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SUMMA..~ 

The kinetics of crystal nucleation and growth were studied in 

glasses near the Na20.2CaO.3Si02 (NC2S!) composition in the soda-lime-

silica system. The effects of systematic changes in composition and 

of various additions to the NC2S, glass were investigated and related 

to detailed viscosity measurements. Optical and electron.~croscopy, 

differential thermal analysis and X-ray d1ffractio~ere the ~iin t~ch­

niques used. 

For tho exact NC2S, composition the internal nucl~ation rates of 

the NC2S! crystal phase show~d non-steady state behaviour at low te~ 

pcratur~, the incubation times decreasing with rise in temperature. 

The crystal-liquid interfacial free en~rgy was obtained from theor~­

tical analysis of the stea~J state rates usin~ the heat of fusion 

determined by DTA. Electron microscopy reve~led imperfections in 

the crystals at an early stage of growth. 

On varying the base compoSition, the increases in nuclaC'.tion for 

glasses containing less than 50 n~le' Si02 could be correlated with 

reductions in viscosity. Large increases in nucleation and decreases 

in viscosity occurred for small additions of a20 and NnF to the NC2S, 

base glass, indicating a decreas~ in the kinetic barrier to nuclea­

tion 6Go• Increases in the crystal growth rates for these additions 

closely corresponded to reductions in viSCOSity. Additions of Zr02 

decrea~ed the nucleation and growth rates and increased the viscosity. 

Additions of P20S, Ti02 Md lioOs decrensed nucleation. 

In glasses containing precipitated platinum there was evid~nce 

for heterogeneous nucleation both from kint.:otlc studies cmd frOtl 

electron microscopy. 



For glasses heat treated isothermally intercepts with the time 

axis were observed in plots of crystal size ag~inst time. The 

origin of these intercepts is discussed. 

V,~ious physical chemical properties of glass ceramics with 

NC2SS as the major crystalline phase were investigated, including 

mechanical strength, thermal expansion and cheMical durability. 

Th& results indicate that the materials may have certain prnctical 

applications. 



CHAPTER 1 - INTRODUCTION 1' .. r!) SDP.VEY OF THE REIEVAl!l' LIT2.::RP.TURE 

Pa<;e 

1.1 

lola 

l.lb 

l.lc 

1.2 

l.2a 

1.2b 

1.3 

1.4 

Introduction 

The kinetics of nucleation 

Homogeneous Nucleation Theory 

Non steady state homogeneous nucleation 

Heterogeneous Nucleation Rates 

The thermodynamic driving force of phase 

transfonnations 

Single component systems 

Binary Systems 

Crystal Growth Rates 

Literature Review 

Na2(n.Cao-Si02 System 

Other work relevant to the thesis 

1 

3 

3 

7 

8 

11 

11 

14 

17 

22 

22 

27 



CP..1IPTER 2 - EXPERIMENTAL TECEIUQUES 

Page 

2.1 Preparation of Glasses 31 

2.2 Nucleation and Gro\'1th !-~easurements 33 

2.2.1 Heat Treabnents 33 

2.2.2 Optical microscope technique 34 

2.2.3 f.lethod of analysis of micrographs 35 

2.2.4 Crystal growth measurements 37 

2. 3 El ectron Microscopy 37 

2.3.1 Transmission electron microscopy 37 

(TEN) 

2.3.2 Scanning electron microscopy (SEn) 38 

2.4 Differential Thermal hnalysis (DTA) 39 

Measurements 

2.5 Liquidus Temperature (TL) r1easurements tlO 

2.6 X-ray Diffraction 41 

2.7 Chemical ~alysis and Chemical Durability 42 

Test 

2.7.1 Chemical analysis 

2.7.2 Chemical durability 

2.8 Viscosity Heasurements 

2.8.1 Penetration viscometer 

2.B.la ~paratus 

2.B.1b Operation 

2.8.lc Theory 

2.8.2 Rotating cylinder me thoC'. 

2.9.2a Apparatus 

2.8.2b ~eration 

2.0.2c Theory 

2.8.3 Beam bending technique 

2.8.3a Apparatus 

2.B.3b Theory and operation 

42 

43 

44 

44 

45 

45 

49 

50 

51 

52 

52 

53 



CHAPTER 2 - continued 

2.9 Other Experimental Techniques 

2 .9.1 t'Jater content determination by 

infra-red (I.R) spectroscopy 

2.9.la Apparatus 

2.9.lb Theory and calculation 

2.9.2 Mechanical properties 

2.9.3 Thermal expansion measureroents 

55 

55 

55 

55 

57 

59 



CEiJ'TEP. 3 - EXPEP.IMENTlI.L RESULTS Na20. 2CaO. 3Si02 GLASS CCMPOSITION 

AND GLASSES CLOSE TO THIS COtlPOSITION 

3.1 Glass G2 

3.1.1 Nucleation Rates (G2) 

3.1.2 Growth Rates (G2) 

3.1.3 Viscosity Measurements 

3.1.4 DT~ and TL P~sults 

Page 

61 

63 

65 

66 

67 

3.l.4a Transformation range of glass 67 

3.l.4b Heats of crystallization, fusion and 68 

polymorphic transfo~ations 

3.l.Sa X-ray diffraction results 

3.1.5b Electron Diffraction ~esult~ 

3.2 Glass G16 

3.2.1 Nucleation Rates 

3.2.2 Gro\·,th rates 

3.2.3 Viscosity measurements 

3.2.~ DT~ and X-ray diffraction results 

72 

73 

77 

78 

81 

83 

8·1 

3.3 Glasses around the stoichiometric Na20.2CaC. as 
3Si02 composition 

3.3.1 Glass G18 

3.3.1.1 Nucleation Rates 

3.3.1.2 Viscosity Data 

3.3.1.3 00'1\ 

3.3.2 Glass G19 

3.3.2.1 Nucleation Rates 

3.3.2.2 Viscosity Data 

3.3.2.3 OO'I! 

3.3.3 Glass G20 

3.3.3.1 Nucleation Rates 

3.3.3.2 Viscosity Data 

3.3.3.3 DT~ 

87 

87 

aa 
88 

aa 
89 

90 

90 

91 

91 

92 



CHAPTER 3 - continued 

3.3.4 Glass G2l 

3.3.4.1 Nucleation Rates 

3.3.4.2 Viscosity Data 

3.3.4.3 DTA 

3.3.5 Glass G22 

3.3.5.1 Nucleation Rates 

3.3.5.2 Viscosity Data 

3.3.S.3 DTh 

3.3.6 Glass G23 

3.3.6.1 Nucleation Rates 

3.3.6.2 Viscosity Data 

3.3.6.3 DTA 

3.3.7 X-ray results for glasses in 

Section 3.3 

Page 

92 

92 

93 

93 

94 

94 

95 

95 

95 

9S 

96 



CHAPTER 4 - EXPERIMENTl~L P.ESUT ... TS. GLASSES l'JITti H20, l~al?, Zr02 

P20s I Ti02, HoCl and Pt TJ)DITlOO'S 

4.1 H20 F~ditions 98 

4.1.1 Nucleation Results 101 

4.1.2 Growth Rates 101 

4.1.3 Viscosity measurements 102 

4.1.4 Other results 103 

t! • 2 NaF l.ddi tions 103 

4.2.1 Nucleation rates 104 

·'1.2.2 Growth rates 105 

4.2.3 DTn, viscosity and liquidus te~ra- 106 

ture results 

4.2.4 X-ray Results 

4.3 Zr02 Additions 

4.3.1 Nucleation Results 

4.3.2 Growth Rates 

4.3.3 Viscosity, orA and other results 

107 

108 

108 

109 

109 

4.4 P2051 Ti02 and f.Io03 Additions 110 

4.5 Pt 1\dc1i tions 112 

4.5.1 Nucleation, Viscosity, DTA and X-ray 112 

Results 

4.5.2 ~lectron microscopy and Electron micro- 113 

probe resul ts 

4.6 'Ultrasonic {'Yaves' effect on Nucleation 115 



CHAPTER 5 - DISCUSSION AND ANALYSIS OF THE EXPERIMCNTlu. RESULTS, 

PROPERTIES OF sa·IE GU,ss CERz"\r1ICS IN THE SOD:.­

LIME-SILICA SYSTEM 

5.1 Analysis of Experimental Results for 

Nucleation 

Page 

117 

5.3 

5.1.1 Theoretical considerations 117 

5.1.2 Glasses G2 and G16 119 

5.1.3 Effect of composition. Glasses G18 125 

to G23 

5.1.4 Effect of ~later Mdition on Nucleation 129 

5.1.5 Effect of NaF content on nucleation 135 

5.1.6 Effect of Zr02, P20S, Ti02 and ~b03 139 

to the NC2S3 nucleation 

5.1.7 Heterogeneous Nucleation 142 

5.2.1 Growth rates for G2 and G16 147 

5.2.2 Growth rates for glasses ~dth H20, 152 

NaF and Zr02 additions 

Properties of some glass ceramics in the 

N-C-S system 

5.3.1 Mechanical Properties 

5.3.2 Thermal expansion 

5.3.3 Chemical durability 

5.3.4 Crystallization results for other 

compositions 

5.3.5 Metallic precipitation 

155 

156 

158 

160 

163 

CHl'..PTER 6 - CONCLUSIONS MTD SUGGESTIONS f'm FURTHER t'10RK 

6.1 Conclusions 167 

173 6.2 Suggestions for further work 



APPENDICES 

AO Free Energy of Nixing and Regular Solutions 

Al Estimation of the Experimental Errors in Nv 
A2 Chemical Methods and Results 

1\3 Chemical Durability 

1\3.1 Procedure for Na20 determination 

A3.2 Colorimetric Determination of Si02 

A4 Fortran Program to calculate the A, B and To 

Constants from Equation (2.8) by Least Squares Fit 

1.5 a 

ASb Determination of K values (See text) 

ASc 

ASd 

1=.Se 



CHAPTER 1 

INTROOOCTION lu'ilO SURVEY 

OF THE RELEVlJ.lT LITERATURE 



1. 

Phase transformations in glass forming systems constitute a 

ver.y active field in both science and technology. 

The phenomenon of liquid-liquid immiscibility or 'glass in 

glass' phase separation has been knrnm for many years (1.1). A 

number of glasses exhibit 'immiscibility gaps' and under certain 

conditions will separate into glassy phases of different oomposi-

tions. The study of this transformation is important in glass 

t.echnology because of the different physical and chemical proper­

ti~s generally exhibited by phase separated glas~es. There has 

been considerable scientific study of the kinetics of this process. 

Uncontrolled crystallization of glass~s initiated either from 

the surface or from internal inclusions is usually termed 

'devitrification' • A great deal of attention has bee.l give!'l to 

developing glass compositions which will not undergo devitrification 

during the shaping processes of glass articles. Also, fundamental 

studies have been made of the devitrification proces~ and its rela­

tion to certain glass properti~s such as visccsity. 

The discovery of controlled internal crystallization of glasses 

(1.2) gave rise to a n~wclass of materials, namely glass cer.amics. 

Glass ceramics are obtained by a controlled heat treatment schedule, 

of specially prepared glasses, which results in the nucleation and 

growth of crystal phases \'1i thin the glass. It is possible to 

prepare very fine grain polycrystalline bodies which possess, in 

general, certain improved properties when compared either with the 

rclat.ed glass or cerardc (1.3). For. example, the complete absence 

of porosity in glass ceramics (if prepared from bubble-free glasses) 
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contrasts with the 6i tuation in 'normal' ceramics ,o,hich are vert 

rarely free fran closed pores. Also the fine grain glass ceramic 

can be more resistant than the original glass to the propagation 

of cracks initiated' in either the surface or the intarior 

of the body. These factors contributa to th.:l often high 14echanical 

strengths of glass ceramic materials. 

Some of the earliest glass ceramics were prepared by precipi­

tating metallic particles in tho glass, these acting as sites where 

the main crystalline phase could nucleate and gr(l\". This process 

is known as heterogeneous nucleation. However certain glasses 

will crystallize internally without add1r~g any type of nucl~ation 

catalyst to the ~lass batch. For this reason they are believed 

to undergo hcmogeneous nucleation. The term 'nucleating agent' 

i9 given to those materials, added to tile ~lass batch, that will 

promote intemal crystallizat~.on of the final glass. ~'or example 

a nucleating agent could enhance phase separation of ~~e glass upon 

hec-.ting. After further heating the main crystalline phas(;ls could 

nucleate homo~eneously in one of the glassy phases. ll]hatever the 

details of the process, the final stages in making a glass ceramic 

will involve the nucleation and growth of the r.lair. crystalline 

phases. A nucleation heat treatment in which a large number of 

small crystals are formed is followed by heat treatment at higher 

temperatures where the crystals are gro~m to proQuce the desired 

degree of crystallinity. 

Studies of crystal nucleation and growth in glass·as are very 

relevant to glass and glass ceramic technology. Also, d~lC to the 

relatively slow molecular rearr~~gements and diZfusion these processes 
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can be conveniently studied in glasses. 

The main objectives of this investigation ,,,ere to carrl out 

f~~damer.tal studies of crystal nucleation (including heterogeneous 

nucleation) and crystal gro\-lth in soda-lime-silica glasses. n 

further objective ,.,as to investigate the possibilities of making 

practical glass ceramics from this system which, from the point of 

view of rau materials, is one of the cheapest glass fonning 

systems. The effects of different nucleating agents on the 

nucleat:lon and grOt·rth of Na20.2CaO.3Si02 (NC2SS) crystals were 

analysed for glass compositions close to the NC2SS composition. 

The properties of the glasses and final c;-lass ceramics \Iere studied 

as well as the effect of the base composition on the t!C2SS crystal 

nucleation. 

1.1 The kinetics of nucleation 

l.la Homogeneous Nucle~.tion Theory 

Let us consider one mole of a onl~ component system at a con-

stant external pressure. The thermodynamic cona1 tion for equil1-

brium (1.4) is that ti~ Gibbs Free Energy of the system G • B - TS, 

\o,here HandS are respectively the enthalpy and entro[,7 per mole 

of the substance at absolute temperature T(oK), is a miniTmlm. At 

the melting point of the substance, characterizeo by a temperature 

rfxn, the liquid (R,) and the solie. (s) phases coexist, both having 

th~ same free energy, i.e. Gt ~ GS 
• At T < T the solid phase 

m 

is stable whereas at T > Tm the lic:::uid is the stable [lhase. lot 

s t 
any temperature the value - ~G - - (0 - G ) is called ~le 'driving 
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force' of the trancformation liquid ~ solid. Let us assume that 

the liquid can be supercooled to T < T without tl1e occurrence of 
m 

crystallization. t'Je wish to analyse the • supercooled liquid to 

solid' tr&1sformation using nucleation theory. 'fui S \-TUS origin-

ally developed f~r liquid condensation from the vapour (1.5). 

Nucleation theory, in VolDler' s sense (1.6), assumes the existence 

of heterophase fluctuations by Nhich embryos of the solid phase 

ca.'1 be formed inside the liquid. This involves the formation of 

an interface bett-leen the solid and liquid characterized by an 

interfacial free energy per unit area cr. The total free energy 

change in forming a spherical embryo of radius r is given by 

4 3 f,G 
l'1= H(r) ... ')'rT r V 

m 
(1.1) 

where V is the molar vo1un~ of the crystallizing phase. 
m 

This is 

sholofJ'l schematically in Fic;ure 1.1. For T > '1' (f,G > 0) N ir.creases 
m 

very rapi<,Uy with embryo size, whereas for T < T (t~G < 0) t'~ 
m 

increases initially with r but reaches a IJlaXimum l'~* at a critical 

ratlius r* and then decreases. ~,~~ value of r* C&1 b~ calculated 

. dW(r) 
from equation (1.1) by solving dr - ... 0 and t~* can be obtained' 

by substituting back into equation (1.1). ~~us 

V 2 

l>'1* = 1& 'IT cr' -~ (1.2a) 
3 I1G2 

r* ... - 2cr V 
t.C t1 

E::1bryos I)f r > r* are called nuclei. 3y calculating (~:~) 
r=r* 

it can be observed that the syotem is in an unstable state at 

(1.2b) 

r = r*. Those embryos ''lith r < r* will tend to dissol',e anc. the 



W(r} 

r , 

: ",(4i3 Tlr(flGlVm)'8G<O 
Embryo'--Nuclei 

a:8G<O (T< Tml,metastable liquid compared to the solid 
b:~G>OIT>Tm),stable " ""."". 

FIGURE 1.1 Work W required to form an embryol l of radius r. 
lnuc eus 

Nr 

Becker-Doring 

rr n 

FIG U R E 1. 2 0 i s t r i but ion Fun c t ion s. 

tiT 

FIGURE 1.3 



5 •. 

nuclei with r > r* "Till tend to qro\'I. For t~e initial stages of 

the transformation it is assumed that embryos grow or shrink b<.l 

the addition or re.tlO'J'al of inrlividual atoms or 'formula units I. 

t>1* is often called the thermodynarU.c barrier to nucleation. 

The distribution of embryos (valid for r < r*) is given b:.' 

(1.3a) 

where N is the number of embryos of raoius r, N is the number of r v 

atom .. ~ of liquid per un! t volume and the exponential term is the 

usual Boltzmann's factor for the probability of finding an ernb]:yo 

of raclius r. Also th~ probability for an embryo of radius r = r* 

to gro\', is given by 

{ AC) 
s* \) exp - k~ (1.3b) 

where ~GD is the activation ener!JY for an atom to cross the liquid­

solie interface, \) is thE: atOMic vibl."ation frequency (::: k~ , k is 

Boltzmann's constant and h is Planck,' s constant) and S'k is the 

number of atoms facing the solid critical size P.rnbryo. 6GD is 

usually called the 'kin~tic barrier for nucleation'. Finally the 

nucleation rate or thl:l nur.l1;.er of nuclei of solid produced par unit 

time can be written as 

-
l "r kT r ('_,'1* + 669) 'J I s* -h- exp - -v kT 

(l.4a) 

In this derivation it is assr:rcec1 that a steaey state distribution 

of errbryos of critical size has been attained. l,lRO equation (1.4a) 
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is valid for the initial stages of the transformation ,·mere the 

untransfo~ed volume is essentially the starting volume of liquid. 

The embryo distributio~ssumed by Volmer, for the case of condensa-

tion from the vapour, was such that it vanished for enbryos c.f 

r > r*. }!o,."ever Becker and DOring considered a distribution such 

that at the critical radius the number of embryos was lower, 

whereas for VQry small r the distribution ''las erosentially the 

same as Volmer'S. This is shown schematically in Figure 1.2. 

~'Ihen all these refinements are appl:!.ed to the liquid-solid trans-

formation the pr~-exponential factor is given by 

U kT s* 
v h (~)~ 31TkT 

i!ollever steady state nucleation rates may be r~)resented to a 

good avproy.imation by 

I = A exp ! (W* + f..r' 0) 
kT (1.4b) 

where A is essentially independent of temperature when compared to 

~le exponential term. 

Finally it should be noticed that for precipitation of crystals 

the equilibrium shape of the crystal need not be spherical. ':i'he 

c~rstal will tend to adopt that shape which ~ini~izes the surface 

free energy. This shape can be calculatec5. from Hulff's construe-

tion (1.6). Hence the previous eqllations have to be modified by 
L Ai a1 

replacing a by a a L Ai where the a 1 Md l'i arc respectively 

the free energy per unit area and area of cr'jstal face 1. Also 
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the appropriate shape f.~ctors (1. 7) ha.ve to be included. However 

the general form of equations (l.2a,b) do not change where now a 

typical' cr1tical dimension I plays the role of th~ previous critical 

radius. 

1.1b Non-steady state hor:lO<Jeneous nucleation 

The creation of a stationary size distribution of embryos of 

the stable phase may take a cafinite time interval in condensed 

Sl'stems, this time being governed by the atomic transport in the 

liquid and hy the inherent instabil1 ties of the embryos. The 

non-stationaxy nucleation. rntes. for sr.-all t (L6) . can be written 

as 

I = I 
o 

-TIt e (1.5a) 

where T (originally calculated by Zeldoyicl1 (1.6» is given by 

n*2 
T ~ -- (1.5b) 

4D* 

were n* is the number of atoms in the central nUI::lel~s (r=r*). 

k? -~G /kT ~ICO) n*2h 
Also D* ~ -"h s* eO, i.e. T II: To e,t}?l kT whe!.~ To .. 4k.Ts* • 

n*2 
Russel (1.G) found T ~ 100* for precipitation reactions involving 

long range diffusion. Uillig (1. 8) found that the tir.l'3 to form a 

nucleUd was 

(1.6) 

where V
L

, V
H 

are the molar volume of liquid and solid phases, 0 

refers to the solute diffusion coe:f::icient a.""ld X is the mole fraction 

of solid. Hillig emph~sized that "this t~ue is expected to be 

rrruch shorter than the actual time to achiev~ steady-state conditior~ 
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because the inherent instability of a subcritica}_ nucleus has not 

been taken into acco\.U'ltll. 

Finally Kashchiev (1.9) found 

I = I [1 + 2 I (- l)j exp(- j2t/'[>j 
o j=l 

(1. 7a) 

and 

8kT 8 kT 
'[ .. -'I1"~d3.2~ J -.. [d 2;.,) 

'I1"s*Z dni" 
~ n~* n~* 

(1.7b) 

where Z is ~~e number of atoms attached to the critical nucleus per 

unit time per unit area. For cOr:lparison with experiment it is 

better to obtain a.."'l expression for N(t), t.l-J.e nuIllber of nuclei per 

unit time per wlit volume; 

N(t) t '11"2 _ ... =._-_ .. -
I '[ '[ 6 

o 

",here for t > 5 '[ 

; (- l)j 2 
- 2 L - E:Xp(- j tit) 

j=l j2 

I '11"2 

N ( t) ~ lot - - 0
6 

- 't' 

(1. Sa) 

(l.Gb) 

This last expression means that the steady state nucleation rate (I ) 
o 

rold '[ value can be calculated (1.10) from the linear part of the 

N (t) versus t plot (F"igurc 1. 3) if the experimental l:esul t.e;: obey 

e~ation (I.Sa). 

l.lc ¥eterogeneous Nucleation Rates 

In homogeneous nucleCl.tion the probability of nucleation at any 

site is identical to that at any other site. In heterorjenl3ous 
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~ucleat1on the probability of nucleation at certain preferred sites 

in the assembly is much greater than at ether sites. Nucleation 

can occur on inclusions or solid impurity particles/on the surface 

of the supercooled liquid or on unlformly distributed particles of 

m~tals or other substances preclpitated by homogeneous nucleation 

in the liquid. In principle the interfaces produced in a liquid·· 

liquid phase separation process could also offer preferred sites 

for nucleation. In ordsr to reduce the ccmplexity, in the ~ollow-

in<J derivation, let us assume the same general cone.iUons stated in 

section l.la plus the existence of !Jl flat. rigid substrates per u!"dt 

volume in the supercooled liquid. Let us cO"(sider the formation 

of a spherical cap (Figure 1.4) of radius r of the solid (s) on 

the substrate (f). At equilibrium the co~tact angle satisfies 

cose .. q = (1.9) 

\.,h(~T.e a 9.,~' a sf and a 9.,s are the interfacial :!'ree f'.rlO:rgles lJer unit 

area betwer:>.n liquid-substrate, sOliC-s\.1bstrate emu liquid-solid. 

'l'he free energy involved in forming such a cap can be "'ri tten as: 

(1.10) 

where 

The free energy of format:i.C'ln of the crt tical size nucleus can be 

(dN~.r(r»)= _ o. calculated ~, solving ~ The critical radius 

r""r* 



til 

, 
/ . 

FIGURE 1.4 F ormation or a solid (s) clus ter on a solid 
subs trate(f) from the supercooled liquid (l L 

H iquid 

~H 
.so ld : 

t 

Tg Tm T 
FIGURE 1.5 Enthalpy of the liquid and solid as a 

function of temperature. ----all - .-

Gl ..-----
I 
I , 
I I ,. 

Gos --.; 
~ I' 

. A ~~' ~oc 'iiI '4.1. X:.. 8 

I 

FIGURE 1. 6 S chemati c free energy diagram for two solids 
and a liquid as a function of composition and at constant T. 

Free energy 
liRuid - t - - -

6G~ 
- -- -, 

solid ',v~G , -_____ 1 ___ . .J/.,m 
A .--.' 

POSI Ion 
FIGURE1.7 Free energy vs.position for a atom to cross 

the solid-liquid interface. 



obtained is: 

r* .. -
2(1 V 

~,s m 
AG 

a 3v 2 

'"1 * -!§.'IT ts m £(6)" ~;*f(e) r.£ 3 !J.C2. 

10. 

(1.11) 

(1.12) 

2-3cos8 + co~3e 
where f(8) - 4 ~le function f(O) varies from 0 to 1 

when e varies from 0 to 'IT. Thus, although the critical radius is the 

same as in the case of homogeneous nucleation, the thermodynamic barrier 

for nucleation can be much smaller in the heterogeneous case. For 

For a .. 0 complete wetting of the 

substrate by the solid in the presence of the liqn16. occurs and \If* .. 0 

i.e. there iano thermodynamic barrier to nucleation. The interfacial 

energy between s and £ will in general depena on the kind of interface 

betwEen them. asf can be approximately (1.11) describec as a
sf 

D 

a f~ + C1 fst where a f
q 

arises from the chemical interaction between s s .. s s 

and f molecules across the interface. st asf corresponds to the elas-

tic strains in s and £ and the cll.slocations at the inter~ace necessary 

to acconunodate the mismatch oi between them. The' id~al disregistry' 
o 0 

a - a 
is defined a~ 15i -= f 0 5 where af 

0 and as 0 are t;,e equilibrium 
as 

atomic spacings of free substrate (f) and free solid (s) respectively. 

Now the equilibrium number at embryos of 

f (Hf(l») 
Nr .. I~ exp - kT J 

radius r is given by 

(1.13) 

where i:l is the total nuMber of atoms of liquid in contact wi th 800'-

strate particles. The number of nuclei produced r~r unl t time U. 6) 

is 
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f kT l' (t'1f * + fiGD) 1 lJ - exp -
h kT (1.14) 

f where A is the total surface area of substrate particles. Finally, 

the nucleation rate per unit volume of liquid is 

f f kT [ (T!l/ + 6GD1 ] 
VI 0= VN h exp - kT J (1.15) 

f where V
N 

is tht total number of atoms of liquid in contact "lith the 

substrate particles per unit volume of liquid. Also this number is 

given by 

V f • Mnf. 1'1 I" (1.16) 

f where n is the nu."1lber of atoms of llquid in contact \7it1:- one substrate 

particle. 

1.2 The thermodynamic drivi~g force of p~a~e transformations 

As ",e have seen in the previous section the 'dri ving force' is an 

important quantity in nucleation t.~eory.· It also occur3 in the theories 

of crystal 0I"owth. tIe will nm., show hot" it tnay be calculated for both 

single and multicornponent syste~s. 

1.2a Single component systems 

Let us consider a single component glass forndng liquid. On cool-

in~ the enthalpy function will in general follow curve a in Figure 1.5. 

On reaching Tm, for kinetic reasons ~~e stable liquid passes to the meta-

stable supercooled liquid state \,llthout cry~tallization. l,t T ... 'l'Z 

R.. 
a 'bend' in the H vs T curve is Observ~d. Tl::is corresponds to the 
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glass transformation temperature range; where the s1.lpercooled liquid 

state of the system changes grEl.dually (depending on the cooling rate) 

to a 'solid like' state (1.12). The corresponding crystalline mater·· 

ial (curve b, Figure 1.5) \'1ill he.va lower enthf\lpy in the same tempcra-

ture range. 

At a terrperature T < ':i'm the change in free er.ergy per mole is 

given by: 

~Hf. 'I'm Tm d ,. 
11r:;' = - --=- (Tm - T) - J 6Cp dT'" + T J 6cp ~TT 

Tm T T 
(1.17) 

where flG .. /jH - TflS = GS 
- c9., /jH

f 
.. H9. - H

S > 0 and 6Cp = Cps - c/·' < 0 

S t 1 1 where cp , cp are the specific heats (cal mole- °K-) at constant 

pressure for the solid arr. liquid respectively. If t.Cp = 0 \-1U obtain 

t.H~ .c 6.G = _. -;rm (Tm - T) (1.18) 

In general flCp is a function of tenperature. IIowever if llcp .. constant 

frow Tm to the temperature of interest equation (1.17) can be 1nte-

grated to give: 

6.H r ) 
f..G .. - rr! (TIn - T) - 6.Cp (TIn'· T) + /jCp T 1n l~" (1.19) 

(
Tm-T) 3 ana higher in In(~) we 

No ... , neglecting terms of the order Tm+T) • J 
obtain: 

(1.20) 

ror thoRe cases where llCp is an unkno\-Tn COli.stant Hoffnan (1.13) 

found (38e also (1.14» 

tJ.Hf T 
6.G = - -TIn (TIn - T) 

'I'm 
(1.21) 
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It is interesting to compare the different values obtained from equa-

tions (1.18) to (1.21) for a given conpound. Let us assume a material 

where ~Cp = - 38 cal mole- l oK_I, ~af = 21000 cal mole- l and Tm = 
, 

1562 oK (1289°C). The results at T = 893°K (620°C), T = 993 o~ 

(720°C) and T = 1423°K (11S0oC) are listed in Table 1.1. 

TABLE 1.1 6.G RESULTS FRm: EQUATIONS l.18 TO 1. 21 

It can be seen that at hi~1 temperatures the four different equations 

give almost the Sar.le ~G irrespective of whether 6.ep is cO~1stant or not. 

But at much lower temperatures the difference between the cases t.ep - 0 

and 6.Cp • - 3B cal mole-I~1s veL~ significant. Fo:c example at 893°K 

equation (1.20) gives -2066.6 cal mo1e- 1 which is 77% lower thru1 from 

equation (1.18). Finally it is interesting to examine the validity 

of the approximation involved in the derivation of equation (1.20). 

'rhe value froe equation (1.20) is approximately 9'\i lOvlOr t.ha.'1 that 

from the more accurate equation (1.19) C".t 993°K. 
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1.2b Binary Systems 

" Let us consider the G''''' vs. X
A 

free energy diagram of Figure 1.6 

~here three pha3es can be observed i.e. A(s), liquid and D(s). At the 

moment let us concentrate on ~1e precipitation of pure solid A from 

a compositions X
A 

between X
A 

and 1. G 
09J os 

A ' G1\ are the molar free 

energies of pure liquid and solie. at the tenperature of interest. 

os 
~le molar free energy change in preciritating NA moles of pure A (G

A 
) 

R, 
~.d N

x
' moles of liquid of composition X

A
, (0 (X

A
,» from Nx moles of 

solution of composition X
A 

(GR.(X
A

» (neglecting interfacial effects) 

is 

flG' 1 9. /I 
flG" - I: -[U " G'(X

A
,) + N G os JIv()] 

NA N]\ x p., A - Nx G XA 

where Nx .. NA + Nx ' and NA « N ... It can be shown (1.11) that 
x 

" flG ;. [c os ~: oR. (Xn.'] + (1' - X.i\) 
dC'J. os', G R. (1.22) --= G -r. oY-

A 
'II A H " 

Hence flG is the vertical distance from the intersection of th.?! tangent 

Equation (1.22) is of 

fundamental importance in phase transformations in glass~s (References 

1.15 to 1.20). For example a sup erCooled liquid of cOtilposi tion a 

(~'igure 1.6) cannot precipitate solid B initially Sil'lCe the value of 

G 09 _ a' is positive (a' is the intersectioj,'l of tlle tan?ent at a ";ith 
B 

the pure B axis). However solid A can precipitate and tile ~emaining 

liquid will change con;.)ositiol1 until D fonnation is possible thermo-

dynamically (tangent bb") • 

Let us assume that for kinetic reasons neither solid A nor solid 

B can precipitate for liquid compositions between XA a and X
A
8• Then 



15. 

th(! initial liquid will separate into bro liquids of cO!l1!'ositions x
A
a 

~ s2 (d 2 G.t ) and X
A 

• For compositions between tile inflection point X
A 

dX
A

I = 0 

and xAf!> the system is r..etast~)le tmvards infini t€sirnal compositional 

fluctuations (~~:~ > 0). Thus for a liquid of cc:mposition c phaso 

separation can only tak(! place if a fluctuation exceeding the cornposi-

tion c' occurs. In this case the !<1netics of the process are governeu 

by nucleation and growth, as already discussed. For conpositions be-

v~een the inflection points the liquid is unstable towards infinitesimal 

compositional fluctuations (~::! < 0) and the kinetics of phase s~para­
tion for the initial atages are governed by an 'uphill' diffusion pro-

cess (' spinodal decomposition I) ",here the interfaces bet"ileen the i111 tia1 

liquids are cUffuse rather than shaI~9 as in tl1e nucleation case. 

t>1hether pl-.ase separation occurs by a nucleation or spinodal mechanism, 

the final stages are governed by a coarsening p'roc\~ss \"lhich is driven 

by a lowering of the interfacial energy bet"reen the phases. 

Let us now assume that for liquid compositions beb-reen the spinodal 

sl S2 
compositions (XA ' XA in Figure 1.6) solid A cannot precipitate for 

kinetic reasons. There are two cases to consider. The first case 

is typified by a liquid of composition ·c. For ~lis composition soli~ 

B cannot precipitate unless phase separation (by a nucleation mechtmism) 

occurs first. The second case applies to conpositiollS "-'here the 

driving force for D precipitation io positive, for exam~le composition 

d. Thermodynamically B could precipitate from the beginning. How-

ever B formation \<7ill involve a large change in oomposit:f.on requiring 

long range diffusion, whereas the liguia is in ru1 unstable state and 

~lil1 tenr'i to quiclc.ly phase separate into bolO liquids. ~lthoush by this 
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process the thermodynamic barrier to nucleation of B is increased at 

the same time the kinetic barrier to nucleation may be considerably 

decreased. 

How the activity of A (referred to the pure liquid st.:1.te) in the 

liquid of composition XA is given by (1.4): 

1 _ G 01 1 1 
GA A + RT n aA 

(1.23) 

where R is the gas constant. From equations (1.10), (1.22) and (1.23) 

we obtain: 

~Hf 1 
6.G = - - (TIn - T) - RT ln a

A 'I'm 
(1.24) 

1 1 1 
The activity is given by aA - XA y~ , where YA is the activity co-

efficient for component A which is in general a function of t~perature 

and composition. Then 

6H f 1 
6.G = - - (Tm - T) - RT 1n X - RT In y,. 

TIn A ft 

(1. 25) 

At the liquidus temperature ('l'~) of the system, 6G - 0 and from eCluation 

(1.24) it is found 

(1.26) 

9.. 1 
For an I<1ea1 solution Yl. ... 1 (Le. a

A 
is independ(~nt of ter:lperature) 

we find 

where the relationship bett-Teen Tr.: and X
1
\ is gi van by 

6.B
f 

R TID T ('I'm - 'I'L' = In XA 
L 

(1.27) 

(1. 20) 
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In order to introduce the regular solution model it is convenient 

1l, 
to reformulate the problem in terms of the free energy of mixing ~Gm 

at the composition X
A 

(distance P~} in Figure 1.6). This is carried 

out in Appendix AD. ~G is now given by equation (ADa) and the re1a-

tionship between 

that a knowledge 

XA and TL is expressed 

R-of ~E (A) is required 
m 

in equation (1).010). Hote 

to calculate the liquidus curve. 

Further discussion of this model is given in the ]\ppc·mill.x. Finally 

for systems of more than tHO components the free energy change 

os R, 
~i - Gi for any component i can be calculated from an equation 

similar to equation (1.2·1) where again activity data is required. 

1.3 Fr,XstCll Grol'Tth Rates 

once a stable nucleus has formed the growth of the crystal proceeds 

lJy incorporating atomic species from the supercooled li~·!id. Again the 

free er.ergy difference ~etween liquid and crystal driVeS the transforma-

tiona. Also an activation energy ~G~D (in general different from that 

for nucleation) for an atom or growth unit to cross the liquid··solid 

interface has to be considered. 

Normal Gro\<1th 

In the followin~ d.i.scussion, for simplicity the qro\lth units will 

be referred to as "atoms" altho\l~~h a better term \-,ould b~ 'formula units'. 

Let us ass'.we that the pro;nJ:.ility of atomic attachment is \ulity 

at the interface. The transfer of atoms in either direction across 

the interface will be equal to the number of atoms at the interface s 

times the fraquency of attempted jumps V times the fraction of atoms 

which acquire enough thermal energy to jump. The fraction of atoms to 
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jump across the interface (Pigure 1.7) from the solid side is given by 
bG~ +~ 

exp[ (D ~ 1 where V is ~i.e atomic volume. The fraction of 
kT ~ ~ 

atoms for the reverse direction is given by exp(- • :'ID). The grO'-1th 

rate will be proportional to the net transfer of atorr.s f.'roTii the l1c~uid 

to the solid. That is 

( 

bG~ D • vl~GI 
11 CL s'J e}\.!> (- 6G~ D/kT) - s " exp - kT ym 

If s atoms are transferred (:;rrrn'lth of one layer occurs, i.e: 

ylbGI 
U - A \) exl.J (- 6G~ D /kT) [1 - exp - vrnkT -] (1.29) 

It can be seen that U vanishes at T = Tm and that U has a maximum at 

10\'Ier temperatures. Two limiting cases can be obtained fronl equation 

(1.29). For 

vl~GI 
Vm 

« kT (small su:>ercooling) 

VlbGI (M'DJ U == A" . exp -
Vm kT 

(1.30) 

As we have shown in section 1.2a, equation (1.18) is a very good appro-

ximation for 6T - Tm - T small. So equation (1.30) becomes 

V Mit ( t.G~ D ) 
1..1 = A " vm '"TM bT eX!? - kT 

i.e. U is proportional to 6T 

VlbGI » kT For Vm (large supercooling) 
6 ~ . 

U == A "exp(- :/» 

(1.31) 

(1.32) 

It should be noticed that t.G~D • t.H~D - Tt.S~D where LH~D' t.S~D are the 
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enthalpy and entropy of activation. Then 

M" ~H'" 
D D 

ln u ... ln (AV) + ~ - "'"'kT (1.33) 

1 In other worCis the slope of a 1n U vs T plot gives the acthratian 

enthalpy rather than ~G'" D. 

Surface nucleation model for crystal growth 

By defining the diffusion coefficient for growth as 

( 

~G'" ~ 
D - Do exp - kTD] (1.3·1 ) 

where Do - V A2 and including the fraction of crystal sites f on the 

surface of the solid to \'lhich atorcs can be attached (0 ~ f ~ 1) the 

growth rate becomes 

D f [ U-r- 1- ( V'~G')l exp - .VmkT (1.35) 

Let us examine closely the significance of equation (1.35). Rough in-

terfaces on an atomic scale provide many sites for growth, so that . 

the factor f should approach unity and the growth rate s~~ould be iso-

tropic. IIowever for very smooth interfaces growth occurs \-1ith greater 

difficulty and f should be less than 1. Furthermore if a crystal has 

both kind of surfaces in general ~le growth rate will be anisotropic, 

the layers growing rapidly on the rou0h surfaces and slowly on the 

smooth surfaces. For materials (1.23) characterized by low entropies 

of flmion ~Sf < 2R even the closely packed surfaces should be s~oth on 

an atomic scale and the growth rata should be highly anisotropic show-

ing a definite faceted morpholOCJ"!. '!Wo roc1.els have been put fo:nlard 

to estimate the factor f (1.21). BOe1 ass~~e that growth occurs only 
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at steps on a smooth surface. 

For an atomically smooth surface (without intersecting dis1oca-

tions) crystal growth may occur by first forming a two dimensional 

nucleus (1.25). ~t us consider the formation of a "pill-box" 

nucleus of radius r and height ao • The work to form such a nucleus 

is given by 

2 /).G 
W (r) • TIr a -- + 2TIr ao y 

A 0 Vm 
(1. 36) 

where y is the interfacial free ener~ per unit area at the edge of 

the nucleus. By a similar procedure to that used in section 1.la the 

thermodynamic barrier to nucleation and the critical radius are 

Vm 
r* - - y -612 

(/).G < 0) 

The nucleation rate of monolayer islands is given by 

2TIr* 
a o 

where ~f is the number of possible nucleation sites, 2TIr*/a is the 
o 

nUITber of edge sites ,.,here an atom can be attached and \.) is a fre-

(1.37) 

(1.38) 

quency for atomic transfer from the liquid to the nucleus. If 6G is 

given by equation (1.18) we obtain 

(1.39) 

For small ~T a single nucleation event will result in an island 

spreading across the interface to form a new layer. E'~n ce the growth 



21. 

rate depends on the frequency of nucleus formation i.e. u .. I ao and 

'1 a exp (- B/T/).T) (1.40) 

1T a y2vm Tm 
o where B .. -~:-----­kllH

f 
It can be seen from equation (1.40) that 

the <Jro\lTth rate according to this model \,1111 be uncbservably low for 

/).T small. 

For very large supercoolings the growth rate is controlled by the 

rate of attaChment of atoms rather than by the nucleation of new layers 

and the gro\'lth mechanism ''1ill be similar to normal <Jrowth. 

Scra! dislocation model for crystal gro,vtI! 

The screw dislocatial ~echanism assumes step formation by screw 

dislocations intersecting the interface. The dislocation provides a 

perpetual ledge where atoms can be attached to the crystal. The 

tighter tile spiral ledge the higher will be ~~e growth rate of the 

"lhole surface. The equation of the spiral is r .. be where r is the 

radius, b the separation of the turns of the spiral and e the angular 

coordinate. Setting tile radius of the central island of the spiral 

b 
equal to r* (r* .. 2) it is found that r - 20r*. From equations (1.37) 

and (1.18) the spacing b is inversely proportional to ~T. Hence 

the total length of spiral is directly proportional to ~T. nie 

factor f is given by (1.25): 

(1.41) 

Thus for small b.T, equation (1.35) approaches 

D V /).Hf!J.T ao D v f~Hf12 (!J.T) 2 
11 :::I X f vm Tm k'l' ... 21TA v 2my {'TID) kT 

(1.42) 



If the diffusion coefficient is viven by the Stokes Einstein 

equation 

kT 
D=-

311'A11 
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(1.43) 

,where 11 is the viscosity and A the atomic diameter, an inverse depen-

dence of growth rate on viscosity should be observed. It is conven-

ient to define the reduced growth rate 1.I as 
R 

un 
lJR - i

l 1 -

(1.44) 

Thus the temperature dependence of f Crul be obtained from the tempera-

ture dependence of UR• For normal growth a horizontal line of U
R 

versus T should be obtained. For screw dislocation grCJl'Tth (llT sIllall) 

a straight line passing through the origin should be founa. Finally 

for surface nucleation growth a curve (positive curvature) passing 

through the origin should be obtained for small AT. 

1.4 Li1er~ature Review 

Nazo-Cao-Si02 System 

The Na2o-Cao-Si02 phase diagram determined by Horey and Bowen (1.26) 

"las revised by Shahid and Glasser (1.27). Shahid and Glasser found 

two 'new' eutectics inside the IJa2C.2SiOz (NS2) field as originally 

delineated by Morey and BO\len. Shahid and Glasser also showed the 

existence of two 'new' phase fields, namely NsSa and NCSs, inside ~~e 

'old' NSz field. The revised equilibrium diagram from 50 wt.% SiOz to 
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100 wt.~ Si02 is shown in Figure 1.8. Sesn1t (1.28) found two com-

pounds to the left of the NS-CS join. 

Also the stability field of the NCzSa 

phase was considerably enlarged from that given by ~brey and Bowen. 

Thus the liquidus surface of nCzSa extenqed neatly to the N .. C,Ss' corrpo-

sition. The binary NS-CS was carefully examined by Hoir and Glasser 

(1.29) • This section is shown in Figure 1.9. The NCzS, phase (33.3 

mole% Na20.S10z) shows an extensive solid solution range whereas the 

N'zCSa phase (66.6 mole' NS) shows; comparatively, a n:uch smaller 

range of solid solution. This phase diagram can be used to Obtain 

information on the thermodynamic behaviour of the composition NCZS3. 

~~le fractions in the binary system CS-NS (from the NCzS, composition 

to NS) were transformed to mole fractions in the binary NCzS,-NS 

system. A plot of In XR vs l/TL is given in Figure 1.10, where XR 

is the mole fraction of NCzSa, for the range 1 ~. XR ~. 0.525, i.e. 

from 33.3 to 65 mole% NS in Figure 1.9. 

This plot is linear in the composition range considered. '!he 

slope and intercept with the In XR axis were -13578.26 and 8.596. 

Assuming ideal behaviour, from equation (1.28) we ohtain a heat of 

fusion of 27 kcal mole- 1 (from either the slope or the intercept of 

th.e ln XRVS'~ plot). This value is about 5 kcal mole- 1 greater than 
L 

the known value for tho heat of fusion of the NCzS, co~ound (1.33). 

lbir and Glasser (1.30) also studied the soda-lime-silica system 

for 5, 10 and 15 wt.% AlzOa additions and found that the NCzS, field 

extended up to 67, 63 and 61 nole% 8102 respectively. 

The l'lCzS, crystalline compound exhibits (1.29) a high to 1mI' poly-

morphic transformation at 485°C. The 1(»1 fo~ (1.31) is hexagonal 
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FIGURE 1.8 Equilibrium diagram aceta Shahid andGlasser.(127) 
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FIGURE 1.10 
1 . 

1n XR AS A FUNCTION OF T FROM DATA ACCORDING TO REFERENCE (1.29) 
L 

DATA FROM THE JOIN CS-NS ACCORDING TO 
REFERENCE (1. 29) 

1 x 103 X(mo1e% NS) XR 1n XR TL 

0.640 33.3 1 0 
0.642 40. 0.90 -0.1054 
0.646 45. 0.825 -0.1924 
0.654 50. 0.75 -0.2877 
0.662 55. 0.675 -0.3930 
0.670 60. 0.600 -0.5108 
0.681 65. 0.525 -0.6444 

Least squares slope = -13578.26 

.Least squares origen ordinate = 8.596 

Tm = (1289°C) = 1562°C 

X refers to mole fraction of NS in CS-NS system 
1 1 

XR refers to mole fraction of 3(NC2S3) in 3(NC2S3)-NS 
system 

0.65 0.66 (1/TL)x10~ 
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whereas the high form is rhombohedral (1.32). There is no data 

available on the heat of this transformation, hOl.'Iever 1 t will be shown 

later that it is much smaller than the heat of crystallization. The 

heat of f~qion was found to be 21.8 kcal mole- 1 from solution calor-

imetry (1. 33) • Taylor and Hill (1.34) studied the NC2SS crystals ob-

talned as devl trification products from soda-lime glasses ,·Ii th a higher 

percentage of silica. 'l'he crystals \-Tere approximately cubic, gave 

refractive indices between 1.596 and 1.599 and were uniaxial positive 

with some hmellar twinning. 

Frischat and 091 (1.35) studied tho NC2S3 composition in both the 

glassy and crystalline states. For the glass they obtained a DT~ Tg 

of 575°C and a density of 2.75 g cm- 3 • For the crystal the density 

was 2.80 g an- 3
• The polymorphic transformation was at approximately 

° + 2+ 470 C. They studied Na and Ca self diffusion in tha glass and 

crystalline materials as well as the specific electrical conductivity 

for both states. For example the activation energies for electrical 

conductivity were 25.9 kcal mole- 1 (250 - 600°C) for tllC ~lass and 

26.2 kcal mole- 1 (470 - 900oe) for the crystal. The activation ener­

gies for self diffusion of UNa \tlere 27.5 kcal mle- 1 (200 - 6oooe) 

for the glass and 29.9 kal mole- 1 (470 - 900°C) for the crystal. 

The results for "sea self diffusion ,,'ere 56.1 ~(cal mole- 1 (460 - Goooe) 

for the glass and 34.5 kcal mole- 1 (390 - 920°C) for the crystalline 

compound. Application of the !Jerst-Einstein equation gave correla-

tion factors f between 0.4 and 0.5 for the glass and the crystal 

which indicated an interstitialcy mechanism for ion movement. 

R'lmr.lcl (1. 36) studied the kinetics of phase s:.:paration for a 
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glass of 13 NaaO, 11 CaO and 76 niOa (mole'). The nucleation indue-

tion for the process agreed well \-lith the valu€s calculated from 

equation (1.6). The agreement between theory and experiment for the 

homogeneous nucleation rates was initially considered to be excellent. 

However, (see Russell (1.37» it was later noted that the theoretical 

nucleation rates were calculated with a diffusion coefficient 108 times 

smaller than the true value. Burnett and Douglas (1.38) studied tl1e 

kinetics of liquid-liquid phase separation for 'glass ~O' (t~ SiOa, 

10 CaO and 10 NCl20~· (molet» and 'glass 75' (75 Si02, 12.5 CaO and 

12.5 NaaO (molet». I"or glass 75 the initial stages could be described 

by a nucleation and growth mechanism. The maxirnum temperature at 

which nuc1e~tion could be detect~d was 660°C whereas the ~scibility 

temperature was 687°C. The later stages could be described by a 

coarsening process. For glass CO the initial separation process was 

much faster and only the coarsening stage was detected. It is inter-

eating to note that on heating at tell1!?cratures bet\t!een 680°C and the 

miscibility temperature (890°C) phase separation occurred as droplets 

whereas for lower te~ratures an interconnected microstxucture was 

detected. The highly interconnected microstructure broke up to form 

spherical particles for the longer heat treatments. 

Strnad and Douglas (1.39) found that internal nucleation of NeaS3 

and NaCS3 crystals occurs for compositions near the NS-CS join. '!'hey 

analysed the internal and surface crystal nucleation for glasses along 

the join S-NC. It was shown that surface nucleation. oc-::urred at 

smaller supercoolings than internal nucleation. Also they found non­

steady state internal nucleation for the glass ~':i th 57.5 mole!!; Si02. 
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Finally they showed that the growth rates determined for internal cry­

stals and for surface crystals were the same. Mukherjee and Rogers 

(1.40) studied the effect of CaF2 on nucleation for two series of 

glasses in the CS field of the N-C-S system. One series also had 

AlzO, as a component. It was found that the glasses tended to 

liquid-liquid phase separate before the crystallization. l~ey found 

no correlation between the density of droplets and the density of 

crystals. The nucleation rates for the glasses containing A120, had 

a maximum at 662°C irrespectively of the F content. Also the curves 

of nucleation rate vs temperature became increasingly broauer for in­

creasing F content. The nucleation rates for tha glasses \,lithout 

Al203 were much lower than for the Al20, containing glasses. 

Kalinina and Fil1povich (1.41) studied the nucleation of r!2CS, crystals 

in a glass of 50 5i02, 10.7 CaO and 38.9 Na20 (roole%). The N2CS, 

crystals , ... ere spherical. For this glass the dilatometricqlass transi-

tion temperature was 460°C anj the maximum stf.udy state nucleation rate 

of 105 unn-' min- 1 \'1as found (It 485°C at which temperature the nuclea­

tion induction time was zero. They also quoted the crystal f]ro\,lth 

rate at 550°C as 0.13 ~m min- 1 • The higher value for t~1e temperature 

of the maximum nucleation rat:e as compared with Tg ~!cU:1 e.xplained in 

terms of the large increase of the activation energy for diffusion 

(across the crystal-liquid interface) for temperatures approachin0 Tg. 

Dietzel (1. 42a) studied gro'~th r<ltes in soda-lime-silica c;lasses for 

~~ffercnt primary phase fields. For example, in til~ tridymite field 

the lines of constant growth rate vs composition were almost parallel 

to the liquidus temperat~e (TL) contours where it was observed that 
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for TL increasing the growth rates also increased. E: .. ,ift. (1.42b) 

studied the effect on growth rates of different add! tions of l.IJgO and 

A120,. For example for no f.1g0 addition the devitrite (NCSS6) maximwn 

growth rate was 0.31 rom hr-1 whereas for 2~ 1)190 addition the rnaxlnum 

growth rate was decreased to approximat~ly 0.11 mm hr-l. Sadeghi 

(1.43) studied growth rates for compositions lying along tho NC2S,-

ThE; activation energies for grO\'lth, obtained in the low 

temperature range helow the T:'.nxir.ru.n rnte, docrensc,d on I:!oving awny 

from the NC2S, composition. These values were 104, 90, 81 and 70 

kcal mole- 1 for glasses with corr.positlons of NC2S" N7CIOS19, 

N2C2SS a;,1d N3C2S7 respectively. 

Other work relevant to the thesis 

f:taurer (1.44) studied the effect of gold ca~alyst particle size 

on th~ heterogeneous nucleation of 1i thlurn metasilicate from a glass 

of 81 S102, 10 L120, 5 K20, 4 Al203, 0.02 Ce02, 0.15 Sb203 and 0.005 

Au (wt. \). It was found that the l\u particles had to reach a diameter 

of about 80 1 before the main crystalline phas~ could nucleate. It 

was suggested that nucl~~ation was inhibited by strain between the 

crystalline embryo and the underl~~1ng gold substrate particles. 

Maurer also studied (1.45) crystal nucleation in a glass of 56 Si02, 

20 Al203, 15 1-1g0 and 9 Ti02 (wt.\) using light scattcri1'lg and X-ray 

diffraction. It was found t!lat the initial isotropic r~gions 

(presumably formed by liquid phas~ separation) transformed to cIi's~al­

line magnesium di ti tanate after h€('I.t treatrents m the r~nge 742 to 791 0 C. 

GltZO'II and Toschev (1.46) analysed the catalysing effect of JI.u, 
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Ag, Rh, Pt and Ir in a NaPO, glass. They observed induction tiIne:s in 

the Nv vs tiMe plots. Also they found that the catalytic po~.,er in-

creased ,.,i th increasing difference in thermal expansi vi ti~s betvlesn 

glass and metal. It is interesting to note that "m~n Pt Nas used as 

a catalyst the main crystalline phaGe (Na,p,Og) ter.ded to gro,,, at the 

tip of the rod shaped Pt particles. Rinoone (1.47) showed that Pt 

addition to a Li2C.4SiC'2 glass il1creased the rate of Li20.2Si02 crystn.1-

lization. Ohlbarg et al (1.4~) observed that in a Si02, TiOz, r~20, 

and MgO containing glass 'magnesium dl.tit~nate' precipitatec'! first 

from a previously phase separated glass and then catalysed the cryst­

allization of silica 0, the main crystalline phase. Neilson (1.49) 

found no evidence of phase separation prior to crystallization of 

Zr02 containing glasses in the Si02-Al20,-MgO system. H~ concluded 

that the initial ~ages of crystallization, at high temperatures, may 

involve the homogeneous nucleation and growth of uniform crystallites 

of Zr02. 

Mel·allan «1.50) see also (1.51» studied crystal nucleation in 

It 'twas found that crystal nuclea-

tion was enhanced with P20S addition whereas the gr"",th rates were 

decreaseq with P20S addition. Hatusita and Tashirol (1.5.2) studied 

the effect of added oxides o~e crystallization of Li20.2S10 2 (LS2). 

A constant haating rate was used up to a series of different tempera-

tures. The total number of particles, thus produce~, was inversely 

o proportional to tha increased glass viscosity at 485 C for AllO, and 

Ti02 additions of 3 I~le%. Ito et al (1.53) studied the crystalliza­

tion process in LS2. In the context of the present ''fork it is parti-
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cularly interesting to note that., when thE~~" p1ottE::d the length of the 

'long axis of LS2 crystals against time a considerable intercept with 

the time axis was found for measurements at lower tanperatures. 

Filipovich and Kaliroina (1.54) also found intercepts with tile time axis 

-rlhen plotting the maximum size of LS2 crystals against time. For 

example at 600°C the intercept was approximately 25 min., whereas at 

the same growth t~~perature the glas~ prch~ated at 450°C for 100 hr 

showed an intercept of 2 min. Matusita and Tashiro (1.55) measured 

nuclE::ation rates in Li20.2S!Oz glass. By identifying the activation 

energy for nucleation with that for viscosity, equation (1.4b) can be 

written as 

AI 
I-­n (1.45) 

where A' can be taken as a smooth function of tenperatur'... From plots 

of In(In) against 6~2T ' (J was found to be 196 er:g em- 2• Although 

they could not detect homogeneous nucleation for the Na20.2Si02 (NS2) 

and K20.2Si02 (SK2) glassos, they estimated a for the latter glasses 

through a comparison with tha LS2 results. Th~'Y found that a(LS2);> 

a(NS2) > O(KS2) and concluded, from nucleation theory, that the negligible 

nucleation of NS2 and KSz was dua to the much smaller driving forc~ 6G 

for these glasses as compared with 6c for LS2. James (1.10) studied 

the kinetics o~ternal crystal nucleation in two Lilo-Si02 glasses, the 

LS2 and a glass containing 35.5 mole~ Li02. Pronounced non-steady 

state behaviour was observed at lower te~~ratures. Also the nuclea-

tion induction time increased rapidly with decreasing temperature. 

nowlands (1.7) studied the crystallization process in Li2D-SaO-Si02 
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A much larger 

nucleation rate was found for a glass of composition BSz than for a 

IS2 glass. The lower value of a for BS2 was the main reason for the 

observed behaviour. Ramsden (1.56) showed tl~t for BaO_Si02 glasses in 

the range 25 to 35 mole% BaO, liquid-liquid immiscibility had a con-

sidcrable effect on BaO.2Si02 crystal nucleation. The cOMposi tion 

change, due to phase separation, altered both tho ti1ermod~n~~c driv­

ing force and the kinetic barrier for nucleation. 

Boulos and KreiC!l (1.57) reviewed the effect of H20 on the 

properties of glasses. The viscosity of glass was reduced with in-

creasing OH content, the effect being more pronounced in the trans­

formation range than at the softening point. Also H20 additions 

have been found to enhance liquid phase separation in sodiwn silicate 

glasses. Other literature on the effect of water additions will be 

fully discussed in a later chapter. 
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A variety of experimental t~chniques have been used during 

this work. Although a complete explanation of the principles of 

each technique euployed ",ould be outside the scope of this thesis, 

it was considered necessary to describe most of the techniques 

in reasonable detail. 

2.1 Preparation of glasses 

Glass homogeneity is very important in the fabrication of 

glass ceramics both industrially and on a laboratory scale. It 

may be assumed that reasonable homogeneity has been achiewd when' 

a uniform density of crystals and a uniform crystal size distribu-

. 
tion are observed throughout the volumo of the nucleated glass. 

Furthermore for the glasses studied in this wo:rk we have: observed 

that crystal shape is dependent on changes in corvosition (see 

Olapter 3) and so changes in shape might indico.te the prcs(;.!nce of 

inhomogeneity. 

In this thesis a fairly wide area of the soda-lime-silica 

system has been covered. A large portion of the work \'1 as concen-

trated on glasses around the NC2S3 composition. Cm.positions of 

higher silica content (up to 80 mole' Si02) were also studied. 

The nominal compositions of the glasses are listed in Table 2.1. 

The glasses wer13 prepared "ith the following analyticnl grade 

rengents: 

Ti02, A9N03' Ce02, Sb203, PtCl4· 

Glass G16 ,.,as prepared with Silquartz (SiOZAR). 'l'he rest of 



TABLE 2.1 NOMINAL C011l?0SITIONS OF GLASSES MELTED 

G1C'tss 
Code 

G1 
G2 
G3 
G4 
G5 
G6 
G7 

GB 
G9 

GlO 
Gl1 
Gl2 
Gl3" 
G14 
G1S 

G16 
G17 

GlS 

G19 

G20 

G21 

G22 

G23 

G24 
G25 
G26 
G27 
G28 
G29 
G30 
C31 

Nominal Compositions 

l~C2S 3= (Hel20. 2CaO. 3Si02) ~~2C3S 
NC2S3 
97(NC2S ,).3NnF 
94(NC2Ss).6NaF 
02(NCzS,).18NaF 
45(NC2S3).55NaF 
97(C2S3) .95.5Na20 •. 

3NaF 
97(NC~Ss).3pz05 

97(NC2S S).3TiOz 
97(NC2S,).3MoO, 
94(NC2S ,).6MoO, 
97WC2S,) .3Zr02 
94 (NC~S,) .6Zr02 
NCzS, + H20 
1.4 7N~ 0. o. 319CaO. 

5.345i02 

12.97 at!!; Na 
,3 r~l' N~;0.36 wt% NaF,O.16 wt% F,13.l0 at\ Na 
,6 mol' NaF,0.73 wt% NaF,O.33 wt% F,13.29 at' Na 
,18 molt NaF,2.53 wt\ NaF,1.15 wt% F,14.05 at% Na 
,55 I!X)1% t-JaF,12.66 wt% NaF,S.73 ''Itt F,18.28 at!!; E7. 
, 0.36 wt\ NaF,0.16 wt% F,12.98 at\ N:-. 

,3 mol' 
,3 mol' 
,3 mol' 
,6 molt 

mol' 
mol' 

,3 
,6 

P20s,1.2 wt% P20S, 
Ti02,0.69 wt% 'ri02, 
1-1003,1.2 wt\ HoO 3, 
~1003, 2.53 wt\ t-:!o03, 
Zr02,1.06 wt% Zr02, 
Zr02,2.2 wt\ Zr02, 

,0.0404 wt% H20, 

,12.83 aU Na 
,12.90 at% Na 
,12.83 at% N"1 
,12.66 at% lla 
,12.85 C\t% 1-1a 
,12.71 nt\ Na 

NC2S, , (SiOzAR) , , 
NC2 S3 Exact 1: 2: 3 ,16.66 ro% NazO, 33.33 m% CaO,50.00 m'Si02 

ratio 17.49 ro% " ,31.65 wt% " , SO. 86 'I'iU " 
0.928N.2C.3s (+0.41 15.65 ro' Na20,33.74 Ir.% C;:-O,50.61 m~ Si02 
wt% Na20/0.28 wU Cad.16.44 wt\ II 32.05 ''Itt'' ,51.52 wt% " 
1.072N.2C.3S (+0.41 17.65 m% N.:i20,32.93 mt CnO, 49.41 m% Si02 
wt% Na20,0.28wt% caO).18.52wt\ ",31.25\lU", SO.23'wti!!." 
1N.1.911C.3S (+0.41 16.92 c% Nu20,32.33 m% C~0,50.75 m' 5i02 
wt, Nazo,0.28 wt!6 CaO) 17. 74 wt% ",30.67 wt% " ,51.59 wt% .. 
1N.2.091C.3S (+0.41 16.42 ro\ tla20,34.33 m\ CttO, 49.25 1'1% Si02 
wt, N~2 0,0. 28 wt% CaO)!7. 24 wt, ",32.61 wt;f; " , 50.14 \-ltt II 

1N.2C.2.8825 (+0.41 17.00 ro' Na20,34.00 m% CnO,49.00 m' Si02 
wt% Na20,0.28 Nt% CI'!.0)17.85 wt% ",32.29 wU " /49.86 \'It% .. 
1l~.2C. 3.1225 (+0.111 16.33 m% NazO,32.67 Ill'll C:l.C',51.00 m' SiO~ 
wt\ Na20,0.28 vlt\ CaO)l7.13 "It' " ,31.00 wt% " ,51.66 wt% II 

NC~Ss + 0.2 wU Pt 
NCzS, + 0.46 wt% Pt 
NC2S, + 0.50 wt\ Ag20 + 0.50 wU SbzO, + 0.20 \Jt\ Ce02 
NC2S, + 1.12 wt' Al20, (+0.41 wt% NazO,0.28 wt\ CaO) 
NCzS, + 2.00 wtt A120S ( " ) 
NC~S3 + 2.0 wt% NaF + 3.5 \'Itt A1zO, (+0.41 wt% Na20,0.28 wt% CaO) 
NC2S, + 4.0 wt% A120S (+0.41 wt% Na20,O.23 wt~ CaO) 
1.70~.2.9OC.5.4S 17.00 m' Na20,29.00 m' CaO,54 00 m% Si02 

17.79 wt% ",27.45 wt% " ,54.76 wts:s " 
G32 G31 + 2.17 wt% Zr02 
G33 G31 + 2.8 wt% NaF 
G3~ 1.74N.2.46C.58S 

. G35 G34 + 2.17 "Tt' Zr02 
G36 G34 + 2.54 wt% NnF 

17.40 ro% Na20,24.60 ro% CaO,S8.00 m\ 5102 
18.14 wt% ",23.21 wt% " ,58.64 wt% " 



TABLE 2.i (continuad) 

Glass Nominal Compos1tions 
Code 

037 1.78N.2.02C.6.2S 17.78 ro% Na20,20.22 m% ~~0,62.00 m% 5102 
18.48 wt% n ,19.02 wt% " ,62.49 wt% II 

G38 G37 + 6.S wt% Zr02 
G39 G37 + 12.9 wt% Zr02 
G40 G37 + 6.0 wt% T102 
G41 G37 + 12.9 wt% Ti02 
G42 G37 + 9 wU N,:lF 

G43 G37 + 9 wt% CaF2 
CA4 G37 + 9 wt% Na2S 

G45 
G46 
G47 

G37 + 6 wt% Cr20s 
c37 + 6 wt% Fe20s 
O.87N.2.93C.6.25 8.70 m% Na20,29.30 m% CaO,62.00 ro% S102 

9.l3 wt% II ,27.82 ,ITt, II ,63.06 wt% II 

G48 
G49 
CSO 
GS1 
GS2 
G53 
GS4 
G55 
GS6 
G57 
GS9 

G59 
G60 
G61 
G62 
G63 
G64 
G6S 
G66 
G67 
G68 
GG9 
G70 
G71 
G72 
G73· 
G74 
(~75 

G76 

G47 + 6 wt% Zr02 
G47 + 12 wt\ Zr02 
G47 + 6 wU Ti02 
G47 + 12 wt% Ti02 
G47 + 16.14 wtl Ti02 
G47 + 9 wt% NaF 
G47 + 9 wt% CUF2 
G47 + 9.81 wt% Nu2S 
G47 + 6 wt% Cr20s 
G47 + 6 ''1t% Fe20s 
O.93N.3.67C.S.4S 9.30 m% Na20,36.70 m% CaO,54.00 m% S102 

9.80 wt% II ,35.01 wU II ,55.19 ''It' .. 
CS8 + 6 wt% Zr02 
GSa + 12 \-It% Zr02 
Gsa + 6 wt% Ti02 
Gsa + 12 wt% Ti02 
GS8 + 9 wt% NaIl' 
Gsa + 9 wt% CaF2 
CS9 + 9 wt% Na2S 
GS8 + 6 wt% Cr20, 
GSa + 6 wt% Fe20s 
O.93N.3.67C.S.45 + 0.3 ,.,t% 1\g20 + 0.3 wt% 
1.78N.2.02C.6.2S + 0.29 If + 0.29 
1.78N.2.02C.6.2S + 1.2 " + 1.0 
0.87N.2.93C.6.2S + 0.3 ~ + 0.3 
0.87N.2.93C.6.2S + 1.2 " + 1.0 
lJ.C.BS + 0.3 n + 0.3 
N.C.aS + 0.5 II + 0.5 
N.C.8S + 1.2 II + 1.0 
N.C.8S + 0.3 wt% Pt 

" 
II .. 
" .. .. .. 

+ 0.1 wt% Ce02 
+ 0.14 II 

+ 0.40 II 

+ 0.10 II 

+ 0.40 II 

+ 0.10 II 

+ 0.10 " 
+ 0.40 II 
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the glasses were prepared with belgian sand (total Fe < 0.009 wt.%, 

total J).l2.03 < 0.05 wt. ') • This sand was first passed through a 

60 B.S. nesh size, second, the sc.nd was acid wa..qhed at SOoC with. 

HN03 (25 vol.' in distilled H20) for a total time of three hours to 

reduce the levels of impurities. For the gl2'.sses G24, r:25 and G76 

Pt was added as PtCllt as follows: the required amount of AR PtC11t 

was first dissolved in 10 m1 of AR HCI. The solution w~s poured 

uniformly onto t.lle sand, previously weighed in a porcelain dish. 

Finally, the mixture was dried at lOOoC. 

The batches wure dry mixed eiti1er in a rotating machine or by 

hand. 'l1le size of the batmes ranged fran 300 <] to 700 <]. Also" 

some of the. batch(;!s were sinterGd to avoid losses (e.g. the glass 

with P20S). 

The glasses were melted in Pt 2% Rh crucibles with the exception 

of t.."~ glasses with Na2S. The latter glasses were melted in Al203 

crucibles. Electric furnaces were used throughout (SiC heating 

elements) • All glasses were m~lted for appraxirrlately five hours 

with two hours total stirring time. The stirrers were made of Pt 

except when melting glasses with Na2S where they were r.:ude of re­

crystallized A1203. The melting temperature for glasses near the 

NC2S3 composition was 1380· C. Glasses with higher Si02 pnd/or CaO) 

content needed higher melting ~mperatures. (For ex~ple for 

glasses G73 - 76 the temperature us(;!d was l500oC). To avoid 

either surface crystallization or metallic precipitation th~ 

glasses were given a fast quench. This was achie~1d by pressing 

the molten glass either betwocn two steel plates joined by a long­

itudinal hinge (glasses nround tho NC253 composition) or onto a 
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grooved steel block. Usually the glass plates broke into small 

pieces due to residual thermal stresses. Ho\levc r th<.;;ze· pieces 

were !c.J:g':: enough for furt.'ler experiments. The quenching was 

needed to ~void nuclei formation during cooling from ~ie melt. 

The glasses were hooogeneous and bubble free. Some samples 

of the glasses were also cast into a cylindrical shape. 

were annealed by a st'andard procedure. 

2.2 J:Jucleation and Growth Me~surements 

'l'hese 

A good estimation of the nunber of c:rystal nuclei per unit 

volume produced at a given temperature and time of nucleation can 

be obtained (2.1) by g1 vinry the glass 1m additional growth tre at­

mant, and then analyzing the numbers of crystals present on a 

random cross-sectional plane through it. Crystal growth rates 

CM be dcte1l1lined by analyzing the sizes of c:rystals on a ranOOll 

plana through the glass after isothe:rmal growth trce.tr.!cnt, as 

will be explained below. 

2.2.1 Heat treatments 

Kanthal or Platinum wound horizontal tube furnaces, controlled 

by either Eurotherm (type 072),Sirect or Ether controllers,were 

used. Nith the Eurotherm and Sirect controllers the temperature 

could be maintained constant to \'lithin ±~oC. The Ether controller 

was particularly useful to obtain finely controlled heatirr~ or 

cooling rates. The sample temp3rature was roasured by placing n 

Pt/Pt: l3Rh thermocouple over tl:1e sample. The specimens were 

contained in either platinum or ceramic boats. 
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For glasses around the NC2~3 composition a two stage heat 

tr€atment schedule wa.q used. All the samples Here heat tre ated 

in the temperature range 550°C - 700°C for a given time. 'lhe 

nucleated sanples \'lhich consisted of approximately 5 mm x 3 mIll X 

3 mm pieces, were subsequently he~t treated at a higher tempera­

ture to grow the nucleated crystals to observablo dimension~. 

The growth temperature chosen wan in the range 725°C - 7(10o C. 

'lhe growth treatment time was approJtimately thr<:::e minutes. The 

growth temperature was chosen with the requirement that thu 

nucleation rata at this temperature was ntgligible. Also, the 

duration of the growth treatment \'las chosen to avoid overlapping 

of the p~rticles after gro\'lth. 

2.2.2 Optical microscope technique 

The glass sampl~s were cemented to glass slides l'lith either 

pitch or Canada Balsam and ground with silicon carbide down to 

1000 grade size. Sanetimes 1000 grade alumina was used in the 

final grinding stage. They ",ere then polished either with ceri­

rouge or diamond paste (down to 0.1 llID grain size). After a good 

washing with hot ''later the samples were etched in a 0.001 vol., HE' 

0.0004 vol'." Bel distilled "'Tater solution for 120 s. During this 

operation the solution t'las continuous ly stirred. Next the 

samples were cle~ed in a ultr~sonic machine using a dilute deter­

gent solutioo. Finally they were given a rinse in distilled 

water and dried with a hair drier. 

For glasses other than those n(;:ar the NCZS3 composition solu­

tions ten times stronger were required for the sarro etching time, 

to aChieve sufficient contrast between cl1'stals ~nd glass in the 

optical microscope. 
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The snmples were eXaL1ined in a Leitz microscope at nagriifica-

tions up to 500 times, using the eyepiece or up to 160 times on 

the photographic film. Photomicrographs were taken on FP4 film 

which ",as developed \,lith a ultra fine grain developer. The 

n~gatives were printed following a standard techni~uG. The 

crystal cross-section sizes were analysed from the prints l'lith a 

graticule specially made by a photographic reduction process con-

sisting of 35 circles covering the range· 0.30 mm to 6.15 mID. 

2.2.3 Hethod of analysis of micrographs 

Nucleation densities were determined by estimating t~e number 

of particles per unit volume from the OJ.."tical micrographs of the 

polished and etched surfaces of tbG sarif'les given either the two 

stage nucleation and growth treatment or a single nucleation 

treatment. The following cY.pression was used. 

2 1 
Nv = -NA < - > 

1T b 

'N'here : Nv • number of p~rt1cbs per unit volume, N,~ .. number of 

1 
particle intersections per unit area, < b > = ~an value of the 

(2.1) 

reciprocals of the measured diameters for all circul~ intersoctions. 

This relation was developed by De Hoff and Rhines (2.2) for spherical 

particles. Also on certain occasions the siIIi>l.er formula: 

(2.2) 

valid for constant particle size was used where Nv and NA are as 

above and b~ is the largest cross-section diameter. This latter 

approach wns particularly useful for determining nucleation 

densities in systems where the particle shnpE. was polyhedral (for 
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example cubic). In these c.:1ses b'" was a characteristic distance 

across the largest particle cross-section. For example for cubic 

crystals b '" was the side of the largest square cross-section. 

Also, for samples "There a distribution of particle sizes was ex-

pected D more laborious met.hod dewloped by SaltykO\., (2.3) was used. 

~7ith this method it is possible to estimate the particle densiti~s 

in each size group as well as th~ total nucleation denoity (see 

Chapter 3). 

Finally the optimum measuring conditions "Jere established. 

TheS'e were a large number of particle inters(,ct1ons (typically 300) 

a~ largo a maximum inters~ction diameter as possible and a reasonably 

large total area. This can b3 sscn by considering the source 

. N of errors in the simple equation (2.2) using NA ... A and A .. ;x:y where 

£oJ is the toted numbor of intersections, A the plate area and x,y 

typical linear dimensions, it is found: 

~Nv . ~N 6::c flY t.b '" 
-- IX - + - + - + b'" Nv N X Y 

For example for N • 300, 6N • 2 

:c CII Y • 150 rom 

Ax - 1 rom a: fly 

b'" IX 5 nun 

61>'" IX 0.1 mrl 

fli.'Jv 
- IX O.6!!5 + 0.6% + 2\ - 3.2%. 

Nv 
So tho main conclusion is that for a large number of particles 

(N) and large total area CAl the particle intersection d1n~ter 

must be measured very carefully in order to reduoo tho error in 
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N
V

• An estimation of bl1v us~.1"g equation (2.1) is given in 

Appendix Al. 

2.2.4 Crystal gI'O'llth measurem~~ 

Crystal growth maasureruents \-lare carried out by rnaasuring 

the diameter of maximum size cross-sections of s);,herical particles. 

In the caS3 of cwic particles the measurements \-10m made of the 

side of the largest square cross-section. The glasses wcr~ 

previously nucleated for n short tiJOO (approJeim<)tely 20 minutes) 

to obtain enough nuclei to be a~le to choose tile largest cross 

section in a la~e population of crystals. 

2 • 3 E Ie ctron l·a. eros coPY 

2.3.1 Transmission electron microscopY (TEM) 

Transmission electron microscopy was used to study the mor­

phology of the crystals internally nucleat3d in the 9lMses. !t 

was also used to measuro crystal growth rates in samples heat 

treated isothermally and to follow metallic precipitation (pt or 

Ag) in gVisses. Although some work w~ carried out with the 

replication teChnique only the resultR Obtained using thin glass 

foils will be described here. 

Thin glass sections for TEN were prep:lrud using the ion beam 

thinning technique. First a thin parallel foil of ~'lass 

(approximately 15 lJm thick) was prepared by grinding e.s follows. 

The glass saq>le was ~mc:nted to a glass sll:Je ''11th Canada 

Balsam. Six other pieces of ,,1MB (200 lJm thick) were also 

cemented to the slide and surrounding the firfJt sample. 'I'he 
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sanple and glass pieces were t,.'\ol.(:n ground flat wit.l1 600 grade SiC 

and polished with cerirouge. Next the sample was turn~d over 

and cemented to a n<3W slide together with 100 llm thick glass 

pieces as before. Grinding was carried out until the edge~ of 

the 100 llm glass pieces started to disappear. After this stage 

the grinding was continued with 3 lJIll diamond until the final 

15 lJIll thickness was obtained. 

The foil was removed from the slide using methanol and 

cemented to a copper grid. The. grid \'1as-placed in a vacuum 

chamber on a rotaUng plate in an Ed\-lards IBN]).2 ion bel;~l thinning 

machine. After a vacuum pressure of 10-4 Torr wcs reached the 

qlass was banbarded with Ar ions until a small hole appeared in 

the sanple. The thin foils were examined either in a Hitachi 

EU-llA instrument (.::.t 75 k·v ana 100 k\T), Phillipo 301 electron 

microscope (at 75 kv and 100 kv) or in a high voltage (1000 kv) 

electron microscope at the Swinden Laboratories of the British 

Steel Corporation in Rotho:r.hrun (at 800 kv and 1000 kv) • 

The magnifications used were checke~ with a replica of a 

diffraction grating with 2160 lines per rom. For electron diffrac-

tion the camera length was obtained fran diffraction patterns of 

l-1003 crystals. 

2.3.2 Scanning electron microscopy (SEf.'l) 

'!be scanning electron microscope used was a Car.i>r:!..r1c::;e r·14 

(25 kv) instrument. This microscope was useful in obtaining 

nucleation densiti8s of qlasces which were only given a single st~ge 

nucleation treatment. It was also us:3d for examining fractur~ 
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surfaces, c:!S "mll as the effects of etching on gl?sscs. 

The etched sco.rnples were prepar~d as dnscribed in the o!?tical 

microscope section. The srunples were then stuck to flat cylin-

drical holders with silver paint, cmd a thin layer of gold was 

evaporated onto their surfaces to produce a conducting path for 

the electrons. The magnifications "lere cnecked by placing a 

droplet (on the specimen surface) of a fine liquid disperslon of 

spheres of polystyrene lntex of known size (0.527 l.\m diameter with 

stancmrd deviation to.C027 l.\m) • 

2.4 Differential Thermal Annlysis (DTA) MeasurclI'l)nts 

111is technique provided information on the gl~ss transforma­

tion tcmpera.ture Tg ('DTA Tg') , heats of crystallization, heat 

of melting and also heats involved in polymorphic trar.sfol~tions. 

A St''lndata 625 instrument \'1as used with a high temperature 

platinum wound furnace. A heating/cooling rate of lOoC/m1nut8 

"'ClS used for most runs. The reference mat3rial was A~ calcined 

alumina. Glass for examination was crushed in a percussion 

mortar and ground in an agate mortar to 300 D.S. mesh size. Th~ 

powder was comr>ressed around the tip of the platinum crucible in 

the DTA apparatus. The same l:ll1Ount of glass was always used 

(300 mg). By measuring the area under the melting peaks for AR 

NsF and An NaCl the heats of fusion for the unknown compositioI~ 

were estimated. By a similar procedure thG heats of crystal­

lization were also obtained. The heats of fusion of the 

stanu~rd materil'l.1s were taken from JANAF tnblcs (2.4). 
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2.5 Liquidus Temperature ('l'L) r~casurmllcnts 

The TL value was me as urad by the quenching technique. This 

method consisted in holding the glass, contained in a small 

platinum crucible, at constant temperature for approximately one 

hour and qoonching it very rapidly (approximately at 700 - lOOOoC 

s-l) by dropping the crucllile into water (or oil). Then th~ . 

specimen was elmmined either visually or in a 10\'7 power micros-

cope for the presence (or absence) of c~stals. The usc of 

more sensitive instruments ~pa~le of detecting crystals such 

as the X-ray diffractometer or the petrological microscope 

(polarized light) was not found to be necessary in this work. 

By simply looking for the presence of opalascence due to 

crystallization it was possible to determine the liquidus tern-

perature very accurat~ly. Tho increase or decrease in T.. for .... 

different glasses was also checked in a hot stage microscope 

illuminated with polarized light. However the values of TL 

were not as accurate as determined hy the qooncbing expariment. 

Although a horizontal tube furnace ~ms occasion.:~lly used 

most of the work was carri~d out in a specially mounted vel~ical 

tube furnace. Two lateral guides (see Figure 2.1) allowed the 

furnace to be moved up and down very quickly. A platinum wire 

fral:te held the crucible and the thetmooouples (touching ona sidG 

of the crucible) in exactly the sarna position for every run. 

A Eurotherm controller ensured a control of the temperature to 

Th3 temperature ",as measured tlith a CamJ.")r1dg<:! poten-

tiometer using em ice/water cold junction. 
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CJv.Ier 

--- - - - -- -Pt wourd furnace 

. FIGURE 2.1 Quenching furnace for liquidus temperature(T L) 
measurements. 
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FIGURE 2.2 Penetrator assembly used in the 

penetration viscometer. 
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FIGURE 2.3 Block diagram for displacement measurements 
(penetration viscometer) . 
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2.6 X-Ray Diffraction 

A Philips diffractometer was us~d to determine the crystal-

line phases present after the heat tre~tments. S amples "lerr~ 

heated at the maximum nucleation temperc.tur~ for 60 minutes 

followed by 15 minutes at 730·C to crystallizo them. Tht.'Y were 

then crushed and passed through a 300 B.S. mesh sieve. 

X-ray diffraction was also used to estimate ele percentage 

of crystals preCipitated in certain glasses. This was achieved 

by either measuring the area under a particular X-ray peak or its 

height and comparing with the corresponding peak obtained from a 

kn~m mechanical mixture of c:tystal and glass. The standard 

NC2S3 crystalline material was prepared from very pure AR Na2C031 

AR CUC03 and silquartz. Each component WilS weighed to an accuracy 

The components were ground and mixed in an llgnte mortar. 

'!he mixture was placed in a platinum crucible 'lith lid and held 

in the temperature range 900°C - 10COoC for 7 hours. The whole 

sintered mass was removed from the cruciblo I crushed and ground to 

300 B.S. mesh size and X-rayed to assess the formation of the NC2S 3 

compound. After repeating this process fivo tim~s tl1e area and 

heights of the peaks reached maximum values. The final 300 B.S. 

mesh size powder (always kep·t in a desiccator) was diluted with 

glass and vigorously mixed in a small glass bottle. Ten dilu-

tions in the ra~lge 10% to 100% crystals were prepared. The 

d1ffrclction angles covered were from 20 - 19° to 28° where two well 

separated l'JCaS3 peal,s I suitable for measurements, could be found. 
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2.7 ChGmical Ana.lysis a.'1.? .£!!9mical Durability Test 

2.7.1 C"lernical analysis 

A nUIJlber of the glasses melted were analysed for Na20, CaO 

CI.nd F. For Nn20 deterrr.1nation either th~ flame p:h..otanctry 

technique or the Triple Acetate method was used. 'Ine latter 
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wa.s preferrl')d for obtaining absolute Na.20 content. For Cao de-

termination e1 thor the flame photOlOOtry technique or the EDTA 

titration method was· used, the titration technique being 

preferred. For the glass l!C2S3 the level of AlZ03 and total Fe 

were determined by EDTA titration and the thioglyoolic acid 

method respectively. The fluoride contents in ccrt<lin of the 

glasses were estimated from a tedUlique which involved measuring 

the potential d1 fferen.ce between two electrodes, one as reference 

el~ctrode and the other a F- perIl2able electrode of lanthanum 

fluoride crystal. Further details are giwn in Appendix A2. 

The d~tails of the measurements n9 well as the preparation 

of the reagents are gi wn in Appendix A2. 

2.7.2 Chemical durability 

Chemical durability Was assessod by neasur1ng the arr:ounts of 

Si02 and Na20 extracted from glass grains after attl'\ck by !mown 

solutions for one hour at 9aoe. The glasses and corresponding 

glass asramics (crystallized b\.1 a two stagl.: heat treatment schedule) 

were crushed in a roortar and passed through a 35 B.S. mesh sieve 

and retained in a 45 B.S. mesh sieve. The grains were washed 

with ~ Acetone and stored in desiccators. Accurately known 

amounts of the grains '-lera transferred to 50 ml volumetric flasks 
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and 40 ml of either distilled water or 0.024 n BCL (~r.;;pared from 

AR 36.5\ HC1, i.e. approximately 12 molar Hel) acid solution was 

added to them. Next the tops of the flasks were covered \"lith 

polythene and the flasks trrulsferrcd to a autoclave containing 

water for one hour at approximately 9SoC. After the flasks had 

cooled to room tel11?erature, they were filled '-lith the appropriate 

attacking solution to the graduation mark. The extracts wera 

then collected and the grains were washed with acetone and dried 

for further use. The extracts were analysed for Na20 by fltl.rnc 

pbotomatry and for Si02 by the colorimetric mo1ybdc:1.te method. 

The results for various glasses and corresponding glass ceramics 

are presented in Chapter 5. The Si02/Na20 dctenninat10ns are 

described in Appendix 1\3. 

2.8 Viscosity ~~c:asurements 

It was considered necessary to obt'..ain viscosity c::.ata 1n order 

to provide a better understanding of tile crystal nucl~ation anc 

growth process in soda-lime-silica glasses. For glasElcs which 

crystallize fairly easily it is very difficult to obtc.un accw:ate 

viscosities in the range 102 - 108 Poises. HO\V'evar it is often 

possible to obtain data at high temperatures, i.e. for viscosities 

in the 10 - 103 l?. range by the rotating cylinder method and at 

low temper~tures (1.e. 109 - 1013 ~) by the penetration, parallel 

plate or beam bending mathods. In this section the theory and 

operation of three viscometers nre described. 
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2.8.1 Penetration "ifiscometer 

The technique consists in measuring at a gtven ten-;:>erature 

the penetration into the glass by a rigid sphere, under the action 

of a load. 

2.8.la Apparatus 

Briefly the apparatus (2.5) consisted of: 

(1) A tube furnace (Kanthal wOWld) which could be moved in a 

vertical direction. 

(11) A silica column on which the sample ,.,as placed but 

separated from the column by a platinum (or mica) foil. 

(iii) A penetrator made of silica tubing clamped to a saddle 

on which the weights were placed. The ball was inserted into 

the lower end of the penetrator as sho~m in Figure 2.2. 

After several trials it was decided to use a total lo~d of 

2256.5 g and a ball of diameter 0.3175 em to obtain defOrMa­

tions corresponding to vicosities in the 109 _1.013 P. range. 

(iv) A measuring device: a capacitance sensor with accessories 

as shown in Figure 2.3. The calibration was such that a pene­

tration of 0.1 em corresponded to 10 cm in the y axis or the 

recorder. 

(v) An hydraulic system allowing the saddle to be relcasad. 

Tho furnace temperature was controlled to ±O.2°C and tile 

measuring thermocouple (dlrornel/alumel) ~'I'as placed touching the 

steel plate vary near to the sample. The annealed glass samples 

were cylinders of approximately 1 em diameter and 0.3 em thickness. 

'Ibey were ground flat and parallel with several grades of SiC and 
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polished with cerirouge. ~he polishing w~~ necessary in order 

to inspect the sarrples for visible cracks, cords, atc. 

2.8.lb Operation 

With the sample and furnace in pesi tion a stabilis::;,tion 

period between 15 and 30 minutes was required. Although 30 

minutes stabilisation was usually employed, a tillle of only 15 

minutes was allO'tTed for samples tested at high terrperatures 

"There the danger of crystallization ~las greater. During the 

holding tima the '1 axis magnificatiol1 was checked and the x 

. axis pen speed set according to the total ecformation expected. 

Then the saddle was loaded and siroult~lcously both the recorder 

and the stop \'1atch started. 'Ihe sample temperature t'las measured 

at regular intervals during the course of t..'1e experiment. At 

the end of the experiment the time on the stop watch was 

recorded, the saddle lifted and tile sample was taken out. It 

was found useful to examine the specimens for crystals after the 

viscosity measurements. (See section 2.2.3). A typical deforma-

tion curve is shown in Figure 2.4. 

2.8.1c Theory 

This is based upon the solution from elasticity theory in 

which the rate of strain and the coefficient of viscosity have 

been substituted for the strain and the rigidity modulus rospec-

tively (2.6). Thus for a viscous body penetrated by a sphere 

of infinite rigidity at constant temperature, the following 

formula can be obtained: 

~.~ 
dt 16 an (2.3) 
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where (see Figure 2.5) ~t is tbe r a t c of pe nctrntion (em s-l) , 

P is the tota l lo~d in dynes , a = l~y_y2 i s the r adius of the 

circle of contact in cm, ~ is the b all di ameter and n is the 

coefficient of viscosity in Poise. For small deformations 

y « <p, ·s o 

By integrating eq uation (2 . 3) and r e urranging \"e obtain: 

9Pt = y % 
32n~~ 

-16. 

(2 . 4) 

(2 .5) 

nltll0ugh this was the basic formula used, equation (2 . 3) c nn be 

exactly solved even for deformations not satisfying Gquation 

(2.4). '!be viscosity coefficient can be c a lculat e d , by using 

th e following change of variables (s e e Figure 2 . 5 ) . 

Y - .t - ! sine - 2 2 
y = 0, e 
y = y, e 

: ~/2 jdy = -1 cos Sda j a = l </>y_y2 = % cose 
y 

He nce equation (2.3) can b e integr~ted to give: 

or 

9 

32 

It can be shown that equation ( 2 . 6 ) approache s equation (2 . 5) 

"Then y « <p ,(see: Appendix 1" ~1) • 

(2.6) 

f{y ) 

(2.7 ) 

In Table (2 . 2) data from Figure (2 . 4) is presented togethe r 



TABLE 2.2 FRor1 DATA IN FIGURE 2.4 

t Y y3/2/t (x 106) f (y) It (x 106) 
(seconds) (em x 103) from. equation; from equation 

. (2-.5) (2.7) 

73 11.4 16.67 16.31 

145.9 19.0 17.95 17.59 

210.9 25.1 10.17 17.81 

291.8 30.9 16.61 10.12 

364.0 35.7 18.49 17.CS 

Mean value 17.98 x 10-6 17.53 x 10-6 

°n-1 standard 0.78 x 10-6 0.70 x 10-6 
deviation 

leglOn 10.788 10.79B 

b( 10910n) 0.004 0.004 

tx2 _ (!x}2 

O . 12 • n where n - number of values (5) 
n- (n-l) 
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with the viscosities calculated from equations (2.5) and (2.7), 

. 9 P 6 % where - -,; was taken as 1.104 x 10 (cm) Poise s-l·. It can 
32 ~ 

be seen·.that,·U) the differences between equation (2.5) and the 

more exact equation (2.7) are greater for the larger deformations, 

(ii) the more accurat~ equation (2.7) gives less scatter than the 

equation (2.5) as shO\'Tn by the values of the standard deviations 

given in the table.. However, the log10n values are very close 

for both equations. 'lhe relative errors ~ and f1log 1 on 
n log10n 

obtained using equation (2. S) can be estimated as 0.044 and 

0.0044 respectively (see Appendix ASe). 

In Figure (2.6) the log10n values vs temperature for the 

NBS 710 soda-l1me-sil1ca standard glass measu:red in this work 

ar13 presented as well as the values JOOasured by Napolitano and 

Hawkins (2. 7) • Although at low temperatures the penetration 

viscancter tends to give lower values cornpaxed with the data 

from reference (2.7), it is seen that in the viscosity rango 

109 •5 to 1011 Poises the agreemant is excellent. Hence it was 

9 P 
decided to use the - ); value quoted above for all the 

32 'I' 

measurements. 

In general the calculations for either cq~~tion (2.5) or 

(2.7) wexe performed on a conputer. A least squ~es fit of 

the y 3h or fey) It values was obtained, from which the viscosity 

coefficient was calculated. 

A fit to the viscosity vs temperature data for each glass 

was obtained by using the Fulmer equation: 

(2.8) 



48. 

where A, B and '1'0 are adjustable parameters and '1'('1'0) is in °e. 

The Fulcher constants were c~lculated in a computer through a 

least squares f1 t of the follO\lir..g function obtained from 

equation (2 •. 8) by substituting 

B - A To = C 

(2.9) 

where Xi and Yi are asstuned to be independent variables. In the 

least squares method values of the constants A, To and C arc 

required such that the quantity 

N N 
& - L &i2 .. L [fi - (AXi + ToYi + C)]2 

i=l i-=l 

is a mLnirnum where N is the number of experimental points. 

By partially differentiating t with respect to the constants A, 

TO and C and equating to z~ro the foll~~ing system of linear 

equ.:"\tions is found: 

N N N N 
A L Xi2 + To L XiYi + C r Xi .. r ~ifi 
i-I i=l 1=1 i=-l 

N N N N 

A ~ XiYi + To L Yi2 + C r Yi ... r Yifi 
i-l i=l i-l i-I 

N N N 

A r Yi + To r Yi + CN'" r fi 
i-l 1-1 i=l 

This system can be solved by the CraJOOr rule 1f the determinant 

D given by 

N N N 
D a L Xi2 (N r Yi2 - ( r Yl)2) 

1=1 1-1 i-I 

1'1 N 

r XiYi(N r XiYi -
1-1 1-1 

N N N N N 

+ r Xi( r XiYl L Y1 - I X1 r Y12) 
1-1 1-1 1-1 i-I 1-1 

(2.10) 
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is different from zero. For example the constant A is given by: 

N N N N N 

+ ~ ~i( ~ Y1 ~ Yi f 1 - L fi ! Y12)] (2.11) 
1=1 i-1 i-1 i=1 i=l 

The computer program (in Fortran) to calculate A, B and To is 

given ln Appendix A4. '!his progralll was checked with the viscosity 

data published in Reference (2.0). For example the Fulcher cQn-

stnnts obtained by us from the data presented by laboratory D 

(Reference (2.8) p.d?) for the soda-lima-silica glass \Olerel 

A-, -3.604, B .. 0616.95 and To ... -92.52 whereas the values quoted 

by laboratory D (by a least squares fit) were: A" -3.586, 

B .. 8566 and To ~ -89. 

2.8.2 Rotating cylinder method 

The method, as used in this work, consisted of (i) sh'bring 

the viscous liquid between ,two concentric cylinders and (ii) 

measuring the torque required (on the inner cylir:.1a:::) t.o maintain 

a constant relative ~Jelocity. 

2.8.2a Apparatus 

The apparatus is sh()\o1n schematically in Figure 2.? 'lhe three 

suspension wires allow the torques produced by d1 fferent viscous 

drags to be measured. 'Iha in.."1ar and outer cylinders (made of 

platinum) are cemented concentrically to sillim~n1te tubes. The 

top tube has a mirror and a threaded metallic rod \olhere the 
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calibration plate cylinders (see section 2.8.2c) can be attaChed. 

The IOOasuring t.~ennocouple is inserted into the top tube and 

passed through to the bottom tip of tho imler cy linoor. The 

~~orking characteristics (top and bottom clearances) are shown in 

Figure 2.8. '!he plntinum wound furnace (three independent 

windings) can be moved up and down. 'lhe bottom sillimanite tube 

is claIll'ed to a chuck joined to a gear box; this in turn is 

connected to an electric motor "'hieb can rotate in ei ther direc­

tion. 

2.8.2b 9pcration 

After the desirGd temperature was obtained a stabilization 

period of approximately 30 minutes was allowed. The tempera­

ture was measured and the thermocouple disconnected. The motor 

was started and the light spot position on the scale reoorded. 

It was possible to record for the same settings, the deflection 

to the left as well as the deflection to the right (with the 

motor reversed) and the equilibrium zero (see section 2.8.2c). 

Reasonable large deflections (approximately 15 on on the scale) 

were produced by choosing both the correct numb~r of suspension 

wires and rotating crucible speed. Then the telll?er .:'I.ture was 

recorded again and tha average between the two readings: .. (before 

and after) was taken as the temperature of the measurement. 

A typical chart of readings is shown in Appendix ASa. 'Ihe 

average between left and right deflection was taken as the 

deflection to be used in calculating the torque. 



2.8.2c Theory 

It ean be shown (2.9,2.10) ~~at the viscosity coefficient at 

constant temperature is given by: 

T 
n = COL (2.12) 

where (see Figure 2.8) T is the torque in (9 ~s-2) , 

R 2R 2 
C .. 4nR~~_~ :: 2.394 cm2, R2 and ~i are the internal and external 

radii, n the angular velocity (1.561 rad 8"":'1) and 

The torque T can be expressed as: 

T ... K6 ( 2.13) 

where K is the torsional rigidity of the suspension wire(s) and 

e is the angle of twist. The constant K can be deterrrined for 

each wire combination by the use of ~NO flat cylinders of different 

sizes and masses. Then 

(2.14) 

where I - ~ ro r2, m the mass of cylinder in g and r the radius of 

cylinder in em, t is the period of oscillation of the rotating 

pendulum consisting of the \'lire und weight attacheCl. Tho values 

for Kj (j - number of wires) are given in Appendix ASb. By in-

serting the values previously stated and the Kj constants in the 

formula 
K6 we obtain. n---em. 

for K .. Kl n - 99.13 (9 em- 1 s-l rad- 1) x e (rad) 

for K • K2 n :: 622.50 x e 

for K .. K3 n :: 1829 .43 x e 
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(6
R
-e R) + (6 -6) 

c oL L where e is calculated from < 0 > co • 2 where 

xi e i :: U ' xi is the defl03ction on· the scale and U is th0 mirror 

scale distance; eOR (eOL) is the zero deflection just before the 

right (left) deflection \.,as measured (see Appen{lix ASa) • In 

Appendix ASc the results of measurelOOnts on the NBS 710 standard 

glass are quoted using equation (2.13). 

obtained from 

n - Of. a R 

Also given are values 

using an averaged value of aR in the range 1398 - 1490.SoC 

obtained by inserting tho accepted viscosities of the NBS 710 

gln.ss in (2.15) and the experimental deflections masured with 

(2.15) 

the three wire arrangement. This averaged value of a
R 

was found 

to be < a > = 143.14. 
R 

It can be seen that over the whole 

temperature range the agreement with the NBS data is good showing 

the uniform behaviour of the instrument at different temperatures 

(column 6, Appendix ASc) • It can also be seen fro"! the same 

table that the best agreement beb~een the values calculated from 

the physical constants and the published data for the standard 

glass is found in the working mode of three wires. For one 

wire and two wires the results arc a little higher. 

2. e. 3 ~eam bending technique 

This method consists in measuring the mid-point deflection 

of a glass beam sUPpolted at each end. 

2.8.3a Apparatus 

The apparatus is shown sct.ematically in Figure 2.9. 'n'l.~ 
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sample glass beam rests in grooves in tile top of a silica glass 

tube. A silica glass hook is placed on the centre of the beam, 

the hook being connected to a glass rod and transducer. The 

load is applied to the other end of the transducer armature. 

The furnace temperature is regulated by a Eurotherm controller to 

an accuracy of O.2°C. The measuring thermocouple can be moved 

vertically as well as horizontally (this was convenient for 

checking the transverse temperature profile of the furnace). 

The transducer holder has a mechanical device which can align 

the transducer parallel to the apparatus axis. The deflections 

are n.easured with a LVDT (Linear variable differential trans-

former) unit and an oscillator/demodulator device (D5/.2oo and 

Dll RDP Electronics respectively) J a typical sensitivity is 

2 mV per V per 0.001". The output signal is fed to a standard 

recorder. 

2.8.3b Theory and operation 

It can be shown (2.11) that the glass viscosity at constant 

temperature is given by 

where n is given in Poise, g is the acceleration due to gravity 

(cm 9-2), Ic the cross sectional JTIo-,lOOnt of inertia (cm'+), v 

the mid-point deflection rate of the beam (em min-I), M the load 

in g, p the glass densi~J in g cm- 3, A the cross sectionnl area 

of the glass beam (cru2) and L is 

ah3 
given by ~ (see Figure 2.9). 

the support span (CD'l). 

The s2UIlple was placed in the 

(2.16) 



grooves on the silica tUbe (furnace ~lready at testing tempera-

ture) • 'Ihe hook was placed in the middle of tl1.e bean) the 

furnace closed, the transducer attaChed and the load placed over 

a laboratory jack. After a given time had elapsed (approximately 

20 minutes) the weight (approximately 300 9) was released and the 

deflection recorded vs tima. Temperature readings were recorded 

during the experiment. 

To illustrate the capabilities of this system to measure 

viscosit1es let us calculate the expected total mid-point beam 

deformation at a given time for a square cross sectio~'bcam of 

glass G2 with the fo11~'11ng characteristics: density p -

2.75 g cm- 3, a • h III 0.2 cm, 11 = 300 g, L III 5 cm. 'ihen from eqn. 

1.149 x 1011 
(2.16) n III 

v 

so for n" 1012 p v .. 0.1149 cm/minutel x .. 11.49 rom 

v .. 0.01149 II 
J X III 1.15 rom 

v .. 0.001149 " X II 0.115 rom 

where z 1s the total mid-point beam deflaction in 10 minutes. 

Although measurements can be made in the range 1012 •5 p to 

1014 P it should be remenbered that appreciable n VB time 

behaviour is expected in the glass transformation range (2.12). 

For example for a glass rapidly cooled through the transforma-

tion range the viscosity at temperatures in tile transformation 

range is expected to increase as the heat treatment t~e in-

creases (fictive temperature higher than temperature of 

neasurement) • 



55. 

2.9 Other Experimer.tal TeChniques 

2.9.1 water content determinatton by infra-red (IR) spectroscopy 

The method consists in adding t.lJe amounts of water which con­

tribute to each wave length band in the IR absorption spectra 

following the technique developed by Scholze (2.13). 

2.9.la Avparatu9 

A Grubb-Parson doUble beam spectrophotometer was used. 

The \'1ave lenc;th range covered \'1as from 2 lJm to 5 llrn. After the 

spectrum \-,as recorded the following corrections ,,/ere made: 

(U Aubtract the background curve l-Thich in th~o:['J should be zero 

and may 1>e considered as instrunental behaviour in the particular 

range of wave lengths; (U) Discount the approximately constant 

level of absorption due to general scattering of the ~,~ple and 

reflecti vi ty from san'ple surfaces. Then the curves ,,~ere analysed 

in a Digital Curw Resolver to obtain th~ main peaks ,·lhich Int.'ltched 

Witll the normal peak positions in glasses due to OH- vibrational 

groups. The peak heights of the assumed Gaussian peaks as well 

as the peak positions were used in tile water content calculations. 

2.9.lb Theory and cRlculation 

Following Sdlolze (2 .13) ~later is incorporated into the structure 

of glass and gives rise to absorption bands of different strengths. 

Scholz\;) eonfiroed tho.t thl~ 2.75 to 2.!lS ilT.l nnd 3.35 to 3.85 l..1m bMds 

were due to OH- groups associated with the structure and found 

that the 4.25 lJm band ",as not due to C032- but water. He showed 

that the positions of the bands do not c.'J.cpenli on water content but 
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in general depend on the glass structure itself. Also the greater 

the wave length of a particular OR band the stronger is the hydro-

gen bridge bond which joins to a neighbouring oxygen and the 

smaller the interval between t.lte tt,!O oxygens linked by the hydro-

gen bridge bond. Table 2.3, taken from Schol~e (2.13), compares 

the 0-0 distances and the bond energies for some OB bands that 

occur in glasses. In general with increasing l1,"VC length of a 

band, the bond energies are larger and hence the clbe:orption in-

creases and the extinction coefficient increases. 'Ilds fact plus 

tne asswrption that the e>.:tinction coefficients depend mainly on 

the wave length and GO not vary with glass composition provide the 

basis of the method of determining the quantity of water in glasses. 

tlS mentioned above the exp€:riment-c"ll IR curve is corrected 

for reflection los~cs and abso:r;ption in the sample and background 

absorption from tha air and is resolved into the main peaks. For 

example in Figure 2.10 the uncorrected absoxption curve fo!" the 

G14 gla'39 direct from the spectrophotometer is shown and 1n 

Figure 2.11 the result are sho\m aftar applying the corrections. 

In Table 2.4 the detailed data and corrections are given for ti.c 

Gl4 glass. 

The transmitted intensities for these peru{s a~e re~d off and 

usil'V1 the extir.ction coefficients dete:cnined by Scholze the \-Tater 

concentration C can be calculated froa the La.mb~rt-Beer equi'\tion: 

(2.17) 

where C is concentration in mole cm- 3, £ is the extinction 

coefficient in on2 roole- 1, d is the thickness of the g18.SS in 



TABLE 2.3 ABSORPTION BANDS DlJE TO OR FRON ru!:FERENCE (2.13) 

0 

Pos! tion of the 0-0 distance .(I~) Bond et ergies 
00- bands (~m) (kcal/mole) 

2.75 3.20 0.0 

2.85 2.95 2.2 

3.55 2.65 6.8 

4.25 2.55 10.0 
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FIGURE 2.10 ABSORPTION AS A FUNCTION OF WAVELENGTH FOR GLASS G14 
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TABLE 2.4 DETAILED IR ABSORPTIOU 1\l-lD C.\::RlU~CTION DATA FOR G14 IN 

THE 2.6 TO 2.9 vm RANGE 

"lave Air C14.: : Correction 

Cor::ction 109"[ l~ 1 
Leng~Jl Absorption ~sorptibn 1\ir 

(vm) Absorption G14 A 

2.600 8.5 21.0 12.50 1.50 0.0066 

2.625 7.5 20.0 12.50 1.50 0.0066 

2.650 7.2 20.0 12.80 1.80 0.0079 

2.675 7.0 20.0 13.00 2.00 0.0088 

2.700 7.0 20.5 13.50 2.50 0.0109 

2.725 7.0 24.0 17.0 6.0 0.0268 

2.750 7.0 30.0 23.0 12.0 0.0555 

2.775 7.2 38.0 30.8 19.8 0.0958 

2.000 7.0 42.0 35.0 24.0 0.1192 

2.825 7.0 43.5 36.5 25.5 0.1278 

2.850 7.2 44.5 37.3 26.3 0.1325 

2.875 7.5 45.5 38.0 27.0 0.1367 

2.900 7.2 46.1 38.9 27.9 0.1461 
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co and Io,I are ti1e incident and transmitted intensities respec-

tively. To obta.Ln C in wt.' the follo\ling conversion formula 

can be used. 

C(wt.%) - C(mol/litre) 
1.8 x-

p (2.18) 

where p is the glass density. The dens! ties t-lere determi:led 

using the Archimedes method 

(2.19) 

where ~]a and Ww are the weights of the sample in air and water 

respectively. The corrected density is given by: 

(2.20) 

where Pw and a are the de~~ities of water and dry air at 27.5°C 

and 757.5 rom Ug Barometric pressure, \>lhich are 

Pw - 0.9978 g cm-3 

and a - 1.157 x 10-3 q cm- 3 

For example, the corrected densities for glasses G2 and G14 rapidly 

quenched were: 2.728 g cm- 3 and 2.736 g cm- 3 rE:3t'ectively. The 

water contents for the G2 and G14 ~las~as are pregent~d in Table 

2.5 as typical results. 

2.9.2 Mechanical properties 

Bre~ing strength tests on glass ceramic beams with rect-

angular cross sections were carried out in a un! ve:rsal Instron 

machine. The beams were fractured at roont temperature under 



Tl'..ELE 2.5 r-'ATER CONTENT RESULTS FOR GLASSES G2 AND G14 

Glass 1 
Ahlm) 10910 Io % 1>-..rea of £ (cm2 /roole) CPARl'IAL C

TOTAL 
v(- ) 

co I Resolved 
peaks 

(mole/litre) .:.:cole/litre wt. % 

G14 3 448 2.90 0.080 6.6 75 0.0232 

2 857 3.50 0.196 74 150 0.0284 

2 3C6 4.19 0.140 14 310 0.0098 0.0614 0.040 

r'" .,;; .. 3 448 2.90 0.012 12 75 0.0043 

2 857 ~.50 0.025 74.5 150 0.0047 

2 386 4.19 0.019 13.5 310 0.0017 0.0107 0.007 



58. 

normal atmosphere on a four point bending jig, as sho'.in in 

Figure 2.12, with 0.6 cm span bebleen the inner rods and 2 cm 

span between the outer rods. The sarrt,les t-Tere cut C'.fter tile 

nucleation and growth heat trea~ents with a diamond impregnated 

circular copper saw. They were then ground and polished with 

SiC (several grades) and 6 llm diamond paste (~<!etted with a mix-

ture of oil ~~d paraffin). The polishing cperation was necess-

ary in order to inspect the glass ceramic for visible cracks. 

This operation was also timed (approximately 4 minutes) in order 

to provide approximately the same surface condition for all of 

the beams. After polishing the srunples '''ere stored in a des-

lccator with silica gel. The final size of the beams was appro-

ximately 1.9 ~~ x 2.1 rom x 30 rom. 

~le machine was calibrate~ up to a total load of 5 kg in-

cluding the weight of the bottom part of the jig and the weight 

of the sample. The cross-head s:rJeed '''as 0.005 cm rJer minute 

and the chart Sl)eed was 10 cm per minute. 

The glass beams always fractured between the inner rods \-There 

the applied stresses were a maximum. Assuming that the fracture 

stress is the maximum applied stress tlle former can be calculated 

(2.14) from the following equation: 

a max 
I·Iv Fxa 

- - ... --;.&. x 
I 2 

!SI. (R'2-R.) 
where (see Figure 2 .12) Io1:= 2' 2·" .is the .be:1').dinc; mOI:lA;;:nt 

(NIJ) i Y t- h/2) is the c1istanco':from the nGlltral axis to the 

(2.21) 
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f () .. ah
3 

1"" th d f sur ace m, I 12 OJ e secon moment 0 the b'9aI!l cross sec-

tion about the neutral layer (m~) and a f is in 1'~'1 m-2 • A typical 

deformation curve is shown in Figure 2.13. The Young's toodulus 

E can also be calculated (2.14) by noting that the beam between 

t..lle inner rods is in pure bending (no shear stresses) I the 

deflection of the beam (at the ndd-rJOint) can be approximated for 

small deflections by 

(2.22) 

where cS is the maximum deflection (m), 11 is the distance between 

inner rods (m) and s is the radius of curvature of the beam under 

the action of load F (see Figure 2.12), S is given by 

EI 
s aM 

From equations (2.22) and (2.23) 

2.9.3 Thermal expansion measurements 

(2.23) 

(2.24) 

The linear coefficient of thermal expansion a was detemined 

for a number of the glasses and the corresponding glass ooramics. 

Expansion measurements were also useful to compare other thermally 

depend~nt properties. For example the tilcrmal e~;~.:!~~>ion trans-

formation temperature Tg and softening point of the gl~.sses ceuld 

be determined. For the glass ceramics polymozphic phase trans-

fomatiotls could also be detected, as \dll be described later. 

'!he Coefficient a is g1 van by 



60. 

1 llR-a =--
9. AT 

where 9. is the original length, ll~ is the increase in length and 

llT is the te~eraturc interval. The apparatus used (2.15) is 

shown schematically in Figure 2.14. The method consisted in 

comparing the elongation of the sample with t119 elongation of a 

silica glass rod. 'nie heating ratp. was 3.3° C per minute. The 

deflections were read off e~e scale after each lOoe increase in 

temperature. To the deflection observed was add~d the deflec-

tion of a silica glass rod (a approximately 5 x 10-7 0C;1) of 

the same length as t'1a sc:\mple tested. 'l'he glt.ss samples \-lere 

prepared by cutting strips (npproximawly 8.4 an in length) from 

anne~led glass discs. The calculation of the coefficient a 

for different temperature ranges as "le11 as typicnl R.;~o v~ 

temperature (oe) plots \,/i11 be given in a later char-tar. 

(2.25) 
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As discussed in Chapter 1, previous \-lork (3.1) has shown that 

the glasses around the stoichiometric cou.positions NCZS3 and NzCS3 

exhibit internal crystal nucleation. In the present ''IOrk detailed 

study was mane of the crystallization kinetic~ of glasses whose 

compositions were very close to the NC2S3 composition. In this 

chapter several soda-lime-silica glasses around the exact NC2£3 

composition are experimentally analysed in detail. 

3.1 Glass G2 

nlis glass (and also Gl) was melted from a batch with the stoichio­

metric corrposi tion l'JazO.2CaO. 3Si02. ~'rom chemical analysi!:: the 

final cOIY(>osition of G2 was 17.07 ''1t.% Na20 (16.27 mole % N), '. 

31.40 wt.% CaO (33.07 mole' C) and 51.53 \-It.' SiOz (50.66 mole % S). 

(1\ppendix A2, Table A2 .1) • So it \'1as close to NCzS 3 but there ''las 

approxi~~te1y a 0.2 wt.% loss in CaO and 0.4 wt.~ loss in NazO. 

'lhis small change in composition was not sic;nificant for most of 

the present work since similar 10ssee were eX!,'ected for the other 

glasses (including those ,·rith ac1ditions of other components to NC2SS). 

Hence straight comparisons could be made. Also, the influence of 

changes in the NazO, CaO and 8iOz components from the exact NCzSs 

composition on both nucleution rates nne viscosities was clearly 

e!tablished from independent ,,"lork to l'e described later. 

During a preliI!linary study of the interr-al crystallization in 

this glass the optimum etching technique "Tas developed for observa­

tion of the crystals in the optical microsco~e, which involved 

neither 'over' etching nor 'uneer' etching. Although previous 
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wor]cers used 0.03 vol.16 EN03 for 5 seconds (3.1) or 1 vol., EF, 

0.2 vo1~' HCl for 5 seconds (3.2) for similar compositions, in this 

work the best etching solution was found to be 0.001 vol. t f:F, 

0.0005 vol. % HC1 "'ith an etching time of approximately 120 seconds. 

It was found that the crystals were etched more rapidly L~an the 

glass as can be seen in Figure 3.1 which shows scanning electron 

micrographs of the etched glass. r.i.'his behaviour to\07ard acids is 

supported by the results of the chemical curability experiments to 

be presented in a later chapter. Thus the NC2S3 glass ceramic 

when t~stal for attack by hydrochloric acid ~avc higher extracts 

of NaiO than the NC2S 3 glass, indicating that the glass was more 

durable to acids. The larger etching effect on the crystals may 

also explain the considerable difficul t~l experienced in preparing 

carbon replicas for electron microscopy from this glass. Carbon 

was evaporated under vacuum onto fractured or polished surfaces 

of the glasses. The final replicas (after "floating off" in 

either warm water or a very dilute Hl:' sol11tion) contained many 

holes corresponding to the location of crystals in the glass sur-· 

face. A probable explandtion for theee holes is that in the 

very rough cavities produced by the etching of the cr]stals the 

carbon layer is not easily detached by tile" floating off" tech­

nique, so the replica is torn around the cxystal-glass boundary 

leaving a hole. Although this problem was partly overcome by 

etching for shorter times t.l)e replicas were not of good quality 

due to the lack in contrast (see Figure 3.lc). 



Figure 3 .la,b 

Stereoscan micrographs of 132 he .:1.ted a.t 62r;oC for lSO min. 
Etchec1 for: (a) 45 s in acid (sGe text). lljag X7, 400 . 

(b) 90 s in acic~ (sec text). Hag X14 1 1OO. 

Figure 3.1c (left) 

Electron micrograph of a replica of G2 heated at 578°C for 20 hr 
then etched in acid (see text) for 20 s. ~mg Xli ,70e . 

Figure 3.3<1 (right) 

Optical micrograph of G2 nucleated at 62 1°C for EO nin and gro'lm 
at 730°C. Mag XS04 . 

Figure 3.3b 

Electron micrographs of G2 heated at 57SoC for 20 h r 
Mag X29 , SOO; X26,800. 
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3.1.1 Nucleation Rates (G2) 

The nucleation data for glass c2 obtained using the equations 

(2.1) and (2.2) are summ~rized in Table 3.1 and Figure 3.2. In 

Figure 3.3a a typical optical microrJraph is sha •. '!". I and Figure 3. 3b 

shows transmission electron micrograpH:! of NC2S 3 crystalS. The 

crystal morphology will be discussed later. 

In F'igure 3.2 are sho\'m plots of loglo (~) versus temperature, 

where Nv is the nunber of nucleated crystals p~r unit volume at 

the given temperature (oC) after a time t of 40 minutes. 

be regarded as the 'average' nucleation rate over this tWle inter-

val. These values are probably close to the 'steady state' nuclea-

tion rates except for tl1e results at the lower temperatures where 

incubation time effects cm1 cause appreciably non linear Nv versus 

t (3.3). Thus at the l~'ler temperatures the Nv/t value will 

probably be an underestimate of tho steady state nucleation rate. 

This effect will be further discussed later in this ~~apter. 

The Nv/t or 'nucleation rate' curve 5ho\'1s tllr~e main features: 

(i) A ~ax1mum of 1.259 x lO~ nuclei t~-3 nin- 1 is found 

at approximately 617°C. 

(ii) A 'cut off' at about 570°C c~d a high temperature 

'cut off' at about 710°C where the frequencies \'tere 

below 102 nuclei mm- 1 min- 1 

(11i) A range of approximately l400C \'1here the nucleation 

process was clearly rletected. 

In order to check the values of Uv obtained using equations 

(2.1) and (2.2) the particle size distribution method was e1i1;,,>loyed. 



TI..i3LE 3.1 ~"'UCLEATION P.EStJLTS FOR CUSS G2 

T(OC) TiI!le N' b' M.a'j .. lf1~ A' , N'XM', 1 (2 . 11.' <.!.,.) NvTOTl·.L 
t, mins number (mm) cation plate ~OCJ10 (A1xb'xt) oglO iT i\irt b 1oglO ( t -) 

of area Due to Schwartz 
particles (mm2 ) 

inter-
sections 

580 40 70(71) 3.4 143.8 17120 1.99 1.89 

6cx.. n 346 2.3 2976 II 3.75 3.67 

620 " 104 5 744 " 4.10 4.03 

640 " 44(44) 6 744 r. 3.66 3.68. 

6Go " 225 5.5 297.6 " 3.19 3.~2 

680 " 369 4.1 148.8 It 2.64 2.62 2.67 

700 " 147 11 148.8 n 1.80 1.73 

710 ~: 142 12.5 148.8 " 1.74 1.66 



FIGURE 3.2 LOqJNv/t) AS A FUNCTION OF TEMPERATURE FOR GLASS G2 
x (alculated from equation (2.2) 

t 4. 
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In this method due t~altYkOW and Schwartz (3. <1) the particle size 

distribution is first estimated. A sample of the glass G2 given 

a nucleation treatment at 680°C for 40 minutes follo\,led by a growth 

treatment at 730°C for 3 minutes was chosen. For this sample a 

distribution of particle sizes was expected because of t~e appre-

ciable crystal growth rate at the nucleation temperature 

(approximately 0.7 llo min-I). The 10910 (Nv/t) value, using 

equation (2.2) and assuming a diameter of 4.1 rum for the largest 

cross section was 2.64. Following the Saltykow method the number 

of size intervals k was chosen as 8. The width of each interval 

b was 0.528 rom such that k x ~ = 4.23 mrn. The print magnifica-

tion H was 148.8 and the print area 1\' measured \-ras ~.7120 mm2 • 

The number of particles in each size interval are given in Table 3.2. 

Also given are tile calculated number of particles per unit volume 

Nv (k) for each interval k except for the first four intervals \-lhere 

their sum is quoted. The 

gave the total Nv(Nv(T». 

sum of the Nv(k) for all the intervals 
Nv(T) 

'l'ne value of 10910 ( t ) with t - 40 

minutes is 2.67, which is in close agreement with the values cal-

culated from the two previous methods described (equations (2.1) 

and (2.2», Le. 2.64 from equation (2.2) and 2.62 from equation (2.1). 



TABLE 3.2 PARTICLE SIZE ANALYSIS FOLr.D:nrm SCHt-J1\RTZ' S METHOD 

k Range kll (mm) n:number of particles NI', (k) .. (148.8)3n 
f.. 7r x l7120 

1 0.00 ++ 0.53 0 0.0 

2 0.53 1.06 ltl 5094.97 

3 1.06 1.59 20 7278.53 

4 1.59 2.12 55 20015.95 

5 2.12 2.64 46 16740.62 

6 2.64 3.17 79 28750.19 

7 3.17 3.70 84 3cSG9.82 

8 3.70 4.23 84 30569.B2 

Nv (1) + Nv (2) + Nv(3) + Nv (4) .. 950.97 
UA (5) NrJ6) NAn) 

Nv (5) ... 0.3333 ~. - 0.1161 -r - 0.0366 K' 
609.32 

NA(O) 
0.0168 A 

'.' NA(o) NA (7) NA (9) 
Nv (6) .. 0.3015 /). - 0.1081 --r - 0.0346 !J. - 4305.87 

Nzd7) NACO) 
Nv(7) ... 0.2773 /). - 0.1016 !J. ... 5371.12 

NA(S) 
Nv (8) .. 0.2532 ---IJ.--- = 7893.13 

... 

NA(l) Nj\(2) Nz.J3) NA(4) 
Nv(T) a NvTOTl\L" !J. + 0.4227 /). + 0.2583 -r- + 0.1C4 7 6-

. • NA(S) ~>:-.(6) NA(7) NA(S) 
+. 0.1433 ---r;- + 0.1170 ~6- + 0.0908 ~- + 0.085G Il 

... I NvU) .. 1913041 nuclei per romS, where !J. ... (J,.48~3) 3 and 
i-I 

NA (k) is t.l}e number of particle intersection.s jn class k. 
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3.1.2 Growth Rates (G2) 

Growth rates were measured using the crystals internally nucleated 

after a single heat treatment at a given ten~erature. A typical 

linear plot of the maximum cross sectional diameter vs. time at a 

qiven tenperature (678°C) is sho\'m in Figure 3.4. The growth measure-

ments are summarized in Table 3.3 and Figure 3.S. Fi~ure 3.5 shows 

the crystal gr~~th rate (um min-I) vs. temperature (G e). There is 

a considerable overlap of the growth rate curve with the high 

temperature side of the nucleation rate curve (Figure 3.2). In fact 

this composition crjstallizes very rapidly for temperatures higher th~n 

tha nucleation rate maximum at 617°C. To demonstrate this pOint 

an approximate calculation of the time required to crystallize the 

~lass (to a certain level of crystallinity) at dif£er~nt tempera-

tures "/ill be made using the Johnson-r~ehl equation 

(3.1) 

where :x is the volume fraction transformed, I is the nucleation rate, 

U is the qrO\'lth rate and t is the transformation time. For the 

assumptions involved in this equation see for ex~nple reference (3.5). 

Prom Figures 3.2 and 3.5 at 640°C, 1- 5.01 x lOS n.uclei mm- 3 min- 1 

and u - 10.5 X 10-5 mm min-I. From equation (3.1) '-lith X = 0.98 

(98' crystallinity) t is found to be 159.3 min. It should be stressed 

that equation (3.1) is only an approxin~tion because the incubation 

times in both nucleation and growth rates (\oThich will be further 

analysed later in b~is chapter) are not considered in its derivation. 

However in the temperature range where the present calculations \'lere 
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TrlBLE 3.3 GROI:-1TH RflT£S vs. TEI"i'ERATURE 

606.5 

619 

631 

654 

678 

692 

710 

Growth rate u 
(lJD'l min -1 ) 

0.0066 

0.0330 

0.0506 

0.2366 

0.6357 

1.1800 

1.9100 

Estimated error: A~ -x 
1.1 

100 = 9% 

TABLE 3.4 Tlr~s TO REACH 901$ CRYSTALLINITY CALCUL.'\TEO FROH E~2UATIal (3.1) 

T(OC) I (nuclei mm- 3 min-I) u (mm min-I) x 105 t(min) . 
618 1.995 x 10" 2.8 303.9 

640 5.011 x 103 10.5 159.3 

650 2.812 x 103 19.5 115.6 

660 1.413 x 103 31.5 95.9 

670 7.498 x 102 47.1 83.1 

680 3.548 z 102 69.5 74.B 

690 1.773 x 102 110.0 G3 

710 3.9S:!. x 10 191.0 60.6 
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perfonned these effects are considerably diminished. Table 3.4 

gives further calculations from equation (3.1) at other tempera-

tures. 

3.1. 3 Viscosi ty t-1easurements 

V19cos±ty:dat..1. . (measured a.s described in section 2.8)-''1l3ru 

Obtained for the glass G2 in two different temperature ranges; the 

low temperature range from 570°C to 650°C and the high temperature 

The viscosity values as calculated 

froc the d~formati6n curves. (see section 2.8.lb) are surnmarlzed in 

Table 3.5 and Figure 3.6. Th8se curves were such that the total 

clcformdtion satisfied equation (2.4) and so equation (2.5) Nas used 

to calculate the viscosity coefficient. 

Table 3.5 shm'lS the measured viscosities in both temperature 

ranges. Also shO\'Tn are the Fulcher paran:eters (equation (2.0» 

obtained \-lith both the low and high teJll1.?erature data (column 5) as 

well as the same parameters for onlz the 10\'1 temperature data. 

The Fulcher equation for glass G2 for the whole temr.)erature range is: 

loglOn - - 3 86 + 4893.3 
• T-274.4 (3.2) 

Figure 3.6 shows t.'I)e ccmplete viscosity curve ,"s determined in 

this work. The intermediate points were obtained using the Fulcller 

equation fitted for tt'1e \o!hole temperature range. The extrapolated 

dotted line ~/as constructed using the Fulcher equation from the 

lower temperature range data only. On the sam.a plot is also sho'lffi 

the curve for the glass Nf:S 710. It can be observed that glass G2 



TJU;LE 3.5 VISCOSI'rY DATA All!) EULCHER rruw·lETERS FOrt GLASS G2 

'l'l'COC) loglOT) Fulch€!r 5 70 .~ '1' ..s 650 570 ~ T 'S. 1370 
Pt.rameters 

572 12.34 A 5.54 -3.86 

591 11.59 B 721.11 4893.3 

610 10.71 T 
0 

460.5 27'l.4 

629 9.96 

645 9.62 

1264.5 0.99 

123G.3 0.93 

1303.3 0.08 

131fj.0 0.82 

1338.0 0.79 

1370.0 0.70 
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1s very fluid at high temperatures; for exanv1e at its liquidus 

'!be temperature at which n = 1a13 Poises is fotmd to be T • 564.. 7°C 

when the Fulcher equation for the i·Thole range of temperature is used 

and T c: 565.2°C when the Fulcher equation for only the lO\<1er terrj!'er;:.-

ture range is used. 

3.1.4 DTA and TL Results 

~le DTA traces for glass G2 for the heating cycl~ and for the 

° cooling cycle (both at lO C per minute) are shown in Figure 3.7. 

'l'be follO\dng are observed: for the heatine; cycle an endothennic peak 

and peaks due to crystallizatlon ane' melting, and for the cooling 

cycle peaks due to crystallization and a reversible polymorphic 

transfoJ:mation. 

3.4.1a Transformation range of~13ss 

prem the ent10thermic peak due to changes in specific heat and 

usually associated with the annealed glass a temperature can be 

defined to represent the 'OTA rrg' as shown in Figure 3.7. The 'OTA 

Tg' ,,;as 579°C ±3°C, the estima.ted error being based on the observed 

scatter for several rung at the saI"'le heating rate C\.nd ,dth similar 

sample and reference characteristics. It is intere3ting to compare 

this value \<Tith the value obtai..ned from isotherrull Viscosity measure-

ments where 1013 ?oise correspon,1g to 564.7°C. nls~ jor glass G17 

(slightly different in composition from G2) the 'OT1\. '1'9' ",as 570°C 

and the temperature at which n = 1013 P was 565.7°e. Th~ latter 



FIGURE 3.7 OTA TRACE FOR GLASS G2 (300mgl 
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value was calculated fro~ho Fulcher equ~tion for glass G17 

where 

loglon • -3.44 + 4338.6-
T-301.3 
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the low temperature data for C17 ar~ tho high T data for G2 were used. 

Fo~ the glass C17 also thermal expansion data (at approximately 3°e 
I ," 

per min heating rate) was obtained. The thennal expansion • Tg' was 

S63.S 0 C in close agreement with the value of 5GS.7°e m~1tioned above. 

Other workers have also measured the DTA Tg for glasses similar in 

composition to G2 and Gl7. For example Frisch.:lt (3.6) quoted 57Soe 

and Sadeghi (3.2) quoted 587°e. 

Using the Fulcher equation for the ,,,hole temperature range for 

glass G2 (Equation (3.2» the 'DTA Tg' temperature of 579°e corres-

ponds to a viscosity level of loglon = 12.20. 

3.1.4b Hear.s of crystallization, fusion and polymorphic trans-

formations 

To me~qure these quantities from a DTA trace it is necessary to 

obtain a relationship between the heat of reaction ruld, for example, 

( 

the area under the peak produced by the reation. This is a very 

difficult problem. It involves the solution of differential 

equ~tions such as: 

(3.·1 ) 

"mere i imicates a given medium and p, cp and A are the medium density, 

specific heat and thermal conductivity respectively. The Heat 

Equation (3.4) gives the distribution of ten~erature as a function 

of position and time in the given mediun. HOl-Jever, it has been 

, 
i 

I! 
-! 
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shown both theoretically and empirically that the following approxi-

mated relationship applies:-

b 
K B ~ k f ~T(t)dt = ill! 

a 
(3.5) 

where B is the area under the peak, K is a proportionality factor and 

f.fl the heat of reaction per unit mass. This equation can be used 

provided it is possible to evaluate the factor K with known sub-

stances. A mora elaborate version of equation (3.5) due to Kerr 

(quoted by Blazek in reference (3.7» is: 

b M 6H 
f 6Tdt = --T-

g sm 
(3.6) 

a 

which can be obtaL~ed by solving equation (3.4) assuming cylindrical 

syrmtetry. Here !-1a6,H is the heat of reaction, I·1a is the mas s of 

sample, g is a geometrical factor and A is ti1e coefficient of sm 

thermal conductivity of the sample. In deriving equation (3.6) 

the temperature gradients in the sample and the dependence of the 

area on the specific heat are neglected. 

In this work expression (3.5) has been used to determine the 

heat of reaction. The calibration constant was obtained using 

both An NaCl (melting point: 80loC, heat of melting 6Rf .. 6.69 

kcal mole- 1 .. 114.46 cal g_l) and AR NaF (DI. pt. 996°C, &1.f ... 7.97 

)teal mo1e- 1 .. 189.81 cal cF 1) • The values adopted are from JJI1~l\JJ' 

tables (3 • .8). However it should be noted that:-

(1) the factor K is not constant with temperature, but tends to 

increase with increasing temperature. A possible e>tplcmation 1s 
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that the higher the temperature the qreater th~ heat transference 

by a radiation mechanism (3.7). 

(ii) In general in order to obtain good peaks (base line nearly 

the same before and after the reaction) it is often necessary 

to dilute the sample with an inert material (for example the 

reference material Al20S). The sample particle size, density, 

specific heat and packing determine the thermal conductivity and 

this in turn should be nearly equal to the thermal conductivity 

of the reference material in order to avoid big shifts in the 

base line. 

(iii) It is not easy to find a diluent material tilat will not 

interact \or! th the sample to be measured or the sti:;\llclC:1rds. 

In view of the complexities mentioned above it ",as decided 

to prepare se\'eral dilutions of HaCl (NaP) \'Tlth AhOs keepinj 

the same total mass (300 mJ) and to use 1..1203 (300 mg) as the 

reference material. The areas under the: peaks were measured by 

cutting and \,leighing a copy in tracing paper of the peak. No 

problem was faund in d~fining these areas because the base ll~e 

did not shift. In !?igure 3. a the weights of the peaks vs. the 

~ of NaCl (NaF) is plotted. Although some scatter was founc in 

the case of NaCl, the calibration factor K appeared to be unique: 

K - 150.2 cal per 9 of paper and independent of % NaCl. Hence 

it 19 reasonable to conclude that no interaction between NaCl and 

1\1203 has occurred up to the melting point of NI:'.Cl. For NaF the 

situation is not so clear. ~..pparently there is a cur;ature (see 

Fiqure 3.8) for concentrations of NaF higher than 30~. Perhaps 

.1 

,\ 
ii 
!' 
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some interaction of NaF with i\h03 could explain this behaviour but 

more research is needed to clarify this point. On the whole this 

method is attractive since it is simple to calibrate the apparatus 

and to obtain a good estimation of the heats of crystallization 

and melting in glass systems. As mentioned above the calibration 

factor obtained from NaF/Ah03 dilutions increased '-lith NaP con-

tent, so it was decided to use the calibration factor. corres-

ponding to lool NaF (K K 164.39 cal per 9 of paper). This factor 

is greater than the one obtained from NaCl/Al209 dilutions, showing 

the probable trend of K increasing with temperature. The heats 

of cl:Ystallization, fusion and the 10111 tenperature reversible 

transformation for glass G2 were calculated from bo~~ factors. 

The results are listed in Teble 3.6. The values quoteu are the 

mean values oDtained from three separat~ runs on the same glass. 

In fact, high t~perature calorimetric data for the Na20. 

2CaO.3Si02 composition is also availaDle. The value for 6Hf 

quoted by Kro~er (3.9) is 21.8 ±O.l kcal mole- 1 in good agreement 

with the present technique. Also this value provides the oppor-

tunity of estimating the probable error involved in using the 

OTA technique, it seems reasonable to quality these measurements 

",ith a relative error of ±5%. So the heats of. cI1'stallization, 

fusion and polymOrphic transformation c~n be taken to be: 

6Hc - 12.7 ±O.7 kcal mole-I, ~Hf ~ 20.6 ±l.l kcal mole- l and 

6Hr • 0.98 iO.05 kcal mole- l respectively by using the present 

IYl'A technlquG. All thesG values are the averages from NaCI and 

UaF cal1bra tion in Table 3.6. It should be noted that the hoat 

of crystallization refers to measurement at approx1nlately 700°C, 



TABLE 3.6 l1Hc (620 to 730°C), 6Hf AND 6ilr FOR GLASS G2 

Standard ARc average heat 
of crystalliza­
tion in the 
range 620 to 
730°C 

NaCl 

1'1aF 

kcal cal g-l 
mole- 1 

12.14 34.24 

13.28 37.48 

l1Hf heat of 
fusion 

kca1 cal g_l 
mo1e- 1 

19.71 55.61 

21.57 60.86 

~IIr Poly­
morphic trans­
fonnation 

kcal cal g-1 
1OO1e- 1 

0.94 

1.03 

2.65 

2.90 

TABLE 3.7· STRUCTURES OF LCMl'.ND HIGH FORMS CF CRYSTALLINE Ne2S, 

Structure 11aki Naki Mi1eson Present work 
(low form) (high form) (low form) (low form) 

a (A) 10.47 10.48 10.50 

Eexagonal c(A) 13.17 1J.19 13.19 

Z 6 6 6 

a(A) 7.472 7.53 7.48 7.49 

Rhombohedral a(o) .08°58' 89°07' 08°59' 89°01 ' 
Z 2 2 
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the maximum of the e.'Cothermic crystallization peak. It is interest-

ing to calculate the viscosity levels at the bO'.:i4ll'lin'J, maximum 

and end of the crystallization peak in Figure 3.7. From 

equation (3.2) the following viscosities were obtained: 

at 605°C laglOn - 10.94 (onset of crystallization), 

at 700°C 10g10n .,. 7.64 (maximum of peak), and 

at 733°C leglOn a 6.81 (end of crystallization). 

Finally, the liquidus temperature TL measured for ~lass G2, 

·..,as 1277 ±2°C. No value ''las obtained for glass G17. However, 

Glasser (3.10) quoted 1288 ±loC as the liquidus temperature. The 

water content of glass Co2 t-!as 0.007 wt.% H20. The effects of 

water on the kinetics of crystal nucleation and growth as well 

as on the general properties of the glasses will be fully analysed 

in a later chapter. 

3.1.Sa X-ray diffraction results 

The diffraction pattern for glass G2 (fully crjstallized) 

matched exactly the pattern for the low temperature form of the 

standard Na20.2CaO.3SiC2 crystalline compound (see section 2.6) 

in both peak positions anJ relative intensities. Thi s compound 

was previously analysed by t-1aki and Sugiroura (3.11) and 1I11e9011 

and Glasser (3.12). r·b.ki and Sugimura also studied the high tem-

perature form at 500°C. In Table 3.7 the different results are 

quoted. The low ternperatur~ form is hexagonal, howev€r the 

strongest peaks can .. also be fitted by assuming a rhanbohedral 

structure. In fact there is a great s:lr1ilarity between the 
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structures of the low (hexagonal) and high (rhonIDohedral) forms. 

In this work the pattern derived for the l~~ temperature form 

could be indexed in terms of a hexagonal structure. The following 

formula (3.13) was used 

(3.7) 

A2 A2 0 

where A • 3a2 ' C = 4c2 ' the wavelengt."1 A .. ACuKal a 1.5404 A and 

a, c are the hexagonal constants of the unit cell. 'l"he A and C 

values were 7.174 x 10- 3 and 3.409 x 10-' respe.::tively. These 

are very important quantities because they determine the (hk.t) 

indices and when found allow the unit cell constants to be cal-

culated. The number of 'formula units' Z inside the unit cell can 

also be calculated if the density of the compound is known. 

Thus Z :I r: "l~~6 x ~ where 1:1\ is the total mass inside the unit 

cell, M is the molecular weight (354.409), P is tl1e density 

(2.80 9 em- 5 ) and V = 0.896 a 2c is the volume of the unit cell in 

0, 0 0 A. The unit cell constants were a = 10.50 A, c = 13.193 A and 

Z .. 5.99 == 6. In Table 3.8 are shown the calculated and experiment-

ally obtained sin2e values together with the Inller indices assigneQ. 

3.l.5b Electron Diffraction Results 

Na2 O. 2CaO. 35i02 crystals I'recipi tated' frOM glt~ss G2 ero sho'A'Il 

in Figures 3.3b,9.Regions of different contrast as '-lell as some 

kind of crystalline imperfections can be observee. '1'0 obtain 

further information on the internal configurations it was decided 

to carry out some n~re detailed work using selected area 



'l'J'NE 3.;B NelS, LCH ro~, X-Ri'W D."':Tr. 

-h + k + 1 = 3n h k t 9m2\) ·.:d 20 9in2e C\;XP. 29 l REL • Mak~ (3.11) 
~ 10' 4> X 10' Exp. h '. k ~: (l\) 

Exp. 

1 0:.' 0 7.174 9.093 9.72 . 7.'15': 9.11 .:9j:;:(\ 1.5 

* 1 0 1 10.58 7.487 11.81 10.50 7.519 11.76 '"':',.111 
-~ 

1 0 2 20.806 5.340 16.59 20.80 5.342 16.58 14 .. 1 1 0 21.522 5.250 16.87 21.40 5.260 16.81 10 
1 1 1 24.93 4.880 lS.17 24.90 4.886 18.14 20 .. 0 0 3 30.67 4.393 20.173 30.70 4.397 20.18 46.5 
1 1 2 35.15 4.110 21.613 35.30 4.099 21.66 6.0 
1 0 3 37.85 3.96 22.436 37.9 3.955 22.46 14.0 
2 C -2 42.33 3.74 23.745 43.6 3.690 24.10 95.0 .. 2 0 2 
1 2 0 50.22 3.44 25.90 50.4 3.432 25.94 23.0 .. 1, 1 3 52.19 3.37 26.41 52.6 3.358 26.52 92.0 .. 2 1 1 53.63 3.33 26.78 54.2 3.309 26.92 138.0 
2 0 3 59.37 3.16 28.20 59.5 3.157 28.24 7.5 
1 2 2 63.85 .. 3. 0 0 64.57 3.031 29.44 64.5 3.033 29.42 19.0 1 2 2 
3 0 1 67.97 2.954 30.225 68.3 2.947 30.30 8.0 
1 1 4 76.05 2.793 32.02 76.5 2.784 32.12 9.5 
2 1 3 80.89 2.70S 33.05 80.8 2.709 33.04 20.0 

.. 0 2 4 
83.22 2.670 33.53 83.7 2.662 33.64 178.0 

2 0 4 

* 2 2 0 86.09 2.625 34.12 86.7 2.616 34.25 162.0 
2 2 1 89.496 2.57 34.81 90.0 2.567 34.92 14.5 > 0 1 5 d = 2.S3 (IREL.= 10) 

MAKI 

3 1 0 
93.26 2.522 35.56 93.1 2.522 35.54 22.0 1 3 0 .. 3 0 3 95.24 2.496 35.95 95.8 2.489 36.06 10.0 .. 1 3 1 

3 1 1 46.67 2.48 36.23 97.2 2.470 36.34 12.0 

.. 2 1 4 104.75 2.38 37.77 105.3 2.373 37.88 8.0 .. 3 1 2 106 .89 2.356 38.17 107.5 2.349 38.28 27.0 



TABLE 3.8 (continued) 

-h + k + 1. = 3n h k 1 sln2 e d 2e sin2e C\xp. 20 Il£L. t-~i t3 .. 11) 
x lot (A) X lot Exp. h k t 

Exp. 

4 0 0 114.78 2.273 39.61 114;6" 2:275 0 
2 '2 5 113.90 

39.58 9.5 2 5 

4 0 1 118.19 
2.232 40.38 118.8 2.235 

3 0 4 119.09 
40.3,2 1,5.0 4 0 1 . . 

0 0 6 122.70 2.188 . 41.23 123.8 2.189 13.5 6 
3 1 3 123.93 

41.20 0 0 

0 4 2 128.42 1 3 3 d = 2.181 (IREL = 3) 
J c , 

~ 2.137 42.25 129.6 2.140 42.20 22.0 0 4 2 MAKI 

1 0 6 129.86 
3 1 5 135.42 2.086 43.33 136.6 2.084 43.38 11.0 1 2 5 
3 '"I 0 136.31 .. 
3 2 1 139.71 2.053 44.05 140.6 ~.054 44.04 11.5 3 2 1 
2 2 4 140.62 

, ... 
;. J 

1 1 6 144.21 2.019 44.84 145.8 2.017 44.90 9.0 1 1 6 
4 a 3 145.46 
1 3 4 147.80 1.990 45.54 148.8 1.997 45.38 15.0 1 3 4 
3 0 5 149.80 
4 1 1 154.06 1.962 46.22 154.9 1.957 46.36 12.5 
[1 1 ') 164.29 1.900 .... 47.82 165.3 1.895 47.98 7.0 

11 0 It 169.31 1.865 48.78 101.0 4 0 4 - 1.861 48.90 170.5 
2 2 f. 171.29 

* 1 0 7 174.17 1.846 49.33 175.0 1.841 49.46 14.0 

* 1 4 3 181.33 1.809 50.41 182.9 1.801 50.64 21.0 5 1 d = 1.797 (I~ = 9) 0 
* 3 2 .{ 190.83 1.763 51.81 191.88 1.758 51.96 7.0 . I 

3 3 ( 193.70 1.741 52.51 194.90 1.745 52.40 11.0 3 3 0 
2 0 7 195.67 
3 3 ( 193.70 1.741 52.51 196.57 1. 737 52.64 15.0 3 3 0 
2 0 7 195.67 
1 4 {. 205.18 1.700 53.87 206.35 1.696 54.03 14.0 



TALLE. 3.8 (continued) 

-h + k + 1 .. 3n h k i. sin2e d 26 sin26 t\xp. 26 lREL Haki (3.11) 
x lOs (J~) X 10' Exp. h k i. 

Exp. 

* 2 2 6 208.78 1.686 54.38 211.13 1.676 54.72 7.5 . 1 2 7 
* 217.21 1.653 55.56 218.63 1.647 55.76 16.5 

2 1 7 

* 
1 0 8 225.29 1.623 56.67 223.57 1.629 54.44 10.0 
3 2 5 221.51 1.636 56.15 
3 0 7 23l.56 1.601 57.53 232.94 1.596 57.72 8.0 
1 5 2 236.03 1.581 58.23 237.38 1.581 58.32 7.0 1 5 2 
4 0 6 237.47 
1 1 8 239.63 l.573 58.62 238.71 1.576 58.49 7.0 
4 0 6 237.47 1.sSl 58.33 

* 2 0 8 246.81 1.55 59.58 2~8.61 1.545 59.82 19.0 

* 2 4 4 255.4 1.524 60.71 256.49 1.521 60.85 28.5 

* 
6 0 0 258.26 

1.510 61.35 259.86 1.511 61.30 18.5 6 0 0 
3 1 7 260.25 

* 
3 4 1 268.85 1.485 62.46 270.35 1.t181 62.66 9.0 
1 2 8 268.33 1.487 62.40 
3 4 3 296.11 1.415 65.93 295.65 1.416 65.88 5.8 

* 1 1 9 297.57 1.412 66.12 298.04 1.411 66.18 5.0 
3 2 7 303.30 1.395 67.01 305.09 1.394 67.06 18.0 3 2 7 
2 0 9 304.74 

* 
5 2 3 310.{6 1.380 67.04 312.17 1.379 67.94 12.5 5 2 3 
1 3 8 311.37 

> lfeans appearance in I,~aki test but not in f-hls' l'lork 

--- !~eans non appearance in r~aki data 



Figures 3.9 (top l eft), 3.10a (top right), 3.10b (bot: tom left) 
3.10c (bottom right) • 

Electron micrographs of G2 heated at 57SoC for 20 h (3. 9 ) and 23 h 
(3.10 ) • 
~ng XIS,ODO; X32,lOO 
Mag X31,SOO; X40,600 

The 3.10c microgrnph was taken at an electron acce lerating voltage 
of 1,000,000 V. 
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diffraction (SAD). In some cases it was also possible to use dark 

field microscopy. In general the glasses were given a long single 

n~cleation treatment at low temperatures, in order to produce a 

large number of small crystals. 

'I1le d spacings \'lere calculated from R(m) x d(A
D

) =- L(ltllI) x 

~(AO) _ C is the camera constant, L is the effective camera length, 

~ is the electron wavelength, R is the distance from the particular 

spot to the central one and d is the interplanar distance corres-

ponding to that diffraction spot. The value of C was determrned 

by taking diffraction patterns of orthorhombic ex. 1·'003 crystals 

using the same electron microscope settings. Very good diffrac-

tion patterns can be obtained for these crystals and very accurate 

d-spacing data exist. 

In order to check the crystalline phase precipitated from the 

glasses G2 and G14, d-spacings were listed for all the diffraction 

patterns. The results for both glasses are shown in Table 3.9. 

There is very good agreement, within the experimental errors, be-

tween the d-spacings determined from the electron diffraction patt-

ems and those obtained from X-ray diffraction for the low form of 

A set of micrographs of crJstals precipitated from glass G2 is 

shown in Figure 3.10a, b, c. The crystal in Fig. 3.1Od gave a 

very strong diffraction pattern (Fig. 3.10e) which '''hen indexed 

gave the zone axis (direction of electron beam) as [UV.H] = [00.1]. 

The diameter of the selected ar~a for diffraction, as determined 

by the diameter of the diffraction aperture was 0.87~. 1.lso 



TABLE 3.9 UX'l FORl1 N~ 0.2caO.3Si~ d-SPACINGS FRDti ELECTRON 

DIFFAAC'l'ION 

d(E.M), AO d (X-~yS), AO, * Relative Intensity (X-Rays) , 
. fifo .. '. - 'G14 

7.38 7.40 7.519 30 
5.32 5.34 5.342 14 
5.26 5.22 5.260 10 
4.27 4.26 4.397 46.5 
4.16 4.14 4.099 6 

3.97 3.955 14 
3.35 3.35 3.358 92 

3.29 3.309 138 
3.15 3.19 3.157 7.5 
3.01 3.04 3.033 19 
2.93 2.947 8 
2.63 2.616 162 

2.51 2.522 22 
2.49 2.489 10 

2.37 2.373 8 
2.27 2.26 2.275 9.5 

2.21 2.235 15 
2.13 2.140 22 

2.08 2.084 11 
2.01 2.017 9 
1.98 1.997 15 

1.93 1.96 1.957 12.5 
1.86 1.865 101 
1.73 1. 73 1.737 15 

1.67 1.676 7.5 
1.64 1.647 16.5 

1.61 1.596 8 
1.57 1.576 7 
1.52 1.521 28.S 

1.45 1.481 9 
1.43 1.416 5.8 

1.41 1.411 5.0 
1.39 1.39-1 10.0 

• See Table 3.8 



Figure 3.l0d 

Bright field electron micrograph of Co2 hea ted a t 578°C for 
23 hr. l'~ag Xii. S , 260. 

Figure 3.lCe 

Selected area diffra ction pattern of cL~stal in Figure 3 .l0d . 

Figure 3.10f 

Dark field electron micrograph taken \"Tit~l the diffrac·tinq ap erture: 
around the (42.0) reflection. t-1ag x'~9 ,000. 
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this applies to all the patterns that £0110\'1. The low resolu tion 

dark field micrograph of Fig. 3.10f was taken by placing the objec­

tive aperture around the (42.0) spot. No attempt was made to 

obtain high resolution dark field micrographs by tilting the diffrac­

tion spots to the microscope axis, due to the beam damage giving 

insufficient time. The bright regions of the crystal are those 

diffracting particularly strongly with the (42.0) reflection. 

Since only one diffraction pattern was detected it is su~Jested 

(tentatively) that this crystal was single and not compc.sed of 

several crystals with different orientations. 

For the crystal in Fig. 3.lla selected area diffraction patt­

erns were taken in positions 1, 2 and 3. These are shown in 

Figures 3.llb, c and d respectively. The patterns are essentially 

the same. The spots in Figure 3.110 are streaked in the direction 

perpendicular to the band aa I in Figure 3.lla. This suggests the 

presence of planar defects, possibly stacking faults, in that band. 

No further observations on this crystal were made due to electron 

beam damage. 

For the crystal in Figure 3.12a diffraction patterns were taken 

in regions 1, 2 and 3. In region 1 a single undistorted pattern 

was obtained (Figure 3.l2b). Region 2 gave a f~~ weak spots (Figure 

3.12c). Tha pattern obtained from Region 3 (Figure 3.l2d) is diff­

erent from that for region 1 and also some streakiny of the spots 

can be observed. Twinning may be present in this cI",1stal. 

Finally, diffraction patterns were taken from regions 1, 2 and 

3 of the crystal in Figure 3.l3a. The patterns were closely 



Electron micrographs of G2 heated at 57SoC for 23 hr 

Figure 3.lla (top ) l-lag X2 4 ,OOO 

Figure 3.l2a (middle) Hag X2 Ll , 800 

Figure 3.l3a (bottom) Mag X24,SOO 





Fi gures 3.llb,c and d 

Sel ecte d a r e a diffr~ction 2attcrns (S~D ) of cryst a l 
i n Fi gure 3.lb . 

Figure 3.12b , c a nd d 

SAD of crysta l i n Figur e 3 .12a . 

Figure 3.l3b, c and d. 

SAD of crystnl in Figure 3 . l3a . 
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similar suggesting essentially the sama c~lstal orientation in all 

the regions. However in r~gions land 3 pronounced streaking of 

the spots and the presence of double spots '-las observed. The 
, 

streaking occurred also perpendicular to the band bo. In region 2 

little or no streaking could be observed. This suggests again 

the presence of stacking faults or twinning 

Unfortunately, due to the beam daDJage, the chance3 of getting 

more than 3 or 4 different selected area diffractlcn patterns from 

the same crystal ''lere very limited. HOl'~ever fron this stu.d-j sone 

tentative conclusions can be drawn:-

(i) The crlstalllne ~lase detected in the early sta~es of 

grOl·rth is the same as that obtained from x--ray ,diffrac-

tion of fully crystallized bodies (the low form of Ne2S,) 

(li) The crystals are probably single crystals containing 

imperfections. The most probable defects are stacldng 

faults and/or twins. 

(11i) No branching of the crystals was observed, Le. the 

formation of branches with different orientations from 

the parent crystal as found, for example, for lithium 

disilicate (3.14). 

(lv) The shape of the crystals is not a unique feature. Some 

crystals show a polyhedral shape whereas others are 

roughly spherical. Further information on this sub-

ject will be presented duru1g the analysis of glass GlG. 

Further work is needed to understand the features observed. 

Hot stage electron microscopy studies Might assist in the inte~~re~ 

tatton of ttc crlgin of the iDt>erfectiol1s. It :'s possible that 
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the low form-high form polymorphic transformation observed at 480°C 

has a strong influence on the ki~l of defects detected. 

3.2 Glass GIG 

The batch for this glass was prepared Witil high purity Si02 

('SILQUARTZ'). Glass G1G was melted in an attempt to assess ele 

effect of trace elements on crystal nucleation anu gr~~th rates. 

The final composition 1s quoted in nppendix A2, (Table A2.1) • 

The t;a20 content was 16.85 wt.% (16.06 mole%), the CaO content was 

31.54 ~~.% (33.21 mole%) anc the SiCa content was Sl.61 wt.% 

(50.73 molet). This was close to the composition of glass C2 

previously studied. The steady state nucleation rates and 

crystal grO\'lth rates were measure·:} for this glass. In addition it 

was decided to check the nucleation r~tes obtained from the standard 

double stage heat treatment by counting the nurr~er of crystals 

produced after a single nucleation treatment directly in the 

transmission electron microscope. Although the nucleation rates 

for this glass were reasonably high, (for example compare the 

values in F'igure 3.16 with the results for the Li20.2Si02 glass 

obtained by James (3.3.~), at the magniflcations needed to observe 

the crystals in the electron microscope the number of crystals 

in the field 0::: view was very 10N. Therefore to count a reaso.")-

able number of crystals (say a hundred) it was necessary to obtain 

a large n~~er of electron micrographs using a n~~~er of foils of 

the same glass. TI1US the use of thin sections was impractical 

due to the long time re~ired to prepare a ion beam t~1inned foil 

(on average 8 hours) and the large number 0:: EI1 n<:~nt.1 ve.plates 
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needed. Carbon replication of the glass was not attempted be-

cause of the extra complication~ mentioned earlier in this 

chapter. 

However determination of the number of crystals per unit 

volume N in glasses given a single stage nucleation treatment 
v 

was possible using a stereoscan electron microscope. As in the 

case of the optical nlicroscopy determinations, random cross 

sectional planes of the glass sam~les WEre analysec tl1rough 

equations (2.1) and (2.2) in order to obtain lJ • v 

3.2.1 Nucleation Rates 

The number of crystals versus time at a given tempera.ture 

calculated from equation (2.1) are presented in Figures 3.14, 3.15. 

The steady state nucleation rates and 'approximated' nucleation 

rates (Nv/t for 40 min) determined from optical microscopy as 

well as those from the SEI1 analysis are presel.ted in Figure 3.16 

and Table 3.10. 

It can be observed from Figure 3.14 that appreciable non-

steady state nucleation is present at lower temperatures. 'l'he low-

est temperature analysed \-ras 585°C where an intercept to of appro-

ximately 37.5 min (Table 3.10) was obtained. Tht~ slope of the 

plot at longer times gives the steady state nuc1eRtion rate (3.j) 

and the intercept (to) ,,11th the time axis gives an it1ea of the 

degree of the non classical nucleation effect (~ee Chapter 1). 

The slopes of the plots at a qivell temperature were analysed by 

the least squares method. For tile plot at 58Soc the points used 

were from (see Figure 3.14) 60 min upwards wher~ the linearity 1s 



FIGURE 3.14 CRYSTAL NUCLEATION DENSITIES Vs. 
TIME AT T=585°C AND T=606.5-( FOR GLASS G16 
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FIGURE 3.15 CRYSTAL NUCLEATION DENSITIES Vs. 
TIME AT 620,631.5 AND 655°C FOR GLASS G16 
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FIGURE 3.16 STEADY STATE NUCLEATION RATES AND APPROXIMATED 
NUCLEATION RATES AFTER 40min.FOR GLASS G16 AS A FUNCTION OF TEMPERATURE 
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TABLE 3.10 

NUCLEATION DENSITIES DATA FOR CLASS Gl6 

Experimental T(oC) Steady state p.pproximatcd Intercept 
technique nucleation rate nucleation rate with time 

in nuclei after 40 min axls (see 
nmr 3 roin- 1 . heat treatment text) 

in nuclei 
rom- 3 min- 1 

(min) 

Io 1091O I o I = Nv/t 10g10l 

585 19225.3 4.28 5000 3.70 37.48 

Double stage 606.5 26243.9 4.42 15250 4.18 17.08 

heat 620 16331.1 4.21 13625 4.13 7.02 

treatment 631.5 7578.4 3.88 7000 3.05 4.24 

655 723.8 2.86 1625 3.21 -50.8 

Single stage 620 12970.3 4.11 

heat 631.5 6999.4 3.85 

treatment 655 1068.9 3.03 



79. 

apparent. Increasing temperature qave shorter intercepts. 

For example at T = 606.SoC to \tlas 17 min, at T = 620°C 7 min and 

at T = 631.5°C 4 min. 

The steady state nucleation rate shows a mcm:imum (109101o = 4.43) 

at approximately 605°C. Increasing the temperature by sooe above 

the maximum causes a drop in 10 of about one and a half orders of 

magnitude. The SEt1 results are also plotted in Figures 3.15 and 

3.10. The agreement of the steady state nucleation rates from 

this method with the double stflte (DS) heat treatment metilod is 

good. However it should be noted that the number of crystals ob-

served from the SEI-'I analysis (single stage (SS) heat treatment) are 

lower than those produced by the DS heat treatment method for T • 

At T = 655°C it is difficult to detect any 

difference between the two methods, although least squares analysis 

gave a slightly higher steady state nucleation rate for the SS 

method (Table 3.10). 

rrom nucleation theory (see Chapter 1) the size of the criti-

cal nucleus increases \"ith increasing temperature. Hence critical 

nuclei at the lower (nucleation) temperature are SLl::tl!.er than the 

critical size at the upper (growth) terr.perature and should dissolve 

when the temperature is raised to the growth teL~erature (for G16 

the nucleation range ",as S7o-690o C and the gro\<1th ransre no-73()oC). 

In fact during the nucleation treatment the nuclei 0:::oto1, often to 
,",-.-

an appreciable size. For exan~le, consider the growth data from 

Figure 3.21 at 620, 631.5 and 65S oe (the intercepts on the time 

axis \07111 be discussed shortly). For these teaperatures after 

tin1eS of 25, 19 and 0 min resl?ectively the grm'lth rates reach 
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constant values of 0.023, 0.065 and 0.240 }.1m min- 1 respectively. 

n 
Hence for a nuc1etion time of 100 min the corresponding sizes 

expected for the nuclei first formed (at t=0) are 2.11 Um (= (100-25) 

x 0.028) at 620°C, 5.2 um at 631.5°C and 24 um at 655°C. For a 

nucleation time of 30 minutes the corresponding sizes \-lould be 

0.14 }.1m (= (30-35) x 0.028),0.69 lJm and 7.2 vm at the three 

temperatures. The size of the critical nuclei for the HC2SS 

glass cannot be computed at ~~s stage becaU3e the interfacial 

free energy a is not known (this will be estimated from L~e 

theoretical analysis of the nucleation rates in a 2ater chapter). 

However the ratio of the critical sizes at two different tempera·· 

tures can be estimated fran the forl1ula for a spherical nucleus 

20'VmTm 
reT) - - 6H

r
(T

m
-T) (see Chapter 1) by 

0' Vro \oti th tenperature are negligible. 

assuming that changes in 

r (T') 1561-893 
Hence = -reT) l5~1-1003 

If, as an approximation we take a reasonable 

° value of 20 A (see Reference 0.3» for the critic~::' radius at 

say 620°C, this would give at 730°C a critical radiu9 of approxi-

° mately 2,1 A. So it can be seen that the greil t maj or! ty of the 

crystals should have reached sizes larger than the critical siz~ 

at the growth temperature before the second~:stage treabnent. 

A second assumption involved in the DS method is t1'.at the nuclea·· 

tion rate at the growth temperature is negligible (see Ff:f£:rence 

This condition "las also satisfied for the glasses 

studied in this work. 

The number of crystals obtained Hith the stereoscan are never 
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larger than the number of crystals obtained fran the 00 method. 

In fact the stereoscan values are very l~i at low temperatures 

compared with the DS values. The reason for this effect is the 

very small sizes of the crystals as can be seen ~rom the analysis 

above giving the maximum sizes expected for a typical nucleation 

time of 100 minutes. The smaller the crystals, th.e r..ore diffi­

cult they are to detect in a random cross-secticnal plane through 

the specimen. Since the st~reoscan has a limited resolution a 

large number of the small crystals will not be observed. In 

fact it can be observed (see Figure 3.15) that at higher tempera­

tures (Where the growth rates are higher) both methods gave sinlilar 

results. 

Finally it is interesting to compare the steady state nuclea­

tion rates with the approximated nucleation rates calculated from 

Nv/t where t is the nucleation time. It can be seen in Figure 3.16 

that the agreement between both is very good for temperatures hil)her 

than approximately 6l0oC. Bela,·, 610°C the a~reement is not ar: 

good, the difference being half an order of magnitude at 585°C 

Further analysis of the 'rl.ncui>ation time' effect in this glass 

will be presented in the discussion chapter. 

3.2.2 Growth rates 

Growth rates were obtained by measuring the ma.'CimuDl diameter 

of the particle cross sectiolis in the o::'tical microscope. The 

glaRses were heat treated at a given temperature for cliffarent 

periods of time. 'rhe crystal sizes were also measured in thin 
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glass foils with the electron microscope. The electron micros­

cope showed clearly the crystal morphology in e1e early stages 

of growth. For non-spherical particles the size me~sured was 

the largest calliper diameter that could be four-d. 

In Figure 3.17 a series of optical micrographs of qlass G16 

sho~m for different times at 63l.SoC. In Figure 3.10 the 

corresponding electron micrographs are sho~m. 

The crystal sizes vs time for each teI,1perature are summari­

zed in Figures 3.19 and 3.20. It is apparent that these plots 

are linear. There is also a positive in.tercept with the time 

axis at 65SoC, 63l.SoC, 620°C and 606.SoC. The slopes of the 

plots (growth rates) and the intercepts ~Tere calculated by least 

squares analysis. The results are given in Table 3.11. ~le 

crystal growth rates as a function of temperature are plotted in 

Figure 3.21. Although the intercepts tend to increase with 

decreasing temperature the intercept at 60G.5°c (approximately 

20 min) is smaller than t~e intercept at 620°C. In oraer to ~~eck 

this behaviour the ex.periment "las repeatcd for glass G2. Because 

of the lack of time only optical microscopy ",as used. A series 

of micr~Jraphs for G2 heated for different times at a given teM~era­

ture are shown in Fi~Jre 3.22. The plots of size va time are 

shown in Figures 3.23 and 3.24. The plot for glass G2 at T .. 

67SoC was presented in Figure 3.4 ea:r.l1er in this chapter. The 

growth rates and intercepts (again using least squares analysis) 

are given in Table 3.12.. l\l.though the growth rates for glasses 

G2 and Gl6 are close (see Figures 3.5 ru1d 3.21) the intercepts 

are significantly different. For example glass G2 giVes an inter 
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cept of 42.3 min at T = 619°C (growth rate = 0.330 x 10- 1 ~~ min- 1 ) 

whereas glass G16 at T - 620°C gives 24.6 min (grouth rD.te - 0.286 

x 10- 1 vm min-I) • kl attempt to explain the origin of these in­

tercepts will be presented in a later chapter. 

Finally let us consider the crystal morphology of G16. First 

a change of crystal morphology occurred with temperature. For 

example, glass G16 when heated at 63l.SoC for 75 min or when heat 

treated at 655°C for 45 min (Figure 3.25), showed crystals with an 

almost perfect spherical shape. However for the same glass heated 

at lower temperatures, for example at T - 620°C for 75 min 

(Figure 3.26), the crystals had a polyhedral 5ha~e. 

Secondly a chanse in morphology with time at constant tempera­

ture was observed at lower temperatures. For exampl~, C16 heated 

at T - 620°C for 75 min (Figure 3.26) showed crysta.ls with a sharp 

edged polyhedral shape Hhereas after 90 min the cr::stals had a 

more rounded polyhedral sha)e (Figure 3.27). It must also be 

stressed that even the latter morphology '.-Tas different from the 

s.,:,herical shape obtained at higher temperatures (Figure 3.28) for 

similar heat treatment times. 

3.2.3 Viscosity measurements 

Viscosity data for GlG obtained between 570°C and 650°C as 

previously described, is sho\'m in Figure 3.29. The Fulcher 

equation, fitted to the low temperature data for G16 and to the 

high temperature range data of the glass C2 (it \-'as assumed that 

the viscosities of '316 and G2 were close at hi9h terl~J)eratures) \'1as 

as follows: 



Figure 3 . i7a ,b 

Optica l micrographs of G16 heated at 631. SoC for ( <1 ) 1 22 min 
and (b) 108 min . Hac; XS04 . 

Figure 3 . l8a (top right), b (bottom l e ft) , C (middle jan n 
d (bottom right ) 

Electron micr.o graphs of G16 he~ted at 631.SoC for (a) 122, 
(b ) 108 , (c ) 92 ann (d ) 75 min . Mag X283 8 . 
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TABLE 3.11 

• sTE1\DY • GROi'7TH RATES MT]) IllTERCEPTS DATA FOR GL.,\SS G1G AFTFR 

lEAST SQUARES ANALYSIS 

T(OC) Growth rate Intercept 
1J x 109 (minutes) 

(llm min-I) 

606.5, 0.665 20.69 

620 28.64 24.62 

631.5 66.39 19.33 

655 232.00 - 0.01 

681 675.60 0.00 

TABLE 3.12 

• STEADY' GROt'7TH RATES rum INTI~Rcr:PTS D1\'.r'l\ E'OR CLASS G2 AFTER 

L~ST SQUARES ANP~YSIS 

-_ .. -
T(oC) Growth rate Intercept 

1.1 x 10 (minutes) 
(lJIU rnin- 1) 

619 0.330 46.29 

631 0.506 9.43 

654 2.366 11.56 

678 6.357 -0.42 
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• FIGURE 3.23 SIZEvs.TIME AT T=631 and 619 ( 
FOR GLASS G2 
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FIGURE 3.24 SIZE vs.TIME AT T =654 ( FOR G2 
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Figure 3. 2S 

Electron micrograph of Gl6 (see text). t-lag Xl6, OCO 

Figures 3.26, 3.27 (top right) 

Electron micrographs of G16 (see text). Mag X16 ,900 i 10 , 600 

Figure 3.28 

Electron micrograph of G16 heated at 63l .SoC for 92 min 
Mag X2l,OOO 





FIGURE 3.29 Log!\ AS A RJNCTION OF 
'0 

TEMPE RATURE FOR GLASSES G16 AND G17 
-G16 
oG17 Curves Acc.To Fulcher Equations(see text) 
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+ 4224.9 
T-3ll.9 

From equation (3.8) loglon = 13 corresponds to 570°C. The 

values obtained for G2 and G17 were 564.7°C and S65.7°C respec-

tively. In Figure 3.29 the viscosity curve for G17 (from 

(3.8) 

equatioa (3.3» is also plotted for comparison purposes. G16 is 

slightly more viscous than G17 at low temperatures. HOt'lever the 

difference in the loglon values is never larger than 0.3. ~bre 

information on the effect of glass composition on the viscosities 

at lower temperatures, for glasses near to the stoichiometric 

lla20.2CaO.3Sio2 composition, \1ill be presented later in this 

chapter. It should be mentioned that two values obtained at 

approximately G500C and 660°C for GlG were discarded due to the 

presence of crystallization as confirmed by the optical microscope. 

3.2.4 orA and X-ray diffraction results 

The 'OTA Tg' value obtained was S02.SoC. This is higher 

than the S79°C obtained for c2 but the cifference in values is 

small when the uncertainty of ±3°C is considered (section 3.1.4oJ. 

The DTA charts, for Gl6 and G2 were very similar. The reak 

corresponding to the hi~h form to low form transformation of the 

Na20.2CaO.3Si02 phase was clearly observed. Following the 

procedure explained in section 3.l.4b the heats of c~Jstalliza-

tion (~Hc)' fusion (~Hf) and high to low transformation (~Hr) 

\-Tere determinec'l. The values, which correspond to ~le average 

obtained from the NaCl and NaF calibrations, \-lere as fo11oHs: 



~f = 20.6 ±l.O kcal mole- 1 

~Hc - 13.5 ±O.? kcal mole- 1 

and ~Hr = 0.91 ±O.OS kcal mole 

Ni thin the experimental errors these values are the same as 

obtained for G2. 

Finally X-ray. diffraction confirmed that the c~lstalline 

phase precipitating in G16 was the low temperature form of 

Na20.2CaO.3Si02' 

3.3 Glasses around the stoichiometric Na20.2CaO.3Si02 

composition 

85. 

Little information 'las available on the effect of glass com­

position on the kineticG of crystal nucleation for glasses close 

to the NC2S, composition. It was decided to investigate this 

point by studying six glasses close to the G17 glass (nominally 

the NC2Sa cOIiJposition). 

are given in Table 2.1. 

The nominal compositions of these glasses 

AltilOUgh these glasses were not chemically 

analysed it is probabl. that the final compositions are very close 

to the nominal ones. Thus on the basis of the losses of 0.4 wt.t 

Na20 and 0.2 wt.% CaO found after chemical analysis o! G2, it 1s 

reasonable to assume that approximately tile same losses apply to 

these glasses. Additional amounts of Na2COa and CaCOa were added 

to the nominal batches to correct for the expected losses of Na20 

and CaO. The six chosen glasses consisted of three pairs'of 

compositions. For each pair the oxide content of one component 

was decreased (first composition) by 1 mole% and increased (second 
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composition) by 1 mole~ with respect to the nominal oxide content 

for the exact NC2S3 composition. In other ''lords the point on 

the ternary diagram NC2S3 was joined to either the 100% HazO, 

CaO or £i02 corner, and on each line a pair of compositions, 

placed symmetrically on either side of NC2S! were selected. The 

compositions are shown schematically in Fiqure 3.30 and listed 

in Table 3.13. 

Low temperature viscosity data was ohtained for each of the 

six glasses. It was assumed that ~~e viscosities at high tem­

peratures 'IIlere very close to G2. Al~'1ough there are no high 

temperature viscosity Cat a 1n this region of the system it seems 

reasonable to assume that the abo\~ approximation 1101ds to within 

a 0.2 change in loglOn. Support for this assunption may be dra'l'tn 

from a consideration of the high temperature isokorns in the soda­

lime-silica system quoted in ~·forey' s book (3.15). As will be 

sh~."n later in this chapter the final least squares fitting of the 

Fulcher equation (2. 9) using the measured low tSD\'E'xaturc viscosi·· 

ties and the approximated high temperature data for the six glasses 

produced a very reasonable interpolation of the experiMentcl.l points 

at low temperatures. 

In the following sections the viscosities of L'1e ~lasses e18 

to G23 are cOr.1pared in each case with the \riscosit:r of G17 which 

was closest to the exact NC2S3 cOJTIposition. G17 was melted under 

the same conditions as G1G-G23 with the same correction for expected 

losses of lJa20 and CaO. The Fulcher constants A, B and To and the 

temperature at \'1hich 10IJI0n '"" 13 for the glaRses Gll3 to C23 are 

listed in Table 3.14. The nucleation results for glasses G18 to C23 
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FIGURE 3.30 

Schematic positions.,in the N-( -S system,for.the glasses 

in section 33. 



TABLE 3.13 

Glass Nominal oxide compositions in mole% 
Code Na20 CaO Si02 

G18 15.65 33.74 50.61 

G19 17.65 32.93 49.41 

G20 16.92 32.33 50.75 

G21 14.62 34.33 49.25 

G22 17.0 34.0 49.00 

G23 16.33 32.7 51.00 

'TABLE 3.14 

Glass Fulcher Parameters Temperature (oC) 
Code A B To(oC) at which 

loglOn - 13 

Gla -2.667 3356.7 359 573.3 

G19 -2.124 2800.6 371.5 556.7 

G20 -2.398 3079.0 365.3 565.3 

G21 -2.796 3576.4 332.6 559.0 

G22 -2.502 3220.8 352.7 560.5 

G23 -3.067 3859.9 328.5 568.8 
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were compared with G2 which was also close to the NC2~' composition 

and had already been extensively studied. The DTA and gr~~th rates 

results are summarized in Table 3.15. 

3.3.1 Glass GIS 

The composition of this glass was 15.65 mole~ Na20, 33.74 

reole% Cao and 50.61 mole% Si02. 

3.3.1.1 Nucleation rates 

Ap~roximated nucleation rates were obtained as described 

previously for a nucleation time of. 40 min by using the two stage 

heat treatment method. ~le nucleation rates are shown in 

Figure 3.31 and data for G2 are also shown for conparison. ~1le 

nucleation rates for this glass \-Tere less t.llan for G2. The rnaxi-

mum occurred at about tile sarrie te~erature as for G2 (6l7°C) and 

the maximum nucleation rate \-Tas 3.72 X 10' m.nJ S min~l. 

~ typical optical micrograph used for the nucleation rate de­

terminations is sh~m in Figure 3.32. The crystals were reneI'ally 

spherical. For the particular nucleation trea~ent used (67S·C 

for 40 min) there was no need of a second stage growth treatment. 

Thuz the growth rate at 675°C could be e"itimated. '1'111s \-Jas 

0.56 llm m1n- 1 ",hich was slightly lower than the ~Jro'·rth rate for G2 

at the same temperature (approximately 0.58 llm min-I) • An electron 

micrograph for clS nucleated for 40 min at 603 0 C and ~irown at 

730°C for approximately 3 rnln is sh~ln in Figure 3.33. ~gain ~le 

crystal shape appeared to be almost perfectly spherical. 



TABLE 3.15 

Glass bHe (eal/g) bHf (eal/q) IDTA Tg' Growth rates 
Code (oe) at 675°C in 

loWl min- 1 

G1S 38.4 ±l. 9 50.5 ±2.5 590 0.56 

G19 35.S ±lo8 59.3 ±3.0 571 0.52 

G20 37.0 il.S 49.4 ±2.5 578 0.97 

G2l 35.8 ±1. 8 62.4 ±3.l 579 0.46 

G22 38.1 ±1.9 61.5 ±3.1 0.56 

G23 33.0 ±l. 7 45.4 ±2.3 565 0.G7 

G2 35.9 ±1.9 58.2 ±2.9 579 0.58 
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FIGUR E 3.31 Log,o(Nv/t) AS A FUNCTION OF 
TEMPERATURE FOR G19,G1BandG2 
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Figure 3 . 32 (top l eft) 

Optical micrograph of GiS (see text). HClJ,i X10l. 

Fi~ure 3 .33 (t op right) 

Electron micrograph of G1G (see t ext). i1ng X7; 300 . 

Figure 3.35 (bottom left) 

Cptic~i micrograph of G19 heated at 67SoC for 40 mi n. 
~1ug X504. 

Figure 3 .36 (bottom right) 

r:! lectron micrograph of Gig (see text). r.1ag X~S , 200 . 
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3.3.1.2 Viscosity data 

The measured viscosities are sh~1n in Figure 3.34. The curve 

resulting from fitting the data to the Fulcher equation is also 

plotted. The Fulcher constants are listed in Table 3.14. 

The viscosity curve for glass G17 is also shown for comparison. 

The viscosity for G1S is higher than G17 particularly at low tem­

peratures, at 570°C the difference in loglon being about 0.5. 

3.3.1.3 M'1l .. 

The DTA trace for Gle was very similar to that for G2. 

It was also possible to observe on the cooling cycle (10°C min-I) 

the peak corresponding to the reversible transformation mentioned 

in sections 3.1 and 3.3. The 'OTA Tg' for this glass was 590, 

lOoC higher than for C2. The melting peak was at about the sarle 

temperature for both glassp~, 1302°C for G18 and 13C3°C for C2. 

t'1e shall s~e shortly that for some of the glasses around t.'1e NCzS s 

cont'osition t\~ melting peaks have been observed. 

The heats of crystallization and fusion (see section 3.l.4b) 

obtained from the peak areas were ~Hc - 38.4 ±1.9 cal g-l and 

AHf - 50.5 ±2.S cal g_l. The AHc was greater than the value for 

G2 and the AHf was less than the value for G2. 

3.3.2 Glasa G19 

The composition of G19 \<1as 17.65 mole!is Na20, 32.93 f.lole% CaO 

and 49.41 mole% 5102. 
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3.3.2.1 Nucleation Rates 

A typical optical micrograph used for the nucleation rate 

determination is shown in Figure 3.35. The crystal shape was 

approximately cubic with slightly rounded faces. Hhen calculat-

ing Nv using equation (2.2) b l was taken as the side of the 

maximum square cross section observed. More details of the 

morphology can be seen in Figure 3.36 \'Ihich shows an electron 

micrograph for G19 heated at 603°C for 40 min and gr~~n at 730°C 

for 2 min. Again rounded faces can be clearly observed. 

The approximated nucleation rates are shown in Figure 3.31. 

On comparing this curve with that for G2 a large increase in the 

nocleation rateS is eVident. The maxiMUm nucleation rate of 

lience the maxi"~u..tn rate is 

increased by approximately 1.3 orders of magnitude (;'Hd the tem-

perature of the maximum 1s lowered by 1~oC. P~so tne nuclea-

tion is increased more at the lOt-ler temperatures than at higher 

teq>eratures. t':hen the nucleation rates for this glass are com-

pared with those for GlS the following obElervations can be tli\de: 

i-A shift of 14°C in the position of the maxill'!UfIl to lo,"reX' 

teml?eretures. 

11 - The maximum nucleation rate if 1.9 orders of magnitude 

larger ~~an that for G1S. 

It was possible to estimate the gr~~th rate at 675°C from the 

c.lass given a single heat treatment for 40 min at this temperature. 
" 

The growth rate was obtainp.d fran the maximum diagonal distance 

that could be found in the distribution of particle cross sections 
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in a random plane. The grQ\o;th rate ,,,as 0.52 llm min-I. This 

value is slightly smaller than the growth rate for G18. 

3.3.2.2 Viscosity Data 

The measured viscosities are shown in Figure 3.3·1 and also the 

curve resulting from fitting the Fulcher equation (see Table 3.14) 

to the data. The legIon a 13 value occurred at 55G.7°e which is 

approximately 9°e lower than the corresponding value for G17. 

There is an overall necrease in viscosity when compared with C17. 

Thus at 6400 e the difference in loglon is 1.1. It is interesting 

to note that the curves for Gl8 and G19 are almost parallel. 

3.3.2.3 DTA 

The OTA trace for G19 (see rigure 3.51) was different from that 

for Gle and G2. First, the crystallization peak (maximum at 723°e) 

does not show the shoulder observed for G2. 

temperature ~ overlapping peaks appeared. 

occurred at 1264°C and the second at l294°C. 

transformation was no longer observed. 

Second, at the melting 

The first (and smaller) 

Third, the polymorphic 

The 'DTA T~' for this glass was 57loe, aOe lo'~r than that for 

G2. 

The heats of crystallization and melting were ~Hc • 35.8 tl.a 

cal g_1 and 6Hf - 59.3 ±3.0 cal g,.l. For this glass t.IIc was the 

same as that for G2. Pith reference to the melting peak the area 

considered was the whole area enclosed by the t~~ overlapping peaks. 

The 6H.f value '-las slightly larger than that for G2. 
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3.3.3 GIBas G20 

The composition for this glass was 16.92 mole' NazO, 32.33 

mole% CaO and 50.7S mole% SiOz. 

3.3.3.1 Nucleation Rates 

The nucleation rates for glass G20 were determined fr~ glass 

specimens nucleated for 40 minutes at various temperatures. The 

results are shown in l:'igure 3.37 and canpared with those for G2. 

The rates were higher for G20 at lower temperatures "lhereas at 

higher temreratures they \-lere very similar for both glasses. A 

maximum rate of 3.89 x 104 mm- S min- 1 was found at T - 606°C. 

This temperature is 11°C lo\ ... er than that for G2. 

A typical optical micrograph for this glass is shown in 

Figure 3.38. The crystal morphology ",as nearly spherical. An 

electron micrograph for G20 heated at 603°C fQr 40 min and grown 

at 730°C for approximately one minute is shown in Figure 3.39. 

Crystalline defects similar to those found for 02 were observed. 

The crystal growth rate at 67SoC was 0.97 ~m min-l. This 

value is larger than the value for glass G2 at 675°. 

3.3.3.2 Viscosity Data 

The len., temperature viscosity results are ShO\'lll in Fi9Ure 

3.40. The Fulcher parameters for this glass are shown in 

Table 3.14. The loglon ~ 13 value occurred at 565.3°C. The 

viscosity of G20 is 10\V'er than that for 1117 over alll~st the "lhole 

ra."lge where measurements were carried out. However, at lm'1er 

temperatures the difference in viscosities between both glasses '·ras 

negligible. 



FIGURE 3.37 L09,o(Nv/t} AS A FUNCTION OF 

TEMPERATURE FOR G21,G20andG2. 
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Figure 3 .38 (top left) 

Optical micrograph of G20 ~!ec:.ted :tt 6 75°C for 40 min . 
Mag X202. 

Fic;ure 3 .39 (top right) 

Electron microgrc.ph o f G20 (see text) 
Hag . X17 , 500 

Figure 3.41 (bott om left) 

Optical micrograph o f G2 l heatE::d at 6 75°C for :~O min . 
Hag X202 . 

Figure 3. ,] 2 (bottom right) 

Electron microg r aph o f G2l nucleated a·t 603°C for <10 min Mel 
grown a t 730°C f or 3 min. 
Vag X24 ,800. 





FIGURE 3.40 LoglOTt AS A FUNCTION OF TEMPERATURE FOR G21,G20andG17 
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3.3.3.3 PTA 

The PTA chart for this glass was very similar to that for 

G2. The 'PTA Tg' for this glass was 578°C, which was very close 

to that for glass G2. The heats of crystallization and fusion 

for glass G20 were ~c - 37.0 ±l.S cal 9- 1 and ~Hf - 49.4 ±2.5 

cal <rl. An increase in ABc and a decrease in the ~~f were 

observed for G20 relative to the values for G2. 

3.3.4 Glass G2l 

The composition of this glass was 14.62 mole% Na20, 34.33 

mole% CaO and 49.25 mo1e% Si02. 

3.3.4.1 Nucleation Rates 

A typical optical micrograph used for the nllcleation measure-

ments is shown in Figure 3.41. Every particle cross section 

observed corresponds to a random plane intersecting an almost 

perfect cube. This morphology was confirmed by electron micros-

copy, as shown in Figure 3.42. ~~en using equation (2.2) to 

calculate N b' \':as taken as the side of the maximuru perticle 
Vi 

square cross section that could be found on the micrograrhs. 

The nucleation rates are sho\.;n in Figure 3.37. They are 

greater than those for G2, particularly at lower temperatures. 

The mnximum nucleation rate of 1.19 x 105 mm- S min- 1 was at 607°C, 

loGe lower than for G2. ~·:h.en compared with G20 the rates for G2l 

were larger over the whole temperature range and the maximum 

nucleation rate occurred at approximately the sane temperature for 

both glasses. 



The growth rate was est~~ated at 675°C, as described for 

the provious glasses. The maximum diagonal distance observed 

on the optical micrographs was used, giving a gro",th rate of 

0.46 ~m min-I! This is lower than for G2 at 675°C and much 

smaller than for G20 at the same temperature. 

3.3.4.2 Viscosity Data 

93. 

The viscosity results are shown in Figure 3.40. The Fulcher 

parameters for this glass are listed in Table 3.14. The loglon 

_ 13 corresponds to 559°C which is 6°C lower tha.Tl for a17. The 

viscosity of G2l is lower than G2 over the whole temperature range. 

At high temperatures the viscosities far glasses G2l and G20 tend 

to coincide. 

3.3.4.3 DTh 

As for G19 the DTA trace for G2l was different from G2 (see 

Figure 3.51). The two melting peaks occurred at l2000C (the small­

er peak) and at l297°C (the larger of the two peaks) • The poly­

mo~hic transformation peak was not detected. 

The 'DTA Tg' for this glass was 578 ±3°C. The heats of 

crystallization and fusion were ~c - 35.8 ±l.S cal q-l and ~Hf -

62.4 ±3.l cal q-l respectively. 8Hc was the same RS that for 

G2. However the &if value, ''1hlch was determined from the total 

arect of the two peaks, was larger ttan for G2. 
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3.3.5 Glass G22 

The composition of this glass w~s 17.0 mole% N~20, 34.0 molet CaO 

and 49.0 mole% Si02 

3.3.5.1 Nucleation Rates 

A typical optical micrograph for G22 heat treated at 675°C for ~O 

min is shown in Figure 3.43. The crystal shope appe .. ,red cu.bic. An elec-

tron micrograph of this glass heated at 603°C for 40 nin and ~rown at 

7300 e for 2.5 min is sho,m in Figure 3.44. The Nv values "Tere determined 

as dGscribad previously for G2l. 

The nucleation rates, "Thich are sh~rn in Figure 3. ,15, nre much grE:u ter 

th~ those for glass G2. The mnximUL~ nucleation rat~ of 1.70 x 105 mm-' 

The growth rate for G22 at 675°C, which was estimat~d in the same w,~y 

as for glass G21, was 0.56 ~ r.in-l. 

value for 02 (0.5S ~m mdn- 1
). 

3.3.5.2 Viscosity Dat~ 

'l'his lias slightly lot·~er than the 

The results are shown in Figure 3.16. The Fulcher parameters for 

glass G22 are listed in Table 3.14. ~le l0010n • 13 value occurred at 

560. 5°C, 5°C lower than the temperature for G17. The viscosity of G22 

was lower than G17 over the "Thole range of measur:;ments. 

3.3.5.3 M'A -
'!be OTA trace for this 91",S5 showed two melting pcuks, the first at 

l273°C nnd ~~e second at l297°C. The ~lymorphic tr~ns~oru~tion peak 

found for G2 was not observ~d. The heats of crystnJ.l1zC'.tion l!nd fusion 

were 38.1 ±1.9 cal 9_ 1 and 61.5 ±3.l cal 9- 1 respGctivel:'. Thes~ values 

are slightly larger than those for G2. 



Figures 3.43 (top l eft), 3 . 4i! (top right) 

Optical mnd electron microc:raphs of G22 (see text ) 
~JlClg X202 ~ X8 ,760 

Figure 3 . 47 (l e ft ) 

Optical micrograph of G23 he2'.tcd at 675°C fo r 40 min. 
!1ng X10l 

Figure 3.48 (right ) 

Electron micrograph of G23 nuclent2d at 603°c for I~ O ni..n nnd 
grown at 730° C for 2 min . 
;4f,g X20 , 4 00 





FIGURE 3.45 L09Io(Nv/t} AS A FUNCTION OF 
TEMPERATURE FOR G23,G22andG2 
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FIGURE 3.46 Log.n ASA FUNCTION OF TEMPERATURE FOR G23,G22andG17 
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3.3.6 Glass G23 

The composition for this glass was 16.33 mole% Na20, 32.7 mole% 

Cao and 51.00 mole. 5i02. 

3.3.6.1 Nucleation Rates 

The nucleation rates for G23 (Figure 3.45) were less than those 

for G2. The maximum nucleation rate of 6.46 x 103 mm-' rnin- 1 was 

A typical ortical micrograph is shown in Figure 3.47. 1he 

particle cross sections are almost circular. An electron micro-

graph is shown in Figure 3.48. 

The estimated growth rate at 675°C was 0.67 ~m min-I, which 

was larger than the corresponding values for both G2 and G22. 

3.3.6.2 Viscosity Data 

The viscosity results are shown in Figure 3.46. The 

Fulcher parameters for this (Jlass are shol'm in Table 3.14. The 

loqlOn ,. 13 value occurred at 568.aoe, 3°C higher than the temper-' 

ature for 017. The viscosity for G23 was slightly hi~her than 

the viscosit:: for glass G17. It is interesting to note that L"le 

curves for G17 and e23 are parallel to the curve for 022. 

3.3.6.3 IYl'A -
The IYl'A trace was similar to that for C2. The malting peak 

occurred at 1305°C and the polymorphic transformation peak was 

observed. The t OO'A Tg' for G23 \-Ias 585·. The heats o~ crystalll-
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zation and fusion, ~Hc and tHf' were 33.0 ±l.7 cal gil and 45.4 

±2.3 cal g_1 respectively. The l.Hc for G23 was slightly lower 

than the value for G2. 

for G2. 

The l.Hf for G23 was lc~ar than the value 

At this stage it is convenient to summarize the nucleation 

rate curves for all the glasses as well as the visc03ities curves. 

The former are shown in Figure 3.49 and the latter are plotted in 

Figure 3.S0. The DTA melting curves for glasses Gl9, e2l and 

G22 are compared in Figure 3.51. The DTA results for all the 

glasses have already bp.en given in Table 3.15. 

3.3.7 X-ray results far glasses 1n section 3.~ 

It has been n~ntioned already that for glasses G22, G2l and 

G19 two melting peaks were observed in the liquidus temperature 

range and that the polymorphic transformation peak was no longer 

observed in the DTA traces obtained at coo11ng rates of lOGe min-I. 

In an attempt to understand the origin of. the two ~elting peaks, 

x-rayspiffraction was carried out for all the glas~es in section 

3.3. They were all nucleated for an hour at 620°C end grown at 

7S00 e for 30 minutes. The results, shown in Table 3.16, should 

be compared with the results of Table 3.8 for the Ne2S 3 cotTq?ound. 

According to Maki and SUgimura, (3.11) for the high form phase the 

following lleaks (29) should disappear (up to a 29 angle of 37°) I 

18.14, 22.46, 25.94, 28.24, 32.12, 33.01 and 34.92. For glasses 

G18, G20 and G23 the cryst.alline phase detected ,,,as the low form 

For glasses Gl9 nod G22 the data strongly 



FIGURE 3 .49 SUMMARY OF THE Log,o(N'l-'t) vsIrC) PLOTS FOR GLASSES IN SECTION 3.3 
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FIGURE 3.50 SUMMARY OFTHE Loqo1'\vsJrCl PLOTS FOR GLASSES IN SECTION 3.3 
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FIGURE 3.51 MELTING PEAKS(DT A) FOR GLASSES 
G19,G21and G22 AND CRYSTALLIZATION PEAK FOR G19 
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Tl'XU: 3.16 

}~-RAYS DI.TA FOR Cr..r..sSES IN SECTICliJ 3.3 

GIS G19 G20 G21 G22 G23 
28 I d 2e I d 28 I d 2e :.- I d 28 I d 29 I d 

11.9 :.l4 7.43 11.9 10.3 7.43 11.8 14 7.49 11.85 11.4 7.46 11.8 11 7.49 11.9 14.1 7.49 
16.74 7.S 5.29 16.6 7.5 5.34 16.66 7.2 5.32 16.58 6.9 5.34 16.46 6.7 5.38 16.61 7.1 5.33 
18.0 7.1 4.92 20.27 1.7 4.38 18.18 10.2 4.8B IB.05 8.0 4.91 16.70 6.9 5.30 18.2 11.6 4.87 
18.2 9.2 4.87 23.8 40.1 3.74 20.25 20.9 4.38 20.3 14.0 4.37 17.92 6.0 4.95 20.21 23.3 4.39 
IB.3 9.5 4.84 26.0 8.9 3.42 22.5 7.3 3.95 22.45 6.1 3.96 19.10 7.5 4.89 22.5 B.O 3.95 
20.25 23.5 4.38 26.5 37.9 3.36 23.8 43.1 3.74 23.78 35.0 3.74 18.31 7.0 4.84 23.83 50.6 3.73 
22.5 7.4 3.95 26.9 57.4 3.32 25.93 13.5 3.43 26.0 10.1 3.42 20.29 14.5 4.37 26.0 13.9 3.42 
23.9 48.1 3.72 29.5 11.0 ~.03 26.1 12.6 3.41 26.5 39.0 3.36 23.82 33.8 3.73 26.52 51.1 3.36 
26.0 13.6 3.42 33.€1 £6.9 2.66 26.53 51.0 3.36 26.80 53.5 3.32 25.92 9.8 3.43 26.91" 73.0 3.31 
26.6 50.3 3.35 36.14 e7.0 2.62 26.92 66.1 3.31 29.44 10.1 3.03 26.80 4=1.0} 3.32 28.3 5.2 3.15 
27.0 70.5 3.30 35.45 9.1 2.53 28.81 6.0 3.1 33.13 12.9 2.70 29.42 10.5 3.03 28.82 6.9 3.09 
2e.3 5 3.15 29.51 13.0 3.02 33.6 80.5 2.67 32.61 6.7 2.74 29.50 13.7 3.03 
28.45 4.5 3.14 33.12 11.9 2.70 34".11- 80.0 2.63 32.95 9.5 2.72 30.32 4.5 2.95 
28.9 6 3.09 33.71 100» 2.66 35.5 9.5 2.53 33.72 80 2.66 32.15 5.5 2.78 
29.6 12.3 3.02 34.27 100» 2.61 35.65 9.1 2.52 34.21 82.9 2.62 33.20 12.4 2.70 
32.14 5.1 2 .. 78 34.9 9.8 2.57 35.5 9.7 2.53 33.70 '100» 2 .. 66 
33.2 12.6 2 .. 70 35.54 14.8 2.52 36.0 6.1 2.49 34.3 100» 2.61 
33.74 100» 2.65 36.1 6.1 2.49 34.93 9.0 2.57 
34.32 loe» 2.61 36.37 7.0 2.47 35.51 IS 2.53 
34.92 ~.1 2.57 36 .• 03' 5.9 2.49 
35.53 14.3 2.52 36.3 7.1 2.47 
36.14 6.1 2.48 
36.31 7.9 2.47 
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suggests the presence of the high fbrm of the NC2SS phase. 

However for glass 021 it is not clear whether the high form 

was present or not, since the 28.24, 32.12 and 34.92 peaks were 

not present and the 18.14, 22.46, 25.94 and 33.04 peaks were 

present (apart from a small shift). 

I 

: ' 



CHAPTER 4 

EXPERIMENTAL RESULTS. GL1\SSES tUTU H20, NaF, 

Zr02, P20S, T102, MoO, and Pt ADDITIONS 
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In this Chapter the effect o! additions of different oxides 

and compounds to the base glas~ composition l-lC2SSr on the crystal 

nucleation and gr~~th rates will be considered 1n detail. 

4.1 H20 Additions 

The melting technique (Chapter 2) was modified to enable a 

glass of higher water content to be produced. ~'1hen the batch 

had reacted completely (after one hour) the melt was bubbled with 

steam for two to three hours. The steam '·las generated by elec-

trically heating a spherical flask containing distilled water. 

The flask had two outlet tubes, one a safety tube. The other 

outlet tube was joined by a plastic tube to a sillimanite tube 

with a platinum tube ceTllented to its end. ~le platinum tube was 

inserted into the melt to a dep~~ of 0.5 in. from the bottom of 

the crucible. ~1e tilermostat was set at 9SoC which allowed a 

steady flO\·r rate of steam into the molten glass (assessed by 

counting ~~e number of bubbles per min rising to the melt surface) 

without activating the safety valve of the second output tube. 

The overall flow rate was approximately 1 litre par hour. The 

lODses (\,It.~) in Na20 and Cao for glass G14 (nomil1al composition 

similClr to G2) were 1.63 and 1.3 respectively ('I"a'11e A2.1, T.q?pendix 

2). The chemically analysed canpositions (Appendix 2) for various 

glasses considered. in this f.ection are given in Table 4.1. Due 

to the losses found for Gl4 it was decided, for comparison, to 

melt another glass (GlS) under normal 'dry' conditions. G1S ",as 

closer in corr~osition to G14 than to G2 (Table 4.1). Classes Ll, 



TABLE 4.1 COllPOSITIOt-'S OF GT.J\SSES IN SECTION 4.1 AE"l'Bn CIWlICAL 

ANALYSIS 

Glass Composition (mole%) Si02 
Code Na20 Cao Li20 (by 

difference) 

G2 16.30 33.10 50.70 
G14 14.70 31. 70 53.60 
GIS 14.30 31.60 54.10 
L1 33.10 66.90 
L2 
L3 33.0 57.0 

TABLE 4.2 t-1A.TER CONTENTS FROM EQUATI CN (4. 3) FOR VARICUS 50D1\-

LIUE-SILICA AND LITHIA-SILICA GL1\SfES 

---
;Class :rhic~- '1'2.5 'l' . , '. l'latf~r , Hater' 
Code 

'" I.t \ .. ' • >'.·,Cc.n(.ar..tl.Z"tion Concentration ness. ; 
(em) C(wt.t) C{mo1e%) I,"tter Accurate 

!'1ethod 
Chapter 2 

C(wt.%) C(mole%) 

G2 . ·0.0365 O.BS O.BO 0.0067 0.023 0.00703 0.023 
GS 0.098 0.93 0.74 0.0094 0.030 

• 0.093 0.91 0.77 0.0072 G13 
G14 0.048 o.rn 0.47 0.0457 0.1<19 0.O40~ 0.132 
G15 0.220 0.96 0.65 0.0069 0.022 
L1 0.117 0.91 0.675 0.0214 0.054 
L2 0.03·1 0.096 
L3 0.136 0.377 

. ~ . 
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a."id t.2, L3 were originally melted and anillys .... d by Jar.1es (4.1) and 

Johnson (4. 2) respectively. li.dditional experimental work on 

their glasses was c~rrled out during the present stu~y. 

It was found possible to develop a ~re rapid method of d~ter-

mining water content that that described in Chapter 2. Por 

glasees near the NC2S, composition the water contents associa.ted 

with the 2.8 ~m, 3.5 ~ and 4.2 ~ bands were aDproxiMately 20~, 

47~ dnd 33~ respectively of the total water present in the glass 

(section 2.9). Now, instead of using equation (2.17) valid for 

the final corrected I vs ".ya·,elength ). curve the following equation 

was used 

(4.1) 

where T is the transmittance at wavelength ). and e:, C and d have the 

same meaning as in equation (2.17). K~ aCCOtmtn ~or surface re-

flectance losseo rmd £oCod for the intrinsic ab:3cr:ftticn, .of. the 

sam !Jle at the wav~length ot}.tnterest. It is reasonable to aSSUMe 

that K). 1or£oCod is approximately constant an~ is given by the 

transmi ttance value at shorter \<7avelengths than the main water 

absorpt.ion bands, for examp 1e at ). - 2.5 llm. So equation (4.1) 

becomes 

~~us from equations (4.2) and (2.18) 

C(wt.%) = 1.8 10910 ('l'2. 5) 
EOp T 

This equation can be used at a conv~nicnt peak, for example at 

(4.2) 

-/ 
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~ • 3.5 ~ (2nd ban0) for those glasses near to the NC2S3 composition. 

100 
So multiplying equation (4.3) by 47 and puttinq p - 2.75 g em- 3 and 

e: !l! 150 em2 mole- 1 we obtain 

C(wt.%) ... __ 1_ x 1: .... 10g1O (TT2 . 5) 
107.7 d 

The results for a number of glasses analysed in this Chapter ere 

(4.4) 

given in Table 4.2. In the case of glasses near the lithium disili-

cate (Li20.2Si02) composition the "7ater contents as:~ociated with the 

2.9, 3.6 and 4.2 bands (see ( 4.2 » were approximately 70.5%, 

18.9% and 10.6% respectively. For these glasses it is more conven-

ient to choose the band at 2.9 ~m (1st band) for the calculations. 

For example for glass Ll (Figure 4.1) equation (4.3) multiplied 

100 I by 70:5 gave 0.0214 wt.% H2 0 (thickness - 0.117 em, p - 2.2078 9 cm-

The following should be noted:-

(i) The results for G2 and Gl4 using the present method agree 

well with the longer method described in Chapter 2 

(Table 2.5). 

(ii) The b~~ds at 3.S ~m and 2.9 ~ (Figure 4.1) were selected 

for measurements for the soda-lime glasses and the lithia 

glasses respectively because for these bands little or 

negligible interference occurred from the other 'water' 

bands (for example see Figure 2.11». 

It can be observed, fran Table 4.2, that G2 andG15 ha\·e approximately 

the same level of water whereas G14 (steam bubbled) has approximately 

six times more water than G2. Also, for the lithia glasses, the 

ratio of water contents between L3 (steam bubbled) and Ll {normal 

j 

v. 



tABSORPTION,A -Glass GS"d=O.098 em 

0.8 

0.6 

0.4 

0.2 
15 (1-t\J : 
-fI'----._.,. 

-v -
2.5 

--- " G13,d=0.093 " 
........ " L1,d=O.101,,· 

1~(.1:1J . ~.s(1-~ .• . ............................... ~ ........ . ..... . ~ ...... 
. ~ --e-. -- ----~ ------- -: --- . . ." 

.. ' . .' 

. . ' 
. . 

. . . 

3.0 3.5 4.0 4.5 }.1m 
, I 

FIGURE 4.1 ABSORPTION AS A FUNCTION OF WAVELENGTH FOR GLASSES G5,G13 AND L1: 
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melting) is approximately seven. Glass L2, bubbled with ,.,et 

air, had approximately ll:i times more "rater than Ll. It is inter-

esting to note that uncer nomal melting conditions the water 

uptake for the 11 thia glasses is about 3 times larger than for 

the soda-lime glasses. 

4.1.1 Nucleation Results 

~le nucleation 'rates' (N It) for ~lasses ~2, c14 and GIS are v 

shOllm in Figure 4.2. The nucleation results for G14 are given 

in Table 4.3. The nucleation time for G14 was the stordard 

40 min whereas for G15, which had much 10\",er nucleation densities, 

a nucleation time of 80 min \-ras chosen. The position of the 

maximum rate is similar for C2 and GlS. However for G14 the 

lower than for G2. The maximum rate for (;14 is greater than that 

for G2 by 0.9 of an order of magnitude. For GIS the maximum 

rate is less than that for G2 by 2.7 orders of magnitude. 

The nucleation data for gla~ses Ll, L2 &ld L3 are plotted 

in Figure 4.2. Optical micrographs for G14 and GlS are sho\m in 

Fi~Jres 4.3 and 4.4. Electron micrographs for G14 (:H~,~. 4.5) 

l'5hOH a different crystal morphology from glass G2. Tba crystals 

in Gl4 are more polyhedral in shape. 

-1.1.2 Growth rates 

Growth rates were detel."1llined by measuring the maxirrrunl size 

of the internal crystals (previously nucleated) a,s a function of 



tl 109\O(Nv/tl FIGURE 4.2 Nucleation densities 
·l(Nvltll:ffirtfmiK' as a function of temperature('C) 

for glasses G2,G14,G15,l1,L2and 
L 3. (0) (.) (() )(+)(x) 
(-1 

4'- t(min) :G2(40) ,G14(40),G15(80} 
L1(240},L2(240), L3(240) 

3 

2 

1 

490 530 570 610 



TABLE 4.3 NUCLEA.TION DATA FOR GU.SS (;14 ACCORDINC TO EQUATION 

(2.2) WHERE t : NUCLEATIOH Tn1E IN t~IN, N . . 
NUMBER OF PARTICLE INTE$ECTIONS 1 b' : I'IAXUlUM 

CROSS SECTION DIrJ1ETER, f.1 : FINAL 11AGJIFICP~ION 

111m r. : PL1\.TE t.I'.E;. (nltll2 ) 

._--_. 
T(oC) t N' b l r~ A 1 t'.(' (UXJl~3) 

0<71 0 Axb' xi 

544 40 501 3.27 305.·1 18950.4 3.82 
554 40 209 3.13 763.4 " 4.60 
566 40 395 2.81 763.4 " 4.87 
574 40 459 2.66 763.4 " 4.99 
594 40 296 4.65 016 21967.2 4.59 
613 40 490 2.09 326.4 " 3.96 
633 40 267 5.28 326.4 .. 3.27 
653 40 219 9.50 326.4 Ii 2.92 

TABLE 4.4 LIQUIDUS 'l'l:r.1PERATURES AND DTA RESULTS FOr< GL1\SSEf.: G2, 

G14, G15, L1 AND L3 

Glass Liquidus Heat of fusion lYrA Tg (oC) 
Code Temperature (DTA) 

(oC) Age (cal g-l) 

TL 

G2 1276 513.2 ±3 579 
G14 1273 eo.o ±3 571 
G1S 1268 

L1 1036 451 
L3 1034 441 



Figure 4.3 (top left) 

Optical micrograph f or G14 nucleated at 575°C for ~O min and 
grown for a short time at 72SoC !'iag x500. 

Figure 4 . 4 (top right) 

Optical micrograph for GiS nucloatec at 63 8°C for 80 min and 
grm'ffi for ·4 min at 750°C. Mag XSO. 

Figure 4 . Sa,b, C 

Electron micrographs of G14 hoc-ted at 579°C for 

(a ) 14 hr (middle left) ~!ag X17, 300 
(b) 14 hr (middle right) Mag X17 !OOO 
(c ) 10 hr (bottom) Mag X1S,OOO 
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time. Figure 4.6 shows plots of the size vs time at a series of 

temperatures for G14. In Figure 4.7 th~ grow~h rar.e~ as a func­

tion of teIIPJerature are shown for glasses G2, Cl4, I,l and L3. 

It is clear that addition of water causes a n:ar~(cd increase in the 

growth rf~tes for both the soda-lime glasses a.-Id the lithia glasses. 

The growth rates in the latter glasses were determined by roeasur-

1 . .'1<1 the thickn.ess of the surface crystalline layer vs time. The 

size vs time plots were linear. 

4.1.3 Viscosity measurements 

~le results are given in Figure 4.8. For both sets of 

glasses the viscosity at lO't'Ter temperatures decreased considerably 

with increase in "later content. It should be. noted that a good 

fit was obtained to the low temperature data for Ll and L3 with 

the Fulcher equation "'hen the high temperature data for Ll20.2Si02 

obtair..ed by Shartsis et al (4. 3) , ... as used for both glasses. 

For the soda-lime glass Gl4 the Fulcher equation "7.:10 fitted to 

the low tenperatllre data for G14 and the high temperature data 

for G2. The fit, however, does not appear as good a·t 10'" tempera­

tures as that obtained by tracing a smooth curve throu«;:'h the;) 

experimental points. This is almost certainly due to the comllO-

sitional differetlce between G2 and 014 (see Tel>la 4.1) • On thf"; 

other hand Ll and L3 are much closer in composition and at high 

temperatures the viscosities of L1 and L3 are probably very close. 

It iF.! interesting to ~1ote that Scholze and ""~rker (4.4) 

fOWld that the viscosity at 13000 C for a gte.ss of 75 mola~ ta021 
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FIGURE 4.7 Growth rates as a function of temperature for glasses G2,G14,L1andL3. 
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FIGURE 4.8 log,ol'\ as a function of temperature for glassesG2.G14,G1S.L1andL3. 
to) (.) ( (») ttl VMl 

12 t- Fulcher parameters A B To \ \ 

11 ~ \+ 

10 

L1,-147 ,3280B,222.7 \~ . 
L3,-176,3745A,175.2 .. \\ 

{see tex t)G14,-4.03 ,52395,241" .. ' 

490 570 

T such (5log,01'l =13, T 

610 

L 1, 449.4(-C) 

L3, 429 . 
G14, 548.7 

G2, '564.6 

() 

650 rrc) 



103. 

15 mole% Na20 and 10 molelJ CaO and containing 0.11 wt. % water was 

only a factor of 2 less than the same composition with a water 

content of 0.004 wt.~. However, at 560°C the corresponding 

reduction in viscosity ,-ras almost blO orders of mac;nitude. 

This is consistent with our results. In the present study the 

maximum reduction in viscosl~ (for a sixr.llar viscosity ran':;e) 

was about ~ order of magnitude. However, in the work of 

scholze and Merker the increase in '-later content was 30 times 

compared Ni th only 6 times in our \'~ork. 

4.1.4 Other results 

The crystalline pl-.ase precipitated from G14 and GIS was the 

low temr.erature fOr!ll of NC2S3. This wao confirmed by electron 

diffraction for the early stages of growth in 014 (see Table 3.9). 

For the lithia glasses the l>rimary cl1·stalllne p!lll.Se was lithium 

disilicnte. 

The liquidus tCl'TIlerature and the 'DTA TCJ' for glasses G2, 

G14, GIS, Ll and L3 are listed in Tabla 4.4. The he~ts of fusion 

for G14 and G2 are also given. Clearly the IYl'P. Tq Sh(')t>l a decreasa 

for the glasses ,dth higher water contents, ",hich is consistent 

\<lith the viscosity behaviour. 

\later content, was observed. 

4. 2 !laF Add! t!onl?,. 

Only ~ slight decrease in TL with 

Five glasses were melted and the COMPOSitions (".ro listed In 

Table 4.5 (see also Table 2.1). G3 to GG belong to th~ series 



TABLE 4.5 GLASSES CONT1UNING F-

----------------------------.----
Glass No~inal glass cornr~sition 
Code 

G3 97 (NC2SS) 3NaF 
G4 94 (NC25s)6NaF 
GS 82 (NCaS s) 19NaF 
G6 4S (rJC2S 3) SSNaF 
G7 97 (C2Ss)95.5H3NaF 

TABLE 4.6 GRCY..fl'H RATES FOR G3 I G4 l.ND G5 

Glass T(~C) \.I (\.1m min-I) 

G3 590 0.025 
610 0.082 
650 0.273 
6613 0.725 
691 1. 741 

G4 590 0.046 
610 0.100 
630 0.277 
650 0.390 
668 0.790 
691 2.373 
705 3.200 

GS 590 0.3lf3 
610 0.983 
634 1.479 
650 2.417 
668 4.827 
(.92 12.0 

TABLE 4.7 D'IA RESULTS 

Glass 'IYl'A Tg' llEe (cal g-l) ttHf (cal g-l) 
Code (oC) 

B2 579 35.9 ±lo8 58.2 ±2.9 
G3 579 38.0 59.6 
G4 570 35.9 56.4 
G5 552 32.5 54.3 
C6 4SB 
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07 \-las intended to have t:'le same Na20 content 

+ as the composition NC2S3 on the assumption that the Na from the 

NaF \\Tould combine with atmospheric oxyg~n to give Na:O. l?orall 

glasses chemical analysis (see Appendix A2) revealed ~ considercble 

loss of fluoride during melting. For example, for G5 (nominal 

F content 1.15 \'It.!W,sec Table 2.1) the F content,.,as 0.77 ,,,t.% 

corresponding to a 33% loss. For higher nominal fluoride contents 

the losses increased. ~)Us for G6 (norr~nal F content 5.73 wt.%> 

the loss:was 43%. 

Since, as we have already sr.;en, water content can strongly 

influence the kinp.tics of crjstallizat!on, it was decided to 

check the water content of one of the fluoride glassE:!s. 'Ihe 

water content for 05, measured using equation (4.4), was 0.0094 

wt.~ (see Table 4.2 and Figure 4.1) which is slightly higher than 

for G2. This may mean that the water uptake of fluoride glasses 

is hi'Jh~r than for non fluoride glasse3, under normal melting 

conditions. 

4.2.1 Nucleation rates 

The ~ucl~ation results are gi~n in Figure ~.9. For G3 

(3 mole% NaF) the 'maximum nucleatj.on rate' (Nv/t) ''lac 2.3 x 10" 

1I1l'!-' O11n- 1 at 600°C Significantly greatE:!r than the value for the 

base glass C2. For G4 (6 mole% NaF) « further increase in the 

maximum was observed (3.4 x 10" mm- 3 min-l at 590°C). For GS 

(18 mole!il NaF) the maxilln.tm was 40 x 10" I'n- 3 min- 1 et 580°C. 

For increasing lJa]' content t.."!.e nucleation curves show a ~ystematic 



FIGURE 4.9 LogJNv/t) as a function of temperature for glassesG2.G3,G4,G5,G6andG7. 
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shift to lower temperatures and an increase in ~~a maximum Nv/t. 

For C6, ,.,hich contained a much larger annunt of NaF t.l-}an the 

other glasses, the shift in the maximum was as much as 140°C 

relative to G2, although the maxireum Nv/t had now de£reaseu. to 

0.75 x 103 rnm- 3 m!n- 1 • G7, \-1hich ",as not in the same series 

as G3 to C~ (see ~)ove), also showed more nucleation at lower 

temperatures than C2 (but not at higher temperatures). The 

posi tion of the maximU!!! for G7 was similar to G2. 

The crystals precipitated from these fluoride glasses were 

nearl~' spherical in shape. Optical micrographs for 07 and G5 

«re shavrn in Figures 4.10 and 4.11. Electron micrographs for 

04 are shown in Pigure 4.12. 

For G6 (55 mol% NaF) the particles gre\'1 as spheruli tes up 

to a certain size and thena!?peared to change morphology (Figure 

4.13) • 'The origin of this effect is unknCMn but might be due 

to the formation of a new crystal phase (see X-ray results In 

sectlor. 4.2.4). 

4.2 .2 GrO\.,th Rates 

l1easurements were ma(3e for G3, G4 and G5. The maximum 

diameter of cross section~ ,,,as measured for a series of times at 

the same teI!'[lerature on rreviously nucleated ql'-'tsses. The maxi-

mum diameter was found to gro'·, linearly with time. A t:roical set 

of size vs time plots at different temperatures are sho\-Tn in 

Figure 4.14 for G3, G4 and GS. The growth rate£; o')tained by 

least squares analysis of the size versus time plc-::s arl3 given 



Figure 4 .10 (top l e ft) 

Optica l micrograph of G7 heated a t 710°C for ~l O min 
~1ag X200. 

Figure 4 .11 (top right) 

Optical micrograph for G5 nucleat ed at 620°C for 40 min 
and grmm at 725°C. 
t-1ag XSOO 

Figure 4 . 12a,c 

Electron micrographs of G4 nucleat ed at 6 20°C fo r 40 min 
and grown at 72SoC. 
(a ) Mag X7,300; (b ) X29,200 . 





Figure 4 . 13n ,b ,c 

(a) Op·t ical micrograph (OM) o f (',6 nuc l ented at 
486°C for 40 min and grown at 710°C. 

Mag X!OO 

(b,c) m1 of G6 h eated at. 6 l0
o

e for 1 ·1 min . Mag X200 . 





FIGURE 4.14 Size vs. time(t:minlat the given 
temperatures,for glass(previously nuclea ted):G3 
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in Table 4.6. In Figure 4.15 the gr~~th rates as a function of 

temperature are rlot.ted for G3, G4, G5 and G2 (O~ NaF). The 

growth rates showed ll. systematic increase lITith increasing NaF 

content. 

4.2.3 !!fA, viscosity and liquidus tel!perature resul t~ 

The DTA results are <;;i ven in Table 4. 7 • ].~ marked drop in 

the 'DTA Tg' was observed for increasing NaP content suggesting a 

lowering of viscosity. The heats of crystallization and fusion 

remained constant ",rithin eX]?erimental error althou<;h tLcre ",as 

an apparent decrease in the values from G3 to GS. The IYI'A 

traces for G3, G4 and GS were very similar to C2. ~~~e rev~rsible 

polymorphic transformatiol'l peak of the NC2SS phase was also 

observee. HOl'lever, the DTA trace for G6 (Figure 4.16) \'!ClS 

different. The crystallization peak at 589°C exhibited a shoulder 

at hi~her temperatures and the aPDarent fusion peru~ at 942°C 

occurred at a much l~Ter temperature. This behavio..lr mar be due 

to the precipitation of more than one crystalline phase in this 

glass. 

The viscosity results for G5 are shown in Figure 4.17. The 

curve for GS corresponds to the Fulcher e~,ation fitted to the 

low temperature range data for cS and the hi~h tt?l1iPerature range 

d~ta for G2. The legIon = 13 value occurred at 537.3°C, 27°C 

lo ... ,er than for C2. P. difference of 27°C ",as alGa f.oune in the 

'DTl\ T~' values. The viscosity of G5 \,las ImJer thaI: G2, the 

curves for the two glasses being almost parallel. 
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FIGURE 4.15 Growth rates as a function of temperature 
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FIGURE 4.16 OT A TRACE FOR GLASS G6. 
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The liquidus temperatur.e for GS was l266°C, 11°C lower than 

for G2. 

4.2.4 X-ray Results 

For the crystallized glasses G3, G4 and CiS the realt positions 

correspond to the low NC2S3 form. The only differonces were in 

the relative hei~hts of ,the peaks. For G6 the patterns ,·tere 

more complicated. Samples of C~ were heated at 595°C for times 

ran~in~ from 15 to 240 min. The results are g1 ven in Table 4. e. 

~he peak heights increased after the 15 min treatment. After 45 

min little o~o changes in the pattern could be detected. For 

the 30 min treatment the majority of the peaks correspond to the 

° 'high' NC2S3 except for the peak at 2.63 1~ "There for NC2S3 ~ 

peaks should he observed. The peaks at 26 • 38.85, 56.1 and 

70.45 correspond to the following UaF d spacings: 2.32 (very 

° strong reflection), 1.64 and 1.34 A respectively. Also the poaks 

at 29 • 20.35 and 47.10 corresrond to the CaF2 d spacings 3.153 

° and 1.931 A (very strong r.eflection) re~ectively. Lxrullination of 

t.'lte data for 15 lain suggests that the first phnse prec:tY.'i tated 'vas 

The unusual appearance 0:: the crystals for ~S (Figure 4.13) can 

be tentatively explalned as follows. The first p~ase to be pre-

Subsequently a layer forms on the existing 

NC2S3 crystals, which is probably rich in crystalline NaF and CaF2. 

06 "Tas also heated for 20 min at 560, COO and 7<17°C. The 

X-ray results were very similar to tho;;;e given in Table :~.8. The 



TABLE 4.S 

X-R1.WS DATA FOR G7 HLATI.::O !~T 59SoC FOR DIFFEREl-'!T TUlES 

2e 0 

d{A) Relative Intensity for c~fferent heat 
treatment t:1.mes t(min) 

t 15 30 45 60 240 

11.00 7.46 14.7 12.9 15.1 12.4 
16.75 5.30 12.4 11.3 13.5 13.1 
20.30 4.37 12.6 24 24.1 22.4 21.1 
23.S5 3.73 15.9 74.0 76.1 77 .1 67.5 
26.65 3.34 1~.0 56.4 53.0 52.3 
26.S0 3.32 SO.O 77.1 77 .0 68.S 
28.35 3.15 24.1 26.1 26.5 2·;\.8 
29.40 3.03 17.5 20.6 17.1 18.4 
33.95 2.63 30.0,:: »>100 >:->1('..0 »100 »>100 
35.70 2.51 17.9 10.4 10.0 11.£1 10.8 
38.20 2.35 18.1 18.9 17.2 19.5 
3S.85 2.32 35.8 40.3 40.3 37.0 
39.60 2.27 10.0 10.B 10.2 10.3 
40.25 2.24 11.0 10.B 10 10.6 
41.20 2.19 10.5 10.3 9.5 
42.0 2.15 15.6 15.7 15.3 16.5 
43.3 2.09 10.0 9.2 9.4 8.5 
45.0 2.01 9.2 
47.10 1.93 21.0 21.0 113.3 20.9 
48.75 1.87 16.5 82.9 C3.4 87.2 7~.1 

49.8 1.83 10.3 
50.65 1.80 15.4 14.0 16.3 15.5 
52.S5 1.73 10.0 10.2 
56.10 1.64 22.2 21.9 21.7 20.0 
59.95 1.54 15.3 14.3 14.3 
60.85 1.52 24.1 23.9 24.1 23.0 
67.15 1.39 10.0 11.3 
67.80 1.38 10.3 9.5 10.0 9.6 
70.45 1.34 10.6 9.8 11.2 
71.5 1.32 10.0 9.5 10.5 9.9 
71.95 1.31 10.0 9.2 10.0 
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percentage crystallinity was greater for the higher temperatures 

probably due to the higher gr~'ith rates. 

For the heat treatment at 747°C ~pe~~s were observed near 

° to 2.63 A instead of the single peak found for trea~ent at 595°C. 

° Two strong peaks at 2.62 and 2.66 A. are expected for 'high' l:1C2SS 

(see section 3.3.7). 

4.3 Zr02 Additions 

Two glasses \'lere l:lelted (see Table 2.1), G12 (3 mole' Zr02, 

97 mole~ I\C2S3) and Gl3 .. ·· (6 mole% Zr02, 9·1 mole% NC2S3). The 

water content of Gl3', estimated from the infra-rea trace shown 

in Figure 4.1, (value obtained froD equ(".l.tion (·1;4) i ''Ins 

0.0072 wt.%, which is almozt the SaJ...'1e as t.he valua fo~= G2 (see 

Table 4.2). 

4.3.1 Nucleation Results 

The nucleation kinetics of Gl2 and Gl3'" were determ.i.r1ed by 

the double stage heat treatment meUlod previously dis cu;,; sed. 

Typical optical micrographs for Cl2 fond Gl3'" are shot'lll in Figures 

4.18 and 4.19 respectively. 'l11e crystallization centres irA these 

glasses appeared to be close to cubic in shape, in contrast to G2 

where they were spherical. The cubie shape was confirmed by 

transmission electron micro~coI'Y. Fi0ure 4.20 shows NC2S3 particles 

in glass Gl3'" at an earlier stage of developlllent than thoc.e shown. 

on the optical microgra:Dhs. Each particle app~ars to be corlposed 

of a sinryle crystal. 



Figure <! .lS (top l eft) 

Optical micrograph of G12 hented at 720°C fo r llO min 
Iolag X100. 

Figure 4 .19 (top right) 

Optical micrograph of G13~ nucleated at 600°C for ~O min 
and grown at 720°C. HaC] X200 . 

Figurl2 4 .20 

Electron micrographs of G13~ and G12 

G13~ heated at 586°C for 51 h 
and nt 597°C for 41 hr 
Mag Xl 1 ,000 

G12 heated at 580°C for 40 hr 
Mag X20,140 
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Since the particles were no longer spherical, to determine the 

nucleation densities Nv t..'1e pr.ocedur.e used Has to meal';ure t.i.e side 

of the longest square cross section observed. The results (cbtained 

from equation (2.2» for G2, Gl2 and Gl3' are shO'.ffi in F'igure 4.2l. 

The addition of 3 mole' Zr02 (GI2) caused a small decrease in 

nucleation. Addition of 6 mole% Zr02 (Gl3~) caused a much larger 

decrease in Nv/t particularly at the higher temperatures but no 

si~ificant change at tile lower temperatures. ~lso the pooition 

of the maximum in tl1e nucleation curve was not a~ter~d signifitantly, 

for el3'" the maximum rate being 4.68 }t 103 mm-' min-I. 

4.3.2 Growth Rates 

The grmrth rates ,.,ere obtained using the internal crystals 

and measuring the distance between parallel sides of the largest 

square sections observed. 1'..s before tt.e size ~las found to be 

linear with time at a given temperature. Size va tirre plots for 

G13' are shown in Figure 4.22, and. the growth rates va tcnperature 

for G13~ and G2 are shown in Figure 4.23. The growth rates for 

G13' were less than those for G2. 

4.3.3 Yiscosity, DTA and other results 

~le viscosities of Gl3'" and G2 are compared in Figure 4.24. 

Addition of Zr02 produced a considerable increase in viSCOsity 

in the low temperature range. The dashed curve correS'~)onds to 

the Fulcher equation fitted to the low t~perature data for Gl3~ 

and the high temperature data for G2. 1he loglon • 13 value 
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FIGURE 4.23 Growth ra tes as a function of 
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FIGURE 4.24 Log,ol'\ asa function of temperature for glasses G13andG2. 
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° 2 0 corresponds to 584.8 C, about 0 C higher than for G2. T.he 

'Fulcher curve fitted to only the low temperature data for C13 

is al~o shown (continuous curva). 

The 'DTA Tg' values for G12 and G13~ were 586 and 592°C 

respectively, the greater value for G13'" being consistent "'ith 

the increase in viscosity observed for Zr02 addition. For the 

heats of fusion the trend is not as clear. For 012 ~Hf was 

52.3 ±2.6 cal g-1 whereas for G13~ it. \'1(15 61.9 ±3.l cal 9'-1. 

These values are close to ~Hf for G2 (58.2 ±2.9 cal g_I). 

The liquidus temperature for G13' was l269°C, about 7°C 

lower than for G2. 

Crystallization of both G12 and C13'" gave the low form of 

The only differences bet\'leen the blo glass~s ,,rere in 

the relative intensities of the x-ray peaks. 

~le nominal glass cOMpositions are listed in Table 2.1. 

The nucleation densities "/ere determir:.ed. from equaticn (2.2) using 

a fixed nucleation time of 40 min. The growth temperature rang~d 

from 720 to 740°C and the growth time from 4 to 10 min. For 

each composition e1e growth temperature was fixed. 

The nucleation results for G9 (3 mole% Ti02) and C6 (3 mole·a 

P20S) are compared with the base glass G2 in Fi~ur~ 4.25. It is 

clear that the addition of Ti02 caused a signific~~t decrease in 

nucleation for tenperatures above the maximum in th:~ nucleation 

C'0rve for G2 but no significant d:nmge at lower temperatures. 
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FIGURE 4.25 La9Io(Nv/t) vs.T(OC) FOR GLASSES 

G 8(3 male%ROs} ,G9( 3 moleoloTi02 ) and G2. 
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However, for addition of P20S the nucleation decreased significantly 

over the whole range. The maximum Nv/t of 10" !:Jlll-' rntn -1 for G9 

occurred at about 610°C compared witt. 2.1 x 10' r.lIIl-' ruin- 1 for G8 

at about 618°C. 

It is also int~resting to co~are the morphologies of the cry-

stals in G8 and G9 with G2. Optical micrographs for G8 and G9 are 

shown in Figures 4.26 and 4.27. In G9 (3 mole% Ti02) the spherul-

i tes have a smooth spherical cross section but in G8 they are more 

irregular in appeara~ce. 

'Ihe nucleation results for the glasses containing r.100, (GlO 

and Gll) are shown in Figure 4.28. A decrease in the maximum 

nucleation rate with increasing MoO, content was: observed. The 

temperature of the maximum for both glasses decreased to about 

602 c. The InaxitlUIn for G10 was 4.47 x 10 3 mm- 3 min- 1 and for Gll 

1. 74 x 10' mm-' min-I. Also, MOO, additions caused a considerable 

decrease in the nucleation densities at higher tempcr:.ltures but 

at lower temperature the densitieS remained close to those for G2. 

Optical micrographs for G10 and Gll are shown iI~ Figure 4.29 

and 4.30. For the 3 mole% HoO, glass the srherlllites had an 

irregular spherical shape whereas for Gll the cry'stals had an 

approximately cubic morphology. 

No further wo~~ was carried out on these compositions except 

for the X-ray identification of the phases precivitatee. Each 

glass was nucleated for 40 min at its maximum nucleation rate 

followed by grOl'lth for 20 min at 730°C to obtain complete crystall-

ization. In both cases the crystalline phase present was iden-

tified as the 10\'1 form of Ne2S,. 



Figure 4.26 (top l eft) 

Optical rr:i crograph of G8 nucle ated f.\ t GOOoC for 110 min 
and g:r:o~'Tn a t 725°C. Hug X200. 

Figure 'L 27 (top right) 

Optical micrograph of G9 nuclea t e d a t 620°C for ~o min 
and grown a t 725°C. !··lag XSOO 

Figure <1 .29 (bOttcr.l l eft ) 

Opticul micrograph of GiO nucleated at 600°C f -;:, r 10 r~in 
and g rown at 730°C. Hag ~(200 . 

Figure 4.30 (bottom right ) 

Optical microg raph of Gll nucle<:l tcd a t 581°C f or 40 min 
and g rown at 730°C. Mag X1OO . 
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FIGURE 4.28 L09,o(Nv/t) AS A FUNCTION OF T(OC) 

fOR GLASSES G10(3moleOlo~1003),G11{6moleOloMo03)and G2. 
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4.5 Pt ADDITIONS 

The effects of the addi t:f.on of platinum on nucleation in the 

NC2SS composition were studied. Two glasses were melted with 

0.2 ,.,t.% Pt (G24) and 0.45 wt.% Pt (G25). l.lthcugh no chemical 

analysis of these glasses was carried out th~ir compositions werp. 

expected to be close to C2 (see section 2.1), since the batch quan­

tities for soda, lime and silica were the same for all these glassss. 

4.5.1 Nucleation, Viscosity, DTA and X-ray results 

'l't.e nucleation vs time behaviour \Olas investigated at 595, 621 

and 641°C for C24 and G25 and compare d \'1i th the base glass G2 

(Figures 4.32,4.33 and 4.34). The nucleation densities were 

calculated from the more accurate equation (2.1) since a large 

variation in particle size was expected, some particles having baen 

nucleated heterogeneously and others homogeneously. Typical or-

tical micrographs for G24 and G25 are shown in Figure 4.31. The 

steady nucleation rates (Io) and the intercerts with the time 

axis (to) I calculated by least squares, are given i:1 Tabla 4.9. 

Let us first consider Figure 4.32. Addition of 0.2 '-ft. ~ rt to 

G2 causes little change in nucleation at 595°C. Addition of 0.46 

wt.% Pt gives a large increase in nUcleatio~itiallY but for 

times longer than 50 min the nucleation is less than in the other 

glasses. ~1e steady state nucleat1o~ rate Io in C25 is also 

less than in G2. Similar b~haviour is found at 621°C (Fig. 4.33). 

For times less than 20 min for C24 and 40 min for G~5 the nuclea-

tion density 1s higher. than in C2. 



FIGURE 4.32 Nucleation density{Nv)as a function 
of time at the given temperature for glasses 

G2,G24 and G25. 
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· FIGURE 4.33 Nv vs.time1atthegiven temperature, 

for glasses G 21 G24and G25. 
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FIGURE 4.34 Nv vs.timeJat the given temperature, 
for glasses G2 "G24 and G25. 
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Figures :; . 31a (top l l..!ft ) . b (tOl? right) 

Optical microgra~Jhs for 01asses G2 : and G25 

a . (724 nucleated at 642°C for 80 r.J.in and grown for a short time ~t 
730°C. I1ag X500. . 

b . G25 nucleated at 639,oC for 20 mi:; i:ln d gr o"'!!1 for a sbcrt · t~me _It 
730°C. Mag X500 

Figure -1. 31c 

Stereosca n microgra~h of (:25 :leatecl at G82°C for ;~O min and 
etched . rlag >:3, ':00. 

Figure ·1.38 Ca.,b) 

Electron micrographs at a l eO kV electron accelerating voltage , 
of G25 heated at 596°C for 6 hr 21 mir.. {!ac; XiS , 300 . 
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TABLE 4.9 

STEADY STA'I'E NUCLEATION AND IN'l'ERCEPTS FOR GLASSES G2, G24 

rum G25 

Glass T(oC) 10 (mro-' min-I) to (min) 
COde 

G2 595 33608.5 28.7 

G2 621 16060.7 -1.9 

G2 641 5863.3 -8.8 

G24 595 32576.1 31.5 

G24 621 14434.5 -5.0 

G24 641 5147.6 -39.8 

G25 595 14218.0 -2.8 

G25 621 11195.2 -26.2 

G25 641 6995.0 -32.2 

NarE: The steady state nucleation' rate value' (10 ) 

and the interoept (to) ''1ere calculated by least 

squares method. 
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the nucleation densities in G24 and C25 are larger than in G2 

independent of time. However there is no significant difference 

in the 10 values for the three glasses at this temr>erature. In 

Figure 4.35 10glO(Nv/t), where t = 40 min, is plotted versus teDr 

perature for C2S. For t • 40 min the loglo (Nv/t) values are 

higher than in G2, the increase being the greatest at either below 

or above the maximum for G2. 

The results for G2 are summarized in Fig. 4.36. They are 

in close agreement with the results for G16 (see Fig~res 3.14 and 

3.15) although the compositions, both nominally NCiSs \-lere slight+y 

diffex:ent:. 

The viscosity results for C25 are compared with G2 in Figure 

4.37. At the high temperatures th~ viscosities of G25 and G2 are 

nearly identical. However at the lO\'ler ter11')8raturr.;z G25 is slightly 

more viscous than G2. The curve plotted for C25 correspon~~ to 

the Fulcher equation f1 tted to the low terrpera'Lure data for G25 and 

the high temperature data for G2. Using the Fulcher extrapolation 

1018 p occurs at 570.70 C for G25, 6 0 C hi~her than £0:;." G2. 

The 0'1'1\ trace for C25 \'](\S very s!l!J.lar to G2. '1'he 'DTA Tg' 

The t.Hf value was 50.4 cal g-l, very 

close to the value for G2 (58.2 cal 9- 1 ). The AHc vallle was 39.7 

cal 9- 1 (35.8 cal g-l for G2). The 10\11' form of NC2SS was identi­

fied by X-ray diffraction in cr}'stallised samples of G25. No Pt 

peaks were detected. 

4.5.2 Electron microscopy ard Electron mi.croprohe results 

After examination of a larC)'e number of. foils o~ l?t contain­

ing glasses the early stages of growth of NC2S3 c!i·~tals on Pt 



FIGURE 4.35 Log,o(Nv/t) AS A FUNCTION OF TEMPERATURErC} FOR GLASSES 

G25 AND G2 . 
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FIGURE 4.36, Nucleation density for glass G2 as a . 
function of time at the given tempera tures. 
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centres was detected. A series of electron microgra~hs t~{en at 

100 kV are shown in Figure 4.3P. The magrlifications are constant, 

'lith the exception of the last two micrographs, allowing t.~e sizes 

of the particles to be con~ared directly. It is clear that 

several individual NC2S, crystals have nucleated heterogeneously 

on the larger Ft particles. h layer of crystals is clearl~T ob-

served surrounding the smaller 1?t particles. Also it appears tl",t 

the crystals prefer to gro ... , on more highly curved surfaces at the 

earlier stages. Very little structure can be observed inside the 

Pt particles. It was not possible to tuke electron ~iffraction 

patterns of the Pt centres in the 100 ltV electron mJ.cro!';cope. 

In order to confirm that the par'cicles were Pt crystals a high 

voltage electron microscope was used (900-1000 kV). The "A-ray c1 

spacings for pure Pt obtained br Swanson Clr.(:' Tatge (4.10) are 

given in Table 4.10, and canpared t'lith the values obtained from 

electron diffraction. A pattern taken at. 900 kV is shown in 

Figure 4.39 (a) • A Pt particle sho\'1ing a clear sector is shO'm 

in Figure 4.39(b). At least eight crystals are seen grO\'ling from 

the particle in Figure 4.40. Selected area cliffractlon !,)atterns 

from two of the crystals are also shown. It is interesting to 

note that the main rO'1i of spots in both patterns corresponds to 
o 

the (11.0) (d - 5.34 1'.) reflection of NCzS 3. The direction of 

these rows is tangential to the surface of the I"t particle. In 

o 
the same patterns weak spots of the (311) (d - 1.184 A) r3flection 

of Pt can be observed. ~lis may suggest that the c::ystal!i are 

growing with a definite orientation with respect to the Pt par-

ticle. Another pattern from a Pt particle is shown in Fiaure 4.41. 



Figure 4 .38 (c,d,e ,f,g) (continued) 





Figure fl .38 (hi i, j) 

Figure 4 . 38 (k / 1) 

(k) Hag X22,OOO 

(continued) 

(continued) 

(1) f1ag X33 / 600 





TABU:: 4 .10 

x-RAY DliTA FOR rt FROl'1 Sl'~&~SON AND TATGE (4.10) AND d SPACINGS 
o 

OBT1'.INED FROH ELECTRON DIFFP..'\-CTION (Camera LP.ngth CL ... 16.222 A mw) 

hkt dd\) 0 
I o(A) From . Comments 

this work 

III 2.265 100 2.809 ru.ng pattern -
Unidentified 

200 1.9616 53 1.961 Spot patterns 

220 1. 3873 31 1.387 " 

311 1.1826 33 1.1B4 .. 
222 1.1325 12 

400 0.9808 6 

331 0.900 22 

420 0.6773 20 

422 0.800C 29 



Figures 4.39n,b 

Electron diffr~ction pattern and r:Jicrograph of a Pt centre in 
glass G25 as quenched t aken 2t 9(10 kV accelerating volt;.:-.ge . 
I:Jag X59,OOO . 

Figures 4 . 40 a,b and c 

Figure 4 . 40b Electron micrograph (900 kV) of G25 heated as 
explained in Figure 4 .3 [>, . ~~i1g Xl7, 200. 

Figure 4.40a Selected area diffraction pattern (SAD) of top 
left crystal in Figure ·1 . ,lOb . 

Figure 4 . 40c . SAD of top risht crystal in Figure 4 . 40b. 

Figure -1 . 41a , b 

Same glass and conditions as in figures 4 . 39a and b. 

Figure .1 . 112 

EPr·JA line SCan through a Pt particle. (See text) 
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'1\10 clear rings and two single spot patterns are observed. The 
o 

1.184 w.d 1.387 A d spacings from this pattern (see Table 4.10) 

o 
L1atch very closely the (311) and (220) Pt d spacings. The 2.809 A 

d spacing obtained fran the ring pCI.ttern, however" rer·:ains uniden-

tified. Another Pt particle exhihiting an unincntified micro-

,structure is shown in Figure 4.41. 

Samples of G25 were prepared for EPY.A examination. The dis-

tribution of Pt between preeipi tated particles and the surrounding 

glass and Pt levels in crystals were of interest. 'l'ha sarrples were 

coated with a tllin layer of Al to prevent charge accumulation from 

the electron beam, and examination for Pt carried out at an e1ec-

tron accelerating potential of 20 kV using Pt La as the analysis 

line. 'Ihe metaJ.lic particles in G25 were identified as Pt after 

a direct comparison had been made (using counts) of the intensity 

of the Pt Ul nucleation 1ille from the particles in the sample and 

from a standard Pt wire of purity greater than 99.99~. A line scan 

through one of the particles is sho'Vm in Fiqure 4.~2. Ho Pt was 

detected in the surrounding glass at distances 1. 5 to 2 wn from 

the particles. At closer distances Pt was detected, but ~~-obabl~ 

originated by x-ray axei tation from the particles themselves. lUso 

analysis of Pt particles indicated the presence of small C';.1ounts of 

silicon and calcium. Souium was not detected in the particles. 

4.6 • ULTFJ\sONIC NAVES' EFFEcr ON NUCI..Ei\TIO!)! 

SOme work was carried out on the effect of ultrasonic waves 

on the nucleation characteristics of glass G17. 'l'h", apparatus 
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used is schematically shotm L"l rigure 4.43. A heat resistant steel 

rod of the appropriate leng~~ (for maximum transmission of the sonic 

waves) was connected to the head of an ultrasonic drilling machine. 

The lower end of the rod was in ~irect con~~ct (under pressure) with 

the san~le. The cylindrical samrle was held in position by a met­

allic bush. The specimen rested on a steel rod into which a TIc 

was inserted almost touching the sample. The temperature of the 

furnace (nichrome wound) "las moni tore<l with n Eurotherm controller. 

Only four runs were made, two with ultrasonics (US) nnd two without 

ultrasonics (NUS). In Table 4.11 the tenperature-tJ.rne schedules in 

the four runs are compared. The nucleation results, determined 

using equation (2.2), are given in Table 4.12. It would appear at 

first sight that the application of ultrasonic waves has slightly 

increased the nucleation. However it is very unlU:e ly that the 

effect is significant due to uncertainties arisin~ from cifficulty 

in obtaining exactly the same heating t'lchedules in the experimental 

runs. 

There still exists the possibility that ultrasonic waves might 

change tile nucleation incubation time. Thus it would be very iuter-

esting to use this technique at lower temperatures for mud, longer 

times (say. at 570°C for 10 hours) since the effect of ultrasonics 

miC":ht be much larger than at the tElllperatures and tiIr.es used in the 
'" 

present experiments. 



GENERAL VIEW 

ultrasonic source, 50 W 
" frecuency :20 kus 

cooling tank . 
. . . . . . . 

o 0 • 

urnace 00 0 o. 0 'heat resistant 

..... 'spec imen ... ' .' . steel rod ... 
. . . . 

rubber bush 

ENLARGED VIEW OF THE SAMPLE HOLDER 

.: .. '::·:::hea t resistant steel 
" . . 

~-VA .. ·specimen .0: . .. .. . . . . 

TIC 

FIGURE 4.43 ULTRASONIC APPARATUS. 



TABLE 4.11 

DETAILED RUNS MADE 

RWl 1 (US) Run 2 (NUS) Run 3 (US) Run 4 (NUS) 

T(oC) time T(oC) time T(oC) time T(oC) time 
(min) (min) (min) (min) 

sao 6 588 4 60S 7 620 e 
601 12 602 10 624 10 630 16 

612 20 610 13 630 19 630 36 

614 27 619 35 635 25 630 41 

614 40 620 40 632 32 Out 45 

Out 45 out 45 632 40 

out 45 

TllBLE 4.12 

NUCIBATION DATA FOR GrASS G17 (NITH ANn r'1ITHOUT ULTRASONIC i'1A~IES) 

Run Hag. 1':, (mm2 ) N(No. b'(mm): l~l Nv ·109'. Nv/t 
particles) 

1 (614°C) us 800 2 x 20974.5 412 2.73 6.26 4.61 

2 (619°C) NUS 000 II 380 3.55 6.12 4.46 

3 (632°C) US 800 3 x 20974.5 282 2.56 5.95 4.30 

4 (G300C) NUS 900 4 x 20974.5 321 2.46 5.90 4.25 



CHAPTERS 

DISCUSSION AND ANALYSIS OF THE EXPERItENTAL RESULTS. 

PRCPERl'IES OF SOME GrASS CERru-1ICS IN THE 

SODA-LIME-SILICA SYSTEM 
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5.1 Analysis of Experimental ~sul ts for Nucleation 

5.1.1 Theoretical considerations 

To a good approocimation equation (1.46) can be written as I .. 

kT [('J*) (AGD) Nv h exp - kT' exp - lIT where AGD is the activation free energy 

diffusion per mole. If the diffusion cbefficient for nucleation 

Do exp (- ~:~) and the viscosity are related through equation (1.43) 

we obtain 

for 

D -

(5.1) 

Substi tuting back in the nucleation equation 

(5.2) 

where D6 .. V).2 !:! k~ ).2 and Ac is given in terms of the pre-exponential 

kT 
factor A !:! Nv II by 

(5.3) 

In 1 
From equations (5.2) and (1.2a) it follows that the plot In(~) vs AC2T 

should be linear, the slope and appropriate intercept enabling tile inter-

facial energy a and the pre-exponential factor to be calculated. 

Let us examine in more detail the mearJ.ng of equation (S .1) • 

According to oishi et al (5.1) for soda-lime ~lasses the a!;>parent C\cti-

vation enerqy for tUffusion (AHD) of oxygen increases rapic'ly in the 

transformation range. From equation (5.1) the same trend should be 

observed for AHn' the activation energy for viscosity. E'or many systems 

the viscosities as a function of temperature are bett~r described by a 

Fulcher equation than an r~rhGnius equation with a constant activation 
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(
AG' )" 

el'ergy. ~ comparing n = no exp I~ (where boGn = l'.~-~." - TAS
n 

and 

6H = [() (AG /T) j'a (1/1')] and also t:.C: ,!:J.l alJ.(~ t:.S c:re now considered 
n Tl p I' n n 

as functions of temperature) with the Fulcher eX!?resslon n = lO'f. 

10B/T-To we obtain 

(S.4a) 

(S.4b) 

6G... - in 10 ~RT - RT 1n[!k') (5.4c) 
-II 'r-To lOA 

It can be noticed that t:.H increases \'ti th T decreasing. For exaIT1e n 
with To = 300°C'" 5730 K, for T = 873, 853, 633 and 003°~ tile value~ 

Ali T2 
_..:..-.!l.--,.. 2 are 8.47, 9.28, 10.26 and 12.19 resrectively. 
ln 10 BR ('l'-To) 

Let us examine the variation of 6Gn with T. 

obtain 

From equ~:ion (5.4c) w~ 

d!~G DRTo 

dT
n 

lIS - 1n 10 (T-'!o) 2 -
R ln {no ) 

(lOA 
(5.5) 

Clearly, for T approaching To the derivative is ne(lative , sholinS' that 

AG increases with dccrea,sinCj temJ:.'erature. 
n nO\'lever for the b!J1'lperature 

range of interest, say froin 750 to 950°1<, the variation of 6G is not 
. n 

obvious because now the 1n (~tJ value could play an irnl:JOrtar.t role. 

Using typical va1ue~ for the Fulcller constants (A c -4, B ... 4 x 103 and 

'1'0 ,.. 300°C -= 573°K) at T .. 8500 K the first taral in equc1tion (5.5) is -172. 

A reasonRble estimate of ~O appears to be 10-6 on the basis of tlle ana1y-

sis of Litovitz und Macedo (5.2) for B203 glass. The snconrl tee in 
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eauation (5.5) t~en becomes +9.1. .. - Therefore unless nO is smaller than 

approximately lO-4~ the activation free energy for viscosity should increase 

with T decreasing. Tt.en from equation (5.1) the activation !re~ ene~ies 

for diffusion and viscosity should follow a similar tr~nd with falling 

temperature. Furthermore, the diffusion coefficients calculated from 

equation (5.1) agree with the measureJ. values to \'lithin an order of magn!-

tude (see (5.1». Hence it appears that the approximations j.nvolved in 

the derivation of equation (5.2) are reasonable. 

5.1.2 Glasses C2 and G1G 

In order to analyse the experimental nucleation rates for G2 with 

equation (5.2) ~G is needed. Although it is reasonable to consider C2 as 

a single component glass, the simple equation (l.lS) for ~C, \',hich assumes 

~cp = 0, may not be sufficiently accurate. tole have already shown how to 

calculate ~G if a reasonable average value for ~Cp is kno,m (see equation 

1.19 and 1.20). 'l"here is considerable evidence that ~Cp is different. 

from zero for G2. In section 3.l.b it was shown that from DTA ~E c 

(35.9 cal gel) is l~~er than ~Hf (58.2 cal g-l). 'Ibe relationship 

- l\H = MI = c - MI -f 

T 
m 

f 
T c 

~c dT" 
P 

(5.6) 

where ~Cp < 0 (as in equation (1.17)) and Tc is the cl.-ystallization tem­

perature. Using the above ~Hc and ~lIf values, putting Tm 1:1 1564°K and 

Tc .. 973°K (see Figure 3.7), and assuming ~Cp is inderlendent of temperature 

we obtain - ~C 1:1 (liH
f 

- liH ) / (Tm - Tc' a 12.33 cal mole- 1 °K- 1 - 0.035 
. P c 

cal g-l °rl. 

.II 
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Before going further let us consider some results from the literature. 

Following a similar method to that described above Rita et a1 (5.3) 

obtained - ~Cp = 21.4 cal mole- 1 °K- 1 for 2PhO.St02_ Ur.ing calorimetry 

Tal{a.~ashi and Yoshio (5.4) measured ~H and 6'1> for lithium, sodium and 

potassium disilicate glasses and hence determined 6c values. For eXaIll'le, 

for the K20.2Si02 glass tile 6C
p 

was different from zero and the e~1eri­

mental /::;G was described fairly closely by Hoffmann's equation (equat:!.on 

(1.21» • 

1\n independent measuranent of ~C for NC2S 3 \-las attempted using p 

Differential Scanning CAlorimetry (DSC). A Perkin Elmer DSC -2 instrument 

was employed at a heating rate of 40°C ~in-l. From the in(1iv1dual traces 

obtained for the glass I g'lass ceramic and a standiU'd sapphire sample, the 

sanple specific heats (cal g-1 O~l) were cOL~uted from 

H D 
C 

i _ sap. i x C 
\'7 x~ 

p i sap. psap • 

wl,-.are Wi ane Di are the weights (g) and the relative Cisplacemcnts (mm) 

from the base linG of specimen i. The suffi.x s."I.:.? re::c~s to the sapphire. 

The C vs. '1' curves are shown in Figure S.l. 
D 

The follo~dng mil.y be 

observed: (i) the almost constru1t specific hoat for the 91ass cerrunic, 

(ii) the increasing specific heat for the glass from about 530°C, and 

(iii) the short 'plateau' between the 'hump' and the onset of crystalliza-

tion in the glass. The 'hump' observed for the gl!l.sS may be rdated to 

the fictive temperature of the glass anc to the heating rate. 

at 667°C is -0.104 cal Ij"t.j(':" -3G.9 cal rrlole-l'K\~hich is three times greater 

than the previously calculated value from DTA of -0.015 cal g-1 °K- 1 • 

unfortunately we have no information on tha effect of he~tin0 rate on 
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the position of the 'plateau'. It ls possL:lle that for s lower heating 

rates, the earlier onset of crystallization mCl.y lower the 'plateau' (with 

the C s curve). respect to p Due to these uncertainties it was decided 

to adopt the value obtained from DTI~ ~s the average t.Cp • However the 

DSC results showed clearly how the specific heat of the glass approached 

that of the crystalline NC2.S3. The DSC also enabled the absolute specific 

a.t s 
heat for the crystalline NC2S3 to be determined. For example 530°C C 

p 

It is interesting to calculate the specific heat of the glass from 

the Dulong and Petit law (5.S) where th.e maximum heat capacity at con-

stant volume (C ) is given by 
v 

C = 3R(g atom- 1) 
v 

(5.7) 

From the chemical composition of lTCZS3 in mole fractions (0.166 for NazO, 

0.333 for CaO Mid 0.5 for 5i02.) we obtain C = 3R (g atom-I) x 0.0451 (9 v 

atomlg glass) III 0.269 cal g-1 °rl. Haggerty et a1. (5.(,) u(lecl specific 

heat measurements to demonstrate structural diffe:t:cnces bebleen glaGs 

formers. For exanple for temperatures near the transformation range 

the B203 glass gave a C
v 

value \'lhich was 60'5 of the theoretical 3R Hhereas 

for S102 glass the C was very close to the 3R value. In the.; prosen t C'-lSO v 

the Cv for the NC2S3 glnss (.:It T = 537°C, Cv ... 0.266 cnl g_1 °K- 1 where the 

cp_ Cvvalue quoted bel~~ w~s used) is nlnost the theoretical 3R value 

indicating the three dimensional nobl0rk structure of this particular g1MS. 

Now, Cv is related to <;, by 
T V a 2 

Cp - Cv - me v (S.8) 

3 a
L 

is the volume thenl1ll ()xp.o.f\~sion and a
L 

is the 
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linear thermal expansion. .l.(av) V ~PJ 
T 

is the compressibility. Sub-

stituting T = 750oK, V = 123.88 cm3mole-1, a ~ 120 x 10- 7 (oK)-1 and e -
m L 

2.25 x 10-12 cm2 dyne-I, the S value corresponding to a typical soda-

lime glass (5.7), C - C was estimated as 3.75 x 10-3 cal g-1 °rl wt-ich 
p v 

gave C as 0.266 cal g-1 °K- l • 
P 

This is in close agreement with the 

measured value for both glass and glass ceramic at 530°C. 

It is worth noting that from the DSC trace for the glass ceramic it 

was possible to obtain em independent me as llrement of the heat of the 

polymorphic transformation of NC2S3. The value of fill ~ 1.6 k cal mole-! 
r 

compares well with the 1 k cal nole-1 value found from the DTA t~aces. 

The fiG values can be calculated from equation (1.19) 

-0.035 cal g-1 oK-I. The experimental In(I~) values are 

with fie • p 

plotted against 

.-1-2 in Figure 5.2, where the I values are no", expressed in cm-3 s-l. 
fiG T 

For terr~eratures higher than,610oc a good straight line can be drawn 

through the experimental points. Assuming a spherical shaped nucleus a 

and A were calculated from the slope and appropriate intercept of the 
c 

straight line, as explained previously. Using least squares analYSis the 

results were a - 173.6 erg cm- 2 and lo910A - 68.5. c The latter value 

gave lo9lOA - 77.2, using equation (5.3) with T - 873°K and A ~ 7.4 x 10-8 

( 
kT) em. This value is muCh greater than the theoretical value 10~10 Nv-nJ • 

34.9. 

For temperatures lotler than 610°C the experimental poirlts lay well 

beloW the straight line. This effect may he explained in terms of non 

steady state effects \'lhere the nucleation rates (for 40 min) tend to be 

underestimated. 



FIGURE 5.2 Ln (I~/T) AS A FUNCTION OF 
1/ilG1T FOR G 2. . 

o Values for G 2 where 6Gwas calculated with LlCp 
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From the DSC observations (Fi~re 5.1) it appears that 6C is 
p 

approximately constant above 9000 K but then decreases to approximately 

In order to investigate tilis effect 6G was calculated 

using equation (1.19) where three temperature ranges were considered: 

900 < T < 1562, 6C = -0.035 cal g-1 K- 1, for 850 < T < 900, 6C a 
p p 

_ O~(T - 850) and for T < 850 6C - O. The result3 a]~e shO"'m in 
50 p 

Figure 5.2 by the dotted line. Al though there is a tendency to shi ft 

the experimental points with respect to the straight line, tile overall 

fit appears poorer. t"Te conclude that tt.e variation in 6C we have 
p 

used is probably too abrupt and that a smoother variation in 6C would 
p 

be loc>re appropriate. 

For glass G16 the steady state I and 'apprOXimated' nucleation 
o 

rates (using N
v 

for 40 min, see Figure 3.16) were used toc:;ether with 

the viscosi~J data (equation (3.8» to test equation (5.2). The 6G 

values calculated for G2 were used due to the very similar tilermal 

properties for both glasses (see sections 3.l.4h and 3.2.4). The 

In(Ii) vs. A12 plots are shown in Figure 5.3. 
uG T 

All the stea:jy state 

values lay on 0. good straight line, '/hich gave C1 as 193.1 erg cm-2 and 

TIle straight line indicates good F;~:reenent with the 

theo%".l over the temperature range considered assuming a constant a i9 

independent of temperature but alloNing AGD to increase with decreasing 

temperature in accordance with tile viscosity. How~ver, as for G2 the 

pre-exponential factor is again too large \OThen conpared wi til the theoret-

ical value. It should be noticed that the values for C1 and log10A for 

G16 are some\'lhat higher than those obtained for G2. This is prooahly 

due to the small cllfference in composition bf:!t\oleen G1G and G2. (See 
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Sections 3.1 and 3.2). Figure 5.3 also ShOl-1S that the ~pproximate' 

nucleation rates (using the Nv for 40 min) only f~11 on the straight 

line above 60SoC. This emphasizes the importance of ~~ing the steady 

state nucleation rates in these plots. 

Using the above a valu~ the theoretical size of the ~itica1 nucleus 

can be made from equation (1.2b). For example at T - 873°K, r* is 16.1 
o 
A. It is interesting to conpare the present a val ue with that given 

by the equation obtained b¥ Matusita and Tashiro (5.8) in analysing 

alkali disilicate glasses: 

flHf (P ) % 
" - 0.45 ~ : 

u 3 
"A 

where NA is the Avogadro's number, Ps is the solid density (2.80 g crn- 3 

for crystalline NC2S3) and M is the molecular weight (354.42 g for 

The value a is 193 erg cm- 2 which compares well with the 

value for G1G but is higher than that for G2. 

The nucleation intercepts (to) in Table 3.10 for Gl6 will now be 

6 
analysed in terms of T • w2 to (see e~~ation (l.eb»). James (5.9) has 

shown that the incubation time T (see equation (1. 7b» can be expressed 

as 

[
AGO) 

exp-­
RT 

Also he related T to n using L~e Stokes-Einstein equation (1.43) as 

fol1o\~s 

(5.9) 

(S.lO) 
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In(Tl\G 2) vs 1 
v T 

1 
vs T according to 

In Figure (5.4) four different plots are shown: 

according to equation (5.9). lnT VB ;. In[T~~v2j 
1 

equation (5.10), and 1nn vs T. Fr~ the first plot the slope gave 

an apparent activation energy of 7B.2 kca1 mole-l. From the inter-

cept, by using equatiml (5.9) with a a 193 erg cm-2, ~ was 0.2 A 
o 

which is an order of m~gnitude lower than the theoretical 7.4 A value. 

So far the agreement bet,.,een experiment and e<.luation (5.9) appears 

reasonable. However from a:·similar analysis the aptJarent activation 

energy AH for viscosity was 196 kcal mole-I. 
n 

Nevertheless it is 

interesting to calculate the absolute T value from equ~tion (S.lO). 

For example at 585°C using the measured viscosity (loglOn - 12.1) and 

A m 7 x 10-8 cm we obtained T • 2.3 x 104 S which is 17 times greater 

than the measured T (1.37 x 103 S). For theory and expp.riment to 

agr~e the viscosity at sBSoC should be logIOn • 10~7 which is outside 

the experimental error in the measurements. However it is known (see 

section (5.1» that the Stokes-Einstein equation may be in error b~: 

about an order of magnitude at temperatures near the transformation 

range. On this basis and in view of the uncertainties in the estima-

tion of the quantities in equation (5.10) the agreement between ~~eory 

and experiment is reasonable. 

5.1.3 Effect of composition. Glasses G18 to G23 

Unfo~tunately for glasses G18 to G23 the l\G(T) is not known. 

However from the DTA results for llHc and l\H£ SOr.le k!'.or.ll~dge of t:.G 

can be acquired. For examplu (see Table 3.15) for c;;lasses G19, G21 

and 022 having approximately 49 molet Sl02 (l.e. less than 50 mole~) 
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the values of ~rrc and ~Hf are approximately constant. For ~lasses 

G1S and G20 with more than 50 mole!$ Si02 the ~Hf and l1Hc are also 

nearly constant. However the values for G23 are smaller than those 

for GlS and G20. These observations might suggest that the six 

glasses can be separated into two groups, one on eieler side of the 

t~-CS join of the ternary diagram. However otr~r important information, 

for example the extent of solid solution, for NC253 crystals, for these 

compositions is not known. Consequently it was decided to use another 

approach in interpreting the observed nucleation for these glasses. 

This was based upon considerations of the viscosity changes, the 

relat.ive position of the nucleation curves and the expected Wi* 

(according to the theory of nucleation) for each glass. From equation 

(5.2) we obtain 

So by assuming the same Ac for every glass and relating to G2, for 

which l1G (t1*G2) is known, we obtain 

kT( In(IG~nG21_ In(I;ni) J + ~1* • to1·! 
G2 

(5.11) 

The plots \'Ji vs T for glasses GlS to G23 and for G2 are sho·~m in Figure 5.5. 

For example if the t,y· are the same the observed changes in nucleation (I) 

should correspond to the observed cl1anges in viscosity (n). l.lao it is 

useful to plot the nucleation according to equation (l.~b) where a and 6G
D 

have been taken as constants independent of temperature 
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(Figure 5.6). From this figure the general effect, on nucleation, ~f 

different values of a and ~GO can be observed. 

From now on we will consider G2 and Gl7 as having the same viscosity 

(see section 3.1). 1.1so \.,e will use o.m. to signify , order of magnitude'. 

Due to possible non-steady state effects we will a~alyse the results 

for temperatures higher than the maximum in nucleation. 

Glass Gl9 (increased Na20 content as compared to G2) had a much greater 

nucleation than either G2 or G1S (decreased Na20 content as comJ?ared to 

G2). From Figures 3.31 and 3.3lf it is observed that at high T the changes 

in nucleation, for G19 compared to G2, approximately correspond to the 

changes in n. For exanple at 630°C the changes in nucleation and vis-

cosity are both 1 o.m. From Figure 5. 5, at high T, toT * G19 is s Ugh tly 

higher than H*G2· It is difficult to decide \-l!1ether the changes in W* 

are oue to changes in a or /;}G although the similar /;}Hc and /;}Hf values 

for G19 and G2 suggest that the /;}G valu~ may be close. IIowever it is 

clear that the lower n
Gl9 

as compared to nG2 suggests that /;}Go
G19 < ~GoG2. 

Compa~ing GIS to C2, lGla WCl.S 10'Ner than lG2 by abOtlt 1~ o.m. for all T. 

Also \'!* G1S 

be assumed 

is greater than t'1*G2. 

h r AG G18 ~ ~G G2 
t a_ ~ n D • 

As the n are nearly the same it may 

~Len the lowerin~ in nucleation is 

probably only due to changes in N*. These chanses could be due to a 

lower l!.c for GlS when compared with G2, since the MIf for Cla is lower 

than G2. However it is impossible to draw conclusions about changes in 

a. 

For G2l (higher CaO content than G2) the increased I at high T(~ o.m.) 

corresponds approximately to the increase in n (11 o.I!\.). l'.s the /;}Hr 

value for G2l was nearly the sarne as for G2, it may be e.ssurned that 
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A G21 G2 
uG :t 6G • Then it may be concluded that cr has not changed appre-

ciably (see Figures 5.5 and 5.6). Although the nucleation for G20 

was very close to G2 at temperatures higher than 630°C the viscosity 

of G20 was ~ o.m. lower than for G2. As a result the \'J* (;20 is higher 

than G2 (Figure 5.5). This may be due to a lower I::.G for (;20 (the !l.t.{f 

was lower than G2). 

For G22 the increase in I (~ o.m.) as compared to G2 approximately 

corresponds to the decrease in n (0.60o.m; see Figures 3.45 and 3.46). 

Hence the W* values were similar. Furthermore the I::.Hc and 6Hf values 

for G22 were similar to C2, suggesting that the 1::.0 values are similar. 

Then it may be concluded that cr has not changed appreciably. 

For G23 the n was close to that for G2. Also H*G23 was much 

greater than H*G2. This change could be due to a much lower ~G for 

G23 since the 6Hf was lower than that for G2. A~ain no conclusions 

can be made about cr. 

In conclusion we note that for the above glasses the chanyes in 

nucleation do not always correspond exactly with the c~-:anges in vis-

cosity showing that other factors (a, ACv) are involveC. HO'Never vis-

cosity data are a useful aid in the interpretation of tile observed nu-

cleation for these soda-lime glasses. The decrease in internal nu-

cleation of NC2S, with increased Si02 content for glasses lying on the 

NC2S, - S join (5.10) has been confirmed in tl1is work. However the 

situation for other joins (for example NC2S, - C) is not obvious. 

For example alt..1-).ough for G20 (1f..92 mole~ Na20, 32.33 molet CaO and 

50.75 ~ole~ 5i02) the eio2 content is increased, the nucleation is also 

increased. This finding is of a pr:lct1cnl irlt~lr\..'ct !Mc:1un..:. f.er G20 

the higher 5i02 content could caM a better cher.lical durability. 
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5.1.4 Effect of water Addition on Nucleation 

Let us briefly mview the main effects of water in glass. By in-

creasing the water content in vitreouS silica the viscosity, density, 

acoustic velocity and refractive index decrease whereas the thermal 

expansion increases (5.11). Although the viscosity is also reduced in 

binary and ternary silicates (5.12), ~e density and refractive index 

are increased with water content increasing (5.13). These effects 

may be explained by the rupture of silico~ oxygen bridges produced by 

the introduction of water and also by tile different association states 

of the OR groups. For example in vitreous silica the OH groups occur 

mainly as unassociated states (shown by the single absorption peak at 

2.75 ~m in the infra-red spectrum). The free OH groups cause the 5i02 

glass structure to become more open, i.e. decreasing the density and 

re!'ract1ve index. on the other hand in multicomponent gll".Bses the 

presence of hydrogen bonding causes a shrinkage of the glass network 

resulting in an inCrQ8Se in density. Maklad and Kreidl (5.14) studied 

a number of properties in sodium silicate glasses for different water 

contents. For example the kinetics of phase separation was clearly 

enhl".r.ced : with ,\ increasinc; water content. They suggested that the 

diffusiv!ty and viscous flow were increased. Wagstaff et al (5.15) 

eh.z,wed that the crystal growth rate in vitreous silica increased in a 

H2 0 atmosphere. The water W3C considered to enhance crystallization in 

two ways: by acting as a source of oXj'c;en and ry weakening the glass 
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structure. Eagan and Bergeron (5.16) found that increasing the water 

content in a lead tetraborate glass by a factor of three caused an 

increase in the crystal growth rate, for a particular crystallographic 

direction, by 20%. However,the increase in growth rate di1 not 

correlate with the observed decrease (7%) in '.Tiscosity. They suggested 

that the water content at the crystal-liquid ir.terface would be greater 

than in the bulk liquid giving a,localized, greater reduction in vis­

cosity. Mukherjee et ale (5.17) found that the crystallization rates 

in lanthanum silicate glasses prepared from 'gels' were much higher 

than in glasses prepared from the oxides. They considered that the 

OH groups not removed during the dehydration of the gels had a great 

influence an crystallization. 

We have already shown the large effect of water content on the 

crystal nucleation and growth rates and viscosity of soda-lime-silica 

and lithia-silica glasses in section 4.1. An interpretation of the 

effect on nucleation rates follows. Let us consider first the lithia 

glasses Ll and L3 (bubbled \'Ti th steam) for which the viscosity has been 

measured (see Figure 4.8) • The results from FigLlre 4.2 are plotted, 

in terms of equation (5.2), in Figure 5.7, where the boG for r.l was taken 

from reference (5.18). Due to the similar compositions for Ll and L3 

and similar liquidus temperatures (see Tables 4.1 and 4.4), as an appro-

ximation, the t:.G values for L1 and L3 were taken the same. 'l'he follOWing 

can be observed: 

(i) for Ll (almost the exact Li20.2Si02 or 'LS2' composition) the 

theory fails in fitting the nucleation rat3s (calculatecl from 

the Nv for 4 hours heat treatment) at temperatures lower than 
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This is certainly due to non-steady state effects. For 

example at 465°C the or value for Ll was 36.5 min (5.9). lIow-

ever, at higher temperatures a straight line can be drawn through 

the points in Figure 5.7. The a and Ac values determined by 

least squares were 194.5 erg cm-2 and 120.6, respectively. 

These results are slightly higher than those obtained by 

Rowlands (5.18) using the steady state Io values provided by 

James (5.9) and the viscosity data obtained by Untusita and 

Tashiro (5.19). Rowlands obtained a .. 185 er<;r cm- 2 and 1n Ac 

= 113. 

(ii) For L3 a straight line could be fitted to all the experimental 

points indicating that for tempera.tures as low as 440°C the 

approximated nucleation rates (usin~ Nv data for 4 hours) were 

probably very close to the steady state values. The a and 

ln Ac values were 188.4 erg cm- 2 and 112.3 respectively. 

It should be mentioned that in the above calculation of a a 

spherical shaped nucle-us has been assumed. However, it is known 

(5.20) tilat in the early stages of growth of LS2, the internally nucleated 

crystals are plate-shaped. Prom nucleation theory only a value propor­

-, tional to a is obtained. Rowlands (5.18) has shown that very differ-

ent values of a are obtained for different critical nucleus shapes. 

Although for L3 ~~ere is no information on the crystal morphology in 

the early stages of growth, it appears rear,onable, baseD. on the similar 

compositions of Ll and L3, to assume that the crystals precipitated in 

L3 are of similar shape to those precipitated in Ll. Then,if the 

crystal morphology (at the early stages of growth) is unique, a direct 
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comparison between the a values for Ll and L3 seems reasonable. 

In Figure S.B the 1'1\ values (see equation (5.11» are plotted 

against temperature. It can be observed that at higher temper.atures 

W*Ll = W*L3 suggesting small differences in the a values (for similar 

f1G) • Also, the lower a for L3,obtained above, accounts for 1-7* L3 being 

lower than W*Ll at the lower temperatures. It may be concludec! that 

for the lithia glasses the observed effect of water content on nuclea­

tion may be explained in terms of a reduction in viscosity (and ~GD) 

and a slight lowering of a. 

For the soda-lime glasses t.'1e situatian is more complex due to the 

observed differences in compositions (see Table 4.1). However, there 

is no doubt that the increased nucleation of Gl4 (see Figure 4.2) is 

due to the higher water content. G14 has almo~t 3 mole% more 5102 

than the base glass G2. Then on the basis of the effect of composition 

shown in the previous section it would be expected that for a glass of 

similar composition to G14, but lower in water content, the nucleation 

would be nnlch lower than G2. This is confirmed by the results for GIS. 

The lower nucleation for GIS is partly explained by the increase in vis­

cosity caused by higher Si02 content (see Figure 4.8). Also the liquidus 

temperature of GIS was lower than G2. This implies that f1G (GIS)< ~G (G2) 

which would also contribute to the lower nucleation in GIS. Unfortunately 

6G for Gl4 and GIS cannot be calculated. However, it is instruct! ve to 

consider the H*i values plotted in Figure S.9. The curves for GIS and 

G2 are separated considerably indicating that viscosity changes alone 

are not enough to account for the lower nucleation of GIS compared to C2. 

Comparing GIS with G14, W*GIS' at higher temperatures, is much closer 
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to l'J* G14 th~n to ,,1* G2· The 6G values for G14 and GIS should be very 

close, since they have nearly the s~e co~posit1ons and liquiou9 tem-

peratures. Bence ~~e lower W* for G14 compared with GlS, is reason-

ably explained by crG14 < crG1S • A similar conclusion was obtained above 

when comparing the lithia-silica glasses Ll and L3. Thus the effect 

of water content on nucleation of soda-lime glasses may be explained 

in terms of a decrease in viscosity (and 6GD) and a lowering of cr. 

The introduction of \later into a multicomponent glass probably 

produces hydrogen bridging bonds as well as a direct rupture of Si-O 

bridges according to :: Si-o-Si :: + H2 0 + :: Si-OH + HO-Si ::. The 

observed 10l'1ering of viscosity, with watp..r content, may suggest that 

the mE\in result of ",ater introduction is the rupture of Si-O bonds. 

If the Stokes-Einstein relationship between diffusiv~ty and viscosity 

is accepted the lowering of viscosity with increasing water content 

implies an increase in the diffusion coefficient of the rate limiting 

species. As mentioned above (5.1) a close correlation has been found 

between the activation energies for self diffusion of oxygen and for 

viscous flow in soda-lime gl~sses. This may suggest that the effect 

of water is to increase the diffusion coefficient of oxygen in silicate 

glasses. Measurements of the self-diffusion coefficient of or.ltjen in 

water containing glasses may clarify this point. 

To conclude this section let us consider the structure of the 

NC2S, glass and the possible ways that water could be incorpo~ated into 

200 
According to Stevels' fornrula (5.21) y - 6 - - , where y is the 

l' it. 

nUTfber of non-bridging oxygens and p the mole' of Si02. 

Y is 2 indicating a 'broken' network structure and 'non-bridging 
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oxygens' • However the specific heat CV is close to the theoretical 

value (3R) in the transformation range suggestin0 ~n essentially three 

dimensional network structure. Some of the possible atomic configura-

tions in the glass may be represented schematically as follows: 

- Si - 0 - 5i -

.t­
I 

- Si - o_Na+ -0 - 5i -
Na+ 

- Si - 0-

(5.12".) 

(S.12b) 

(5.l2c) 

(5.12d) 

The probability of the occurrence of the canfigurntion (S.12d) alone 

(without any modifier cation near) may he 10\" due to the high modifier 

content (50 mole%) in the glass. 

It hes long been known that water solubility «5.2~), (5.23» in 

silicate and borate systems is proportional to the squ~re root of the 
l. 

partial ~ressure of water in the atmosphere (PH20~). This indicates 

a reaction of water \'lith high silica content glasses of the type: 

- Si - 0 - Si - + H20 (g) .. 2(- Si - On) (5.13) 
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However in binary alkali si1icnte molten glasses (5.22) the solubility 

of water has a minimum at nbout 25 mole% alkali oxide, this value 

depending on both the temperature of measurement and the type of alkali 

present. This indicates the formation of hydrogen bonds according to 

i 0 ~i + Si o_Na+ -0 - Si H () - S - - p - - Na+ - + 20 g = 

Na+ 
- si - 0 - H - 0 - S1 - + - Si - 0 - H - 0 - Si -

Na+ 
(5.14) 

Thus the reaction of water \-lith the NC2S 3 glass structure is probably 

mainly represented by equations (5.13) and (5.14) plus, tentat1vely, 

a reaction of the k1nd 

- S1 - 0 - Si - + - S1 - o-Ca2+ -0 - Si - + H20 (g) -

J:ica2+ 
- Si - 0 - H - 0 - Si - + - 5i - 0 - n - 0 - Si -

I:iCa2+ 

5.1.5 Effect of NaF content on nucleation 

(S.15) 

Let us first discuss how NaF may be 1ncorporat~~ into the glass 

structure. It is probable that NnF dissolves as Na+ and F- ions, 

these ions being accommodated in the structure in different ''lays (5.24). 
o 

The Na + cation (r1ldi us 0.98 II.) probably acts a~ a netwoI'k modifier, 
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disrupts the 5i - 0 bonds and occupies 'holes' in the nebqork. On the 

other hand the ~ ion may replace an. 02
- ion due to their similar sizes. 

Accordinq to reference (5.25) the radii for ~ and 0 2
- are 1.33 and 1.32 ~ 

respectively, assuming a coordination number of 6. According to refer-
o 

ence (5.26) the values are 1.36 and 1.40 A respectively. 

For silicate glasses effects of NaF may be representee schem.aticall~· 

as 

:: Si - 0 - Si :: + NaF ... :: 5i - ONa + :: Si - F 

The F- ten~s to replace oxygens and to "break up" the structure. This 

also causes a lowering of viscosity. Ravinovich (5.25) has discussed the 

incorporation of F- into the net\'1or]t. He first considered a Si207 un! t 

in the glass 
o 
• 5i2 0 

o 

At high temperature there is an instant during the strong vibrations of 

the network atoms when 01 is closer to 5i2 than to Sil, thus 5il is shielded 

by 02, Os and 0 .. which have been polarized in such a \-lay as to shield 5i 1. 

Energetically the introduction of F- as 

o 
o 

• 512 0 

o 

is favoured because r- can shield Sil bettEr than 01 (furthermore, the 

polarizations of 02, Os and 0 .. is reduced). This occurs at high tempera-

ture favouring the F- inclusion in the structure and weakening it. The 

replacement of 02, 03 and 0 .. for F- is less probable becauso ~ has a 
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lower polarizability than 0 2
- (rol ar1zability ao:02-= 2.76 x 10-2~ em!, 

ao:~ = 0.96 x 10-2~ cnS), so that SiF~ is not likely to form. At low 

temperature (low vibrations) 02
- tends to shield 5il and S12 better than 

~, so that ~ leaves the silicate network and eventually combines wi~~ 

a modifier cation forming metallic fluorides. 

On cooling to form a glass the F- ion may renain in tt~ same struc-

tural state as when in equilibrium at high temperature. If, hCMever, 

the fluoride content is very high, even on very fast coolin~ tile ~ ion 

may leave the Silicate groups and precipitate as metallic fluorides. 

In conclusion, the introduction of lJaF into the NC2S, <::,lass will tend 

to weaken the network structure due to the way Na+ and ~ are incor-

porated. 

The general effects of NaF content on nucleation have already been 

discussed in Chapter 4 (see Figure 4.9). In Figure 5.10 the t-1* i values 

for G2 and GS are plotted against T USing the fi'easured viscosities for 

these glasses as explained previously. Tentative values of t·]*! are 

also given for G3 and G4 although the viscosities of ti1ese glaoses were 

not measured directly. Viscosities of G3 and G4 were estimated from 

the data for G2 and as (Figure 4.17). The loglOn curveq for C2 and GS 

are almost parallel, and as a reasonable approximation tl'.e loglOn curves 

for 3 and 6 mole% NaF (G3 and G4) were linearly inte~~olated between the 

curves for C2 and GS according to the following expression 10g10n • 
01 

10g10nG2 _ 0.0823 C where C is the concentration of NaP in mole' 

(0 < C < 18). The predicted lO~10n values for G3 and 01 are consistent 

with the 'OTA Tg·· values for these glasses (Table 4.7) • The 'DT1\. Tg' 

was found previously to correspond approximately to a fixed n level 
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loglOn = 12.2 (see section 3.1.4). It is likely that t:.G for GS (18 

mole' NaF) is significantly different from the t:.G for G2. 

other hanc1. it may be assumed that the t:.G for 03, which nor~inally con-

tained 3 mole' NaP, is close to that for G2. This assumption seems 

reasonable from both the DTA results (Table 4.7) and the closen~ss in 

the compositions of G3 and G2 (due to the high ~ losses mentioned in 

section section 4.2, G3 contained less than 3 mole' NaF). On the 

basis of these approximations (J for G3 can be estimated from the plot 

(
' 103 x nG31 1 

ln T ) vs AG2T • This is shown in Figure 5.11 together with the 

similar plot for G2. The (J value was 194 erg cm- 2 wh1c.h is larger than 

the value for G2. l'1e may conclude that the effect of small add! tions 

of NaF on the nucleation of NC2SS is reflected in a lowering in viscosity 

and an increase in o. The increase in t'J* observed for larger additiQns 

of NaF (compare G5 and 02 in Fi~ure 5.10) may be partly explained by 

an increase in 0 but a decrease in 6G may also be involved. 

From a practical point of view addition of the 'nu~leat1ng agent 

NaF' is beneficial since it increases nucleation and lO\OJcrs the teml?era-

ture range where nucleation occurs. Bowe'ler \'1e shs.ll see later that 

NaF add! tions tend to decrease the chemical durabil1 ty t~rards acids. 

The effect of replacing ox:.·g~n ions by fluoride ions in the glass 

is shown by the results for G7 in Figure 4.9. This composition con-

tained NaF but the sodium content \Olas the same as in G2. tiO viscosity 

measurements were made for this glass. BO\vever, t.he increase in nucl-

eation and the shift in the position of the maximum nucleation to lower 

temperature indicate that the effect of fluoride substitutions roilY be 

very similar to that of a straight addition of l'!aF. 
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Glass G6 (55 mole% NaF) was me1tec to test the idea that if the 

NaF content was made large enough, the precipitation of NaF (and pre­

sumably CaF2 in a soda-lime glass) ~ught occur first and perhaps 

heterogeneously nucleate the JTlain crystal phases. T!.le temperature 

of the maximum in nucleation for G6 (Figure 4.9) was considerably 

lowered compared to G2 which is consistent with the lowering of vis-

cosity. However the nucleation rates were also reduced. From the 

X-ray observations (see section 4.2.4) the NCzSs phase precipitateu 

first, and well before the NaF (and CaF2) peaks could be detected. 

Furthermore the NaF (CaFz) peaks appeared at the same time as the 

change in crystallization morphology occurred (Figure 4.13). IIence 

there was no evidence for heterogeneous nucleation of NC2S3 on met-

allic fluorides in this glass. A compositional analys.is h/i th, for 

example, an electron microprobe) of the crystals at the initial stages 

and after the formation of the secondary gl'owth (ji'igure 4.13) may 

help in the understanding of the crystallization process in G6. 

5.1.6 Effect of Z;t.Oz, PzOs, TiOz and HeOs acditier.s to t!"',e NC2S3. 

nucleation 

The viscosity for G12 (3 mole% Zr02) was estimated by interpolating 

between the results for G2 and (;13'" in the same manner as used for the 

NaP glasses. Assuming ~G for G12 was identical to that for ~2, a 

was found to be 178 er~ cm- 2 from the plot in Figure 5.13. This value 

is very close to that for G2. It should be noted that the shape of 

the critical nucleus was taken as sr>herical, for comparison with G2. 

From Figure 5.12 it is clear t..'1at the t r* values for G12, G13'" and G2 
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are close together. Also, at higher tetr.peratures that the maximum 

in nucleation, Gl3'" has a lower nucleation rate than G2 by approxi­

mately 0.7 o.m. This corresponcs fairly closely wi~~ the increase 

in n of Gl3~ relative to G2 (approximately 0.5 o.m.). It may be 

concluded that Zr02, rather than acting as a nucleating agent, is 

depressing nucleation by increasing n (and 6Gn) and keeping a appro-

ximately the same as for G2. However, as Zr02 addition also decreased 

the gro\,Tth rates, this oxide could be useful practically c\s an adJi­

tive to 'stabilise' the NeaS! glass or the glasses containing water 

and fluoride. For all these glasses the production of large (5 em 

x 5 em x 10 cm) clear pieces lI'as difficult O\'I!ng to the high crystal 

growth rates ane nucleation rates observed. 

The phosphorous ion pS+ (5.24) can be accoIl1IlX)dated into the 

silicate glass structure beca,use it is normally tetrahec1rically co-

ordinated. HQ\orever due to the higher positive charge the formation 

of one double bonn per PO .. unit is highly probable. lIccording to 

!tJc~J.llan (5.24) "the presence of this type of double-bonded oxygen 

within the silicate network creates conditiC\ns favourirlg separation of 

phosphate grouping from the silicate network". The effect of !?aOs on 

crystal nucleation in the present system was shown in Figure 4.25. 

The decrease in nucleation on adding P20S (glass Ga) may be due to an 

increase in viscosity, an increase in cr or a decrease in be or a com-

bination of these possibilities. 

ments were not carried out on ca. 

Unfortunately viscosity measure-

Although only limited work has been carried out for glasses con-

taining P20S the information obtained may hav~ SOMe practical interest. 
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Very recently considerru'le attention has been given to bie-glass cer-

arnic materials. According to Hench (5.27) 'bio glass' considered as 

lIa glass designee to elicit specific physiological responses" was 

designed to provide "surface reactiVe calcium and phosphate groups 

and an alkaline pH at an interface with bone, teeth and other hard 

tissues". A very useful glass had the following composition: 24.5 

mole' Na20, 24.5 mole' CaO, 45 mole' Si02 and 6 mole% P20S, which was 

very convenient (after crystallization) for segmental bone replacements. 

Another application was the coating of 3l6L surgical stainless steel 

(the thermal expansion coefficient of the bio glass closely matchc·d 

the steel). Also it was found convenient to increase the viscous 

flow properties of the base glass by adding fluoride. 'l'he present 

work has shown that fluoride addition produces a considerable in-

crease in nucleation as well as a reduction in Viscosity. Now, it 

is possible that the effect of P20S in reducing nucleation of the 

NC2S3 phase might be utilised in making suitable blo-~la~s ceramics 

with high strength and fine microstructure in this area of the soda­

lime-silica system. That is, as nucleation is increased with fluoride 

addition the glass should accept a larger quantity of P20S and still 

exhibit appreciable internal nucleation. Presumably the higher the 

P20S and CaO content (CaO content is already quite high for glassez 

near the NC2S3 composition) the better will be the banding properties of 

these bio-glass ceramics. 

Ti02 anu Mo03 are similar to P20S in eleir effects on nucleation 

(Figures 4.25 and 4.29). Measurements of viscosity an.'" growth rates 

may help in clarifying the role of Ti02, ~~03 and P20S additions in 
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the nucleation of the NC2SS phase. It should be noted that 3 mole% 

addition of either P20S or Mo03 produced a larger reduction in nuclea-

tion than 3 mole% addition of either Zr02 or Ti02 

5.1.7 Heterogeneous Nucleation 

A number of investigations have contrl.buted to the basic under-

standing of heterogeneous nucleation in glass fo~ng syst~ms. How-

ever let us first briefly consider the work of Rindone and Rhoads 

(5.28) • ~~en Pt Cllt .2IICl was added tp silicate melts t.'1e colours 

produced ranged from transparent grey to turbid grey. In phosphate 

glasses a low concentration of platinic chloride produ~ed a grey 

colour whereas a higher concentration gave a yell~~ CO!Oltt. Rindone 

and Rhoads concluded that in phosphate glasses Pt could exist in both 

a tomc and ionic states. In the silicate glasses, the gr~' colour 

arose from precipitation of metallic Pt in a colloidal form. 

Rindone (5.29) has shown that Pt additions to a Li20.4Si02 glass 

considerably increased the crystallization rate of LizO.2Si02. In a 

later paper (5.30) Rindone found that the rate of crystallization was 

the highest for aPt addition of 0.005 \-,t.,. However, Hench (5.31) 

in a similar investigation found that in order to reproduce Rindone's 

results it was necessary to add 100 times morG Pt. Gutzow and 

Toschev (5.32) have shown that, for additions of 0.5 wt." the effect-

iveness of the catalysts Ir, Pt, Rh, Au and 1\g in the crystallization 

of NaPOs and Na2Blt07 glasses could be better explained in terms of 

the thermal expc~sion differences between the metals and the glasses 

ra~~er L~an in terms of lattice mismatching. t·:aurer (5.33) found 

i: 
I: 
I' 

~ 
I 
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that the precipitation of lithium metasilicate crystals on gold particles 

in a lithium potassium alumino silicate glass occurred only after the 
o 

gold colloie size was of the order of SO A. He suggested that when 
o 

tile gold particles were less than 80 A in size they were ineffective 

as heterogeneous nucleation sites since the high curvatura of the 

particles would introduce strains in the lithium metasilicate cristal 

nuclei. 

In this work Pt was added as PtC14 as explained in Chapter 2. 

The additions of 0.2 and 0.46 wt.% Pt for G24 and G25 respectively 

were chosen to produce reasonably large Pt centres ~nd hence to mini-

mdze possible size effects in the heterogeneous nucleation process. 

The distribution of the maximum calliper diameter of the Pt particles 

in glass G25 (see Figure 4.38) ranged from 0.30 to 3.30 ~m with an 

average diameter of 1.19 ~m. Very occasionall~' 'large' (about 10 

J,lm) Pt inclusions were observed on the optical cross sections. Such 

inclusions have also been observed in neodymium glasses melted in Pot 

crucibles (5.34). \"le were able to lI".easure experimentally the aver-

age contact angle between the NC2S 3 crystalline phase and the Pt 

particles precipitated in G25 heat treated at 596°c for 6 to 21 min. 

(Figure 4.38). The average contact angle, as defined in equation 

° ± 0 (1.9) was 90 10. From equation (1.12) and the expression for 

f(6) (see Chapter 1) the thermodynamic barrier for heterogeneous 

nuclention was found to be 0.50 times that for homogeneous nucleation. 

The effect of PtC14 additions on nucleation in the base glass G2 

was shmffi previous ly in Figures 4.32, 33, 34 and 3S. It is clear 

from Figure 4.35 that the number of NC2S3 crystals present after 40 

minutes \'Ias greater in G25 than in G2, particularly at higher tempera-
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This w~s due to the heterogeneous nucleation on Pt 

particles present in G25 in addition to the normal. homogeneous, nuclea­

tion which was also present, and would incicate a greater overall 

nucleation rate in G25 than in G2. Bowever at temperatures lower 

than 620°C the situation was not as clear. For example, there was a 

'cross over' for the nucleation curves for G25 and G2 (Figures 4.32 

I\nd 4.33). If the compositions for G25 and G2 were exactly the same 

and if Pt was effectively nucleating NC2SS crystals: (as clearly shown 

in the electron micrographs) the same increased nucleation observed 

at higher temperatures for all times (e.g. in Figure 4.34), would have 

been expected also at the lOloJer temperatures for all times. The 

'cross over' effect at lower temperatures strongly indicates that 

there ~ compositional differences between G2 and G25 (only G2 

was chemica.lly analysed). This explanation is further supported by 

the viscosity measurements. The viscosity for G25 was slightly 

greater than that for G2 at lower temperatures « 600°C) whereas at 

higher temperatures there was little difference in the viscosities 

(Figure 4.37). 

It is worth mentioning at this point that Firth et ale (5.35) 

found that in melting lead crystal glasses, to which KCl was added, 

considerable losses of alkali chlorides occurred. During melting 

fumes of KCl and HCl were evolved anG the iron content "ras reduced by 

ferric chloride volatilization. It is possible that the chlorine 

produced by the PtCh decorrposition has enhanced Na and/or Ca volati­

lization giving a final glass slightly more viscous than the base 

glass G2. Naturally, this suggestion must be carefully checked by 

che~~cal analysis. 
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° The nucleation results above 630 C were analysed as follows. 

From the average size 1.19 ~m of tile approximately spherical Pt 

part~cles, the nominal Pt content of G25, the density of metallic Pt 

and G2, the volumetric density M of Pt centres was estimated as 6.7 

From the results in Figures 4.32 toO ·1.34 the difference 

between the number of crystals per unit volume for G25 ar.c. G2 was 

calculated for 20 and 40 min. for tile three heat treatment ternpera-

tures. The mean value ''las 1.9 x 108 cm- 3 \.,rhich is of. the same order 

(but less than) the number of Pt centres (M). This suggests that, 

for times up to 40 min., only a fraction of the Pt particles were 

acting as nucleation sites (i.e. they were not 'saturated'). 

Now frOID Figure 4.34 the intercept (t=O) for G25 was 2.25 x 

Using the Nv/t (t=40 min) values shO\-7n in Figure 4.35, 

subtracting the Nv intercept (t=o) and dividing by 40 min., the steady 

state 10 values for G25 were obtained above 620°C. For G2 the inter-

cept was 0.5 x lOS rom_I at 621 and 641°C. Using the s arne procedure 

the 10 values for G2 ,-'ere also obtained and are plotted in Figure 5.14. 

These results indicate that the steady state nucleation for G25 is 

higher than for G2. We \'1il1 now apply heterogeneous nuclention 

theory. The steady state 10 values for G2 \-,ere subtract~d from those 

for G25. Following a similnr procedure to that for. the homogeneous 

v f 
case (section 5.1) an expression for I , the total heterogeneous 

n~deation rate per unit volume of liquid (see equation (1.15» can be 

obtained as follows: 

f nf k 
where A • M ~­c 3'/TA~ 

f 
( 

lE a IVM2) 
II: Ac exp - f(9) -3 11' 

-kt.':"'"G-::2~T 
(5.16) 



FIGURE 5.14 10 VALUES AS A FUNCTION OF T(OC). 
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(
V:lfn'\ 1 

Thus from a plot of ln -.r-) vs t.G2T it should be possible to obtain 

16 no 3v 2 
f(e) 3" k m • Such a plot if: given in Figure 5.15 using t.he values 

in Table 5.1. The t:.G for G2 was used in the calculation and the r.leasured 

ln I 1 11 
802x'l' X 10 

630 903 1166.9 7.062 22.02 23.072 2.lf.04 

640 913 1599.1 7.376 21.87 22.433 2.180 

650 923 10G1.1 7.529 20.99 21.690 2.202 

660 933 1662.0 7 .~16 20.15 20.732 2.226 

viscosities for G2S. T:'rort t.he slo!:,e of the plot and the a and Vm for 

G2 (section 5.2) f(e) \'las found to be 0.60. This is in remar.J~C'.bly good 

agreenent with the f(e) value calculated from the e ~2~~y.ed on the 

electron micrographs. Hm'lever t.his result must be reg.:lrc:1ed as tent.:t-

tive. Thus, it would he interesting to obt.ain further nucleation dat.a 

for glasses G2 and G25, particulnrly at higher temperatures for n ~!ies 

of t.imes at each ~emperature, in or(~er to confirm th~ ahmte determina-

t.ion of heterogeneous nucleation rat.es. Also che~)lical cmalysis of C25 

nught help t.o understand SOMe of e1e observations at l~'er t.emperat.uz"es. 

In the t.heory discussed previously nucleation on a flat. substrate 

was ass1.1.IDed. The Pt particles, however, haa both flat and curved sur-

faces. Flet.cher (5.36) has solved exactly the case o!': :!eterogeneou~ 

nucleation on a spheric~l surfn~e of radius R. 'rile thel: ':llocynC'lmi c 

barrier t'~f* was given by 
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where f(m,x) is a complex function of In(= cosS) and x(= R/c*). Rere 

r* is the critical radius for homogeneous nucleation. In our case 

3 f(m,x) 
m ~ 0 and x - 10 and the factor 2 is very little different from 

the f(9) factor for a flat substrate, and the assumption of a flat sub-

strate is justified. 

The fact that the NC2SS crystals grow preferentially on the more 

curved surfaces of the Pt particles might be related to a crystallo-

graphic orientation relationship beb.1een the llC2SS llnd the Pt during 

growth. Thus the flat surfaces could belong to specific crystallo-

~,otphic planes and the 'lattice misnatch' with the NC2SS might be greater 

than on the curved surfaces. 'rhis point is difficult to check since 

the positions of the 'formula units' inside the unit cell of the BC2S 3 

phase are not known. Other effects such as differen~e9 in thermal 

expansion (mentioned above) are agnin difficult to estimate since there 

iG no information on the thermnl expansion for different crystal direc-

tions of the Ne2S 3 phase. '!be problem may be even more complex since 

small levels of silicon and calcium w~re detected inside the Pt particles. 

It is possible that different levels of these impurities may exlst near 

the curved surfaces than near the flat surfaces thereby altering the 

chemical .interaction between the NC2SS crystals and the platinum. 

5.2.1 C:rowth rates for G2 r.nd Cl6 

The steady state growth rates for C2 cmc. GlG we~e o~:own :f.n F'igures 

3.5 and 3.21 respectively. P. plot Ull1 ._- vs ':!:' (oC) for G2 
1 - exP .. (- ~\'}) 

R'l 
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is sh~m in Figure 5.16. This plot would be an horizontal strnight 

line if tile normal growth model applied (see section 1.3). The 

ordinate changes to 1.2 orders of magnitude for temperatures between 

G10 and 710°C which is too large to be explained in terms of syste~ 

atic errors in either the growth rates or viscosity measureruents. 

~is observation may suggest that the active site fraction f (see 

equation (1.35» is a function of ter~erature. An attempt ''las nlaf:e 

to fit the function _un I1G to the screw dislocation and surface 
1 - exp(" -) 

P..T 

nucleation growth models. No satisfactory fit could be obtained over 

the \'lho1e temperature range for e1 ther model. However a fit could 

be obtained to the surface nucleation model (see equation (1.39» 

for high temperatures only, provided the edge interfacial free enerr;y 

per unit area Y WR.S about 300 erg cm- 2 (taking;\o as 10-' an) which 

appears a very reasonable value. Thus none of the three models are 

completely satisfactory in describing the growth rates, although the 

surface nucleation model is perhaps the best of the three. The 

real growth mechanism is probably more coq:>lex them any of the models. 

It must be remembered that all these models ~opend on tile valid-

ity of the StOkes-Einstein relationship. Heiling and Uhlmann (5.37) 

and Ainslie et ale (5.38) have pointed out that the diffusion coeffic-

ient for transport in the bulk liquid may exceed that calculated from 

the Stokes-Einstein relCltion h~i a factor of 10 or 100. 

'I'he intercepts with the tilOO axis of the lin!E!. plots of the 

maximum crystal size vs tine for GlG and G2 (Figures 3.19, 23 and 21) 

are difficult to explain. Hm-1ever, it mny bu Significant that these 

tlgrowth" intercepts for GIG are similar in m"l~;nitu~ to tile interce~t 



FIGURE 5.16 Reduced growth ra te as a function of temperature for glass G 2 
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times on the nucleation (Nv vs time) plots, which suggests that they 

may be related to the nucleation int~bation times. According to 

Filipovich and KGtlinina (5.39) the growth intercept ",ith the time 

axis can be taken as "the moment of nucleation of the first spherul-

ites". 
1 11"2 

Gutzow et ale (5.40) estimated this time as Ll = -- + -- L 
10 6 

where 10 and L are calculated from the linear part of the Nv vs time 

curves as explained in Chapter 1. 

Another possibility which must be considered is that the growth 

intercept times arise from variatia1s in the crystal growth rates 

themselves with time, particularly for the early stages of gro\-lth. 

According to Schaeffer und Glicksman (5.41) "when considering the 

growth of a spherical crystal imrJedi~tely following a nucleation 

event in a highly supercooled liquid the effects of interfuce curva-

ture, kinetics and time dependent heat flow are all important". 

They computed theoretical curves of growth rate versus the dimension-

less "time" par~.meter To for various values of the parameters fllJJ 

and ~. LO was defined ~s 4~t/r*2 where ~ was the ~~ermal diffusi-

vity (cm2 &-1), r* the radius of the critical nucleus and t the time. 

~be dimensionless supercooling fl~ was defined as ~T/p where C and e 
were the specific heat of the supercooled liquid rulU the latent he~t 

of fusion per unit volume respectively. ~ was given by ayoTm/2~a 

where a was the interfacial energy per unit area, Yo a 'kinetic co­

efficient' (em s-1 °C- 1) and TID the melting temp~rature (oC). In 

our case a supercooling of 500°C produced a fl~ value of 3.4. Although 

in glctssy systems Yo is a strong function of T we estimated Yo as 

about 3.4 x 10-9 em s-1 0C-1 using the growth data at 606.5 and 

620°C for G16. Also ~ (using rJ - 150 er9 cm·- 2
) was 5 x 10- 12 • 
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Schaeffer and Glicksman do not give growth rate vs time curves for 

these values of 6$ und ~. However from their curve for 6~ al.S 

for very small ~ LO is about 103
• Taking a as 10-2 cm2 s-1 and r* 

o 10 as 15 A t was estimated c"s 5.6 x 10- s. consequently, according to 

the analysis of Schaeffer and Glicksman, after tile critical size has 

been reached the time intercept on the gro\'1th plots is negligible. 

The effect of the increase in temperature at the crystal-liquid 

interface due to the latent heat evolved during crystal growth ''las 

analysed by Hopper and Uhlmann (5.42) for a sodium disil1cate glass 

where the crystal size vs time plots were linear. After a theoretical 

analysis for a plane interface they concluded that for small samples 

(4 rom) the interface heating (estimated as 0.25°C above the furnace 

temperature) can be ignored. 

Finally, let us consider the possible effects of time lags in the 

two dimensional (20) nucleation model for growth. Gutzow et ale 

(5.43) studied ~~e crystallization process in a NaPOs glass where 

appreciable time intercepts in both the crystal size vs ti~e plots and 

in the Nv vs time plots were found. They were able to calculate an 

average incubation time from a conmination of the incubation times for 

both internal and surface nucleation which was proportional to 

where Kz is a constant obtained from analysis of the growth rates accor-

ding to the 2D nucleation model. Gutzo\o, et at. claim that their 

experimental data are described b~ this relationship, but only tested 

the theory for four intercept values. In a later paper Gutzow and 
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Toschev (5.44) showed that un incubation time in surface nucleation 

would only reduce the growth rate and that the growth rates would ~ 

be dependent on time. Their analysis assumed that ti1e propagation 

of mono layers was very rapid so that every nucleus formed on a fresh 

surface without steps (small crystal model). They concluded that 

"non steady effects should be invariably expected at high under­

coalings and especially in the vicinity of the temperature of glass 

transition Tg". However recently Calvert and Uhlmann (5.45) have 

disagreed with these conclusions. First, they suggested that the 

"large crystal model", should have been applied. In this model the 

crystal is assumed to be sufficiently large that the time between nu­

cleation events is much smaller them the time for the nucleating layer 

to spread across the interface. Secondly using this rodel they 

shCMed th<lt the "transients can almost always be ignored in treatin9 

crystal gr()\o7th from the melt". 

t'ie conclude tentatively that the origin of the intercepts in the 

size vs time plots is strongly related to the in·.:ubati~ time in the 

three dimensional nucleation and is prObablZ not related to the mech-

ism of crystal growth. It is clear, however, that further work is 

needed to confirm this conclusion. Finnlly, it is interestin~ to note 

that intercepts with the time nxis in crystal size VB time plots h~VQ 

also been observed in metallic systems. Hull et ale (5.46) studied 

the rates of nucleation and growth of pearlite in austenitic commer­

cial steels "There appreciable intercepts for both nucleation and 

linear growth with the time axis were found (although these intercepts 

\'1ere much shorter than in glnss systems). They also concluded that 
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the intercepts in the crystal size plots might be related to the trans-

ients in internal nucleation. 

5.2.2 Growth rates for glasses with H20, NaF and Zr02 additions 

1 
Plots of loglOU VB T(oK) for G2 and Gl4 are shown in Figure 5.17. 

'!'he increase in growth rates for Gl4 (bubbled with steam) ,ranges from 

0.4 of an order of magnitude (o.m.) at 6BOoC to 0.7 o.rn. at 620°C. 

On the other hand the viscosity of Gl4 at 620°C is a',out 0.4 o.m. 

lOHer than that for G2. Hence the changes in growth rates closely 

match the changes in viscosity, within experimental errors. This is 

tte expected behaviour if the diffusion coefficient for growth is 

proportional to the reciprocal of the viscosity. In section 5.1 a 

similar relationship between the diffusio~oefficient for nucleation 

and viscosity was assumed. These relationships, if correct, imply 

that the diffusion coefficients for growth and nucleation are the same, 

which appears reasonable in s1n91~ com~onent systems. It should be 

noticed that these plots for G2 and G14 exhil:i ted slight curvature. 

The curvature for C2 car.not be explained by a variation in the factor 

~ 1 - exp(- RT ) since this factor only ranges from 0.904 at 6l0oC 

to 0.969 at 700°C. It has already been expl~ined that the results for 

G2 are not described satisfactorily by any of the gt'o\'lth models. How-

ever the slo}?es of the plots, ,·mich should be proportion;)l to the C\cti-

vation enthalpies ~H 'D according to the norrnal gro"lth model, were very 

close for G2 and G14 at low teroperatures (giving npp~rent ~H'D values 

of 108 and 107 kcnl rnole- 1 for ~2 and Gl4 respectivel~.. At temper~tures 
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t1~ber than 630°C the corresponding values were 72 and 60 kcal mole-l. 

Hence, although t.he slopes vary with temper".tur.e tl;.ere is no appreciable 

difference between them in the same terrperature range. 

The 10gloU vs l/T(oK) plots for the lithia silica glasses Ll and 

L3, which are shown in Figure 5.18, are parallel straight lines. 

From the slopes fl.H' 0 was 74 kcal mole- 1 for both Ll and L3. The 

gro~-lth rates for L3 were 0.3 o.m. ~reater than for Ll. The difference 

in growth rates corresponds closely with the difference in viscosities. 

For example, at 520°C the viscosity of L3 was 0.4 o.m. less than for 

Ll. Bence, it may be concluded that water additions to soda-lime-

silica glasses ane lithia-'silica glasses increase the cryst.c"ll growth 

rates by decreasing the ~~~_ barriers to growth (~G'D). 

The 10glO11 vs l/T(oK) plots for the fluoride glasses G3, G4 and 

GS and for glass G13' (containing 6 mole' Zr02) are shown in Figure 

5.19. The growth rate for G5 was 1.2 o.m. higher than that for G2 

This change closely matches the decrease i~ viscosity of 

GS relative to G2 (1.3 o.m. at 640°C as shown in Figure 4.17). It 

is interesting to note that in contrast to G2 and Gl3' the plots for 

the fluoride glasses exhibit no detectable curvature. There was also 

a gradual change in the slopes of the linear plots for the fluoride 

glasses. Thus fl.H'D was 69.4, 65.8 ane 49.3 kcal mol~_l for G3 (3 

molet NaF addition), G4 (6 tloleP.s NaF) and GS (18 mole' NaF) respec-

tively. Although 6G is not known for these fluoride glasses it is 

probable that at the higher undercoolings involved any changes in 

I acl 
1 - exp(-~) are negligible. 1'le conclude that the effect of NaF 

additions on growth, can be explained in terms of a reduction in the 



." 
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kinetic barrier to growth (i.e. ~G'D) and also by a decrease in the 

activation enthalpy ~H'D' 

as discussed above. 

This resembles the effect of H20 additions, 

For addition of Zr02 U'igure 5.19) the decrease in u relative to 

G2 (0.2 o.m.) is slightly smaller then the measured increase in n 

relative to G2 (0.4 o.m. at 620°C). The activation enthalpy is 

approximately the same as that for G2. Hence Zr02 additio~ appears to 

cause an increase in the kinetic barrier to gro~~ (~G'D)' 

S.3 Properties of some glass ceramics in the N-C-S system 

In this section same physical and chemical properties of the NC2S, 

glass ceramics will be presented and briefly discussed. A limited in-

vestigation of the crystallization of compositions other than NC2S3 is 

also reported. 

Large pieces of glass could be cast in special moulds without 

perceptible surface crystallization. For example, cylinders 2 cm in 

diameter and 5 cm long could be easily cast even for the glasses con-

taining fluoride with quite high crystal growth rates. Annealed glass 

C'.I11nders could then be converted to glass ceramics of nenrly 100% 

crystallinity by a standard two stage heat treatment. As an example, 

cylinders of the G27 glass (t-!C2S, + 1.12 wt.\ AhO,) and the corres­

ponding glass ceramic are shown in Figure 5.20. The glass ceramic was 

ObtaineG by heating the glass at 15°C min- l from room temperature to 

the nucleation temperature (TN • 610°C), maintained at TN for 20.5 h, 

then he~ted at SoC min- 1 to the gr~~th temperature (TG· 736°C), held 

at TG for 0.5 h and finally cooled to room temperature at 4°C min-I. 



Figure S.20a ,b (left ) 

Glass ceramic (top) and glass G27 (hottol'l). See text 

Figure 5 .21 (right) 

S~~-transparent glass c er nmics. 

Figure 5.22 (left ) 

(See text). 

Transmission electron micrograph (TEl'1 ) of thin foil of gl ass 
ceramic j.', in Figure 5.21. I'Jag X2 Ll ,800. 

Figure 5.23 (middle ) 

TEN of sC',mple D in Figure 5.21. I'iag X20, 500. 

Figur.e 5 . 2 ,~ (right) 

TEM of sample B in TaLle 5.2. Mag X 24 ,650. 

Figures 5.25a,b (left and middle) 

Stereoscan micrographs of fracture surfaces of glass D in Tnble 5. 2. 
i,jag xr" 000. Left: non acid e tched : Middl e: acid etched. 

Figure 5.27 (right) 

TEH of cerrunic used in thermal expansion m-.:a surements (heut trentment 
as expl ained in Figure 5.26). Mag Xl8,850. 





The densities of the glass and glass ceramic were 2.750 ~nd 2.904 

g em- s respectively. 
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For nucleation temperatures lO'lrer than 600
0 e it was possible to 

obtain fully crystalline semi-transparent bodies (Figure 5.21). 

Specirnen A was obtained by heating glass G2 for 60 hr at 5800 e followed 

A transmission electron micrograph from this speci-

men is shown in Figure 5.22. The crystal size was about 1 ~m. The 

remaining specimens in Figure 5.21, which correspond to G17 heated for 

66 h at 5800 e followed by 20 min at 730oe, showed greater transparency. 

specimens B lIDO e \'1ere unpolished plates (2 mm in thic!tness) from 

different regions of the original heat treated sarilple. Specimen D 

was a polished plate which had been further heat treated for 49.5 h at 

730oe. This showed that extended heat treat:ront at high temperatures 

produced negligible effect on the apparent transparency. An electron 

micrograph of this specimen is shown in Figure 5.23. Quantitative 

x-ray analysis showed that all of these specimens were nearly lOO~ 

crystalline. Although the transparency WRS not investigated in detail, 

its origin may be related to the clos~ refractive indices for the glass 

(1.584, see ref.(S.7) and crystal (1.596 ~ n ~ 1.599, see ref •• (5.47» 

and the relatively small crystal sizes achieved. 

5.3.1 Mechanical Properties 

Breaking strength (O'max) and Young's modulus (E) measurements "lare 

carried out on glass G17 after various heat treatments. The results 

are sumI!'.arised in Table 5.2 with the heat treatments used c.nc1 a t test 

analysis. (N refers to nucleation and G refers to growth) • The O'max 



TABLE 5.2 RESULTS FOR IIODULUS CE' PIJPTUP.E AND YOUNG'S MCDULUS 

Glass Heat Treatment Of (MN m-2 ) E(10" ~1N m- 2
) t test 

Code 

A 72.2 ±9.5 1.1 ±O.l toe - 1.123 
Not 

Significa.nt 

B TN- 621°C,tN- 6 h 30 min 100.7 ±21.2 1.8 ±0.2 t~D - 4.105 

T .. 7200 C,tG- 25 min 
G 

Significant 

C T
N
-624°C, tN- 5 h 50 min 83.2 ±14.4 1.7 ±0.1 tCD - 3.177 

~- 7200 e,tN= 30 ndn Signific<:.nt 

D TN- 664°e,~ .. 4 h 23 r.dn 66.5 ± 8.3 1.1 ±0.2 
tBA • 2.418 

~- 721°C,tG= 33 min 
Doubtful 

TABLE 5.3 THERMAL EXPAUSION FOR GLASS AND GLASS CERAMIC 'G17. 

Glass Hec.t Treatment Temperature The ri:1<:\l 
Range (oC) Expar.sion 

x 10-' 0C- 1 

G17 annealed 200-500 143.0 

G17 n 200-600 153.1 

G17 T ... 627·C,t ... 2 h 
N N 200-400 122.0 T .. 722 C C,t - 30 min 
G G 

G17 " 200-500 166.3 

G17 " 500-800 113.4 



value for the untreated glass (A) is approximate since only four 

samples were broken (for the glass ceramics on average 8 specimens 
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were used). The glass ceramics n, C, D were all nenrly 100% cryst-

alline from X-ray analysis. For B a~d D the difference in crmux was 

significant, indicating that crystal size may influence the strength. 

An elec~ron micrograph of B is shown in Figure 5.24 where the size of 

the crystals is approximately 5 ~m. Also D may be expected to have 

a larger crystal size since the nucleation rate at 664°C is much lower 

than at 62loC. 

In conclusion, the mechanical strength of the composition GJ.7 was 

probably increased by tile c~'stallization heat treatment. However, 

the optimum crystallization heat treatment giving maximum strength may 

involve nucleation treatments at lower temperatures and for longer 

times than used in the presel'l.t work. The actual breaking mechanism 

may be related to the existence of cracks with a size corresponding to 

the average crystal size (5.~8). Two stereoscan pictures of a frac­

ture surface of B are shown in Figure 5.25. The verl rough surfaces 

are probably due to crack diversion. HOWever it is not knm'ln whether 

the crncks may propagate preferentially through the crystal boundaries 

or through the crystals themselves. 

5.3.2 Thermal expansion 

~ number of thermal expansion measurements were made for glasses 

close to the NC2SS composition. The percentage linear expansion vs 

T(OC) plots for glass Gl7 and the corresponding glass ceramic are 

shown in Figure 5.26. The glass was annealed before the run. The 
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dilatometric softening point occurred at 610°C and the glass trans­

formation temperature Tg at 565°C. The expansivities for two tem­

perature ranges are given in Table 5.3. T'l1e crystallinity content 

of the glass ceramic, from X-ray analysis, w~s 95\ and a typical 

transmission electron micrograph of the glass ceramic is shown in 

Figure 5.27. In the thermal expansion plot for the g1:::'63 ceramic, 

the polymorphic transformation of the NC2S3 phase can be clearly 

observed in the temperature range 46o-490oC. The overall change 

in the percentage expansion amounts to about 0.15 for this transition 

corresponding to a volume change of aprroximately 0.45%. As dis­

cussed in (5.2.4) stresses generated in such a transition might 

generate microcracks which could weruten the material. However the 

relatively small volume change for the NC2S s glass ceramic may mean 

no significant effect on its strength nfter it is cooled through the 

transi tion temperature. The thermal expansion of the 10\-1 form of 

the NC2SS phase 1s hig!ier than the expansion of the high form (Table 

5.3) • 

An interesting point is the r~fractoriness of the glass ceramic 

as compared with the original glass. For exanple, with the axial 

load required in the e~ansion measurements, the ceramic did not show 

any softe mng up to the end of the run at BlOoC. T!1is is an increase 

of at lenst 200°C over the softening point of the glass. The similar-

ity between the expansion coefficients of this glass cerar.~c and cer­

tain metals suggests its possible use in glass cermd.c-metal seals. 

For certain applic·!1tions of such seals the electrical properties of 

the glass ceramic are important. According to (5.49) the volume 



158. 

resistivities of the NC2SS glnss and glass ceramic, at 400°C, are 105 • 5 

and l07~5 n ern respectively. The value for the glass ceramic is quite 

close to the v·:dues quoted in (5.24) for glass ceramics considered as 

good insulators. As far as we are aware no dc~ta on other electrical 

properties, such as surface resistivity, are available for the 

present glass ceramic. 

5.3.3 Chemical durability 

The quanti ties of Na20 and Si02 extracted froIT. a number of glasses 

and corresponding glass cer~rnics attacked by either pure H20 or a 0.024 

M Hel wnter solution at 9SoC were c1eternincd as mentioned in ChCl.pter 2. 

The glass ceramics were prepared using the heat treatments given in 

Table 5.4. 

The results ~e listed in Table 5.5. It is clear that for all 

the glasses water extracts more 5i02 th;m the acid and th.it for all 

the glass ceramics wat..ar dissolves less 5102 th:m the acid. This may 

indicate that different corrosion mechanisms apply for tho glasses and 

glass ceramics. For all the glasses and glass ceramics the acid 

dissolves more Na20 than the pure ''later. For Gl6 (close to the eX:1.ct 

NC25S composition) the extraction of NaaO and Si02 is lower than that 

for the corresponding glass ceramic using both reagents. 

Let us now examine the effect of varying the coq'osition in more 

deti'l!l. In the following the results for the glasses 0.re compared 

with the base glass G16, the results for th~ glass ccr~ics are compared 

with the bilse glass ceramic G16C. 

NaF addition decreases the 9lass durability wh~, comp~red to GIG. 



TABLE 5.4 DETAILED HEAT TREA'l1rr:N'r OF GLASSES Gl6, G13", GS 

G27, G28, G29 AND G30 

Glass ceramic 
code 

Gl6C 

Gl3"C 

esc 

G27C 

G28C 

G29C 

G30C 

Heat treatment 

TN - 628°C, tN a 47 min 

TG = 740°C, tG = 33 rndn 

II 

II 

.. 
II 

TN D 626°C, tN - 43 h 

T = 740°C, t = 23 min 
G G 



TABLE 5.5 CHEMICAL DURl.BILITY rx.StlLTS - C P.EFr:1?S TO CERAMIC 

AND M. IS '!'HE Extrl"..ctad mass of Na20J§i02) 
1. 1m tin1 mass x 100. 

FOR 'N' SEE THE TEXT 

Reagent 
I120 Acid 

Glass N U. N : MS102 f\a20 
H
Si02 Code .. ~a20 

G16 3.8 0.11 8.3 0.33 1.01 0.21 

G16C 3.8 0.11 . 17.5 0.70 1.51 1.07 

G13'" 8.7 0.25 19.3 0.77 1.48 0.30 

G13"'C 3.1 0.09 16.:3 0.65 1.50 0.96 

G5 5.9 0.17 17.3 0.69 1.37 0.27 

GsC 9.4 0.27 .15.8 0.63 1.61 0.90 

G27 9.7 0.28 25.3 1.01 1.07 0.22 

G27C 3.6 0.105 12 0.48 1.63 0.96 

G28 8.7 0.25 23.3 0.93 0.99 0.17 

G28C 15.8 0.63 1.72 0.88 

G29 9.7 0.28 26.6 1.06 1.26 0.1~3 

G29C 2.8 0.08 10.8 0.43 1.56 0.69 

G30 5.9 0.17 18.5 0.74 0.97 0.12 

G3ee 1.7 0.05 9.3 0.37 1.15 0.69 
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For the' c;]lass ceramic NaP addition increases the Na20 extraction but 

decreases slightly the Si02 removal. 

Zr02 addition also decreases the glass durability but increases 

slightly the durability of the glnss ceramic towards acic$ and water. 

For the glass Al203 addition increa.ses the Na20 and Si02 extraction 

by water. For acid attack the effects are more complicated. ~'1hereas 

for 1.12 wt.\ AI203 addition (G27) the Na20 and Si02 extractions are 

very similar to those for Gl6, for G28 (2 wt.% A120S) and G30 (4 wt.\ 

AlZ03) the extraction of both oxides is reduced. For C29 (3.5 ".t.% 

A1203' 2 wt.\ NaP) the Si02 removal is reduced but the NazO extraction 

is increased. 

For the glass ceramics Al203 addition decreases the extraction of 

both 1-1a20 and Si02. under \-1ater attack. Also the removal of silica by 

acid is reduced. For Na20 e"traction by acid the situation is not as 

clear. ~1hereas for the greatest Al203 addition (4%) the removal of 

Na2,0 is clearly reduced, for the smaller additions (1.12 and 2 wt.\ 

Al203) the extraction is slightly increased. 

According to El-Shamy and Ahmed (5.50) the extractions of Na20 and 

Si02 for a commercial "soft soda glass" (72.3 Si02, 14 Na20, 9.3 CaO, 

1.9 A1203, 1.S IlJgO, 0.6 K20, 0.2 BaO and 0.2 S03 wt.\), attacked by 

deionised water at lOOoC for one hour, were 0.0288 and 0.0399' respec-

tively. First, it should be noticed that ~later extracted more Si02 

than Na20, \-lhich is consistent \'1ith our results. Secondly, it is 

possible to compare the chemical durability of our glasses and glass 

ceramics \-lith the results of El-Shamy and A.~r.1ed. The ratio of the 

percentage extraction of Na20 (Si02) obtained in this work to that 



160. 

obtained in (5.50) for the soda-lime glass is listed in Tab~e 5.5 

under the letter 'N'. The N value for the Ha20 extraction from the 

glasses ranges from 3.8 for G16 to 9.7 for G27 and G29 whereas for the 

5i02 extraction it ranges from 8.3 for G1G to 26.6 for G29. For Na20 

extraction from the g!ass ceramic§ N ranges from 1.7 for G30C to 9.4 

for GSC and for Si02 extraction N ranges from 9.3 for G30C to 17.5 

for G16C. It is interesting to note that the extractions for one of 

the glass ceramics (G3OC) were comparable witi. those for the commercial 

chemically durable glass. Also G29c (containing fluoride) behaved sim-

ilarly to C3OC. Although no quantitative microstructural data ':Iere 

obtained for these glass ceramics, tl16 glass G29 was observed to have 

higher internal nucleation than G30. 

5.3.4 Crystallization results for ot~r oompositio~ 

The base glass compositions G47 and GS3 belong to t~e aCS phase 

field of the ternary system (5.51) whereas G37 is on the boundary of 

the NC2S3 and ecs fields. To these glasses various amounts of Zr02, 

Ti02, NaF, CaF2, Na2S, Cr203 and Fe203 were added. The DTA Tg and 

eTA peak crystallization temperature Tc for glasses G37 to G67 are 

listed in Table 5.6. For the three base glass co~positions the DTh Tg 

was increased by Cr203' Ti02 and Zr02 additions but dccr~ased by Na2S, 

'!he largest increase was obtained for 

the greatest Zr02 addition whereas the largest decrea.se was observed 

for the NaF additions. Several nucleation treatments at temperatures 

between the DTA Tg anv. Tc, and g-rowth trE.atments at temperatures higher 

than Tc w~~e given to a nunber of the glasses to investigate whether 



TABLE 5.6 DTA RESULTS FOR GLASSES G37 TO G67. 

THE BASE GLASS COj\'[)OSITION IS AT THE TOP OF EACH GROUP. 

THE llEM"lHG OF THE SYMlilOLS IN THE 2ND COLUNN JU~E: 

THE NUMBER PRECEDING THE LETTER CORRESPONDS TO THE wt% 

ADDITION TO THE BASE GLASS. 

THE OXIDE OR COMPOUND ADDED IS REPRESENTED BY: 

Z .. Zr02: T .. T102; t1F ... NaF, CF = CaFU USU .. t-l'l2S; 

CR .. Cr20s AND FE - Fe20s 

Glass DTA Tg (oC) Te (oC) 
Code 

G37 (base glass) 547 768 
G38 6.5 Z 575 836 
G39 12.9 Z 633 S7S 
G40 6T 561 797 
G41 12.9T 577 793 
G42 9NF 464 725 
G43 9CF 506 730 
G44 9NSU 522 715 
G45 6CR 561 806 
G46 6FE 530 769 

G47 (base glass) 622 820 
G48 6Z 662 904 
049 12Z 682 958 and 1031 
GSO 6T 629 841 
G51 12T 645 901 
G52 16.1T 646 909 
G53 9NF 519 746 lUld 800 
G54 9CF 565 764 
G55 8.SNSU 
G56 6CR 630 332 
G57 6FE 605 910 

G58 (base glass) 627 804 
G59 6z 661 850 
GGO 12Z 685 903 
G61 6T 628 814 
G62 12T 641 832 
G63 9NF 520 674 
G64 9CF 562 750 
G65 9NSU 600 797 
G66 6CR 636 820 
G67 6r'E 599 758 
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they exhibited any internal nucleation. Also sone glass~s \-'ere heat 

treated from a temperature beb'leen the IYI'A 'rg and ,]'c at a constant heat-

ing rate to a temperature higher than 'rc. Various cL~stalline features 

observed in the heat treated glasses are shown in Figures 5.28 to 5.36. 

Only those glasses are mentioned specifically \,Thich exhibited internal 

nucleation or some other interesting characteristic. The glazses not 

mentioned did not show any internal nucleation for the heat treatments 

employed. For glasses G43 (9 wt.\ CaF2) and G44 (9 wt.\ Na2S) some 

internal nucleation was observed as shown in Figures 5.28 and 5.29 

respectively. For the G47 series the considerable internal nucleation 

in G53 (9 wt.% NaF), was of particular interest (Figures 5.30,5.31). 

A complex growth morphology of the c~stals can be observed. For the 

GS8 series, the base glass (Figure 5.32) gave SOL1e internal nucleation 

and again a. complex growth morphology. The two crystals observed prob­

ably correspond to different orientations of the grO'.1t:i centres "'ith 

respect to ~~e cross section plane of the glass. For G62 (12 wt.% Tio2 a very 

smooth crystalline surface layer was particularly noticeable (Figure 

5.33). G67 (6 wt.\ Fe203) sho\'1ed surface crystallization and some 

internal nucleation (Figure 5.34). G66 (6 ",t. % Cr203) Shot'led precipi­

tation of elongated centres resenbling metallic particles in their high 

reflectance (Figure 5.35). Glass G64 (9 IITt.% CaF2) showed coarse 

internal nucleation (Figure 5.36). A number of ~ray diffractometer 

patterns we:::e obtained for the CS8 s~ries. ~le d spacings of the 

strongest peaks matched quite closely those of the NC2S3 phase but not 

those of the aCS phase. For th~ glass containing NaF, the stron~est 

NaF and CaF2 peaks were detected. In conclusion it appears that other 



Figure 5.28 (le ft ) 

Optical micrograph (C "1) of (.'~ 3 nucle ated at TN = 527°C for 
10 h (tN) ond grown a'C TG=762 C '!:or 1 0 lrin (tr:: )' nag }~50 q 

. ,0 

Fi gure 5 . 29 (ri <jht) 

Oll of G44 h eat treated as follows: TN = 581°C I t j'J = 10 h. 
TG = 740°C, t G = 5 min . i' ~ag XICI 

Figure 5 . 30 (top l e ft) ; 5.31 (bOttOr.1 left) 

OH c f G53 h eat trented: Tt:j = 588° C; t N = 1 ·1 h . 'l'G 
r'lasr X101; rn" g XS04 . 

Figure 5.32n , b (right) 

OM of GS8 hea t ed : TN = 666°C, t N = 12.5 h. TG = 81SoC, tG = 25 min . 
Mag XS0 4 . 

Figure 5.33 (left) 

m1 of G62 heated at 1.1°C min- ! frow 633°C to 875°C. na!} X32. 

Figure 5.34a ,b (middle and right) 

or1 of G6 7 heated as described in Figure S . 33. rJing X32; X504 . 

Figure 5.35 (le ft) 

OM o f G66 heated as des cribed in Fit]ure 5.33. Mag X5o.1 . 

Figure 5.36 (right) 
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ternary compositions may be internally crystallized apart from those 

close to the NC2S3 and N2CS3 compositions, 

In the present work we have concentrated attention on co~osi­

tions exhibiting internal nucleation and capable of forming glass 

ceramics. However another possible method exists for forming a 

polycrystalline 'glass ceramic' material with a reasonable fine grain 

structure by sintering and crystallizing a glass powder. In this 

method the starting glass need not necessarily exhibit internal nu-

cleation. Briefly, the glass po''lder is mixed with seeds of the 

main crystalline phase expected to precipitate from the glass compo­

sition (5.52). After forming, tile preform is fired to achieve first 

sintering of tile glass particles and then crystallization from the 

particle interfaces and/or the crystal seeds. It \lTould be interest­

ing to ap~ly this technique .to the soda-lime-silica system, particu~ 

larly for glass compositions which do not internally nucleate i.e. 

for compositions other than those studied in the present work. A 

necessary requirement for the selection of such compositions is that 

they should form a glass but also have n reasonable high crystal growth 

rate. Of course the attraction of producing glass ceramics from 

soda-lime-silica glasses is their potential low cost. 

Another possible application of glass ceramics in the soda-llme­

silica system of low Si02 content is as hydraulic cements. According 

to Reference (5.53) a high compressive strength ceMent has been made 

by curing at room teL~erature a mixture of glass powder (10 wt.\ Na20, 

40 wt.% CaO and So wt.% Si02) and water. The NC2E3 glass ceramic 

might also be used for SUcl1 an application. The improved mech~nical 
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properties of the glass ceramic over the glass could mean a further 

improvement ill the compressive strength of the cement. 

5.3.5 Metallic precipitation 

A number of photosensitive glasses containing Ag2,0 were melted. 

These were prepared to investigate whether a high density of veri fine 

metallic particles could be used to heterogeneously nucleat. the 

main CI1·stalline phases. The compositions of the ~lasses (G26 ruld G68 

to G75) are listed in Table 2.1. 

sensitizing and therrnoreducing agents respectively (5.54). It is 

thought that irradiation of the glass with ultra violet light (U.V.> 

produces metallic atoms. upon heating more atoms are produced due 

to the action of the therr.:oreducing agent. ~bese atoms di!fuse onto 

tile pre-existing nuclei and form metallic centres. 

After casting, G26 (containing 0.5 ''1t.% A£'20) was slightly yellow 

indicating tha.t probably the A920 solubil1 ty limit for this glass had 

been exceeded. In contrast, G75 (containing 1.2 wt.% A920) had no 

perceptible coloration·. A possible explanation ~~y be found in the 

compositions of the base glasses (Table 2.1) • A glass C~, say, eO 

molet Si02 and 20 mole% modifier oxides may accer>t more rrodifier 

cations (.ll.g+). than a glass of 50 mole% Si02 and 50 mole' modifier oxides 

where the interstitial sites are more. fully occupied. 

For the irradiation experiments a U.V.-HBO superpressure ~ercury 

lamp <t,!07AN, lOON) \Olas used at 5 em from the specimen hol/jer. An 

electron micrograph of G26, irra·jiated for 1 ar lUltl. heat trGCI.ted is 

shown in Figure 5.37. 
o 

A high Gensity of very small (125 A diameter) 



Figure 5.37 

TEM of G26 heated at 590°C for 1 hr and at 647°C for 5·1 min. 
(See text). l-1ag X29, 600 

Figure 5.38 

(See text) 

Figure 5.39 

TEB of specimen No. 5 in Figure 5.38. 

Figure 5.10 

TEM of G74. (See text). I"lC'l~ X10l, 500. 

Figure 5.41 

TE~t of (:75 heated at 800°C for 55 min. 

~.ag X60, 900 

Mag X30,800 
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particles can be clearly observed. The diameter of the NC2S 3 crystal 

is about 6 }lm. No gro\,7th of NC2S3 crystals on the metallic particles 

was observed. 

Six specimens of 074 (containing 0.5 wt.% A~20) irradiated for 1 hr 

and heat treated for 1 hr at 640 (No.1), 671 (No.2), 704 (No.3), 

732 (No.4), 764 (No.5) and 782°C (No.6) are shown in Figure 5.38. 

All the specimens were partially covered with metallic foils during the 

irradiation ·.treatment to retain unexposed areas. Heat treatment produced 

the darker zones visible in the Fi~Jre and these corresponded exactly 

to the irradiated areas. Appreciable precipitation was also observed 

in the non-·irradiated areas. Figure 5.39 is an electron micrograph of 

the darker area in specimen 5. The metallic particles have an average 

° diameter of about 125 P •• P.lso present are droplets of liquid-liquid 

o 
phase separation with a maximum diameter of 1200 A. It should be noted 

that a glass of composition 10 Na20, 10 CaO and 80 5i02 (mole %) was 

extensively studied by Burnett and Douglas (5.55). They found that 

considerable liquid-liquid phase separation occurred at temperatures 

higher than about 600°C. The observed morpholcx:rJ was of the 'droplet' 

type at teml~ratures higher than about 680°C but a highly interconneeted 

structure was found at lower temperatures. The ~miscibility temperature 

Although the glass compositions are not exactly the same, 

our results compare well with the observations in reference (5.55). 

No internal crystallization could be found in any of the six specimens 

of G74. Only a thin crystalline surface layer was observed for 91'eci-

mens 4, 5 and 6. An electron micrograph of G74 irra(~iatec for 46 min 

and heat treated at 645°C for 14 hr is shown in FiQure 5.40. The 
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° metallic particles have an average diameter of 126 A. The phase separa-

tion structure is now of the interconnected type which is consistent 

with the findings of reference (5.55). 

A D'l'A run for G75 showed the DTJI. Tg endothermic peak at 580°C and 

tli"O exothermic peaks at 804 and 864°C. Considerable metallic precipi-

tation was obtained without the U.V. treatment (Figure 5.41). Some 

internal crystallization was found in G75 heated at 686°C for one hour 

and then at 884°C for 10 min. Two electron nicrographs are shown in 

Figure 5.42. It appears that the crystals grew from metallic particles. 

However the number of crystals \-las much lower than the nun>her of met-

allic particles. The maximum dimension of the crys tals was about 

0.4 ~m whereas the maximum diameter of tile metallic precipitates was 

o 
360 A. This glass had a relatively thick crystalline surface layer 

which became heavily cracked when cooled to room teIlJ>erature. In 

x-ray powder pattern of the whole sample gave three peaks at d - 4.1, 

o 
2.4 and 1.4 A which are close to the peak positions for the low form 

of cristobalite (5.56). Another electron micrograph of this glass 

is ShOl'ffi in Figure 5.43, together with a selecte.:1 area diffraction 

pattern of one of the crystals. Two d spacings were obtained at d -

° 1.95 and 1.65 A. 
o 

The former value is v~ry close to the 1.93 A reflec-

° tion of the low form of cristobalite (5.56). The 1.65 A value could 

° not be identified since only d spacings greater than 1.87 A are reported 

in (5.56). It should be noticed that no phase separation was present 

in the glass (Figure 5.42). 

To summarise, the photosensitive and the:rt:'lal metallic pr~cipita-

tion processes worked well in the soda-lime-silica glasses investi-



Figur.; 5. 42.:1 , b 

TEM o ~ G75 (see text). i<i'\g :>:35 ,500. 

Figure 5 . 4 3a ,b 

5 A 3a 
5. t1 3b 

'!'EM o f G75 (see text). Hag X22,OCO. 
Sl.D of marked crys tal ill 5 . 4 3a . 

Figure 5 . 44 

'lm" of G76 (see text). r·lag X20,3oo 

Figure 5 . 45 

TEH of G76 (see text). Hag X60,900. 





166. 

gated. Also there was evidence for heterogeneous nucleation on the 

metallic particles. However fureler work is needed to assess whether 

sufficient heterogeneous nucleation can be obtained to produce fine 

grain glass ceramics in this system. 

Finally, a platinum containing glass (0.3 wt. % Pt) of high Si02 

content (G76) was heat treated at various temperatures to determine 

whether internal crystallization could be obtained. An electron 

micrograph of G76 heated at 722°C for 1.5 hr and th~n at 880°C for 

20 min is shown in Figure 5.44. A platinum particle and a fine scale 

liquid phase separation are clearly visible but no cryctal grO\rt.h can 

be observed. An electron micrograph of G76 heated at 722°C for 

1.5 hr and then at 930°C for 20 min is shown in Figure 5.45. Again 

no crystal growth on the platinum particles can be observed. Also 

phase separation 1s no longer present. 



CHAPTER 6 

CONCLUSIONS AND SUGGESTIONS 

FOR FURTHER \'lORK 
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6.1 Conclusions 

A number of experimental techniques were used in the present basic 

study of the homogeneous and heterogeneous crystal nucleation and 

growth processes in soda-lime-silica glasses. Optical microscopy 

and electron microscopy were particularly useful in the determination 

of nucleation densities and growth rates as well as in the sturlies of 

crystal morphology and metallic precipitation. Other data required 

to interpret the kinetics were heats of crystallization and fusion, 

which were obtained from DTA and DSC, liquidus temperatures and vis­

cosities. The compositions of the glasses were determined by chemi­

cal analysis and the hydroxyl contents by infra-red spectroscopy. 

The products of crystallization were identified by X-ray diffraction. 

Various physico-chemical properties of the glasses and glass ceramics 

were studied including mechanical strength, chemical durability and 

thermal expansion. Scanning electron microscopy was also used to 

examine the microstructure of the materials produced. 

The morphology of the internally nucleated NC2SS crystals in the 

early stages of growth was studied by transmission electron microscopy. 

The crystal phase identified by selected area electron diffraction in 

the small crystals was the same as that identified by X-ray powder 

diffraction in fully crystallized specimens. 

revealed many imperfections in tile crystals. 

mainly stacking faults and/or twins. 

Electron microscopy 

These were probably 

In the studies of the kinetics of nucleation the double stage heat 

treatment method was used extensively, in conjunction with the optical 

microscopy to determine nucleation densities (Nv). The validity of 
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this method was analysed using measurements from scanning electron 

micrographs of specimens given only a single stage heat treatment. 

These measurements supported the use of the double stage method. 

For qlass:Gl6 the Nv/t values, where t was a constant heat treatment 

time (40 min), at a series of temperatures, were found to be a good 

measure of the steady state nucleation rates Io' particularly at 

temperatures higher than the maximum in nucleation. At such tempera­

tures 'steady state' conditions applied and the nucleation rate I was 

constant with time, whereas at much lower temperatures below the maxi­

mum non-steady state conditions increasingly applied with decrease in 

temperature, and Nv/t values underestimated the steady state nuclea­

tion rates Io. The classical nucleation theory provided. a good fit 

to the experimental nucleation rates for temperatures higher than the 

maximum in nucleation when the kinetic barrier AGD was allowed to in­

crease with decreasing temperature. The diffusion term involving AGD 

was assumed to have the same temperature dependence as the viscosity. 

The thermodynamic driving force, AG, which was needed in the analysis 

was determined from measurements of the heat of fusion AHf and the 

difference in specific heats of the crystal and liquid phases Acp, 

using DTA and ose. From the fit between theory and experiment the 

crystal-liquid interfacial free energy wag found to be 174 erg cm-z 

for G2. 

The specific heat results themselves were of some interest. 

They indicated that the NC2S, glass hnd essentially a three dimenSional 

network structure despite its high content of modifier oxide (SO mole') • 

The effect of varying the glass composition on the nucleation 
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kinetics of the NClS, phase was systematically studied. For glasses 

with a Si02 content lower than 50 mole% the nuclee.tion was increased 

with respect to the base gless (G2). This was particularly inter-

esting since on simple theoretical grounds the base glass, which was 

close to the NClS, stoichiometry composition, might be e~~cted to 

show the highest nucleation rates. Thus the driving force f..G should 

be greatest for the exact NClS, composition. It was concluded that 

decreasing the Si02 content caused a decrease in ~GD whiCh overrided 

the effect on f..G. This was supported by tha obs",rved decrease in 

viscosity. For SiOl contents higher than 50 mole% the nucleation 

was decreased for G1S (15':'65 U, 33.74 c:and 50.61 S hnole%» and G23 

(16.33 N, 32.7 C and 51 S (Inole%» but increased for G20 (16.92 N, 

32.33 C and 50.75 S (mole%». Viscosity data was again ve~' useful 

as an aid in the interpetation of the results. 

The effect of water additions on nucleation was clearly estab­

lished. Existing data for lithium disilicate glass had showed that 

nucleation rates increasea markedly with increase in tile water content. 

Viscosity data on the same glasses obtained in the present study showed 

also that the viscosities decreased with water content. Fran analysis 

of the nucleation results it was found that 6GD was consi~~rably reduced 

with increase in water content whereas the interfacial energy a W39 

only slightly lowered. For tile soda-liMe-silica glnsses il~rease 

in the water content also gave a large increase in nucleation rates 

and a decrease in the viscosities. Although the interpretation was more 

difficult"than in the case of the lithia glasses due to changes in 

the glass compoSitions, essentially the same conclusions were reache1. 
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Scall additions of NaF had ve~l similar effects to the addition 

of water on the NC2SS glass. 'l'he viscosity of t..'1.oa glass "ras decreased 

while the maximum nucleation rate of NC2SS crystals was incr~ased and 

the temperature of the mrucimum was shifted to lO\'ler tanpt;ratures. 

It was concluded that for small add! tions of NaF, i.!.GD was decreased and 

a was increased. For large additions of NaF the naximum in nuclea­

tion was shifted to much lower temperatures but overall the nucle~­

tion rates were greatly reduced. The major (probably NC2S3) phase 

still precipitated first and this was followed by precipitation of 

metallic fluorides on the crystals of the major phase. There was no 

evidence for the fluorides precipitating first and these then acting 

as heterogeneous sites for crystal growth of the major phase. 

Additions of P20S, Ti02 and MoOs to the Ne2SS composition 

reduced the crystal nucleation. For Zr02 addition, .::.:::.alysis indicated 

that i.!.GD was increased whereas a was not significantly ~ffected. 

A detailed investigation of heterogeneous nucleation was carried 

out on platinum containing glassGs. Due to possible changes in 

composi tion the theoreticClol analysis "ras confined to the results at 

the higher temperatures. The f (e) value obtained fran theoretical 

analysis of the nucleation data was in good agreen1ent with a value 

derived from the measured contnct angle b~tween the platinum and the 

c.rystnl phase. 

Concerning the growth rate kinetics a good corre~.t1on was found 

between the changes :in growth rates and tho changes in viscosity for 

the glasses containing H20, N~F and Zr02. Also the ~pparent activation en­

thalples (~HD) did ~ot change' appreci~ly for the H20 and Zr02 0 additiQns 
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NC2 S3 glass ceramic, with P20S and NaF aod!tions, could be in the 

field of biamaterinls. 

Finally, a limited investigation of other buse glnss composi­

tions was reported. The high density of internal crystals found 

for NaF additions was of particular interest and also tile evidence. 

for internal crystal nucleation in compositions in which silver 

had been precipitated. 
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6.2 Suggestions for Further Work 

It would be very useful to have nccurate dat.-'l of the self­

diffusion coefficients of v~rious spl3cies, for example, oxygen, in 

the NC2S3 glass at t~lI1?eratures in the transform~tion ran<Jo and above. 

Knowledge of the diffusion coefficient for the rate ltndtinq species 

as a function of te~erature could be used to critically analyse the 

nucleation rat~s in terms of the classical nucleation theory. This 

would avoid the necessity of employing th~ Stokes-Einstein relation­

ship between the diffusion coeZficient and viscosity, which may be 

in error as mentioned previously. Although diffusion data for 

oxygen exists for silicate glasses as discussed in Chapter 5 there 

is no information available for compositions such as NC2S3 which 

show internal nucl~ation. 

'rhermodynmnic data w.:.re obtained in the present work in order 

to calculate the driving force ~G for the NC2S3 composition. It 

would be worthwhile to obtain further data on this composition to 

check the present DTA .:md OOC rusults, for cXc~lo high temperature 

calorimetry might be used to detarD"ine the enthalpies of the liquid 

(glass) and crystalline phases as a function of te~~r~ture. It 

would also be interesting from a fundamental point of view to d~ter-

mine ~G accurately for the compositions close to NC2SS used in the 

pr~sent study, since the nucleation kinetics could be analysed in 

greater dt;:tail. However nccurate thermodyn,'Ullic dau. would DO much 

more difficult to determine for these caupositions. Thus the act i-

vities of the Na20, CaO and Si02 components in solution woold 00 

requir~d as a function of temperature, which would b~ a difficult 

experimental task. 

It is clear that water content must be carefully considered in 

, 
'. 
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any future funda~ental stucidS of nucleation and growth in glasses. 

Thus different molting cor.Jitions, for exa~le, the use of el~ctric 

or g~s furnac~s, ~ould produc~ small differencbs in wab&r cont~nt ~~d, 

as a result, significant chru1ges in nucleation and growth rntes. 

Such factors d~serve furthet study since they could produc~ differ­

ences in the results for nominally the sam~ glass co~positions propar~d 

in different laboratories. The effect of water is also of interest 

in th~ preparation of glass ceramics. For certain compositions a 

deliberate increase in water content could shorten the crystal nuclea­

tion and growth times or usefully lower the heat treaOllent tempera­

tur~s required while maintaining the s~e fine qrain microstructur~, 

provided no deleterious ~ffects on the properties of the r~sultnnt 

mat~rials occurred and convenient n~thods of introducing the higher 

water contents during the melting could be deviSed. Furthl.:r ,(ork on 

the effects of w~ter content on the crystallization and prop3rties of 

more complex compositions of greater teChnological inter~st would 

be of considerable interest. The results in this thc:is .:lrO also 

relevrult to crystallization studitS of glasses prepared by th~ 'gel' 

process, which recently has attracted considerGble interest (5.17). 

Such glass~s m~y h~e differ~nt (often higher) water contunts th~n 

glasses prepared eonv..::ntionally by fusion of oxld·~s. 

Furth~r work on pl~tinum precipitation and its offeet en hetero­

geneous nucl~ation would be of fundamental int~rest. As suggest~d 

in Chapter 5 further nucleation results could be obtai nod for tho HC2S. 

glass, particularly nt higher t~mperatures. The effect of plat1nULl 

precipitation on the nucleation kine'~ics could also be studir.ld in 
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other systems. There is evidence (5.30) that platinum induces 

heterogeneous nucleation in lithia-silica glasses. 

With regard to crystal growth results, clearly the origin of 

the intercepts with the time axis on the crystal size versus time 

plots is not well understood. Further work on the soda-lima-siliLa 

system and possibly other systems such as lithia-silica may h&lp to 

decide whether these int~roepts are closely related to the incuba­

tion times for internal nucleation, as has be~n suggested in 

Chapter S. 

Some possible uses of glass ceramics based on ca~posit1ons close 

to NCzSa have already been discussed above. In view of the potential 

application of P20S containing glass ceramics as biomaterials more 

detailed studies of the effect of P20S on crystallization and glass 

ceramic formation in the soda-lime-silica system would be useful. 

The bonding properties of the glass ceramics to hard tissues would 

be also of great importance. 

The 'alternative' J'lethod of making glass ceramics by sintering 

and crystallizing fine glass powder into a solid ~terial mentioned 

in Chapter 5 would also be an interesting field for study, since in 

principle the method could be applicable to a wide rilllge of cOl!posi·· 

tions in the soda-lime-silica and other systems. 

Finally, further detailed work is requir~ on the properties of 

the NC2Sa glass ceramics, particularly those with ~ fine grain micr­

structure produced by longer nucleation treatments at lower tempara­

tures, before the possible practical applications of theso ~terials 

can be assessed. 
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APPEt-.'DIX AO 

FREE ENERGY OF HIXING Al·l!> REGULAR SOLtlTIClT5 

COnsider Section 1.2b and Figure 1.6. From equation (1.23) we 

obtain: 

AGm1-(A) .. G 1- _ G ot .t 
A A .. RT In ~A 

AGnl· (B) G OJ/, R, (Ab.i) 
.. G j/, - - RT 1n a

B B B 

where AGm1 (A), AGm1-(B) are the partial molar free energies differences 

of component A and B respectively (1.4). l~w the free en~r9Y of mixing 

at composition X
A 

is defined as 

t t t t t 
AGro • Xli. AGm (A) + X

E 
ACm (B) .. AHm - TASm (11.0.2) 

j/, t 
~Ihere AHm , ASm are the enthalpy and entro17J of mixing respectively. 

Using equations (AO.l) and (AO.2) it is found 

t 1-
Now using a

A 
.. X

A 
Y A ' equation (1\0. 3) gi ve s : 

If the entropy of mixing is tile iJeal entropy of mixing 

A5mR, • - R(AA ln X + X ln~) 
1\ B Ij 

1-we identify AHm as 

(AO.3) 

(AO.4) 

(AO.5) 



R. 1, 0 0 th Bere 6Hm (i) - Hi - Hi where. Hi r Cl"l resents e st,lndard state of 

component i. 

Then (AO.6) 

The rC0u1ar solution model in Hildebrand's sense [(1.21), see alEo 

(1.22)] supposes that tamt(i) are independent of temperature. This 

1, 
means that - RT In y~ can be calculated from equation (1.25) at T - T 

ft L 

(1\0.7) 

Now using (AO.7) and equation (1.25) we obtain: 

(AO.8) 

It is also possible to define the activity of compon(mt r. in solution 

as GAt - GAGe • RT 1n as ' i.e. the activity is ref~rre~ to the pure 

soliel r .• Thus from equation (AO.S) 

(AO.9) 

From ~uations (AO.6), (AO.7) 

(AO.10) 

Now for the case 

(AO.lia) 

that is (AO.llb) 

",here n (ace (1.4» is negativ~ Wh<!ll the interaction het''leen unlike 



atoms is attractive and n > 0 if the interaction is repulsive. From 

equation (AO.6) ~Te find 

(1'.0.12) 

where now the constant in equation (AO.7) can be explicitly evaluatad if 

n is known. This Regular model predicts trumiscibility for n > 0 

(AHmt > 0) and the consolute temperature is given by T 
c 

n --2n' It 

must be said that the st~le and:'or metastable phase diagrams are 

rarely symmetrical as may be deduced from equation (AO.lla). However, 

Hildebrand's regular solution concept is still valid if 6Hmt is written 

as a polynomial in XA and ><a. It is also possible to symmetrize the 

gap by choosing the right end components. 

ar~ extensively discussed in (1.19). 

All these possibilities 



Al ESTIMATION OF THE EXPERIz..lENTAL ERRors IN Nv 

From equation (2.1) 

(2.1) 

where di is the porticle cross section diameter in size class i 

and no is the number of classes. It is convenient to define the 

following f~,ction 

Let us consider the following function:f(Xl~X2~ ••• ~X ) • 
" 1-10 

where {Xi} are independent variables. By using th~ approximated 

value for the variance of f: 

it is found that 

1-70 
Varf := I Varxi < l10 VarX 

i-I 
(1'11.1) 

The last approximation is always valid provided the largest Varxi 
r.;o 

is chosen. D:I identifying f(.'l:1,X2, ... ,Xu ) with.I Ni/di the 
'"'0 1-1 

N 
characteristic X value can be chosen as x - d 

max 
where d 

max 
is the 

maximum cross section diameter which is also the largest particle 

diameter. Ey using the experimental error ~dmaA as an estin.ation 

for the variance of d i.e. Vard = (~d ) 2 and the ~cisson dlstri­max 



bution for N (VarN - N) it is found that: 

1 N
2 

Vard N N
2 (6:::) 2 

varx=~varN+d2 ~=T-+d2-- J 
max max Max max max 

f 
101 -, 

A 

Varf f2 VarA 
VarNv - - + - --;::--2 ]\2 A2 u 

By putting VarA ~ (~A) 2 where ~A is the error in the IOOasurement 

of the print area we obtain: 

Varf i- (M) 2 
VarNv c: ~ + A2 AJ 

~A ~'A lu ~v 
- can be estimated from: -A- ~ - + - where Ii .. uv, and u and 
P. u v 

v are linear dimensions, so that 

H2nce: 

that is: 

VarNv 
N 2 

v 
Varf + 10-1t 

VarNV 
Varf 

~ ---]\2 

Now, using equations (Al.S), (ALl) and (7\1.2) 

6dmax 2 
Taking N .. 382, -d~- ~ O.OS, lIo .. 8, A it" 17120 rom , 

max pr n 

d (i i t) .. 4.23 urn and print magni:f'icati.on 140.8 we obtain 
ma."{ n pr n 

(Al.2) 

(1\1.3) 

(1'-1.5) 

(t.l.6) 
~ 



~ 
for the standard devia tion (1!'1v II: (VarNv> = 3516. 

O'Hv 3 
So - x 100 :::: 18% \.,rhere Nv • 19130 mm- , 

N v 

NV ± cn~v = 19130 ±3516 

Again it is stressed that ~~is approach only gives ar. upper 

estimate of the actual error in N • 
v 



CHEI·UC1-'L rmTHons rum RESULTS 

The chemical analyses for five glasses are listed in Table 1\2.1 

The method of analysis is sho"m in brackets where 

Tr~ = Triple Acetate. FP ... Flame Photometry. 

T~.BLE A2.1 

Glass wt.\ Na20 '-Tt. % CaO \-Tt. % 5i02 wt.% F 

Nominal 17.49 31.65 50.88 
NC253 

G2 17.07 (TA) 31.40 (EDTP,) 51.53 

G16 16.85 (TA) 31.54 (EDT1\) 51.61 

G5 10.28 (FP) 29.65 (EDTA) 51.30 0.77 

G14 15.44 (TA) 30.10 (EDT1\) 54.46 

GlS 14.50 (l~) 30.00 (EMA) 55.00 

'!he losses found for G2 were 0.42 \'It.Os Na20 and 0.25 wt.~ CaO. 

The glass (1 9) was dissolvec~ in approximately 15 ml of r.R 

HF (40%) and 4 ml of AR percllloric acid. During heating. evapora-

tion of silica occurred as silicon tetrafluoride and also tho excess 

of perchloric acid. The remainin<] solution was transferred to a 

250 ml volumetric f1ask.wl.1ch w~s f111eJ to the mark with distilled 

water. 

Na20 was det.6:rt:ined by ·the Tri['le Acetate Hethod (TA). 'nle 

sodium in the solution (from the 9l~s) was precipitated as 

Kno\;ing the "re!ght of 

precipi tate the follo,dng conversion formula '7ives the wt.' of Na20: 



Na 0 .. weight N~20 x 100 .. wei~ht ppt x 0.020150 100 
wt. , 2 weight glass "1eight glass x. 

For example a typical calculation for c.2 is: 

0.84765 x 0.020158 
0.10001 x 100 IS 17.07 wt.% Na20 • 

cao was determined by the EDTA titration t~chnique. n 0.025 N, 

EDTA solution was prepared from dis odium ethylene dimitrilotetroacetate 

and checked with a 0.0099 N solution of zinc in llCl. For example 

for glass G1,1 the mass dissolved was 1.0102 g and t.'1e volume to be 

titrated was 20 ml (from the initial 250 ml solution): the EDT1\ 

volUJOO was 17.35 ml so, CaO content (ppm) in 20 JIll was:-

17.35 (vol. titrated) x 0.025 x 10- 9 (EDTi\ str)ingth) SC.OS ,(MOl c.:lO) 
20 (vol. of solution) 

.. 1216.24 ppm, 

so: 

1215.24 X 10-6 x 250 
1.0102 - x 100 ... 30.10 wt.~ CaO 

Although the Na20 content, frOM flall'e photometry (FP), was 

always lower than cocypared \-lith the triple acetate mathod, measure-

ments were carried out for ~lasses G2 and GS for comparison purl'Oses. 

The results Wf)re G2: 15 ",t.t Na20 and G5: 15.06 wt.\ Na2.0 mec.."lintj 

a relative increase in 1'1a20 conten.t of 7.1% for glass G5 compar~,1 

to c2. Hence 'b<J assuming the true level of Na20 as l7.C7 'o1t.% Na20 

for a2 ('rable 1'.2.1) the true r:a20 content of GS should be approximately 

1.21 + 17.07 .. 19.29 wt.% Na:lO which in turn implies a loss of 

18.94 - 18.28 III 0.66% in Ua20. where the value of 18.94 ",as calculated 

for GS on tl16 assunption that the Na+ coming fro!:i Nar' would combine 

with the.·atmospheric 02 to give; Na20. 



The Li20 content in glasses melted by P.S. Johnson (2.16) nominally 

of the Li20.2Si02 corrposition were also 1!leasurec. b;! flame l?hoto-

metry. 

Tho l~vcl!i of fluoride in the glasses "rere measured by the follow-

ing technique: the fluoride was put into solution by fusing ti1e 

glass with UaOH (in a silver crucible) follcMed by treatment with 

hydro("hloric acid. The F- concentration was meas~rcd from the 

potential difference developed between two electrodes l?laced in 

the solution - one a reference electrode and the other a lallthantlr.l 

fl~oride electrode permeable to ~. By measuring the voltage for 

kno"m fluoride solutions a calibration curve was constructed. This 

curve, which was not linear, was used to estimate the fluoride con-

tent of the glasses. The calibration curve was obtained from the 

follooing data: 

Potential Difference 
(mV) 

-59 
-53.5 
-46 
-36 
-25 
-19 
•. 0.13 
-22.5 
.45.5 

Strength x le" 
(<1 F/IOO ml) 

250 
200 
150 
lon 
62.5 
50 
2S 
12.5 

5 

For G5 the reading was 12.5 mV corresponding t~ 0.00155 ~ F- &lG the 

aJlX)unt of glass \-Tas 0.2004 g, giving 0.77 \-;t.\ F. This corresponds 

to a 33\ loss of Fluoride cince the nominal fluoride content was 

1.15 wt.~. 



If was fourrl that the higher the nominal fluoride content of the 

glasses the higher the loss. For example, for glass G6 the loss 

amounted to almost 43" i.e. 

(nominal) 5.73 wt.% F - (measured) 3.28 2 
~~~--~--------~~~------~~~~ x 100 - 4 .8~ 5.73 

The level of losses found in this work are similar to the values 

obtained by R. 1\mos (2.17) using this technique. 



1\3 01emical Durability 

Both for Na20 and SiOa ~etermination the calibration curves 

were obtained from data producGd after taking at least five measure­

ments for each strength of the standard solutions. 

A3.l Procedure for Na20 detennination 

r~e up a standard solution of sodium ions (from either r~ 

NaaCOs or NaaSO .. > containing 1000 PDm and by diluting appropriate 

allquots to 100 rol obtain solutions containing 0, 1, 2, 3, 4 and 

5 ppm Na+ in 1 vol.~ HCl. Calibrate the flame photometer with 

the 5 ppm solution (for full scale deflection) and with the 0 ppm 

solution (for zero c1eflection) .H3asure the intennediate £olutions 

(always checking the 0 and 100 deflections) ~fter five independent 

readings have been obtained. Plot scale readings VB. vpm Na+. 

Determine Na+ content in the given solution by carrying out the 

appropriate dilution. 

A3.2 Colorimetric detennination of SiOz 

Reagents 

1. Standard 50 ppm Si02 solution (by f~sing pure Si02 with Na2CO,) 

2. Ammonium I~lybdate solution: Dissolve 4.Oc] of nIllr!-oniwrr 

molybdate crystals in about 40 ml of H20. Md 5 ru of 

concentrated H2S0S, ,-,hile stirring.. "'lake up to 50 ml im 

a volumetric flask. 

3. Tarta%"ic Acid solution 20% w/v (by (l!luting the right a.'Tlount 

of tartaric acid in H20) • 



4. Reducing agent: (i) Dissol ve 10 9 of SOdiUIJ meta­

bisulphite in 80 ml of H20. (ii) Dissolve 1.6 9 of 

sodium sulphite (hydrated) and 0.16 ~ of l-amir.o-2-

naphthol-4-sulphonic acl(~ in about 15 ml of water. Mix 

solutions (i) and (11) and make up to 100 ml with ''later. 

Procedure 

Take a given volume of tmknO\ffi solution in a 100 I'll volumetric 

flask. Prepare five volu~etr1c flasks of 100 ml to which 0, 1, 2, 

5 and 10 ml of the standard 50 ppm silica solution have been added. 

Hake up to about 50 ml with distilled water Md add 2 ml of the 

prepared ammonium mol~{bdate solution. Shake the flasks and leave 

them for 15 minutes. ~dd 2 ml of the taltaric acid solution and 

2 ml of the reducing solution ana make up to 100 ml with distilled 

water. Leave for a further 20 minutes before measuring. Heasure 

the absorbance at 650 nm using 1 em cells. Plot aesorbance against 

concentration of silica and read off the silica C(.~~tcnt of the unknown 

solution. 



A4 FORTRAN PROGFAH TO CALCULl\TE THE A, B AND TO CCl~STAN'J'S FROM 

EQUA'l'ION (2.6) BY 'A. LEl\sT f.QUARES FI~ 

1 MAS'lER FULCHER EQUATION BY LEJ\.S'l' SQUARE 
2 DIMENSION X(SO), Y(50), P(SO) 
3 READ (1, 100) N 
4 100 FORW.T (12) 
5 51 • 0.0 
6 s2 • 0.0 
7 53 • 0.0 
8 54 • 0.0 
9 55 • 0.0 

10 56 • 0.0 
11 57 • 0.0 
12 S8 • 0.0 
13 DO 1 I • l,N 
14 ~\O (1, 101) XCI), Y(I) 
15 101 FOrull~T (2F 10.4) 
16 XCI) = XCI) 
17 F(I) = X(l)*Y(I) 
18 Sl • 51 + (X(I)**2.0) 
19 52 • 52 + (X(I)*Y(I» 
20 53 • 53 + XCI) 
21 54 - 54 + (X(I)*F(I» 
22 55 • 55 + (Y(I)**2.0) 
23 56 - 56 + Y(I) 
24 57 - 57 + (Y(I)*F(I» 
25 S8 - S8 + F(l) 
26 1 CCtJTINUE 

27 E • N 
28 0 - (Sl*(E*SS-S6*.2.0»-
29 1 (52. (E.S2-53*-S6,)) "" 
30 2 (S3*(S2*S6.S3*55». 
31 A • «S4*(E*S5-S6**2.0»-
32 . 1 (52* ~*S7-SG*58) ) + 
33 .2(S3*(S6*S1~S8*S5)})/D. 
34 TO • «Sl*(E*S7-56*SG»-
35 .1 ~4* (1:;.S2-53.S6) ) + . 
36 2 (.53. (S2.58-S3*l:>7» ) /D. I 

37 C & «Sl*(55*58-56*57»-
381(52.(52.58-53.57»+ 
39 .2(S4.(52.56-S3.$5»)/0 
40 B ... C + A*TO 
41 t'lRlTE (2, 102) 0, A, TO, C, B 
42 102 Foml]'.'!, (U!, SH(lET -, E14. 8/H~, 21m -, E14. O/lB, 
43 13HTD-, E14.9/111, 2HC-, E14.8/1H, 2Lit:-, }::.14.8) 
44 STOP OK 
1S END 
46 FINISH 



T}~ical chart of measurements for the rotating cylinder 

apparatus. The <8> deflection was calculated as 



T «(\C) T(oC) Right (CI!l) 
t. 

StabiU.z .. · Zero (em) Left (em) 3 2 1 Glass and Comments (6R-eOR) +(6,[. 0L) 
titre Eefore After Deflection, Deflection Def1ecticn lares l'~ires Wire 

2 

30 1524 42.35 63.5 x NBS710, f' - 2.522 
42.40 19.8 x "g/cm- 3 <6> - 0.3739,' 
40.1 51.6 x Total weight 21.609 
40.1 28.3 x 23 em level for fur- 0.1992 
40.5 44.3 x naco:! 

1515 40.5 36.8 x 58.5 em mirror-scale 0.0641= 
6C 1493 42.4 61.6 x distance. 

42.4 21.9 x Always used maximum 0.3393' 
37.0 48.6 x rotating speed. 
37.0 24.4 x 0.20'j4' , 

37.25 41.2 x 

Has 37.25 33.2 x 0.06,14 

30 H57 41.70 66.4 x 
41.80 14.5 x 0.4415~ 

39.6 54.3 x 
39.6 24.3 x 0.25 j4' : 

40.4 45.3 x 
0.08";5', 

1455 40.4 35.3 x 

30 1436 ~2.0 71.9 x 
0.535t 

42.0 9.0 x 

38.3 55.1 x 
0.30 lO 

33.3 20.0 x 
35.0 40.7 x 

0.10)9 
1·B7 35.0 28.9 x 

0.67l5 
30 13~8 42.1 81.5 x 

,U.l 63.3 x 
0.3970 

41.1 16.S-17.2 x 
40.6 48.1 x 

0.1274 
1398 40.6 33.2 x 

1372 40.7 50.0 x 
30 0.1539 

40.6 31.2 x 

41.1 69.3 x 
0.5146 " 

1369 41.2 9.2 x 

30 1356 41.1 73.7 x 

41.1 4.0 x 0.5953 

41. 7 52.3 x 

1:)52 41. 7 31.0 X 0.1821 



ASb DETERIUNATION OF K VALUES (SEE TEXT) 

Nass No. of Ave r ac;e I K K2 K3 
and "tires period of (9 cm2 ) (9 em2 s-2) 

Radius oscillation 
in sec 

800 91 3 11.65 13004.1 
5.7 em 2 9.00 " 

1 5.23 If 

10953.4 6449.3 3851.3 

343 91 3 5.21 2411.7 
3.75 em 2 4.02 II 

1 2.30 " 

A5c VISCOSITY l-1EASUREl-1EN'l'S FOH THE NBS 710 STI:.NDl\RD GLASS 

T(OC) <0>3 <9>2 <8>1 Calculated Measured Data for 
1.0910 n from NBS 710 NodS 710 

Calibration according to 
Ref. (2.7) 

1490.5 0.3393 1.53 1.69 1. 70 

0.2064 2.11 

0.0694 2.10 

1456 0.4445 1.64 1.80 1.00 

0.2564 2.20 

0.0855 2.14 

1436.5 0.5368 1.73 1.09 1.87 

0.3000 2.27 

0.1009 2.27 

1398 0.6735 1.83 1.98 1.995 

0.3970 2.39 

0.1274 2.37 

1354 0.5958 2.57 

0.1021 2.52 

NOTE: <6>i i - 1,2,3 means the mean value of the deflection 

angle for tha condition of i wires connected. 



ASd 

In this section it is shown that equation (2.6) approaches 

equation (2.S) when y« ~ (see section 2.8.1). By using sin26y D 

sin (n-28y) equation (2.6) transforms to 

2. ~ (: l.. ~ 3/2 [C'rr-28y ) - sin(lT-2Sy )] 
32 n4> 12 32 

If n-2ey • u + 0 

(2.8) gives 

Also 

uS 
sin u = u - -

31 
u' so u - sinu = 31. 

(ASd.l) 

So equation 

(ASd.l) 

!h 
~ ~ == .L x ~ % x !. x 64 x ~ - y'h , which is the same as 
32 n4> ~ 32 6 ~ 

equation (2.5). 



A5e 

In this AppencUx ~~e errors in the viscosities measured with 

the penetration viscometer are esti~ated (see section 2.8.1). 

9 P 
Let us calculate the error in C .. --~ from the individual 

32 cp 

flc ... flp 1 M.... 5 1 0.001 
errors: c - P + 2" 4> - 2256 + "2 0.3175 ::t 0.004. Fron Equation (2.5) 

c n - -"T~-
(y "/2 It) 

Putting v - loglon 
A.v _ t.n 1 0.044 - - -.,,--- .. v n loglOn loglOn • For example 

for a viscosity level of n - 1010 Poise flv 0.0044. 
-::t 
v 
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