shown in fig.4.6. In order to 

f~ci1itate operation with uni-polar currents, the coils would be wound such that adjacent 
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stator poles are of opposite polarity. In terms of its electromagnetic performance, two 

key features distinguish the modular rotor machine from a conventional SR machine. 

Firstly, the poles of each rotor module have the same pitch as the stator poles, the 

required difference in the total number of stator and rotor poles that is necessary for 

continuous torque production being achieved by appropriately separating adjacent 

modules. Secondly, whereas every region of the rotor back-iron of a conventional SR 

machine is fluxed at some stage during each revolution, since the rotor back-iron in a 

modular rotor machine is not continuous, a different excitation sequence must be 

employed to realise continuous rotation, viz. two phases on adjacent teeth are excited. 

By way of example, for the machine shown in fig.4.6, the required excitation sequence 

to produce clockwise motoring torque from the position which is shown would be OF -

DC - AH - FE - CB - HO - ED - BA - OF, etc. This mode of operation results in the 

utilisation of '!.t of the stator poles and 1/3 of the rotor poles (assuming no overlap), 

which is the same as for conventional four-phase 16-12 and 24-18 pole SR machines. 

No phase overlap was assumed in order to establish a comparison of machine utilisation 

factors, whereas in practice, phase overlap may be fully realised by either machine 

topology. The modular rotor machine achieves phase overlap with negligible super­

imposition of flux-paths as compared to machines with conventional rotor designs, in 

which overlapping phases share the same flux path. 

As a consequence of its mode of operation, the possible combinations of rotor poles, 

stator poles and number of phases that are capable of producing continuous torque are 

more limited than for 'conventional SR machines, particularly for low rotor and/or stator 

pole numbers. Simple relationships defining the viable combinations of stator poles, 

rotor poles and number of phases for conventional SR machine topologies have been 

presented by Lawrenson [LA W 80], However, for the modular arrangement, the viable 

designs are seen to be more limited, and are satisfied by the following: 

The number of stator teeth, Ns and number of rotor teeth, Nr, must be even numbers, 

and Ns > Nr. (whereas Ns may be less than Nr in a conventional SR machine, albeit at 
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the expense of available stator winding area). The minimum number of phases required 

for correct excitation of the modular machine is given by the minimum value of Nph 

satisfying: 

(4.3) 

where A is an integer value between 1 and Nrl2, and Nph is the number of phases, also an 

integer value. ar is defined to be the angle subtended by one half of the rotor pole pitch, 

and as is defined to be the angle subtended by one stator pole pitch i.e. 

41l 
a, =- (4.4) 

N, 

(4.5) 

(4.6) 

where ~n describes integer values between 1 and Ns. 

Relationship 4.5 defines those designs that produce nominally balanced radial forces, 

and relationship 4.6 defines those designs that are capable of self starting and producing 

continuous torque over one revolution in either direction. The former criterion precludes 

low-pole number combinations such as a machine with 8 stator poles and 6 rotor poles, 

since only one of the 3 rotor modules produces torque during a particular commutation 

interval. 

Table 4.5 lists all viable combinations of SR machines with modular rotors having up to 

30 stator poles and 28 rotor poles. Also shown in Table 4.5 are the number of steps per 

revolution (that is related to the fundamental electrical frequency and hence the iron 

loss) and the 'utilisation factor' of the stator, i.e. the proportion of the stator poles that 

are active during a particular interval (assuming no overlap). Further combinations with 

even higher pole numbers can be derived, although they are unlikely to be suitable for 

high-speed applications. 
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As is evident from Table 4.5 there are numerous viable combinations, albeit that they all 

require a relatively high number of separate phases. In terms of minimising iron losses, 

the combinations with the lowest number of rotor and stator poles would appear to be 

the most attractive for this particular high-speed application. Further, in terms of drive 

complexity there is likely to be a preference for minimising the number of separate 

phases. 

However, the first combination in Table 4.5, viz. a 7-phase machine with 14 stator poles 

and 12 rotor poles, has the disadvantage of still requiring a relatively thick rotor back­

iron. Given the space envelope constraints, this has an adverse impact on the radial 

force at the interface between the laminated rotor pole modules and the non-magnetic 

hub, and, for a given bore diameter, limits the thickness of the hub, thereby increasing 

the level of hoop stress for a given rotor outer diameter. Indeed, for a rotor having an 

outer diameter of 300mm and a bore diameter of 200mm, it is necessary to employ at 

least 16 rotor poles (Le. 8 modules) in order to realise a viable design from both 

electromagnetic and mechanical points of view at 15,OOOrpm. Of the remaining 

combinations in Table 4.5, a machine with 24 stator poles and 18 rotor poles provides a 

good compromise between enhancing the 'utilisation factor' and minimising both the 

phase number and number of steps per revolution. 

4.4. Performance Comparison 

In order to quantify the merits of a modular rotor SR machine relative to that of 

conventional SR machines, the performance of a modular rotor SR machine has been 

compared to that of two conventional SR machines, details of all three machines being 

given in table 4.6. In the conventional SR machine design number 2, the rotor diameter 

of 248mm is the largest diameter that can be employed while limiting the peak stress to 

345MPa at 15,000 rpm, i.e. 60% of the yield stress of Hiperco 50HS at 400°C. As 

regards the conventional SR machine design number 3, although its rotor would not be 

capable of running at 15,000 rpm within the specified maximum stress limit of 345MPa 
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(the peak stress being 406MPa), it enables a comparison to be made of the static torque 

capability of a conventional SR machine with that of a modular rotor SR machine of the 

same rotor dimensions. The axial length of the stator core and the rotor for all 3 

machine designs was 50mm, which given the need to accommodate end-windings, 

terminals etc, is likely to be typical of the available space envelope in civil aircraft 

engines. 

Although a significant increase in the rotor diameter will occur in running up from 

standstill to 15,000 rpm, e.g. the rotor diameter of motor design number 2 will increase 

by 0.28mm, the finite element analyses assumed a nominal airgap length of 1.0mm for 

all 3 machines (i.e. the value at standstill). This provides a worst-case estimate of their 

torque capability. The magnetisation curve for the rotor and stator lamination material, 

Hiperco 50HS, is shown in figA.15. In this initial analysis, the influence of stress on the 

magnetisation curve was neglected. However, it is recognised that the magnetic 

properties will be modified to some degree in operation, particularly in terms of iron 

loss. 

The initial finite element analyses were performed using a two-dimensional, magneto­

static model. Fig. 4.16 shows representative two-dimensional field distributions in the 

modular machine, whilst fig. 4.17 shows the resulting flux-linkage versus current 

characteristics (per unit length) for machine design numbers 1 and 3. 

Two dimensional finite element analysis has also been employed to investigate the 

effects of various rotor tooth heights on the aligned to unaligned inductance ratio for 

designs 1 and 3. While it is obvious that a conventional rotor would have zero saliency 

if the rotor teeth were removed (and hence a unity ratio of aligned to unaligned 

inductance) the modular rotor is seen to exhibit a degree of saliency even when the rotor 

tooth height is reduced to zero. Figure 4.18 shows results from two-dimensional finite 

element magneto static analysis of designs 1 and 3 with a low excitation mmf of 7 A­

turns (to preclude any saturation effects) for rotor tooth heights between zero and 

20mm. It can be seen that little benefit is derived in increasing the rotor tooth height 

140 



above 12 nun for the conventional rotor (design 3), whereas, for the modular rotor this 

value is around 6 mm. This is primarily due to the modular rotor deriving much of its 

saliency from the large airgap afforded by the discontinuous rotor back iron as it is 

brought into alignment, hence allowing a much shorter rotor tooth, which in tum affords 

a thicker retaining hub. The maximum aligned to unaligned inductance ratio for design 

1 is ultimately limited by the definition of the unaligned position, as the rotor and stator 

have the same pole pitch, causing a significant amount of flux linkage. The maximum 

achievable ratio is hence lower, and as can be seen by inspecting Fig. 4.18 this relates to 

-75% of that achievable with design 3. It is also interesting to note that the two designs 

return the same inductance ratio for a rotor tooth height of 6mm, and that for rotor tooth 

heights below this value (as may be required in high stress applications) the modular 

rotor shows consistently higher inductance ratios, where the discontinuous back iron 

dominates the value of unaligned inductance. 

Fig. 4.19 shows the static torque-angle characteristics (per unit length) for all 3 machine 

designs, calculated by Maxwell Stress integration from a series of two-dimensional 

finite element field analyses for 2000 A-turns excitation (a rotor angle of 0° 

corresponding to the fully aligned position). 

It is evident that machine design number 1 with the modular rotor is competitive with 

the machine design number 3 in terms of its static torque capability, and has a 

considerable advantage over machine design number 2. An interesting feature of the 

torque-angle characteristic for the modular rotor SR machine is that it exhibits a region 

of negative torque from -8.2° to -10° (the extent of this negative torque region tending 

to reduce under conditions of extreme magnetic saturation). Although the negative 

torque region lies outside the normal angular interval during which this particular 

combination of coils would be excited to generate motoring torque (typically from _7° 

to _2°), it may cause a reduction in the net torque if the commutation is advanced to 

such an extent that current flows during this angular interval. Further, it may limit the' 

scope for employing overlap of the phases (as is often the case in conventional SR 

machines for high speed operation), although it does not preclude it entirely. 
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Two~dimensional analysis is useful in terms of comparing the relative performance of 3 

machine designs on a per unit length basis. However, due to the short axial length 

relative to the outer diameter, 'end-effects' will inevitably have a significant influence 

on performance. Although correction factors have been proposed for conventional SR 

machines to enable results deduced from two-dimensional finite element analyses to be 

scaled to account for end-effects [TOR 95], these are not necessarily applicable to 

modular rotor machines. Hence, three-dimensional, magneto-static, non-linear finite 

element analysis was employed in the analysis of the three'machines to establish the 

significance of end-effects. The three-dimensional analysis was limited to consideration 

of the aligned and unaligned positions only. For each position, two excitation levels 

were modelled, viz. 7 A.turns and 2000 A.turns per coil, which for a rotor in the aligned 

position correspond to un-saturated and saturated conditions respectively (2000 A.turns 

being equivalent to an effective current density in the winding of 11.7 Nmm2
). 

An important system level consideration when comparing alternative machine designs 

is their inductive impedance, and hence their power factor, since this has a significant 

influence on the V A rating of the converter. However, the different number of phases 

and the different operating mode of the modular SR machine make it difficult to form 

direct comparisons with conventional machines. Nevertheless, in terms of the influence 

on the power factor, it is useful to compare the self-inductance per phase of the 

conventional 24-18 pole machine (i.e. having 6 stator poles excited simultaneously), 

with the inductance of a pair of adjacent phases in the modular SR machine (Le. again 

having 6 stator poles excited). The resulting values of inductance per turn, calculated 

from both two- and three-dimensional finite element analyses, are given in table 4.7. As 

is evident, there is no penalty in employing a modular rotor in terms of the inductance 

per turn. Further, a comparison between the values of inductance calculated using two­

and three-dimensional analyses shows that the relative contribution of the end-windings 

is very similar irrespective of whether the machine has a modular rotor or a 

conventional rotor. 
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4.5. Conclusions 

This chapter has highlighted the fact that the mechanical strength of the lamination 

materials is likely to be a critical issue in realising SR machines which are capable of 

meeting demanding performance requirements in the harsh environment of the HP spool 

of an aircraft engine. Although commercially available grades of cobalt iron are capable 

of meeting the application requirements to some degree, they will necessarily have to be 

operated at higher stress levels than would normally be desired (particularly given 

concerns regarding high temperature creep). Further, the heat treatment which is 

employed to achieve the required mechanical properties inevitably compromises the 

magnetic properties, and in particular, increases the specific iron loss. Thus, 

conventional SR rotor designs are likely to be fairly severely constrained by the 

combination of mechanical and magnetic properties that can be obtained from current 

cobalt iron laminations. 

A modular rotor structure has been described which potentially offers a means of 

alleviating the stress in the rotor laminations, albeit many practical issues in relation to 

the reliable attachment of the laminated rotor modules to a high-strength, non-magnetic 

hub remain to be resolved. Nevertheless, such a modular rotor provides an opportunity 

to increase the rotor diameter and/or to modify the heat-treatment in order to enhance 

the magnetic properties of the cobalt iron laminations. The static performance of a 

modular, rotor SR machine has been compared with that of two conventional SR 

machines, using a combination of two- and three-dimensional finite element analyses. 

The modular rotor machine has been shown to be competitive in terms of its average 

torque capability, and would not seem to be at a disadvantage as regards power factor 

(which is a critical issue from a system level point of view when assessing the viability 

of embedded SR machines). Further, the unbalanced magnetic pull which results in a 

symmetrically disposed modular rotor SR machine is likely to be similar to that which 

results in a comparably sized conventional 'short-flux' path SR machine, such as 

machine design number 3. 
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However, it is pertinent to emphasise that given their relatively complex construction 

and the associated higher manufacturing cost, their relatively high number of poles and 

phases, it is unlikely that modular rotor SR machines will be preferred to conventional 

SR machine designs for the vast majority of applications. However, they may be an 

attractive option for an embedded machine in the HP spool of a gas-turbine, for which 

mechanical strength and long-term stability of the rotor at elevated temperatures are 

limiting design factors, and which necessarily requires a machine with a high pole 

number in order to accommodate a large rotor bore. 
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Table 4.1. Dimensional and electromechanical requirements for the HP spool 

starter/generator. 

Motoring Generating 

Max Stator OD 400mm 

Min rotor bore diameter 200mm 

Max overall length 100mm 

Speed range 0-4500rpm 7000 - 13500rpm 

Max torque 200Nm 135Nm 

Rated Power 100kW 100kW 
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Table 4.2. Minimum rotor outer diameter based on defined inductance ratio criteria, 

with a fixed shaft diameter of 200mm for various combinations of stator and rotor pole 

numbers. 

Number of stator Number of rotor Minimum rotor Steps per 

poles poles outer diameter revolution 

6 4 653 12 

8 6 367 24 

10 8 301 40 

12 8 315 48 

12 10 273 30 

14 12 257 84 

16 12 261 48 

18 12 266 36 

20 16 241 80 

20 18 235 180 

24 16 245 48 

24 18 237 72 

24 20 231 60 

30 24 225 120 
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Table 4.3. Convergence in maXImum displacement and maximum stress with 

normalised element size. Relative computational requirement for each level of 

discretisation is also shown. 

Normalised Convergence in Convergence in Relative 

element maxlmum maximum Von- Computational 

scaling factor, displacement, ~ (%) Mises stress, E (%) Requirement 

K 

Global Local Global Local Global Local 

1.000 - -- - - -
0.500 0.507 1.011 3.054 4.066 1.0 1.0 

0.333 0.221 0.355 2.245 3.070 1.7 1.1 

0.250 0.069 0.194 1.027 0.311 2.4 1.5 

0.200 0.055 0.062 0.492 1.144 3.2 1.9 

0.167 0.041 0.090 0.601 0.565 4.4 2.6 

0.143 0.028 -0.007 0.372 0.326 6.2 3.3 

0.125 0.021 0.159 0.383 0.230 7.3 3.8 

0.111 0.014 0.041 0.170 0.250 9.5 4.3 

0.100 0.014 0.062 0.250 0.217 10.3 5.2 

0.091 0.014 -0.028 0.199 0.166 12.2 6.1 

0.083 0.007 -0.021 0.104 0.130 15.0 6.1 

0.077 0.007 -0.007 0.139 0.118 18.4 7.1 

0.071 0.007 0.090 0.089 0.088 19.1 8.3 

0.067 0.007 0.000 0.106 0.077 22.0 9.4 

0.063 0.007 -0.041 0.059 0.085 25.0 9.6 

0.059 0.000 0.007 0.088 0.056 27.6 10.4 

0.056 0.007 0.021 0.050 0.056 29.3 11.4 

0.053 0.000 0.034 0.068 0.050 32.1 12.8 

0.050 0.007 -0.014 0.041 0.050 36.3 13.4 
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Table 4.4. Maximum Von-Mises stress and deflection for the various rotor module 

fixing arrangements. 

Method of Maximum Maximum Von- Maximum Von-Mises 

attachment Deflection, mm Mises stress, MPa stress at the hub inner 

radius, MPa 

Fir tree 0.5 3110 997 

Dovetail 0.83 3150 1510 

Dovetail with 0.76 3240 1570 

pre-compression 
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Table 4.5. Viable combinations of SR machines with modular rotors. 

Number of Number of Number of Steps per Utilisation 

Stator poles Rotor poles Phases revolution factor 

14 12 7 42 O.2Rn 

16 12 8 48 0.250 

18 16 9 72 0.222 

20 12 10 60 0.200 

22 12 11 66 0.182 

22 16 11 88 0.182 

22 20 11 110 0.182 

24 18 8 72 0.250 

24 20 12 120 0.167 

26 12 13 78 0.154 

26 16 13 104 0.154 

26 20 13 130 0.154 

26 24 13 156 0.154 

28 12 14 84 0.143 

28 20 14 140 0.143 

28 24 7 84 0.286 

30 16 15 120 0.133 

30 18 10 90 0.200 

30 28 15 210 0.133 
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Table 4.6 Design parameters of the 3 machines modelled 

Machine Designs 

1 2 3 

Rotor Topology Modular Conventional Conventional 

Phases 8 4 4 

Rotor poles 18 18 18 

Stator poles 24 24 24 

Rotor inner diameter (nun) 200 200 200 

Rotor outer diameter (nun) 300 248 300 

Stator outer diameter (nun) 400 336 400 

Axial length of stator stack and 50 50 50 

rotor (nun) 

Airgap (nun) 1.0 1.0 1.0 

Rotor pole arc (0 mech) 6.9 7.4 6.9 

Stator pole arc (0 mech) 6.9 6.9 6.9 

Stator slot depth (nun) 31 31 31 

Cross-sectional area of coil 171 13S 171 
(nun2) assuming ko = 0.6 

Step angle e mech) 5 5 5 

Rotor material Hiperco SOHS Hiperco SOIlS IIiperco SOIlS 

Stator material Hiperco 50 Hiperco 50 Hiperco 50 

Fundamental electrical frequency 4500 4500 4500 

@15000rpm(Hz) 

Peak Von-Mises stress in rotor 658 (hub) 345 406 
(MPa) 230 (module) 
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Table 4.7 Values of inductance calculated by two and three-dimensional magneto-static 

finite element analysis 

Machine Design 

1 2 3 

2D 3D 2D 3D 2D 3D 

Aligned inductance 53.02 61.55 45.70 50.53 51.35 61.79 

per tum (J,lH) 

(7 A turns) 

Unaligned inductance 13.83 20.28 12.46 15.66 10.96 15.72 

per turn (J,lH) 

(7 A turns) 

3.83 3.04 3.67 3.22 4.69 3.93 

Aligned inductance 42.46 43.21 35.59 35.62 42.42 43.22 

per turn (J,lH) 

(2000 A turns) 

Unaligned inductance 13.84 20.26 12.46 15.71 10.97 15.26 

per tum (J,lH) 

(2000 A turns) 

Inductance ratio at 3.07 2.13 2.86 2.27 3.87 2.83 

2000 A turns 
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Figure 4.1 . Finite element predicted Von-Mises stress at 15000 rpm in one pole of a 12-
pole rotor with a bore diameter of200mm and maximum stress limited to 290MPa. 

Figure 4.2. Locally refined finite element mesh of the IS-pole SR rotor. 
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Figure 4.8. 'Fir-tree' technique for attaching laminated pole modules to non-magnetic hub 

159 



Figure 4.9. 'Dovetail' arrangement for attaching laminated pole modules to non-magnetic 
hub 

Module ads as a dead weight 

Contad elements generated on 
hub and module interfacing 
surfaces 

Figure 4.10. Location of contact elements at the interface between the non-magnetic 
hub and the rotor module. 
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CHAPTERS 

DYNAMIC MODELLING 

5.1 Introduction 

Although an SR machine with a modular rotor has a number of potential advantages over 

a conventional rotor for the particular case of a HP-spool machine, its ultimate viability 

is dependant on realising a practical and reliable means of attaching the rotor modules. 

As a consequence, a conventional rotor topology may well be favoured as the near-term 

solution, albeit that the rotor diameter and hence torque capability is lower. Hence, a 

conventional SR machine was selected for further investigation. This chapter describes 

the dynamic modelling of the HP spool SR starter/generator with a conventional rotor 

(Le. design 2 in table 4.6). 

5.2 Selection of the number of turns for the stator winding 

By virtue of being singly excited machines, a· given SR machine can accommodate a 

wide range of winding designs, since they are to some degree self-compensating. 

However, in any practical system with a particular DC link voltage, there is likely to be a 

preferred number of turns which provides the best compromise between minimising the 

converter VA rating and copper loss while providing the maximum power capability. As 

well as selecting the appropriate number of turns during the design synthesis, the so­

called 'commutation angles' employed during operation provide an additional useful 

degree of freedom in optimising the converter V A rating and the copper loss for a given 

output power [MES 00]. 

In most PM machines, a reasonable estimate of the number of turns required can be 

derived simply from matching the induced emf to the DC link voltage with due 

allowance for reactive and resistive voltage drops at rated load and speed. However, the 

behaviour of SR machines is considerably more non-linear, and hence a combination of 
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finite element analysis and circuit simulation play a key role in determining the most 

appropriate number of turns in the machine to meet a given performance specification. 

For the particular case of the SR machine for an HP-spool, the difficulties in selecting the 

preferred number of turns are compounded by the need to meet the requirements of two 

contrasting and conflicting operating points, a high starting torque of 200Nm, and a high 

speed generating requirement of 100kW at 13500rpm. The power requirement at high 

speed imposes an upper limit on the number of turns due to the effects of inductance 

(which varies as the square of the number of turns) limiting the rate of rise of current in 

the windings, whereas the high torque required for starting requires a high number of 

turns to reduce the phase current, and hence the VA rating of the converter. Thus the 

selection of the number of turns requires consideration of the various operating points 

and the weightings associated to various performance features [COR 97]. 

5.3 Basic dynamic operation of SR machine and converter 

Most SR machines are operated in conjunction with voltage source converter, in which a 

series of nominally square wave voltage pulses are applied to the various phases in tum. 

A number of converter topologies have been developed for SR machines, ranging in 

complexity from a single switching device per phase and a chopper which controls the 

DC link voltage (which are often favoured in low-power and cost-sensitive applications 

[KRI 88] through to the full bi-polar H-bridge (which has been employed for SR 

machines with fully-pitched windings [MEC 95]). However, the most commonly 

employed topology is a so-called asymmetric H-bridge, which is shown in fig. 5.1. The 

governing voltage equation for one phase during the application of such a voltage pulse 

is: 

V 'R dllJ 
de =l +-

dt 
(5.1) 
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This equation can be re-arranged to calculate the evolution of flux linkage in a phase: 

If! = J (vdc - iR)dt (5.2) 

This period in which the flux-linkage rises is often referred to as 'fluxing' of the 

machine. At some point during one· electrical cycle of the machine, the particular phase 

must be 'de-fluxed' following each voltage pulse, which in tum results in a significant 

stored magnetic energy being returned to the supply (this would be realised in the 

converter shown in figure 5.1 by currents flowing through the free-wheeling diodes of 

the half H-bridge. 

The net direction of energy transfer between the machine and the supply is controlled by 

the relative phasing of the voltage pulses with respect to the rotor position. Figure 5.2 

shows a schematic representation of the commutation intervals required for both 

motoring and generating for the idealised case of a machine with a linear variation in 

inductance between the un-aligned and aligned positions. In order to produce motoring 

power the machine is fluxed when the rotor is in the un-aligned position and a torque is 

produced by the machine as the rotor tooth is drawn into the aligned position. In order to 

generate net electrical power, the phase is initially fluxed when the rotor is in the aligned 

position, and the prime-mover provides the necessary input torque to pull the rotor tooth 

away from this preferred position into the un-aligned position (hence generating a net 

current flow into the supply). 

Figure 5.3 shows the specified torque-speed characteristic for the HP spool embedded 

machine, where a motoring torque of 200Nm is required up to 4000rpm in order to start 

the engine, and operation as a generator is required from 7000 to 13500rpm. As well as 

controlling the commutation intervals to achieve the desired characteristics, it is also 

necessary to exercise a close degree of control over the current waveforms, particularly at 

low speeds. To this end, most SR converters employ closed loop current control schemes. 

The most common strategy for machines operating with a low fundamental electrical 

frequency is to employ a switching frequency significantly higher than the fundamental 
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electrical frequency. These techniques, such as pulse-width-modulation (PWM), 

hysteresis, and bang-bang control are well suited to very accurate control of the current 

waveform, as they are able to provide many switching cycles during one machine 

electrical cycle. They are used extensively in drives for low and medium speed 

applications. 

For the case of the HP starter/generator, the fundamental electrical frequency is 4.05 kHz 

at 13500rpm, and techniques such as PWM become severely compromised at such high 

fundamental electrical frequencies, as the number of switching intervals per cycle 

reduces to such an extent that only limited control can be exercised over the current 

waveform. Hence, at high speeds it is common practice to reduce the number of pulses 

per electrical cycle to just one, and rely on the switching angles to control the average 

value of current and hence the power flow. By controlling the tum-on and dwell angles 

accurately, the average current can be controlled to a reasonable accuracy, however, this 

technique gives rise to increased copper loss due to the high peak to rms current ratio 

encountered in the very 'peaky' single-pulse operating mode. This operating mode also 

increases the torque-ripple due to the single pulse operation, but owing to the lower 

switching frequency, the eddy losses are reduced. This technique provides no control 

over the shape of the current waveform during the pulse, and indeed, current may rise 

even after the supply voltage has been removed in a generating situation, due to the 

negative inductance profile. Control is therefore only provided in an open-loop approach 

during the current pulse, which limits the accuracy of which a given power output may 

be achieved. 

The practical implementation of such a control method is very difficult with no prior 

knowledge of the effect that switching angles have on output power. One way of 

achieving this is to generate a map of tum-on and dwell angles with respect to speed and 

power, which form the basis of look-up tables in the controller. The only method 

available in generating such a look-up table is to conduct a series of numerical 

simulations. This mapping approach, which could also in principle be performed by 

repeated testing of a prototype, is a similar procedure to that employed for mapping 

control parameters for internal combustion engines. 
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5.4 Description of the non-linear dynamic model 

Although SR machines have a very simple mechanical geometry, their performance is 

often highly nonlinear and essentially consists of a series of transient pulses. The non­

linear dynamic model employed to calculate current waveforms, and hence torque in the 

SR machine is shown in figure 5.4. 

The non-linear magnetic behaviour of an SR machine can be conveniently represented in 

a system model by pre-calculating the variation of both the flux-linkage and static torque 

with stator current and rotor position from a large number of magneto-static finite 

element solutions. Although the torque produced by the machine for a given current 

could in principle also be derived from the flux-linkage characteristic [DPA 00] [SOA 

01] [CAO 00], the approach in figure 5.4 with a separate torque characteristic greatly 

simplifies the operation of the model. 

A two-dimensional flux-linkage characteristic for SR machine design 2 was shown 

previously in figure 4.16. However, the very confined space envelope that is available 

within a typical aero-engine to integrate an electrical machine dictates that the axial 

length of the stator iron is necessarily much smaller than its outer diameter, for this 

particular specification being 50mm and 336mm respectively. Hence, end-effects may 

have a significant influence on the flux-linkage characteristics of the machine, which in 

tum would require recourse to three-dimensional finite element analysis, despite the 

significant increase in computation time. In order to establish whether three-dimensional 

analysis was necessary, the limiting cases of the un-aligned and aligned positions were 

modelled using both two- and three-dimensional analysis. Figure 5.5 compares the 

resulting predicted flux-linkage characteristics for these two positions, from which the 

significant influence of end effects, particularly in the un-aligned position, is apparent. 

Hence, to provide an accurate representation of the machine behaviour for the dynamic 

model, a series of 110 three-dimensional finite element calculations were performed for 

all-inclusive combinations of rotor position between the aligned and unaligned positions 

(in 10 increments) and coil mmfs from 500A.turns to 7000Aturns, which corresponds to 

a highly saturated machine. In each case, only single-phase excitation was considered, 

i.e. no overlap of phase currents was considered at this stage of the modelling. However, 
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the mutual flux linkage of the adjacent phase was calculated. The static torque at each 

angular position and current was calculated using the principle of virtual work. Fig 5.6 

shows a typical finite element mesh (in this case for the aligned position), while fig. 5.7 

shows the corresponding flux densities in the rotor and stator core for the particular case 

of an mmf of 2800A.turns. 

The resulting flux-linkage characteristics for SR machine design 2 are shown in figure 

5.8, while fig 5.9 shows the torque characteristics. In both cases, these characteristics are 

based on a total ampere-turns per phase, and hence can be scaled appropriately for any 

number of turns. These characteristics are incorporated into the dynamic model as two­

dimensional look-up tables with cubic-spline interpolation. However, since the finite 

element solutions were performed for a specified value of current rather than for a 

specified value of flux-linkage, it is necessary to re-arrange and curve fit the data of 

figure 5.8 such that the modified characteristic provides the current for a given 

combination of input flux-linkage and angular position. 

The electrical resistance of one phase can be calculated for a given number of turns using 

the idealised model shown in fig 5.10. The resistance for a phase with Nc coils, each 

having n turns is given by: 

(5.3) 

where Lp is the total length of the interconnecting conductors between coils around the 

machine periphery, kp is the packing factor, and p the resistivity of copper. Equation 5.3 

calculates the DC resistance of the winding. Although this value neglects the influence of 

any eddy currents in the windings (which is a particular concern given the high 

frequencies involved), this assumption is valid providing due care is taken during the 

design of the machine to sub-divide the conductors into an appropriate number ofparaUel 
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strands (or in extreme cases the use of Litz wire). An estimate of the conductor diameter 

required can be derived from the classical expression for skin depth: 

8 = 1 
~1!ff.uJ' 

(5.4) 

For a sinusoidal current with a frequency of 4.0kHz, the skin depth predicted using 

equation 5.4 is -1.Omm. Wire diameters greater than twice this skin depth will therefore 

yield little benefit in terms of current density reduction in the conductor cross-section. 

It is worth noting that in common with many large machines, the resistive volts drop 

corresponds to a very small proportion of the DC link voltage. Hence the calculated 

value of current is relatively insensitive to any errors in the calculated resistance (due for 

example to over-simplified representations of the end-winding). Indeed, even for a 50% 

increase in phase resistance the rms phase current changes by less than 0.4%. 

An important consideration when calculating dynamic current waveforms In SR 

machines, is the extent to which mutual coupling between phases must be accounted for. 

Although SR machines are generally regarded as operating on essentially phase-by-phase 

basis, there is often considerable overlap of the currents in different phases (either 

deliberately so as to minimise ripple torque for example, or as a natural consequence of 

the decay period of the currents at high speeds). However, the rigorous inclusion of 

mutual effects would require many more field calculations to be performed to cater for 

all-inclusive combinations of currents in the remaining phases at each rotor angular 

displacement. For the case of a 4-phase machine, this would increase the number of 

degrees-of-freedom in the flux-linkage characteristic from 2 to 5, which in tum is 

prohibitive in terms of computational time. For this machine design, a series of test 

calculations demonstrated that the mutual inductance does not exceed 5% of the 

corresponding value of self-inductance in any position or with any of the values of mmf 

considered. Hence, it is reasonable to neglect mutual inductance given the dramatic 

reduction in computational effort that this allows. 
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5.5 Winding design 

By performing dynamic simulation for increasing numbers of turns, it is possible to 

establish a maximum number of turns that allows 100kW of generating power to be 

derived at 13,500 rpm from a 270V DC link. This in turn will determine the minimum 

starting current which is required if the high-speed power specification is to be met. For 

each particular number of turns, the commutation angles Son and 80 fT were optimised by 

repeated simulation in order to generate the maximum power. Table 5.1 summarises the 

maximum achievable power at 13,500rpm, the corresponding commutation angles, the 

peak and rms currents at 13,500rpm and the starting current, for increasing number of 

turns from 1 to 5. As is evident, the power requirement of 100kW is only exceeded for 

machines with up to 4 turns per coil, which in tum gives a minimum starting current of 

1200A. However, 4 turns per coil is on the limit of being able to produce 100kW and 

requires almost continuous current as shown in figure 5.11 which shows the predicted 

current waveform for the commutation angles listed in table 5.1 (the resulting dwell 

angle being 1790 and a phase extinguish angle of 356°). The difficulties in satisfying the 

two conflicting performance requirements are clearly apparent in that even following 

careful optimisation, the rating of the converter is -143k V A, i.e. some 1.4 times the 

maximum power rating of the machine. 

A further series of simulations were performed for values of N up to 5 to establish 

commutation angles that would generate lOOkW at 13,500rpm. In all cases apart from 

N=4, there are several combinations of commutation angles which would allow 100kW 

to be produced. Hence, in each case the commutation angles that give rise to the 

minimum copper loss were determined. Table 5.1 lists the resulting commutation angles 

and peak currents required to generate 100kWat 13,500rpm. 

On the basis of the findings of the dynamic simulation, 4 turns per coil would appear to 

offer the best viable compromise in terms of converter V A rating. However, given that 

the predicted power only exceeds the lOOk W specification by less than 2% and that there 

is little scope to improve on this value given that the current is close to being continuous, 

it is important to consider the sensitivity of the dynamic simulation results to variations 

in the ambient temperature. 
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The DC magnetisation curve of Hiperco SOHS is influenced to a degree by operating 

temperature. However, discernable changes in permeability, and more particularly 

saturation flux density, only occur for temperatures in excess of SOO°C [LJ 96] the 

magnetisation characteristic being essentially constant for temperatures up to 400°C. 

Hence, finite element flux linkage versus current characteristics generated with room 

temperature magnetisation data can be used with negligible error for temperature up to at 

least 400°C. The other potential impact of elevated temperatures on the prediction of 

current waveforms and hence torque is the variation in copper resistivity (which 

increases by a factor of 2.S between room temperature and 400°C). However, as 

discussed previously in section 4 of this chapter, the resistive volts drop in this high 

power machine is very small in relation to the induced emf and the DC link voltage, e.g. 

for a 250% increase in resistivity for a machine with 4 turns, the rms current reduces 

from 316A to 314A (Le. by less than 1 %). Hence, temperature effects can be neglected 

in the dynamic model from the point of view of calculating current and torque, although 

it is critical to use an appropriately compensated value of resistance to calculate the 

resulting copper loss. Having established the preferred number of turns and the resulting 

current waveform at the rated point, the iron losses in the machine can be determined. 

5.6 Calculation of iron losses 

In order to quantify both the overall efficiency, and the likely temperature rise of the 

machine imposed by the iron losses, a detailed study of iron loss in the 4-phase SR 

machine was undertaken. As was highlighted in section 2 of Chapter 4, the combination 

of high speed and high pole number (electrical frequency of 4.05kHz at 13500rpm) will 

inevitably result in high levels of iron loss. 

An important consideration in calculating the iron losses in this SR machine is the 

influence of the temperature employed for heat-treating the Cobalt Iron on the losses in 

the rotor. As discussed previously in section 2 of chapter 4, there is considerable scope to 

tailor the mechanical properties of a particular composition of Cobalt Iron by varying the 

heat treatment temperature. However, any benefits in enhanced mechanical strength are 
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gained at the expense of the magnetic properties, in particular the coercivity and hence 

the iron loss. 

For Hiperco 50HS, the iron loss increases markedly with increasing yield strength as 

shown by the measured characteristics published by Masteller which are shown in figure 

5.12 [MAS 98]. The increase in iron loss observed in figure 5.12 can be explained by 
, 

reference to the grain size produced with different heat treatment schedules (i.e. Hall­

Petch relationship) whereby the yield strength increases in inverse proportion to the 

square root of the grain size. For heat treatment which produces a high strength of 

680MPa (i.e. 720°C) the resulting small grain size causes a significant increase in the 

coercivity and hence the hysteresis losses. By way of example, for mechanical strengths 

of 500MPa and 680Mpa, the hysteresis loss for a maximum flux density of 2.25T is 

0.253 and 0.441 J/kg/cyc1e respectively [CAR 95]. This represents a 76% increase in 

hysteresis loss for a 36% increase in mechanical strength. However it is worth noting that 

the coercivity of the material reduces with operating temperature while the electrical 

resistivity increases, both of which tend to result in a reduction in losses at elevated 

temperatures. 

Whereas material specific iron loss coefficients can be readily derived from 

manufacturer's data and/or measurements for room temperature operation, there is little 

available data for higher temperatures. However, it is well documented that up to 400°C, 

the change in coercivity losses is small in comparison to the change in electrical 

resistivity [LI 96]. Moreover, in view of the fact that eddy current losses are dominant at 

such high frequencies, it was deemed to be reasonable to account for the influence of 

temperature on the iron losses by solely scaling the electrical resistivity in line with 

published data [SIM 96]. The resulting coefficients for use in equation 2.2 are shown in 

Table 5.2. 
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5.7 Procedure for calculating iron loss in the SR machine 

In many respects, the procedure for calculating iron losses in the SR machine is very 

similar to that described for the BLOC machine in chapter 2, i.e. the flux density 

waveforms throughout the machine are calculated from a series of magneto-static finite 

element solutions with the appropriate current waveform, following which, an iron loss 

model is used to calculate the losses for each of these waveforms. However, for SR 

machines, it is necessary to extend the model for calculating the hysteresis component of 

the loss since many regions of the stator and rotor are exposed to either unidirectional 

flux density variations. or asymmetric variation with large OC offsets (c.f. BLOC 

machines where the flux density variations are symmetrical - although not necessarily 

sinusoidal). To cater for these uni-polar variations, the method proposed by Calverley for 

calculating minor-loop losses has been implemented [CAL 02]. This method, which 

extends the basic methodologies proposed by Lavers [LA V 78] employs a non-linear . 

correction factor with a conventional hysteresis model. 

In order to calculate flux density waveforms throughout the machine, a series of two­

dimensional magneto static finite element solutions were performed using the current 

waveform shown in figure 5.11, which corresponds to generating 100kW at 13,500rpm, a 

condition that will yield the worst-case losses. Two-dimensional finite elements were 

deemed to be adequate for calculating flux density variations within the core, since 

although end effects will have some influence on the flux-density waveforms, this is 

likely to be considerably less significant than the influence of the flux-linkage 

characteristics. 

Since SR machines operate with uni-polar currents and largely on a phase-phase basis, 

there is scope to vary the sense in which the various phase coils are wound without 

having a significant impact on torque production. For the case of a 24-18, 4-phase 

machine, the coils can be connected as either NNNN-SSSS or NSNS-SNSN as shown in 

figures S.13(a) and S.13(b) respectively. The main difference in operation is in the flux 

waveforms in the stator back-iron as shown, which in tum will influence the iron losses. 

As is apparent from fig. 5.13, the NNNN-SSSS configuration is likely to yield the lowest 

losses, a conclusion which is consistent with that observed by Calverley for the case of a 
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6-4 machine [CAL 02] Given the benefits of a NNNN-SSSS connection, this was 

adopted for the HP spool machine and formed the basis of the finite element modelling 

A series of field solutions were performed at 0.5° increments in rotor angle using the 

ANSYS electromagnetic package. Representative field distributions in the aligned 

position and at the end of overlap between the rotor tooth and the main excited stator 

tooth (Le. 0° and 5.5°) are shown in figure 5.14(a) and (b). As is evident from figure 

5.14(b) as the teeth become increasingly un-aligned, very highly localised values of flux 

density occur near the edges of both the stator and the rotor teeth. Figure 5.16 shows a 

series of resulting flux density waveforms at key locations within the stator and rotor that 

are defined in fig 5.15. 

The resulting total iron loss for this particular operating condition was calculated to be 

2780W (1220W in the rotor and 1560W in the stator) using the model described in 

chapter 2 with modifications to cater for uni-polar flux density variations. This 

corresponds to a very high average loss density of 192W /kg. However, there are very 

high loss densities in the trailing tips of the rotor teeth and the leading tips of the stator 

teeth as is evident in the predicted distribution of loss density within the machine which 

is shown in figure 5.17. Of the three contributors to the overall iron loss, the classical 

eddy current component is dominant, as would be expected given the high frequency. 

The relative magnitudes of the hysteresis, excess, and classical eddy current losses being 

1110.8, 138.8 and 1527.3 W respectively. 

5.S Consideration of alternative soft magnetic materials 

In view of the high iron loss densities predicted for a machine with a Hiperco 50HS rotor 

and Hiperco 50 stator, the scope for employing alternative soft magnetic materials was 

considered. Of the various candidate materials that might offer some advantages over 

49% cobalt-iron alloys in this particular application (in which classical eddy current 

losses are dominant) arguably the most interesting is 6.5% Silicon Iron (specifically 

O.1mm thick laminations of NKKI Oex900) because of its significantly higher electrical 
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resistivity, viz. 4.S3xlO-7 .Qm and 8.2xlO-7 nm respectively. However, as demonstrated 

by figure 5.18, it has a considerably lower saturation flux density as compared to Hiperco 

SO (viz. -1.3T and -2.3T respectively). 

An alternative machine with the same dimensions as the original design, but employing 

NKK 10ex900 in both the stator and rotor was modelled. The dynamic current 

waveforms (and the subsequent selection of the most appropriate number of turns) and 

calculation of the iron losses were performed using an identical procedure to that 

employed for the Hiperco SOHSI Hiperco SO machine. The flux-linkage characteristics 

derived from three-dimensional FE analysis for the NKK 10ex900 machine is shown in 

figure S.19, whilst the resulting dynamic phase current waveform at 13S00rpm, 100kW, 

for the particular case of 3 turns, is shown in figure S.20. Table 5.3 compares the 

performance of the NKK machine with that of the Hiperco SO I SOHS machine. Although 

the iron losses are reduced by some 40% at this particular operating point, the NKK 

machine is only capable of meeting the 100kW output torque if the machine is highly 

saturated, which in tum requires an rms phase current of 893A (equivalent to an mmf of 

2680 A-turns) and a peak phase current of 2900A. The reSUlting copper losses at 100kW 

are 12.4 kW and the starting current is 5800 A to produce 200Nm (as compared to 1200 

A for the Hiperco SOl SOHS machine). Hence, any benefits accrued in reducing iron 

losses are offset by the substantially increased converter rating (and associated converter 

losses) and a large increase in copper loss, which, as will be demonstrated in Chapter 6, 

is more difficult to remove due to the poor thermal path from the winding to the coolant. 

A third design variant was considered with an NKK stator and a Hiperco 50HS rotor. 

However, the resulting flux linkage characteristics showed little deviation from those of 

the machine with both an NKK stator and rotor, and hence little improvement was gained 

in terms of torque capability, since saturation of the stator teeth limits any advantage that 

could be gained from the higher saturation flux density of the rotor. Given that the losses 

in this mixed material machine would irievitably be higher than the full NKK machine, 

while the significant penalties in copper loss and converter rating would be similar, it is 

unlikely to provide a preferred option to the original Hiperco SO / SOHS machine. 
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Table 5.1. Hiperco 50 stator / Hiperco 50HS rotor results from dynamic modelling. 

Number of turns 1 2 3 4 5 

S 
Power (kW) 116 300 142 102 61 

e-
o 
0 
~ 
M -~ Peak Current (A) >30000 >10000 1910 540 307 ..... 

~ 
0 
p., RMS current >10000 3774 802 323 185 
~ 

:E 
Son / 80 ff Celec) 170/240 120/250 100/270 78/259 60/240 

0 
Peak Current (A) >10000 0 2620 710 527.4 · ~ 

M -~ RMS current (A) 1861 630 373 316 · 
~ 
0 
0 

Son / Soff Celec) 170/236 120/233 100/254 78/258 - · 

Current for 200Nm starting 5100 3440 2410 1200 950 

torque (A) 
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Table 5.2. Loss coefficients for Hiperco cobalt iron materials at 400°C. 

Constant Hiperco 50 Hiperco 50HS 

kh 0.0159 0.073 

mv 8120 8120 

't O.l5e-3 0.15e-3 

kexc 3.708e-s 5.91Oe-s 

a 1.405 2.213 

b 0.075 -0.410 

sigma 1.7ge6 1.7ge6 
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Table 5.3. Comparison of Hiperco 50/50HS and NKK IOex900 machines. 

Number oftums Hiperco50/50HS NKK IOex900 

(4 turns per coil) (3 turns per coil) 

S 
fr Power (kW) 102 160 

0 
0 
1/)" 

M Peak Current (A) 540 5230 -~ 
.... 
~ RMS current 323 1782 
0 
p., 

~ 
eon 190fT (Oelec) 78/259 105/275 :E 

0 
Peak Current (A) 0 527.4 2900 

11"'1., 
M -~ RMS current (A) 316 893 
~ 
~ 
0 
0 90n 190fT (Oelec) 78/258 105/235 -

Current for 200Nm starting 1200 5800 

torque (A) 
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Figure 5.1. Typical asymmetric halfR-bridge converter for an SR machine with the 
phase winding in series with the devices, hence removing the possibility of shoot­

through. 
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Figure 5.2. Commutation intervals, Son and SofT for motoring and generating 
operation. (a) Idealised inductance profile, (b) Motoring operation, (c) Generating 

operation. 
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Figure 5.3. Torque versus speed profile for the HP spool machine under motoring and 
generating conditions. 
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Figure 5.4. Schematic of dynamic model developed in SABER, showing the two 2D 
lookup table approach to calculate phase current and torque. 
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Figure 5.5. Flux linkage versus current from 2D and 3D finite element models 

Figure 5.6. Three-dimensional finite element mesh of the SR machine with axial 
symmetry, and 60° cyclic symmetry. 
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Figure 5.7. Flux density in the SR machine in the aligned position, for a winding mmf 
of 2800 A. turns. 
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machine design 2. 
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Figure 5.12. Core loss as a function of yield strength in Hiperco 50HS, for sinusoidal 
flux at 400Hz, 2T. Source: S.D. Masteller [MAS 98]. 
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Fig 5.13 (a) Stator iron showing direction of flux paths for a NNNN-SSSS winding 
connection in a 24-18 SR machine. (b) NSNS-SNSN connection. 
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Fig S.14(a) Flux distribution in the machine in the aligned position for phase A. 
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Fig S.14(b) Flux distribution in the machine at 5.5° clockwise rotation from the 
aligned position for phase A. (Unaligned position = 10°) 
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Figure 5.15. Key locations in the stator and rotor for determination of the flux density 
waveforms shown in figure 5.16. 
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Figure 5.16. Flux density waveforms at the locations defined in figure 5.15. 
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Figure 5.17. Local iron loss density calculated on an element-by-element basis at 
13500rpm, 100kW. 
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Figure 5.18. Comparison of Hi per co 50 and NICK 10ex900 magnetisation curves. 
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CHAPTER 6 

THERMAL MODELLING OF THE SWITCHED RELUCTANCE 

STARTER/GENERATOR 

6.1 Introduction 

The high-pressure spool of an aircraft-engine provides arguably one of the most hostile 

environments in which the deployment of electrical machines is being proposed. The 

potential difficulties posed by the operating environment, particularly the elevated 

temperature, are compounded by the fact that this application is also extremely 

demanding in terms of reliability. Many established and well proven electrical machine 

technologies are incapable of operating at such elevated temperatures, which in turn 

necessitates the use of materials and processes for which there is often a dearth of data 

(both quantitative and empirical/historical). Hence, particular attention must be given 

to minimising any additional thermal stresses on components as a result of excessive 

internal heat generation and/or poor heat transfer. 

As was demonstrated in chapter 5, the HP spool machine is subject to very high levels 

of internal power dissipation (approx 140 W/kg) as a consequence of the demanding 

power density (3.6 kW/kg) and operating speed specifications. Given the combination 

of a harsh temperature environment and the desire for minimal ancillaries for cooling, 

the thermal behaviour of the machine (particularly over extended periods of operation) 

is likely to have a significant bearing of the viability of embedding a machine within the 

engine. 

A variety of different cooling strategies are employed in high power density aerospace 

electrical machines. Such machines require very high specific heat transfer rates, and 

hence, tend to use either forced oil cooling or oil-spray cooling [RAD97, RIC94]. 

Indeed existing published design studies on HP spool machines have been based on oil­

cooling, although it is recognised that this is unlikely to be a long-term solution since 
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they require complex ancillary systems comprising filters, pumps and heat-exchangers 

(which could be either fueVoil or air/oil), which in tum necessitate demanding and 

costly maintenance schedules. Hence, in the longer term, forced air cooling is likely to 

emerge as the preferred option, providing the required heat transfer rates can be 

achieved. This is particularly the case for the more-electric engine, where a long-term 

objective is the removal of oil systems from the engine (Le. the so-called 'oil-less' 

engine). In a large civil aircraft engine, high-pressure cooling air is readily available via 

existing bleed ducts in the IP compressor. Figure 6.1 a and b show one proposed 

configuration for an HP spool machine, in which high pressure cooling air is fed into the 

machine casing. This forced air then flows through a series of circular ducts in the stator 

frame and via a series of triangular ducts within the stator slots. 

An accurate thermal model of the HP spool starter/generator is therefore an essential 

pre-requisite for assessing its viability and establishing the features that would need to 

be integrated into an engine to provide the necessary cooling. Moreover, detailed 

temperature distributions within the machine are essential in order to reliably predict the 

lifetime of various components (e.g. the high temperature creep behaviour of cobalt iron 

materials [FIN 02], the premature ageing of insulation materials). 

In some respects, the thermal modelling of an SR machine located on the HP spool has 

many features in common with the modelling of the BLDC machine in the EHA, which 

was described in chapter 2. However, the external environment, in particular the degree 

to which purpose-designed forced cooling features will be employed has yet to be 

established for the more-electric engine. Although some useful data can be garnered 

from temperatures and air flow-rate data measured on conventional engines, these only 

provide typical ambient temperature values. Moreover, the detailed architecture of an 

electric engine has yet to be definitively specified. Hence, in the absence of a well 

defined description of the operating environment, the approach adopted in this chapter 

is based on modelling internal heat transfer within the machine using the loss data 

generated in chapter 5 in order to establish the likely external cooling requirements. 

This in tum will provide quantitative data to assess the feasibility of air-cooling an 
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embedded machine on a HP spool and provide an initial design specification for a 

cooling system. Although the external environment in which the electrical machine 

resides is greatly simplified (in effect it is represented by a few lumped thermal 

resistances), it provides a convenient means of establishing the sensitivity of the 

machine performance to the external cooling, and hence a quantitative means by which 

the trade-offs between electrical machine power density and cooling requirements can 

be determined. 

6.2 Thermal properties of the HP spool machine 

The maximum ambient temperature encountered in the region between the IP and HP 

compressors of a typical large three-spool turbo-fan engine is -350°C, while the 

available cooling air is at 300°C and -8 bar. For the purposes of the design synthesis 

described in Chapter 4, it was assumed that the combination of losses and cooling 

strategy would result in a bulk operating temperature in the machine of -400°C. 

Although this approach provided a basis for establishing the mechanical constraints of 

the rotor, an improved calculation of internal temperatures within the stator and rotor is 

required to establish the properties and the integrity of the materials. In the case of the 

soft magnetic materials, although Hiperco SOHS exhibits useful saturation flux density 

levels at operating temperatures up to 500°C [FIN 02] there is a degree of aging if the 

temperature is maintained beyond 450°C for a significant period of time. By way of 

example, the Hiperco SOHS alloy considered for the rotor has been shown by Li to be 

relatively unstable at operating temperatures of 500°C in terms of its magnetic 

properties, showing an irreversible increase in coercivity of 34% after 2000 hours aging 

in an argon atmosphere with little sign of reaching a plateau; thus raising obvious 

concerns over its long term stability [LJ 96]. The resulting increase in total iron loss at 

400°C for 1.8T and 1kHZ excitation is 49% and 21% for Hiperco 50HS and Hiperco 50 

respectively. Consequently, the effects of aging at high temperatures may result in 

higher temperatures in the machine after long periods of operating time, causing the soft 

iron material to become 'harder' magnetically, and may eventually result in excessive 

temperature rises after long periods of service. 
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The high temperatures which are likely to be encountered within the slot preclude the 

use of conventional polymeric insulation systems such as Polyimide based materials 

which have a maximum continuous temperature rating of 240°C, fibre based slot lining 

materials such as Nomex 410 (typically 180°C) and epoxy potting compounds such as 

Stycast® 2850 (max. 200°C). For example, un-encapsulated copper windings are 

susceptible to corrosion over a temperature of -350°C, and must therefore either be 

adequately shielded from the ambient environment using an appropriate high 

temperature ceramic encapsulant, or manufactured from nickel clad copper. One 

candidate material that could be used for lining the slots in a high temperature machine 

is Aluminium Nitride. This ceramic is widely used in the electronics packaging 

industry, by virtue of its combination of a high thermal conductivity (170W/mK - c.f 

0.15 W/mK for Nomex 410 slot liner material) and excellent electrical insulation 

properties (volume electrical resistivity in excess of lxlOlsQm and dielectric strength of 

40kV/mm). It is capable of stable operation in temperatures up to 700°C with minimal 

change in electrical, mechanical or thermal properties. Moreover, it can be readily 

machined, albeit that very thin sections can pose manufacturing problems because of 

their inherent brittleness. 

6.3 Thermal model 

In order to predict internal temperatures within the SR machine, a lumped parameter 

thermal network was developed, using a similar approach to that described in chapter 2 

for the BLDC machine. In defining the problem domain for the thermal model it is 

useful to consider the likely extent of the heat transfer between the stator and rotor 

across the airgap. Given the high axial air flow rates through the airgap which are likely 

to be required to cater for the high specific dissipation, the radial convection heat 

transfer is likely to be very small in comparison with the heat transfer to the cooling air. 

Hence, the thermal models of the stator and rotor can be de-coupled and analysed 

separately. 

In order to establish the cooling requirements using the thermal model of the stator, the 

frame of the machine was assigned an effective heat transfer coefficient to ambient. A 

199 



series of solutions were then performed for progressively increasing values of this heat 

transfer coefficient. 

As demonstrated by the predicted iron loss contours shown previously in figure 5.17, 

for a 'NNNN-SSSS' winding arrangement, the iron loss is periodic over an 8 pole 

section of the stator and over one pole pitch of the rotor. This periodicity can be 

exploited to reduce the thermal model to a 60° section of the stator and a 20° section of 

the rotor. It is worth noting that this reduction in the problem domain is based on the 

assumption that the heat transfer from the frame is dominated by forced air cooling 

rather than buoyancy effects (which vary between successive 60° sections). 

Figure 6.2(a) shows the stator region that is represented in the thermal model. It 

comprises 8 half tooth-pitch sections (labelled 1 to 8), with zero heat flux boundaries 

applied on faces P and Q. Each of the sections of the stator lamination is further divided 

into 4 sub-regions (labelled B-E in figure 6.2(b». This level of discretisation was 

selected as it provides a practicable balance between network complexity and catering 

for the significant variation in loss density within the stator lamination. Within each of 

these 4 sub-regions, a mean loss is calculated by integrating the loss of each individual 

finite element within that region. The copper loss is equal for each coil and is uniformly 

distributed over the cross-section of the coil (labelled as region A in figure 6.2(b». 

The stator slot liner of the thermal model is based on representing the actual Aluminium 

Nitride slot inserts by their bulk thermal properties together with the same thermal 

contact resistances as were used for the Nomex slot liner described in chapter 2 

(although it is recognised that the high precision to which an Aluminium insert can be 

machined may result in the contact resistance at slot insert / stack interface being lower 

in practice). It is interesting to note that by virtue of its high thermal conductivity, the 

thickness of an Aluminium Nitride slot liner only has a marginal effect on the net 

thermal resistance between the winding and stack, since this is dominated by the contact 

coefficients. 

200 



Figure 6.2( c) shows a simplified equivalent network for section 4 of the stator 

lamination, in which various thermal resistances have been combined for the purposes 

of aiding clarity. The networks for each successive section of the stator are simply 

connected by means of circumferential nodes that allow heat transfer between sections. 

The equivalent thermal resistance values for the network of figure 6.2( c) are derived 

using the same approach as that described in chapter 2 for the stator of the BLDC 

machine in the EHA, and indeed there is much commonality between many elements of 

both models. A detailed network diagram for the SR machine stator thermal model, 

together with a table of values for the various thermal resistances and loss sources are 

contained in Appendix C. 

The regions employed to discretise a 20° section of the rotor are shown in figure 6.3(a), 

with the corresponding thermal network shown in figure 6.3(b). Zero heat flux 

boundaries are applied at faces X and Y, while face Z is assumed to be at a constant 

temperature of 350°C, since the large HP shaft can be reasonably approximated as 

having a fixed temperature with respect to any variation in the heat dissipated in the 

machine (although it is important to recognise that it may vary to some degree with 

changes in ambient environment and/or the duty cycle of the engine). The outer surface 

of the rotor is subject to a degree of forced convection heat transfer due to a 

combination of its own rotation and the axial flow of cooling air. This is represented in 

the thermal model by a lumped equivalent thermal resistance Rrot• 

Rotor aerodynamic losses will inevitably influence the heat transfer in the airgap region. 

The nature of air-flow due to rotation in the airgap of an SR machine is extremely 

complex as a result of the highly salient structure of the rotor. It has been demonstrated 

by Y amada [YAM 62] that standard expressions for rotating cylinders are of little utility 

for SR machines. The complex interaction of tangential and axial flows in a 4-pole SR 

rotor has been studied by Calverley using a three-dimensional computational fluid 

dynamics model [CAL 00]. However, this technique is computationally very expensive, 

and requires detailed knowledge of the flow path entering and leaving the rotor air 

space, and of the axial pressure differential. Given the complex nature of the flow in the 
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end-regions of the machine, and its comparatively short axial length (which will give 

rise to significant entry and exit effects), an accurate calculation of rotor losses and the 

degree to which these losses enter the rotor and stator rather than being removed by the 

cooling air was deemed to be outside the scope of this thesis. It was therefore assumed 

that the cooling strategy that would ultimately be employed in a practical machine 

would be specified such that the aerodynamic rotor losses would not cause a discemable 

rise in the rotor and stator temperature, and hence could be neglected in the models of 

heat transfer. 

6.4 Procedure for determining cooling requirements 

The equivalent thermal network of the stator was initially employed to model heat 

transfer for the particular case in which forced air cooling from the IP compressor 

(which is at 300°C) was applied to the stator frame only. In this case, the thermal 

resistance Rwdg in figure 6.2( c) was assumed to be infinite, i.e. the heat transfer within 

the slot region was assumed to be solely a result of conduction into the stator and the 

frame. The effective thermal resistance due to forced air cooling of the frame, i.e. Rfr in 

figure 6.2(c), was assigned a series of values between 0.017 KIW and 2.33 KfW. Figure 

6.4 shows the calculated variation in the maximum temperature of the winding and back 

iron for values of Rfr up to 2.33 KfW, for the particular operating point of 100kW at 

13,500rpm (the total copper and stator iron losses being 1710W and 1560W 

respectively). It can also be seen from figure 6.4 that a limiting value of temperature is 

achieved by setting a value for Rfr of 0.005 K/W (which in effect is equivalent to an 

infinite heat sink with respect to the internal thermal resistances). The maximum 

winding temperature approaches an asymptotic value of -570°C for this condition, as 

the heat transfer capability from the frame is continually increased. Thus, additional 

direct cooling of the windings is necessary if the maximum winding temperature is to be 

limited to more acceptable levels, i.e. -400°C. In order to quantify the benefits of direct 

forced cooling of the winding, the heat transfer was calculated at the same 100kW, 

13500rpm operating points for all inclusive combinations of Rfr between 0.017 and 2.3 

KfW and Rwdg values between 0.6 and 31 KfW. The resulting variation in the maximum 

winding temperature as a function ofRfr and Rwdg is shown in the contour plot of fig 6.5. 
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It is apparent from figure 6.5 that various combinations of Rrr and Rwdg will result in a 

winding temperature of -400°C, although many of these combinations may not be 

achievable in practice for forced air cooling. In selecting the most suitable combination 

of thermal resistances from figure 6.5, it is important to recognise that the area available 

for heat transfer from the winding is highly constrained whereas, within limits, the 

number of ducts in the stator frame can be increased to provide the desired effective 

area. In practice, the ease with which air can be forced into the winding and frame ducts 

will influence the best combination from figure 6.5. By way of illustration, from the 

point of view of minimising the overall cooling requirements, the best balance would 

arguably be achieved by selecting a combination of thermal resistances on the basis that 

they require the same heat transfer coefficient (Le. the same heat transfer per unit area) 

in both the stator frame and the winding slots. Using this criterion, it is necessary to 

achieve a heat transfer coefficient of -11 OW/m2K in both regions to limit the maximum 

winding temperature to -400°C (which in turn corresponds to a required stator frame 

duct surface area ofO.056m2, and hence values ofRfr and Rwdg of 0.75 K/W as shown in 

figure 6.5). In order to minimise the overall mass of the HP-spool machine, a relatively 

thin frame would be desirable. This in turn favours the use of a relatively large number 

of ducts of small cross-section. Assuming that a frame thickness of -1 Omm would be 

sufficient for mechanical purposes, then one possible duct arrangement would be a 

series of 48 circular ducts having a diameter of 7.5mm. 

Although a value of heat transfer coefficient of 1l0W/m2K lies within the range of 

values that have been achieved in practice for some high performance forced air cooling 

schemes [SARI 95], it is important to consider the mass flow rates required, and the 

subsequent aerodynamic losses associated with the cooling air for the particular ducts 

shown in figure 6.1. Indeed, 'cooling losses' can result in the benefits that are accrued 

by increasing the mass flow being gained at a much diminished rate of return, and 

indeed may ultimately cause the net heat transfer to decrease. 

The mass flow rate required to achieve a given heat transfer coefficient through a 

particular cooling duct can be estimated from published correlation equations for fully 
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developed turbulent flow in ducts [GNI 76] In the case of the winding duct, the effective 

cross-section of the duct is assumed to be the area Awdg in figure 6.6(a). The flow within 

the duct is assumed to be fully developed and uniform along its entire length (Le. there 

are no entry or exit effects), which is a reasonable approximation given that the flow is 

likely to be highly turbulent on entry after flowing through the external ducting and 

across the end windings. Therefore, the Nusselt number required to achieve a specified 

heat transfer coefficient can be calculated from: 

Nu= hDh 
k 

(6.1) 

where Dh is the effective hydraulic diameter of the duct, and can be approximated in the 

case of a triangular duct as: [CAR 61] 

Lt sin2¢ 
Dh=~---'-

1 +sin¢ 
(6.2) 

where the angle 24> and the length Lt are defined in figure 6.6(a). The corresponding 

axial Reynolds number can then be evaluated by rearranging the heat transfer equation 

for turbulent flow in a duct, Le. 

(6.3) 

where Pr is the dimensionless Prandtl number and is given by: 

/ P _ Cp /1 r---
k 

(6.4) 

where Cp is the specific heat of air at constant pressure, J.1 is the dynamic viscosity, and 

k the thermal conductivity of air. In order to calculate heat transfer within the duct, the 

physical properties of air were evaluated at 400°C. Given an estimate of the Reynolds 

number required, the corresponding mean axial velocity, U, can then be calculated for 

the given hydraulic diameter 
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(6.S) 

where v is the kinematic viscosity of air at 400°C. This axial velocity can be related to 

the mass flow rate by: 

m=pU Awdg (6.6) 

where p is the density of air at 400°C. By using equations 6.1 to 6.6, for the particular 

case of air at 400°C, the mass flow rate required to achieve a heat transfer coefficient of 

110 W/m2K in the winding duct is 1.ge-3 kg/so The resulting cooling losses that are 

generated by this flow rate can be estimated from standard expressions for pressure 

drops in ducts. Standard expressions for circular ducts can be corrected for non-circular 

ducts by using shape factors such as those measured by Carlson and Irvine [CAR 61] 

for triangular ducts. For the particular triangular duct geometry employed in the stator 

winding (Le. 2<j) = 15°}, the shape factor, fs. is 0.865 (c.f. 1.0 for a circular duct). The 

corresponding friction factor, f can then be determined by scaling the Reynolds number 

with respect to the shape factor: 

(6.7) 

The corresponding pressure drop is evaluated from 

(6.8) 

and hence, the power loss associated with this pressure drop is given by 

PI = Mm (6.9) 

Figure 6.7 shows the predicted variations in heat transfer as a function of mass flow 
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rate, both with and without allowance for the pressure drop. It can be seen from figure 

6.7 that for the required mass flow rate of 0.0019 kg/s in the winding duct, there is 

negligible reduction in the effective heat transfer from the winding to the air as a result 

of parasitic friction losses. 

The mass flow rate through the frame cooling ducts is calculated using the same method 

as for the winding ducts, albeit with circular ducts, while mass flow rate over the end 

windings is calculated from correlating equations for turbulent flow over a flat plate 

considering the areas 2 and 3 in figure 6.6(b) [INC 90]. The total mass flow required 

through the machine to maintain a 400°C operating temperature, for the most arduous 

ambient conditions and highest values of iron loss is therefore 0.28 kg/so It is useful to 

compare this value with mass flow rates that are envisaged for the more electric engine. 

A typical large 3-spool aero-engine can supply up to -1 % of the main engine airflow for 

bleed air purposes, which equates to approximately 1 kg/s at a maximum air 

temperature of 300°C. Hence, a significant proportion of the available bleed air from the 

IP compressor (which also has to perform various other functions such as climate 

control) would be required to cool the HP spool machine. 

Whereas the thermal model predicts that the existing machine design can be cooled with 

acceptable levels of mass flow rate, it is interesting to consider the degree to which the 

cooling requirements (i.e. the mass flow rate) can be alleviated by increasing the size of 

the machine, specifically by increasing the depth of the stator slots. An increased slot 

depth will yield two benefits, viz. a reduced copper loss for a given total ampere turns 

per slot and an increasing cooling area, and need not necessarily compromise the 

electromagnetic torque capability. The relative insensitivity of the torque capability to 

variations in slot depth is shown in figure 6.8 which shows a comparison between un­

aligned and aligned flux-linkage characteristics (predicted from 2D magneto-static finite 

element analysis) for the original machine design and a design with essentially the same 

parameters but 50% deeper stator slots, i.e. 31mm and 46mm deep slots respectively. 

Although increasing the slot depth reduces the copper loss and increases the surface 

area available for heat transfer (albeit at the expense of an increased mass), the larger 
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cross-sectional area of the triangular duct dictates that a lower air velocity will exist for 

a given mass flow rate, hence reducing the turbulent heat transfer per unit area from the 

winding. In order to investigate the influence of winding duct geometry on heat transfer, 

the mass flow required to limit the winding temperature to 400°C was calculated for 

increased slot depths for an operating point of 100kW at 13,500rpm. As was 

demonstrated in figure 6.4, direct forced air cooling of the winding is responsible for 

-90% of the heat transferred from the winding (the remainder being conducted into the 

frame). Hence a reasonable approximation as to mass flow required for increasing slot 

depths can be derived by neglecting conducted heat transfer. The resulting heat transfer 

coefficients required to maintain the winding temperature at 400°C is shown in figure 

6.9 for slot depths between 31 mm and 61 mm, while the corresponding increase in the 

available duct area is shown in figure 6.10. Equations 6.1 to 6.6 have been employed to 

calculate the mass flow rate required in these ducts to achieve the desired heat transfer 

coefficient. The predicted variations in the copper loss and required mass flow rate as a 

function of slot depths between 31 mm and 61 mm are shown in figures 6.11 and 6.12 

respectively. The corresponding increase in overall mass and stator outer diameter of 

the machine as a function of slot depth are shown in figure 6.13 and 6.14 respectively. 

It is interesting to note from figure 6.12, that the mass flow rate required does not 

reduce proportionally with the reduction in copper loss for increasing slot depth, since 

little cooling is provided by air-flow in the centre of the duct (the cross-section of which 

increases with the square of the slot depth). Hence, the required mass flow rate could be 

reduced significantly from the value shown in figure 6.12 without unduly affecting the 

velocity on the cooling surface by locating a triangular flow restrictor in the centre of 

the slot, although the pressure drop will inevitably increase. In this regard, it is worth 

noting that as shown by figure 6.7, there remains a considerable remaining margin for 

increasing the pressure drop. 

Another key operating condition that will have a marked influence on temperature rise 

within the machine is its thermal behaviour during the starting of the engine, where the 

copper loss is 11.98kW. The transient thermal model of the stator shown previously in 

figure 6.2( c) was used to calculate the transient temperature rise in the machine. It was 
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assumed that the iron loss was negligible in comparison with respect to the copper loss, 

and that no cooling was available. As a worst case condition, it was assumed no cooling 

air is provided by the IP compressor during the starting phase, and that heat loss from 

the machine is solely a result of natural convection from the frame. The transient 

thermal response of the machine was predicted for two starting temperature, viz. 25°C 

and 70°C, the latter corresponding to the worst case ground conditions. The resulting 

variations in the winding temperature for these two starting conditions are shown in 

figure 6.15. As is evident, the stator winding and its immediate environment has 

sufficient thermal capacity to sustain this large copper loss for a period of some 90 

seconds before the winding temperature reaches 400°C. This is likely to be sufficient 

for a typical starting cycle, which typically has a duration of 30-60 seconds. Moreover, 

some bleed air for cooling will be available during this interval. 
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Fig 6.1a. Axial cross-sectional view of potential air-cooling for HP machine. 
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Fig 6.1 b. Machine cross-section showing the location of axial cooling ducts through the 
stator windings and frame. 
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Fig. 6.2(a) SR machine stator sector considered in the thermal model comprising 8 
sections. (b) Subdivision of the section into A: winding, B: tooth tip, C: tooth body, D 

and E: back iron. (c) Simplified circuit diagram of section 4, showing connection to the 
frame and interconnecting nodes between adjacent sections 3 and 5. 
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Figure 6.3(a). Rotor discretisation for the thermal model, considering regions A, B, C 
and D of 1 tooth pitch. Faces X and Yare cyclic boundary conditions (zero heat flux), 

whilst Face Z is maintained at a constant temperature of 350°C. 
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Figure 6.3(b). Thermal network of the rotor section considered in figure 6.3(a). 
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Figure 6.4. Winding and back iron temperatures in the SR machine at 13500rpm, 
l00kW, with conduction heat transfer in the slot region, for values of thermal 

resistance between 0.017 and 2.33 KIW. 
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Fig 6.5. Contours of steady-state winding temperature (for a machine with a Hiperco 
SOHS rotor and Hiperco 50 stator) for various levels of cooling from the frame and 

winding, at 13500rpm, lOOkW. 
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Figure 6.6. (a) Duct area considered for forced air-cooling of the winding. (b) Winding 
surfaces considered in the evaluation of heat transfer from winding to the coolant, 
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Figure 6.7. Rate of heat transfer from the winding duct as a function of mass flow rate, 
with and without the consideration of pressure drop through the duct. 
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Figure 6.8. Flux linkage versus current for slot depths of 3lmm and 46mm respectively 
(representing a 50% increase in slot depth). 
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Figure 6.9. Variation in heat transfer coefficient from the winding to cooling air (hwdg) 
necessary to maintain the winding temperature at 400°C, as a function of the slot depth. 
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Figure 6.10. Increase in stator winding duct cross-sectional area with slot depth. 
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Figure 6.11. Variation in copper loss with slot depth. 
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Figure 6.12. Variation in mass flow rate through the stator winding duct necessary to 
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Figure 6.13. Increase in total machine mass with slot depth. 
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CHAPTER 7 

CONCLUSIONS 

This thesis has embraced the thermal, mechanical and electromagnetic design of high 

integrity electrical machines for aerospace, specifically a permanent magnet brushless 

DC (BLDC) machine for application in an electro-hydraulic actuator, and a switched 

reluctance (SR) starter/generator for application in the core of a large civil jet engine. It 

has shown the importance of considering each of these disciplines in the design of such 

high integrity machines. Table 7.1 summarises the main conclusions for both the BLDC 

machine and the SR machine in terms of these disciplines, while the following points are 

regarded as being particularly important in terms of novelty: 

• Development of a modular rotor for a switched reluctance machine in order to 

overcome limitations imposed by the mechanical strength of the lamination material. 

• A systematic finite element study on the influence of convective heat flow and 

conductor geometry/position on heat transfer within a stator slot. 

7.1 Thermal modelling of high integrity electrical machines for aerospace 

The combination of a high power density and harsh operating environment have made 

the development of detailed thermal models a necessity for both machines in order to 

attain a satisfactory level of reliability from the various components that constitute an 

electrical machine. A detailed lumped parameter model has been developed for 

temperature estimation in both machines (details in Appendices B and C) that has been 

validated under various encapsulation processes for the case of the BLDC machine. The 

accuracy of the thermal models has been shown to be highly dependant on the accuracy 

of the input data, such as the various heat transfer coefficients within the winding and 

frame, and the conductor bundle thermal conductivity, the latter of which has been 

measured in this thesis. A comprehensive study was carried out using finite element 
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analysis and computational fluid dynamic models to investigate heat transfer in the 

winding region with various packing factors, conductor geometries, numbers of 

conductors, conductor positions within the slot and encapsulation processes. It was found 

that in general, a fully encapsulated slot gives significant benefits in terms of reduced 

winding temperature and an increase in thermal capacity, thus reducing both the steady 

state temperature, and transient temperatures experienced over a duty cycle. FE analysis 

also showed that the random placement of individual conductors within a slot (as would 

be the case in a practical machine) could cause a large error in the estimation of winding 

temperature by as much as 20% for a low number of turns i.e. less than 6. It was also 

shown that a winding region can be successfully modelled with a solid finite element 

model for a naturally ventilated machine, without recourse to more elaborate methods 

such as computational fluid dynamics. Further development of the thermal model to 

include the effects of non-homogenous loss between adjacent stator teeth, and forced air 

cooling of the frame, winding and end windings, was employed for the switched 

reluctance machine in order to estimate cooling requirements. It has been shown that on 

full load and speed, with high specific levels of heat dissipation, and running in an 

ambient temperature of 350°C, the SR machine can be sufficiently forced cooled using 

the bleed air from the jet engine, albeit this requiring -25% of the total bleed air from the 

engine. The transient thermal behaviour of the machine under starting conditions was 

also simulated, from which it was established that there is sufficient heat capacity (even 

with no additional encapsulation) to accommodate a representative starting cycle. 

7.2 Mechanical considerations of the switched reluctance machine 

The combination of a high rotor speed and severe constraints imposed upon the volume 

envelope of the switched reluctance machine resulted in a high level of mechanical stress' 

in the rotor. These problems were further compounded by the reduced mechanical 

strength of the cobalt iron laminations at the elevated operating temperature of 400°C. 

Finite element analysis was employed to establish the maximum diameter for a 

conventional SR rotor operating at 13500rpm and 60% of the lamination material yield 

strength, whilst maintaining an acceptable level of magnetic saliency. This constraint 
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limited the rotor to a diameter of 248mm, which is considerably less than would be 

desirable electromagnetically. A novel modular rotor construction was proposed in which 

separate laminated pole modules are attached to a higher strength non-magnetic hub, thus 

permitting a machine with a larger rotor diameter to be operated at the same speed. It was 

also found that the laminated modules are subjected to significantly lower levels of stress 

than the single piece lamination, hence there is scope to change the heat treatment of the 

lamination material in order to trade mechanical strength for better magnetic properties in 

terms of higher saturation flux density, and lower hysteresis losses. The modules may be 

attached to the hub using friction welding or induction brazing techniques, although it is 

recognised that there are many manufacturing issues that must be overcome before this 

topology of machine can be considered for service in such a safety critical application. 

7.3 Electromagnetic design of a novel modular rotor SR machine 

Although the modular rotor machine design has the same number of stator and rotor 

poles as the conventional rotor SR machine, the nature of the short flux paths dictates 

that two phases are excited at anyone time, and hence double the number of phases are 

required in order to start and commutate the machine correctly. Magnetostatic finite 

element analysis has been employed in comparing the design with two SR machines with 

conventional rotors, one with a reduced diameter due to mechanical constraints, and the 

other of similar diameter that would be operating beyond specified mechanical safety 

limits. It was found that, although the aligned to unaligned inductance ratio of the 

modular rotor machine was smaller than that of the similar sized conventional machine, 

the peak and average static torque capability were very similar. An interesting 

characteristic of the modular rotor machine was noted during the finite element study, 

whereby it exhibits a region of negative torque close to the unaligned position. Another 

feature of the modular rotor is that a significant degree of saliency is generated by the 

large gap between adjacent modules rather than between the module teeth, hence the 

height of the teeth can be reduced beyond the limits of well-established design guidelines 

for conventional SR rotors without incurring a large reduction in saliency. In summary, 

although these machines may be an attractive option for an embedded machine in a jet 
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engine, it is unlikely that these types of machines will be preferred to conventional SR 

machines in the vast majority of applications due to their high number of phases, and 

relatively complex rotor topology. 

7.4 Fluid friction losses 

The drive for higher reliability resulted in a BLDC machine directly coupled to a 

hydraulic pump with no dynamic seal, thus allowing hydraulic fluid to flow through the 

airgap annulus and out the non.;drive end of the machine. The associated drag losses 

caused a large drop in efficiency, particularly at low loads. Well-established analytical 

methods were used to estimate the drag losses, and were further developed to include the 

effects of axial temperature rise in the airgap, with test results showing good agreement 

with predicted values. This approach was then employed in establishing an airgap height 

that gave the best compromise between the conflicting requirements of a large gap in 

order to reduce drag losses, and a smaller gap in order to reduce copper losses. A sub­

optimal airgap length that generated minimum copper losses over a wide operating range 

in terms of speed, load and temperature was found to be between 1 and 2 mm. It was also 

demonstrated that for the most onerous operating condition of -55°C (at which the 

viscosity of the fluid is some two orders of magnitude higher than at room temperature) 

the resulting drag torque might pose problems in terms of starting, and hence necessitate 

an increase in the VA rating of the inverter. 
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Table 7.1. Main conclusions 

BLDC SR 
Thermal • Full encapsulation reduces • 49% Cobalt Iron aging 

winding temperature problems limit operating temp 
considerably, and increases to 400°C 
transient capability in terms of • Jet engine bleed air can 
thermal capacity provide sufficient cooling for 

• Conductor placement can an HP starter/generator 
introduce a large error in 
temperature estimation 

• Lumped parameter model can 
be as accurate as FE model 
due to uncertainties in contact 
coefficients, and conductor 
placement 

Electromagnetic • Modular rotor machine is 
competitive with a 
conventional machine of the 
same diameter 

• Negative torque region is 
observed close to the 
unaligned position , 
Modular SR machine retains a • 
significant aligned to 
unaligned inductance ratio 
when the rotor tooth height is 
reduced to zero 

Fluid friction • Fluid must be pre-heated 
above O°C to minimise 
inverter size . 

• Drag loss has a strong 
influence at low loads 

• Flooded airgap should be 
between 1 and 2mm 

Mechanical • A novel modular rotor design 
has been developed for SR 
machines operating at high 
levels of mechanical stress 

• Enables design of larger 
diameter and/or higher speed 
SR machines 
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7.5 Further work 

• Further analysis of the modular rotor switched reluctance machine in terms of 
dynamic analysis and different commutation schemes in order to maximise the 
torque capabilities (and how to cope with the negative torque region). 

• Investigation of iron losses in the modular rotor machine, as these are potentially 
lower given the significantly reduced volume of iron that carries flux per revolution, 
and the ability to employ a material with a lower specific loss density in the rotor. 

• Research into the feasibility of joining rotor tooth modules to a non-magnetic, high 
strength hub material. 

• Thermal aspects of machines operating at high temperature using novel cooling 
schemes such as employing the rotor to act as an impeller air pump to enable forced 
air cooling of the end windings. 
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APPENDIX A 

T-NETWORK OF THERMAL RESISTANCES 

The cylinder shown in figure Al can be represented as an equivalent T-network of 

thermal resistances in the radial direction as illustrated in Figure A2. The stator back 

iron, for example, is modelled as a cylindrical region. 91 and 92 are the outer and inner 

surface temperatures of the cylinder, and 9m is the mean temperature of the cylinder. ft 

and r2 are the outer and inner radii of the cylinder respectively, and L is the axial length 

of the cylinder. 

RI, R2 and Rm are thermal resistances that model heat flow in the cylinder. They arise 

from the solution of Fourier's equation of heat conduction through a cylindrical wall with 

internal heat, generation in the radial direction. The central node in the network would 

give the mean temperature if there were no internal heat generation or thermal storage. 

However, the superposition of internal heat generation, for example: iron loss in the back 

iron region, gives rise to a temperature lower than the temperature at the central node. 

This results in a negative value for the resistance Rm in the T -network. 

The heat conduction equation is solved independently for radial and axial directions, and 

if necessary, for the circumferential direction. Equations Al to A3 present, for example, 

solutions for the radial case only. 

RI = 1 [I _ 2~,' ~n(rl~r2)] 
4:r k, L ~I - r2 ) 

(AI) 

R2 = 1 [2r12:n(rl~r2)_I] 
4:r k,L ~l - r2 ) 

(A2) 
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Rm = (A3) 

where rl is the outer radius of the cylinder and r2 the inner radius. kr is the thermal 

conductivity of the cylinder in the radial direction. (Independent solution allows different 

values for k in each direction, enabling for instance, the effects of laminated steel and 

conductor bundles to be modelled). 

Thermal capacity of a given lumped region is calculated using the mass and specific heat 

capacity, and is given by: 

C=pcV (A4) 

where C is the thermal capacitance (J/K), p is the density (kgm-\ and c is the specific 

heat capacity of the material in the region (Jkg-1K-1). Vis the volume of the region (m\ 
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Figure A 1. Cylindrical section considered in equations A 1 to A3. 

R1 R2 
81 82 

Rm 

8m 

Figure A2. Equivalent T -network representing radial heat flow in a cylinder 
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APPENDIXB 

BRUSHLESS DC PERMANENT MAGNET MACHINE 

THERMAL MODEL 

The thermal network for the BLDC machine is shown in figures B 1 to B8. The notation used 

in labelling the individual components of the network is described below. 

Regions: 

FR Frame 
BI Back Iron 
CB Conductor Bundle 
TB Tooth body 
TT Tooth tip 
EW End winding 

FR Rtr 

/ -I \'" 
1 2 3 4 

Position 1: FR refers to the Frame region, (and BI refers to the back iron and so forth). 

Position 2: R refers to a thermal resistance. (C in this position denotes a thermal 

capacitance) 

Position 3: The number 1 refers to the outer thermal resistance for the case of a cylinder 

and trapezoid. The number 2 in this position refers to the inner thermal resistance. The letter 

m in this position refers to the thermal resistance to the mean temperature point of the T­

network as described in Appendix A. 

Position 4: r denotes heat flow in the radial direction. a in this position denotes heat flow 

in the axial direction, and c in this position denotes heat flow in the circumferential direction. 

i.e. around the machine. 
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i.e. TT_Rmr is the thermal resistance to the mean temperature point in the tooth tip in the 

radial direction, and TT_RC is the thermal capacitance of the tooth tip region. 

Description of the BLDC machine thermal network. 

The lumped parameter thermal network has been developed using SABER® simulation 

software that allows models to be constructed over a number of hierarchical levels. The top 

level of the model is shown in figure B 1 where it can be seen that the stator has been split 

into three axial sub-system blocks labelled 'Radial' and two blocks labelled 'Left End' and 

'Right End'. The three central blocks describe radial, axial and circumferential heat flow in 

the stator iron and windings, while the blocks attached at each end ofthe stator describe heat 

flow in the end windings and end plates. These blocks are all connected together in the axial 

direction as would be expected, and also in the radial direction to the frame sub-system 

block. All sub-system blocks have a node labelled AMB. This is the ambient node that 

provides a ground reference point used to define the ambient temperature, and to set the 

initial level of thermal storage. The summation blocks at the bottom of figure B I feed back 

the winding temperature to the copper loss model, where an average winding temperature is 

used to calculate the loss. 

It is possible to trace sub-system block nodes down through each level of hierarchy, for 

instance, the node BI_l appears on all the blocks labelled 'Radial'. This node is part of the 

back iron (BI) and can be found in the next level down in the hierarchy that is shown in 

figure B2. The node is situated at the top left in figure B2, and is connected to the back iron 

sub-system block by the node BI_A 1. In tum, this node can be traced through to the back 

iron region thermal network shown in figure B3, this representing the final level in the 

model hierarchy. The node is again situated at the top left of figure B3 and is connected to 

the thermal resistance BCRta in the back iron axial heat flow T-network (lumped T­

networks representing heat flow are described in Appendix A). Other sub-system block 

nodes can be traced back to the T-network level in a similar way. It is possible to see the 

various T -networks describing heat flow in three directions in figure B3, although the 

circumferential heat flow path is connected to an adjacent section of back iron within the 

block. Figure B5 shows the three separate T -networks more clearly in the tooth body region 

model, where it can be seen that all the T -networks are connected at the mean temperature 
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node at the centre of the figure. Heat generation is introduced at this node from a control 

signal input (TBJoss) that is generated in another block, and converted to an electrical 

current source using the SABER® block var2i. Thermal storage (TB_C) is also introduced 

at this node. An additional resistance of 1 MQ was connected across the current source to 

stabilise the simulation during start-up, and was shown to have a negligible effect on 

predicted temperatures. 

The end winding and end plate sub-system block (labelled 'Right End' and 'Left End' in 

figure B 1) are based on the same T-network models used in the stator, with additional 

thermal resistances to model heat flow between the end winding, end plate and frame as 

shown in figure B7. The end winding posed some problems in terms of the coordinate 

system used in representing heat flow in the respective directions. The coordinate system 

used to model the end winding was turned through 90° with respect to the stator axis so that 

the end winding could be described with a conventional cylindrical geometry as shown in 

figure B7a. 

Fig. B7a. End winding and associated coordinate system. 
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Thermal network parameters 

The following tables give predicted values of thermal network parameters for the various 

regions of the thermal model for a BLOC machine with process I, 2 and 3 winding 

encapsulation. The value for BI_Rlr can be found from the table by going to the column 

labelled 'Back Iron' and selecting the first value down in the row labelled 'RI' of the section 

labelled 'Radial' on the left hand side. 

Additional thermal network parameters listed in the tables 

Frame Contact 

EP > Pump 

EP>amb 

Thermal contact resistance between the stator stack and the frame 

End plate to pump thermal contact resistance 

End plate to ambient thermal resistance 

End space thermal parameters 

EW>EP 

EW>FR 

BI>EP 

TB>EP 

TT>EP 

End winding to end plate thermal resistance 

End winding to frame thermal resistance 

Back Iron to end plate thermal resistance 

Tooth body to end plate thermal resistance 

Tooth tip to end plate thermal resistance 

For process 1 and 2 winding encapsulation, the thermal resistances in the end space are 

calculated by standard expressions for heat flow between flat plates [INC 90], whilst under 

process 3, these are calculated using standard expressions for conduction heat flow in a solid 

[INC 90]. 

References: 

[INC 90] F.P. Incropera, D.P. Dewitt. 'Introduction to heat transfer.' 2nd Edition. 

John Wiley and sons Ltd, 1990. 
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Model nomenclature: 

Figure Bl: 

BI, TB, TT, EW, WDG are losses introduced from a separate loss model in the back iron, 

tooth body, tooth tip, end winding, and conductor bundle region respectively. 

AMB 

ambient 

EPL 

EPR 

Ambient temperature node 

Ambient temperature node 

Node connecting the frame to the left hand end plate 

Node connecting the frame to the right hand end plate 

FR_I to FR_3 Radial heat flow nodes connecting the frame to the three stator sub-system 

blocks. 

BIJoss 

CU loss 

EW loss 

TB loss 

TT loss 

CB_temp 

EP 

Figure B4: 

SLR 

SL PL 

SLC 

v2var 

Iron loss in the back iron region 

Copper loss in the conductor bundle region 

Copper loss in the end winding region 

Iron loss in the tooth body region 

Iron loss in the tooth tip region 

Conductor bundle temperature feedback node for calculation of copper losses 

End plate temperature node 

Slot liner radial thermal resistance 

Slot liner inner thermal resistance (facing the tooth tips) 

Slot liner circumferential thermal resistance 

Voltage to Control interface. Measurement and feedback of winding 

temperature 
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tv w 
w 

BLDC Model - Thermal Parameters 

Back 
Iron 

Radial Rl 0.0885 

R2 0.0944 

Rm -0.0304 

Axial Rl 34.1034 

R2 34.1034 

Rm -11.3678 

Cire Rl 1.1761 

R2 1.1761 

Rm -0.3920 

Capacity 48.00 

Total Mass (kg) 24.7 

Slot liner (Radial) 6.4 

Slot liner (Cire) 6.3 

Slot liner (inner) 9.9 

Conductor Tooth 
Bundle Body 

9.8309 0.4894 

13.1555 0.4894 

-3.8311 -0.1631 

0.3759 54.3513 

0.3759 54.3513 

-0.1253 -18.1171 

14.5026 0.2195 

14.5026 0.2195 

-4.8342 -0.0732 

21.08 60.27 
- -- -- . -----

Frame Contact 

EW->EP 

EW->FR 

BI->EP 

Process 1: Bare Winding 

Tooth 
Tip 

0.0922 

0.0922 

-0.0307 

118.4877 

118.4877 

-39.4959 

21.75 
- ... _--

0.041 

1181.6 

280.8 

6539.2 

-

End 
Winding 

10.5688 

-4.6928 

54.5153 

-18.1718 

0.7376 

-0.2459 

20.68 
- --- ---

TB->EP 

TT->EP 

EP->Pump 

EP->amb 

End 
Plate 

1.0479 

-0.3493 

207.53 

2785.4 

56787.3 

0.009 

6.5 

, 



IV w 
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BLDC Model- Thermal Parameters 

Back 
Iron 

Radial Rl 0.0885 

R2 0.0944 

Rm -0.0304 

Axial Rl 34.1034 

R2 34.1034 

Rm -11.3678 

Cire Rl 1.1761 

R2 1.1761 

Rm -0.3920 

Capacity 48.00 
- .. _- . __ ._-

Total Mass (kg) 24.8 

Slot liner (Radial) 3.2 

Slot liner (Circ) 3.1 

Slot liner (inner) 4.9 

Conductor Tooth 
Bundle Body 

5.1564 0.4894 

6.9002 0.4894 

-2.0094 -0.1631 

0.3759 54.3513 

0.3759 54.3513 

-0.1253 -18.1171 

7.6068 0.2195 

7.6068 0.2195 

-2.5356 -0.0732 

22.70 60.27 

Frame Contact 

EW->EP 

EW->FR 

BI->EP 

Process 2: Vacuum Pressure Impregnation 

Tooth 
Tip 

0.0922 

0.0922 

-0.0307 

118.4877 

118.4877 

-39.4959 

21.75 

0.041 

1181.6 

280.8 

6539.2 

End 
Winding 

5.5434 

-2.4614 

28.5938 

-9.5313 

0.7376 

-0.2459 

22.27 

TB->EP 

TT->EP 

EP->Pump 

EP->arnb 

End 
Plate 

1.0479 

-0.3493 

207.53 

2785.4 

56787.3 

0.009 

6.5 

I , 
I 



tv 
w 
VI 

BLDC Model- Thermal Parameters 

Back 
Iron 

Radial RI 0.0885 

R2 0.0944 

Rm -0.0304 

Axial RI 34.1034 

R2 34.1034 

Rm -11.3678 

Cire RI 1.1761 

R2 1.1761 

Rm -0.3920 

Capaeit) 48.00 

Total Mass (kg) 27.2 

Slot liner (Radial) 1.6 

Slot liner (Cire) 1.6 

Slot liner (inner) 2.5 

Conductor Tooth 
Bundle Body 

2.5347 0.4894 

3.3919 0.4894 

-0.9878 -0.1631 

0.3759 54.3513 

0.3759 54.3513 

-0.1253 -18.1171 

3.7392 0.2195 

3.7392 0.2195 

-1.2464 -0.0732 

50.97 60.27 
-- - -- ----- ~ 

Frame Contact 

EW->EP 

EW->FR 

B 1-> EP 

Process 3: Fully Encapsulated 

Tooth 
Tip 

0.0922 

0.0922 

-0.0307 

118.4877 

118.4877 

-39.4959 

21.75 
---- .. - - -

0.041 

9.0 

5.0 

81.5 

End 
Winding 

2.7250 

-1.2100 

14.0557 

-4.6852 

0.7376 

-0.2459 

69.73 

TB->EP 

TT->EP 

EP->Pump 

EP->arnb 

End 
Plate 

1.0479 

-0.3493 

207.53 

64.9 

179.8 

0.009 

6.5 

I 

I 
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Figure B 1. Top level of BLDC machine thennal model. 
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Figure B2. Radial section of BLDC machine thermal model showing the back iron, 
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Figure B3. Back iron region model. 
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Figure B4. Conductor bundle region model. 

CB_R1a 

1e6 

CB_R1a 

CB_Rma 

) 

Control 
to 

CUrrent 

var2i 

CB_Rmr 

CB_R3 

SLR 

CB_A4 

CB_R1r 

CB_R2r 

SL_PL 

CB_R4 



TB_A1 

TB_R1 

TB_R1r 

TB_Rmr 

TB_R2r 
TB_C 

TB_R2 

TB_R1a 

AMB 

TB_R1a 

TB_Rrna 

) 

Control 
to 

.-----il Current 

var2i 

TB_A2 

TB_Rmc 

Figure B5. Tooth body region model. 

TB_C1 TB_C2 

TB_R1C TB_R1C 

TB_1055 



TT_A1 TT_A2 

TT_Rl TT_R1a TT_R1a 
TT_Cl 

TT_Rlr 
TT_Rma 

TT_Rmr TT_Rmc 

TI_C 1e6 

) 
C";'otrol 

~ ___ +-_____ -;I CUmml 
TT_Ioss 

var2i 

ptfe 
AMB 

TT_R2 

Figure B6. Tooth tip region model. 



BI_EP 

0 '\I 
BL2 

BI_EP 

0 '\I 
BL4 

TB_2 

TI_EP 

NY II: 
TI_2 ~I <' ~ EP_C 

UJ 

CB_4 AMB 
Frame 

CB_3 

EW_loss 

Figure B7. End winding and end plate model. 



EPL 
!r-Ieft !r_centre !r_right EPR 

FR_R1a FR_Rla FR_R1a FR_Rla FR_Rla FR_Rla 

FR_Rma FR_Rma FR_Rma 

FR_Alr FR_R2r FA_AMS FR_Rlr FR_R2r FR_AMB FA_Rlr FR_R2r FR_AMB 

SI_FR FR_C SI_FR FA_C SlfA FR_C 

FA_1 FA_2 FR_3 

AMS 

Figure B8. Frame model. 



APPENDIXC 

SWITCHED RELUCTANCE MACHINE THERMAL MODEL 

Appendix B presents an explanation of the notation used in the SABER® hierarchical 

thermal networks developed for both the BLDC machine and the SR machine. 

Although the SR machine thermal model was constructed using the same hierarchical 

principles as the BLDC machine thermal model, it has a larger number of nodes due to 

the multiple duplication of each section in order to include the effects of distributed loss 

in the stator iron. The axial sub-division has also been removed due to the short stack 

length of the SR machine, and the relatively low temperature variation expected across 

the machine. The second level in the hierarchy is also considerably different, as the back 

iron sub-system block of the BLDC model has been split into two discrete blocks, while 

the conductor bundle block now represents half a slot (as opposed to a full slot in the 

BLDC model). 

The top level in the SR thermal model is shown in figure C 1 showing the 8 separate sub­

system blocks representing sections 1 to 8 in figure 6.2(a). These are connected together 

via circumferential heat flow nodes Bel, BI_2, CB_l and TB_2, representing the back 

iron, conductor bundle, and tooth body respectively. It can be seen from figure Cl that 

section 1 is also connected to section 8 to meet the boundary conditions specified in 

Chapter 6, section 3. The 8 sections are also all connected to nodes f1 to f16 on the frame 

sub-system block via nodes top1 and top2, which can be traced through to the second 

level in the hierarchy (figure C2) where they connect to the radial heat flow path in the 

back iron sub-system block (the network schematic diagram for which is shown in figure 

C3). 

Iron losses are considered temperature independent (they have already been calculated 

for 400°C operation) and are introduced as constant control signals in blocks labelled BI, 

TB, and IT at the top level of the hierarchy as shown in figure Cl, representing iron 

losses in the back iron, tooth body and tooth tip respectively. The iron losses are 

'injected' at their correct location in the model via a signal bus shown as a bold 

interconnecting line in figure Cl. Temperature dependant copper losses are generated by 

feeding back the winding temperature from one of the 8 sections to the network of gains 
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• 

and summations in the bottom left hand comer of figure C 1, where it may be seen that 

copper losses and end winding losses are generated separately. 

The voltage source at the top of figure C 1 is connected between ground and the ambient 

temperature node and dictates the ambient temperature used in the thermal model. 

The nomenclature used in the SR machine thermal model is given below with respect to 

the individual figures, although figures C3, CS and C6 are not included as the parameters 

used within these regions are described in Appendix B. 

Model nomenclature 

Figure Cl: 

amb 

BI 

BI LOSSl 

BI 1 

BI 2 

cbt 

CB 1 

CB_LOSS 

EW loss 

f1 to f16 

rl to r8 

TB 

TB_2 

TB_LOSS 

topl 

top2 

TT 

TT LOSS 

Figure C2: 

BI loss 

BI A1I2 

BI C1I2 

Ambient temperature node 

Back iron loss sub-system block 

Iron loss in the back iron region 

Nodes connecting adjacent back iron sections (circumferential heat flow) 

Nodes connecting adjacent back iron sections (circumferential heat flow) 

Feedback of conductor bundle temperature 

Nodes connecting adjacent conductor bundle sections (circumferential 

heat flow) 

Copper loss in the conductor bundle region 

Copper losses in the end winding region 

Radial heat flow path nodes at the frame inner surface 

identifies sections 1 to 8 in the iron loss sub-system blocks 

Tooth body iron loss sub-system block 

Nodes connecting adjacent tooth body sections (circumferential heat flow) 

Iron losses in the tooth body region 

Node connecting outer surface of the back iron to the frame 

Node connecting outer surface of the back iron to the frame 

Tooth tip iron loss sub-system block 

Iron losses in the tooth tip region 

Iron loss in the back iron 

Axial heat flow node connection on the back iron sub-system block 

Circumferential heat flow node connection on the back iron sub-system 

block 
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BI Rl 

BI R2 
CB_A1I2 

CB Rl 

CB R2 

CB_loss 

tout 

EW_loss 

EW_A1I2 

T loss 

T A1I2 

T C1I2 

T Rl 

TR2 

TT loss 

TT_A1I2 

TT_Rl 

TT R2 

Figure C4: 

Outer radial heat flow node connection on the back iron sub-system block 

Inner radial heat flow node connection on the back iron sub-system block 

Axial heat flow node connection on the conductor bundle sub-system 

block 

Circumferential heat flow node connection on the conductor bundle sub­

system block 

Outer radial heat flow node connection on the conductor bundle sub­

system block 

Inner radial heat flow node connection on the conductor bundle sub­

system block 

Copper loss in the conductor bundle region 

winding temperature feedback node on conductor bundle sub-system 

block 

Copper loss in the end winding region 

Axial heat flow node connection on the end winding sub-system block 

Iron loss in the tooth body region 

Axial heat flow node connection on the tooth body sub-system block 

Circumferential heat flow node connection on the tooth body sub-system 

block 

Outer radial heat flow node connection on the tooth body sub-system 

block 

Inner radial heat flow node connection on the tooth body sub-system 

block 

Iron loss in the tooth tip region 

Axial heat flow node connection on the tooth tip sub-system block 

Outer radial heat flow node connection on the tooth tip sub-system block 

Inner radial heat flow node connection on the tooth tip sub-system block 

sl eirc Slot liner resistance in the circumferential direction 

sl_radial Slot liner resistance in the radial direction 

The numbered thermal resistance (66) represents the forced cooling by connecting the 

outer cooled surface of the conductor bundle (CB_Cl) to ambient (see figure 6.6). 

Figure C7: 

The numbered thermal resistances represent the forced cooling on each surface as 

detailed in figure 6.6(b) by connecting the outer cooled surface of the end winding to 

ambient. 
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Figure C8: Frame model 

R amb This represents the thermal resistance Rfr as used in the analysis of 

Chapter 6. 

Figure C9: Rotor model 

All thermal parameters and iron losses have been directly input to the model thermal 

network. The four current sources represent iron losses in regions A to D of figure 6.3(a) 

and (b), whilst the four radial thermal resistances at the top of the figure (labelled 12.5 

and 16), represent the resistances Rrot in figure 6.3(b). 

Input Parameters: 

The predicted thermal network parameters used in the switched reluctance machine 

thermal model are shown in the following set of tables for slot depths ranging from 31 

mm to 61 mm. The overall mass of the machine is also shown. 
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N 
~ 
00 

SR machine thermal parameters Slot depth = 31.0rnm 

Back Conductor Tooth Tooth Rotor Rotor Back 
Iron Bundle Body Tip Tooth body Iron 

Radial Rl 0.3706 12.2361 1.0375 0.3458 0.3188 0.5425 

R2 0.3893 14.6347 1.0375 0.3458 0.3188 0.5989 

Rm -0.1266 -4.4785 -0.3458 -0.1153 -0.1063 -0.1897 

Axial Rl 130.9917 0.3937 47.6626 142.9879 137.0614 110.5243 

R2 130.9917 0.3937 47.6626 142.9879 137.0614 110.5243 

Rm -43.6639 -0.1312 -15.8875 -47.6626 -45.6871 -36.8414 

Circular RI 0.2965 3.5770 0.1085 

R2 0.2965 3.5770 0.1085 

Rm -0.0988 -1.1923 -0.0362 

Capaci~ 25.31 30.43 34.80 11.59 12.10 60.00 
- ~ - ~- ----

Total Mass (kg) 27.78 

Slot liner (Radial) 1.03 

Slot liner (Circ) 0.57 

End 
I 

Winding 
I 

1.8637 

-0.7577 I 

, 

I 
I 

! 

22.02 



IV 
~ 
\0 

SR machine thermal parameters____ Slot depth = 36.0mm 

Back Conductor Tooth Tooth Rotor Rotor Back 
Iron Bundle Body Tip Tooth body Iron 

Radial Rl 0.3597 13.5746 1.2048 0.4016 0.3188 0.5425 

R2 0.3774 16.5943 1.2048 0.4016 0.3188 0.5989 

Rm -0.1228 -5.0281 -0.4016 -0.1339 -0.1063 -0.1897 

Axial Rl 127.0698 0.3273 41.0428 123.1284 137.0614 110.5243 

R2 127.0698 0.3273 41.0428 123.1284 137.0614 110.5243 

Rm -42.3566 -0.1091 -13.6809 -41.0428 -45.6871 -36.8414 

Circular Rl 0.3057 3.1860 0.0935 

R2 0.3057 3.1860 0.0935 

Rm -0.1019 -1.0620 -0.0312 

Capacit~ 26.09 36.24 40.41 13.46 12.10 60.00 
-- -_ ... - - - - ---- ----- - - ---_ .. - -

Total Mass (kg) 29.90 

Slot liner (Radial) 0.98 

Slot liner (Circ) 0.49 

End 
Winding 

1.6048 

-0.6525 

26.23 



N 
VI 
o 

SR machine thermal Pllrallleters __ . Slot depth = 41.0mm 

Back Conductor Tooth Tooth Rotor Rotor Back 
Iron Bundle Body Tip Tooth body Iron 

Radial Rl 0.3495 14.7974 1.3722 0.4574 0.3188 0.5425 

R2 0.3662 18.4630 1.3722 0.4574 0.3188 0.5989 

Rm -0.1192 -5.5434 -0.4574 -0.1525 -0.1063 -0.1897 

Axial Rl 123.3759 0.2777 36.0376 108.1128 137.0614 110.5243 

R2 123.3759 0.2777 36.0376 108.1128 137.0614 110.5243 

Rm -41.1253 -0.0926 -12.0125 -36.0376 -45.6871 -36.8414 

Circular Rl 0.3148 2.8898 0.0821 

R2 0.3148 2.8898 0.0821 

Rm -0.1049 -0.9633 -0.0274 

Capaci~ 26.87 42.33 46.02 15.33 12.10 60.00 
. - --- - -- - -----

Total Mass (kg) 32.08 

Slot liner (Radial) 0.94 

Slot liner (Circ) 0.43 

End 
! 

Winding 

1.4091 
I 

-0.5729 

30.64 



tv 
v. -

SR machine thermal parameters Slot depth = 46.0mm 

Back Conductor Tooth Tooth Rotor Rotor Back 
Iron Bundle Body Tip Tooth body Iron 

Radial Rl 0.3399 15.9188 1.5395 0.5132 0.3188 0.5425 

R2 0.3556 20.2470 1.5395 0.5132 0.3188 0.5989 

Rrn -0.1158 -6.0276 -0.5132 -0.1711 -0.1063 -0.1897 

Axial Rl 119.8907 0.2395 32.1205 96.3614 137.0614 110.5243 

R2 119.8907 0.2395 32.1205 96.3614 137.0614 110.5243 

Rrn -39.9636 -0.0798 -10.7068 -32.1205 -45.6871 -36.8414 

Circular Rl 0.3240 2.6577 0.0731 

R2 0.3240 2.6577 0.0731 

Rrn -0.1080 -0.8859 -0.0244 

Capaci~ 27.66 48.69 51.63 17.20 12.10 60.00 

Total Mass (kg) 34.33 

, Slot liner (Radial) 0.90 

Slot liner (Cire) 0.39 

End 
Winding 

1.2560 

-0.5106 

, 

35.24 
I 



N 
VI 
N 

SR machine thermal parameters Slot depth = 51.0mm 

Back Conductor Tooth Tooth Rotor Rotor Back 
Iron Bundle Body Tip Tooth body Iron 

Radial Rl 0.3307 16.9505 1.7069 0.5690 0.3188 0.5425 

R2 0.3456 21.9517 1.7069 0.5690 0.3188 0.5989 

Rm -0.1127 -6.4837 -0.5690 -0.1897 -0.1063 -0.1897 

Axial Rl 116.5970 0.2092 28.9714 86.9142 137.0614 110.5243 

R2 116.5970 0.2092 28.9714 86.9142 137.0614 110.5243 

Rm -38.8657 -0.0697 -9.6571 -28.9714 -45.6871 -36.8414 

Circular RI 0.3331 2.4707 . 0.0660 

R2 0.3331 2.4707 0.0660 

Rm -0.1110 -0.8236 -0.0220 

Capacit~ 28.44 55.33 57.24 19.07 12.10 60.00 
-- - - ----- --

Total Mass (kg) 36.63 

Slot liner (Radial) 0.86 

Slot liner (Circ) 0.35 

End 
Winding 

1.1328 

-0.4606 

40.05 



N 
IJ\ 
W 

SR machine thermal parameters Slot depth = 56.0mm 

Back Conductor Tooth Tooth Rotor Rotor Back 
Iron Bundle Body Tip Tooth body Iron 

Radial RI 0.3221 17.9027 1.8742 0.6247 0.3188 0.5425 

R2 0.3362 23.5823 1.8742 0.6247 0.3188 0.5989 

Rm -0.1096 -6.9142 -0.6247 -0.2082 -0.1063 -0.1897 

Axial Rl 113.4795 0.1848 26.3847 79.1540 137.0614 110.5243 

R2 113.4795 0.1848 26.3847 79.1540 137.0614 110.5243 

Rm -37.8265 -0.0616 -8.7949 -26.3847 -45.6871 -36.8414 

Circular Rl 0.3423 2.3169 0.0601 

R2 0.3423 2.3169 0.0601 

Rm -0.1141 -0.7723 -0.0200 

Capacit~ 29.22 62.25 62.85 20.94 12.10 60.00 
----

Total Mass (kg) 39.00 

Slot liner (Radial) 0.82 

Slot liner (Cire) 0.32 

End 
Winding 

1.0317 

-0.4194 

45.06 



tv 
Vl 
~ 

SR machine thermal parameters .__ ___ Slot depth = 61.0mm 

Back Conductor Tooth Tooth Rotor Rotor Back 
Iron Bundle Body Tip Tooth body Iron 

Radial Rl 0.3139 18.7841 2.0415 0.6805 0.3188 0.5425 

R2 0.3272 25.1435 2.0415 0.6805 0.3188 0.5989 

Rm -0.1068 -7.3213 -0.6805 -0.2268 -0.1063 -0.1897 

Axial Rl 110.5243 0.1646 24.2220 72.6660 137.0614 110.5243 

R2 110.5243 0.1646 24.2220 72.6660 137.0614 110.5243 

Rm -36.8414 -0.0549 -8.0740 -24.2220 -45.6871 -36.8414 

Circular Rl 0.3514 2.1881 0.0552 

R2 0.3514 2.1881 0.0552 

Rm -0.1171 -0.7294 -0.0184 

Capacity 30.00 69.45 68.46 22.81 12.10 60.00 
-_ .. ----- --_.-

T ota} Mass (kg) 41.42 

Slot liner (Radial) 0.79 

Slot liner (Circ) 0.29 

End 
Winding 

0.9471 

-0.3851 

50.27 
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Figure C 1. Top level of stator thermal model showing the 8 sections modelled. 
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